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Preface

The West Coast of the United States has a longstanding tradition in Lie theory,
although before 1991 there had been no systematic cooperation between the various
strongholds. In 1991, partially inspired by the arrival of some well-known Lie
theorists from eastern Europe, the situation changed. A new structure emerged: a
seminar that would meet at various University of California campuses three or four
times a year. The purpose of the seminar was to foster contacts between researchers
and graduate students at the various campuses by facilitating the sharing of ideas
prior to formal publication. This idea quickly gained momentum, and became a great
success. It was enthusiastically supported by graduate students. A crucial feature of
the entire endeavor was the feeling of genuine interest for the work of colleagues
and the strong desire to collaborate.

The first meeting of the new seminar Lie Groups, Lie Algebras and their
Representations was held in Berkeley on October 19 and 20, 1991. On the
second day of the seminar, excitement was made even more memorable by the
historic Berkeley–Oakland fire, which we observed from Evans Hall. The original
announcement for that meeting is reprinted here on page v. The phrase “The purpose
of the program is to communicate results and ideas rather than to deliver polished
presentations” quickly became, and still is, the guiding principle of the seminar.
We never restricted ourselves to Lie Theory per se, and speakers from geometry,
algebra, complex analysis, and other adjacent areas were often invited.

NSF travel grants were crucial to the success of the seminar series. These grants
funded travel for speakers, graduate students and postdoctoral researchers, and we
thank the National Science Foundation for its continued support.

Over the years our idea became widely popular. On occasion the seminar took
place in Salt Lake City, in Stillwater, Oklahoma, and in Eugene, Oregon. In addition,
colleagues from other regional centers of Lie theory and related areas picked up on
our idea and created their own meeting series. This is how the “Midwest Lie Theory
Seminars”, the “Midwest Group Theory Seminar”, the “Southeastern Lie Theory
Workshops”, and other regional series emerged.
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viii Preface

The California Lie Theory Seminar has now been alive and well for 23 years. Joe
Wolf has always played a central role in the seminar, along with Geoff Mason and
Ivan Penkov. When Ivan left for Germany in 2004, Susan Montgomery and Milen
Yakimov joined the team of organizers.

Over the course of these 23 years, at about 20 talks per year, some 450 talks
have been hosted by the seminar. It seemed unrealistic to give an overview of all
of the topics covered over all these years, and similarly unrealistic to try to publish
a comprehensive set of volumes. Rather, we settled on two retrospective volumes
containing work representative of the seminar as a whole. We started with a list
of participants who spoke more than once in the seminar, and invited them to
submit work relevant to their seminar talks. For obvious reasons we did not hear
from everyone. Nevertheless, there was a strong response, and the reader of these
Volumes will find 26 research papers, all of which received strong referee reports,
in the greater area of Lie Theory. We decided to split the papers into two volumes:
“Algebraic Methods” and “Geometric/Analytic Methods”. We thank Springer, the
publisher of these volumes, and especially Ann Kostant and Elizabeth Loew, for
their cooperation and assistance in this project.

This is the Geometric/Analytic Methods volume.

Santa Cruz, CA, USA Geoffrey Mason
Bremen, Germany Ivan Penkov
Berkeley, CA, USA Joseph A. Wolf
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Dragan Miličić and Wolfgang Soergel

Unitary Representations of Unitary Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Karl-Hermann Neeb

Weak Splittings of Quotients of Drinfeld and Heisenberg Doubles . . . . . . . . 245
Milen Yakimov

ix



Group Gradings on Lie Algebras
and Applications to Geometry: II

Yuri Bahturin, Michel Goze, and Elisabeth Remm

Abstract This paper is devoted to some applications of the theory of group
gradings on Lie algebras to two topics of differential geometry, such as generalized
symmetric manifolds and affine structures on nilmanifolds.

Key words Symmetric manifolds • Nilmanifolds • Affine connections • Filiform
Lie algebras • Graded algebras

Mathematics Subject Classification (2010): 17B20, 17B30, 17B70, 17B40,
53C35, 53C05, 57S25.

1 Introduction

This paper is a sequel to [4]. Here we discuss two topics in differential geometry,
closely related to the theory of gradings on Lie algebras which we developed in
that earlier paper. These topics are as follows: the generalization of the theory of
symmetric manifolds to the case where the local symmetries form the group Z2�Z2
and Milnor’s problem about the existence of affine structure on nilmanifolds. This
latter topic quickly leads to the necessity of describing abelian group gradings on
filiform nilpotent Lie algebras. As we showed in [4], in the case of filiform Lie
algebras of nonzero rank, all abelian group gradings of a filiform Lie algebra are
isomorphic to the coarsenings of a standard grading produced by the action of the
maximal torus. In this paper, we classify these gradings up to equivalence (see
Sect. 2) and also produce some results on filiform Lie algebras of zero rank, also
called characteristically nilpotent.
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2 Y. Bahturin et al.

The results on the first topic have been reported to the Lie Theory Workshop
at UC Berkeley in 2006. Since there was some later development in this area, we
describe these results in some detail in Sect. 3.

In this geometric part the field of coefficients K has characteristic zero, and
starting from Sect. 3.3, K is R, or C, and for a real Lie algebra g its complexification
g˝ C will be denoted gC.

2 Gradings on Filiform Algebras of Nonzero Rank,
Up to Equivalence

Recall that two gradings of an algebra are equivalent if there is an automorphism
of this algebra permuting the components of the grading. In what follows we use a
theorem in [4] according to which any grading of a filiform Lie algebra of nonzero
rank is isomorphic, hence equivalent, to a grading where the elements of an adapted
(case Ln and Apn ) or quasi adapted (caseQn and Bp

n ) basis are homogeneous. Let G
be the grading group and, for each i D 1; 2; : : : ; n, di denote the degree of the i th
element of this basis. So if fX1;X2; : : : ; Xng is the adapted basis of g, then di D
degXi , i D 1; 2; : : : ; n, in the case of Ln and Apn and di D degYi , i D 1; 2; : : : ; n,
in the case of Qn and Bp

n , where Y1 D X1 C X2 and Yi D Xi , for i D 2; : : : ; n.
Since g is generated by X1;X2 (respectively, Y1; Y2) it follows that knowing a D d1
and b D d2 automatically gives values for the remaining di , i D 3; : : : ; n.

2.1 Gradings on Ln and A
p
n

Let fX1;X2; : : : ; Xng be an adapted basis of a filiform Lie algebra g of type Ln
or Apn . Since ŒX1;Xi � D XiC1 for i D 2; : : : ; n � 1, we know that di D ai�2b for
i D 3; : : : ; n. However, if g is of the type Apn , we already have b D apC1. So in
this case, di D apCi�1. In the case of Ln, the universal group of any grading is the
factor-group of the free abelian group with free basis a; b by the relations satisfied
by a; b, while in the case of Apn this is a factor-group of the free abelian group of
rank 1 or rank 2 but we have to consider, in the latter case, that b D apC1.

Let us first consider the case of Ln. Any grading is a coarsening of the standard
grading, which we denote by �st. If all di are pairwise different then there is no
coarsening and we have the standard grading.

Case 1. If d1 D dl , for 2 � l � n, then the grading is a coarsening of the
grading

�l0 W g D hX2i ˚ � � � ˚ hX1;Xli ˚ � � � ˚ hXni:
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Since this is indeed a grading of g, our claim follows. The universal group of this
grading is the factor-group of the free abelian group generated by a; b by a single
relation a D al�2b, that is, the group Z.

Case 2. If di D dj , for 2 � i < j � n, then the grading is a coarsening of a
grading

�0k W g D hX1i ˚ ŒX2�k ˚ � � � ˚ ŒXkC1�k :

Here ŒXi �k is the span of the set of all Xj , 2 � j � n such that k divides i � j . This
easily follows if we choose k to be the least positive with d2 D d2Ck .

The universal group of this grading is the factor-group of the free abelian group
generated by a; b by a single relation b D akb, that is, the group Zk � Z.

Any further coarsening of �l0 is clearly also the coarsening of a �0k , so we can
restrict ourselves to consider only the coarsenings of the latter grading.

Case 3. Any proper coarsening of �0k , which does not decrease k, is equivalent
to one of the following.

�lk W g D ŒX2�k ˚ � � � ˚ .hX1i ˚ ŒXl �k/˚ � � � ˚ ŒXkC1�k:

Indeed, any further coarsening of ŒXl �k will decrease k so we have to assume that
d1 D dl , for 2 � l � n, proving our claim. The universal group of this grading is
the factor group of the group Zk � Z by additional relation a D al�2b, that is, the
group Zk .

Clearly, any further coarsening will lead to the decreasing of k, and so any
grading is equivalent to one of the previous gradings.

Notice that these gradings are pairwise inequivalent. First, we have to look at
the number of homogeneous components. Then it becomes clear that we only
need to distinguish between the gradings with different values of the superscript
parameter l D 2; : : : ; n. In this case, if an automorphism ' maps �l0 to �m0 , or
�lk to �mk , where m > l , then '.hX1;Xli/ D hX1;Xmi. But then '.XlC1/ D
'.ŒX1;Xl �/ D Œ'.X1/; '.Xl/� D ˛mC1XmC1, '.XlC2/ D ˛mC2XmC2, etc. Finally,
'.Xn�mClC1/ D 0, which is impossible because 2 � n �mC l C 1 � n.

As a result, we have the following.

Theorem 2.1. Let g be a filiform Lie algebra of the type Ln. If g is G-graded, then
there exists a graded homogeneous adapted basis fX1;X2; : : : ; Xng. If di denotes
the degree of Xi , then any G-grading is equivalent to one of the following pairwise
inequivalent gradings:

(1) �st, U.�st/ D Z
2, d1 D .1; 0/; di D .i � 2; 1/, i D 2; : : : ; n.

(2) �l0, U.�
l
0/ D Z, 2 � l � n; d1 D 1; di D i � l C 1, i D 2; : : : ; n.

(3) �0k ,U.�0k/ D Zk�Z, 1 � k � n�2, d1 D .1; 0/; di D .i � 2; 1/, i D 2; : : : ; n.
(4) �lk , U.�lk/ D Zk , 1 � k � n � 2; 2 � l � k C 1, d1 D 1; di D i � l C 1,

i D 2; : : : ; n.
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The total number of pairwise inequivalent gradings of Ln is equal to

1C .n � 1/C .n � 2/C .1C 2C � � � C .n � 2// D .n � 1/.nC 2/
2

.

In the case of Apn , we need to consider the coarsenings of the standard grading,
which we denote here by �st, where U.�st/ Š Z, with free generator a, d1 D a,
di D aiCp�1, where i D 2; : : : ; n. Clearly, in this case, any proper coarsening leads
to relations ai D aj , hence ai�j D e, for different 1 � i; j � n. Ifm is the greatest
common divisor of all such i � j , then the universal group is Zm. Any value of
m between 1 and n C p � 2 is possible. Indeed, if p � m � n C p � 2, then
d1 D dm�pC2. If 1 � m � n � 2, then d2 D dmC2. But 1 � p � n � 4 < n � 2,
and so any m between 1 and n C p � 2 is available. Let us denote the grading
corresponding to m by �.m/. If 1 � m � p � 1, �.m/ is similar to �0m of Ln, then

�.m/ W g D hX1i ˚ ŒX2�m ˚ � � � ˚ ŒXmC1�m:

If n � 1 � m � nC p � 1 and l D m � p C 2, then �.m/ is similar to �l0 of Ln:

�.m/ W g D hX2i ˚ � � � ˚ hX1;Xli ˚ � � � ˚ hXni:

If p � d � n � 2, then we have the gradings similar to �lm of Ln:

�.m/ W g D ŒX2�m ˚ � � � ˚ .hX1i ˚ ŒXl �m/˚ � � � ˚ ŒXmC1�m:

Here l is a number between 2 and n such that l C p � 1 � 1mod m. The pairwise
inequivalence of all the above gradings follows, as in the case of Ln.

Theorem 2.2. Let g be a filiform Lie algebra of the type Apn . If g is G-graded, then
there exists a graded homogeneous adapted basis fX1;X2; : : : ; Xng. If di denotes
the degree of Xi , then any G-grading is equivalent to one of the following non
equivalent gradings:

(1) �st, U.�st/ D Z, d1 D 1; di D p C i � 1, i D 2; : : : ; n.
(2) �.m/, U.�.m// D Zm, 1 � m � n C p � 2, d1 D 1; di D p C i � 1,

i D 2; : : : ; n.

The total number of pairwise inequivalent gradings of Apn is equal to nC p � 2.

2.2 Gradings on Qn and B
p
n

Let fY1; Y2; : : : ; Yng be a quasi-adapted basis of a filiform Lie algebra g of type Qn

or Bp
n . Since ŒY1; Yi � D YiC1 for i D 2; : : : ; n � 2, we know that di D ai�2b for

i D 3; : : : ; n � 1. Also, ŒYi ; Yn�iC1� D .�1/iC1Yn which assigns to dn the value of
dn D an�3b2. If g is of the type Bp

n , we already have b D apC1. So in this case,
di D apCi�1, for 2 � i � n�1, and dn D anC2p�1. In the case ofQn, the universal
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group of any grading is the factor group of the free abelian group with free basis
a; b by the relations satisfied by a; b while in the case of Bp

n , this is a factor-group
of the free abelian group of rank 1 or rank 2 but we have to consider, in the latter
case, that b D apC1.

Let us first consider the case ofQn. We remember that n D 2m, for somem � 2.
Now any grading is a coarsening of the standard grading, which we denote by � st.
If all di are pairwise different, then there is no coarsening and we have the standard
grading.

Case 1. If d1 D dn, then the grading is a coarsening of the grading

�.1; n/ W g D hY2i ˚ � � � ˚ hYn�1i ˚ hY1; Yni:
Since this is indeed a grading of g, our claim follows. The universal group of this
grading is the factor group of the free abelian group generated by a; b by a single
relation a D an�3b2, that is, the group Z � Z2.

Case 2. If d1 D dl , for 2 � l � n � 1, then a D al�2b. In this case also
dn D an�3b2 D an�l b D dn�lC2. Hence, for all q satisfying l C q D nC 2, except
l D 2, or q D 2, the grading is a coarsening of one of the following gradings.
If l ¤ q, then we have

�
l

0 W g D hY2i ˚ � � � ˚ hY1; Yli ˚ � � � ˚ hYm; Yni ˚ hYn�1i:
If l D q D mC 1, then we have

�
mC1
0 W g D hY2i ˚ � � � ˚ hY1; YmC1; Yni ˚ � � � ˚ hYn�1i:

Notice that this grading is a coarsening of �.1; n/.
In the exceptional cases, l D 2 or q D 2, we have the following.
If l D 2, then we have

�
2

0 W g D hY1; Y2i ˚ � � � ˚ hY1; Yli ˚ � � � ˚ hYni:

If q D 2, then we have

�
n

0 W g D hY2; Yni ˚ hY3i ˚ � � � ˚ hYn�1i ˚ hY1i:

Since all these are indeed gradings of g, our claim follows. The universal group
of this grading is the factor-group of the free abelian group generated by a; b by a
single relation a D al�2b, that is, the group Z.

Case 3. If di D dj , for 2 � i < j � n � 1, then the grading is a coarsening of
a grading

�
0

k W g D hY1i ˚ ŒY2�k ˚ � � � ˚ ŒYkC1�k ˚ hYni;
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where k is such that 1 � k � n � 3. Here ŒYi �k is the span of the set of all Yj ,
2 � j � n, such that k divides i � j . This easily follows if we choose k to be the
least positive with d2 D d2Ck .

The universal group of this grading is the factor-group of the free abelian group
generated by a; b by a single relation b D akb, that is, the group Zk � Z.

Any coarsening of �.1; n/ (Case 1) is either �
mC1
0 or is a coarsening of some

�
0

k . Any coarsening of a grading �
l

0 (Case 2) is also a coarsening of some �
0

k , so we
can restrict ourselves to consider only the coarsenings of the latter gradings. This
shows that any grading is either standard, or equivalent to one of the gradings in

Cases 1–3 or is a proper coarsening of a grading �
0

k . Let us choose �
0

k with minimal
possible k.

Case 4. Any proper coarsening of �
0

k , which does not change k, is equivalent to
one of the following:

�.1; n/k W g D ŒY2�k ˚ � � � ˚ ŒYkC2�k ˚ hY1; Yni;

where 1 � k � n � 3, or

�
l

k W g D ŒY2�k ˚ � � � ˚ .hY1i ˚ ŒYl �k/˚ � � � ˚ .ŒYq�k ˚ hYni/˚ � � � ˚ ŒYkC1�k;

where 1 � k � n � 3, 2 � l; q � k C 1, l C q � nC 2modk.

The universal group of �.1; n/k is Zk � Z2, whereas, in the case of �
l

k , the
universal group is Zk .

Indeed, any further coarsening of ŒYl �k will decrease k, so we have to assume
that d1 D dl , for 2 � l � n, proving our claim. Clearly, any further coarsening
will lead to further decreasing of k, and so any grading is equivalent to one of the
previous gradings.

Notice that these gradings are pairwise inequivalent. First, the gradings with
different universal groups are not equivalent. As a result, we only need to distinguish

between the gradings in the sets �
l

0, 2 � l � n (the universal group Z) and �
l

k ,
2 � l � k C 1 (the universal group Zk). This is done exactly in the same way,
except for the cases where Y1 is in a component which is not two-dimensional.
However, such a grading can only be mapped to a grading with the same property
because Y1 is the only element among Yi with .adYi /n�2 ¤ 0.

As a result, we have the following.

Theorem 2.3. Let g be a filiform Lie algebra of the type Qn. If g is G-graded,
then there exists a graded homogeneous quasi-adapted basis fY1; Y2; : : : ; Yng. If di
denotes the degree of Yi , then any G-grading is equivalent to one of the following
pairwise equivalent gradings:

(1) � st, U.�st/ D Z
2, d1 D .1; 0/; di D .i � 2; 1/, 2 � i � n� 1, dn D .n� 3; 2/.

(2) �.1; n/,U.�.1; n// D Z�Z2, d1 D .1; 0/ D dn, di D .i�2; 1/, 2 � i � n�1.
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(3) �
l

0, U.�
l

0/ D Z, 2 � l � n, d1 D 1, di D i � l C 1, 2 � i � n � 1,
dn D n � 2l C 3.

(4) �
0

k , U.�
0

k/ D Zk � Z, 1 � k � n � 3, d1 D .1; 0/; di D .i � 2; 1/; dn D
.n � 3; 2/.

(5) �.1; n/k , U.�.1; n/k/ D Zk � Z2, 1 � k � n � 3, d1 D .1; 0/ D dn, di D
.i � 2; 1/, 2 � i � n� 1.

(6) �
l

k , U.�
l

k/ D Zk , 1 � k � n � 3; 2 � l � k C 1, d1 D 1, di D i � l C 1,
dn D n � 2l C 3.

The total number of pairwise inequivalent gradings of Qn is equal to 1 C 1 C
.n � 1/C .n � 3/C .n � 3/C .1C 2C � � � C .n � 3// D .n � 1/.nC 2/

2
� 1.

In the case of Bp
n , we need to consider the coarsenings of the standard grading,

which we denote here by �st, where U.�st/ Š Z, with free generator a, d1 D a,
di D aiCp�1, where i D 2; : : : ; n � 1, dn D anC2p�1. Clearly, in this case, any
proper coarsening leads to relations ai D aj , hence ai�j D e, for different 1 �
i; j � n. If m is the greatest common divisor of all such i � j , then the universal
group is Zm. Any value of m between 1 and n C p � 3 is possible, similar to the
case of Apn . One more possible isolated value for m appears if we choose d1 D dn.
Thenm D nC 2p � 3. Let us denote the grading corresponding to m by �.m/.

If 1 � m � p � 1, �.m/ is similar to �
0

m of Qn, then

�.m/ W g D hY1i ˚ ŒY2�m ˚ � � � ˚ ŒYmC1�m ˚ hYni:

If p � m � n � 3, then we have gradings similar to �
l

m of Qn:

�.m/ W g D ŒY2�m ˚ � � � ˚ .hY1i ˚ ŒYl �m/˚ � � � ˚ .ŒYq�m ˚ hYni/˚ � � � ˚ ŒYmC1�m:

If n � 2 � m � nC p � 3, �.m/ is similar to �
l

0 of Qn, then

�.m/ W g D hY2i ˚ � � � ˚ hY1; Yl i ˚ � � � ˚ hYm; Yni ˚ hYn�1i:

Here l D m� p C 2.
If m D nC 2p � 3, then �.m/ is similar to �.1; n/:

�.nC 2p � 3/ W g D hY2i ˚ � � � ˚ hYn�1i ˚ hY1; Yni:

The pairwise inequivalence of all the above gradings follows, as in the case
of Qn.

Theorem 2.4. Let g be a filiform Lie algebra of the type Bp
n . If g is G-graded, then

there exists a graded homogeneous adapted basis fY1; Y2; : : : ; Yng. If di denotes the
degree of Yi , then any G-grading is equivalent to one of the following non equivalent
gradings:
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(1) � st, U.�st/ D Z, d1 D 1; di D pC i � 1, i D 2; : : : ; n� 1, dn D nC 2p � 2.
(2) �.m/, U.�.m// D Zm, 1 � m � nCp�3 orm D nC2p�3, d1 D 1; di D

p C i � 1, i D 2; : : : ; n, dn D nC 2p � 2.

The total number of pairwise inequivalent gradings of Bp
n is equal to nC p � 3.

2.3 Characteristically Nilpotent Lie Algebras

Definition 2.1. A finite-dimensional K-Lie algebra g is called characteristically
nilpotent if any derivation of g is nilpotent. It is called characteristically unipotent if
the group Aut.g/ of the automorphisms of g is unipotent.

A characteristically nilpotent Lie algebra has rank 0 and the Lie algebra of
derivations Der .g/ is nilpotent (but not necessarily characteristically nilpotent).
In this case also Aut .g/ is nilpotent. However, this group does not have to be
unipotent. It is unipotent if g is characteristically unipotent. Of course, if g is
characteristically unipotent, it is characteristically nilpotent.

Examples. (1) The simplest example [1], denoted by n7;4 in terminology of [17], is
seven-dimensional and given by

8
ˆ̂
<

ˆ̂
:

ŒX1;Xi � D XiC1; 2 � i � 6;
ŒX2;X3� D �X6;
ŒX2;X4� D � ŒX5;X2� D �X7;
ŒX3;X4� D X7:

This Lie algebra is filiform. Any automorphism of n7;4 is unipotent. It is defined
on the generatorsX1;X2 by

(
�.X1/ D X1 C a2X2 C a3X3 C a4X4 C a5X5 C a6X6 C a7X7;
�.X2/ D X2 C b3X3 C b23�a2

2
X4 C b5X5 C b6X6 C b7X7:

It follows that Aut .n7;4/ is a ten-dimensional unipotent Lie group and n7;4 is
also characteristically unipotent. Let us note that any � 2 Aut .n7;4/ of finite
order is equal to the identity.

(2) The first example of characteristically nilpotent Lie algebra was given by
Dixmier and Lister [9]. It can be written as

8
<

:

ŒX1;X2� D X5; ŒX1;X3� D X6; ŒX1;X4� D X7; ŒX1;X5� D �X8;
ŒX2;X3� D X8; ŒX2;X4� D X6; ŒX2;X6� D �X7; ŒX3;X4� D �X5;
ŒX3;X5� D �X7; ŒX4;X6� D �X8:
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It is an eight-dimensional nilpotent Lie algebra of nilindex 3, and it is not
filiform. Let us note that nil-index 3 is the lowest possible nil-index for a
characteristically nilpotent Lie algebra. Its automorphisms group Aut .g/ is not
unipotent. For example, the linear map given by

8
ˆ̂
<

ˆ̂
:

�.X1/ D X5; �.X5/ D X1;
�.X2/ D X7; �.X7/ D X2;
�.X4/ D X8; �.X8/ D X4;
�.X3/ D �X3; �.X6/ D �X6

is a non-unipotent automorphism of g of order 2. In the case where char K ¤ 2,
� defines a nontrivial Z2-grading � of g:

� W g D hX1CX5;X2CX7;X4CX8i˚hX1�X5;X2�X7;X4�X8;X3;X6i:

2.4 Structure of Characteristically Nilpotent Lie Algebras

It is known from [13] that any filiform .n C 1/-dimensional Lie algebra over an
algebraic field of characteristic 0 is defined by its Lie bracket � with � D �0 C  
where �0 is the Lie multiplication of LnC1 and  a 2-cocycle of Z2.LnC1; LnC1/
satisfying  ı  D 0, that is,  is also a .n C 1/-dimensional Lie multiplication.
Let us consider the natural Z-grading of LnC1:

LnC1 D
M

i2Z
LnC1;i ;

where LnC1;1 is generated by e0; e1 and LnC1;i by ei for i D 2; : : : ; n; and other
subspaces are zero. This grading induces a Z-grading in the spaces of cochains of
the Chevalley–Eilenberg complex of LnC1:

Ckp.LnC1; LnC1/Df� 2 Ck.LnC1; LnC1/; �.LnC1;i1 ; : : : ; LnC1;ik /

� LnC1;i1C:::CikCpg:
Since d.Ckp.LnC1; LnC1// � CkC1

p .LnC1; LnC1/, we deduce a grading in the spaces
of cocycles and coboundaries. Let

Hk
p .LnC1; LnC1/ D Zk

p.LnC1; LnC1/=Bk
p.LnC1; LnC1/

be the corresponding grading in the Chevalley–Eilenberg cohomological spaces of
LnC1. We put

F0H
k.LnC1; LnC1/ D

M

p2Z
Hk
p .LnC1; LnC1/;

F1H
k.LnC1; LnC1/ D

M

p�1
Hk
p .LnC1; LnC1/:
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We have

Proposition 2.1. Let  k;s , 1 � k � n � 1; 2k � s � n be the 2-cocycle in
C2.LnC1; LnC1/ defined by

•  k;s.ek; ekC1/ D es ,
•  k;s.ei ; eiC1/ D 0 if i ¤ k,
•  k;s.ei ; ej / D 0 if i > k,
•  k;s.ei ; ej / D .�1/k�iC k�i

j�k�1eiCjCs�2k�1; 1 � i � k < j � 1 � n � 1; 0 �
i C j � 2k � 1 � n� s

Then the family of  k;s with 1 � Œn=2� � 1; 4 � s � n, forms a basis of
F1H

2.LnC1; LnC1/.

Note that the cocycles  k;s also satisfy  k;s.ek; ej / D ejCs�k�1 when k < j .

Proposition 2.2. If � D �0 C  is the Lie multiplication of a filiform .n C 1/-
dimensional Lie algebra, then Œ � 2 F1H

2.LnC1; LnC1/ if n is even or  2
F1H

2.LnC1; LnC1/ C Œ .n�1/=2;n� if n is odd, where Œ � denote the class in
H2.LnC1; LnC1/ of the 2-cocycle  .

Examples. (1) Any seven-dimensional filiform Lie algebra can be written as � D
�0 C  with

 D a1;4 1;4 C a1;5 1;5 C a1;6 1;6 C a2;6 2;6:

(2) Any eight-dimensional filiform Lie algebra can be written as � D �0C with

 D a1;4 1;4C a1;5 1;5C a1;6 1;6C a1;7 1;7C a2;6 2;6C a2;7 2;7C a3;7 3;7:

(3) Any nine-dimensional filiform Lie algebra can be written as � D �0 C  with

 D a1;4 1;4 C a1;5 1;5 C a1;6 1;6 C a1;7 1;7 C a1;8 1;8 C a2;6 2;6C
a2;7 2;7 C a2;8 2;8 C a3;8 3;8:

(4) Any ten-dimensional filiform Lie algebra can be written as � D �0 C  with

 D a1;4 1;4Ca1;5 1;5Ca1;6 1;6Ca1;7 1;7Ca1;8 1;8 C a1;9 1;9 C a2;6 2;6
Ca2;7 2;7 C a2;8 2;8 C a2;9 2;9 C a3;8 3;8 C a3;9 3;9 C a4;9 4;9:

To recognize characteristically nilpotent Lie algebras among the filiform Lie
algebras, we can use the notion of a sill algebra. Recall that a filiform Lie algebra g
such that gr .g/ is isomorphic to LnC1 can be written in an adapted basis as

Œe0; ei � D eiC1; i D 1 � � � ; n � 1; Œei ; ej � D
n�i�jX

rD1
arij eiCjCr ; 1 � i < j � n � 2:
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A filiform Lie algebra g such that gr .g/ is isomorphic toQnC1 can be written in an
quasi-adapted basis:

ŒZ0;Zi � D ZiC1; i D 1 � � � ; n � 2; ŒZi ; Zn�i � D .�1/iZn;
�
Zi ;Zj

� D
n�i�jX

rD1
brijZiCjCr

for 1 � i < j � n � 2:
Definition 2.2 ([14]). Let g be a .nC1/-dimensional filiform Lie algebra such that
gr .g/ is isomorphic to LnC1. The sill algebra of g is defined by

Œe0; ei � D eiC1; i D 1; : : : ; n � 1; Œei ; ej � D arij eiCjCr

where r ¤ 0 is the smallest index such that arij ¤ 0 for some .i; j /.
If gr .g/ is isomorphic to QnC1, then the sill algebra is defined by

(1) If bn�i�j
ij D 0, then

ŒZ0;Zi �DZiC1; iD1; : : : ; n � 2; ŒZi ; Zn�i �D.�1/iZn; ŒZi ; Zj �DbrijZiCjCr

for 1 � i < j � n� 2 where r ¤ 0 is the smallest index such that brij ¤ 0 for
some .i; j /.

(2) If bn�i�j
ij ¤ 0 for some .i; j /, then

ŒZ0;Zi �DZiC1; i D 1; : : : ; n�2; ŒZi ; Zn�i �D.�1/iZn; ŒZi ; Zj �Dbn�i�j
ij Zn

for 1 � i < j � n � 2:
Proposition 2.3 ([26]). A filiform Lie algebra is characteristically nilpotent if and
only if it is not isomorphic to its sill algebra.

Examples. (1) Any seven-dimensional filiform characteristically nilpotent Lie
algebra can be written � D �0 C  with

(a)  D  1;5 C  1;6;
(b)  D  1;4 C  1;6;
(c)  D  1;5 C  2;6:

(2) Any eight-dimensional filiform characteristically nilpotent Lie algebra can be
written as � D �0 C  with

(a)  D  1;4 C a1;5 1;5 � a2;6 2;6 C  3;7:
(b)  D  1;5 C a1;6 1;6 C  3;7:
(c)  D a1;4 1;4 C  2;6 C  2;7:
(d)  D  1;5 C  2;6:
(e)  D  1;4 C a1;6 1;6 C  2;7:
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(f)  D a1;5 1;5 C  1;6 C  2;7:
(g)  D a1;4 1;4 C  1;6 C  1;7:
(h)  D  1;4 C  1;6:
(i)  D  1;4 C  1;7:
(j)  D  1;5 C  1;6:

2.5 Z2-Gradings of Filiform Characteristically Nilpotent
Lie Algebras

Since characteristically nilpotent Lie algebras have zero rank, they do not admit
Z-gradings. The following shows that there exists a class of such Lie algebras
admitting Z2-gradings.

Proposition 2.4. Let �0 C  the multiplication of a .nC 1/-dimensional charac-
teristically nilpotent Lie algebra g such that gr .g/ is isomorphic to LnC1. If

 D
X

ak;2s k;2s

or

 D
X

ak;2sC1 k;2sC1;

then this Lie algebra admits a Z2-grading.

Proof. Since  k;2s.ei ; ej / D aeiCjC2s�2k�1, the Lie algebra �0 C  is charac-
teristically nilpotent as soon as we have in the sum  two terms  k;2s and  k0 ;2s0

such that s � k ¤ s0 � k0. Let us consider two Z2-gradings of the vector space g
as follows.

• g D he1; e3; : : : ; e2p˙1iLhe0; e2; e4; : : : ; e2pi
• g D he2; e4; : : : ; e2piLhe0; e1; e3; : : : ; e2p˙1i;
(the˙ sign means that we consider the cases n odd and n even at the same time).

We consider the first vectorial decomposition. From our description of gradings
on Ln we can see that this is a grading of �0. It is sufficient then to check that this is
a grading of  k;2s . A cocycle  k;s is homogeneous, that is it satisfies  k;s.gi ; gj / �
giCj.mod2/ if s is even. In fact

 k;s.e2iC1;2jC1/ D �e2iC2j�2kC1Cs

where � is a nonzero constant and 2i C 2j � 2k C 1C s is odd if and only if s is
even. Likewise

 k;s.e2i;2j / D �e2iC2j�2k�1Cs
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with � ¤ 0 and 2i C 2j � 2k� 1C s is odd if and only if s is even. Since moreover

 k;s.e2i ; e2jC1/ D e2iC2j�2kCs;

2i C 2j � 2k C s is even as soon as s is even. Thus the existence of this grading
implies that s is even.

Similarly, the vectorial decomposition of the second type, is a Z2-grading of
�0 C  k;s if s is odd. ut
Proposition 2.5. Let �0 C  the multiplication of a .nC 1/-dimensional charac-
teristically nilpotent Lie algebra g such that gr .g/ is isomorphic to QnC1. If

 D
X

ak;2s k;2s C  n�1
2 ;n

or

 D
X

ak;2sC1 k;2sC1 C  n�1
2 ;n;

then this Lie algebra admits a Z2-grading.

Proof. Since any Z2-grading on g induces the same grading on gr .g/ D QnC1, we
consider the vectorial decompositions of g:

• g D he2; e4; : : : ; en�1i ˚ he0; e1; e3; : : : ; eni;
• g D he0 C e1; eni ˚ he1; e2; : : : ; en�1i;
• g D he1; e3; : : : ; en�2i ˚ he0 C e1; e2; e4; : : : ; en�1; eni.
If the multiplication of g is given by �0C with  DP ak;2sC1 k;2sC1C n�1

2 ;n,
then the first vectorial decomposition is also a Z2-grading. If the multiplication of
g is given by �0 C � with  D P

ak;2s k;2s C  n�1
2 ;n, then the third vectorial

decomposition is also a Z2-grading. If the second vectorial decomposition is a
grading, then g is not characteristically nilpotent. ut
Corollary 2.1. There exists an infinite family of graded characteristically nilpotent
filiform Lie algebras.

Proof. We consider the nine-dimensional filiform Lie algebras given by

� D �0 C  1;4 C ˛ 2;6 C  2;8 C 3˛2

˛ C 2 3;8

with ˛ ¤ 0 and �2. These Lie algebras admits a Z2-grading and for two different
values of ˛ we have non isomorphic Lie algebras [12]. Moreover, since ˛ ¤ 0, these
Lie algebras are characteristically nilpotent. ut
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2.6 Zk-Gradings, k > 2, of Filiform Characteristically
Nilpotent Lie Algebras

We assume that k > 2. A Zk-grading of Ln is equivalent to one of the following

�lk W Ln D
l�1X

iD2
ŒXi �k ˚ .hX1i ˚ ŒXl �k/˚

kC1X

jDlC1
ŒXj �k ;

where l is a parameter satisfying 2 � l � k C 1. The homogeneous component of
this grading corresponding to the identity of Zk is ŒXl�1�k . Two cocycles  h1;s1
and  h2;s2 send an homogeneous component (in particular ŒXl�1�k) in another
homogeneous component if and only if

s1 � 2h1 D s2 � 2h2.mod k/:

We deduce

Proposition 2.6. Any filiform characteristically nilpotent Lie algebra g such that
gr .g/ is isomorphic to LnC1 whose Lie multiplication is of the form

� D �0 C
X

i2I
ahi ;si  hi ;si

with

si � 2hi D sj � 2hj .mod k/; k < n � 2
for any i; j 2 I admits a Zk-grading.

Proposition 2.7. For any k, there exists a Zk-graded characteristically nilpotent
filiform Lie algebra.

Proof. If fact, we consider the filiform Lie algebra of dimension n D kC5 given by

� D �0 C  1;4 C  1;4Ck;
that is

8
<

:

�.e0; ei / D eiC1; i D 2; : : : ; k C 3;
�.e1; e2/ D e4 C ekC4;
�.e1; ei / D eiC2; i D 3; : : : ; k C 2:

The Jacobi conditions are satisfied. The sill algebra is given by �0 C  1;4 and is
not isomorphic to � as soon as k ¤ 0. Then this Lie algebra is characteristically
nilpotent and from the previous proposition, it is Zk-graded. ut
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3 G-symmetric spaces

3.1 Definition

Let G be a Lie group andH a closed subgroup of G.

Definition 3.1. Let G be a finite abelian group. A homogeneous space M D G=H
is called G-symmetric if

(1) The Lie groupG is connected,
(2) The groupG is effective on G=H (i.e., the Lie algebra h of H does not contain

a nonzero proper ideal of the Lie algebra g of G),
(3) There is an injective homomorphism

	 W G ! Aut .G/

such that if GG is the closed subgroup of all elements of G fixed by 	.G/ and
.GG/e the identity component of GG , then

.GG/e � H � GG :

Examples: Symmetric and k-symmetric Spaces. If G D Z2, then the notion of
Z2-symmetric spaces corresponds to the classical notion of symmetric spaces [19].
If G D Zp with p a prime number, we find again the p-manifolds in the sense of
Ledger–Obata [21].

We denote by 	
 the automorphism 	.
/ for any 
 2 G. If H is connected,
we have

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

	
1 ı 	
2 D 	
1
2 ;

	" D Id;

	
 .g/ D g; 8
 2 �” g 2 H:

;

where " is the identity element of G. Each automorphism 	
 of G, 
 2 G, induces
an automorphism of g, denoted by �
 and given by �
 D .T	
/e where .Tf /x is the
tangent map of f at the point x.

Lemma 3.1. The map � W G �! Aut .g/ given by

�.
/ D .T	
/e
is an injective homomorphism of groups.

Proof. Let 
1; 
2 be in G. Then 	
1 ı	
2 D 	
1
2 . It follows that .T	
1/e ı .T	
2/e D
.T	
1	
1/e D .T	.
1
2//e , that is, �.
1
2/ D �.
1/�.
2/. Now let us assume that
�.
/ D Idg. Then .T	
/e D Id D .T	"/e . But 	
 is uniquely determined by the
corresponding tangent automorphism of g. Then 	
 D 	" and 
 D ". ut
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Then we have the infinitesimal version of a G-symmetric space. A G-symmetric
Lie algebra is a triple .g; h; �/ consisting of a Lie algebra g, a Lie subalgebra h
and an injective homomorphism of group � W G �! Aut .g/ such that h consists
of all elements X of g satisfying �.
/.X/ D X for all 
 2 G. Thus, if G=H is a
G-symmetric space, the triple .g; h; �/ is a G-symmetric Lie algebra. Conversely, if
.g; h; �/ is a G-symmetric Lie algebra and ifG is a connected, simply connected Lie
group whose Lie algebra is g andH is a connected subgroup associated with h, then
G=H is a G-symmetric space.

3.2 G-Grading of a G-Symmetric Lie Algebra

Let .g; h; �/ be a G-symmetric Lie algebra. Since � W G ! Aut .g/ is an injective
homomorphism, the image G1 of G is a finite abelian subgroup of Aut.g/ isomorphic
to G. For each 
 2 G, let .gC/
 the subspace of gC given by

.gC/
 D fX j 
.X/ D �.
/.X/g;

The vector space decomposition gC DL
2G.gC/
 is just a standard weight decom-
position under the action of an abelian semisimple group of linear transformations
over an algebraically closed field.

Proposition 3.1. If .g; h; �/ is a G-symmetric Lie algebra, then the complex Lie
algebra gC admits a G-grading. If �.
/2 D Id for any 
 2 G, then we have a
G-grading on g itself.

Explicitly, since G1 is a finite abelian subgroup of Aut .g/, one can write G1 as
G1 D K1 � : : :�Kp whereKi is a cyclic group of order ri . Let �i be a generator of
Ki . The automorphisms �i satisfy

�
�
ri
i D Id;
�i ı �j D �j ı �i ;

for all i; j D 1; : : :; p: These automorphisms are simultaneously diagonalizable. If
i is a primitive r th

i root of 1, then the eigenspaces

gs1;:::;sp D fX 2 g such that �i .X/ D sii X; i D 1; : : :; pg

give the following grading of g by Zr1 � : : : � Zrp :

g D
M

.s1;:::;sp/2Zr1�:::�Zrp

gs1;:::;sp :
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Actually, the actions of a group G by automorphisms of an algebra and the gradings
by G of the same algebra are closely connected in a much more general setting. This
we explained in detail in [4]. Here we quickly recall the main idea.

Assume that the Lie algebra g is G-graded where G is an finite abelian group. Let
OG be the dual group of G, that is, the group of characters of G. If we assume that a Lie

algebra g is G-graded, then we obtain a natural action of OG by linear transformations
on gC. If � 2 OG and X 2 g
 then

�.X/ D �.
/X:

Since for X 2 g
1 and Y 2 g
2 we have ŒX; Y � 2 g
1
2 , it follows that

(1) � .ŒX; Y �/ D �.
1
2/ŒX; Y � D Œ�.
1/X; �.
2/Y � D Œ�.X/; �.Y /�;

that is, OG acts by Lie automorphisms on g. In this case there is a canonical
homomorphism

(2) ˛ W OG ! Aut.gC/ given by ˛.�/.X/ D �.X/:

If for any 
 in the support of the grading, we have 
2 D 1, then the action is defined
even on g itself and the above homomorphism maps OG onto a subgroup of Aut .g/.
Conversely, if OG acts on gC by automorphisms, then setting .gC/
 D fX j �.X/ D
�.
/Xg provides gC with a G-grading.

Proposition 3.2. Let G be a finite abelian group and OG, the group of complex
characters of G.

(a) A complex Lie algebra g is G-graded if and only if the dual group OG maps
homomorphically onto a finite abelian subgroup of Aut .g/, by the canonical
homomorphism ˛.

(b) A real Lie algebra g is G-graded, with 
2 D 1 for each 
 in the support of this
grading, if and only if there is a homomorphism ˛ W OG ! Aut .g/ such that
˛.�/2 D idg for any � 2 OG.

(c) In both cases above, the support generates G if and only if the canonical
mapping ˛ has trivial kernel, that is, OG is isomorphic to a (finite abelian)
subgroup of Aut .g/.

From Lemma 3.1 we derive the following. Let M D G=H be a G-symmetric
space. Then g is graded by the dual group of G. Since G is abelian, the groups
G and OG are isomorphic (a noncanonical isomorphism). To simplify notations, we
will identify G and its dual, this permits one to speak of G-symmetric spaces and
G-graded Lie algebras (in place of OG-graded Lie algebras).

Proposition 3.3. If M D G=H is a G-symmetric space, then the complex Lie
algebra gC D g˝ C, where g is the Lie algebra of G, is G-graded and if G D Z

k
2 ,

then the real Lie algebra g of G is G-graded. The subgroup of G generated by the
support of the grading is G itself.
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Proof. Indeed, by Lemma 3.1, ˛ W G ! Aut .g/ is an injective homomorphism, so
all our claims follow by Proposition 3.2. ut

To study G-symmetric spaces, we need to start with the study of G-graded Lie
algebras. But in a general case, if G is a connected Lie group corresponding to
g, the G-grading of g or gC does not necessarily give a G-symmetric space G=H .
Some examples are given in [7], even in the symmetric case. Still, if G is simply
connected, Aut .G/ is a Lie group isomorphic to Aut .g/ and the G-grading of g
determines a structure of G-symmetric space from G.

Proposition 3.4. Let G D Z
k
2 , with the identity element " and g a real G-graded

Lie algebra such that the subgroup generated by the support of the grading equals
G and the identity component h D g" of the grading does not contain a nonzero
ideal of g. If G is a connected simply connected Lie group with Lie algebra g and
H a Lie subgroup associated with h, then the homogeneous space M D G=H is a
G-symmetric space.

3.3 G-Symmetries on a G-Symmetric Space

Given a G-symmetric space .G=H;G/ it is easy to construct, for each point x
of the homogeneous space M D G=H , a subgroup of the group Diff.M/ of
diffeomorphisms of M , isomorphic to G, which has x as an isolated fixed point.
We denote by g the class of g 2 G in M . If e is the identity of G, 
 2 G, we set

s.
;e/.g/ D 	
.g/:

If g satisfies s.
;e/.g/ D Ng, then 	
.g/ D g, that is 	
.g/ D gh
 for h
 2 H . Thus
h
 D g�1	
 .g/. But G Š OG is a finite abelian group. If p
 is the order of 
 , then
	
p
 D Id: Then

h2
 D g�1	
 .g/	
 .g�1/	
2.g/ D g�1	
2.g/:

Applying induction, and considering .h
 /m 2 H for anym, we have

.h
 /
m D g�1	
m.g/:

For m D p
 we obtain

.h
 /
p
 D e:

If g is near the identity element of G, then h
 is also close to the identity and
h
p


 D e implies h
 D e: Then 	
 .g/ D g. This is true for all 
 2 G and thus
g 2 H . It follows that g D e and that the only fixed point of s.
;e/ is e. In conclusion,
the family fs.
;e/g
2G of diffeomorphisms of M satisfy
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�
s.
1;e/ ı s.
2;e/ D s.
1
2;e/
s.
;e/.g/ D g;8 
 2 G ) g D e:

Thus,

Ge D fs.
;e/; 
 2 Gg

is a finite abelian subgroup of Diff.M/ isomorphic to G, for which e is an isolated
fixed point.

At another point g0 of M we put

s.
;g0/.g/ D g0.s.
;e//.g�1
0 g/:

As above, we can see that

�
s.
1;g0/ ı s.
2;g0/ D s.
1
2;g0/
s.
;g0/.g/ D g;8
 2 G ) g D g0:

and

Gg0 D fs.
;g0/; 
 2 Gg

is a finite abelian subgroup of Diff.M/ isomorphic to G, for which g0 is an isolated
fixed point.

Thus for each g 2 M we have a finite abelian subgroup Gg of Diff.M/

isomorphic to G, for which g is an isolated fixed point.

Definition 3.2. Let .G=H;G/ be a G-symmetric space. For any point x 2 M D
G=H the subgroup Gx � Diff.M/ is called the group of symmetries of M at x.

Since for every x 2 M and 
 2 G, the map s.
;x/ is a diffeomorphism of M
such that s.
;x/.x/ D x, the tangent linear map .T s.
;x//x is in GL.TxM/. For every
x 2 M , we obtain a linear representation

Sx W G �! GL.TxM/

defined by

Sx.
/ D .T s.
;x//x:

Thus for every 
 2 G the map

S.
/ WM �! T .M/
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defined by S.
/.x/ D Sx.
/ is a .1; 1/-tensor on M which satisfies:

(1) the map S.
/ is of class C1,
(2) for every x 2 M ,

fXx 2 Tx.M/ jSx.
/.Xx/ D Xx;8
 2 Gg D f0g:

In fact, this last remark is a consequence of the property : s.
;x/.y/ D y for
every 
 implies y D x.

3.4 The Reductivity of G-Symmetric Spaces

We assume here that the group G is isomorphic to Z
k
2 . If .G=H;G/ be a G-symmetric

space, then the real Lie algebra g of G is G-graded. If " is the identity element of
G, then the component h D g" is a Lie subalgebra of g corresponding to the Lie
subgroupH . Let us consider the subspace m of g:

m D ˚
¤" g
 :

Then g D h˚m and

Œh;m� � m

so that m is an ad h-invariant subspace. If H is connected, then Œh;m� � m is
equivalent to .adH/.m/ � m, that is, m is an adH -invariant subspace. This property
is true without any conditions on H .

Lemma 3.2. Any G-symmetric space .G=H;G/ is reductive.

Proof. Let us consider the associated local G-symmetric space .g=h;G/. We need
to find a decomposition g D h˚m, such that m is invariant under the adjoint action
of the isotropy subgroup H or, which is the same, under the action of the isotropy
subalgebra h. Now since h D g" and m D ˚
¤"g
 we have that Œh;m� � m. ut

We now deduce from [19, Chapter X], that M D G=H admits two G-invariant
canonical connections denoted by r and r. The first canonical connection r
satisfies

8
<

:

R.X; Y / D �ad.ŒX; Y �h/; T .X; Y /e D �ŒX; Y �m; 8X; Y 2 m;

rT D 0;
rR D 0;

where T andR are the torsion and the curvature tensors ofr. The tensor T is trivial
if and only if ŒX; Y �m D 0 for all X; Y 2 m. This means that ŒX; Y � 2 h, that
is Œm;m� � h. If the grading of g is given by G D Z

k
2 with k > 1, then Œm;m�
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is not a subset of h, and then the torsion T need not vanish. In this case another
connection r will be defined if one sets rXY D rXY � T .X; Y /. This is an affine
invariant torsion free connection on G=H which has the same geodesics as r. This
connection is called the second canonical connection or the torsion-free canonical
connection.

Remark. Actually, there is another way of writing the canonical affine connection
of a G-symmetric space, without any reference to Lie algebras. This is done by an
intrinsic construction of G-symmetric spaces proposed by Lutz in [22].

4 Classification of Simple Z2
2
-Symmetric Spaces

4.1 Z
2
2
-Gradings of Classical Simple Lie Algebras

We have seen that the classification of G-symmetric spaces .G=H;G/, when G is
connected and simply connected, corresponds to the classification of Lie algebras
graded by OG which is isomorphic to G. Below we establish the classification of local
Z
2
2-symmetric spaces .g;G/ in the case where the corresponding Lie algebra g is

simple, complex and classical.
In this section G D f"; a; b; cg is the group Z

2
2 with identity " and a2 D b2 D

c2 D "; ab D c: We will consider Z22-gradings on a complex simple Lie algebra g
of type Al ; l � 1, Bl ; l � 2, Cl; l � 3 and Dl; l � 4. We will describe these
gradings using the results of [4]. Let us note that these gradings have been described
in [3] where all the cases have been covered except for the case g D so.8/ which
was later handled in [20] and [10] (see also [11]). Clearly, for our purposes, we need
to classify these gradings up to a weak isomorphism.

To classify these gradings, we use techniques surveyed in [4]. In the case G D
Z2 � Z2, the situation is considerably simpler than in the general case.

Recall that we always have to start with a grading on a matrix algebra Mn.K/,
either � graded by G or � by G D G=hai where a is an element of order 2 in G. In
both cases our matrix algebra is of the form ofMm.D/,D a graded division algebra.
In the case ofG, we only haveD D K. In the case of � there are two options forD:
either D D K or D D M2.K/. In the latter case, if G D f"; a; b; cg, then a graded
basis of D is formed by the Pauli matrices:

�

X" D I;Xa D
��1 0
0 1

�

; Xb D
�
0 1

1 0

�

; Xc D
�
0 �1
1 0

��

:

The graded involution of D is given by the transpose.
The Type I grading of sln.K/ and the gradings of the orthogonal and symplectic

algebras appear as the restriction of � to either sln.K/ or to the space of skew-
symmetric elements under a graded involution.
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The Type II gradings appear as a refinement of � by a graded involution
(in the general case one has to consider the eigenspaces of more general graded
antiautomorphisms).

The graded involutions of the associative algebra Mn.D/ of matrices of order n
over a graded division algebra D are given by X 7! ˆ�1Xtˆ, where ˆ is a matrix
of a sesquilinear form with coefficients in D. The description of graded involutions
(that is, possible forms of ˆ) was first given in [5] and can be found in [4].

In the following list we give the pairs .g; g" D h/ corresponding to a Z
2
2-grading

(and not a Z2-grading) of simple classical complex Lie algebras.

g g" D h

sl.k1 C k2 C k3/ sl.k1/C sl.k2/C sl.k3/˚ C
2

sl.k1 C k2 C k3 C k4/ sl.k1/C sl.k2/C sl.k3/C sl.k4/˚ C
3

sl.2n/ sl.n/

sl.k1 C k2/ so.k1/˚ so.k2/
sl.2.k1 C k2// sp.2k1/˚ sp.2k2/
sl.2n/ gl.n/

so.k1 C k2 C k3/; so.k1/C so.k2/C so.k3/
so.k1 C k2 C k3 C k4/ so.k1/C so.k2/C so.k3/C so.k4/
sp.2.k1 C k2 C k3// sp.2k1/C sp.2k2/C sp2.k3/
sp.2.k1 C k2 C k3 C k4// sp.2k1/C sp.2k2/C sp2.k3/C sp.2k4/
so.2k1 C 2k2/ gl.k1/˚ gl.k2/
sp.2k1 C 2k2/ gl.k1/˚ gl.k2/
so.2m/; m ¤ 4 so.m/

so.4m/; m ¤ 2 sp.2m/

sp.4m/ sp.2m/

sp.2m/ so.m/

Consequences. The following homogeneous spaces

SU.k1 C k2 C k3/=SU.k1/ � SU.k2/ � SU.k3/ � T
2;

SU.k1 C k2 C k3 C k4/=SU.k1/ � SU.k2/ � SU.k3/ � SU.k4/ � T;

SU.2n/=SU.n/;

SU.k1 C k2/=SO.k1/ � SO.k2/;
SU.2k1 C 2k2/=Sp.2k1/ � Sp.2k2/;
SO.k1 C k2 C k3/=SO.k1/ � SO.k2/ � SO.k3/;
SO.k1 C k2 C k3 C k4/=SO.k1/ � SO.k2/ � SO.k3/ � SO.k4/;
Sp.2k1 C 2k2 C 2k3/=Sp.2k1/ � Sp.2k2/ � Sp.2k3/;
Sp.2k1 C 2k2 C 2k3 C 2k4/=Sp.2k1/ � Sp.2k2/ � Sp.2k3/ � Sp.2k4/;
SO.2m/=SO.m/; SO.4m/=Sp.2m/; Sp.4m/=Sp.2m/; Sp.2m/=SO.m/:
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are compact nonsymmetric spaces but Z22-symmetric spaces. In particular, we obtain
the classical flag manifolds which are not symmetric when they do not correspond
to a Grassmanian manifold. A Riemannian study of these spaces is proposed in
[16, 23].

4.2 Classification in the Exceptional Cases

The study of Z
2
2-gradings on exceptional simple Lie algebras has been done by

Kollross [20]. His approach is different: he starts with exploring the possibilities
to obtain involute automorphisms on a reductive complex Lie algebra from a given
root space decomposition g D g0 CP

˛2ˆ g˛ , where g0 is a Cartan subalgebra.
He distinguishes 3 types, as follows.

• If h is a symmetric (Z2-graded) subalgebra of maximal rank containing g0, then
h D g0 CP˛2S g˛, S � ˆ, and the automorphism � is given by �.X/ D X if
X 2 h, �.X/ D �X if X 2P˛2ˆ�S g˛:

• The automorphism � is an outer automorphism induced from an automorphism
of the Dynkin diagram.

• The automorphism � acts as �Id on a Cartan subalgebra of g and send each g˛
to g�˛, where ˛ 2 ˆ.

Using these automorphisms allows one to construct Z22-symmetric gradings on g.
For example, if �1 and �2 are of the first type and associated with two elements g1,
g2 belonging to a maximal torus T of G, we consider the root space decomposition
of the complexified gC of g defined by the set f�1; �2g with g0 the Lie algebra of
a closed subgroup of the torus T . The maximal subgroups of maximal rank in a
simple compact Lie group are described by the extended Dynkin diagrams.

Examining all possibilities and proving that all cases actually occur, one obtains
the following classification.

g g" D h

E6 so.6/˚ C

sp.2/˚ sp.2/
sp.3/˚ sp.1/
su.3/˚ su.3/˚ C

2

su.4/˚ sp.1/˚ sp.1/˚ C

su.5/˚ C
2

so.8/˚ C
2

so.9/

g g" D h

E7 so.8/

su.4/˚ su.4/˚ C

sp.4/

su.6/˚ sp.1/˚ C

so.8/˚ so.4/˚ sp.1/
u.6/˚ C

so.10/˚ C
2

F4
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g g" D h

E8 so.8/˚ so.8/
su.8/˚ C

so.12/˚ sp.1/˚ sp.1/
E6 ˚ C

2

g g" D h

F4 u.3/˚ C

sp.2/˚ sp.1/˚ sp.1/
so.8/

G2 C
2

4.3 Riemannian Compact Z2
2
-Symmetric Spaces

Let M D G=H be a Z
k
2 -symmetric space with G and H connected. The

homogeneous space M D G=H is reductive. Then there exists a one-to-one
correspondence between the G-invariant pseudo-Riemannian metrics g on M and
the nondegenerated symmetric bilinear form B on m satisfying

B.ŒZ;X�; Y /C B.X; ŒZ; Y �/ D 0

for all X; Y 2 m and Z 2 g".

Definition 4.1 ([16]). A Z
k
2 -symmetric space M D G=H with AdG.H/-compact

is called RiemannianZk2 -symmetric ifM is provided with aG-invariant Riemannian
metric g whose associated bilinear form B satisfies

(1) B.g
 ; g
 0/ D 0 if 
 ¤ 
 0 ¤ " ¤ 
;
(2) The restriction of B to m D ˚
¤"g
 is positive definite.

In this case the linear automorphisms which belong to O� are linear isometries.
When k � 2, the geometry of Z

k
2 -Riemannian symmetric spaces is not similar

to the Riemannian symmetric case. For example, if we consider the flag manifold
SO.5/=SO.2/�SO.2/�SO.1/, this homogeneous reductive space is not symmetric
but Z22-symmetric. It is proved in [23] that there exists a Riemannian Z

2
2-symmetric

tensor which is not naturally reductive and satisfying the first Ledger condition. This
is impossible in the symmetric case.

5 Affine Structures on Lie Algebras

5.1 General Definitions

LetM be a differential manifold. We denote by X.M/ the set of vector fields onM ,
that is, the set of differentiable section

X WM ! T .M/
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of the tangent bundle of M. Recall that it is a module on the Lie algebra D.M/ of
differentiable functions onM and an R-Lie algebra.

Definition 5.1. An affine connection onM is a R-bilinear map

r W X.M/� X.M/! X.M/

satisfying for any X; Y 2 X.M/ and f 2 D.M/

• r.fX; Y / D f r.X; Y /,
• r.X; f Y / D f r.X; Y /CX.f /Y:

This means that r is not a D.M/-bilinear map; it is only linear on the first
argument. A vector field X such that r.X; Y / D 0 for any Y 2 X.M/ is called
parallel for r.

The torsion of the affine connection r is the bilinear map

Tr W X.M/� X.M/! X.M/

given by Tr.X; Y / D r.X; Y /� r.Y;X/� ŒX; Y �:
When Tr D 0; that is, if r is torsion free, then Tr defines a structure of a Lie-

admissible algebra on X.M/ adapted to the Lie bracket. Recall that a Lie-admissible
algebra is an algebra .A; �/ whose product satisfies x � y � y � x is a Lie bracket.

A classical example of torsion free affine connection is given by the Levi-Civita
connection.

The curvature of the affine connection r is the trilinear map

Rr W X.M/ �X.M/ �X.M/! X.M/

given by

Rr.X; Y;Z/ D r.X;r.Y;Z//� r.Y;r.X;Z//� r.ŒX; Y �; Z/:

The connection is flat if Rr D 0. Assume now that r is such that Tr D 0. Then
Rr D 0 is equivalent to

r.X;r.Y;Z//� r.r.X; Y /;Z/ D r.Y;r.X;Z//� r.r.Y;X/;Z/:

A Lie-admissible multiplication satisfying this identity is called left-symmetric (an
algebra satisfying this identity is sometimes called a pre-Lie algebra). Thus a flat
affine connection (that is with both the torsion and the curvature vanish identically)
on M provides X.M/ with a left-symmetric algebra structure associated with the
Lie bracket of vector fields.

If the differential manifold M admits a flat torsion free affine connection, then
M admits an atlas A D .Ui ; 'i / such that the changes of charts
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'i ı '�1
j W 'j

�
Ui \ Uj

	
! 'i

�
Ui \ Uj

	

are affine transformations of Rn, where n is the dimension ofM . We will denote by
Affn.R/ the group of affine transformations of Rn (considered as an affine space).
The elements of this group are represented by the matrices

�
a 

0 1

�

where a 2 GLn.R/ and  is a column vector of Rn.
Let .M;r/ be a differentiable manifold with an affine connection. A diffeomor-

phism f of M is an affine transformation if

f .r.X; Y // D r.fX; f Y /

for any vector fieldX; Y onM . This notion can be interpreted in terms of geodesics.

A curve 
t on M with t 2�a; bŒ is a geodesic if the vector field X D �

t is parallel

along 
t , that is

r.X;X/ D 0

for all t . Thus an affine transformation maps every geodesic into a geodesic.
A vector field X on M is an infinitesimal affine transformation of M if for any

point x 2M , a local 1-parameter group of local transformations 
t generated by X
in a neighborhood of x is an affine mapping. This is equivalent to the equation:

ŒX;r.Y;Z/� � r.Y; ŒX;Z�/ D r.ŒX; Y �; Z/

for any vector fields Y;Z on M . The set of infinitesimal affine transformations of
M is a Lie subalgebra a.M/ of the Lie algebra X.M/. If the connection r is flat,
then dim a.M/ D n2 C n: Moreover, in this case we have

r.r.Y;Z/;X/ D r.Y;r.Z;X//

for any vector fields Y;Z on M .
To end this short presentation of the affine connection, we have to recall the

notion of complete affine connection. An affine connection is called complete if
every geodesic can be extended to a geodesic 
t defined for any t 2 R. In this case,
every infinitesimal transformation is a complete vector field. But for a complete
affine connection it is not generally true that every pair of points can be joined by a
geodesic. Moreover, an affine connection on a compact manifold is not necessarily
complete. The first example was described by Auslander and Markus, giving a
noncomplete affine connection on the one-dimensional torus. Other examples on
the two-and three-dimensional tori are given in [24].
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5.2 Flat Affine Connections

An affine connection r on M is flat when the torsion and the curvature tensor
vanish identically. Let r be an affine connection on the differentiable manifold M .
If R denotes its curvature tensor, we define rR

rR.X1;X2;X3;X4/ D r.X1;R.X2;X3;X4//� R.r.X1;X2/; X3;X4/
�R.X1;r.X2;X3/; X4/� R.X1;X2;r.X3;X4//:

A manifoldM with an affine connection such that the torsion T satisfies T D 0 and
rR D 0 is called affine locally symmetric. In this case, all the symmetries sx which
are local diffeomorphisms of M sending exp.X/ to exp.�X/ for all X 2 TxM are
affine transformations. This happens, in particular, when r is complete.

Assume now that M is complete. Then the group of affine transformations is a
Lie group. If we consider its identity component G, then M can be viewed as an
homogeneous reductive space G=H and the affine connection on M coincides with
the natural torsion free connection on G=H: An interesting example is a reductive
spaceG=H that is symmetric. The Lie algebra g ofG admits a Z2-grading g D h˚m
with h the Lie algebra of H and m isomorphic to the tangent space (in e where e is
the identity of G) of M . But in this case the curvature tensor R satisfies

R.X; Y;Z/ D �ŒŒX; Y �; Z�; X; Y;Z 2 m

and the curvature tensor is trivial if and only if the Lie triple bracket ŒŒX; Y �; Z� is
always equal to 0: Thus it will be also interesting to look to the case G=H reductive
not symmetric, for example Z

2
2-symmetric. Recall also that if T D 0 and R D 0,

the Lie algebra of the affine holonomy group is necessarily of dimension 0:

5.3 Invariant Affine Connection on Lie Groups

If M is a Lie groupG, we can consider on G an affine connection r satisfying

dLg.r.X; Y // D r.dLgX; dLgY /;

where Lg W G ! G is the left shift by g 2 G. This means that Lg is an affine
diffeomorphism, for any g 2 G. We then call r left invariant. Equivalently, if X
and Y are left invariant vector fields on G, then r.X; Y / is also left invariant. As a
result, r defines a bilinear map, also denoted by r, on the Lie algebra g of G:

r W g � g! g

.X; Y / 7! r.X; Y /
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Definition 5.2. The bilinear map r is called an affine structure on g if the
underlying affine connection on G is flat and torsion free.

Thus r is an affine structure on g if we have

� r.X; Y /� r.Y;X/ D ŒX; Y �;
r.X;r.Y;Z//� r.Y;r.X;Z// D r.ŒX; Y �; Z/;

for any X; Y;Z 2 g where ŒX; Y � is the Lie bracket of g:
It is proved in [18] that if the Lie algebra g admits an affine structure, then

Œg; g�   g:

As an immediate consequence, we deduce no semisimple Lie algebras can be
endowed with an affine structure. But there exist Lie algebras with affine structures
which contain semi-simple Lie subalgebras. For example, let us consider the Lie
algebra gl.n;R/. We consider the product

r.M1;M2/ DM1M2

forM1;M2 2 gl.n;R/. We have

ŒM1;M2� D r.M1;M2/� r.M2;M1/

and the torsion is null. Since the product M1M2 is associative, the curvature is
also null. Thus we obtain an affine structure on gln.R/. Let us remark that this
construction can be generalized to any associative algebraA viewed as a Lie algebra
under the bracket ŒX; Y � D XY � YX ; its natural affine structure is given by
r.X; Y / D XY:
Proposition 5.1 ([18]). An affine structure on a Lie algebra is complete if the linear
map

RY W g! g

X 7! r.X; Y /
is nilpotent.

We also have a characterization of an affine structure on a Lie algebra in term of
affine representations. Let Affn.R/ the group of affine transformations of Rn. An n-
dimensional Lie group admits a left-invariant flat affine connection if and only if we
have an homomorphism of Lie group

' W G ! Affn.R/

given by

'.x/ D .Mx; vx/
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with Mx 2 GLn.R/ and vx 2 R
n, such that there exists a vector v 2 R

n such that
its orbit O.v/ D f�.x/.v/ j x 2 Gg is open and its stabilizer is discrete. Such
representations are called étale affine. The connection r is complete if and only if
the action ofG on R

n is transitive, that is, O.v/ D R
n. We can state this approach in

terms of representations of Lie algebra. Let affn.R/ be the Lie algebra of Affn.R/.
It can be written as

affn.R/ D
��
M v

0 0

�

; M 2 gln.R/; v 2 R
n

�

:

Let g be a Lie algebra. An affine representation of g is a Lie algebra homomorphism

ˆ W g! affn.R/:

In addition,ˆ is called an étale affine representation with base point v if there exists
v 2 R

n such that the mapping

evv W g! R
n

defined by

evv.X/ D ˆ.X/v
for any X 2 g is an isomorphism. For example, consider ˆ D .	; q/ W g! affn.R/
withˆ.x/ D 	.x/Cq.x/. It is an affine representation if and only if 	 W g! gln.R/

is a representation of g and q W g ! R
n is a linear map satisfying qŒx; y� D

	.x/q.y/ � 	.y/q.x/, for all x; y 2 g: If g admits an affine structure, then the
map 	 W X ! gl.g/ given by

L.X/ W Y 2 g! L.X/.Y / D r.X; Y /
is a linear representation of g, because the tensor curvature is zero. We consider
q.X/ D X , it satisfies the previous condition because the torsion tensor is zero.
Then we have an affine étale representation of g in affn.R/. If the Lie groupG of g is
connected and simply connected, this representation of g determines an embedding
of G in Affn.R/ and we can identify G with a subgroup of Affn.R/.

Proposition 5.2. A Lie algebra g admits an affine structure if and only if g has an
étale affine representation.

Proof. We have seen that if g admits an affine structure, then we have an affine étale
representation of g. Conversely, let ˆ D .	; q/ W g ! affn.R/ be an étale affine
representation of g; then

r.X; Y / D ev�1
v Œ	.X/evv.Y /�

for all X; Y 2 g defines an affine structure on g. ut
Corollary 5.1. If an n-dimensional Lie algebra admits an affine structure, then g
admits an .nC 1/-dimensional faithful linear representation.
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5.4 The Milnor Conjecture

Milnor asked the following: “Does every solvable Lie group admits a complete
left-invariant affine structure?” This question is supported by a result due to
Auslander [2]:

Theorem 5.1. A Lie group with a complete left-invariant affine structure is
solvable.

In terms of affine structures on Lie algebras, the problem of Milnor naturally
reduces to the following conjecture, called the Milnor conjecture:

Every nilpotent Lie algebra admits an affine structure.

In 1993, Benoist [6] presented the first counterexample to this conjecture,
describing an eleven-dimensional filiform Lie algebra without affine structure.
A short time afterwards, Burde and Grunewald published another counterexample,
in dimension 10, probably the smallest possible dimension where we can find such
counterexamples.

5.5 Affine Structures and Gradings

Proposition 5.3. Let g be a Z-graded complex Lie algebra whose support is in N.
Then g admits an affine structure.

If g D L

n2Z
gn, we consider the bilinear map r.Xi ; Xj / D nj

niCnj ŒXi ; Xj � where

Xi;Xj are homogeneous vectors belonging to gni and gnj . Then

r.Xi ; Xj /� r.Xj ;Xi/ D nj

ni C nj ŒXi ; Xj � �
ni

ni C nj ŒXj ;Xi � D ŒXj ;Xi �;

and

r.Xi ;r.Xj ;Xk//� r.Xj ;r.Xi ; Xk// D nk

ni C nj C nk .ŒXi ; ŒXj ;Xk��

CŒXj ; ŒXk;Xi ��/;

and from the Jacobi identity,

r.Xi ;r.Xj ;Xk//� r.Xj ;r.Xi ; Xk// D r.ŒXi ; Xj �; Xk/

for any Xk 2 gnk . The map r defines an affine structure on g.

Consequence. Any nilpotent filiform Lie algebra of nonzero rank admits an affine
structure (see also [6, 8, 25]).
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In case of rank 0, we do not have general results. At the same time, let us consider
a Z2-graded, eight-dimensional characteristically nilpotent Lie algebra g. Assume
that the grading is given in an adapted basis by g D fe1; e3; e5; e7gLfe0; e2; e4; e6g:
In this case, from Proposition 2.4, the Lie multiplication� of g is � D �0CA 1;4C
B 1;6 C C 2;6: We consider the bilinear map r defined by re0.ei / D �.e0; ei /,

re1 D

0

B
B
B
B
B
B
B
B
B
B
B
@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 �A � C C 5p 0 0 0 0 0 0

0 0 �C C 5=2p 0 0 0 0 0

0 2m � B 0 3=2p 0 0 0 0

0 0 m 0 p 0 0 0

0 0 0 0 0 v 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

and rei D Œre0 ;rei�1 �. This defines an affine structure on the graded Lie algebra.
We can define similar affine structures when the grading is of the second type in
Proposition 2.4.

Based on similar examples, we ask the following.
Let g be a characteristically nilpotent Lie algebra such that gr.g/ D LnC1. If g is
Z2-graded, is it true that g admits an affine structure?

The Benoist counterexample is of dimension 11, characteristically nilpotent, with
multiplication

� D �0Ca1;4 1;4Ca3;7 3;7Ca3;8 3;8Ca3;9 3;9Ca4;9 4;9Ca4;10 4;10Ca4;11 4;11:

It does not admit any Z2-grading.
Conversely, for a left-symmetric algebra A, ˆ D .L; id/ is an étale affine

representation of g.A/ with base 0, where id is the identity transformation on g.A/.
Moreover, if A is a left-symmetric algebra, then N.A/ D fx 2 AjLx D 0g is an
ideal of A which is called a kernel ideal.

Proposition 5.4. A left-symmetric algebra A has a zero kernel ideal if and only if
its corresponding étale affine representation does not contain any nontrivial one-
parameter translation subgroups.

Theorem 5.2. Let g be a Lie algebra. If there exists an étale affine representation
ˆ D .	; q/ of g such that 	 is a faithful representation of g, then the corresponding
left-symmetric algebra has the zero kernel ideal. Therefore ˆ does not contain any
nontrivial one-parameter translation subgroups.

Proof. Let x 2 N.g/. By equation (2.6), we have ev�1
v Œ	.x/evv.y/� D 0 for every

y 2 g. Since evv is a linear isomorphism, 	.x/z D 0 for every z 2 g. Then x 2 Ker	.
Since 	 is faithful, x D 0. ut
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5.6 Adapted Structures Associated with Z
2
2
-Symmetric

Structures

Let G=H be a Z
k
2 -symmetric space and g D hCm with Œh; h� � h and Œh;m� � m

the associated reductive structure of the Lie algebra g of G: We have seen that any
affine connection on G=H is given by a linear map

V W m! gl.m/

satisfying

V
ŒX; Y � D ŒV.X/; �.Y /�

for all X 2 m and Y 2 h, where � is the linear isotropy representation of h.
The corresponding torsion and curvature tensors are given by

T .X; Y / DV.X/.Y / �V.Y /.X/� ŒX; Y �m
and

R.X; Y / D ŒV.X/;V.Y /� �VŒX; Y � � �.ŒX; Y �h/
for any X; Y 2 m:

Definition 5.3 ([15]). Consider an affine connection on the Z
k
2 -symmetric space

G=H defined by the linear map

V W m! gl.m/:

Then this connection is called adapted to the Zk2 -symmetric structure if any

V
.X
/.g
 0/ � g

 0

for any 
; 
 0 2 Z
k
2 , 
; 
 ¤ ": The connection is called homogeneous if any

homogeneous component g
 of m is invariant by
V

.

Some example of such connections are described when G is the Heisenberg
group in [15].

Proposition 5.5. Let G=H be a Z
k
2 -symmetric space and

g D ˚
2Zk2g


the associated Z
k
2 -grading of the Lie algebra g of G: If g" D f0g where " is the

unity of Zk2 ; then any affine connection on G=H with no curvature define an affine
structure on g:
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Application. Assume that g is a characteristically nilpotent filiform Lie algebra. If
g admits a Zk2 -grading with g" D f0g; then k � 2:

6 Filiform G-Symmetric Spaces

6.1 Symmetric Spaces Associated with Filiform Lie Algebras
of Rank 2

A symmetric space is a Z2-symmetric space G=H . If G D f"; �g, then � is an
involutive automorphism of G such that H lies between G� , the subgroup of G
consisting of elements left fixed by � , and its identity component G�

" . The Lie
algebra g ofG is Z2-graded, this grading being defined by the automorphism � of g
induced by the automorphism � ofG (this explains that we kept the same notation).
A Z2-graded Lie algebra associated with an automorphism � of g is classically
called a symmetric Lie algebra and denoted by .g; h; �/. Thus, if G is simply
connected, the symmetric Lie algebra .g; h; �/ induces a symmetric space. Thus,
in this case, the study of symmetric spaces follows from the study of symmetric Lie
algebras. If .g; h; �/ is a symmetric Lie algebra, then the Z2-grading of g can be
written as: g D h˚m with

�
Œh; h� � h

Œh;m� � m; Œm;m� � h:

The subspaces h and m are eigenspaces of � . Two symmetric Lie algebras .g; h; �/
and .g0; h0; � 0/ are isomorphic if there is an isomorphism ˛ W g ! g0 such that
˛.h/ D h0 and � 0 ı ˛ D ˛ ı �: We deduce the notion of isomorphism between
symmetric spaces if we add some hypothesis on the Lie groups, such as G and H
are connected and simply connected.

An important class of symmetric spaces is the class of Riemannian symmetric
spaces, that is, Riemannian manifolds M such that the geodesic symmetries are
defined at all points ofM and are isometries. In this caseH is an isotropy group and
is compact. From a symmetric space .G;H; �/ with H compact, we can construct
a Riemannian symmetric space considering on G=H a G-invariant Riemannian
metric. In terms of Lie algebra, we have to consider on a symmetric Lie algebra
.g; h; �/ an ad h-invariant inner product on g which admits � as a linear isometry.
The Riemannian symmetric spaces have been classified by E. Cartan. Later on,
M. Berger gave the classification of symmetric Lie algebras when g is semisimple
and irreducible (the adjoint representation of h in m is irreducible).

The results established in Sect. 2 enable us to describe symmetric Lie algebras
when g is filiform of rank 2.
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6.1.1 g D Ln

We denote by Ln the Lie group of matrices

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 : : : : : : 0

x2 1 0
:::

x3 x1 1 0
:::

x4
.x1/

2

2Š
x1
: : :

: : :
:::

:::
:::

: : :
: : :

: : :
: : :

:::
:::

:::
: : :

: : : 1 0

xn
.x1/

n�2

n�2Š : : : : : :
.x1/

2

2Š
x1 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

An element of this group is denoted Œx1; x2; : : : ; xn� : Its Lie algebra is isomorphic
to Ln. In Sect. 2 we classified abelian group gradings on Ln. Their corresponding
symmetric spaces are as follows.

(1) G=H1 D Ln=H1 where H1 D Œx1; 0; : : : ; 0�.
(2) G=H2 D L2p=H2 where H2 D

�
0; x2; 0; x4; : : : ; x2p

�
, if n D 2p.

(3) G=H3 D L2pC1=H3 where H3 D
�
0; x2; 0; x4; : : : ; x2p; 0

�
, if n D 2p C 1.

(4) G=H4 D L2pC1=H4 whereH4 D
�
0; 0; x3; 0; x5; : : : ; x2pC1; 0

�
, if n D 2pC 1.

(5) G=H5 D L2p=H5 where H5 D
�
0; 0; x3; 0; x5; : : : ; x2p�1; 0

�
, if n D 2p.

Let us note that in all the cases, the subgroupHi is an abelian Lie group.

Proposition 6.1. The nilpotent symmetric spaces L2p=Hi for i D 2; 3; 4; 5 are not
Riemannian symmetric spaces.

Proof. Let us consider the symmetric decomposition of Ln:

Ln D RfX2;X4; : : : ; X2pg ˚ RfX1;X3; : : : ; X2pC1g D h˚m:

We assume here that n D 2p C 1. But the proof is similar if n D 2p. Let B be an
ad h-symmetric bilinear form on m. We have

B.ŒX2;X1�; X1/C B.X1; ŒX2;X1�/ D �2B.X3;X1/ D 0

and, for k D 1; : : : ; p,

B.ŒX2k; X1�; X3/C B.X1; ŒX2k; X3�/ D �B.X2kC1; X3/ D 0:

This shows that X3 is in the kernel of the bilinear form B and B is degenerate. Thus
we cannot have a pseudo-Riemannian symmetric metric on this symmetric space.
The two other cases can be treated in a similar way. ut
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6.1.2 g D Qn

We denote by Qn the Lie group of matrices

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 0 : : : : : : 0

x2 1 0
:::

x3 x1 1 0
:::

x4
.x1/

2

2Š
x1
: : :

: : :
:::

:::
:::

: : :
: : :

: : :
: : :

:::
:::

:::
: : :

: : : 1 0

xn�1 .x1/
n�3

.n�3/Š : : : : : :
.x1/

2

2Š
x1 1

xn yn�1 : : : : : : y3 x1 C x2 1

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

where yi are polynomial functions in x1; : : : ; xi : The set fx1; : : : ; xng is a global sys-
tem of coordinates of Qn: To simplify we will write Hi D fx1; : : : ; xi�1; 0; : : : ; xng
for the closed subgroup of Qn defined by the equations xi D 0:

A consequence of our results in Sect. 2 is the following.

Proposition 6.2. Any homogeneous symmetric space Qn=H is isomorphic to one
of the following:

• Qn=H1 with H1 D f0; 0; x3; 0; x5; : : : ; xn�1; 0g I
• Qn=H2 with H2 D fx1;�x1; 0; 0; : : : ; 0; xng I
• Qn=H3 with H3 D f0; x2; 0; x4; 0; : : : ; 0; xng :

All the subgroupsHi are abelian.

6.2 Associated Affine Connection

Any symmetric space G=H is an affine space, that is, it can be provided with an
affine connection r whose torsion tensor T and curvature tensor R satisfy

T D 0; rR D 0
where

rR.X1;X2;X3; Y / D r.Y;R.X1;X2;X3// �R.r.Y;X1/; X2;X3/
�R.X1;r.Y;X2/; X3/ �R.X1;X2;r.Y;X3//

for any vector fields X1;X2;X3; Y on G=H . This is the only affine connection that
is invariant under the symmetries of G=H . When G=H is a Riemannian symmetric
space, this connection r coincides with the Levi-Civita connection associated with
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the Riemannian metric. In all the cases, since G=H is a reductive homogeneous
space, that is, g admits a decomposition g D h˚m with Œh; h� � h and Œh;m� � m,
any connection is given by a linear map

V W m! gl.m/

satisfying

V
ŒX; Y � D ŒV.X/; �.Y /�

for all X 2 m and Y 2 h, where � is the linear isotropy representation of h.
The corresponding torsion and curvature tensors are given by

T .X; Y / DV.X/.Y / �V.Y /.X/� ŒX; Y �m
and

R.X; Y / D ŒV.X/;V.Y /� �VŒX; Y � � �.ŒX; Y �h/

for any X; Y 2 m: We have seen that Ln=H is not a Riemannian symmetric space.
Thus the affine connection cannot be computed with a Levi-Civita connection.
We shall determine this affine connection in terms of the map

V
. As an example, we

consider the case n D 5, which is not a real restriction. We consider the Z2-grading
of L5:

L5 D RfX3;X5g ˚ RfX1;X2;X4g:

Thus
V
.X1/;

V
.X2/;

V
.X4/ are matrices of order 3. If we assume that the torsion

T is zero, we obtain

V
.X1/ D

0

@
a 0 0

b 0 0

c d a
2

1

A ;
V
.X2/ D

0

@
0 0 0

0 e 0

d f a
2

1

A ;
V
.X3/ D

0

@
0 0 0

0 0 0

� a
2
0 0

1

A :

The linear isotropy representation of H4 whose Lie algebra is h is given by taking
the differential of the map L5=H4 ! L5=H4 corresponding to the left multiplication
x ! hx with x D xH4. We obtain

�.X3/ D
0

@
0 0 0

0 0 0

1 0 0

1

A ; �.X5/ D .0/ :

We deduce that the curvature is always non zero.
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6.3 Z
k
2
-Symmetric Structures Associated with Ln and Qn

Recall that Zk2 -symmetric structure on G=H is associated with a Zk2 -grading

g D
M


2Zk2
g


of the Lie algebra g ofG: If " denotes the unity of Zk2 , then g" D h is the Lie algebra
of H and the decomposition

g D g" ˚m

with

m D
M


2Zk2 ;
¤"
g
 :

is a reductive decomposition.

Proposition 6.3. The Lie groups Ln and Qn can be considered as Z
2
2-symmetric

spaces by identifying Ln and Qn, respectively, with Ln=f1g and Qn=f1g. Moreover
there is no Z

k
2 -symmetric spaces .G=H;Zk2 / for G D Ln or G D Qn if k > 2:

Proof. This is a consequence of the classification of the Z
k
2 -gradings of the Lie

algebras Ln and Qn: ut
Since a Z

k
2 -symmetric space G=H is reductive, a Riemannian or pseudo-

Riemannian metric onG=H is given by a symmetric bilinear form B on m which is
ad h-invariant.

Definition 6.1 ([16]). A pseudo-Riemannian Z
k
2 -symmetric space is a Z

k
2 -

symmetric space G=H with a pseudo-Riemannian metric g , which is determined
by a nondegenerate bilinear symmetric form B on m such that

(1) B is ad h-invariant.
(2) The homogeneous components g
 for 
 ¤ " are pairwise orthogonal with

respect to B .

Let us note that in case where B is not positive definite, that is, g is not
Riemannian, some of the components g
 can be degenerate subspaces of m.
In the previous section, we have seen that the symmetric spaces Ln=H are never
Riemannian or pseudo-Riemannian. But if we considerLn as a Z22-symmetric space,
then Ln is a pseudo-Riemannian Z

2
2-symmetric space. In fact, let us consider the

following Z
2
2-grading of Ln:

Ln D f0g ˚RfX2;X4; : : : ; X2pg ˚ RfX3;X5; : : : ; X2pC1g ˚ RfX1g
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(recall that the brackets of Ln are ŒX1;Xi � D XiC1; i D 1; : : : ; n � 1) . Then any
symmetric bilinear form of type

B D B1.!2; : : : ; !2p/C B2.!3; : : : ; !2pC1/CB3.!1/;

where f!1; : : : ; !ng is the dual basis of fX1; : : : ; Xng and Bi is a nondegenerate
bilinear form on the corresponding homogeneous component of m, defines a
pseudo-Riemannian structure on the Z

2
2-symmetric space Ln=f1g. In this case, the

corresponding Levi-Civita connection is an affine connection and the G-symmetric
space is an affine space. If in the symmetric case we have seen that there was an
unique affine connection invariant under the symmetries, it is not the case when we
consider Zk2 -symmetric spaces, with k � 2. This leads us to considering adapted
and homogeneous connections, see Definition 5.3.

Proposition 6.4. On the Z22-symmetric space Ln=f1g there exists an adapted affine
connection whose torsion and curvature are zero.

Proof. We restrict ourselves to the case where n D 2p C 1 is odd. The even case is
similar. Consider the grading of Ln given by

Ln D f0g ˚ RfX3;X5; : : : ; Xng ˚ RfX2;X4; : : : ; Xn�1g ˚ RfX1g D f0g ˚m:

To obtain the connection which is adapted to the grading, we choose the matrices of
the linear maps

V
.Xi/ in the basis fX3; : : : ; Xn;X2; : : : ; Xn�1; X1g as follows:

^
.Xi / D

0

B
B
B
B
B
B
B
@

0 0 0 : : : 0 0

0 0 0 : : : 0 0

0 0 0 : : : 0 ai1
� � � : : : � �
0 0 0 : : : 0 aip
0 0 aipC1 : : : ai2p 0

1

C
C
C
C
C
C
C
A

; i D 3; : : : ; n

^
.Xj / D

0

B
B
B
B
B
B
B
@

0 : : : 0 0 0 b
j
1

� : : : � � � �
0 : : : 0 0 0 b

j
p

0 : : : 0 0 0 0

0 : : : 0 0 0 0

b
j
3 : : : b

j
2p 0 0 0

1

C
C
C
C
C
C
C
A

; j D 2; : : : ; 2p ;
^
.X1/ D

0

@
0p C 0

D 0p 0

0 0 0

1

A

where C , D, 0p are square matrices of order p. Because the linear isotropy
representation is trivial and

R.X; Y / D Œ
^
.X/;

^
.Y /� �

^
.ŒX; Y �/;



Group Gradings on Lie Algebras and Applications to Geometry: II 39

the curvature is zero, so assuming T D 0 we deduce, after some computation, that

^
.Xi/ D 0; i D 2; : : : ; 2p C 1

and

^
.X1/ D

0

@
0p Ip 0

D 0p 0

0 0 0

1

A with D D

0

B
B
B
B
B
@

1 0 : : : 0 0

0 1 : : : 0 0

: : : : : : : : : : : : : : :

0 0 : : : 1 0

0 0 : : : 0 0

1

C
C
C
C
C
A

:

The torsion tensor and the curvature tensor of the associated connection are null. ut
Remark. Let us consider a homogeneous connection r given by the map

V
. This

means that the matrices of
V
.Xi / are

0

@
Ai 0p 0

0p Bi 0

0 0 ci

1

A

where Ai and Bi are square matrices of order p. The tensor torsion T of this
connection r is not trivial. There exists a connection Qr which is torsion free and
has the same geodesic that r. It is defined by

Qr D r � 1
2
T:

This connection Qr is adapted to the Z
2
2-grading and if we fix R D 0, we find again

the previous one.
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Abstract We define and study a noncommutative Fourier transform on every
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As a by-product, they obtained a G-equivariant continuous linear mapping
between the Schwartz space S.G/ of such a Lie group and a subalgebra of
Hilbert–Schmidt operators on a Hilbert irreducible unitary G-module. This yields
a one-parameter family of noncommutative associative multiplications f?� g�2R on
the Schwartz space, each of them endowing S.G/ with a Fréchet nuclear algebra
structure. Moreover, the resulting family of Fréchet algebras f.S.G/; ?� /g�2R
deforms the commutative Fréchet algebra structure on S.G/ given by the pointwise
multiplication of functions corresponding to the value � D 0 of the deformation
parameter. Note that such a program was achieved in [17] for abelian Lie groups
and in [8] for abelian Lie supergroups.

In this article we construct a bijective intertwiner between every noncommutative
Fréchet algebra .S.G/; ?� / (� ¤ 0) and a convolution function algebra on the
group G. The intertwiner’s kernel consists in a complex-valued smooth function
E on the group G � G that we call “?-exponential” because of its similar nature
with objects defined in [11] and studied in [2] in the context of the Weyl–Moyal
quantization of coadjoint orbits of exponential Lie groups.
We then prove that the associated smooth map

E W G ! C1.G/

consists in a group-morphism valued in the multiplier (nuclear Fréchet) algebra
M?� .G/ of .S.G/; ?� /. The above group-morphism integrates the classical moment
mapping

� W g!M?� .G/ \ C1.G/

associated with the (symplectic) action of G on itself by left-translations. Next, we
modify the 2-point kernel E by a power of the modular function of G in such a way
that the corresponding Fourier-type transform consists of a unitary operator F on
the Hilbert space of square integrable functions with respect to a left-invariant Haar
measure on G.

As an application, we define a class of noncommutative tori associated to
generalized Bauslag–Solitar groups in every dimension.

2 Homogeneous Complex Bounded Domains and j -Algebras

The theory of j -algebras was greatly developed by Pyatetskii-Shapiro [16] for
studying in a Lie-algebraic way the structure and classification of bounded
homogeneous—not necessarily symmetric—domains in C

n. A j -algebra is roughly
the Lie algebra g of a transitive Lie group of analytic automorphisms of the domain,
together with the data of the Lie algebra k of the stabilizer of a point in the latter
Lie group, an endomorphism j of g coming from the complex structure on the
domain, and a linear form on g whose Chevalley coboundary gives the j -invariant
symplectic structure coming from the Kähler structure on the domain. Pyatetskii-
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Shapiro realized that among the j -algebras corresponding to a fixed bounded
homogeneous domain, there always is at least one whose associated Lie group acts
simply transitively on the domain, and which is realizable as upper triangular real
matrices. Thoses j -algebras have the structure of normal j -algebras which we
proceed to describe now.

Definition 2.1. A normal j -algebra is a triple .g; ˛; j / where

1. g is a solvable Lie algebra which is split over the reals, i.e., adX has only real
eigenvalues for all X 2 g,

2. j is an endomorphism of g such that j 2 D �Idg and ŒX; Y � C j ŒjX; Y � C
j ŒX; jY � � ŒjX; jY � D 0, 8 X; Y 2 g,

3. ˛ is a linear form on g such that ˛.ŒjX;X�/ > 0 if X ¤ 0 and ˛.ŒjX; jY �/ D
˛.ŒX; Y �/, 8 X; Y 2 g.

If g0 is a subalgebra of g which is invariant by j , then .g0; ˛jg0 ; j jg0/ is again
a normal j -algebra, said to be a j -subalgebra of .g; ˛; j /. A j -subalgebra whose
algebra is at the same time an ideal is called a j -ideal.

Remark 2.2. To each simple Lie algebra G of Hermitian type (i.e., such that the
center of the maximal compact algebra k has real dimension one) we can attach a
normal j -algebra .g; ˛; j / where

1. g is the solvable Lie algebra underlying the Iwasawa factor g D a ˚ n of an
Iwasawa decomposition k˚ a˚ n of G.

2. Denoting by G=K the Hermitian symmetric space associated to the pair .G; k/
and by G D KAN the Iwasawa group decomposition corresponding to k˚a˚n,
the global diffeomorphism:

G WD AN �! G=K W g 7! gK ;

endows the group G with an exact left-invariant symplectic structure as well as
a compatible complex structure. The evaluations at the unit element e 2 G of
these tensor fields define the elements ˝ D d˛ and j at the Lie algebra level.

It is important to note that not every normal j -algebra arises this way. Indeed, it
is with the help of the theory of j -algebras that Pyatetskii-Shapiro discovered the
first examples of nonsymmetric bounded homogeneous domains. Nevertheless, they
can all be built from these “Hermitian” normal j -algebras by a semidirect product
process, as we recall now.

Definition 2.3. A normal j -algebra associated with a rank one Hermitian symmet-
ric space (i.e., dim a D 1) is called elementary.

Lemma 2.4. Let .V; !0/ be a symplectic vector space of dimension 2n, and let
hV WD V ˚ RE be the corresponding Heisenberg algebra : Œx; y� D !0.x; y/E ,
Œx; E� D 0 8 x; y 2 V . Setting a WD RH , we consider the split extension of Lie
algebras:

0! hV ! s WD a Ë hV ! a! 0;
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with extension homomorphism 	h W a! Der.h/ given by

	h.H/.x C `E/ WD ŒH; x C `E� WD x C 2`E; x 2 V; ` 2 R:

Then the Lie algebra s underlines an elementary normal j -algebra. Moreover, every
elementary normal j -algebra is of that form.

The main interest of elementary normal j -algebras is that they are the only building
blocks of normal j -algebras, as shown by the following important property [16].

Proposition 2.5. Let .g; ˛; j / be a normal j -algebra. Then,

1. there exists a one-dimensional ideal z1 of g, and a vector subspace V of g, such
that s D j z1CV Cz1 underlies an elementary normal j -ideal of g. Moreover, the
associated extension sequence

0 �! s �! g �! g0 �! 0 ;

is split as a sequence of normal j -algebras and such that

a. Œg0; a1 ˚ z1� D 0,
b. Œg0; V � � V .

2. (follows from 1.) every normal j -algebra admits a decomposition as a sequence
of split extensions of elementary normal j -algebras with properties (a) and (b)
above.

2.1 Symplectic Symmetric Space Geometry of Elementary
Normal j -Groups

In this section we briefly recall results of [6, 9].

Definition 2.6. The connected simply-connected real Lie group G whose Lie
algebra g underlies a normal j -algebra is called a normal j -group. The connected
simply connected Lie group S whose Lie algebra s underlies an elementary normal
j -algebra is said to be an elementary normal j -group.

Elementary normal j -groups are exponential (non-nilpotent) solvable Lie
groups. As an example, consider the Lie algebra s of Definition 2.3 where V D 0.
It is generated over R by two elements H and E satisfying ŒH;E� D 2E and is
therefore isomorphic to the Lie algebra of the group of affine transformations of the
real line: in this case, S is the ax C b group.

Now generally, the Iwasawa factor AN of the simple group SU.1; n/ (which
corresponds to the above example in the case n D 1) is an elementary normal
j -group.
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We realize S on the product manifold underlying s:

S D R � V � R D f.a; x; `/g :

The group law of S is given by

.a; x; `/�.a0; x0; `0/ D
�
aC a0; e�a0

x C x0; e�2a0

`C `0 C 1

2
e�a0

!0.x; x
0/
	

(1.1)

and the inverse by

.a; x; `/�1 D .�a;�eax;�e2a`/ :

We denote by

Ad� W S � s� W .g; / 7! Ad�
g./ WD  ı Adg�1

the coadjoint action of S on the dual space s� of s D RH ˚ V ˚ RE . In the dual
s�, we consider the elements [H and [E as well as [x (x 2 V ) defined by

[H jV˚RE � 0; h[H;H i D 1;

[EjRH˚V � 0; h[E;Ei D 1;

[xjRH˚RE � 0; h[x; yi D !0.x; y/ .y 2 V / :

Proposition 2.7. Let O� denote the coadjoint orbit through the element � [E , for
� D ˙1, equipped with its standard Kirillov–Kostant–Souriau symplectic structure
(referred to as KKS). Then the map

S! O� W .a; x; `/ 7! Ad�
.a;x;`/.�

[E/ D �.2` [H � e�a [x C e�2a [E/ (1.2)

is a S-equivariant global Darboux chart on O� in which the KKS two-form reads

! WD !S WD �.2da ^ d`C !0/ :

Within this setting, we consider the moment map of the action of S on O� ' S:

� W s! C1.S/ W X 7! �X

defined by the relations

�X.g/ WD hAd�
g



� [E

�
; X i :

Lemma 2.8. Denoting for every X 2 s the associated fundamental vector field by

X�
g WD

d

dt
j0 exp.�tX/:g ;
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one has (y 2 V ):

H� D �@a ; y� D �e�a@y C 1

2
e�a!0.x; y/@` ; E� D �e�2a@` :

Moreover the moment map reads

�H.a; x; `/ D 2�` ; �y.a; x; `/ D e�a�!0.y; x/ ; �E.a; x; `/ D �e�2a :
(1.3)

Proposition 2.9. The map

s W S � S! S W .g; g0/ 7! sgg
0

defined by

s.a;x;`/.a
0; x0; `0/

D
�
2a � a0; 2 cosh.a � a0/x � x0; 2 cosh.2.a � a0//`� `0 C sinh.a � a0/!0.x; x0/

	

(1.4)

endows the Lie group S with a left-invariant structure of the symmetric space in the
sense of O. Loos (cf. [15]).

Moreover the symplectic structure ! is invariant under the symmetries: for every
g 2 S, one has

s�
g! D ! :

2.2 Normal j-Groups

The above Proposition 2.5 implies that every normal j -groupG can be decomposed
into a semidirect product

G D G1 Ë	 S2 (1.5)

where

S2 WD RH2 � V2 � RE2

is an elementary normal j -group of real dimension 2n2 C 2 and G1 is a normal
j -group. This means that the group law of G has the form

8 g1; g0
1 2 G1; 8 g2; g0

2 2 S2 W .g1; g2/�.g0
1; g

0
2/ D

�
g1�g0

1; g2�.	.g1/g0
2/
	
;



Harmonic Analysis on Homogeneous Complex Bounded Domains. . . 47

where 	 W G1 ! Sp.V2; !0/ denotes the extension homomorphism; and the inverse
is given by .g1; g2/�1 D .g�1

1 ; 	.g
�1
1 /g

�1
2 /. As a consequence, every normal j -

group therefore results in a sequence of semidirect products of a finite number of
elementary normal j -groups.

Proposition 2.10. Consider the decomposition (1.5). Then,

1. the Lie group G1 admits an open coadjoint orbit O1 through an element o1 2 g�
1

which it acts on in a simply transitive way;
2. the coadjoint orbit O ofG through the element o WD o1C�2 [E2 (same notation

as in Sect. 2.1) is open in g�;
3. denoting by O2 the coadjoint orbit of S2 through �2 [E2, the map

� W O1 �O2 ! O W .Ad�
g1
o1; �2Ad�

g2
[E2/ 7! Ad�

.g1;g2/
.o/ (1.6)

is a symplectomorphism when endowing each orbit with its KKS two-form.

Proof. We proceed by induction on the dimension in proving that O is acted on
by G in a simply transitive way. By induction hypothesis, so is O1 by G1. And
Proposition 2.7 implies it is the case for O2 as well. Now denoting .g1; e/ DW g1
and .e; g2/ DW g2, we observe:

Ad�
.g1;g2/

.o/ D Ad�
g2g1

.o/ D Ad�
g2

�
Ad�

g1
.o1/C �2 [E2 ı 	.g�1

1 /�e
	

where 	 W G1 ! Aut.S2/ denotes the extension homomorphism.
Now for all 1 2 g�

1 ; X1 2 g1 ; X2 2 s2 and g2 2 S2:

hAd�
g2
1 ; X1 CX2i D h1 ; Adg�1

2
X1 C Adg�1

2
X2i D h1 ; Adg�1

2
X1i :

But

Adg�1
2
X1 D d

dt
j0.exp.tX1/; g�1

2 /.e; g2/ D
d

dt
j0.exp.tX1/; g�1

2 	.exp.tX1//g2/ :

Hence

h1 ; Adg�1
2
X1i D h1 ; X1 ˚

�
d

dt
j0g�1

2 	.exp.tX1//g2

�

i D h1 ; X1i :

Therefore Ad�
g2
1 D 1 and we get

Ad�
.g1;g2/

.o/ D Ad�
g1
.o1/ C �2 Ad�

g2



[E2 ı 	.g�1

1 /�e
�
:

The induction hypothesis thus implies that the stabilizer of element o in G is trivial,
which shows in particular that the fundamental group of O is trivial. The map (1.6)
being a surjective submersion is therefore a diffeomorphism.
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It remains to prove the assertion regarding the symplectic structures. Denoting
by !O the KKS form on O, we observe that with obvious notation, for all Y1 2 g1
and Y2 2 s2:

��!O.X�
1 ˚X�

2 ; Y
�
1 ˚ Y �

2 / D !O
Ad�

.g1;g2/
.o/
.��X�

1 C ��X�
2 ; ��Y �

1 C ��Y �
2 /

D !O
Ad�

.g1;g2/
.o/
.


Adg2X1

�� CX�
2 ;


Adg2Y1

�� C Y �
2 /

D hAd�
.g1;g2/

.o/ ; ŒAdg2X1 CX2 ; Adg2Y1 C Y2� i
D hAd�

g1
.o/ ; ŒX1 C Adg�1

2
X2 ; Y1 C Adg�1

2
Y2� i

D hAd�
g1
.o/ ; ŒX1; Y1� � 	.Y1/Adg�1

2
X2 C 	.X1/Adg�1

2
Y2 C Adg�1

2
ŒX2; Y2� i

D !O1

Ad�

g1
.o1/
.X�

1 ; Y
�
1 /C �2 !O2

Ad�

g2
[E2
.X�

2 ; Y
�
2 /

C �2 h[E2 ; 	.g�1
1 /�e

�
�	.Y1/Adg�1

2
X2 C 	.X1/Adg�1

2
Y2

	
i :

The last term in the above expression vanishes identically. Indeed, the specific form
of 	 implies that the element v2 WD �	.Y1/Adg�1

2
X2 C 	.X1/Adg�1

2
Y2 lives in V2

as well as in 	.g�1
1 /�ev2. ut

Remark 2.11. Normal j -groups can be decomposed into elementary normal
j -groups Sk as G D 


: : : .S1 Ë	1 S2/ Ë	2 : : :
�

Ë	N�1 SN and the coadjoint
orbits described in Proposition 2.10 are determined by sign choices �k D ˙1
for each factor Sk . We will denote by O.�/ the coadjoint orbit associated to the signs
.�k/1�k�N 2 .Z2/N .

Example 2.12. Let us describe the following example corresponding to the six-
dimensional Siegel domain Sp.2;R/=U.2/. Let G1 D S1 be of dimension 2
(V1 D 0, G1 is the affine group), S2 of dimension 4, i.e., V2 is of dimension 2,

with basis f2; f 0
2 endowed with !0 D

�
0 1

�1 0
�

), and let the action 	 W S1 ! Sp.V2/

be given by

	.a1; `1/ D
�
ea1 0

e�a1`1 e�a1

�

:

Then the group law is

.a1; `1; a2; v2;w2; `2/�.a0
1; `

0
1; a

0
2; v

0
2;w

0
2`

0
2/ D

�
a1 C a0

1; e
�2a0

1`1

C `0
1; a2 C a0

2; e
�a0

2v2 C ea1v0
2; e

�a0

2w2 C e�a1`1v0
2 C e�a1w0

2;

e�2a0

2`2 C `0
2 C

1

2
e�a0

2 .e�a1`1v2v0
2 C e�a1v2w0

2 � ea1w2v0
2/
	
;
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where .a1; `1/ 2 S1 ; .a2; v2;w2; `2/ 2 S2 and

g WD .a1; `1; a2; v2;w2; `2/ D ea2H2ev2f2Cw2f 0

2 e`2E2ea1H1e`1E1 :

Its Lie algebra is characterized by

ŒH1;E1� D 2E1; ŒH2; f2� D f2; ŒH2; f
0
2 � D f 0

2 ; Œf2; f
0
2 � D E2;

ŒH2;E2� D 2E2; ŒH1; f2� D f2; ŒH1; f
0
2 � D �f 0

2 ; ŒE1; f2� D f 0
2 ;

where the other relations vanish. The coadjoint action takes the form

Ad�
g.�1

[E1 C �2 [E2/ D .2�1`1 C �2v2w2/[H1 C .�1e�2a1 � �2
2
v22/

[E1

C �2.2`2[H2 � e�a2v2[f2 � e�a2w2[f 0
2 C e�2a2 [E2/ :

The moment map can then be extracted from this expression:

�H1 D 2�1`1 C �2v2w2; �E1 D �1e�2a1 � �2
2
v22; �H2 D 2�2`2;

�f2 D �2e�a2w2; �f 0

2
D ��2e�a2v2; �E2 D �2e�2a2 :

3 Determination of the Star-Exponential

3.1 Quantization of Elementary Groups

We follow the analysis developed in [7], where the reader can find all the proofs.
In the notation of Sect. 2.1, we choose two Lagrangian subspaces in duality V0; V1
of the symplectic vector space .V; !0/ of dimension 2n underlying the elementary
group S. We denote the corresponding coordinates x D .v;w/ 2 V in the global
chart, with v 2 V0 and w 2 V1. Let q D RH ˚ V0 and Q D exp.q/. The unitary
induced representation associated to the coadjoint orbit O� (� D ˙1) by the method
of Kirillov has the form

U�;�.a; x; `/'.a0; v0/ D e
i�
�

�
e2.a�a0/`C!0. 12 ea�a0 v�v0;ea�a0w/

	

'.a0 � a; v0 � ea�a0v/
(1.7)

for .a; x; `/ 2 S, ' 2 L2.Q/, .a0; v0/ 2 Q and � 2 R
�C. These representations

U�;� W S ! L.H/ are unitary and irreducible, and the unitary dual is described by
these two representations. A multiplier m is a function on Q. There is a particular
multiplier:

m0.a; v/ D 2nC1pcosh.2a/ cosh.a/n: (1.8)
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Let us define˙ WD .s.0;0;0/jQ/�, where s is the symmetric structure (1.4):

˙'.a; v/ D '.�a;�v/: (1.9)

Then, the Weyl-type quantization map is given by

˝�;�;m0 .a; x; `/'.a0; v0/ WD U�;�.a; x; `/m0˙U�;�.a; x; `/
�1'.a0; v0/

D 2nC1pcosh.2.a � a0// cosh.a � a0/n

� e
2i�
�

�
sinh.2.a�a0//`C!0.cosh.a�a0/v�v0;cosh.a�a0/w/

	

� '.2a � a0; 2 cosh.a � a0/v � v0/:

(1.10)

The operator ˝�;�;m0 .g/ is a symmetric unbounded operator on H, and
g 2 S ' O� .

On smooth functions with compact support f 2 D.O�/, and by denoting � WD
1

2n.��/nC1 , one has

˝�;�;m0 .f / WD �
Z

O�

f .g/˝�;�;m0 .g/d�.g/

with d�.g/ D dLg which corresponds to the Liouville measure of the KKS
symplectic form on the coadjoint orbit O� ' S. Its extension is continuous and
called the quantization map ˝�;�;m0 W L2.O�/ ! LHS.H/, with H WD L2.Q/

and LHS the Hilbert–Schmidt operators. The normalization has been chosen such
that ˝�;�;m0 .1/ D 1H, understood in the distributional sense. Moreover, it is
S-equivariant, because of

8g; g0 2 S W ˝�;�;m0 .g�g0/ D U�;�.g/˝�;�;m0 .g0/U�;�.g/
�1:

The unitary representation U�;� W S! L.H/ induces a resolution of the identity.

Proposition 3.1. By denoting the norm k'k2w WD
R

Q
j'.a; v/j2e2.nC1/adadv and

'g.q/ D U�;�.g/'.q/ for g 2 S, q 2 Q and a nonzero ' 2 H, we have

�

k'k2w

Z

S

j'gih'gjdLg D 1H:

This resolution of identity shows that the trace has the form

Tr.T / D �

k'k2w

Z

S

h'g; T 'gidLg (1.11)

for any trace-class operator T 2 L1.H/.
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Theorem 3.2. The symbol map, which is the left-inverse of the quantization map
˝�;�;m0 can be obtained via the formula

8 f 2 L2.O�/; 8 g 2 O� W Tr.˝�;�;m0 .f /˝�;�;m0 .g// D f .g/;

where the trace is understood in the distributional sense in the variable g 2 S.

Then, the star-product is defined as

.f1 ?�; f2/.g/ WD Tr.˝�;�;m0 .f1/˝�;�;m0 .f2/˝�;�;m0 .g//

for f1; f2 2 L2.O�/ and g 2 O� , where we omitted the subscripts �;m0 for the
star-product.

Proposition 3.3. The star-product has the following expression:

.f1?�f2/.g/D 1

.��/2nC2

Z

KS.g; g1; g2/e
� 2i
� SS.g;g1;g2/f1.g1/f2.g2/d�.g1/d�.g2/

(1.12)

where the amplitude and the phase are

KS.g; g1; g2/D4
p

cosh.2.a1�a2// cosh.2.a1�a// cosh.2.a�a2// cosh.a2 � a/n
cosh.a1 � a/n cosh.a1 � a2/n;

�SS.g; g1; g2/ D� sinh.2.a1 � a2//` � sinh.2.a2 � a//`1 � sinh.2.a � a1//`2
C cosh.a1 � a/ cosh.a2 � a/!0.x1; x2/
C cosh.a1 � a/ cosh.a1 � a2/!0.x2; x/
C cosh.a1 � a2/ cosh.a2 � a/!0.x; x1/;

with gi D .ai ; xi ; `i / 2 S. Moreover, g 7! 1 is the unit of this product, is
associative, S-invariant and satisfies the tracial identity:

Z

f1 ?� f2 D
Z

f1�f2: (1.13)

Note that this product has first been found [5] by intertwining the Moyal product:

.f1 ?
0
� f2/.a; x; `/ D

4

.��/2C2n

Z

daidxid`i f1.a1 C a; x1 C x; `1 C `/

f2.a2 C a; x2 C x; `2 C `/e� 2i�
� .2a1`2�2a2`1C!0.x1;x2//
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for f1; f2 2 L2.O�/ and O� ' S ' R
2nC2, which is s-covariant (Œ�X ; �Y �?0� D�i��ŒX;Y �) but not S-invariant. So for smooth functions with compact support, we

have f1 ?� f2 D T�..T �1
� f1/ ?

0
� .T

�1
� f2// with intertwiners:

T�f .a; x; `/ D 1

2�

Z r

cosh.
� t

2
/ cosh.

� t

4
/ne

2i
� sinh. � t2 /`�i tf .a; cosh.

� t

4
/x; /dtd

T�1
� f .a; x; `/ D 1

2�

Z
q

cosh. � t
2
/

cosh. � t
4
/n
e�

2i
� sinh. � t2 /Ci t`f .a; cosh.

� t

4
/�1x; /dtd

(1.14)

which will be useful in Sect. 3.4.

3.2 Quantization of Normal j-Groups

Let G D G1 Ë S2 be a normal j -group, with notation as in Sect. 2.2. Taking into
account its structure, the unitary representation U and the quantization map ˝ of
this group (dependence in � 2 R

�C will be omitted here in the subscripts) can be
constructed from the ones U1 and ˝1 of G1 (obtained by recurrence) and the ones
U2 and ˝2 of S2, given by (1.7) and (1.10) (without m0 for the moment).

Let Hi be the Hilbert space of the representation Ui , associated to a coadjoint
orbit Oi (in the notation of Proposition 2.10). Since U2 is irreducible and 	 W G1 !
Sp.V2/, there exists a unique homomorphism R W G1 ! L.H2/ such that for all
g1 2 G1, for all g2 2 S2,

U2.	.g1/g2/ D R.g1/U2.g2/R.g1/�1:

R is actually a metaplectic-type representation associated to U2 and 	. The matrix
	.g1/, with smooth coefficients in g1, is of the form

	.g1/ D
�
	C.g1/ 0

	�.g1/ .	C.g1/T /�1
�

with 	�.g1/T 	C.g1/ D 	C.g1/T 	�.g1/.

Proposition 3.4. The map R W G1 ! L.H2/ is given by for all g1 2 G1, for all
' 2 H2 non-zero,

R.g1/'.a0; v0/ D 1

j det.	C.g1//j 12
e� i�2

2� v0	�.g1/	C.g1/
�1v0'.a0; 	C.g1/�1v0/

and is unitary, where the sign �2 D ˙1 determines the choice of the coadjoint orbit
O2 and the associated irreducible representation U2.
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The expression

U.g/' WD U1.g1/'1 ˝ U2.g2/R.g1/'2

for g D .g1; g2/ 2 G, ' D '1 ˝ '2 2 H WD H1 ˝ H2, defines a unitary
representation U W G ! L.H/. Let ˙ D ˙1 ˝ ˙2, with ˙2 given in (1.9). Then,
the quantization map is defined as

˝.g/ WD U.g/ ı˙ ı U.g/�1:

Using the definition of U and R together with the property (see Proposition 6.55
in [7]),

R.g1/˙2R.g1/�1 D ˙2;

it is easy to check that

˝..g1; g2// D ˝1.g1/˝˝2.g2/;

with .g1; g2/ 2 G and ˝i.gi / D Ui.gi / ı ˙i ı Ui.gi /�1. Using the identification
O ' G (see Proposition 2.10), we see that ˝ is defined on O and it is again G-
equivariant: for g 2 G and g0 2 O,

˝.g�g0/ D U.g/˝.g0/U.g/�1:

In the same way, if m0 WD m1
0 ˝ m2

0, where m2
0 is given by (1.8), we also have

˝m0 ..g1; g2// D ˝1;m1
0
.g1/ ˝ ˝2;m2

0
.g2/. The quantization map of functions f 2

D.O/ has then the form

˝m0 .f / WD �
Z

O
f .g/˝m0 .g/d�.g/

where d�.g/ WD d�1.g1/d�2.g2/ D dLg1dLg2 is the Liouville measure of the
KKS symplectic form on the coadjoint orbit O ' G; � D �1�2, forG D G1 ËS2, is
defined recursively with �2 D 1

2n2 .��/n2C1 and dim.S2/ D 2n2 C 2 in Sect. 3.1. We

then have˝m0 .1/ D 1.
Note that the left-invariant measure for the group G D G1 Ë S2 has the form

dLg D dLg1d
Lg2

which corresponds to the Liouville measure d�.g/, like the elementary case. As in
Sect. 3.1, the unitary representation U W G ! L.H/ induces a resolution of the
identity.
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Proposition 3.5. By denoting the norm k'k2w WD k'1k2wk'2k2w for ' D '1˝'2 2 H
nonzero, we have

�

k'k2w

Z

G

jU.g/'ihU.g/'jdLg D 1H:

This resolution of identity shows that the trace has the form

Tr.T / D �

k'k2w

Z

G

hU.g/'; T U.g/'idLg (1.15)

for T 2 L1.H/. In particular, for T D T1 ˝ T2 with Ti 2 L1.Hi /, one has

Tr.T / D �

k'k2w

Z

G

hU1.g1/'1; T1U1.g1/'1ihU2.g2/R.g1/'2; T2U2.g2/R.g1/'2i

dLg1dLg2 D Tr.T1/Tr.T2/: (1.16)

Theorem 3.6. The symbol map, which is the left-inverse of the quantization map
˝m0 can be obtained via the formula

8f 2 L2.O/; 8g 2 O W Tr
�
˝m0 .f /˝m0 .g/

	
D f .g/:

Proof. Abstractly (in a weak sense), we have

Tr.˝m0 .f /˝m0 .g//

D �
Z

f .g0
1; g

0
2/Tr.˝1.g

0
1/˝1.g1//Tr.˝2.g

0
2/˝2.g2//d�1.g0

1/d�2.g
0
2/

D f .g1; g2/:
ut

The star-product is defined as

.f1 ?� f2/.g/ WD Tr.˝m0 .f1/˝m0 .f2/˝m0 .g//

for f1; f2 2 L2.O/ and g 2 O.

Proposition 3.7. The star-product has the following expression:

.f1 ?� f2/.g/

D 1

.��/dim.G/

Z

G�G
KG.g; g

0; g00/e� 2i
� SG.g;g

0;g00/f1.g
0/f2.g00/d�.g0/d�.g00/

(1.17)



Harmonic Analysis on Homogeneous Complex Bounded Domains. . . 55

where the amplitude and the phase are

KG.g; g
0; g00/ DKG1.g1; g

0
1; g

00
1 /KS2 .g2; g

0
2; g

00
2 /;

SG.g; g
0; g00/ DSG1.g1; g0

1; g
00
1 /C SS2 .g2; g0

2; g
00
2 /;

with g D .g1; g2/ 2 O D O1 �O2 due to (1.6). There is also a tracial identity:

Z

O
.f1 ?� f2/.g/d�.g/ D

Z

O
f1.g/f2.g/d�.g/:

3.3 Computation of the Star-Exponential

Definition 3.8. We define the star-exponential associated to the deformation
quantization .?;˝/ of Sect. 3.2 as

8 g 2 G; 8 g0 2 O ' G W EO
g .g

0/ D Tr.U.g/˝m0 .g
0//;

where the trace has to be understood in the distributional sense in .g; g0/ 2 G �O.

By using computation rules of the above sections, we can obtain recursively the
number of factors of the normal j -groupG D G1ËS2 with the corresponding coad-
joint orbit O ' O1 �O2, the expression of the star-exponential EO 2 D0.G �O/.
Theorem 3.9. We have for all g; g0 2 G,

EO
g .g

0/

D EO1
g1
.g0
1/
2n2 j det.	C.g1//j 12

p
cosh.a2/ cosh. a2

2
/n2

j det.1C 	C.g1//j exp
� i�2

�

h
2 sinh.a2/`

0
2

C ea2�2a0

2`2 C e
a2
2 �a0

2 cosh.
a2

2
/!0.x2; x

0
2/C

1

2
. Qx/TM	.g1/ Qx

i	
;

(1.18)

where

M	.g1/ WD
 
�B	 CT

	

C	 0

!

; Qx WD e a22 �a0

2x2 � 2 cosh.
a2

2
/x0
2

and withB	 D .1C	TC.g1//�1	TC.g1/	�.g1/.1C	C.g1//�1, andC	 D 1
2
.	C.g1/�

1/.	C.g1/ C 1/�1, g D .g1; g2/, g2 D .a2; x2; `2/ 2 S2, and EO1 the star-
exponential of the normal j -group G1.
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Proof. First, we use Proposition 3.5 and Eq. (1.16):

EO
g .g

0/ D Tr.U.g/˝m0 .g
0// D Tr.U1.g1/˝1;m1

0
.g0
1//Tr.U2.g2/R.g1/˝2;m2

0
.g0
2//:

The second part of the above expression can be computed by using (1.11), and
it gives

Tr.U2.g2/R.g1/˝2;m2
0
.g0
2// D

�2

k'k2w

Z

S2

h'g00

2
; U2.g2/R.g1/˝2;m2

0
.g0
2/'g00

2
idLg00

2 :

If we replace U2, ˝2;m2
0

and R by their expressions determined previously
in (1.7), (1.10) and Proposition 3.4, we find after some integrations and
simplifications that for all g; g0 2 G,

EO
g .g

0/ D EO1
g1
.g0
1/
2n2 j det.	C.g1//j 12

p
cosh.a2/ cosh. a2

2
/n2

j det.1C 	C.g1//j

� exp.
i�2

�

h
2 sinh.a2/`0

2 C ea2�2a
0

2`2 CXTA	X
i
/;

(1.19)

where

A	 D
0

B
B
B
@

�B	 CT	 B	 .1C 	TC.g1//�1
C	 0 �	C.g1/.1C 	C.g1//�1 0

B	 �	TC.g1/.1C 	TC.g1//�1 �B	 CT	
.1C 	C.g1//�1 0 C	 0

1

C
C
C
A
;

X D

0

B
B
B
@

1p
2
e
a2
2 �a0

2v2
1p
2
e
a2
2 �a0

2w2p
2 cosh. a2

2
/v0
2p

2 cosh. a2
2
/w0

2

1

C
C
C
A

and with x2 D .v2;w2/. A straightforward computation then gives the result. ut
Let us denote by EO2

.g1;g2/
.g0
2/ the explicit part in the RHS of (1.19) which

corresponds to the star-exponential of the group S2 twisted by the action of g1 2 G1.
The expression (1.19) seems to be ill-defined when det.1C 	�1C / D 0. However,

one can obtain in this case a degenerated expression of the star-exponential which
is well defined. For example, when 	C.g1/ D �1n2 , we have
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EO2

.g1;g2/
.g0
2/ D .��/n2

p
cosh.a2/

cosh. a2
2
/n2

� exp.
i�2

�

h
2 sinh.a2/`0

2 C ea2�2a
0

2`2 C 1

2
ea2�2a0

2!0.v2;w2/
i
/

� ı
�
v0
2 �

e
a2
2 �a0

2

2 cosh. a2
2
/
v2

	
ı
�

w0
2 �

e
a2
2 �a0

2

2 cosh. a2
2
/
w2
	
:

In the case where 	.g1/ D 1, i.e., when the action of G1 on S2 is trivial in G, we
find the second part of the star-exponential

EO2
g2
.g0
2/ D

p
cosh.a2/ cosh.

a2

2
/n2

� exp.
i�2

�

h
2 sinh.a2/`0

2 C ea2�2a
0

2`2 C e
a2
2 �a0

2 cosh.
a2

2
/!0.x2; x

0
2/
i
/:

(1.20)

which corresponds to the star-exponential of the elementary normal j -group S2.
By using this characterization in terms of the quantization map, we can derive

easily some properties of the star-exponential.

Proposition 3.10. The star-exponential enjoys the following properties. For all
g; g0 2 G, for all g0 2 O,

• hermiticity: EO
g .g0/ D EO

g�1 .g0/.

• covariance: EO
g0�g�g0�1 .g

0�g0/ D EO
g .g0/.

• BCH: EO
g ?� EO

g0 D EO
g�g0 .

• Character formula:
R
G
EO
g .g0/d�.g0/ D ��1 Tr.U.g//.

Proof. Using Theorem 3.9, we can show that EO
g .g0/ D Tr.U.g�1/˝m0 .g0// D

EO
g�1 .g0/ since ˝m0 .g0/ is self-adjoint. In the same way, covariance follows the
G-equivariance of ˝m0 . The BCH property is related to the fact that U is a group
representation. Finally, we get

Z

O
EO
g .g0/d�.g0/ D Tr.U.g/

Z

O
˝m0 .g0/d�.g0// D ��1 Tr.U.g//

using that ˝m0 .1/ D 1. ut
Note that the BCH property makes sense in a non-formal way only in the

functional space M?� .G/ determined in Sect. 4.2, where we will see that the star-
exponential belongs to.
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3.4 Other Determination Using PDEs

We give here another way to determine the star-exponential without using the
quantization map, but directly by solving the PDE it has to satisfy. We restrict here
to the case of an elementary normal j -group G D S for simplicity.

By using the strong-invariance of the star-product, for any f 2 M?� .S/ (see
Sect. 4.2),

8 X 2 s W Œ�X ; f �?� D �i�X�f;

where � is the moment map (1.3), and by using also the equivariance of ˝m0 , we
deduce that

Œ˝m0 .�X/;˝m0 .f /� D ˝m0 .Œ�X ; f �?� / D �i�˝m0.X
�f /

D �i� d
dt
j0˝m0 .L

�
e�tX f / D �i� d

dt
j0U.etX /˝m0 .f /U.e

�tX /

D �i�ŒU�.X/;˝m0 .f /�

Since the center of M?� .S/ is trivial, this means that there exists a linear map ˇ W
g! C such that

˝m0 .�X/ D �i�U�.X/C ˇ.X/1:
The invariance of the product under˙ (see (1.9)) implies that ˇ.X/ D �ˇ.X/ and
finally ˇ.X/ D 0. As a consequence, we have the following proposition.

Proposition 3.11. The star-exponential (see Definition 3.8) of an elementary nor-
mal j -group G D S satisfies the equation

@tEetX D
i

�
.�X ?� EetX / (1.21)

with initial condition limt!0 EetX D 1.

Proof. Indeed, by using ˝m0 .�X/ D �i�U�.X/, we derive

@tEetX .g0/ D @t Tr.U.etX/˝m0 .g0// D Tr.U�.X/U.etX/˝m0 .g0//

D i

�
Tr.˝m0 .�X/U.e

tX /˝m0 .g0// D
i

�
.�X ?� EetX /.g0/

ut
Now we can use this equation to find directly the expression of the star-

exponential. Let us do it for example for the coadjoint orbit associated to the sign
� D C1. Since the equation (1.21) is integro-differential and complicated to solve,
we will analyze the following equation:
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@tft D i

�
.�X ?

0
� ft /; lim

t!0
ft D 1 (1.22)

for the Moyal product ?0� . Indeed, we have the expression of the intertwiner T� from
?0� to ?� . We define the partial Fourier transformation as

Ff .a; x; / WD Of .a; x; / WD
Z

e�i`f .a; x; `/d`: (1.23)

Applying the partial Fourier transformation (1.23), with X D ˛H C y C ˇE 2 s,
on the action of moment maps by the Moyal product, we find

F.�H ?0� f / D
�

2i@ C i�

2
@a

�

Of

F.�y ?0� f / D e�a� �
4

�

!0.y; x/C i�

2
y@x

�

Of

F.�E ?0� f / D e�2a� �
2 Of ;

so that Eq. (1.22) can be reformulated as

@t Oft D i

�

h
2i˛@ C i�˛

2
@a C ˇe�2a� �

2 C e�a� �
4 .!0.y; x/C i�

2
y@x/

i Oft (1.24)

which is a pure PDE. Then, owing to the form of the moment map (1.3), we consider
the ansatz

ft .a; x; `/ D v.t/ exp
i

�

h
2`
1.t/C e�2a
2.t/C e�a
3.t/!0.y; x/

i
(1.25)

whose partial Fourier transform can be expressed as

Oft .a; x; / D 4�2ı
�
 � 2
1.t/

�

	
v.t/ exp

i

�

h
e�2a
2.t/C e�a
3.t/!0.y; x/

i
:

Inserting this ansatz into Eq. (1.24), it gives


 0
1.t/ D ˛; 
 0

2.t/ D ˛
2.t/C ˇe�
1.t/; 
 0
3.t/ D

˛

2

3.t/C e� ˛t

2 ; v0.t/ D 0:

We find that the solutions with initial condition limt!0 ft D 1 are


1 D ˛t; 
2 D ˇ

˛
sinh.˛t/; 
3 D

sinh. ˛t
2
/

˛
; v D 1:
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Using intertwining operators (1.14), we see that T �1
� �X D �X , and T�ft is then

a solution of (1.21):

E?� .t�X/.a; x; `/ WD EetX .a; x; `/ D T�ft .a; x; `/

D p
cosh.˛t/ cosh.

˛t

2
/ne

i
� sinh.˛t/

�
2`C ˇ

˛ e
�2aC e�a

˛ !0.y;x/

	

:

To obtain the star-exponential, we need the expression of the logarithm of the group
S: Eg0 D E?� .�log.g0//. For X D ˛H C yC ˇE 2 s, the exponential of the group S

has the expression

exp.˛H C y C ˇE/ D
�
˛;
2e� ˛

2

˛
sinh.

˛

2
/y;

ˇ

˛
e�˛ sinh.˛/

	
;

and the logarithm

log.a; x; `/ D aH C a

2

e
a
2

sinh. a
2
/
x C aea

sinh.a/
`E:

Therefore, we obtain

Eg0.g/ D
p

cosh.a0/ cosh.
a0

2
/ne

i
�

�
2 sinh.a0/`Cea0�2a`0Ce

a0
2 �a cosh. a02 /!0.x0;x/

	

;

which coincides with the expression (1.20) determined by using the quantization
map ˝m0 . Note that the BCH property (see Proposition 3.10) can also be checked
directly at the level of the Lie algebra s. From the above expressions of the logarithm
and the exponential of the group S, we derive the BCH expression: BCH.X1;X2/ WD
log.eX1eX2/, i.e.,

BCH.X1;X2/ D
�
˛1 C ˛2; .˛1 C ˛2/

sinh. ˛1C˛2
2
/

�e� ˛2
2

˛1
sinh.

˛1

2
/y1 C e

˛1
2

˛2
sinh.

˛2

2
/y2

	
;

.˛1 C ˛2/
sinh.˛1 C ˛2/

hˇ1

˛1
e�˛2 sinh.˛1/

C ˇ2

˛2
e˛1 sinh.˛2/C 2

˛1˛2
e
˛1�˛2
2 sinh.

˛1

2
/ sinh.

˛2

2
/!0.y1; y2/

i	
:

Then, BCH property Eg ?� Eg0 D Eg�g0 is equivalent to

8 X1;X2 2 s W E?� .�X1/ ?� E?� .�X2/ D E?� .�BCH.X1;X2//;

which turns out to be true for the star-product (1.12) and the star-exponential
determined above.
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4 Non-Formal Definition of the Star-Exponential

4.1 Schwartz Spaces

In [7], a Schwartz space adapted to the elementary normal j -group S has been
introduced, which is different from the usual one S.R2nC2/ in the global chart
f.a; x; `/g, but related to oscillatory integrals. Let us have a look at the phase (1.12)
of the star-product:

�SS.0; g1; g2/ D sinh.2a1/`2 � sinh.2a2/`1 C cosh.a1/ cosh.a2/!0.x1; x2/

with gi D .ai ; xi ; `i / 2 S. Recall that the left-invariant vector fields of S are
given by

QH D @a � x@x � 2`@`; Qy D y@x C 1

2
!0.x; y/@`; QE D @`:

We define the maps Q̨ by 8X D .X1;X2/ 2 s˚ s,

QX �e� 2i
� SS.0;g1;g2/ DW �2i�

�
Q̨X.g1; g2/e� 2i

� SS.0;g1;g2/

since it is an oscillatory phase. For example, we have

Q̨.E;0/.g1; g2/ D � sinh.2a2/; and

Q̨.H;0/.g1; g2/ D 2 cosh.2a1/`2 C 2 sinh.2a2/`1 � e�a1 cosh.a2/!0.x1; x2/:

Then we set ˛X.g/ WD Q̨.X;0/.0; g/ for anyX 2 s and g 2 G, whose expressions are

˛H.g/ D 2`; ˛y.g/ D cosh.a/!.y; x/; ˛E.g/ D � sinh.2a/:

This leads to the following definition.

Definition 4.1. The Schwartz space of S is defined as

S.S/ D ff 2 C1.S/ 8j 2 N
2nC2; 8P 2 U.s/ such that

kf kj;P WD sup
g2S

ˇ
ˇ
ˇ˛j .g/ QPf .g/

ˇ
ˇ
ˇ <1g;

where ˛j WD ˛j1H˛j2e1 : : : ˛j2nC1
e2n ˛

j2nC2

E .

It turns out that the space S.S/ corresponds to the usual Schwartz space in the
coordinates .r; x; `/ with r D sinh.2a/. It is stable by the action of S:

8f 2 S.S/; 8g 2 S W g�f 2 S.S/:
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Moreover, S.S/ is a Fréchet nuclear space endowed with the seminorms .kf kj;P /.
For f; h 2 S.S/, the product f ?� h is well defined by (1.12). However, to show

that it belongs to S.S/, we will use arguments close to oscillatory integral theory.
Let us illustrate this concept. One can show that the following operators leave the
phase e� 2i

� S.0;g1;g2/ invariant:

Oa2 WD
1

1C Q̨2.E;0/
.1 � �

2

4
QE2/ D 1

1C sinh.2a2/2
.1 � �

2

4
@2`1 /;

Oa1 WD
1

1C sinh.2a1/2
.1 � �

2

4
@2`2 /;

Ox2 WD
1

1C x22
.1 � �2

4 cosh.a1/2 cosh.a2/2
@2x1 /;

Ox1 WD
1

1C x21
.1 � �2

4 cosh.a1/2 cosh.a2/2
@2x2 /;

O`2 WD
1

1C `22
.1 � �

2

4
.

1

cosh.2a1/
.@a1 � tanh.a1/x1@x1//

2/;

O`1 WD
1

1C `21
.1 � �

2

4
.

1

cosh.2a2/
.@a2 � tanh.a2/x2@x2//

2/:

So we can add arbitrary powers of these operators in front of the phase without
changing the expression. Then, using integrations by parts, we have for F 2 S.S2/:
Z

e� 2i
� SS.0;g1;g2/F .g1; g2/dg1dg2

D
Z

e� 2i
� SS.0;g1;g2/.O�

a1
/k1.O�

a2
/k2.O�

x1
/p1 .O�

x2
/p2.O�̀

1
/q1 .O�̀

2
/q2F .g1; g2/dg1dg2

D
Z

e� 2i
� SS.0;g1;g2/

1

.1C sinh2.2a1//k1.1C sinh2.2a2//k2

1

.1C x21/p1�q2 .1C x22/p2�q1.1C `21/q1 .1C `22/q2
DF.g1; g2/dg1dg2 (1.26)

for any ki ; qi ; pi 2 N such that p1 � q2 and p2 � q1, and where D is a linear
combination of products of bounded functions (with every derivatives bounded)
in .g1; g2/ with powers of @`i , @xi and 1

cosh.2ai /
@ai . The first line of (1.26) is not

defined for nonintegrable functions F bounded by polynomials in ri WD sinh.2ai /,
xi and `i . However, the last two lines of (1.26) are well defined for ki ; pi ; qi
sufficiently large. Therefore it gives a sense to the first line, now understood as
an oscillatory integral, i.e., as being equal to the last two lines. This definition
of oscillatory integral [7, 9] is unique, in particular unambiguous in the powers
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ki ; pi ; qi . Note that this corresponds to the usual oscillatory integral [13] in the
coordinates .r; x; `/.

The next theorem, proved in [7], can be showed by using such methods of
oscillatory integrals on S.S/.
Theorem 4.2. Let P W R ! C1.R/ be a smooth map such that P0 � 1, and
P� .a/ as well as its inverse are bounded by C sinh.2a/k , k 2 N, C > 0. Then, the
expression (1.12) yields a S-invariant non-formal deformation quantization.

In particular, .S.S/; ?� / is a nuclear Fréchet algebra.

In what follows we show a factorization property for this Schwartz space. First,
by introducing 
.a/ D sinh.2a/ and S.A/ WD 
�S.R/, we note that the group law
of S reads in the coordinates .r D 
.a/; x; `/:

.r; x; `/�.r 0; x0; `0/ D
�
r
p
1C r 02 C r 0p1C r2; .c.r 0/� s.r 0//x C x0;

.
p
1C r 02 � r 0/`C `0 C 1

2
.c.r 0/� s.r 0//!0.x; x0/

	

with the auxiliary functions:

c.r/ D
p
2

2
.1C

p
1C r2/ 12 D cosh.

1

2
arcsinh.r//; (1.27)

s.r/ D
p
2

2
sgn.r/.�1C

p
1C r2/ 12 D sinh.

1

2
arcsinh.r//:

Proposition 4.3 (Factorization). The map ˚ defined by ˚.f ˝ h/ D f ?� h,
for f 2 S.A/ and h 2 S.R2nC1/ realizes a continuous automorphism S.S/ D
S.A/ Ő S.R2nC1/! S.S/.
Proof. Due to the nuclearity of the Schwartz space, we have indeed S.S/ D
S.A/ Ő S.R2nC1/. For f 2 S.A/ (abuse of notation identifying f .a/ and f .r/ WD
f .
�1.r//) and h 2 S.R2nC1/, we reexpress the star-product (1.12) in the
coordinates .r; x; `/:

.f ?� h/.r; x; `/ D 1

.��/2nC2

Z �
1 � r1r2

q

.1C r21 /.1C r22 /

	

� f .r
q

1C r21 C r1
p
1C r2/h. 1

c.r1/
x2 C .c.r2/ � s.r1/s.r2/

c.r1/
/x; `2 C

q

1C r22 `/

�
p
c.r1/c.r2/

r

c.r1

q

1C r22 � r2
q

1C r21 /
e� 2i�

� .r1`2�r2`1C!0.x1;x2//dridxid`i :
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By using the partial Fourier transform Oh.r; / D R
d`e�i`h.x; `/, and integrating

over several variables, we obtain

.f ?� h/.r; x; `/ D 1

2�

Z

f .r

r

1C �22

4
C ��

2

p
1C r2/ Oh.x; /ei`d:

For ' 2 S.S/, we have now the following explicit expression for ˚ :

˚.'/.r; x; `/ D 1

2�

Z

O'.r
r

1C �22

4
C ��

2

p
1C r2; x; /ei`d

which permits to deduce that ˚ is valued in S.S/ and continuous. Then the formula

O'.r; x; `/ D
Z

˚.'/.r

r

1C �2`2

4
� ��`

2

p
1C r2; x; /e�i`d

permits to obtain the inverse of ˚ which is also continuous. ut
For normal j -groups G D G1 Ë S2, we define the Schwartz space recursively

S.G/ D S.G1/ Ő S.S2/

and obtain the same properties as before. In particular, endowed with the star-
product (1.17), the Schwartz space S.G/ is a nuclear Fréchet algebra.

4.2 Multipliers

Let us consider the topological dual S 0.S/ of S.S/. In the coordinates .r D 
.a/;

x; `/, it corresponds to tempered distributions. By denoting h�;�i the duality
bracket between S 0.S/ and S.S/, one can extend the product ?� (with tracial
identity) as

8T 2S 0.S/; 8 f; h 2 S.S/ W hT ?�f; hiWDhT; f ?�hi and hf ?�T; hiWDhT; h?�f i;

which is compatible with the case T 2 S.S/.
Definition 4.4. The multiplier space associated to .S.S/; ?� / is defined as

M?� .S/ WD
fT 2 S 0.S/; f 7! T ?� f and f 7! f ?� T are continuous from S.S/ into itselfg:
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We can endow this space with the topology associated to the seminorms:

kT kB;j;P;L D sup
f 2B
kT ? f kj;P and kT kB;j;P;R D sup

f 2B
kf ? T kj;P

where B is a bounded subset of S.S/, j 2 N
2nC2, P 2 U.s/ and kf kj;P is the

Schwartz seminorm introduced in Definition 4.1. Note that B can be described as a
set satisfying 8j; P , supf 2B kf kj;P exists.

Proposition 4.5. The star-product can be extended to M?� .S/ by:

8 S; T 2M?� .S/; 8 f 2 S.S/ W hS ?� T; f i WD hS; T ?� f i D hT; f ?� Si:
Then .M?� .S/; ?� / is an associative Hausdorff locally convex complete and nuclear
algebra, with separately continuous product called the multiplier algebra.

Proof. For the extension of the star-product and its associativity, we can show
successively for all S; T 2M?� .S/, for all f; h 2 S.S/,

.T ?� f / ?� h D T ?� .f ?� h/ ; .S ?� T / ?� f D S ?� .T ?� f /; and

.T1 ?� T2/ ?� T3 D T1 ?� .T2 ?� T3/;
each time by evaluating the distribution on a Schwartz function ' 2 S.S/ and by
using the factorization property (Proposition 4.3).

M?� .S/ is the intersection of ML, the left multipliers, and MR, the right
multipliers. By definition, each space ML and MR is topologically isomorphic to
L.S.S// endowed with the strong topology. Since S.S/ is Fréchet and nuclear, so is
L.S.S//, as well as ML, MR and finally M?� .S/ (see [18] Propositions 50.1, 50.5
and 50.6). ut

Due to the definition of S.G/ for a normal j -group G D G1 Ë S2 and to the
expression of the star-product (1.17), the multiplier space associated to .S.G/; ?� /
takes the form

M?� .G/ DM?� .G1/ ŐM?� .S2/; (1.28)

and is also an associative Hausdorff locally convex complete and nuclear algebra,
with separately continuous product. Remember that we have identified coadjoint
orbits O described in Proposition 2.10 with the groupG itself, so that we can speak
also about the multiplier algebra M?� .O/.

4.3 Non-Formal Star-Exponential

Theorem 4.6. Let G be a normal j -group and ?� the star-product (1.17). Then for
any g 2 G, the star-exponential (1.19) EO

g lies in the multiplier algebra M?� .O/.



66 P. Bieliavsky et al.

Proof. Let us focus for the moment on the case of the elementary group S.
The general case can then be obtained recursively due to the structure of the star-
exponential (1.19) and of the multiplier algebra (1.28). We use the same notations
as before. For f; h 2 S.A/, f ?� h D f �h. If T belongs to the multiplier
space M.S.A// of S.A/ for the usual commutative product, we have in particular
T 2 S 0.S/ and by duality T ?� f D T �f . Then,

8 f 2 S.A/; 8 h 2 S.R2nC1/ W T ?� .f ?� h/ D .T �f / ?� h:

By the factorization property (Proposition 4.3), it means that T 2 M?� .S/,
and we have an embedding M.S.A// ,! M?� .S/. If we note as before
R
2nC1 D V ˚ RE , we can show in the same way that there is another

embedding M.S.RE// ,! M?� .S/. Since x0 2 V 7! EO2

.g1;g2/
.0; x0; 0/ is

an imaginary exponential of a polynomial of degree less or equal than 2 in x0
and since the product ?� coincides with the Moyal product on V , it turns out
that x0 2 V 7! EO2

.g1;g2/
.0; x0; 0/ is in M?� .S.V //. Then, the star-exponential

EO2 in (1.19) lies in M.S.A// ŐM?� .S.V // ŐM.S.RE//, and it belongs also
to M?� .S/. ut

5 Adapted Fourier Transformation

5.1 Definition

As in the case of the Moyal–Weyl quantization treated in [1,2], we can introduce the
notion of adapted Fourier transformation. For normal j -groupsG D G1ËS2, which
are not unimodular, it is relevant for that to introduce a modified star-exponential

QEO
g .g

0/ WD Tr.U.g/d
1
2˝.g0//;

where d is the formal dimension operator associated to U (see [10, 12]) and O is
the coadjoint orbit determining the irreducible representation U . Such an operator
d is used to regularize the expressions since

R
f .g/U.g/d

1
2 is a Hilbert–Schmidt

operator whenever f is in L2.G/. So the trace in the definition of QEO is understood
as a distribution only in the variable g0 2 O.

By denoting � the modular function, defined by dL.g�g0/ D �.g0/dLg, whose
computation gives

�.g/ D �1.g1/�2.g2/; with �2.a2; x2; `2/ D e�2.n2C1/a2 ;

the operator d is defined (up to a positive constant) by the relation

8 g 2 G W U.g/dU.g/�1 D �.g/�1d:
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Since R.g1/d2R.g1/�1 D d2, it can therefore be expressed as d D d1 ˝ d2,
for di the dimension operator associated to Ui , and with for all '2 2 H2, for all
.a0; v0/ 2 Q2,

.d2'2/.a0; v0/ D �22e�2.n2C1/a0'2.a0; v0/

where we recall that dim.S2/ D 2.n2 C 1/. Note that d2 is independent here of the
choice of the irreducible representation U2 (�2 D ˙1).

Proposition 5.1. The expression of the modified star-exponential can then be
computed the same notation as for Theorem 3.9:

QEO
g .g

0/ D QEO1
g1
.g0
1/
e.n2C1/.

a2
2 �a0

2/

.��/n2C1

p
cosh.a2/ cosh. a2

2
/n2 j det.	C.g1//j 12

j det.1C 	C.g1//j

exp
� i�2

�

h
2 sinh.a2/`0

2 C ea2�2a
0

2`2 CXTA	X
i	
:

Definition 5.2. We can now define the adapted Fourier transformation: for f 2
S.G/ and g0 2 O,

FO.f /.g
0/ WD

Z

G

f .g/ QEO
g .g

0/dLg:

We see that this definition is a generalization of the usual (symplectic) Fourier
transformation. For example in the case of the group R

2, the star-exponential
associated to the Moyal product is indeed given by exp. 2i

�
.a`0 � a0`//.

5.2 Fourier Analysis

Proposition 5.3. The modified star-exponential satisfies an orthogonality relation:
for g0; g00 2 G,

Z

G

QEO
g .g

0/ QEO
g .g

00/dLg D 1

�.g00/
ı.g00�.g0/�1/:

Note that�.g00
2 /

�1ı.g00
2 �.g0

2/
�1/ D ı.a00

2�a0
2/ı.x

00
2�x0

2/ı.`
00
2�`0

2/. This orthogonality
relation does not hold for the unmodified star-exponential.

Proof. We use the expression of Proposition 5.1:

Z

G

QEO
g .g

0/ QEO
g .g

00/dLg D
Z

G1

QEO1
g1 .g

0
1/
QEO1
g1
.g00
1 /

Z

S2

e.n2C1/.a2�a0

2�a00

2 /

.��/2.n2C1/
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j det.	C.g1//j cosh.a2/ cosh. a2
2
/2n2

j det.1C 	C.g1//j2 e
i�2
� .2 sinh.a2/.`00

2 �`0

2/Cea2 .e�2a00

2 �e�2a0

2 /`2/

e
i�2
� ..X

00/T A	X
00�.X 0/T A	X

0/dLg2dLg1

with

X 0 D

0

B
B
B
@

1p
2
e
a2
2 �a0

2v2
1p
2
e
a2
2 �a0

2w2p
2 cosh. a2

2
/v0
2p

2 cosh. a2
2
/w0

2

1

C
C
C
A

and X 00 D

0

B
B
B
@

1p
2
e
a2
2 �a00

2 v2
1p
2
e
a2
2 �a00

2 w2p
2 cosh. a2

2
/v00
2p

2 cosh. a2
2
/w00

2

1

C
C
C
A
:

Integration over `2 leads to the contribution ı.a0
2 � a00

2 /. Since A	 depends only
on g1, and a0

2 D a00
2 , we see that the gaussian part in .v2;w2/ disappears

and integration over these variables brings j det.1C	C.g1//j2
j det.	C.g1//j ı.v0

2 � v00
2 /ı.w

0
2 � w00

2 /.
Eventually, integration on a2 can be performed and we find

Z

G

QEO
g .g

0/ QEO
g .g

00/dLg D
� Z

G1

QEO1
g1 .g

0
1/
QEO1
g1
.g00
1 /d

Lg1

	
�.g00

2 /
�1ı.g00

2 �.g0
2/

�1/

which leads to the result recursively. ut
Proposition 5.4. The adapted Fourier transformation satisfies the following prop-
erty: 8f1; f2 2 S.G/,

FO.f1 � f2/ D �
1
2

�



�� 1

2FO.f1/
�
?�


�� 1

2FO.f2/
�
;

with .f1 � f2/.g/ D
R
G f1.g

0/f2..g0/�1g/dLg0 the usual convolution.

Proof. Due to the BCH property (see Proposition 3.10) and to the computation of
the modified star-exponential QEO

g .g
0/ D QEO1

g1
.g0
1/

�2

�2.g2.g
0

2/
�2/

1
2

EO2
g .g0

2/, we have the

modified the BCH property

QEO
g�g0.g

00/ D �.g00/ 12
�

�
�� 1

2 QEO
g

	
?�

�
�� 1

2 QEO
g0

	
.g00/

which leads directly to the result by using the expression of the adapted Fourier
transform and the convolution. ut

As in Remark 2.11, we consider the coadjoint orbit O.�/ D O1;.�1/ �O2;�2 of the
normal j -group G D G1 Ë S2 determined by the sign choices .�/ D ..�1/; �2/ 2
.Z2/

N , with .�1/ 2 .Z2/N�1 and �2 2 Z2. Due to Proposition 5.1, we can write the
modified star-exponential as



Harmonic Analysis on Homogeneous Complex Bounded Domains. . . 69

QEO.�/
g .g0/ D QEO1;.�1/

g1 .g0
1/
QEO2;�2

.g1;g2/
.g0
2/;

with g D .g1; g2/ 2 G and g0 D .g0
1; g

0
2/ 2 O.�/.

Theorem 5.5. We have the following inversion formula for the adapted Fourier
transformation: for f 2 S.G/ and g 2 G,

f .g/ D
X

.�/2.Z2/N

Z

O.�/

QEO.�/
g .g0/FO.�/

.f /.g0/d�.g0/:

Moreover, the Parseval–Plancherel theorem is true:

Z

G

jf .g/j2dLg D
X

.�/2.Z2/N

Z

O.�/

jFO.�/
.f /.g0/j2d�.g0/:

Proof. Let us show the dual property to Proposition 5.3, i.e.,

X

.�/2.Z2/N

Z

O.�/

QEO.�/

g0 .g/ QEO.�/

g00 .g/d�.g/ D 1

�.g00/
ı.g00�.g0/�1/: (1.29)

First, we have

Z

O.�/

QEO.�/

g0 .g/ QEO.�/

g00 .g/d�.g/

D
Z

O1;.�1/

QEO1;.�1/

g0

1
.g1/ QEO1;.�1/

g00

1
.g1/

Z

O2;�2

e.n2C1/.
a0

2Ca00

2
2 �2a2/

.��/2.n2C1/

� j det.	C.g0
1// det.	C.g00

1 //j
1
2

p
cosh.a0

2/ cosh.a00
2 / cosh. a

0

2

2
/n2 cosh. a

00

2

2
/n2

j det.1C 	C.g0
1// det.1C 	C.g00

1 //j

� exp
h i�2

�
.�2 sinh.a0

2/`2 C 2 sinh.a00
2 /`2 � ea

0

2�2a2`0
2 C ea

00

2 �2a2`00
2

C .X 00/T A	.g00
1 /X

00 � .X 0/T A	.g0
1/X

0/
i
d�2.g2/d�1.g1/

with

X 0 D

0

B
B
B
B
B
@

1p
2
e
a0

2
2 �a2v0

2

1p
2
e
a0

2
2 �a2w0

2p
2 cosh. a

0

2

2
/v2p

2 cosh. a
0

2

2
/w2

1

C
C
C
C
C
A

and X 00 D

0

B
B
B
B
B
@

1p
2
e
a00

2
2 �a2v00

2

1p
2
e
a00

2
2 �a2w00

2p
2 cosh. a

00

2

2
/v2p

2 cosh. a
00

2

2
/w2

1

C
C
C
C
C
A

:



70 P. Bieliavsky et al.

We want to compute the sum over .�/ 2 .Z2/N of such terms. By recurrence, we
can suppose that

X

.�1/2.Z2/N�1

Z

O1;.�1/

QEO1;.�1/

g0

1
.g1/ QEO1;.�1/

g00

1
.g1/d�1.g1/ D 1

�.g00
1 /
ı.g00

1 �.g0
1/

�1/;

which means that g00
1 D g0

1 in the following. The integration over `2 brings a
contribution in ı.a0

2 � a00
2 /. Since g00

1 D g0
1 and a0

2 D a00
2 , the gaussian part in

.v2;w2/ disappears and integration over these variables brings j det.1C	C.g
0

1//j2
j det.	C.g

0

1//j ı.v0
2�

v00
2 /ı.w

0
2 � w00

2 /. The remaining term is proportional to

X

�2D˙1

Z

R

ea
0

2�2a2e
i�2
� e

a0

2�2a2 .`00

2 �`0

2/da2 D ��ı.`00
2 � `0

2/:

The property (1.29) permits showing the inversion formula

X

.�/2.Z2/N

Z

O.�/

QEO.�/
g .g0/FO.�/

.f /.g0/d�.g0/

D
X

.�/2.Z2/N

Z

QEO.�/
g .g0/f .g00/ QEO.�/

g00 .g
0/dLg00d�.g0/ D f .g/;

as well as the Parseval–Plancherel theorem

X

.�/2.Z2/N

Z

O.�/

jFO.�/
.f /.g0/j2d�.g0/

D
X

.�/2.Z2/N

Z

f .g/ QEO.�/
g .g0/f .g00/ QEO.�/

g00 .g
0/dLg00dLgd�.g0/ D

Z

G

jf .g/j2dLg:

ut
Corollary 5.6. The map

F WD
M

.�/2.Z2/N
FO.�/

W L2.G; dLg/!
M

.�/

L2.O.�/; �/;

defined by F.f / WDL.�/.FO.�/
f / realizes an isometric isomorphism.

Proof. From Proposition 5.3, we deduce that 8.�/ 2 .Z2/N , FO.�/
F�

O.�/
D 1. And

the Parseval–Plancherel means that
P

.�/ F�
O.�/

FO.�/
D 1. Moreover, we can show

that for all .�/; .�0/ 2 .Z2/N , with .�/ ¤ .�0/, FO.�/
F�

O.�0/
D 0. Indeed, if k � N is
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such that �k ¤ �0
k , then the computation of

R

G
QEO.�0/
g .g0/ QEO.�/

g .g00/dLg corresponds

to having a factor e
i�k
� e

a2 .e
�2a00

2 Ce�2a0

2 /`2 in the proof of Proposition 5.3. Integration
over `2 makes this expression vanish.

For each .�/ 2 .Z2/N (i.e., for each .�/ D .�1; � � � �N / with �j D ˙1), we will
consider a function f.�/ 2L2.O.�/; �/. We denote by

L
.�/ f.�/ the 2N -uplet of these

functions on the different orbits. By using the three properties above and the fact that

F�.
M

.�/

f.�// D
X

.�/

F�
O.�/

.f.�//;

we obtain that

F�F.f / D
X

.�/

F�
O.�/

FO.�/
.f / D f; and

FF�.
M

.�/

f.�// D
M

.�/

.FO.�/
F�

O.�/
f.�// D

M

.�/

f.�/:

ut

5.3 Fourier Transformation and Schwartz Spaces

Given such an adapted Fourier transformation, we can wonder wether the Schwartz
space S.G/ defined in [7] (see Sect. 4.1) is stable by this transformation, as it is
true in the flat case: the usual transformation stabilizes the usual Schwartz space
on R

n. However, the answer appears to be wrong here. Let us focus on the case
of the elementary normal j -group S. The Schwartz space S.S/ of Definition 4.1
corresponds to the usual Schwartz space in the coordinates .r D sinh.2a/; x; `/.
These coordinates are adapted to the phase of the kernel of the star-product (1.12).
For the star-exponential of S given in (1.20), we need also to consider the
coordinates corresponding to the moment maps (1.3):

� W S! R
�C � R

2nC1; .a; x; `/ 7! .e�2a; e�ax; `/:

We will denote the new variables .s; z; `/ D �.a; x; `/.
Definition 5.7. We define the moment-Schwartz space of S to be

S�.S/ Dff 2 C1.S/ .��1/�f 2 S.R�C � R
2nC1/

and s� nC1
2 .��1/�f .s; z; `/ is smooth in s D 0g:
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The space S�.S/ corresponds to the usual Schwartz space in the coordinates .s; z; `/
(for s > 0) with some boundary regularity condition in s D 0. As before, we identify
the group S with the coadjoint orbit O� (� D ˙1).

Theorem 5.8. The adapted Fourier transformation restricted to the Schwartz space
induces an isomorphism

F W S.S/! S�.OC/˚ S�.O�/:

Proof. Let f 2 S.S/. The Fourier transform reads as

FO� .f /.s; z; `/D
1

.��/nC1

Z

dr 0dx0d`0f .r 0; x0; `0/
.1C r 02/ 14

.
p
1Cr 02Cr 0/

nC1
2 s

nC1
2 c.r 0/n

e
i�
�

�
2r 0`C.p1Cr 02Cr 0/s`0C 1

2 .
p
1Cr 02Cr 0C1/!0.x0;z/

	

:

Here we use the function c.r 0/ defined in (1.27), the coordinates s D e�2a, z D
e�ax, r 0 D sinh.a0/ and the fact that f is Schwartz in the variable sinh.a/ if and
only if it is in the variable sinh.2a/. We denote again by f the function in the
new coordinates by a slight abuse of language. We have to check that h.s; z; `/ D
s� nC1

2 FO� .f /.s; z; `/ is Schwartz in .s; z; `/, i.e., we want to estimate expressions
of the type

Z

dsdzd` j.1C s2/k1.1C z2/p1 .1C `2/q1@k2s @p2z @
q2
` h.s; z; `/j:

Let us provide an analysis in terms of oscillatory integrals.

• Polynomial in `: controlled by an adapted power of the following oper-

ator (invariant acting on the phase) 1
1C`2 .1 � �2

4

�
@r 0 � `0p

1Cr 02
@`0 C

.
p
1Cr 02Cr 0/p

1Cr 02.
p
1Cr 02Cr 0C1/x

0@x0

	2
/ (see Sect. 4.1). Indeed, powers and derivatives

in the variables r 0; x0; `0 are controlled by the Schwartz function f inside the
integral.

• Polynomial in z: controlled by an adapted power of the (invariant) operator
1

1Cz2
.1 � 4�2

.
p
1Cr 02Cr 0C1/2 @

2
x0/.

• Polynomial in s: controlled by an adapted power of the (invariant) operator
1

1Cs2 .1 � �2

.
p
1Cr 02Cr 0/2

@2`0/. Note that the function 1

.
p
1Cr 02Cr 0/2

is estimated by

a polynomial in r 0 for r 0 !˙1, as its derivatives.
• Derivations in s: produce terms like powers of .

p
1C r 02 C r 0/`0 which are

controlled.
• Derivations in z: produce terms like powers of .

p
1C r 02 C r 0 C 1/x0 which are

controlled.
• Derivations in `: produce terms like powers of r 0.
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This shows that h is Schwartz in .s; z; `/, so F.f / 2 S�.S/.
Conversely, let f� 2 S�.O�/. Due to Theorem 5.5, we can write the inverse of

the Fourier transform as:

F�1.fC; f�/.r; x; `/

D
X

�D˙1

1

2.��/nC1

Z

ds0dz0d`0f�.s0; z0; `0/
s0 nC1

2

.
p
1C r2 C r/ nC1

2

p
1C r2c.r/n

� e� i�
�

�
2r`0C.p1Cr2Cr/s0`C 1

2 .
p
1Cr2CrC1/!0.x;z0/

	

:

Here we use now the coordinates s0 D e�2a0

, z0 D e�a0

x0, r D sinh.a/. We want to
estimate expressions of the type

Z

drdxd` j.1C r2/k1.1C x2/p1 .1C `2/q1@k2r @p2x @q2` F�1.fC; f�/.r; x; `/j:

Let us provide also an analysis in terms of oscillatory integrals.

• Polynomial in `: controlled by an adapted power of the following operator

(invariant acting on the phase) 1
1C`2 .1 � �2

.
p
1Cr2Cr/2 @

2
s0/. As before, powers and

derivatives in the variables s0; z0; `0 are controlled by the Schwartz function f
inside the integral. Note that f�.s

0;z0;`0/

s
0
nC1
2

is smooth in s D 0 so that the integral is

well-defined for s 2 RC.
• Polynomial in x: controlled by an adapted power of the (invariant) operator:

1

1C x2 .1 �
4�2

.
p
1C r2 C r C 1/2 @

2
z0/ :

• Polynomial in r : controlled by an adapted power of the (invariant) operator
1

1Cr2 .1 � �2

4
@2
`0/.

• Derivations in r : produce terms like powers of .
p
1C r2 C r/; 1p

1Cr2 ;

r; c0.r/; `0; .
p
1Cr2Cr 0/p
1Cr2 s0`; !0.x; z0/; : : : which are controlled (see just above).

• Derivations in x: produce terms like powers of .
p
1C r2 C r C 1/z0 which are

controlled.
• Derivations in `: produce terms like powers of .

p
1C r2 C r/s0 which are also

controlled.

This shows that F�1.fC; f�/ 2 S.S/. ut
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5.4 Application to Noncommutative Baumslag–Solitar Tori

We consider the decomposition of G into elementary normal j -groups of Sect. 2.2

G D 
 : : : .S1 Ë	1 S2/ Ë	2 : : :
�

Ë	N�1 SN

and the associated basis

B WD
�
H1; .f

.i/
1 /1�i�2n1; E1; : : : ;HN ; .f

.i/
N /1�i�2nN ; EN

	

of its Lie algebra g, where .f .i/
j /1�i�2nj is a canonical basis of the symplectic space

Vj contained in Sj . We note GBS the subgroup of G generated by fe�X; X 2 Bg
and call it the Baumslag–Solitar subgroup ofG. Indeed, in the case of the “axC b”
group (two-dimensional elementary normal j -group), and if e2� 2 N, this subgroup
corresponds to the Baumslag–Solitar group [3]:

BS.1;m/ WD h e1; e2 j e1e2.e1/
�1 D .e2/m i:

We have seen before that the star-exponential associated to a coadjoint orbit O is
a group morphism E W G !M?� .O/ 'M?� .G/. Composed with the quantization
map ˝ , it coincides with the unitary representation U D ˝ ı E . So, if we now
take the subalgebra of M?� .G/ generated by the star-exponential of GBS, i.e., by
elements fEe�X ; X 2 Bg, then it is closed for the complex conjugation and it
can be completed into a C*-algebra AG with norm k˝.�/kL.H/. This C*-algebra
is canonically associated to the group G. Moreover, if � ! 0, this C*-algebra is
commutative and corresponds thus to a certain torus.

Definition 5.9. Let G be a normal j -group. We define the noncommutative
Baumslag–Solitar torus of G to be the C*-algebra AG constructed above.

It turns out that the relation between the generators Ee�X ( X 2 B) of AG can be
computed explicitly by using the BCH formula of Proposition 3.10. Let us see some
examples.

Example 5.10. In the elementary group case G D S, let

U.a; x; `/ WD E.�;0;0/.a; x; `/ D
p

cosh.�/ cosh.
�

2
/ne

2i
� sinh.�/`;

V .a; x; `/ WD E.0;0;�/.a; x; `/ D eie�2a

;

Wi .a; x; `/ WD E.0;�ei ;0/.a; x; `/ D eie
�a!0.ei ;x/;

where .ei / is a canonical basis of the symplectic space .V; !0/ of dimension 2n (i.e.
!0.ei ; eiCn/ D 1 if i � n). Then, we can compute relations like

U ?� V D V e2� ?� U:
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by using the BCH property of the star-exponential (see Proposition 3.10). We obtain
(by omitting the notation ?):

UV D V e2� U . and UV ˇ D V ˇe2� U /;

UWi D W e�

i U; WiWiCn D V �WiCnWi

where the other commutation relations are trivial. Note that these relations become
trivial at the commutative limit � ! 0. In the two-dimensional case, where S is the
“axCb group”, the relation UV D V e2� U has already been obtained in another way
in [14].

Example 5.11. Let us consider the Siegel domain of dimension 6 (see Example 2.12
for definitions and notations). As before, we can define the following generators:

U.g/ WD E.0;0;�;0;0;0/.g/ D
p

cosh.�/ cosh.
�

2
/e

2i
� sinh.�/`2 ;

V .g/ WD E.0;0;0;0;0;�/.g/ D eie�2a2
;

W1.g/ WD E.0;0;0;�;0;0/.g/ D eie�a2w2 ;

W2.g/ WD E.0;0;0;0;�;0/.g/ D e�ie�a2 v2 ;

R.g/ WD E.�;0;0;0;0;0/.g/ D e
�
2

p
cosh.�/

cosh. �
2
/

e
2i
� .sinh.�/`1Ctanh. �2 /v2w2/;

S.g/ WD E.0;�;0;0;0;0/.g/ D ei.e�2a1C 1
2 v
2
2 /:

We obtain the relationship:

UV D V e2� U; UW1 D .W1/
e� U; UW2 D .W2/

e� U; W1W2 D V �W2W1;

RS D Se2�R; RW1 D .W1/
e�R; RW2 D .W1/

e��

R; SW1 D V �2

2 .W2/
�W1S;

where the other commutation relations are trivial.
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The Radon Transform and Its Dual
for Limits of Symmetric Spaces

Joachim Hilgert and Gestur Ólafsson

Abstract The Radon transform and its dual are central objects in geometric
analysis on Riemannian symmetric spaces of the noncompact type. In this article
we study algebraic versions of those transforms on inductive limits of symmetric
spaces. In particular, we show that normalized versions exists on some spaces of
regular functions on the limit. We give a formula for the normalized transform using
integral kernels and relate them to limits of double fibration transforms on spheres.

Key words Symmetric spaces • Horospherical spaces • Radon transform
• Dual Radon transform • Infinite dimensional analysis • Spherical and conical
representations

Mathematics Subject Classification (2010): 43A85, 17B65, 47A67.

1 Introduction

Let Go be a classical noncompact connected semisimple Lie group and G its
complexification. We fix a Cartan involution � W Go ! Go on Go and denote the
holomorphic extension to G by the same letter. Let K D G� and let Ko D K \Go
be the maximal compact subgroup corresponding to � . Then X D Go=Ko is a
Riemannian symmetric space of the noncompact type. The space X is contained
in its complexification Z D G=K . The subscript o will be used to denote subgroups
in Go. Dropping the index will then stand for the corresponding complexification
in G.
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Let Po D MoAoNo be a minimal parabolic subgroup of Go with Ao � fa 2
Go j �.a/ D a�1g and Mo D ZKo.Ao/. The space „o D Go=MoNo is the space of
horocycles in X. We denote the base point in X by xo D fKog and the base point
fMoNog in„o by o. The (horospherical) Radon transform is the integral transform,
initially defined on compactly supported functions on X, given by

R.f /.g � o/ D
Z

No

f .gn � xo/ dn

for a certain normalization of the invariant measure dn on No. The dual transform
R� maps continuous functions on „o to continuous functions on X and is given by

R�.'/.g � xo/ D
Z

Ko

'.gk � o/ dk;

where dk denotes the invariant probability measure onKo. If f and ' are compactly
supported, then

Z

„

R.f /./'./ d D
Z

X
f .x/R�.'/.x/ dx

for suitable normalizations of the invariant measures on X, respectively „o. This
explains why R� is called the dual Radon transform. For more detailed discussion
we refer to Sect. 5.2.

For a complex subgroup L � G we call a holomorphic function f WG=L ! C

regular if the orbit G � f with respect to the natural representation spans a finite-
dimensional subspace. We denote the G-space of regular functions by CŒG=L�.
If Lo � Go is a subgroup such that Go=Lo can be viewed as a real subspace of
its complexification G=L, then one calls a smooth function on Go=Lo regular, if
its Go-orbit spans a finite-dimensional space. Since there is a bijection between
regular functions on Go=Lo and G=L we restrict our attention to CŒG=L�. The dual
Radon transform can be extended to the space of regular functions on „ but the
integral defining the Radon transform is in general not defined for regular functions.
In fact, a regular function on Z can be No-invariant so the integral is infinite. This
problem was first discussed in [HPV02] and then further developed in [HPV03].
Let us describe the main idea from [HPV02] here. We refer to the main body of the
article for more details.

Denote the spherical representation of Go and G with highest weight � 2 a�
o by

.��; V�/, and its dual by .��
�; V

�
� /. The duality is written hw; �i. Note that .��; V�/

is unitary on a compact real formU which we choose so thatU \Go D Ko. We fix a
highest weight vector u� 2 V� of length one and aK-fixed vector e�

� 2 V �
� such that

hu�; e�
�i D 1. Fix a highest weight vector u�

� in V �
� such that hu�; ��

�.so/u
�
�i D 1,

where so 2 K represents the longest Weyl group element. For w 2 V� and g 2 G let

fw;�.g � xo/ WD hw; ��
�.g/e

�
�i and  w;�.g � o/ WD hw; ��

�.g/u
�
�i :
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Every regular function on X is a finite linear combination of functions of the form
fw;� and similarly for „. The normalized Radon transform on the space CŒZ� of
regular functions on Z can now be defined by

�.fw;�/ WD  w;� :

The transform

��1. w;�/ WD fw;�

defines aG-equivariant map CŒ„�! CŒX� which is inverse to � . Restricted to each
G-type, the transform ��1 is, up to a normalization given in Lemma 5.5, the dual
Radon transform R�. It is also shown in [HPV03] that the dual Radon transform on
CŒ„� can be described as a limit of the Radon transform over spheres, see Sect. 5.3
for details.

Our aim in this article is to study the normalized transforms � and ��1 as well as
their not normalized counterparts for certain inductive limits of symmetric spaces
Xj � Zj , called propagations of symmetric spaces, introduced in Sect. 3.1. This
study is based on results from [ÓW11a, ÓW11b] and [DÓW12] on inductive limits
of spherical representations, which we use to study spaces of regular functions on
the limit. More precisely, in Sect. 4 we consider two such spaces of regular func-
tions, the projective limit lim �CŒZj � and the inductive limit Ci ŒZ1� D lim�!CŒZj �.
The first main result is Theorem 4.19 which describes how the graded version of �
extends to the projective limit.

We introduce the Radon transform and its dual in Sect. 5 and in Sect. 5.3 we
recall the results from [HPV03] about the Radon transform as a limit of a double
fibration transform associated with the spheres in X. In Sect. 5.4 we show that the
normalized Radon transform and its dual can be represented as an integral transform
against kernel functions. Here the integral is taken over the compact group U . The
corresponding result for the direct limit is Theorem 5.16.

Many of the results mentioned so far are valid for propagations of symmetric
spaces of arbitrary rank, which means that they apply also to the case of infinite
rank. For some results, however, we have to require that the rank of the symmetric
space lim�!Xj is finite. This is the case in particular in Sect. 5.5, where we define the
dual Radon transform R� for spaces of finite rank and connect it to the normalized
dual Radon transform ��1, see Theorem 5.22. Moreover, we define the Radon
transform over spheres in this context, and connect it to the dual Radon transform
in Theorem 5.25.

2 Finite-Dimensional Geometry

In this section we recall the necessary background from the structure theory of
finite-dimensional symmetric spaces and related representation theory. Most of the
material is in this section is standard see [H78, H84], but we use this section also to
set up the notation for later sections.
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2.1 Lie Groups and Symmetric Spaces

Lie group will always be denoted by uppercase Latin letters and their Lie algebra
will be denoted by the corresponding lower case German letters. IfG andH are Lie
groups and � W G ! H is a homomorphism, then the derived homomorphism is
denoted by P� W g! h. If G D H , then

G� D fa 2 G j �.a/ D ag and g
P� D fX 2 g j P�.X/ D Xg :

From now onG will stand for a connected simply connected complex semisimple
Lie group with Lie algebra g. Let U be a compact real form of G with Lie algebra
u and let P� W g ! g denote the conjugation on g with respect to u. We denote by
� W G ! G the corresponding involution on G. Then, as G is simply connected,
U D G� and U is simply connected.

Let � W U ! U be a nontrivial involution and Ko WD U � . Then Ko is connected
and U=Ko is a simply connected symmetric space of the compact type. Extend
P� W u ! u to a complex linear involution, also denoted by P� , on g. Denote by
� W G ! G the holomorphic involution with derivative P� . Write u D ko˚ qo where
ko WD u

P� and qo WD fX 2 u j P�.X/ D �Xg. Let so WD iqo and go WD ko ˚ so. Then
go is a semisimple real Lie algebra. Denote by Go the analytic subgroup of G with
Lie algebra go. Then Go is �-stable, G�

o D Ko, and Go=Ko is a symmetric space of
the noncompact type. We have Go D G�� .

Let K WD G� . Then Ko D K \ U D K \Go. Let Z D G=K , X D Go=Ko, and
Y D U=Ko. As � and � WD �� map K into itself, it follows that both involutions
define antiholomorphic involutions on Z and we have

X D Z� and Y D Z� :

In particular X and Y are transversal totally real submanifolds of Z.
If V is a vector space over a field K, then V � denotes the algebraic dual of V . If V

is a topological vector space, then the same notation will be used for the continuous
linear forms. If V is finite-dimensional, then each ˛ 2 V � is continuous.

Let ao be a maximal abelian subspace of so and a D aCo . For ˛ 2 a�
o � a� let

go˛ WD fX 2 go j .8H 2 ao/ ŒH;X� D ˛.H/Xg

and

g˛ WD fX 2 g j .8H 2 a/ ŒH;X� D ˛.H/Xg :

If ˛ 6D 0 and g˛ 6D f0g, then g˛ D go˛ ˚ igo˛ and g˛ \ u D f0g. The
linear form ˛ 2 a� n f0g is called a (restricted) root if g˛ 6D f0g. Denote by
† WD †.g; a/ � a� the set of roots. Let †0 WD †0.g; a/ WD f˛ 2 † j 2˛ 62 †g,
the set of nonmultipliable roots. Then †0 is a root system in the usual sense and the
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Weyl group W corresponding to † is the same as the Weyl group generated by the
reflections s˛ , ˛ 2 †0. The Riemannian symmetric spaces X and Y are irreducible
if and only if the root system †0 is irreducible.

Let n WD L
˛2†C g˛, m WD zk.a/ D fX 2 k j ŒX; a� D f0gg and p WD m ˚

a˚ n. All of those algebras are defined over R and the subscript o will indicate the
intersection of those algebras with go. This intersection can also be described as the
P� fixed points in the complex Lie algebra.

Define the parabolic subgroups Po WD NGo.po/ � P WD NG.p/. We can write
Po D MoAoNo (semidirect product) where Mo WD ZK.Ao/, Ao WD exp ao, and
No WD expno. Similarly we have P D MAN . Let F WD K \ exp iao. Then each
element of F has order two and Mo D F.Mo/

ı where ı denotes the connected
component containing the identity element. We let „o WD Go=MoNo � „ WD
G=MN . As �� leaves MN invariant it follows that „o D „�� is a totally real
submanifold of „.

Note thenK \MN DM , so we obtain the following double fibration, which is
of crucial importance for the Radon transforms:

G=M

p

�����
��
��
�� q

����
���

���
��

Z D G=K „ D G=MN

(2.1)

2.2 Group Spheres

Let X D Go=Ko be as in the previous section. Denote by s the symmetry of X with
respect to xo. Then �.g/ D sgs�1 for g 2 Go. Denote by X.A/ the (additively
written) group Hom.Ao;R�C/ (where R

�C stands for the multiplicative group of
positive numbers). Then X.A/ ' a� where the isomorphism is given by � 7! ��,
��.a/ D a�. We will simply write �.a/ for ��.a/.

A group sphere in X is an orbit of a maximal compact subgroup of Go. Because
of the Cartan decompositionGo D KoAoKo, and the fact that all maximal compact
subgroups inGo areGo-conjugate, any group sphere S is of the form gKoa

�1 �xo D
K
g
o ga

�1 � xo with g 2 Go and a 2 Ao. The point g � xo is called the center of S and
a is called the radius of S. The group sphere of radius a with center at x is denoted
by Sa.x/.

The group Go acts transitively on the set Spha X of group spheres of radius a.
The stabilizer of a group sphere S WD Sa.g � xo/ is a compact subgroup of G
containing the stabilizer Kg

o of the point g � xo and hence coinciding with it. Since
g � xo is the only fixed point of Kg

o , it is uniquely determined by S. Moreover,
Sa1.x/ D Sa2 .x/ if and only if a1 and a2 are W -equivalent.
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We shall say that a 2 Ao tends to infinity, written a!1, if ˛.a/!1 for any
˛ 2 †C.

The sphere

Sa WD Sa.a � xo/ D Ka � xo
of radius a passes through xo. It is known that it converges to the horosphere o D
No � o as a!1 (see, e.g., [E73], Proposition 2.6, and [E96], p. 46).

Taking the sphere Sa as the base point for the homogeneous space Spha X, we
obtain the representation Spha X D Go=Ka

o . This gives rise to the double fibration

Go=.Ko \Ka
o /

pa

�����
���

���
�� qa

����
���

���
���

�

X D Go=Ko Go=K
a
o D Spha X

(2.2)

Obviously,Ko \Ka
o D ZKo.a/. If a is regular, then ZKo.a/ D ZKo.Ao/ DMo.

In this case the double fibration (2.2) reduces to

Go=Mo

p

����
��
��
��
� qa

���
��

��
��

��

X Spha X

2.3 Spherical Representations

In this subsection we describe the set of spherical representations and the set of
fundamental weights. Each irreducible finite-dimensional representation � of U
or Go extends uniquely to a holomorphic irreducible representation � of G and
every irreducible holomorphic representation � of G is a holomorphic extension
of an irreducible representation of U and Go. We will therefore concentrate on
irreducible holomorphic representations of G. We will denote by �U , respectively
�o, the restriction of a holomorphic representation � to U respectively Go.

For a representation � of a topological group H or a Lie algebra h we write V�
for the vector space on which � acts. Let

V H
� D fu 2 V� j .8k 2 H/ �.k/u D ug :
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Similarly,

V h
� D fu 2 V� j .8X 2 h/ Xu D 0g :

IfH is a connected Lie group with Lie algebra h and V� a smooth representation of
H , then h acts on V� and V H

� D V h
� .

Back to our setup, asKo andK are connected, it follows that if � is a irreducible
finite-dimensional holomorphic representation of G (and hence analytic), then

V K
� WD V Ko

� D V k
� D V ko

� :

We say that � is spherical if V K
� 6D f0g and that � is conical if V MN

� 6D f0g. Note
that even if Mo is not connected, then

V MN
� D V MoNo

� :

In fact, the inclusion	 is trivial and for the converse it suffices to note that V MoNo
� 	

V moCno
� DW V mCn

� .
Define a representation �� on V �

� D V�� by

hv; ��.g/�i WD h�.g�1/v; �i ; g 2 G; v 2 V�; � 2 V �
� :

For the following theorem see [H94], Thm. 4.12 and [H84], Thm. V.1.3 and
Thm. V.4.1.

Theorem 2.3. Let � be an irreducible holomorphic representation of G. Then the
following holds:

(1) � is spherical if and only if � is conical. In that case

dimV K
� D dimV MN

� D 1 :

(2) � is spherical if and only if �� is spherical.

Let

ƒC.G;K/ WD
�

� 2 ia�
o

ˇ
ˇ
ˇ
ˇ
.�; ˛/

.˛; ˛/
2 Z

C for all ˛ 2 †C
�

(2.4)

D
�

� 2 ia�
o

ˇ
ˇ
ˇ
ˇ
.�; ˛/

.˛; ˛/
2 Z

C for all ˛ 2 †C
0

�

:

We mostly write ƒC for ƒC.G;K/. Let W D NKo.ao/=ZKo.ao/ denote the Weyl
group. The parametrization of the spherical representations is given by the following
theorem.
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Theorem 2.5. Let � be a irreducible holomorphic representation of G, and � its
highest weight. Let wo 2 W be such that wo†C D �†C. Then the following are
equivalent.

(1) � is spherical.
(2) � 2 ia�

o and � 2 ƒC.

Furthermore, if � is spherical with highest weight � 2 ƒC, then �� has highest
weight �� WD �wo�.

Proof. See [H84, Theorem 4.1, p. 535 and Exer. V.10] for the proof. ut
If � 2 ƒC, then �� denotes the irreducible spherical representation with highest

weight �.
Denote by‰ WD f˛1; : : : ; ˛rg, r WD dimC a, the set of simple roots in†C

0 . Define
linear functionals !j 2 ia�

o by

h!i ; ˛j i
h˛j ; ˛j i D ıi;j for 1 5 j 5 r : (2.6)

Then !1; : : : ; !r 2 ƒC and

ƒC D Z
C!1 C : : :C Z

C!r D
8
<

:

rX

jD1
nj !j

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
nj 2 Z

C
9
=

;
:

The weights !j are called the spherical fundamental weights for .g; k/. Set � WD
f!1; : : : ; !rg.

2.4 Regular Functions

LetL be one of the groupsU ,Go andG. Let M be a manifold and assume thatL acts
transitively on M. ThenL acts on functions on M by a �f .m/ D f .a�1 �m/. We say
that f 2 C.M/ is anL-regular function if fa �f j a 2 Lg spans a finite-dimensional
space which we will denote by hL �f i. We denote by CLŒM� the space of L-regular
functions on M. Coming back to our usual notation we remark that the restriction
map defines a Go-isomorphism CGŒZ� ! CGoŒX� and a U -isomorphism CGŒZ� !
CU ŒY�. Similarly, restriction defines a Go-isomorphism CGŒ„� ! CGo Œ„o�. As
soon as the acting group is clear from the context we will omit it from the notation.

We will mostly consider regular functions on the two complex spaces Z and „.
If needed, we will use results only stated or proved for the complex case also for the
real cases using the above restriction maps.

For � 2 ƒC we denote by CŒZ��, respectively CŒ„��, the space of regular
functions on Z, respectively „, of type ��. We recall the following well-known
fact (cf. [HPV02]):
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Lemma 2.7. The action of G on CŒX�� and CŒ„�� is irreducible. As a G-module
we have

CŒZ� D
M

�2ƒC

CŒZ�� and CŒ„� D
M

�2ƒC

CŒ„�� :

Each representation �� occurs with multiplicity one in each of those modules.

Let f 2 CŒX�� be a highest weight vector. Recall that KAN � G is open and
dense. Let kan 2 KAN . Then

.kan/ � f .xo/ D f .n�1a�1k�1 � xo/ D a�f .xo/

where a� D e�.log.a//. Hence f .xo/ 6D 0. We denote by f� the unique highest
weight vector in CŒX�� with f�.e/ D 1.

Let so 2 NKo.ao/ be a representative of the longest Weyl group element wo and
recall that NsoMAN is open and dense in G. Let  2 CŒ„�� be a highest weight
vector. Then for nsoman1 2 NsoMAN we have

.nsoman1/ �  .o/ D  .n�1
1 a

�1m�1s�1
o n�1 � o/ D a� .s�1

o � o/ :

Hence  .s�1
o � o/ 6D 0. Note that s2o 2 M . As  is M -invariant it follows that

 .s�1
o � o/ D  .so � /. Let  � be the unique highest weight vector in CŒ„�� with

 �.so � o/ D 1. According to Lemma 2.7 there is a uniqueG-intertwining operator
� W CŒZ� ! CŒ„� such that �.f�/ D  � for all � 2 ƒC. For reasons which will
become clear in Sect. 5, we call � the normalized Radon transform. Note that its
inverse ��1 W CŒ„� ! CŒZ� is the unique G-isomorphism such that  � 7! f� for
all � 2 ƒC. Let �� D �jCŒZ�� . Then ��1

� D ��1jCŒ„�� .
The maps �� and ��1

� have a simple description in terms of the representation
.��; V�/. Fix for all � 2 ƒC a K-fixed vector e� 2 V� and a highest weight vector
u� in V� . Further, choose the highest weight vector u�

� 2 V �
� and the spherical vector

e�
� 2 V �

� according to the normalization

hu�; ��
� .so/u

�
� i D 1 and hu�; e�

�i D 1 :

Then, for v 2 V�
fv;�.aK/ WD hv; ��

�.a/e
�
�i and  v;�.aMN/ WD hv; ��

�.a/u
�
�i; (2.8)

defines a regular function fv;� on Z, respectively  v;� on„. Furthermore,

V� 3 v 7! fv;� 2 CŒZ�� and V� 3 v 7!  v;� 2 CŒ„��

are G-isomorphisms. Note that f� WD fu�;� respectively  � WD  u�;� are
normalized highest weight vectors.
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3 Limits of Symmetric Spaces and Spherical Representations

In this section we introduce the notion of propagation of symmetric spaces and
describe the construction of inductive limits of spherical representations from
[ÓW11a, ÓW11b]. We then recall the main result from [DÓW12] about the
classification of spherical representations in the case where U1=Ko1 has finite
rank.

We start with some facts and notations for limits of topological vector spaces,
which will always be assumed to be complex, locally convex and Hausdorff. Similar
notations for limits will be used for Lie groups and even sets without further
comments. Our standard reference is Appendix B in [HY00] and the reference
therein.

If W1 � W2 � � � � is an injective sequence of vector spaces, then we denote the
inclusion mapsWj ,! Wk , k � j , by �k;j . Let

W1 WD lim�!Wj D
1[

jD1
Wj (3.1)

and denote by �1;j the canonical inclusion Wj ,! W1. If each of the spaces Wj

is a topological vector space and each of the maps �k;j is continuous, then a set
U 	 W1 is open in the inductive limit topology on W1 if and only if U \ Wj

is open for all j . Then W1 is a (again locally convex and Hausdorff) topological
vector space. If fWj g and fVj g are inductive sequences of topological vector spaces
and Tj W Wj ! Vj is a family of continuous linear maps such that

�k;j ı Tj D Tk ı �k;j
where the first inclusion is the one related to the sequence fVj g and the second
one is the one associated to fWj g, then there exists a unique continuous linear map
T1 D lim�!Tj W W1 ! V1 such that �1;j ı T1 D T1 ı �1;j for all j .

If W is a locally convex Hausdorff complex topological vector space, then
W � will denote the space of continuous linear maps W ! C. We provide it
with the weak 
-topology, i.e., the weakest topology that makes all the maps
W � ! C, f 7! hx; f i WD f .x/, x 2 W , continuous. Then W � is also a locally
convex Hausdorff topological vector space. If fWj g is a inductive sequence of
locally convex Hausdorff topological vector spaces, then fW �

j g, with the projections
projj;k W W �

k ! W �
j , projj;k.�/ D �jWj , k � j , is a projective sequence of

locally convex Hausdorff topological vector spaces. Denote the projective limit
of those spaces by lim �W

�
j D W �1. This notation is justified by the fact that the

topological dual of W1 is lim �W
�
j . We denote by projj;1 W W �1 ! Wj the

restriction map. If fWj g and fVj g are injective sequences of topological vector
spaces and Tj W Wj ! Vj is as above, then there exists a unique linear map
T �1 D lim �T

�
j W V �1 ! W �1 such that projj;1 ı T �1 D T �

j ı projj;1 for all j .
In fact, T �1 is just the adjoint of T1.



Radon Transform for Limits of Symmetric Spaces 87

We finish the subsection with a simple lemma that connects the inductive limit
and the projective limit in case we have a injective sequence of Lie groups Gj and
Gj -modules Vj . This will be used several times later on. We leave the simple proof
as an exercise for the reader.

Lemma 3.2. Let fGj g be an injective sequence of Lie groups and let fVj g be a pro-
jective sequence ofGj -modules with Gj -equivariant projections projj;k W Vk ! Vj .
Assume that we have Gj -equivariant inclusions �k;j W Vj ! Vk making fVj g into
an injective sequence and such that projj:k ı �k;j D idVj . For f 2 lim�!Vj , fix j such
that f 2 Vj . Define �1.f / WD f�kC1;k.f /gk�j . Then lim�!Vj and lim �Vj are G1-
modules and �1 is a well-defined G1-equivariant embedding lim�!Vj ,! lim �Vj .

3.1 Propagation of Symmetric Spaces

Assume that G1 	 G2 	 : : : 	 Gk 	 GkC1 	 : : : is a sequence of connected,
simply connected classical complex Lie groups as in the last section. In the
following an index k (respectively j ) will always indicate objects related to Gk
(respectively Gj ). We assume that �kjGj D �j and �kjGj D �j for all j � k. Then
Kj D Gj \Kk , Uj D Gj \ Uk , and Gjo D Gj \Gko, for k � j .

This gives rise to an increasing sequence fZj D Gj=Kj gj=1 of simply
connected complex symmetric spaces such that for k � j the embedding Zj ,! Zk
is a Gj -map. We denote this inclusion by �k;j and note that fZj g is an injective
system.

Similarly, we have a sequence of transversal real forms Xj D Gjo=Kjo and
Yj D Uj=Kjo. We set

G1 WD lim�!Gj ; K1 WD lim�!Kj and Z1 WD lim�!Zj D G1=K1

and similarly for other groups and symmetric spaces. Recall that as a set we have
G1 D

[
Gj , but the inductive limit comes also with the inductive limit topology

and a Lie group structure. The space Z1 D
[

Zj is a smooth manifold and the
action of G1 is smooth. Similar comments are valid for the other groups and the
corresponding symmetric spaces.

In the following we will always assume that k � j and m � n. As �kjGj D �j
it follows that kk \ gj D kj and sk \ gj D sj . We choose the sequence faj g of
maximal abelian subspaces of sj such that ak \ sj D aj . Then †j 	 †kjaj n f0g.
The ordering in ia�

o is chosen so that †C
j 	 †C

k jajo n f0g.
In case each Xj is irreducible we say that Xk propagates Xj if (a) ak D aj ,

or (b) the Dynkin diagram for ‰k is obtained from the Dynkin diagram for ‰j by
only adding simple roots at the left end (so the root ˛1 stays the same). Note that
usually the Dynkin diagram is labeled so that the first simple root is at the left end.
We have here reversed that labeling. Then, in particular, ‰k D f˛k;1; : : : ; ˛k;rk g
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and ‰j D f˛j;1; : : : ; ˛j;rj g are of the same type. Furthermore ˛k;s jaj D ˛j;s for
s D 1; : : : ; rj , see [ÓW11a]. Furthermore, if s � rj C 2, then ˛k;sjaj D 0.

In case of reducible symmetric spaces Xt D X1
t � � � � � Xst

t we say that Xk

propagates Xn, k � n, sk � sn and we can arrange the irreducible components
so that Xj

k propagates Xj
n for j D 1; : : : ; sn. We say that Zk propagates Zj if Xk

propagates Xj . From now on we will always assume if nothing else is clearly stated
that the sequence fZj g is such that Zk propagates Zj for k � j .

3.2 Inductive Limits of Spherical Representations

In this section we recall the construction of inductive limits of spherical representa-
tions from [W09] and [ÓW11b].

As before we assume that k = j and that Zk propagates Zj . Moreover, from now
on we will always assume that the groups Gj are simple. Denote by rj;k W a�

k ! a�
j

the projection rj;k.�/ D �jaj . As shown in [ÓW11a, ÓW11b] we have

Lemma 3.3. If k � j , then rj;k.!k;s/ D !j;s for s D 1; : : : ; rj .

This implies that the sets of highest weights ƒC
k WD ƒC.Gk;Kk/ form a

projective system with restrictions as projections. But those sets also form an
injective system as we will now describe. This will allow us to construct an injective
system of representations in unique way, starting at a given level jo.

Let �j 2 ƒC
j and write

�j D
rjX

sD1
ks!j;s ; ks 2 N0 :

Define �k 2 ƒC
k by

�k WD
rjX

sD1
ks!k;s :

The map �k;j W ƒC
j ! ƒC

k , �j 7! �k is well defined and injective and �k;n ı �n;j D
�k;j for j � n � k. We also have

rj;k ı �k;j D id : (3.4)

Finally, �k is the minimal element in r�1
j;k.�j / with respect to the partial ordering

� � � DPj kj !k;j , kj 2 Z
C. In particular we have the following lemma:
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Lemma 3.5. The sequence fƒC
j gj with the maps

�k;j W ƒC
j ! ƒC

k ;

rjX

sD1
ks!

j
s 7!

rjX

sD1
ks!

k
s

is an injective sequences of sets. Furthermore, there is a canonical inclusion

ƒC1 WD lim�!ƒC
j ,! lim �ƒ

C
j :

Proof. Most of the proof has been given already. For the last statement the idea is
the same as in Lemma 3.2. Given j and �j 2 ƒC. Then by (3.4) the sequence
.�j ; �jC1; : : :/ is in lim �ƒ

C
j . ut

For j 2 N and � D �j 2 ƒC
j define �k D �k;j .�/, k � j , and �1 D lim�!�j 2

ƒC1. Let .��j ; V�j / be the spherical representation of Gj with highest weight �j .
We can and will assume that each V�j carries a Uj -invariant inner product such that
the embeddings V�j ,! V�k are isometric.

Theorem 3.6 (Ó-W). Assume that Zk propagates Zj . Let �j 2 ƒC
j and define

�k 2 ƒC
k as above. Then the following holds:

(1) Let u�k 2 V�k be a weight vector chosen as before, let Wj WD< �k.Gj /u�k >
and �k;j .g/ WD �k.g/jWj , g 2 Gj . Then �k;j is equivalent to ��j and we can
choose the highest weight vector u�j in V�j so that the linear map generated
by ��j .g/u�j 7! ��k .g/u�k is a unitary Gj -isomorphism.

(2) The multiplicity of ��j in ��k is one.

Remark 3.7. Note that in [ÓW11a] the statement was proved for the compact
sequence fUj g. But it holds true for the complex groups Gj by holomorphic
extension. It is also true for the noncompact groups Gjo by holomorphic extension
and then restriction to Gjo. ut

The second half of the above theorem implies that, up to a scalar, the only unitary
Gj -isomorphism is the one given in part (1). As a consequence we can and will
always think of V�j as a subspace of V�k such that the highest weight vector u is
independent of j , i.e., u�j D u�k for all k and j . We form the inductive limit

V�1
WD lim�!V�j : (3.8)

Starting at a point jo the highest weight vector u�j , j � jo is constant and contained
in all V�j . In particular, u�j 2 V�1

. We also note that f��j .g/g, g 2 Gj , forms
an injective sequence of continuous linear operators, unitary for g 2 Uj . Hence
.��k /1.g/ W V1 ! V1 is a well-defined continuous map; similarly for the Lie
algebra. We denote those maps by ��1

and d��1
respectively. Hence the group

G1 acts continuously, in fact smoothly, on V�1
. We denote the corresponding

representation of G1 by ��1
. We have

d��1
.H/u�1

D �1.H/u�1
for all H 2 a1 :
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The representation .��1
; V�1

/ is (algebraically) irreducible. We can make
��1
jU1

unitary by completing V�1
to a Hilbert space OV1 as is usually done,

see [DÓW12].
The dual of V�1

is given by the corresponding projective limit

V �
�1

D lim �V
�
�j
: (3.9)

Note that in this notation V �
�1

6D V��

1
. We note that the highest weight vector,

which we now denote by u�1
is in V�1

. If g 2 Gk , k � j , then ��
�j
.g/ forms

a projective family of operators and hence lim ��
�
�k

is a well-defined continuous
representation of G1 on V �

�1

. We denote this representation by ��
�1

.

Lemma 3.10. Let the notation be as above. Then

dim
�

lim �V
�
�j

	K1 D 1 :

Proof. First fix jo so that V�j is defined for all j � jo, i.e., f�j g stabilizes from jo

on. As dimV
�Kj
�j D 1, j � jo, there exists a unique, up to scalar,Kjo-fixed element

e�
�jo

. We fix e�
�j

now so that projjo;j .e
�
�j
/ D e�

�jo
, where projj0;j is the dual map

of V�jo ,! V�j . Then e�
�1

WD fe�
�j
gj�jo 2

�
lim �V

�
�j

	K1

. On the other hand, if

fe�
�j
gj�jo 2

�
lim �V

�
�j

	K1

, then e�
�jo
2 V �Kj

�jo
is unique up to scalar showing that

the dimension is one. ut
From now on we fix e�

�1

so that hu�1
; e�
�1

i D 1.

Theorem 3.11. V �
�1

is irreducible.

Proof. Assume that W � V �
�1

is a closed G1-invariant subspace. Then W ? D
fu 2 V�1

j .8' 2 W / hu; 'i D 0g is closed and G1 invariant. Hence W ? D f0g
or W D V1, and since all spaces involved are reflexive, this implies that W D V �1
or W D f0g. ut

The vector u�1
2 V�1

is clearly M1N1-invariant. Therefore V�1
is conical

(see [DÓ13]). But it is easy to see that with exception of some trivial cases (such as
Gj D Gk for all j and k, which we do not consider) the representation .��1

; V�1
/

is not K1-spherical. In fact, suppose that e 2 V�1
is a nontrivial, K1-invariant

vector. Let j be so that e 2 V�j . Then e has to be fixed for all Ks , s � j and hence
a multiple of es . This is impossible in general as will follow from Lemma 5.5. On
the other hand, it was shown in [DÓW12] that the Hilbert space completion OV�1

is K1-spherical if and only if the dimension of a1 is finite. In this case we can
assume that aj D a1 for all j . Then †j D †k D †1, †C

j D †C
k D †C1 and

ƒC
j D ƒC

k D ƒC1 for k � j . But we still use the notation �j etc. to indicate what
group we are using.



Radon Transform for Limits of Symmetric Spaces 91

Theorem 3.12 ([DÓW12]). Let the notation be as above and assume that � 6D 0.
Then OV K11 6D f0g if and only if the ranks of the compact Riemannian symmetric
spaces Xk are bounded. Thus, in the case where Xj is an irreducible classical
symmetric space, we have V K11 6D f0g only for SO.p C 1/=SO.p/ � SO.1/,
SU.pC1/=S.U.p/�U.1// and Sp.pC1/=Sp.p/�Sp.1/ where 0 < p <1.

Let as usual �k;j W V�j ! V�k be the inclusion defined in Theorem 3.6 and
projj;k W V�k ! V�j the orthogonal projection. Then, as V�j '< ��k .Gj /u�k >, it
follows that projj;k ı �k;j D idV�j . By Lemma 3.2 there is a canonicalG1-inclusion

V�1
,! lim �V�j :

Define u�
�j
2 V �

�j
by

h��j .so;j /u�j ; u�
�j
i D 1 and u�

�j
j.��.Gj /u�j /?�j D 0

where so;j 2 NKj .aj / is such that Ad.s�;j / maps the set of positive roots into
the set of negative roots and .��.Gj /u�j /

?
�j

is the orthogonal complement in V�j .
We use the inner product to fix embeddings V �

�j
,! V �

�k
for j � k. Then again,

we can take u�
�j

independent of j , which defines an M1N1-invariant element in
lim�!V �

�j
� lim �V

�
�j
D V �

�1

. As e�
�1

is K1-invariant, it follows that V �
�1

is both
spherical and conical.

We now give another description of the representations .��1
; V�1

/. We say that
a representation .�; V / of G1 is holomorphic if �jGj is holomorphic for all j .

Theorem 3.13 ([DÓ13]). Assume that X1 has finite rank. If �1 2 ƒC1 D ƒC,
then .��1

; V�1
/ is irreducible, conical and holomorphic. Conversely, if .�; V / is

an irreducible conical and holomorphic representation of G1, then there exists a
unique �1 2 ƒC1 such that .�; V / ' .��1

; V�1
/.

4 Regular Functions on Limit Spaces

In this section we study the spaces lim�!CŒZj � and lim �CŒZj � as well as their analogs
for„1. Our main discussion centers around the injective limits. We only discuss the
limits of the complex cases. The corresponding results for the algebras Ci ŒX1� D
lim�!CŒXj � and Ci ŒY1� WD lim�!CŒY1� can be derived simply by restricting functions
from Z1 to the real subspaces X1 respectively Y1.
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4.1 Regular Functions on Z1

In this section fZj g D fGj=Kj g is a propagated system of symmetric spaces as
before. There are two natural ways to extend the notion of a regular function on
finite-dimensional symmetric spaces to the inductive limit of those spaces. One is to
consider the projective limit CŒZ1� WD lim �CŒZj �. The other possible generalization
would be to consider the space of functions on Z1 which are algebraic finite sums
of algebraically irreducible G1-modules and such that each f is locally finite in
the sense that for each j the space hGj � f i is finite-dimensional. But as very little
is known about those spaces and not all of our previous discussion about the Radon
transform and its dual generalize to those spaces we consider first the space

Ci ŒZ1� WD lim�!CŒZj � :

That this limit in fact exists will be shown in a moment.
Let x1 D fK1g 2 Z1 be the base point in Z1. Then all the spaces Zj embed

into Z1 via aKj 7! a � x1 and in that way Z1 D SZj . Recall from our previous
discussion and Lemma 3.5 that the sets ƒC

j of highest spherical weights form an

injective system and ƒC1 D lim�!ƒC
j . Each �1 D lim�!�j determines a unique

algebraically irreducible (see below for proof) G1-module V�1
D lim�!V�k such

that the dual space V �
�1

D lim �V
�
�j

contains a (normalized) K1-fixed vector e�
�1

normalized by the condition hu�1
; e�
�1

i D 1, as after Lemma 3.10. As before, we
denote the G1-representation on V �

�1

by ��
�1

and consider the G1-map

V�1
,! space of continuous functions on G1

given by

w 7! fw;�1
; where fw;�1

.a � x1/ WD hw; ��
�1

.a/e�
�1

i : (4.1)

Denote the image of the map (4.1) by CŒZ1��1
. Thus

CŒZ1��1
D ffw;�1

j w 2 V�1
g ' V�1

: (4.2)

Note that the restriction of (4.1) to V�j and Zj is the Gj -map

fw;�j .x/ D hw; ��
�j
.a/e�

�j
i D hw; ��

�j
.a/e�

�1

i ; x D a � x1 ;

introduced in (2.8). That this is possible follows from the proof of Lemma 3.10.
Hence we have a canonical Gj -map CŒZj ��j ,! CŒZk��k for k � j such that the
following diagram commutes:
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V�j

��

		 V�k

��

		 : : :

CŒZj ��j 		 CŒZk��k 		 : : :

As CŒZj � DP˚
CŒZj ��j and CŒZk� DP˚

CŒZk��k one derives that the spaces
CŒZj � form an injective system. Note that lim�!CŒZj ��j and Ci ŒZ1� WD lim�!CŒZj �
carry naturalG1-module structures. This proves part of the following theorem:

Theorem 4.3. The space CŒZ1��1
is an algebraically irreducible G1-module,

and

CŒZ1��1
D lim�!CŒZj ��j ' V�1

:

Furthermore

Ci ŒZ1� D
X

�12ƒC

1

˚
CŒZ1��1

as a G1-module.

Proof (See also [KS77, Thm. 1] and [O90, §1.17]). Everything is clear except
maybe the irreducibility statement. For that it is enough to show that V�1

is
algebraically irreducible. So let W � V�1

be G1-invariant. If W 6D f0g, then
we must have W \ V�j 6D f0g for some j . But then W \ V�k 6D f0g for all k � j
and W \ V�k is Gk-invariant. As V�k is algebraically irreducible it follows that
V�k � W for all k � j . This finally implies that W D V�1

. ut
Remark 4.4. In the case where the real infinite-dimensional space X1 has finite
rank the space Ci ŒZ1� has a nice representation-theoretic description. In this case,
as mentioned earlier, we may assume ƒC1 D ƒC

j . We have also noted that each
of the spaces V�j is a unitary representation of Uj such that the embedding
V�j ,! V�k is a Gj -equivariant isometry and the highest weight vector u�j gets
mapped to the highest weight vector u�k . In that way we have u�1

D u�j for
all j . Furthermore this leads to a pre-Hilbert structure on V�1

so that V�1
can be

completed to a unitary irreducible K1-spherical representation OV�1
of G1 (see

[DÓW12, Thm. 4.5]). Furthermore, it is shown in [DÓ13] that each unitary K1-
spherical representation .�;W�/ of G1 such that �jUj extends to a holomorphic

representation of Gj for each j is locally finite and of the form OV�1
for some

�1 2 ƒC. Moreover, each of those representations is conical in the sense that
OV M1N1

�1

6D f0g. Finally, each irreducible unitary conical representation .�;W�/

of G1, whose restriction to Uj extends to a holomorphic representation of Gj is
unitarily equivalent to some OV�1

. ut
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The inclusions �k;j W Zj ,! Zk lead to projections on the spaces of functions
given by restriction. In particular, we have the projections

projj;k W CŒZk�! CŒZj � (4.5)

satisfying projj;n ı projn;k D projj;k. Hence fCŒZj �g is a projective sequence and
lim �CŒZj � is a G1-module, and in fact an algebra, of functions on Z1. In fact,
let f D ffj gj�jo 2 lim �CŒZj � and x 2 Z1. Let j be so that x 2 Zj . Define
f .x/ WD fj .x/. If k � j , then projj;k.fk/ D f jZj . In particular fk.x/ D fj .x/.
Hence f .x/ is well defined.

In general we do not have projj;k.CŒZk��k / � CŒZj ��j , but

projj;k ı �k;j jCŒZj ��j D idCŒZj ��j

as this is satisfied on the level of representations V�j ! V�k ! V�j as mentioned
before. Hence, by Lemma 3.2, we can view lim�!CŒZj ��j as a submodule of
lim �CŒZj ��j . We record the following lemma which is obvious from the above
discussion:

Lemma 4.6. We have a G1-equivariant embedding

Ci ŒZ1� ,! lim �CŒZj � :

4.2 Regular Functions on „1

In order to construct regular functions on „1 we apply the same construction as
above to the horospherical spaces „j . As the arguments are basically the same, we
often just state the results.

The following can easily be proved for at least some examples of infinite rank
symmetric spaces like SL.j;C/=SO.j;C/, but we only have a general proof in the
obvious case of finite rank. In the meantime (see [DÓ13]) Lemma 4.7 has been
extended to limits of all irreducible classical symmetric spaces via case by case
calculations.

Lemma 4.7. Assume that the rank of Zj is constant. Then for k � j we have

Mj DMk \Gj and Nj D Nk \Gj :

Definition 4.8. We say that the injective system of propagated symmetric spaces
Zj is admissible if Mj D Mk \Gj and Nj D Gj \Nk for all k � j .

From now on we will always assume that the sequence fZj g of symmetric spaces
is admissible. Let o D eM1N1 be the base point of„1 and note that we can view
this as the base point in „j ' Gj � o � „1.
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For �1 D lim�!�j 2 ƒC1, w 2 V�j ,  D a � o 2 „j , a 2 Gj we have

 w;�j ./ D hw; ��
�j
.a/u�

�j
i D hw; ��

�j
.a/u�

�1

i DW  w;�1
./ :

This defines Gj -equivariant inclusions

CŒ„j ��j ,! CŒ„k��k ,! CŒ„1��1
WD f w;�1

j w 2 V�1
g ' lim�!CŒ„j ��j :

We note that V�1
! CŒ„1��1

, w 7!  w;�1
, is a G1-isomorphism. With the

same argument as above this leads to an injective sequence

CŒ„j � ,! CŒ„k� ,! lim�!CŒ„j � DW Ci Œ„1� :

Theorem 4.9. Assume that the sequence fZj g is admissible. Then

Ci Œ„1� D
X

�12ƒC

1

˚
CŒ„1��1

:

Furthermore, there exists a G1 equivariant inclusion map Ci Œ„1� ,! lim �CŒ„j �.

Denote by �j the normalized Radon transform �j W CŒXj � D CŒZj � ! CŒ„j �

introduced in Sect. 2.4 and set

�1.fv;�1
/ WD  v;�1

: (4.10)

Then �1 defines a G1-equivariant map �1 W Ci ŒZ1�! Ci Œ„1� and

�1 D lim�!�j :

As each �j is invertible it follows that �1 is also invertible. In fact, the inverse
is ��11 D lim�!��1

j which maps  v;�1
to fv;�1

. As a consequence we obtain the
following theorem:

Theorem 4.11. Suppose that the sequence fZj g is admissible. Let �1 D lim�!�j 2
ƒC1, k � j , and w 2 V�k . Then

�k;j ı �j fw;�j D �k.�k;j ı fw;�j / D  w;�1

and

�k;j ı ��1
j  w;�j D ��1

k .�k;j ı  w;�j / D fw;�1
:
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In particular, we have the following commutative diagram:

� � � 		 CŒZj �
�k;j

		

�j

��

CŒZk�
�k;1

		

�k

��

Ci ŒZ1�

�1

��
� � � 		 CŒ„j �

�k;j
		

��1
j





CŒ„k�
�1;k

		

��1
k





Ci Œ„1�

��1
1





4.3 The Projective Limit

We discuss the projective limit in more detail. First we need the following notation.
For �; � 2 a�

o write

� � � if � � � D
X

˛2†C

n˛˛ ; n˛ 2 N0 : (4.12)

If � � � and � 6D �, then we also write � < �. The main problem in studying the
projective limit is the decomposition of V�k jGj for k � j . It is not clear if these
representations decompose into representations with highest weights �j � �j . In
case the rank of X1 is finite, that is correct. We therefore in the remainder of this
subsection make the assumption that the rank of X1 is finite. In this case we can—
and will—assume that aj D a for all j and recall from the earlier discussion that
†j D † is constant and so are the sets of positive roots †C

j D †C and the sets of

highest weightsƒC
j D ƒC.

Write

.��k ; V�k /jGj '
rM

sD0
.�s;Ws/ (4.13)

with .�0;W0/ ' .��j ; V�j / which occurs with multiplicity one.

Lemma 4.14. Assume that the rank of X1 is finite. Let � D �j D �k 2 ƒC. Then
we have the following:

(1) e�
�k
jWs D 0 if Ws is not spherical.

(2) Assume that Ws ' V� is spherical. Then � � �j .

Proof. The first claim is obvious. Let � be a weight of V�k .

� D �k �
X

˛2‰k
t˛˛

with t˛ nonnegative integers. This in particular holds if � is a highest weight of a
spherical representation of Gj , proving the claim. ut
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Lemma 4.15. Assume that the rank of X1 is finite. Let k > j and let v 2 V�k .
Then

 v;�1
j„j D  v;�k j„j D  projj;k.v/;�j :

Proof. Let x 2 Gj . Then ��
�.x/u

�
�k
2 h��k .Gj /u�

�k
i D V��

j
D V �

�j
. The claim

now follows as u�
�j
D u�

�k
. ut

We finish this section by recalling the graded version of CŒZj � and �j . Recall
that we are assuming that the rank of Xj is finite. Note that even if fCŒZj �g is a
projective sequence, the sequence fCŒZj ��j g is not projective in general. Consider
the ordering on a�

o as above. This defines a filtration on CŒZj � and we denote by
grCŒZj � the corresponding graded module. Thus

grCŒZj ��j D
M

�j��j
CŒZj ��j =

M

�j<�j

CŒZj ��j (4.16)

and

grCŒZj � 'G
M

�2ƒC

j

grCŒZj ��j : (4.17)

If f 2 CŒZj �, then Œf � denotes the class of f in grCŒZj �. Let �j , respectively
��j , be theG-isomorphism CŒZj � ' grCŒZj �, respectively CŒZj ��j ' grCŒZj ��j ,
given by f 7! Œf �. We let gr�j WD �j ı ��1

j and gr�j�j D �j ı ��1
�j

. Note that
this construction is also valid for j D1.

Proposition 4.18 (Prop. 7 [HPV02]). The Gj -map gr�j is a ring isomorphism
grCŒZj �! CŒ„j �.

In the following we will not distinguish between �j and gr�j except where
necessary. Thus we will prove statements for �j and then use it for gr�j without
any further comments.

Identifying functions on Gk=Kk with right Kk-invariant functions on Gk , the
following is clear:

projj;k.fv;�k / D hv; ��
�k
jGke�

�k
i :

Thus, the kernel of projj;k is the Gj -module

ker projj;k D fv 2 Vk j v ? �k.Gj /e�
�k
g :

As hv�; e�
�k
i 6D 0 it follows that ker projj;k is a sum of Gj -modules with highest

weight < �j . Hence

gr projj;k W grCŒZk�! grCŒZj �
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is well defined and

gr projj;k.CŒZk��k / D grCŒZj ��j :

It follows that the sequence fgrCŒZj ��j g is projective.
We can also form the graded algebra grCi ŒZ1� as in (4.16) and (4.17). Again we

can view elements in grCi ŒZ1� as functions on Z1 by choosing the unique element
in g 2 Œf � 2 grCi ŒZ1�� so that g 2 Ci ŒZ1��. The inclusion

gr �k;j W CŒZj � D
X˚

grCŒZj ��j ! grCŒZk��k D CŒZk�

given by

X
Œfvj ;�j � 7!

X
Œf�k;j .vj /;�j �

satisfies the relation gr projj;k ı gr �k;j D id.
The graded version gr�1 is also well defined by the requirement that Œfv;�1

� is
mapped into  v;�1

and both gr�1 and gr��11 are Gj -morphisms of rings.

Theorem 4.19. Assume that the rank of X1 is finite. Suppose that k � j , � 2 ƒC,
v 2 V�k and w 2 V�j . Denote by projV�j the projection V�k ! V�j . Then, with

��s WD �sjCŒZs ��s , s 2 N,

projj;k��k .fv;�k / D ��j .fprojV�j
.v/;�j / D  projV�j

.v/;�j (4.20)

and

�k;j ��j .fw;�j / D ��k .fw;�k / D  w;�k : (4.21)

In particular projj;k ı �k;j D id and projj;1 ı �1;j . Similar statements hold for the

inverse maps. Let gr�1 D lim � gr�j and .gr�1/�1 D lim � gr��1
j . We therefore

have a commutative diagram:

� � � grCŒZk���

gr�k

��

grCŒZj �
projj;k

��

gr�k

��

lim � grCŒZj �
projk;1

��

gr�1

��
� � � CŒ„k���

gr��1
k





CŒ„j �
projk;j

��

gr��1
j





lim �CŒ„j �
projk;1

��

gr��1
1
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5 The Radon Transform and Its Dual

For the moment we fix the symmetric spaces X, Y, and Z and leave out the index j .
The Radon transform or its dual is initially defined on the space of compactly
supported function. As the dual Radon transform is an integral over the compact
groupKo it is well defined on CŒ„� and CŒ„o�, the space of regular functions on„.
But No is noncompact, so the Radon transform cannot be defined on CŒX� as an
integral over No. This problem was addressed in [HPV02, HPV03], and we recall
the main results here. Then, based on ideas from [G06, GKÓ06], we introduce
two integral kernels which allow us to express both the Radon transform and the
dual Radon transform as integrals against integral kernels. We start the section by
recalling the double fibration transform introduced in [H66, H70].

5.1 The Double Fibration Transform

Assume that G is a Lie group and H and L two closed subgroups. We assume that
all of those groups as well as M D H \ L are unimodular. We have the double
fibration

G=M

�

����
��
��
�� p

	
		

		
		

	

G=H G=L

(5.1)

where � and p are the natural projections. We say that x D aH and  D bL are
incident if aH \ bL 6D ;. For x 2 G=H and  2 G=L we set

Ox WD f� 2 G=L j x and � are incident g

and similarly

_ WD fy 2 G=H j  and y are incident g :

Assume that if a 2 L and aH � HL, then a 2 H and similarly, if b 2 H and
bL � LH , then b 2 L. Then we can view the points in G=L as subsets of G=H ,
and similarly points in G=H can be viewed as subsets of G=L. Then Ox is the set of
all � such that x 2 � and _ is the set of points y 2 G=H such that y 2 . We also
have

Ox D p.��1.x// D aH � 0 ' H=L and _ D �.p�1.// D bL � xo ' K=L:
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Fix invariant measures on all of the above groups and the homogeneous spaces
G=H , G=L, G=M , H=M and L=M such that for f 2 Cc.G/ we have

Z

G

f .a/ da D
Z

G=M

f .am/ d�G=M .aH \ L/dm

D
Z

G=H

f .ah/ d�G=H.gH/dh

D
Z

G=L

f .an/ d�G=L.aL/dn

and for f 2 Cc.H/ and ' 2 Cc.L/
Z

H

f .h/ dh D
Z

H=M

Z

M

f .am/ dmd�H=M .aM/

and
Z

L

f .a/ da D
Z

L=M

Z

M

f .am/ dmd�L=M.aM/ :

The definition of the Radon transform and the dual Radon transform is now as
follows. Let xo D eH and o D eL. If  D a � o 2 „ and x D b � xo 2 X , then

Of ./ WD
Z

L=M

f .al � xo/ d�L=M .lM/ ; f 2 Cc.G=H/ (5.2)

and

'_.x/ WD
Z

H=M

'.bh � o/ d�H=M .hM/ ; ' 2 Cc.H=M/ : (5.3)

Then the following duality holds:

Z

G=L

Of ./'./ d�G=L./ D
Z

G=H

f .x/'_.x/ d�G=H .x/ :

5.2 The Horospherical Radon Transform and Its Dual

The example studied most is the case G D Go, H D Ko and L D MoNo, where
we use the notation from the earlier sections. In this case we find the horospherical
Radon transform which from now on we will simply call the Radon transform and
its dual. The corresponding integral transforms are
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Rf .a � o/ D Of .a � o/ D
Z

No

f .an � xo/ dn ; f 2 Cc.X/

and

R�'.b � xo/ D '_.b � xo/ D
Z

Ko

'.bk � zo/ dk ; ' 2 Cc.„o/ :

Here dk is the invariant probability measure on Ko.
As mentioned earlier the dual Radon transform

R� .a � xo/ D
Z

Ko

 .ak � o/ dk

is well defined on CŒ„�. It is clearly a G-intertwining operator. Thus, there exists
c� 2 C such that

R�
� WD R�jCŒ„�� D c���1

� ; � 2 ƒC: (5.4)

To describe the evaluation of c� we recall the functions f� and  � from Sect. 2.
We find

R� �.a � xo/ D
Z

Ko

hu; ��
�.a/�

�
�.k/u

�
�i dk

D h��.a/�1u;
Z

Ko

��
�.k/u

�
� dki

D c�f�.a � xo/ :

Thus c� is determined by

Z

Ko

��
�.k/u

�
� dk D c�e�

� :

For g 2 Go write g D k.g/a.g/n.g/ with .k.g/; a.g/; n.g// 2 Ko � Ao � No.
For � 2 a� and a D expX 2 Ao write a� D e�.X/. Let

	 WD 1

2

X

˛2†C

m˛˛ D 1

2

X

˛2†C

0

�
1

2
m˛=2 Cm˛

�

˛

wherem˛ WD dimC g˛. We normalize the Haar measure on No D �.No/ by

Z

No

a. Nn/�2	 d Nn D 1 :
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Define for � 2 a�.0/ D f� 2 a� j .8 ˛ 2 †C/ ˛.Re .�/; ˛/ > 0g

c.�/ WD
Z

No

a.n/���	 d Nn :

Then c is holomorphic on a�.0/. By the Gindikin–Karpelevich formula [GK62]
which expresses c as a rational function in Gamma-functions depending on the
multiplicities m˛, the function c has a meromorphic extension to all of a�. The
function c, which is called the Harish–Chandra c-function, can be used to calculate
the constant c� from (5.4).

Lemma 5.5. Let � 2 ƒC. Then c� D c.�� C 	/ D c.�C 	/.
Proof. See [DÓW12, Thm. 3.4] or [HPV02, Thm 9]. ut

We note that [DÓW12] implies that c� D c.�� C 	/ and that [HPV02] implies
c� D c.�C 	/. But the Gindikin–Karpelevich formula implies that

c.�/ D c.�wo�/ :

As �wo	 D 	 it follows that c.�� C 	/ D c.�C 	/.

5.3 The Radon Transform as Limit of Integration over Spheres

We have seen that the dual Radon transform and the normalized transform ��1
�

are the same up to a normalizing factor that depends on the K-representation �.
No such relation exists for �� and RjCŒX�� because the definition of the Radon
transform R does not make sense for regular functions. However, in [HPV03] a
solution was proposed by considering the Radon transform as a limit of Radon
transform of a double fibrations transforms with both stabilizers being compact.
Hence the corresponding integral transforms are well defined for regular functions.
We recall the setup from [HPV03].

Since both Ko and Ka
o are compact, both the Radon transform associated to this

double fibration and its dual transform are well defined on regular functions and
give G-equivariant linear maps

Ra W CŒX� �! CŒSpha X� and R�
a W CŒSpha X� �! CŒX�:

One can identify Spha X with X associating to each sphere its center. Then Ra

and R�
a become linear endomorphisms of CŒX�. By definition, Ra is then obtained

by integrating over spheres of radius a, while R�
a is obtained by integrating over

spheres of radius a�1.
The spaces X,„o, and Spha X can all be embedded into the algebraic dual space

CŒX�� D
Y

�2ƒ
CŒX���;
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which we equip with the product topology. Let v�̇ 2 CŒX��� be the highest (resp.
lowest) weight vector uniquely determined by the normalizing condition

hf�̇ ; v	
� i D 1;

where f C
� WD f�, and f �

� WD sxo � f�. Then we have v�
� D sxo � vC

�� where sxo

is the symmetry around the base point xo. Similarly, let v0� 2
�
CŒX���

	Ko
be the

Ko-invariant vector uniquely determined by the normalizing condition

hf 0� ; v0�i D 1;
where f 0

� is the unique K-invariant function in CŒX�� such that f 0
� .xo/ D 1.

Note that f 0
� is a zonal spherical function. The Go-equivariant map �eWX !

CŒX�� defined by hf; �e.x/i D f .x/ for f 2 CŒX� is injective and satisfies
�e.o/ D .v0�/�2ƒC (see [HPV03, Sect. 5]). For any a 2 Ao obtains an injective
Go-equivariant map �aWSpha X! CŒX�� by

�a.Sa.x// D
� x�

a�
�

	

�2ƒC

; if �e.x/ D .x�/�2ƒC :

In particular,

�a.Sa/ D
�a � v0�
a�

�

	

�2ƒC

:

The induced map ��a WCŒX� ! CŒSpha X� is a Go-module isomorphism. Finally,
�.o/ WD .vC

� /�2ƒC defines a G-equivariant map �W„o ! CŒX��. Since the
stabilizer of 0, as well the stabilizer of .vC

� /�2ƒC , is MoNo, the map � is well
defined and injective. The induced map ��WCŒX� ! CŒ„o� coincides with the
Go-module isomorphism � , where we note that CŒX� D CŒZ� and CŒ„o� D CŒ„�.
We obtain the diagram

Go=Mo

qa

��











 q

�
��

��
��

��

Spha X
�a

���
���

���
��

„o

�

�����
��
��
��

RŒX��

which turns out to be commutative. This is part of the following proposition which
is proven in [HPV03, Sect. 6]:
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Proposition 5.6. (i) lima!1 �a ı qa D � ı q.
(ii) lima!1 q�

a ı ��a D q� ı ��.
(iii) lima!1 R�

a ı ��a D R� ı ��.
(iv) R�.��.f // D c.�C 	/f for all f 2 CŒX��.

We note that those results can be applied to CŒZ� and CŒ„� by restriction and
holomorphic extension.

Suppose now as before that we have a propagated sequence of symmetric spaces
Zj ! Zk , k � j . We also assume that the rank is finite. Then, on each level, we
have ��j D �j . Therefore, we can define for f 2 CŒZ1�

��1.f / D ��j .f / if f 2 CŒZj � :

Then

Proposition 5.7. If the rank of X1 is finite and f 2 CŒZ1�, then

�1f D ��1.f / :

5.4 The Kernels Defining the Normalized Radon Transform
and Its Dual

We start by stating the following version of the orthogonality relations which are
usually formulated in terms of invariant inner products. The proof for this version
is the same as the usual one. The invariant measure on U is always the normalized
Haar measure. The following is the usual orthogonality relation stated in form of
duality.

Lemma 5.8. For �; � 2 ƒC let d.�/ D dimV� D dimV�� . Then

Z

U

hu; ��
�.b/u

�ih��.a/v; v�i db D ı�;�d.�/�1 hv; u�ihu; v�i

for all u; v 2 V� and for all u�; v� 2 V �
� .

It follows by [DÓW12, Thm. 3.4] that he�; e�
�i D c.�C 	/. Define

kZ.a/ WD
X

�2ƒC

d.�/c.�C 	/ hu�; ��
�.a/e

�
�i (5.9)

and

k„.a/ WD
X

�2ƒC

d.�/ he�; ��
�.a/u

�
�i : (5.10)
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Lemma 5.11. Let O D fnak 2 NAK j .8 j / ja�!j j < 1g. Then O is open
in G. The set O is right K-invariant and left MN -invariant. Furthermore, the
sums defining kZ and k„ converge uniformly on compact subsets of O and define
holomorphic functions on O.

Proof. Write � D k1!1 C : : : C kr!r . Let x 2 O and write bj D a�!j . Then
jbj j < 1 for j D 1; : : : ; r and

d.�/hu�; ��
�.x/u

�
�i D d.�/h��.k�1a�1n�1/u�; u�

�i
D d.�/a��

D d.�/
rY

jD1
b
kj
j :

Similarly, we have

d.�/c.�C 	/hu�; ��
�.x/e

�
�i D d.�/c.�C 	/

rY

jD1
b
kj
j :

The claim follows now because d.�/ is polynomial in k1; : : : ; kr and c.�C	/ < 1.
ut

The function kZ is left MN -invariant and right K-invariant. Hence kZ can also
be viewed as a function on „ � X given by

kZ.a � o; b � xo/ WD kZ.a
�1b/ :

The function k„ is left K-invariant and rightMN -invariant and can be viewed as a
function k„ on X �„ defined by

k„.a � xo; b � o/ WD k„.a�1b/ :

Even if the sums (5.9) and (5.10) do not in general converge for all a 2 G,
they are well defined as linear G-maps CŒX� ! CŒ„�, respectively CŒ„� ! CŒX�,
given by

KZ.f /./ WD
Z

U

f .u � xo/kZ.; u � xo/ du;

respectively

K„.f /.x/ WD
Z

U

f .u � o/k„.x; u � o/ du;
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where du is the normalized Haar measure on U . On the right-hand side only finitely
many terms are nonzero so the sums converge. Note that the first integral can be
written as an integral over the compact symmetric space U=Ko and the second
integral is an integral over U=Mo.

Theorem 5.12. We haveKZ D � andK„ D ��1.

Proof. It is enough to show thatKZjCŒX�� D �� andK„jCŒ„�� D ��1
� for all � 2 ƒC.

Thus we have to show that KZ.f�/ D  � andK„. �/ D f� .
We have

KZ.f�/.a � o/ D
X

�2ƒC

Z

U

d.�/

he�; e�
�i
h��.a/u�; ��

�.b/e
�
�ihu�; ��

� .b/e
�
� i du

D h��
� .a/u

�
� ; u�i

D  �.a � o/ :

The statement for K„ is proved in the same way. ut
Remark 5.13. Above we realized � and ��1 as integral operators. Similar to [G06]
one could also consider the integral operator given by the kernel QK.a � o; b � xo/ DQk.a�1b/ where

Qk.a/ D
X

�2ƒ�

f�.a/ D
X

�2ƒC

hu�; ��
�.a/e

�
�i : (5.14)

Then we have the following theorem, see also [G06]:

Theorem 5.15. Let O be as in Lemma 5.11 and let x D kan 2 O be such that
ja!j j < 1 for j D 1; : : : ; r D rank X. Then

Qk.b/ D
rY

jD1

1

1 � a!j

and Qk is holomorphic on O.

Proof. Let � D k1!1 C : : : kr!r 2 ƒC. For x D nak 2 O write as before
bj D a�!j . Then

hu�; ��� .x/e��i D a�� D
rY

jD1
b
kj
j :

It follows that

Qk.x/ D
1X

k1D0
b
k1
1 : : :

1X

krD0
bkrr D

rY

jD1
.1 � bj /�1

which finishes the proof. ut
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5.5 The Radon Transform and Its Dual on the Injective Limits

In this section we discuss the extension of the Radon transform and its dual on the
infinite dimensional spaces.

The kernels defined in (5.9) and (5.10) do not define functions on Z1, respec-
tively„1, because of the changes in the dimensions as we move from one space to
another. But we still have the following:

Theorem 5.16. Assume that the sequence fZj g is admissible. For f 2 Ci ŒZ1� and
 2 Ci Œ„1� the pointwise limits

KZ1
f ./ D limKZj f ./ and K„1

 .x/ D limKZj  .x/

are well defined and

�1f D KZ1
f and ��11  D K„1

 :

Proof. If v 2 V�j , then v 2 V�k for all k � j . Hence Theorem 5.12 implies that if
s > k > j are so that  2 „k , we have

KZs f ./ D KZkf ./ :

Hence the sequence becomes constant and the claim follows. The argument for
K„1

 is the same. ut
Note that Eqs. (4.20) and (4.21) together with Theorem 5.12 imply that the maps

grKZ1
D lim � grKZj and grK„1

D lim �K„1
are well defined. Here gr stands for

grKZj .Œf �/ D ŒKZj f � respectively grK„j .f / D ŒK„j f �.

Theorem 5.17. Assume that the sequence Zj is admissible. Then

gr�1f D grKZ1
f and .gr�1/�1 f D grK„1

f :

In order to make the results of Sect. 5.3 useful for limits of symmetric spaces, we
first have to extend the notion of a sphere of radius a. So let a D lim�! aj 2 A1 WD
lim�!Aj . We callA1 regular ifZKj .aj / D Mj for all j . This is a useful notion only
in the finite rank case, so we will assume for the remainder of this section that we
are in the situation of Remark 4.4.

A simple calculation shows that the diagram

Xj
		

�j;e

��

Xk

�k;e

��
CŒXj �

� 		 CŒXk�
�
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of Gj -module morphisms is commutative. The normalizations from Sect. 5.3 are
compatible and yield the following commutative diagram

Sphaj .Xj / 		

�j;aj

��

Sphak .Xk/

�k;ak

��
CŒXj �

� 		 CŒXk�
�

„j;o
		

�j





„k;o

�k





of Gj -module morphisms. In fact, for the commutativity of the upper square one

uses the equality a
��

j

j D a
��

k

k D a�
�

, whereas the commutativity of the lower
square is a consequence of Theorem 4.11. Thus the Sphaj .Xj / and the CŒXj �

� form
inductive systems. For the corresponding inductive limits Spha.X1/ and CŒX1��
we obtain the commutative diagram

G1;o=M1;o

q1;a

��



 q1

����
���

���
��

Spha.X1/
�1;a

����
���

���
��

„1;o

�1

�����
���

���
�

CŒX1��

Using this notation Proposition 5.6(i) remains true:

lim
a!1 �1;a ı q1;a D �1 ı q1: (5.18)

Due to G-equivariance, it suffices to prove that

lim
a!1 �1;a.qa.eM// D �1.q1.eM//:

This means that for fixed � 2 ƒC and j � jo we have to verify

lim
a!1

a � v0j;�
a�

�
D vC

j;�:
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Writing v0j;� 2 CŒXj �
�
� as a sum of weight vectors (the highest weight being ��),

we see that

lim
a!1

a � v0j;�
a�

�
D kj;�vC

j;�

for some constant kj;�. The calculation

hf �
j;�; a � v0j;�i
a�

�
D .a�1f �

j;�/.xo/

a�
�

D a�
�

f �
j;�.xo/

a�
�

D 1; (5.19)

shows that kj;� D 1. This implies (5.18).
Equation (5.18) yields immediately the convergence of the induced maps of

function spaces:

lim
a!1 q�1;a ı ��1;a D q�1 ı ��1: (5.20)

It was shown in [DÓW12, Thm. 4.7] that the limit

c1.�1/ WD lim
j!1 c.�j C 	j /

exists and is strictly positive if the rank of X1 is finite. Define

R�1 W Ci Œ„1�! Ci ŒZ1�

by

R�1.f /.x/ D lim
j!1R�

j f .x/ : (5.21)

Theorem 5.22. Assume that the rank of X1 is finite. Let f 2 Ci Œ„1�. Then the
pointwise limit (5.21) exists and for f 2 CŒ„1��1

we have

R�1f D c1.�1/1=2 ��11 f and R�1.��.f // D c1.�1/f :

Proof. As every function in Ci Œ„1� is a finite sum of elements in CŒX1�� we only
have to show this for fixed �1 2 ƒC1. But then the claim follows from (5.4),
Theorem 5.17, Proposition 5.6, part (iv), and Proposition 5.7. ut

As we are assuming that the rank of X1 is finite, it follows from [DÓW12] that
� OV �

�1

	K1 6D f0g. Denote by proj1 the orthogonal projection

proj1 W OV �
�1

!
� OV �

�1

	K1

:
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It follows also from the calculations in [DÓW12] that the sequence fe�
�j
g

converges to e�
�1

in the Hilbert space OV �
�1

D OV��

1
. Hence

proj1
� OV �

�1

	
D
� OV �

�1

	K1 � lim �V
�
�j
:

Finally, a simple calculation shows that

proj1.w/ D lim
j!1

Z

Kj

��1
.k/wdk : (5.23)

If f D fw;�1
2 CŒZ1��1

, then there exists jo such that f jZj D fw;�j 2
CŒZj ��j for all j � jo. We have

Ra;j .f jZj /.g � Sa/ D
Z

Kj

hw; ��
�j
.g/��

�j
.k/��

�j
.a/e�

�j
i dk : (5.24)

Theorem 5.25. Let f 2 Ci ŒZ1�. Then the pointwise limit

Ra;1f .g � Sa/ WD lim
j!1Ra;j f .g � Sa/

exists and the following holds:

(1) Ra;1f .g � Sa/ D hw; ��
�1

.g/proj1.��
�1

.a/e�
�1

/i if f 2 Ci ŒZ1��1
.

(2) lim
a!1R�

a;1 ı ��a D R�1 ı ��.

Proof. This follows from (5.23), (5.24), and Proposition 5.6. ut
Remark 5.26. We note that the following diagrams do not commute

CŒ„j �
�k;j

		

R�

j

��

CŒ„k�

R�

k

��
CŒXj �

�k;j

		 CŒXk�

CŒSphaj .Xj /�
�k;j

		

R�

j;aj

��

CŒSphak .Xk/�

R�

k;ak

��
CŒXj �

�k;j

		 CŒXk�

This follows from the corresponding commutative diagrams for the normalized dual
Radon transforms 
�1

j and the normalizing factor that relates those two transforms.
This makes the corresponding theory for infinite rank spaces problematic as in that
case limj!1 c.�j C 	j / D 0. ut
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Abstract A flag domain D is an open orbit of a real form G0 in a flag manifold
Z D G=P of its complexification. If D is holomorphically convex, then, since
it is a product of a Hermitian symmetric space of bounded type and a compact
flag manifold, Aut.D/ is easily described. If D is not holomorphically convex,
then in previous work it was shown that Aut.D/ is a Lie group whose connected
component at the identity agrees with G0, except possibly in situations which arise
in Onishchik’s list of flag manifolds where Aut.Z/0 D OG is larger than G. In the
present work the group Aut.D/0 D OG0 is described as a real form of OG. Using an
observation of Kollar, new and much simpler proofs of much of our previous work
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1 Introduction and Statement of Results

Recall that if Z is a compact complex manifold, then its Lie algebra g D VectO.Z/
of holomorphic vector fields is finite-dimensional and that the fields in g can
be integrated to define a holomorphic action of the associated simply-connected
complex Lie group G. If Z is homogeneous in the sense that this group acts
transitively, then we choose a base point z0 2 Z, let H D Gz0 denote the isotropy
group at that point, and identify Z with the quotient G=H . If Z is projective
algebraic with trivial Albanese, i.e., with b1.Z/ D 0, then G is semisimple,
the isotropy group H is a so-called parabolic subgroup, which from now on we
denote by P , and Z D G=P is a G-orbit in the projective space P.V / of an
appropriateG-representation space V . In this case we refer to Z as a flag manifold.

A real form G0 of G is a real Lie subgroup of G such that the complexification
g0 C ig0 is the Lie algebra g. If Z D G=P is a flag manifold, then any real form
G0 of G has only finitely many orbits in Z ([W]; see also [FHW] for this as well
as other background.). In particular, G0 always has at least one open orbit D. We
refer to such an open orbit as a flag domain. IfG0 is not simple, then,D has product
structure corresponding to the factors of G0. Thus, for our considerations here there
is no loss of generality in assuming thatG0 is simple which we do throughout. Note
that ifG0 has the abstract structure of a complex Lie group, then its complexification
G is, however, not simple. Note also that G0 could act transitively on Z, e.g., this
is always the case for a compact real form. However, from the point of view of this
article, in that case all phenomena are well understood and therefore we assume that
D is a proper subset of Z.

Since by assumption a flag domain D is noncompact, there is no a priori reason
to expect that Aut.D/ or VectO.D/ is finite-dimensional. In fact ifD possesses non-
constant holomorphic functions, the latter is not the case and the former is often not
the case as well. Let us begin here by reviewing this situation.

If X is any complex manifold, then the equivalence relation,

x � y , f .x/ D f .y/ for all f 2 O.X/ ;

is equivariant with respect to the full group Aut.X/ of holomorphic automorphisms.
If X D G=H is homogeneous with respect to a Lie group of holomorphic
transformations, then the reduction X ! X= � by this equivalence relation is a
G-equivariant holomorphic homogeneous fibration G=H ! G=I . If D D G0=H0

is a flag domain, then this reduction has a particularly simple form ([W, FHW],
Sect. 4.4). For this let D D G0:z0 with H0 (resp. P ) be the G0-isotropy subgroup
(resp. G-isotropy subgroup) at z0.

Theorem 1.1. If D D G0:z0 is a flag domain with O.D/ 6D C, then the
holomorphic reduction D D G0=H0 ! G0=I0 D QD is the restriction of a fibration
Z D G=P ! G= QP D QZ of the ambient flag manifold with the properties
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1. The fiber of Z ! QZ, which itself is a flag manifold, agrees with the fiber of
D ! QD.

2. The base QD is a G0-flag domain in QZ. It is a Hermitian symmetric space of
noncompact type embedded in a canonical way in its compact dual QZ.

Recall that a symmetric space of noncompact type of a simple Lie group is a
topological cell and that in the Hermitian case it is a Stein manifold. Thus Grauert’s
Oka principle implies that the fibration D ! QD is a (holomorphically) trivial
bundle. As a consequence we have the following more refined version of the above
result.

Corollary 1.2. A flag domain D with O.D/ 6D C is the product QD � F of a
Hermitian symmetric space QD of noncompact type and a compact flag manifold F .
In particular,D is holomorphically convex andD ! QD is its Remmert reduction.

As indicated above our goal here is to describe the connected component at the
identity Aut.D/0 of the group of holomorphic automorphisms of any given flag
domain D. With certain exceptions which we cover in detail below, we carried
out this project in [H1] by studying the associated action of Aut.D/ on a certain
space (described below) Cq.D/ of holomorphic cycles. If D D QD is a Hermitian
symmetric space of noncompact type, such cycles are just isolated points and
Cq.D/ D D. Thus the cycle space gives us no additional information. However,
in this case D possesses the invariant Bergman metric and as a result Aut.D/ is
well-understood.

If D D QD � F is a product with nontrivial base and fiber, then, although it is
infinite-dimensional, Aut.D/ is in a certain sense easy to describe: The fibration
D ! QD induces a surjective homomorphism Aut.D/ ! Aut. QD/. The kernel is
the space Hol. QD;Aut.F // of holomorphic maps from the base to the complex Lie
group Aut.F / and as a result Aut.D/ D Hol. QD;Aut.F // Ì Aut.D/ has semidirect
product structure.

Having settled the case where O.D/ 6D C, or equivalently where D is
holomorphically convex, we turn to the situation where O.D/ D C. In [H1]
we showed that Aut.D/ is a (finite-dimensional) Lie group which, with certain
exceptions that are handled below, Aut.D/0 D G0. Other than taking care of these
exceptional cases, where in fact Aut.D/0 containsG0 as a proper Lie subgroup, here
we also make use of an observation of Kollar ([K]) which leads to a simple proof of
Aut.D/0 D G0 with the possible exceptions. This proof is given in Sect. 2.

Before going into the details of proofs, let us state the main result of the paper.
For this the following classification theorem of A. Onishchik ([O1, O2]) is the key
first step for handling the exceptional cases mentioned above.

Theorem 1.3. The following is a list of the flag manifolds Z and (connected)
complex simple Lie groupsG and OG so thatZ D G=P and OG WD Aut.Z/0 properly
containsG.

1. The manifold Z is the odd-dimensional projective space P.C2n/ where, after
lifting to simply-connected coverings,G D Sp2n.C/ and OG D SL2n.C/.
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2. The five-dimensional complex quadricZ is equipped with the standard action of
OG D SO7.C/ and G is the exceptional complex Lie group G2 embedded in OG as

the automorphism group of the octonions.
3. Equipping C

2n with a nondegenerate complex bilinear form b, Z is the space
of n-dimensional b-isotropic subspaces, OG is the b-orthogonal group SO2n.C/

and G is the complex orthogonal group SO2n�1.C/ which is embedded in OG as
the connected component at the identity of the isotropy group of the OG-action at
some nonzero point in C

2n.

Referring to the above list of exceptions as Onishchik’s list, our main result can be
stated as follows.

Theorem 1.4. If D is a G0-flag domain in Z D G=Q, then Aut.D/ can be
described as follows:

1. If O.D/ 6D C, or equivalently if it is holomorphically convex, D is a product
QD � F of a Hermitian symmetric space QD of noncompact type and a compact

flag manifold F , and Aut.D/ is correspondingly a semidirect product Aut.D/ D
Hol.D;Aut.F // Ì Aut. QD/.

2. If O.D/ D C, then Aut.D/ is a finite-dimensional Lie group of holomorphic
transformations on D and, if the complexification G is the full group Aut.Z/0,
then Aut.D/0 D G0.

3. If O.D/ D C and G is a proper subgroup of OG D Aut.Z/0, then in each case of
Onishchik’s list Aut.D/0 D OG0 is a uniquely determined real form of OG which
contains G0 as a proper subgroup.

It should be remarked that the simple proof given here of the fact that if O.D/ D C,
then Aut.D/0 is a Lie group acting on Z does not yield a proof that in this case full
group Aut.D/ is a Lie group. At the present time we have no other proof of this fact
other than that in [H1].

2 Cycle Connectivity

In [H2] we used chains of cycles to study the pseudo-convexity and pseudoconcavity
of flag domains . We continued the use of these chains in our study of Aut.D/ in
[H1]. Here, in particular, compared to the chains in [K], it is sufficient to consider
chains of a very special type which we now introduce.

A basic fact, which is the tip of the iceberg of Matsuki duality, is that for a flag
domain D, any given maximal compact subgroup K0 of G0 has exactly one orbit
C0 D K0:z0 in D which is a complex submanifold. In fact it is the (unique) orbit of
minimal dimension. IfK is the complexification ofK0, then since C0 is complex,K
stabilizes it. Denoting q WD dimCC0, we usually regard C0 as a point in the Barlet
cycle space Cq.D/, but for our purposes here we may regard it as a point in the
full Chow space Cq.Z/ whereG is acting algebraically. The group theoretical cycle
space of D is then defined as the connected open subset
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M.D/ D fg.C0/ W g 2 G; g.C0/ � Dg0

of the orbit of the base cycle C0. One can show that M.D/ is a closed submanifold
of Cq.D/ (See [FHW] for background and a systematic study of these cycle spaces.).
For the purposes of this paper a chain of cycles is a finite connected union of
(supports of) cycles in M.D/. We often write such a chain as .C1; : : : ; Cm/ to
indicate that Ci \ CiC1 6D ;. Using such chains we have the cycle connection
equivalence relation

x � y , x and y are contained in a chain :

Note that this relation is G0-equivariant. In particular, if D D G0=H0, then there is
a (possibly not closed) subgroup I0 of G0 which contains H0 so that the quotient
of D by this equivalence relation is given by G0=H0 ! G0=I0. Now if z0 2 D is
the base point where H0 WD Gz0 and K0:z0 D K:z0 D C0 is the base cycle, then,
since C0 is by definition contained in the equivalence class of z0, it is immediate that
I0 � K0. Since K0 is a maximal subgroup of G0, i.e., any (not necessarily closed)
subgroup of G0 which contains K0 is either K0 or G0, the following is immediate
(see also [H1] and [H2] for the same proof).

Proposition 2.1. The following are equivalent:

1. O.D/ D C

2. D is not holomorphically convex.
3. There is no nontrivial G0-equivariant holomorphic map of D to a Hermitian

symmetric space QD of noncompact type.
4. D is cycle connected.

Proof. The equivalence of the first three conditions follows from the discussion
in Sect. 1. If D is cycle connected, then, since QD is Stein and therefore every
holomorphic map to QD is constant along every chain, (4) ) (3). Conversely, if
D is not cycle connected, then the equivalence class containing the base point z0 is
just the cycle C0 which is therefore stabilized by the G-isotropy P as well as K .
Since the cycle connection reduction is given by G0=H0 ! G0=K0, it follows that
this fibration is the restriction of the fibration G=P ! G= QP of Z where QP D KP

and therefore the base G0=K0 is the Hermitian symmetric space QD. In other words,
the cycle connected reduction is just the holomorphic reduction and in particular
O.D/ 6D C. ut
Remark. For applications in another context, Griffiths, Robles and Toledo recently
gave another proof a result which is essentially equivalent to Proposition 2.1. (see
[GRT]).

Although it is well-known thatK0 is a maximal subgroup ofG0, for the convenience
of the reader we would like to give the following nice proof of J. Brun which was
pointed out to us by Keivan Mallahi Karai (see the Appendix of [B]).
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Theorem 2.2. If G is a connected simple Lie group, K is a maximal compact
subgroup and L is an abstract group which containsK , then L is either G orK .

Proof. Standard results in the theory of symmetric spaces show thatK is connected
and the adjoint representation of K on g=k is irreducible. Thus if ` is a Lie
subalgebra of g which properly contains k, then ` D g. Thus, if L is closed, then the
result is immediate. Furthermore, ifL is not closed and properly containsK , then its
closure c`.L/ is the full groupG. In that case we let k0 be the vector subspace of the
Lie algebra g ofG which is generated by Ad.x/.k/ for all x 2 L. Since c`.L/ D G,
it follows by continuity that k0 is G-invariant and since G is simple, it is immediate
that k0 D g. Therefore there are finitely many elements xi 2 L so that

g D
mX

1

Ad.xi /.k/

and as a result the map

Km ! G; K.k1; : : : ; km/ 7!
Y
.xikix

�1
i /

has maximal rank at the origin. Thus L contains a neighborhood of the origin and
therefore, contrary to assumption L D G. ut

3 Finiteness Theorem

Our original goal in this setting was to show that a flag domain D is either pseudo-
convex or pseudoconcave ([H2]). More precisely, we had hoped to show that if D
is not holomorphically convex, then C0 has a pseudoconcave neighborhood which
is filled out by cycles. If this would be possible, then using Andreotti’s finiteness
theorem ([A]) we would be able to conclude that the space of sections of any
holomorphic vector bundle, in particular the space VectO.D/, is finite-dimensional.
Although we have been successful in constructing such a neighborhood in a number
of cases ([H2]), we have failed do this in general. Recently, in a substantially
more general setting, Kollar proved the desired finiteness theorem along with a
number of equivalent properties which would follow from the pseudoconcavity of
D ([K]). Here we make use of Kollar’s result, leaving the question of existence of
the pseudoconcave neighborhood open.

Formulated in our setting, Kollar’s finiteness result can be stated as follows.

Theorem 3.1. The space � .D;E/ of sections of any holomorphic vector bundle
on a cycle connected flag domain is finite-dimensional.

This is an immediate consequence of the same result for line bundles which in turn
is proved using the following lemma (Lemma 15 in [K]), again formulated in our
restricted context.
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Lemma 3.2. Let L be a holomorphic line bundle on D. Then, given d 2 N, there
exists d0 2 N so that for every C 2MD and any z0 2 C every section s 2 � .D;L/
which vanishes of order d0 at z0 vanishes of order d along C .

The proof is given by classical methods which are reminiscent of Siegel’s Schwarz
Lemma. One key point is that C can be filled out by rational curves which in our
case are closures of orbits of one-parameter groups.

Now, given a chain of cycles .C1; : : : ; Cm/with zi 2 Ci\CiC1, and given dm 2 N

we apply the lemma to obtain dm�1 2 N so that if s vanishes of order dm1 at zm�1,
then it vanishes of order dm along Cm. Working backwards to the first cycle in the
chain, we see that the lemma holds for chains.

Corollary 3.3. Given d 2 N there exists d1 2 N so that for any chain .C1; : : : ; Cm/
of lengthm and any z1 2 C1 if s vanishes of order d1 at z1, then it vanishes of order
d along Cm.

It should be emphasized that for a fixed d , the required vanishing order d1 depends
onm. Thus to apply this result we need some sort of uniform estimate for the length
of a chain connecting two given points. This can be given as follows.

For example, let C1 be a base cycle for a given maximal compact subgroup K0.
Recall that the complexificationK has only finitely many orbits in Z and therefore
has a (unique) open dense orbit ˝ . Take z1 2 C1 and any point z 2 ˝ and let
.C1; : : : ; Cm/ be a chain connecting z0 to z. For k 2 K sufficiently close to the
identity, the chain .k.C1/; : : : ; k.Cm// is still contained in D. Thus, since k.C1/ D
C1 and k.z/ can be an arbitrary point in a sufficiently small neighborhood U of z,
we have the desired vanishing theorem.

Corollary 3.4. If s 2 � .D;L/ vanishes of sufficiently high order at a given point
z1 2 C1, then it vanishes identically. In particular, � .D;L/ is finite-dimensional.

Proof. Since the required vanishing order d1 only depends on the number dm and
the length m, Corollary 3.3 implies that if s vanishes of order d1 at z1, then it
vanishes at every point of the set U which was constructed above. The desired result
then follows from the identity principle. ut
As we remarked above, the finiteness theorem for vector bundles is an immediate
consequence of this corollary (see [K], p. 8).

4 Integrability of Vector Fields

The following is the main result of this section.

Theorem 4.1. LetZ D G=Q be a complex flag manifold and Og a finite-dimensional
complex Lie algebra which contains g WD Lie.G/. Let OG be a complex Lie group
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which contains G and is associated to Og. If Oq is a complex subalgebra of Og so that
the quotient map Og! Og=Oq induces an isomorphism

Og=Oq D g=q ;

then OG acts holomorphically on Z with

Z D OG= OQ D G=Q :

Proof. We apply a basic idea of Tits. For this regard x0 WD Oq as a point in the
Grassmannian X WD Grk.Og/ of subspaces of dimension k D dimC Oq in Og. The
isotropy group at x0 of the OG-action on X is the normalizer

ON D f Og 2 OG W Ad. Og/.Oq/ D Oqg :

Denote by N D ON \ G the G-isotropy at x0 and note that if g 2 N and  2 q, it
follows that Ad.g/./ 2 Oq\ g D q. In other wordsN is contained in the normalizer
of q in g. Since the parabolic group Q is self-normalizing in G, it follows that
N � Q. But On � Oq and Oq\ g D q. Therefore n � q. ConsequentlyN D Q and the
G-orbit of Oq is the compact manifoldZ D G=Q. Since Og=Oq D g=q, the OG-orbit of Oq
has dimension at most that ofG=Q. But on the other hand OG � G and therefore the
OG-orbit has the same dimension as the G-orbit. Consequently G:x0 is open in OG:x0

and the compactness of G:x0 implies that these orbits agree. ut
Applying the Finiteness Theorem, the following is now immediate.

Corollary 4.2. Let G0 be a simple real form of a complex semisimple Lie group G
and let D be a cycle connected G0-flag domain in a G-flag manifold Z D G=Q.
Let Og be the Lie algebra of holomorphic vector fields on D. Then the restriction
mapping R W aut.Z/ ! Og is an isomorphism and the action of Og can be integrated
to the action of a connected complex Lie group OG which is thereby identified with
Aut.Z/0.

As a consequence we have the description of Aut.D/ which was proved by other
means in [H1].

Corollary 4.3. If D is a G0-flag domain Z D G=Q, then one of the following
holds:

1. If D is holomorphically convex, it is a product of a compact flag manifold and
Hermitian symmetric space of noncompact type and Aut.D/0 can be described
as in Sect. 1.

2. If D is not holomorphically convex or equivalently it is cycle connected, then
Aut.D/0 is a finite-dimensional Lie group which is acting on Z and agrees with
G0 with the possible exceptions in the situations classified by Onishchik whereG
is a proper subgroup of OG D Aut.Z/0.
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5 Exceptional Cases

To complete our project of understanding the automorphism groups of flag domains,
we must analyze the exceptional cases indicated in the above corollary. We do this
here, proving the following result.

Theorem 5.1. Suppose that D � Z D G=Q is a G0-flag domain which is not
holomorphically convex and that G is properly contained in complex Lie group
OG D Aut.Z/0. Then there is a uniquely determined real form OG0 D Aut.D/0 of OG

which properly containsG0 and which stabilizes D.

Our proof of this fact amounts to a concrete discussion for each of the three classes
of exceptions in Onishchik’s list which was given in Sect. 1. Below we show that
these cases not only occur but also occur at the level of real forms. This is the
content of (3) in Theorems 1.4 and 5.1 above.

5.1 Projective Space

Here we consider the case where Z D P.V / is the projective space of an even-
dimensional complex vector space V D C

2n. Define the complex bilinear form
b by b.z;w/ D ztw. In the standard basis .e1; : : : ; e2n/ define J W V ! V by
J.ei / D enC1, i � n, and J.ei / D �ei�n, i > n. Note J is b-orthogonal with J 2 D
�Id and define a (complex, bilinear) symplectic form by !.z;w/ D zt Jw. Define
VC WD Spanfe1; : : : ; eng and V� D SpanfenC1; : : : ; e2ng and correspondinglyE WD
CId˚�Id. If C W V ! V denotes the standard complex conjugation given by z 7!
Nz, define a nondegenerate (mixed-signature) Hermitian structure on V by h.z;w/ D
ztEC.w/. Finally, if the antilinear map ' W V ! V is defined by z 7! �JECw,
it follows that h.z;w/ D !.z; '.w// and, since '2 D �Id, that ' is an h-isometry.
Observe that if P is a '-invariant subspace of V , then P?h D P?! . In particular,
P is symplectic if and only if it is h-nondegenerate and in either of these cases
V D P ˚P?

h is a decomposition of V into h-nondegenerate, symplectic subspaces.
The complex symplectic group G D Sp2n.C/ defined by ! has two types of

real forms. The first case to be considered is where OG0 is the real form SU.n; n/ of
OG D SL2n.C/ which is defined as the group of h-isometries. In this case the real

form G0 D Sp2n.R/ of G D Sp2n.C/ is defined as the intersection OG0 \ Sp2n.C/.
Considering the orbits of these groups on P.V / we let DC (resp. D�) be the open
sets in P.V / of h-positive (reps. h-negative) lines.

Proposition 5.2. The open sets DC andD� are both orbits of G0 and OG0.
Proof. It is clear that DC and D� are G0- and OG0-invariant and that DC [ D� is
dense in Z. Since G0 � OG0, it is therefore enough to show that G0 acts transitively
on both sets. The proof forDC is exactly the same as forD� and therefore we only
give it for DC. For this, given positive lines L D C:z and QL D C:Qz, we define
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P D Spanfz; '.z/g and QP D SpanfQz; '.Qz/g. These planes are h-nondegenerate and
symplectic. We normalize z and Qz so that kzk2h D kQzk2 D 1 and, since ' W EC !
E�, k'.z/k2 D k'.Qz/k2 D �1. Applying this procedure to P? and QP? we have h-
and !-orthogonal decompositions

V D P1 ˚ : : :˚ Pn D QP1 ˚ : : :˚ QPn
of V . Furthermore, everyPi (resp. QPi ) comes equipped with a basis .zi ; '.zi // (resp.
.Qzi ; '.Qzi // such that the mapping Ti W Pi ! QPi defined by zi ! Qzi and '.zi / 7!
'.Qzi / is both symplectic and an h-isometry. It follows that T D T1˚ : : :˚Tn is both
a symplectic isomorphism and h-isometry of V , i.e., T 2 G0. Since T .L/ D QL, the
proof is complete. ut
Now let us turn to the real form G0 D Sp.2p; 2q/ of G D Sp2n.C/. In this case we
line up J and E in a different way. The decomposition V WD VC ˚ V� and J are
the same, but now h has signature .p; q/ on both spaces, being defined by the block
diagonal matrixEp;q D .Idp;�Idq/. Then OG0 D SU.2p; 2q/ is defined as above by
the Hermitian form h and G0 D G \ OG0. The proof of the following fact is exactly
the same as that of Proposition 5.2 above.

Zusatz. Proposition 5.2 also holds for G0 D Sp.2p; 2q/ and OG0 D SU.2p; 2q/.
ut

5.2 Five-Dimensional Quadric

Here we consider V D C
7 equipped with the complex bilinear form b defined

by kzk2b D .z21 C z22 C z23/ � .z24 C : : : C z27/ and Hermitian form h defined by
kzk2h D .jz1j2 C jz2j2 C jz23j2/ � .jz3j2 C : : :C jz7j2/ . Denote by OG D SO7.C/ the
associated complex orthogonal group and by OG0 WD SO.3; 4/ the associated group
of Hermitian isometries.

We regard the exceptional complex Lie group G D G2 as being embedded in OG
as the automorphism group Aut.O/ of the octonions. It has a unique noncompact
real form G0 D Aut. QO/, the automorphism group of the split octonions QO. In this
way G0 is the intersection G \ OG0 of G with the real from OG0 D SO.3; 4/ (see,
e.g., [Ha] for details). Note that OG0 is invariant by the standard complex conjugation
z 7! Nz.

The remainder of this section is devoted to the proof of the following fact.

Proposition 5.3. For every z 2 Z it follows that G0:z D OG0:z. In particular the
open orbits of G0 and OG0 coincide.

We should note that as indicated below, the open orbits of OG0 are the spacesDC and
D� of positive and negative lines, respectively.
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For the proof of Proposition 5.3 we use Matsuki duality (see, e.g., Chap. 8 in Part
II of [FHW]) which states that there is a 1�1 correspondence between theG0-orbits
andK-orbits inZ. This can be given as follows: For everyG0-orbit there is a unique
K-orbit which intersects it in the unique K0-orbit of minimal dimension and vice
versa, i.e., given aK-orbit there is a uniqueG0-orbit which intersects it in the unique
K0-orbit of minimal dimension. Due to our interest in the openG0-orbits (resp. OG0-
orbits) in Z, we have stated the above result on that side of the duality. However,
we have found it more convenient to prove the corresponding dual statement.

Let us fix the maximal compact subgroup K0 Š .SU2 � SU2/=.�Id;�Id/ of
G0 being diagonally embedded in the maximal compact subgroup OK0 D S.O.3/ �
O.4// of OG0. IfEC WD Spanfe1; e2; e3g andE� WD Spanfe4; : : : ; e7g, then we define
zC WD e1 C ie2, z� WD e4 C ie5 and observe that the base cycles CC and C� for
the open orbits of the OG0-action are the quadrics of b-isotropic lines in EC and E�,
respectively. The corresponding open orbits are the spacesDC D OG0:zC of positive
lines in Z and D� D OG0:z� of negative lines, respectively. The complement of
DC [D�, which is the space of lines that are both b- and h-isotropic, consists of
two OG0-orbits, the real points ZR and its complement.

The OK-orbits that correspond via Matsuki duality to the four OG0-orbits are the
two base cycles CC and C�, the open OK-orbit of any point on ZR and a fourth
orbit O which has two ends, i.e., that has the two base cycles on its boundary.
In fact this fourth orbit is a C

�-principal bundle over the two-dimensional cycle
C� (see [FHW], Sect. 16.4 for a detailed discussion in the case of the K3-period
domain which can be transferred verbatim to the case at hand). To prove the above
Proposition 5.3 we show that K acts transitively on each of these four OK-orbits.

Now the second factor of OK acts trivially on CC and the first factor acts trivially
on C� and vice versa. SinceK is diagonally embedded in OK and projects onto both
factors, it is immediate that it acts transitively on both CC and C� as well. Since O
is a C

�-bundle over C�, K acts transitively on the base of this bundle and has an
open orbit in the bundle space O, it is immediate that it acts transitively on O.

It remains to show that K acts transitively on the open OK-orbit. For this we first
note that since e3 C e4 2 ZR and the connected component at the identity of OK0

is the product of the special orthogonal groups of EC and E�, it follows that up
to finite group quotients ZR is the corresponding product S2 � S3 of spheres. One
immediately observes that G0 acts transitively on ZR, because every G0-orbit is
at least half-dimensional over R. Thus K0 acts transitively on ZR and if zR is an
arbitrary point of ZR, it follows that K:zR is open in OK:zR.

To complete the proof of Proposition 5.3 we must show that K:zR D OK:zR. For
this we let OK1 be the first factor of the product decomposition of the connected
component of OK and consider the homogeneous fibration

OK:zR D OK= OL! OK= OK1
OL D OK2= OL2 D B :

SinceZR is essentially a product S2�S3 corresponding to the decomposition of the
connected component OK0, it follows that up to finite group quotients the base B is
the complexification of S3, i.e., the affine quadricQ.3/ D SO4.C/=SO3.C/. SinceK



124 A. Huckleberry

projects surjectively onto both factors of OK , it is immediate that K acts transitively
on B D K=M . Now the induced fibration of K:zR is a homogeneous bundle
K=L! K=M where the fiber M=L is an open M -orbit in the corresponding fiber
OF of the OK-bundle OK= OL! OK= OM . But OM acts on this fiber as SO3.C/ so that OF is

the affine quadricQ.2/. SinceK=M is affine,M is reductive. But the only reductive
subgroup of SO3.C/ with an open orbit in Q.2/ is SO3.C/ itself. Consequently K
does indeed act transitively on the open OK-orbit and the proof of Proposition 5.3 is
complete. ut

5.3 Space of Isotropic n-Planes in C
2n

Now let OV D C
2n be equipped with its standard basis .e1; : : : ; e2n/ and complex

bilinear form defined by b.z;w/ D ztw. The complex orthogonal group SO2n.C/ of
b-isometries is denoted by OG. We let G WD Fix OG.e2n/. In this way G Š SO2n�1.C/
is the orthogonal group of the restriction of b to V WD Spanfe1; : : : ; e2n�1g. We
consider the action of these groups on the flag manifold Z of n-dimensional b-
isotropic subspaces of OV .

Proposition 5.4. The groups G and OG act transitively on Z.

Proof. Note that the intersection W WD OW \ V of an isotropic n-plane in OV is an
isotropic .n � 1/-plane in V . It follows that OW D W ˚ C:.v C ie2n/ for some
v 2 V . Applying an appropriate element of G, we may assume that v D e2n�1
and it then follows that W � Spanfe1; : : : ; e2n�2g. We then apply the induction
assumption to obtain a transformation in the corresponding SO2n�2.C/ to bring W
to the normal form with basis .e1C ienC1; : : : ; en�1C ie2n�2/ so that altogether we
have found a transformation in G which bringsW to the normal form with the basis
.e1 C ienC1; : : : ; e2n�1 C ie2n/. ut
Recall that up to conjugation the only real forms of SO2n�1.C/ are the isometry
groupsG0 D SO.p; q/ for the mixed signature Hermitian form defined by h.z;w/ D
ztEC.w/ on V where E D Ep;q is defined in the same way as in Sect. 5.1. Without
loss of generality we may choose h to be this form and note that an appropriately
chosen arbitrarily small perturbation of an isotropic n-plane OW will result in the
intersection W D OW \ V being h-nondegenerate. Thus, if G0:z DW D is an open
orbit in Z, the .n � 1/-planeW associated to z is h-nondegenerate.

Note that if p is even, then q is odd and vice versa. To make the notation more
explicit, we assume that p is even. Now the space of h-positive b-isotropic lines
in V is an open G0-orbit. Thus, given W as above, we may apply an element
g 2 G0 so that after replacing W by g.W / we have L D C.e1 C ie2/ � W .
Notice that the subspace of V of vectors which are both h- and b-orthogonal to
L is simply Spanfe3; : : : ; e2n�1g. Thus, after going to this smaller space, we have
the same situation as before. Hence we may continue on by induction to obtain
a maximal h-positive subspace WC of W which is p

2
-dimensional and which has
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a distinguished basis produced by our procedure. Applying the same argument as
above to the h-complement W ?C in W , one obtains an element g 2 G0 so that
W0 WD g.W / has the distinguished basis

.e1 C ie2; e3 C ie4; : : : ; ep�1 C iep; epC1 C iepC2; : : : e2n�3 C ie2n�2/ :

Proposition 5.5. If OW is a b-isotropic n-plane in OV , then there exists an element
g 2 G0 with g. OW / D W0 ˚ C.e2n�1 C ie2n/ DW OW0.

Proof. Let g 2 G0 be chosen as above with g.W / D W0. It is then immediate that
g. OW / D W0 ˚ C Ow where Ow D ˙e2n�1 C ie2n. We obtain the positive sign by,
e.g., multiplying e1 and e2 by i , e2n�1 by �1 and ej by C1 otherwise. Since this
transformation is also in G0, the desired result follows. ut
Theorem 5.6. The Hermitian form h can be naturally extended to a nondegenerate
Hermitian form Oh on OV with signature .p; q C 1/ (resp. .p C 1; q/) if p is even
(resp.odd) so that the unique open orbit D of the resulting real form OG0 is the
set of isotropic n-planes of signature .p

2
;
qC1
2
/ (resp..pC1

2
;
q

2
/). Furthermore, the

h-isometry group G0 in SO2n�1.C/ also acts transitively on D which is also its
unique open orbit in Z.

Proof. It is enough to consider the case where p is even and ke2n�1k2h D �1.

Extending h to Oh on OV with e2n being orthogonal to V and ke2nk2 D �1, it follows
that Oh is of signature .p; q C 1/. Let OG0 D SO.p; q C 1/ be the real form of
OG D SO2n.C/ defined by Oh. Arguing as above, we see that the unique open OG0-orbit
D in Z is the set of isotropic n-planes OW with signature .p

2
;
qC1
2
/. A reformulation

of Proposition 5.5 is that G0 also acts transitively on D. ut
The following is a less technical formulation of this fact.

Corollary 5.7. IfZ is the complex flag manifold of isotropic n-planes in C
2n where

both OG and G act transitively, every real form G0 of G has a unique open orbit D
which is the unique open orbit of a canonically determined real form OG0 D Aut.D/0

of OG D Aut.Z/0.
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Shintani Functions, Real Spherical Manifolds,
and Symmetry Breaking Operators
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Abstract For a pair of reductive groupsG � G0, we prove a geometric criterion for
the space Sh.�; �/ of Shintani functions to be finite-dimensional in the Archimedean
case. This criterion leads us to a complete classification of the symmetric pairs
.G;G0/ having finite-dimensional Shintani spaces. A geometric criterion for uni-
form boundedness of dimC Sh.�; �/ is also obtained. Furthermore, we prove that
symmetry breaking operators of the restriction of smooth admissible representations
yield Shintani functions of moderate growth, of which the dimension is determined
for .G;G0/ D .O.nC 1; 1/;O.n; 1//.

Key words Branching law • Reductive group • Symmetry breaking • Real
spherical variety • Shintani function
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1 Introduction

The purpose of this article is to investigate Shintani functions for a pair of
reductive groups G � G0 in the Archimedean case. Among others, we classify the
reductive symmetric pairs .G;G0/ such that the Shintani spaces Sh.�; �/ are finite-
dimensional for all .ZG;ZG0/-infinitesimal character .�; �/. Explicit dimension
formulae for the Shintani spaces of moderate growth are determined for the pair
.G;G0/ D .O.nC 1; 1/;O.n; 1//.
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Let G be a real reductive linear Lie group. We write g for the Lie algebra of G,
and U.gC/ for the universal enveloping algebra of the complexified Lie algebra
gC WD g˝R C.

For X 2 g and f 2 C1.G/, we set

.LXf /.g/ WD d

dt
jtD0f .exp.�tX/g/; .RXf /.g/ WD d

dt
jtD0f .g exp.tX//;

(1.1)
and extend these actions to those of U.gC/.

We denote by ZG the C-algebra of G-invariant elements in U.gC/. Let j be a
Cartan subalgebra of g. Then any � 2 j_

C
gives rise to a C-algebra homomorphism

�� W ZG ! C via the Harish–Chandra isomorphismZG

! S.jC/

W.jC/, whereW.jC/
is some finite group (see Sect. 3.3).

Suppose that G0 is an algebraic reductive subgroup. Analogous notation will be
applied to G0. For instance, HomC-alg.ZG0 ;C/ ' .j0

C
/_=W.j0

C
/, �� $ �, where j0 is

a Cartan subalgebra of the Lie algebra g0 of G0.
We take a maximal compact subgroup K of G such that K 0 WD K \ G0 is a

maximal compact subgroup. Following Murase–Sugano [19], we state:

Definition 1.1 (Shintani Function). We say f 2 C1.G/ is a Shintani function
of .ZG;ZG0/-infinitesimal characters .�; �/ if f satisfies the following three
properties:

(1) f .k0gk/ D f .g/ for any k0 2 K 0, k 2 K .
(2) Ruf D ��.u/f for any u 2 ZG .
(3) Lvf D ��.v/f for any v 2 ZG0 .

We denote by Sh.�; �/ the space of Shintani functions of type .�; �/.
For G D G0 and � D ��, Shintani functions are nothing but Harish–Chandra’s

zonal spherical functions.

In this article, we provide the following three different realizations of the Shintani
space Sh.�; �/:

• Matrix coefficients of symmetry breaking operators. (See Proposition 7.1.)
• .K �K 0/-invariant functions on .G �G0/= diagG0. (See Lemma 5.5.)
• G0-invariant functions on the Riemannian symmetric space .G �G0/=.K �K 0/.

(See Lemma 8.6.)

The first realization constructs Shintani functions having moderate growth
(Definition 3.3) from the restriction of admissible smooth representations ofG with
respect to the subgroupG0, whereas the second realization relates Sh.�; �/ with the
theory of real spherical homogeneous spaces which was studied in [11–14]. Via the
third realization, we can apply powerful methods (e.g., [9]) of harmonic analysis on
Riemannian symmetric spaces for the study of Shintani functions.
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By using these ideas, we give a characterization of the pair .G;G0/ for which the
Shintani space Sh.�; �/ is finite-dimensional for all .�; �/:

Theorem 1.2 (see Theorem 4.1). The following four conditions on a pair of real
reductive algebraic groups G � G0 are equivalent:

(i) (Shintani function) Sh.�; �/ is finite-dimensional for any pair .�; �/ of
.ZG;ZG0/-infinitesimal characters.

(ii) (Symmetry breaking) HomG0.�1; �1/ is finite-dimensional for any pair
.�1; �1/ of admissible smooth representations of G and G0 (see Sect. 3.2).

(iii) (Invariant bilinear form) There exist at most finitely many linearly independent
G0-invariant bilinear forms on �1˝ �1 for any pair .�1; �1/ of admissible
smooth representations of G and G0.

(iv) (Geometric property (PP)) There exist minimal parabolic subgroupsP andP 0
of G and G0, respectively, such that PP 0 is open in G.

The dimension of the Shintani space Sh.�; �/ depends on � and � in general. We
give a characterization of the uniform boundedness property:

Theorem 1.3. The following four conditions on a pair of real reductive algebraic
groupsG � G0 are equivalent:

(i) (Shintani function) There exists a constant C such that

dimC Sh.�; �/ � C

for any pair .�; �/ of .ZG;ZG0/-infinitesimal characters.
(ii) (Symmetry breaking) There exists a constant C such that

dimC HomG0.�1; �1/ � C

for any pair .�1; �1/ of admissible smooth representations of G and G0.
(iii) (Invariant bilinear form) There exists a constant C such that

dimC HomG0.�1 ˝ �1;C/ � C

for any pair .�1; �1/ of admissible smooth representations of G and G0.
(iv) (Geometric property (BB)) There exist Borel subgroups B and B 0 of the

complex Lie groups GC � G0
C

with Lie algebras gC � g0
C

, respectively, such
that BB 0 is open in GC.

By using the geometric criterion (PP), we give a complete classification of the
reductive symmetric pairs .G;G0/ for which one of (therefore any of) the equivalent
conditions in Theorem 1.2 is fulfilled. See Theorem 2.3 for the classification.
Among them, those satisfying the uniform boundedness property in Theorem 1.3
are listed in Theorem 2.4.
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Example 1.4 (see Theorems 2.3 and 2.4).

(1) If .G;G0/ is

.GL.nC 1;C/; GL.n;C/ �GL.1;C// .n � 1/;

.O.nC 1;C/;O.n;C// .n � 1/;

or any real form of them, then we have

sup
�

sup
�

dimC Sh.�; �/ <1: (1.2)

(2) If .G;G0/ is

.Sp.nC 1;C/; Sp.n;C/ � Sp.1;C// .n � 2/;

or its split real form, then Sh.	g; 	g0/ is infinite-dimensional (see (3.4) for the
notation). On the other hand, if .G;G0/ is a nonsplit real form, then Sh.�; �/ is
finite-dimensional for all .�; �/, but the dimension is not uniformly bounded,
namely, (1.2) fails.

(3) If .G;G0/ is

.GL.nC 1;H/; GL.n;H/ �GL.1;H// .n � 1/;

then Sh.�; �/ is finite-dimensional for all .�; �/, but (1.2) fails.

This article is organized as follows:
In Sect. 2, we give a complete list of the reductive symmetric pairs .G;G0/ such

that the dimension of the Shintani space is finite/uniformly bounded.
After a brief review on basic results on continuous (infinite-dimensional) rep-

resentations of real reductive Lie groups in Sect. 3, we enrich Theorem 1.2 by
adding some more conditions that are equivalent to the finiteness of dimC Sh.�; �/
in Theorem 4.1.

The upper estimate of dimC Sh.�; �/ is proved in Sect. 5 by using the theory of
real spherical homogeneous spaces which was established in [14].

In Sect. 7 we give a lower estimate of dimC Sh.�; �/ by using the intertwining
operators constructed in Sect. 6.

In Sect. 8 we apply the theory of harmonic analysis on Riemannian symmetric
spaces, and investigate the relationship between symmetry breaking operators of the
restriction of admissible smooth representations of G to G0 and Shintani functions.
Sect. 9 provides an example for .G;G0/ D .O.nC 1; 1/;O.n; 1// by using a recent
work [16] with B. Speh on symmetry breaking operators.
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2 Classification of .G; G 0/ with dimC Sh.�; �/ < 1

This section gives a complete classification of the reductive symmetric pairs .G;G0/
such that the dimension of the Shintani space Sh.�; �/ is finite/bounded for any
.ZG;ZG0/-infinitesimal characters .�; �/. Owing to the criteria in Theorems 1.2
and 1.3, the classification is reduced to that of (real) spherical homogeneous spaces
of the form .G �G0/= diagG0, which was accomplished in [13].

Definition 2.1 (Symmetric Pair). Let G be a real reductive Lie group. We say
.G;G0/ is a reductive symmetric pair if G0 is an open subgroup of the fixed point
subgroupG� of some involutive automorphism � of G.

Example 2.2. (1) (Group case) Let G1 be a Lie group. Then the pair

.G;G0/ D .G1 �G1; diagG1/

forms a symmetric pair with the involution � 2 Aut.G/ defined by �.x; y/ D
.y; x/. Since the homogeneous spaceG=G0 is isomorphic to the group manifold
G1 with .G1�G1/-action from the left and the right, the pair .G1�G1; diagG1/
is sometimes referred to as the group case.

(2) (Riemannian symmetric pair) Let K be a maximal compact subgroup of a
real reductive linear Lie group G. Then the pair .G;K/ is a symmetric pair
because K is the fixed point subgroup of a Cartan involution � of G. Since the
homogeneous spaceG=K becomes a symmetric space with respect to the Levi-
Civita connection of aG-invariant Riemannian metric onG=K , the pair .G;K/
is sometimes referred to as a Riemannian symmetric pair.

The classification of reductive symmetric pairs was established by Berger [2] on
the level of Lie algebras. Among them we list the pairs .G;G0/ such that the space
of Shintani functions is finite-dimensional as follows:

Theorem 2.3. Suppose .G;G0/ is a reductive symmetric pair. Then the following
two conditions are equivalent:

(i) Sh.�; �/ is finite-dimensional for any .ZG;ZG0/-infinitesimal characters .�; �/.
(ii) The pair .g; g0/ of the Lie algebras is isomorphic (up to outer automorphisms)

to the direct sum of the following pairs:

(A) Trivial case: g D g0.
(B) Abelian case: g D R, g0 D f0g.
(C) Compact case: g is the Lie algebra of a compact simple Lie group.
D) Riemannian symmetric pair: g0 is the Lie algebra of a maximal compact

subgroupK of a non-compact simple Lie group G.
(E) Split rank one case (rankRG D 1):

E1) .o.p C q; 1/; o.p/C o.q; 1// .p C q � 2/.
E2) .su.p C q; 1/; s.u.p/C u.q; 1/// .p C q � 1/.
E3) .sp.p C q; 1/; sp.p/C sp.q; 1// .p C q � 1/.
E4) .f4.�20/; o.8; 1//.
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(F) Strong Gelfand pairs and their real forms:

F1) .sl.nC 1;C/; gl.n;C// .n � 2/.
F2) .o.nC 1;C/; o.n;C// .n � 2/.
F3) .sl.nC 1;R/; gl.n;R// .n � 1/.
F4) .su.p C 1; q/; u.p; q// .p C q � 1/.
F5) .o.p C 1; q/; o.p; q// .p C q � 2/.

(G) .g; g0/ D .g1 C g1; diagg1/ Group case:

G1) g1 is the Lie algebra of a compact simple Lie group.
G2) .o.n; 1/C o.n; 1/; diag o.n; 1// .n � 2/.

(H) Other cases:

H1) .o.2n; 2/; u.n; 1// .n � 1/.
H2) .su�.2nC 2/; su.2/C su�.2n/C R/ .n � 1/.
H3) .o�.2nC 2/; o.2/C o�.2n// .n � 1/.
H4) .sp.p C 1; q/; sp.p; q/C sp.1//.
H5) .e6.�26/; so.9; 1/C R/.

We single out those pairs .G;G0/ having the uniform boundedness property as
follows:

Theorem 2.4. Suppose .G;G0/ is a reductive symmetric pair. Then the following
conditions are equivalent:

(i) There exists a constant such that

dimC Sh.�; �/ � C

for any .ZG;ZG0/-infinitesimal characters .�; �/.
(ii) The pair of the Lie algebras .g; g0/ is isomorphic (up to outer automorphisms)

to the direct sum of the pairs in (A), (B) and (F1)–(F5).

Example 2.5. In connection with branching problems, some of the pairs appeared
earlier in the literatures. For instance,

(1) (Strong Gelfand pairs [18]) (F1), (F2).
(2) (The Gross–Prasad conjecture [4]) (F2), (F5).
(3) (Finite-multiplicity for tensor products [11]) (G2).
(4) (Multiplicity-free restriction [1, 21]) (F1)–(F5).

Remark 2.6. The following pairs .G;G0/ are nonsymmetric pairs such that .G;G0/
satisfies the condition (i) of Theorem 2.4.

.G;G0/ D .SO.8;C/;Spin.7;C//; .SO.4; 4/;Spin.4; 3//:

In fact the Lie algebras .g; g0/ are symmetric pairs, but the involution of g does not
lift to the groupG.



Shintani Functions and Real Spherical Manifolds 133

Proof of Theorem 2.3. Direct from Theorem 1.2 and [13, Theorem 1.3]. ut
Proof of Theorem 2.4. Direct from Theorem 1.3 and [13, Proposition 1.6]. ut

3 Preliminary Results

We begin with a quick review of some basic results on (infinite-dimensional)
continuous representations of real reductive Lie groups.

3.1 Continuous Representations and Frobenius Reciprocity

By a continuous representation � of a Lie group G on a topological vector space
V we shall mean that � W G ! GLC.V / is a group homomorphism such that the
induced mapG�V ! V , .g; v/ 7! �.g/v is continuous. We say � is a (continuous)
Hilbert [Banach, Fréchet, � � � ] representation if V is a Hilbert [Banach, Fréchet, � � � ]
space. We note that a continuous Hilbert representation is not necessarily a unitary
representation; a Hilbert representation � of G is said to be a unitary representation
provided that all the operators �.g/ (g 2 G) are unitary.

Suppose � is a continuous representation of G on a Banach space V . A vector
v 2 V is said to be smooth if the mapG ! V , g 7! �.g/v is of C1-class. Let V1
denote the space of smooth vectors of the representation .�; V /. Then V1 carries a
Fréchet topology with a family of seminorms kvki1 ���ik WD kd�.Xi1/ � � �d�.Xik /vk,
where fX1; � � � ; Xng is a basis of g. Then V1 is a G-invariant subspace of V , and
we obtain a continuous Fréchet representation .�1; V1/ of G.

Suppose that G0 is another Lie group. If � and � are Hilbert representations of
G and G0 on the Hilbert spaces H� and H� , respectively, then we can define a
continuous Hilbert representation � � � of the direct product group on the Hilbert
completion on H� b̋H� of the pre-Hilbert space H� ˝H� .

Suppose further that G0 is a subgroup of G. Then we may regard � as a
representation of G0 by the restriction. The resulting representation is denoted by
�jG0 . The restriction of the outer tensor product � � � of G � G0 to the subgroup
diagG0 D f.g0; g0/ W g0 2 G0g is denoted by � ˝ � . By a symmetry breaking
operator we mean a continuous G0-homomorphism from the representation space
of � to that of � . We write HomG0.�jG0 ; �/ for the vector space of continuous G0-
homomorphisms. Analogous notation is applied to smooth representations.

For the convenience of the reader, we review some basic properties of the
restriction:

Lemma 3.1. Suppose that � and � are Hilbert representations of G and G0 on
Hilbert spaces H� and H� , respectively.

(1) There is a canonical injective homomorphism:

HomG0.�jG0 ; �/ ,! HomG0.�1jG0 ; �1/; T 7! T jH 1

�
: (3.1)



134 T. Kobayashi

(2) Let �_ be the contragredient representation of � . Then we have a canonical
isomorphism:

HomG0.�jG0 ; �/ ' HomG0.� ˝ �_;C/: (3.2)

(3) There is a canonical injective homomorphism if G and G0 are real reductive:

HomG0.�1jG0 ; �1/ ,! HomG0.�1 ˝ .�_/1;C/:

Proof. (1) See [14, Lemma 5.1], for instance.
(2) We have a canonical isomorphism between the two vector spaces HomC

.H� ;H� / and HomC.H� b̋H _
� ;C/, where HomC. ; / denotes the space of

continuous linear maps. Taking G0-invariant elements, we get (3.2).
(3) See [1, Lemma A.0.8], for instance. ut
Proposition 3.2 (Frobenius Reciprocity). Let H be a closed subgroup of a Lie
groupG. Suppose that � is a continuous representation ofG on a topological vector
space V . Then there is a canonical bijection

HomH.�jH ;C/ ' HomG.�; C.G=H//; � 7! T (3.3)

defined by

T .v/.g/ D �.�.g�1/v/ v 2 V:
Furthermore, if �1 is a smooth representation, then we have

HomH.�
1jH ;C/ ' HomG.�

1; C1.G=H//:

Proof. The linear map T W V ! C.G=H/ is continuous because G � V ! V ,
.g; v/ 7! �.g�1/v is continuous. The last statement follows because G ! V ,
g 7! �.g/�1v is a C1-map. ut

3.2 Admissible Representations

In this subsection we review some basic terminologies for Harish–Chandra modules.
Let G be a real reductive linear Lie group, and K a maximal compact subgroup

of G. Let H C denote the category of Harish–Chandra modules where the objects
are .g; K/-modules of finite length, and the morphisms are .g; K/-homomorphisms.

Let � be a continuous representation of G on a Fréchet space V . Suppose that
� is of finite length, namely, there are at most finitely many closed G-invariant
subspaces in V . We say � is admissible if

dim HomK.�; �jK/ <1



Shintani Functions and Real Spherical Manifolds 135

for any irreducible finite-dimensional representation � of K . We denote by VK the
space ofK-finite vectors. Then VK � V1 and the Lie algebra g leaves VK invariant.
The resulting .g; K/-module on VK is called the underlying .g; K/-module of� , and
will be denoted by �K .

An admissible representation .�; V / is said to be spherical if V contains a
nonzeroK-fixed vector, or equivalently, the underlying .g; K/-module VK contains
a nonzeroK-fixed vector.

A vector v 2 V is said to be cyclic if the vector space C-spanf�.g/v W g 2 Gg
is dense in V . If W is a proper G-invariant closed subspace of V , then v mod W
is a cyclic vector in the quotient representation on V=W . For a K-finite vector v, v
is cyclic in � if and only if v is cyclic in the underlying .g; K/-module �K in the
sense that U.gC/v D VK .

3.3 Harish–Chandra Isomorphism

We review the standard normalization of the Harish–Chandra isomorphism of the
C-algebra ZG , where we recall from Introduction that

ZG D U.gC/G � fu 2 U.gC/ W Ad.g/u D u for all g 2 Gg:

For a connected G, ZG is equal to the center Z.gC/ of U.gC/.
Let j be a Cartan subalgebra of g, jC D j˝R C, and j_

C
D HomC.jC;C/. We set

W.jC/ WD N QG.jC/=Z QG.jC/;

where QG is the group generated by Ad.G/ and the group Int.gC/ of inner
automorphisms. For a connected G, W.jC/ is the Weyl group for the root system
�.gC; jC/.

Fix a positive system �C.gC; jC/, and write nC
C

for the sum of the root spaces
belonging to �C.gC; jC/, and n�

C
for ��.gC; jC/. We set

	g WD 1

2

X

˛2�C.gC;jC/

˛ 2 j_
C
: (3.4)

Let 
 0 W U.gC/ ! U.jC/ ' S.jC/ be the projection to the second factor of
the decomposition U.gC/ D .n�

C
U.gC/ C U.gC/nC

C
/ ˚ U.jC/. Then we have the

Harish–Chandra isomorphism

ZG D U.gC/G 
!


S.jC/

W.jC/; (3.5)

where 
 W U.gC/! S.jC/ is defined by h
.u/; �i D h
 0.u/; � � 	gi for all � 2 j_
C
:
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Then any element � 2 j_
C

gives a C-algebra homomorphism �� W ZG ! C via
the isomorphism (3.5), and �� D ��0 if and only if �0 D w� for some w 2 W.jC/.
This correspondence yields a bijection:

HomC-alg.ZG;C/ ' j_
C
=W.jC/; �� $ �: (3.6)

In our normalization, the ZG-infinitesimal character of the trivial representation
1 of G is given by 	g.

For � 2 j_
C
=W.jC/, we set

C1.GI�R� / WDff 2 C1.G/ W Ruf D ��.u/f for any u 2 ZGg;
C1.GI�L� / WDff 2 C1.G/ W Luf D ��.u/f for any u 2 ZGg:

Then we have C1.GI�R� / D C1.GI�L��/.
Let H be a closed subgroup of G. Since the action of ZG on C1.G/ via R (and

via L) commutes with the right H -action, Ru and Lu .u 2 ZG/ induce differential
operators on G=H . Thus, for � 2 j_

C
=W.jC/, we can define

C1.G=H I�R� / WDff 2 C1.G=H/ W Ruf D ��.u/f for any u 2 ZGg;
C1.G=H I�L� / WDff 2 C1.G=H/ W Luf D ��.u/f for any u 2 ZGg:

3.4 Shintani Functions of Moderate Growth

Without loss of generality, we may and do assume that a real reductive linear Lie
group G is realized as a closed subgroup of GL.n;R/ such that G is stable under
the transpose of matrix g 7! tg and K D O.n/ \ G. For g 2 G we define a map
k � k W G ! R by

kgk WD kg ˚ tg�1kop

where k � kop is the operator norm of M.2n;R/. A continuous representation � of
G on a Fréchet space V is said to be of moderate growth if for each continuous
seminorm j � j on V there exist a continuous seminorm j � j0 on V and a constant
d 2 R such that

j�.g/uj � kgkd juj0 for g 2 G; u 2 V:

For any admissible representation .�;H / such that H is a Banach space, the
smooth representation .�1;H 1/ has moderate growth. We say .�1;H 1/ is an
admissible smooth representation. By the Casselman–Wallach globalization theory,
there is a canonical equivalence of categories between the category H C of .g; K/-
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modules of finite length and the category of admissible smooth representations
of G [22, Chapter 11]. In particular, the Fréchet representation �1 is uniquely
determined by its underlying .g; K/-module. We say �1 is the smooth globalization
of �K 2H C .

For simplicity, by an irreducible smooth representation we shall mean an
irreducible admissible smooth representation of G.

Definition 3.3. A smooth function f on G is said to have moderate growth if f
satisfies the following three properties:

(1) f is right K-finite.
(2) f is ZG-finite.
(3) There exists a constant d 2 R (depending on f ) such that if u 2 U.gC/, then

there exists C � C.u/ satisfying

j.Ruf /.x/j � Ckxkd .x 2 G/:

We denote by C1
mod.G/ the space of all f 2 C1.G/ having moderate growth.

If .�; V / is an admissible representation of moderate growth, then the matrix
coefficient G ! C, g 7! h�.g/v; ui belongs to C1

mod.G/ for any v 2 VK and
any linear functional u of the Fréchet space V .

We define the space of Shintani functions of moderate growth by

Shmod.�; �/ WD Sh.�; �/\ C1
mod.G/: (3.7)

4 Finite-Multiplicity Properties of Branching Laws

We are ready to make a precise statement of Theorem 1.2, and enrich it by adding
some more equivalent conditions. The main results of this section is Theorem 4.1.

4.1 Finite-Multiplicity Properties of Branching Laws

Theorem 4.1. The following twelve conditions on a pair of real reductive algebraic
groupsG � G0 are equivalent:

(i) (PP) There exist minimal parabolic subgroups P and P 0 of G and G0,
respectively, such that PP 0 is open in G.

(ii) .Sh/ dimC Sh.�; �/ < 1 for any pair .�; �/ of .ZG;ZG0/-infinitesimal
characters.

(iii) .Shmod/ dimC Shmod.�; �/ <1 for any pair .�; �/ of .ZG;ZG0/-infinitesimal
characters.

(iv) .Shmod/1 dimC Shmod.	g; 	g0/ <1.
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(v) .1 #/ dimC HomG0.�1jG0 ; �1/ <1 for any pair .�1; �1/ of admissible
smooth representations of G and G0.

(vi) .1 #/K dimC HomG0.�1jG0 ; �1/ < 1 for any pair .�1; �1/ of
admissible smooth representations of G and G0 such that �1 and .�1/_
have cyclic spherical vectors.

(vii) .H #/ dimC HomG0.�jG0 ; �/ <1 for any pair .�; �/ of admissible Hilbert
representations of G and G0.

(viii) .H #/K dimC HomG0.�jG0 ; �/ < 1 for any pair .�; �/ of admissible
Hilbert representations ofG andG0 such that � and �_ have cyclic spherical
vectors.

(ix) .1˝/ dimC HomG0.�1 ˝ �1;C/ < 1 for any pair .�1; �1/ of admis-
sible smooth representations of G and G0.

(x) .1˝/K dimC HomG0.�1 ˝ �1;C/ < 1 for any pair .�1; �1/ of
admissible smooth representations of G and G0 such that �1 and �1 have
cyclic spherical vectors.

(xi) .H ˝/ dimC HomG0.� ˝ �;C/ < 1 for any pair .�; �/ of admissible
Hilbert representations of G and G0.

(xii) .H ˝/K dimC HomG0.� ˝ � ;C/ < 1 for any pair .�; �/ of admissible
Hilbert representations of G and G0 such that � and � have cyclic spherical
vectors.

4.2 Outline of the Proof of Theorem 4.1

The following implications are obvious:

.ii/ .Sh/ ) .iii/ .Shmod/ ) .iv/ .Shmod/1:

By Lemma 3.1, we have the following inclusive relations and isomorphism.

HomG0 .�1 ˝ .�_/1;C/ � HomG0.�1; �1/ � HomG0.�; �/

' HomG0.� ˝ �_;C/:

In turn, we have the obvious implications and equivalences as below.

.ix/ .1˝/ H) .v/ .1 #/ H) .vii/ .H #/ ” .xi/ .H ˝/
+ + + +
.x/ .1˝/K H) .vi/ .1 #/K H) .viii/ .H #/K ” .xii/ .H ˝/K:
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The remaining nontrivial implications are

.viii/ .H #/K or .iv/ .Shmod/1

+
.i/ .PP/

+
.ii/ .Sh/ and .ix/ .1˝/:

We discuss the geometric property (PP) in Sect. 5.1. Then the implications

.i/ (PP)) .ii/ (Sh) and .ix/ .1˝/
are given in Propositions 5.6 and 5.7, respectively.

The implication

.viii/ .H #/K ) .i/ (PP)

is proved in Proposition 6.5, and the implication

.iv/ .Shmod/1 ) .i/ (PP)

is proved in Corollary 7.3.
The relationship of HomG0.�1; �1/ (symmetry breaking operators) and

Sh.�; �/ (Shintani functions) will be discussed in Sects. 7 and 8.

4.3 Invariant Trilinear Forms

Suppose that �1
i are admissible smooth representations of a Lie groupG on Fréchet

spaces H 1
i .i D 1; 2; 3/. A continuous trilinear form

T WH 1
1 �H 1

2 �H 1
3 ! C

is invariant if

T .�1
1 .g/u1; �

1
2 .g/u2; �

1
3 .g/u3/ D T .u1; u2; u3/

for all g 2 G and ui 2H 1
i .i D 1; 2; 3/:

Corollary 4.2. (1) Suppose G is a real reductive Lie group. Then the following
four conditions on G are equivalent:

(i) .G �G �G/= diagG is real spherical as a .G �G �G/-space.
(ii) (Shintani functions in the group case) The space Sh..�1; �2/; �3/ of

Shintani functions for .G �G; diagG/ is finite-dimensional for any triple
of ZG-infinitesimal characters �1, �2 and �3.
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(iii) (Symmetry breaking for the tensor product) For any triple of admissible
smooth representations �1

1 , �1
2 , and �1

3 of G,

dimC HomG.�
1
1 ˝ �1

2 ; �
1
3 / <1:

(iv) (Invariant trilinear form) For any triple of admissible smooth represen-
tations �1

1 , �1
2 and �1

3 of G, the space of invariant trilinear forms is
finite-dimensional.

(2) Suppose thatG is a simple Lie group. Then one of (therefore any of ) the above
four equivalent conditions is fulfilled if and only if either G is compact or g is
isomorphic to o.n; 1/ .n � 2/.

Proof. The first and second statements are special cases of Theorems 4.1 and 2.3,
respectively. ut
Remark 4.3. As in (vi) and (viii) of Theorem 4.1, the conditions (iii) and (iv) of
Corollary 4.2 are equivalent to the analogous statements by replacing �1

j (j D
1; 2; 3) with spherical ones.

Remark 4.4. The equivalence (i), (ii) was first formulated in [11] with a sketch
of proof.

Example 4.5. For G D O.n; 1/, a meromorphic family of invariant trilinear forms
for spherical principal series representations was constructed in [3].

Remark 4.6. It may happen that the restriction �jG0 is discretely decomposable.
We discussed in [10, 15] when HomG0.�; �jG0 / is finite-dimensional for all irre-
ducible representations � of G0.

5 Real Spherical Manifolds and Shintani Functions

In this section we regard Shintani functions as smooth functions on the homoge-
neous space .G�G0/= diagG0, and apply the theory of real spherical homogeneous
spaces [14]. In particular, we give a proof of the implication (i) (PP)) (ii) (Sh) and
(ix) (1˝) in Theorem 4.1 (see Proposition 5.6).

5.1 Real Spherical Homogeneous Spaces and (PP)

A complex manifold XC with action of a complex reductive group GC is called
spherical if a Borel subgroup of GC has an open orbit in XC. In the real setting, in
search of a good framework for global analysis on homogeneous spaces which are
broader than the usual (e.g. symmetric spaces), we proposed to call:
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Definition 5.1 ([11]). Let G be a real reductive Lie group. We say a smooth
manifold X with G-action is real spherical if a minimal parabolic subgroup P of
G has an open orbit in X .

The significance of this geometric property is its application to the finite-multiplicity
property in the regular representation of G on C1.X/, which was proved by
using the theory of hyperfunctions and regular singularities of a system of partial
differential equations:

Proposition 5.2 ([14, Theorem A and Theorem 2.2]). Suppose G is a real
reductive linear Lie group, and H is a closed subgroup. If the homogeneous space
G=H is real spherical, then the regular representation of G on the Fréchet space
C1.G=H I�L� / is admissible for any ZG-infinitesimal character � 2 j_

C
=W.jC/.

In particular,

HomG.�
1; C1.G=H// is finite-dimensional

for any smooth admissible representation �1 of G.

Suppose that G0 is an algebraic reductive subgroup of G. Let P 0 be a minimal
parabolic subgroup of G0.

Definition 5.3 ([14]). We say the pair .G;G0/ satisfies (PP) if one of the following
five equivalent conditions is satisfied.

(PP1) .G �G0/= diagG0 is real spherical as a .G �G0/-space.
(PP2) G=P 0 is real spherical as a G-space.
(PP3) G=P is real spherical as a G0-space.
(PP4) G has an open orbit in G=P �G=P 0 via the diagonal action.
(PP5) There are finitely many G-orbits in G=P �G=P 0 via the diagonal action.

The above five equivalent conditions are determined only by the Lie algebras g
and g0. Therefore we also say that the pair .g; g0/ of Lie algebras satisfies (PP).

Next we consider another property, to be denoted by (BB), which is stronger
than (PP). Let GC be a complex Lie group with Lie algebra gC D g˝R C, and G0

C

a subgroup of GC with complexified Lie algebra g0
C
D g0 ˝R C. Let B and B 0 be

Borel subgroups of GC and G0
C

, respectively.

Definition 5.4. We say the pair .G;G0/ (or the pair .g; g0/) satisfies (BB) if one of
the following five equivalent conditions is satisfied:

(BB1) .GC �G0
C
/= diagG0

C
is spherical as a .GC �G0

C
/-space.

(BB2) GC=B
0 is spherical as a GC-space.

(BB3) GC=B is real spherical as a G0
C

-space.
(BB4) GC has an open orbit in GC=B �GC=B

0 via the diagonal action.
(BB5) There are finitely manyGC-orbits inGC=B�GC=B

0 via the diagonal action.

The above five equivalent conditions are determined only by the complexified Lie
algebras gC and g0

C
. It follows from [14, Lemmas 4.2 and 5.3] that we have an

implication that

(BB)) (PP):
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5.2 Shintani Functions and Real Spherical
Homogeneous Spaces

We return to Shintani functions for the pair G � G0. Let .�; �/ 2 j_
C
=W.jC/ �

.j0
C
/_=W.j0

C
/. We begin with an elementary and useful point of view:

Lemma 5.5. The multiplication map

' W G �G0 ! G; .g; h/ 7! gh�1

induces the following linear isomorphism

'� W Sh.�; �/

! HomK�K0.1 � 1; C1..G �G0/= diagG0I�L�;�//;

where 1 denotes the trivial one-dimensional representation of the group K (or that
of K 0).

Proof. The pull-back of functions

'� W C1.G/ 
! C1..G �G0/= diagG0/

satisfies

LXLY .'
�f / D '�.LXRY f / for all X 2 g, Y 2 g0 and f 2 C1.G/.

Hence '� maps Sh.�; �/ onto the space of .K�K 0/-invariant functions ofC1..G�
G0/= diagG0I�L�;�/. ut
Proposition 5.6. If .G;G0/ satisfies (PP), then dimC Sh.�; �/ < 1 for any pair
.�; �/ of .ZG;ZG0/-infinitesimal characters.

Proof. Since .G;G0/ satisfies (PP1), the regular representation on the Fréchet
space C1..G � G0/= diagG0I�L�;�/ is admissible as a representation of the direct
product group G � G0 by Proposition 5.2. Therefore, Proposition 5.6 follows from
Lemma 5.5. ut
Proposition 5.7. If .G;G0/ satisfies (PP), then HomG0.�1 ˝ �1;C/ is finite-
dimensional for any pair .�1; �1/ of admissible smooth representations of G
and G0.

Proof. Since .G �G0/= diagG0 is real spherical,

dimC HomG�G0 .�1 � �1; C1.G �G0= diagG0// <1

by Proposition 5.2. Therefore Proposition 5.7 follows from the Frobenius reciprocity
(Proposition 3.2). ut
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6 Construction of Intertwining Operators

In this section we give lower bounds of the dimension of the space of symmetry
breaking operators for the restriction of admissible Hilbert representations.

6.1 A Generalization of the Poisson Integral Transform

We fix some general notation. Let H be a closed subgroup of G. Given a finite-
dimensional representation � of H on a vector space W� , we denote by W� the
G-equivariant vector bundleG �H W� over the homogeneous space G=H . Then we
have a representation of G naturally on the space of sections

F .G=H I �/ � F .G=H IW� /

' ff 2 F .G/˝W W f .�h/ D �.h/�1f .�/ for h 2 H g;
where F D A , C1, D 0, or B denote the sheaves of analytic functions, smooth
functions, distributions, or hyperfunctions, respectively.

Remark 6.1. We shall regard distributions as generalized functions à la Gelfand (or
a special case of hyperfunctions à la Sato) rather than continuous linear forms on
C1
c .G=H;W� /.

We define a one-dimensional representation of H by

�G=H W H ! R
�; h 7! j det.Ad#.h/ W g=h! g=h/j�1;

where Ad#.h/ is the quotient representation of the adjoint representation Ad.h/ 2
GLR.g/. The bundle of volume densities of X D G=H is given as a G-
homogeneous line bundle ˝X ' G �H �G=H . Then the dualizing bundle of W�

is given, as a homogeneous vector bundle, by

W �
� WD .G �H W _

� /˝˝X ' G �H ��;

where .�_;W _
� / denotes the contragredient representation of .�;W�/, and �� is a

complex representation of H given by

�� WD �_ ˝ �G=H : (6.1)

Suppose now thatQ is a parabolic subgroup of a real reductive Lie groupG, and
Q D LN a Levi decomposition. By an abuse of notation we write C2	 for �G=Q.
Then C2	 is trivial on the nilpotent subgroup N , and the restriction of C2	 to the
Levi part L coincides with the one-dimensional representation defined by

L! R
� l 7! j det.Ad.l/ W n! n/j:
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In view of the isomorphismK=.Q \K/ 
! G=Q, W� may be regarded as a K-
equivariant vector bundle overK=.Q\K/. Then there exist aK-invariant Hermitian
vector bundle structure on W� and a K-invariant Radon measure on K=.Q \ K/,
and we can define a Hilbert representation of G on the Hilbert space L2.G=QI �/
of square integrable sections of W� . The underlying .g; K/-module of F .G=QI �/
does not depend on the choice of F D A ; C1, D 0, B, or L2, and will be denoted
by E.G=QI �/.

We denote by OGf and OLf the sets of equivalence classes of finite-dimensional
irreducible representations over C of the groups G and L, respectively. Then there
is an injective map

OGf ,! OLf ; � 7! �.�/

such that � is the unique quotient of the .g; K/-module E.G=QI�.�//. We note
that �.1/ D C2	.

Here is a Hilbert space analog of [14, Theorem 3.1] which was formulated in
the category of .g; K/-modules (and was proved in the case where Q is a minimal
parabolic subgroup of G).

Proposition 6.2. Let Q be a parabolic subgroup of G, and H a closed subgroup
of G. Suppose that there are m disjoint H -invariant open subsets in the real
generalized flag variety G=Q. Then

dim HomG.L
2.G=QI�.�//; C.G=H I �// � m dim HomH.� jH ; �/;

for any finite-dimensional representations � and � of G and H , respectively. In
particular, we have

dim HomG.L
2.G=Q;˝G=Q/; C.G=H// � m:

A key of the proof is the construction of integral intertwining operators formulated
as follows:

Proposition 6.3. Let � and � be finite-dimensional representations of H and Q,
respectively. We set �� D �_ ˝C2	. Let .F ;F 0/ be one of the pairs

.A ;B/; .C1;D 0/; .L2; L2/; .D 0; C1/; or .B;A /:

Then there is a canonical injective map

˚ W .F 0.G=QI ��/˝ �/H ,! HomG.F .G=QI �/; C.G=H I �//:

Proof. The proof is essentially the same with that of [14, Lemma 3.2] which treated
the case where .F ;F 0/ D .A ;B/ and whereQ is a minimal parabolic subgroup of
G. For the sake of completeness, we repeat the proof with appropriate modifications.
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The natural G-invariant nondegenerate bilinear form

h ; i W F .G=QI �/ �F 0.G=QI ��/! C

induces an injective G-homomorphism

� W F 0.G=QI ��/ ,! HomG.F .G=QI �/; C.G//

by

�.�/.u/.g/ WD h�.g/�1u; �i for � 2 F 0.G=QI ��/ and u 2 F .G=QI �/;

where � is the regular representation of G on F .G=QI �/.
Taking the tensor product with the finite-dimensional representation � followed

by collectingH -invariant elements, we get the linear map ˚ in Proposition 6.3. ut
Example 6.4 (Poisson Integral Transform). We apply Proposition 6.3 in the follow-
ing setting:

.F ;F 0/ D .B;A /;

H D K;
Q W a minimal parabolic subgroup of G;

� W the trivial one-dimensional representation 1 of K;

� W a one-dimensional representation of Q such that �jQ\K is trivial.

Then A .G=QI ��/ is identified with A .K=.Q \ K// as a K-module, and the
constant function 1K onK=.Q\K/ gives rise to an element of .A .G=QI ��/˝�/K .
Then P� WD ˚.1K/ in Proposition 6.3 coincides with the Poisson integral
transform for the Riemannian symmetric space G=K [8, Chapter 2]:

P� W B.G=QI �/! C.G=K/; f 7! .P�f /.g/ D
Z

K

f .gk/dk:

See Proposition 8.5 for the preceding results on the image of P�.

Proof of Proposition 6.2. The proof is parallel to that of [14, Theorem 3.17].
LetUi (i D 1; 2; � � � ; m) be disjointH -invariant open subsets inG=Q. We define

�i .g/ WD
(
1 if g 2 Ui;
0 if g 62 Ui :

Then �i 2 L2.G=Q/ ' L2.K=Q \K/ .i D 1; � � � ; m/, and they are H -invariant
and linearly independent.
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We take linearly independent elements u1, : : :, un in HomH.� jH ; �/. Taking
the dual of the surjective .g; K/-homomorphism E.G=QI�.�// � � , we have
an injective .g; K/-homomorphism �_ ,! E.G=QI�.�/�/ � A .G=QI�.�/�/.
Hence we may regard uj 2 HomH.� jH ; �/ ' .�_ ˝ �/H as H -invariant elements
of A .G=QI�.�/�/ ˝ � . Then �iuj 2 .L2.G=QI�.�/�/ ˝ �/H (1 � i � m,
1 � j � n) are linearly independent.

Proposition 6.2 now follows from Proposition 6.3 with .F ;F 0/ D .L2; L2/. ut
Proposition 6.5. Let Q andQ0 be parabolic subgroups of G and G0. Suppose that
there are m disjoint Q0-invariant open sets in G=Q. Then

dim HomG0.L2.G=Q;˝G=Q/; L
2.G0=Q0// � m:

Proof. We apply Proposition 6.2 to .G � G0, diagG0, 1, 1, Q �Q0) for .G, H , � ,
� , Q). Then we have

dim HomG�G0 .� � � ; C.G �G0= diagG0// � m;

where � is the Hilbert representation of G on L2.G=Q;˝G=Q/ and � is that of G0
on L2.G0=Q0;˝G0=Q0/.

By Proposition 3.2, we have

dim HomG0..� � �/jdiagG0 ;C/ � m:

By Lemma 3.1 (2), we get the required lower bound. ut

6.2 Realization of Small Representations

We end this section with a refinement of [14, Theorem A (2)] which was formulated
originally in the category of .g; K/-modules and was proved when Q is a minimal
parabolic subgroup of G.

Definition 6.6. LetQ be a parabolic subgroup of a real reductive Lie groupG. Let
� be an irreducible admissible representation of G, and �K the underlying .g; K/-
module. We say � (or �K ) belongs to Q-series if �K occurs as a subquotient of
the induced .g; K/-module E.G=QI �/ for some finite-dimensional representation
� of Q.

By Harish–Chandra’s subquotient theorem [5], all irreducible admissible repre-
sentations of G belong to P -series where P is a minimal parabolic subgroup
of G. Loosely speaking, the larger a parabolic subgroup Q is, the “smaller” a
representation belonging to Q-series becomes, as the following lemma indicates:
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Lemma 6.7. If �K belongs to Q-series, then its Gelfand–Kirillov dimension, to be
denoted by DIM.�K/, satisfies

DIM.�K/ � dimG=Q:

The following result formulates that if a subgroup H is “small enough” then the
space .��1/H ofH -invariant distribution vectors of � can be of infinite dimension
even for a “small” admissible representations �:

Corollary 6.8. LetH be an algebraic subgroup ofG, andQ a parabolic subgroup
of G. Assume that H does not have an open orbit in G=Q. Then for any algebraic
finite-dimensional representation � of H , there exists an irreducible admissible
Hilbert representation � of G such that � satisfies the following two properties:

• � belongs to Q-series,
• dim HomG.�; C.G=H I �// D1.

In particular,

dim HomG.�
1; C1.G=H I �//D dim Homg;K.�K;A .G=H I �// D 1.

Proof. There exist infinitely many disjoint H -invariant open sets in G=Q if H
does not have an open orbit in G=Q (see [14, Lemma 3.5]). Hence Corollary 6.8
follows from Proposition 6.2 because there exist at most finitely many irreducible
subquotients in the Hilbert representation of G on L2.G=Q;˝G=Q/. ut
Corollary 6.9. Let G � G0 be algebraic real reductive Lie groups and Q and Q0
parabolic subgroups of G and G0, respectively. Assume that Q0 does not have an
open orbit in G=Q. Then there exist irreducible admissible Hilbert representations
� and � of G and G0, respectively, such that .�; �/ satisfies the following two
properties:

• � belongs to Q-series, � belongs to Q0-series.
• dim HomG0.�jG0 ; �/ D 1.

In particular, dim HomG0.�1jG0 ; �1/ D 1.

Proof. Corollary 6.9 follows from Proposition 6.5. Since the argument is similar to
the proof of Corollary 6.8, and we omit it. ut

7 Symmetry Breaking Operators and Construction
of Shintani Functions

In this section we construct Shintani functions of moderate growth from symmetry
breaking operators of the restriction of admissible smooth representations.
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Proposition 7.1. Let �1 be a spherical, admissible smooth representation of G,
and �1 that of G0. Suppose that �1 and �1 have ZG and ZG0 -infinitesimal
characters � and ��, respectively.

(1) Let 1� and 1�_ be nonzero spherical vectors of �K and �_
K0 , respectively. Then

there is a natural linear map

HomG0.�1; �1/! Shmod.�; �/; T 7! F (7.1)

defined by

F.g/ WD hT ı �1.g/1� ; 1�_i for g 2 G:

(2) Assume that the spherical vectors 1� and 1�_ are cyclic in �K and �_
K0 ,

respectively. Then (7.1) is injective. In particular, if both �1 and �1 are
irreducible, (7.1) is injective.

Remark 7.2. In the setting of Proposition 7.1, if we drop the assumption that 1� is
cyclic, then the homomorphism (7.1) may not be injective. In fact, we shall see in
Sect. 9 that there is a countable set of .�; �/ for which the following three conditions
are satisfied:

• dimC HomG0.�1; �1/ D 2,
• dimC Shmod.�; �/ D 1,
• 1�_ is cyclic in �_.

Proof of Proposition 7.1. (1) Since T 2 HomG0.�1; �1/, the function F 2
C1.G/ satisfies

F.hg/ Dh�1.h/ ı � ı �1.g/1� ; 1�_i
DhT ı �1.g/1� ; .�_/1.h�1/1�_i (7.2)

for all h 2 G0 and g 2 G. Therefore we have

F.k0gk/ DF.g/ for k0 2 K 0 and k 2 K;
.LY F /.g/ DhT ı �1.g/1� ; d�_.Y /1�_i for Y 2 g0 � U.g0

C
/;

.RXF /.g/ DhT ı �1.g/d�.X/1� ; 1�_i for X 2 g � U.gC/:

Since u 2 ZG acts on �1 as the scalar multiple of ��.u/, we have d�1.u/1� D
��.u/1� , and therefore RuF D ��.u/F . Likewise, for v 2 ZG0 , we have
d.�_/1.v/ 1�_ D ��.v/1�_ , and thus LvF D ��.v/F . Hence F 2 Sh.�; �/.

Let V1
� and W1

� be the representation spaces of �1 and �1, respectively.
First we find a continuous seminorm j � j1 on W1

� and a constant C1 such that

jhw; 1�_ij � C1jwj1 for any w 2 W1
� :
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Second, since T W V1
� ! W1

� is continuous, there exist a continuous
seminorm j � j2 on V1

� and a constant C2 such that

jT vj1 � C2jvj2 for any v 2 V1
� :

Third, since �1 has moderate growth, there exist constants C3 > 0, d 2 R and
a continuous seminorm j � j3 on V1

� such that

j�1.g/d�.u/1� j2 � C3jd�1.u/1� j3kgkd
for any g 2 G and for any u 2 U.gC/:

Therefore .RuF /.g/ D hT ı �1.g/d�.u/1�; 1�_i satisfies the following
inequality:

j.RuF /.g/j � C1C2C3jd�1.u/1� j3kgkd for any g 2 G:
Hence F 2 C1.G/ has moderate growth.

(2) Suppose F � 0. Since 1�_ is a cyclic vector, we have T ı �1.g/1� D 0 for
any g 2 G by (7.2). Since 1� is a cyclic vector, we have T D 0. Therefore the
map (7.1) is injective. ut

Corollary 7.3. Suppose that there are m disjoint P 0-invariant open sets in G=P .
Then

dimC Shmod.	g; 	g0/ � m: (7.3)

In particular, if Shmod.	g; 	g0/ is finite-dimensional, then the pair .G;G0/ of
reductive groups satisfies (PP).

Proof. We denote by � the Hilbert representation of G on L2.G=P;˝G=P /, and by
� that of G0 on L2.G0=P 0/. By Proposition 6.5, we have

dimC HomG0.�jG0 ; �/ � m:
On the other hand, since both � and �_ contain spherical cyclic vectors, we have

dimC Shmod.	g;�	g0/ � dimC HomG0.�1jG0 ; �1/

from Proposition 7.1. Combining these inequalities with (3.1), we have obtained

dimC Shmod.	g;�	g0/ � m:

Since �	g0 is conjugate to 	g0 by the longest element of the Weyl group W.j0
C
/, we

have proved (7.3).
Finally, if .G;G0/ does not satisfy (PP), then there exist infinitely many disjoint

P 0-invariant open sets in G=P , and therefore we get dimC Shmod.	g; 	g0/ D 1
from (7.3). ut
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8 Boundary Values of Shintani Functions

In this section we realize Shintani functions as joint eigenfunctions of invariant
differential operators on the Riemannian symmetric spaceX D .G�G0/=.K�K 0/,
and then as hyperfunctions on the minimal boundary Y D .G�G0/=.P �P 0/ of the
compactification of X . The main results of this section are Theorems 8.1 and 8.2.
We prove these theorems in Sects. 8.4 and 8.5, respectively, after giving a brief
summary of the preceding results of harmonic analysis on Riemannian symmetric
spaces in Sects. 8.2 and 8.3.

8.1 Symmetry Breaking of Principal Series Representations

Denote by � the Cartan involution of the Lie algebra g corresponding to the maximal
compact subgroup K of G. We take a maximal abelian subspace a in the vector
space fX 2 g W �X D �Xg, and set

W.a/ WD NK.a/=ZK.a/:

We fix a positive system ˙C.g; a/ of the restricted root system ˙.g; a/, and define
a minimal parabolic subalgebra p of g by

p D mC aC n D lC n;

where l WD Zg.a/ D fX 2 a W ŒH;X� D 0 for all H 2 ag, m WD l \ k, and n is
the sum of the root spaces for all ˛ 2 ˙C.g; a/. Let P D MAN be the minimal
parabolic subgroup of G with Lie algebra p.

We take a Cartan subalgebra t in m. Then j WD tC a is a maximally split Cartan
subalgebra of g. We fix a positive system �C.mC; tC/. Let 	n 2 a_ be half the
sum of the elements in ˙C.g; a/ counted with multiplicities, and 	l 2 t_

C
that of

�C.mC; tC/. The positive systems˙C.g; a/ and�C.mC; tC/ determine naturally a
positive system �C.gC; jC/. Then we have

	g D 	l C 	n 2 j_
C
D t_

C
C a_

C
;

where we regard t_
C

and a_
C

as subspaces of j_
C

via the direct sum decomposition
j D tC a. Then 	l C a_

C
D 	g C a_

C
is an affine subspace of j_

C
.

Analogous notation is applied to the reductive subgroup G0. In particular, j0 D
t0 C a0 is a maximally split Cartan subalgebra of g0.

We recall .�; �/ 2 j_
C
=W.jC/ � .j0C/_=W.j0C/ ' HomC-alg.ZG � ZG0 ;C/. Let us

begin with a nonvanishing condition for Sh.�; �/.
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Theorem 8.1. If Sh.�; �/ ¤ f0g, then

� 2 W.jC/.	l C a_
C
/ and � 2 W.j0

C
/.	l0 C .a0

C
/_/: (8.1)

We shall give a proof of Theorem 8.1 in Sect. 8.4.

Next we consider a construction of Shintani functions under the assumption (8.1).
Suppose � 2 j_

C
satisfies � � 	l 2 a_

C
. Then there exists �C 2 a_

C
such that �C

satisfies the following two conditions:

�C � 	n D w.� � 	l/ for some w 2 W.a/: (8.2)

Reh�C � 	n; ˛i � 0 for any ˛ 2 ˙C.g; a/: (8.3)

Similarly, suppose � 2 .j0
C
/_ satisfies ��	l0 2 .a0

C
/_. Then there exists �� 2 .a0

C
/_

satisfying the following two conditions:

�� � 	n0 D w0.�� C 	l0/ for some w0 2 W.a0/:

Reh�� � 	n0 ; ˛i � 0 for any ˛ 2 ˙C.g0; a0/: (8.4)

Theorem 8.2. Suppose that � 2 j_
C

and � 2 .j0
C
/_ satisfy �C	l 2 a_

C
and �C	l0 2

.a0
C
/_. Let �C and �� be defined as above.

(1) There is a natural injective linear map

HomG0.C1.G=P I�C/; C1.G0=P 0I ��// ,! Shmod.�; �/: (8.5)

(2) If G, G0 are classical groups, then (8.5) is a bijection:

HomG0.C1.G=P I�C/; C1.G0=P 0I ��//

! Shmod.�; �/: (8.6)

We shall prove Theorem 8.2 in Sect. 8.5.

Remark 8.3. As the proof shows, the bijection (8.6) holds for generic .�; �/ even
when G or G0 are exceptional groups.

8.2 Invariant Differential Operators

In this and next subsections we give a quick review of the preceding results of
harmonic analysis on Riemannian symmetric spaces. We denote by D.G=K/ the
C-algebra consisting of all G-invariant differential operators on the Riemannian
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symmetric spaceG=K . It is isomorphic to a polynomial ring of .dimR a/-generators.
More precisely, let 
 0 W U.gC/ ! U.aC/ D S.aC/ be the projection to the second
factor of the decomposition U.gC/ D .kCU.gC/ C U.gC/nC/ ˚ U.aC/: Then we
have the Harish–Chandra isomorphism

D.G=K/

 
R
U.gC/

K=U.gC/
K \ U.gC/kC 
!



S.aC/

W.a/; (8.7)

where 
 W U.gC/! S.aC/ is defined by

h
.u/; �i D h
 0.u/; � � 	ni for all � 2 a_
C

,

which is a generalization of (3.5), see [8, Chapter II]. Through (8.7), we have a
bijection

HomC-alg.D.G=K/;C/ ' a_
C
=W.a/;  � $ �; (8.8)

given by  �.Rv/ D h
.v/; �i D h
 0.v/; � � 	ni for v 2 U.gC/K .
Comparing the two bijections HomC-alg.ZG;C/ ' j_

C
=W.jC/ (see (3.6)) and (8.8)

via the C-algebra homomorphism

ZG � U.gC/K R! D.G=K/; (8.9)

we have

 � ıR D ��C	n on ZG for all � 2 a_
C
: (8.10)

By (8.10), we have

C1.G=KIM�/ � C1.G=KI�R�C	l/: (8.11)

For a simple Lie group G, it is known [7] that the C-algebra homomorphism (8.9)
is surjective if and only if .g; k/ is not one of the following pairs:

.e6.�14/; so.10/C R/;

.e6.�26/; f4.�52//;

.e7.�25/; e6.�78/ C R/;

.e8.�24/; e7.�133/ C su.2//:

For F D A ;B, C1, or D 0, we denote by F .G=KIM�/ the space of all
F 2 F .G=K/ such that F satisfies the system of the following partial differential
equations:
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DF D  �.D/F for all D 2 D.G=K/: (M�)

Since the Laplacian � on the Riemannian symmetric space G=K is an elliptic
differential operator and belongs to D.G=K/, we have

A .G=KIM�/ DB.G=KIM�/ D C1.G=KIM�/ D D 0.G=KIM�/

by the elliptic regularity theorem.

8.3 Poisson Transform and Boundary Maps

Given � 2 a_
C

, we lift and extend it to a one-dimensional representation of the
minimal parabolic subgroup P DMAN by

P ! C
�; m expHn 7! eh�;H i

form 2M , H 2 a, and n 2 N .

Remark 8.4. In the field of harmonic analysis on symmetric spaces people some-
times adopt the opposite signature of the (normalized) parabolic induction which
is used in the representation theory of real reductive groups. Since our definition
of parabolic induction does not involve the “	-shift” (i.e., unnormalized parabolic
induction where

p�1a_ C 	n is the unitary axis), the G-module C1.G=P I�/ in
our notation corresponds to C1.G=P IL	n��/ in [8, 20].

With this remark in mind, we summarize some known results that we need:

Proposition 8.5. (1) The .g; K/-moduleE.G=P I�/ has ZG-infinitesimal charac-
ter �C 	g D �C 	n C 	l 2 j_

C
=W.jC/.

(2) The .g; K/-module E.G=P I�/ is spherical for all � 2 a_
C

. Furthermore, the
unique (up to scalar) nonzero spherical vector is cyclic if � satisfies

Reh� � 	n; ˛i � 0 for any ˛ 2 ˙C.g; a/:

(3) For all � 2 a_
C

, the Poisson transform P� maps into the space of joint
eigenfunctions of the C-algebra D.G=K/:

P� W B.G=P I�/! A .G=KIM	n��/: (8.12)

(4) The Poisson transform (8.12) is bijective if � satisfies

Reh� � 	n; ˛i � 0 for any ˛ 2 ˙C.g; a/: (8.13)
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(5) The Poisson transform P� induces a bijection

P� W D 0.G=P I�/! Amod.G=KIM	n��/

if (8.13) is satisfied.

Proof. The first statement is elementary. See Kostant [17] for (2), and Helgason [6]
for (3). The fourth statement was proved in Kashiwara et.al. [9] by using the theory
of regular singularity of a system of partial differential equations. For the proof of
the fifth statement, see Oshima–Sekiguchi [20] or Wallach [22, Theorem 11.9.4].
We note that for f 2 A .G=KIM	n��/, f has moderate growth (Definition 3.3) if
and only if f has at most exponential growth in the sense that there exist constants
d 2 R and C > 0 such that jf .x/j � Ckxkd for all x 2 G: ut

8.4 Proof of Theorem 8.1

In Lemma 5.5, we realized the Shintani space Sh.�; �/ in C1..G �G0/= diagG0/.
We give another realization of Sh.�; �/:

Lemma 8.6. The multiplication map

 W G �G0 ! G; .g; g0/ 7! .g0/�1g

induces the following bijection:

 � W Sh.�; �/

! C1..G �G0/=.K �K 0/I�R�;�/diagG0

: (8.14)

Proof. We set C1.K 0nG=K/ WD ff 2 C1.G/ W f .k0gk/ D f .g/ for all k0 2
K 0 and k 2 Kg: The pull-back  � of functions induces a bijective linear map

C1.G/ 
! C1.G �G0/diagG0

[ [
C1.K 0nG=K/ 
!

 �

C1..G �G0/=.K �K 0//diagG0

:

On the other hand, for X 2 g and Y 2 g0, we have

RXRY . 
�f / D  �.RXLY f /:

Thus Lemma 8.6 is proved. ut
Proof of Theorem 8.1. Suppose Sh.�; �/ ¤ f0g. Then, by Lemma 8.6, we have

V�;� WD C1..G �G0/=.K �K 0/I�R�;�/ ¤ f0g:
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SinceR.ZG�G0 / is an ideal in D..G�G0/=.K�K 0// of finite-codimension, we can
take the boundary values of V�;� inductively to the hyperfunction-valued principal
series representations ofG�G0 as in [14, Section 2]. To be more precise, there exist
�1; � � � ; �N 2 a_

C
� .a0

C
/_ and .G �G0/-invariant subspaces

f0g D V.0/ � V.1/ � � � � � V.N / D V�;�
such that the quotient space V.j /=V.j � 1/ is isomorphic to a subrepresentation of
the spherical principal series representation B..G�G0/=.P �P 0/I�j / as .G�G0/-
modules.

Comparing the ZG�G0 -infinitesimal characters of V�;� and B..G � G0/=
.P � P 0/I�j /, we get Theorem 8.1. ut

8.5 Proof of Theorem 8.2

Proof of Theorem 8.2. (1) Since �C satisfies (8.3), the .g; K/-moduleE.G=P I�C/
contains a cyclic spherical vector by Proposition 8.5. Similarly, the .g0; K 0/-
module

E.G0=P 0I ��/_K0 ' E.G0=P 0I ���/K0

has a cyclic vector because ��� D ��� C 2	n0 satisfies

Reh��� � 	n0 ; ˛i � 0 for any ˛ 2 ˙C.g0; a0/

by (8.4). Hence the first statement follows from Proposition 7.1.
(2) In view of the definition of moderate growth (Definition 3.3), we see that the

bijection  � in (8.14) induces the following bijection:

Shmod.�; �/

! C1

mod..G �G0/=.K �K 0/I�R�;�/diagG0

: (8.15)

Since the C-algebra homomorphism R W ZG�G0 ! D.G � G0=K � K 0/ is
surjective for classical groups G and G0, the isomorphism (8.15) implies the
following bijection

Shmod.�; �/ ' C1
mod..G �G0/=.K �K 0/IM.�C	l;�C	l0 //

diagG0

by (8.11). In turn, combining with the Poisson transform, we have obtained the
following natural isomorphism by Proposition 8.5 (5):

Shmod.�; �/ ' D 0..G �G0/=.P � P 0/I��C � ��/diagG0

:
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By [16, Proposition 3.2], we proved the following natural bijection:

HomG0.C1.G=P I�C/; C1.G0=P 0I ��//'D 0..G�G0/=.P�P 0/I��C���/diagG0

:

Hence we have completed the proof of Theorem 8.2. ut

9 Shintani Functions for .O.n C 1; 1/; O.n; 1//

It has been an open problem to find dimC Sh.�; �/ in the Archimedean case
[19, Remark 5.6]. In this section, by using a classification of symmetry breaking
operators between spherical principal series representations of the pair .G;G0/ D
.O.n C 1; 1/;O.n; 1// in a recent work [16] with B. Speh, we determine the
dimension of Sh.�; �/ in this case.

We denote by Œx� the greatest integer that does not exceed x. For the pair
.G;G0/ D .O.n C 1; 1/;O.n; 1//, .ZG;ZG0/-infinitesimal characters .�; �/ are
parametrized by

j_
C
=W.jC/ � .j0C/_=W.j0C/ ' C

Œ nC2
2 �=W

Œ nC2
2 �
�C

Œ nC1
2 �=W

ŒnC1
2 �

in the standard coordinates, whereWk WD Sk Ë .Z=2Z/k .

Theorem 9.1. Let .G;G0/ D .O.nC 1; 1/;O.n; 1//.
(1) The following three conditions on .�; �/ are equivalent:

(i) Sh.�; �/ ¤ f0g.
(ii) Shmod.�; �/ ¤ f0g.

(iii) In the standard coordinates

� D w.
n

2
C t; n

2
� 1; n

2
� 2; � � � ; n

2
� Œn
2
�/; (9.1)

� D w0.
n � 1
2
C s; n � 1

2
� 1; � � � ; n � 1

2
� Œn � 1

2
�/;

for some t , s 2 C, w 2 W
ŒnC2
2 �

, and w0 2 W
ŒnC1
2 �

.

(2) If .�; �/ satisfies (iii) in (1), then

dimC Shmod.�; �/ D 1:

Proof. It is sufficient to prove the implication (i)) (iii) and (2).

For � 2 j_
C
=W.jC/ ' C

Œ nC1
2 �=W

Œ nC1
2 �

, � belongs to 	l C a_
C

mod W.jC/ if

and only if � is of the form (9.1) for some t 2 C and w 2 W
ŒnC2
2 �

. Similarly

for � 2 .j0
C
/_=W.j0

C
/. Hence the implication (i) ) (iii) holds as a special case

of Theorem 8.1.
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Next, suppose that .�; �/ satisfies (iii). Without loss of generality, we may and
do assume Re t � n

2
and Re s � n�1

2
. In this case the unique element �C 2 aC

satisfying (8.2) and (8.3) is equal to t if we identify a_
C

with C via the standard basis
fe1g of a_ such that ˙.g; a/ D f˙e1g. Similarly, �� D s via .a0

C
/_ ' C.

We define a discrete subset of a_
C
˚ .a0

C
/_ ' C

2 by

Leven WD f.a; b/ 2 Z
2 W a � b � 0; a � b mod 2g:

According to [16, Theorem 1.1], we have

dimC HomG0.C1.G=P I a/; C1.G0=P 0I b// '
(
1 if .a; b/ 2 C

2 nLeven;

2 if .a; b/ 2 Leven:

Since .�C; ��/ D .t; s/ 62 Leven, we conclude that

dimC Shmod.�; �/ D dimC HomG0.C1.G=P I�C/; C1.G0=P 0I ��// D 1

by Theorem 8.2 (2). Thus Theorem 9.1 is proved. ut

10 Concluding Remarks

We raise the following two related questions:

Problem 10.1. Find a condition on a pair of real reductive linear Lie groups G �
G0 such that the following properties (A) and (B) are satisfied.

(A) All Shintani functions have moderate growth (Definition 3.3), namely,
Shmod.�; �/ D Sh.�; �/ for all .ZG;ZG0/-infinitesimal characters .�; �/.

(B) The natural injective homomorphism

HomG0.�1jG0 ; �1/ ,! Homg0;K0.�K; �K0/ (10.1)

is bijective for any admissible smooth representations �1 and �1 of G and
G0, respectively.

Remark 10.2. (1) If G0 D feg, then neither (A) nor (B) holds.
(2) If G D G0, then (A) holds by the theory of asymptotic behaviors of Harish–

Chandra’s zonal spherical functions and (B) holds by the Casselman–Wallach
theory of the Fréchet globalization [22, Chapter 11].

(3) If G0 D K , then both (A) and (B) hold.
(4) It is plausible that if .G;G0/ satisfies the geometric condition (PP) (Defini-

tion 5.3), then both (A) and (B) hold.
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By using the argument in Sects. 7 and 8 on the construction of Shintani functions
from symmetry breaking operators, we have the following:

Proposition 10.3. For a pair of real reductive classical Lie groups G � G0, (B)
implies (A).

Proof. Let �C and �� be as in Theorem 8.2. We denote by �1 the admissible
smooth representation of G on C1.G=P I�C/ and �1 the admissible smooth
representation of G0 on C1.G0=P 0I ��/. Then by Theorem 8.2 (2), we have the
following linear isomorphism:

HomG0.�1jG0 ; �1/ 
! Shmod.�; �/:

Similarly to the proof of Theorem 8.2 (2), we have the natural bijection

HomG0.�! jG0 ; �!/ ' Sh.�; �/;

where �! is a continuous representation of G on the space of real analytic vectors
of �1, and �! that of �1.

In view of the canonical injective homomorphisms

HomG0.�1jG0 ; �1/ ,! HomG0.�! jG0 ; �!/ ,! Homg0;K0.�K; �K/;

we see that if (B) holds, then the inclusion

Shmod.�; �/ ,! Sh.�; �/

is bijective. Hence the implication (B)) (A) is proved. ut
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Harmonic Spinors on Reductive Homogeneous
Spaces
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Abstract An integral intertwining operator is given from certain principal series
representations into spaces of harmonic spinors for Kostant’s cubic Dirac operator.
This provides an integral representation for harmonic spinors on a large family of
reductive homogeneous spaces.
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1 Introduction

A realization of the discrete series representations of a semisimple Lie group as an
L2-space of harmonic spinors was given in [11] and [1]. More precisely, suppose
G is a noncompact connected semisimple real Lie group with finite center and K
a maximal compact subgroup of G. Write S for the spin representation of K (after
passing to a cover if necessary). For a finite-dimensional K-representation E , the
tensor product S ˝E determines a homogeneous vector bundle S ˝ E overG=K
and a geometric Dirac operator (defined in terms of an invariant connection) acting
on smooth sections:

DG=K.E / W C1.G=K;S ˝ E /! C1.G=K;S ˝ E /:
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If G has a nonempty discrete series, then the kernel of DG=K.E / on L2-sections is
an irreducible unitary representation in the discrete series of G, and every discrete
series representation of G occurs this way for some K-representation E . (See [7]
for a thorough discussion.) A similar construction of tempered representations is
given by “partially harmonic” spinors in [15].

It is therefore natural to study the kernels of Dirac operators on other homoge-
neous spaces. In [8] and [9], we addressed this problem in a more general context
where G is a connected real reductive Lie group and K is replaced by connected
closed reductive subgroups H for which the complex ranks of H and G are equal,
but H is not necessarily compact. The Dirac operator DG=K.E / is replaced by
Kostant’s cubic Dirac operator [6]:

DG=H .E / W C1.G=H;S ˝ E /! C1.G=H;S ˝ E /:

This operator is the sum of a first-order term and a zero-order term, which comes
from a degree three element in the Clifford algebra of the orthogonal complement
of the complexified Lie algebra of H . (The zero-order term vanishes when H is
any symmetric subgroup.) Integral formulas for harmonic spinors are given in [8]
and [9]. The L2-theory is begun in [2].

In the present article we consider a larger class of homogeneous spaces by
removing the equal rank condition. Suppose that E D E� is a finite-dimensional
representation of H with highest weight � (with respect to some positive system).
Under certain conditions on H and � we prove the following theorem. This is
Theorem 29 of Sect. 4.

Theorem A. There is a parabolic subgroup P in G, a representation W of P and
a nonzero G-equivariant map

P W C1.G=P;W /! C1.G=H;S ˝ E�/

with DG=H.E�/ ı P D 0, where C1.G=P;W / denotes the space of smooth
vectors of the principal series representation IndGP .W /. In particular, the kernel
of DG=H .E�/ contains a smooth representation of G.

The intertwining operator P is an integral operator; the formula for P is
analogous to the classical Poisson integral formula giving harmonic functions
on the disk. The condition on H referred to above is stated in Section 4.3 as
Assumption 24. It is that H is not too small; it guarantees that certain Dirac
cohomology spaces are nonzero. The conditions on � are very mild regularity
conditions.

The representation of P D MAN on W is formed from a fundamental series
of M , a character of A and the trivial action of N . As an important ingredient the
fundamental series is realized as a space of harmonic spinors onM=M \H . This is
the content of the following proposition (which occurs as Proposition 19 in Sect. 3).
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Proposition B. Every fundamental series representation occurs in the kernel of a
Dirac operator DG=H .E /.

The paper is organized as follows. In Sect. 2 we fix the notation and give some
well-known facts about the spin representations. We also describe a reciprocity
for geometric and algebraic Dirac operators. This is an important technique for
relating spaces of harmonic spinors and Dirac cohomology. In Sect. 3, we realize
certain cohomologically induced representations as submodules of kernels of
geometric Dirac operators and prove Proposition B. Finally, Sect. 4 is devoted to
the construction of the parabolic subgroup P and the proof of Theorem A. A proof
of the reciprocity between geometric and algebraic harmonic spinors is provided in
an appendix.

2 Preliminaries

2.1 The Groups and Homogeneous Spaces

Let G be a connected real reductive Lie group. We will denote the complexification
of Lie.G/, the Lie algebra of G, by g (and similarly for other Lie groups). By a real
reductive group we mean that g is reductive, i.e., g D Œg; g� C z, where z denotes
the center of g. Fix a G-invariant nondegenerate bilinear symmetric form h ; i on g.
If K=Z is a maximal compact subgroup of G=Z, where Z is the center of G, then
K is the fixed point group of a Cartan involution � of G. Write g D k C s for
the corresponding Cartan decomposition of g, where k is the Lie algebra of K and
s D k?. We take H to be a closed subgroup of G, with complexified Lie algebra
denoted by h, satisfying the following conditions:

H is connected and reductive;

H is �-stable;

h ; i remains nondegenerate when restricted to h:

(1)

In this situation, there is a decomposition

g D hC q ; where q D h?:

The restriction of h ; i to q remains nondegenerate and Œh; q� � q.
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2.2 Spin Representation

The construction of the spin representation is briefly reviewed here; we follow the
discussion of [3, Ch. 9]. Let C l.q/ be the Clifford algebra of the complexification of
q, i.e., the quotient of the tensor algebra of q by the ideal generated by the elements
X ˝ Y C Y ˝X � hX ; Y i with X; Y 2 q. Let

so.q/ D ˚T 2 End.q/ W hT .X/ ; Y i C hX ; T .Y /i D 0; 8 X; Y 2 q
�
:

Then the endomorphisms RX;Y W W 7! hY ;W iX � hX ;W iY span so.q/. The
linear extension of the map RX;Y 7! 1

2
.XY � YX/ is an injective Lie algebra

homomorphism of so.q/ into C l2.q/, the subalgebra of degree-two elements in the
Clifford algebra. Let qC be a maximally isotropic subspace of q and write Sq for
the exterior algebra ^qC of qC. The spin representation .sq; Sq/ of h is defined as
the composition map

h
ad
,! so.q/ ,! C l2.q/ � C l.q/


q! End.Sq/

where 
q denotes the Clifford multiplication. Although the construction is indepen-
dent of maximal isotropic subspace qC, the explicit description of a particularly
useful qC will be given in Sect. 4.3 below.

There is an hermitian inner product h ; iSq on Sq for which 
q.X/, X 2 q �
C l.q/, is skew-hermitian [14, Lemma 9.2.3]:

h
q.X/u ; viSq D �hu ; 
q.X/viSq ; 8 X 2 q; 8u; v 2 Sq: (2)

2.3 Geometric Dirac Operators

LetE be a finite-dimensional representation of h such that the tensor productSq˝E
lifts to a representation of the groupH . There is an associated smooth homogeneous
vector bundle over G=H , which we denote by Sq ˝ E , whose space of smooth
sections is

C1.G=H;Sq ˝ E / '
n
C1.G/˝ .Sq ˝ E/

oH

' ff W G ! Sq ˝ E j f is smooth and f .gh/ D h�1 � f .g/; h 2 H g:

We remark that G acts by left translations on each of these function spaces.
Let fXj g be a fixed basis of q satisfying

hXj ;Xki D ıjk: (3)
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Denote the universal enveloping algebra of g by U .g/. Let cq be the degree three
element in C l.q/ defined as the image under the Chevalley isomorphism of the
3-form

.X; Y;Z/ 7! hX ; ŒY;Z�i

on q. The element
P
Xj ˝ .
.Xj /˝ 1/� 1˝ .
.cq/˝ 1/ in U .g/˝End.Sq˝E/

is H -invariant, so defines a G-invariant differential operator

DG=H .E / W C1.G=H;Sq ˝ E /! C1.G=H;Sq ˝ E /

acting on C1.G=H;Sq˝E /. We refer to DG=H .E / as the geometric (cubic) Dirac
operator; it is given by the following formula:

DG=H .E / D
X

R.Xj /˝ 
.Xj /˝ 1 � 1˝ 
.cq/˝ 1: (4)

Note that DG=H .E / is independent of the basis fXj g satisfying (3) (since each of
the two terms is, by itself, independent of the basis). We will often write DG=H for
DG=H .E /.

2.4 Dirac Cohomology

Associated with a g-module .�; V /, there is an algebraic cubic Dirac operator DV W
V ˝ Sq �! V ˝ Sq defined by

DV D
X

j

�.Xj /˝ 
.Xj /� 1˝ 
.cq/: (5)

The following formula1 for the square of DV is due to Kostant [6, Theorem 2.16]:

2D2
V D ˝g ˝ 1 �˝�h C jj	.g/jj2 � jj	.h/jj2; (6)

where˝g is the Casimir element for g acting on V and˝�h is the Casimir element
of h acting in V ˝ Sq. In the case when h D k, the cubic term cq vanishes and
formula (6) is due to Parthasarathy (see [11]).

The (cubic) Dirac cohomology of the g-module V is the h-module defined as the
quotient

H.h;g/.V / D ker.DV /=ker.DV /\ Im.DV /:

1The factor of 2 in this formula does not appear in [6]. This is because we are taking xy C yx D
hx ; yi in the definition of the Clifford algebra, while xy C yx D 2hx ; yi is used in [6].
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The Dirac cohomology will also be denoted by HD.V / when the pair .h; g/ is
understood.

Finally, we note that in the case when V is a unitarizable .g; K/-module, i.e., V
has a nondegenerate .g; K/-invariant positive definite hermitian form h ; iV , then
one gets a nondegenerate hermitian form on V ˝ Sq defined by

h ; iV˝Sq D h ; iV ˝ h ; iSq (7)

with respect to whichDV is selfadjoint [14, Lemma 9.3.3]. In the case where h D k,
since the hermitian form on Ss is positive definite, the form h ; iV˝Ss is also positive
definite and it follows that

HD.V / D ker.DV /:

When h � k; the same conclusion holds for H.h;k/
D .V / for a finite-dimensional

representation V .

2.5 Algebraic Dirac Operators vs. Geometric Dirac Operators

Let V be a smooth admissible representation of G, VK the space ofK-finite vectors
in V , and V ?

K the K-finite dual of VK . Let E be a finite-dimensional representation
of k such that the tensor product Ss ˝ E with the spin representation of k lifts
to a representation of the group K . Then Ss ˝ E induces a homogeneous bundle
Ss ˝ E �! G=K . There is a vector space isomorphism

HomG.V; C
1.G=K; Ss˝ E // ' HomK.E

�; Ss ˝ V �
K/

given by T 7! T1, with T1.e�/.v/ D he� ; T .v/.1/i, where e� 2 E�; v 2 V

and 1 2 G is the identity element. In addition one has


DV �

K
T1.e

�/
�
.v/ D

he� ;


DG=KT .v/

�
.1/i, for all e� 2 E� and v 2 V . One may conclude the following.

Proposition 8. HomG.V; ker.DG=K.E /// ' HomK.E
�; ker.DV �

K
//:

See the appendix for details.
There is also an isomorphism

HomK.E
�; V �

K ˝ Ss/ ' HomK.VK ˝ Ss; E/

given by B 7! b, with hs ; B.e�/.v/i D he� ; b.v ˝ s/i. We also have the identity

hs ; 
DV �

K
B.e�/

�
.v/i D he� ; b



DVK .v ˝ s/

�i:



Harmonic Spinors on Reductive Homogeneous Spaces 167

The pairing on the left-hand side is a nondegenerate pairing of the selfdual
representation Ss with itself. From this we may conclude that

HomK.E
�; ker.DV �

K
// ' HomK..VK ˝ S/=Im.DVK /; E/:

Now assume that VK is unitarizable. Then DVK is selfadjoint and

.VK ˝ S/=Im.DVK / ' Im.DVK /
? ' ker.DVK /:

We may conclude that ker.DV �

K
/ ' 


ker.DVK /
��

, as K-modules. Therefore, by
Sect. 2.4,

HD.V
�
K / '



HD.VK/

��
: (9)

The above discussion applies to the Dirac operator on the homogeneous space
K=H , when H � K , resulting in the statement that

HomK.E; ker.DK=H.F /// ' HomH.F;H
.h;k/
D .E//: (10)

3 The Fundamental Series

An important special case of our main result occurs when H is compact. In this
section we see that in this case (under certain mild conditions) the kernel of DG=H

is nonzero. In fact the kernel contains certain fundamental series representations.
This is analogous to the well-known fact that ker.DG=K/ contains a discrete series
representation [1, 11] when rankC .g/ D rankC .k/.

3.1 Cartan Subalgebras and Roots

We assume that h is as in Sect. 2.1 and that h � k. Let th be a Cartan subalgebra
of h. Extend to a Cartan subalgebra t D th C tq of k by choosing tq � k \ q. Now
extend to a Cartan subalgebra tC a of g by choosing a abelian in s.

Let �C � �.tC a; g/ be defined by a lexicographic order with th first, then tq,
then a. Such a positive system has the property that

�C.h/ WD f˛jth W g.˛/ � h; ˛ 2 �C and ˛jth ¤ 0g

is a positive system of roots in h. Here we are denoting the ˛-root space in g by g.˛/.
Note that t C a is a fundamental Cartan subalgebra of g, i.e., is maximally

compact. The positive systems described above may also be described as follows.
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There is �0 2 .t C a/� with �0ja D 0 so that �C D f˛ W h�0 ; ˛i > 0g.
The Borel subalgebras that arise from such a positive system are the �-stable
Borel subalgebras containing t C a. This gives a positive system of t-roots in k:
�C.k/ D fˇ 2 �.t; k/ W h�0 ; ˇi > 0g.

Suppose that � 2 t�h and that � is dominant for an arbitrary positive system.
Then by choosing� as the first basis vector defining a lexicographic order as above,
we arrive at positive systems �C and �C.h/ with the property that �, extended to
be 0 on tq C a, is dominant for both �C and �C.h/. In Sect. 3.3, where we begin
with a finite-dimensional representation E of h, we may therefore assume that the
highest weight � of E is �C-dominant.

We make the following assumption on H . This is the assumption on H not
being too small mentioned in the introduction; it will be necessary for certain Dirac
cohomology spaces to be nonzero. See Sect. 3.3.

Assumption 11. There is no root ˛ 2 �.g/ so that ˛jth D 0.

Note that this assumption automatically holds when either H D K or h and g
have equal rank.

Under this assumption we may construct the spin representation Sq by choosing
a maximal isotropic subspace qC of q as follows. Choose any maximal isotropic
subspace .tq C a/C of tq C a, then set

qC D .tq C a/C C
X




q.
/;

where the sum is over all th-weights 
 in q. The assumption tells us that no such 

is zero, so qC is indeed maximally isotropic.

We will use the notation of 	.g/ for one half the sum of the roots in�C. Similarly
	.h/ denotes one half the sum of the roots in �C.h/. We also use the notation 	.q/
for one half the sum of the th-weights in qC, and similarly for 	.k\ q/.

3.2 The Fundamental Series and Its Dirac Cohomology

The fundamental series representations are cohomologically induced representa-
tions. They arise as follows. Let b be a �-stable Borel subalgebra in g which
contains the fundamental Cartan subalgebra t C a. The positive system associated
with b is described in the previous subsection. Write b D t C a C u for the Levi
decomposition of b. Then a fundamental series representation is a cohomologically
induced representationAb.�/, for � 2 .tCa/?, with �ja D 0 and � a�C-dominant
and analytically integral weight, having the following properties.

(a) The infinitesimal character is �C 	.g/.
(b) �jt C 2	.s\ u/ is the highest weight of a lowest K-type with respect to�C.k/,

where 	.s \ u/ denotes half the sum of the t-weights in s \ u.
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(c) EachK-type has highest weight of the form �jt C 2	.s\ u/CP
2�.s\u/ n

 ,
where n
 are non negative integers.

It is known from Vogan and Zuckerman [13, Theorem 2.5] that these properties
uniquely determine Ab.�/. The fundamental series representations are irreducible
and unitarizable [12], [14, Ch. 6].

The computation of the Dirac cohomology, with respect to k � g, is straightfor-
ward using Kostant’s formula (6) for the square ofDAb.�/ W Ab.�/˝Ss ! Ab.�/˝
Ss and the properties (a)–(c) above. Although this is contained in Theorem 5.2
of [5], we give the short proof here. First, by the unitarizability of Ab.�/, the
Dirac cohomology is ker.DAb.�// D ker.D2

Ab.�/
/. Let F� be the finite-dimensional

highest weight representation of k with highest weight � with respect to �C.k/. By
Kostant’s formula (6), F� occurs in ker.DAb.�// if F� occurs in Ab.�/ ˝ Ss and
jj�C 	.g/jj D jj� C 	.k/jj.

The t-weights of Ss are all weights of the form 1
2
.˙
1 ˙ � � � ˙ 
k/ with 
i 2

�.s \ u/. Each weight occurs with multiplicity 2d , where d is the greatest integer
in dim.a/=2. We use the notation hAi D P

˛2A ˛, for any set A of weights. With
this notation the t-weights in Ss are

�.Ss/ D fhAi � 	.s \ u/ W A � �.s \ u/g
D f	.s\ u/� hAi W A � �.s \ u/g:

Each component of Ab.�/˝ Ss has highest weight of the form

� D �jt C 2	.s\ u/C
X


2�.s\u/

n

 C .hAi � 	.s \ u//

D �jt C 	.s \ u/C
X


2�.s\u/

m

; for some nonnegative integersm
:

Now

jj� C 	.k/jj2 D jj�C 	.g/C
X


2�.s\u/

m

 jj2

D jj�C 	.g/jj2 C jj
X


2�.s\u/

m

 jj2 C
X


2�.s\u/

m
h�C 	.g/ ; 
i:

For this to equal jj�C 	.g/jj2 one must have m
 D 0 (because h�C 	.g/ ; 
i > 0

and m
 � 0). Therefore, all n
 D 0 and hAi D 0. So � D �jt C 	.s \ u/ and
the multiplicity is 2d , where d is the greatest integer in dim.a/=2. This proves the
following statement.
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Proposition 12. Let Ab.�/ be the cohomologically induced representation
described in (a)–(c) above. Then

H.k;g/.Ab.�// D 2dF�jtC	.s\u/: (13)

Now let � 2 t� be �C.k/-dominant and integral. Let E� be the irreducible
finite-dimensional representation of k with highest weight �. Define �� 2 .tC a/�
by ��jt D ��	.s\u/ and ��ja D 0. Then, as described at the end of Sect. 3.1, the
positive system �C can be chosen so that �� is �C-dominant. With such a choice
of�C we have the following corollary, which is a consequence of Proposition 8 and
Eq. (9).

Corollary 14. Suppose� is�C.k/-dominant and Ss˝E� lifts to a representation
of K . Then the kernel of DG=K W C1.G=K;S ˝ E�/ ! C1.G=K;S ˝ E�/
contains a smooth G-representation infinitesimally equivalent to Ab.��/.

Proof. By Proposition 12 gives HomK



E�;H

.g;k/.Ab.��//
� ¤ 0, since �� C 	 is

�C-dominant. Now Proposition 8 (along with (9)) gives

Hom.g;K/



Ab.��/; ker.DG=K.E�//

� ¤ 0:

ut

3.3 Induction in Stages

Now assume that H � K . Let F� be the irreducible finite-dimensional representa-
tion of H having highest weight � 2 t�h. As described at the end of Sect. 3.1, we
may assume that the extension of � (by 0 on tqC a) is�C-dominant, and therefore
its restriction to t is �C.k/-dominant. Let E be the irreducible finite-dimensional
representation of k of highest weight  2 t�.

In [10] it is shown that F� � H.h;k/
D .E/ if and only if � D w. C 	.k// � 	.h/

for some w 2 W.k/ having the property that w. C 	.k//jtq D 0.
Define

jth D � � .	.k/ � 	.h//jth (15)

jtq D �	.k/jtq :

Then  C 	.k/ is �C.k/-dominant. By taking w D e above, we have F� �
H
.h;k/
D .E/. We may conclude from (10) that E � ker



DK=H.F�/

�
.
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Our goal now is to realize a fundamental series representation in the kernel of
DG=H .F�/. The induction in stages argument begins with the identification

C1.G=H; Sq˝ F�/ ' C1.G=K; Ss ˝ C1.K=H; Sk\q˝F�//; (16)

f  ! Ff ;

with .Ff .g//.k/ D .k ˝ 1/ � f .gk/. In [9] it is shown that



FDG=H f

�
.g/ D 
DG=KFf

�
.g/CDK=H



Ff .g/

�
: (17)

With  defined as in (15), we have seen that E may be realized as a subspace
of ker



DK=H .F�/

� � C1.K=H; Sk\q ˝ F�/. Therefore, when restricted to
C1.G=K;E/, under the identification of (16),

DG=K.Ff / D FDG=H .f /: (18)

Proposition 19. The kernel of DG=H .F�/ contains a smooth representation
infinitesimally equivalent to a cohomologically induced representation Ab.��/

with

��jth D � � 	.q/; �ja D 0 and �jtq D �	.k/jtq :

Proof. Let  be as in (15) and realize E � ker.DK=H .F�//. So we may consider

C1.G=K; Ss ˝ E/ � C1.G=K; Ss ˝ C1.K=H; Sk\q˝F�//

' C1.G=H; Sq ˝F�/:

By (18)

ker


DG=K.E/

� � ker


DG=H .F�/

�
:

Applying (14),

Ab.��/ � ker.DG=K.E// � ker.DG=H .F�//;

since ��jt D jt � 	.s/: ut
Note that the �� appearing in the proposition is such that ��C	.g/ is dominant,

but need not be regular. Therefore, Ab.��/ may equal 0. The further condition that
�� be dominant will ensure that Ab.��/ is nonzero.

The following lemma will be important in Sect. 4.4. Note that the map evale W
C1.G=H; Sq ˝F�/ ! Sq ˝ F� given by evale.f / D f .e/ (with e the identity
element of G) is an H -homomorphism. Assuming
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.i/ h�C 	.h/� hBi ; ˇi � 0; for all ˇ 2 �C.h/ and B � �.qC/I
.ii/ h�C 	.h/� 2	.k\ q/ ; ˇi > 0; for all ˇ 2 �C.h/;

Steinberg’s formula for the decomposition of the tensor product of two finite-
dimensional representations of H tells us that Sq ˝ F� contains the irreducible
representation of H having highest weight � C 	.q/ � 2	.k \ q/. Let V0 be the
corresponding isotypic subspace of Sq ˝ F�.

Lemma 20. Realizing Ab.��/ � ker.DG=H .F�//, we have evale.Ab.��// � V0.
Proof. We first give the proof for the case H D K . In this case q D s and k \
q D 0, so �� D � � 	.s/. The possible K-types in Ab.��/ have the form �� C
2	.s/ CP

n

 D � C 	.s/ CP
n

; with 
 2 �C.s/; n
 � 0. On the other

hand, the K-components of Sq ˝ F� D Ss ˝ F� all have highest weights of the
form�C	.s/�hBi; B � �C.s/: Since the image of evale must consist ofK-types
common toAb.��/ and Sq˝F�, the only possibility is that all n
 D 0 and hBi D 0.
Therefore, evale.Ab.��// is contained in the isotypic subspace with highest weight
�C 	.s/ D �C 	.q/� 2	.k\ q/, i.e., evale.Ab.��// � V0.

Now consider arbitrary H � K . Since f .e/ D .Ff .e//.e/, we first consider
Ff 7! Ff .e/. By theH D K case, Ff .e/ is in the isotypic subspace of Ss˝E of
type EC	.s/ (with  as in (15)) . Now, evaluation at e gives an H -homomorphism
EC	.s/ ! Sq ˝ F�. Again we compare the H -types. The highest weights of
H -components of EC	.s/ are of the form  C 	.s/ � hAi; A � �C.h/. But
 C 	.s/ � hAi D � � 	.k \ q/ C 	.s/ � hAi D � C 	.q/ � 2	.k \ q/ � hAi:
The H -types in Sq ˝ F� are of the form � C 	.q/ � hBi; B � �.k \ qC/. The
only way for us to have � C 	.q/ � 2	.k \ q/ � hAi D � C 	.q/ � hBi is for
hBi D 2	.k \ q/C hAi. As B � �.k \ qC/, this means that B D �.k \ qC/ and
hAi D 0. We conclude that the image of evalejAb.��/ is contained in V0. ut

4 The Main Theorem

Let H be an arbitrary subgroup of G satisfying (1). We associate to H a parabolic
subgroup P in G. The main result is the construction of an integral intertwining
map P W C1.G=P;W / ! ker.DG=H /. The precise statement is contained in
Theorem 29.

4.1 Roots and Positive Systems

We need to make some choices of Cartan subalgebras and positive root systems,
which will be used in the construction of our intertwining operator. These choices
are compatible with those made in Sect. 3.1, where the special case of h � k was
considered.
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Consider the complexified Lie algebra h of the reductive group H and the
decomposition g D hC q. Choose a maximal abelian subspace ah of h \ s. Define
l D zg.ah/, the centralizer of ah in g. A Cartan subalgebra of g is chosen as
follows.

• Let th be a Cartan subalgebra of h\k\ l. Note that ahC th is a Cartan subalgebra
of h, since ah is maximal abelian in h \ s.

• Extend th to a Cartan subalgebra t D th C tq of k \ l with tq � q \ k \ l. Note
that t is not necessarily a Cartan subalgebra of k.

• Finally, choose aq � q \ s \ l so that ah C t C aq is a Cartan subalgebra of l.
Write a WD ahCaq. Since rankC .g/ D rankC .l/, we see that aCt is also a Cartan
subalgebra of g.

Remarks. (1) When h � k, ah D f0g. Therefore l D g and aC t is a fundamental
Cartan subalgebra of both g and l, as in Sect. 3.1.

(2) When rankC .h/ D rankC .g/ (as in [9]) t D th and a D ah.
Let � WD �.aC t; g/ be the set of aC t-roots in g. For any ˛ 2 � we will write

g.˛/ for the corresponding root space.
Let �C be any positive system of roots in � WD �.a C t; g/ given by a

lexicographic order with a basis of ah first, then (in order) bases of th; tq and aq.
A positive system of .ahC th/-roots in h is chosen using the lexicographic order

with the same basis of ah as above, followed by the basis of th. Call this positive
system �C.h/.

4.2 The Parabolic Subgroup

Having fixed a positive system of roots �C in g we may define a parabolic
subalgebra of g as follows. Set

˙C WD f˛ 2 �C W ˛jah ¤ 0g:

Then

p WD lC n; where n WD
X

˛2˙C

g.˛/;

is a parabolic subalgebra of g. Thanks to the choice of�C, p is the complexification
of a (real) subalgebra of Lie.G/. We define P to be the connected subgroup of G
corresponding to this real parabolic Lie algebra.

It will be convenient for us to write l D mC ah with

m D
X

˛2�;˛jahD0
g.˛/ C .aq C t/:
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Therefore,

p D mC ah C n: (21)

However, this is not (typically) the Langlands decomposition of p. Note that aq �
l \ s, but it can happen that some (but not all) of aq lies in the center of l. The
decomposition (21) gives a corresponding decomposition of P , which we write as
P DMAhN .

Lemma 22. p\ h is a minimal parabolic subalgebra of h. In particular, m\ h � k
and l \ h D l \ h \ kC ah.

Proof. The Borel subalgebra of h defined by ah C th and �C.h/ is contained in
.p \ h/, so p \ h is a parabolic subalgebra. Since ah is maximal abelian in h \ s,
l\ h D zh.ah/ D l \ h \ kC ah. Therefore, p \ h is minimal. ut

We set n DP˛2˙C g.�˛/, so lC n is the parabolic subalgebra opposite to p.

Lemma 23. The following hold.

(a) l D l \ hC l\ q:
(b) m D m \ hCm \ q.
(c) q D q \ lC q \ nC q \ n.
(d) m \ q D m \ q \ kCm \ s.

Proof. (a) This is clear since h and q are ah-stable and l is the 0-weight space of ah.
(b) This follows from (a) since

m � l D l\ hC l \ q

Dm \ hC aq Cm \ q:

(c) Since ah acts on q, q is a sum of ah-weight spaces. If X 2 q is a weight vector,
then the weight is ˛jah , for some ˛ 2 � [ f0g. Therefore,X 2 l; n or n.

(d) Since ah is �-stable, so is m. Therefore, m \ q is also �-stable. It follows that
m\q\kCm\q\s. By Lemma 22, m\h\s D 0. Therefore,m\q\sD m\s
and (d) follows. ut

We need to fix a positive system in �.t C aq;m/. Since we will be applying
Sect. 3 to H \ M � M in place of H � G, we will need a choice of �C.m/
as in Sect. 3.1. We therefore define �C.m/ using the lexicographic order with the
same bases of th; tq and aq (in that order) that were used in the lexicographic order
defining �C earlier. Observe that tC aq is a fundamental Cartan subalgebra of m.
Using the basis of th gives a lexicographic order that in turn gives a positive system
�C.m \ h/.

We make the following assumption on H , which is analogous to and consistent
with Assumption 11.

Assumption 24. There is no root ˇ 2 �.th C tq C aq;m/ so that ˇjth D 0.



Harmonic Spinors on Reductive Homogeneous Spaces 175

4.3 The Representation Sq ˝ E�

Let � 2 .ah C th/
� be �C.h/-dominant and integral. Let E� be the irreducible

finite-dimensional h-representation with highest weight �. We consider the tensor
product Sq ˝E�, a representation of h.

The construction of the spin representation in Sect. 2.2 requires a choice of
maximal isotropic subspace of q. This is done as follows. Choose some maximal
isotropic subspace .aq C tq/

C of aq C tq and set

qC D .aq C tq/
C C

X

ˇ2�C.m\q/

m.
/ C q \ n:

Then qC is maximally isotropic in q by Lemma 23(c) and the fact that l\q D m\q.
Note that the .ah C th/-weights in qC are the weights in q that are positive

with respect to the lexicographic order for the same bases of ah and th used in
the definition of �C above. It follows that

	.m \ q/ WD 	.m/jth � 	.m \ h/

is 1=2 the sum of the th-weights in m \ qC.
The weight

	.q/ WD 1

2

X


2�.qC/


;

with each weight occurring as many times as its multiplicity in qC, is �C.h/-
dominant. The set of weights of Sq is

�.Sq/ D f	.q/� hAi W A � �.qC/g
D fhAi � 	.q/ W A � �.qC/g:

The subgroupH \M � M satisfies the conditions of (1). Therefore, there is a
spin representation Sm\q. Using the maximal isotropic subspace m \ qC of m \ q
one easily sees that Sq\m is naturally contained in Sq as h \m-representation. The
set of weights of Sm\q with respect to the Cartan subalgebra th of m \ h is

�.Sm\q/ D f	.m\ q/� hBi W B � �.m\ qC/g:

Lemma 25. The following hold.

(a) Sq\m � .Sq/h\n, the n \ h-invariants in Sq.
(b) As a subspace of Sq, ah acts on Sq\m by 	.q/jah .
(c) 	.q/jth D 	.m \ q/.
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Proof. The proof of the first statement is as in [8, Lemma 3.8]. The second follows
since the weights of Sm\q � Sq are of the form 	.q/� hBi with B � �.m \ qC/.
But hBijah D 0, since the weights in m vanish on ah. The last statement follows
from 	.q/jth � 	.m \ q/ D 	.n \ q/jth D 0, which follows from the fact that
�.n \ q/ is stable under �� . ut

Now considerE� (with�C.h/-dominant integral � 2 .ahC th/
�). Set F�jth WD



E�
�n\h

, an irreducible representation of m \ h of highest weight �jth .
For the remainder of this article we make the following assumptions on �.

.i/ h�C 	.m \ h/�hBi ; ˇi � 0; for all ˇ 2 �C.m \ h/ and B � �C.m \ q/:

.ii/ h�C 	.m \ h/ � 2	.m \ k \ q/ ; ˇi > 0; for all ˇ 2 �C.m \ h/:
(26)

By Steinberg’s formula for the decomposition of a tensor product of finite-
dimensional representations, we see that Sm\q ˝ F�jth contains the irre-
ducible highest weight representation of m \ h having highest weight
�C 	.m \ q/� 2	.m\ k\ q/. Let V0 be the isotypic subspace of type
F�C	.m\q/�2	.m\k\q/. Note that the assumption of (11) and the definition of V0
are consistent with Sect. 3.3.

Observe that

V0 � Sm\q ˝ F�jth �


Sq ˝ E�

�n\h
;

by Lemma 25. It also follows from Lemma 25 parts (a) and (c), that ah acts on V0
(as a subspace of Sq ˝ E�) by the weight .�C 	.q//jah .

4.4 Harmonic Spinors

Let P be the parabolic subgroup ofG associated toH as in Sect. 4.2. Fix � 2 .ahC
th/

� and assume that Sq ˝ E� lifts to a representation of the group H . Therefore,
we have a smooth homogeneous vector bundle Sq ˝ E� ! G=H and a cubic Dirac
operator

DG=H .E�/ W C1.G=H; Sq ˝ E�/! C1.G=H; Sq ˝ E�/:

Our goal is to construct an intertwining operator from a representation induced
from P to ker



DG=H.E�/

�
. Let W be a representation of P . Write the induced

representation as

C1.G=P;W / D ˚' W G ! W W ' is smooth and '.gp/ D p�1'.g/; p 2 P; g 2 G� :
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The action of g 2 G is by left translation on functions: .g � f /.g1/ D f .g�1g1/.
The following is essentially Lemma 4.2 of [9], it is easily proved using a standard
change of variables formula (e.g., [4, Lem. 5.19]).

Lemma 27. Let W be some representation of P . If

t 2 HomP\H.W ˝ C�2	.h/jah
; Sq ˝E�/

is nonzero, then

.Pt '/.g/ D
Z

H\K
` � t.'.g`// d`

is a nonzero G-intertwining map

Pt W C1.G=P;W /! C1.G=H; Sq ˝ E�/:

Given the bundle Sq˝E� ! G=H we now make our choice of P -representation
W and homomorphism t .

Let F�jth be the irreducible representation of H \M of highest weight �jth .
Suppose that � satisfies the assumptions of (26). Then, by Sect. 3.3 applied to
H \ M � M , ker.DM=H\M.F�// contains a representation W infinitesimally
equivalent to Ab\m.��/ with

��jth D �jth � 	.m \ q/; ��jaq D 0 and ��jtq D �	.m \ k/:

By Lemma 20, evaluation at the identity is nonzero on W and has an image in
V0. GiveW the trivialN -action and define ah to act by .�C	.q/C2	.h//jah . Take
t to be evaluation at the identity: t.w˝ 1/ D w.e/.

Lemma 28. t 2 HomP\H .W ˝ C�2	.h/jah
; Sq ˝ E�/.

Proof. Evaluation is an M \H -homomorphism. The action of ah onW ˝ C�2	.h/
is by .�C 	.q//jah . The action on the image of t is by .� C 	.q//jah , as pointed
out at the end of Sect. 4.3. The action ofN \H on bothW ˝C�2	.h/ and the image
of t is trivial. ut

When these conditions are satisfied and t is chosen as above, our main theorem,
stated as Theorem A in the introduction, is the following.

Theorem 29. The intertwining map Pt has image in the kernel of DG=H .E�/.
In particular, ker.DG=H .E�// ¤ 0.

Proof. The first observation is that



DG=H .Pt '/

�
.g/ D

Z

H\K

 
X

i

aiR.Xi/˝ 
.Xi/
!

` � t.'. � `//jg d`

Z

H\K
` �
 
X

i

aiR.Xi /˝ 
.Xi/
!

t.'.�//jg` d`:
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As t is evaluation at e, it suffices to show that

X

i

.aiR.Xi/˝ 
.Xi// '.�/.e/ D 0 (30)

for ' 2 C1.G=P;W /.
We now choose the basis Xi in a suitable way. Let fEj g be a basis of q \ n and

fEj g a basis of q \ n such that

hEj ;Eki D ıjk
hEj ;Eki D hEj ;Eki D 0;

and let fZj g be a basis of m \ q so that

hZj ;Zki D ıjk:
Setting

Y C
j D

1p
2
.Ej CEj / and Y �

j D
1p
2
.Ej � Ej /;

we get an orthogonal basis fZj g [ fYj̇ g of q as required in (3). The (geometric)
Dirac operator DG=H .E�/ may be written as follows (equation (4.7) in [9]):

DG=H.E�/ D
X

i

�
R.Zi/˝ 
.Zi /˝ 1 � 
.cm\q/

	

C
X

j

�
R.Ej /˝ �.Ej /˝ 1CR.Ej /˝ {.Ej /˝ 1

	

�1˝
�X

j

hZi ;Zi ihZi ; ŒEj ; Ek�i
.Zi/�.Ej /{.Ek/

C
X
hEj ; ŒEk;E`�i�.Ej /�.Ek/{.E`/

C
X
hEj ; ŒEk;E`�i�.Ej /{.Ek/{.E`/

	
˝ 1; (31)

where { (resp. �) stands for the interior (resp. exterior) product (resp. multiplication)
and cm\q is the cubic term forH \M �M .

Now insert (31) into (30). The first term vanishes as follows. First note that



R.Zi/'.�/

�
.e/jg D d

ds
'.g exp.sZi //.e/jsD0

D d

ds



exp.sZi //�1'.g/

�
.e/jsD0; by M -equivariance of ';
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D d

ds
'.g/.exp.sZi //jsD0; by the definition of M action on W;

DR.Zi/


'.g/.�/�je:

Now,


P
i R.Zi / ˝
.Zi /� 
.cm\q/

�
'.�/.e/jg

D
X

i

ai


R.Zi/'.g/

�je � 
.cm\q/'.g/.e/

D 
DM=M\H'.g/
�
.e/

D 0; since '.g/ 2 W � ker.DM=M\H/:

By the right P D MAhN -equivariance defining C1.G=P;W /, R.Ej /' D 0,
so the next terms in (31) vanish. Since the image of t is contained in Sm\q˝ F�jth
and each Ej is orthogonal to m \ q (so that {.Ej /Sm\q D 0), the remaining terms
are 0. ut

Appendix: Geometric vs. Algebraic Dirac Operators

For the convenience of the reader we provide here a proof of Proposition 8. Recall
that V denotes a smooth admissible representation of G, VK the space of K-finite
vectors in V , V ?

K the K-finite dual of VK and Ss is the spin representation for
k. Let E be a finite-dimensional representation of k such that the tensor product
E ˝ Ss lifts to a representation of the group K , and denote by E? the dual of E .
The K-representation E ˝ Ss induces a homogeneous bundle Ss ˝ E �! G=K

over G=K whose space of smooth sections, on which G acts by left translations, is
denoted by C1.G=K;Ss ˝ E /. The map

� W HomG.V; C
1.G=K;Ss ˝ E // �! HomK.E

?; Ss ˝ V ?
K/

defined by �.T /.e?/.v/ D 1˝ e?T .v/.1/, is an isomorphism, where 1 denotes the
identity G.

Next, as in Sect. 2, consider the (cubic) Dirac operators

DG=K.E / W C1.G=K;Ss ˝ E / �! C1.G=K;Ss ˝ E / and

DV ?K
W Ss ˝ V ?

K �! Ss ˝ V ?
K;

and define the maps

D� W HomG.V; C
1.G=K;Ss ˝ E // �! HomG.V; C

1.G=K;Ss ˝ E //
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and

D� W HomK.E
?; Ss ˝ V ?

K/ �! HomK.E
?; Ss ˝ V ?

K/

by

.D�.T //.v/ D DG=K.E /.T .v//;

.D�.A//.e?/ D DV ?K
.A.e?//:

We claim that the following diagram is commutative:

HomG.V; C
1.G=K;Ss ˝ E // HomK.E

?; Ss ˝ V ?
K/

HomG.V; C
1.G=K;Ss ˝ E // HomK.E

?; Ss ˝ V ?
K/

�

�
� �

�

�

D� D�

Indeed one has

�.D�.T //.e?/.v/ D .1˝ e?/


.D�.T //.v/.1/

� D .1˝ e?/
DG=K.T .v//.1/
�

and

DG=K.T .v//.1/

D
X

i

d

dt
jtD0.
.Xi/˝ 1/.T .v/.exp.tXi /.1//� .
.cs/˝ 1/.T .v/.1//

D
X

i

d

dt
jtD0 .
.Xi/˝ 1/.T .exp.�tXi /v/.1// � .
.cs/˝ 1/.T .v/.1//

D �
X

i

.
.Xi/˝ 1/.T .Xiv/.1//� .1˝ 
.cs//.T .v/.1//

which means that

�.D�.T //.e?/.v/ D �
X

i

.
.Xi/˝ e?/.T .Xiv/.1//� .
.cs/˝ e?/.T .v/.1//:

On the other hand, one has

�
.D�.� .T //.e?/

	
.v/ D

�
DV ?K

.�.T /.e?//
	
.v/

D �
X

i



.
.Xi/˝Xi/.�.T /.e?/

�
.v/ � .
.cs/˝ 1/.�.T /.e?/.v//
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D �
X

i

.
.Xi/˝ 1/.�.T /.e?/.Xiv// � .
.cs/˝ 1/.�.T /.e?/.v//

D �
X

i

.
.Xi/˝ e?/.T .Xiv/.1//� .
.cs/˝ e?/.T .v/.1//:

We deduce the following isomorphism relating algebraic and geometric harmonic
spinors:

� W HomG.V; ker.DG=K.E /// ' HomK.E
?; ker.DV ?K

//;

therefore proving Proposition 8.
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Abstract In this paper we develop a geometric approach to the study of the
category of Whittaker modules. As an application, we reprove a well-known result
of B. Kostant on the structure of the category of nondegenerate Whittaker modules.
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Introduction

Let g be a complex semisimple Lie algebra, U .g/ its enveloping algebra and Z .g/
the center ofU .g/. Let b be a fixed Borel subalgebra of g and n D Œb; b� its nilpotent
radical. A Whittaker module is a finitely generated U .g/-module which is also
U .n/-finite and Z .g/-finite. The category of Whittaker modules contains as a full
subcategory the category of highest weight modules, and at the other extreme, the
category of nondegenerate Whittaker modules (for the precise definition see Sect. 4).
In his paper [5], Kostant shows that the category of nondegenerate Whittaker
modules has an extremely simple structure. The main goal of this paper is to explain
Kostant’s result using geometric methods—we reprove it in Sect. 5.

Our idea was to use the localization theory of Beilinson and Bernstein [1] to
transfer the study of Whittaker modules to the study of a particular category of
D-modules on the flag variety X of g. As explained in the first four sections
of the paper, our methods actually work for arbitrary Whittaker modules. The
localizations of Whittaker modules are holonomic, which immediately implies that
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Whittaker modules are of finite length—this was proven before by McDowell [6].
He also proved that any irreducible Whittaker module is a quotient of a “standard”
Whittaker module—these are a generalization of Verma modules. This leads to the
natural problem of determining multiplicities of irreducible constituents of standard
Whittaker modules.

Our project was started at Mathematical Sciences Research Institute in Berkeley,
CA, in 1987–1988, during a special year in representation theory. The first draft of
this paper and some of the early results on the multiplicity questions were obtained
there. In particular, we realized at that time how simple is the geometric explanation
of Kostant’s result.

At that time the success of the geometric approach to prove the Kazhdan–Lusztig
conjectures for Verma modules was based on the fact that the localizations of highest
weight modules are holonomic modules with regular singularities; this made the
standard techniques used in the study of composition series questions (like the
decomposition theorem) applicable. We realized immediately that the localizations
of Whittaker modules have irregular singularities. Therefore, at that time, we were
unable to pursue the geometric analysis of the multiplicity problem any further. Still,
assuming that the decomposition theorem holds for arbitrary irreducible holonomic
modules, we were able to get a number of interesting conjectural statements about
the structure of the category of Whittaker modules. The most important of these
statements was later proved, by completely different algebraic methods, in [10].

Recently, Mochizuki proved the decomposition theorem in full generality and
made our old geometric approach rigorous [11]. Still, we decided to publish this
paper in its more-or-less original form to stress the simplicity of Kostant’s result,
deferring the general case to a future publication.

We were informed by Joseph Bernstein that he was aware that Kostant’s result
follows easily from localization theory.

1 Twisted Harish–Chandra Sheaves

Let K be a connected algebraic group with Lie algebra k and � a morphism of K
into the group of inner automorphisms Int.g/ of g such that its differential induces
an injection of k into g. Hence we can identify k with a subalgebra of g. We say that
.g; K/ is a Harish–Chandra pair ifK acts by finitely many orbits on the flag variety
X of g.

Fix a Harish–Chandra pair .g; K/ in the following.
Let � W k �! C be a morphism of Lie algebras, i.e., a linear form on k which

vanishes on Œk; k�.
An �-twisted Harish–Chandra module is a triple .�; �; V / where:

(i) .�; V / is a finitely generated U .g/-module;
(ii) .�; V / is an algebraicK-module;
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(iii) the differential of the K-action on V induces a U .k/-module structure on V
such that

�./ D �./C �./

for any  2 k.

We denote by Mfg.g; K; �/ the category of all �-twisted Harish–Chandra modules.
Let h be the (abstract) Cartan algebra of g [8, §2]. Let˙ be the root system in h�

and W the corresponding Weyl group. Let � 2 h� and � 2 W � �. By a theorem of
Harish–Chandra, � determines a maximal ideal J� in Z .g/. Let U� be the quotient
of U .g/ by the ideal generated by J� . Then we denote by Mfg.U� ;K; �/ the full
subcategory of Mfg.g; K; �/ consisting of modules which are actually U� -modules,
i.e., they are annihilated by J� .

In [1], Beilinson and Bernstein construct, for each � 2 h�, a twisted sheaf of
differential operators D� on the flag variety X of g. For any � 2 � , the global
sections � .X;D�/ of D� are equal to U� .

As above, one can define the category Mcoh.D�;K; �/ of coherent D�-modules
which also admit an algebraic action of K . Differentiation of the K-action gives
an action of the Lie algebra k, we assume that it satisfies a compatibility condition
analogous to (iii) (compare [4, Appendix B], [9, Section 4]). We call the objects of
Mcoh.D�;K; �/ �-twisted Harish–Chandra sheaves.

Clearly, the cohomology modules of �-twisted Harish–Chandra sheaves are �-
twisted Harish–Chandra modules. Moreover, the localization functor �� given by
��.V / D D�˝U�

V for a U� -module V , maps �-twisted Harish–Chandra modules
into �-twisted Harish–Chandra sheaves.

Assume that ˙C is the set of positive roots in ˙ such that at any point x 2 X
it determines the nilpotent radical of the corresponding Borel subalgebra bx. Let 	
be the half-sum of roots in ˙C. We say that � 2 h� is antidominant if ˛L.�/ is not
a positive integer for any dual root ˛L of ˛ 2 ˙C. For antidominant and regular �,
the categories Mcoh.D�;K; �/ and Mfg.U� ;K; �/ are equivalent [8, 3.9].

The next result is proved exactly as in the non-twisted case [8, 6.1].

Lemma 1.1. Any �-twisted Harish–Chandra sheaf is holonomic.

Proof. Let FD� be the natural degree filtration of D�.
Let V be an �-twisted Harish–Chandra sheaf.
First we claim that there exists a good filtration fFn V j n 2 ZCg of V with the

additional property that all Fn V are K-equivariant. By twisting by a homogeneous
OX -module O.�/, for a weight � in the weight lattice of ˙ , we can assume that
� is regular and antidominant. Then V D � .X;V / is a finitely generated U� -
module with algebraic action of K . This implies that it is generated by a finite-
dimensional K-invariant subspace U . Since by the equivalence of categories we
have V D D� ˝U�

V , the images Fp V of the morphisms

Fp D� ˝C U �! V
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define an exhaustive D�-module filtration of V by K-equivariant coherent OX -
submodules. It is evident that this is a good filtration of V .

By the K-equivariance of the filtration we see that  � Fp V � Fp V for any  2
k � � .X;D�/. This implies that the symbols of  2 k annihilate GrV . Since they
vanish on the conormal bundle to anyK-orbit inX , the characteristic variety Ch.V /
of V is contained in the union of conormal bundles of K-orbits in X . Dimension
of the conormal bundle to any K-orbit in X is equal to dimX . Since the number of
orbits is finite, the dimension of the union of all such conormal bundles is also equal
to dimX . This implies that dim Ch.V / � dimX . ut

In particular, this implies that twisted Harish–Chandra sheaves are of finite
length. In addition we get the following consequence.

Corollary 1.2. Any �-twisted Harish–Chandra module is of finite length.

Proof. Assume that � 2 � is antidominant. Then the localization ��.V / of any
module V in Mfg.U� ;K; �/ is in Mcoh.D�;K; �/. Since this Harish–Chandra sheaf
is of finite length by the above remark, and V D � .X;��.V // [8, 3.6], the assertion
follows from the exactness of � and the fact that global sections of an irreducible
D�-module are irreducible or zero [8, 3.8], [7, L.4.1]. ut

The first example of the twisted Harish–Chandra modules was discussed in
[4, Appendix B] in relation with localization theory of Harish–Chandra modules
for semisimple Lie groups with infinite center.

The second example is related to Whittaker modules [5]. In this case, K D N .
We discuss it in more details in Sect. 4.

2 A Category of n-Finite Modules

Let N be the full subcategory of the category of g-modules consisting of modules
which are

(i) finitely generated U .g/-modules;
(ii) Z .g/-finite;

(iii) U .n/-finite.

Let � D W � � be a Weyl group orbit in h� and J� the corresponding maximal
ideal in Z .g/.

Let N O� be the full subcategory of N consisting of modules annihilated by some
power of J� , and N� the full subcategory of N consisting of modules annihilated
by J� . Since (i) and (ii) imply that the annihilator in Z .g/ of an object in N is of
finite codimension, we have the following result.
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Lemma 2.1. N DL��h� N O� .

In other words, every object in N is a direct sum of finitely many objects in
different N O� .

Let V be a U .n/-finite module. For � 2 n� we put

V� D fv 2 V j . � �.//kv D 0;  2 n; for some k 2 Ng:

Then V� 6D 0 implies that �jŒn; n� D 0 and V D L
�2n� V� [3, Ch. VII, §1, no. 3,

Prop. 9.(i)]. If V and W are two U .n/-finite modules, it is easy to check that
V� ˝ W�0 � .V ˝ W /�C�0 for any � and �0. Assume now that V 2 N . Since
the adjoint action of n on g is nilpotent, we have g D g0. Hence we conclude that
the natural map g ˝ V �! V given by  ˝ v D v maps g˝ V� into V�, i.e., V�
is a g-submodule. Denote by N� the full subcategory of modules with the property
V D V�. Then we have the following result.

Lemma 2.2. N DL�2n� N�.

In other words, every object in N is a direct sum of finitely many objects in
different N�. Put N�;� D N� \N�. Clearly, any irreducible object in N is in some
N�;�.

Let V be an object in N�;�. Then V ˝ C�� is a U .n/-finite module and clearly
V ˝C�� D .V ˝C��/0, i.e., for any v 2 V ˝C�� we have nk �v D 0 for sufficiently
large k 2 N. Therefore, the n-action is the differential of an algebraic action ofN on
V ˝C��. Using the natural isomorphism V �! V ˝C�� given by v 7! v˝ 1, we
get an algebraic representation of N on V with differential which differs from the
original action of n by �, i.e., V is in Mfg.U� ; N; �/. This leads us to the following
result.

Lemma 2.3. N�;� DMfg.U� ; N; �/.

In particular, the localization functor�� maps N�;� into Mcoh.D�;N; �/. Hence,
from Lemma 1.1 we deduce the following result.

Theorem 2.4. Localization ��.V / of a module V in N� is a holonomic D�-
module.

In particular, localizations are D�-modules of finite length. This has the following
consequence originally proved in [6].

Theorem 2.5. Any module in N is of finite length.

Proof. By Lemma 2.1 we can assume that V is in N O� . Moreover, such V has a
finite filtration FV such that GrV is in N� . This reduces the proof to the case of
V 2 N� . Let V 2 N� . By Corollary 1.2 and Lemma 2.3, we see that such V is of
finite length. ut
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3 Classification of Irreducible Twisted
Harish–Chandra Sheaves

Again, this is a simple variant of the results in the non-twisted case [8, §6]. Let V
be an irreducible object in Mfg.D�;K; �/. Then its support is an irreducible K-
invariant subvariety of X . Therefore, it is the closure of a K-orbit Q in X . Let i W
Q �! X be the natural inclusion. Then i is an affine immersion. The twisted sheaf
of differential operators D� on X induces the twisted sheaf of differential operators
.D�/

i D DQ;� onQ where � is the restriction of the specialization of �C	 to k\bx
[4, Appendix A]. By Kashiwara’s equivalence of categories, the inverse image i Š.V /
is an irreducible holonomic DQ;�-module [8, §4]. By the compatibility condition
(iii), it is also a K-homogeneous OQ-module such that the differential of the K-
action differs from the action of k through DQ;� by �. Since i Š.V / is holonomic,
i Š.V / is a connection on a dense open subset of Q and therefore a coherent O-
module there. Since it is also K-equivariant, it must be coherent everywhere on Q,
hence it is a connection onQ. We put � D i Š.V / and denote by I .Q; �/ the direct
image of � in M .D�;K; �/. The module I .Q; �/ is called the standard Harish–
Chandra sheaf attached to .Q; �/. The standard Harish–Chandra sheaf I .Q; �/ has
a unique irreducible Harish–Chandra subsheaf L .Q; �/. The module L .Q; �/ is
isomorphic to V .

Moreover, the quotient I .Q; �/=L .Q; �/ is a Harish–Chandra sheaf supported
in the boundary of the closure of the K-orbitQ.

It remains to describe all �-twisted irreducible DQ;�-connections � on the K-
orbit Q. Let x 2 Q. Let Bx be the Borel subgroup of Int.g/ with the Lie algebra
bx. AnyK-homogeneousOQ-module is completely determined by the action of the
stabilizer Sx D ��1.�.K/ \ Bx/ in the geometric fiber at x. By the compatibility,
the irreducibility of � implies also that it is irreducible as a K-homogeneous OQ-
module. Hence, the representation of Sx in the geometric fiber of � is irreducible.
Moreover, its differential is a direct sum of a number of copies of the linear form
� � �j.k \ bx/ on k \ bx.

4 Whittaker Modules

LetK D N . Let b be the unique Borel subalgebra of g containing n. ThenN -orbits
are the Bruhat cells C.w/, w 2 W , with respect to b, i.e., each cell C.w/ consists of
all Borel subalgebras in relative position w with respect to b. Let bw be one of such
Borel subalgebras in C.w/. Fix a Cartan subalgebra c of g contained in b\bw. LetR
be the root system of .g; c/ andRC the set of positive roots determined by n. Denote
by s W h� �! c� the specialization determined by b [8, §2]. Then nw D Œbw; bw� is
spanned by the root subspaces corresponding to the roots in s�1.w.˙C//.

Now we want to discuss the compatibility condition from the end of the last
section in this special case. Assume that a Bruhat cell C.w/ admits an irreducible
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N -homogeneous connection. First, n\ bw � nw, hence we have � D 0. Also, since
the stabilizer of bw in N is unipotent, the only irreducible N -homogeneous OC.w/-
module on C.w/ is OC.w/. Therefore, a connection with the properties described in
Sect. 3 exists on C.w/ if and only if �j.n \ nw/ D 0. Moreover, it is isomorphic
to OC.w/. By abuse of notation, for ˛ 2 ˙ we denote by g˛ the root subspace in
g corresponding to the root s�1˛ 2 R. Then the subalgebra n \ nw is spanned by
the root subspaces g˛ for ˛ 2 ˙C \ w.˙C/. Hence �j.n \ nw/ D 0 if and only if
�jg˛ D 0 for ˛ 2 ˙C \ w.˙C/.

Let ˘ be the set of simple roots in ˙ corresponding to ˙C. The root subspaces
g˛, ˛ 2 ˘ , span a complement of Œn; n� in n. Therefore, �j.n\ nw/ D 0 if and only
if �jg˛ D 0 for ˛ 2 ˘ \ w.˙C/.

Let ` W W �! ZC be the length function on W with respect to the reflections
s˛ , ˛ 2 ˘ . Then, for any w 2 W , we have `.w/ D dimC.w/.

Let $ � ˘ , and let W$ be the subgroup of W generated by the reflections with
respect to ˛ 2 $. The set of simple roots $ determines also a standard parabolic
subalgebra p$ containing b. Let P$ be the corresponding parabolic subgroup in
Int.g/. Any P$-orbit in X is a disjoint union of Bruhat cells C.tv/, t 2 W$ , for
some v 2 W . In this way, we obtain a bijection between the P$-orbits in X and
rightW$-cosets of W .

The following result is well known.

Lemma 4.1. The following conditions are equivalent:

(i) $ \ w.˙C/ D ;;
(ii) C.w/ is the Bruhat cell open in one of the P$-orbits in X ;

(iii) w is the longest element in one of the right W$-cosets of W .

Proof. By the above discussion, (ii) and (iii) are equivalent.
(ii))(i) Fix a P$-orbit O and let C.w/ be the Bruhat cell open in O . Then we

have

dimO D dimC.w/ D `.w/ > `.s˛w/; for any ˛ 2 $:

Since `.v/ D Card.˙C \ .�v.˙C/// for any v 2 W [3, Ch. VI, §1, no. 6, Cor. 2
of Prop. 17], this means that

Card.s˛˙C\.�w.˙C/// D Card.˙C\.�s˛w.˙C/// < Card.˙C\.�w.˙C///;

for all ˛ 2 $. Since s˛ permutes all roots in ˙C � f˛g, it follows that ˛ … w.˙C/
for all ˛ 2 $ and w satisfies (i).

(i))(ii) Let ˙$ be the root subsystem of ˙ generated by $. Let T be the set
of roots in ˙C which are not in ˙$. Since for any ˛ 2 $, s˛ permutes the positive
roots in˙C�f˛g, it follows that s˛.T / � ˙C. On the other hand, s˛ also permutes
roots in the complement of˙$ , i.e., s˛.T /\˙$ D ;. Therefore, s˛.T / D T . Since
W$ is generated by the reflections with respect to $, we see that T isW$-invariant.
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Assume that w 2 W satisfies (i). Then S D ˙C \ w.˙C/ is disjoint from $.
We claim that ˙$ \ S D ;. Assume that ˇ 2 ˙$ \ S . Then ˇ 2 ˙C, and it must
be a sum of roots from $. But $ � �w.˙C/, hence ˇ 2 �w.˙C/ and we have
a contradiction. It follows that S � T . Hence, t.S/ � T � ˙C for any t 2 W$ .
In particular, for any t 2 W$, we have t.S/ � ˙C \ tw.˙C/. It follows that

`.tw/ D Card.˙C \ .�tw.˙C/// D Card.˙C/ � Card.˙C \ tw.˙C//

� Card.˙C/� Card.S/ D `.w/

for any t 2 W$, i.e., C.w/ is the Bruhat cell of maximal dimension among the cells
contained in O . ut

Now let

$ D f˛ 2 ˘ j �jg˛ 6D 0g:
As we already remarked, a compatible irreducible connection exists on C.w/ if and
only if $ \ w.˙C/ D ;. By Lemma 4.1, this is true if and only if C.w/ is the open
Bruhat cell in one of P$-orbits in X . This leads to the following result.

For a Bruhat cell C.w/ with the compatible irreducible connection OC.w/ denote
by I .w; �; �/ the corresponding standard �-twisted Harish–Chandra sheaf and by
L .w; �; �/ the corresponding irreducible �-twisted Harish–Chandra sheaf.

Theorem 4.2. The irreducible objects in the category Mcoh.D�;N; �/ are the
modules L .w; �; �/ where w 2 W is such that C.w/ is an open Bruhat cell in
a P$-orbit in X .

We can also show, that for an antidominant �, the “costandard” Harish–Chandra
sheaves M .w; �; �/, which are obtained from standard Harish–Chandra sheaves
I .w; �; �/ by an appropriate holonomic dualization process, correspond under
localization to the “standard” Whittaker modules studied in [6]. We are going to
discuss this in a subsequent paper.

As we mentioned in the introduction, the objects in Mcoh.D�;N; �/ have
irregular singularities in general. This is clearly visible from the following example.

Let g D sl.2;C/ and

N D
��
1 0

x 1

� ˇ
ˇ
ˇ
ˇ x 2 C

�

:

The flag variety X of g is identified with P
1. Let x be a point in X . The Borel

subalgebra bx in g is the stabilizer of the line in C
2 determined by x. Therefore, n

is the nilpotent radical of b1 and C � P
1 is the open N -orbit in X . Let � D �	.

Then D�	 D DX is the sheaf of differential operators on X . The matrix

�
1 0

x 1

�

2 N
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moves 0 into x. Hence it defines an isomorphism of N onto C. Also, if @ denotes
differentiation with respect to z considered as a vector field on C, then

 D
�
0 0

1 0

�

2 n

corresponds to @ under the above isomorphism.
Let I� be the standard �-twisted Harish–Chandra sheaf attached to the open

orbit. Then the restriction of I� to C is isomorphic to the quotient of DC by the
left ideal generated by @ � �./. If � 6D 0, this is a connection on C which has an
irregular singularity at infinity.

5 The Nondegenerate Case

We say that � is nondegenerate if �jg˛ 6D 0 for ˛ 2 ˘ . In this case $ D ˘ and
P$ D G. Let w0 be the longest element of the Weyl group W . By Theorem 4.2,
in this case there exists only one irreducible object L� D L .w0; �; �/ in
Mcoh.D�;N; �/. Since the quotient of the corresponding standard Harish–Chandra
sheaf I� by L� must be supported in the complement of the big cell, it must be
zero. Hence, we conclude that L� is equal to the standard Harish–Chandra sheaf
I�, i.e., I� is irreducible.

Moreover, the space of global sections of I� is equal to the space R.C.w0// of
regular functions on the affine variety C.w0/. Therefore, from [8, 3.8], we see that
� .X;I�/ is an irreducible Whittaker module for any antidominant � 2 h�.

This also implies that in this case there exists a unique irreducible object in the
category N�;�.

Now we want to describe these modules. Clearly, the function 1 onX determines
a global section of I� and it spans an n-stable subspace of � .X;I�/ on which n
acts by �. Since I� is irreducible, this leads to an epimorphism of the coherent
D�-module D� ˝U .n/ C� onto I�. Clearly, with the N -action given by the tensor
product of the natural action on D� with the trivial action on C, D� ˝U .n/ C�

becomes an �-twisted Harish–Chandra sheaf. Moreover, since an orbit map from
N into C.w0/ is an isomorphism, the restriction to the big cell C.w0/ is an
epimorphism of the OC.w0/-module

.D� ˝U .n/ C�/ j C.w0/ Š DC.w0/ ˝U .n/ C� Š OC.w0/ ˝C C Š OC.w0/

onto the irreducible connection I�jC.w0/. Therefore, this is an isomorphism. It
follows that the kernel of the morphism of D� ˝U .n/ C� onto I� is supported on
the complement of the big cell. But as we remarked before, the only object which
can be supported there is 0. This implies that D� ˝U .n/ C� D I�. This finally
proves the following result.
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Theorem 5.1. Let � 2 n be nondegenerate and � 2 h�. Then the only irreducible
object in Mcoh.D�;N; �/ is D� ˝U .n/ C�.

We also have an analogous result for N�;�. It was originally proved by Kostant
in his work on Whittaker modules [5].

Theorem 5.2. Let � 2 n be nondegenerate. Then the only irreducible module in
N�;� is U� ˝U .n/ C�.

Proof. Let � 2 � be antidominant. Then

��.U� ˝U .n/ C�/ D D� ˝U�
.U� ˝U .n/ C�/ D D� ˝U .n/ C� D I�:

Therefore, by [8, 3.6], we have

� .X;I�/ D U� ˝U .n/ C�

and this is the unique irreducible object in Mfg.U� ; N; �/. ut
A vector in a Whittaker module which spans an n-stable subspace is called a

Whittaker vector.

Corollary 5.3. All Whittaker vectors in U� ˝U .n/ C� are proportional to 1˝ 1.

Proof. By the preceding argument we see that Whittaker vectors correspond exactly
to N -invariant sections of I�. These sections are exactly constant functions on the
open cell C.w0/. ut

Since the global sections of D� clearly operate faithfully on global sections of
I� we get the following consequence [5].

Corollary 5.4. The action of U� on U� ˝U .n/ C� is faithful.

Consider now an arbitrary object V in Mcoh.D�;N; �/. Its restriction onto the
big cell is an N -homogeneous connection. Since the stabilizer in N of an arbitrary
point in the big cell is trivial, this connection is equal to a sum of copies of the
irreducible connection on C.w0/. Since the restriction is left adjoint to direct image,
this implies that there exists a natural morphism ' of V into a sum of copies of I�.
By the preceding discussion, since the kernel and the cokernel of ' are supported in
the complement of the big cell, they are equal to zero. This leads to the following
results which show the extreme simplicity of the categories Mcoh.D�;N; �/ and
N�;� for nondegenerate �.

Theorem 5.5. Let � 2 n be nondegenerate. Then all objects in Mcoh.D�;N; �/ are
finite sums of irreducible objects D� ˝U .n/ C�.

Theorem 5.6. Let � 2 n be nondegenerate. Then modules in N�;� are finite sums
of irreducible modules U� ˝U .n/ C�.

Now we want to describe the structure of the category N� for a nondegenerate
� 2 n�.
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We start with a simple technical result. The enveloping algebra U .g/ has a
natural structure of a left Z .g/˝C U .n/-module given by left multiplication. The
following generalization of a classical result of Kostant must be well known.1

Lemma 5.7. U .g/ is free as a Z .g/˝C U .n/-module.

Proof. Let .Up.g/I p 2 ZC/ denote the natural filtration of the enveloping algebra
U .g/ of g.

Fix a Cartan subalgebra c and a nilpotent subalgebra Nn opposite to n. Then we
have g D n ˚ c ˚ Nn, and by the Poincaré–Birkhoff–Witt theorem it follows that
U .g/ D U .n/ ˝C U .c/ ˝C U .Nn/ as a left U .n/-module for left multiplication.
Then we define a linear space filtration FU .g/ of U .g/ via

Fp U .g/ D U .n/˝C Up.c/˝C U .Nn/:
Clearly, the natural filtration of U .g/ is finer than FU .g/, i.e., Up.g/ � Fp U .g/
for all p 2 ZC.

We define a filtration on Z .g/˝C U .n/, by

Fp.Z .g/˝C U .n// D .Up.g/\Z .g//˝C U .n/; p 2 ZC:

In this way, Z .g/ ˝C U .n/ becomes a filtered ring. The corresponding graded
ring Gr.Z .g/ ˝C U .n// is equal to Gr.Z .g// ˝C U .n/. The Harish–Chandra
homomorphism 
 W Z .g/ �! U .c/ is compatible with the natural filtrations and
the homomorphism Gr 
 is an isomorphism of GrZ .g/ onto the subalgebra I.c/ of
all W -invariants in S.c/ [3, Ch. VIII, §8, no. 5]. Therefore,

Gr.Z .g/˝C U .n// D I.c/˝C U .n/:

Let z 2 Up.g/ \ Z .g/. Then by the definition of the Harish–Chandra homomor-
phism, we have z � 
.z/ 2 nUp�1.g/. Hence, we have

zUq.c/ � 
.z/Uq.c/C nUp�1.g/Uq.c/ � 
.z/Uq.c/C nUpCq�1.g/

� 
.z/Uq.c/C FpCq�1U .g/ � FpCq U .g/

for any q 2 ZC. This implies first that

z Fq U .g/ � FpCq U .g/; q 2 ZCI

i.e., the filtration FU .g/ is compatible with the action of Z .g/˝CU .n/. Therefore,
U .g/ is a filtered Z .g/ ˝C U .n/-module. Moreover, the corresponding graded
module is

GrU .g/ D U .n/˝C S.c/˝C U .Nn/

1One of us learned this argument to prove Kostant’s result from Wilfried Schmid in 1977.
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with the obvious action of I.c/ ˝C U .n/. Since S.c/ is a free I.c/-module by
[3, Ch. V, §5, no. 5, Thm. 4], it follows that GrU .g/ is a free I.c/˝CU .n/-module.

This easily implies that U .g/ is a free Z .g/ ˝C U .n/-module [2, Ch. III, §2,
no. 8, Cor. 3. of Thm. 1]. ut

Let U be a finite-dimensional Z .g/-module. Consider it as a Z .g/ ˝C U .n/-
module, where n acts by multiplication by �. Let

I�.U / D U .g/˝Z .g/˝CU .n/ U I
we consider it as a U .g/-module by left multiplication in the first factor. By the
preceding lemma, the functor I� from the category of finite-dimensional Z .g/-
modules into the category of U .g/-modules is exact. It maps finite-dimensional
Z .g/-modules into Z .g/-finite, finitely generated U .g/-modules. Moreover, since
the action of n on I�.U / is the quotient of action on the tensor product U .g/˝C U

where n acts on the first factor by the adjoint action, we see immediately that I�.U /
is U .n/-finite. Hence, it is a Whittaker module. In addition, since the action of n on
U .g/ is nilpotent, we conclude that I�.U / is in N�. Therefore I� is an exact functor
from the category of finite-dimensional Z .g/-modules into the category N�.

Assume that dimU D 1. Then a maximal ideal in Z .g/ annihilates U . Hence
we see that I�.U / D U� ˝U .n/ C� for some Weyl group orbit � in h�. Moreover,
I�.U / is irreducible by Theorem 5.2.

By the exactness of the functor I�, we immediately conclude that

length I�.U / D dimU

for any finite-dimensional Z .g/-module U .
On the other hand, for a Whittaker module V in N�, let Wh.V / denote the space

of all Whittaker vectors. Clearly, Wh.V / is Z .g/-invariant.

Lemma 5.8. The functor Wh from the category N� into the category of Z .g/-
modules is exact.

Proof. The subspace Wh.V / of Whittaker vectors in V can be identified with the
module of n-invariants of V with respect to the �-action. Therefore, it is enough to
prove that H1.n; V / D 0 for any Whittaker module V , where the cohomology is
calculated with respect to the �-action.

Consider first the case of irreducible Whittaker modules. As we remarked before
an irreducible Whittaker module (with �-action) is isomorphic to the algebra of
regular functionsR.C.w0// on open cell C.w0/ with the natural action of N . Since
an orbit map is an isomorphism of N onto the open cell, it is enough to know
that groups Hi.n; R.N // D 0 for i � 1. This is a well-known fact (compare
[9, Lemma 1.9], for example).

Consider now an arbitrary Whittaker module V . Let V 0 be an irreducible
submodule of V and consider the exact sequence

0 �! V 0 �! V �! V 00 �! 0:
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From the long exact sequence of Lie algebra cohomology, we see that Hi.n; V / D
Hi.n; V 00/ for i � 1. Hence, by induction on the length of V , we conclude that
Hi.n; V / D 0 for i � 1. ut

By Corollary 5.3, we see that for any irreducible Whittaker module in N�, the
vector space Wh.V / is one-dimensional. Therefore, by induction on the length of
Whittaker modules and using the exactness of Wh, we immediately get

dim Wh.V / D length.V /

for any V in N�. In particular, Wh.V / is finite-dimensional. Therefore, Wh is an
exact functor from the category N� into the category of finite-dimensional Z .g/-
modules. It is easy to check that

HomU .g/.I�.U /; V / D HomZ .g/.U;Wh.V //;

i.e., the functor Wh is the right adjoint of I�.
Clearly, the linear map u 7�! 1˝u from U into I�.U / is injective, and its image

is in Wh.I�.U //. Since

dim Wh.I�.U // D length I�.U / D dimU;

it follows that the adjointness morphism U �! Wh.I�.U // is an isomorphism.
Conversely, let V be a Whittaker module in N�. Then we have the adjointness
morphism I�.Wh.V // �! V . Let K be its kernel and C the cokernel. Then we
have the exact sequence

0 �!Wh.K/ �!Wh.I�.Wh.V /// �!Wh.V / �!Wh.C / �! 0

and by the preceding remark, the third arrow is an isomorphism. Hence, Wh.K/ D 0
and Wh.C / D 0, i.e., K D C D 0 and I�.Wh.V // �! V is an isomorphism.
Therefore, we established the following result.

Theorem 5.9. Let � 2 n� be nondegenerate. Then the functor I� is an equivalence
of the category of finite-dimensionalZ .g/-modules with N�. Its quasi-inverse is the
functor Wh.

References

1. Alexander Beı̆linson and Joseph Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris
Sér. I Math. 292 (1981), no. 1, 15–18.

2. Nicolas Bourbaki, Algèbre commutative, Mason, Paris.
3. , Groupes et algèbres de Lie, Mason, Paris.
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Unitary Representations of Unitary Groups
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Abstract In this paper we review and streamline some results of Kirillov, Olshanski
and Pickrell on unitary representations of the unitary group U.H/ of a real, complex
or quaternionic separable Hilbert space and the subgroup U1.H/, consisting of
those unitary operators g for which g � 1 is compact. The Kirillov–Olshanski
theorem on the continuous unitary representations of the identity component
U1.H/0 asserts that they are direct sums of irreducible ones which can be realized
in finite tensor products of a suitable complex Hilbert space. This is proved and
generalized to inseparable spaces. These results are carried over to the full unitary
group by Pickrell’s theorem, asserting that the separable unitary representations of
U.H/, for a separable Hilbert space H, are uniquely determined by their restriction
to U1.H/0. For the 10 classical infinite rank symmetric pairs .G;K/ of non-
unitary type, such as .GL.H/;U.H//, we also show that all separable unitary
representations are trivial.
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modules • Bounded representation • Separable representation
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Introduction

One of the most drastic difference between the representation theory of finite-
dimensional Lie groups and infinite-dimensional ones is that an infinite-dimensional
Lie groupG may carry many different group topologies and any such topology leads
to a different class of continuous unitary representations. Another perspective on
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the same phenomenon is that the different topologies onG lead to different comple-
tions, and the passage to a specific completion reduces the class of representations
under consideration.

In the present paper we survey results and methods of A. Kirillov, G. Olshanski
and D. Pickrell from the point of view of Banach–Lie groups. In the unitary
representation theory of finite-dimensional Lie groups, the starting point is the
representation theory of compact Lie groups and the prototypical compact Lie group
is the unitary group U.n;C/ of a complex n-dimensional Hilbert space. Therefore
any systematic representation theory of infinite-dimensional Banach–Lie groups
should start with unitary groups of Hilbert spaces. For an infinite-dimensional
Hilbert space H, there is a large variety of unitary groups. First, there is the full
unitary group U.H/, endowed with the norm topology, turning it into a simply
connected Banach–Lie group with Lie algebra u.H/ D fX 2 B.H/WX� D �Xg.
However, the much coarser strong operator topology also turns it into another
topological group U.H/s . The third variant of a unitary group is the subgroup
U1.H/ of all unitary operators g for which g � 1 is compact. This is a Banach–
Lie group whose Lie algebra u1.H/ consists of all compact operators in u.H/.
If H is separable (which we assume in this introduction) and .en/n2N is an
orthonormal basis, then we obtain natural embeddings U.n;C/ ! U.H/ whose
union U.1;C/ D S1

nD1 U.n;C/ carries the structure of a direct limit Lie group
(cf. [Gl03]). Introducing also the Banach–Lie groups Up.H/, consisting of unitary
operators g, for which g� 1 is of Schatten class p 2 Œ1;1�, i.e., tr.jU � 1jp/ <1,
we thus obtain an infinite family of groups with continuous inclusions

U.1;C/ ,! U1.H/ ,! � � � ,! Up.H/ ,! � � � ,! U1.H/ ,! U.H/! U.H/s:

The representation theory of infinite-dimensional unitary groups began with
I. E. Segal’s paper [Se57], where he studies unitary representations of the full group
U.H/, called physical representations. These are characterized by the condition
that their differential maps finite rank hermitian projections to positive operators.
Segal shows that physical representations decompose discretely into irreducible
physical representations which are precisely those occurring in the decomposition
of finite tensor products H˝N , N 2 N0. It is not hard to see that this tensor product
decomposes as in classical Schur–Weyl theory:

H˝N Š
M

�2Part.N /

S�.H/˝M�; (1)

where Part.N / is the set of all partitions � D .�1; : : : ; �n/ of N , S�.H/ is an
irreducible unitary representation of U.H/ (called a Schur representation), and M�

is the corresponding irreducible representation of the symmetric group SN , hence
in particular finite-dimensional (cf. [BN12] for an extension of Schur–Weyl theory
to irreducible representations of C �-algebras). In particular, H˝N is a finite sum of
irreducible representations of U.H/.
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The representation theory of the Banach Lie group U1.H/, H a separable real,
complex or quaternionic Hilbert space, was initiated by A. A. Kirillov in [Ki73]
(which contains no proofs), and continued by G. I. Olshanski [Ol78, Thm. 1.11].
They showed that all continuous representations of U1.H/ are direct sums of
irreducible representations and that for K D C, all the irreducible representations
are of the form S�.H/˝S�.H/, where H is the space H, endowed with the opposite
complex structure. They also obtained generalizations for the corresponding groups
over real and quaternionic Hilbert spaces. It follows in particular that all irreducible
representations .�;H�/ of the Banach–Lie group U1.H/ are bounded in the sense
that �WU1.H/ ! U.H�/ is norm continuous, resp., a morphism of Banach–Lie
groups. The classification of the bounded unitary representations of the Banach–
Lie group Up.H/ remains the same for 1 < p <1, but for p D 1, factor
representations of type II and III exist (see [Boy80] for p D 2, and [Ne98] for
the general case). Dropping the boundedness assumptions even leads to a non-type
I representation theory for Up.H/, p < 1 (cf. [Boy80, Thm. 5.5]). We also refer
to [Boy93] for an approach to Kirillov’s classification based on the classification of
factor representations of U.1;C/ from [SV75].

These results clearly show that the group U1.H/ is singled out among all
its relatives by the fact that its unitary representation theory is well-behaved.
If H is separable, then U1.H/ is separable, so that its cyclic representations are
separable as well. Hence there is no need to discuss inseparable representations
for this group. This is different for the Banach–Lie group U.H/ which has many
inseparable bounded irreducible unitary representations coming from irreducible
representations of the Calkin algebra B.H/=K.H/. It was an amazing insight
of D. Pickrell [Pi88] that restricting attention to representations on separable
spaces tames the representation theory of U.H/ in the sense that all its separable
representations are actually continuous with respect to the strong operator topology,
i.e., continuous representations of U.H/s . For analogous results on the automatic
weak continuity of separable representations of W �-algebras see [FF57, Ta60].
Since U1.H/0 is dense in U.H/s , it follows that U1.H/0 has the same separable
representation theory as U.H/s . As we shall see below, all these results extend to
unitary groups of separable real and quaternionic Hilbert spaces.

Here we won’t go deeper into the still not completely developed representation
theory of groups like U2.H/ which also have a wealth of projective unitary repre-
sentations corresponding to nontrivial central Lie group extensions [Boy84, Ne13].
Instead we shall discuss the regular types of unitary representation and their char-
acterization. For the unitary groups, the natural analogs of the finite-dimensional
compact groups, a regular setup is obtained by considering U1.H/ or the separable
representations of U.H/. For direct limit groups, such as U.1;C/, the same kind
of regularity is introduced by Olshanski’s concept of a tame representation. Here a
fundamental result is that the tame unitary representation of U.1;C/0 are precisely
those extending to continuous representations of U1.H/0 ([Ol78]; Theorem 3.20).

The natural next step is to take a closer look at unitary representations
of the Banach analogs of noncompact classical groups; we simply call them
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non-unitary groups. There are 10 natural families of such groups that can be
realized by 
-invariant groups of operators with a polar decomposition

G D K exp p; where K D fg 2 GWg� D g�1g and p D fX 2 gWX� D Xg

(see the tables in Sect. 5). In particularK is the maximal unitary subgroup of G. In
this context Olshanski calls a continuous unitary representation of G admissible if
its restriction toK is tame. For the cases where the symmetric spaceG=K is of finite
rank, Olshanski classifies in [Ol78,Ol84] the irreducible admissible representations
and shows that they form a type I representation theory (see also [Ol89]).

The voluminous paper [Ol90] deals with the case where G=K is of infinite
rank. It contains a precise conjecture about the classification of the irreducible
representations and the observation that in general, there are admissible factor
representations not of type I. We refer to [MN13] for recent results related to
Olshanski’s conjecture and to [Ne12] for the classification of the semibounded
projective unitary representations of hermitian Banach–Lie groups. Both continue
Olshanski’s program in the context of Banach–Lie groups of operators.

In [Pi90, Prop. 7.1], Pickrell shows for the 10 classical types of symmetric
pairs .G;K/ of non-unitary type that for q > 2, all separable projective unitary
representations are trivial for the restricted groups G.q/ D K exp.p.q// with Lie
algebra

g.q/ D k˚ p.q/ and p.q/ WD p \ Bq.H/;

where Bq.H/ E B.H/ is the qth Schatten ideal. This complements the observation
that admissible representations often extend to the restricted groups G.2/ [Ol90].
From these results we learn that for q > 2, the groups G.q/ are too big to have
nontrivial separable unitary representations and that the groups G.2/ have just
the right size for a rich nontrivial separable representation theory. An important
consequence is thatG itself has no non-trivial separable unitary representation. This
applies in particular to the group GLK.H/ of K-linear isomorphisms of a K-Hilbert
space H and the group Sp.H/ of symplectic isomorphism of the symplectic space
underlying a complex Hilbert space H.

This is naturally extended by the fact that for the 10 symmetric pairs .G;K/ of
unitary type and q > 2, all continuous unitary representations of G.q/ extend to
continuous representations of the full group G [Pi90]. This result has interesting
consequences for the representation theory of mapping groups. For a compact spin
manifold M of odd dimension d , there are natural homomorphisms of the group
C1.M;K/, K a compact Lie group, into U.H ˚ H/.dC1/, corresponding to the
symmetric pair .U.H ˚ H/;U.H// (cf. [PS86, Mi89, Pi89]). For d D 1, the rich
projective representation theory of U.H˚H/.dC1/ now leads to the unitary positive
energy representations of loop groups, but for d > 1 the (projective) unitary
representations of U.H ˚ H/.dC1/ extend to the full unitary group U.H ˚ H/,
so that we do not obtain interesting unitary representations of mapping groups.
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However, there are natural homomorphisms C.M;K/ into the motion group
H Ì O.H/ of a real Hilbert space, and this leads to the interesting class of energy
representations [GGV80, AH78].

The content of the paper is as follows. In the first two sections we discuss some
core ideas and methods from the work of Olshanski and Pickrell. We start in Sect. 1
with the concept of a bounded topological group. These are topological groups G,
for which every identity neighborhood U satisfies G 	 Um for some m 2 N. This
boundedness condition permits showing that certain subgroups of G have nonzero
fixed points in unitary representations (cf. Proposition 1.6 for a typical result of this
kind). We continue in Sect. 2 with Olshanski’s concept of an overgroup. Starting
with a symmetric pair .G;K/ with Lie algebra g D k˚ p, the overgroupK] ofK is
a Lie group with the Lie algebra kC ip. We shall use these overgroups for the pairs
.GL.H/;U.H//, where H is a real, complex or quaternionic Hilbert space.

In Sect. 3 we describe Olshanski’s approach to the classification of the unitary
representations of K WD U1.H/0. Here the key idea is that any representation of
this group is a direct sum of representations � generated by the fixed space V of the
subgroup Kn fixing the first n basis vectors. It turns out that this space V carries a

-representation .	; V / of the involutive semigroup C.n;K/ of contractions on K

n

which determines � uniquely by a GNS construction.
Now the main point is to understand which representations of C.n;K/ occur

in this process, that they are direct sums of irreducible ones and to determine
the irreducible representations. To achieve this goal, we deviate from Olshanski’s
approach by putting a stronger emphasis on analytic positive definite functions (cf.
Appendix A).

This leads to a considerable simplification of the proof avoiding the use of
zonal spherical functions and expansions with respect to orthogonal polynomials.
Moreover, our technique is rather close to the setting of holomorphic induction
developed in [Ne13b]. In particular, we use Theorem A.4 which is a slight
generalization of [Ne12, Thm. A.7].

In Sect. 4 we provide a complete proof of Pickrell’s theorem asserting that for a
separable Hilbert space H, the groups U.H/ and U1.H/ have the same continuous
separable unitary representations. Here the key result is that all continuous separable
unitary representations of the quotient group U.H/=U1.H/ are trivial. We show
that this result carries over to the real and quaternionic case by deriving it from the
complex case.

This provides a complete picture of the separable representations of U.H/ and
the subgroup U1.H/, but there are many subgroups in between. This is naturally
complemented by Pickrell’s result that for the 10 symmetric pairs .G;K/ of unitary
type for q > 2, all continuous unitary representations of G.q/ extend to continuous
representations of G. In Sect. 5 we show that for the pairs .G;K/ of noncompact
type, all separable unitary representations of G and G.q/, q > 2, are trivial. This is
also stated in [Pi90], but the proof is very sketchy. We use an argument based on
Howe–Moore theory for the vanishing of matrix coefficients.
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Notation and Terminology

For the nonnegative half line we write RC D Œ0;1Œ.
In the following K always denotes R, C or the skew field H of quaternions. We

write f1; I;J ; IJ g for the canonical basis of H satisfying the relations

I2 D J 2 D �1 and IJ D �J I:

For a real Hilbert space H, we write HC for its complexification, and for a
quaternionic Hilbert space H, we write HC for the underlying complex Hilbert
space, obtained from the complex structure I 2 H. For a complex Hilbert space
we likewise write HR for the underlying real Hilbert space.

For the algebra B.H/ of bounded operators on the K-Hilbert space H, the ideal
of compact operators is denotedK.H/ D B1.H/, and for 1 � p <1, we write

Bp.H/ WD fA 2 K.H/W tr..A�A/p=2/ D tr.jAjp/ <1g

for the Schatten ideals. In particular, B2.H/ is the space of Hilbert–Schmidt
operators and B1.H/ the space of trace class operators. Endowed with the operator
norm, the groups GL.H/ and U.H/ are Lie groups with the respective Lie algebras

gl.H/ D B.H/ and u.H/ WD fX 2 gl.H/WX� D �Xg:

For 1 � p � 1, we obtain Lie groups

GLp.H/ WD GL.H/ \ .1C Bp.H// and Up.H/ WD U.H/\ GLp.H/

with the Lie algebras

glp.H/ WD Bp.H/ and up.H/ WD u.H/\ glp.H/:

To emphasize the base field K, we sometimes write UK.H/ for the group U.H/
of K-linear isometries of H. We also write O.H/ D UR.H/.

If G is a group acting on a set X , then we write XG for the subset of G-fixed
points.

1 Bounded Groups

In this section we discuss one of Olshanski’s key concepts for the approach
to Kirillov’s theorem on the classification of the representations of U1.H/0
for a separable Hilbert space discussed in Sect. 3. As we shall see below
(Lemma 4.1), this method also lies at the heart of Pickrell’s theorem on the separable
representations of U.H/.
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Definition 1.1. We call a topological group G bounded if, for every identity
neighborhoodU 	 G, there exists an m 2 N with G 	 Um.

Note that every locally connected bounded topological group is connected. The
group Q=Z is bounded but not connected.

Lemma 1.2. If, for a Banach–Lie group G, there exists a c > 0 with

G D expfx 2 gW kxk � cg; (Ol)

then G is bounded.

Proof. Let U be an identity neighborhood of G. Since the exponential function
expG W g! G is continuous, there exists an r > 0 with expx 2 U for kxk < r . Pick
m 2 N such that mr > c. For g D expx with kxk � c we then have exp x

m
2 U ,

and therefore g 2 Um. ut
Proposition 1.3. The following groups satisfy (Ol), hence are bounded:

(i) The full unitary group U.H/ of an infinite-dimensional complex or quater-
nionic Hilbert space.

(ii) The unitary group U.M/ of a von Neumann algebra M.
(iii) The identity component U1.H/0 of U1.H/ for a K-Hilbert space H.1

Proof. (i) Case K D C: Let g 2 U.H/ and let P denote the spectral measure on
the unit circle T 	 C with g D R

T
zdP.z/. We consider the measurable function

LWT !� � �; ��i which is the inverse of the function � � �; ��i ! T; z 7! ez.
Then

X WD
Z

T

L.z/ dP.z/ (1)

is a skew-hermitian operator with kXk � � and eX D g (cf. [Ru73,
Thm. 12.37]).
Case K D H: We consider the quaternionic Hilbert space as a complex Hilbert

space HC, endowed with an anticonjugation (=antilinear complex structure) J .
Then

UH.H/ D fg 2 U.HC/WJ gJ �1 D gg:

An element g 2 U.HC/ is H-linear if and only if the relation JP.E/J �1 D P.E/
holds for the corresponding spectral measure P on T.

1Actually this group is connected for K D C;H [Ne02, Cor. II.15].
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Let H0 WD ker.gC1/ D P.f�1g/H denote the .�1/-eigenspace of g and H1 WD
H?
0 . If X is defined by (1) and X1 WD X jH1 , then

JX1J �1 D
Z

Tnf�1g
�L.z/ dP.z/ D

Z

Tnf�1g
L.z/ dP.z/ D X1:

ThenX WD �J jH0 ˚X1 on H D H0˚H1 is an element X 2 uH.H/ with eX D g
and kXk � � . Therefore (Ol) is satisfied.

(ii) If g 2 U.M/, then P.E/ 2 M for every measurable subset E 	 T, and
thereforeX 2M. Now (ii) follows as (i) for K D C.

(iii) Case K D C;H: The operator X from (1) is compact if g � 1 is compact.
Hence the group U1;K.H/ is connected and we can argue as in (i).

Case K D R: We consider U1;R.H/ D O1.H/ as a subgroup of U1.HC/.
Let � denote the antilinear isometry on HC whose fixed point set is H. Then, for
g 2 U.HC/, the relation �g� D g is equivalent to g 2 O.H/. This is equivalent to
the relation �P.E/� D P.E/ for the corresponding spectral measure on T.

Next we recall from [Ne02, Cor. II.15] (see also [dlH72]) that the group O1.H/
has two connected components. An element g 2 O1.H/ for which g� 1 is of trace
class is contained in the identity component if and only if det.g/ D 1. From the
normal form of orthogonal compact operators that follows from the spectral measure
on HC, it follows that det.g/ D .�1/dimH�g

. Therefore the identity component of
O1.H/ consists of those elements g for which the .�1/-eigenspaceH0 D H�g is of
even dimension. Let J 2 o.H0/ be an orthogonal complex structure. On H1 WD H?

0

the operatorX1 WD X jH1 satisfies

�X1� D
Z

Tnf�1g
�L.z/ dP.z/ D

Z

Tnf�1g
L.z/ dP.z/ D X1;

so that X WD �J ˚X1 2 o1.H/ satisfies kXk � � and eX D g. ut
Example 1.4. (a) In view of Proposition 1.3, it is remarkable that the full orthog-

onal group O.H/ of a real Hilbert space H does not satisfy (Ol). Actually
its exponential function is not surjective [PW52]. In fact, if g D eX for
X 2 o.H/, then X commutes with g, hence preserves the .�1/-eigenspace
H0 WD ker.g C 1/. Therefore J WD eX=2 defines a complex structure on H0,
showing that H0 is either infinite-dimensional or of even dimension. Therefore
no element g 2 O.H/ for which dimH0 is odd is contained in the image of the
exponential function.

(b) We shall need later that O.H/ is connected. This follows from Kuiper’s theorem
[Ku65], but one can give a more direct argument based on the preceding
discussion. It only remains to show that elements g 2 O.H/ for which the
space H0 WD ker.gC 1/ is of finite odd dimension are contained in the identity
component. We write g D g�1˚g1 with g�1 D gjH0 and g1 WD gjH?

0
. Then g1

lies on a one-parameter group of O.H?
0 /, so that g is connected by a continuous
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arc to g0 WD �1H0 ˚ 1. This element is connected to g00 WD �1H0 ˚ �1H?

0
D

�1H, and this in turn to 1H. Therefore O.H/ is connected.

Lemma 1.5 (Olshanski Lemma). For a group G, a subset U 	 G and m 2 N

with G 	 Um, we put

� WD
s

1 � 1

4.mC 1/2 2�0; 1Œ:

If .�;H/ is a unitary representation with HG D f0g, then, for any non-zero  2 H,
there exists u 2 U with

1
2
k C �.u/k < �kk:

Proof ([Ol78, Lemma 1.3]). If k � �.u/k � �kk holds for all u 2 U , then the
triangle inequality implies

k � �.g/k � m�kk for g 2 Um D G:

For � < 1
m

this implies that the closed convex hull of the orbit �.G/ does not
contain 0, hence contains a nonzero fixed point by the Bruhat–Tits Theorem [La99],
applied to the isometric action of G on H. This violates our assumption HG D f0g.
We conclude that there exists a u 2 U with k � �.u/k > 1

mC1kk. Thus

2kk2 � 2Reh; �.u/i D k � �.u/k2 > kk2
.mC 1/2 ;

which in turn gives

k C �.u/k2 D 2kk2 C 2Reh; �.u/i < 
4� 1

.mC 1/2
�kk2 D �2kk2: ut

The following proposition is an abstraction of the proof of [Ol78, Lemma 1.4]. It
will be used in two situations below, to prove Kirillov’s Lemma 3.6 and in Pickrell’s
Lemma 4.1.

Proposition 1.6. LetG be a bounded topological group and .Gn/n2N be a sequence
of subgroups of G. If there exists a basis of 1-neighborhoods U 	 G such that
either

.a/ .U1/ .9m 2 N/.8n/ Gn 	 .Gn \ U /m, and
.U2/ .8N 2 N/.GN \ U / � � � .G1 \ U / 	 U ,

or
.b/ .V1/ .9m 2 N/.8n/ Gn 	 .Gn \ U /m, and

.V2/ there exists an increasing sequence of subgroups .G.n//n2N such that
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(1) .8 n 2 N/ the union of G.m/n WD G.m/ \Gn, m 2 N, is dense in Gn.
(2) .G.k1/1 \ U /.G.k2/k1 \ U / � � � .G.kN /kN�1 \ U / 	 U for

1 < k1 < : : : < kN .

Then there exists an n 2 N with HGn 6D f0g.
Proof. (a) We argue by contradiction and assume that HGn D f0g for every n.

Let  2 H be nonzero and let U 	 G be an identity neighborhood with
k�.g/ � k < 1

2
kk for g 2 U such that (U1/2) are satisfied. Let � be as

in Lemma 1.5.
Since G1 has no nonzero fixed vector, there exists an element u1 2 U \G1 with

k 1
2
. C �.u1//k � �kk:

Then 1 WD 1
2
. C �.u1// satisfies k1 � k < 1

2
kk, so that 1 6D 0. Iterating this

procedure, we obtain a sequence of vectors .n/n2N and elements un 2 U \Gn with
nC1 WD 1

2
.n C �.unC1/n/ and knC1k � �knk.

We consider the probability measures �n WD 1
2
.ı1 C ıun/ on G and observe that

(U2) implies supp.�n 
 � � � 
 �1/ 	 U for every n 2 N. By construction we have
�.�n 
 � � � 
 �1/ D n, so that kn � k < 1

2
kk. On the other hand,

k�.�n 
 � � � 
 �1/k D knk � �nkk ! 0;

and this is a contradiction.

(b) Again, we argue by contradiction and assume that no subgroup Gn has a
nonzero fixed vector. Let  2 H be a nonzero vector and U an identity
neighborhood with k�.g/ � k < 1

2
kk for g 2 U such that (V1) is satisfied.

Since G1 has no nonzero fixed point in H and
S1
nD1 G.n/1 is dense in G1, there

exists a k1 2 N and some u1 2 U \ G.k1/1 with k 1
2
. C �.u1//k < �kk

(Lemma 1.5). For 1 WD 1
2
.C�.u1// our construction then implies that k1�k <

1
2
kk, so that 1 6D 0. Any u 2 U \Gk1 commutes with u1, so that we further obtain

k�.u/1 � 1k D 1
2
k�.u/ �  C �.u/�.u1/ � �.u1/k

< 1
2
. 1
2
kk C k�.u1/�.u/ � �.u1/k/

D 1
2
. 1
2
kk C k�.u/ � k/ < 1

2
. 1
2
kk C 1

2
kk/ D 1

2
kk:

Iterating this procedure, we obtain a strictly increasing sequence .kn/ of natural
numbers, a sequence .n/ in H and un 2 G.kn/kn�1 \ U with

nC1 WD 1
2
.n C �.unC1/n/ and knC1k < �knk:

We consider the probability measures�n WD 1
2
.ı1Cıun/ onG. Condition (V2)(2)

implies that
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supp.�n 
 � � � 
 �1/ 	 f1; ung � � � f1; u1g 	 U for every n 2 N:

By construction �.�n 
 � � � 
 �1/ D n, so that kn � k < 1
2
kk. On the other

hand,

k�.�n 
 � � � 
 �1/k D knk � �nkk ! 0;

and this is a contradiction. ut

2 Duality and Overgroups

Apart from the fixed point results related to bounded topological groups discussed
in the preceding section, another central concept in Olshanski’s approach are
“overgroups”. They are closely related to the duality of symmetric spaces.

Definition 2.1. A symmetric Lie group is a triple .G;K; �/, where � is an involutive
automorphism of the Banach–Lie group G and K is an open subgroup of the
Lie subgroup G� of �-fixed points in G. We write g D k ˚ p D g� ˚ g�� for
the eigenspace decomposition of g with respect to � and call gc WD k˚ ip 	 gC the
dual symmetric Lie algebra.

Definition 2.2. Suppose that .G;K; �/ is a symmetric Lie group and Gc a simply
connected Lie group with Lie algebra gc D kC ip. ThenXC iY 7! X� iY (X 2 k,
Y 2 p), integrates to an involution Q�c of Gc . Let qK W QK0 ! K0 denote the universal
covering of the identity componentK0 of K and Q�K W QK0 ! Gc the homomorphism
integrating the inclusion k ,! gc . The group Q�K.ker qK/ acts trivially on gC, hence
is central in Gc . If it is discrete, then we call

.K0/
] WD Gc=Q�K.ker qK/

the overgroup of K0. In this case Q�K factors through a covering map �K0 WK0 !
.K0/

] and the involution �c induced by Q�c on .K0/
] leads to a symmetric Lie group

..K0/
]; �K0.K0/; �

c/.
To extend this construction to the case whereK is not connected, we first observe

that K 	 G acts naturally on the Lie algebra gc , hence also on the corresponding
simply connected group Gc . This action preserves Q�K.ker qK/, hence induces an
action on .K0/

], so that we can form the semidirect product .K0/
] Ì K . In this

groupN WD f.�K0.k/; k�1/W k 2 K0g is a closed normal subgroup and we put

K] WD ..K0/
] ÌK/=N; �K.k/ WD .1; k/N 2 K]:

The overgroup K] has the universal property that if a morphism ˛WK ! H of
Lie groups extends to a Lie group with Lie algebra gc D k C ip, then ˛ factors
through Q�K WK ! K].
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Example 2.3. (a) If H is a K-Hilbert space, then the triple .GLK.H/;UK.H/; �/
with �.g/ D .g�/�1 is a symmetric Lie group. For its Lie algebra

g D glK.H/ D k˚ p D uK.H/˚ HermK.H/;

the corresponding dual symmetric Lie algebra is

gc D kC ip D uK.H/˚ i HermK.H/ 	 u.HC/:

More precisely, we have

.R/ glR.H/c D o.H/˚ i Sym.H/ Š u.HC/ for K D R.

.C/ glC.H/c D u.H/˚ i Herm.H/ Š u.H/2 for K D C.

.H/ glH.H/c D uK.H/˚ I HermH.H/ Š u.HC/ for K D H.

Here the complex case requires additional explanation. Let I denote the given
complex structure on H. Then the maps

�˙WH! HC; v 7! 1p
2
.v  iIv/

are isometries to complex subspaces H
Ċ

of HC, where �C is complex linear and
�� is antilinear. We thus obtain

HC D HC
C
˚H�

C
Š H˚H;

and H
Ċ

are the ˙i -eigenspaces of the complex linear extension of I to HC. In
particular, gl.H/c preserves both subspaces H

Ċ
. This leads to the isomorphism


 W gl.H/c ! u.HC

C
/˚u.H�

C
/ Š u.H/˚u.H/; 
.XC iY / D .XCIY;X�IY /:

Lemma 2.4. For a K-Hilbert space H, let .G;K/ D .GLK.H/;UK.H/0/ and n WD
dimH. Then K is connected for K 6D R and n D1, and

.K0/
] Š

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

QU.n;C/ for K D R; n <1
QU.n;C/2=� for K D C; n <1; � WD f.z; z/W z 2 �1.U.n;C//g:
QU.2n;C/ for K D H; n <1;
U.HC/ for K D R

U.H/˚ U.H/ for K D C

U.HC/ for K D H:

Here HC is the complex Hilbert space underlying a quaternionic Hilbert space H.
For K D R;H, the map �K is the canonical inclusion, and �K.k/ D .k; k/ for
K D C.
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Proof. First we consider the case where n <1. Recall that

QU.n;C/ Š SU.n;C/ Ì R; O.n;R/0 D SO.n;R/ 	 SU.n;C/; U.n;H/ 	 SU.2n;C/:

For K D R, this implies that K D O.n;R/0 embeds into QU.n;C/, so that K] Š
QU.n;C/. For K D H, we see that K D U.n;H/ embeds into QU.2n;C/, which leads
to QK Š QU.2n;C/.

For K D C, we have the natural inclusion

iK WK D U.n;C/! U.n;C/ � U.n;C/ Š U.Cn/ �U.Cn/; g 7! .g; g/:

To determineK], we note that the image of

�1.iK/WZ Š �1.U.n;C//! Z
2 Š �1.U.n;C/2/; m 7! .m;m/

is � . ThereforeK] Š QU.n;C/2=� .
If n D 1, then K D UK.H/ is a simply connected Lie group with Lie algebra

k [Ku65], so that K] is the simply connected Lie group with Lie algebra k] and we
have a natural morphism �K WK ! K] integrating the inclusion k ,! k]. ut

3 The Unitary Representations of U1.H/0

In this section we completely describe the representations of the Banach–Lie groups
U1.H/0 for an infinite-dimensional real, complex or quaternionic Hilbert space. In
particular, we show that all continuous unitary representations are direct sums of
irreducible ones and classify the irreducible ones (Theorem 3.17). Our approach is
based on Olshanski’s treatment in [Ol78]. We also take some short cuts that simplify
the proof and put a stronger emphasis on analytic positive definite functions. This
has the nice side effect that we also obtain these results for inseparable Hilbert
spaces (Theorem 3.21).

3.1 Tameness as a Continuity Condition

We start with a brief discussion of Olshanski’s concept of a tame representa-
tion that links representations of U1.H/0 to representations of the direct limit
group U.1;K/.

Let K be a group and .Kj /j2J a non-empty family of subgroups satisfying the
following conditions

(S1) It is a filter basis, i.e., for j;m 2 J , there exists an ` 2 J withK` 	 Kj \Km.
(S2)

T
j2J Kj D f1g.

(S3) For each g 2 K and j 2 J there exists an m 2 J with gKmg
�1 	 Kj .
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Then there exists a unique Hausdorff group topology � on K for which .Kj /j2J
is a basis of 1-neighborhoods [Bou98, Ch. 4]. We call � the topology defined by
.Kj /j2J .

Definition 3.1. We call a unitary representation .�;H/ of K tame if the space

HT WD
X

j2J
HKj D

[

j2J
HKj ;

is dense in H. Note that, for Kj 	 Kk \K`, we have HKj � HKk CHK`; so that
HT is a directed union of the closed subspaces HKj .

Lemma 3.2. A unitary representation of K is tame if and only if it is continuous
with respect to the group topology defined by the filter basis .Kj /j2J .

Proof. If .�;H/ is a tame representation, then HT obviously consists of continuous
vectors for K since, for each v 2 HT , the stabilizer is open. Hence the set of
continuous vectors is dense, and therefore � is continuous.

If, conversely, .�;H/ is continuous and v 2 H, then the orbit mapK ! H; g 7!
gv is continuous. Let B" denote the closed "-ball in H. Then there exists a j 2 J
with �.Kj /v 	 v C B". Then C WD conv.�.Kj /v/ is a closed convex invariant
subset of v C B", hence contains a Kj -fixed point by the Bruhat–Tits Theorem
[La99]. This proves that HKj intersects v C B", hence that HT is dense in H. ut
Remark 3.3. (a) For a unitary representation .�;H/ of a topological group, the

subspace Hc of continuous vectors is closed and invariant. The representation
� is continuous if and only if Hc D H.

(b) For a unitary representation .�;H/ of K , by Lemma 3.2, the space of
continuous vectors coincides with HT . In particular, it is K-invariant.

(c) If the representation .�;H/ of K is irreducible, then it is tame if and only if
HT 6D f0g.

(d) If the representation .�;H/ of K is such that, for some n, the subspace HKn is
cyclic, then it is tame.

Definition 3.4. Assume that the groupK is the union of an increasing sequence of
subgroups .K.n//n2N. We say that the subgroups K.n/ are well-complemented by
the decreasing sequence .Kn/n2N of subgroups ofK ifKn commutes withK.n/ for
every n and

T
n2NKn D f1g. For k 2 K and n 2 N, we then find an m > n with

k 2 K.m/. Then kKmk
�1 D Km 	 Kn; so that (S1-3) are satisfied and the groups

.Kn/n2N define a group topology on K .

Example 3.5. (a) If K D ˚1
nD1Fn is a direct sum of subgroups .Fn/n2N, then the

subgroups K.n/ WD F1 � � � � � Fn are well-complemented by the subgroups
Kn WD ˚m>nFm.

(b) If K D U.1;K/0 D S1
nD1 U.n;K/0 is the canonical direct limit of the

compact groups U.n;K/0, then the subgroups K.n/ WD U.n;K/0 are well-
complemented by the subgroups
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Kn WD fg 2 KW .8j � n/ gej D ej g:

3.2 Tame Representations of U.1;K/

Let H be an infinite-dimensional separable Hilbert space over K 2 fR;C;Hg
and .ej /j2N an orthonormal basis of H. Accordingly, we obtain a natural dense
embedding U.1;K/ ,! U1.H/, so that every continuous unitary representation
of U1.H/0 is uniquely determined by its restriction to the direct limit group
U.1;K/0. Olshanski’s approach to the classification is based on an intrinsic
characterization of those representations of the direct limit group U.1;K/0 that
extend to U1.H/0. It turns out that these are precisely the tame representations
(Theorem 3.20). This is complemented by the discrete decomposition and the
classification of the irreducible ones (Theorem 3.17).

In the following we write K WD U1.H/0 for the identity component of U1.H/
(which is connected for K D C;H, but not for K D R), and K.n/ WD U.n;K/0 Š
U.H.n//0 for n 2 N, where H.n/ D spanfe1; : : : ; eng. For n 2 N, the stabilizer of
e1; : : : ; en in K is denoted Kn, and we likewise write K.m/n WD K.m/ \ Kn. We
also write K.1/ WD U.1;K/0 Š lim�! U.n;K/0 for the direct limit of the groups

U.n;K/0.
We now turn to the classification of the continuous unitary representations of K .

We start with an application of Proposition 1.6.

Lemma 3.6 (Kirillov’s Lemma). Let .�;H�/ be a continuous unitary represen-
tation of the Banach–Lie group K D U1.H/0. If H� 6D f0g, then there exists an
n 2 N, such that the stabilizer Kn of e1; : : : ; en has a nonzero fixed point.

Proof. We apply Proposition 1.6(b) with G WD K , Gn WD Kn and G.n/ WD K.n/.
ThenU" WD fg 2 KW kg�1k < "g provides the required basis of 1-neighborhoods in
G (Proposition 1.3(iii)). Condition (V1) follows from Proposition 1.3(iii), (V2)(1)
is clear, and (V2)(2) follows from the fact that, for 1 < k1 < : : : < kN , elements
uj 2 K.kj /kj�1 act on pairwise orthogonal subspaces. ut
Proposition 3.7. Any continuous unitary representation .�;H/ of K D U1.H/0
restricts to a tame representation of the subgroupK.1/ D U.1;K/0.
Proof. Let H0 	 H denote the maximal subspace on which the representation of
K.1/ is tame, i.e., the space of continuous vectors for the topology defined by the
subgroups K.1/n (Remark 3.3). Lemma 3.6 implies that H0 6D f0g. If H0 6D H,
then Lemma 3.6 implies the existence of nonzero continuous vectors in H?

0 , which
is a contradiction. ut
Example 3.8. The preceding proposition does not extend to the nonconnected group
O1.H/ which has 2-connected components. The corresponding homomorphism

DWO1.H/! f˙1g



212 K.-H. Neeb

is nontrivial on all subgroups O1.H/n, n 2 N.

Lemma 3.9. Let H be a K-Hilbert space and F 	 H be a finite-dimensional
subspace with 2 dimF < dimH.2

We write PF WH! F for the orthogonal projection and

C.F/ WD fA 2 B.F/W kAk � 1g

for the semigroup of contractions on F . Then the map

� WK D U1.H/0 ! C.F/; �.g/ D PFgP
�
F

is continuous, surjective and open. Its fibers are the double cosets of the pointwise
stabilizer KF of F .

In particular, we obtain for F D spanfe1; : : : ; eng a map

� WK ! C.n;K/ WD fX 2 M.n;K/W kXk � 1g; �.k/ij WD hkej ; ei i;

which is continuous, surjective and open, and whose fibers are the double cosets
KnkKn for k 2 K .

Proof. (i) Surjectivity: For C 2 C.F/, the operator

UC WD
�

C
p

1 � CC �
�p1� C �C C �

�

2 B.F ˚ F/

is unitary. In view of 2 dimF 	 H, we have an isometric embeddingF˚F ,!
H, and each unitary operator on F ˚ F extends to H by the identity on the
orthogonal complement. To see that the resulting operator in contained in K , it
remains to see that detUC D 1 if K D R. To verify this claim, we first observe
that for U1; U2 2 Un.K/, we have

UU1CU2 D
�
U1 0

0 U �
2

�

UC

�
U2 0

0 U �
1

�

;

which implies in particular that detUC D detUU1CU2 . We may therefore assume
that C is diagonal, and in this case the assertion follows from the trivial case
where dimF D 1. This implies that � is surjective.

(ii) � separates the double cosets of KF : We may w.l.o.g. assume that e1; : : : ; en
span F . First we observe that form < 2n, the subgroupKm acts transitively on
spheres in H.m/?.3

2For K D C;H, the condition 2 dimF � dimH is sufficient.
3Our assumption implies that dimH � 2. This claim follows from the case where H D K

2.
Using the diagonal inclusion U.1;K/2 ,! U.2;K/, it suffices to consider vectors with real entries,
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Suppose that �.k/ D �.k0/, i.e., that the first n components of the vectors
kej and k0ej , j D 1; : : : ; n, coincide. Let P WH ! F? denote the orthogonal
projection. Then kPke1k D kPk0e1k, so that the argument in the preceding
paragraph shows that there exists a k1 2 Kn with k1Pke1 D Pk0e1. This
implies that k1ke1 D k0e1. Replacing k by k1k, we may now assume that
ke1 D k0e1. Then kPke2k D kPk0e2k and the scalar products of Pke2 and
Pk0e2 with Pke1 coincide. We therefore find an element k2 2 Kn fixing
Pke1, hence also ke1, and satisfying k2Pke2 D Pk0e2, i.e., k2ke2 D k0e2.
Inductively, we thus obtain k1; : : : ; kn 2 Kn with kn � � �k1kej D k0ej for
j D 1; : : : ; n, and this implies that k0 2 kn � � �k1kKn 	 KnkKn.

(iii) It is clear that � is continuous. To see that it is open, let O 	 K be an
open subset. Then �.O/ D �.KnOKn/, so that we may w.l.o.g. assume that
O D KnOKn. From (i) and (ii) it follows that everyKn-double coset intersects
K.2n C 1/, so that �.O/ D �.O \ K.2n C 1//. Therefore it is enough to
observe that the restriction of � to K.2nC 1/ is open, which follows from the
compactness of K.2nC 1/ and the fact that � jK.2nC1/WK.2nC 1/! C.n;K/

is a quotient map. ut
For a continuous unitary representation .�;H�/ of K , let V WD HKn

� denote
the subspace of Kn-fixed vectors, P WH� ! V be the orthogonal projection and
�V .g/ WD P ��.g/P . Then �V is a B.V /-valued continuous positive definite
function and Lemma 3.9 implies that we obtain a well-defined continuous map

	WC.n;K/! B.V /; 	.�.k// WD �V .k/ for k 2 K:

The operator adjoint 
 turns C.n;K/ into an involutive semigroup, and we
obviously have �V .k/� D �V .k�/.

Olshanski’s proof of the following lemma is based on the fact that the projection
of the invariant probability measure on S

n to an axis for n ! 1 to the Dirac
measure in 0.

Lemma 3.10 ([Ol78, Lemma 1.7]). The map 	 is a continuous 
-representation of
the involutive semigroup C.n;K/ by contractions satisfying 	.1/ D 1.

which reduces the problem to the transitivity of the action of SO.2;R/ on the unit circle. Since
the trivial group SO.1;R/ does not act transitively on S

0 D f˙1g, it is here where we need that
2 dimF < dimH.



214 K.-H. Neeb

Using Zorn’s Lemma, we conclude that � is a direct sum of subrepresentations
for which the subspace of Kn-fixed vectors is cyclic for some n 2 N. We may
therefore assume that V D .H�/

Kn is cyclic in H� . Then the representation � is
equivalent to the GNS-representation ofK , defined by the positive definite function
�V (Remark A.3). Since the subspace V D .H�/

Kn is obviously invariant under the
commutant�.K/0 of �.K/, the cyclicity of V implies that we have an injective map

�.K/0 ! 	.C.n;K//0 	 B.V /

which actually is an isomorphism because �V .K/ D 	.C.n;K// is a semigroup
(Proposition A.6).

Therefore the structure of � is completely encoded in the representation 	 of the
semigroupC.n;K/. We therefore have to understand the 
-representations .	; V / of
C.n;K/ for which the B.V /-valued function 	 ı � WK ! B.V / is positive definite.

Definition 3.11. We call a 
-representation .	; V / of C.n;K/ �-positive if the
corresponding function 	 ı � WK ! B.V / is positive definite.

If 	 is �-positive, then we obtain a continuous unitary GNS-representation
.�	;H	/ ofK containing aK-cyclic subspace V such that the orthogonal projection
P WH	 ! V satisfies P�	.g/P � D 	.�.g// for g 2 K (cf. Remark A.3). The
following lemma shows that we can recover V as the space of Kn-fixed vectors
in H	.

Lemma 3.12. .H	/
Kn D V .

Proof. Since 	 ı � is Kn-biinvariant, the subspace V consists of Kn-fixed vectors
becauseK acts in the corresponding subspace H	ı� 	 V K by right translations (cf.
Remark A.3). LetW WD .H	/

Kn andQWH	 ! W denote the corresponding orthog-
onal projection. Then �.�.g// WD Q�	.g/Q

� defines a contraction representation
.�;W / of C.n;K/ (Lemma 3.10) and, for s 2 C.n;K/, we have 	.s/ D P�.s/P �.

In H the subspace V is K-cyclic. Therefore the subspaces Q�.g/V , g 2 K ,
span W . In view of Q�.g/V D �.�.g//V , this means that V 	 W is cyclic for
C.n;K/. Now Remark A.9 implies that V D W . ut

We subsume the results of this subsection in the following proposition.

Proposition 3.13. Let .	; V / be a continuous �-positive 
-representation of
C.n;K/ by contractions and ' WD 	 ı � . Then the corresponding GNS-
representation .�';H'/ of K is continuous with cyclic subspace V Š .H'/

Kn and
.�'/V D ' D 	 ı � . This establishes a one-to-one correspondence of �-positive
continuous 
-representation of C.n;K/ and continuous unitary representations
.�;H�/ of K generated by the subspace .H�/

Kn of Kn-fixed vectors. This
correspondence preserves direct sums of representations.
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3.3 �-Positive Representations of C.n;K/

For K D R;H, let Z WD�0; 1�1 	 C.n;K/ be the central subsemigroup of real
multiples of 1. Then the continuous bounded characters of Z are of the form
�s.r/ WD rs , s � 0. Any continuous 
-representation .�; V / of Z by contractions
determines a spectral measure P on OZ WD RC satisfying �.r1/ D R1

0 rs dP.s/ (cf.
[BCR84], [Ne00, VI.2]).

For K D C, the subsemigroup Z WD fz 2 C
�1W jzj � 1g Š �0; 1� � T is also

central in C.n;C/. Its continuous bounded characters are of the form �s;n.re
it / WD

rseint , s � 0; n 2 Z. Accordingly, continuous
-representation ofZ by contractions
correspond to spectral measures on OZ WD RC � Z.

Let .	; V / be a continuous (with respect to the weak operator topology on B.V /)

-representation of C.n;K/ by contractions. Since the spectral projections for the
restriction 	Z WD 	jZ lie in the commutant of 	.C.n;K//, the representation 	 is
a direct sum of subrepresentations for which the support of the spectral measure of
	Z is a compact subset of OZ. We call these representations centrally bounded. Then
the operators 	.r1/ are invertible for r > 0, and this implies that

O	.rM/ WD 	.r�11/�1	.M/ for r > 1;M 2 C.n;K/;

yields a well-defined extension O	 of 	 to a continuous 
-representation of the
multiplicative 
-semigroup .M.n;K/;
/ on V . For a more detailed analysis of the
decomposition theory, we may therefore restrict our attention to centrally bounded
representations. Decomposing further as a direct sum of cyclic representations, it
even suffices to consider separable centrally bounded representations.

The following proposition contains the key new points compared with Olshan-
ski’s approach in [Ol78]. Note that it is very close to the type of reasoning used in
[JN13] for the classification of the bounded unitary representations of SU2.A/.
Proposition 3.14. For every centrally bounded contraction representation .	; V /
of C.n;K/, the following assertions hold:

(i) The restriction of O	 to GL.n;K/ is a norm-continuous representation whose
differential d O	W gl.n;K/ ! B.V / is a representation of the Lie algebra
gl.n;K/ by bounded operators.

(ii) If 	 is �-positive, then O	 is real analytic on M.n;K/ and extends to a
holomorphic semigroup representation of the complexification

M.n;K/C Š

8
ˆ̂
<

ˆ̂
:

M.n;C/ for K D R

M.n;C/˚M.n;C/ Š B.Cn/˚B.Cn/ for K D C

M.n;M.2;C// ŠM.2n;C/ for K D H:

Proof. (i) We have already seen that O	WM.n;K/ ! B.V / is locally bounded and
continuous. Hence it restricts to a locally bounded continuous representation
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of the involutive Lie group .GL.n;K/;
/. Integrating this representation to the
convolution algebra C1

c .GL.n;K//, we see that the subspace V1 of smooth
vectors is dense. For the corresponding derived representation

d O	W gl.n;K/! End.V1/

our construction immediately implies that the operator d O	.1/ is bounded and
d O	.X/ � 0 for X D X� � 0 because we started with a contraction represen-
tation of C.n;K/. From X � kXk1 we also derive d O	.X/ � kXkd O	.1/, so
that d	.X/ is bounded. As u.n;K/ 	 z.gl.n;K//C ŒHerm.n;K/;Herm.n;K/�,
we conclude that d O	 is a 
-representation by bounded operators on the Hilbert
space V .
For X 2 gl.n;K/, we then have the relation

O	.expX/ D ed O	.X/ for X 2 gl.n;K/:

This implies that O	WGL.n;K/! GL.V / is norm-continuous.

(ii) Now we assume that ' WD 	 ı � WK ! B.V / is positive definite. Since �.1/ D
1, there exists an open 1-neighborhoodU 	 K with �.U / 	 GL.n;K/. For k 2
U we then have '.k/ D O	.�.k//, and since the representation O	 of GL.n;K/ is
norm continuous, hence analytic, ' is analytic on U . Now Theorem A.5 implies
that ' is analytic.

Let ˝ WD fC 2 C.n;K/W kCk < 1g denote the interior of C.n;K/. On this
domain we have an analytic cross section of � , given by

�.C / WD
0

@
C

p
1 � CC � 0

�p1 � C �C C � 0

0 0 1

1

A :

Now '.�.C // D 	.�.�.C /// D 	.C / forC 2 ˝ implies that 	j˝ is analytic. From
O	.rC / D O	.r/	.C / for r > 0 it now follows that O	WM.n;K/! B.V / is analytic.

It remains to show that O	 extends to a holomorphic map on M.n;K/C. First, the
analyticity of O	 implies for some " > 0 the existence of a holomorphic map F on
B" WD fC 2 M.n;K/CW kCk < "g with F.C / D O	.C / for C 2 M.n;K/ \ B".
This map also satisfies F.rC / D O	.r1/F.C / for r < 1, which implies that F
extends to a holomorphic map on r�1B" D Br�1" for every r > 0. This leads to the
existence of a holomorphic extension of O	 to all of M.n;K/C. That this extension
also is multiplicative follows immediately by analytic continuation. ut
Theorem 3.15 (Classification of Irreducible �-Positive Representations). Put
F WD K

n. Then all irreducible continuous �-positive representations of C.F/ Š
C.n;K/ are of the form
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8
ˆ̂
<

ˆ̂
:

S�.FC/ 	 .FC/
˝N ; for K D R;

S�.F/˝ S�.F/ 	 F˝N ˝ F˝M
; for K D C;

S�.FC/ 	 .FC/˝N ; for K D H;

where � 2 Part.N; n/; � 2 Part.M; n/.

Proof. Let .	; V / be an irreducible �-positive representation of C.n;K/. Then
	.Z/ 	 C1 by Schur’s Lemma, so that 	 is in particular centrally bounded and
extends to a holomorphic representation O	WM.n;K/C ! B.V / (Proposition 3.14).

For K D R;H, the center of M.n;K/C is C1. Since the only holomorphic
multiplicative maps C! C are of the form z 7! zN for someN 2 N0, it follows that
O	.z1/ D zN 1 for z 2 C. We conclude that the holomorphic map O	 is homogeneous
of degreeN . Hence there exists a linear map

Q	WSN .M.n;K/C/! B.V / with Q	.A˝N / D O	.A/; A 2 M.n;K/C:

The multiplicativity of O	 now implies that Q	 is multiplicative, hence a representation
of the finite-dimensional algebra SN .M.n;K/C/.

For K D R, we have M.n;R/C DM.n;C/, and

SN .M.n;C// D .M.n;C/˝N /SN Š M.nN;C/SN Š B..Cn/˝N /SN :

We conclude that SN .M.n;C// is the commutant of SN in M.nN;C/, and by
Schur–Weyl theory, this algebra can be identified with the image of the group
algebra CŒGL.n;C/� in B..Cn/˝N /. Therefore its irreducible representations are
parametrized by the set Part.N; n/ of partitions ofN into at most n summands. This
completes the proof for K D R. For K D H, we have the same picture because
M.n;H/C Š M.2n;C/.

For K D C, Z.M.n;C/C/ Š C
2, and the inclusion of Z.M.n;C// D C1 has

the form z 7! .z; z/. Hence there existN;M 2 N0 with 	Z.z1/ D zN zM1. Therefore
the restriction of O	 to the first factor is homogeneous of degreeN and the restriction
to the second factor of degreeM . This leads to a representation of the algebra

SN;M .M.n;C// WD SN .M.n;C//˝ SM.M.n;C//;

so that the same arguments as in the real case apply. ut
Now that we know all irreducible �-positive representations, we ask for the

corresponding decomposition theory.

Theorem 3.16. Every continuous �-positive 
-representation of C.n;K/ by con-
tractions is a direct sum of irreducible ones, and these are finite-dimensional.

Proof. We have already seen that 	 decomposes into a direct sum of centrally
bounded representations. We may therefore assume that 	 is centrally bounded, so
that 	 extends to a holomorphic representation O	 of M.n;K/C (Proposition 3.14).
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In the C �-algebra A WD M.n;K/C, every holomorphic function is uniquely
determined by its restriction to the unitary group U.A/, which is a totally real
submanifold. Therefore a closed subspace W 	 V is invariant under 	.C.n;K//
if and only if it is invariant under O	.U.A//. Since the group U.A/ is compact, the
assertion now follows from the classical fact that unitary representations of compact
groups are direct sums of irreducible ones. ut

3.4 The Classification Theorem

We are now ready to prove the Kirillov–Olshanski Theorem [Ki73, Ol78].

Theorem 3.17 (Classification of the Representations of U1.H/0)). Let H be an
infinite-dimensional separable K-Hilbert space.

(a) The irreducible continuous unitary representations of U1.H/0 are

8
ˆ̂
<

ˆ̂
:

S�.HC/ 	 .HC/
˝N ; for K D R;

S�.H/˝ S�.H/ 	 H˝N ˝H˝M
; for K D C;

S�.HC/ 	 .HC/˝N ; for K D H;

where � 2 Part.N /; � 2 Part.M/.
(b) Every continuous unitary representation of U1.H/0 is a direct sum of irre-

ducible ones.
(c) Every continuous unitary representation of U1.H/0 extends uniquely to a

continuous unitary representations of the full unitary group U.H/s , endowed
with the strong operator topology.

Proof. (a) In Theorem 3.15 we have classified the irreducible �-positive representa-
tions of C.n;K/. The corresponding representations .�;H�/ of K D U1.H/0
can now be determined rather easily. Since the passage from 	 to � preserves
direct sums, we consider the representations 	N of C.n;K/ on F˝N

C
for K D R,

on .FC/˝N for K D H, and the representation 	N;M on F˝N ˝ F˝M
for

K D C.

We likewise have unitary representations �N of K on .HC/
˝N for K D R,

on .HC/˝N for K D H, and a representation�N;M on H˝N˝H˝M
for K D C.

These are bounded continuous representations of K .

For K D R;H, the space of Kn-fixed vectors in .HC/
˝N obviously contains

.FC/
˝N and by considering the action of the subgroup of diagonal matrices, we

obtain the equality .FC/
˝N D ..HC/

˝N /Kn . Therefore the representation �N
corresponds to the representation 	N of C.n;K/. A similar argument shows that
for K D C, the K-representation �N;M corresponds to 	N;M .
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Since the representations 	N and 	N;M decompose into finitely many irre-
ducible pieces, the representations �N and �N;M decompose in precisely the
same way. For K D R;H, we thus obtain the Schur modules S�.HC/ and
S�.HC/ with � 2 Part.N /, respectively. For K D C, we obtain the tensor
products S�.H/˝ S�.H/ with � 2 Part.N / and � 2 Part.M/.

Here the restriction to partitions consisting of at most n summands corre-
sponds to the K-invariant subspace generated by the Kn-fixed vectors. This
subspace is proper if n is small.

(b) From Theorem 3.16 we know that �-positive contraction representations of
C.n;K/ are direct sums of irreducible ones. This implies that all continuous
unitary representations of K are direct sums of irreducible ones. Since the cor-
respondence between � and 	 leads to isomorphic commutants, the irreducible
subrepresentations of � and the corresponding subrepresentations of 	 have the
same multiplicities.

(c) The assertion is trivial for the irreducible representations of K described under
(a). Since U1.H/0 is dense in U.H/ with respect to the strong operator
topology,4 this extension is unique and generates the same von Neumann
algebra.

ut
Remark 3.18 (Representations of O1.H/). The above classification can easily be
extended to the nonconnected group O1.H/ (for K D R). Here the existence of
a canonical extension �� of every irreducible representations �� of SO1.H/ WD
O1.H/0 to O.H/ implies that there exist precisely two extensions that differ by
a twist with the canonical character DWO1.H/ ! f˙1g corresponding to the
determinant.

For a general continuous unitary representations of O1.H/, it follows that
all SO1.H/-isotypic subspaces are invariant under O1.H/, hence of the form
M� ˝ H�, where O1.H/ acts by " ˝ �� and " is a unitary representation of the
2-element group �0.O1.H//, i.e., defined by a unitary involution.

In particular, all continuous unitary representations of O1.H/ are direct sums of
irreducible ones, which are of the form �� and D ˝ ��. Here the first type extends
to the full orthogonal group O.H/, whereas the second type does not.

Remark 3.19 (Extension to Overgroups). (cf. [Ol84, §1.11]) Let H be an infinite-
dimensional separable K-Hilbert space and K WD UK.H/. We put

H] WD

8
ˆ̂
<

ˆ̂
:

HC for K D R

H˚H for K D C

HC for K D H:

4This follows from the fact that U1.H/0 acts transitively on the finite orthonormal systems in H.
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For each N 2 N we obtain a norm continuous representation

�N W .B.H]/; �/! B..H]/˝N /; �N .A/ WD A˝N

of the multiplicative semigroup .B.H]/; �/ whose restriction to U.H]/ is unitary.
We collect some properties of this representation:

(a) Let C.H]/ D fS 2 B.H]/W kSk � 1g denote the closed subsemigroup
of contractions. Then C.H]/ is a 
-subsemigroup of B.H]/ and �N jC.H]/ is
continuous with respect to the weak operator topology. In fact, �N .C.H]//

consists of contractions, and for the total subset of vectors of the form v WD
v1˝� � �˝vN , w WD w1˝� � �˝wN , the matrix coefficient S 7! h�N .S/v;wi DQN
jD1hSvj ;wj i is continuous.

(b) K WD UK.H/ is dense in CK.H/ with respect to the weak operator topology.
It suffices to see that for every contraction C on a finite-dimensional subspace
F 	 H, there exists a unitary operator U 2 UK.H/ with PFUP

�
F D C , where

PF WH ! F is the orthogonal projection. Since F ˚ F embeds isometrically
into H, this follows from the fact that the matrix

U WD
�

C
p

1 � CC �
�p1 � C �C C �

�

2M2.BK.F// D BK.F ˚F/

is unitary and satisfies PFUP
�
F D C (Lemma 3.9).

(c) Combining (a) and (b) implies that �N .CK.H// 	 �N .K/
00, and hence that

�N .BK.H// D S
�>0 �

N�N .CK.H// 	 �N .K/
00. For the corresponding Lie

algebra representation

d�N W glK.H/! B.H˝N /; d�N .X/ WD
NX

jD1
1˝.j�1/ ˝X ˝ 1˝.N�j /;

this implies that d�N .glK.H// 	 �N .K/00, and hence also that d�N .glK.H//C 	
�N .K/

00. The connectedness of the group K] (Lemma 2.4) now implies that
�N .K

]/ 	 �N .K/00. Since the subgroupK]1, consisting of those elements g for
which g � 1 is compact, is strongly dense in K] and the representation ofK] is
continuous with respect to the strong operator topology, the representations �N
of K] thus decomposes into Schur modules, as described in Theorem 3.17(a).

(d) The preceding discussion shows in particular that the representation �N of K
extends to the overgroupK] without enlarging the corresponding von Neumann
algebra. If 	 is the corresponding representation of C.n;K/ D C.F/ on V WD
.F ]/˝N , where F D K

n, then 	 extends to a holomorphic representation O	 of
M.n;K/C and the map � WK ! C.n;K/ likewise extends to a holomorphic
map O� WB.H/C ! M.n;K/C. Now O	 ı O� WB.H/C ! B.V / is a holomorphic
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positive definite function corresponding to the representation of .B.H/C; �/ on
.H]/˝N whose restriction yields a unitary representation of the unitary group
U.H/] of B.H/C.

We conclude this subsection with the following converse to Proposition 3.7.

Theorem 3.20. A unitary representation of U.1;K/0 is tame if and only if it
extends to a continuous unitary representation of U1.H/0 for H D `2.N;K/.
Proof. We have already seen in Proposition 3.7 that every continuous unitary
representation of K D U1.H/0 restricts to a tame representation of K.1/ D
U.1;K/0.

Suppose, conversely, that .�;H�/ is a tame unitary representation of K.1/.
Then the same arguments as for K imply that it is a direct sum of representations
generated by the subspace V D .H�/

K.1/n and we obtain a representation .	; V /
of C.n;K/ for which 	 ı � is positive definite on K.1/. Since it is continuous and
K.1/ is dense in K , it is also positive definite on K . Now the GNS construction,
applied to 	 ı � , yields the continuous extension of � to K . ut

3.5 The Inseparable Case

In this subsection we show that Theorem 3.17 extends to the case where H is not
separable.

Theorem 3.21. Theorem 3.17 also holds if H is inseparable.

Proof. (a) First we note that the Schur–Weyl decomposition

H˝N Š
M

�2Part.N /

S�.H/˝M�

holds for any infinite-dimensional complex Hilbert space [BN12] and that the
spaces S�.H/ carry irreducible representations of U.H/ which are continuous
with respect to the norm topology and the strong operator topology on U.H/.

(b) To obtain the irreducible representations of K WD U1.H/0, we choose an
orthonormal basis .ej /j2J of H and assume that N D f1; 2; : : :g is a subset
of J . Accordingly, we obtain an embedding K.1/ WD U.1;K/ ,! U1.H/
and define Kn WD fk 2 KW kej D ej ; j D 1; : : : ; ng. For a subset M 	 J , we
putK.M/ WD U1.HM /0, where HM 	 H is the closed subspace generated by
.ej /j2M .

(c) Kirillov’s Lemma 3.6 is still valid in the inseparable case and Lemma 3.10
follows from the separable case because �.K/ D �.K.1//.

(d) With the same argument as in Sect. 3.2 it follows that � is a direct sum
of subrepresentations for which .H�/

Kn is cyclic. These in turn correspond
to �-positive representations .	; V / of C.n;K/. We claim that 	 ı � is
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positive definite on K.N/ if and only if it is positive definite on K.M/

for any countable subset with N 	 M 	 J . In fact, there exists a unitary
isomorphism UM WH.N/ ! H.M/ fixing e1; : : : ; en. For k 2 K.M/ we then
have 	.�.k// D 	.�.U �

MkUM//, so that 	 ı � is positive definite on K.M/ if it
is on K.N/.

For every finite subset F 	 K , there exists a countable subset Jc 	 J

containing N such that F fixes all basis elements ej , j 62 Jc . Therefore 	 ı � is
positive definite onK if and only if this is the case onK.M/ for every countable
subset and this in turn follows from the positive definiteness on the subgroup
K.N/. We conclude that the classification of the unitary representations ofK is
the same as for K.N/. ut

Remark 3.22. If H is inseparable, then the classification implies that all irreducible
unitary representations of U1.H/0 are inseparable. In particular, all separable
unitary representations of U1.H/0 are trivial because they are direct sums of
irreducible ones.

Problem 3.23. It seems that the classification problem we dealt with in this section
can be formulated in a more general context as follows. Let A be a real involutive
Banach algebra and P 2 A be a hermitian projection, so that we obtain a closed
subalgebra AP WD PAP . On the unitary group.

U.A/ WD fA 2 AWA�A D AA� D 1g
We consider the map

� WU.A/! C.AP / WD fA 2 AP W kAk � 1g; �.g/ WD PgP:

For which 
-representations .	; V / of the semigroup C.AP / is the function
	 ı � WU.A/0 ! B.V / positive definite?

For A D B1.H/, the compact operators on the K-Hilbert space H and a finite
rank projection P , this problem specializes to the determination of the �-positive
representations of C.n;K/.

If P is central, then � is a 
-homomorphism, so that 	 ı � is positive definite for
any representation 	.

4 Separable Representations of U.H/

In this section we show that for the unitary group U.H/ of a separable Hilbert
space H, endowed with the norm topology, all separable representations are
uniquely determined by their restrictions to the normal subgroup U1.H/0. This
result of Pickrell [Pi88] extends the Kirillov–Olshanski classification to separable
representations of U.H/.
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4.1 Triviality of Separable Representations Modulo Compacts

Before we turn to the proof of Theorem 4.6, we need a few preparatory lemmas.

Lemma 4.1. Let H be an infinite-dimensional Hilbert space, .�;H�/ be a con-
tinuous unitary representation of U.H/, and H D V ˚ V ? with V Š V ?. Then
HU.V /
� 6D f0g.

Proof. Put H1 WD V and write V ? as a Hilbert space direct sum b̊1
jD2Hj , where

each Hj is isomorphic to V or H. This is possible because jJ j D jN� J j for every
infinite set J . We claim that some U.Hj / has nonzero fixed points in H� . Once

this claim is proved, we choose g 2 U.H/ with gV D Hj . Then �.g/HU.V /
� D

HU.Hj /
� 6D f0g implies the assertion.
For the proof we want to use Proposition 1.6. In G WD U.H/ we consider the

basis of 1-neighborhoods given by U" WD fg 2 U.H/W kg � 1k < "g and the
subgroups Gj WD U.Hj /. Then the proof of Proposition 1.3(i) shows that there
exists an m 2 N with Gj 	 .U" \ Gj /m for every j , which is (U1). It is also clear
that (U2) is satisfied. Therefore the assertion follows from Proposition 1.6. ut
Lemma 4.2. Let F 	 H be a closed subspace of finite codimension. Then the nat-
ural morphism U.F/! U.H/=U1.H/ is surjective, i.e., U.H/ D U1.H/U.F/.
Proof. Since the groups U.H/ and U.F/ are connected (Proposition 1.3(i)), it
suffices to show that their Lie algebras satisfy

u.H/ D u.F/C u1.H/:

Let P WH ! H be the orthogonal projection onto F . Then every X 2 u.H/ can be
written as

X D PXP C .1 � P/XP CX.1� P/;

where PXP 2 u.F/ and the other two summands are compact because 1 � P has
finite range. ut
Lemma 4.3. Let .�;H�/ be a continuous unitary representation of U.H/ with
U1.H/ 	 ker� and H D b̊j2JHj with Hj infinite-dimensional separable and J

infinite. Then
T
j2J HU.Hj /

� 6D f0g.
Proof. Let V 	 H be a closed subspace of the form V D P

j Vj , where each

Vj 	 Hj is a closed subspace of codimension 1. Then V ? Š `2.J;C/ Š H Š V

because jJ �Nj D jJ j. According to Lemma 4.2, we then have

U.Hj / 	 U.Vj /U1.Hj / 	 U.V /U1.H/:
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In view of Lemma 4.1, U.V / has nonzero fixed points in H� , and since U1.H/ 	
ker� , any such fixed point is fixed by all the subgroups U.Hj /. ut

From now on we assume that H is separable.

Lemma 4.4. Let .�;H�/ be a continuous unitary representation of U.H/ with
U1.H/ 	 ker� and g 2 U.H/. If 1 is contained in the essential spectrum of g,
i.e., the image of g � 1 in the Calkin algebra B.H/=K.H/ is not invertible, then 1
is an eigenvalue of �.g/.

Proof. We choose an orthogonal decomposition H D b̊1
nD1Hn into infinite-

dimensional g-invariant subspaces of H as follows.

Case 1: If 1 is an eigenvalue of g of infinite multiplicity, then we put H0 WD
ker.1 � g/?. If this space is infinite-dimensional, then we put H1 WD H0, and if
this is not the case, then we pick a subspace H0

0 	 H?
0 of infinite dimension and

codimension and put H1 WD H0 ˚H0
0. We choose all other Hn, n > 1, such that

H?
1 D b̊1

nD2Hn and note that H?
1 	 ker.1 � g/.

Case 2: If ker.1 � g/ is finite-dimensional, then let P" 2 B.H/ be the spectral
projection for g corresponding to the closed disc of radius " > 0 about 1. Then

g" WD P" ˚ .1 � P"/g

satisfies kg" � gk � ". The noncompactness of g � 1 implies that if " is small
enough, then

g" � 1 D 0˚ .1 � P"/.g � 1/

is noncompact, and hence that P"H has infinite codimension. Further P"H is
infinite-dimensional because 1 is an essential spectral value of g. Hence there
exists a sequence "1 > "2 > : : : converging to 0, for which the g-invariant
subspaces

H1 WD .P"1H/? and Hj WD P"j�1H \ .P"jH/?

are infinite-dimensional.

In both cases, we consider g" as an element .g";n/ of the product group
Q1
nD1 U.Hn/ 	 U.H/ satisfying g";n D 1 for n sufficiently large. If v 2 H� is

a nonzero simultaneous fixed vector for the subgroups U.Hn/ (Lemma 4.3), we
obtain �.g"/v D v for every " > 0, and now v D �.g"/v ! �.g/v implies that
�.g/v D v. ut

As an immediate consequence, we obtain:

Lemma 4.5. Let .�;H�/ be a continuous unitary representation of U.H/ with
U1.H/ 	 ker� and j 2 Z with �.�1/ D �j1 for � 2 T. If � is contained in
the essential spectrum of g, then �j is an eigenvalue of �.g/.
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Proof. Lemma 4.4 implies that �.��1g/ has a nonzero fixed vector v, and this
means that �.g/v D �j v. ut
Theorem 4.6. If H is a separable Hilbert space over K 2 fR;C;Hg, then every
continuous unitary representation of U.H/=U1.H/0 on a separable Hilbert space
is trivial.

Proof. (a) We start with the case K D C. Let .�;H�/ be a separable continuous
unitary representation of the Banach–Lie group U.H/ with U1.H/ 	 ker� .

Step 1: T1 	 ker�: Decomposing the representation of the compact central
subgroup T1, we may w.l.o.g. assume that �.�1/ D �j1 for some j 2 Z.
Let g 2 U.H/ be an element with uncountable essential spectrum. If j 6D 0,
then Lemma 4.5 implies that �.g/ has uncountably many eigenvalues, which
is impossible if H� is separable. Therefore j D 0, and this means that T1 	
ker� .

Step 2: Let P 2 B.H/ be an orthogonal projection with infinite rank. Then
U.PH/ Š U.H/, so that Step 1 implies that TP C .1 � P/ 	 ker�: If P has
finite rank, then

TP C .1 � P/ 	 U1.H/ 	 ker�:

This implies that ker� contains all elements g with Spec.g/ 	 f1; �g for some
� 2 T. Since every element with finite spectrum is a finite product of such
elements, it is also contained in ker� . Finally we derive from the Spectral
Theorem that the subset of elements with finite spectrum is dense in U.H/,
so that � is trivial.5

(b) Next we consider the orthogonal group UR.H/ D O.H/ of a real Hilbert
space H. Since H is infinite-dimensional, there exists an orthogonal complex
structure I 2 O.H/. Then �.g/ WD IgI�1 defines an involution on O.H/
whose fixed point set is the unitary group U.H; I / of the complex Hilbert space
.H; I /.

Let �WO.H/ ! U.H�/ be a continuous separable unitary representation
with SO1.H/ WD O1.H/0 	 N WD ker� . Applying (a) to �jU.H;I /, it follows
that U.H; I / 	 N and hence in particular that I 2 N .

For X> D �X and �.X/ D �X we then obtain

N 3 I exp.X/I�1 exp.�X/ D exp.�X/ exp.�X/ D exp.�2X/:

5This argument simplifies Pickrell’s argument that was based on the simplicity of the topological
group U.H/=TU1.H/ [Ka52].
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This implies that L.N / D fX 2 o.H/W exp.RX/ 	 N g D o.H/, and since
O.H/ is connected by Example 1.4, it follows that N D O.H/, i.e., that � is
trivial.

(c) Now let H be a quaternionic Hilbert space, considered as a right H-module.
Realizing H as `2.S;H/ for some set S , we see that K WD `2.S;C/ is a complex
Hilbert space whose complex structure is given by left multiplication �I with
the basis element I 2 H (this map is H-linear) and we have a direct sum HC D
K˚KJ of complex Hilbert spaces.

Let � W `2.S;H/! `2.S;H/ be the real linear isometry given by �.v/ D IvI�1
pointwise on S , so that H� D `2.S;C/ D K and KJ D H�� . Then
�.g/ WD �g� defines an involution on UH.H/ whose group of fixed points
is isomorphic to the unitary group U.K/ of the complex Hilbert space K, on
which the complex structure is given by right multiplication with I, which
actually coincides with the left multiplication.

Let �WUH.H/ ! U.H�/ be a continuous separable unitary representation
with UH;1.H/ 	 N WD ker� . Applying (a) to �jU.K/, it follows that U.K/ 	
N and hence in particular that �I 2 N . On the Lie algebra level, u.K/ is
complemented by

fX 2 uH.H/W �X D �X�g D fX 2 uH.H/W�IX D �X�Ig;

and for any element of this space we have

N 3 �I exp.X/��1
I exp.�X/ D exp.�X/ exp.�X/ D exp.�2X/:

This implies that L.N / D uH.H/, and since UH.H/ is connected by Proposition
1.3(i),N D UH.H/, so that � is trivial. ut

Remark 4.7. For K D R, the group O.H/= SO1.H/ is the 2-fold simply connected
cover of the group O.H/=O1.H/. Therefore the triviality of all separable represen-
tations of O.H/=O1.H/ follows from the triviality of all separable representations
of O.H/= SO1.H/ D O.H/=O1.H/0.
Problem 4.8. If H is an inseparable Hilbert space, then we think that all separable
unitary representations .�;H/ of U.H/ should be trivial, but we can only show that
ker� contains all operators for which .g � 1/H is separable, i.e., all groups U.H0/,
where H0 	 H is a separable subspace.

The argument works as follows. From Remark 3.22 we know that all irreducible
representations of U1.H/ are inseparable. Theorem 3.21 implies that U1.H/ 	
ker� . Now Theorem 4.6 implies that ker� contains all subgroups U.H0/, where
H0 is a separable Hilbert space, and this proves our claim.
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4.2 Separable Representations of the Lie Group U.H/

Based on Pickrell’s theorem on the triviality of the separable representations of
the quotient Lie groups U.H/=U1.H/0, we can now determine all separable
continuous unitary representations of the full unitary group U.H/.
Theorem 4.9. Let H be a separable K-Hilbert space. Then every separable
continuous unitary representation .�;H�/ of the Banach–Lie group U.H/ has the
following properties:

(i) It is continuous with respect to the strong operator topology on U.H/.
(ii) Its restriction to U1.H/0 has the same commutant.

(iii) It is a direct sum of bounded irreducible representations.
(iv) Every irreducible separable representation is of the form

8
ˆ̂
<

ˆ̂
:

S�.HC/ 	 .HC/
˝N ; � 2 Part.N /; for K D R;

S�.H/˝ S�.H/ 	 H˝N ˝H˝M
; � 2 Part.N /; � 2 Part.M/; for K D C;

S�.HC/ 	 .HC/˝N ; � 2 Part.N /; for K D H:

(v) � extends uniquely to a strongly continuous representation of the overgroup
U.H/] with the same commutant.

Proof. (i) From Theorem 3.17(c) we know that �1 WD �jU1.H/ extends to
a unique continuous unitary representation � of U.H/s on H� . In
particular, the action of U.H/ on the unitary dual of the normal subgroup
U1.H/0 is trivial. Hence all isotypic subspaces HŒ�� for �1 are
invariant under � . We may therefore assume that �1 is isotypic, i.e.,
of the form 1 ˝ 	�, where .	�; V�/ is an irreducible representation of
U1.H/0 (cf. Theorem 3.17). Then � WD 1 ˝ 	� is continuous with
respect to the operator norm on U.H/ because the representations of
U.H/ on the spaces H˝N

C
are norm-continuous (Theorem 3.17(c)).

Now

ˇ.g/ WD �.g/�.g/�1 2 �.U1.H//0 D �.U.H//0

implies that ˇWU.H/ ! U.H�/ defines a separable norm-continuous
unitary representation vanishing on U1.H/. By Theorem 4.6 it is trivial,
so that � D � .

(ii) follows from (i) and the density of U1.H/0 in U.H/s .
(iii), (iv) now follow from Theorem 3.17.

(v) In view of (iii), assertion (v) reduces to the case of irreducible representa-
tions. In this case (v) follows from the concrete classification (iv) and the
description of the overgroups U.H/] in Lemma 2.4.

ut
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Corollary 4.10. Let K be a quotient of a product K1 � � � � � Kn, where each Kj

is compact, a quotient of some group U.H/ or U1.H/0, where H is a separable
K-Hilbert space. Then every separable continuous unitary representation � ofK is
a direct sum of irreducible representations which are bounded.

The preceding corollary means that the separable representation theory of K is
very similar to the representation theory of a compact group.

4.3 Classification of Irreducible Representations
by Highest Weights

We choose an orthonormal basis .ej /j2J in the complex Hilbert space H and write
T Š T

J for the corresponding group of diagonal matrices. Characters of this group

correspond to finitely supported functions �WJ ! Z via ��.t/ D Q
j2J t

�j
j . For

the subgroup T .1/ of those diagonal matrices t for which t � 1 has finite rank,
any function �WJ ! Z defines a character. Accordingly, each � D .�j /j2J 2 Z

J

defines a uniquely determined unitary highest weight representation .��;H�/ of
U.1;C/ [Ne04, Ne98]. This representation is uniquely determined by the property
that its weight set with respect to the diagonal subgroup T Š T

.J /, whose character
group bT is ZJ , coincides with

conv.W�/\ .�CQ/; where Q 	 bT

is the root group and W is the group of finite permutations of the set J .

Proposition 4.11. A unitary highest weight representation .��;H�/ of U.1;C/ is
tame if and only if �WN! Z is finitely supported.

Proof. If �� is a tame representation, then its restriction to the diagonal subgroup
is tame. Since this representation is diagonalizable, this means that each weight has
finite support. It follows in particular that � has finite support.

If, conversely, � has finite support, then we write � D �C � ��, where �˙
are nonnegative with finite disjoint support. Then H� can be embedded into
S�C

.H/˝ S��
.H/ [Ne98], hence it is tame. ut

Example 4.12. K D R: In the infinite-dimensional real Hilbert space H we
fix a complex structure I . Then there exists a real orthonormal basis of the
form fej ; Iej W j 2 J g. Then the subgroup T 	 O.H/ preserving all the planes
Rej C IRej is maximal abelian. In HC the elements ej̇ WD 1p

2
.ej  Iej / form an

orthonormal basis, and we write 2J WD J � f˙g for the corresponding index set.
In O.H/] D U.HC/, the corresponding diagonal subgroup T ] Š T

2J is maximal
abelian. The corresponding maximal torus TC of O.H/C 	 GL.HC/ corresponds to
diagonal matrices d acting by dej̇ D d˙1

j ej̇ .
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For a character �� of T ] with �W 2J ! Z, the corresponding character of T is
given by the finitely supported function �[WJ ! Z with �[j D �j;C � �j;�. If
�W 2J ! N0 has finite support, then the corresponding irreducible representation
of U.HC/ occurs as some S�.HC/ in H˝N

C
, where

P
j22J �j D N . From

the Classification Theorem 3.17 it follows that the restriction of �� to O.H/ is
irreducible. The corresponding highest weight is �[. On the level of highest weights,
it is clear that, for each finitely supported weight �WJ ! N0, we obtain by

�
]
j;C WD �j and �

]
j;� WD 0

a highest weight �] with .�]/[ D �. The irreducible representations of O.H/ are
classified by orbits of the Weyl group W in the set of finitely supported integral
weights �WJ ! Z of the root system D2J (cf. [Ne98, Sect. VII]). Each orbit has a
nonnegative representative, and then �] is the highest weight of the corresponding
representation ��] of U.HC/.

Example 4.13. K D C: Let .ej /j2J be an ONB of H. In U.H/] Š U.H/ � U.H/
we have the maximal abelian subgroup T ] D T �T , where T Š T

J is the subgroup
of diagonal matrices in U.H/ with respect to the ONB .ej /j2J .

Let 2J WD J � f˙g, so that T ] Š T
2J . For a finitely supported function

�W 2J ! Z, the corresponding character of T is given by �[WJ ! Z, defined
by �[j D �j;C � �j;�. If �W 2J ! N0 has finite support, and � D �C � �� with
nonnegative summands �˙ supported in J � f˙g, respectively, the corresponding

irreducible representation �� lives on S�C
.H/˝ S��

.H/ 	 H˝N ˝H˝M
, where

N D P
�j>0

�j and M D �P�j <0
�j . From the Classification Theorem 3.17 it

follows that the restriction of �� to U.H/ is irreducible. The corresponding highest
weight is �[ D �C���. For each finitely supported weight � D �C���WJ ! N0,
we obtain by �]j;˙ WD �˙;j ; j 2 J , a highest weight �] with .�]/[ D �. The
irreducible representations of U.H/ are classified by orbits of the Weyl group
W Š S.J / in the set of finitely supported integral weights �WJ ! Z of the root
system AJ (cf. [Ne98, Sect. VII]).

Example 4.14. K D H: In the quaternionic Hilbert space H we consider the
complex structure defined by multiplication with I, which leads to the complex
Hilbert space HC. Then there exists a complex orthonormal basis of the form
fej ;J ej W j 2 J g. We write T ] 	 U.HC/ for the corresponding diagonal subgroup.
Note that T ] Š T

2J for 2J WD J � f˙g. The subgroup T WD T ] \U.H/ D .T ]/J
acts on the basis elements ej;C WD ej and ej;� WD J ej by dej;˙ D dj̇ ej;˙.

The classification of the irreducible representations by Weyl group orbits of
finitely supported functions �WJ ! Z (weights for the root system BJ ) and their
corresponding weights �]W 2J ! Z is completely analogous to the situation for
K D R. The irreducible representation of U.HC/ corresponding to �] is S�].HC/.
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Remark 4.15 (Segal’s Physical Representations). In [Se57] Segal studied unitary
representations of the full group U.H/, called physical representations. They are
characterized by the condition that their differential maps finite rank hermitian
projections to positive operators. Segal shows that physical representations decom-
pose discretely into irreducible physical representations which are precisely those
occurring in the decomposition of finite tensor products H˝N , N 2 N0. In view
of Pickrell’s theorem, this also follows from our classification of the separable
representations of U.H/. Since Segal’s arguments never use the separability of H,
the corresponding result remains true for inseparable spaces as well.

Problem 4.16. Theorem 3.17 implies in particular that all continuous unitary
representations of K D U1.H/0 have a canonical extension to their overgroups
K] with the same commutant. The classification in terms of highest weights further
implies that the representations of K] obtained from this extension process are
precisely those with nonnegative weights.

Conversely, it follows that all unitary representations of K] with nonnegative
weights remain irreducible when restricted to K .

One may ask a similar question for the smaller group K].1/ 	 K] or its com-
pletion with respect to the trace norm. Is it true that for any unitary representation �
of K].1/ whose weights on the diagonal subgroup are nonnegative, �.U.1;K//
has the same commutant? As we explain below, this is not true.

For the special case K D R and � D �C � �� finitely supported, the restriction
of the representation �� D ��C

˝ ��
��

of K].1/ on S�C
.HC/˝ S��

.HC/ to the
subgroupK.1/ D SO.1;R/ is equivalent to the representation ��C

˝���
, which

decomposes according to the standard Schur–Weyl theory. In particular, we obtain
non-irreducible representations if � takes positive and negative values on K.1/.
That this cannot be repaired by the positivity requirement on the weights of K].1/
follows from the fact that the determinant detWK].1/ ! T restricts to the trivial
character ofK.1/, but tensoring with a power of det, any bounded weight � can be
made positive.

Is it possible to characterize those irreducible highest weight representations ��
of K].1/ whose restriction to K.1/ is irreducible?

5 Non-existence of Separable Unitary Representations
for Full Operator Groups

In this section we describe some consequences of the main results from [Pi90]. We
start with the description of 10 symmetric pairs .G;K/ of groups of operators, where
G does not consist of unitary operators and K 	 G is “maximal unitary”. They
are infinite-dimensional analogs of certain noncompact real reductive Lie groups.
The dual symmetric pairs .Gc;K/ have the property that Gc consists of unitary
operators, hence they are analogs of certain compact matrix groups.
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One of the main result of this section is that all separable unitary representations
of the groups G are trivial, but there are various refinements concerning restricted
groups.

5.1 The 10 Symmetric Pairs

Below we use the following notational conventions. We write O.n/ WD O.n;R/,
U.n/ WD U.n;C/ and Sp.n/ WD U.n;H/ for n 2 N[ f1g. For a groupG, we write
�G WD f.g; g/Wg 2 Gg for the diagonal subgroup of G �G.

If H is a complex Hilbert space, then we write I 2 B.HC/ for the C-linear
extension of the complex structure Iv D iv on H. Then D WD �iI is a unitary
involution that leads to the pseudo-unitary group

U.HC;D/ D fg 2 GL.HC/WDg�D�1 D g�1g

preserving the indefinite hermitian form hDv;wi. For the isometry group of the
indefinite form h..v1; v2/; .w1;w2// WD hv1;w1i � hv2;w2i on H � H, we write
U.H;H/. Now the group

O�.HC/ WD U.HC;D/ \O.H/C

is a Lie group. Its Lie algebra o�.HC/ satisfies o�.HC/ \ u.HC/ Š u.H/ and it is
a real form of o.H/C. It is easy to see that the symmetric pair .O�.HC/;U.H// is
dual to .O.HR/;U.H//.

Non-unitary Symmetric Pairs

Non-unit. locally finite .G.1/; K.1// Operator group .G;K/ K K

1 .GL.1;C/;U.1// .GL.H/;U.H// U.H/ C

2 .SO.1;C/; SO.1// .O.H/C;O.H// O.H/ R

3 .Sp.1;C/; Sp.1// .UH.H/C;UH.H// UH.H/ H

4 .U.1;1/;U.1/2/ .U.H;H/;U.H/2/ U.H/2 C

5 .SO.1;1/; SO.1/2/ .O.H;H/;O.H/2/ O.H/2 R

6 .Sp.1;1/; Sp.1/2/ .UH.H;H/;UH.H/2/ UH.H/2 H

7 .Sp.21;R/;U.1// .Sp.H/;U.H// U.H/ C

8 .SO.21/;U.1// .O�.HC/;U.H// U.H/ C

9 .GL.1;R/;O.1// .GL.H/;O.H// O.H/ R

10 .GL.1;H/; Sp.1// .GLH.H/;UH.H// UH.H/ H
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Unitary Symmetric Pairs

Unitary locally finite .Gc.1/; K.1// Unitary operator group .Gc;K/ K K

1 .U.1/2; �U.1// .U.H/2; �U.H// U.H/ C

2 .SO.1/2; �SO.1// .O.H/2; �O.H// O.H/ R

3 .Sp.1/2; �Sp.1// .UH.H/2; �UH.H// UH.H/ H

4 .U.21/;U.1/2/ .U.H ˚ H/;U.H/2/ U.H/2 C

5 .SO.21/; SO.1/2/ .O.H ˚ H/;O.H/2/ O.H/2 R

6 .Sp.21/; Sp.1/2/ .UH.H ˚ H/;UH.H/2/ UH.H/2 H

7 .Sp.1/;U.1// .UH.H ˝C H/;U.H// U.H/ C

8 .SO.21/;U.1// .O.HR/;U.H// U.H/ C

9 .U.1/;O.1// .U.HC/;O.H// O.H/ R

10 .U.21/; Sp.1// .U.HC/;UH.H// UH.H/ H

Remark 5.1. (a) The unitary symmetric pairs .1/–.3/ are of group type and their
non-unitary duals are complex groups.

(b) The non-unitary pairs .4/–.6/ are the symmetric pairs associated to pseudo-

unitary groups of indefinite hermitian forms ˇ with the matrix D D
�

1 0

0 �1

�

on H2. Accordingly, the corresponding symmetric spaces can be considered as
Graßmannians of “maximal positive subspaces” for ˇ.

(c) The symmetric spaces corresponding to (7) and (8) are spaces of complex
structures on real spaces. The space Sp.H/=U.H/ is the space of positive
symplectic complex structures on the real symplectic spaces .H; !/, where
!.v;w/ D Imhv;wi. Likewise O.HR/=U.H/ is the space of orthogonal
complex structures on the real Hilbert space HR.

(d) The spaces (4), (7) and (8) are of hermitian type (cf. [Ne12]).
(e) The spaces (1), (9) and (10) are those occurring naturally for overgroups of

unitary groups (cf. Example 2.3).

5.2 Restricted Symmetric Pairs

For each symmetric pair .G;K/ of non-unitary type and 1 � q � 1, we obtain a
restricted symmetric pair .G.q/; K/, defined by

G.q/ WD fg 2 GW tr.jg�g � 1jq/ <1g:

If g D k ˚ p with p D fX 2 gWX� D Xg, then the Lie algebra of Gc is g.q/ D
k ˚ p.q/, where p.q/ D p \ Bq.H/. The corresponding dual symmetric pair is
.Gc

.q/; K/ with gc.q/ D k˚ ip.q/. We also write

G1;.q/ WD G.q/ \ .1CK.H// D K1 exp.p.q//

for the closure of G.1/ in G.q/.
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Proposition 5.2. Spherical representations of any pair .G.1/;K.1// of unitary
or non-unitary type are direct integrals of irreducible ones.

Proof. This is [Pi90, Prop. 2.4], but it also follows from the general Theorem
B.3 below. ut

Combining the preceding proposition with two-sided estimates on the behavior
of spherical functions near the identity, Pickrell proved:

Proposition 5.3 ([Pi90, Prop. 6.11]). Irreducible real spherical functions of the
direct limit pairs .G.1/;K.1// always extend to spherical functions of G.2/ and,
for q > 2, all spherical functions on G.q/ vanish.

If v is a C1-spherical vector for the unitary representation .�;H�/ of .G.q/; K/,
then ˇ.X; Y / WD hd�.X/v;d�.Y /vi defines a continuous K-invariant positive
semidefinite symmetric bilinear form on p.q/. Therefore one can also show that v
is fixed by the whole groupG.q/ by showing that ˇ D 0 using the following lemma.

Lemma 5.4. The following assertion holds for the K-action on p.q/:

(i) Œk; p� D p.
(ii) p.2/ is an irreducible representation.

(iii) For q > 2, every continuous K-invariant symmetric bilinear form on p.q/
vanishes.

Proof. (i), (ii): We check these conditions for all 10 families:

(1)–(3) Then p D ik with k D u.H/. Since k is perfect by [Ne02, Lemma I.3], we
obtain Œk; p� D i Œk; k� D ik D p.

Here p.2/ D iu2.H/, and since u2.H/ is a simple Hilbert–Lie algebra
[Sch60], (ii) follows.

(4)–(6) In these cases gc D u.H˚H/, k D u.H/˚ u.H/ and p Š gl.H/ with the
k-module structure given by .X; Y /:Z WD XZ�ZY . Since u.H/ contains
invertible elements X0, and .X0; 0/:Z D X0Z, it follows that p D Œk; p�.
Here p.2/ Š gl2.H/ is the space of Hilbert–Schmidt operators on H. This
immediately implies the irreducibility of the representation of K D R;C.
For K D H, we have p.2/;C Š gl2.HC/, and since the representation of
U.H/ on HC is irreducible (we have U.H/C Š Sp.HC/), (ii) follows.

(7)–(8) In these two cases the center z WD i1 of k Š u.H/ satisfies p D Œz; p�, which
implies (i). The Lie algebra g.2/ D k˚p.2/ corresponds to the automorphism
group of an irreducible hermitian symmetric space (cf. [Ne12, Thm. 2.6]
and the subsequent discussion). This implies that the representation of K
on the complex Hilbert space p.2/ is irreducible.

(9) Here g D gl.H/, k D o.H/ and p D Sym.H/. For any complex structure
I 2 o.H/ we then obtain

p D Herm.H; I /˚ ŒI; p� D Œu.H; I /;Herm.H; I /�˚ ŒI; p� 	 Œk; p�:
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This proves (i).

Next we observe that p.2/ D Sym2.H/ satisfies p.2/;C Š Sym2.HC/ Š
S2.HC/, hence is irreducible by Theorem 3.17.

(10) Here g D gl.H/, k D u.H/ and p D Herm.H/ for K D H. With the
aid of an orthonormal basis, we find a real Hilbert space K with H Š
K˝RH, where H acts by right multiplication. This leads to an isomorphism
BH.H/ Š BR.K/˝R H as real involutive algebras. In particular,

Herm.H/ Š Sym.K/˝ 1˚ Asym.K/˝ Aherm.H/:

Therefore (i) follows from Aherm.H/ D ŒAherm.H/;Aherm.H/� and from
Sym.K/ D Œo.K/;Sym.K/�, which we derive from (9).
To verify (ii), we observe that p.2/ D Herm2.H/. From Kaup’s classifi-
cation of the real symmetric Cartan domains [Ka97] it follows that p.2/
is a real form of the complex JH�-triple Skew.HC/ of skew symmetric
bilinear forms on HC, labelled by IIH2n. Since the action of U.H/ on
p.2/;C Š Skew.HC/ Š �2.HC/ extends to the overgroup U.HC/ with the
same commutant, the irreducibility of the resulting representation implies
that the representation of U.H/ on the real Hilbert space p.2/ is irreducible
as well.

(iii) can be derived from (i). If ˇW p.q/ � p.q/ ! R is a continuous invariant
symmetric bilinear form, then the same holds for its restriction to p.2/. The simplicity
of the representation on p.2/ now implies that it is a multiple of the canonical form
on p.2/ given by the trace. But this form does not extend continuously to p.q/ for any
q > 2. ut
Proposition 5.5. (a) Separable unitary representations of G.q/, q � 1, are

completely determined by their restrictions to G.1/.
(b) Conversely, every continuous separable unitary representation of G1;.q/; q �

1, extends to a continuous unitary representation of G.q/.

Proof (cf. [Pi90, Prop. 5.1]). (a) Since p.1/ is dense in p.q/, this follows from
Theorem 4.9(i), applied to K .

(b) Since K acts smoothly by conjugation on G1;.q/, we can form the Lie group
G1;.q/ÌK and note that the multiplication map toG.q/ defines an isomorphism
.G1;.q/ Ì K/=K1 ! G.q/. Therefore the existence of the extension of G.q/
follows from the uniqueness of the extension fromK1 toK (Theorem 3.17(c)).

ut
Theorem 5.6. If .G;K/ is one of the 10 symmetric pairs of non-unitary type, then,
for q > 2, all separable projective unitary representations ofG.q/ and all projective
unitary representations of G1;.q/ are trivial.

Proof. If �WG.q/ ! PU.H�/ is a continuous separable projective unitary repre-
sentation, then composing with the conjugation representation of PU.H�/ on the
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Hilbert spaceB2.H�/ leads to a separable unitary representation ofG.q/ onB2.H�/.
If we can show that this representation is trivial, then � is trivial as well. Therefore
it suffices to consider unitary representations.

Since the groupG1;.q/ is separable, all its continuous unitary representations are
direct sums of separable ones. Hence, in view of Proposition 5.5, the triviality of
all continuous unitary representations of G1;.q/ is equivalent to the triviality of all
separable continuous unitary representations of G.q/. We may therefore restrict our
attention to separable representations of G.q/.

Let .�;H/ be a continuous separable unitary representation of G.q/. In view of
Theorem 4.9, it is a direct sum of representations generated by the subspace HKn for
some n 2 N. Any v 2 HKn generates a spherical subrepresentation of the subgroup

G.q/;n WD fg 2 G.q/Wgej D ej ; j D 1; : : : ; ng:

Now Theorem 5.6 implies that v is fixed by G.q/;n.
It remains to show thatG.q/ fixes v. In view of Proposition 5.5, it suffices to show

that, for every m > n, G.m/ fixes v. The group G.m/ is reductive with maximal
compact subgroupK.m/, and G.m/n is a non-compact subgroup.

Case 1: We first assume that the center of G.m/n is compact, which is the case
for G.m/ 6D GL.m;K/ (this excludes 1,8 and 9). Then G.m/ is minimal in
the sense that every continuous bijection onto a topological group is open, and
this property is inherited by all its quotient groups [Ma97, Lemma 2.2]. In view
of [Ma97, Prop. 3.4], all matrix coefficients of irreducible unitary representations
.	;H	/ of quotients ofG.m/ vanish at infinity ofG.m/= ker	. IfG.m/n 6	 ker 	,
then the image of G.m/n in the quotient group is noncompact, so that the only
vector in H	 fixed by G.m/n is 0. Since every continuous unitary representation
ofG.m/ is a direct integral of irreducible ones, it follows that everyG.m/n-fixed
vector in a unitary representation is fixed by G.m/.

Case 2: If G.m/ D GL.m;K/, then Z D R
�C1 is a noncompact subgroup of the

center and the homomorphism �WG ! R
�C; �.g/ WD j detR.g/j is surjective.

Therefore S.m/ WD ker� has compact center and satisfies G.m/ D ZS.m/. The
preceding argument now implies that every fixed vector for S.m/n in a unitary
representation ofG.m/ is fixed by S.m/. Since �jG.m/n is nontrivial, we conclude
that every fixed vector for G.m/n in a unitary representation is fixed by G.m/.

Combining both cases, we see that in every unitary representation of G.m/, the
subgroupG.m/n and G.m/ have the same fixed vectors, and this implies that every
G.q/;n fixed-vector is fixed by G.q/. ut
Theorem 5.7 ([Pi90, Prop. 7.1]). If .G;K/ is one of the 10 symmetric pairs of
unitary type, then, for q > 2, every separable continuous projective unitary
representation of G.q/ extends uniquely to a representation of G that is continuous
with respect to the strong operator topology on G. In particular, it is a direct sum of
irreducible ones which are determined by Theorem 4.9.
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Proof. With similar arguments as in the preceding proof, we see that every separable
unitary representation of G.q/ is a direct sum of representations generated by the
fixed point space of some subgroupG.q/;n. Therefore its restriction toG.1/ is tame,
so that Theorems 3.20 and 3.17 apply. ut
Theorem 5.8. If .G;K/ is one of the 10 symmetric pairs of non-unitary type, then
all separable unitary representations of G are trivial.

Proof. Let .�;H/ be a continuous separable unitary representation of G. We know
already from Theorem 5.6 that G.q/ 	 N WD ker� holds for q > 2. Now N

is a closed normal subgroup containing K and its Lie algebra therefore contains
Œk; p� D p as well (Lemma 5.4). This proves that N D G. ut

A Positive Definite Functions

In this appendix we recall some results and definitions concerning operator-valued
positive definite functions.

Definition A.1. Let A be a C �-algebra and X be a set. A map QWX � X ! A
is called a positive definite kernel if, for any finite sequence .x1; : : : ; xn/ 2 Xn; the
matrixQ.xi ; xj /i;jD1;:::;n 2M.n;A/ is a positive element.

For A D B.V /, V a complex Hilbert space, this means that, for v1; : : : ; vn 2 V ,
we always have

Pn
i;jD1hQ.xi ; xj /vj ; vi i � 0.

Definition A.2. Let K be a Hilbert space, G be a group, and U 	 G be a subset. A
function 'WUU�1 ! B.K/ is said to be positive definite if the kernel

Q' WU � U ! B.K/; .x; y/ 7! '.xy�1/

is positive definite. For U D G we obtain the usual concept of a positive definite
function on G.

Remark A.3 (Vector-Valued GNS-Construction). We briefly recall the bridge
between positive definite functions and unitary representations.

(a) If .�;H/ is a unitary representation of G, V 	 H a closed subspace and
PV WH ! V the orthogonal projection on V , then �V .g/ WD PV �.g/P

�
V is

a B.V /-valued positive definite function with �V .1/ D 1.
(b) If, conversely, 'WG ! B.V / is positive definite with '.1/ D 1, then there

exists a unique Hilbert subspace H' of the space V G of V -valued function on
G for which the evaluation maps KgWH' ! V; f 7! f .g/ are continuous
and satisfy KgK

�
h D '.gh�1/ for g; h 2 G [Ne00, Thm. I.1.4]. Then right

translation by elements of G defines a unitary representation .�'.g/f /.x/ D
f .xg/ on this space withKxg D Kx ı�.g/. It is called the GNS-representation
associated to 	. Now K�

1 WV ! H' is an isometric embedding, so that we may
identify V with a closed subspace of H' andK1 with the orthogonal projection
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to V . This leads to '.g/ D KgK
�
1 D K1�.g/K

�
1 , so that every positive definite

function is of the form �V . The construction also implies that V Š K�
1 .V / is

G-cyclic in H' .

For the following theorem, we simply note that all Banach–Lie groups are in
particular Fréchet–BCH–Lie groups.

Theorem A.4. Let G be a connected Fréchet–BCH–Lie group and U 	 G an
open connected 1-neighborhood for which the natural homomorphism �1.U; 1/!
�1.G/ is surjective. If K is Hilbert space and 'WUU�1 ! B.K/ an analytic
positive definite function, then there exists a unique analytic positive definite
function Q'WG ! B.K/ extending '.

Proof. Let qG W QG ! G be the universal covering morphism. The assumption that
�1.U / ! �1.G/ is surjective implies that QU WD q�1

G .U / is connected. Now Q' WD
' ı qG W QU QU�1 ! B.K/ is an analytic positive definite function, hence extends by
[Ne12, Thm. A.7] to an analytic positive definite function Q' on QG. The restriction
of Q' to QU is constant on the fibers of qG , which are of the form g ker.qG/. Using
analyticity, we conclude that Q'.gd/ D Q'.g/ holds for all g 2 QG and d 2 ker.qG/.
Therefore Q' factors through an analytic function 'WG ! B.U / which is obviously
positive definite. ut
Theorem A.5. Let G be a connected analytic Fréchet–Lie group. Then a positive
definite function 'WG ! B.V / which is analytic in an open identity neighborhood
is analytic.

Proof. Since ' is positive definite, there exists a Hilbert space H and a QWG !
B.H; V / with '.gh�1/ D QgQ

�
h for g; h 2 G. Then the analyticity of the function

' in an open identity neighborhood of G implies that the kernel .g; h/ 7! QgQ
�
h is

analytic on a neighborhood of the diagonal �G 	 G � G. Therefore Q is analytic
by [Ne12, Thm. A.3], and this implies that '.g/ D QgQ

�
1 is analytic. ut

The following proposition describes a natural source of operator-valued positive
definite functions.

Proposition A.6. Let .�;H/ be a unitary representation of the group G and H 	
G be a subgroup. Let V 	 H be an isotypic H -subspace generating the G-module
H and PV 2 B.H/ be the orthogonal projection onto V . Then V is invariant under
the commutant �.G/0 D BG.H/ and the map


 WBG.H/! BH.V /; 
.A/ D PV APV
is an injective morphism of von Neumann algebras whose range is the commutant
of the image of the operator-valued positive definite function

�V WG ! B.V /; �V .g/ WD PV �.g/PV :

In particular, if the H -representation on V is irreducible, then so is � .
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Proof. That 
 is injective follows from the assumption that V generates H under
G. If the representation .	; V / of H is irreducible, then im.
/ 	 C1 implies that
�.G/0 D C1, so that � is irreducible.

We now determine the range of 
 . For any A 2 BG.H/, we have

PV �.g/PV PV APV D PV �.g/APV D PV A�.g/PV D PV APV PV �.g/PV ;

i.e., 
.A/ D PV APV commutes with �V .G/. Since 
 is a morphism of von
Neumann algebras, its range is also a von Neumann algebra of V commuting
with �V .G/. If, conversely, an orthogonal projection Q D Q� D Q2 2 BK.V /
commutes with �V .G/, then

PV �.G/QV D PV �.G/PV QV D QPV �.G/PV V 	 QV

implies that the closed G-invariant subspace HQ 	 H generated by QV satisfies
PVHQ 	 QV , and therefore HQ \ V D QV . For the orthogonal projection QQ 2
B.H/ onto HQ, which is contained in BG.H/, this means that QQjV D Q. This
shows that im.
/ D �V .G/0: ut
Remark A.7. The preceding proposition is particularly useful if we have specific
information on the set �V .G/. As �V .h1gh2/ D 	.h1/�V .g/	.h2/, it is determined
by the values of �V on representatives of the H -double cosets in G.

(a) In the context of the lowestK-type .	; V / of a unitary highest weight represen-
tation (cf. [Ne00]), we can expect that �V .G/ 	 	C.KC/ (by Harish–Chandra
decomposition), so that �V .G/0 D 	C.KC/

0 D 	.K/0 and 
 is surjective.
(b) In the context of Sect. 3 and [Ol78], the representation .	; V / of H extends to

a representation Q	 of a semigroup S � H and we obtain �V .G/0 D Q	.S/0.
In both situations we have a certain induction procedure from representations

of K and S , respectively, to G-representations which preserves the commutant but
which need not be defined for every representation of K , resp., S .

Lemma A.8 ([NO13, Lemma C.3]). Let .S;
/ be a unital involutive semigroup
and 'WS ! B.F/ be a positive definite function with '.1/ D 1. We write .�';H'/

for the representation on the corresponding reproducing kernel Hilbert space H' 	
FS by .�'.s/f /.t/ WD f .ts/. Then the inclusion

�WF ! H'; �.v/.s/ WD '.s/v

is surjective if and only if ' is multiplicative, i.e., a representation.

Remark A.9. The preceding lemma can also be expressed without referring to
positive definite functions and the corresponding reproducing kernel space. In this
context it asserts the following. Let �WS ! B.H/ be a 
-representation of a unital
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involutive semigroup .S;
/, F 	 H a closed cyclic subspace and P WH ! F the
orthogonal projection. Then the function

'WS ! B.F/; '.s/ WD P�.s/P �

is multiplicative if and only if F D H.

B C �-Methods for Direct Limit Groups

In this appendix we explain how to apply C �-techniques to obtain direct integral
decompositions of unitary representations of direct limit groups.

We recall that for a C �-algebra A, its multiplier algebra M.A/ is a C �-algebra
containing A as an ideal, and in every faithful representation A ,! B.H/, it is
given by

M.A/ D fM 2 B.H/WMACAM 	 Ag:

Let G D lim�! Gn be a direct limit of locally compact groups and ˛nWGn ! GnC1
denote the connecting maps. We assume that these maps are closed embeddings.
Then we have natural homomorphisms

ˇnWL1.Gn/!M.L1.GnC1//

of Banach algebras, and since the action of Gn on L1.GnC1/ is continuous, ˇn is
nondegenerate in the sense that ˇ.L1.Gn// � L1.GnC1/ is dense in L1.GnC1/. On
the level of C �-algebras we likewise obtain morphisms

ˇnWC �.Gn/!M.C �.GnC1//:

A state of G (Dnormalized continuous positive definite function) now corre-
sponds to a sequence .'n/ of states of the groups Gn with ˛�

n'nC1='n for every
n 2 N. Passing to the C �-algebras C �.Gn/, we can view these functions also as
states of the C �-algebras. Then the compatibility condition is that the canonical
extension Q'n of 'n to the multiplier algebra satisfies

ˇ�
n Q'nC1 D 'n:

Remark B.1. The `1-direct sum L WD ˚1L1.Gn/ carries the structure of a Banach-

-algebra (cf. [SV75]). Every unitary representation .�;H/ ofG defines a sequence
of nondegenerate representations�nWL1.Gn/! B.Hn/which are compatible in the
sense that

�n D ˛�
n Q�nC1:
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Conversely, every such sequence of representations on a Hilbert space H leads to a
sequence 	nWGn ! U.H/ of continuous unitary representations, which are uniquely
determined by

	n.g/ D Q�n.�Gn.g//;

where �Gn WGn ! M.L1.Gn// denotes the canonical action by left multipliers. For
f 2 L1.Gn/ and h 2 L1.GnC1/ we then have

	nC1.˛n.g//�n.h/�nC1.f / D 	nC1.˛n.g//�nC1.ˇn.h/f / D �nC1.˛n.g/ˇn.h/f /

D �nC1.ˇn.g 
 h/f / D �n.g 
 h/�nC1.f / D 	n.g/�n.h/�nC1.f /;

which leads to

	nC1 ı ˛n D 	n:

Therefore the sequence .	n/ is coherent and thus defines a unitary representation of
G on H. We conclude that the continuous unitary representations ofG are in one-to-
one correspondence with the coherent sequences of nondegenerate representations
.�n/ of the Banach-
-algebrasL1.Gn/ (cf. [SV75, p. 60]).

Note that the nondegeneracy condition on the sequence .ˇn/ is much stronger
than the nondegeneracy condition on the corresponding representation of the algebra
L. The group GnC1 does not act by multipliers on L1.Gn/, so that there is no
multiplier action of G on L. However, we have a sufficiently strong structure to
apply C �-techniques to unitary representations of G.

Theorem B.2. Let A be a separable C �-algebra and �WA ! D a homomor-
phism into the algebra D of decomposable operators on a direct integral H D
R ˚
X

Hx; d�.x/. Then there exists for each x 2 X a representation .�x;Hx/ of A
such that � Š R ˚

X
�x d�.x/.

If � is nondegenerate and H is separable, then almost all the representations �x
are nondegenerate.

Proof. The first part is [Dix64, Lemma 8.3.1] (see also [Ke78]). Suppose that � is
nondegenerate and let .En/n2N be an approximate identity on A. Then �.En/! 1
holds strongly in H and [Dix69, Ch. II, no. 2.3, Prop. 4] implies the existence of
a subsequence .nk/k2N such that �x.Enk / ! 1 holds strongly for almost every
x 2 X . For any such x, the representation �x is non-degenerate. ut
Theorem B.3. Let G D lim�! Gn be a direct limit of separable locally compact

groups with closed embeddingsGn ,! GnC1 and .�;H/ be a continuous separable
unitary representation. For any maximal abelian subalgebra A 	 �.G/0, we then
obtain a direct integral decomposition � Š R ˚

X
�x d�.x/ into continuous unitary

representations of G in which A acts by multiplication operators.
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Proof. According to the classification of commutativeW �-algebras, we have A Š
L1.X;�/ for a localizable measure space .X;S; �/ [Sa71, Prop. 1.18.1]. We
therefore obtain a direct integral decomposition of the corresponding Hilbert space
H. To obtain a corresponding direct integral decomposition of the representation
of G, we consider the C �-algebra B generated by the subalgebras Bn which are
generated by the image of the integrated representations L1.Gn/ ! B.H/. Then
each Bn is separable and therefore B is also separable. Hence Theorem B.2 leads
to nondegenerate representations .�x;Hx/ of B whose restriction to every Bn is
nondegenerate.

In [SV75], the `1-direct sum L WD ˚1n2NL1.Gn/ is used as a replacement for
the group algebra. From the representation �WL ! B we obtain a representation
	x of this Banach-
-algebra whose restrictions to the subalgebras L1.Gn/ are non-
degenerate. Now the argument in [SV75, p. 60] (see also Remark B.1 above)
implies that the corresponding continuous unitary representations of the subgroups
Gn combine to a continuous unitary representation .	x;Hx/ of G. ut
Remark B.4. Let .�;H/ be a continuous unitary representation of the direct limit
G D lim�! Gn of locally compact groups. Let An WD �n.C

�.Gn// and write A WD
hAnWn 2 NiC� for the C �-algebra generated by the An. Then A00 D �.G/00 follows
immediately from A00

n D �n.Gn/00 for each n.
From the nondegeneracy of the multiplier action of C �.Gn/ on C �.GnC1/ it

follows that

C �.Gn/C �.GnC1/ D C �.GnC1/;

which leads to

AnAnC1 D AnC1:

We have a decreasing sequence of closed-
-ideals

In WD
X

k�n
Ak 	 A

such that Gn acts continuously by multipliers on In. A representation of In is non-
degenerate if and only if its restriction to An is nondegenerate because AnIn D In.

If a representation .	;K/ of A is nondegenerate on all these ideals, then it is non-
degenerate on every An, hence defines a continuous unitary representation of G.

Remark B.5. Theorem B.3 implies in particular the validity of the disintegration
arguments in [Ol78, Thm. 3.6] and [Pi90, Prop. 2,4]. In [Ol84, Lemma 2.6] one
also finds a very brief argument concerning the disintegration of “holomorphic”
representations, namely that all the constituents are again “holomorphic”. We think
that this is not obvious and requires additional arguments.
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Weak Splittings of Quotients of Drinfeld
and Heisenberg Doubles

Milen Yakimov

Abstract We investigate the fine structure of the symplectic foliations of Poisson
homogeneous spaces. Two general results are proved for weak splittings of surjec-
tive Poisson submersions from Heisenberg and Drinfeld doubles. The implications
of these results are that the torus orbits of symplectic leaves of the quotients can be
explicitly realized as Poisson–Dirac submanifolds of the torus orbits of the doubles.
The results have a wide range of applications to many families of real and complex
Poisson structures on flag varieties. Their torus orbits of leaves recover important
families of varieties such as the open Richardson varieties.

Key words Poisson–Lie groups • Drinfeld and Heisenberg doubles • Belavin–
Drinfeld classification • Poisson–Dirac submanifolds
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1 Introduction

The geometry of Poisson–Lie groups is well understood, both in the case of the
standard Poisson structures on complex simple Lie groups [13, 20] and the general
Belavin–Drinfeld Poisson structures [1, 29]. The torus orbits of symplectic leaves
in the former case are the double Bruhat cells of the simple Lie group. One
of the fundamental results in the theory of cluster algebras is the Berenstein–
Fomin–Zelevinsky theorem [2] that their coordinate rings are upper cluster algebras.
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Recently, the coordinate rings of the SLn groups, equipped with the Cremmer–
Gervais Poisson structures from [1], were also shown to be upper cluster algebras
[15]. The motivation for these results is that cluster algebras give rise to Poisson
structures by the work of Gekhtman et al. [14], and one attempts to go in the opposite
direction using Poisson varieties from the theory of quantum groups.

On the other hand, the possible cluster algebra structures on coordinate rings of
torus orbits of symplectic leaves of Poisson homogeneous spaces is much less well
understood. In the special case of the standard complex Poisson structures on flag
varieties, this is precisely the problem of constructing cluster algebra structures on
the coordinate rings of the open Richardson varieties. These varieties have been
recently studied in [4, 19, 25] in relation to Schubert calculus and total positivity.
Chevalier [5] conjectured cluster algebra structures for the Richardson strata in the
case when one of the two Weyl group elements is a parabolic Coxeter element.
Leclerc [21] generalized this construction and showed that the coordinate ring
of each open Richardson variety contains a cluster algebra whose rank is equal
to the dimension of the variety. These cluster structures come from an additive
categorification. Another cluster algebra structure on the Richardson–Lusztig strata
of the Grassmannian was conjectured by Muller and Speyer [23] using Postnikov
diagrams [24].

In this paper we prove a very general result that realizes torus orbits of symplectic
leaves of a large class of Poisson homogeneous spaces as Poisson–Dirac subman-
ifolds of torus orbits of symplectic leaves of Drinfeld and Heisenberg doubles. It
applies to many important families of complex and real Poisson structures on flag
varieties, double flag varieties, and their generalizations. In the context of cluster
algebras, the point of this construction is that the coordinate rings of affine Poisson
varieties with conjectured cluster algebra structures are realized as quotients of
better understood coordinate rings of Poisson varieties, some of which are already
proven to possess cluster algebra structures. The ideals defining these quotients are
not Poisson but have somewhat similar properties coming from a notion of “weak
splitting of surjective Poisson submersions.” The construction of the latter is the
main point of the paper.

To explain this in precise terms, we recall that to each point of a Poisson
homogeneous space of a Poisson–Lie group Drinfeld [9] associated a Lagrangian
subalgebra of the double and proved an equivariance property of this map. Motivated
by this construction, Lu and Evens associated to each quadratic Lie algebra (a
complex or real Lie algebra @ equipped with a nondegenerate invariant symmetric
bilinear form h:; :i) the variety of its Lagrangian subalgebras L .@; h:; :i/ and
initiated its systematic study in [10]. This is a singular projective variety.

Fix a connected Lie group D with Lie algebra @. Given any pair of Lagrangian
subalgebras g˙ such that @ is the vector space direct sum of gC and g� (in other
words, given a Manin triple .@; gC; g�/ with respect to the bilinear form h:; :i), one
defines the r-matrix r D 1

2

P
j j ^ xj where fxj g and fj g is a pair of dual

bases of gC and g�. Using the adjoint action of D on L .@; h:; :i/, we construct
the bivector field �.r/ on L .@; h:; :i/. Here and below � refers to the infinitesimal
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action associated to a Lie group action. It was proved in [10] that �.r/ is Poisson.
Up to minor technical details, the singular projective Poisson variety

.L .@; h:; :i/; �.r//

captures the geometry of all Poisson homogeneous spaces of the Poisson–Lie groups
integrating the Lie bialgebras g˙. TheD-orbits on L .@; h:; :i/ are compete Poisson
submanifolds, i.e., they are unions of symplectic leaves of �.r/. They have the
form D=N.l/ where l is a Lagrangian subalgebra of .@; h:; :i/ and N.l/ is the
normalizer of l in D. The Belavin–Drinfeld Poisson structures [1] are coming from
the case when @ D g ˚ g for a complex simple Lie algebra g. In this case the
rank of the Poisson structure �.r/ at each point of D=N.l/ was computed in [22,
Theorem 4.10]. This describes the coarse structure of the symplectic foliations of
the spaces .D=N.l/; �.r// or equivalently the variety of Lagrangian subalgebras
.L .@; h:; :i/; �.r//.

Here we address the problem of describing the fine structure of the symplectic
foliations of these spaces. From the point of view of Lie theory and cluster algebras,
the most importantD-orbits in this picture are the orbits

.D=N.gC/; �.r// ,! .L .@; h:; :i/; �.r//:

These Poisson varieties capture all examples of real and complex Poisson structures
on flag varieties and double flag varieties that appeared in previous studies, see e.g.,
[10,12,16,27]. The Poisson varieties .D=N.gC/; �.r// also have the properties that
they are quotients of Drinfeld and Heisenberg doubles. Recall that those are the
Poisson varieties

.D; � D L.r/ �R.r// and .D; � 0 D L.r/CR.r//;
respectively. Here and below R.:/ and L.:/ refer to right and left invariant
multivector fields on a Lie group. The Poisson structure � vanishes along the group

H WD N.gC/\N.g�/

and as a consequence the left and right action of H on D preserves both Poisson
structures � and � 0. The corresponding Poisson reductions will be denoted by

.D=H;�H/ and .D=H;� 0
H/:

The canonical projections

�W .D=H;��H /! .D=N.gC/; �.r// and

�0W .D=H;� 0
H /! .D=N.gC/; �.r// (1)

are surjective Poisson submersions.
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We prove that under certain general assumptions the symplectic leaves of the
quotient .D=N.gC/; �.r// can be realized as explicit symplectic submanifolds of
the symplectic leaves of the (reduced) Drinfeld double .D=H;��H/ or Heisenberg
double .D=H;� 0

H/ (or even both in some cases). To be more precise, recall [6]
that a Poisson manifold .X; �/ is a Poisson–Dirac submanifold admitting a Dirac
projection of a Poisson manifold .M;˘/ if X is a submanifold of M , and there
exists a subbundleE of TXM such that

E ˚ TX D TXM and ˘ � � 2 � .X;^2E/:

In this framework we find an explicit construction of sections of the surjective
Poisson submersion �W .D=H;��H / ! .D=N.gC/; �.r// over each N.g�/-orbit
whose images are Poisson–Dirac submanifolds of .D=H;��H /. This is the weak
splitting of the first surjective Poisson submersion in (1) from a Drinfeld double. (We
refer the reader to Sect. 2 below and [16, Sect. 2] for the definition of the notion and
additional background.) As a corollary of the general construction, the symplectic
leaves within each N.g�/-orbit on .D=N.gC/; �D=N.gC// are uniformly embedded
as symplectic submanifolds of symplectic leaves of .D=H;��H /. Similarly, we
construct sections of the second surjective Poisson submersion �0W .D=H;� 0

H / !
.D=N.gC/; �.r// in (1) over each N.gC/-orbit whose images are Poisson–Dirac
submanifolds of .D=H;� 0

H/ admitting a Dirac projection. These constructions of
weak splittings work under certain general assumptions, see Theorems 2 and 4
for details. In Sect. 5 we show that the conditions are satisfied for many important
families of Poisson structures.

The above results have a wide range of applications. In the case of the standard
Poisson structures on flag varieties we recover the weak splittings from [16].
Double flag varieties arise naturally as closed strata in partitions of wonderful group
compactifications [7]. This gives rise to Poisson structures on them that are not
products of Poisson structures on each factor [27]. The second splitting result above
for Heisenberg doubles is applicable to this family of Poisson varieties. The real
forms of a complex simple Lie algebra g give rise to real Poisson structures on the
related complex flag variety defined in [12]. Again the above second splitting is
applicable for this family. Finally, the Delorme’s classification result in [8] gives
rise to canonical Poisson structures on products of flag varieties for complex simple
Lie groups (i.e, flag varieties for a reductive group). Except for some very special
cases, these Poisson structures are not products of Poisson structures on the factors.
Our weak splittings are applicable for those families too.

The results in the paper are also related to the study of the spectra of the
quantizations of the homogeneous coordinate rings of the above mentioned families
of varieties. Currently, only the spectra of quantum flag varieties are understood
[30]. We expect that a quantum version of our weak splittings of surjective Poisson
submersions will be helpful in understanding the spectra of the quantizations of
these families of varieties on the basis of the works on spectra of quantum groups
[13,17]. It appears that such quantum weak splittings should be also closely related
to the notion of quantum folding of Berenstein and Greenstein [3].
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The paper is organized as follows. In Sect. 2 we review the notion of Poisson–
Dirac submanifolds of Poisson manifolds, and weak sections and weak splittings
of surjective Poisson submersions. In Sect. 3 we prove two general theorems on the
construction of weak sections and weak splittings for quotients of Drinfeld doubles.
In Sect. 4 similar theorems are proved for quotients of Heisenberg doubles. Section 5
contains applications of these theorems.

We finish the introduction with some notation that will be used throughout the
paper. Given a groupG, d 2 G and two subgroupsH1 andH2 ofG, we will denote
the H1-orbit through dH2 2 G=H2 by

H1 � dH2 � G=H2

(to distinguish it from the double coset H1dH2 � G).
For a Lie group G, we will denote by Gı its identity component. For a smooth

manifoldX , Xı will denote a connected component ofX . Given a Lie groupG and
a subalgebra u of its Lie algebra g, we will denote by N.u/ the normalized of u in
G with respect to the adjoint action. Finally, recall that a Poisson structure � on a
manifoldM gives rise to the bundle map �]WT �M ! TM , given by

�].˛/ D ˛ ˝ id.�/; ˛ 2 T �
mM;m 2M:

2 Poisson–Dirac Submanifolds and Weak Splittings

In this section we review the notion of weak splitting of a surjective Poisson
submersion from [16]. We start by recalling several facts about Poisson–Dirac
submanifolds of Poisson manifolds, introduced and studied in [6, 26, 28].

Definition 1. A submanifoldX of a Poisson manifold .M;˘/ is called a Poisson–
Dirac submanifold if the following conditions are satisfied:

(i) For each symplectic leaf S of .M;˘/, the intersection S \ X is clean (i.e., it
is smooth and Tx.S \ X/ D TxS \ TxX for all x 2 S \ X ), and S \ X is a
symplectic submanifold of .S; .˘ jS/�1/.

(ii) The family of symplectic structures .˘ jS/�1jS\X is induced by a smooth
Poisson structure � on X .

Clearly, in the setting of Definition 1, the symplectic leaves of .X; �/ are the
connected components of the intersections of symplectic leaves of .M;˘/ with X .

An important criterion is provided by the following result.

Proposition 1 (Crainic and Fernandes [6]). Assume that X is a submanifold of a
Poisson manifold .M;˘/ for which there exits a subbundleE � TXM such that

(i) E ˚ TX D TXM and
(ii) ˘ 2 � .X;^2TX ˚^2E/:
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Then X is Poisson–Dirac submanifold of .M;˘/.

In the setting of Proposition 1 the projection of ˘ jX into � .X;^2TX/ along
^2E is exactly the needed Poisson structure � in Definition 1. Poisson–Dirac
submanifolds with the property of Proposition 1 are called Poisson–Dirac subman-
ifolds admitting a Dirac projection by Crainic–Fernandes [6] and quasi-Poisson
submanifolds by Vaisman [26]. We will use the former term and callE an associated
bundle of the Dirac projection.

In the presence of the condition (i) in Proposition 1, the condition (ii) is
equivalent [6] to

˘]
m..TmX/

0/ � Em; 8 m 2 X: (2)

Here and below for a subspace V 	 TmM , V 0 will denote its annihilator subspace
in T �

mM .
We continue with the notions of weak sections and weak splittings of surjective

Poisson submersions.

Definition 2. Assume that .M;˘/ and .N; �/ are Poisson manifolds, X is a
Poisson submanifold of .N; �/, and that pW .M;˘/! .N; �/ is a surjective Poisson
submersion. A weak section of p over X is a smooth map i WX ! M such that
p ı i D idX and i.X/ is a Poisson–Dirac submanifold of .M;˘/ with induced
Poisson structure i�.�jX/.

In this situation we derive from Proposition 1 an explicit realization of all
symplectic leaves of .X; �jX/ in terms of those of .M;˘/:

In the setting of Definition 2 one has that each symplectic leaf of .X; �jX/ has
the form i�1..i.X/ \ S/ı/ where S is a symplectic leaf of .M;˘/. In addition i
realizes explicitly all leaves of .X; �jX/ as symplectic submanifolds of symplectic
leaves of .M;˘/.

Remark 1. The following special case of the notion of weak section has
an equivalent algebraic characterization which is of particular interest, see
[16, Proposition 2.6] for details.

Let pW .M;˘/ ! .N; �/ be a surjective Poisson submersion, let X be an
open subset of N , and i WX ! M a smooth map such that p ı i D idX and
i.X/ is a smooth submanifold of M . In particular, p� W .C1.N /; f:; :g�/ !
.C1.M/; f:; :g˘/ is a homomorphism of Poisson algebras. Then i is a weak section
with associated bundle equal to the tangent bundle to the fibers of p if and only if

i� W .C1.M/; f:; :g˘/! .C1.N /; f:; :g�/

is a homomorphism of Poisson .C1.N /; f:; :g�/-modules with respect to the action
on the first term coming from p�.

Definition 3. Let .M;˘/ and .N; �/ be Poisson manifolds and pW .M;˘/ !
.N; �/ a surjective Poisson submersion. A weak splitting of p is a partition
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N D
G

a2A
Na

of .N; �/ into complete Poisson submanifolds and a family of weak sections
iaWNa ,!M of p (one for each stratum of the partition).

In the category of algebraic varieties we requireM andN to be smooth algebraic
varieties, X and Na to be locally closed smooth algebraic subsets, and p; ia to be
algebraic maps.

We have

Proposition 2. Consider a surjective Poisson submersion pW .M;˘/ ! .N; �/.
Let N D F

a2A Na and iaWNa ! M , a 2 A define a weak splitting of p. Then for
all a 2 A the following hold:

(i) Every symplectic leaf of .Na; �jNa / has the form i�1a ..ia.Na/ \ S/ı/ where S is
a symplectic leaf of .M;˘/.

(ii) Each symplectic leaf S 0 of .Na; �jNa / is explicitly realized as a symplectic
submanifold

iaW .S 0; �jS 0/ ,! .S;˘ jS/

of the unique symplectic leaf S of .M;˘/ that contains ia.S 0/.

All weak sections and weak splittings that we construct in this paper will have
the property that their images are Poisson–Dirac submanifolds admitting Dirac
projections, i.e., the images will satisfy the conditions in Proposition 1.

3 Weak Sections of Quotients of Drinfeld Doubles

We return to the setting of the introduction: Start with a Manin triple .@; gC; g�/
where @ is a quadratic Lie algebra with (a fixed) nondegenerate invariant symmetric
bilinear form h:; :i and g˙ are two Lagrangian subalgebras such that @ D gC ˚ g�
as vector spaces. Let D be a connected Lie group with Lie algebra @ and let G˙ be
the connected subgroups of D with Lie algebras g˙. Fix a pair of dual bases fxj g
and fj g of gC and g� with respect to h:; :i. The standard r-matrix r D 1

2

P
j ^xj

gives rise to the Poisson structures

� D L.r/ � R.r/ and � 0 D L.r/CR.r/ (3)

on D. Then .D; �/ is a Poisson–Lie group and G˙ are Poisson–Lie subgroups.
Moreover, .D; �/ is a Drinfeld double of .G˙; �jG

˙
/ and .D; � 0/ is a Heisenberg

double of .G˙; �jG
˙
/. Finally, .G�;��jG�

/ is a dual Poisson–Lie group of
.GC; �jGC

/.
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Set for brevity

N˙ WD N.g˙/; n˙ D Lie .N˙/ D n.g˙/: (4)

Denote the canonical projections p˙W @ ! g˙ along g	. Identify @� with @ using
the form h:; :i and denote by ˛.y/ the right invariant 1-form on D corresponding to
y 2 @ Š @�.

The bundle maps �]WT �D ! TD and .� 0/]WT �D ! TD are given by the
following formulas.

Lemma 1. In the above setting, for all x 2 gC,  2 g� and d 2 D,

�].˛d .x C // D Rd.x/ �Ld .pCAd�1
d .x C //
D �Rd./C Ld.p�Ad�1

d .x C // (5)

and

.� 0/].˛d .x C // D Rd.x/ � Ld.p�Ad�1
d .x C //
D �Rd./C Ld.pCAd�1

d .x C //: (6)

Equation (6) is proved in [11], Eqs. (6.2)–(6.4). Equation (5) is analogous.
The Poisson structure � vanishes on

H WD NC \N� D N.gC/\N.g�/; (7)

see e.g., [22, Lemma 1.12]. Denote h D Lie H . Recall that .D; �/ is a Poisson Lie
group and that both of its regular actions on the Heisenberg double .D; � 0/ (given
by g � g0 D gg0 and g � g0 D g0g�1) are Poisson. Since �jH D 0, the left and right
actions of H on D preserve both � and � 0. Denote their reductions with respect to
the right action of H by

�H and � 0
H 2 � .D=H;^2T .D=H//;

respectively. Thus the canonical projections

�W .D; �/! .D=H;�H/ and �0W .D; � 0/! .D=H;� 0
H/

are Poisson.
Since Lie .NC/ � gC, it follows from the definition of the Drinfeld and

Heisenberg double Poisson structures (3) that

�D=NC
WD �.r/
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is a Poisson structure on D=NC and that the standard projections

�W .D;��/! .D=NC; �D=NC
/ and �0W .D; � 0/! .D=NC; �D=NC

/

are Poisson. Denote by

�W .D=H;��H /! .D=NC; �D=NC
/ and �0W .D=H;� 0

H/! .D=NC; �D=NC
/

the induced surjective Poisson submersions. (They are both Poisson since � D ��,
�0 D �0�0, �, and �0 are surjective Poisson submersions.)

The following proposition will be used in our general construction of weak
sections for �:

Proposition 3. Assume that for a given d 2 D such that dHd�1 � N� there exists
a subgroupQ of D with Lie algebra q satisfying

n� D n� \Add .nC/C n� \ Add .q/ and (8)

Q \NC D H; nC C q D nC C q? C Ad�1
d .n�/ D g: (9)

Set

Gd WD N� \ dQd�1: (10)

Then

QEd ! Gdd; QEd
gd WD Rgd .pCAdd .q?//C Lgd .nC/; 8 g 2 Gd (11)

is a subbundle of TGddD such that

QEd \ T .Gdd/ D L.h/; QEd C T .Gdd/ D TGddD; (12)

and

�Gd d 2 � .Gdd;^2 QEd C^2T .Gdd//:

In (12), L.h/ denotes the subbundle of T .Gdd/ spanned by left invariant vector
fields L.h/, h 2 h. Here and below, for a subspace V of @, we denote V ? D fz 2
@ j hz; yi D 0;8 y 2 V g.

The condition dHd�1 � N� ensures thatGdd is stable under the right action of
H . The subbundle QEd of TGddD is equivariant with respect to this action. Indeed,
if h0 2 H , then

Rh0
QEd
gd D Rgdh0.pCAdd .q

?//C LgdRh0.nC/

D Rgdh0.pCAdd .q?//CLgdh0.nC/ D QEd
gdh0 ; (13)
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because h0 2 H � N�. Therefore, the pushforward of QEd toGd �dH is a subbundle
of TGd �dH .D=H/. As an immediate consequence of Proposition 3 we obtain the
following corollary:

Corollary 1. If, in the above setting, a subgroupQ ofD and d 2 D satisfy (8)–(9)
and dHd�1 � N�, then the submanifold Gd � dH of the quotient .D=H;��H /
of the Drinfeld double .D;��/ is a Poisson–Dirac submanifold admitting a Dirac
projection with associated vector bundle equal to the pushforward Ed D ��. QEd/

of QEd to Gd � dH .

Proof of Proposition 3. Throughout the proof g will denote an element of Gd .
First we prove that QEd is a subbundle of TGddD and that (12) holds. Fix g 2 Gd .

We have

Tgd.Gdd/C QEd
gd � Lgd .Ad�1

d Ad�1
g .n� \ Add .q//C Lgd .nC/

D Lgd .Ad�1
d .n�/ \ qC nC/ � Lgd .Ad�1

d .n�//

D Lgd .Ad�1
d Ad�1

g .n�// D Rgd .n�/:

The second inclusion in the chain follows from (8). Thus,

Tgd.Gdd/C QEd
gd � Rgd .n� C pC.Add .q?//C Lgd .nC/

� Rgd .n� C Add .q
?//C Lgd .nC/

D Lgd .Ad�1
d Ad�1

g .n�/C Ad�1
d Ad�1

g Add .q?//C Lgd .nC/

D Lgd .nC C q? C Ad�1
d .n�// D TgdD;

where we used (8)–(9) and the fact that Q normalizes q?. Clearly,

Tgd.Gdd/ � Lgd .h/ and QEd
gd � Lgd .h/:

We claim that

dim.pCAdd .q?//C dim nC C dim.n� \ Add .q// D dim gC dim h: (14)

This implies that QEd is a subbundle of TGddD and that the first equality of (12)
is satisfied. It also follows from (14) that QEd is the direct sum of the subbundles
R.pCAdd .q?// and L.nC/ of TGddD.

Since n� D g� C h and Ad�1
d .h/ � h � q, we have

dim.n� \ Add .q// D dim n� � dim g� C dim.g� \ Add .q//

D dim n� � dim g� C dim g � dim.g?� C Add .q?//

D dim n� � dim.pCAdd .q?//;

taking into account that dim nC C dim n� D dim @C dim h leads to (14).
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Since

TgdGdd D Rgd .n� \Add .q//

and

.n� \Add .q//? D n?� C Add .q?/ � g� C pC.Add .q?//;

we have

.TgdGdd/
0 � f˛gd .x C / j x 2 pC.Add .q?//;  2 g�g:

Applying (5) gives

�]..TgdGdd/
0/ � Rgd .pC.Add .q?//C Lgd .gC/ � QEd

gd :

ut
Observe that for d 2 D the conditions (8)–(9) ensure that the product .N� \

dQd�1/.N� \ dNCd�1/ is open in N�. This implies that .N� \ dQd�1/ � dNC
is open in N� � dNC which is a complete Poisson submanifold of .D=NC; �D=NC

/,
[22, Theorem 2.3]. Thus, (8)–(9) imply that .N� \ dQd�1/ � dNC is a Poisson
submanifold of .D=NC; �D=NC

/.

Theorem 1. Assume that for a given d 2 D such that dHd�1 � N� there exists
a subgroup Q of D satisfying the conditions (8)–(9). Then the smooth map i WGd �
dNC ! D=H defined by i.gdNC/ D gdH for g 2 Gd WD N�\dQd�1 is a weak
section of the surjective Poisson submersion �W .D=H;��H / ! .D=NC; �D=NC

/

overGd �dNC. Its image is a Poisson–Dirac submanifold of .D=H;��H / admitting
a Dirac projection with associated bundle Ed WD ��. QEd/ where QEd is given
by (11).

Proof. It is straightforward to check that i is well defined: If g1; g2 2 Gd and
g1dNC D g2dNC, then .g2/�1g1 2 N� \ d.Q \ NC/d�1 � dHd�1 because
of (9). Thus g1dH D g2dH .

For g 2 Gd , Corollary 1 implies that

.�H /gdH 2 ^2TgdH .Gd � dH/C^2Ed
gdH :

Observe thatEd
gdH contains the tangent space ��.Lgd .nC// to the fiber of � through

gdH . Since ��.��H / D �D=NC
and � ı i D idGd �dNC

, we have that the projection
of .��H/jGg �dH to ^2T .Gd � dH/ along Ed is i�.�D=NC

jGd �dNC
/. This completes

the proof of the theorem. ut
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The next theorem provides a sufficient condition for the existence of a weak
splitting of the surjective Poisson submersion in Theorem 1.

Theorem 2. Assume that Q is a subgroup of D with Lie algebra q such that there
exists a set of representatives D for the .N�; NC/-double cosets of D satisfying

N� D .N� \ dQd�1/.N� \ dNCd�1/ and (15)

dHd�1 � N�; Q \NC D H; nC C q D nC C q? C Ad�1
d .n�/ D g (16)

for all d 2 D . Then the partition

D=NC D td2D.N� \ dQd�1/ � dNC (17)

and the family of smooth maps

id W .N� \ dQd�1/ � dNC ! D=H; id .gdNC/ WD gdH; 8 g 2 N� \ dQd�1

is a weak splitting of the surjective Poisson submersion

�W .D=H;��H /! .D=NC; �D=NC
/:

In addition, the images of id are Poisson–Dirac submanifolds of .D=H;��H /
admitting Dirac projections with associated bundlesEd WD ��. QEd/ for the bundles
QEd given by (11).

Proof. The condition (15) implies that

.N� \ dQd�1/ � dNC D N� � dNC:

It follows from the definition of the set D that (17) defines a partition of G=NC.
This equality also implies that each stratum of the partition is a complete Poisson
submanifold of .D=NC; �D=NC

/, because this is a property of all NC-orbits on
D=NC. The rest of the theorem follows from Theorem 1. ut

Proposition 2(i) implies that in the setting of Theorem 1 each symplectic leaf of
.D=NC; �D=NC

/ inside the stratum .N� \ dQd�1/ � dNC D Gd � dNC is of the
form

i�1d ..id .Gd � dNC/ \ S/ı/
for a symplectic leaf of S of .D=H;��H/. Furthermore, by Proposition 2(ii)
each symplectic leaf of .D=NC; �D=NC

/ is explicitly realized as a symplectic
submanifold of a symplectic leaf of .D=H;��H/ via one of the maps id .

Remark 2. In Proposition 3, and Theorems 1 and 2 one can replace N˙ with any
pair of subgroups N 0

˙ of D such that N ı
˙ � N 0

˙ � N˙. The corresponding
statements hold true forH WD N 0C \N 0�. Their proofs are analogous and are left to
the reader.
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Remark 3. If the group D and the subgroup Q in Theorems 1 and 2 are algebraic,
then the constructed weak sections and splittings are algebraic.

4 Weak Sections of Quotients of Heisenberg Doubles

In this section we prove results for quotients of Heisenberg doubles that are similar
to the results from the previous section for quotients of Drinfeld doubles. We use the
setting and notation of the previous section. Using the second part of Lemma 1 one
proves the following analog of Corollary 1 and Theorem 1 for Heisenberg doubles.
We omit its proof since it is analogous to the case of Drinfeld doubles.

Theorem 3. Let d and a subgroupQ of D with Lie algebra q satisfy

nC D nC \ Add .nC/C nC \ Add .q/ and (18)

dHd�1 � NC; Q \NC D H; nC C q D nC C q? C Ad�1
d .nC/ D g: (19)

SetG0
d D NC\dQd�1. Then the submanifoldG0

d �dH of the quotient .D=H;� 0
H /

of the Heisenberg double .D; � 0/ is a Poisson–Dirac submanifold admitting a Dirac
projection with associated vector bundle equal to the pushforward F d WD �0�. QF d /

of the vector bundle

QF ! G0
d d;

QFgd WD Rgd .p�Add .q
?//C Lgd .nC/; 8 g 2 G0

d : (20)

In addition, the map i WG0
d � dNC ! D=H defined by i.gdNC/ D gdH for

g 2 G0
d is a weak section of the surjective Poisson submersion �0W .D=H;� 0

H/ !
.D=NC; �D=NC

/ over G0
d � dNC.

As in the previous section the theorem implies the following:

Theorem 4. Let Q be a subgroup of D with Lie algebra q for which there exists a
set of representatives D � N.H/ for the .NC; NC/-double cosets of D satisfying

NC D .NC \ dQd�1/.NC \ dNCd�1/ (21)

and (19) for all d 2 D . Then the partition

D=NC D td2D.NC \ dQd�1/ � dNC

and the family of maps

i 0d W .NC \ dQd�1/ � dNC ! D=H; i 0d .gdNC/ WD gdH; 8 g 2 NC \ dQd�1
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provide a weak splitting of the surjective Poisson submersion �0W .D=H;� 0
H/ !

.D=NC; �D=NC
/. In addition, the images of i 0d are Poisson–Dirac submanifolds of

.D=H;� 0
H/ admitting Dirac projections with associated bundlesF d WD �0�. QF d/ for

the bundles QF d given by (20) with G0
d D NC \ dQd�1.

In light of Proposition 2, Theorem 4 provides an explicit realization of the
symplectic leaves of .D=NC; �D=NC

/ as symplectic submanifolds of the symplectic
leaves of the Heisenberg double .D=H;� 0

H /.
As in the case of Drinfeld doubles, in Theorems 3 and 4 one can replaceN˙ with

any pair of subgroup N 0
˙ of D such that N ı

˙ � N 0
˙ � N˙ in which case one sets

H D N 0C\N 0�. The proofs of those slightly more general statements are analogous.
If the groups D and Q are algebraic, the above constructed weak sections and

weak splittings are also algebraic.

5 Applications to Flag Varieties

This section contains applications of the results from the previous two sections
to Poisson structures on flag varieties. Sections 5.1–5.4 deal with complex algebraic
Poisson structures. There we construct weak splittings for complex surjective
Poisson submersions from Drinfeld and Heisenberg doubles to flag varieties,
double flag varieties and certain natural multi-flag generalizations. In Sect. 5.5 we
give applications to real algebraic Poisson structures on flag varieties.

We note that all of the weak splittings that are constructed in this section
provide (via Proposition 2) explicit realizations of the symplectic leaves of Poisson
structures on flag varieties as symplectic submanifolds of symplectic leaves of
Drinfeld and Heisenberg doubles.

Throughout the sectionG will denote an arbitrary connected complex simple Lie
group with Lie algebra g. The Killing form on g will be denoted by h:; :i. We fix a
pair of opposite Borel subgroups B˙ of G and the corresponding maximal torus
T WD BC \ B�. Let U˙ be the unipotent radicals of B˙. Set

h WD Lie T; b˙ WD LieB˙; and u˙ WD LieU˙:

Denote the Weyl group of G by W . For each w 2 W , fix a representative Pw in
the normalizer of T in G.

5.1 Standard Poisson Structures on Complex Flag Varieties

The simplest applications of Theorems 1 and 3 are to weak splittings for Poisson
structures on flag varieties.
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Recall the standard Manin triple

@ WD g˚ h; g˙ WD f.x˙ C h;˙h/ j x˙ 2 u˙; h 2 hg

with respect to the invariant bilinear form on @ given by

h.x1; y1/; .x2; y2/i WD hx1; x2i � hy1; y2i; 8 xi 2 g; yi 2 h:

The Drinfeld and Heisenberg double Poisson structures on D WD G � T will be
denoted by � and � 0, respectively. In this case N˙ D N.g˙/ D B˙ � T and
H D NC \N� D T � T . The reductions of �� and � 0 to G=T Š .G � T /=.T �
T / D D=H will be denoted by ��T and � 0

T . Both structures reduce to the same
Poisson structure on the flag variety G=BC Š .G � T /=.BC � T / D D=NC called
the standard Poisson structure. The latter will be denoted by �G=BC

.
It is easy to verify that the groupQ D N� D B� � T and the set D D f. Pw; 1/ j

w 2 W g satisfy the conditions in Theorem 2 for the above choice ofD and g˙. This
implies the following result of Goodearl and the author, proved in [16, Theorem 3.2].
For its statement we need to introduce some additional notation. Denote the vector
bundle

QEw !


.B� \ wB�w�1/ � T �. Pw; 1/

with fibers

QEw
g WD Rg



pCAd. Pw;1/.u� ˚ 0/

�CLg.bC ˚ h/

for g 2 
.B� \ wB�w�1/ � T �. Pw; 1/ where pCW @ ! gC is the projection along
g�. Here the direct sum notation is used to denote subspaces of g˚h identified with
Lie .G � T /. Denote the canonical projection

�WG � T ! .G � T /=.T � T / Š G=T: (22)

By Corollary 1 the pushforwardEw WD ��. QEw/ is a well defined vector bundle over
B� � wT � G=T .

Theorem 5 ([16]). For all connected complex simple Lie groups G, the partition
of the full flag variety G=BC into Schubert cells

G=BC D tw2W B� � wBC

and the family of maps

iwWB� � wBC ! G=T; iw.b� PwBC/ WD b� PwT; 8 b� 2 B� \ wB�w�1

define a weak splitting of the surjective Poisson submersion
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.G=T;��T /! .G=BC; �G=BC
/

from a Drinfeld double to the flag variety. Furthermore, the image of each map iw
is a Poisson–Dirac submanifold of .G=T;��T / admitting a Dirac projection with
associated bundle Ew defined above.

Theorem 4 for weak splittings of quotients of Heisenberg doubles is also
applicable to flag varieties to obtain a weak splitting for the surjective Poisson
submersion

.G=T;�� 0
T /! .G=BC; �G=BC

/:

It is easy to verify that the conditions of Theorem 4 are satisfied by for the same
groupQ D N� D B� � T , set D D f. Pw; 1/ j w 2 W g and the current choice of D
and g˙. Applying the theorem leads to the following result:

Theorem 6. For all connected complex simple Lie groups G, the partition of the
full flag variety G=BC into Schubert cells

G=BC D tw2W BC � wBC

and the family of maps

i 0wWBC � wBC ! G=T; i 0w.bCwBC/ D bC PwT; bC 2 BC \ wB�w�1

is a weak splitting of the surjective Poisson submersion

.G=T; � 0
T /! .G=BC; �G=BC

/

from a Heisenberg double to the flag variety. The image of each map i 0w is a Poisson–
Dirac submanifold of .G=T; � 0

T / admitting a Dirac projection with associated
bundle ��. QF w/ for the pushforward bundle ��. QF w/ with respect to (22) where

QF w ! 

.BC \ wB�w�1/ � T �. Pw; 1/

is the vector bundle with fibers

QF w
g WD Rg



p�Ad. Pw;1/.u� ˚ 0/

�CLg.bC ˚ h/

for g 2 
.BC \ wB�w�1/ � T �. Pw; 1/ and p�W @! g� is the projection along gC.

Because of Proposition 2, Theorems 5 and 6 provide an explicit realization of the
symplectic leaves of the flag varieties .G=BC; �G=BC

/ as symplectic submanifolds
of the symplectic leaves of Drinfeld and Heisenberg doubles.

We note that the partitions into Schubert cells in Theorems 5 and 6 are with
respect to opposite Borel subgroups. The two results can be derived from each
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other. Let wı be the longest element of W . The equivalence is shown using the
facts that the translation action of Pwı on .G=BC; �G=BC

/ is anti-Poisson, and the
left translation action of . Pwı; 1/ on G � T interchanges � and � 0.

5.2 Double Flag Varieties

Next, we consider the standard Manin triple

@ WD g˚ g; gC WD f.xC C h; x� � h/ j x˙ 2 u˙; h 2 hg;
g� WD f.x; x/ j x 2 gg (23)

with respect to the invariant bilinear form on @

h.x1; y1/; .x2; y2/i WD hx1; x2i � hy1; y2i; xi ; yi 2 g:

Let D WD G �G. For this setting we have

NC D N.gC/ D BC �B�; N ı� D N.g�/ı D G�; and NC \N ı� D T�
where G� and T� are the diagonal subgroups of G �G and T � T , respectively.

The Drinfeld and Heisenberg double Poisson structures on G � G will be again
denoted by � and � 0. The group T� acts on the left and right on .G�G;�/ and .G�
G;� 0/ by Poisson automorphisms. The reductions of � and � 0 to .G �G/=T� will
be denoted by �T� and � 0

T�
. The pushforwards of ��T� and � 0

T�
to .G �G/=NC Š

G=BC � G=B� are well defined and are equal to each other. Denote the resulting
Poisson structure by �df . The Poisson manifold

.G=BC �G=B�; �df /

is the double flag variety studied in [27]. Theorem 2 cannot be applied to the Poisson
submersion ..G �G/=T�;��T�/! .G=BC �G=B�; �df /, but Theorem 4 can be
applied for the following choice of a groupQ and a set D :

Q D .U� � UC/T�; D D f. Pw; Pv/ j w; v 2 W g;

and the above D and g˙. This gives a weak splitting of the surjective Poison
submersion ..G � G/=T�; � 0

T�
/ ! .G=BC � G=B�; �df /. We will need the

following notation to state the result. Denote the projection

�0WG �G ! .G �G/=T�: (24)
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Consider the vector bundle

QF w;v ! 

.UC \ wU�w�1/ � .U� \ vUCv�1/

�
. Pw; Pv/T�

with fibers

QF w;v
g WD Rg.p�Ad. Pw; Pv/.u� ˚ uC C ta�//C Lg.bC ˚ b�/ (25)

for g 2 
.UC\wU�w�1/�.U�\vUCv�1/
�
. Pw; Pv/T� where the direct sum notation

is used for subspaces of @ D g˚g identified with Lie .G�G/, p�W @! g� denotes
the projection along gC, and ta� is the antidiagonal of t˚ t.

Theorem 7. For all connected complex simple Lie groups G, the partition of the
double flag variety into BC � B�-Schubert cells

G=BC �G=B� D tw;v2W BC � wBC � B� � vB�

and the family of maps

i 0w;vWBC � wBC � B� � vB� ! .G �G/=T�
given by

i 0w;v.uCwBC; u�vB�/ WD .uC Pw; u� Pv/T�

for all uC 2 UC \ wU�w�1 and u� 2 U� \ vUCv�1 is a weak splitting of the
surjective Poisson submersion

..G �G/=T�; � 0
�/! .G=BC �G=B�; �df /

from a Heisenberg double to the double flag variety. The image of each map i 0w;v is
a Poisson–Dirac submanifold of ..G � G/=T�; � 0

�/ admitting a Dirac projection
with associated vector bundle �0�. QF w;v/, cf. (24) and (25).

5.3 Partial Flag Varieties

All results in Sect. 5 on weak splittings for full flag varieties have analogs to partial
flag varieties. We will provide full details in the case of double partial flag varieties.
The generalizations of the results in Sects. 5.1, 5.4, and 5.5 are analogous.

For a subset I of simple roots of g, denote by P I˙ � B˙ the corresponding
parabolic subgroups of G and by WI the subgroup of the Weyl group. Let W I be
the sets of minimal length representatives for the cosets in W=WI .
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Fix two subsets I1; I2 of simple roots of g. The pushforward of �df under the
canonical projection

G=BC �G=B� ! G=P
I1C �G=P I2�

is a well-defined Poisson structure since P I1C � P I2� is a Poisson–Lie subgroup of
.G �G;�/. Denote this pushforward by �I1;I2df . The map

.G=BC �G=B�; �df /! .G=P
I1C �G=P I2� ; �

I1;I2
df /

is a surjective Poisson submersion and its restrictions

.BC � wBC � B� � vB�; �df /! .BC � wP I1C � B� � vP I2� ; �
I1;I2
df /

are Poisson isomorphisms for all w 2 W I1 , v 2 W I2 . (Similar Poisson isomor-
phisms are constructed in the settings of Sects. 5.1, 5.4, and 5.5. This produces
the generalizations of those results to the cases of partial flag varieties.) Taking
inverses of the above Poisson isomorphisms and composing them with the maps
i 0w;v in Theorem 7 leads to the following result:

Corollary 2. For all connected complex simple Lie groupsG and subsets of simple
roots I1 and I2, the partition of the corresponding double partial flag variety into
BC � B�-Schubert cells

G=P
I1C �G=P I2� D tw2W I1 ;v2W I2BC � wP I1C � B� � vP I2�

and the family of maps

j 0
w;vWBC � wP I1C � B� � vP I2� ! .G �G/=T�

given by

j 0
w;v.uCwP I1C ; u�vP I2� / WD .uC Pw; u� Pv/T�

for all uC 2 UC \ wU�w�1 and u� 2 U� \ vUCv�1 is a weak splitting of the
surjective Poisson submersion

..G �G/=T�; � 0
�/! .G=P

I1C �G=P I2� ; �
I1;I2
df /

from a Heisenberg double to the double partial flag variety. The image of each map
j 0

w;v (which is the same as the image of the map i 0w;v) is a Poisson–Dirac submanifold
of ..G � G/=T�; � 0

�/ admitting a Dirac projection with associated vector bundle
�0�. QF w;v/, see (24) and (25).



264 M. Yakimov

5.4 Multiple Flag Varieties

The results in Sects. 5.1–5.2 can be generalized to a very large class of Poisson
structures on multiple flag varieties. Those are Cartesian products of flag varieties
for complex simple Lie groups (i.e., flag varieties for reductive Lie groups) with
Poisson structures which in general are not products of Poisson structures on the
factors. Since the arguments are similar, we only state the results leaving the details
to the reader.

We start with any reductive Lie algebra @ and an invariant bilinear form h:; :i on
it. All Lagrangian subalgebras and Manin triples in this situation were classified by
Delorme [8] up to the action of the adjoint group of @. Let b˙ be a pair of opposite
Borel subalgebras of @ and let t WD bC\b� be the corresponding Cartan subalgebra
of @. Denote by u˙ the nilradicals of b˙. Let D be a connected reductive Lie group
with Lie algebra @, and let B˙ and T be its Borel subgroups and maximal torus
corresponding to b˙ and t.

Consider any Manin triple

.@; gC; g�/ such that gC � bC: (26)

The results of Delorme imply that after a conjugation by an element of BC, one has

gC D uC C gC \ t

(in particular,N.gC/ D BC) and the groupH WD N.gC/ \N.g�/ı satisfies

H D BC \N.g�/ı D T \N.g�/ı: (27)

One can write an explicit formula for the subgroup H of the maximal torus T in
terms of generalized Belavin–Drinfeld triples in the setting of [8]. We leave the
details to the reader since this requires extra notation. For the rest we will assume
that the conjugation by an element of BC is performed so that the above conditions
are satisfied.

Denote the Drinfeld and Heisenberg double Poisson structures onD correspond-
ing to a Manin triple of the type (26) by � and � 0. By the general facts in Sect. 3,
the left and right regular actions of H on .G; � 0/ are Poisson. Denote the reduction
.D=H;� 0

H/ for the right action and the surjective Poisson submersion

�0W .D; � 0/! .D=H;� 0
H/: (28)

The Drinfeld and Heisenberg Poisson structures � and � 0 descend to the same
Poisson structure on the multiple flag variety D=N.gC/ D D=BC which will be
denoted by �D=BC

. The Poisson structures in Sects. 5.1–5.2 are special cases of this
construction when
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D D G � T or D D G �G

for a complex simple Lie groupG and a maximal torus T of G.
The canonical projection

.D=H;� 0
H/! .D=BC; �D=BC

/

is Poisson, because BC D N.gC/ is a Poisson–Lie subgroup of .D; �/. Denote the
connected subgroups of D with Lie algebras u˙ by U˙. Let W be the Weyl group
of D. For each of w 2 W , fix a representative Pw in the normalizer of the maximal
torus T of D.

A simple computation shows that the conditions of Theorem 4 are satisfied for
the groupQ D HU� and the set D D f Pw j w 2 W g. We have

Theorem 8. For all Manin triples for a connected reductive algebraic group D of
the form (26), the partition of the multiple flag variety D=BC into Schubert cells

D=BC D tw2WBC � wBC

and the family of maps

i 0wWBC � wBC ! D=H; i 0w.uCwBC/ WD uC PwH; 8 uC 2 UC \ wU�w�1

(recall (27)) is a weak splitting of the surjective Poisson submersion

.D=H;� 0
H/! .D=BC; �D=BC

/

from a Heisenberg double to the multiple flag variety. The image of each map i 0w
is a Poisson–Dirac submanifold of .D=H;� 0

H / admitting a Dirac projection with
associated bundle �0�. QF w/ for the pushforward with respect to (28) of the vector
bundle

QF w ! .UC \ wU�w�1/ PwH

with fibers

QF w
g WD Rg



p�Ad Pw.u� C h?/

�C Lg.bC/

for g 2 .UC \ wU�w�1/ PwH . Here h? denotes the orthogonal complement to
h WD LieH in t with respect to h:; :i, and p�W @! g� is the projection along gC.
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5.5 Real Poisson Structures on Flag Varieties

All results in Sects. 5.1–5.4 remain valid when all complex groups are replaced with
their real split forms. These provide many examples of weak splittings of surjective
Poisson submersions to real flag varieties.

We continue with certain nonsplit analogs of the results in Sects. 5.1 and 5.4
which concern the real Poisson structures on complex flag varieties introduced by
Foth and Lu in [12]. Let g be a complex simple Lie algebra and G a connected,
simply connected Lie group with Lie algebra g. Consider g as a real quadratic Lie
algebra with the nondegenerate bilinear form

x; y 2 g 7! Imhx; yi 2 R: (29)

Each Vogan diagram v for g gives rise to a complex conjugate linear involution �v
of g and to the real form gv WD g�v of g, see [12, 18] for details. The map �v is
defined using a choice of root vectors of g. We will denote by t the corresponding
Cartan subalgebra of g (which is stable under �v) and by u˙ the nilradicals of the
corresponding Borel subalgebras of g. The following is a (real) Manin triple:

.@ WD g; gC WD t��v C uC; g� WD gv/;

see [12, Sect. 2]. LetD WD G be considered as a real Lie group. We have

NC D N.gC/ D BC and N ı� D N.g�/ D Gv
where Gv is the connected subgroup of G with Lie algebra gv and BC is the Borel
subgroup ofG with Lie algebra tCuC. The groupH WD NC\N ı� is the connected
subgroup of T with Lie algebra

LieH D t�v : (30)

Denote once again the associated Drinfeld and Heisenberg double Poisson structures
on G by �v and � 0

v . We have �jH D 0, and thusH acts by Poisson automorphisms
on .G; � 0/ on the left and right. Denote the reduced Poisson structure on G=H by
� 0
H;v and the Poisson projection

�0W .G; � 0
v/! .G=H;� 0

H;v/: (31)

The pushforwards of ��v and � 0
v under the canonical projection G ! G=BC

are well defined and are equal to each other, because BC D N.gC/. Denote
the corresponding real Poisson structure on the complex flag variety G=BC by
�G=BC;v . It has very interesting properties, for example the intersections of the
orbits of the Borel subgroup BC and the real form Gv are regular complete Poisson
submanifolds. Theorem 4 is applicable to construct a weak splitting of the real
surjective Poisson submersion
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.G=H;� 0
H;v/! .G=BC; �G=BC;v/:

Once again it is easy to verify that the groupQ D HU� and the set D D f Pw j w 2
W g satisfy the conditions of Theorem 4. This leads to the following result:

Theorem 9. For all connected, simply connected complex simple groups G and
Vogan diagrams v, the partition of the flag variety G=BC into Schubert cells

G=BC D tw2W BC � wBC

and the family of maps

i 0wWBC � wBC ! G=H; i 0w.uCwBC/ D uC PwH; uC 2 UC \ wU�w�1

is a weak splitting of the real surjective Poisson submersion

.G=H;� 0
H;v/! .G=BC; �G=BC ;v/

from a Heisenberg double to the flag variety, where the group H is given by (30).
The image of each map i 0w is a Poisson–Dirac submanifold of .G=H;� 0

H / admitting
a Dirac projection with associated bundle �0�. QF w/ for the pushforward with respect
to (31) of the vector bundle

QF w ! .UC \ wU�w�1/ PwH

with fibers

QF w
g WD Rg



p�Ad Pw.t�v C u�/

�C Lg.bC/

for g 2 .UC \ wU�w�1/ PwH . Here p�W g! g� denotes the projection along gC.
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