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Abstract. Head pose estimation is recently a more and more popu-
lar area of research. For the last three decades new approaches have
constantly been developed, and steadily better accuracy was achieved.
Unsurprisingly, a very broad range of methods was explored - statistical,
geometrical and tracking-based to name a few. This paper presents a
brief summary of the evolution of head pose estimation and a glimpse at
the current state-of-the-art in this field.
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1 Introduction

Head pose estimation is becoming a more and more popular topic in recent
years. This is because it has a wide variety of uses in human-computer inter-
action. The development of smartphones, tablets and other mobile consumer
electronics presents a large area for various applications of head pose tracking
algorithms. Furthermore, head pose estimation is a very important element of
eye gaze tracking when no infra-red sensors are used - that is only using a sim-
ple web camera. Some approaches [1] directly link head pose tracking to eye
gaze tracking as a means of providing the initial field of view. Both head pose
estimation and eye gaze tracking seem to be the future of computer vision.

Computer vision researchers have been exploring the topic of head pose es-
timation for the last 20 years. A lot of improvement has been made over the
years, but still no single method is capable of estimating the head pose both
accurately and robustly in all situations. There are generally two categories of
head pose estimation algorithms: coarse head pose estimation, which tend to be
more robust but not necessarily accurate, and fine head pose estimation, which
demonstrate high accuracy. The focus of this paper are accurate methods, with
other approaches presented as background information and not covered in much
detail.

2 General Classification of Approaches

Over the past two decades a lot of different techniques have been tried. A good
and fairly exhaustive overview is presented in [2]. Recently, considerable advances
have been made in high accuracy tracking [3,4], which are covered in more detail
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in section 6 and 7. A lot of recent focus was also on approaches using a depth
camera [5], which however is not the focus of this paper.

One way to divide the existing approaches could be by the importance of
statistics and pre-learned models in comparison to the importance of geometrical
measurements. This could lead to five groups:

– Solely statistical approaches. These include template based methods
that compare new images to a set of head images with known poses [6],
detector based methods that have many head detectors each tuned to a
different pose [7], nonlinear regression methods that map the image data to
a head pose measurement [8] and manifold embedding methods that seek
low dimensional manifolds to model continuous variation in head pose [9].

– Approaches using flexible models. These include elastic graphs [10],
active shape models [11] and active appearance models [12]. All methods
attempt to fit a non-rigid model to the face in the image and derive the head
pose from the model’s parameters.

– Geometrical approaches. These methods first locate certain facial fea-
tures and based on their relative locations determine the head pose [13].

– Tracking approaches. These track the face movement between consecutive
frames and from this infer the pose changes. There are many variations
among these methods - the tracked elements include features [14], models
[15] or dynamic templates [16].

– Hybrid approaches. These approaches combine two or more of the pre-
viously mentioned approaches and tend to provide best robustness and ac-
curacy. A good example is [17], where the authors combined a template
database, real-time feature tracking and the Kalman filter to achieve very
high head pose estimation precision.

The above groups will be covered in more detail in the following sections. The
last two groups are the main point of focus of this article, as they allow the
highest accuracy.

3 Statistical Approaches

The most simple statistical approach is using appearance templates and as-
signing the pose of the most similar template to the query. Normalized cross-
correlation [18] or mean squared error over a sliding window [19] can be used for
image comparison. Appearance tamplates have a number of advantages, most
importantly: simplicity, easy template set expansion and independence of im-
age resolution. However, they only allow to estimate a discrete set of poses
corresponding to the pre-annotated database. They are also not very efficient,
especially with large template sets. The biggest problem of the approach is the
assumption that similarity in image space corresponds to similarity in pose space.
This is often not true, as identity and illumination might influence the dissimi-
larity more than a change in pose. To resolve this problem, more sophisticated
distance metrics have been proposed. Convolutions with a Laplacian-of-Gaussian
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filter [20] emphasize facial contours, while convolutions with Gabor wavelets [6]
emphasize directed features such as the nose (vertical) and mouth (horizontal).
A recent development focused on mobile devices uses Hu moments calculated
from facial pixels and their projection using the Fischer linear discriminant ma-
trix to determine similarity with reference templates [21]. It is assumed however,
that only five different poses are distinguished by the system.

A somewhat similar method to appearance templates is using arrays of de-
tectors. One such approach using an ensemble of weak classifiers trained with
Adaboost is described in [7]. Instead of matching the query to a set of templates,
the query is run through a set of pre-trained detectors and the classifier with
highest confidence determines the query’s pose. Compared to appearance tem-
plates, detector arrays are trained to ignore the appearance variations and are
sensitive to pose variations only. Furthermore, they solve the problem of face
detection and localization - which remains a separate task in case of appearance
templates. Big disadvantages of this scheme are the necessary scale of training,
binary output of detectors and small accuracy - in practice at most 12 different
detectors can be trained [2], which limits the pose estimation resolution to 12
states. Due to these constraints, detector arrays have not become very popular,
and few papers propose usable systems. One usable approach is described in [7].

Another group of statistical approaches is constituted by nonlinear regression
methods. These aim to find a mapping from the image space to a pose direc-
tion. If such a mapping existed given sample labeled data, a pose estimate could
be found for any new data using the trained model. In practice such nonlin-
ear regression is most often exploited using support vector regressors or neural
networks. The first approach performs well if dimensionality can be reduced us-
ing PCA [22] or feature data extracted at facial feature points [23]. The second
approach with neural networks can use either multi-layer perceptrons (MPL)
[24], which in principle work similarly to detector arrays, or locally-linear maps
(LLM), which first select a centroid for the query, and then perform linear re-
gression for pose refinement [25]. These methods can work fast and be fairly
accurate. The main disadvantages of nonlinear regression methods are the need
for long, sophisticated training and the very big sensitivity to head localization.
Inaccurate head localization will lead to a complete failure of these methods.

The last group of statistical approaches that should be mentioned are manifold
embedding methods. The aim of these methods is to reduce the dimensionality
of the input face image so that it can be placed on a low-dimensional manifold
constrained only by allowable head poses. The placement then defines the head
pose. Initially, PCA and LDA have been explored as dimensionality reduction
techniques and pose-eigenspaces were created for projecting the input [9]. Al-
ternatively, pose-eigenspaces could be substituted by SVMs, which have shown
to perform best when combined with local Gabor binary patterns [26]. Different
manifold embedding approaches perhaps perform even better. The most repre-
sentative of these is probably isometric feature mapping [27]. Despite relatively
good robustness, techniques using manifold embedding suffer for the same rea-
son as appearance templates - they easily capture appearance and not only pose
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variations. Furthermore, good models require a lot of training and ideally a
complete set of poses from all people in the database [28].

All in all, statistical approaches demonstrate good robustness in pose estima-
tion, but most often do not provide very high accuracy. The techniques which
are capable of providing more than just a few discrete pose states require com-
plicated training and are not guaranteed to work in cases that differ greatly from
the training data. Despite their multiple advantages, statistical approaches do
not seem to be the best way of estimating the head pose with high accuracy.

4 Flexible Model Approaches

Statistical methods treat head pose estimation as a specific signal processing
task with the 2D image as input. Flexible models aim to fit a non-rigid model
to certain facial features so as to uncover the facial structure in each case. De-
pending on how the process of fitting is performed and what the final result is,
flexible models come in several forms. Early work in this area was related to
Elastic Bunch Graphs. These deformable graphs of local feature points such as
eyes, nose or lips could be first matched to labeled training images to establish
a reference pose set. The same graph was later matched to the query image, and
based on the mutual feature locations a best fit from the training data could be
found [10]. An advantage of feature-domain comparisons instead of face image
comparisons is a much stronger link to pose similarity. Unfortunately, similarly
as appearance templates, these approaches only allow to distinguish between a
discrete set of poses and become difficult with large amounts of training data.

Potentially much higher accuracy can be achieved by using active shape mod-
els (ASMs) and active appearance models (AAMs). The first technique involves
fitting a specific shape to new data, where the fitted shape is a linear combina-
tion of some pre-trained eigenspace of shapes [29]. This allows to combine greedy
local fitting with the constraint of a model. Adding appearance to the shape and
combining the two proved to be a better solution when fitting these models to
faces [30]. Once such a model, being originally a set of 2D points, is fitted to the
face image, it is possible to infer the pose based on the relative locations of these
points. One possibility is to use simple linear regression on these points [31].
Another possibility is to use a combined 2D and 3D Active Appearance Model,
where an inherent 3D model is used to constrain the fitting of 2D points [12].
This allows to infer the head pose directly. Finally, it is possible to use structure
from motion algorithms to infer the 3D locations of model points and directly
calculate the pose [32]. In fact, this technique could even be used without flexi-
ble models by matching feature points detected on the face and using them for
reconstruction. With increased processing power becoming available in recent
years, a real-time implementation of this approach might be a promising line of
research.

A more recent development is based on a combination of tree models and
a shared pool of parts [33]. A set of facial landmarks is localized in the query
image, thus simultaneously providing head detection, landmark localization and
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pose estimation. The authors argue that their approach is capable of fitting the
elastic models much better then AAMs and CLMs (Constrained Local Models).
As the proposed system saturates previous benchmarks, a new face database was
created for the purpose of evaluation - Annotated Faces in the Wild (AFW). The
reported results are very impressive, but they all refer to coarse pose estimation
- an error is assumed only when the detected pose deviates by more than 15
from the annotation.

To sum up, flexible models have a big and still largely unexplored potential
to provide both good robustness and accuracy of head pose estimation. While
their precision is limited by the feature fitting accuracy and so depends on the
input image resolution and quality, they may be a good starting point for use
with refining algorithms.

5 Geometric Approaches

Geometric approaches derive the head pose from the geometric configuration
of facial features depending on how the face is positioned in relation to the
silhouette of the head or how big the nose deviation is from bilateral symmetry.
One group of approaches uses the outer corners of the eyes, the outer corners of
the mouth and the nose position [34]. The center points between the eye corners
and between the lip corners project a line. The distance of the nose from this
line, as well as the angle, gives information about the pose. This is illustrated
in Figure 1. A recent paper describes the implementation of this algorithm on
contemporary hardware using a cascade of detectors for feature localization [35].

Another set of methods uses also the inner eye corners for measurements [36].
One of the most recent methods [13] uses the parallelism of lines between inner
eye corners, outer eye corners and lip corners. A so called vanishing point can be
calculated as the intersection of the eye line and the lip line. The head pose can

Fig. 1. Geometric approaches use relative feature positions
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be estimated based on its location. Furthermore, the ratios of the lines can be
used to infer the pitch of the head. Moreover, an EM algorithm with a Gaussian
mixture model was proposed to account for the variation among different people.

Geometric approaches usually require few calculations and are simple. They
are also capable of providing a highly accurate estimation, but their accu-
racy strongly depends on the accuracy of facial feature location estimation. At
present, the most accurate detectors have an error of at least 1-2 pixels even
with high quality images. This is a lower bound on the potential accuracy of ge-
ometric methods. In our experience the 2-pixel feature location error can cause
a considerably large, 5-10 degree head pose angle estimation error for typical
webcam face images. It means that when using a simple webcam, geometric
methods are unable to provide an accurate head pose estimation because of
limited feature detection accuracy. A further limitation of these methods is the
ability to estimate the head pose only when all the facial features are visible and
detectable.

6 Tracking Approaches

Tracking methods can be used to determine the head pose by accumulating
estimations of the relative head movement between subsequent video frames.
This approach assumes observing smooth motion of the head so it is applicable
only when a continuous video stream containing the head motion is available.
Tracking-based head pose estimation methods are capable of providing very
accurate results, as they can calculate very small pose changes between successive
frames and thus outperform other approaches [2]. The main disadvantage of these
methods is the need of tracking initialization during algorithm start-up and after
tracking gets lost. This means that it is necessary to use some different head pose
estimation algorithm in the initialization step. To simplify this step, the tracking
algorithm can assume that the head pose is frontal at initialization - which can
be provided by a frontal face detection algorithm. Another drawback of tracking
approaches is that they are very accurate only in the short-term. They are also
sensitive to occlusions and illumination changes. Therefore, many extensions
of tracking algorithms have been proposed to improve long-term stability and
robustness, mainly in the presence of occlusions or large out-of-plane rotations
[16,15,3].

6.1 Model-Based 3D Tracking

In ordinary 2D tracking algorithms the 3D motion of the object is modeled as
a 2D transformation. To recover the full 3D head pose, which has six degrees of
freedom (translations and rotations along three axes), a 3D tracking algorithm
is required [37]. This can be achieved by utilizing a 3D shape model of an object.
The translation and rotation of the model is estimated by analyzing the projected
2D images of the modeled object. The 2D translations can be unprojected from
the image into the 3D scene to account for 3D motion. Several approaches have
been proposed to solve this problem. [38,16,37,3,17].
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The model used in tracking can be rigid or non-rigid (deformable). This paper
focuses only on the rigid model approach, as non-rigid models are more useful
for emotion recognition than high-accuracy head pose tracking. In general, the
shape of the human head can be modeled either using a precise 3D model or
approximated by a geometric primitive. The selection of the model type directly
affects the accuracy and robustness of the tracker, but is something separate
from the tracking algorithm itself. Approaches using both generic and user-
specific precise head models have been proposed [39,38]. The main advantage of
a precise face model is the capability to provide a very accurate pose estimation.
However, this is only possible when combined with precise initialization to closely
fit the model to the observed face. When the model is not well aligned to the
face, tracking errors rise significantly. Moreover, the alignment usually degrades
during tracking due to tracking error accumulation [17].

Algorithms based on approximating the head shape with geometrical primi-
tives are more robust. The most simple one is a planar surface, but the recovery
of out-of plane rotation in this case is inaccurate due to lack of depth in the
model. From all geometric primitives, the best choice seems to be using a cylin-
der [16,15,3]. It possesses depth, is very robust to initialization errors and can
work well despite appearance changes between different people.

6.2 3D Tracking under Perspective Projection

As mentioned in section 6.1, introducing a known 3D model into 2D tracking
allows to recover the full 6-degree of freedom motion of the tracked object. A
straightforward method of solving this problem was proposed in [3], based on
[16]. Having a set of

– 2D image points at time t − 1 along with their 3D coordinates in the real
world given by a model,

– corresponding 2D image points at time t

it is possible to recover model pose at time t. If the model’s pose at time t −
1 is known, the updated pose at time t can be represented as the previous
pose transformed by a motion vector μ = [tx, ty, tz , ωx, ωy, ωz], which represents
translation and rotation using twist representation. To describe correspondences
between coordinates of the object in 3D space and their projections on the
imaging plane of the camera, a simplified perspective projection camera model
given only by the focal length f can be assumed. Considering a single tracked
point, the locations pt−1, pt of this point are observed in the image at times
t− 1, t respectively. The 3D position Pt−1 of this point at time t− 1 is obtained
by unprojecting pt−1 into 3D world coordinates using depth from the model,
which has known orientation. The new 3D position estimated during tracking
can be expressed as Pt = M · Pt−1, where M is a transformation matrix based
on vector μ:
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M =

⎡
⎢⎢⎣

1 −ωz ωy tx
ωz 1 −ωx ty
−ωy ωx 1 tz
0 0 0 1

⎤
⎥⎥⎦ (1)

This situation is depicted in Figure 2. Given the transformation matrix M , the
projection of Pt can be expressed using the previous position Pt−1 and motion
parametrized by vector μ:

p′t =
[
xt

yt

]
f

zt
=

[
xt−1 − yt−1ωz + zt−1ωy + tx

xt−1ωy + yt−1ωx − zt−1ωx + ty

]
f

−xt−1ωy + yt−1ωx + zt−1 + tz
(2)

Now, two forms of the projection of point Pt are available. The first one is the
observed location pt and the second is p′t, which was obtained by estimated
motion of the previous location pt−1 based on 3D model and motion vector μ.
Assuming N such point pairs have been collected, the goal is to compute motion
vector μ, which minimizes the sum of distances between the observed points pi,t
and the estimated points p′i,t.

Fig. 2. Cylinder tracking under perspective projection

6.3 Finding Correspondences

For the presented algorithm to work, a set of corresponding point pairs from two
images is necessary. One way to get it is by using a local feature point extraction
algorithm. In [3] the authors use the SIFT algorithm, proposed in [40]. Feature
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points are extracted independently for each frame and then matched by finding
pairs with the most similar descriptors.

Although independent feature extraction and matching for each frame is pos-
sible, it not not the fastest method. A more efficient method is tracking feature
points in consecutive frames. A technique of 3D pose estimation by applying op-
tical flow to track 2D feature points and assuming a cylindrical head model was
proposed in [16]. It uses a mesh of evenly distributed points as keypoints and
works directly on image luminance. The algorithm operates on the same motion
vector μ as introduced in section 6.2. Let the intensity of the image at point p
and time t be denoted as I (p, t). Let F (p, μ) be a function which maps point p
into a new location p′ using vector μ, according to the motion model described
in section 6.2. This mapping function was already introduced in equation 2.
The region containing all considered face pixels is denoted as Ω. Computing the
motion vector between two frames based on luminance can be expressed as the
minimization of the sum of luminance differences between the face image from
previous frames and the current face image transformed by mapping function F :

min

⎛
⎝∑

p∈Ω

(I (F (p, μ) , t)− I (p, t− 1))
2

⎞
⎠ (3)

In [16] the motion vector μ is computed using the Lucas-Kanade method:

μ =

(∑
w (IpFμ)

T
(IpFμ)

Ω

)−1 ∑
w
(
It (IpFμ)

T
)

Ω

(4)

where It and Ip are temporal and spatial image gradients, while w is a weight
assigned to each point. Fμ denotes the partial differential of F with respect to
μ at μ = 0:

Fμ =

[ −xy x2 + z2 −yz z 0 −x
− (

y2 + z2
)

xy xz 0 z −z

]
f

z2
(5)

Motion is computed iteratively. After each iteration, the model is transformed
using the computed motion vector μ and the weights for all points are updated.

A hybrid combination of tracking a mesh of points with feature point matching
is also possible. The approach of [41] can be used for adjusting mesh points to
good corner points within so called cells. Optical flow can be used to track these
points and feature matching is not necessary, while at the same time the tracked
points are not random. Although promising at first, assessing the impact of this
modification on tracking accuracy is difficult, as there is no linear relationship
between mesh tracking accuracy and the distinctiveness of mesh points.

6.4 Long-Term Stability

Tracking in a frame-to-frame fashion provides accurate pose estimation in the
short-term, but it tends to lose accuracy over time due to drift error accumu-
lation. To obtain the head pose in the actual frame, motion vectors have to
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be accumulated starting from the beginning of tracking. Motion estimation er-
rors are accumulated together with measurement errors. Thus, the drift error
increases in time. Moreover, the frame-to-frame tracking is not able to recover
after large errors, which occur in presence of occlusions or when the head is
temporarily out of the camera’s view.

In order to achieve long-term robustness and stability, the drift error has to
be compensated and the algorithm has to be able to recover after tracking loss.
This is usually done by introducing an alternative tracking algorithm capable of
performing reinitialization. This auxiliary method periodically performs tracking
to stored reference frames (templates) instead of the previous frame. Such com-
pensation of errors greatly increases the pose estimation robustness and general
performance in real-world videos. In [16] the initial frame with a specified pose
is stored as a reference keyframe, and the tracking to this keyframe is called
re-registration. Tracking to reference frames should be performed from time to
time, in two cases:

– when normal frame-to-frame tracking is working for a long time and drift
error has accumulated,

– when there is a large error in frame-to-frame tracking caused by abrupt
movement, occlusion etc. and traditional tracking has failed

7 Hybrid Approaches

Tracking to a reference frame can be performed simultaneously with frame-
to-frame tracking giving a head pose estimation algorithm which is robust and
accurate at the same time. This approach was presented in [3], where the Kalman
filter is applied to combine motion estimation of the frame-to-frame tracker and
the reference frame tracker. The authors proposed a robust tracking system,
where a head feature point database stores a set of reference templates. Each
template is a set of SIFT points captured at a known head pose. The templates
are extracted at certain head poses during the initial stage of tracking, where a
frame-to-frame tracker is used to determine the head pose. The initial template
is stored for a frontal pose. Additionally, it contains generic facial feature points
from a Bayesian Tangent Shape Model [42], which is used for the initial alignment
of the 3D head model. Once the template database is filled, successive input
frames are tracked in parallel using previous frames and template frames from
the database. SIFT points from the input frame are matched with all templates
independently, and the template with the largest number of matches is used
to track the model. Separate motion vectors are estimated using the previous
frame. In both cases tracking is done using an algorithm described in section
6.2. Finally, the two motion vectors are combined using the Kalman filter.

Depending on the tracking errors, bigger confidence is assigned either to
the continuous tracking method or to the template tracking method, giving the
final resulting pose vector estimated by the filter. The biggest gain in using the
Kalman filter is that the estimation is smooth regardless of abrupt temporary
errors. If there is an occlusion and the frame-to-frame tracker suddenly gets
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lost, the Kalman filter will use the estimate from the template tracker and such
disturbances will be barely noticed.

A similar method is described in [17]. Here however, the authors propose to
simultaneously use feature-based tracking and intensity-based tracking. The aim
is to minimize the error from both methods. This is presented as a nonlinear op-
timization problem, with different weights assigned to the intensity tracking and
feature tracking based on time and tracking conditions. The reported results are
impressive and demonstrate better accuracy and robustness than each method
alone, especially in demanding test sequences.

A more recent publication [43] attempts to use the Kalman filter to predict the
head motion from previous motion, in order to support texture-based optical flow
tracking. The authors claim that in comparison to pure texture-based tracking,
a significant speed improvement can be achieved.

One of the most sophisticated hybrid tracking approaches is described in [4].
The system combines three types of tracking using linear regression:

– static person-independent pose estimation
– static user-dependent pose estimation based on reference templates
– differential motion-based estimation

As shown in section 8, the proposed hybrid approach is very competitive and
achieves accuracy of head pose angle estimation close to the state-of-the-art. This
is despite having a completely different architecture than most contemporary
head pose estimation research.

8 Conclusion

To conclude it has to be noted that hybrid approaches provide the best accuracy
and robustness. Table 1 shows a brief comparison of various tracking methods in
terms of precision. For a reliable comparison, the head pose estimation methods
were compared on the same dataset - Boston University dataset with uniform
lighting. Most results are averaged for all 45 uniform lighting test sequences of
the dataset, but some only for a subset of it - as mentioned in the remarks.

If only one method was to be chosen, then tracking based approaches are
favored. The numerical comparison in Table 1 clearly shows their superiority
[16,17]. The recent improvements of feature point estimation have allowed meth-
ods using them [35] to reach precision close to that of tracking methods.

It must be remembered though, that real-world situations and use cases place
big importance on tracking robustness - something which is not necessarily shown
with numbers. At the moment it seems that if computational resources are avail-
able, the most accurate and robust head pose estimation methods are hybrid
tracking methods combining several tracking-based methods with filters [4]. For
maximum robustness, combining tracking methods with a static head pose esti-
mation method has emerged as a popular trend in research [16,3,17].

As for future improvement of tracking accuracy, a fusion of 3D model tracking
and feature point based pose estimation seems to be a promising line of research.
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Table 1. Head pose estimation accuracy on Boston University Dataset - as reported
by authors

Method Roll
[deg]

Pitch
[deg]

Yaw
[deg]

Remarks

Robust Full-Motion Recovery
of Head by Dynamic Templates

and Re-registration Techniques [16]

1,4 3,2 3,8 Boston Uni
(45 uniform)
+ Optotrack

Robust, Real-Time 3D Face Tracking
from a Monocular View [17]

1,4 3,5 4,0 Boston Uni -
uniform example,

error values
estimated
from chart

Fasthpe: A recipe for quick head pose
estimation [35]

3,03 5,27 3,91 Boston Uni
(18 sequences)

Robust 3D Head Tracking by
View-based Feature Point Registration

[3]

3,44 4,22 2,07 Boston Uni
(45 uniform)

Generalized Adaptive View-based
Appearance Model: Integrated

Framework for Monocular Head Pose
Estimation (GAVAM) [4]

3,67 4,97 2,91 Boston Uni
(45 uniform)

Fast, reliable head tracking under
varying illumination: An approach

based on registration of texture-mapped
3d models [15]

9,8 6,1 3,3 Boston Uni
(45 uniform)

As shown in [3] matching features to templates can work very well. Considering
the recent developments in real-time 3D reconstruction [44,45], it seems feasible
to create and refine an online 3D head model and use it for continuous, highly
accurate head pose tracking. If appropriately robust feature points can be chosen
or developed for facial images, this approach could yield the most accurate head
pose estimation yet.
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