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Double-Layer Vector Perceptron for Binary 
Patterns Recognition 

Vladimir Kryzhanovskiy and Irina Zhelavskaya 

Abstract. A new model – Double-Layer Vector Perceptron (DLVP) – is proposed. 
Compared with a single-layer perceptron, its operation requires slightly more 
computations (by 5%) and more effective computer memory, but it excels at a 
much lower error rate (four orders of magnitude lower). The estimate of DLVP 
storage capacity is obtained.   
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1 Introduction 

The Potts model [1-2] is the first and the most well known vector neural network. 
The model still draws much attention from researchers in such fields as physics, 
medicine, image segmentation and neural networks. Later, the parametric neural 
network [3] was offered and thoroughly studied by a small group of the Institute 
of Optical Neural Technologies of Russian Academy of Sciences (the Center of 
Optical Neural Technologies of the System Research Institute of RAS today). A 
similar model (CMM) was developed independently and is still investigated at 
York University [4]. V. Kryzhanovsky’s thesis introduces a vector neural network 
model with a proximity measure between neuron states. This kind of neural net-
works generalizes all above-mentioned models. Researchers studied both fully 
connected and perceptron-like architectures. Various vector-net learning rules 
were studied [6]. The results proved the high efficiency of vector networks. 

Perceptron is most suitable for associative memory-based applications (in our 
case it is a vector perceptron). However, it has a major drawback: even one output 
neuron taking a wrong state results in an input vector not being recognized.  
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Fig. 1 The general 
arrangement of 
the double-layer 
vector perceptron 

 
 
 
To overcome this, one has to raise the reliability of each neuron by increasing the 
net redundancy or decreasing the load of the net. In other words, the vector per-
ceptron consists of “reliable” neurons that cannot make mistakes, which contra-
dicts the whole philosophy of neural networks. 

The alternative approach is to use weak neurons. With similar requirements for 
RAM, a collection of weak neurons proves to be more effective than a small num-
ber of reliable neurons. The trick is to supply a vector perceptron with an addi-
tional layer consisting of only one neuron that has a number of states equal to the 
number of stored patterns. Its aim is to accumulate the information from the  
preceding layer and to identify an input pattern. The approach is close to the idea 
offered in papers [7, 8]. 

The paper consists of three parts: formal description of the model, qualitative 
description with a simple example that helps to understand the point of the  
approach, and experimental results.  

2 Setting Up the Problem 

In this paper we are solving the nearest neighbor search problem, which consists 
in the following. Let us have a set of M   N-dimensional bipolar patterns: 

 

 , { 1}, 1,N
iR x Mμ μ μ∈ ∈ ± ∈X . (2.1) 

 
A bipolar vector X is applied to the inputs of the network. The goal is to find 

reference pattern Xm with the smallest Hamming distance to input pattern X. 
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3 Formal Description of the Model 

3.1 Model Description 

Let us consider double-layer architecture (Fig. 1). The input layer has N scalar 
neurons, each of which takes one of two states xi = ±1, i = 1, 2, …, N. The first 
(inner) layer consists of n vector neurons. Each of these neurons has 2q fictive 
states during the training, and is described by basis vectors of q-dimensional space 

1 2{ , ,..., }i q∈ ± ± ±y e e e , where (0,...,0,1,0,...,0)k =e  is the unit vector with k-th 

component equal to 1. These fictive states are applicable only during the training, 
and can be considered as responses of the inner layer of the network. That is done 
since we use Hebb rule for training, so the responses of the network should be 
known in advance. At the recognition stage, these neurons are simple summators 
(thus, there is no activation function in the inner layer). This is done to simplify 
the description of the model. The second (output) layer has one vector neuron that 
can take M states, and is described by basis vectors of M-dimensional space 
(where M is the number of patterns in the training set) 1 2{ , ,..., }M∈O o o o  . 

The state of the perceptron is described by three vectors: 

1) Input layer is described by N-dimensional bipolar vector 

1 2( , ,..., )Nx x x=X , where xi = ±1;  

2) The first (inner) layer is described by n-dimensional 2q-nary vector 

1 2( , ,..., )n=Y y y y , where 1 2{ , ,..., }i q∈ ± ± ±y e e e , and 

(0,...,0,1,0,...,0)k =e  is the q-dimensional unit vector with k-th compo-

nent equal to 1; 

3) The second (output) layer is described by M-nary vector 

1 2{ , ,..., }M∈O o o o , where (0,...,0,1,0,...,0)r =o  is the M-dimensional 

unit vector holding unit in the r-th digit. 

Each reference pattern Xm is uniquely associated with vector Ym. In its turn, 
each vector Ym is uniquely associated with vector om. Each component of vector 
Ym is generated in a way that on the one hand, Ym is a unique vector, and on the 
other hand, possible states 1 2{ , ,..., }qe e e  are distributed evenly among reference 

vectors, i.e. (1,1,...,1)M
i qμμ

≡ y . If the last condition is not satisfied, the error 

rate grows by several orders of magnitude, which was proved experimentally. So, 
we build a neural network that stores association: 

 

 m m m⇔ ⇔X Y o   (3.1) 
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3.2 Learning Procedure  

The synaptic connections of the vector perceptron are computed using generalized 
Hebb’s rule: 

 1

M
m m

ji j i
m

x
=

=W y   and  
1

M
T m

j m j
m=

=J o y , (3.2) 

where Wji is the q-dimensional vector describing the connection between the i-th 
neuron of the input layer and the j-th neuron of the inner layer; Jj is the M×q ma-
trix responsible for connection between j-th neuron of the inner layer and the sole 
output neuron, 1,i N= , 1,j n= . 

3.3 Identification Process 

Let us apply vector X to the network inputs. Let us compute the response of the 
net O. For that purpose, let us first calculate local fields of the inner layer: 

 1

N

j ji i
i

x
=

= h W
.
 (3.3) 

Since the inner-layer neurons act as simple summators during recognition, sig-
nal hj arrives to the output neuron without any changes. That is why local field of 
the output layer has the form: 

 1

n
T

j j
j=

=H J h . (3.4) 

The final output O is calculated in the following way. We identify the largest 
component of local field H. Let it be component r. Then, the output of the percep-
tron is O = or. In other words, the input of the perceptron receives a distorted  
variant of the r-th reference pattern. And the larger the product (H, or) is, the more 
statistically reliable the response of the network is. Moreover, if we arrange the 
numbers of components in increasing order the resulting list will tell us how close 
to corresponding vectors input vector X is in terms of Hamming vicinity. 

4 Qualitative Description of the Model  

4.1 The General Idea 

Each vector neuron corresponds to a unique partition of the whole set of reference 
patterns into q subsets. For instance, Fig. 2 shows us two partitions of the set of 
M=12 patterns into q=4 subsets. For any partition we can calculate q “probabili-
ties” (components of the vector of local fields, k

jh ) of the input pattern belonging 
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to one of the q subsets. Each vector neuron is basically a solver that selects a sub-
set with the highest “probability” (in Fig. 3 it is subset No.1 in the first partition 
and subset No.1 in the second partition). The intersection of the subsets that were 
selected by all solvers determines the output of a single-layer perceptron. Calcula-
tions of the “probabilities” may contain errors due to the statistical nature of calcu-
lations. So, a solution found by selecting the “highest-probability” subsets might 
be wrong. Mistake in selecting a “winning” subset in at least one partition is 
enough to get a wrong solution (Fig. 3). 

 

Fig. 2 Partition of a set of objects in two different ways 

 

Fig. 3 Intersection of winning subsets from partition 1 and 2 results in a null subset 

The goal of the proposed method is to overcome this drawback. The idea is to 
make decisions by accumulating “probabilities” over all partitions rather than 
using “probabilities” of partitions separately (and cutting off possible solutions by 
doing so). To do that, we need to interpret the probabilities 1 2, , ..., q

j j jh h h  for j-th 

partition differently from what we did before. If previously we treated k
jh  as an 

indicator of k-th subset in j-th partition, now we will say that each element (pat-
tern) of k-th subset in j-th partition is associated with the same indicator k

jh . Thus, 

each pattern has n corresponding probabilities (where n is a number of different 
partitions of the total set), and their sum represents a cumulative indicator of this 
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pattern. Using these cumulative indicators allows us to decide which of the pat-
terns is the winner based on the information from all subsets of all partitions. 

(It should be noted once again that the “probability” here is understood as a 
certain statistical quantity – a component k

jh  of local field, to be exact. The higher 

the probability of an input pattern being a pattern from a subset corresponding to 
this local field, the larger this component is.) 

4.2 Example 

Let us exemplify the idea. Fig. 2 shows two different partitions (n = 2) of a set of 
12 letter-denoted patterns into 4 subsets. Let us apply distorted pattern B to the 
inputs. In the figure each subset has a corresponding number, which is the calcu-
lated “probability” that an input pattern is a pattern from this particular subset. 

Table 1 Probability that the input pattern belongs to a particular subset 

Partition 1 Partition 2 

Subset 
number 

Objects Probability* 
Subset 
number 

Objects Probability* 

1 M, K, B  0.70 1 D, E, F 0.38 

2 D, J, C 0.10 2 A, B, C 0.37 

3 L, E, A 0.15 3 J, H, K 0.20 

4 H, I, F 0.05 4 I, L, M 0.05 

*Probability - chances that the input pattern belongs to the subset. 

When a single-layer perceptron is used for recognition, subset No.1 is the 
“winner” subset in the first partition, and it really contains the input pattern. In the 
second partition the “winner” is also subset No.1, yet it does not have the input 
pattern in it. The intersection of the two subsets gives us a null subset (Fig. 3), 
which means that the net cannot identify the input pattern. It is clear that the fail-
ure of one neuron causes the failure of the whole system. At the same time, we can 
see that the probabilities of the input pattern belonging to subset 1 or subset 2 for 
the second partition are almost equal – the difference is just 0.01 (1%) (Table 1). 
That is to say, it is almost equiprobable for the input pattern to be either in the first 
or the second subset. Our model takes this fact into account, and for each pattern 
the decision is made by using probabilities from both partitions (Table 2). The 
pattern that corresponds to the greatest total “probability” is selected as the re-
sponse of the system. The result is a correct identification of the input pattern by 
the network. 
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Table 2 Recognition probabilities computed for two partitions and their sum for each 
pattern 

Pattern 
Probability for 
partition 1 

Probability for 
partition 2 

Summary probability 

A 0.15 0.37 0.52 

B 0.70 0.37 1.07 

C 0.10 0.37 0.47 

D 0.10 0.38 0.48 

E 0.15 0.38 0.53 

F 0.05 0.38 0.43 

5 Details of the Algorithm  

We can see from the table that the proposed model requires just 4-5% more com-
putational resources (CPU, RAM) than the single-layer perceptron. 

Table 3 Details of the algorithm 

 Single layer Two layers Ratio* 

Computational burden (number of operations) 2Nnq 2Nnq+(n+1)M 1.025 

Necessary amount of RAM, bytes 4Nnq 4Nnq+4nM 1.033 

* - the ratio is taken for M = 100; N = 100; q = 300; n = 2. 

6 Storage Capacity 

A new model of neural networks that is basically a product of adding one more 
layer to a single-layer perceptron was presented above. The value of this addition-
al layer was illustrated via example in section 4.2. Now, we need to examine the 
properties of the model and to compare characteristics of a single- and double-
layer perceptrons. This can be done in several ways: 

1) We can take a range of datasets containing real data from different domains, 
and investigate how the proposed model and the single-layer perceptron do 
perform on them. As a result, we will identify types of data (types of prob-
lems), for which the networks described above work well and for which they 
do not. These results would be very important since through them we would 
be able to understand what place our model take among existing ones. The 
disadvantage of this approach is that a very deep analysis of the used data is 
required in order to understand the reasons why models work well or not, and 
this task is a very nontrivial task itself. 
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2) Another approach is to generate a number of synthetic datasets that will be 
considered as reference vectors (reference patterns), and test the models on 
them. In this case, it becomes possible to create the situations when the tar-
geted models properties are most pronounced. The significant advantage of 
that is the possibility to calculate statistical characteristics such as expected 
mean, variance, correlations, etc., and different events probabilities analytical-
ly. Such estimates allow us to understand the endogenous processes in neural 
networks better.  

It is obvious that for thorough investigation of the model it is necessary to go 
both ways. In the present work authors follow the second one: as reference pat-
terns we use vectors, which components are generated independently with equal 
probabilities and take either +1 or -1.  

So, with what purpose do we consider such kind of vectors? Our choice is 
based on several reasons. First, this case is the simplest one for analytical calcula-
tions. Second, the estimate of storage capacity would be an upper bound estimate 
in this case, i.e. we are estimating the maximum possible storage capacity of a 
neural network. So, for instance, it is well known that neural networks work worse 
when recognizing similar patterns, i.e. patterns that have correlations between 
them rather than patterns without correlations. That means that they are able to 
“remember” a fewer number of patterns a priori. Moreover, the probability of 
correct recognition highly depends on correlation values in each particular case. 
For that reason, we can make comparison between different models of associative 
memory only by using the upper bound estimate of the storage capacity for the 
simplest case. For example, the well-known result 0.14N, which is the storage 
capacity estimate of Hopfield associative memory model, was obtained under the 
same assumptions. 

Let us give a definition of the storage capacity. The storage capacity of associa-
tive memory is a number of reference patterns Mmax that can be remembered by a 
neural network so that it can recognize all of them without error. By that it is un-
derstood that adding just one reference pattern to the training set will lead to the 
fact that one of the patterns is not being recognized correctly. In that event, the 
probability of error recognition equals to 1/(Mmax+1). 

We may formulate this classical definition in a different way. The storage ca-
pacity of associative memory Mmax is such number of reference patterns, recogniz-
ing which the probability of recognition error P is equal to 1/Mmax

1. At that, it is a 
common practice that neural networks are tested at reference patterns without any 
distortions. Authors think that it is necessary to generalize this definition, and to 
define Mmax at condition that reference vectors being applied to the inputs of the 
network are distorted at some noise level a, and the probability of recognition 
error P is not greater than a predefined threshold Pmax (value Pmax could be any, 
including 1/Mmax). 

Authors managed to estimate storage capacity Mmax for both models at the 
abovementioned conditions. Resulting estimates are in a good agreement with the 
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experiment differing just 1-1.3 times in magnitude from experimental results. 
Detailed derivations of the following estimates are presented in Appendix 1: 

 
1) Storage capacity of double-layer vector perceptron (DLVP): 

 

 

2

max

(1 2 )

8ln
4 2

nqN a
M C

nqN

Pπ

−<
 
  
 

, 2.5C = . (6.1) 

 
2) Storage capacity of single-layer perceptron: 

 

 

2

max

(1 2 )

2ln
2

qN a
M

nqN

Pπ

−=
 
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 

 (6.2) 

 
Let us analyze the storage capacity of both models. We may draw the following 

conclusions from (6.1) and (6.2): 

1) Storage capacity of both models increases linearly with N, q; 
2) Storage capacity of both models decreases quadratically with a rise of the 

distortion level of reference patterns a; 
3) Strengthening the requirements for recognition reliability, i.e. reduction 

of accepted probability error Pmax, leads to log decrease of storage capaci-
ty for both models; 

4) And most importantly, comparing these two estimates we can see that the 
storage capacity of a double-layer perceptron is n times greater than the 
storage capacity of a single-layer perceptron! 

7 Experimental Results 

In this section we explore the properties of the proposed model in the following 
experiments: 

1. First, we show that adding the second layer to the network enhances the 
probability of the correct recognition of input vectors. For this purpose, 
we experimentally compare double- and single-layer perceptrons. In the-
se experiments we will vary external parameters N, M, a.  

2. Then, we investigate the model behavior depending on internal parame-
ters n and q. Both parameters increment enhances the probability of cor-
rect patterns recognition. However, these parameters take different effect 
on the model. Increment of q results in decrease of the amount of infor-
mation corresponding to one synaptic connection, and increment of n  
allows accumulating more statistical information.  
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Fig. 4 Probability 
P versus the num-
ber of stored 
patterns M. Pa-
rameters N=100, 
q=100, n=2 

 

Fig. 5 Probability 
P versus dimen-
sionality N. Pa-
rameters M= 
1000, q=50, n=3 

 

 
 

3. We conduct experiments on storage capacity of the proposed model, and 
verify the agreement between theoretical and practical results.  

4. We also consider another useful option that is provided by the proposed 
model. That is a possibility of solving the K nearest neighbors task. 

7.1 Comparison with a Single-Layer Perceptron  

In this section we compare results of operation of a single- and double-layer  
perceptron. 

In Figures 4-6 the Y-axis of the plots is the recognition error probability P 
(when the perceptron fails to recognize a distorted reference vector). In both  
figures the curves corresponding to the single-layer perceptron are represented  
by a thin line with rhombic marks (the curves are above the others). Other  
curves correspond to the double-layer perceptron. The plots are drawn for  
different n and q. 

If the number of patterns M, their dimensionality N, and the noise level a (the 
probability of a component of an input binary vector being distorted) are deter-
mined by the conditions of a problem to be solved, the number of q-digit neurons 
of the inner layer and the number of their states can be varied to get satisfactory 
reliability. 

 

1E-071E-061E-051E-041E-031E-021E-011E+00200 300 400 500 600M

P

1E-081E-071E-061E-051E-041E-031E-021E-011E+00200 400 600 800 1000N

P
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Fig. 6 Recogni-
tion failure proba-
bility P versus 
noise level a. 
M=1000, N=100, 
q= 200, n=2 

 

 
 
 
Let us first consider how the recognition error probability varies with M and N 

given constant n and q (Fig. 4 and 5). As expected, the growth of dimensionality 
of stored patterns N or a decrease of their number M result in an exponential de-
crease of probability P. It is also seen that the introduction of another layer allows 
a more than an order of magnitude (two orders and more) decrease of P. The low-
er the probability P for the original single-layer net, the more significantly P de-
creases for the double-layer system. 

The noise-resistance of the double-layer net is also higher – the rhomb-marked 
curve lies noticeably higher than the other curve (Fig. 6). 

7.2 Model Properties Analysis  

Fig. 7 shows us a few dependences of the double-layer network error probability P 
on the noise level a for different combinations of n and q (given n*q = const). The 
upper dashed curve corresponds to n=40, q=10, the curve below – to n=8 and 
q=50. Even lower is the curve for n=4 and q=100. The combination of n=2 and 
q=200 (thick solid line) demonstrates the lowest P. So we see that from the relia-
bility viewpoint it is better to use a small number of reliable (redundant) neurons 
for the double-layer system. However, such kind of networks cannot boast of  
high resistance to a failure of the net itself. The data (dashed line) shown in  
Fig. 7 proves that reliable and failure-resistant neural systems can be made up of 
unreliable elements having a considerable parameter spread. 

The net with n=40 and q=10 differs from the net with n=2 and q=200 by the 
principles securing correct recognition. In the first case the second layer that  
accumulates information from a large number of unreliable elements plays a key 
role (for a single-layer perceptron with given parameters the recognition probabil-
ity is zero). In the latter case, the second layer corrects the errors of the first layer 
only occasionally (thin marked line in Fig. 7). 

 
 

0.004
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Fig. 7 Recogni-
tion failure proba-
bility P versus 
noise level a. 
M=1000, N=100 

 

 

Fig. 8 Recogni-
tion failure proba-
bility P versus nq. 
M=1000, N=100, 
a=0 

 

 
 

Fig. 8 shows how the error probability P depends on inner-layer parameters n 
and q. The thick line corresponds to the probability P of a double-layer network 
with n=2 and q=200÷500, and triangular marks correspond to n =2÷5 and q=200. 
Both networks have the same computational burden and requirements for RAM. 
The simulation shows that  

1) The growth of both parameters leads to an exponential decrease of P;  
2) Both nets has the same probability P for nq < 800 (an unexpected enough  

result), which once again says for the conclusion drawn above. 

7.3 Storage Capacity  

In this subsection we will present the experimental results of DLVP maximum 
storage capacity measurements and will check how well it corresponds to the theo-
retical estimate (6.1). 

The solid line in figures 9-13 corresponds to theoretical estimate (6.1) 
calibrated on 2.5, markers are experimental points. The experiment was the 
following: we were looking for such number of reference vectors M, at which the 
probability of error recognition P would be equal 1/M at fixed parameters N, n, q 
and a, i.e. solving the following equation numerically: 

0.004

0.04
0 0.025 0.05 0.075 0.1a

P

1E-091E-081E-071E-061E-051E-041E-031E-021E-011E+00400 600 800 1000

P

qp
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. (7.1) 

From the plots represented in Fig. 9-13 we can see that the estimate (6.1) is 
consistent with the experiment quite well. Resulting curves verify the correctness 
of conclusions drawed at the end of section 6. It is especially worth noting that the 
storage capacity of DLVP increases linearly with n, while as the storage capacity 
of a single-layer perceptron decreases with ln(n) (see (6.2)). 

 

Fig. 9 DLP stor-
age capacity M as 
a function of 
distortion level a. 
N=100, q=50, 
n=4, Pmax=1/M 

 

 

Fig. 10 DLP 
storage capacity 
M as a function of 
the number of 
vector neurons of 
an inner layer n. 
N=100, q=50, 
a=0.1, Pmax= 1/M 

 

 

Fig. 11 DLP 
storage capacity 
M as a function of 
q. N=100, a=0.1, 
n=4, Pmax=1/M 
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Fig. 12 DLP 
storage capacity 
M as a function of 
problem size N. 
q=50, a=0.1, 
n=4, Pmax=1/M  

 

 

7.4 K-Nearest Neighbors Search Task 

The algorithm has yet another useful property, which a single-layer perceptron 
does not have. If we arrange patterns in decreasing order according to the compo-
nents of their local field H (table 2, column “sum”), the order will tell us how 
close a pattern is to an input vector, while a pattern in the first place being regard-
ed as the response of the system.  

Let us demonstrate this by experiment. We will independently generate M 
random uncorrelated patterns, and additionaly another 5 patterns that are similar to 
each other to different extents (so they are correlated). The algorithm to generate 
these patterns is the following: 

1) Generate random vector X1; 
2) Obtain vector X2 by random distortion of 10% components of vector X1; 
3) Obtain vector X3 by random distortion of 20% components of vector X1; 
4) Obtain vector X4 by random distortion of 30% components of vector X1; 
5) Obtain vector X5 by random distortion of 40% components of vector X1; 
 
Then, we will apply vector X1 to the network inputs, and will monitor the 

values of the components of the local field H. Components of the local field 
corresponding to these 5 patterns will be greater than those corresponding to other 
components. At that, the maximum value of the local field will correspond to 
vector X1 (since this vector was applied to the inputs). The second largest value 
will be the component corresponding to X2, etc. 

And indeed, the results of the experiment that are presented in Fig. 14 
demonstrate it perfectly. Fig. 14 shows us distributions of the first six components 
of the local field H after applying vector X1 to the inputs of the network. From this 
plot we can see that the spikes of the distributions are put in ascending order of 
patterns proximity to vector X1. 

 
 
 

050010001500200025003000

0 200 400 600 800
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Fig. 13 Single-layer 
perceptron storage 
capacity M as a func-
tion of n. N=100, 
q=50, a=0.1, 
Pmax=1/M. Solid line 
corresponds to the 
estimate (6.2), 
triangular markers 
corresponds to 
experimental points. 

 
 

Fig. 14 Distributions 
of the first six 
components of the 
local field H after 
applying vector X1 to 
the inputs of the 
network. N=100,  
q=200,  a=0, n=2. 

 

 

Fig. 15 Recognition 
error probability P as 
a function of the 
number of scalar 
products K. N=100, 
n=2,  q=100,  a=0, 
M=400, 500, 600 

 

 
 
Such property allows us to solve the problem of K nearest neighbors search, 

which involves finding K reference patterns that are most similar to the input 
vector using Hamming distance. Alternatively, we can use this property to 
enhance the reliability of recognition for the problem of finding the first closest 
neighbor, i.e. for our task. To do this, we need to choose K reference patterns with 
the largest corresponding components of the local field H. Then, we need to 
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calculate scalar products of an input vector with these reference patterns, and 
choose the winner (it has the maximum scalar product). The result is that it 
becomes possible to significantly reduce the probability of recognition error at the 
cost of a couple of additional scalar products.   

Fig. 15 shows us a very high efficiency of this improvement. We see that 
calculation of two additional scalar products (K=2), for example, results  
in decrease of recognition error P by about an order of magnitude, and at K=20 – 
by three orders. The gain is more, the smaller the error probabilty is in the first 
place. 

8 Conclusion  

The paper shows that it is possible to raise the efficiency of the single-layer vector 
perceptron by adding an extra layer. The remarkable efficiency of the algorithm is 
demonstrated. It is clearly shown that in contrast to a straight increase of network 
redundancy, purposeful construction of neural nets can give nice results. 

The research is supported by projects ONIT RAN 1.8 and 2.1. 
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Appendix 1 

Now, we will present a nonstrict analytical derivation of DLVP storage capacity in 
the engineer style, in which we will neglect different correlations and make some 
simplifications. Only in this case, it becomes possible to deduce the resulting  
expression but not another unsolvable theorem. As it was shown above (in subsec-
tion 7.3), the final estimate (6.1) is in a good agreement with experiments regard-
less of introduced simplifications.  

If we take a particular set of reference patterns and a DLVP trained on this set, 
the result of the recognition of particular pattern X will be deterministic and 
nonprobabilistic (note that the process of training DLVP is also deterministic). At 
such approach one cannot speak of the error recognition probability and moreover, 
reason about storage capacity. However, let us try another approach. 

Assume we have 1000 DLVPs trained on different sets of reference patterns. 
Let us apply first patterns X1 from each set to the inputs of DLVPs accordingly. 
Let us consider their local fields H. We will denote k-th component of these fields 
as Hk. In the case of correct recognition, first components of the local fields H1 
should be greater than other components Hi, i = 2, 3,…, M. Then, 1000 of the first 
and the second components of the local fields H can be considered as realizations 
of two random variables H1 and H2 (as you understand, the number of DLVPs can 
be any, and 1000 is just an example). So, since Hk are random variables, (M-1) 
inequalities  

 

1 2

1 3

1 M

H H

H H

H H

>
 >


 >


 (А.1) 

will hold with some probability 1–P, where 

 
1

2

1 Pr
M

k
k

P H H
=

 = − > 
 
  (А.2) 

is a probability of error recognition. Thus, if we can analytically estimate a func-
tional relationship between P and all the model parameters, which are reference 
patterns size N, number of reference patterns in the training set M, internal param-
eters n and q, and the noise level a, then we will be able to find model reliability at 
specific parameters values. This will be our first goal. 

1. Error Probability 
Let us neglect some aspects, which will help us to obtain an expression for P: 

1. Random values Hi are dependent and correlate with each other, but we 
will assume that they are independent. 

2. Events (H1>H2), (H1>H3), …, (H1>HM) are also dependent (since they all 
depend on H1), but we will assume they are not. 
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It is obvious that each such approximation results in discrepancies between the-
ory and experiment. But this is a price we have to pay. Eventually, we can make 
an approximate estimate of (A.2) in the following way: 

 [ ]1
2

1 Pr
M

k
k

P H H
=

= − >∏ . (A.3) 

Now, we can focus on each random variable Hk separately, to evaluate its dis-
tribution function and its statistical characteristics. 

2. Distribution Function of Hk 
To evaluate distribution of Hk one need to substitute (3.2) and (3.3) in (3.4): 

 1( , )
M M N n

m
m j j i i

m i j

x xμ μ

μ
= H o y y  , (A.4) 

where index “1” and tilde in the last multiplier 1
ix  emphasizes that the first refer-

ence pattern (X1) was applied to DLVP inputs (see (3.3), where xi denotes i-th 
component of an input vector, which is X1 in our case), and this pattern had aN of 
its components distorted, 0<a<0.5. Recall that om 

is an M-dimensional unit vector 
containing 1 at m-th position. Subject to the last note, m-th component of vector H 
will be 
 

 

m 1
m ( , )

M N n

j j i i
i j

H x xμ μ

μ
= y y 

 

(A.5) 

We can see from (A.5) that Hm is basically a sum of a great number of «+1» и 
«-1», which can take only integer values, and therefore, its distribution is discrete. 
We can approximate it with the normal distribution with a reasonable accuracy. 
Next, we need to evaluate expected means and variances of random variables Hm. 

It is worth going through the approach we conduct our analysis at one more 
time. We consider the multipliers in expression (A.5) as random variables. Their 
realizations correspond to particular sets of reference patterns and a particular 
input vector. So, for instance, we consider ixμ , which is i-th component of refer-

ence pattern Xμ, as a random variable, which can take either +1 or -1 equiprobably 
(expected mean of this value is 0, and standard deviation is 1). 

3. Statistical Properties of Hk  
Looking ahead, it is worth considering random variable H1 separately from  
the rest of the components H2, H3, …, HM, since their statistical properties are 
different. 

To estimate the expected mean and the variance of H1, we need to extract addi-
tives having μ=1 from (A.5): 
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1 1 1 1 1 1
1

1

( , ) ( , )
N n M N n

j j i i j j i i
i j i j

H x x x xμ μ

μ≠

= + y y y y 
 

(A.6) 

Taking into account the way variables j
μy  were defined in 3.1, we get the  

following: 

 
1 1( , ) 1j j ≡y y . (A.7) 

Considering that input vector X is basically vector X1 with aN distorted  
components, we get the following as well: 

 1 1 (1 2 )
N

i i
i

x x a N≡ −   (A.8) 

The first sum in (A.6) is equal strictly to (1-2a)nN, so (A.6) becomes: 

 

1 1
1

1

(1 2 ) ( , )
M N n

j j i i
i j

H a nN x xμ μ

μ≠

= − + y y 
 

(A.9) 

By signal we shall call the first part of (A.9), and by noise – the second part. 
Let us consider multipliers of the second sum: 1( , )j j

μy y , ixμ  and 1
ix . They are 

independent, so 

 1 1 1 1( , ) ( , ) 0j j i i j j i iE x x E E x E xμ μ μ μ       = =       y y y y  , (A.10) 

where E[] is expectation operator. Thus, the noise term has zero mean, but has a 
very large variance. The noise term may turn out to be larger than the signal 
(1 2 )a nN−  due to statistical outliers, which will cause the error in recognition.  

Ultimately, we can estimate the mean and the variance of H1 as: 

 

[ ]

[ ]
1

1

(1 2 )E H a nN

nNM
D H

q

= −

=
. (A.11) 

Random variables H2, H3, …, HM variables cannot be divided into the signal 
and the noise terms, since they have only noise terms. These variables have same 
statistical characteristics:  

 

[ ]

[ ]

0

( 1) 1
1

k

k

E H

nNM n q N
D H

q M M

=

− − = + + 
 

. (A.12) 

Estimates of variances in (A.11) and (A.12) were obtained similarly to the 
mean estimate in (A.10). It is necessary to take into account distribution functions 
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of random variables 1( , )j j
μy y  and ixμ  when deriving the estimates of mathematical 

expectations and variances: 

 

1

1
1,

2

1
( , ) 1,

2

0,

j j

with a probability of
q

with a probability of
q

otherwise

μ

−
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

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y y  (A.13) 

and 
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2
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witha probabilityof
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(A.14) 

4. Error Probability Estimate P  
Let us introduce a new random variable combining both random variables H1 and 
Hk: 

 1k kH HΔ = − , 2,k M=  (A.15) 

 
The assumption made above that variables Hk are independent allows us to 

easily calculate statistical characteristics of kΔ : 
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(A.16) 

Variable kΔ  is normally distributed, so the probability of event 0kΔ >  (see 

multipliers in (A.3)) is defined by the following expression: 
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(A.17) 

We can write the expression of error recognition probability as 

 ( ) 1
1 1

M

kP P
−= − − . (A.18) 
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Since we are interested in the case when error probability is 0P →  (so the 
neural network works very reliably), we can make the following estimate of 
(A.17): 

 kP MP≈ . (A.19) 

Thus, we need to estimate probability kP . There is a range of expansions for 
the error function 

 
( ) 22 t

x

erfc x e dt
π

∞
−=   (A.20) 

These expansions allow us to calculate probability kP  approximately. So, let us 
express (A.16) in terms of error function: 

 

1
( )

2kP erfc γ= , (A.21) 

where 
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The greater the value of 2γ  is, the smaller the error probability P is. Therefore, 

the approximation of (A.17) by (A.18) is made when 2 1γ >> . 
Let us take the first additive from the well-known error function expansion  
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 (A.23) 

By doing so we get the resulting error probability expression: 

 

2

2

M
P e γ

γ π
−=  (A.24) 

The estimate (A.23) describes the model in a qualitative manner. However, it is 
inconsistent with the experiment by several orders. Such significant difference is 
coming from the point that error probability is in exponential relationship with the 
parameters of the model: 

 
2

~P e γ−  (A.25) 
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Even minor errors in calculations of this exponential factor lead to significant 
deviations from the experiment, since 2 1γ >> . Authors realized that introduced 
approximations and assumptions would lead to directly that. However, though 
expression (A.23) is of interest, but it is not the final goal of our derivations. 
Based on it, we will get a consistent estimate of storage capacity. 

5. Storage Capacity  
According to the definition of the storage capacity of associative memory Mmax 

given in section 6, it is such number of reference patterns, recognizing which the 
probability of error P is not greater than a predefined threshold Pmax, and input 
vectors are distorted at the noise level a≥0. Therefore, we need to solve the  
following equation for M: 

 ( ) max, , , ,P M N n q a P≤ . (A.26) 

Let us take a logarithm of the right and the left-hand side of (A.25): 

 

2
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ln
2

M

P
γ

γ π
≥  (A.27) 

Then, let us substitute 2γ  in this expression: 
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 (A.28) 

Variable M in (A.27) is both in the right and the left-hand sides of the formula. 
Therefore, let us use the following trick: we will recurrently insert (A.27) into 
itself: 
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nqN a
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P π
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 

 (A.29) 

There still left multipliers Θ  depending on M in the right-hand side of (A.28). 
Let us try to eliminate this dependency. If we lower the estimate of storage capaci-
ty M we will only strengthen inequality (A.25). Therefore, let us give a raw lower 
estimate of Θ : 

 
1

4
Θ ≈  (A.30) 

Eventually, we get the final expression for the estimate of DLVP storage  
capacity: 
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(A.31) 

According to multiple experiments, (A.30) gives a good qualitative description 
of the model, however, in order to be in a good agreement with the experiment a 
normalization constant C=2.5 is required. 
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