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Abstract. Control of active magnetic bearings is an important area of
research. The laboratory magnetic levitation system can be interpreted
as a model of a single axis of bearings and is a useful testbed for control
algorithms. The mathematical model of this system is highly nonlinear
and requires careful analysis and identification. In this paper authors
compare performance indices for tuning of PIλDμ controller for this sys-
tem. It is a part of an ongoing research on non integer controller tuning
rules.

1 Introduction

Magnetic levitation systems have many varied uses such as in frictionless bear-
ings, high-speed maglev passenger trains, levitation of wind tunnel models, vi-
bration isolation of sensitive machinery, levitation of molten metal in induction
furnaces and the levitation of metal slabs during manufacture, see [5]. Much
interest is recently focused on active magnetic bearings. These bearings are con-
sidered to be superior over conventional bearings because the friction losses are
significantly reduced due to contactless operation. The bearings can also give
high speed and are also able to eliminate lubrication and moreover, operation
will be quiet, see [1]. Magnetic bearings are increasingly used in industrial ma-
chines such as compressors, turbines, pumps, motors and generators. Very inter-
esting are also their applications in artificial hearts. Also important, especially
in current popularity of ”green” energy solutions, is the flywheel energy storage
system.

Flywheel energy systems are now considered as enabling technology for many
applications including space satellite low earth orbits, hybrid electric vehicles
(see [6]), and many stationary applications. Such mechanical batteries normally
consist of a high speed inertial composite rotor, a magnetic bearings support and
a control system, an integral drive motor/generator, power electronics for electri-
cal conversion, and so on. One of the advantages over chemical batteries is that
the design life has no degradation during its entire cycle life, and current testing
indicates that flywheels are not damaged by repetitively deep discharge. Also,
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the contactless nature of magnetic bearings brings up higher energy efficiency,
lower wear, longer life span, absence of lubrication and mechanical maintenance,
and wider range of work temperature. Moreover, the closed-loop control of mag-
netic bearings enables active vibration suppression and on-line control of bearing
stiffness (see [18]).

Control of magnetic levitation system was analysed by many researchers fo-
cusing on different approaches. A linearising feedback control was considered
among the others by Barie and Chiasson (see [5]), Joo and Seo (see [10] and
[14]). Different approach to feedback linearisation of mag-lev (see [2]). The com-
parison of this approach with Takagi-Sugeno fuzzy control (see [9]). The cascade
variant of the linearising feedback was also discussed by Baranowski and Piątek
(see [3]). Real time neural feedforward control was considered by Bloch (see [11]).
Practically efficient results were also obtained by Piątek (see [13]) with very fast
linear control based on FPGA circuits. Piłat in [15] considered a non-integer
order PD controller.

In this paper we discuss an application of tuning non-integer PIλDμ controller,
when control signal is not disturbed and disturbed. This is a continuation of
authors earlier works (see [3,8,16]).

1.1 The Mathematical Model of the System

We consider the magnetic levitation system consisting of the electromagnet, the
ferromagnetic sphere (which is later referred to as the ”ball”), the current driver
and the position measurement system.

To construct the mathematical model of the plant we will rely on a basic
relation of Newton’s second law, in this case:

mẍ1(t) = Fl(x1(t), x3(t)) +mg (1)

where x1(t) is the gap between the ball and the electromagnet, x3(t) is the
electromagnet coil current, Fl(x1(t), x3(t)) is the force generated by the elec-
tromagnet, m is the mass of the ball and g is the gravitational acceleration. It
is widely known that the force generated by the electromagnet is given by the
following relation

Fl(x1(t), x3(t)) =
1

2
· dl(x1(t))

dx1(t)
x2
3(t) (2)

where l(x1(t)) is the electromagnet inductance. Commonly, the inductance is
considered for cuboidally shaped gaps as a hyperbolical function, as for an ex-
ample (time argument was omitted)

l(x1) = l1 +
μl0

μ+ x1
(3)

where l0, l1 and μ are positive constants. Expressions of this type were considered
among the others by Barie and Chiasson (see [5]). What should be noted is that
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levitation systems such as considered have gaps of a different shape because a
levitating object is round. That is why we consider the approximation developed
by Piłat (in [14]) in a form of the following exponential function

l(x1) ≈ a exp

(
−x1(t)

b

)
(4)

where a and b are positive constants. This approximation was obtained and
verified experimentally and leads to very good results. Parameters a and b were
determined by analysis of series of steady state points of the system with a
closed stabilising feedback loop. Exponential function was fitted into these points
through a least squares minimisation. For details see [14].

The coil current in the system usually is influenced by many factors like
changes in inductance, velocity and others. However, our system includes a cur-
rent driver, which has its own feedback loop. This solution is very popular (see
[7]) because it leads to either lower order or simpler model structure. In optimal
situation the driver should allow full current control, however in real situations
it introduces its own dynamics. For considered system, this dynamics can be
sufficiently modelled by a first order dynamical system given by the following
equation

ẋ3(t) =
1

Ts
(ksu(t)− is − x3(t)) (5)

where u(t) is the control voltage, ks is the gain of current controller, Ts is the
time constant of the current driver and is is the zero error of current driver.

Velocity of the ball x2 is the first derivative of position, so we can construct
the state space model. Let us introduce state space vector x given by

x = [x1 x2 x3]
T (6)

which can be used to formulate the model of the system as the following system
of first order differential equations

ẋ(t) = f(x(t), u(t)) (7)

where

f(x(t), u(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2(t)

− a

2mb
exp

(
−x1(t)

b

)
x2
3 + g

1

Ts
(ksu(t)− is − x3(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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1.2 Nonlinear Feedforward

It is a known fact that the linear controller can operate properly in the neigh-
bourhood of a chosen steady state. Performance of classical PID can be strongly
improved, if the appropriate reference control value corresponding to a reference
value is added to the generated control signal. Authors tested this solution with
non-integer PIλDμ controller.

Let us consider control structures presented in figures 1. Let us assume, that
set point signal is piecewise constant. This goal can be satisfied then function
Ψ(wr) have form:

f(xr, Ψ(wr)) = 0 (9)

where xr = [wr 0 x3r]
T

, wr is constant value of w(t), f is given by (8) and x3r is
the value of current corresponding to w(t). Such function (along with x3r) can
be obtained by solving (9) and is given by the following formula:

Ψ(wr) =
1

ks

⎛
⎜⎜⎝is +

√√√√2mbg

a
· e

wr

b

⎞
⎟⎟⎠ (10)

s-  

s  

e

Fig. 1. Magnetic levitation with PIλDμ

2 Non-integer PIλDμ

This section describes a more generalized structure for the classical PID con-
troller. Podlubny proposed a generalization of the PID, namely the PIλDμ con-
troller, involving an integrator of order λ and a differentiator of order μ. In time
domain the equation for the PIλDμ controller’s output has the form (see [17]):

u(t) = Kpe(t) +Ki
C
0 D

−λ
t e(t) +Kd

C
0 D

μ
t e(t) (11)
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Where:

– Kp is proportional gain
– Ki is integral gain
– Kd is derivative gain
– e(t) is control deviation in time t
– λ, μ > 0

And the transfer function formula is given by the equation:

G(s) = Kp +Kis
−λ +Kds

μ (12)

As can be observed, when λ = 1 and μ = 1 we obtain a classical PID controller,
similar when λ = 0 and μ = 1 give PD, λ = 0 and μ = 0 give P, λ = 1 and μ = 0
give PI.

All these classical types of PID are the particular cases of the fractional PIλDμ.
However, the PIλDμ is more flexible.

For all numerical experiments the Simulated Annealing optimization method
has been chosen for tuning PIλDμ controller parameters. In this case we can
define the decision variables as: Kp, Ki, Kd, λ and μ. The tests will be conducted
for the following quality index:

Table 1. Result of tuning system without disturbance

Quality index Kp Ki λ Kd μ Quality value
T∫

0

te2(t)dt 517.017 116.408 0.917 20.6418 0.6796 2.69 · 10−3

T∫

0

e2(t)dt 475.1759 63.0862 0.2555 4.7824 0.7788 3.69 · 10−2

T∫

0

|e(t)|dt 553.146 91.828 0.786 4.336 0.77 0.112

T∫

0

(
e2(t) + x2

2(t)
)
dt 498.241 68.415 0.777 66.5197 0.997 1.33 · 10−2

Table 2. Result of tuning with load disturbance

Quality index Kp Ki λ Kd μ Quality value
T∫

0

te2(t)dt 481.202 291.560 0.0104 38.773 0.6429 7.95 · 10−2

T∫

0

e2(t)dt 582.31 118.476 0.087 47.023 0.585 5.42 · 10−2

T∫

0

|e(t)|dt 491.63 54.99 0.0237 57.378 0.59 0.313

T∫

0

(
e2(t) + x2

2(t)
)
dt 553.333 −38.514 0.997 94.882 1 9.88
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Fig. 2. Result of tuning system without disturbance for differing quality index

–
T∫
0

te2(t)dt

–
T∫
0

e2(t)dt

–
T∫
0

|e(t)|dt

–
T∫
0

(
e2(t) + x2

2(t)
)
dt

where e(t) = wr − x1(t).
The controller was implemented with Oustalup method. For the fractional-

order operator G(s) = sα, the continued fraction expansion can be written as
(see [12]):

Gt(s) = K

N∏
i=1

s+ ω′
i

s+ ωi
(13)

where:

ω′
i = ωminω

(2i−1−α)/N
u (14)

ωi = ωminω
(2i−1+α)/N
u (15)

K = ωα
max (16)

ωu =

√
ωmax

ωmin
(17)
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Fig. 3. Result of tuning system with disturbance in control signal for differing quality
index

2.1 Results

In all experiments, values of approximation parameters are:

– N = 3,
– ωmin = 10−6,
– ωmin = 106,

and initial points have value:

– Kp = 500
– Ki = 100
– Kd = 6
– λ, μ = 0.5

The optimal PIλDμ settings for the system without disturbance are collected
in table 1 and for the system with load disturbance settings are collected in table
2. Position states of the magnetic levitation were shown in figures 2 and 3.

How can see the best results have been achieved when quality indices of form
T∫
0

e2(t)dt or
T∫
0

te2(t)dt have been used (see figures 2(b) and 3(b)) (see figures

2(a) and 3(a)).
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3 Conclusion and Further Research

It has been shown that fractional-order PIαDμ controller is suitable for control
of magnetic levitation systems. The paper has shown that simulated annealing
optimisation method could be helpful in the tuning process. The authors tested
also some quality indices for tuning the controller.

The further research is planned to implement PIαDμ controller in digital real-
time environment, based on RT-DAC board and MATLAB/RT-CON library,
and to conduct experiments on physical plant.
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