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Abstract. Fractional descriptor observers for fractional descriptor continuous-
time linear systems are proposed. Necessary and sufficient conditions for the 
existence of the observers are established. The design procedure of the observ-
ers is given and is demonstrated on a numerical example. 
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1 Introduction 

The fractional linear systems have been considered in many papers and books [8, 9, 
11, 15, 23]. Positive linear systems consisting of n subsystems with different fraction-
al orders have been proposed in [14, 15]. Descriptor (singular) linear systems have 
been investigated in [1-6, 12, 13, 18-21, 24, 25]. The eigenvalues and invariants as-
signment by state and input feedbacks have been addressed in [4, 12, 18]. The compu-
tation of Kronecker’s canonical form of a singular pencil has been analyzed in [24]. 

A new concept of perfect observers for linear continuous-time systems has been 
proposed in [10, 22]. Observers for fractional linear systems have been addressed in 
[17, 22]. Fractional descriptor full-order observers for fractional descriptor conti-
nuous-time linear systems have been proposed in  [16]. 

In this paper perfect fractional descriptor observers for fractional descriptor conti-
nuous-time linear systems will be proposed and necessary and sufficient conditions 
for the existence of the observer will be established. 

The paper is organized as follows. In section 2 the basic definitions and theorems 
of fractional descriptor linear continuous-time systems are recalled and their perfect 
fractional descriptor observers are defined. In section 3 necessary and sufficient con-
ditions for the existence of the perfect observers are established and design procedure 
of the perfect observer is proposed. An illustrating example is given in section 4. 
Concluding remarks are given in section 5. 
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2 Fractional Descriptor Systems and Their Perfect Observers 

Consider the fractional descriptor continuous-time linear system 
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Cxy = ,                                                                      (2.1b) 

where α
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txd )(
 is the fractional α  order derivative defined by Caputo [15, 23] 
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1)( dttex xt  is the gamma function, ,)( ntx ℜ∈  mtu ℜ∈)( , 

pty ℜ∈)(  are the state, input and output vectors, nnAE ×ℜ∈, ,  mnB ×ℜ∈ , 

.npC ×ℜ∈  It is assumed that 0det =E  and 

0]det[ ≠− AEλ  for some C∈λ  (the field of complex number).             (2.3) 

Let U be the set of admissible inputs  mUtu ℜ⊂∈)(  and  nX ℜ⊂0  be the set 

of consistent initial conditions 00 Xx ∈  for which the equation (2.1) has a solution 

)(tx  for .)( Utu ∈  

The solution of the equation (2.1a) for 00 Xx ∈  has been derived in [16]. 

 
Definition 2.1. The fractional descriptor continuous-time linear system 
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txd
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                              (2.4) 

where ntx ℜ∈)(ˆ  is the estimate of )(tx , mtu ℜ∈)(  and pty ℜ∈)(  are the same 

input and output vectors as in (2.1), ,, nnFE ×ℜ∈  ,mnG ×ℜ∈  ,pnH ×ℜ∈  

0det =E  is called a (full-order) perfect state observer for the system (2.1) if  
 

)(ˆ)( txtx =  for 0>t .                                          (2.5) 
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3 Design of Perfect Fractional Descriptor Observers 

The following elementary row (column) operations will be used [13, 15]: 

1. Multiplication of the ith row (column) by a real number c. This operation will be 
denoted by ][ ciL ×  ( ][ ciR × ). 

2. Addition to the ith row (column) of the jth row (column) multiplied by a real num-
ber c. This operation will be denoted by ][ cjiL ×+  ( ][ cjiR ×+ ). 

3. Interchange of the ith and jth rows (columns). This operation will be denoted by 
],[ jiL  ( ],[ jiR ). 

Lemma 3.1. If 
nrE <=rank                                              (3.1) 

then by the use of the elementary row and column operations the matrix E can be 
reduced to the following upper triangular form 
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or lower triangular form 
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where kP  and kQ , 2,1=k  are the matrices of elementary row and column opera-

tions. 

Proof. If the condition (3.1) is satisfied then by elementary row and column opera-
tions the matrix E can be reduced to the form  

rrE
E ×ℜ∈








12

12 ',
00

'0
.                                (3.3) 

Next applying the elementary column operations we can reduced the matrix 12'E  to 

the upper triangular form 12E . The proof for (3.2b) is similar.                                   □ 
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Definition 3.1. The smallest nonnegative integer q is called the nilpotent index of the 

nilpotent matrix N if 0=qN  and 01 ≠−qN . 
 

Lemma 3.2. If 

2
rank

n
rE <=                                              (3.4) 

then the nilpotent index q of the matrix E is 

q = 2 for 1
2

,...,2,1 −= n
r .                                     (3.5) 

Proof. If 
2

n
r <  then by Definition 3.1 and (3.2a) we have  
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Proof for (3.2b) is similar.                                                                                              □ 

Lemma 3.3. If the nilpotent matrix nnN ×ℜ∈  has the index q = 2 i.e. 02 =N  and  

],...,det[ 1 nddD = , 0≠kd , k =1,2,…,n                      (3.7) 

then the solution )(tx  of the fractional differential equation  

Dx
dt

txd
N =α

α )(
, 10 << α                                     (3.8) 

satisfy the condition 
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where )()( tkδ  is the k-order derivative of the Dirac function )(tδ . 

 
Proof. Applying the Laplace transform to (3.8) and taking into account that  
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we obtain 



 Perfect Observers of Fractional Descriptor Continuous-Time Linear System 7 

)()( 0
1 sDXxNssXNs =− −αα ,                              (3.11) 

where 
∞

−==
0

)()]([)( dtetxtxsX stL
 
and )0(0 xx = . 

Premultiplying (3.11) by the inverse matrix 1−D  we obtain 

0
11][)( xsNsNIsX n

−−−−= αα ,                               (3.12) 

where NDN 1−=  and 0== − qqq NDN . 
Taking into account that  
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from (3.12) w obtain  
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Applying the inverse Laplace transform to (3.14) we obtain (3.9) since 

)(][ )(1 ts kk αα δ=−L .                                                                                                □ 

Let 

)(ˆ)()( txtxte −= .                                        (3.15) 

Then using (2.1) and (2.4) we obtain 
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and  
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if  

HCAF −= ,                                               (3.18) 

BH = .                                                           (3.19) 
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By Lemma 3.1 using the elementary row and column operations the singular ma-
trix E can be reduced to a suitable nilpotent matrix N and from (3.17) we obtain 

)(
)(

teF
dt

ted
N =α

α

                                      (3.20) 

where 

)()(,, 1 teQtePFQFPEQN −===                         (3.21) 

and P and Q are matrices of elementary row and column operations. 
If we choose the matrix H so that  

DF =                                                      (3.22) 

where D is given by (3.7) then by Lemma 3.3 0)( =te  for 0>t  and the fractional 

descriptor observer (2.4) will be a perfect observer for the system (2.1). 
 

Theorem 3.1. There exists the perfect fractional descriptor observer (2.4) of the frac-
tional descriptor system (2.1) if and only if 

][rank rank C
C

DA
=




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 −
                                 (3.23) 

where 

CQCPAQA == ,                                         (3.24) 

and the matrices P, Q satisfy (3.21). 

Proof. To design the perfect observer (2.4) for the system (2.1) with given matrices A, 
B, C we have to choose the matrices F, G, H of the observer so that the conditions 
(3.18), (3.19) and (3.22) are met. From (3.19) we have H = B and the conditions 
(3.18) and (3.22) are met if and only if 

DCHA =−                                            (3.25) 

where PHH = . 

The equation (3.25) has a solution H  (and HPH 1−= ) for given C  and D if 
and only if the condition (3.23) is satisfied. Therefore, there exists the perfect observ-
er (2.4) for the system (2.1) if and only if the condition (3.23) is satisfied.                  □ 

From the above considerations we have the following procedure for designing of 
the perfect observer (2.4) for the system (2.1). 
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Procedure 3.1 
Step 1. Find the matrices P and Q of the elementary row and column operations 

reducing the matrix E to its nilpotent form N = PEQ. 

Step 2. Knowing the matrices P, Q compute A  and C  defined by (3.24). 
Step 3. Choose a diagonal matrix (3.7) and check the condition (3.23). If the condi-

tion is satisfied then there exists the perfect observer (2.4) for the system 
(2.1). 

Step 4. Knowing the matrices A  and C  find the solution H  of the equation 
(3.25). 

Step 5. Compute the matrices of the perfect observer (2.4) 

HCAF −= , BG = , HPH 1−= .                          (3.26) 

4 Example 

Consider the fractional descriptor system (2.1) with the matrices 
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The descriptor system is regular since 
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To design the perfect fractional descriptor observer for the system we use Proce-
dure 3.1 and we obtain the following: 

 

Step 1. In this case we have 
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Step 2. Using (3.24) and (4.1) we obtain 
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Step 3. In this case we choose 
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Therefore, there exists the perfect observer (2.4) for the system (2.1) with 
(4.1). 

Step 4. The equation 
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 has the solution 

HH =














−
=

00

12

22

                                        (4.9) 

 since 3IP = . 

Step 5. Using (3.26), (4.1) and (4.9) we obtain 
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The perfect observer is described by the equation 
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5 Concluding Remarks 

Perfect fractional descriptor observers for fractional descriptor continuous-time linear 
systems have been proposed. Necessary and sufficient conditions for the existence of 
perfect observers for the fractional descriptor linear systems have been established. 
Designing procedure of the fractional descriptor observers has been proposed and 
illustrated on a numerical example. The considerations can be easily extended to frac-
tional descriptor discrete-time linear systems. An open problem is an extension for 
fractional descriptor 2D continuous-discrete linear systems. 
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