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Preface

Although the birth of noninteger- or fractional-order systems can be traced back to the
celebrated communication between Leibnitz and l’Hôpital in 1695, it is not until the ad-
vent of the modern computing machinery that the sophisticated theories that followed
could be applied and implemented. Still, the complicated matter of the noninteger-order
systems results in the fact that it is mainly theoretically-oriented papers that have dom-
inated the publishing market of control and systems sciences. This is also reflected in
the contents of both the previous1 and this conference volumes whose prevailing con-
tributions concern the theory, modeling and simulations, rather than implementations
of noninteger-order systems. Such an unsurprising situation of an excess of theoretical
over practically-oriented papers illustrates the vast mathematical potential of otherwise
practically attractive field of noninteger-order systems. And this holds true even though
the practical attractiveness of the field can be visualized by a tremendous increase in a
number of subject areas (applications) for ‘fractional calculus’ as reported in the WoK
platform2 to have reached the figure of 136.

This way or another, the fractional calculus has recently attracted an unprecedented
research interest both from the academia and various application-related environments.
The field has experienced a publication explosion and apparently matured but it is still
far from conceptual completeness both in the theory and, in particular, applications and
implementations. This volume presents one small step ahead in the development of the
theory and applications of the fractional calculus. Divided into six parts, it provides
a bunch of new results in, consecutively, mathematical fundamentals, approximation,
modeling and simulations, controllability and control, stability analysis and applications
of various noninteger-order methodologies.

1 Mitkowski W., Kacprzyk J., Baranowski J.: Advances in the Theory and Applications of Non-
integer Order Systems, the 5th Conference on Non-integer Order Calculus and Its Applica-
tions, Cracow, Poland; Springer, Lecture Notes in Electrical Engineering, vol. 257.

2 Chen, YangQuan: Fractional Order Thinking - from control, signal processing to
energy informatics and beyond. Conference TOK’2013, Malatya, Turkey;
http://mechatronics.ucmerced.edu/sites/mechatronics.ucmerced.edu/files/page/documents/tok
2013-plenary-lecture-09-27-2013-new-v2.pdf
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Part 1 constitutes a single, invited paper by a honored member of the Polish, so
to say, ‘fractional society’. Tadeusz Kaczorek (Perfect observers of fractional descrip-
tor continuous-time linear system) introduces fractional-order descriptor observers for
fractional-order descriptor continous LTI systems. He presents new necessary and suf-
ficient conditions for the existence of the observers and offers an original design pro-
cedure for the observers. The theoretical contributions are illustrated with a numerical
example.

Part 2 provides a series of valuable formalisms that contribute to the further devel-
opment of the mathematical theory of fractional-order systems.

Ewa Girejko, Dorota Mozyrska and Małgorzata Wyrwas (Viable solutions to frac-
tional difference and differential equations) seek for the existence conditions for viable
solutions to a discrete-time fractional-order equation making use of the viability prop-
erties of fractional-order differential equations. It is shown that it is sufficient for the
existence of viable solutions to the fractional-order differential equation that viable so-
lutions to the fractional-order difference equation are provided.

Małgorzata Klimek and Marek Blasik (Regular Sturm-Liouville problem with
Riemann-Liouville derivatives of order in (1,2): discrete spectrum, solutions and ap-
plications) analyze the regular fractional Sturm-Liouville problem formulated using the
left and right Riemann-Liouville derivatives of order in the range of (1,2). They prove
a theorem describing the eigenvalues and eigenfunctions in the problem considered on
the space of functions continuously differentiable in a finite interval and obeying the
vanishing Dirichlet and fractional Neumann boundary conditions. It is found out that
the spectrum of eigenvalues is discrete and that the eigenfunctions form a basis in the
space of square-integrable functions. They also show applications of the derived eigen-
functions in the theory of partial fractional differential equations.

Agnieszka B. Malinowska and Tatiana Odzijewicz (Noether’s second theorem for
variable order fractional variational problems) succeed to prove an analog of the second
Noether theorem for variable order fractional variational problems. From this theorem,
they obtain useful identities between the Euler-Lagrange expressions and their variable
order fractional derivatives.

Dorota Mozyrska and Małgorzata Wyrwas (Fractional linear equations with discrete
operators of positive order) consider the Caputo- and Riemann-Liouville-type fractional
order difference initial value problems for linear and semilinear fractional equations.
They analyze possible solutions using the classical Z-transform method for any positive
order. The formulae using the concept of the discrete Mittag-Leffler fractional function
are highlighted.

Piotr Ostalczyk (The fractional-order backward-difference of a product of two
discrete-variable functions (discrete fractional Leibnitz Rule)) studies a discrete
fractional version of the so called Leibnitz Rule and he derives the fractional-order
backward difference of a product of two discrete-variable functions, finally obtaining
a generalisation to the first-order backward difference of a product. The new formula
can be useful in evaluation of the fractional-order backward differences for selected
functions.

In Part 3, a bunch of new results in approximation, modeling and simulations of
fractional-order systems is provided.
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Wiktor Malesza, Michał Macias and Dominik Sierociuk (Matrix approach and ana-
log modeling for solving fractional variable order differential equations) introduce a
matrix approach for solving fractional variable order linear differential equations of
an additive-switching type. The method is based on a duality property between additive
and recursive definitions of variable order differential equations. The obtained solutions
will be validated by comparing them with analog model results.

Paweł Piątek, Jerzy Baranowski, Marta Zagórowska, Waldemar Bauer and Tomasz
Dziwiński (Bi-fractional filters, Part 1: Left half-plane case) introduce a new non-integer
α-order filter, called bi-fractional filter, given by a transfer function with parameters b
and c selected in such a way that eigenvalues of the system are located in the open left
half complex plane. Frequency characteristics of the system related to the parameters
α, b and c are analyzed. Also, a method for realisation of the filter in the form of non-
integer order differential equations is discussed.

Marek Rydel, Rafał Stanisławski, Włodzimierz Stanisławski and Krzysztof J. Lataw-
iec (A comparative analysis of selected integer-order and noninteger-order linear
models of complex dynamical systems) compare four model order reduction algo-
rithms applied to modeling of evaporating tubes system in the BP-1150 steam boiler.
The following model reduction techniques are analyzed: Frequency Weighted, Rational
Krylov, Frequency Weighted with time delay and non-integer order transfer function
with and without time delay. Optimal reduction parameters and values of f -zeros and
f -poles of non-integer order transfer functions are obtained using evolutionary algo-
rithm. The non-integer order model with time delay is found most accurate.

Rafał Stanisławski, Krzysztof J. Latawiec, Marcin Gałek and Marian Łukaniszyn
(Modeling and identification of fractional-order discrete-time Laguerre-based feedback-
nonlinear systems) present a new implementable strategy for modeling and identifica-
tion of a fractional-order discrete-time block-oriented feedback-nonlinear system. It is
shown that the inverse orthonormal basis functions (IOBF) concept enables to separate
linear and nonlinear submodels, which leads to a linear regression formulation of the
parameter estimation problem, with the detrimental bilinearity effect totally eliminated.
Finally, the Laguerre filters are uniquely embedded in modeling of the fractional-order
dynamics. Simulation experiments show a very good identification performance for an
IOBF-structured, fractional-order Laguerre-based feedback-nonlinear model.

Marta Zagórowska, Jerzy Baranowski, Piotr Bania, Paweł Piątek, Waldemar Bauer
and Tomasz Dziwiński (Impulse response approximation method for ‘fractional order
lag’) present a new method for approximation of the ‘fractional order lag’ system based
on its impulse response. Certain assumptions of the approximation method are verified
and a new algorithm is presented. Also, some problems in analysis of this system are
discussed, in particular its realisation in the form of fractional order differential equa-
tions.

Part 4 deals with the problems in controllability and control of noninteger order
systems, in particular fractional PID-like control.

Waldemar Bauer, Tomasz Dziwiński, Jerzy Baranowski, Paweł Piątek and Marta
Zagórowska (Comparison of performance indices for tuning of PIλDμ controller
for magnetic levitation system) discuss various performance indices for tuning of
a fractional PIλDμ controller for a highly nonlinear, integer-order system, that is



VIII Preface

a laboratory magnetic levitation system. Some tuning rules for the fractional controller
are proposed.

Stefan Domek (Fractional-order model predictive control with small set of coinci-
dence points) analyzes the abilities for synthesizing fractional-order model predictive
control in case of a small set of coincidence points. In a design of a predictive control
algorithm, the fractional-order option offers an additional degree of freedom in tuning
the controller, which is illustrated in simulation examples.

Wojciech Mitkowski and Krzysztof Oprzedkiewicz (Tuning of the half-order robust
PID controller dedicated to oriented PV system) design tuning rules for robust half-
order PID controller dedicated to control an oriented PV system described by an interval
transfer function. Simulation examples illustrate the usefulness of the tuning procedure.

Piotr W. Ostalczyk, Piotr Duch, Dariusz W. Brzeziński and Dominik Sankowski (Or-
der functions selection in the variable-, fractional-order PID controller) discuss im-
portant problems related with microprocessor implementation of a variable fractional
order PID (VFOPID) controller. In such controllers, the variable fractional order back-
ward differences and sums (VFOBD/S) are used to perform discrete-time differentiation
and integration of a closed-loop system error. In practice, all digitally differentiated and
integrated signals are corrupted with noise, so there is a necessity of pre-filtering of a
digital signal. This additionally loads the DSP system. A solution to this problem is pro-
posed. Also, the abilities for DSP realizations of the VFOPID controller are presented
and compared with computer simulation results.

Łukasz Sajewski (Minimum energy control of fractional positive continuous-time
linear systems with two different fractional orders and bounded inputs) states and solves
the problem of minimum energy control for fractional positive continuous-time linear
systems with two different fractional orders and bounded inputs. A control algorithm is
offered and illustrated with a simulation example.

Zbigniew Zaczkiewicz (Relative controllability of differential-algebraic systems with
delay within Riemann-Liouville fractional derivatives) discusses the problem of relative
controllability for linear fractional differential-algebraic systems with delay (FDAD).
Firstly, the solutions to FDAD are represented as a series of determining equations
solutions. Then, effective parametric rank criteria for relative controllability are intro-
duced.

Part 5 analyzes the stability of noninteger order systems and some new results are
offered in this important respect, in particular for discrete-time systems.

Mikołaj Busłowicz and Andrzej Ruszewski (Robust stability check of fractional
discrete-time linear systems with interval uncertainties) discuss the problems in robust
practical stability and robust asymptotic stability of fractional-order discrete-time lin-
ear systems with uncertainty. It is assumed that the system matrix is the interval matrix
which elements are convex combinations of elements of specified bounded matrices and
the fractional order α satisfies 0 < α < 1. Robust stability conditions are given using
the matrix measure. The considerations are illustrated by numerical examples.

Małgorzata Wyrwas and Dorota Mozyrska (On Mittag-Leffler stability of fractional
order difference systems) analyze the Mittag-Leffler stability of fractional order differ-
ence systems and study conditions for such a stability both in case of the Riemann-
Liouville and Caputo-type operators used.
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Marta Zagórowska, Jerzy Baranowski, Waldemar Bauer, Tomasz Dziwiński, Paweł
Piątek and Wojciech Mitkowski (Lyapunov direct method for non-integer order systems)
give an extension of the Lyapunov direct method to non-integer order systems. The
extension enables to analyze a special case of the classical stability theory, that is the
Mittag-Leffler stability. Some differences between the two are analyzed and illustrated
in the presented examples.

Final Part 6 of this volume presents a spectrum of applications of the noninteger or-
der calculus, ranging from bi-fractional filtering, in particular of electromyographic sig-
nals, through the thermal diffusion and advection diffusion processes to the SIEMENS
platform implementation.

Jerzy Baranowski, Paweł Piątek, Aleksandra Kawala-Janik, Marta Zagórowska,
Waldemar Bauer and Tomasz Dziwiński (Non-integer order filtration of electromyo-
graphic signals) present a new approach to filtering of electromyographic (EMG)
signals, whose processing has recently attracted a growing interest from the medical
environment seeking for a more reliable tool for muscle performance verification. To
this end, non-integer order filtering is employed, in particular a bi-fractional filter is
designed and effectively applied.

Rafał Brociek, Damian Słota and Roman Wituła (Reconstruction of the thermal con-
ductivity coefficient in the time fractional diffusion equation) succeed in the reconstruc-
tion of the thermal conductivity coefficient in the time fractional diffusion equation. An
additional information for the considered inverse problem is acquired from tempera-
ture measurements at selected points of the domain. The direct problem is solved by
using the finite difference method. The Fibonacci search algorithm is used to minimize
a functional defining the error of the approximate solution.

Tomasz Dziwiński, Waldemar Bauer, Jerzy Baranowski, Paweł Piątek and Marta Za-
górowska (Robust non-integer order controller for air heating process trainer) design
a robust non-integer order controller providing the prespecified flat-phase and stability
margins. The controller is applied in an air heating process trainer system installed at
the Department of Automatics and Biomedical Engineering, AGH University of Sci-
ence and Technology in Cracow.

Ryszard Kopka (Model-Based Fault Diagnosis with Fractional Models)
presents new results of experimental research on fault detection for the plant simulated
by electronic circuit with supercapacitor ‘damaged’ by discharging it by the current
source. The model of the plant is described by fractional order differential equations.
Model parameters are estimated using identification procedures based on a step re-
sponse signal. The fault detection problem of this paper can be used as a simple bench-
mark example to test new fault detection rules before applying them to real systems.

Krzysztof Oprzedkiewicz, Marek Chochol, Waldemar Bauer and Tomasz Meresinski
(Modeling of elementary fractional order plants at PLC SIEMENS platform) effectively
solve the problem of modeling of elementary fractional order plants at a PLC platform.
The models are implemented at the SIEMENS SIMATIC S7 300 platform with the use
of the STEP7 SCL language. Comparative simulations illustrate the usefullness of the
proposed method.

Yuriy Povstenko (Space-Time-Fractional Advection Diffusion Equation in a Plane)
considers the fundamental solution to the Cauchy problem for the space-time-fractional
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advection diffusion equation with the Caputo time-fractional derivative and the Riesz
fractional Laplace operator in a case of two spatial variables. The solution is obtained
using the Laplace integral transform with respect to time t and the double Fourier trans-
form with respect to space variables x and y. Several particular cases of the solution are
analyzed in details. Numerical results are illustrated in a graphical way.

Dominik Sierociuk and Pawel Ziubinski (Variable Order Fractional Kalman Filters
for estimation over lossy network) present a generalization of Fractional Variable Order
Kalman Filter (FvoKF) and Improved Fractional Variable Order Kalman Filter (ExF-
voKF) algorithms for estimation of fractional variable order state-space systems over
lossy network. This generalization is obtained for a state-space system based on one
type of fractional variable order difference (A-type) and assuming the knowledge about
packets being lost. The generalization of the ExFKF algorithm is based on the infinite
dimensional form of a linear discrete fractional variable order state-space system, in-
cluding state vector augmentation. The generalized algorithm requires less restrictive
assumptions than derivation of FKF. Finally, numerical simulations of the proposed
algorithms are presented and compared.

This volume is a result of productive and stimulating discussions during the
RRNR’2014, the 6th Conference on Non-integer Order Calculus and Its Applications
that was organized by the Department of Electrical, Control and Computer Engineering,
Opole University of Technology, Opole, Poland. The Conference attracted a number of
recognized researchers from various fields of science and engineering, both those in-
terested in sophisticated mathematical machinery of the fractional order calculus and
those involved in its application and implementation issues. Such a wide spectrum of
the outstanding participants’ interests exploded in stimulation of eventful discussions
across the field and contributed to the success of the Conference. We would like to ac-
knowledge the attendees to the Conference for their active participation and inspiring
contributions. We are grateful to the anonymous reviewers whose helpful comments
contributed to the final form of the papers. Finally, the assistance and support from
Dr. Thomas Ditzinger and Holger Schäpe from Applied Sciences and Engineering at
Springer is gratefully acknowledged.

Opole, Autumn 2014 Krzysztof J. Latawiec
Marian Łukaniszyn
Rafał Stanisławski
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Paweł Piątek, Jerzy Baranowski, Marta Zagórowska, Waldemar Bauer,
Tomasz Dziwiński
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Perfect Observers of Fractional Descriptor  
Continuous-Time Linear System 

Tadeusz Kaczorek 

Bialystok University of Technology 
Faculty of Electrical Engineering 
Wiejska 45D, 15-351 Bialystok 
kaczorek@isep.pw.edu.pl 

Abstract. Fractional descriptor observers for fractional descriptor continuous-
time linear systems are proposed. Necessary and sufficient conditions for the 
existence of the observers are established. The design procedure of the observ-
ers is given and is demonstrated on a numerical example. 

Keywords: fractional descriptor linear systems, design, perfect, observer. 

1 Introduction 

The fractional linear systems have been considered in many papers and books [8, 9, 
11, 15, 23]. Positive linear systems consisting of n subsystems with different fraction-
al orders have been proposed in [14, 15]. Descriptor (singular) linear systems have 
been investigated in [1-6, 12, 13, 18-21, 24, 25]. The eigenvalues and invariants as-
signment by state and input feedbacks have been addressed in [4, 12, 18]. The compu-
tation of Kronecker’s canonical form of a singular pencil has been analyzed in [24]. 

A new concept of perfect observers for linear continuous-time systems has been 
proposed in [10, 22]. Observers for fractional linear systems have been addressed in 
[17, 22]. Fractional descriptor full-order observers for fractional descriptor conti-
nuous-time linear systems have been proposed in  [16]. 

In this paper perfect fractional descriptor observers for fractional descriptor conti-
nuous-time linear systems will be proposed and necessary and sufficient conditions 
for the existence of the observer will be established. 

The paper is organized as follows. In section 2 the basic definitions and theorems 
of fractional descriptor linear continuous-time systems are recalled and their perfect 
fractional descriptor observers are defined. In section 3 necessary and sufficient con-
ditions for the existence of the perfect observers are established and design procedure 
of the perfect observer is proposed. An illustrating example is given in section 4. 
Concluding remarks are given in section 5. 
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2 Fractional Descriptor Systems and Their Perfect Observers 

Consider the fractional descriptor continuous-time linear system 

),0(),()(
)(

0 xxtButAx
dt

txd
E =+=α

α

                          (2.1a) 

Cxy = ,                                                                      (2.1b) 

where α

α

dt

txd )(
 is the fractional α  order derivative defined by Caputo [15, 23] 

,...}2,1{1,
)(

)(

)(

1)(
)(

0
10 =∈<<−

−−Γ
==  +− Nnnd

t
d

xd

ndt

txd
txD

t

n

n

n

t ατ
τ
τ

τ

α αα

α
α ,       

(2.2) 


∞

−−=Γ
0

1)( dttex xt  is the gamma function, ,)( ntx ℜ∈  mtu ℜ∈)( , 

pty ℜ∈)(  are the state, input and output vectors, nnAE ×ℜ∈, ,  mnB ×ℜ∈ , 

.npC ×ℜ∈  It is assumed that 0det =E  and 

0]det[ ≠− AEλ  for some C∈λ  (the field of complex number).             (2.3) 

Let U be the set of admissible inputs  mUtu ℜ⊂∈)(  and  nX ℜ⊂0  be the set 

of consistent initial conditions 00 Xx ∈  for which the equation (2.1) has a solution 

)(tx  for .)( Utu ∈  

The solution of the equation (2.1a) for 00 Xx ∈  has been derived in [16]. 

 
Definition 2.1. The fractional descriptor continuous-time linear system 

)()()(ˆ
)(ˆ

tHytGutxF
dt

txd
E ++=α

α

                              (2.4) 

where ntx ℜ∈)(ˆ  is the estimate of )(tx , mtu ℜ∈)(  and pty ℜ∈)(  are the same 

input and output vectors as in (2.1), ,, nnFE ×ℜ∈  ,mnG ×ℜ∈  ,pnH ×ℜ∈  

0det =E  is called a (full-order) perfect state observer for the system (2.1) if  
 

)(ˆ)( txtx =  for 0>t .                                          (2.5) 
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3 Design of Perfect Fractional Descriptor Observers 

The following elementary row (column) operations will be used [13, 15]: 

1. Multiplication of the ith row (column) by a real number c. This operation will be 
denoted by ][ ciL ×  ( ][ ciR × ). 

2. Addition to the ith row (column) of the jth row (column) multiplied by a real num-
ber c. This operation will be denoted by ][ cjiL ×+  ( ][ cjiR ×+ ). 

3. Interchange of the ith and jth rows (columns). This operation will be denoted by 
],[ jiL  ( ],[ jiR ). 

Lemma 3.1. If 
nrE <=rank                                              (3.1) 

then by the use of the elementary row and column operations the matrix E can be 
reduced to the following upper triangular form 



















=







=

rr

r

r

e

ee

eee

E
E

EQP

...00

...0

...

,
00

0 222

11211

12
12

11 
                      (3.2a) 

or lower triangular form 



















=







=

rrrr eee

ee

e

E
E

EQP

...

0...

0...0

,
0

00

21

2221

11

21
21

22 
                    (3.2b) 

where kP  and kQ , 2,1=k  are the matrices of elementary row and column opera-

tions. 

Proof. If the condition (3.1) is satisfied then by elementary row and column opera-
tions the matrix E can be reduced to the form  

rrE
E ×ℜ∈








12

12 ',
00

'0
.                                (3.3) 

Next applying the elementary column operations we can reduced the matrix 12'E  to 

the upper triangular form 12E . The proof for (3.2b) is similar.                                   □ 
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Definition 3.1. The smallest nonnegative integer q is called the nilpotent index of the 

nilpotent matrix N if 0=qN  and 01 ≠−qN . 
 

Lemma 3.2. If 

2
rank

n
rE <=                                              (3.4) 

then the nilpotent index q of the matrix E is 

q = 2 for 1
2

,...,2,1 −= n
r .                                     (3.5) 

Proof. If 
2

n
r <  then by Definition 3.1 and (3.2a) we have  









=








=

00

00

00

0
)(

2

122
11

E
EQP  for 1

2
,...,2,1 −= n

r .            (3.6) 

Proof for (3.2b) is similar.                                                                                              □ 

Lemma 3.3. If the nilpotent matrix nnN ×ℜ∈  has the index q = 2 i.e. 02 =N  and  

],...,det[ 1 nddD = , 0≠kd , k =1,2,…,n                      (3.7) 

then the solution )(tx  of the fractional differential equation  

Dx
dt

txd
N =α

α )(
, 10 << α                                     (3.8) 

satisfy the condition 







>
=−= 

−

=

−++

0

0

for

for

0

)(
)(

2

0

1)1()1(

t

ttN
tx

q

k

kk αδ
                          (3.9) 

where )()( tkδ  is the k-order derivative of the Dirac function )(tδ . 

 
Proof. Applying the Laplace transform to (3.8) and taking into account that  

0
1

0

)(
)()(

xssXsdte
dt

txd

dt

txd st −
∞

− −==







 αα

α

α

α

α

L               (3.10) 

we obtain 
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)()( 0
1 sDXxNssXNs =− −αα ,                              (3.11) 

where 
∞

−==
0

)()]([)( dtetxtxsX stL
 
and )0(0 xx = . 

Premultiplying (3.11) by the inverse matrix 1−D  we obtain 

0
11][)( xsNsNIsX n

−−−−= αα ,                               (3.12) 

where NDN 1−=  and 0== − qqq NDN . 
Taking into account that  


−

=

− =−
1

0

1][
q

k

kk
n sNsNI αα ,                               (3.13) 

from (3.12) w obtain  


−

=

−++−=
2

0
0

1)1()1()(
q

k

kk xsNsX α .                            (3.14) 

Applying the inverse Laplace transform to (3.14) we obtain (3.9) since 

)(][ )(1 ts kk αα δ=−L .                                                                                                □ 

Let 

)(ˆ)()( txtxte −= .                                        (3.15) 

Then using (2.1) and (2.4) we obtain 

)()()(ˆ)()(

))()()(ˆ()()(

)(ˆ)()(

tuGBtxFtxHCA

tHCxtGutxFtButAx
dt

txd
E

dt

txd
E

dt

ted
E

−+−−=
++−+=

−= α

α

α

α

α

α

               (3.16) 

and  

)(
)(

tFe
dt

ted
E =α

α

                                          (3.17) 

if  

HCAF −= ,                                               (3.18) 

BH = .                                                           (3.19) 
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By Lemma 3.1 using the elementary row and column operations the singular ma-
trix E can be reduced to a suitable nilpotent matrix N and from (3.17) we obtain 

)(
)(

teF
dt

ted
N =α

α

                                      (3.20) 

where 

)()(,, 1 teQtePFQFPEQN −===                         (3.21) 

and P and Q are matrices of elementary row and column operations. 
If we choose the matrix H so that  

DF =                                                      (3.22) 

where D is given by (3.7) then by Lemma 3.3 0)( =te  for 0>t  and the fractional 

descriptor observer (2.4) will be a perfect observer for the system (2.1). 
 

Theorem 3.1. There exists the perfect fractional descriptor observer (2.4) of the frac-
tional descriptor system (2.1) if and only if 

][rank rank C
C

DA
=







 −
                                 (3.23) 

where 

CQCPAQA == ,                                         (3.24) 

and the matrices P, Q satisfy (3.21). 

Proof. To design the perfect observer (2.4) for the system (2.1) with given matrices A, 
B, C we have to choose the matrices F, G, H of the observer so that the conditions 
(3.18), (3.19) and (3.22) are met. From (3.19) we have H = B and the conditions 
(3.18) and (3.22) are met if and only if 

DCHA =−                                            (3.25) 

where PHH = . 

The equation (3.25) has a solution H  (and HPH 1−= ) for given C  and D if 
and only if the condition (3.23) is satisfied. Therefore, there exists the perfect observ-
er (2.4) for the system (2.1) if and only if the condition (3.23) is satisfied.                  □ 

From the above considerations we have the following procedure for designing of 
the perfect observer (2.4) for the system (2.1). 
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Procedure 3.1 
Step 1. Find the matrices P and Q of the elementary row and column operations 

reducing the matrix E to its nilpotent form N = PEQ. 

Step 2. Knowing the matrices P, Q compute A  and C  defined by (3.24). 
Step 3. Choose a diagonal matrix (3.7) and check the condition (3.23). If the condi-

tion is satisfied then there exists the perfect observer (2.4) for the system 
(2.1). 

Step 4. Knowing the matrices A  and C  find the solution H  of the equation 
(3.25). 

Step 5. Compute the matrices of the perfect observer (2.4) 

HCAF −= , BG = , HPH 1−= .                          (3.26) 

4 Example 

Consider the fractional descriptor system (2.1) with the matrices 









=
















=
















=
















=

001

100
,

2

0

1

,

020

203

102

,

000

010

001

CBAE .      (4.1) 

The descriptor system is regular since 

0)21(2

020

23

102

]det[ ≠−=
−

−−
−−

=− ss

s

AEs .                       (4.2) 

To design the perfect fractional descriptor observer for the system we use Proce-
dure 3.1 and we obtain the following: 

 

Step 1. In this case we have 
















=
















=

001

100

010

,

100

010

001

QP                                 (4.3) 

and 
















==

000

100

010

PEQN .                                             (4.4) 
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Step 2. Using (3.24) and (4.1) we obtain 









==
















==

010

001
,

200

032

021

CQCPAQA .                      (4.5) 

Step 3. In this case we choose 
















=

200

020

003

D                                                 (4.6) 

 and the condition (3.23) is satisfied since 









===





















−

=






 −
010

001
rank ][rank 2

010

001

000

012

022

rank C
C

DA
.   (4.7) 

Therefore, there exists the perfect observer (2.4) for the system (2.1) with 
(4.1). 

Step 4. The equation 















−
=−=
























=

000

012

022

010

001

3231

2221

1211

DA

hh

hh

hh

CH           (4.8) 

 has the solution 

HH =














−
=

00

12

22

                                        (4.9) 

 since 3IP = . 

Step 5. Using (3.26), (4.1) and (4.9) we obtain 
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.

2

0

1

,

020

002

300

001

100

00

12

22

020

203

102
















==
















=























−
−
















=−=

BG

HCAF

 (4.10) 

The perfect observer is described by the equation 

)(

00

12

22

)(

2

0

1

)(ˆ

020

002

300
)(ˆ

000

010

001

tytutx
dt

txd















−
+
















+
















=

















α

α

.   (4.11) 

5 Concluding Remarks 

Perfect fractional descriptor observers for fractional descriptor continuous-time linear 
systems have been proposed. Necessary and sufficient conditions for the existence of 
perfect observers for the fractional descriptor linear systems have been established. 
Designing procedure of the fractional descriptor observers has been proposed and 
illustrated on a numerical example. The considerations can be easily extended to frac-
tional descriptor discrete-time linear systems. An open problem is an extension for 
fractional descriptor 2D continuous-discrete linear systems. 

Acknowledgment. This work was supported under work S/WE/1/11. 
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Abstract. The authors’ purpose is to consider and formulate conditions
providing the existence of viable solutions to a discrete fractional equa-
tion via viability properties of fractional differential equations. We show
that the existence of viable solutions to a fractional differential equation
suffices to get viable solutions to a difference fractional equation.

Keywords: viability, fractional differential equations, fractional discrete
systems.

1 Introduction

Viability of fractional difference and differential equations is not so much ex-
ploited so far. Briefly, the problem of viability consists in finding at least one
solution to the given equation that starts and remains in a certain constrained
set. In the case of uniqueness of solutions viability coincides with the invariance
idea, where all solutions have to stay in a constrained set. Our motivation for
considering these kind of problems for fractional differential and difference equa-
tions was the value of viability theory. As the author in [2], the most important
book on classical viability theory, says: “viability theory is a mathematical the-
ory that offers mathematical metaphors of evolution of macrosystems arising in
biology, economics, cognitive sciences, games, and similar areas, as well as in
nonlinear systems of control theory”. Although fractional calculus is an area in
mathematics that develops very quickly and it is investigated by many math-
ematicians [1,4,13,17,19], the development of viability problem of solutions to
fractional differential equations hasn’t grown yet. Moreover, to our knowledge,
discrete fractional systems haven’t been investigated in this light yet. The area of
our interest is to consider and formulate conditions providing existence of viable
solutions to a discrete equation via viability properties of fractional differential
equations. In this way we can employ the results on Nagumo Theorem that we
presented in [9,15], namely necessary and sufficient conditions for solutions to be
viable with respect to a constrained set but in continuous case. This idea allows
us to use, indirectly, the classical tools as Bouligand cone or contingent vectors.
The structure of the paper consists of four sections. Besides introduction we
propose a preliminary section, where useful basic notions, definitions and facts

c© Springer International Publishing Switzerland 2015 15
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_2
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are gathered. In Section 3 we present and formulate problems, for which viabil-
ity properties are further examined. The main section is Section 4 that includes
results on approximation and on viability of differential and difference equations.

2 Some Preliminaries

Throughout this section we present a set of notations, definitions, and some
preliminary facts which are useful in the sequel of the paper.

2.1 Continuous Part

We start with definitions of fractional integrals of arbitrary order, the Caputo
and Riemann–Liouville derivatives of order α ∈ (0, 1).

Definition 1 ([11,17,18]). Let ϕ ∈ L1 ([0, t1],R). The integral

(Iα0+ϕ)(t) =
1

Γ (α)

∫ t

0

ϕ(s)(t − s)α−1ds , t > 0,

where Γ is the gamma function and α > 0, is called, the left-sided fractional
integral of order α. Additionally we define I00+ := III (identity operator).

Remark 1 ([6]). Note that Iα0+f(t) = (f ∗ ϕα)(t), where ϕα(t) = tα−1

Γ (α) for t > 0,

ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α → 0, with δ the delta Dirac pseudo
function.

The fractional derivatives that we need are the Riemann–Liouville and the
Caputo ones.

Definition 2 ([11,17]). Let ϕ be defined on the interval [0, t1] and n be a nat-
ural number satisfying n = [α] + 1 with [α] denoting the integer part of α. The
left-sided Riemann–Liouville derivative of order α and the lower limit 0 are de-
fined through the following:

(
Dα

0+ϕ
)

(t) =
1

Γ (n− α)

(
d

dt

)n ∫ t

0

ϕ(s)(t− s)n−α−1ds .

The left-sided Caputo derivative of order α and the lower limit 0 are defined
through the following:

(
CDα

0+ϕ
)

(t) =
1

Γ (n− α)

∫ t

0

ϕ(n)(s)(t− s)n−α−1ds .

Remark 2. If α ∈ (0, 1), then the left-sided Riemann–Liouville fractional deriva-
tive of order α takes the form:

(
Dα

0+ϕ
)

(t) =
1

Γ (1 − α)

d

dt

∫ t

0

ϕ(s)(t − s)−αds =
d

dt

((
I1−α
0+ ϕ

)
(t)
)
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and the left-sided Caputo fractional derivative of order α takes the form:

(
CDα

0+ϕ
)

(t) =
1

Γ (1 − α)

∫ t

0

ϕ′(s)(t− s)−αds =

(
I1−α
0+

d

ds
(ϕ(s))

)
(t) .

If α ∈ (0, 1] then the following comparison formula of the Caputo and
Riemann–Liouville derivatives holds.

(
CDα

0+ϕ
)

(t) =
(
Dα

0+ϕ
)

(t) − t−α

Γ (1 − α)
ϕ(0+) , (1)

where ϕ(0+) = lim
t→0+

ϕ(t).

From [11, Theorem 2.4] we have the following property:

Proposition 1. For α ∈ (0, 1] we have

(
Iα0+D

α
0+ϕ

)
(t) = ϕ(t) − tα−1

Γ (α)

(
I1−α
0+ ϕ

)
(t) |a .

The following formulas are useful:

Iα0+t
p =

Γ (p + 1)

Γ (p + α + 1)
tp+α, Dα

0+t
p =

Γ (p + 1)

Γ (p− α + 1)
tp−α .

2.2 Discrete Part

Let us denote by FD the set of real valued functions defined on D. Let h >
0, α > 0 and put (hN)a := {a, a + h, a + 2h, ...} for h > 0 and a ∈ R. Let
σ : (hN)a → (hN)a be the operator defined by the formula σ(t) := t + h,
t ∈ (hN)a.

Definition 3 ([8]). For a function x ∈ F(hN)a the forward h-difference operator
is defined as

(Δhx)(t) :=
x(σ(t)) − x(t)

h
, t = a + nh, n ∈ N0 ,

while the h-difference sum is given by

(
aΔ

−1
h x

)
(t) := h

n∑
k=0

x(a + kh) ,

where t = a + (n + 1)h, n ∈ N0 and
(
aΔ

−1
h x

)
(a) = 0.

The next definition comes from [5].

Definition 4. For arbitrary t, α ∈ R the h-factorial function is defined by

t
(α)
h := hα Γ ( t

h + 1)

Γ ( t
h + 1 − α)

, (2)

where t
h �∈ Z− := {−1,−2,−3, . . .}, and we use the convention that division at

a pole yields zero.
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Notice that if we use the general binomial coefficient
(
a
b

)
:= Γ (a+1)

Γ (b+1)Γ (a−b+1) ,

then (2) can be rewritten as

t
(α)
h = hαΓ (α + 1)

( t
h

α

)
.

In our consideration the crucial role plays the power rule formula presented
in [8], i.e. (

aΔ
−α
h ψ

)
(t) =

Γ (μ + 1)

Γ (μ + α + 1)
(t− a + μh)

(μ+α)
h , (3)

where ψ(r) = (r − a + μh)
(μ)
h , r ∈ (hN)a, t ∈ (hN)a+αh. Note that using the

general binomial coefficient one can write (3) as

(
aΔ

−α
h ψ

)
(t) = Γ (μ + 1)

(
n + α + μ

n

)
hμ+α .

Then if ψ ≡ 1, we have for μ = 0, a = (1 − α)h and t = nh + a + αh

(
aΔ

−α
h 1

)
(t) =

1

Γ (α + 1)
(t− a)

(α)
h =

Γ (n + α + 1)

Γ (α + 1)Γ (n + 1)
hα =

(
n + α

n

)
hα .

The next definition was stated in [5].

Definition 5. For a function x ∈ F(hN)a the fractional h-sum of order α > 0 is
given by

(
aΔ

−α
h x

)
(t) :=

h

Γ (α)

n∑
k=0

(t− σ(a + kh))
(α−1)
h x(a + kh) , (4)

where t = a + (α + n)h, n ∈ N0. Moreover we define
(
aΔ

0
hx
)

(t) := x(t).

Remark 3. Note that aΔ
−α
h : F(hN)a → F(hN)a+αh

.

Accordingly to the definition of h-factorial function formula (4) can be rewritten
as:

(
aΔ

−α
h x

)
(t) = hα

n∑
k=0

Γ (α + n− k)

Γ (α)Γ (n− k + 1)
x(a + kh)

= hα
n∑

k=0

(
n− k + α− 1

n− k

)
x(a + kh)

= hα
n∑

j=0

(−1)j
(
−α

j

)
x(a− jh)

for t = a + (α + n)h, n ∈ N0.



Viable Solutions to Fractional Difference and Differential Equations 19

Remark 4. In [10] one can find the following form of the fractional h-sum of
order α > 0:

(
aΔ

−α
h x

)
(t) =

hα

Γ (α)

t−αh∑
k=a

(
t− σ(k)

h

)(α−1)

x(k)

that can be useful in implementation.

Definition 6. Letα ∈ (0, 1]. The Riemann–Liouville–type fractionalh-difference
operator aΔ

α
hx of order α for a function x ∈ F(hN)a is defined by

(aΔ
α
hx) (t) =

(
Δh

(
aΔ

−(1−α)
h x

))
(t), t ∈ (hN)a+(1−α)h . (5)

Remark 5. Note that aΔ
α
h : F(hN)a → F(hN)a+(1−α)h

, where α ∈ (0, 1].

Definition of the Caputo–type h-difference operator was stated by the authors
in [14].

Definition 7. Let α ∈ (0, 1]. The Caputo–type h-difference operator aΔ
α
h,∗ of

order α for a function x ∈ F(hN)a is defined by

(
aΔ

α
h,∗x

)
(t) :=

(
aΔ

−(1−α)
h (Δhx)

)
(t), t ∈ (hN)a+(1−α)h .

Remark 6. Note that: aΔ
α
h,∗ : F(hN)a → F(hN)a+(1−α)h

, where α ∈ (0, 1].

The property of the composition of h-sums was proved in [14].

Proposition 2. Let x be a real valued function defined on (hN)a, where a, h ∈
R, h > 0. For α, β > 0 the following equalities hold:

(
a+βhΔ

−α
h

(
aΔ

−β
h x

))
(t) =

(
aΔ

−(α+β)
h x

)
(t) =

(
a+αhΔ

−β
h

(
aΔ

−α
h x

))
(t) ,

where t ∈ (hN)a+(α+β)h.

The next proposition gives a useful identity of transforming Caputo fractional
difference equations into fractional summations for the case when an order is
from the interval (0, 1].

Proposition 3 ([14]). Let α ∈ (0, 1], h > 0, a = (α−1)h and x be a real valued
function defined on (hN)a. The following formula holds

(
0Δ

−α
h

(
aΔ

α
h,∗x

))
(nh + a) = x(nh + a) − x(a), n ∈ N1 .

The operators presented in this section can be extended to vector valued
functions in a componentwise manner.
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3 Differential and Difference Systems

Let us consider the initial value problem stated by the system with the Caputo
fractional derivative with order α ∈ (0, 1] as follows:

C
a D

αx(t) = f(t, x(t)), t ∈ (a, T ], a > 0 , (6)

satisfying the initial condition

x(a) = xa ∈ R
n , (7)

where t ∈ (a, T ], x : (a, T ] → R
n and xa is a constant vector from R

n.
Nextly, we consider an initial value discrete problem stated by the system:

(
aΔ

α
h,∗y

)
(nh) = f(nh, y(nh + a)) (8)

with initial value:
y(a) = ya , (9)

where h > 0, α ∈ (0, 1], a = (α−1)h, n ∈ N0, y : (a, T ](hN)a → R
n, (a, T ](hN)a :=

(a, T ]∩ (hN)a+(1−α)h, and ya is a constant vector from R
n. Hereinafter we mean

(a, T ](hN)a = (a, T ] ∩ (hN)a.
Note that ya = xa. Then from [12] we know that the solution of (6) has the

following form

x(t) = xa +
1

Γ (α)

∫ t

a

(t− τ)α−1f(τ, x(τ))dτ . (10)

Moreover, we have the Caputo recurrence formula of solution of the following
form

y(a + (n + 1)h) = ya + hα
n∑

j=0

(
n− j + α− 1

n− j

)
f(jh, y(a + jh)) , (11)

for n ∈ N0.

4 Viability via Approximation

Similarly as for the ordinary differential equations (see [7]) one can define the
viability of a subset with respect to the fractional differential equation (6).
Before formulating viability problems we state the following results which has
been proved in [16].

Proposition 4. Let α ∈ (0, 1], h > 0, a ∈ R and t ≥ a. Then let t̄h := a + (1 −
α)h + nh, where n =

[
t−a
h

]
+ 1 and

[
t−a
h

]
is the greatest integer less than or

equal to t−a
h . Then lim

h→0
t̄h = t and

lim
h→0

(t̄h − a)
(−α)
h = (t− a)−α .
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Proposition 5. Let α ∈ (0, 1], h > 0, f being continuous with integrable f ′ on
some [a, T ] with T > 0, and t̄h := a+ (1−α)h+nh, where n =

[
t−a
h

]
+ 1. Then

(
C
a D

αf
)

(t) = lim
h→0

(
aΔ

α
h,∗f

)
(t̄h) .

Proposition 6. Let α ∈ (0, 1], h > 0, f being continuous with integrable f ′ on
some [a, T ] with T > 0, and t̄h := a+ (1−α)h+nh, where n =

[
t−a
h

]
+ 1. Then

(
RL
a Dαf

)
(t) = lim

h→0
(aΔ

α
hf) (t̄h) . (12)

Proof. Since the following formula holds:

(aΔ
α
hx) (t) =

(
aΔ

α
h,∗x

)
(t) +

x(a)(t − a)−α
h

Γ (1 − α)

and equality (12) holds true for Caputo–type operator, then applying Proposi-
tion 4 we get

lim
h→0

(aΔ
α
hf) (t̄h) =

(
RL
a Dαf

)
(t) .

The next propositions are direct consequences of Propositions 5 and 6, re-
spectively.

Proposition 7. The solution x of system(
C
0 D

αx
)

(t) = f(t, x(t)) ,

x(0) = x0 .

is approximated by the solution of system(
aΔ

α
h,∗x

)
(t) = f(t, x(t)) ,

x(a) = x0 .

in values via the following limit:

lim
h→0

x(th) = x(t) ,

where t̄h := a + (1 − α)h + nh with n =
[
t−a
h

]
+ 1 and a = (α− 1)h, α ∈ (0, 1].

Proposition 8. The solution x of system(
RL
0 Dαx

)
(t) = f(t, x(t)) ,

x(a) = xa .

is approximated by the solution of system

(aΔ
α
hx) (t) = f(t, x(t)) ,

x(a) = xa .

in values via the following limit:

lim
h→0

x(th) = x(t) ,

where t̄h := a + (1 − α)h + nh with n =
[
t−a
h

]
+ 1 and a = (α− 1)h, α ∈ (0, 1].
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In order to formulate results on viability we need the following definitions.
Let us denote by I an open interval in R.

Definition 8. Let K ⊂ R
n be nonempty and f : I ×R

n → R
n. The subset K is

fractionally viable with respect to f if for any x0 ∈ R
n there exists [t0, T ] ⊆ R,

such that (6) has at least one solution such that x : [t0, T ] → K, for t ∈ [t0, T ],
where t0 > 0. We say then that x is a viable solution of (6) in K.

The idea of viability of fractional differential equations can be expressed by
using the concept of tangent cone. There are many notions of tangency of a
vector to a set, see for example [7, Section 2.3]. We will follow the concept of
the contingent vectors (see [3]).

Let us recall that for K ⊆ R
n and x0 ∈ K one can define the vector tangent

to the set K as follows:

Definition 9. The vector η ∈ R
n is contingent to the set K at the point x0 if

lim inf
h↓0

1

h
dist (x0 + hη;K) = 0 . (13)

The set of all vectors that are contingent to the set K at point x0 is a closed
cone, see [7, Proposition 2.3.1]. This cone, denoted by TK(x0), is called contingent
cone (Bouligand cone) to the set K at x0 ∈ K. From [7, Proposition 2.3.2] we
know that η ∈ TK(x0) if and only if for every ε > 0 there exist h ∈ (0, ε) and
ph ∈ B(0, ε) such that x0 +h(η+ ph) ∈ K, where B(0, ε) denotes the closed ball
in R

n centered at 0 and of radius ε > 0.
For ε > 0, by ε-neighborhood of a set K ⊂ R

n we mean the following:

Kε := {x ∈ R
n : dist(x,K) < ε} .

Proposition 9. If f(t0, x0) ∈ TK(x0), where f is the right hand side of system
(6), then for every ε > 0 there exists h > 0 such that there exists a solution y to
h− difference system (8) that is viable in Kε.

Proof. By assumption, since (6) has a viable solution in K it means that the
subset K is fractionally viable with respect to f . Then for any x0 ∈ R

n there
exists [t0, T ] ⊆ R, such that (6) has at least one solution x : [t0, T ] → R

n,
satisfying x(a) ∈ K for t ∈ [a, T ], where a > 0. But since

lim
h→0

x(th) = x(t) ,

where t̄h := a + (1 − α)h + nh with n =
[
t−a
h

]
+ 1 and a = (α − 1)h, α ∈ (0, 1],

this implies that for every ε > 0 there exists δ > 0 such that the fact |th− t| < δ
implies that ||y(t̄h)−x(t)|| < ε. Now if we put δ = h we get that y(t̄h) ∈ Kε, for
every t̄h ∈ [a, T ](hN)a.

If one takes x(a) = 0 then Caputo and Riemann–Liouville–type operators in
both, discrete and continuous cases, coincide. Thus the following statements is
true.
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Remark 7. If the fractional differential equation

RL
0 Dαx(t) = f(t, x(t)), 0 < α < 1, t ∈ (0, T ], (14)

has a viable solution in K, then for every ε > 0 there exists h > 0 such that
there exists a solution y to system

(aΔ
α
hy) (nh) = f(nh, y(nh + a)) (15)

that is viable in Kε,

Remark 8. Let us notice that if K = R
n
+ one can consider all above results as

positivity ones.

5 Conclusions

The problem of viability that consists in finding conditions under which there
exists at least one solution to a system, which maintains in a certain set of
constrains is considered. In the case of uniqueness of solutions, as it concerns
the paper, viability coincides with the invariance idea, where all solutions have
to stay in a constrained set. In the paper, the conditions for the existence of
viable (invariant) solutions to a discrete fractional equation are formulated via
viability properties of fractional differential equations. Our next step will be
to examine the obtain results under potential applications. Going further, we
want to consider the problem of the existence of viable solutions to fractional
differential and difference inclusions.
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Abstract. We study a regular fractional Sturm-Liouville problem
formulated using left and right Riemann-Liouville derivatives of order in
the range (1,2). We prove a theorem describing the eigenvalues and eigen-
functions of such a problem considered on the space of functions contin-
uously differentiable in a finite interval and obeying vanishing Dirichlet
and fractional Neumann boundary conditions. It appears that the spec-
trum of eigenvalues is discrete and that the eigenfunctions form a basis
in the space of square-integrable functions. We also show applications of
the derived eigenfunctions in the theory of partial fractional differential
equations.

Keywords: Fractional Sturm-Liouville problem, Riemann-Liouville
derivatives, eigenvalues and eigenfunctions, fractional differential
equations.

1 Introduction

In the paper, we consider a regular fractional Sturm-Liouville problem (FSLP)
with left and right Riemann-Liouville dervatives. Fractional differential equa-
tions, mixing the left and the right derivatives, arise in fractional calculus of
variations (FVC) [20,21] and lead to many meaningful and applicable problems
which, however, are difficult to solve explicitly. For results on the minimum ac-
tion principle and the derivation of Euler-Lagrange equations, we refer readers
to monographs [6, 15] and the references given therein. FSLPs are eigenvalue
problems extending the classical Sturm-Liouville theory. They were earlier for-
mulated as fractional deformations of classical problems [1–3,13,16,19], recently
they have emerged within the framework of FVC. In the theory of differential
equations, the solutions of Sturm-Liouville problems (SLPs) are important and
useful tools in solving many equations appearing in the mathematical modelling
of real-world phenomena [23, 26]. We introduced regular and singular FSLPs of
a variational type in [7], then they were also studied in [8–11,22, 25]. Some sin-
gular FSLPs were solved explicitly in [9,10,22,25] and solutions were applied in
anomalous diffusions theory which extends Pearson’s diffusions [4] to the frac-
tional version (compare also [14]). The variational formulation of the fractional

c© Springer International Publishing Switzerland 2015 25
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_3
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version of SLPs yields solutions which correspond to real eigenvalues and are
orthogonal eigenfunctions.

The aim of this paper is to propose a simple method of proof of the existence
result for a discrete spectrum of a regular FSLP with vanishing Dirichlet and
fractional Neumann boundary conditions. We extend here an approach developed
in [12] in the case of a regular FSLP with derivatives in the range (0,1). By using
the methods of functional analysis we also prove that the respective infinite
countable set of eigenfunctions yields a basis in the space of square-integrable
functions.

Let us begin with some basic definitions and properties of fractional operators
[5, 24].

2 Preliminaries

Definition 1. Left and the right Riemann–Liouville fractional integrals are
defined as follows

Iαa+f(x) :=
1

Γ (α)

∫ x

a

f(t)dt

(x− t)1−α
, x ∈ (a, b], (1)

Iαb−f(x) :=
1

Γ (α)

∫ b

x

f(x)dt

(t− x)1−α
, x ∈ [a, b), (2)

Here Γ (α) denotes Euler’s gamma function.

Riemann–Liouville fractional integrals satisfy the semigroup property.

Property 1 (cf. Lemma 2.3 [5]). Let α, β > 0 and f ∈ Lp(a, b), (1 ≤ p ≤ ∞).
Then, relations

Iαa+I
β
a+f(x) = Iα+β

a+ f(x), Iαb−I
β
b−f(x) = Iα+β

b− f(x) (3)

are fulfilled.

Definition 2. The left Riemann–Liouville fractional derivative of order α ∈
(1, 2) of a function f , denoted by Dα

a+f , is given by

∀x ∈ (a, b], Dα
a+f(x) := D2 I2−α

a+ f(x). (4)

Similarly, the right Riemann–Liouville fractional derivative of order α ∈ (1, 2)
of a function f , denoted by Dα

b−f , is given by

∀x ∈ [a, b), Dα
b−f(x) := D2 I2−α

b− f(x), (5)

where we denoted D = d
dx .

The following Caputo derivatives will also be applied in further considerations.
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Definition 3. The left and the right Caputo fractional derivatives of order α ∈
(1, 2) are given by

∀x ∈ (a, b], cDα
a+f(x) := Dα

a+ [f(x) − f(a) − f ′(a)(x − a)] , (6)

∀x ∈ [a, b), cDα
b−f(x) := Dα

b− [f(x) − f(b) − f ′(b)(b − x)] . (7)

When order α ∈ (1, 2) and f ∈ AC2[a, b], the Caputo fractional derivatives
satisfy the following relations:

cDα
a+f(x) = I2−α

a+ D2f(x), cDα
b−f(x) = I2−α

b− D2f(x), (8)

respectively.

Property 2 (cf. Lemma 2.4 [5]). If α > 0 and f ∈ Lp(a, b), (1 ≤ p ≤ ∞), then
the following composition rules are valid:

Dα
a+I

α
a+f(x) = f(x), Dα

b−I
α
b−f(x) = f(x), (9)

for almost all x ∈ [a, b]. If function f is continuous, then the composition rules
hold for all x ∈ [a, b].

In addition, in certain classes of functions the Caputo derivatives are the left
inverse operators of Riemann–Liouville fractional integrals.

Property 3 (cf. Lemma 2.21 [5]). Let α > 0 and α ∈ N or α /∈ N. If f is
continuous on interval [a, b], then

cDα
a+I

α
a+f(x) = f(x), cDα

b−I
α
b−f(x) = f(x). (10)

3 Eigenvalues and Eigenfunctions of a Regular Fractional
Sturm-Liouville Problem

We shall prove that a regular fractional Sturm-Liouville problem:

Ly(x) = Dα
b−p(x)Dα

a+y(x) = λy(x), (11)

y(a) = 0 y(b) = 0, (12)

y′(a) = 0 cDα
a+y(x)|x=b = 0, (13)

where order α ∈
(
3
2 , 2
)

and p is an arbitrary positive function from the
C[a, b]-space, has an infinite countable set of simple positive eigenvalues and
corresponding continuously differentiable eigenfunctions. We denote the space
of continuously differentiable complex-valued functions obeying (12)–(13) as

CB2[a, b] := {g ∈ C1[a, b]; g(a) = g(b) = 0, g′(a) = cDα
a+g(x)|x=b = 0}. (14)
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Remark 1. We note that similar to the classical case, the eigenvalues will be
simple as the dimension of the space of solutions (11), obeying initial conditions
y(a) = y′(a) = 0, is one-dimensional.

Now, we describe the stationary functions of Sturm-Liouville operator L in the
C1[a, b] and CB2[a, b] spaces.

Lemma 1. For order 3
2 < α < 2 the solutions of equation

Dα
b− p(x)cDα

a+u(x) = 0 (15)

continuously differentiable in [a, b], are of the form:

u(x) = C1 + C2x + C3 Iαa+
(b− x)α−1

p(x)
+ C4 Iαa+

(b − x)α−2

p(x)
, (16)

where Cj , j = 1, ..., 4 are arbitrary constants.

Corollary 1. Let 3
2 < α < 2. If function u ∈ CB2[a, b] fulfills (15), then u ≡ 0.

Lemma 2. If λ is an eigenvalue of FSLP (11)–(13) corresponding to the non-
trivial eigenfunction y ∈ CB2[a, b], then λ > 0.

Proof. First, λ �= 0 by Corollary 1. From the results of papers [7, 8], it follows
that λ ∈ R. Next, we multiply (11) by ȳ, integrate and obtain:

∫ b

a

y(x) Dα
b−p(x) Dα

a+y(x) dx =

∫ b

a

y(x) Dα
b−p(x) cDα

a+y(x) dx

= −y(x) Dα−1
b− p(x) cDα

a+y(x)|x=b
x=a +

∫ b

a

y′(x) Dα−1
b− p(x) cDα

a+y(x) dx =

= −y′(x) I2−α
b− p(x) cDα

a+y(x)|x=b
x=a +

∫ b

a

y′′(x) I2−α
b− p(x) cDα

a+y(x) dx =

=

∫ b

a

p(x)
∣∣cDα

a+y(x)
∣∣2 dx = λ · ||y||2L2

which implies

λ =

( ||√p cDα
a+y||L2

||y||L2

)2

=⇒ λ > 0.

Similar to the classical Sturm-Liouville theory and the case of order α ∈ (12 , 1)
from paper [12], we shall replace the unbounded Sturm-Liouville operator from
(11) (denoted as L) with the right inverse integral and bounded operator denoted
as T

Lu(x) = Dα
b−p(x) cDα

a+u(x) = f(x), (17)

u(x) = Iαa+
1

p(x)
Iαb−f(x) −

Iαa+
(b−x)α−1

p(x)

Iαa+
(b−x)α−1

p(x) |x=b

Iαa+
1

p(x)
Iαb−f(x)|x=b = Tf(x). (18)
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We observe that the property:

LTu(x) = u(x), (19)

resulting from the composition rules, implies the following equivalence on the
CB2[a, b]- space:

Lu(x) = λu(x) ⇐⇒ Tu(x) =
1

λ
u(x). (20)

Let us note that operator T can be expressed as the following integral operator
with kernel K = K1 + K2

u(x) =

∫ b

a

(K1(x, s) + K2(x, s)) f(s)ds, (21)

where the K1 and K2 parts of the kernel look as follows (compare [12])

K1(x, s) =

{
1

[Γ (α)]2

∫ s

a
(x−t)α−1(s−t)α−1

p(t) dt s ≤ x
1

[Γ (α)]2

∫ x

a
(x−t)α−1(s−t)α−1

p(t) dt s > x,
(22)

K2(x, s) = − 1

Γ (α)

Iαa+
(b−x)α−1

p(x)

Iαa+
(b−x)α−1

p(x) |x=b

· Iαa+
(b− s)α−1

p(s)
. (23)

Fractional integral operator T , defined for a positive continuous function p, is
bounded on the L2(a, b)- space since for real order α > 0 we have relations

||Iαa+f ||L2 ≤ Kα||f ||L2 ||Iαa+f ||L2 ≤ Kα||f ||L2 Kα =
(b− a)α

Γ (α + 1)
(24)

which follow from Lemma 2.1 [5]. Now, we shall show that T is a compact and
self-adjoint operator.

Lemma 3. Let 2 > α > 3
2 and p ∈ C[a, b] be an arbitrary positive function.

Then, operator T defined by (18) on the L2(a, b) - space is a compact operator.

Proof. According to (24), operator T is correctly defined as a bounded operator
mapping L2(a, b) −→ L2(a, b) . To prove its compactness, we show that

∫ b

a

∫ b

a

K2(x, s)dxds < ∞. (25)

This integral fulfills inequality

∫ b

a

∫ b

a

(K1(x, s) + K2(x, s))
2
dxds ≤ (26)

≤ 2

∫ b

a

∫ b

a

[
(K1(x, s))

2
+ (K2(x, s))

2
]
dxds.

Both, the K1 and K2 - kernels are continuous in [a, b] × [a, b], thence condition
(25) is fulfilled and operator T , defined by kernel K, is compact.
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Lemma 4. Let 2 > α > 3
2 and p ∈ C[a, b] be an arbitrary positive function.

Operator T defined by (18) on the L2(a, b) - space is a self-adjoint operator.

Proof. Operator T is defined on a Hilbert space, namely on the L2(a, b)-space
of complex-valued functions, endowed with the || · ||L2 norm. It is self-adjoint,
provided 〈f, T f〉 ∈ R for any function from this Hilbert space. Let function
f ∈ L2(a, b), f �= 0 be an arbitrary function. Denote

ψ(x) :=
Iαa+

(b−x)α−1

p(x)

Iαa+
(b−x)α−1

p(x) |x=b

, (27)

ψ(a) = 0 ψ(b) = 1, (28)

ψ′(a) = 0 cDα
a+ψ(x)|x=b =

(b−b)α−1

p(x)

Iαa+
(b−x)α−1

p(x) |x=b

= 0. (29)

For inner product 〈f, T f〉, we obtain:

〈f, T f〉 = (30)

=

∫ b

a

f(x)Iαa+
1

p
Iαb− f(x) dx−

∫ b

a

f(x)ψ(x)Iαa+
1

p
Iαb− f(x)|x=b dx =

=

∫ b

a

f(x)Iαa+
1

p
Iαb− f(x) dx−

∫ b

a

f(x)ψ(x)Iαa+
1

p
Iαb− f(x)|x=b dx =

=

∫ b

a

Iαb−f(x)
1

p(x)
Iαb− f(x) dx−

Iαa+
1
pI

α
b− f(x)|x=b

Iαa+
(b−x)α−1

p(x) |x=b

·
∫ b

a

f(x)Iαa+
(b− x)α−1

p(x)
dx =

=

∫ b

a

1

p(x)
Iαb−f(x)·Iαb− f(x) dx−

Iαa+
1
pI

α
b− f(x)|x=b

Iαa+
(b−x)α−1

p(x) |x=b

·
∫ b

a

(b− x)α−1

p(x)
Iαb−f(x)dx =

=

∫ b

a

1

p(x)
|Iαb−f(x)|2 dx−

Iαa+
1
pI

α
b− f(x)|x=b · Iαa+ 1

pI
α
b− f(x)|x=b

Iαa+
(b−x)α−1

p(x) |x=b

· Γ (α) =

=

∫ b

a

1

p(x)
|Iαb−f(x)|2 dx−

|Iαa+ 1
pI

α
b− f(x)|x=b|2

Iαa+
(b−x)α−1

p(x) |x=b

· Γ (α) ∈ R,

where | · | denotes the complex modulus. From the above property it follows that
operator T is a self-adjoint operator.

Corollary 2. Let 2 > α > 3
2 and p ∈ C[a, b] be an arbitrary positive function.

In the L2(a, b) - space an infinite, countable and orthonormal basis of continu-
ously differentiable eigenfunctions of operator T: {φk; k ∈ N} corresponding to
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simple, positive eigenvalues 1
λ1

> 1
λ2

> ... > 1
λk

...; k ∈ N exists. Moreover, the
following series are convergent:

∞∑
k=1

| 〈f, φk〉 |2 < ∞, 〈f, φk〉 =

∫ b

a

f(x)φk(x)dx, ∀f ∈ L2(a, b), (31)

∞∑
k=1

1

(λk)2
< ∞ (32)

and relation
|φk(x)|
|λk|

< M+ (33)

holds for certain M+ ∈ R and any k ∈ N, x ∈ [a, b].

Proof. According to Lemma 3 and 4, operator T is a self-adjoint and compact
operator. Thus, from the Hilbert-Schmidt theorem, it follows that the infinite,
countable and orthonormal basis of eigenvectors exists in L2(a, b). Moreover, 0 is

the only accumulation point of eigenvalues sequence:
(

1
λk

)
k∈N

. Each eigenvector

φk corresponds to eigenvalue 1
λk

and fulfills equation:

1

λk
φk(x) = Tφk(x) = Iαa+

1

p(x)
Iαb−φk(x) − ψ(x)Iαa+

1

p(x)
Iαb−φk(x)|x=b. (34)

Let us note that for any positive function p ∈ C[a, b], function (b−x)α−1

p(x) ∈ C[a, b],

therefore function ψ given in (27), obtained after integration with Iαa+ is contin-
uously differentiable. This remark also applies to arbitrary function f ∈ L2(a, b),
provided 3

2 < α < 2, which yields Iαb−f ∈ C1[a, b] and Iαa+f ∈ C1[a, b]. Thus,
φk ∈ C1[a, b] for any k ∈ N. Next, each function f ∈ L2(a, b) can be expanded
with regard to the basis {φk; k ∈ N} as follows:

f(x) =
∞∑
k=1

〈f, φk〉φk(x).

From the fact that this series is convergent in L2(a, b), we obtain (31). As kernel
K ∈ L2 ([a, b] × [a, b]), then we expand it by using the basis of eigenvectors
{φk ⊗ φl; k, l ∈ N}:

K(x, s) =

∞∑
k,l=1

ak,lφk(x)φl(s).

We calculate coefficients ak,l:

1

λm
φm(x) = Tφm(x) =

∫ b

a

K(x, s)φm(s)ds =
∞∑
k=1

ak,mφk(x)

and obtain

ak,m =
1

λm
δk,m.
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Thus, integral kernel K is of the form:

K(x, s) =

∞∑
k=1

1

λk
φk(x)φk(s).

From property (25) we obtain (32).
Finally, relation (33) follows from (34) and the Schwarz-Bunyakovsky inequal-

ity for integrals. We can estimate complex modulus |φk(x)| as follows

|φk(x)|
|λk| ≤

(
Iαa+

1

p(x)
Iαb−|φk(x)| + |ψ(x)| · Iαa+ 1

p(x)
Iαb−|φk(x)| |x=b

)
≤

≤ 1

Γ (α)

(∫ b

a

|x− s|α−1 1

p(s)
(Iαb−|φk(s)|) ds+ ||ψ||

∫ b

a

(b− s)α−1 1

p(s)
(Iαb−|φk(s)|) ds

)
≤

≤
|| 1

p
||

Γ (α)
· ||Iαb−φk||L2 · (b− a)α− 1

2√
α− 1

2

(
1 + ||ψ||/

√
2
)
≤

≤ || 1
p
||

Γ (α)
·Kα · (b− a)α− 1

2√
α− 1

2

(
1 + ||ψ||/

√
2
)

= M+ <∞,

where || · || denotes the supremum norm in space C[a, b], ψ is given in (27) and
constant Kα in (24).

Theorem 1. Fractional Sturm-Liouville problem (11)–(12) has an infinite, count-
able set of positive, simple eigenvalues: λ1 < λ2 < ... and corresponding orthonor-
mal continuously differentiable eigenfunctions, provided 3

2 < α < 2 and function
p is an arbitrary positive and continuous function.

Proof. We consider mapping L : CB2[a, b] −→ L2(a, b) determined by the
fractional Sturm-Liouville operator:

Lu(x) = Dα
b− p(x)Dα

a+u(x) = f(x)

defined on the subspace of continuously differentiable functions CB2[a, b] obey-
ing boundary conditions (12)–(13). We note that on the CB2[a, b]- space this
mapping is linear and injective as by using Lemma 1 and Corollary 1 we infer
that the only solution for

Dα
b− p(x)cDα

a+u(x) = 0

is u ≡ 0. By applying the composition rules, we previously derived the right
inverse mapping (18) which can be extended to the Hilbert space L2(a, b). From
Lemma 3 and 4, it follows that T is a self-adjoint and compact operator, defined
on the Hilbert space, therefore by applying Corollary 2, it has an infinite count-
able set of eigenvalues and its continuously differentiable eigenfunctions form an
orthonormal basis in L2(a, b):

1

λk
φk(x) = Tφk.
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We recall that Iαb−f ∈ C1[a, b] and Iαa+f ∈ C1[a, b] for any f ∈ L2(a, b), provided
3
2 < α < 2. Thus, φk ∈ C1[a, b] for any k ∈ N and all eigenvectors obey boundary
conditions (12)–(13), as by applying (27)–(29) and the fact that φk ∈ C1[a, b],
we have

1

λk
φk(a) = Iαa+

1

p
Iαb−φk(x)|x=a − ψ(a)Iαa+

1

p(x)
Iαb−φk(x)|x=b = 0, (35)

1

λk
φk(b) = Iαa+

1

p
Iαb−φk(x)|x=b − ψ(b)Iαa+

1

p(x)
Iαb−φk(x)|x=b = 0, (36)

1

λk
φ′
k(a) = Iα−1

a+

1

p
Iαb−φk(x)|x=a − ψ′(a)Iαa+

1

p(x)
Iαb−φk(x)|x=b = 0, (37)

1

λk

cDα
a+φk(x)|x=b =

1

p
Iαb−φk(x)|x=b − cDα

a+ψ(x)|x=bI
α
a+

1

p(x)
Iαb−φk(x)|x=b = 0.

(38)
Now, we differentiate relation (34) for eigenvectors by applying the composition
rules described in Properties 2 and 3. We obtain:

Dα
b−p(x) cDα

a+φk(x) = λkφk(x) (39)

therefore
Dα

b−p(x) Dα
a+φk(x) = λkφk(x) (40)

because φk ∈ CB2[a, b], k ∈ N. Thus, we conclude that regular fractional Sturm-
Liouville problem (11)–(13) has in the case of order 3

2 < α < 2 an infinite
countable set of simple positive eigenvalues and corresponding continuously dif-
ferentiable eigenfunctions. The eigenfunctions form an orthonormal countable
basis in L2(a, b).

4 Applications - Solving Partial Fractional Differential
Equations

We shall apply the obtained results to solve a time- and space-fractional partial
differential equation in a finite space domain. The solution will be subjected to
boundary conditions (12)–(13). We denote the partial version of FSLO (11) as
follows:

Lx := Dα
b−,xp(x) Dα

a+,x. (41)

The following theorem describes a weak solution of the partial differential frac-
tional equation, derived using the expansion with regard to the eigenfunctions
basis.

Theorem 2. The time- and space-fractional differential equation with the initial
and boundary conditions given below:
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cDβ
0+,tu(t, x) = −Lxu(t, x), (42)

u(0, x) = g(x) g ∈ CB2[a, b] Lxg ∈ L2(a, b), x ∈ [a, b], (43)

u(t, a) = u(t, b) = 0 t ∈ [0,∞) (44)

∂u(t, x)

∂x
|x=a = 0 cDα

a+,xu(t, x)|x=b = 0, (45)

has a unique weak solution continuous in (0,∞) × [a, b]:

u(t, x) =

∞∑
k=1

〈g, φk〉Eβ(−λkt
β)φk(x), (46)

where coefficients 〈g, φk〉 =
∫ b

a g(x) · φk(x) dx, Eβ is the Mittag-Leffler function
and {φk ∈ CB2[a, b]; k ∈ N} is the orthonormal basis of eigenvectors in the
L2(a, b)-space corresponding to fractional Sturm-Liouville operator Lx.

Proof. Let us expand the solution with regard to the eigenfunctions basis:

u(t, x) =
∞∑
k=1

bk(t)φk(x). (47)

By using the orthonormality of eigenvectors we derive the following set of frac-
tional differential equations for variable coefficients bk, k ∈ N

cDβ
0+,tbk(t) = −λkbk(t). (48)

Solutions of the above equation are proportional to the Mittag-Leffler function:

bk(t) = ckEβ(−λkt
β), (49)

where constants ck can be easily derived from initial condition (43). By using

the orthonormality of basis φk, k ∈ N, we obtain: ck =
∫ b

a g(x) · φk(x) dx =
〈g, φk〉 . Thus, solution u is of the form (46) and it also obeys boundary conditions
(44)–(45) as each eigenfunction φk fulfills (12)–(13). Now, we test the uniform
convergence of the above series. For any t > t0 > 0 the following estimation is
valid:

| 〈g, φk〉Eβ(−λkt
β)φk(x)| ≤ | 〈g, φk〉 ·

C

1 + λkt
β
0

φk(x)| ≤ CM+

tβ0

| 〈Lxg, φk〉 |
|λk|

.

In the above estimations, we applied the following inequality for the one-
parameter Mittag-Leffler function, valid for λ, t ∈ R+ [18]:

Eβ(−λtβ) ≤ C

1 + λtβ
.

Next, we observe that the dominating number series is convergent, namely from
the Schwarz-Bunyakovsky inequality for series we have:

∞∑
k=1

| 〈Lxg, φk〉 |
|λk|

≤

√√√√ ∞∑
k=1

| 〈Lxg, φk〉 |2
√√√√ ∞∑

k=1

1

(λk)2
< ∞.
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Thus, the series defining solution u is uniformly convergent in any set [t0,∞) ×
[a, b]. We infer from the Weierstrass’ Majorant theorem that u is continuous in
(0,∞) × [a, b]. Finally, we check that the obtained series is a weak solution to
equation (42). To prove this fact, we show that for each eigenfunction φk from
the countable basis of the L2(a, b)- space, we have

〈(
cDβ

0+,t + Lx

)
u, φk

〉
= 0. (50)

By using the series form of solution, we have for any k ∈ N

〈(
cDβ

0+,t + Lx

)
u, φk

〉
= cDβ

0+,t 〈u, φk〉 + 〈Lxu, φk〉 =

= cDβ
0+,t 〈g, φk〉Eβ

(
−λkt

β
)
+〈u,Lxφk〉 = −λk 〈g, φk〉Eβ

(
−λkt

β
)
+λk 〈u, φk〉 =

= −λk 〈g, φk〉Eβ

(
−λkt

β
)

+ λk 〈g, φk〉Eβ

(
−λkt

β
)

= 0.

5 Conclusion

We considered a regular FSLP with Riemann-Liouville derivatives of order in
the range (1,2), subjected to a set of boundary conditions including vanishing
Dirichlet and fractional Neumann conditions. We extended the classical method
of deriving the existence result on a discrete spectrum and the corresponding
eigenvectors to FSLO. By replacing the analysis of an unbounded FSLO with
a study of its inverse integral and bounded operator and by using the Hilbert-
Schmidt operators’ properties, we proved that the inverse, therefore also FSL
operator, have a discrete spectrum and their eigenfunctions, continuously dif-
ferentiable, form a basis in the space of square-integrable functions. Thus, they
can be applied in solving certain partial fractional differential equations. Indeed,
we constructed for the considered example a continuous weak solution. Further
investigations should extend the simple regular FSLO to a more general case.
We also shall study other 1D and 2D partial differential equations.

References

1. Al-Mdallal, Q.M.: An efficient method for solving fractional Sturm–Liouville prob-
lems. Chaos Solitons and Fractals 40, 183–189 (2009)

2. Al–Mdallal, Q.M.: On the numerical solution of fractional Sturm–Liouville prob-
lem. Int. J. of Comput. Math. 87, 2837–2845 (2010)

3. Erturk, V.S.: Computing eigenelements of Sturm-Liouville Problems of fractional
order via fractional differential transform method. Mathematical and Computa-
tional Applications 16, 712–720 (2011)

4. Forman, J.L., Soerensen, M.: The Pearson diffusions: a class of statistically
tractable diffusion processes. Scandinavian J. Stat. 35, 438–465 (2008)

5. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional
differential equations. Elsevier, Amsterdam (2006)



36 M. Klimek and M. Blasik

6. Klimek, M.: On solutions of linear fractional differential equations of a variational
type. The Publishing Office of Czestochowa University of Technology, Czestochowa
(2009)

7. Klimek, M., Agrawal, O.P.: On a regular fractional Sturm–Liouville problem with
derivatives of order in (0, 1). In: Proceedings of the 13th International Carpathian
Control Conference, Vysoke Tatry (Podbanske), Slovakia, May 28-31 (2012),
doi:dx.doi.org/10.1109/CarpathianCC.2012.6228655

8. Klimek, M., Agrawal, O.P.: Regular fractional Sturm–Liouville problem with gen-
eralized derivatives of order in (0,1). In: Proceedings of the IFAC Joint Confer-
ence: 5th SSSC, 11th WTDA, 5th WFDA, Grenoble, France, February 4-6 (2013),
doi:dx.doi.org/10.3182/20130204-3-FR-4032.00170

9. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math.
Appl. 66, 795–812 (2013)

10. Klimek, M., Agrawal, O.P.: Space- and time-fractional Legendre-Pearson diffusion
equation. In: Proceedings of the ASME International Design Engineering Techni-
cal Conferences & Computers and Information in Engineering Conference (DETC
2013), August 4-7. Oregon USA Paper DETC2013-12604, Portland (2013)

11. Klimek, M., Odzijewicz, T., Malinowska, A.: Variational methods for the fractional
Sturm-Liouville problems. J. Math. Anal. Appl. 416, 402–426 (2014)

12. Klimek, M., Blasik, M.: Regular fractional Sturm-Liouville problem with discrete
spectrum: solutions and applications. In: Proceedings of the 2014 International
Conference on Fractional Differentiaton and Its Applications, Catania, Italy, June
23-25 (2014)

13. Lin, Y., He, T., Shi, H.: Existence of positive solutions for Sturm–Liouville BVPs
of singular fractional differential equations. U. P. B. Sci. Bull. Series A, 74 (2012)

14. Leonenko, N.N., Meerschaert, M.M., Sikorskii, A.A.: Fractional Pearson diffusion.
J. Math Anal. Appl. 403, 532–546 (2013)

15. Malinowska, A.B., Torres, D.F.M.: Introduction to the Fractional Calculus of Vari-
ations. Imperial College Press, London (2012)

16. Neamaty, A., Darzi, R., Dabbaghian, A., Golipoor, J.: Introducing an Iterative
Method for Solving a Special FDE. International Mathematical Forum 4, 1449–
1456 (2009)

17. d’Ovidio, M.: From Sturm–Liouville problems to fractional and anomalous diffu-
sions. Stochastic Processes and their Applications 122, 3513–3544 (2012)

18. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)
19. Qi, J., Chen, S.: Eigenvalue problems of the model from nonlocal continuum me-

chanics. J. Math. Phys. 52, 073516 (2011)
20. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev.

E 53, 1890–1899 (1996)
21. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)
22. Rivero, M., Trujillo, J.J., Velasco, M.P.: A fractional approach to the Sturm-

Liouville problem. Cent. Eur. J. Phys. (2013), doi: 10.2478/s11534-013-0216-2
23. Sagan, H.: Boundary and Eigenvalue Problems in Mathematical Physics. J. Wiley

& Sons, Inc., New York (1961)
24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives.

Gordon and Breach, Yverdon (1993)
25. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems:

Theory and numerical approximation. J. Comput. Phys. 252, 495–517 (2013)
26. Zettl, A.: Sturm-Liouville Theory. Mathematical Surveys and Monographs,

vol. 121. American Mathematical Society (2005)



Noether’s Second Theorem for Variable Order

Fractional Variational Problems

Agnieszka B. Malinowska1 and Tatiana Odzijewicz2

1 Faculty of Computer Science
Bialystok University of Technology

15-351 Bia�lystok, Poland
2 Center for Research and Development in Mathematics and Applications

Department of Mathematics, University of Aveiro
3810-193 Aveiro, Portugal

Abstract. We prove an analog of the second Noether theorem for vari-
able order fractional variational problems. From this theorem, we get
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1 Introduction

In 1993, Samko and Ross [20] proposed an interesting generalization of frac-
tional operators. Namely, they introduced the study of fractional integration
and differentiation when the order is not a constant but a function. With time
several works were dedicated to variable order fractional operators [1, 3, 8], and
many interesting applications of those fractional operators were proposed, e.g.,
in mechanics and in the theory of viscous flows [3, 4, 8, 17–19]. Recently, also
the study of the calculus of variations with variable order fractional operators
has been introduced. In [2,15] generalizations of the fractional Hamilton princi-
ple are proposed and appropriated Euler–Lagrange equations were proved. The
works [13, 14] are devoted to problems of the calculus of variations with func-
tionals given by multi-dimensional definite integrals involving partial derivatives
of variable fractional order. An analog of the first Noether theorem for variable
order fractional variational problem is proved in [16].

The aim of the current work is to prove an analog of the second Noether
theorem, asserting that if a variational integral is invariant under transformations
parameterized linearly by r arbitrary functions and their derivatives up to a given
order m, then there are r identities between Euler–Lagrange expressions and
their derivatives up to order m (see, e.g., [9,11]. These identities Noether called
“dependencies”. For example, the Bianchi identities, in the general theory of
relativity, are examples of such “dependencies”. Noether’s second theorem has
applications in general relativity, electrodynamics, hydromechanics, quantum
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chromodynamics and other gauge field theories. It should be mentioned that a
generalize of the second Noether theorem to fractional problems was already
proved in [10]. However, in contrast with this work, where fractional operators
with a constant non-integer order α were considered, here we study more general
fractional variational problems with variable order derivatives.

The article is organized as follows. In Section 2 we give the definitions and
basic properties of both ordinary and partial integrals and derivatives of variable
fractional order. An analog of the second Noether theorem is stated and proved
in Section 3. We finish with a simple illustrative example in Section 4.

2 Preliminaries

Let us introduce the following triangle:

Δ :=
{

(t, τ) ∈ R
2 : a ≤ τ < t ≤ b

}
,

and let α(t, τ) : Δ̄ → [0, 1] be such that α ∈ C1
(
Δ̄;R

)
.

Definition 1 (Left and right Riemann–Liouville integrals of variable
order). Operator

aI
α(·,·)
t [f ](t) :=

t∫

a

1

Γ (α(t, τ))
(t− τ)α(t,τ)−1f(τ)dτ (t > a)

is the left Riemann–Liouville integral of variable fractional order α(·, ·), while

tI
α(·,·)
b [f ](t) :=

b∫

t

1

Γ (α(τ, t))
(τ − t)α(τ,t)−1f(τ)dτ (t < b)

is the right Riemann–Liouville integral of variable fractional order α(·, ·).

Next we define two types of variable order fractional derivatives.

Definition 2 (Left and right Riemann–Liouville derivatives of variable
order). The left Riemann–Liouville derivative of variable fractional order α(·, ·)
of a function f is defined by

∀t ∈ (a, b], aD
α(·,·)
t [f ](t) :=

d

dt
aI

1−α(·,·)
t [f ](t),

while the right Riemann–Liouville derivative of variable fractional order α(·, ·)
is defined by

∀t ∈ [a, b), tD
α(·,·)
b [f ](t) := − d

dt
tI

1−α(·,·)
b [f ](t).
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Definition 3 (Left and right Caputo derivatives of variable fractional
order). The left Caputo derivative of variable fractional order α(·, ·) is defined
by

∀t ∈ (a, b], C
a D

α(·,·)
t [f ](t) := aI

1−α(·,·)
t

[
d

dt
f

]
(t),

while the right Caputo derivative of variable fractional order α(·, ·) is given by

∀t ∈ [a, b), C
t D

α(·,·)
b [f ](t) := −tI

1−α(·,·)
b

[
d

dt
f

]
(t).

Partial variable order fractional integrals and derivatives are natural gener-
alizations of the corresponding fractional operators of one variable. Along the
work, for i = 1, . . . , n, let ai, bi be numbers in R and t = (t1, . . . , tn) be such
that t ∈ Ωn, where Ωn = (a1, b1)× · · ·× (an, bn) is a subset of Rn. Moreover, let
us define the following sets:

Δi :=
{

(ti, τ) ∈ R
2 : ai ≤ τ < ti ≤ bi

}
, i = 1 . . . , n.

In the following we assume that αi : Δ̄i → [0, 1], αi ∈ C1
(
Δ̄i;R

)
, i = 1, . . . , n,

t ∈ Ωn and f : Ωn → R.

Definition 4. The left Riemann–Liouville partial integral of variable fractional
order αi(·, ·) with respect to the ith variable ti, is given by

aiI
αi(·,·)
ti [f ](t) :=

ti∫

ai

1

Γ (αi(ti, τ))
(ti − τ)αi(ti,τ)−1f(t1, . . . , ti−1, τ, ti+1, . . . , tn)dτ,

ti > ai, while

tiI
αi(·,·)
bi

[f ](t) :=

bi∫

ti

1

Γ (αi(τ, ti))
(τ − ti)

αi(τ,ti)−1f(t1, . . . , ti−1, τ, ti+1, . . . , tn)dτ,

ti < bi, is the right Riemann–Liouville partial integral of variable fractional order
αi(·, ·) with respect to variable ti.

Definition 5. The left Riemann–Liouville partial derivative of variable frac-
tional order αi(·, ·), with respect to the ith variable ti, is given by

∀ti ∈ (ai, bi], aiD
αi(·,·)
ti [f ](t) =

∂

∂ti
aiI

1−αi(·,·)
ti [f ](t)

while the right Riemann–Liouville partial derivative of variable fractional order
αi(·, ·), with respect to the ith variable ti, is defined by

∀ti ∈ [ai, bi), tiD
αi(·,·)
bi

[f ](t) = − ∂

∂ti
tiI

1−αi(·,·)
bi

[f ](t)
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Definition 6. The left Caputo partial derivative of variable fractional order
αi(·, ·), with respect to the ith variable ti, is defined by

∀ti ∈ (ai, bi],
C
ai
D

αi(·,·)
ti [f ](t) = aiI

1−αi(·,·)
ti

[
∂

∂ti
f

]
(t),

while the right Caputo partial derivative of variable fractional order αi(·, ·), with
respect to the ith variable ti, is given by

∀ti ∈ [ai, bi),
C
tiD

αi(·,·)
bi

[f ](t) = −tiI
1−αi(·,·)
bi

[
∂

∂ti
f

]
(t).

From now on we make the assumption:

(H) αi(t, τ) = αi(ti − τ) such that αi ∈ C1([0, bi − ai]; (0, 1)), i = 1, . . . , n.

Corollary 1. [Cf. [12]] If functions f : Rn → R and η : Rn → R are such that

f, η ∈ C1(Ω̄n;R) and tiI
1−αi(·)
bi

[f ] ∈ C1(Ω̄n;R), then

∫
Ωn

f(t)·Cai
D

αi(·)
ti

[η](t) dt =

∫
∂Ωn

η(t)·tiI1−αi(·)
bi

[f ](t)·νi d(∂Ωn)+

∫
Ωn

η(t)·tiDαi(·)
bi

[f ](t) dt,

where νi is the outward pointing unit normal to ∂Ωn.

3 Main Result

For n,m ∈ N let us assume that y : Rn → R
m, and ζ : ∂Ωn → R

m is a given
function. Consider the following functional:

I : A(ζ) −→ R

y �−→
∫
Ωn

F (y(t),∇D[y](t), t) dt
(1)

where dt = dt1 . . . dtn,

A(ζ) :=
{
y ∈ C1(Ω̄n;Rm) : y|∂Ωn

= ζ,Cai
D

αi(·)
ti [yj ] ∈ C(Ω̄n;R), j = 1, . . . ,m

}
,

and ∇D[y] = (∇D[y1], . . . ,∇D[ym]), ∇D =
n∑

i=1

ei · Cai
D

αi(·)
ti , {ei : i = 1, . . . , n} is

the standard basis in R
n. We assume that F is a Lagrangian of class C1:

F : Rm × R
mn × Ω̄n −→ R

(x1, x2, t) �−→ F (x1, x2, t),

and tiI
1−αi(·)
bi

[
∂F (y(τ),∇D[y](τ),τ)

∂C
ai

D
αi(·)
ti

[yj]

]
(t) is continuously differentiable on Ω̄n, i =

1, . . . , n, j = 1, . . . ,m.
Following theorem states that if a function minimizes (or maximizes) func-

tional (1), then it necessarily must satisfy (2).
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Theorem 1 (Cf. [14]). If ỹ ∈ A(ζ) minimizes (or maximizes) the functional
(1) then ỹ satisfies the following equations

∂F

∂yj
(y(t),∇D[y](t), t) +

n∑
i=1

tiD
αi(·)
bi

[
∂F (y(τ),∇D[y](τ), τ)

∂C
ai
D

αi(·)
ti [yj ]

]
(t) = 0, (2)

for t ∈ Ωn, j = 1, . . . ,m.

Define

Ef
j (F ) :=

∂F

∂yj
+

n∑
i=1

tiD
αi(·)
bi

[
∂F

∂C
ai
D

αi(·)
ti [yj ]

]
, j = 1, . . . ,m.

We shall call Ef
j (F ) the fractional Euler–Lagrange expressions.

Let us consider infinitesimal transformations that depend upon arbitrary func-
tions of independent variables and their partial variable order fractional deriva-
tives. Namely, let

{
t̄ = t,

ȳj(t) = yj(t) + T j1[p1](t) + · · · + T jr[pr](t), j = 1, . . . , n,
(3)

where

T js := cjs(t) +

n∑
i=1

cjsi (t)Cai
D

βjis(·)
ti , 0 < βjsi(·) ≤ 1,

are formal linear fractional differential operators and ps, s = 1, . . . , r are the r
arbitrary, independent C1 functions defined on Ω̄n. We assume that functions

cjsi and C
ai
D

βjis(·)
ti [ps] are of the C1 class on Ω̄n. To formulate the second Noether

theorem we make use of the formal adjoint operator T̃ js of T js:

∫

Ωn

f(t)T js[ps](t) dt =

∫

Ωn

ps(t)

[
cjs(t)f(t) +

n∑
i=1

tiD
αi(·)
bi

[cjsi · f ](t)

]
dt + [·]

=

∫

Ωn

ps(t)T̃
js[f ](t) dt + [·] (4)

for f ∈ C1(Ω̄n;R), tiI
1−αi(·)
bi

[cjsi ·f ] ∈ C1(Ω̄n;R), and where [·] represents bound-
ary terms; this can be obtained by the integration by parts (see Corollary 1).

Now, let us introduce the notion of invariance.

Definition 7. Functional (1) is invariant under transformations (3) if and only

if for all y ∈ C1(Ω̄n,R
m), such that C

ai
D

αi(·)
ti [yj ] ∈ C(Ω̄n;R), we have

∫
Ωn

F (ȳ(t),∇D[ȳ](t), t)dt =

∫
Ωn

F (y(t),∇D[y](t), t)dt.



42 A.B. Malinowska and T. Odzijewicz

Theorem 2 (The second Noether theorem). If functional (1) is invariant
under transformations (3), then there exist r identities of the form

n∑
j=1

T̃ js
[
Ef

j (F )
]

= 0, s = 1, . . . , r,

where T̃ js is the formal adjoint of T js.

Proof. Using the definition of invariance and noting that the family of transfor-
mations (3) depend upon arbitrary functions p1, . . . , pr, we conclude that, for
any real number ε,∫

Ωn

F (y1(t), . . . , ym(t),∇D[y1](t), . . .∇D[ym](t), t)dt

=

∫
Ωn

F (y1(t) + εT 1s[ps](t), . . . , ym(t) + εTms[ps](t),

∇D[y1](t) + ∇D[εT 1s[ps]](t), . . . ,∇D[ym](t) + ∇D[εTms[ps]](t), t)dt,

where T js[ps] =
∑r

s=1 T
js[ps], j = 1, . . . ,m. Differentiating with respect to ε

and taking ε = 0, we get

0 =

m∑
j=1

∫
Ωn

[
∂F

∂yj
(y(t),∇D[y](t), t)T js[ps](t)

+

n∑
i=1

∂F

∂C
ai
D

αi(·)
ti [yj]

(y(t),∇D[y](t), t)Cai
D

αi(·)
ti

[
T js[ps]

]
(t)

]
dt. (5)

Applying Corollary 1 we obtain

n∑
i=1

∫
Ωn

∂F

∂C
ai
D

αi(·)
ti [yj ]

(y(t),∇D[y](t), t)Cai
D

αi(·)
ti

[
T js[ps]

]
(t)dt

=

n∑
i=1

∫
Ωn

tiD
αi(·)
bi

[
∂F (y(τ),∇D[y](τ), τ)

∂C
ai
D

αi(·)
ti [yj ]

]
(t)T js[ps](t)dt

+

n∑
i=1

∫

∂Ωn

T js[ps](t) · tiI
1−αi(·)
bi

[
∂F (y(τ),∇D[y](τ), τ)

∂C
ai
D

αi(·)
ti [yj]

]
(t) · νi d(∂Ωn). (6)

Since ps are arbitrary, we may choose ps such that:

ps(x)|∂Ωn = 0, C
tiD

βjis(·)
bi

[ps](t)|∂Ωn = 0.

Therefore, the boundary term in (6) vanishes and combining (6) with (5) we get

0 =

m∑
j=1

∫
Ωn

{
∂F

∂yj
(y(t),∇D[y](t), t)

+

n∑
i=1

tiD
αi(·)
bi

[
∂F (y(τ),∇D[y](τ), τ)

∂C
ai
D

αi(·)
ti [yj ]

]
(t)

}
T js[ps](t)dt. (7)
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Using the definition of the formal adjoint operator (see (4)) we may write (7) as

0 =

m∑
j=1

∫

Ωn

ps(t)T̃
js
[
Ef

j (F )
]

(t) dt + [·]

Again appealing to the arbitrariness of ps we can force the boundary term to
vanish. Finally, by the fundamental lemma of the calculus of variations and by

arbitrariness of ps, we get
∑m

j=1 T̃
js
[
Ef

j (F )
]

= 0 for all s = 1, . . . , r.

Remark 1. Observe that in the special case, when αi and βjsi are constant,
Theorem 2 gives Theorem 3.6 that was proved in [10].

4 Example

In electrodynamics, if the Lagrangian represents a charged particle interacting
with a electromagnetic field, the Lagrangian density for the electromagnetic field
(see [5, 7]) has the following form:

L =
1

8π
(E2 −H2), (8)

where E and H are the electric field vector and the magnetic field vector, re-
spectively. Let t = (t0, t1, t2, t3, t4) and A(t) = (A1(t), A2(t), A3(t)), A0(t) be a
vector potential and a scalar potential, respectively. They are defined by setting

E = ∇A0 −
∂A

∂t0
, H = curlA. (9)

Replacing E and H in (8) by their expressions (9) we obtain the Lagrangian
density in the form

L =
1

8π

[
(∇A0 −

∂A

∂t0
)2 − (curlA)2

]
. (10)

Note that, the four-potential (A0,A) is not uniquely determined by the vectors
E and H. Namely, E and H do not change if we make a gauge transformation:

Ãj(t) = Aj(x) +
∂f

∂tj
(x), j = 0, . . . , 3, (11)

where f : Ω → R, Ω ⊂ R
4, is an arbitrary function of class C2 in all of its

argument. Therefore, the Lagrangian density (10), and hence the action func-
tional, is invariant under transformation (11). By the second Noether theorem
(see [6, 7]), we conclude that

3∑
j=0

∂

∂tj
(Ej(L)) = 0,
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where

Ej(L) =
∂L
∂Aj

−
3∑

i=0

∂L
∂
(

∂Aj

∂ti

) , j = 0, 1, 2, 3,

are Lagrange expressions corresponding to (10). Therefore, equations Ej(L) =
0 do not uniquely determine the potential (A0,A) and to avoid this lack of
uniqueness, e.g., the Lorentz condition divA − ∂A0

∂t0
= 0 can be imposed on

(A0,A).
We will show that result known for the Lagrangian density for the electro-

magnetic field (8) can be generalized to the fractional Lagrangian density by
changing classical partial derivatives by fractional partial derivatives of variable
order. In order to do this we use the functional:

I : A −→ R

y �−→
∫
Ω4

F (y(t),∇D[y](t), t) dt
(12)

where dt = dt1 . . . dt4,

A =
{
y ∈ C1(Ω̄4;R4) : C

ai
D

αi(·)
ti [yj ] ∈ C(Ω̄4;R), j = 1, . . . , 4

}
,

and

F (y(t),∇D[y](t), t) =
(
C
a2
D

α2(·)
t2 [y1](t) − C

a1
D

α1(·)
t1 [y2](t)

)2

+
(
C
a3
D

α3(·)
t3 [y1](t) − C

a1
D

α1(·)
t1 [y3](t)

)2
+
(
C
a4
D

α4(·)
t4 [y1](t) − C

a1
D

α1(·)
t1 [y4](t)

)2

+
(
C
a3
D

α3(·)
t3 [y4](t) − C

a4
D

α4(·)
t4 [y3](t)

)2
+
(
C
a4
D

α4(·)
t4 [y2](t) − C

a2
D

α2(·)
t2 [y4](t)

)2

+
(
C
a2
D

α2(·)
t2 [y3](t) − C

a3
D

α3(·)
t3 [y2](t)

)2
. (13)

For Lagrangian density F we have the the following fractional Euler–Lagrange
expressions:

Ef
j (F ) :=

∂F

∂yj
+

4∑
i=1

tiD
αi(·)
bi

[
∂F

∂C
ai
D

αi(·)
ti [yj ]

]
, j = 1, . . . , 4. (14)

Observe that functional (12) is invariant under a gauge transformation:

ỹj(t) = yj(t) + C
aj
D

αj(·)
tj f(t), j = 1, . . . , 4,

where f : Ω → R is an arbitrary function of class C2 in all of its argument.
Therefore, by Theorem (2), we conclude that

4∑
j=1

tjD
αj(·)
bj

(
Ef

j (F )
)

= 0,
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where Ef
j (F ) are Euler–Lagrange expressions (14). Equations Ej(F ) = 0 do not

uniquely determine the vector function y. Therefore, as it is in the case of the
classical electromagnetic field, to avoid this lack of uniqueness, the additional
condition should be imposed on y = (y1, y2, y3, y4).
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Abstract. The Caputo- and Riemann–Liouville–type fractional order
difference initial value problems for linear and semilinear equations are
discussed. We take under our consideration the possible solution via the
classical Z-transform method for any positive order. We stress the formu-
las that used the concept of discrete Mittag–Leffler fractional function.
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1 Introduction

Recently, in many papers systems with fractional derivatives and differences
are widely discussed and their properties are presented usually for fractional
orders from the interval (0, 1]. In the paper the possible solutions of linear and
semilinear systems with the Caputo– and Riemann–Liouville–type (difference)
operators are studied for any positive order α > 0. However we use notation that
α ∈ (q − 1, q], where q ∈ N1. The possible solution via the classical Z-transform
method for any positive order are taken under our consideration. We stress the
formulas that used the concept of discrete Mittag–Leffler fractional function.

Basic properties of fractional sums and difference operators were developed
firstly in [11] and continued by Atici and Eloe in [5,6], Baleanu and Abdel-
jawad in [2,3]. Another concept of the fractional sum/difference was introduced
in [8,10,7]. In the cited literature there are usually presented the methods of solu-
tions via recurrence or transform methods but not so often via the Z-transform.
The problem of stability properties for fractional difference systems with higher
orders authors studied in [4,19,20]. In the presented paper we only state formulas
for solutions to initial value problems without studying the stability property of
the considered systems. As we stressed in paper for example [13] for commen-
surate case and in [18] for multi–order case, the conversion of the Grünwald–
Letnikov–type operator to the Riemann–Liouville–type gives the same result for
the first mentioned operator.

Fractional differences used in models of control systems and could be under-
stand as an approximation of continuous operators (see [14]) and a possibility of

c© Springer International Publishing Switzerland 2015 47
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involving some memory to difference systems, i.e. systems in which the current
state depends on the full history of systems’ states. The main advantage of the
use of the Z-transform is to introduce the natural language for discrete systems,
it means to work with sequences instead of discrete functions defined on various
domains.

The structure of the paper is the following. In Section 2 the preliminary
material is presented. Section 3 gives the formula for the Z-transform of the
Caputo–type operator, then in Section 4 we investigate Riemann-Liouville–type
operator with positive order.

2 Preliminaries

In this section, we make a review of notations, definitions, and some preliminary
facts which are useful for the paper. The necessary definitions and technical
propositions that are used in the sequel therein the paper are recalled.

Let h > 0, a ∈ R and (hN)a := {a, a + h, a + 2h, ...} .
For a function x : (hN)a → R the forward h-difference operator is defined

as (see [10]) (Δhx)(t) = x(t+h)−x(t)
h , where t ∈ (hN)a and (Δ0

hx)(t) := x(t).
Let q ∈ N0 and Δq

h := Δh ◦ · · · ◦Δh is q-fold application of operator Δh. Then
(Δq

hx)(t) = h−q
∑q

k=0(−1)q−k
(
q
k

)
x(t + kh) .

Let us introduce the family of binomial functions on Z parameterized by μ > 0
and given by the values: ϕ̃μ(n) =

(
n+μ−1

n

)
for n ∈ N0 and ϕ̃μ(n) = 0 for n < 0.

Definition 1. For a function x : (hN)a → R the fractional h-sum of order
α > 0 is given by

(
aΔ

−α
h x

)
(t) := hα (ϕ̃α ∗ x) (n) , where t = a+(α+n)h, x(s) :=

x(a + sh), n ∈ N0 and “∗” denotes a convolution operator, i.e. (ϕ̃α ∗ x) (n) :=∑n
s=0

(
n−s+α−1

n−s

)
x(s)q . Additionally, we define

(
aΔ

0
hx
)

(t) := x(t).

For a = 0 we will write shortly Δ−α
h instead of 0Δ

−α
h . Note that aΔ

−α
h x :

(hN)a+αh → R. Let us recall that the Z-transform of a sequence {y(n)}n∈N0 is

a complex function given by Y (z) := Z[y](z) =
∑∞

k=0
y(k)
zk , where z ∈ C is a

complex number for which the series
∑∞

k=0 y(k)z−k converges absolutely. Note

that since
(
k+α−1

k

)
= (−1)k

(−α
k

)
, then for |z| > 1 we have

Z [ϕ̃α] (z) =
∞∑
k=0

1

zk

(
k + α− 1

k

)
=

(
z

z − 1

)α

. (1)

Proposition 1 ([17]). For t = a + αh + nh ∈ (hZ)a+αh let us define y(n) :=(
aΔ

−α
h x

)
(t) and x(n) = x(a + nh). Then

Z [y] (z) =

(
hz

z − 1

)α

X(z) , (2)

where X(z) := Z [x] (z).
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In [10] the authors prove the following lemma that gives transition between
fractional summation operators for any h > 0 and h = 1.

Lemma 1. Let x : (hN)a → R and α > 0. Then,
(
aΔ

−α
h x

)
(t) = hα

(
a
h
Δ−α

1 x̃
)

(
t
h

)
, where t ∈ (hN)a+αh and x̃(s) = x(sh).

We define the discrete version of Mittag-Leffler function and prove that with
some values of parameters it is an eigenfunction of difference equation with
Caputo– or Riemann–Liouville–type difference operator with order α ∈ (q−1, q],
where q ∈ N1. In [17] we use such a function but for orders from (0, 1] or also cite
from [3]. Here let us define the discrete Mittag-Leffler two-parameter function as
follows:

E(α,β)(λ, n) :=
∞∑
k=0

λkϕ̃kα+β(n− qk) =
n∑

k=0

λkϕ̃kα+β(n− qk) , (3)

where the second equation only claims that for n < qk we have values of
ϕ̃kα+β(n − qk) = 0. This is not in contradiction with the definition of Mittag–
Leffler discrete type functions stated in [1] or used in [17]. Later on we will show
that for β = 1 and β = α the formula (3) gives an eigenfunction of difference
equation with Caputo– or Riemann–Liouville–type difference operator, respec-
tively. In fact in the paper we will use the following discrete Mittag–Leffler–type
functions

E(α,α)(λ, n) =

∞∑
k=0

λkϕ̃kα+α(n− qk) =

∞∑
k=0

λk

(
n− qk + (k + 1)α− 1

n− qk

)
, (4)

E(α)(λ, n) := E(α,1)(λ, n) =

∞∑
k=0

λkϕ̃kα+1(n− qk) =

∞∑
k=0

λk

(
n− qk + kα

n− qk

)
, (5)

E(α,0)(λ, n) =

∞∑
k=0

λkϕ̃kα(n− qk) =

∞∑
k=0

λk

(
n− qk + kα− 1

n− qk

)
. (6)

Based on (1) for family of functions ϕ̃kα+β we can state the following result
for discrete Mittag-Leffler function.

Proposition 2. Let α ∈ (q − 1, q] and ν = α− q, q = νh, q ∈ N1. Then

1. E(α,β)(λ, 0) = 1 .

2. For z such that |z| > 1 we have

Z
[
E(α,β)(λ, ·)

]
(z) =

(
z

z − 1

)β (
1 − λ

zq

(
z

z − 1

)α)−1

,

where |z| > 1 and |z − 1|α|z|q−α > |λ|.
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Proof. The item 1. is obvious, we prove part 2. By basic calculations we have

Z
[
E(α,β)(λ, ·)

]
(z) =

∞∑
k=0

∞∑
n=0

λk

(
n− qk + kα + β − 1

n− qk

)
z−n

=

∞∑
k=0

λkz−qk
∞∑
s=0

(
s + kα + β − 1

s

)
z−s

=

∞∑
k=0

(
λ

zq

)k ∞∑
s=0

(−1)s
(
−kα− β

s

)
z−s

=

(
z

z − 1

)β ∞∑
k=0

(
λ

zq

)k (
z

z − 1

)kα

=

(
z

z − 1

)β (
1 − λ

zq

(
z

z − 1

)α)−1

,

where the summation exists for |z| > 1 and |z − 1|α|z|q−α > |λ|.

3 Caputo-Type Operator with Positive Order

Let us define, like in [15], the family of functions ϕk,α : Z → R parameterized
by k ∈ N0 and α ∈ (q − 1, q], q ∈ N1, with the following values

ϕ∗
k,α(n) :=

{(n−qk+kα
n−qk

)
, for n ∈ Nqk

0, for n < qk
. (7)

Proposition 3 ([15]). Let function ϕ∗
k,α be defined by (7). Then

Z
[
ϕ∗
k,α

]
(z) =

1

zqk

(
z

z − 1

)kα+1

(8)

for z such that |z| > 1.

For family of functions ϕ∗
k,α we can state the following proposition.

Proposition 4 ([15]). Let α ∈ (q − 1, q], q ∈ N1, and ν = α − q. Then for

n ∈ N0 one has
(
Δ−αϕ∗

k,α

)
(n + ν) = ϕ∗

k+1,α(n) .

In this section we recall the definition of Caputo–type operator and give the prop-
erties of this operator, in particular the formula for its Z-transform is proved.

The definition of the Caputo–type fractional h-difference operator can be
found, for example, in [9] (for h = 1) or in [12] (for any h > 0).

Definition 2. Let α ∈ (q−1, q], q ∈ N1 and a ∈ R. The Caputo–type fractional
h-difference operator aΔ

α
hx of order α for a function x : (hN)a → R is defined

by (
aΔ

α
h,∗x

)
(t) =

(
aΔ

−(q−α)
h (Δq

hx)
)

(t) , (9)

where t ∈ (hN)a+(q−α)h.
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Moreover, for α = q ∈ N1 we have
(
aΔ

q
h,∗x

)
(t) = (Δq

hx) (t).

There exists the transition formula for the Caputo–type operator between
the cases for any h > 0 and h = 1. Let x : (hN)a → R and α ∈ (q − 1, q],

q ∈ N1. Then,
(
aΔ

α
h,∗x

)
(t) = h−α

(
a
h
Δα

1,∗x̃
) (

t
h

)
, where t ∈ (hN)a+(q−α)h and

x̃(s) = x(sh). For the case h = 1 we will write: a
h
Δα

∗ := a
h
Δα

1,∗ and Δq := Δq
1.

Proposition 5 ([15]). For a ∈ R, α ∈ (q − 1, q], q ∈ N1 let us define y(n) :=(
aΔ

α
h,∗x

)
(t), where t ∈ (hN)a+(q−α)h and t = a + (q − α)h + nh. Then

Z [y] (z) = h−αzq
(

z

z − 1

)−α
(
X(z) − z

z − 1

q−1∑
k=0

(z − 1)−k
(
Δk

hx
)

(a)

)
, (10)

where X(z) = Z[x](z) and x(n) := x(a + nh).

The Z-transform can be used to show some properties of the Caputo–type oper-
ator of functions related with the solutions of initial value problems. In [15] we
proved that for k ∈ N1

(
0Δ

αϕ∗
k,α

)
(n + q − α) = ϕ∗

k−1,α(n) . (11)

Using the notation of the family of functions ϕ∗
k,α we can write the formula for

Mittag–Leffler function defined by (5) as

E(α)(λ, n) := E(α,1)(λ, n) =

∞∑
k=0

λkϕ∗
k,α(n) .

Moreover, by equations: (5) and (11) we easily see the following property.

Proposition 6. Let α ∈ (q − 1, q] and ν = q − α, q = νh, q ∈ N1.

1.
(
Δ−αE(α)(λ, ·)

)
(n− ν) = 1

λE(α)(λ, n− 1) ,

2.
(
Δα

∗E(α)(λ, ·)
)

(n + ν) = λE(α)(λ, n) .

The next proposition states that the function E(α)(λh
α, ·) is an eigenfunction of

fractional difference equation with the Caputo–type operator.

Proposition 7. Let α ∈ (q − 1, q] and a = (α− q)h. The initial value problem

(
aΔ

α
h,∗x

)
(nh) = λx(nh + a) , n ∈ Nq (12)(

Δi
hx
)

(a) = bi , i = 0, . . . , q − 1 (13)

has the unique solution given by the formula

x(a + nh) = x(n) =

q−1∑
i=0

(
Δq−i−1E(α)(λh

α, ·)
)

(n− (q − 1))bi . (14)
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Proof. Let y(n) =
(
aΔ

α
h,∗x

)
(nh) and x(n) = x(nh + a). Then using the Z-

transform of both sides of (12) we get the algebraic equation

(
zq
(

z

z − 1

)−α

− hαλ

)
X(z) = zq

(
z

z − 1

)−α
z

z − 1

q−1∑
i=0

(z − 1)−ibi .

Then we calculate that

X(z) =
z

z − 1

(
1 − 1

zq

(
z

z − 1

)α

λhα

)−1 q−1∑
i=0

(z − 1)−ibi .

Taking

W (z) =
z

z − 1

(
1 − 1

zq

(
z

z − 1

)α

λhα

)−1

and

G(z) =
1

zq−1

q−1∑
i=0

(z − 1)q−i−1bi

=
1

zq−1

q−1∑
i=0

q−i−1∑
s=0

(
q − i− 1

s

)
(−1)q−i−s−1zsbi

=

q−1∑
i=0

q−i−1∑
s=0

(
q − i− 1

s

)
(−1)q−i−s−1 1

zq−1−s
bi

we get
X(z) = W (z)G(z) .

For W (z) from Proposition 2 we see that

Z−1[W ](n) = E(α)(λh
α, n) .

Then

x(a + nh) =x(n) = Z−1[X ](n) = Z−1[W (z)G(z)](n)

=

q−1∑
i=0

q−i−1∑
s=0

(
q − i− 1

s

)
(−1)q−i−s−1E(α)(λh

α, n− (q − s− 1))bi

=

q−1∑
i=0

(
Δq−i−1E(α)(λh

α, ·)
)

(n− (q − 1))bi .

The immediate consequence of Proposition 7 is the formula for solution of
semilinear equation.

Proposition 8. Let α ∈ (q − 1, q] and a = (α− q)h. The initial value problem
(
aΔ

α
h,∗x

)
(nh) = λx(nh + a) + f(nh) , (15)(

Δi
h (x)

)
(a) = bi , i = 0, . . . , q − 1 (16)
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where n ∈ Nq has the unique solution given by the formula

x(a + nh) =

q−1∑
i=0

(
Δq−i−1E(α)(λh

α, ·)
)

(n− (q − 1))bi + E(α)(λh
α, n− q) ∗ f(n)

and f(n) = f(nh).

Example 1. Let us consider the following initial value problem(
aΔ

α
h,∗x

)
(nh) = 0.1 · x(nh + a) , (17a)

x(a) = 1 (17b)

(Δhx) (a) = 0.1 (17c)

Then Figure 1 presents the graphs of solutions to initial value problems (17)
with the Caputo–type operator with orders: 1.1, 1.5, 1.9.

Fig. 1. Trajectories of equation
(
aΔ

α
h,∗x

)
(nh) = λ · x(nh+ a) with the Caputo–type

operator for λ = 0.1 and the initial conditions x(a) = 1, (Δhx) (a) = λ, see Example 1

4 Riemann–Liouville–Type Operator with Positive Order

Let us define, like in [16], the family of functions ϕk,α : Z → R parameterized
by k ∈ N0 and α ∈ (q − 1, q], q ∈ N1, with the following values

ϕk,α(n) :=

{(n−qk+kα+α−1
n−qk

)
, for n ∈ Nqk

0, for n < qk
. (18)

Observe that ϕk,α(n) = ϕ̃kα+α(n− qk).
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Proposition 9 ([16]). Let function ϕk,α be defined by (18). Then

Z [ϕk,α] (z) =
1

zqk

(
z

z − 1

)(k+1)α

(19)

for z such that |z| > 1.

For family of functions ϕk,α, k ∈ N0, α > 0, we can state the following
proposition.

Proposition 10 ([16]). Let α ∈ (q − 1, q], q ∈ N1, and ν = α − q. Then for
n ∈ N0 one has (

Δ−αϕk,α

)
(n + ν) = ϕk+1,α(n) . (20)

The definition of the fractional h-difference Riemann-Liouville–type operator
can be found, for example, in [5] (for h = 1) or in [8] (for any h > 0).

Definition 3. Let α ∈ (q−1, q], q ∈ N1 and a ∈ R. The Riemann-Liouville–type
fractional h-difference operator aΔ

α
hx of order α for a function x : (hN)a → R

is defined by

(aΔ
α
hx) (t) =

(
Δq

h

(
aΔ

−(q−α)
h x

))
(t) , (21)

where t ∈ (hN)a+(q−α)h.

Moreover, for α = q ∈ N1 we have: (aΔ
q
hx) (t) = (Δq

hx) (t).
There exists the transition formula for the Riemann-Liouville–type operator

between the cases for any h > 0 and h = 1. Let x : (hN)a → R and α ∈ (q−1, q],
q ∈ N1. Then, (aΔ

α
hx) (t) = h−α

(
a
h
Δα

1 x̃
) (

t
h

)
, where t ∈ (hN)a+(q−α)h and

x̃(s) = x(sh). For the case h = 1 we will write: a
h
Δα := a

h
Δα

1 and Δq := Δq
1.

Proposition 11 ([16]). For a ∈ R, α ∈ (q − 1, q], q ∈ N1 let us define y(n) :=
(aΔ

α
hx) (t), where t ∈ (hN)a+(q−α)h and t = a+(q−α)h+nh, t0 = a+(q−α)h.

Then

Z [y] (z) =h−α

(
zq
(

z

z − 1

)−α

X(z)

−z

q−1∑
k=0

(z − 1)q−k−1
(
Δk

h

(
aΔ

−(q−α)x
))

(t0)

)
,

(22)

where X(z) = Z[x](z) and x(n) := x(a + nh).

Using the Z-transform of the Riemann-Liouville–type operator we get

(0Δ
αϕk,α) (n + q − α) = ϕk−1,α(n) , (23)

for k ∈ Nq.
Using the notation of the family of functions ϕk,α we can write the formula

for Mittag–Leffler function defined by (4) as E(α,α)(λ, n) =
∑∞

k=0 λ
kϕk,α(n) .
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Moreover, by equations: (4) and (23) we easily see the property of E(α,α)(λ, ·)
analogous to that one for E(α)(λ, ·) stated in Proposition 6

The next proposition states that the function E(α,α)(λh
α, ·) is an eigenfunction

of fractional difference equation with the Riemann–Liouville–type operator.

Proposition 12. Let α ∈ (q− 1, q] and a = (α− q)h. The initial value problem

(aΔ
α
hx) (nh) = λx(nh + a) , n ∈ Nq (24)(

Δi
h

(
aΔ

−(q−α)
h x

))
(a) = bi , i = 0, . . . , q − 1 (25)

has the unique solution given by the formula

x(a + nh) = x(n) =

q−1∑
i=0

(
Δq−i−1E(α,α)(λh

α, ·)
)

(n− (q − 1))bi . (26)

Proof. Let y(n) = (aΔ
α
hx) (nh) and x(n) = x(nh + a). Then using the Z-

transform of both sides of (24) we get the algebraic equation

(
zq
(

z

z − 1

)−α

− hαλ

)
X(z) = z

q−1∑
i=0

(z − 1)q−i−1bi .

Then we calculate that
X(z) = W (z)G(z) ,

where

W (z) =

(
z

z − 1

)α(
1 − 1

zq

(
z

z − 1

)α

λhα

)−1

and

G(z) =
1

zq−1

q−1∑
i=0

(z − 1)q−i−1bi =
1

zq−1

q−1∑
i=0

q−i−1∑
s=0

(
q − i − 1

s

)
(−1)q−i−s−1zsbi

=

q−1∑
i=0

q−i−1∑
s=0

(
q − i− 1

s

)
(−1)q−i−s−1 1

zq−1−s
bi .

For W (z) from Proposition 2 we see that

Z−1[W ](n) = E(α,α)(λh
α, n) .

Then

x(a + nh) =x(n) = Z−1[X ](n) = Z−1[W (z)G(z)](n)

=

q−1∑
i=0

q−i−1∑
s=0

(
q − i− 1

s

)
(−1)q−i−s−1E(α,α)(λh

α, n− (q − s− 1))bi

=

q−1∑
i=0

(
Δq−i−1E(α,α)(λh

α, ·)
)

(n− (q − 1))bi .
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The immediate consequence of Proposition 12 is the formula for solution of
semilinear equation.

Proposition 13. Let α ∈ (q− 1, q] and a = (α− q)h. The initial value problem

(aΔ
α
hx) (nh) = λx(nh + a) + f(nh) , (27)(

Δi
h

(
aΔ

−(q−α)
h x

))
(a) = bi , i = 0, . . . , q − 1 (28)

where n ∈ Nq has the unique solution given by the formula

x(a+nh) =

q−1∑
i=0

(
Δq−i−1E(α,α)(λh

α, ·)
)

(n−(q−1))bi +E(α,α)(λh
α, n−q)∗f (n)

and f(n) = f(nh).

Example 2. Let us consider the following equations

(
aΔ

1.5
h,∗x

)
(nh) = 0.1 · x(nh + a) , (29)

(
aΔ

1.5
h x

)
(nh) = 0.1 · x(nh + a) (30)

Fig. 2. Trajectories of equations
(
aΔ

α
h,∗x

)
(nh) = λ · x(nh + a) and (aΔ

α
hx) (nh) =

λ·x(nh+a) with the Caputo–type and Riemann-Liouville–type operators, respectively,
for λ = 0.1 and order α = 1.5, see Example 2
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and initial conditions

b0 = 1 (31a)

b1 = 0.1 (31b)

Then Figure 2 presents the graphs of solutions to equations (29) and (30) with
order 1.5 and the initial conditions (31) with the Caputo–type and Riemann-
Liouville–type operators, respectively.

5 Conclusions

The Caputo– and Riemann-Liouville–type fractional order difference initial value
problems for linear and semilinear systems with any positive order are discussed.
The next step is to consider the semilinear control systems and develop condi-
tions on controllability or stability properties via the complex domain.
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Abstract. In this paper a discrete fractional case of the so called Leib-
nitz Rule is presented The fractional-order backward difference of a prod-
uct of two discrete-variable functions is derived. It is a generalisation to
the first-order bacward difference of a product. The formula may be
useful in the fractional-order backward differences of selected functions
evaluation.

Keywords: Fractional Calculus, discrete-variable function.

1 Introduction

The Fractional Calculus [3],[6],[7] for discrete-variable functions [4] is getting
more and more important in technical applications.One can mention here digital
signal processing, image processing, fractional-order digital control [2] algorithms
and real dynamical systems modelling [6].

The paper is orgainsed in a following order. First fundamental definition of
the fractional-order backward difference [5] is given with some selected proper-
ties. The main result is presented in Section 2. Considerations are supported by
numerical examples.

1.1 Mathematical Preliminaries

Consider a discrete-variable k real-valued bounded function f(k) defined over
interval [k0, k0 + 1, · · · , k − 1, k]. On a function f(k) imposes a condition that
f(k) = 0 for k > k0. The Grünwald-Letnikov backward difference of f(k) is
defined as a following sum

GL
k0

Δ
(ν)
k f(k) =

k∑
i=k0

a(ν)(i − k0)f(k + k0 − i). (1)

where a discrete-variable function a(ν)(k) is defined as

a(ν)(k) =

⎧⎨
⎩

0 for i < 0
1 for i = 0

(−1)i ν(ν−1)···(ν−k+1)
k! for k = 1, 2, · · ·

(2)

c© Springer International Publishing Switzerland 2015 59
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and [k0, k] is a difference calculation range, ν ∈ R+ is an order which may
be non-integer for the fractional-order backward-difference (FOBD), as well as
integer one for a classical (integer-order) backward difference (IOBD). Further,
to simplify notation ane assumes k0 = 0 what does not reduce presented results
generality. One should note that for ν ∈ R+ one considers formula (1) as the
fractional-order backward sum (FOBS) or n-th fold sum. The definition formula
can be also presented in a vector form

GL
0 Δ

(ν)
k f(k) =

[
a(ν)(k)

]T
Nkf(k) (3)

where

f (k) =

⎡
⎢⎢⎢⎢⎢⎣

f(0)
f(1)

...
f(k − 1)
f(k)

⎤
⎥⎥⎥⎥⎥⎦
, a(ν)(k) =

⎡
⎢⎢⎢⎢⎢⎣

a(0)
a(1)

...
a(k − 1)
a(k)

⎤
⎥⎥⎥⎥⎥⎦

Nk =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦
. (4)

It can be easily proved that for (1) and ν, μ ∈ R+

GL
0 Δ

(ν)
k [GL

0 Δ
(μ)
k f(k)] =GL

0 Δ
(ν+μ)
k f(k). (5)

From (3) one immediately states that

GL
0 Δ

(ν)
k f(k) �= GL

0 Δ
(ν)
k+1f(k) �=GL

0 Δ
(ν)
k f(k + 1). (6)

1.2 FOBD Vector Description

On a base of the FOBD definition formula (3) one gets a vector-matrix equation

GLΔ(ν)f(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

GL
0 Δ

(ν)
k f(k)

GL
0 Δ

(ν)
k−1f(k − 1)

...
GL
0 Δ

(ν)
1 f(1)

GL
0 Δ

(ν)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

= A
(ν)
k Nkf(k) (7)

where

A
(ν)
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

a
(ν)
0 a

(ν)
1 · · · a(ν)k−1 a

(ν)
k

0 a
(ν)
0 · · · a(ν)k−2 a

(ν)
k−1

...
...

...
...

0 0 · · · a
(ν)
0 a

(ν)
1

0 0 · · · 0 a
(ν)
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

The matrix defined by (8) has following properties:
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a) For ν, μ ∈ R+

A
(ν)
k A

(μ)
k = A

(ν+μ)
k , (9)

b) For ν ∈ R+

[A
(ν)
k ]−1 = A

(−ν)
k . (10)

2 Main Result (FO Leibnitz Rule)

Now the FOBD of two discret-variable real functions f(k) and g(k) defined over
interval k0, k is evaluated. The main result - The Leibnitz Rule for the FOBD is
stated in a form of a following theorem.

Theorem 2.1. The BD of the order ν of a product of two functions f(k) and
g(k) equals to

GL
0 Δ

(ν)
k [f(k)g(k)] = [GLΔ(ν)f (k)]TM

(ν)
k

GLΔ(ν)g(k), (11)

where

g(k) =

⎡
⎢⎢⎢⎢⎢⎣

g(0)
g(01)

...
g(k − 1)
g(k)

⎤
⎥⎥⎥⎥⎥⎦
, GLΔ(ν)g(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

GL
0 Δ

(ν)
k g(k)

GL
0 Δ

(ν)
k−1g(k − 1)

...
GL
0 Δ

(ν)
1 g(1)

GL
0 Δ

(ν)
0 g(0)

⎤
⎥⎥⎥⎥⎥⎥⎦

= A
(ν)
k Nkg(k), (12)

M
(ν)
k = [A

(−ν)
k ]TD

(ν)
k A

(ν)
k , (13)

D
(ν)
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

a
(ν)
0 0 · · · 0 0

0 a
(ν)
1 · · · 0 0

...
...

...
...

0 0 · · · a(ν)k−10

0 0 · · · 0 a
(ν)
k

⎤
⎥⎥⎥⎥⎥⎥⎦
, (14)

and GLΔ(ν)f(k) is defined by formula (7). A superscript T in (13) denotes a
matrix transposition.

Proof. By Definition (1) formula (11) is expressed in a form

GL
0 Δ

(ν)
k [f(k)g(k)] =

[
f(k) f(k − 1) · · · f(1) f(0)

]
D

(ν)
k

⎡
⎢⎢⎢⎢⎢⎣

g(k)
g(k − 1)

...
g(1)
g(0)

⎤
⎥⎥⎥⎥⎥⎦

(15)
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=
[
f(k) f(k − 1) · · · f(1) f(0)

]
[[A

(ν)
k ]−1A

(ν)
k ]TD

(ν)
k [A

(ν)
k ]−1A

(ν)
k

⎡
⎢⎢⎢⎢⎢⎣

g(k)
g(k − 1)

...
g(1)
g(0)

⎤
⎥⎥⎥⎥⎥⎦

=
[
f(k) f(k − 1) · · · f(1) f(0)

]
[A

(ν)
k ]T [A

(−ν)
k ]TD

(ν)
k A

(−ν)
k

GLΔ(ν)g(k)

= [A
(ν)
k

⎡
⎢⎢⎢⎢⎢⎣

fk
fk−1

...
f1
f0

⎤
⎥⎥⎥⎥⎥⎦

]T [A
(−ν)
k ]TD

(ν)
k A

(−ν)
k

GLΔ(ν)g(k)

= [GLΔ(ν)f (k)]T [A
(−ν)
k ]TD

(ν)
k A

(−ν)
k

GLΔ(ν)g(k)

[GLΔ(ν)f (k)]TM
(ν)
k

GLΔ(ν)g(k)

�

The result proved above is valid for integer orders n ∈ Z+. One should only
realise that in this case

GLΔ(ν)f(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−nΔ

(n)
k f(k)

GL
k−1−nΔ

(n)
k−1f(k − 1)

...
GL
1 Δ

(n)
n+1f(n + 1)

GL
0 Δ

(n)
n f(n)
...

GL
0 Δ

(n)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A
(n)
k fk, (16)

GLΔ(ν)g(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−nΔ

(n)
k g(k)

GL
k−1−nΔ

(n)
k−1g(k − 1)

...
GL
1 Δ

(n)
n+1g(n + 1)

GL
0 Δ

(n)
n g(n)
...

GL
0 Δ

(n)
0 g(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= A
(n)
k g(k), (17)
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D
(n)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a
(n)
0 · · · 0 · · · 0
...

...
...

0 · · · a(n)n · · · 0
...

...
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

with matrix M
(ν)
k evaluated by formula (13). Below examplary matrices calcu-

ated for n = 1, · · · , 5 are given

M
(1 )
k =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦
, M

(2 )
k =

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 · · ·
2 2 2 2 · · ·
3 2 2 2 · · ·
4 2 2 2 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦
, M

(3 )
k =

⎡
⎢⎢⎢⎢⎢⎣

1 3 6 10 15 · · ·
3 6 9 12 15 · · ·
6 9 12 15 18 · · ·
10 12 15 18 21 · · ·
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎦
,

(19)

M
(4 )
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 10 20 35 56 · · ·
4 12 24 40 60 84 · · ·
10 24 42 64 90 120 · · ·
20 40 64 92 124 160 · · ·
35 60 90 124 162 204 · · ·
56 84 120 160 204 252 · · ·
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M

(5 )
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 5 15 35 70 126 · · ·
5 20 50 100 60 84 · · ·
15 24 42 64 90 120 · · ·
35 40 64 92 124 160 · · ·
70 60 90 124 162 204 · · ·
126 84 120 160 204 252 · · ·

...
...

...
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The correctness of the above formulae will be checked in a following numerical
example.

Numerical Example 2.1. Check the correctness of formula (13) for two integer
orders n = 1, 2.

Solution. For n = 1 by (13) one gets

GL
k0

Δ
(1)
k [f(k)g(k)] = [GLΔ(1)f(k)]TM

(1)
k

GLΔ(1)g(k) (20)
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k f(k)

GL
k−2Δ

(1)
k−1f(k − 1)

...
GL
1 Δ

(1)
2 f(2)

GL
0 Δ

(1)
1 f(1)
...

GL
0 Δ

(1)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k g(k)

GL
k−2Δ

(1)
k−1g(k − 1)

...
GL
1 Δ

(1)
2 g(2)

GL
0 Δ

(1)
1 g(1)

GL
0 Δ

(1)
0 g(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k f(k)

GL
k−2Δ

(1)
k−1f(k − 1)

...
GL
1 Δ

(1)
2 f(2)

GL
0 Δ

(1)
1 f(1)

GL
0 Δ

(1)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑k
i=0

GL
i−1Δ

(1)
i g(i)

GL
k−1Δ

(1)
k g(k)
...

GL
k−1Δ

(1)
k g(k)

GL
k−1Δ

(1)
k g(k))

GL
k−1Δ

(1)
k g(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k f(k)

GL
k−2Δ

(1)
k−1f(k − 1)

...
GL
1 Δ

(1)
2 f(2)

GL
0 Δ

(1)
1 f(1)

GL
0 Δ

(1)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(k)
GL
k−1Δ

(1)
k g(k)
...

GL
k−1Δ

(1)
k g(k)

GL
k−1Δ

(1)
k g(k))

GL
k−1Δ

(1)
k g(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= g(k)GL
k−1Δ

(1)
k f(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−2Δ

(1)
k−1f(k)

GL
k−3Δ

(1)
k−2f(k − 1)

...
GL
1 Δ

(1)
2 f(2)

GL
0 Δ

(1)
1 f(1)

GL
0 Δ

(1)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎦

GL
k−1Δ

(1)
k g(k)

= g(k)GL
k−1Δ

(1)
k f(k) + f(k − 1)GL

k−1Δ
(1)
k g(k)

= g(k)[f(k)− f(k− 1)] + f(k− 1)[g(k)− g(k− 1)] = f(k)g(k)− f(k− 1)g(k− 1).

Comment 2.1. The last formula can be obtained by direct calculation of the first-
order backwar differecne of the porduct of the two discrete-variable functions

GL
k−1Δ

(1)
k f(k)g(k) = f(k)g(k) − f(k − 1)g(k − 1). (21)
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Moreover, the last but one formula in (20) is very close to the continuous
function case known as [3]

d

dt
[f(t)g(t)] = g(t)

d

dt
f(t) + f(t)

d

dt
g(t). (22)

Similar calculations performed for n = 2 yield

GL
k0

Δ
(2)
k [f(k)g(k)] = [GLΔ(2)f(k)]TM

(2)
k

GLΔ(2)g(k) (23)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(2)
k f(k)

GL
k−2Δ

(2)
k−1f(k − 1)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)
...

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 · · ·
2 2 2 2 · · ·
3 2 2 2 · · ·
4 2 2 2 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(2)
k g(k)

GL
k−2Δ

(2)
k−1g(k − 1)

...
GL
1 Δ

(2)
2 g(2)

GL
0 Δ

(2)
1 g(1)

GL
0 Δ

(2)
0 g(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(2)
k f(k)

GL
k−2Δ

(2)
k−1f(k − 1)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
0 Δ

(−2)
k [GL

0 Δ
(2)
k g(k)]

2GL
0 Δ

(−1)
k [GL

0 Δ
(2)
k g(k)]

2GL
k−1Δ

(2)
k g(k)

2GL
k−1Δ

(2)
k g(k)

2GL
k−1Δ

(2)
k g(k)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(2)
k f(k)

GL
k−2Δ

(2)
k−1f(k − 1)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(k)

2GL
k−1Δ

(1)
k g(k)

1GL
k−1Δ

(2)
k g(k) + 2GL

k−1Δ
(1)
k g(k)

2GL
k−1Δ

(2)
k g(k) + 2GL

k−1Δ
(1)
k g(k)

3GL
k−1Δ

(2)
k g(k) + 2GL

k−1Δ
(1)
k g(k)

4GL
k−1Δ

(2)
k g(k) + 2GL

k−1Δ
(1)
k g(k)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(2)
k f(k)

GL
k−2Δ

(2)
k−1f(k − 1)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(k) − 2GL
k−1Δ

(1)
k g(k)

0

1GL
k−1Δ

(2)
k g(k)

2GL
k−1Δ

(2)
k g(k)

3GL
k−1Δ

(2)
k g(k)

4GL
k−1Δ

(2)
k g(k)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ 2GL
k−1Δ

(1)
k g(k)

⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎦

)
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= (GL
k−1Δ

(2)
k f(k))[−g(k) + 2g(k − 1)] +GL

k−1 Δ
(2)
k g(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−3Δ

(2)
k−2f(k − 2)

GL
k−4Δ

(2)
k−3f(k − 3)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1
2
3
4
...

⎤
⎥⎥⎥⎥⎥⎦

+2GL
k−1Δ

(1)
k g(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−2Δ

(2)
k f(k)

GL
k−3Δ

(2)
k−1f(k − 1)

...
GL
1 Δ

(2)
2 f(2)

GL
0 Δ

(2)
1 f(1)

GL
0 Δ

(2)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1
1
1
1
...

⎤
⎥⎥⎥⎥⎥⎦

=GL
k−2 Δ

(2)
k f(k)[−g(k) + 2g(k − 1)] +GL

k−4 Δ
(2)
k−2f(k − 2)GL

k−2Δ
(2)
k g(k)

+2GL
k−1Δ

(1)
k g(k)GL

k−1Δ
(1)
k f(k)

= f(k)g(k) − 2f(k − 1)g(k − 1) + f(k − 2)g(k − 2).

Corollary 2.2. The FOBD of a product f(k)g(k) equals to the FOBD of a
product g(k)f(k).

GL
0 Δ

(ν)
k f(k)g(k) =GL

0 Δ
(ν)
k g(k)f(k). (24)

Proof. By Theorem 2.1

GL
k0

Δ
(ν)
k [f(k)g(k)] = [GLΔ(ν)f(k)]TM

(ν)
k

GLΔ(ν)g(k) (25)

= [[GLΔ(ν)f(k)]
T
M

(ν)
k

GLΔ(ν)g(k)]T

= [GLΔ(ν)g(k)]TM
(ν)
k ]T [GLΔ(ν)f(k) = [GLΔ(ν)g(k)]TM

(ν)
k

GLΔ(ν)f (k)

=GL
k0

Δ
(ν)
k [g(k)f(k)].

�

One of the possible applications of the FO Leibnitz Rule demonstrates a numer-
ical example presented below.
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Numerical Example 2.2. Consider a function f(k) = k1(k). Knowing that
GL
k−1Δ

(1)
k f(k) =GL

k−1 Δ
(1)
k k1(k) = 1(k) = 1(k)calculateGL

k−1Δ
(1)
k k21(k)using

formula(11).

Solution. Denote f(k) = g(k) = k1(k). Then for ν = n = 1

GL
k−1Δ

(1)
k k21(k) (26)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k f(k)

GL
k−2Δ

(1)
k−1f(k − 1)

...
GL
1 Δ

(1)
2 f(2)

GL
0 Δ

(1)
1 f(1)

GL
0 Δ

(1)
0 f(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

GL
k−1Δ

(1)
k g(k)

GL
k−2Δ

(1)
k−1g(k − 1)

...
GL
1 Δ

(1)
2 g(2)

GL
0 Δ

(1)
1 g(1)

GL
0 Δ

(1)
0 g(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
1 1 1 · · · 1 1

]
⎡
⎢⎢⎢⎢⎢⎣

1 1 1 1 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
1 0 0 0 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[
1 1 1 · · · 1 1

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1(k)
1
...
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= k1(k) + (k − 1)1(k − 1) = (2k − 1)1(k − 1)

3 Conclusions

The formula derived as a main resut is a discrete counterpart of the well-known
Leibnitz Rule served in calcuation of the first-order derivative of a product of two
continuous-variable functions. The FO Leibnitz Rule is a generalization of the
commonly known first-order derivative of a product of two continuous-variable
functions to the fractional case applied to discrete-variable functions.
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Solving Fractional Variable Order Differential
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Abstract. In the paper, a matrix approach for solving fractional vari-
able order linear differential equations of an additive-switching type will
be presented. Introduced method is based on a duality property between
additive and recursive type of variable order differential definitions. Ob-
tained solutions will be validated by comparing them with analog model
results.

Keywords: fractional calculus, differential equations, analog modeling.

1 Introduction

Fractional calculus is a natural generalization of traditional differential calcu-
lus when order of derivatives or integrals can be fractional (non-integer). The
case, when order of the fractional derivative is changing in time, is much more
complicated in description and analysis than in constant order case. One of the
main problems is a variety types of definitions. In [1], nine different variable
order derivative definitions are given, however, without clear interpretation of
them. In papers [2–5], interpretation in the form for switching strategies, for two
main types and two recursive types of derivatives, are given. This interpretation
is very helpful in system analysis, and gives a chance to categorize definitions
according to its switching scheme. Moreover, these switching schemes allow to
build analog models of different variable order systems, that was also shown in
mentioned papers. It is a very important feature, because numerical realization
of variable order systems are much more complicated than in integer order case.
Some other numerical realization methods are presented in [6, 7].

The matrix form of the fractional constant order ordinary and partial differen-
tial equations was presented in [8, 9]. In this paper, an extension of this method
for numerical solving variable order differential equations will be proposed for
two types of variable order definitions. Moreover, obtained numerical methods
will be compared with results obtained by analog modeling method.

� This work was supported by the Polish National Science Center with the decision
number DEC-2011/03/D/ST7/00260.
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The paper is organized as follows. In Section 2, recursive variable fractional
order derivative definition is recalled, and its basic properties are given. Section 3
gives main result of this paper – a numerical method, based on matrix approach,
for simulation of variable order systems. In Section 4, experimental results of
comparison between analog model and proposed numerical implementation is
presented.

2 Fractional Variable Order Grunwald-Letnikov Type
Derivatives

As a base of generalization onto variable order derivative the following definition
is taken into consideration:

Definition 1. Fractional constant order derivative is defined as follows:

0Dα
t f(t) = lim

h→0

1

hα

n∑
r=0

(−1)r
(
α

r

)
f(t− rh),

where h > 0 is a step time, and n = �t/h�.

For the case of order changing with time (variable order case), different types of
derivative definitions can be found in the literature [10], [11].

Definition 2. The B-type fractional variable order derivative is defined as fol-
lows

B
0 D

α(t)
t f(t) = lim

h→0

n∑
r=0

(−1)r

hα(t−rh)

(
α(t− rh)

r

)
f(t− rh).

The discrete realization of B-type fractional variable order derivative is the fol-
lowing

BΔαlfl =
l∑

j=0

(−1)j

hαl−j

(
αl−j

j

)
fl−j .

The B-type derivative assumes that coefficients for past samples are obtained
for order that was present for these samples.

The alternative definition, that has different properties than B-type of deriva-
tive, possess recursive nature, and has the following form:

Definition 3 ([12]). The E-type fractional variable order derivative is defined
as follows:

E
0D

α(t)
t f(t) = lim

h→0

⎛
⎝ f(t)

hα(t)
−

n∑
j=1

(−1)j
(
−α(t− jh)

j

)
hα(t−jh)

hα(t)
E
0D

α(t)
t−jhf(t)

⎞
⎠ .
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The discrete realization of E-type fractional variable order derivative has the
following form

EΔαlfl =
xl

hαl
−

l∑
j=1

(−1)j
(
−αl−j

j

)
hαl−j

hαl
Δαl−jxl−j (1)

for l = 0, 1, 2, . . . , k.

Remark 1. For a constant order α(t) = const we get the same results as for
constant order derivative and difference definitions, that is

B
0 Dα

t f(t) = E
0Dα

t f(t) = 0Dα
t f(t).

2.1 Properties of E-Type Derivative Definition

As it was shown in [12], the E-type derivative is equivalent to the switching
scheme given in Fig. 1.

tkD
ᾱk
ttk−1D

ᾱk−1
t

Sk

a

b

Sk−1

a

b

a

b

E
0D

α(t)
t f(t)

0Dα0
t

S1

a

b

f(t)

Fig. 1. Realization of E-type derivative in the form of switching scheme, where ᾱj =
αj − αj−1, j = 1, . . . , k, (configuration at time t = tk)

For the purpose of numerical calculations, the E-type derivative definition can
be rewritten in an alternative form:

Theorem 1 ([12]). The E-type fractional difference given by (1) can be ex-
pressed in the following matrix form:

⎛
⎜⎜⎜⎝

EΔα0x0
EΔα1x1

...
EΔαkxk

⎞
⎟⎟⎟⎠ = Qk

0

⎛
⎜⎜⎜⎝

x0

x1

...
xk

⎞
⎟⎟⎟⎠ , (2)

where

Qk
0 =

⎛
⎜⎜⎜⎜⎜⎝

h−α0 0 0 · · · 0 0
q2,1 h−α1 0 · · · 0 0
...

...
...

. . .
. . .

...
qk,1 qk,2 qk+1,3 · · · h−αk−1 0

qk+1,1 qk+1,2 qk+1,3 · · · qk+1,k h−αk

⎞
⎟⎟⎟⎟⎟⎠

, (3)
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where, for i, j = 1, . . . , k + 1,

qi,j =

⎧⎪⎨
⎪⎩
qi−1(q1,j , . . . , qi−1,j)

T for i > j,

h−αi for i = j,

0 for i < j,

(4)

and for r = 1, . . . , k

qr = (−v−α0,r, . . . ,−v−αr−1,1) ∈ R
1×r, (5)

v−αr−p,p = (−1)p
(
−αr−p

p

)
hαr−p

h−αr
, p = 1, . . . , r, (6)

that is, the m-th element of qr, m = 1, . . . , r, is

(qr)m = −v−αm−1,r−m+1 = (−1)r−m+1

(
−αm−1

r −m + 1

)
. (7)

Example 1. For k = 2, by Theorem 1, we get

q1 = −hα0−α1α0, q2 =

(
−hα0−α2

(
−α0

2

)
,−hα1h−α2α1

)
,

and

Q
2
0 =

⎛
⎝ h−α0 0 0

−h−α1α0 h−α1 0
−h−α2

((−α0

2

)
− α1α0

)
−h−α2α1 h−α2

⎞
⎠ . (8)

Lemma 1 ([12]). The following holds

Qk
0 = Q(αk, k) · · ·Q(α1, 1)Q(α0, 0), (9)

where, for r = 0, . . . , k,

Q(αr, r) =

⎛
⎝ Ir,r 0r,1 0r,k−r

qr h−αr 01,k−r

0k−r,r 0k−r,1 Ik−r,k−r

⎞
⎠ ∈ R

(k+1)×(k+1),

where qr is given by (5), and 0m,n ∈ R
m×n, Im,n ∈ R

m×n stand for zero and
identity matrix, respectively.

Example 2. For k = 2, by Lemma 1, we get

Q(α0, 0) =

⎛
⎝h−α0 0 0

0 1 0
0 0 1

⎞
⎠ , Q(α1, 1) =

⎛
⎝ 1 0 0
−hα0−α1α0 h−α1 0

0 0 1

⎞
⎠ ,

Q(α2, 2) =

⎛
⎝ 1 0 0

0 1 0
−hα0−α2

(−α0

2

)
−hα1−α2α1 h−α2

⎞
⎠ ,

which, after multiplication according to (9), equals to (8) obtained in Ex. 1.
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Remark 2. Taking the limit h → 0 we get the following form of the E-type
variable order derivative definition:⎛

⎜⎜⎜⎜⎝

E
0D

α(t)
0 x(t)

E
0D

α(t)
h x(t)

...
E
0D

α(t)
kh x(t)

⎞
⎟⎟⎟⎟⎠ = lim

h→0
Q

k
0

⎛
⎜⎜⎜⎝

x(0)
x(h)

...
x(kh)

⎞
⎟⎟⎟⎠ , (10)

where Qk
0 is given by (3) or (9).

Remark 3. In general, the following relations occur

BΔ±ᾱ
(BΔ∓ᾱxk

)
�= xk,

B
0 D

±α(t)
t

(
B
0 D

∓α(t)
t f(t)

)
�= f(t),

and
EΔ±ᾱ

(EΔ∓ᾱxk

)
�= xk,

E
0D

±α(t)
t

(
E
0D

∓α(t)
t f(t)

)
�= f(t),

where ᾱ = {α0, . . . , αk}. It means that for a variable order difference (derivative)
the semigroup property does not hold. However, for a constant-order, i.e., α0 =
· · · = αk, and respectively α(t) = const, this property holds.

Otherwise, between different types of definitions there exists a very special
property, called duality [5, 13], which is given as follows:

BΔ±ᾱ
(EΔ∓ᾱxk

)
= xk,

B
0 D

±α(t)
t

(
E
0D

∓α(t)
t f(t)

)
= f(t),

EΔ±ᾱ
(BΔ∓ᾱxk

)
= xk,

E
0D

±α(t)
t

(
B
0 D

∓α(t)
t f(t)

)
= f(t).

3 Numerical Simulation Methodology

3.1 Solving Fractional Variable Order Differential Equation

The matrix form of the E-type fractional variable order difference or derivative
given by (2) and (10), respectively, can be used to solve numerically fractional
variable order differential equations of B-type definition.

Let us consider the following scalar fractional variable order differential equa-
tion

BDα(t)x = cx + u, (11)

where x = x(t) is the real valued unknown function, u = u(t) is a real valued
known function,

α(t) = αi, ti ≤ t < ti+1, i = 0, . . . , N, t0 = 0, (12)

and c ∈ R is a constant.
The approximation of differential equation (11) is given by the fractional

variable order difference equation

BΔᾱx = cx + u, (13)
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where, abusing the notation, x = (x0, . . . , xk)T ∈ R
k+1 is a values vector of

unknown variable, u = (u1, . . . , uk)T ∈ R
k+1 is a vector of known function values,

k = (tN+1/h)−1, and ᾱ = {ᾱ0, . . . , ᾱk}, then BΔᾱx = (BΔᾱ0x0, . . . ,
BΔᾱkxk)T ,

where
ᾱj = αi, ti/h ≤ j < ti+1/h, i = 0, . . . , N, (14)

assuming for simplicity that ti’s are integer-multiplicities of h, and h ≤ min(ti),
i.e.,

ᾱ = {α0, . . . , α0︸ ︷︷ ︸
ρ0-times

, α1, . . . , α1︸ ︷︷ ︸
ρ1-times

, . . . , αN , . . . , αN︸ ︷︷ ︸
ρN -times

}, (15)

where ρi = (ti+1 − ti)/h, i = 0, . . . , N , and
∑

ρi = k + 1. Applying to both
sides of (13) the difference operator EΔ−ᾱ, and using the duality property (see
Remark 3) between the B-type and E-type definition, i.e., EΔ−ᾱ

(BΔᾱx
)

= x,
we get

x = EΔ−ᾱcx + EΔ−ᾱu. (16)

By Theorem 1, difference equation (16) can be rewritten as

x = cQk
0x + Q

k
0u, (17)

where Qk
0 is given by (3), or equivalently by (9), calculated for −ᾱ, where ᾱ is

given by (14), i.e.,

Q
k
0 =

k∏
j=0

Q(−ᾱj, j), k =
tN+1

h
− 1. (18)

Thus, the solution of (13), and thereby approximated solution of (11), is the
following (see also Fig. 2)

x =
(
Ik+1,k+1 − cQk

0

)−1
Q

k
0u, (19)

which exists always provided that hαj �= c, j = 0, . . . , k+1. Obviously, for c ≤ 0,
solution (19) exists always.

Q
k
0

xBΔᾱxu
+

c

Fig. 2. Realization of difference equation (13)

In the case, when gain of integration action varies in time, e.g., takes the value
λi ∈ R during ti ≤ t < ti+1, i = 0, . . . , N , which occurs, for example, in the
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analog realization of fractional variable order integral of the E-type, matrix (3)
has to be replaced by

Q̂
k
0 = Q

k
0 · Λ, (20)

where
Λ = diag{λ0, . . . , λ0︸ ︷︷ ︸

ρ0-times

, λ1, . . . , λ1︸ ︷︷ ︸
ρ1-times

, . . . , λN , . . . , λN︸ ︷︷ ︸
ρN -times

}, (21)

and ρi = (ti+1 − ti)/h, i = 0, . . . , N ,
∑

ρi = k + 1.

Example 3. Consider a time-variant differential equation

BDα(t)x = λ(t)(cx + u), (22)

where

α(t) =

{
α0 for t ∈ [0, T1),

α1 for t ∈ [T1, T2)
and λ(t) =

{
λ0 for t ∈ [0, T1),

λ1 for t ∈ [T1, T2).
(23)

Thus, the switch of the variable order (and gain coefficient) occurs at time-
instant t = T1, then N = 1. The approximated numerical solution of (22) is

x =
(
Ik+1,k+1 − cQk

0Λ
)−1

Q
k
0Λu, (24)

where, using (18),

Qk
0 =

k∏
j=0

Q(−ᾱj , j), k =
T2

h
− 1,

and, according to (14),

ᾱj = αi,
Ti

h
≤ j <

Ti+1

h
, i = 0, 1, T0 = 0. (25)

The matrix of gain coefficients is

Λ = diag{λ̄0, λ̄1}, λ̄j = {λj , . . . , λj︸ ︷︷ ︸
ρj-times

}, j = 0, 1, (26)

where ρ0 = T1/h, ρ1 = (T2 − T1)/h, and then
∑

ρi = T2/h = k + 1. Solution
plots of (22) are depicted in Fig. 4.

4 Experimental Results

An analog realization of the E-type fractional variable order integral, based on
switching scheme given in Fig. 1, is presented in Fig. 3. Detailed description
of used experimental setup is given in [12]. Depending on switches position
marked as Si, i = 1, 2, in Fig. 3, the circuit can be described by fractional order
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(α = −0.5) or integer order (α = −1). In the first case, when S1 and S2 switches
are connected to terminals marked as a, and in the second case as b, the following
fractional order derivative functions have been obtained, respectively:

y1(t) =
1

τ1
0D−0.5

t u(t) and y2(t) =
1

τ2
0D−1

t u(t),

where τ1 and τ2 are constant coefficients.

−

+

A1 −

+

A2

−

+

A3 −

+

A4

R

R

R

R

R

R

Z1

Z2

a

b

b

a
S1

S2

Vout(t)

Vin(t)

Fig. 3. Analog realization of the E-type fractional variable order integral

4.1 Experimental Results of the E-Type Integral System

The identification results for E-type integral system were obtained by numerical
minimization of time responses square error with sampling time Ts = 0.01 sec.,
and input signal u(t) = 0.1H(t), where H(t) is a Heaviside step function. After
identification process, the following models for orders −0.5 and −1, respectively,
in time domain, were obtained:

y1(t) = 0D−0.5
t λ0u(t) = 1.350D

−0.5
t u(t),

y2(t) = 0D−1
t λ1u(t) = 1.880D

−1
t u(t),

which gives rise to the following variable order integrator:

y(t) = E
0D

−α(t)
t (λ(t)u(t)) .

In this case, the system identified by function y1(t) is switching to the system
described by function y2(t), in switching time T1 = 0.1 sec.

The experimental results compared to numerical implementation of the vari-
able order integral system based on E-type of definition are presented in Fig. 4a.
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(a) For c = 0, i.e., BDα(t)x = λ(t)u, where u = 0.1, λ0 = 1.35, λ1 = 1.88, T1 = 0.1,
T2 = 0.8

(b) For c = −1, i.e., BDα(t)x = λ(t)(−x+ u), where u = 0.5, λ0 = 1.35, λ1 = 1.95,
T1 = 0.3, T2 = 2

Fig. 4. Plots of experimental results (diamonds) and numerical solution (solid line)
of (22), for α0 = 0.5, α1 = 1, h = Ts = 0.01

4.2 Experimental Results of the Fractional Variable Order Inertial
System

The identification results for variable order inertial system

BDα(t)x = λ(t)(−x + u), (27)

were obtained by numerical minimization of time responses square error with
sampling time Ts = 0.01 sec., and input signal u(t) = 0.5H(t). The order α(t) and
parameter λ(t) are changing their values according to (23), where for α0 = 0.5
and α1 = 1 we get λ0 = 1.35 and λ1 = 1.95, respectively. The experimental re-
sults compared to numerical implementation of the variable order inertial system
are shown in Fig. 4b.

5 Conclusions

In the paper, an original numerical method for solving and simulating of linear
fractional variable order systems, was presented. The proposed method is based
on matrix approach and the duality property between two kinds of variable order
derivatives. In order to confirm proposed methodology, results of numerical sim-
ulations were compared with experimental results obtained from analog model.
Presented results fully confirm efficiency and correctness of proposed methods.
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Abstract. In this paper new non-integer order filter is proposed. Con-

sidered filter is given by a transfer function
c

s2α + bsα + c
, with parame-

ters b and c chosen in a way, that locates the eigenvalues of the system
in left open complex half plane. Dependence of frequency characteristic
of the system on parameters α, b and c is investigated. Also method
for realisation in the form of non-integer order differential equations is
analysed.

1 Introduction

Bi-fractional filters (BFF) are a class of non-integer filters fully characterised by
three parameters:

– base order α
– damping coefficient b
– free coefficient c

and are given by the following transfer function

G(s) =
c

s2α + bsα + c
(1)

In this paper filters with bounded impulse responses are considered, that is
systems of base order α ∈ [1/2, 1). Another examples can be found in [3] or
in [2].

Equivalent representation of (1) is the realisation in the form of a system of
differential equations of order α. This system can take form (see [5])

C
0 D

α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2)

with the following matrices

A =

[
0 1
−c −b

]
B =

[
0
1

]
C =

[
c 0
]

(3)

c© Springer International Publishing Switzerland 2015 81
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_8
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2 Stability

System (1) or (2) is asymptotically stable if and only if eigenvalues of matrix A
are located in the sector presented in figure 1.

Stability of filter (1) can be determined with the use of the following theorem.

Theorem 1. System in the form (2) or (1) for α ∈ (0, 1) is asymptotically
stable if and only if one of the following conditions holds

1. b ≥ 0 and c > 0
2. b < 0 and

c >
b2

4

(
τ2 + 1

τ2 − 1

)2

where
τ = tan

απ

4

Proof. Matrix A is in Frobenius form. Because of that its characteristic polyno-
mial takes form

W (λ) = λ2 + bλ+ c

Using that fact one can verify the conditions.

1. From Hurwitz criterion [6] one can see that, if b > 0 and c > 0 then roots
of the polynomial are in left open complex half plane, which is contained
in stability region. If b = 0 and c > 0 then the roots of polynomial are
λ1,2 = ±j

√
c and are located on the imaginary axis, which is also the part

of characteristic polynomial.
2. Second condition regards the eigenvalues of A that are located in grayed

sector of right complex half plane illustrated in the figure 1. Roots are located
in that sector if the following conditions occur
– They are both complex, which occurs iff

Δ = b2 − 4c < 0

– The angle of roots is greater than απ
2 so

√
|Δ|
−b

> tan
(απ

2

)

Because of condition for Δ and considering that b is negative then
√
4c− b2 > −b tan

(απ
2

)
= −b

2 tan
(
απ
4

)
1− tan2

(
απ
4

)

4c− b2 > b2
4 tan2

(
απ
4

)
(
1− tan2

(
απ
4

))2

c >
b2

4

4 tan2
(
απ
4

)
+
(
1− tan2

(
απ
4

))2
(
1− tan2

(
απ
4

))2
Substitution of τ = tan απ

4 and using the square of difference formula finishes
the proof.
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Fig. 1. Stability region on the complex plane

In certain situations, it is more convenient to use the parameters of BFF in the
form b = 2ξω0 and c = ω2

0 . Stability of such form is much easier to verify, using
the following lemma.

Lemma 1. Bi-fractional filter in the form

G(s) =
ω2
0

s2α + 2ξω0sα + ω2
0

(4)

where ω0 > 0 and α ∈ (0, 1) is asymptotically stable iff

ξ >
τ2 − 1

τ2 + 1

where
τ = tan

απ

4

Proof. Proof is based on substitution of b = 2ξω0 and c = ω2
0 in theorem 1 and

observing the fact that τ2 − 1 is always less than zero.

In this paper systems covered by the first case of theorem 1 are considered
(or with ξ > 0).

3 Frequency Response

Frequency responses of non-integer order filters can be computed with use of
principal values of complex number:

Pv(jω)α = |ω|α
(
cos
(πα

2

)
+ j sin

(πα
2

))
(5)
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this allows avoiding the problems which are caused by multi-value nature of non-
integer order powers of complex numbers. With that it is possible to analyse the
behaviour of the filter. It can be deduced, that bi-fractional filters (4) have a
generally low pass character.

Depending on the value of parameter ξ one can observe analyse two cases.

1. ξ < 1 In this case BFF has one cutoff frequency

f0 = ω
1
α (6)

which at the same time is a tuning rule

ω0 = fα
0 (7)

Such filters can exhibit peaks in frequency responses, which will be further
analysed .

2. ξ > 1
This case is similar to the behaviour of second order filter with two real
poles. In this case amplitude characteristic has two bending points at two
frequencies f1 and f2. Here only the tuning rule will be presented. For given
order α introduce two auxiliary variables

q1 = fα
1 (8)

q2 = fα
2 (9)

using which filter parameters are determined i.e.

ω0 =
√
q1q2 (10)

ξ =
q1 + q2
2ω0

(11)

In this case ξ is always greater than 1.

In figures 2 and 3 one can observe the evolution of frequency responses with
changing parameters for both cases. In the figure 2 cutoff frequency was set
constant at f0 = 1 rad/s and parameters were varying. As one can see frequency
responses for the same cutoff frequency can exhibit resonance peaks. Thorough
discussion of existence of peaks is presented in the next section.

In the figure 3 tha case of ξ > 1 is covered. In that case for chosen frequencies
of f1 = 0.01 rad/s and f2 = 100 were kept and the filter order was varying. It
should be especially noted that phase characteristics becomes flatter when order
decreases.

3.1 Peak in the Amplitude Response

As it can be observed in earlier figures some amplitude responses for ξ < 1 exhibit
a peak near cutoff frequency. Determination of actual conditions for presence of
such peaks is difficult, but authors present a necessary condition and numerical
results below.
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(a) Frequency responses without peaks
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(b) Frequency responses with peaks

Fig. 2. Frequency characteristics for ξ < 1
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Fig. 3. Bode characteristic of BFF with f1 = 0.01 rad/s, f2 = 100 rad/s and varying
α from 0.1 to 0.9

Theorem 2 (Peaks in frequency response). Necessary condition for fre-
quency response of bi-fractional filter (4) with ξ > 0 to have a maximal value,
for certain ω∗ > 0 is

ξ <

√
1

6
− cos(πα)

2
and cos(πα) <

1

3
(12)

Proof. The modulus of frequency characteristic of BFF takes the following form

|G(jω)| =
ω2
0√∑4

i=0 ai(α, ξ, ω0)qi
=

ω2
0√

P (q)

where q = |ω|α and ai(α, ξ, ω0) are functions of coefficients. It can be observed
that because |G(jω)| is decreasing for sufficiently large ω then if it has any
extrema at least one of them has to be a maximum. It should be noted, that
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|G(jω)| has extremum if its derivative becomes zero for any positive ω. Elemen-
tary calculations show, that zeros of derivative of |G(jω)| coincide with positive
zeros of the derivative of P (q) i.e.

|G(jω)|′ =
− P ′(q)
2P (q)

, q = |ω|α

P ′(q) =
∑3

i=0 piq
i is a polynomial of third order with coefficients pi given by:

⎡
⎢⎢⎣
p3
p2
p1
p0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
6ω0ξ cos

(
πα
2

)
4ω0

2
(
2ξ2 + cos (πα)

)
2ω0

3ξ cos
(
πα
2

)

⎤
⎥⎥⎦

In order to determine existence of positive zeros one can use Hurwitz criterion.
From analysis, of the coefficients, two inequalities can show when P ′(q) has zeros
in right half plane. They are

p2 = 2ξ2 + cos (πα) < 0

p1p2 − p0p3 = 8ω3
0ξ cos

(πα
2

) (
6ξ2 + 3 cos (πα) − 1

)
< 0

second inequality, can be reduced to

6ξ2 + 3 cos (πα)− 1 < 0

Both these inequalities are solvable with solutions:

ξ <

√
−cos(πα)

2
and α >

1

2
(13)

and

ξ <

√
1

6
− cos(πα)

2
and cos(πα) <

1

3
(14)

One can observe these solutions graphically in the figure 4. As it can be seen
if the inequality (14) is fulfilled so is inequality (13). It concludes the proof of
necessary condition for maximal value.

Remark 1. Sufficient condition for the maximal value is much more difficult to
prove, and probably will not lead to any useful formula. It is a known property of
polynomials (see [9]) that the free term of polynomial of any order is the product
of its roots with sign depending on order i.e.

p0 = (−1)3q1q2q3

On the other hand, one can see that because for all considered systems ξ is
positive, ω0 is positive and cos

(
πα
2

)
is positive, then p0 is negative.
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Fig. 4. Inequalities (13) and (14)

Now one needs to consider two cases.

1. q1 ∈ R and q2 = q∗3 ∈ C. In that case sign of p0 is the opposite to sign of the
real root. In that case if p0 is positive then real root is negative and there is
no maximum.

2. q1, q2, q3 ∈ R. In this case, if p0 is positive, then there have to be either
two positive roots and one negative or all three are negative. If necessary
condition is fulfilled then only pair of positive real roots and one negative
root are possible and then maximum exists.

In order to obtain a sufficient condition one has to guarantee, that P ′(q) has
only real roots, which requires analysis of discriminant i.e. if

Δ = 18p0p1p2p3 − 4p32p0 + p22p
2
1 − 4p3p

3
1 − 27p23p

2
0 > 0

then roots are real. This formula is not very practical, and solution requires
analysis of polynomial inequalities of high order. However, knowing the area of
parameters from the necessary conditions authors have obtained a visualisation
of area of sufficient condition through use of Montecarlo methods. Such area is
presented in the figure 5.

It should be noted that in the figure 2(b) parameters were chosen from a line
that approaches the interior of area marked in the figure 5 and in the figure 2(a)
they were taken from an orthogonal line.

3.2 Asymptotic Behaviour of Bode Plots

Similar to the integer order case one can create approximate amplitude charac-
teristics of BFF. This is based on the asymptotic behaviour for low and high
frequencies. Two cases have to be distinguished.

1. ξ < 1
For filters where ξ < 1 these approximations consist of two straight lines in
the logarithmic scale. These lines are:
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Fig. 5. Montecarlo approximation of sufficient condition area with inequalities (13)
and (14)

(a) Flat line (slope 0) from 0 to the cutoff frequency f0 = ω
1
α
0

(b) Line with a slope of 40α dB/decade starting from f0 at 0.
This approximation does not include the resonance peak, as its exact position
and amplitude is very difficult to determine analytically. This approximation
is very efficient for a wide area of parameters. Example of approximate Bode
plot is presented in the figure

2. ξ ≥ 1
For filters where ξ > 1 these approximations consist of three straight lines
in the logarithmic scale. These lines are:
(a) Flat line (slope 0) from 0 to the first cutoff frequency f1
(b) Line with a slope of 20α dB/decade spanning from f1 at 0 to f2 at

−20α log10(f2/f1).
(c) Line with a slope of 40α dB/decade starting from f2 at −20α log10(f2/f1).

Both types of approximation are presented in the figure 6.

4 Impulse Response

Impulse response of BFF can be expressed analytically with use of the (2) form
of system. Using the formula given by [5] one can express it as:

g(t) = tα−1CEα,α(Atα)B (15)

where Eα,β(z) is the two parameter Mittag-Leffler function given by

Eα,β(z) =

∞∑
k=0

zk

Γ (αk + β)
(16)

Values of Mittag-Leffler functions are obtainable through available programs,
one of the popular version given by Igor Podlubny [8]. In this paper an original
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(a) Frequency responses without peaks
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(b) Approximation for f1 = 0.01 rad/s,
f2 = 100 rad/s, α = 0.5

Fig. 6. Asymptotic approximations of Bode plots

program is used, based on the definition of the function. The reason for new
code is the difference in purposes of both programs. Code by Podlubny is used
for computation of function values at one given value of z (even complex) with
arbitrary precision. Authors’ code needs to compute a time series of values of
only real arguments. That is why code using series expansion of order 100 was
deemed satisfactory. It allows computation of impulse responses with reasonable
precision on short time intervals.

Behaviour of impulse response at t = 0 requires special consideration. One
can easily observe with Laplace’s initial value theorem that for α < 1/2 impulse
response is unbounded at 0, for α = 1/2 it takes a bounded nonzero value
and for α > 1/2 its value is zero. On the other hand, formula (15) cannot be
computed for t = 0 for all α < 1 because of division by zero. Its value at zero
can be however derived separately, and substituted keeping the continuity. In
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this paper only bounded impulse responses are considered. In the figure 7(a) one
can observe impulse responses of BFFs, for which parameters are approaching
interior of the resonance peak area (see figure 5) on a straight line. As one can
see after entering the area impulse response becomes oscillatory. In the figure
7(b) impulse responses of BFFs with ξ > 1 are considered. In particular filters
designed for cutoff frequencies f1 = 0.1 rad/s and f2 = 1 rad/s are presented for
increasing order.

5 Conclusion

This paper illustrates a work in progress on a new type of filters, which can
prove to be very beneficial for use in signal processing. There is much potential
in non-integer order filters, both for offline and online processing of signals. For
online processing filter has to be approximated with integer order one. Among
the methods of such approximation one should verify methods of Oustaloup [7],
Charef [4] or a method developed by authors [1,3].

Work realised in the scope of project titled ”Design and application of non-
integer order subsystems in control systems”. Project was financed by National
Science Centre on the base of decision no. DEC-2013/09/D/ST7/03960.
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Abstract. This paper presents a comparison of four model order re-
duction algorithms applied to modeling of evaporating tubes system in
the BP–1150 steam boiler. The following model reduction techniques are
compared: Frequency Weighted, Rational Krylov, Frequency Weighted
with time delay and non-integer order transfer function with and with-
out time delay. Optimal reduction parameters and values of f -zeros and
f -poles of non-integer order transfer function are obtained using evolu-
tionary algorithm.

Keywords: model order reduction, fractional order model, time delay,
evolutionary algorithm.

1 Introduction

A variety of applications use mathematical models of complex physical and tech-
nical processes. A mathematical model of a system can be obtained analytically,
if the governing physical laws are well known. Often accurate description of
dynamic behavior of complex dynamical systems causes higher complexity of
the mathematical models, especially for nonlinear systems (in a linearized form,
around a specific operating point) and obtained by using the Finite Element
Method. Moreover many real physical systems contain pure time delays. When
delay is present in the underlying physical system, this often leads to a very high
order for the rational model.

Despite increasing computational speed of computers, simulation, optimiza-
tion or controller designing for large–scale systems is difficult because of system
requirements, long time simulation and numerical errors. For this reason, an
ability to properly reduce the model complexity without the loss of its dominant
dynamic behavior becomes highly significant [1].

There are several techniques for complex model reduction [1, 4, 11]. Most of
contemporarily used methods of linear models reduction do not change the class

c© Springer International Publishing Switzerland 2015 91
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of the model, i.e. reduction of the high-order rational model of order n, Eqn. (1),
gives a low-order rational model of order k < n, Eqn. (2).

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

ẋr(t) = Ar xr(t) + Br u(t)

yr(t) = Cr x(t)
(2)

Among reduction methods, a great attention has been given to the SVD-
based methods, which use the balanced model realization theory (especially Fre-
quency Weighted methods, which introduce frequency weight functions) and the
Krylov-based approximation methods, based on moment matching of the im-
pulse response [1].
Proper selection of weight functions for the Frequency Weighted methods as well
as a value of the expansion point and the number of moments for every expan-
sion point for the Rational Krylov methods enables a significant improvement of
model approximation results for a given frequency scope [14,18]. The optimiza-
tion of reduction parameters is not a trivial task, as it is a non-convex problem.
Therefore, it is necessary to apply the algorithms of global optimization, e.g.
evolutionary algorithms [13, 14].

In many cases, a simpler model with a pure time delay describes more accu-
rately the physical reality than a rational model of a very high order. Of course,
in continuous time, the introduction of an irrational quantity e−sT into a transfer
function may cause substantial analytical problems in design.

A reduced model of very low order, especially First Order Plus Time Delay
(FOPTD) or Second Order Plus Time Delay (SOPTD) [12], which contains
only a low, integer order transfer function, in many cases gives severely poor
description of the system, due to large modeling errors. However, it is well known
that the fractional order dynamics can model very high order transfer functions
[8]. Logically therefore, if a reduced integer order model cannot properly describe
a high order system, a fractional order technique can be used to achieve a better
accuracy in the model reduction. During the reduction, the original high order
model is approximated by much lower fractional order transfer function, which
ensures a required accuracy of approximation.

2 Model Order Reduction Methods

2.1 SVD-Based Methods

The SVD-based model reduction methods were introduced in the Moore’s works
[10]. The concept of balanced model realization is an easy way to determine the
dominating part of the model and reduction by ’cutting’ the matrices, describing
dynamics of the model in state space (Balanced Truncation Approximation).

In this case, the reduction of a high order model is based on the controllability
and observability Gramians and the linear state transformation x → Tx to
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obtain a balanced realization (3) of the model. As a result, the controllability P
and observability Q Gramians are identical diagonal matrices, with decreasing
Hankel singular values at the main diagonal. The states with very low singular
values have a negligible influence on properties of the model and can be removed.
The dominating part of the balanced model A11, B1, C1 creates the reduced
model (of order k < n).

ẋ(t) = TAT−1 x(t) + TBu(t) =

[
Ā11 Ā12

Ā21 Ā22

] [
x1

x2

]
+

[
B̄1

B̄2

]
u

y(t) = CT−1 x(t) =
[
C̄1 C̄2

] [x1

x2

] (3)

There are many algorithms that can be applied to determine the matrix T [1,11]
The Frequency Weighted methods, which introduce frequency weight functions,
are more general than the BTA method. The weighting functions can be applied
on the input or on the output of the model or, simultaneously on the input
and output. The first type of such a method has been proposed by Enns. The
Enns algorithm guarantees stability of the reduced model for one-sided weighting
functions only [1].

A proper selection of weight functions enables significant improvement of the
model approximation results for a given frequency scope [14,18]. A disadvantage
of the SVD methods is a high degree of calculation complexity. In spite of their
unquestionable advantages, these methods are not usually used for models whose
number of state variables is higher than 104 [1].

2.2 Krylov-Based Methods

For systems with more than 104 state variables the Krylov-based approximation
methods are proposed [1]. They are characterized by lower calculation complex-
ity. The main disadvantage of these reduction methods is a lack of guarantee of
preserving the stability of the reduced model, as well as less accurate approxima-
tion of the frequency response as compared to the BTA methods, in particular
those implementing frequency weighs [6]. Moment matching is a key ingredient
of the Krylov-based methods. The idea is to match moments of the original
higher-order model (1) with the moments of a lower-order model (2). This is
achieved by iteratively constructing matrices that span the Krylov subspaces.

Moment matching model reduction of a system is an approximation of its
transfer function G(s) by a rational function of a lower degree. This can be done
by matching some (k) terms of the Laurent series expansion of G(s) at various
points of the complex plane.

G(s) =
∞∑
i=0

ηi(s− s0)i, Gr(s) =
k∑

i=0

ηi(s− s0)i (4)
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where: ηi are moment of an impulse response of the system g(t) around the
arbitrary point s = s0:

ηi(s0) =

∫ ∞

0

tig(t)e−s0tdt

or the ith derivative of the transfer function around the point s = s0:

ηi(s0) = (−1)i
di

dsi
G(s)

∣∣∣∣
s=s0

= C (s0I−A)
−(i+1)

B for i = 0, 1, 2, . . .

In many cases the direct computation of the moments is numerically prob-
lematic because of numerical reasons. Algorithms based on determination of a
Krylov subspace are much better [1]. The methods require determining of the
orthonormal basis. Two algorithms are most important: the Arnoldi algorithm
and the asymmetrical Lanczos algorithm.

The Rational Krylov method is a generalized version of the standard Krylov-
based approximation methods. Instead of choosing one expansion point, multiple
expansion points are chosen [1,5,7]. The choice of a set of points {s1, s2, . . . , sj}
makes it possible for the reduced order model to match the frequency response
of the original system in a wide range, from the steady-state response to high
frequencies.

The reduced system is not guaranteed to be stable and no global error bounds
exist. Moreover, the selection of expansion points, which determines the reduced
model, is not an automated process and has to be figured out by the user by
trial and error. However, this algorithm can be applied to the system of a very
high order.

2.3 Approximation of High-Order Model by Low-Order Model with
Time Delays

If it is known from other sources that the system described by a high–order
transfer function G(s) is a system with a certain time delay at the input/output,
it is possible to approximate G(s) by a kth (k < n) order model with a pure
time delay τ [9].

The problem of reduction can be changed and instead of approximation of
G(s), we can reduce a stable rational approximation of esTG(s).

∥∥G(s) − e−sTGr(s)
∥∥
∞ =

∥∥esTG(s) −Gr(s)
∥∥
∞ (5)

At first we must determine an approximation of esTG(s). It could be done by
expanding esT , as a Taylor series or Padé approximations [9]. However, Padé
approximations of esT using all-pass functions will have all unstable poles, just
as Padé approximations of e−sT have all stable poles. Therefore, it is necessary to
form an approximation of esTG(s) using a Padé approximation and then select
the strictly proper and stable part. Now the approximation of esTG(s) can be
reduced with using the SVD-based or Krylov-based methods.
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2.4 Approximation of High-Order Systems by Non-integer
Low-Order Transfer Function with and without Time Delay

In many conventional process control applications high-order process models are
approximated using simple FOPTD and SOPTD structures given by:

Gr(s) =
K

Ts + 1
e−τs, Gr(s) =

K

s2 + 2ζωs + ω2
e−τs

For complex models these structures give large approximation errors and this
proves the inadequacy of model reduction. Hence, to obtain better accuracy of
the reduced order models, two structures involving fractional order (FO) ele-
ments, were proposed [12]:

Gr(s) =
K

Tsα + 1
e−τs, Gr(s) =

K

sβ + 2ζωsα + ω2
e−τs

As a generalization of these forms, a new structure of the non-integer order
models is proposed here:

Gr(s) =

K

Z1∑
i=1

(
TN
i sα + 1

) Z2∑
i=1

(
s2α + 2ζNi ωN

i sα +
(
ωN
i

)2)

P1∑
i=1

(
TD
i sα + 1

) P2∑
i=1

(
s2α + 2ζDi ωD

i sα +
(
ωD
i

)2) e−τs (6)

The numbers of f -zeros and f -poles [15,16], (Z1, Z2) and (P1, P2) respectively,
can be chosen arbitrary, with the f -order of the reduced model (related to f -
poles) being k = P1+2P2. The most suitable structure of the reduced model can
be decided for the minimum value of approximation error of the reduced model
which can be accepted by the designer with regard to its future use for control or
simulation. A suitable set of values of reduced model parameters

{
TN
i , ζNi , ωN

i

}
for the numerator,

{
TD
i , ζDi , ωD

i

}
for the denominator and {K,α, τ} can be ob-

tained by using evolutionary algorithms or the Nelder–Mead Simplex algorithm
implemented in the Matlab’s Optimization Toolbox.

3 Evolutionary Algorithm for Determination of Method
Reduction Parameters

Based on presented the characteristics, it can be concluded that the optimiza-
tion of the reduction parameters is not a trivial task. Determination of optimal
parameters of the reduction is a non-convex problem and the objective function
(norm of an approximation error of the reduced model) contains many local
minima. It is therefore necessary to apply algorithms of global optimization. To
solve this problem, the evolutionary algorithm based on evolution strategies has
been adopted [2,3,13]. Evolutionary algorithms carry out the adaptation process
in order to find a better solution than the one produced so far. However, it is
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not possible to guarantee that the algorithm will find the best possible solution.
By increasing the number of the iterations, we increase only a probability of
receiving a global solution.

Evolutionary algorithms have arosen as a result of inspiration from genetics
and evolution, which supplied a special terminology that links the languages of
biology and computer science. Each of the solutions is called individual (or phe-
notype). The algorithm processes the population of individuals. The individual
is equipped with information constituting its genotype (a set of features). Every
feature is called a chromosome.
For a reduction method, the genotype consists of chromosomes encoding inde-
pendent variables:

– Frequency Weighted methods [13]:
{nf , ωf} – orders and cutoff frequencies of low-pass filters, which creates
frequency weighted functions applied on the input or/and the output of the
primary model

– Rational Krylov methods [14]:{
sV1 , s

V
2 , . . . , s

V
J

}
,
{
sW1 , sW2 , . . . , sWJ

}
– the value of expansion points and{

IV1 , IV2 , . . . , IVJ
}

,
{
IW1 , IW2 , . . . , IWJ

}
– the number of moments for every

expansion point, which are used to create input (V) and output (W) Krylov
subspaces.

– Approximation of high-order systems by integer and non-integer low-order
transfer function with or without time delays:{
K,TN

i , ζNi , ωN
i

}
– for numerator parameters of reduced model,{

TD
i , ζDi , ωD

i

}
– for denominator parameters of reduced model,

α – only for non-integer reduced models,
τ – only for reduced models with time delays.

4 Analysis of Model Reduction Results

All model reduction results are shown on the example of the evaporating tubes
of the BP–1150 steam boiler. The model of subsystems of evaporating tubes is
the distributed parameter systems along with the length and circumference of
the tubes and the connecting blades creating the furnace walls. The model of
the evaporating tubes consists four subsystems which are elaborated as models
with lumped parameters, using the following numbers of finite elements:

– One-phase zone - 150 finite elements,
– Two-phase zone I – 50 finite elements,
– Two-phase zone II – 75 finite elements,
– Two-phase zone III – 200 finite elements.

Each finite element is described by 15 state variables. The mathematical models
of the boiler subsystems are described in detail in Refs. [17, 18]. The evaporat-
ing tube model has a limited adequacy scope due to the following simplifying
assumptions:
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– steam-water mixture is in a state of the thermodynamic balance,
– the simplification of heat energy transport along the pipe wall model,
– applied density of space variable digitizing.

For this reasons, we can assume, that adequacy scope of the evaporating
tube models is around 1 [rad/s]. Within this frequency scope, there are dynamic
processes related to the accumulation of heat in the pipe walls and in the working
medium, heat exchange between the pipe walls and the working medium, as well
as transport of working medium along the evaporating tubes, and changes in
working medium enthalpy [17, 18].

MIMO models are often characterized by significant differences of transfer
functions for individual input/output pairs. Moreover, the magnitudes of fre-
quency responses for individual input/output pairs may differ significantly with
changes in frequency. Therefore, applying the Hankel norm exclusively does not
always allow for the appropriate assessment of the reduced model [18]. The most
advantageous choice for the model of the BP–1150 steam boiler is the average
square relative approximation error of frequency responses, for the frequency
scope of the model adequacy:

Δ =

√√√√ 1

N

N∑
j=1

(
|G(iωj) −Gr(iωj)|

|G(iωj)|

)2

(7)

where N - number of approximation points in the frequency domain.
The modeling performance criterion Δ is valid for a SISO system, that is a

selected input-output channel of the MIMO plant. Here, we will not discuss the
MIMO extension issue for Δ. Rather, we will illustrate the usefulness of Δ in case
of modeling of a selected SISO channel of the considered MIMO plant, in partic-
ular the channel hin → Mout, that is input enthalpy of the working medium →
mass flow of the working medium on the outlet of the evaporating tube.

The resulting reduced models of orders k = 3 and k = 5 are shown in Fig. 1.
We note that the obtained results are close to each other and the models quite
well approximate the primary model in the adequacy scope, in particular the
first peaks are well approximated. The best approximation at low frequencies
is obtained for models derived with the FW and RK methods. This is because
of the fact that the values of interpolation points for RK are very low and the
weight function is in the shape of low-pass filters for the FW methods.

The primary model of the evaporating tubes contains a time delay of some 15s
distributed along the length of the tube. As a result of modeling, this time delay
has initially been covered by the high-order model. However, during the reduction
it is possible to replace this distributed time delay by a pure time delay.

As we can see, better reduction results can be obtained with use of the meth-
ods which introduce pure time delay into a reduced model (FWPTD–Frequency
Weighted plus time delay, IOPD–integer order plus time delay, NIOPTD–non-
integer order plus time delay). The best overall results are obtained using the
fractional order technique. The optimal parameters used to obtain reduced order
models are presented in Table 1.
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Fig. 1. Frequency responses and relative approximation errors for reduced evaporating
tube models (k = 3 and k = 5) for hin → Mout
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Table 1. Model reduction parameters and reduction results of order k = 3 and k = 5

k = 3 Δ parameters

FW 0.9255 nfin = 24, ωfin = 0.05, nfout = 16, ωfout = 0.185

RK 1.1471
{
sV1

}
= {0},

{
IV1

}
= {3},

{
sW1

}
= {0},

{
IW1

}
= {3}

NIO 0.8788 α = 1.0925, K = 2.959 × 10−5, TN
1 = 10779, TN

2 = −16.34,

TD
1 = 63.29, ζD1 = 0.4367, ωD

1 = 0.07785

FWPTD 0,7945 nfin = 18, ωfin = 0.128, nfout = 16, ωfout = 0.097, τ = 2.23s

IOPTD 0.7349 K = 5.528 × 10−5, TN
1 = 6931, TN

2 = −3.904,

TD
1 = 17.73, ζD1 = 0.5038, ωD

1 = 0.1125, τ = 15.63s

NIOPTD 0.7125 α = 1.0662, K = 2.936 × 10−5, TN
1 = 11468, TN

2 = −7.971,

TD
1 = 28.97, ζD1 = 0.6635, ωD

1 = −0.08425, τ = 33.95s

k = 5 Δ parameters

FW 0.7245 nfin = 25, ωfin = 0.041, nfout = 8, ωfout = 4.52

RK 0.6436
{
sV1 , s

V
2

}
= {0, 0.103},

{
IV1 , I

V
2

}
= {2, 3},{

sW1 , sW2
}

= {0.104, 1.211},
{
IW1 , IW2

}
= {4, 1}

NIO 0.5982 α = 1.1102, K = 3.886 × 10−3,

TN
1 = 6443, TN

2 = 4.188, ζN1 = −0.6710, ωN
1 = 0.1440,

TD
1 = 46.53, ζD1 = 0.3823, ωD

1 = 0.1043, ζD2 = 9.281, ωD
2 = 0.9036

FWPTD 0,5166 nfin = 4, ωfin = 0.188, τ = 12.12s

IOPTD 0.5288 K = 2.553 × 10−2, τ = 13.19s,

TN
1 = 4912, TN

2 = 1.461, ζN1 = −0.3656, ωN
1 = 0.3016,

TD
1 = 19.72, ζD1 = 0.3308, ωD

1 = 0.1366, ζD2 = 8.311, ωD
2 = 4.309

NIOPTD 0.5155 α = 1.0898, K = 1.593 × 10−3, τ = 13.04s,

TN
1 = 7972, TN

2 = 2.609,, ζN1 = −0.2337, ωN
1 = 0.2684,

TD
1 = 40.45, ζD1 = 0.5230, ωD

1 = 0.1485, ζD2 = 3.249, ωD
2 = 0.8789

5 Conclusions

The task of accurate modeling of complex dynamical systems may involve pro-
hibitive computational burdens. For this reason, an ability to properly reduce
model complexity becomes highly significant.

Good reduction results for LTI models of control plants with a limited ade-
quacy scope can be achieved by proper selection of parameters of model reduc-
tion (e.g. FW, RK methods) as well as by selection of model parameters (e.g.
zeros, poles). Estimation of those parameters is not a trivial task, as it is a non–
convex optimization problem. Therefore, it is necessary to apply the algorithms
for global optimization, e.g. evolutionary algorithms.

The main result of our comparative frequency domain analysis of low-order
modeling of an exemplary, complex dynamical plant is that non-integer (frac-
tional) order models outperform some other popular model reduction techniques,
including the Frequency Weighted and Rational Krylov methods.
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Abstract. This paper presents a new implementable strategy for mod-
eling and identification of a fractional-order discrete-time block-oriented
feedback-nonlinear system. Two different concepts of orthonormal ba-
sis functions (OBF) are used to model a linear dynamic part, namely
”regular” OBF and inverse IOBF. It is shown that the IOBF concept
enables to separate linear and nonlinear submodels, which leads to a
linear regression formulation of the parameter estimation problem, with
the detrimental bilinearity effect totally eliminated. Finally, Laguerre fil-
ters are uniquely embedded in modeling of the fractional-order dynamics.
Unlike for regular OBF, simulation experiments show a very good identi-
fication performance for an IOBF-structured, fractional-order Laguerre-
based feedback-nonlinear model, both in terms of low prediction errors
and accurate reconstruction of the actual system characteristics.

1 Introduction

Nonlinear block-oriented systems, including the Hammerstein, Wiener and
feedback-nonlinear ones, have attracted considerable research interest both from
the industrial and academic environments [1,2,3,4,5]. On the other hand, it is well
known that orthonormal basis functions (OBF) have proved to be useful in iden-
tification and control of dynamical systems, including nonlinear block-oriented
systems [6,7,8,9]. In particular, an inverse OBF (IOBF) modeling approach has
been effective in identification of a linear dynamic part of the Hammerstein sys-
tem [6]. The approach provides the so-called separability in estimation of linear
and nonlinear submodels [7], thus eliminating the bilinearity issue detrimentally
affecting e.g. the ARX-based modeling schemes. The IOBF modeling approach is
continued to be efficiently used here to model a linear fractional-order dynamic
part of the feedback-nonlinear system.
Recently, fractional-order dynamics have been given a huge research interest,

mostly for linear systems [10,11,12,13,14,15,16,17,18].
Discrete-time fractional-order OBF-based modeling is a new research area

and there is a few papers on the topic that has up to date been available

c© Springer International Publishing Switzerland 2015 101
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_10
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[19,20,21,22,23]. Those papers illustrate that fractional-order discrete Laguerre
filters can be very effective in modeling of dynamical systems.
This paper presents a new strategy for feedback-nonlinear system identifica-

tion, which is a combination of the inverse-OBFmodeling concept and fractional-
order generalization of discrete Laguerre filters. The effective combination gives
rise to the introduction of a powerful method for identification of the fractional-
order feedback-nonlinear system.

2 Fractional-Order Discrete-Time Difference

A simple generalization of the familiar Grünwald-Letnikov difference [12] is the
fractional difference (FD) in discrete time t, described by equation [10,14,15,24]

Δαx(t) =

t∑
j=0

Pj(α)x(t)q
−j = x(t) +

t∑
j=1

Pj(α)x(t)q
−j t = 0, 1, . . . (1)

where α ∈ (0, 2) is the fractional order, q−1 is the backward shift operator and

Pj(α) = (−1)jγj(α) (2)

with

γj(α) =

(
α

j

)
=

{
1 j = 0
α(α−1)...(α−j+1)

j! j > 0
(3)

Note that each element in Eqn. (1) from time t back to 0 is nonzero so that
each incoming sample of the signal x(t) increases the complication of the model
equation. In the limit, with t → +∞, we end up with computational explo-
sion. Therefore in [25], truncated or finite fractional difference (FFD) has been
considered for practical, feasibility reasons. Finite fractional difference (FFD) is
defined as

Δαx(t, J) = x(t) +
J∑

j=1

Pj(α)x(t)q
−j (4)

where J = min(t, J) and J is the upper bound for j when t > J .
In this paper, we assume that α is known.

Remark 1. Possible accounting for the sampling period T when transferring from
the Grünwald-Letnikov continuous-time derivative to the Grünwald-Letnikov
discrete-time difference results in dividing the right-hand side of Eqns. (1) and
(4) by Tα. Operating without Tα as in the sequel corresponds to putting T = 1

or to the substitution of Pj(α) for
Pj(α)
Tα , j = 0, . . . , t.
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3 Fractional-Order Discrete-Time Laguerre Filters

A classical (or integer-order, or ”regular”) OBF model of a dynamical system,
or shortly, OBF system, can be presented in form

y(t) =

K∑
i=1

CiLi(q)u(t) + e(t) (5)

where u(t), y(t) and e(t) are the system input, output and disturbance, re-
spectively, Li(z) and Ci, i = 1, ...,K, are orthonormal transfer functions and
weighting parameters, respectively and e(t) is the output error. In case of use of
discrete Laguerre filters we have

Li(z) =
k

z − P

(−Pz + 1

z − P

)i−1

i = 1, ...,K (6)

where k =
√
1− P 2 and P is a dominant pole. In the sequel, we limit our

interest to the practically justified case of P > 0. The unknown parameters Ci,
i = 1, . . . ,K, can be easily estimated using e.g. Recursive Least Squares (RLS) or
Least Mean Squares (LMS) algorithms formalized in a linear regression fashion
[26]. In our examples, RLS estimation is used. Pursuing an optimal Laguerre
pole Popt has been well established [8,9,27,28,29].
The Laguerre filters presented in Eqn. (6), can be factorized to the form

[25,21,22]
Li(q

−1) = GL(q
−1)
(
GR(q

−1)− P
)i−1

i = 1, ...,K (7)

with

GL(q
−1) =

kq−1

1− Pq−1
(8)

GR(q
−1) =

k2q−1

1− Pq−1
= kGL(q

−1) (9)

and the consecutive filter outputs being yL(t) = GL(q
−1)u(t) and

yiR(t) = GR(q
−1)Ui(t), i = 1, ...,K − 1, with

Ui(t) =

{
yL(t) i = 1

yi−1
R (t)− PUi−1(t) i = 2, ...,K

(10)

The two filters can also be described as

Gf
L :

ΔyL(t) = (P − 1)yL(t)q
−1 + ku(t)q−1 (11)

Gf
R :

ΔyiR(t) = (P − 1)yiR(t)q
−1 + k2Ui(t)q

−1 (12)

where ΔyL(t) = yL(t)− yL(t− 1) and similar is ΔyiR(t), i = 1, ...,K.
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The outstanding value of the factorization (7) of the expression (6) is that
GL(q

−1) and GR(q
−1) are the first-order filters that can be easily adopted to

the fractional-order form. The fraction-formalized filters Gf
L(q

−1) and Gf
R(q

−1)
can now be described as

Gf
L :

ΔαyL(t) = (P − 1)yL(t)q
−1 + ku(t)q−1 (13)

Gf
R :

ΔαyiR(t) = (P − 1)yiR(t)q
−1 + k2Ui(t)q

−1 (14)

where Ui(t) is as in Eqn. (10). Finally, the outputs from the FD versions of the
Gf

L(q
−1) and Gf

R(q
−1) filters can be obtained as

Gf
L :

yL(t) = (P − 1)yL(t)q
−1 + ku(t)q−1 −

∑t
j=1 Pj(α)yL(t)q

−j (15)

Gf
R :

yiR(t) = (P − 1)yiR(t)q
−1 + k2Ui(t)q

−1 −
∑t

j=1 Pj(α)y
i
R(t)q

−j (16)

The outputs for FFD versions of the Gf
L(q

−1) and Gf
R(q

−1) filters can be calcu-
lated as

Gf
L :

yL(t) = (P − 1)yL(t)q
−1 + ku(t)q−1 −

∑J
j=1 Pj(α)yL(t)q

−j (17)

Gf
R :

yiR(t) = (P − 1)yiR(t)q
−1 + k2Ui(t)q

−1 −
∑J

j=1 Pj(α)y
i
R(t)q

−j (18)

Remark 2. Possible accounting for the sampling period T when transferring from
the Grünwald-Letnikov continuous-time derivative to the Grünwald-Letnikov
discrete-time difference results in multiplication of the two first components at
the right-hand sides of Eqns. (17) and (16) by Tα.

Finally, the output from the fractional-order Laguerre model is computed as

ŷ(t) =

K∑
i=1

CiUi(t) (19)

where Ui(t) calculated in Eqn. (10), with yL(t) = Gf
L(q

−1)u(t) and yiR(t) =

Gf
R(q

−1)Ui(t), i = 1, ...,K− 1, respectively (see Eqns. (15), (16), (17) and (18)).
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4 System Description

4.1 Non-fractional Case [7,30,31]

In the block-oriented feedback-nonlinear system (Fig. 1), the output of the linear
dynamic part is fed (negatively) back to the input through the static nonlinearity,
so that the whole system can be described by the equation

y(t) = G(q) [u(t)− f(y(t)) + eF (t)]

= G(q) [u(t)− x(t) + eF (t)]
(20)

where G(q) models a linear dynamic part, f(.) describes a nonlinear static func-
tion and eF (t) is the error/disturbance term.

G(q)

f (.)

e
F
(t)

u(t) y(t)

x(t)

    

     

   u(t) y(t)

eF (t)

Fig. 1. Feedback-nonlinear system

Two different concepts for modeling of a linear dynamic part by means of OBF
are examined here. The first one is the ”regular” OBF modeling approach and
the second one is the IOBF concept in which the inverse of a dynamic element
is OBF-modeled.

Regular OBF Modeling of Feedback-Nonlinear System. It is presented
in Section 3 that an open-loop stable linear discrete-time system described by
the transfer function G(q) can be represented with an arbitrary accuracy by the
model Ĝ(q) =

∑M
i=1 CiLi(q), including a series of orthonormal transfer functions

Li(q) and the weighting parameters Ci, i = 1, ...,M , characterizing the model
dynamics. Thus, the model of the system (20) can be written as [7,30,31]

ŷ(t) =

M∑
i=1

CiLi(q) (u(t)− f [y(t)]) (21)
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Various OBF can be used in (21). Two commonly used sets of OBF are simple
Laguerre and Kautz functions. These functions are characterized by the ’domi-
nant’ dynamics of a system, which is given by a single real pole (p) or a pair of
complex ones (p, p∗), respectively.
The nonlinear part of the feedback-nonlinear system f(.) can be approximated

e.g. with the polynomial expansion

f
(
y(t)

)
= a1y(t) + a2y

2(t) + ...+ amym(t) (22)

with ai, i = 1, ...,m, being the unknown model parameters.
Combining equations (21) and (22) we arrive at the equation describing the

model output of the whole feedback-nonlinear system

ŷ(t) =

M∑
i=1

CiLi(q)u(t)−
M∑
i=1

CiLi(q)

m∑
j=1

ajy
j(t) (23)

Inverse OBF Modeling for Feedback-Nonlinear System. In case of use
of the IOBF concept to model a linear dynamic part, the feedback-nonlinear
model equation can be presented in form

R(q)ŷ(t) = u(t) − x(t) (24)

where the FIR model R(q) = r0q
d+r1q

d−1+...+rd+rd+1q
−1...+rL−1q

−L+d+1 is
the (approximate) inverse of the system model Ĝ(q), with d being the time delay.
In the IOBF concept, the inverse R(q) of the system is modeled using OBF. An
OBF modeling approach can now be applied to equation (4) and finally we can
present equation (20) in the following form [30]

y (t) +

M∑
i=1

CiLi(q) y (t) = β0[u(t− d)− x(t− d)] + e(t) (25)

where β0 = r−1
0 and e(t) = β0eF (t) is the equation error.

Now, accounting for the polynomial expansion of the nonlinear element (Eqn.
(22)) we arrive at the equation describing the whole IOBF-related feedback-
nonlinear system

y (t) +
M∑
i=1

CiLi(q) y (t) = β0

⎡
⎣u(t− d)−

m∑
j=1

ajy
j(t− d)

⎤
⎦ + e(t) (26)

Putting aj = β0aj , j = 1, ...,m, the output from the feedback-nonlinear system
can be finally given as

y (t) = β0u(t− d)−
M∑
i=1

CiLi(q) y (t)−
m∑
j=1

ajy
j(t− d) + e(t) (27)
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Remark 3. It is essential that the Laguerre filters are, in the IOBF framework,
driven by y(t). This means that in order to calculate the fractional-order output
equation in the IOBF fashion we have substituted y(t) for u(t) in Eqns. (25),
(26) and (27).

Discriminating between the Gains. The challenge of modeling and pa-
rameter estimation of the feedback-nonlinear system is that without certain,
sometimes unrealistic assumptions it is not possible to accurately reconstruct
properties of the two internal blocks from input-output measurements only
[30,31]. For example, an assumption on knowledge of a gain of the linear (or
nonlinear) subsystem enables to estimate parameters of the models of the two
blocks. The problem is that such a knowledge is rather seldom available. The
whole issue arises from the fact that estimators based on input-output mea-
surements only cannot discriminate between the gains of linear and nonlinear
contributors to the system. Here we present a method for the recovery of a gain of
the linear subsystem in case of a specific form of a nonlinear static characteristic.
The method constitutes a preliminary stage for our new identification strategy
for feedback-nonlinear systems. We firstly assume that a nonlinear static char-
acteristic can be linearized around u=0. We also assume that an identification
experiment with a low-range input signal is feasible, in which case only the linear
mode of a system is excited, so that all nonlinear components can be neglected.
Now, equation (26) can be written as

y (t) +

M∑
i=1

CiLi(q) y (t) = β0

[
u(t− d)− ay(t− d)

]
+ e(t) (28)

where a = a1 is the gain of the nonlinear submodel around u = 0. Rewrite the
last equation as

ŷ(t) + a1y(t− d) = ϕT (t)Θ (29)

where a1 = β0a, ΘT = [C1 · · · CM β0], ϕT (t) = [−v1(t) · · · − vm(t) u(t − d)]
and vi(t) = Li(q)y(t). We can now estimate the parameter vector Θ provided
that a1 is ”guessed” or fixed, or just tuned (compare [30,31]). (Once again, it
is not possible to simultaneously estimate all the unknown parameters a1 and
Θ from input-output measurements only.) Tuning of the gain parameter a1 is
quite easy and we have even recommended to use the tuning method in case
of time-varying parameters [30,31]. Now, we can precisely recover the gains of
linear and nonlinear parts of the system model. (Note: We refer here to the IOBF
approach as the regular OBF one produces much poorer results.)

4.2 Fractional-Order Case

Regular OBF Modeling for Fractional-Order Feedback-Nonlinear Sys-
tem. Equation (23) can now be rewritten in form
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ŷ(t) =

M∑
i=1

CiUi(t)−
M∑
i=1

Ci

m∑
j=1

ajU i,j(t) (30)

where Ui(t) calculated in Eqn. (10), with yL(t) = Gf
L(q

−1)u(t) and yiR(t) =

Gf
R(q

−1)Ui(t), i = 1, ...,K − 1, respectively, and

U i,j(t) =

{
Gf

L(q)y
j(t) i = 1

yi−1
R (t)− PUi−1(t) i = 2, ...,K

(31)

Model equation as in (31) can be presented in a linear regression form

ŷ(t) = ϕT (t)Θ (32)

where ϕT (t) = [U1(t) ... UM (t) −U1,1(t) ... −UM,1(t) ... −U1,m(t) ... −UM,m(t)].
The unknown parameter vector is θT = [C1 ... CM w11 ... w1M w21

... w2M ... wm1 ... wmM ], where the wji = Ciaj , i = 1, ...,M and j = 1, ...,m.
Unfortunately, the bilinearity issue is present here in that the products of the
parameters of linear and nonlinear submodels unnecessarily appear in the un-
known parameter vector to be estimated. This copies the drawback of the regular
OBF-based approaches to Hammerstein system identification as in [7,30,31].

Fractional-Order Inverse OBF Modeling for Feedback-Nonlinear Sys-
tem. We assume now that a linear dynamics is of fractional order. Referring to
Eqns. (27) and (31), the model ouput of the fractional-order feedback-nonlinear
system can be presented as

ŷ (t) + a1y(t− d) = β0u(t− d)−
M∑
i=1

CiU i,1 −
m∑
j=2

ajy
j(t− d) (33)

where U i,1, i = 1, ...,M are as in Eqn. (31). The model of Eqn. (33) can be easily
presented in a linear regresion form

ŷ(t) + a1y(t− d) = ϕT (t)Θ (34)

with ΘT = [β0 C1 ... CM a2 ... am] and ϕT (t) = [u(t−d) −U1(t) ...
− UM (t) y2(t) ... ym(t)] with ai = β0ai and U i,1(t), i = 1, ...,M , driven by
y(t) as in Eqn. (31) and a1 fixed/tuned in a similar way as for Eqn. (29). Now,
the parameters Θ can be easily estimated using e.g. the RLS algorithm (or its
adaptive version ALS).

Remark 4. Note that, the IOBF fractional-order feedback-nonlinear model is
much simpler than the regular OBF one, in terms of a number of estimated
parameters. In the fractional-order feedback-nonlinear regular Laguerre-based
model we have to estimate (m + 1)M parameters, whereas in the fractional-
order feedback-nonlinear inverse Laguerre-based model (we estimate) m+M+1
parameters only.
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5 Simulation Experiments

Example 1. Consider a discrete-time fractional-order feedback-nonlinear system,
with a static nonlinearity f(u(t)) = u3(t) and a fractional-order dynamic part
described in state-space

Δαx(t+ 1) = Afx(t) +Bu(t), (35)

y(t) = Cx(t) +Du(t) (36)

with

Af =

[
−0.4 −0.03
1 0

]
, B =

[
1
0

]
,

C = [0 0.23] , D = [0] ,

α = 0.5

The dynamic part is described by the FFD-based fractional-order
IOBF-structured Laguerre model, with P = 0.49, M = 8, m = 4, α = 0.7 and
various implementation lengths of the FFD approximation (J). MSPE is used
to evaluate the accuracy of modeling. Selected results are presented in Table 1.
(We refrain from showing quite similar results for the regular OBF-structured
model whose computational inefficiency has earlier been indicated.)

Table 1. MSPE for feedback-nonlinear system with FFD-based Laguerre model

J 50 100 200 1000

MSPE 8.36e-3 3.96e-3 2.24e-3 2.00e-3

Fig. 2 presents the results of modeling in terms of (indistinguishable) time
plots of the actual and modeled outputs of the fractional-order feedback-nonlinear
system for some random input signal.
It can be concluded from Fig. 2 and Table 1 that the introduced fractional-

order IOBF-based feedback-nonlinear model can be very effective in modeling
of the class of fractional-order block-oriented nonlinear systems.
This is also illustrated by the reconstructed nonlinear static characteristic

f̂(y) = 5.05 10−4 y2 − 1.00 y3 − 3.58 10−5 y4 (37)

confirming a very good identification performance.
However, to obtain high modeling accuracies we have to use high implemen-

tation lengths of the FFD approximation. This inconvenience can be essentially
reduced by making use of our computationally more efficient approximations to
FD, that is AFFD, PFFD [32], FLD and, in particular, FFLD [19], the task
being a subject of our current and future research works.
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Fig. 2. Time plots of actual and modeled outputs of the fractional-order feedback-
nonlinear system

6 Conclusion

The paper has presented a new, simple, analytical solution to the nonlinear iden-
tification problem for the fractional-order block-oriented feedback-nonlinear sys-
tem using fractional-order Laguerre-based models. We have demonstrated that a
combination of the inverse OBF modeling concept and fractional-order Laguerre
filters can provide high-performance identification of the class of fractional-order
nonlinear systems. Simulation examples show that low prediction errors and ac-
curate reconstructions of both nonlinear and linear blocks of the system have
been achieved for the introduced models.
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Abstract. ”Fractional order lag” is a system that is popular in multiple
applications. In this paper, authors consider a new method for approxi-
mation of this system based on its impulse response. Certain assumptions
of the approximation method are verified and algorithm is presented.
Also certain problems with this system analysis are discussed, especially
its realisation in the form of non-integer order differential equations.

1 Introduction

Non-integer order systems, often called "fractional", gain more and more interest
from various scientists, engineers and researchers. These systems might be use-
ful for modelling processes difficult or even impossible to analyse with classical
methods. Some basic notions for fractional calculus can be found in [5,9,10]. One
of the problems with these systeme is that they are quite complicated in numer-
ical implementation. Therefore, there are papers considering various methods of
approximation both in time and frequency domain, e.g. [1–4, 6, 8].

In this paper, the analysed system cannot be formulated in terms of differential
equations. It can be written as a following formula

x(t) = u ∗ g =

t∫

0

u(t− θ)g(θ)dθ. (1)

The transfer function has the form

ĝ(s) =
ĥ(s)

f̂(s)
, (2)

where ĥ(s) and f̂(s) denote respectively the numerator and denominator.
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2 Finite Dimensional Approximation of Fractional
Differential Equations

It can be shown that the solution of equation (2) can be approximated with a
solution of a system of n linear ordinary differential equation [1]. The approxi-
mation uses an orthonormal basis in L2(0,∞)

ek(θ, μ) =
√
2μe−μθLk(2μθ), k = 0, 1, 2, . . . , (3)

where μ is an arbitrary positive constant and Lk is k-th Laguerre polynomial of
form

Lk(z) =
ez

k!

dk

dzk
(e−zzk). (4)

Theorem 1 gives the conditions that must be fulfiled in order to find the
approximation with minimal error.

Theorem 1. If g ∈ L1(0,∞) ∪ L2(0,∞) and |u(t)| ≤ umax then:

1. The solution of (2) can be approximated with

xn(t) =
n∑

k=0

βkξk(t), (5)

where functions ξk(t) : [0,∞) → are solution of a system

ξ̇k = −μξk − 2μ

k−1∑
i=0

ξi +
√
2μu, ξk(0) = 0, k = 0, 1, 2, . . . , n (6)

and

βk =

∞∫

0

g(θ)ek(θ, μ)dθ. (7)

2. For every ε > 0 there exists a number n0 dependant on g, ε and umax that
approximation error dn(t) = x(t) − xn(t) fulfils the inequality

|dn(t)| < ε (8)

for all n ≥ n0 and t ≥ 0

Proof. For proof of theorem 1 see [1].

The formula (7) for calculating the coefficients is not convenient for numerical
implementation. In [1] the authors presented the following recurrence formula

βk =

√
2μ

k!

k∑
j=0

(
k

j

)
ckj (μ)ĝ

(k−j)(μ), (9)
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where
ckj =

k − j + 1

2μ
ckj−1, c

k
0(μ) = (2μ)k, j = 1, 2, . . . , k (10)

and ĝ(j)(s) =
dj ĝ(s)

dsj
. The derivatives of transfer function can be computed using

the following recurrence relation.

Let ĝ(s) =
ĥ(s)

f̂(s)
, then ĝ(s)f̂(s) = ĥ(s). Differentiation with respect to s and

using Leibnitz formula for function product gives

ĝ(k)(s) =

ĥ(k)(s)−
k∑

j=1

(
k
j

)
ĝ(k−j)(s)f̂ (j)(s)

f̂(s)
. (11)

2.1 Choice of Parameter μ

The performace of approximation method depends on parameter μ. One of the
methods for computing the parameter is presented below. The main goal of this
method is to minimize approximation error dn, that can be computed as follows
(argument t will be dropped in order to simplify the notation)

‖dn‖ = ‖g − gn‖22

=

∞∫

0

(g − gn)
2dt =

=

∞∫

0

g2dt− 2

∞∫

0

ggndt+

∞∫

0

g2ndt =

= ‖g‖22 +
n∑

k=0

β2
k(μ)− 2

∞∫

0

g

n∑
k=0

β2
keidt =

= ‖g‖22 +
n∑

k=0

β2
k(μ)− 2

n∑
k=0

β2
k(μ) =

= ‖g‖22 −
n∑

k=0

β2
k(μ),

(12)

where

gn(θ) =

n∑
k=0

βkek(θ, μ) (13)

denotes the approximation of impulse response. Therefore, μ should be chosen
to maximize the function

J(μ) =

n∑
k=0

β2
k(μ). (14)
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3 “Fractional Order Lag”

This class of systems is very popular in applications, usually without serious
analysis. These systems are classified as non-integer order, however their reali-
sation in the form of non-integer differential equations (at least not their finite
number). The only representation that can be used in the time domain is equa-
tion (1). Their transfer function take form

ĝ(s) =
1

(Ts+ 1)α
, (15)

where T is a constant. Impulse response for (15) can be found using inverse
Laplace transform

g(t) = L−1

{
1

(Ts+ 1)α

}
(16)

= L−1

{
1

Tα(s+ 1
T )

α

}
(17)

=
1

Tα
· L−1

{
1

(s+ 1
T )

α

}
(18)

=
1

Tα
· e− 1

T L−1

{
1

sα

}
(19)

=
1

Tα
· t

α−1e−
t
T

Γ (α)
, (20)

where Γ (x) denotes gamma function [9].

3.1 Verification of Assumptions

In order to use the decsribed method, it is necessary to check if all the assump-
tions are fulfiled. First of all, the norm of impulse response in L1(0,∞) must be
bounded. The impulse response is positive for all t ≥ 0, therefore, the absolute
value in norm can be omitted.

t∫

0

|g(t)|dt =
t∫

0

g(t)dt = h(t)

Therefore ∞∫

0

|g(t)|dt = lim
t→∞h(t) = lim

s→0
H(s)

and it is sufficient to use initial and final value theorems:

lim
t→∞x(t) = lim

s→0

(
s · 1

s(Ts+ 1)α

)
= 1 (21)
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and

lim
t→0

x(t) = lim
s→∞

(
s · 1

s(Ts+ 1)α

)
= 0 (22)

Therefore, ‖x(t)‖1 = 1 is bounded. Second assumption is that impulse re-
sponse is bounded in L2(0,∞). The following calculations are valid

infty∫

0

g2(t)dt =
1

T 2α · Γ 2(α)

infty∫

0

t2α−2e−
2t
T dt

= − 21−2αT 2α−1

T 2α · Γ 2(α)
· Γ
(
2α− 1,

2t

T

) ∣∣∣∞
0
,

(23)

where

Γ (a, x) =

∞∫

x

ta−1e−tdt (24)

is the "upper" incomplete gamma function and Rea > 0.
The limit of (23) for t → 0 can be written as

lim
t→0

(
−21−2αTα−1

Γ (α)
· Γ
(
2α− 1,

2t

T

))
= − 21−2αTα−1

Γ (α)
lim
t→0

Γ

(
2α− 1,

2t

T

)

= − 21−2αTα−1

Γ (α)
Γ (2α− 1, 0)

= − 21−2αTα−1

Γ (α)
Γ (2α− 1)

(25)
and is bounded for 2α− 1 > 0, that is α > 1

2 . Same analysis was conducted for
the second limit t → ∞

lim
t→∞

(
−21−2αTα−1

Γ (α)
· Γ
(
2α− 1,

2t

T

))
= −21−2αTα−1

Γ (α)
lim
t→∞Γ

(
2α− 1,

2t

T

)
=

= − 21−2αTα−1

Γ (α)
lim
t→∞

(∫ ∞

0

x2α−2e−xdx−
∫ 2t

T

0

x2α−2e−xdx

)

= 0.
(26)

From formulas (25) and (26), one obtains that the norm in L2(0,∞) is bounded
for α ∈

(
1
2 ,∞

)
.

The third assumption refers to limitations of impulse response. It can be
observed that (20) can be unbounded only for t = 0 and α < 1. For α > 1
formula (20) is bounded for all t.

From these three considerations, it is obtained that the assumptions of 1 are
fulfiled for α > 1.
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The derivative of (15) can be calculated using (11) with the following assump-
tions

ĥ(s) = 1 =⇒ ĥ(k)(s) = 0

f̂(s) = Tα ·
(
s+

1

T

)α

=⇒

f̂ (k)(s) = Tαα(α − 1) . . . (α− k + 1)

(
s+

1

T

)α−k

= Tαk!

(
α

k

)(
s+

1

T

)α−k

, k ∈ N.

It can be easily observed in figure 1 that the approximation gives the correct
answer for most cases. When the approximation order is high n = 30, parameter
μ is of little importance. However, when the approximation order is small n = 5,
the choice of parameter cannot be neglected. Using (14), it is obtained that the
optimal value for μ is 1.134 (for α = 1.8, n = 30, T = 2). The figure 2 shows the
plot of performance index as function of μ.

Error of approximation in both L1(0,∞) and L2(0,∞) spaces, for different
orders can be seen in figure 3. As it can be seen method reduces the error with
increasing order. It can be however observed that rate of improvement falls. It
is due to certain numerical considerations.

3.2 Numerical Considerations

Approximation error dn can be written in two ways. First, it is the difference
between impulse response and its approximation with system of equations. In
the same time, it can be written as

‖dn‖ = ‖g‖2 −
n∑

k=0

β2
k. (27)

Comparing these two formulas (α = 1.8, approximation order n = 30, T = 2),
one obtains

10−7 = ‖g − gn‖2 = ‖dn‖ = ‖g‖2 −
n∑

k=0

β2
k = −1.4293× 10−7, (28)

where g is the impulse response for system (15), gn is the impulse response of
approximating equations and βk are given by (7). It can be easily observed that
the difference between the values comes from numerical errors.

It can be observed that for order greater than 29 parameters cease to decrease.
According to approximation properties, parameters βk should tend to 0. How-
ever, due to numerical errors, probably in numerical computation of factorial,
this is not the case.

Figure 4(a) shows how the difference between two sides of equation (28) in-
creases with approximation order.
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(c) n = 5, μ = 1.134
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(d) n = 5, μ = 1.134
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(e) n = 30, μ = 10
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(f) n = 30, μ = 10
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Fig. 1. Impulse (left) and step response (right) for different approximation order n and
parameter μ. Parameters α = 1.8 and T = 2.
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The lefthand side of equation (28) can be analysed as function of approxi-
mation order n. As shown in figure 4(b) it is a decreasing function (although
not strictly decreasing) for both L1(0,∞) and L2(0,∞) norm. The analysis was
conducted for different values from 1 to 25. For higher order approximation the
numerical error was too large for further consideration. Numerical errors imply
also that for higher order approximation, it decreases slower than for orders
lower than 10.
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Fig. 3. Norms of approximation errors depending on order
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Fig. 4. Numerical considerations of error

3.3 Example with α ∈ (1
2
, 1)

It can be observed that the method presented in theorem 1 works also for func-
tions that do not fulfil all assumptions. When α ∈ (12 , 1), the impulse response
x(t) is unbounded at 0. However, for α = 0.85, T = 2, μ = 1.134 and n = 10
one obtains a very good approximation. Impulse and step response of the system
and its approximation are in the figure 5.
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Fig. 5. System with α = 0.85, T = 2 and its approximation with μ = 1.134 and n = 10

4 Conclusion

In this paper, the authors considered a novel approach to non-integer order
system approximation. The novelty consists of the application of the method
from [1] for a system that cannot be described with fractional order differential
equations only with a transfer function. The theorem was presented, that allows
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to approximate fractional order systems in time domain. Numerical analysis was
also conducted for this method.

The approximation method proved very useful for considered system. Regar-
dles, that this system is non-integer “in-name-only” method can also be used for
much wider class of systems. However, it must be noticed that for higher order
the numerical error is of significant importance and cannot be neglected. Fur-
ther research will include analysis of method operation in the frequency domain
and detailed comparison with other methods of approximation. In particular
methods by Oustaloup [7] and Charef [3] will be investigated.

Acknowledgment. Work realised in the scope of project titled ”Design and
application of noninteger order subsystems in control systems”. Project was fi-
nanced by National Science Centre on the base of decision no. DEC-2013/09/D/
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Abstract. Control of active magnetic bearings is an important area of
research. The laboratory magnetic levitation system can be interpreted
as a model of a single axis of bearings and is a useful testbed for control
algorithms. The mathematical model of this system is highly nonlinear
and requires careful analysis and identification. In this paper authors
compare performance indices for tuning of PIλDμ controller for this sys-
tem. It is a part of an ongoing research on non integer controller tuning
rules.

1 Introduction

Magnetic levitation systems have many varied uses such as in frictionless bear-
ings, high-speed maglev passenger trains, levitation of wind tunnel models, vi-
bration isolation of sensitive machinery, levitation of molten metal in induction
furnaces and the levitation of metal slabs during manufacture, see [5]. Much
interest is recently focused on active magnetic bearings. These bearings are con-
sidered to be superior over conventional bearings because the friction losses are
significantly reduced due to contactless operation. The bearings can also give
high speed and are also able to eliminate lubrication and moreover, operation
will be quiet, see [1]. Magnetic bearings are increasingly used in industrial ma-
chines such as compressors, turbines, pumps, motors and generators. Very inter-
esting are also their applications in artificial hearts. Also important, especially
in current popularity of ”green” energy solutions, is the flywheel energy storage
system.

Flywheel energy systems are now considered as enabling technology for many
applications including space satellite low earth orbits, hybrid electric vehicles
(see [6]), and many stationary applications. Such mechanical batteries normally
consist of a high speed inertial composite rotor, a magnetic bearings support and
a control system, an integral drive motor/generator, power electronics for electri-
cal conversion, and so on. One of the advantages over chemical batteries is that
the design life has no degradation during its entire cycle life, and current testing
indicates that flywheels are not damaged by repetitively deep discharge. Also,
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the contactless nature of magnetic bearings brings up higher energy efficiency,
lower wear, longer life span, absence of lubrication and mechanical maintenance,
and wider range of work temperature. Moreover, the closed-loop control of mag-
netic bearings enables active vibration suppression and on-line control of bearing
stiffness (see [18]).

Control of magnetic levitation system was analysed by many researchers fo-
cusing on different approaches. A linearising feedback control was considered
among the others by Barie and Chiasson (see [5]), Joo and Seo (see [10] and
[14]). Different approach to feedback linearisation of mag-lev (see [2]). The com-
parison of this approach with Takagi-Sugeno fuzzy control (see [9]). The cascade
variant of the linearising feedback was also discussed by Baranowski and Piątek
(see [3]). Real time neural feedforward control was considered by Bloch (see [11]).
Practically efficient results were also obtained by Piątek (see [13]) with very fast
linear control based on FPGA circuits. Piłat in [15] considered a non-integer
order PD controller.

In this paper we discuss an application of tuning non-integer PIλDμ controller,
when control signal is not disturbed and disturbed. This is a continuation of
authors earlier works (see [3,8,16]).

1.1 The Mathematical Model of the System

We consider the magnetic levitation system consisting of the electromagnet, the
ferromagnetic sphere (which is later referred to as the ”ball”), the current driver
and the position measurement system.

To construct the mathematical model of the plant we will rely on a basic
relation of Newton’s second law, in this case:

mẍ1(t) = Fl(x1(t), x3(t)) +mg (1)

where x1(t) is the gap between the ball and the electromagnet, x3(t) is the
electromagnet coil current, Fl(x1(t), x3(t)) is the force generated by the elec-
tromagnet, m is the mass of the ball and g is the gravitational acceleration. It
is widely known that the force generated by the electromagnet is given by the
following relation

Fl(x1(t), x3(t)) =
1

2
·
dl(x1(t))

dx1(t)
x2
3(t) (2)

where l(x1(t)) is the electromagnet inductance. Commonly, the inductance is
considered for cuboidally shaped gaps as a hyperbolical function, as for an ex-
ample (time argument was omitted)

l(x1) = l1 +
μl0

μ+ x1
(3)

where l0, l1 and μ are positive constants. Expressions of this type were considered
among the others by Barie and Chiasson (see [5]). What should be noted is that
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levitation systems such as considered have gaps of a different shape because a
levitating object is round. That is why we consider the approximation developed
by Piłat (in [14]) in a form of the following exponential function

l(x1) ≈ a exp

(
−
x1(t)

b

)
(4)

where a and b are positive constants. This approximation was obtained and
verified experimentally and leads to very good results. Parameters a and b were
determined by analysis of series of steady state points of the system with a
closed stabilising feedback loop. Exponential function was fitted into these points
through a least squares minimisation. For details see [14].

The coil current in the system usually is influenced by many factors like
changes in inductance, velocity and others. However, our system includes a cur-
rent driver, which has its own feedback loop. This solution is very popular (see
[7]) because it leads to either lower order or simpler model structure. In optimal
situation the driver should allow full current control, however in real situations
it introduces its own dynamics. For considered system, this dynamics can be
sufficiently modelled by a first order dynamical system given by the following
equation

ẋ3(t) =
1

Ts
(ksu(t)− is − x3(t)) (5)

where u(t) is the control voltage, ks is the gain of current controller, Ts is the
time constant of the current driver and is is the zero error of current driver.

Velocity of the ball x2 is the first derivative of position, so we can construct
the state space model. Let us introduce state space vector x given by

x = [x1 x2 x3]
T (6)

which can be used to formulate the model of the system as the following system
of first order differential equations

ẋ(t) = f(x(t), u(t)) (7)

where

f(x(t), u(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x2(t)

−
a

2mb
exp

(
−
x1(t)

b

)
x2
3 + g

1

Ts
(ksu(t)− is − x3(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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1.2 Nonlinear Feedforward

It is a known fact that the linear controller can operate properly in the neigh-
bourhood of a chosen steady state. Performance of classical PID can be strongly
improved, if the appropriate reference control value corresponding to a reference
value is added to the generated control signal. Authors tested this solution with
non-integer PIλDμ controller.

Let us consider control structures presented in figures 1. Let us assume, that
set point signal is piecewise constant. This goal can be satisfied then function
Ψ(wr) have form:

f(xr, Ψ(wr)) = 0 (9)

where xr = [wr 0 x3r]
T

, wr is constant value of w(t), f is given by (8) and x3r is
the value of current corresponding to w(t). Such function (along with x3r) can
be obtained by solving (9) and is given by the following formula:

Ψ(wr) =
1

ks

⎛
⎜⎜⎝is +

√√√√2mbg

a
· e

wr

b

⎞
⎟⎟⎠ (10)

s-  

s  

e

Fig. 1. Magnetic levitation with PIλDμ

2 Non-integer PIλDμ

This section describes a more generalized structure for the classical PID con-
troller. Podlubny proposed a generalization of the PID, namely the PIλDμ con-
troller, involving an integrator of order λ and a differentiator of order μ. In time
domain the equation for the PIλDμ controller’s output has the form (see [17]):

u(t) = Kpe(t) +Ki
C
0 D

−λ
t e(t) +Kd

C
0 D

μ
t e(t) (11)
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Where:

– Kp is proportional gain
– Ki is integral gain
– Kd is derivative gain
– e(t) is control deviation in time t
– λ, μ > 0

And the transfer function formula is given by the equation:

G(s) = Kp +Kis
−λ +Kds

μ (12)

As can be observed, when λ = 1 and μ = 1 we obtain a classical PID controller,
similar when λ = 0 and μ = 1 give PD, λ = 0 and μ = 0 give P, λ = 1 and μ = 0
give PI.

All these classical types of PID are the particular cases of the fractional PIλDμ.
However, the PIλDμ is more flexible.

For all numerical experiments the Simulated Annealing optimization method
has been chosen for tuning PIλDμ controller parameters. In this case we can
define the decision variables as: Kp, Ki, Kd, λ and μ. The tests will be conducted
for the following quality index:

Table 1. Result of tuning system without disturbance

Quality index Kp Ki λ Kd μ Quality value
T∫
0

te2(t)dt 517.017 116.408 0.917 20.6418 0.6796 2.69 · 10−3

T∫
0

e2(t)dt 475.1759 63.0862 0.2555 4.7824 0.7788 3.69 · 10−2

T∫
0

|e(t)|dt 553.146 91.828 0.786 4.336 0.77 0.112

T∫
0

(
e2(t) + x2

2(t)
)
dt 498.241 68.415 0.777 66.5197 0.997 1.33 · 10−2

Table 2. Result of tuning with load disturbance

Quality index Kp Ki λ Kd μ Quality value
T∫
0

te2(t)dt 481.202 291.560 0.0104 38.773 0.6429 7.95 · 10−2

T∫
0

e2(t)dt 582.31 118.476 0.087 47.023 0.585 5.42 · 10−2

T∫
0

|e(t)|dt 491.63 54.99 0.0237 57.378 0.59 0.313

T∫
0

(
e2(t) + x2

2(t)
)
dt 553.333 −38.514 0.997 94.882 1 9.88
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Fig. 2. Result of tuning system without disturbance for differing quality index

–
T∫
0

te2(t)dt

–
T∫
0

e2(t)dt

–
T∫
0

|e(t)|dt

–
T∫
0

(
e2(t) + x2

2(t)
)
dt

where e(t) = wr − x1(t).
The controller was implemented with Oustalup method. For the fractional-

order operator G(s) = sα, the continued fraction expansion can be written as
(see [12]):

Gt(s) = K

N∏
i=1

s+ ω′
i

s+ ωi
(13)

where:

ω′
i = ωminω

(2i−1−α)/N
u (14)

ωi = ωminω
(2i−1+α)/N
u (15)

K = ωα
max (16)

ωu =

√
ωmax

ωmin
(17)
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Fig. 3. Result of tuning system with disturbance in control signal for differing quality
index

2.1 Results

In all experiments, values of approximation parameters are:

– N = 3,
– ωmin = 10−6,
– ωmin = 106,

and initial points have value:

– Kp = 500
– Ki = 100
– Kd = 6
– λ, μ = 0.5

The optimal PIλDμ settings for the system without disturbance are collected
in table 1 and for the system with load disturbance settings are collected in table
2. Position states of the magnetic levitation were shown in figures 2 and 3.

How can see the best results have been achieved when quality indices of form
T∫
0

e2(t)dt or
T∫
0

te2(t)dt have been used (see figures 2(b) and 3(b)) (see figures

2(a) and 3(a)).
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3 Conclusion and Further Research

It has been shown that fractional-order PIαDμ controller is suitable for control
of magnetic levitation systems. The paper has shown that simulated annealing
optimisation method could be helpful in the tuning process. The authors tested
also some quality indices for tuning the controller.

The further research is planned to implement PIαDμ controller in digital real-
time environment, based on RT-DAC board and MATLAB/RT-CON library,
and to conduct experiments on physical plant.
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Abstract. In the paper the possibility and conditions for employing the
fractional-order differential calculus theory in the model predictive con-
trol are analyzed. First, the principle of the integer-order linear predictive
control and theoretical foundations of the fractional-order differential cal-
culus are reminded. Using the presented theoretical foundations attention
is focused further on the possibility of employing the fractional-order cal-
culus for model predictive control with a small set of coincidence points.
The introduction of the fractional-order differential calculus at the stage
of synthesizing the control algorithm offers an additional degree of free-
dom in tuning a control loop. The discussion is illustrated with results
of simulation tests.

Keywords: non-integer order systems, model predictive control,
fractional-order differential calculus.

1 Introduction

The idea of predictive control, which was put forward several dozen years ago and
has been intensely developed since then, is considered to be, after many years of
operating experience in industry, as one of the most universal and effective con-
trol methods. It can handle in natural way multivariable systems and moreover,
it can take into account explicitly constraints on input and output signals [1–3].
In recent years, the concept of the non-integer order derivative/integral, having
been known for a very long time, has found increasing use in automation, mainly
as a result of intensive theoretical and practical research. Therefore, there are
many works which applied the fractional-order differential calculus to the control
theory, which should contribute to the development of new control algorithms
significantly different from the well-known integer-order algorithms, and thus, by
implication, provide potentially new opportunities for control performance and
robustness [4–7]. Allowing integration/differentiation of arbitrary orders in clas-
sic control algorithms results in increasing the number of degrees of freedom in
parameter tuning, and thus creates new potentialities as to control performance
and robustness [8–10]. An excellent example here is the fractional-order digital
PIλDμ algorithm [6], already regarded as a standard one, but also the fractional-
order dead-beat algorithms, sliding mode control, linear-quadratic control, model
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reference adaptive control and iterative learning control, having been proposed
in later years [4, 8–10]. Consequently, there are recently papers which join the
predictive control with the fractional-order calculus [1, 11, 12].

2 Fractional Order Calculus

The generalized operator of integro-differentiation t0D
α
t or, alternatively, the

integro-derivative operator of order α ∈ R of the function f(t) defined on the
interval [t0, t] may be written as:

t0D
α
t f(t) =

⎧⎪⎨
⎪⎩

dαf(t)
dtn for α > 0

f(t) for α = 0

t0I
−α
t f(t) for α < 0

(1)

under the assumption that the real function f(t) is defined almost everywhere for
t � 0, and is multiple differentiable and integrable (depending on the order α)
within every interval [0, T ], T > 0 and exponentially-restricted, i.e., there exist
such real numbers ρ,M ∈ R that the following inequality |f(t)| � Meρt holds

for t > 0, and also that the integral
∫ t

t0
(t− τ)μf(τ)dτ exists for μ ∈ R, t0 < t [5].

t0I
α
t f(t) is the integration operator of order α > 0 (summation operator of order

α > 0 in discrete case, respectively). There are known several definitions of the
fractional-order derivative of function f(t). The one most common adopted is
that introduced by Grünwald and Letnikov. A derivative of fractional order α
of function f(t) is here defined as

GL
t0 Dα

t f(t) = lim
h→0

h−α

[ t−t0
h ]∑

j=0

(−1)j
(
α

j

)
f(t− jh) (2)

where the so-called generalized Newton symbol is given by

(
α
j

)
=

{
1 for j = 0
α(α−1)...(α−j+1)

j! for j = 1, 2, 3, . . .
(3)

Equation (2) may be rewritten as

GL
t0 Dα

t f(t) = lim
h→0

h−α

[ t−t0
h ]∑

j=0

cαj f(t− jh) (4)

where

cαj = (−1)j
(
α

j

)
, j = 0, 1, 2, . . . (5)

The Grünwald-Letnikov definition of the fractional-order derivative is particu-
larly popular for reasons of application, especially in digital control, where dis-
cretization of an f(t) function taken with a sampling period h fits naturally
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into this art of control. If it is considered that the number of summands in the
sum (4) is unavoidably finite in practice, then eq. (2) may be replaced by its
approximation

GL
t0 Dα

t f(t) ≈ h−α
L∑

j=0

cαj f(t− jh) (6)

where the number of samples L of the function f(t) (or length of memory where
the samples are stored in practical realization) should be chosen so that the
truncation error does not exceed a given value ε. Assuming the value of the
function does not exceed the value M at any point, the number of samples may
be estimated from the inequality [9]

L �
(

M

ε|Γ (1 − α)|

) 1
α

(7)

3 Fractional-Order Model Predictive Control

In the predictive control algorithm of integer order the cost function depends on
the sum of the weighted squared prediction errors over the prediction horizon
from N1 to N2 and on the sum of the weighted squared control signal increments
to be sought within the control horizon from 0 to Nu − 1

J(t) =

N2∑
j=N1

μ(j)[yp(t + j |t ) − yr(t + j |t )]2 +

Nu−1∑
j=0

λ(j)[Δu(t + j |t )]2 (8)

where yp(t + j |t ) denotes the predicted outputs within the prediction horizon,
yr(t + j |t ) denotes the reference values within the same horizon, Δu(t + j |t)
are the control signal increments within the control horizon and μ(j), λ(j) � 0
are the weight coefficients.

The cost function (8) may be expressed alternatively by using discrete sum-
mation operators

J(t) =t+N1I
1
t+N2

μ(t)[ep(t)]2 +tI
1
t+Nu−1λ(t)[Δu(t)]2 (9)

where
ep(t) = yp(t) − yr(t) (10)

is the prediction error.
In 2010 it was proposed in [11] to introduce a formal generalization of integer-

order sums in the cost function (9) as those of fractional order

J(t) =t+N1I
α1

t+N2
[ep(t)]2 +tI

α2

t+Nu−1[Δu(t)]2 (11)

where α1, α2 ∈ R+ are fractional orders of integration (summation) defined
in (1), applied to squared prediction errors and squared control increments,
respectively. By this means the principles of a fractional-order discrete predictive



138 S. Domek

algorithm have been defined by adding fractional orders α1, α2 as two new tuning
parameters in addition to those typical ones, namely the ranges of the prediction
horizon N1, N2 and the length of the control horizon Nu [2, 3].

Considering a more general case where weighting coefficients μ(j) and λ(j)
known from integer-order control are left in the cost function (11)

J(t) =t+N1I
α1

t+N2
μ(t)[ep(t)]2 +tI

α2

t+Nu−1λ(t)[Δu(t)]2 (12)

one may find the minimum of the cost function (12) with respect to the con-
trol increment Δu(t) in the future (within the control horizon). On taking
into consideration the rule governing concatenation of fractional-order integra-
tion/differentiation operators, we obtain

t0I
α
t f(t) =t0I

1
t [t0D

1−α
t f(t)], α > 0 (13)

Assuming for simplicity that the step of discretization h = 1, the cost func-
tion (12) may be rewritten in vector-matrix form

J(t) = [Ep
↔(t)]TM∞[Ep

↔(t)] + [ΔU↔(t)]TΛ∞[ΔU↔(t)] (14)

where

ΔU↔(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
Δu(t− 1 |t )
Δu(t |t )

Δu(t + 1 |t )
...

Δu(t + Nu − 1 |t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
ΔU←(t)
ΔU→(t)

]
∈ R

∞ (15)

Ep
↔(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
ep(t− 1 |t )
ep(t |t )

ep(t + 1 |t )
...

ep(t + N1 − 1 |t )
ep(t + N1 |t )

ep(t + N1 + 1 |t )
...

ep(t + N2 |t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
Ep

←(t)
Ep

→(t)

]
∈ R

∞ (16)

M∞ = diag[ · · · wμ(0) wμ(1) · · · wμ(N1 − 1) wμ(N1) · · · wμ(N2) ] (17)

Λ∞ = diag[ · · · wλ(−1) wλ(0) wλ(1) · · · wλ(Nu − 1) ] (18)

Taking into account (12) and (13) we get [9]

wμ(j) =

{
c−α1

N2−j − c−α1

N1−j−1 for j < N1

μ(j)c−α1

N2−j for N1 � j � N2

(19)
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wλ(j) =

{
c−α2

Nu−1−j − c−α2

−1−j for j < 0

λ(j)c−α2

Nu−1−j for 0 � j � Nu − 1
(20)

The diagonal infinite-dimensional weight matrices (17) and (18) may be pre-
sented equivalently as

M∞ = diag[M← | M→ ] (21)

Λ∞ = diag[Λ← | Λ→ ] (22)

From (16) it follows that

Y p
↔(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
yp(t− 1 |t )
yp(t |t )

yp(t + 1 |t )
...

yp(t + N1 − 1 |t )
yp(t + N1 |t )

yp(t + N1 + 1 |t )
...

yp(t + N2 |t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
Y p←(t)
Y p→(t)

]
∈ R

∞ (23)

and

Y r
↔(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
yr(t− 1 |t )
yr(t |t )

yr(t + 1 |t )
...

yr(t + N1 − 1 |t )
yr(t + N1 |t )

yr(t + N1 + 1 |t )
...

yr(t + N2 |t )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
Y r
←(t)

Y r
→(t)

]
∈ R

∞ (24)

With the expression for the prediction vector

Y p
→(t) = EΔU→(t) + Y 0

→(t) (25)

where E is the process dynamics matrix [3], the cost function (14) may be written
as

J(t)=

[
Y p
←(t)

EΔU→(t) + Y 0
→(t) − Y r

→(t)

]T[
M← 0
0 M→

][
Y p
←(t)

EΔU→(t) + Y 0
→(t) − Y r

→(t)

]

+

[
ΔU←(t)
ΔU→(t)

]T[
Λ← 0
0 Λ→

][
ΔU←(t)
ΔU→(t)

]

(26)
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The above quadratic problem may be solved by setting the gradient

∂J(t)

∂ΔU→(t)
= 2(ETM→E + Λ→)ΔU→(t) + 2ETM→[Y 0

→(t) − Y r
→(t)] (27)

equal to zero.
Hence the optimal control is given by

ΔUopt→(t) =
(
ETM→E + Λ→

)−1
ETM→

[
Y r→(t) − Y 0→(t)

]
= K→

[
Y r
→(t) − Y 0

→(t)
] (28)

Since only the first component of the computed control vector is used at a given
time instant t (according to the principle of the receding horizon), we obtain
finally

Δuopt(t |t ) = [1 0 · · · 0]ΔUopt→(t) = k→[Y r
→(t) − Y 0

→(t)] (29)

where k→ is the first row of the matrix K→.
As may be seen, the fractional orders of discrete summation α1, α2 have a pro-

nounced effect on the control signal. This confirms the significant potential dif-
ference in that how a fractional-order predictive algorithm operates as compared
to a constant-order algorithm. On the one hand, it offers the controller designer
new possibilities, on the other hand, it impedes significantly the controller tun-
ing, since general guidelines on how to choose fractional orders in the cost func-
tion (12) are still lacking. One may find in literature preliminary suggestions
only, e.g. those following from having been used to tune genetic algorithms [12].
Connection between the both types of controllers is shown in Table 1.

Remarks

1. As regards the structure, the relationship obtained for the fractional-order
predictive controller is identical with the one for the integer-order con-
troller. However, it should be noted that dimensions of individual vectors kT

→,
Y r
→(t), Y 0

→(t) ∈ R
N2 , as well as those of the weight matrix M→ ∈ R

N2×N2

and the process dynamics matrix E ∈ R
N2×Nu are in general greater than

those in the integer-order algorithm (RN2−N1+1,R(N2−N1+1)×(N2−N1+1) and
R

(N2−N1+1)×Nu respectively).
2. For α1 = α2 = 1 in (19) and (20), (29) transforms into the equation of the

integer-order predictive controller since

c−1
i = 1 for i � 0 (30)

3. In the integer-order predictive controller the weighting coefficients μ(j), λ(j)
are non-negative and are chosen by the designer in accordance with known
rules. In the fractional-order predictive controller the values of weighting
coefficients wμ(j), wλ(j) depend only partly on μ(j), λ(j), and more on frac-
tional orders α1, α2, which follows from (19) and (20); they also may assume
negative values.
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Table 1. Connection between predictive controllers of fractional and integer order

fractional-order MPC

0 < α1, α2 < 1
wμ, wλ ∈ R

α1, α2 = 1
wμ, wλ ∈ R

+ 1 < α1, α2

wμ, wλ ∈ R
+

integer-order MPC

4 Fractional Predictive Control with Few Coincidence
Points

In Model Predictive Control algorithms with few coincidence points [3] the cost
function (8) is affected only by errors in selected points of the prediction horizon,
called coincidence points. These algorithms are very easy to implement and
quite readily used in practice. The ease of controller tuning (and intelligibility
to service people) is also a contributory factor here. Among classic integer-order
predictive algorithms the Extended Prediction Self Adaptive Control (EPSAC)
presented originally in [13] is the well-known example of such an algorithm.
The objective of the algorithm was to minimize the squared prediction errors
without attaching weights to control costs. In the case of the fractional-order
EPSAC algorithm the weighting coefficients in the cost function (26) are given
by

– for N1 = 1

wμ(j) =

⎧⎪⎨
⎪⎩
μ(j)c−α1

N2−j for j ∈ Σ

1 � j � N2

0 for j �∈ Σ

(31)

– for N1 > 1

wμ(j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c−α1

N2−j − c−α1

N1−1−j for 1 � j < N1

μ(j)c−α1

N2−j for j ∈ Σ

N1 � j � N2

0 for j �∈ Σ

(32)

and
wλ(j) = 0 for 0 � j � Nu − 1 (33)

where Σ means a set of coincidence points.
Another example of an integer-order model predictive control algorithm with

few coincidence points is the proposed in [14] the Extended Horizon Predictive
Control (EHPC) algorithm. Here the output prediction coincidence with the
reference trajectory only at the end of the prediction horizon, i.e. μ(j) = 0 for
j = N1, N1 + 1, . . . , N2 − 1, μ(N2) = μ �= 0 has been adopted as a condition to
be met. It can easily be shown that for the fractional-order EHPC algorithm we
have
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– for N1 = 1

wμ(j) =

{
0 for 1 � j < N2

μ for j = N2

(34)

– for N1 > 1

wμ(j) =

⎧⎪⎨
⎪⎩
c−α1

N2−j − c−α1

N1−1−j for 1 � j < N1

0 for N1 � j < N2

μ for j = N2

(35)

and

wλ(j) = λ(j)c−α2

Nu−1−j for 0 � j � Nu − 1 (36)

If all weighting coefficients λ(j) are identical, then eq. (36) takes a simpler form

wλ(j) = λc−α2

Nu−1−j for 0 � j � Nu − 1 (37)

Another example is the Extended Horizon Adaptive Control (EHAC) proposed
in [14], which represents a special case of the EHPC algorithm. Here a unit
prediction horizon Nu = 1 has been adopted. From this it follows that (34)
or (35) will hold true for the fractional-order EHAC algorithm, whereas eq. (36)
will take the following form

wλ(j) = wλ(0) = λ(0)c−α2

Nu−1 = λ (38)

Fig. 1. Pole-zero map for EPSAC algorithm with four coincidence points μ2 = μ4 =
μ6 = 1, α1 = {0.2 . . . 1.8}
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Fig. 2. Pole-zero map for EHPC algorithm for μ = λ = 1, α1 = 1.8, α2 = {0.2 . . . 1.8}

Remarks

1. It can be seen from (31) and (32) that the EPSAC algorithm of arbitrary
fractional orders α1, α2 differs from the integer-order EPSAC algorithm for
the same coincidence points,

2. It can be seen from (34) and (38) that the EHAC algorithm of arbitrary
fractional orders α1, α2 for N1 = 1 does not differ from the integer-order
EHAC algorithm of the same prediction horizon length N2.

3. The matrix ETM→E + Λ→ in (28) must be non-singular, which is particu-
larly important for EPSAC algorithm.

4.1 Properties of the Proposed Fractional Predictive Control

The principal advantage of the model predictive control with a small set of co-
incidence points is the ease of implementation and intelligible interpretation of
tuning parameters. In the case of fractional-order algorithms their properties are
also dependent on fractional orders α1, α2 in the cost function (12). Their impact
on properties exhibited by the algorithm is not yet well studied, and their selec-
tion is thus not simple. To illustrate the impact of orders α1, α2 on properties of
a fractional predictive control algorithm with few coincidence points, the depen-
dence of the pole-zero map on fractional orders for individual algorithms has been
studied. The plant model has been chosen as 1

(1+10s)(1+20s)(1+50s) with sampling

time equal to 1[s]. In Figures 1 and 2 examples for selected parameters of frac-
tional EPSAC (N1 = 1, N2 = 6, Nu = 2), and EHPC (N1 = 3, N2 = 8, Nu = 4)
algorithms with a prediction horizon are displayed.

5 Conclusion

In the paper the model predictive control with a small set of coincidence points
is proposed and next its properties are analyzed. The fractional orders of
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summation in the cost function permit affecting the control performance. At
the same time, the proposed algorithms are very easy to implement, just as
their integer-order counterparts.
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Tuning of the Half-Order Robust PID Controller

Dedicated to Oriented PV System
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Abstract. In the paper tuning rules for half - order PID controller ded-
icated to control an oriented PV system were presented. The plant is
described with the use of interval transfer function. Results were by sim-
ulations depicted.

Keywords: Fractional order PID controller, PV systems, minimal-energy
control, interval systems, robust control.

1 An introduction

Problems of modeling and control for dynamic systems described with the use
of non-integer models were presented by many Authors, for example: [23], [24],
[2], [4] , [5], [6], [19], [25]. Problems of control fractional order, interval systems
were presented for example in [20], [21], [22].

The another area of non-integer order calculus in control are non integer
order controllers. They are often applied in many control systems. This problem
was presented for example in [24] or [22]. It is caused by a fact, that this class
of controllers assures better control performance, than traditional integer order
control.

In this paper a minimal-energy control of an uncertain-parameter oriented PV
system with the use of half-order PID controller is considered. The term ”half
order” describes orders of derivative and integral actions: they both are equal
0.5. For this system an analysis of BIBO (Bounded Input Bounded Output)
stability is possible with respect to uncertainty of plants parameters.

In the paper the following problems will be presented:

– An oriented PV system and its model,

– Closed-loop control system with fractional order PID controller,

– Stability analysis for closed-loop system,

– ORA approximation for both parts of controller,

– PID tuning methods for the considered system,

– An example.

c© Springer International Publishing Switzerland 2015 145
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_14
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2 An Oriented PV System and Its Model

Let us consider a moving part of an oriented PV system shown in figure 2. The
most simple scheme of this plant is a DC motor with gearbox, considered by
many Authors (see [1], p. 453, 459; see [22], p. 121) shown in figure 1.

                           R
        )(ti

                                L              )(t
)(tu                                                                             )(1 tx

.constI J

Fig. 1. A DC electric drive as a model of moving part of the oriented PV system

Fig. 2. An oriented PV system

The exact description of the plant we deal with can be found in [15], [12].
The most simple model of the plant shown in figure 1 is a transfer function with
interval parameters:

G(s, q) =
k

Tis
(1)

where: k > 0 and Ti denote interval parameters of the PV, assembled in vector
q ∈ Q defined as follows:

Q = {q = [k, Ti] : k ≤ k ≥ k Ti ≤ Ti ≥ Ti} ⊂ I(R�) (2)
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Vertices (corners) of the set Q are defined as underneath:

qll = [k, Ti]
qlh = [k, Ti]

qhh = [k, Ti]

qhl = [k, Ti]

(3)

Vector q ∈ Q describes parameters of the plant, changing during work of
the system outdoor in extremally different atmospheric conditions (summer and
winter, with and without snow, etc.). Additionally - these parameters have dif-
ferent values for moving up and moving down the PV. Exemplary values of these
parameters are given in an example.

3 Closed-Loop Control System with Fractional Order
PID Controller

The closed-loop control system with half-order PID controller is shown in figure
3. In scheme shown in figure 3 G(s, q) denotes the plant described with the use of
transfer function (1), Gc(s) denotes a fractional-order PID controller, described
as underneath:

Gc(s, p) = kp +
kI
sα

+ kDsβ (4)

where kp > 0, kI > 0 and kD > 0 describe the proportional, integrating and
derivating actions of the controller, α and β are fractional orders of the integra-
tion and derivation actions. The controller parameters are assembled in vector p:

p = [kP , kI , kD] ∈ P ⊂ R
+3

(5)

where P (q) is a set of all vectors p possible to technical realization. It can be
also described by intervals.
The transfer function of the open loop system shown in figure 1 is equal:

Go(s, p, q) =
kkDsα+β + kkP s

α + kkI
Tisα+1

(6)

The transfer function of the whole closed-loop system defined as: Gz(s) = Y (s)
R(s)

is expressed as follows:

Gz(s, p, q) =
kkDsα+β + kkP s

α + kkI
Tisα+1 + kkDsα+β + kkP sα + kkI

(7)

Gc(s) G(s,q) 
R(s) E(s) Y(s)U(s) 

- 

Fig. 3. A closed-loop control system for the considered PV system
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The above transfer function will be applied to stability analysis and optimal
tuning of the fractional - order PID controller.

4 Robust Stability Analysis of Control System

The characteristic polynomial of the control system we deal with is a function
of vectors p and q and it is equal:

W (s, p, q) = Tis
α+1 + kkDsα+β + kkP s

α + kkI (8)

Now let us make an important assumption about fractional orders of integrating
and derivating actions in controller: assume, that α = 0.5 and β = 0.5. This
assumption will make the asymptotic stability analysis of the system much more
simplier. Additionally, results of simulations show, that stability conditions ob-
tained for those fixed values can be generalized for broad range of fractional
orders α and β. It will be shown in the Example.

After the above assumption the polynomial (8) reduces to the form:

W (s, p, q) = Tis
1.5 + kkDs + kkP s

0.5 + kkI (9)

If we replace: λ = s0.5, then the polynomial (8) reduces to the following integer
order quasi-polynomial:

Wλ(λ, p, q) = Tiλ
3 + kkDλ2 + kkPλ + kkI (10)

The BIBO stability of quasi polynomial Wλ(λ, p, q) described by (10) determines
the BIBO stability of polynomial (9) with respect to the following conditon (see
for example [2], p. 21 and 22):

Theorem 1. The system (10) is BIBO stable (Bounded Input Bounded Output)
if and only if:

|arg(λi)| > απ
2 ∀i = 1...N

where λi denotes i-th root of characteristic polynomial W (sα)

Notice, that for α = 0.5 the stability area covers also the part of right complex
semiplane and it covers the whole stability area for integer order system with
α = 1.

Next, the PD controller (kI = 0) makes the system structurally stable, but
the PI controller (with kD = 0) is not able to assure the asymptotic stability,
because it causes the lossing one of parameters the quasi polynonial (10). The
system with PI controller will be stable, but not asymptotically stable.

The quasi-polynomial Wλ(λ, p, q) is an interval polynomial and to test their
stability the Charitonov theorem can be applied (see for example [3]). Next
- the stability of quasi-polynomial(10) implies the stability of fractional-order
polynomial (9).
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The Hurwitz array H(p, q) for the quasi-polynomial (10) is also a function of
vectors p and q and it has the following simple form:

H(p, q) =

⎡
⎣kkD kkI 0
Ti kkP 0
0 kkD kkI

⎤
⎦ (11)

From Hurwtiz criterion we at once formulate the sufficient and necessary con-
dition of asymptotic stability the quasi-polynomial (10), expressed with the use
of both vectors p and q:

k (kkDkP − kITi) > 0 ⇐⇒ kI <
k

Ti
kDkP (12)

With the use of (12) we can express the set Pλq(q), for which the condition
(12) is met:

Pλq(q) = {pλ = [kP , kI , kD] ∈ R
3, q ∈ Q : ∀q ∈ Q : kI <

k

Ti
kDkP } (13)

Furthermore, let us introduce the set of controller parameters Pλ(q) for which
the interval quasi polynomial Wλ(λ, p, q) will be asymptotically stable. It can be
assigned as a common part of sets Pλq assigned for all corners the set Q:

Pλ(q) = Pλq(qll) ∩ Pλq(qlh) ∩ Pλq(qhh) ∩ Pλq(qhl) (14)

where qll, qlh,qhh,qhl are described by (3). between sets P (q) and Pλ(q) there
exist the following dependence:

Pλ(q) ⊂ P (q) (15)

The setsP (q) described by (13) have simple geometric interpretation. For fixed
plant parameters (for example corners of set Q) they are solids in R

3 space,
limited by ranges of parameters kP and kD and plane described by function
(12). Next, the set (14) is a common part of all these sets. Its estimating will be
shown in an example.

5 The ORA Approximation

The modeling of fractional order controller at MATLAB/SIMULINK platform
requires us the use of a finite-dimensional and integer order approximation. It
this case the ORA approximation can be applied (see for example [9]). It allows
us to estimate the elementary factor sα as follows (recommended range of α
0 < α < 1):

sα ∼= ka

N∏
n=1

1 + s
μn

1 + s
νn

(16)
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In (16) N denotes the order of approximation, μn and νn denote approximation
coefficients equal:

μ1 = ωl
√
η

νn = μnγ, n = 1...N
μn+1 = νnη, n = 1...N − 1

(17)

where:

γ =
(

ωh

ωl

) α
N

η =
(

ωh

ωl

) 1−α
N

(18)

In (18) ωl and ωh denote the range of pulsace, for which the approximation is
going to be applied. The estimating of these parameters is presented in paper
[8].
If we need to approximate the non integer order β greater than 1, it can be done
with the use of the following elementary dependence:

sβ = sαsm, α ∈ (0; 1), m ∈ Z (19)

Furthermore, if an elementary integral described by the transfer function: 1
sα is

required to be approximated, it can be done as follows:

1

sα
=

1

s
s1−α, α ∈ (0; 1) (20)

6 Robust Half-Order PID Tuning for the Considered
System

During control an oriented PV system the most typical control stategy is the
minimal energy control. Energy consumption and dissipation can be described
with the use of the following cost function:

I(p, q) =

tk∫

0

(
w1u

2(t) + w2e
2(t)
)
dt (21)

where e(t) denotes the error in the control system, w1 and w2 denote normalized
weight coefficients: w1 + w2 = 1, tk < +∞ denotes the maximal, final time of
moving the PV.

The cost function (21) is a function both of plant parameters, described by
vector q and controller parameters, described by vector pλq ∈ Pλq .

The optimal tuning of the considered robust, half-order PID controller consists
in finding such a vector : pλq ∈ Pλq for which the value of cost function (21) will
meet the following conditions:

– It should be minimal or close to minimal in the whole set of uncertain plant
parameters Q, described by (2) and (3).



Tuning of the Half-Order Robust PID Controller Dedicated 151

– big perturbations of the vector q should cause small perturbations of cost
function (21).

To assign the parameters assuring the robustness of controller the following
simple algorithm can be applied:

1. Calculate the optimal controller parameters for all corners of set Q. We
obtain four vectors p0(q).

2. Assign set of robust controller parameters as a mean of all sets for all corners

This above algorithm can be easily numerically done with the use of MATLAB
and it will be shown in an example.

7 An Example

As an Example let us consider the PV system shown in figure 1 and described
with the use of transfer function (1)-(3). Their parameters were assigned with the
use of identification experiments at real PV system (see [17]) and for elevation
angle they are equal:
Ti = [0.57; 0.71][s], k = [0.55; 0.64]
Furthermore, let us consider the following ranges of controller parameters kP
and kD:
0.1 < kP < 10.0
0.1 < kD < 10.0
For the above ranges of parameters the third parameter kI can be estimated
with the use of stability condition (12). It is easy to see, that the stability set
Pλ(q) defined by (14) is equal: Pλ(q) = Pλq(qlh). The stability set Pλ(q) is shown
in figure 4. Analogically the stability set Pλ(q) can be estimated. It is achieved
also for corner qlh and it is shown in figure 5.

The SIMULINK diagram of the control system shown in the figure 3 is shown
in figure 6. To modeling the half order PID controller the ORA approximation
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Fig. 6. The SIMULINK model of the considered control system

described by (16) - (20) was applied. The parameters of ORA approximation
are shown in table 1, the final time tk was equal: tk = 10[s]. Model shown in 6
was applied to numerical calculation of coefficients minimizing the cost function
(21). Results are shown in tables 2 - 5. Next the parameters of robust controller
will be calculated with the use of algorithm presented in the previous section.
They can be calculated for all sets of weight coefficient of cost function and they
are shown in table 6.

Collection of step responses of the control system with robust half-order PID
controller we deal with are shown in figure 7.

From analysis of tables 2 - 6 and figure 7 it turns out, that proposed robust
controller described in table 6 assures very similar control performance in each
corner of set Q, as optimal controller dedicated especially to this corner.

An another interesting problem is the behaviour of the considered control
system in the situation, when orders of the the derivation and integral actions, α

Table 1. Parameters of ORA approximation applied in Example

α N ωl ωh

0.5 5 0.1 10.0
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Table 2. Optimal parameters of PID controller for different weight coefficients and
corner qll = [0.55; 0.57] of the set Q

weights PID parameters I(p, q)

we=0.2 kP =0.4037 0.4137
wu=0.8 kI=0.1

kD=0.1551

we=0.5 kP =0.9181 0.5212
wu=0.5 kI=0.1

kD=0.1104

we=0.8 kP =1.9071 0.4186
wu=0.2 kI=0.1

kD=0.1

Table 3. Optimal parameters of PID controller for different weight coefficients and
corner qlh = [0.55; 0.71] of the set Q

weights PID parameters I(p, q)

we=0.2 kP =0.3957 0.5205
wu=0.8 kI=0.1

kD=0.1744

we=0.5 kP =0.9125 0.6487
wu=0.5 kI=0.1

kD=0.1242

we=0.8 kP =1.9111 0.5205
wu=0.2 kI=0.1

kD=0.1

Table 4. Optimal parameters of PID controller for different weight coefficients and
corner qhh = [0.64; 0.71] of the set Q

weights PID parameters I(p, q)

we=0.2 kP =0.4014 0.4471
wu=0.8 kI=0.1

kD=0.1604

we=0.5 kP =0.9166 0.5578
wu=0.5 kI=0.1

kD=0.1141

we=0.8 kP =1.9086 0.4479
wu=0.2 kI=0.1

kD=0.1
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Table 5. Optimal parameters of PID controller for different weight coefficients and
corner qhl = [0.64; 0.57] of the set Q

weights PID parameters I(p, q)

we=0.2 kP =0.4088 0.3590
wu=0.8 kI=0.1

kD=0.1433

we=0.5 kP =0.9218 0.4483
wu=0.5 kI=0.1

kD=0.1006

we=0.8 kP =1.9036 0.3603
wu=0.2 kI=0.1

kD=0.1

Table 6. Optimal parameters of robust PID controller and cost function I(q) for all
corners of set Q

weights PID parameters I(qll) I(qlh) I(qhh) I(qhl)

we=0.2 kP =0.4024 0.4178 0.5205 0.4472 0.3591
wu=0.8 kI=0.1

kD=0.1583

we=0.5 kP =0.9172 0.5731 0.7134 0.5578 0.4483
wu=0.5 kI=0.1

kD=0.1123

we=0.8 kP =1.9076 0.4601 0.5721 0.4479 0.3603
wu=0.2 kI=0.1

kD=0.1
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Fig. 7. The step responses of control system with optimal, robust half-order PID con-
troller for all corners of set Q (weights of cost function during tuning: we = wu = 0.5)
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Fig. 9. The step responses of control system with perturbed order of derivation action

and β are not exactly equal 0.5, but they are perturbated in the wide range. The
most important property of the system is the asymptotic stability. Exemplary
tests of the system behaviour for perturbed values of α and β are shown in
figures 8 and 9. The simulations were done for the following parameters of control
system: k = 0.55, Ti = 0.57[s], kP = 0.9166, kI = 0.1, kD = 0.1141.

From the both figures it can be concluded, that the asymptotic stability is
kept and the control performance does not singnificantly depend on values α
and β.

8 Final Conclusions

Final conclusions from the paper can be formulated as follows:

– The assumption about fixed orders of both controller actions equal 0.5 allows
us to analyze the robust stability analysis with the use of tools dedicated to
integer-order systems. This makes this analysis much more simplier.
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– The proposed in paper robust half order PID controller assures the good
control performance for each corner of the uncertain parameter space Q.

– The tuning of the controller can be done with the use of numerical methods
and iterval model of the PV system. In practice it can be done with the use
of suitable tools implemented at a SCADA system.

– The optimal parameters calculated for half-order controller (with fixed or-
ders) assures the asymptotic stability and good control performance also for
perturbed values of fractional orders α and β.

– An interesting problem for the control system presented in this paper is the
analytical estimating of asymptotic stability areas with assumption, that
fractional orders of controller α andβ are not constant and equal 0.5, but
they can vary in certain range. Solving of this problem should significantly
increase the usefulnees of presented results.

– The proposed robust half-order PID controller is recently implemented at
controller dedicated to control the considered PV system.

Acknowledgments. This paper was sponsored by NCN grant no 6693/B/T02/
2011/40.
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Abstract. In the paper a variable-, fractional-order PID (VFOPID)
controller microprocessor realization problems are discussed. In such con-
trollers the variable-, fractional-orders backward differences and sums
(VFOBD/S) are used to perform closed-loop system error discrete-time
differentiation and integration. In practice all digitally differentiated and
integrated signals are noised so there is a necessity of a digital signal
pre-filtering. This additionally loads the DSP system. A solution of this
problem is proposed. Also the possibilities of the VFOPID controller DSP
realizations are presented and compared with the computer simulation
results.

Keywords: Variable-, fractional-order PID controller, discrete-time
system, real-time system.

1 Introduction

The PID control strategies have been for over 60 years a fundamental structure in
the control with feedback [1, 19]. Because of its usefulness it seems to be desirable
to develop a digital control algorithms based on the fractional-order backward
differences and sums being approximations of the differentiation and integration
actions [16, 20] The proposed solution has numerous advantages in comparison to
the classical PID and fractional-order PID controllers [2, 9, 10, 14, 16, 17, 22–24]
which can be treated as special cases of our VFOPID controller. The VFOPID
controller has the characteristics of both the classic and the fractional-order PID
controller. The main advantages of the proposed VFOPID control strategies are:

� it contains both classical PID (for constant order functions νk = 1 = const,
μk = −1 = const) and FOPID (for constant order functions νk ∈ R+ \Z+ =
const, μk ∈ R− \ Z− = const) controller properties,

� presented in the paper simple choice of the order functions guarantee both
FOPID and PID transient behaviour in two time intervals removing the
disadvantage of the FOPID controller related to so called growing calculation
tail,

c© Springer International Publishing Switzerland 2015 159
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� application of the variable fractional and integer differentiation and integra-
tion orders in a finite time interval equal to the duration of the transition
process allows richer possibilities of dynamics shaping of the closed-loop sys-
tem in comparison to the classical PID controller,

� smooth order functions e.g. with bounded first-order difference lead to
smoother transient states,

� appropriate choice of the OF leads to much less ISE performance criterion
with comparison to the classical PID control,- application of the differentia-
tion and summation integer orders after a finite period of time close to the
closed-loop system steady-state allows the removal of computational prob-
lems related to the fractional-order numerical integration and differentiation,

� assumption of the simplified forms of the fractional-order difference and sum
allows the action of the closed-loop system during the transients with a
controller with constant order L (constant value of the calculation tail). In
practical applications of the PID controllers there is a need to pre-filter a
processed signal [6]. This additionally ballasts the microprocessor due to the
growing calculation time and memory occupation in the fractional differen-
tiation and integration.

The paper is organized as follows. In section 2 the Grünwald-Letnikov and
the Horner equivalent forms of the variable-, fractional-order differences/sums
(VFOBD/S) are introduced. Also, the two PID controller structures are pre-
sented: parallel and serial. Next, in section 3 the VFOBD/S numerical evaluation
accuracy is considered. After that a problem of signal pre-filtering is shortly dis-
cussed. Some proposals of the differentiation and integration order functions are
given in section 4.Finally, some chosen step responses of the variable-, fractional
orders PI and PID controllers are presented.

2 Mathematical Preliminaries

2.1 The Grünwald-Letnikov Form of the VFOBD/S [13]

For a given discrete-time bounded function fk and an order function νk > 0 the
Grünwald-Letnikov variable-, fractional-order backward difference (VFOBD) is
defined as a sum

GL
0 Δ

(νk)
k fk =

k∑
i=0

a
(νk)
i fk−i (1)

where

a
(νk)
i = 0 for i = −1,−2,−3, · · ·

a
(νk)
0 = 1

a
(νk)
i = a

(νk)
i−1

(
1 − νk + 1

i

)
for i = 1, 2, 3, · · ·

(2)
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2.2 The Horner Form of the VFOBD/S

For a given discrete-time bounded function fk and an order function νk > 0 the
Horner form of the VFOBD is defined as follows [12]

H
0 Δ

(νk)
k fk = c

(νk)
0 [fk+c

(νk)
1 [fk−1+· · ·+c

(νk)
k−2[fk−2+c

(νk)
k−1[fk−1+c

(νk)
k f0]] · · · ]] (3)

with coefficients c
(νk)
i

c
(νk)
i =

⎧⎨
⎩

1 for i = 0

1 − νk + 1

i
for i = 1, 2, · · ·

(4)

one can easily prove that

H
0 Δ

(νk)
k fk =GL

0 Δ
(νk)
k fk.

2.3 The VFOPID Controller

Two VFOPID controller structures are considered: parallel and serial. The
VFOPID controller structure is presented in Figure 1.

uk = KP ek + KI
H
0 Δ

(νk)
k ek + KD

H
0 Δ

(νk)
k ek (5)

where Kp,KI ,KD are the proportional, integral and derivative gains, respec-
tively, ek is the input to the controller and uk is the controller output signal.
Discrete-variable νk > 0 and μk < 0 are the differentiation and summation or-
der functions respectively. For constant order functions (constant orders) one
immediately gets the FOPID controller structure. As a special case of constant
fractional orders one obtains the classical PID controller structure. The principle
of the VFOPID controller is an operation during the closed-loop system tran-
sients. At the system steady state, the VFOPID controller resets and waits for
the appearance of a non-zero error signal, which is further processed according
to the VFOPID algorithm. Therefore the closed-loop system dynamics always
begins at k = 0 and ends when the system reaches its steady-state. This opera-
tion allows the application of the VFOPD algorithm proposed by us for instance
to the control the robot arm.

The cascade VFOPID controller structure is presented in Figure 2 and de-
scribed by equation

uk = KPID
H
0 Δ

(ζk)
k ek (6)

where KPID is the controller gain and the controller order function satisfies
condition

ζk =

⎧⎪⎨
⎪⎩

ζD,k > 0 for 0 ≤ k < kd

ζP,k = 0 for kd ≤ k < ki

ζI,k < 0 for ki ≤ k

(7)
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Fig. 1. Block diagram of the parallel VFOPID controller

Fig. 2. Block diagram of the serial VFOPID controller

3 VFOPID Controller Order Functions Shape
Requirements

There is an immense choice of the order functions (for differentiation and inte-
gration) possible in realization. Determining maximal number of samples after
which the VFOPID controller transforms itself into the classical PID one stops
the increase of the number of processed samples. The VFOPID controller has also
characteristics of FOPID (with removed growing number of samples disadvan-
tage). To preserve a closed-loop system with the VFOPID controller and typical
plants (stable and without poles at z = 1 ) fundamental properties one should
impose the following assumptions on the order functions. The zero steady-state
error will be preserved for

lim
k→∞

μk = −1 (8)

It is well known that the closed-loop system stability is protected by the
controller differentiation action [11]. Hence one may admit

lim
k→∞

νk = 1 (9)

Conditions (8) and (9) can be strengthened by assumptions that for some
constant integers 0 ≤ Lμ, Lν < ∞
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μk =

{
fk for k ≤ Lμ

−1 for k > Lμ

, νk =

{
gk for k ≤ Lν

1 for k > Lν

(10)

for −∞ < fk ≤ 0 and 0 ≤ gk < +∞
Order functions (10) avoid the fundamental problems of the VFOPID practi-

cal realizations related to the microprocessor memory and calculation time lack.
This is caused by the fact that for k ≥ max (Lμ, Lν) the VFOPID controller
achieves properties of the classical PID one.This causes that the VFOPID con-
troller parameters Kp,KI ,KD can be evaluated due to the commonly known
methods [1]. The special choice of the order functions enables also a preserva-
tion of the closed-loop system stability. One considers a closed-loop system with
the classical PID controller. For a chosen PID controller parameters Kp,KI ,KD

preserving the closed-loop stability.

Theorem 1. If the closed-loop system is (asymptotically) stable for the PID con-
troller with some Kp,KI ,KD , it is also (asymptotically) stable for the VFOPID
controller with the order functions satisfying (10) and the same parameters.

Proof. The linear, time-invariant closed-loop system stability doee not depend on
the initial conditions. The closed-loop system with the VFOPID controller over a
time interval 0 ≤ k < max (Lμ, Lν) may be stable or unstable. By assumption it
is (asymptotically) stable over k ≥ (Lμ, Lν) and the system transient behaviour
over 0 ≤ k < (Lμ, Lν) is memorized by initial conditions.

Additional requirement imposed on the order functions μk, νk may be their
monotonicity. Below two examples of the VFOPID controllers satisfying condi-
tions (8) and (9) with the monotonicity requirement.

μk =

⎧⎨
⎩

− k

Lμ
for k < Lμ

−1 for k ≥ Lμ

, νk =

⎧⎨
⎩

k

Lν
for k < Lν

1 for k ≥ Lν

(11)

μk =

⎧⎨
⎩

1 − eαμk

eαμLμ − 1
for k ≤ Lμ

−1 for k > Lμ

, νk =

⎧⎨
⎩

eανk − 1

eανLν − 1
for k ≤ Lν

1 for k > Lν

(12)

aν , aμ < 0
From (10) and (11) it is clear that the VFOPID controllers are the VO during

the finite time interval 0 ≤ k < max (Lμ, Lν) transforming after into the classical
PID controller. Regardless of whether the system has reached steady state or not
the system memory is cleared and the VFOPID controller waits for the change
of the closed-loop system reference signal rk or disturbance dk. Considering as a
closed-loop system performance criterion a function J (Kp,KI ,KD, νk, μk) one
may expect that

J (Kp,KI ,KD, νk, μk) ≤ J (Kp,KI ,KD, ν, μ) ≤ J (Kp,KI ,KD, 1,−1)

what is the main advantage of the VFOPID controller.
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It is possible to synthesis the controller having properties of the VFO con-
troller over only few samples (in this paper an opposite case arm is presented
in the next Section). To present wide possibilities of the VFOPID controller in
closed-loop system transients shaping an example is presented.

Example 1

For the typical in robotics angular path (see Figure 1) one considers two con-
trollers: the PD and VIOPI. All controllers have the same gain coefficients
Kp = KD = 1.7. The robot arm has properties of an integrating element and
is modeled by a discrete integrator. Such element preserves the output signal
value even when the input signal reaches zero value. so is in the robot arm, espe-
cially when it is equipped in the self-locking gear. The simulation results (order
functions, errors, control and output signals) of a closed-loop system (CLS) are
presented in Figs. 4, 5, 6, 7. The controllers order functions are described by
formulae given in Table 1. In Fig. 3 values of integral square error (ISE) perfor-
mance indexes are plotted.

The stability of the CLS is important in the time interval k > max (Lμ,Lν)
and it preservation successfully guarantee theorem 1. The presented theorem is
entirely sufficient for a design of a working (and safe) real CLS with the VFOPID

Fig. 3. Robot path reference signal (in red), its angular velocity (in blue) and angular
acceleration (in green)
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Fig. 4. The controllers 1 and 2 order functions

Fig. 5. The CLSs errors with controllers 1 and 2
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Fig. 6. The controllers 1 and 2 output signals

Fig. 7. The CLSs with controllers 1 and 2 output signals



Order Functions Selection in the Variable-, Fractional-Order PID Controller 167

Table 1. The controllers order functions

Controller OF CLS stability/unstability ISE

PD νk = 1
for 0 ≤ k ≤ Lν = +∞

CLS = stable
for 0 ≤ k ≤ Lν = +∞

2.1048e−
004

VIOPI νk ={−1 for 0 ≤ k ≤ Lμ

0 for Lμ ≤ k

CLS ={
stable for 0 ≤ k ≤ Lν

stable for Lν ≤ k

5.6690e-
006

Table 2. The OFs defined by formulae

Controller OF CLS stability/unstability ISE

VIOPI μk = −3
for 0 ≤ k ≤ Lμ = +∞

CLS = stable
for 0 ≤ k ≤ Lν = +∞

+∞

VIOPI μk ={−3 for 0 ≤ k ≤ Lμ

0 for Lμ ≤ k

CLS ={
unstable for 0 ≤ k ≤ Lν

stable for Lν ≤ k

1.9189e-
005

VFOP μk =⎧⎨
⎩
−3 for 0 ≤ k ≤ Lμ1

0 for Lμ1 ≤ k < Lμ2

0 for Lμ2≤k

CLS =⎧⎨
⎩

stable for 0 ≤ k ≤ Lν1

unst./stable for Lν1 ≤ k ≤ Lν2

stable for Lν1 ≤ k

4.5285e-
006

Fig. 8. The CLSs with controllers 1 and 2 ISE performance indexes values
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Fig. 9. Transient states of the CLSs with controllers 3,4 and 5

controller. In 0 ≤ k ≤ max (Lμ,Lν ) stable or even unstable. The CLS system un-
stability in strictly defined finite time interval may positively influence a system
transient-state. Below, in example simulation results of a CLS consisting of the
robot arm model and the very simple VIOPI controller are presented. The CLS
is intervally unstable. The OFs are defined by formulae given in Table 2. In Fig.
9 the simulation results are presented for controller 3,4 and 5, respectively.

4 Conclusions

The idea of the VFOPID controller shows an immense possibilities of the con-
troller transient characteristic shaping. The proposed special choice of the in-
tegrating and differentiation order functions enables to avoid such problems
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related to fractional differences and sums calculations as the growing calcula-
tions tail and the memory insufficiency in the DSP devices. The conditions (8)
and (9) imposed on the order functions preserve the closed-loop system stabil-
ity. This, however, does not solve all of the problems related to the design of
the VFOPID controllers. The closed-loop system with the VFOPID controller
should be treated as a time-varying system for which one cannot determine
the frequency characteristics and to use the commonly known tuning regulators
methods. The choice of the VFOPID controller order functions is still an open
issue, although one can suggest some solutions relating the order functions with
error signal ν (ek) , μ (ek).
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Abstract. The minimum energy control problems for fractional positive 
continuous-time linear systems with two different fractional orders and with 
bounded input is formulated. Solution to the minimum energy control problem 
with bounded input is derived. Procedure is proposed and demonstrated on 
example of electrical circuit. 

Keywords: fractional calculus, different order, positive systems, continuous-
time, bounded input. 

1 Introduction 

In positive systems inputs, state variables and outputs take only non-negative values. 
Examples of positive systems are industrial processes involving chemical reactors, heat 
exchangers and distillation columns, storage systems, compartmental systems, water 
and atmospheric pollution models. Positive linear systems are defined on cones and not 
on linear spaces. An overview of state of art in positive systems theory is given in the 
monographs [4, 12].  

The first definition of the fractional derivative was introduced by Liouville and 
Riemann in the middle of the 19th century [24, 25] and another on was proposed in 20th 
century by Caputo [26]. This idea has been used by engineers for modeling different 
processes [3, 5]. Mathematical fundamentals of fractional calculus are given in the 
monographs [17, 23-25]. The positive fractional linear systems have been investigated 
in [7, 8, 13, 14, 17]. Stability of fractional linear 1D discrete-time and continuous- 
time systems has been investigated in [1, 20] of 2D fractional positive linear systems  
in [6] and of continuous-time linear systems consisting of n subsystem with different 
fractional orders [2]. The minimum energy control problem for standard linear systems 
has been formulated and solved in [18-22], for fractional positive continuous-time 
linear systems in [10, 11] and for systems with two different fractional orders in [28]. 
Reachability and observability of fractional positive continuous-time linear systems 
has been investigated in [16] and reachability of systems with two different fractional 
orders in [27].  
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In this paper minimum energy problems for fractional positive continuous- 
time linear systems with two different fractional orders and bounded input will be 
formulated and solved.  

The paper is organized as follows. In section 2 the basic definitions and theorems 
of the fractional continuous-time linear systems with two different fractional orders 
are recalled and the necessary and sufficient conditions for positivity and reachability 
of the systems are given. Section 3 gives the formulation and solution to the minimum 
energy control problem. Illustrating example of electrical circuit is given in section 4. 
Concluding remarks are given in section 5. 

The following notation will be used: ℜ  - the set of real numbers, mn×ℜ  - the set 

of mn ×  real matrices, mn×
+ℜ  - the set of mn ×  matrices with nonnegative entries 

and 1×
++ ℜ=ℜ nn , nM

 
- the set of nn ×  Metzler matrices (real matrices with 

nonnegative off-diagonal entries), nI
 
- the nn ×  identity matrix, TA

 
- the transpose 

matrix A. A real square matrix is called monomial if each its row and each its column 
contains only one positive entry and the remaining entries are zero. 

2 System with Two Different Fractional Orders 

In this paper the following Caputo definition of the fractional derivative will be used 
[17, 26] 
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It is well known [17] that the Laplace transform ( L ) of (2.1) is given by the formula 
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nn <<− α1 , Wn ∈ , where )]([)( tfsF L=  and nn <<− α1 , Wn ∈ .         
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Consider a fractional linear system described by the equation [14] 
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and Wqppp ∈<<− ,;,1 βα  where 1)(1
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and pty ℜ∈)(  are the state, input and output vectors respectively, ji nn
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Initial conditions for (2.5) have the form 
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Theorem 2.1. The solution of the equation (2.5) for 10;10 <<<< βα  with 

initial conditions (2.6) has the form 
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Proof is given in [14]. 

Definition 2.1. The fractional system (2.5) is called positive if 1)(1
ntx +ℜ∈  and 

2)(2
ntx +ℜ∈ , 0≥t  for any initial conditions 1

10
nx +ℜ∈ , 2

20
nx +ℜ∈  and all input 

vectors mu +ℜ∈ , 0≥t . 

Theorem 2.2. The fractional system (2.5) for 10;10 <<<< βα  is positive if 

and only if  
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Proof is given in [12, 15]. 

Theorem 2.3. The positive fractional continuous-time linear system with two 

different fractional orders (2.5a) is reachable if and only if NMA∈  is diagonal and 
NNB ×

+ℜ∈  is a monomial matrix. 

Proof is given in [28]. 

3 Minimum Energy Control with Bounded Input 

Consider the fractional positive system with two different fractional orders (2.5) with 

NMA∈ , NNB ×
+ℜ∈  and NNC ×

+ℜ∈  monomial. If the system is reachable in time 

],0[ ftt ∈ , then usually there exists many different inputs Ntu +ℜ∈)(  that steers the 

state of the system from 0][ 20100 == Txxx  to NT
fff xxx +ℜ∈= ][ 21 . 

Among these inputs we are looking for input ,)( Ntu +ℜ∈  ],0[ ftt ∈  satisfying the 

condition  
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nUtu +ℜ∈≤)( , ],0[ ftt ∈ ,                                    (3.1) 

that minimizes the performance index [9-11] 
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ft

T dQuuuI
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)()()( τττ ,                                     (3.2) 

where NNQ ×
+ℜ∈  is a symmetric, positive defined matrix and NNQ ×

+
− ℜ∈1 .  

The minimum energy control problem for the fractional positive continuous-time 
linear systems with two different fractional orders (2.5) can be stated as follows [9-

11]: Given the matrices NMA∈ , NNB ×
+ℜ∈ , α, β and NNQ ×

+ℜ∈  of the 

performance matrix (3.2), N
fx +ℜ∈  and 0>ft , find an input Ntu +ℜ∈)(  for 

],0[ ftt ∈  satisfying (3.1), that steers the state vector of the system from 00 =x  to 

N
fx +ℜ∈  and minimizes the performance index (3.2). 

To solve the problem, following [9-11], we define the matrix 
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where )(tM  is defined by (2.7b). From (3.3) and Theorem 2.3 it follows that the 

matrix (3.3) is monomial if and only if the fractional positive system (2.5) is 

reachable in time ],0[ ft . In this case we may define the input 
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T xtWttMQtu )()()(ˆ 11 −− −=  for ],0[ ftt ∈ .                (3.4) 
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Theorem 3.1. Let Ntu +ℜ∈)(  for ],0[ ftt ∈  be an input satisfying (3.1), that steers 

the state of the fractional positive system (2.5) from 00 =x  to N
fx +ℜ∈ . Then the 

input (3.4) satisfying (3.1) also steers the state of the system from 00 =x  to 
N

fx +ℜ∈  and minimizes the performance index (3.2), i.e. )()ˆ( uIuI ≤ . 

The minimal value of the performance index (3.2) is equal to 
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T
f xtWxuI )()ˆ( 1−= .                                             (3.6) 
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Proof is given in [28].  

Now following [11], to find ],0[ ftt ∈  for which ntu +ℜ∈)(ˆ  reaches its minimal 

value, using (3.4) we compute the derivative  

ff
T xtWtBQ

dt
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)(ˆ 11 −− Ψ= , ],0[ ftt ∈ ,                   (3.7) 

where 
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d
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Knowing )(tΨ  and using the equality 

0)()( 1 =Ψ −
ff xtWt                                        (3.9) 

we can find ],0[ ftt ∈  for which )(ˆ tu  reaches its maximal value. 

Note that if the system is asymptotically stable 0)(lim =
∞→

tM
t

 then )(ˆ tu  reaches 

its maximal value for ftt =  and if it is unstable then for 0=t . 

From the above considerations we have the following procedure for computation 
of the optimal inputs: 

Procedure 4.1 
Step 1. Using (2.7b) and (2.8) compute the matrix )(tM . 

Step 2. Knowing the matrices A, B, Q and α, β, tf using (3.3) compute the matrix W. 
Step 3. Using (3.4) and (3.9) find tf for which )(ˆ tu  satisfying (3.1) reaches its 

maximal value and the desired )(ˆ tu  for given nU +ℜ∈  and n
fx +ℜ∈ . 

Step 4. Using (3.6) compute the maximal value of the performance index )ˆ(uI . 

4 Example 

Consider the fractional electrical circuit shown on Figure 4.1 [15, 27, 28] with given 

source voltages 21, ee , ultracapacitor 1C  of the fractional order 7.0=α , 

ultracapacitor 2C  of the fractional order 6.0=β , conductances 2121 ',',, GGGG  

and 012 =G .  
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Fig. 1. Fractional electrical circuit 

Using the Kirchhoff’s laws we can write the equations 
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Substitution of (4.3) into 
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yields 
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From (4.6) it follows that A is a diagonal Metzler matrix and the matrix B is 
monomial matrix with positive diagonal entries. Therefore, the fractional electrical 
circuit is positive for all values of the conductances and capacitances. 

Without lost of generality, to simplify the notation, wet take for example values of 

the electrical circuit: 11 =C , 7.0=α , 22 =C , 6.0=β , ,41 =G  

,4'1 =G ,32 =G  6'2 =G , 012 =G  and 221 =+= nnN . 

The matrices (4.6) takes the form 
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B
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A
A                  (4.7) 

Find the optimal input (source voltage) ,)(ˆ 2
+ℜ∈te  ],0[ ftt ∈  satisfying the 

condition 









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



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
=

1

1

)(ˆ

)(ˆ
)(ˆ

2

1

te

te
te  for ],0[ ftt ∈                              (4.8) 

for the performance index (3.2) with ]2,2[diag=Q , which steers the system from 

initial state (voltage drop on capacitances) Tu ]00[0 =  to the finite state 
T

fu ]32[=  and minimize the performance index (3.2) with (4.7). 

Using (2.8) and (4.7) we obtain 
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From (2.7b), (4.7) and (3.3) we have 
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Note that the electrical circuit is stable. Therefore, )(ˆ te  reach its maximal value 

for ftt = . 

Now using (3.4) and (4.11) we obtain 
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The minimal value of tf satisfying the condition (3.1) can be found from the 
inequality 
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and the minimal value of the performance index (3.2) is equal to 
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5 Concluding Remarks 

The minimum energy control problems for the fractional positive continuous-time linear 
systems with two different fractional orders and bounded input have been formulated. 
Solution to the minimum energy control problem has been given. Effectiveness of the 
proposed considerations has been demonstrated on example of electrical circuit. 
Extension of this considerations on systems consisting of n subsystems with different 
fractional orders is also possible. 
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Abstract. The paper deals with a problem of relative controllability
for linear fractional differential-algebraic systems with delay (FDAD).
FDAD systems consists of fractional differential in the Riemann-Liouville
sense and difference equations. We introduce the determining equation
systems and their properties. By solution representations into series of
their determining equation solutions we obtain effective parametric rank
criteria for relative controllability.

Keywords: Fractional differential equations, determining equations,
differential-algebraic systems.

1 Introduction

Controllability is one of the fundamental concepts in modern mathematical con-
trol theory. This is qualitative property of control systems and is of particular
importance in control theory. Systematic study of controllability was started at
the beginning of 1960’s. Theory of controllability is based on the mathematical
description of the dynamical system. Roughly speaking, controllability generally
means, that it is possible to steer dynamical control system form an arbitrary
initial state to an arbitrary final state using the set of admissible controls.

Infinite-dimensional systems have many different definitions of controllability.
One of them is relative controllability. Roughly speaking, relative controllabil-
ity generally means, that it is possible to steer dynamical control system form
infinite-dimensional initial state to an arbitrary finite-dimensional final state.
Relative controllability of infinite-dimensional systems was studied through
decades from the end of 1960’s (e. g. [1]-[10]).

In recent years, much attention has been paid to fractional control systems,
see the monograph [11]. During last few years many results concerning theory
of fractional control system with delays in control or state variables have been
published in the literature (e. g. [12]-[14]). However, it should be pointed out,
that the most controllability results are known only for fractional systems with
Caputo fractional derivative.

The paper deals with linear fractional differential-algebraic systems with delay
(FDAD). FDAD systems consist of some equations being fractional differential

c© Springer International Publishing Switzerland 2015 183
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_17
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in the Riemann-Liouville sense, the other-difference, with some variables being
continuous the other piecewise continuous. We introduce the determining equa-
tions the same as for differential-algebraic systems (for example see [15] or [16]).
To obtain solutions representations we apply fractional differential calculus es-
pecially dealing with the Laplace transform. By this result we obtain effective
parametric rank criteria for several types of controllability. Our results can be
considered as a generalization of the known corresponding results: for the integer
order case [17] and for the fractional differential case with the Caputo fractional
derivative [18].

The paper is organized as follows. In section 2 basic definition and fractional
differential-algebraic systems with delay FDAD are recalled. Deterministic equa-
tions and representation of solutions into series of determining equations solu-
tions are established in section 3. The controllability results are given in section 4.

2 Preliminaries

Let us introduce the following notation:
Dα

t is the left-sided Riemann-Liouville fractional derivatives of order α defined
by

Dα
t f(t) =

1

Γ (1 − α)

d

dt

∫ t

0

f(τ)

(t− τ)α
dτ,

where 0 < α < 1, α ∈ R and Γ (t) =
∫∞
0

e−ττ t−1dτ is the Euler gamma function

(see [19] for more details). Tt = limε→+0

[
t−ε
h

]
, where the symbol [z] means entire

part of the number z; In is the identity n by n matrix.
In this paper, we concentrate on the stationary FDAD system in the following

form:

Dα
t x1(t) =A11x1(t) + A12x2(t) + B1u(t), t > 0, (1a)

x2(t) =A21x1(t) + A22x2(t− h) + B1u(t), t ≥ 0, (1b)

where x1(t) ∈ R
n1 , x2(t) ∈ R

n2 , u(t) ∈ R
r, A11 ∈ R

n1×n1 , A12 ∈ R
n1×n2 , A21 ∈

R
n2×n1 , A22 ∈ R

n2×n2 , B1 ∈ R
r×n1 , B2 ∈ R

r×n2 are constant (real) matrices,
0 < h is a constant delay. We regard an absolute continuous n1-vector function
x1(·) and a piecewise continuous n2-vector function x2(·) as a solution of System
(1) if they satisfy the equation (1a) for almost all t > 0 and (1b) for all t ≥ 0.

System (1) should be completed with initial conditions:

[Dα−1
t x1(t)]t=0 = x10, x2(τ) = ψ(τ), τ ∈ [−h, 0), (2)

where x10 ∈ R
n1 ; ψ ∈ PC([−h, 0),Rn2) and PC([−h, 0),Rn2) denotes the set of

piecewise continuous n2-vector-functions in [−h, 0]. Observe that x2(t) at t = 0
is determined from Equation (1b).
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3 Representation of Solutions into Series of Determining
Equations Solutions

Let us introduce the determining equations of System (1) (see [16] for more
details).

X1,k(t) = A11X1,k−1(t) + A12X2,k−1(t) + B1Uk−1(t), (3)

X2,k(t) = A21X1,k(t) + A22X2,k(t− h) + B2Uk−1(t), k = 0, 1, . . . ;

with initial conditions

X1,k(t) = 0, X2,k(t) = 0 for t < 0 or k ≤ 0;

U0(0) = In1 , Uk(t) = 0 for t2 + k2 �= 0.

Here, we establish some algebraic properties of X1,k, X2,k.

Proposition 1. ([20]) The following identities hold :

(
A11 + A12(In2 − ωA22)−1A12

)k (
B1 + A12(In2 − ωA22)−1B2

)
=

+∞∑
j=0

X1,k+1(jh)ωj , k = 0, 1, . . . ;

(In2−ωA22)−1A12

(
A11+A12(In2−ωA22)−1A12

)k(
B1+A12(In2−ωA22)−1B2

)
=

+∞∑
j=0

X2,k+1(jh)ωj , k = 1, 2, . . . ;

(In2 − ωA22)−1B2 =

+∞∑
j=0

X2,0(jh)ωj ,

where |ω| < ω1 and ω1 is a sufficiently small real number.

Let us introduce the determining equations of homogenous System (1).

X̃1,k(t) = A11X̃1,k−1(t) + A12X̃2,k−1(t), (4)

X̃2,k(t) = A21X̃1,k(t) + A22X̃2,k(t− h), t ≥ 0, k = 1, 2, . . . ;

with initial conditions

X̃1,k(t) = 0, X̃2,k(t) = 0 for t < 0 or k ≤ 0;

X̃1,1(0) = In1 , X̃1,1(τ) = 0 if τ �= 0.

Similar to Proposition 1 we can formulate the following.

Proposition 2. ([20]) The following identities hold :

(
A11 + A12(In2 − ωA22)−1A12

)k
=

+∞∑
j=0

X̃1,k+1(jh)ωj , k = 1, 2, . . . ;

(In2−ωA22)−1A21

(
A11+A12(In2−ωA22)−1A12

)k
=

+∞∑
j=0

X̃2,k+1(jh)ωj , k=1, 2, . . . ;
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where |ω| < ω1 and ω1 is a sufficiently small real number.

Theorem 3. A solution to System (1) with initial conditions (2) for t ≥ 0
exists, is unique and can be represented in the form of a series in power of
solutions to determining systems (3), (4) in the following form:

x1(t, x1(0), ψ, u)=
+∞∑
k=0

∑
i

t−ih>0

X1,k+1(ih)

∫ t−ih

0

(t−τ−ih)α(k+1)−1

Γ (α(k + 1))
u(τ)dτ+s1(t, x1(0), ψ),

x2(t, x1(0), ψ, u)=

+∞∑
k=0

∑
i

t−ih>0

X2,k+1(ih)

∫ t−ih

0

(t− τ − ih)α(k+1)−1

Γ (α(k + 1))
u(τ)dτ+

+
∑
i

t−ih>0

X2,0(ih)u(t− ih) + s2(t, x10, ψ),

where s1(t, x10, ψ), s2(t, x10, ψ) - functions depending only on the initial data:

s1(t, x10, ψ) =

+∞∑
k=0

∑
j

t−jh>0

(t− jh)α(k+1)−1

Γ (α(k + 1))
X̃1,k+1(jh)x10+

+∞∑
k=0

∑
i,j

t−(i+j)h>0

X̃1,k+1(ih)A12(A22)i+1

∫ t−(i+j)h

0

(t− τ − (i + j)h)α(k+1)−1

Γ (α(k + 1))
ψ(τ−h)dτ,

s2(t, x10, ψ) =

+∞∑
k=0

∑
i,j

t−(i+j)h>0

X̃2,k+1(ih)A12(A22)i+1

∫ t−(i+j)h

0

(t− τ − (i + j)h)α(k+1)−1

Γ (α(k + 1))
ψ(τ−h)dτ+

+∞∑
k=0

∑
j

t−jh>0

(t− jh)α(k+1)−1

Γ (α(k + 1))
X̃2,k+1(jh)x10 +

+∞∑
i=0

(A22)i+1ψ(t− (i + 1)h)),

where ψ(τ) ≡ 0 for τ /∈ [−h, 0).

Proof. First we use the classical formula for the Laplace transformation of the
fractional derivative of Equation (1a)

∫ ∞

0

e−ptDα
t x1(t)dt = pαx̆1(p) − [Dα−1

t x1(t)]t=0 = pαx̆1(p) − x10.

We apply the Laplace transform to System (1)

pαx̆1(p) − x10 =A11x̆1(p) + A12x̆2(p) + B1ŭ(p), (5)

x̆2(p) = A21x̆1(p)+A22e
−phx̆2(t) + A22e

−ph

∫ 0

−h

e−pτψ(τ)dτ + B2ŭ(p), (6)
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where x̆1(p), x̆2(p), ŭ(p) are Laplace transforms of functions x1(t), x2(t), u(t)
respectively. Solving (6), we obtain

x̆2(p) =
(
In2 −A22e

−ph
)−1

A21x̆1(p)+ (7)

(
In2 −A22e

−ph
)−1

A22e
−ph

∫ 0

−h

e−pτψ(τ)dτ +
(
In2 −A22e

−ph
)−1

B2ŭ(p),

x̆1(p)=
(
pαIn1−A11−A12

(
In2−A22e

−ph
)−1

A21

)−1[
A12

(
In2−A22e

−ph
)−1× (8)

A22e
−ph

∫ 0

−h

e−pτψ(τ)dτ + x10 +
(
B1 + A12

(
In2 −A22e

−ph
)−1

B2

)
ŭ(p)

]
=

+∞∑
k=0

1

(pα)k+1

(
A11 + A12

(
In2 −A22e

−ph
)−1

A21

)k [
A12

(
In2 −A22e

−ph
)−1×

A22e
−ph

∫ 0

−h

e−pτψ(τ)dτ + x10 +
(
B1 + A12(In2 − ωA22)−1B2

)
ŭ(p)

]
.

Applying Propositions 1 and 2 to (7) and (8) we obtain

x̆1(p) =

+∞∑
k=0

1

(pα)k+1

+∞∑
j=0

e−jphX1,k+1(jh)ŭ(p) +

∫ +∞

0

x1(t, x1(0), ψ, 0)dt,

x̆2(p) =

+∞∑
k=0

1

(pα)k+1

+∞∑
j=0

e−jphX2,k+1(jh)ŭ(p) +

+∞∑
j=0

e−jphX̃2,0(jh)ŭ(p)+

∫ +∞

0

x2(t, x10, ψ, 0)dt.

By applying inverse Laplace transform the proof is complete. �

4 Controllability

We present algebraic properties of the determining solutions in the following two
statements [16].

Proposition 4. The solutions X1,γ(t), X2,γ(t), t ≥ 0 of the determining equa-
tions (3) satisfy the following equations:

X1,γ(kh) = −
Θk∑
j=1

r0jX1,γ((k − j)h) −
n1∑
i=1

Θk∑
j=0

rijX1,γ−i((k − j)h),

X2,γ(kh) = −
Θk∑
j=1

r0jX2,γ((k − j)h) −
n1∑
i=1

Θk∑
j=0

rijX2,γ−i((k − j)h)

for rij ∈ R, i = 1, 2, . . . , n1; j = 0, 1, . . . , n2; γ = n1 + 1, n1 + 2, . . .
and k = 0, 1, . . . ; Θk = min{k, n1n2}.
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Similar to Proposition 4 we can formulate the following:

Proposition 5. The solutions of the determining equations (3) satisfy the fol-
lowing conditions:

X1,k((ν+1)h)=−
min{k,n1(n2)

2}∑
j=1

p0jX1,k−j((ν+1)h)−
n2∑
i=1

min{k,n1(n2)
2}∑

j=0

pijX1,k−j((ν+1−i)h),

X2,k(νh) =−
min{k,n1(n2)

2}∑
j=1

p0jX2,k−j(νh) −
n2∑
i=1

min{k,n1(n2)
2}∑

j=0

pijX2,k−j((ν−i)h)

for pij ∈ R, i = 1, 2, . . . , n1; j = 0, 1, . . . , n2; k = 0, 1, . . . and ν = n2, n2 + 1, . . . .

We will consider the following controllability conditions.

Definition 1. System (1) is called Q − t1-controllable for t1 > 0 if for any

vector

[
x10

x20

]
∈ R

n1+n2 and for any initial conditions (2) there exist a piecewise

continuous control u(·), such that the condition Q

[
x1(t1)
x2(t1)

]
= Q

[
x10

x20

]
holds for

the corresponding solution x1(t), x2(t) of System (1).
In the case Q = In1+n2 , System (1) is called relatively t1-controllable; for Q =

[In1 , 0], it is relatively t1-controllable with respect to x1; and, for Q = [0, In2 ], it
is relatively t1-controllable with respect to x2.

For simplicity, we put

x10 = 0, ψ(τ) = 0, τ ∈ [−h, 0]. (9)

Then the corresponding solution of System (1), (9) can be represented in the
form:

x1(t) =
+∞∑
k=0

⎛
⎝Tt−1∑

j=0

∫ t−jh

t−(j+1)h

j∑
i=0

+ X1,k+1(ih)
(t− τ − ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ

∫ t−Tth

0

Tt∑
i=0

X1,k+1(ih)
(t− τ − ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ

)
, t > 0,

x2(t) =

+∞∑
k=0

⎛
⎝Tt−1∑

j=0

∫ t−jh

t−(j+1)h

j∑
i=0

X2,k+1(ih)
(t− τ − ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ+

∫ t−Tth

0

Tt∑
i=0

X2,k+1(ih)
(t−τ− ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ

)
+

Tt∑
i=0

X2,0(ih)u(t−ih), t > 0.
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The Q−attainability set K(t1) of System (1), (9) at the moment t1 is described
as follows:

K(t1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ ∈ R
n3 : γ =

= Q
+∞∑
k=0

Tt1−1∑
j=0

t1−jh∫
t1−(j+1)h

j∑
i=0

[
X1,k+1(ih)
X2,k+1(ih)

]
(t1−τ−ih)αk+α−1

Γ (α(k+1)) u(τ)dτ

+Q
+∞∑
k=0

t1−Tt1h∫
0

Tt1∑
i=0

[
X1,k+1(ih)
X2,k+1(ih)

]
(t1−τ−ih)αk+α−1

Γ (α(k+1)) u(τ)dτ

+Q
Tt1∑
j=0

[
0

X2,0(jh)

]
(t1 − jh), ∀u(·) ∈ U(·)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Here U(·) is the set of piecewise continuous r−vector-function in the interval
[0, t1] and K0 = {Qμ : ∀μ ∈ R

n1+n2} is the linear span of the columns of
matrix Q. Then Q−t1−controllability of System (1) is equivalent to the inclusion
K(t1) ⊃ K0 or (K(t1))⊥ ⊂ K⊥

0 for orthogonal complements. Then we state the
following:

Theorem 6. System (1) is Q − t1−controllable if and only if for every vector
w ∈ R

n3 such that :

w′Q
+∞∑
k=0

j∑
i=0

(t1 − τ − ih)αk+α−1

Γ (α(k + 1))

[
X1,k(ih)
X2,k(ih)

]
= 0, k = 0, 1, . . . ;

τ ∈ (t1 − (j + 1)h, t1 − jh), t > 0,

w′Q
Tt1∑
j=0

[
0

X2,0(ih)

]
= 0, j = 0, . . . , Tt1 ,

the condition w′Q = 0 also takes place.

Proof. We have:

(∀w ∈ R
n3 , w′K(r1) = 0,⇒ w′K0 = 0) ⇔

(∀w ∈ R
n3 w′Q

Tt1−1∑
j=0

∫ t1−jh

t1−(j+1)h

+∞∑
k=0

j∑
i=0

[
X1,k+1(ih)
X2,k+1(ih)

]
(t1−τ−ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ

+ w′Q
∫ t1−Tt1h

0

+∞∑
k=0

Tt1∑
i=0

[
X1,k+1(ih)
X2,k+1(ih)

]
(t1 − τ − ih)αk+α−1

Γ (α(k + 1))
u(τ)dτ

+ w′Q
Tt1∑
j=0

[
0

X2,0(jh)

]
u(t1 − jh), ∀u(·) ∈ U(·), ∀u(·) ∈ U(·),⇒ w′K0 = 0

⎞
⎠ .
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Setting

u(τ) =

(
w′Q

+∞∑
k=0

j∑
i=0

(t1 − τ − ih)αk+α−1

Γ (α(k + 1))

[
X1,k+1(ih)
X2,k+1(ih)

])′

, j = 0, . . . , Tt1 ,

τ ∈ (t1 − (j + 1)h, t1 − jh), τ > 0, u(t1 − jh) =

(
w′Q

[
0

X2,0(ih)

])′
,

we obtain

(∀w ∈ R
n3 ,

Tt1−1∑
j=0

∫ t1−jh

t1−(j+1)h

∥∥∥∥∥w′Q
+∞∑
k=0

j∑
i=0

(t1−τ−ih)αk+α−1

Γ (α(k + 1))

[
X1,k+1(ih)
X2,k+1(ih)

]∥∥∥∥∥
2

dτ

+

∫ t1−Tt1h

0

∥∥∥∥∥∥w
′Q

+∞∑
k=0

Tt1∑
i=0

(t1 − τ − ih)αk+α−1

Γ (α(k + 1))

[
X1,k+1(ih)
X2,k+1(ih)

]∥∥∥∥∥∥
2

dτ

+

Tt1∑
j=0

∥∥∥∥w′Q
[

0
X2,0(jh)

]∥∥∥∥
2

= 0,⇒ w′K0 = 0

⎞
⎠ .

This finishes the proof.
For the sequel, we need the following result:

Lemma 7. Functions fkj(t) = (t−jh)αk+α−1

Γ (α(k+1)) for t − jh > 0 and fkj(t) = 0

for t − jh ≤ 0, where k = 0, 1, . . . ; j = 0, 1, . . ., are linearly independent for
t > 0.

The proof of the lemma can be performed similarly to [16], [18] using the
method of mathematical induction.

Now we can formulate an explicit criterion of controllability.

Theorem 8. System (1) is t1−controllable if and only if

rank

[[
X1,k(ih)
X2,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
= n1 + n2;

Proof. Taking into account Proposition 4 and Lemma 7, we deduce from Theo-
rem 6 that System (1) is t1−controllable if and only if the condition

w′
[
X1,k(t)
X2,k(t)

]
= 0, w′

[
0

X2,0(ih)

]
= 0

w ∈ R
n3 , t ∈ [0, t1), k = 0, 1, . . . , n1, i = 0, 1, . . . , Tt1

implies the equality w′ = 0. Then by Proposition 5 it is easy seen that X1,k(ih),
X2,k(ih), where k > n1, j > n2, are a linear combination of X1,η(ξh),
X2,η(ξh),η = 1, 2, . . . , n1; ξ = 0, 1, . . . , n2, which completes the proof. �
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Corollary 9

System (1) is

(i) relatively t1−controllable with respect to x1 if and only if

rank [X1,k(ih), k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}] = n1;

(ii) relatively t1−controllable with respect to x2 if and only if

rank [X2,k(ih), k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}] = n2.

5 Example 1

Let us consider the following system:

Dα
t x1(t) =[1]x1(t) +

[
0 −1

]
x2(t) + [1]u(t), t > 0, (10)

x2(t) =

[
0
1

]
x1(t) +

[
0 1
0 0

]
x2(t− h) +

[
1
0

]
u(t), t ≥ 0.

First compute the solutions of the determining systems:

[
X1,0(0)
X2,0(0)

]
=

⎡
⎣0

1
0

⎤
⎦ ;

[
X1,1(0)
X2,1(0)

]
=

⎡
⎣1

0
1

⎤
⎦ ;

[
X1,k(0)
X2,k(0)

]
=

⎡
⎣0

0
0

⎤
⎦ , k ≥ 2;

[
X1,0(h)
X2,0(h)

]
=

⎡
⎣0

0
0

⎤
⎦ ;

[
X1,1(h)
X2,1(h)

]
=

⎡
⎣0

1
0

⎤
⎦ ;

[
X1,k(h)
X2,k(h)

]
=

⎡
⎣0

0
0

⎤
⎦ , k ≥ 2;

[
X1,i(jh)
X2,i(jh)

]
=

⎡
⎣0

0
0

⎤
⎦ , i ≥ 0, j ≥ 2;

[
X̃1,1(0)

X̃2,1(0)

]
=

⎡
⎣1

0
1

⎤
⎦ ;

[
X̃1,2(0)

X̃2,2(0)

]
=

⎡
⎣0

0
0

⎤
⎦ ;

[
X̃1,k(0)

X̃2,k(0)

]
=

⎡
⎣0

0
0

⎤
⎦ , k ≥ 3;

[
X̃1,1(h)

X̃2,1(h)

]
=

⎡
⎣0

1
0

⎤
⎦ ;

[
X̃1,2(h)

X̃2,2(h)

]
=

⎡
⎣0

0
0

⎤
⎦ ;

[
X̃1,k(h)

X̃2,k(h)

]
=

⎡
⎣0

0
0

⎤
⎦ , k ≥ 2;

[
X̃1,i(jh)

X̃2,i(jh)

]
=

⎡
⎣0

0
0

⎤
⎦ , i ≥ 1, j ≥ 2;

According to representation of Theorem 3 , we have

[
x1(t)
x2(t)

]
=

⎡
⎢⎣
∫ t

0
(t−τ)α−1

Γ (α) u(τ)dτ + tα−1

Γ (α)x10

u(t) + φ(t− h)∫ t

0
(t−τ)α−1

Γ (α) u(τ)dτ + tα−1

Γ (α)x10

⎤
⎥⎦ ; 0 ≤ t < h;

[
x1(t)
x2(t)

]
=

⎡
⎢⎢⎣

∫ t

0
(t−τ)α−1

Γ (α) u(τ)dτ + tα−1

Γ (α)x10

u(t) +
∫ t−h

0
(t−τ−h)α−1

Γ (α) u(τ)dτ + (t−h)α−1

Γ (α) x10∫ t

0
(t−τ)α−1

Γ (α) u(τ)dτ + tα−1

Γ (α)x10

⎤
⎥⎥⎦ ; h ≤ t;

We have:

rank
[[
X1,k(ih)

]
, k=0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
=rank

[
0 1

]
=n1=1;
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Thus the system (10) is relatively t1−controllable with respect to x1 for t1 > 0.
Moreover

rank
[[
X2,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
=

rank

[
1 0
0 1

]
= n2 = 2;

Therefore the system (10) is relatively t1−controllable with respect to x2 for
t1 > 0.

The following holds:

rank

[[
X1,k(ih)
X2,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1, n2}

]
=

rank

⎡
⎣0 1 0

1 0 1
0 1 0

⎤
⎦ = 2 �= n1 + n2 = 3;

We conclude that the system (10) is not relatively t1−controllable.

6 Example 2

Consider the next example in the following form:

Dα
t x1(t) =x1(t) +

[
1 0 0
0 1 0

]
x2(t) +

[
1
0

]
u(t), t > 0, (11)

x2(t) =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦x2(t− h) +

⎡
⎣0

0
1

⎤
⎦u(t), t ≥ 0,

where x10 ∈ R
2, ψ(·) =

⎡
⎣ψ(·)
ψ(·)
ψ(·)

⎤
⎦ .

Solving the determining systems, we have:

X1,0(jh) =

[
0
0

]
, j ≥ 0; X1,k(0) =

[
1
0

]
, X1,k(h) =

[
0
1

]
, X1,k(2h) =

[
1
0

]
,

X1,k(ih) =

[
0
0

]
, k = 1, 2, . . . ; i ≥ 3;

X2,0(0) =

⎡
⎣0

0
1

⎤
⎦ , X2,0(h) =

⎡
⎣0

1
0

⎤
⎦ , X2,0(2h) =

⎡
⎣1

0
0

⎤
⎦ , X2,0(jh) =

⎡
⎣0

0
0

⎤
⎦ , j ≥ 3;

X2,k(ih) =

⎡
⎣0

0
0

⎤
⎦ , k = 1, 2, . . . ; i ≥ 0; X̃1,k(0) =

[
1 0
0 1

]
, k ≥ 1;

X̃1,k(jh) =

[
0 0
0 0

]
, k ≥ 1; j ≥ 1; X̃2,k(ih) =

⎡
⎣0 0

0 0
0 0

⎤
⎦ , k ≥ 1, j ≥ 0;
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We obtain representation of solutions of system (11) in the following form:

x1(t) =

[
1
0

]∫ t

0

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))
u(τ)dτ +

+∞∑
k=1

(t)α(k+1)−1

Γ (α(k + 1))
x10

+

∫ t

0

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))

[
ψ2(τ)
ψ3(τ)

]
dτ,

x2(t) =

⎡
⎣ ψ1(t− h)

ψ2(t− h)
ψ3(t− h) + u(t)

⎤
⎦ , for 0 ≤ t < h.

x1(t) =

[
1
0

]∫ t

t−h

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))
u(τ)dτ

+

∫ t−h

0

+∞∑
k=1

([
1
0

]
(t− τ)α(k+1)−1

Γ (α(k + 1))
+

[
0
1

]
(t− τ − h)α(k+1)−1

Γ (α(k + 1))

)
u(τ)dτ

+
+∞∑
k=1

(t)α(k+1)−1

Γ (α(k + 1))
x10 +

∫ t−h

0

+∞∑
k=1

(t− τ − h)α(k+1)−1

Γ (α(k + 1))

[
ψ3(τ)

0

]
dτ

+

∫ t

0

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))

[
ψ2(τ)
ψ3(τ)

]
dτ,

x2(t) =

⎡
⎣ 0
u(t− h)
u(t)

⎤
⎦ , for h ≤ t < 2h.

x1(t) =

[
1
0

]∫ t

t−h

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))
u(τ)dτ

+

∫ t−h

0

+∞∑
k=1

([
1
0

]
(t− τ)α(k+1)−1

Γ (α(k + 1))
+

[
0
1

]
(t− τ − h)α(k+1)−1

Γ (α(k + 1))

)
u(τ)dτ

+

Tt∑
j=2

∫ t−h

max{0,t−(j+1)h}

+∞∑
k=1

([
1
0

]
(t− τ)α(k+1)−1

Γ (α(k + 1))
+

[
0
1

]
(t− τ − h)α(k+1)−1

Γ (α(k + 1))

+

[
1
0

]
(t− τ − 2h)α(k+1)−1

Γ (α(k + 1))

)
u(τ)dτ +

∫ t−h

0

+∞∑
k=1

(t− τ − h)α(k+1)−1

Γ (α(k + 1))

[
ψ3(τ)

0

]
dτ

+

+∞∑
k=1

(t)α(k+1)−1

Γ (α(k + 1))
x10 +

∫ t

0

+∞∑
k=1

(t− τ)α(k+1)−1

Γ (α(k + 1))

[
ψ2(τ)
ψ3(τ)

]
dτ,

x2(t) =

⎡
⎣u(t− 2h)
u(t− h)
u(t)

⎤
⎦ , for 2h ≤ t.
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We have:

rank
[[
X1,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
=

rank
[
X1,1(0) X1,1(h)

]
rank

[
1 0
0 1

]
= n1 = 2

and, hence, system (11) is relatively t1-controllable with respect to x1 for t1 > h.
Next we have:

rank
[[
X2,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
=

rank
[
X2,0(0) X2,0(h) X2,0(2h)

]
= rank

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ = n2 = 3;

Thus the system (11) is relatively t1−controllable with respect to x2 for t1 > 2h.
Moreover

rank

[[
X1,k(ih)
X2,k(ih)

]
, k = 0, 1, . . . , n1; i = 0, 1, . . . ,min{Tt1 , n2}

]
=

rank

[[
X1,0(0)
X2,0(0)

] [
X1,0(h)
X2,0(h)

] [
X1,0(2h)
X2,0(2h)

] [
X1,01(0)
X2,1(0)

] [
X1,1(h)
X2,1(h)

]]
=

rank

⎡
⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ = n1 + n2 = 5.

Therefore the system (11) is relatively t1−controllable for t1 > 2h.

7 Conclusions

Representations of solutions for for linear fractional differential-algebraic sys-
tems with delay (FDAD) has been presented (Theorem 3). Effective parametric
rank criteria for relative controllability has been established (Theorem 8). These
considerations can be extended to systems with many delays.
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Abstract. The paper presents the problems of robust practical stability
and robust asymptotic stability of fractional-order discrete-time linear
systems with uncertainty. It is supposed that the system matrix is the
interval matrix which elements are the convex combinations of the ele-
ments of specified bounded matrices and the fractional order α satisfies
0 < α < 1. Using the matrix measure the robust stability conditions are
given. The considerations are illustrated by numerical examples.

Keywords: Linear system, discrete-time, fractional-order, robust sta-
bility, interval matrix.

1 Introduction

Fractional calculus and its application in many areas in science and engineer-
ing have been presented in many monographs and papers (see, e.g. [13, 14, 16,
19, 21]).

The stability problem is the fundamental matter in the dynamical systems
theory. This problem for linear continuous-time fractional systems has been con-
sidered in many publications (see, e.g. [4, 5, 13, 16, 18, 20]), whereas a stability
problem of linear discrete-time fractional systems is more complicated and less
advanced. In this case beside the asymptotic stability it is also considered the
so-called practical stability defined for the length of practical implementation.
The problem of practical stability of fractional discrete-time systems has been
considered in [6, 7, 12, 13] for positive systems and in [6, 11] for non-positive
(standard) systems. Recently, the stability regions in the complex plane of frac-
tional discrete-time linear systems were presented in [8, 17, 22]. The parametric
descriptions of boundaries of these regions have been given.

The robust asymptotic stability problem of the fractional continuous-time
interval systems has been studied among others in [1, 9, 15]. For the fractional
discrete-time interval systems this problem has been analyzed in [3] for positive
systems and in [20] for standard systems.
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2 Problem Formulation

Consider an uncertain discrete-time linear system of fractional order described
by the homogeneous state equation

Δαxi+1 = AIxi, α ∈ (0, 1), (1)

with the initial condition x0, where xi ∈ �n. The system matrix AI ∈ �n×n

is the interval matrix in which all elements are known only to within a specific
closed intervals defined as follows

AI = {A = [aij ], bij ≤ aij ≤ cij , i, j = 1, 2, ..., n}, (2)

where bij and cij are elements of matrices B and C.
A special case of the interval matrix is the matrix of the form

AI = (1 − r)B + rC, ∀r ∈ [0, 1]. (3)

Every element aij of the interval matrix (3) is the convex combination of the
elements bij and cij of the matrices B and C. Assumption bij ≤ aij (i, j =
1, 2, ..., n) does not hold. The system (1) with matrix (2) or (3) is called the
interval system.

The following definition of the fractional difference [12, 13] will be used

Δαxi =

i∑
k=0

(−1)k
(
α
k

)
xi−k (4)

where α ∈ � is the order of the fractional difference and
(
α
k

)
=

α!

k!(α− k)!
. (5)

Using definition (4) we may write the equation (1) in the form

xi+1 = (AI + Iα)xi +

i∑
k=1

pk(α)xi−k, k = 1, 2, ... (6)

where I is the n × n identity matrix and

pk(α) = (−1)k
(

α
k + 1

)
, k = 1, 2, .... (7)

The coefficients (7) can be easily calculated using the following formula [7]

pk+1(α) = pk(α)
k + 1 − α

k + 2
, k = 1, 2, ... (8)

with p1(α) = 0.5α(1 − α).
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Note that the equation (6) represents a linear discrete-time system with in-
creasing number of delays in state. From (8) it follows that the coefficients pk(α)
are positive for α ∈ (0, 1) and decrease rapidly with an increase of k. There-
fore, we can assume that the value of k in the equation (6) may be limited
by some natural number L. This number is called the length of the practical
implementation [12]. In this case the equation (6) can be written in the form

xi+1 = (AI + Iα)xi +
L∑

k=1

pk(α)xi−k, k = 1, 2, ... (9)

The equation (9) represents the interval linear discrete-time system with L
delays in state. Moreover, the system (9) is called the practical realization of the
interval fractional system (1).

The definition of practical and asymptotic stability for fractional discrete-time
systems has been introduced in the work [12]. With regard to the interval system
(1) this definitions take the following forms.

Definition 1. The fractional interval system (1) is called robust practically
stable if the system (9) is asymptotically stable for every matrix A ∈ AI ∈ �n×n.

Definition 2. The fractional interval system (1) is called robust asymptotically
stable if the system (9) is asymptotically stable with L → ∞ for every matrix
A ∈ AI ∈ �n×n.

In the paper [20] the problems of robust practical stability and robust asymp-
totic stability of fractional-order discrete-time linear system (1) with the interval
matrix of the form (2) has been considered.

The aim of this paper is to give the robust stability conditions for the practical
and asymptotic stability for the discrete-time linear interval system (1) with the
interval matrix of the form (3).

3 Practical and Asymptotic Stability Regions

In paper [8] (see also [17, 23]) the practical stability and the asymptotic stability
of system

Δαxi+1 = Axi, α ∈ (0, 1), (10)

with precisely known matrix A has been considered. Necessary and sufficient
conditions for the practical stability and for the asymptotic stability for system
(10) have been established. The conditions have been given in terms of eigen-
values of the matrix A0 = A + Iα for the practical stability and in terms of
eigenvalues of the matrix A and A0 for the asymptotic stability. In particular,
it has been shown that location of all eigenvalues of the matrix A0 or A in the
stability regions is necessary and sufficient for practical and asymptotic stability.

Theorem 1. [8] The fractional system (10) with given length L of practi-
cal implementation is practically stable if and only if all eigenvalues λi(A)



202 M. Bus�lowicz and A. Ruszewski

(i = 1, 2, ..., n) are located in the stability region S(α,L), i.e. λi(A) ∈ S(α,L)
for all i = 1, 2, ..., n, where

ρ(ω) = ejω − α−
L∑

k=1

pk(α)e−jkω , ω ∈ [0, 2π]. (11)

is the parametric description of boundary of stability region S(α,L), in the
complex ρ-plane.

Practical stability regions S(α,L), for L = 50 and a few values of fractional
order α ∈ (0, 1) are shown in Fig. 1a) on the plane of eigenvalues of A.

Similarly as in paper [8] we have the following lemma for the practical stability
in the case of real eigenvalues of matrix A.

Lemma 1. If all eigenvalues λi(A) are real, then the fractional system (10) with
given length L of practical implementation is practically stable if and only if

− 1 − α−
L∑

k=1

pk(α)(−1)k < λi(A) < 1 − α−
L∑

k=1

pk(α), i = 1, 2, ..., n. (12)

According to the asymptotic stability of system (10) we have the following
theorem and lemma.

Theorem 2. [8] The fractional system (10) is asymptotically stable if and only
if all eigenvalues of the matrix A are located in the stability region , where

η(ω) = (ejω − 1)α(ejω)1−α, ω ∈ [0, 2π]. (13)

is the parametric description of boundary of the stability region S(α) in the
complex η-plane.
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Fig. 1. Stability regions; a) regions S(α,L) for L = 50 and α = 0.1 (boundary 1),
α = 0.5 (boundary 2) and α = 0.9 (boundary 3), b) regions S(α) for α = 0.1 (boundary
1), α = 0.5 (boundary 2) and α = 0.9 (boundary 3)
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Lemma 2. [8] If all eigenvalues λi(A) are real, then the fractional system (10)
is asymptotically stable if and only if

− 2α < λi(A) < 0, i = 1, 2, ..., n. (14)

Asymptotic stability regions S(α) for a few values of α are shown in Fig. 1b).

4 Main Results

The eigenvalues regions of the interval matrix (3) based on the matrix measure
has been presented in the paper [2]. In this paper, using the results of [2] and
the parametric description of boundaries of stability regions (11) and (13), the
conditions of robust practical stability and robust asymptotic stability of the
fractional discrete-time interval systems (1) with the matrix AI of the form (3)
will be given.

Lemma 3. The interval system (1), (3) is robust practically stable if and only
if all the eigenvalues of the matrix AI lie in the open region S(α,L).

Lemma 4. The interval system (1), (3) is robust asymptotically stable if and
only if all the eigenvalues of the matrix AI lie in the open region S(α).

Proof. All eigenvalues of the matrix AI are in the open region S(α,L)(S(α)) if
and only if all the eigenvalues of every matrix A ∈ AI are in this region. The
proof follows from Theorem 1 (Theorem 2).

The matrix A ∈ �n×n has exactly n eigenvalues, but the interval matrix
AI has an infinite number of eigenvalues. Calculating the eigenvalues of the
interval matrix (3) for λ ∈ [0, 1] with a sufficiently small step Δλ we obtain the
eigenvalue-loci of this matrix. They are symmetric with respect to the real axis.
From Lemmas 3 and 4 it follows that the system (1), (3) is robust practically
(asymptotically) stable if and only if these eigenvalue-loci are in the open region
S(α,L)(S(α)).

Every element aij of the interval matrix (3) depends on the elements bij and
cij of the matrices B and C. For λ = 0 and λ = 1 we have AI = B and AI = C,
respectively. Hence, we have the following simple necessary conditions of robust
practical and robust asymptotic stability of interval system (1), (3). Denote
by λi(B) and λi(C) i-th eigenvalue of the matrices B and C (i = 1, 2, ..., n),
respectively.

Lemma 5. If all eigenvalues λi(B) or λi(C) do not lie in the open region S(α,L)
then the interval system (1), (3) is not robust practically stable.

Lemma 6. If all eigenvalues λi(B) or λi(C)do not lie in the open region S(α)
then the interval system (1), (3) is not robust asymptotically stable.

From the above and lemma 1 and 2 we have the following lemmas.

Lemma 7. If the condition (12) does not hold for the real eigenvalues λi(B) or
λi(C) then the interval system (1), (3) is not robust practically stable.
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Lemma 8. If the real eigenvalues λi(B) or λi(C) are positive then the interval
system (1), (3) is not robust asymptotically stable.

For the interval matrix AI of the form (3) we can determine the eigenvalues
region, i.e. the region which consists the eigenvalues of a matrix AI . This region
can be determined by the matrix measure [2].

For a matrix X = [xij ] ∈ C
n×n (C – field of complex numbers), the measures

μk(X) (k = 1, 2,∞) are calculated as follows [10]

μ1(X) = max
j

[Re(xjj) +

n∑
i=1,i�=j

|xij |], (15)

μ2(X) = 0.5 max
i

λi(X + X∗), (16)

μ∞(X) = max
i

[Re(xii) +

n∑
j=1,j �=i

|xij |]. (17)

where (∗) denotes the conjugate transpose symbol and λi(X) is the i-th eigen-
value of matrix X .

From the paper [2] we have the following lemma.

Lemma 9. [2] The eigenvalues of the interval matrix AI of the form (3), lie in
the region (rectangle) determined by the following inequalities

ul ≤ Reλi(AI) ≤ ur, (18)

− v ≤ Imλi(AI) ≤ v, (19)

where

ul = −max{μk(−B), μk(−C)} , (20)

ur = max {μk(B), μk(C)} , (21)

v = max {μk(jB), μk(jC)} , j2 = −1, (22)

for k = 1, 2,∞.
The eigenvalues region of the interval matrix (3) is determined by the inequal-

ities (18) and (19).
From above we have the following theorems.

Theorem 3. If rectangle determined by the inequalities (18) and (19) lies in
the open region S(α,L), then the interval system (1), (3) is robust practically
stable for a given α and L.

Theorem 4. If rectangle determined by the inequalities (18) and (19) lies in
the open region S(α), then the interval system (1), (3) is robust asymptotically
stable for a given α.
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5 Illustrative Examples

Example 1. Check robust practical stability of the interval system (1), (3) with
length L = 50 of practical implementation and the boundary matrices B and C
of the form

B =

⎡
⎣−0.02 −0.07 0.02
−0.15 −0.05 −0.25
−0.07 0.02 −0.1

⎤
⎦ , C =

⎡
⎣ 0 0.01 0.1

0 0.05 −0.15
0.1 0.15 −0.05

⎤
⎦ . (23)

Eigenvalue-loci of the matrix (3), (23) determined with the step Δλ = 0.01
are shown in Fig. 2. In this figure, stability regions S(α,L) for L = 50, α = 0.7
and α = 0.2 are also shown. It is easy to see that these eigenvalue-loci lie in
the open region S(α,L) for α = 0.7 and α = 0.2. Hence, the sufficient condition
given in Lemma 3 is satisfied for α = 0.7 and α = 0.2. From Figs 2 and 1a) it
follows that this holds for all α ≤ 0.7. Hence, the system (1), (3), (23) is robust
practically stable for L = 50 and any α ≤ 0.7.

Calculating the measures of the suitable matrices from (15), (16) and (17) and
ul , ur and v from (20), (21) and (22), we obtain ul = −0.45, ur = 0.35, v = 0.4.

Hence, from Lemma 9 we have

− 0.45 ≤ Reλi(AI) ≤ 0.35, −0.4 ≤ Imλi(AI) ≤ 0.4. (24)

The eigenvalues region, determined by (24), is shown in Fig. 2. From Figs 2
and 1a) it follows that eigenvalues region lie in stability regions S(α,L) for the
value α = 0.2 and less. It means, according to Theorem 3, that interval matrix
(3), (23) is robust practically stable for L = 50 and α ≤ 0.2.
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Fig. 2. Regions S(α, L) for L = 50, α = 0.2 (boundary 1) and α = 0.7 (boundary 2),
eigenvalues region of matrix (3) (rectangle) and eigenvalue-loci of the matrix (3), (23)
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Example 2. Check robust practical stability and robust asymptotic stability of
the interval system (1), (3) with the boundary matrices B and C of the form

B =

⎡
⎣−0.5 −1 0

0 0 1
0.1 −1 −1.8

⎤
⎦ , C =

⎡
⎣ 0 1 0

0 0.2 3.5
−0.1 −0.1 0.1

⎤
⎦ . (25)

In Fig. 3a) stability regions S(α,L) for L = 50, α = 0.1, α = 0.3 and
eigenvalue-loci of the matrix (3), (25) are shown. From Fig. 3a) it follows that
the eigenvalues of the matrix B and C lie in stability regions for α = 0.1 and
α = 0.3. Eigenvalue-loci lie completely in stability region for α = 0.3, while for
α = 0.1 part of eigenvalue-loci lie outside the stability region. It means that the
convex combination of the matrices (25) is robust practically stable for L = 50
and α = 0.3 and is not robust practically stable for L = 50 and α = 0.1. Note,
that eigenvalues of B and C lie in stability region in all cases.

From above we have the following important remarks.

Remark 1. Location of the eigenvalues of the matrices B and C in the stability
region S(α,L) for a given L and α does not mean that the convex combination
of the matrices B and C is robust practically stable.

Remark 2. The robust practical stability of the convex combination of the
matrices B and C for a given value α does not mean that the convex combination
is robust practically stable for less values of α.

In Fig. 3b) asymptotic stability regions S(α) for α = 0.1, α = 0.3, α = 0.5
and eigenvalue-loci of the matrix (3), (25) are shown. From this figure it follows
that for α = 0.1 part of eigenvalue-loci lie outside the asymptotic stability region
although the eigenvalues of the matrix B and C lie in this region. It means that
the convex combination of the matrices (25) is not robust asymptotically stable
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Fig. 3. Eigenvalue-loci of the matrix (3), (25), eigenvalues of B (o), eigenvalues of C
(*); a) regions S(α, L) for L = 50, α = 0.1 (boundary 1) and α = 0.3 (boundary 2), b)
regions S(α) for α = 0.1 (boundary 1), α = 0.3 (boundary 2) and α = 0.5 (boundary 3)
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for α = 0.1. The convex combination of the matrices (25) is robust asymptoti-
cally stable for α = 0.3, i.e. eigenvalue-loci lie completely in the stability region
S(α). For α = 0.5 the convex combination of the matrices (25) is not robust
asymptotically stable. From the above we have that the fractional interval sys-
tem (1) with the matrices (3), (25) is robust asymptotically stable for α = 0.3.
Hence, remarks given for the practical stability also applies to the asymptotic
stability.

Remark 3. Location of all eigenvalues of the matrices B and C in the asymptotic
stability region S(α) for a given α is not equivalent to robust asymptotic stability
of the convex combination of the matrices B and C.

Remark 4. The robust asymptotic stability of the convex combination of the
matrices B and C for a given value α does not mean that this combination is
robust asymptotically stable for less values α.

6 Concluding Remarks

The problems of robust practical stability and robust asymptotic stability of
discrete-time linear system (1) of fractional order α ∈ (0, 1) with the system
matrix as the interval matrix of the form (3) have been addressed. It has been
shown that location of all eigenvalues of the interval matrix (3) in the stability
region is necessary and sufficient for the robust practical stability and robust
asymptotic stability. Using the matrix measure and the parametric description
of boundaries of stability regions, the sufficient conditions for the robust practical
stability (Theorem 3) and for the robust asymptotic stability (Theorem 4) have
been established. Also the simple necessary condition of the robust practical and
robust asymptotic stability of the interval system (1), (2) (or (1), (3)) has been
given in Lemmas 5 and 6, respectively.

It has been shown on example that for given α, location of all eigenvalues
of B and C in practical (asymptotic) stability region is not equivalent to the
robust practical stability (robust asymptotic stability) of the interval matrix (3)
(Remarks 1-4).

Acknowledgement. This work was supported by the Polish Ministry of Science
and Higher Education under the work S/WE/1/11.
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1 Introduction

During the last decade the fractional calculus has been used in both theoretical
and applied problems of several branches of science and engineering, see for in-
stance [14, 22, 23, 2, 3, 10, 12, 13] and others. Recently, the stability problem
of nonlinear fractional systems is investigated, for example in [4, 11, 5, 9, 15–
17, 13, 20, 24, 25, 6]. Due to the lack of geometry interpretation of the fractional
derivatives, it is difficult to find a valid tool to analyze the stability of frac-
tional equations, and there are few works on the stability of solutions for either
fractional differential equations, see for instance [15–17, 5, 24, 25] or fractional
difference equations, see [11, 20, 9, 13, 7, 8]. In this paper we propose the defi-
nition of Mittag–Leffler stability of nonlinear fractional order difference systems
and prove the condition that guarantees the Mittag–Leffler stability. The prob-
lem of asymptotic stability of discrete-time fractional-order state-space systems
with the Grünwald-Letnikow–type operator can be found in [20, 24, 25, 6], where
the authors give the stability condition that coincides with the proposed one in
the paper.

The paper is organized as follows. In Section 2 we recall some definitions,
notations and results needed in the sequel. In particular, we study Mittag–Leffler
discrete type functions and their properties that later on are used to prove the
condition for Mittag–Leffler stability. Section 3 contains the definition of Mittag–
Leffler stability and the sufficient condition for Mittag–Leffler stability of systems
with both the Riemann–Liouville– and Caputo–type operator. Additionally, an
illustrative example that describes our results is presented. Finally, Section 4
provides the brief conclusions.

c© Springer International Publishing Switzerland 2015 209
K.J. Latawiec et al. (eds.), Advances in Modeling and Control of Non-integer Order Systems,
Lecture Notes in Electrical Engineering 320, DOI: 10.1007/978-3-319-09900-2_19
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2 Preliminaries

Firstly, we recall some necessary definitions and properties in fractional discrete
calculus connected to two types of operators: Caputo– and Riemann–Liouville–
type. Let a ∈ R, then we denote the set that it is used in notations of domains
Na := {a, a + 1, a + 2, ...}, σ(t) := t + 1 , for any t ∈ Na. Hence t = a + n for
n ∈ N0. For a function x : Na → R the forward difference operator is defined as
(Δx)(t) = x(σ(t)) − x(t) , where t ∈ Na.

Definition 1. For a function x : Na → R the fractional sum of order α > 0 is
given by

(
aΔ

−αx
)

(t) :=

n∑
s=0

(
n− s + α− 1

n− s

)
x(s) , (1)

where x(s) := x(a+s) and t = a+α+n, n ∈ N0. Additionally
(
aΔ

0x
)

(t) := x(t).

For a = 0 we write shortly Δ−α instead of 0Δ
−α. Note that aΔ

−αx : Na+α → R.
Observe that formula (1) has the form of the convolution of sequences. In order
to show it let us introduce the family of binomial functions on Z parameterized
by μ > 0 and given by values: ϕ̃μ(n) =

(
n+μ−1

n

)
for n ∈ N0 and ϕ̃μ(n) = 0 for

n < 0. Then using ϕ̃α(n) :=
(
n+α−1

n

)
= (−1)n

(−α
n

)
formula (1) can be rewritten

in the form of the convolution of ϕ̃α and x, namely(
aΔ

−αx
)

(t) = (ϕ̃α ∗ x) (n) , (2)

where “∗” denotes a convolution operator, i.e. (ϕ̃α ∗ x) (n) :=
n∑

s=0

(
n−s+α−1

n−s

)
x(s).

We need the following simple but important facts.

Proposition 1.

1. For α ∈ (0, 1] the values ϕ̃α(s) are nonnegative, where s ∈ Z.
2. The fractional sum operator is positive, i.e. for a nonnegative function x �≡ 0

we have that (aΔ
−αx) (t) �= 0, where t = a + n + α , n ∈ N0.

Proposition 2. Let α ∈ (0, 1]. Then | (aΔ−αx) (t)| ≤ (aΔ
−α|x|) (t) holds for

t = a + n + α.

Proof. By Proposition 1 we have | (aΔ−αx) (t)| ≤ (ϕ̃α ∗ |x|) (n) = (aΔ
−α|x|) (t).

Let us recall that the Z-transform of a sequence {y(n)}n∈N0 is a complex function

given by Y (z) := Z[y](z) =
∑∞

k=0
y(k)
zk , where z ∈ C is a complex number for

which this series converges absolutely. Note that Z [ϕ̃α] (z) =
∞∑
k=0

1
zk

(
k+α−1

k

)
=

∞∑
k=0

(−1)k
(−α

k

)
z−k =

(
z

z−1

)α
.

Proposition 3 ([19]). For t = a + α + n ∈ Za+α let us denote y(n) :=
(aΔ

−αx) (t) and x(n) = x(a + n). Then

Z [y] (z) =

(
z

z − 1

)α

X(z) , (3)

where X(z) := Z [x] (z).
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2.1 Mittag–Leffler Functions and Their Properties

Let us define a discrete type of two–parametric Mittag–Leffler functions that
agree with those used in [19], but here we use more general definition. Let

E(α,β)(λ, n) :=

∞∑
k=0

λkϕ̃kα+β(n− k) =

n∑
k=0

λkϕ̃kα+β(n− k) , (4)

where the second equation only claims that for k > n we have values of ϕ̃kα+β(n−
k) = 0. This is not in contradiction with the definition of Mittag–Leffler discrete
type functions stated in [1] or used in [19]. In the paper we will use in fact three
of them, namely

E(α,α)(λ, n) =
∞∑
k=0

λkϕ̃kα+α(n− k) =
∞∑
k=0

λk

(
n− k + (k + 1)α− 1

n− k

)
,

E(α)(λ, n) := E(α,1)(λ, n) =

∞∑
k=0

λkϕ̃kα+1(n− k) =

∞∑
k=0

λk

(
n− k + kα

n− k

)
,

E(α,0)(λ, n) =

∞∑
k=0

λkϕ̃kα(n− k) =

∞∑
k=0

λk

(
n− k + kα− 1

n− k

)
.

For α = 1 we have that E(1,1)(λ, n) = E(1)(λ, n) = (1 +λ)n, while E(1,0)(λ, n) =
(1 + λ)n − (1 + λ)n−1, for n ≥ 1.

An important tool in our consideration plays the image of E(α,β)(λ, ·) with
respect to the Z-transform.

Proposition 4. Let E(α,β)(λ, ·) be defined by (4). Then

Z
[
E(α,β)(λ, ·)

]
(z) =

(
z

z − 1

)β (
1 − λ

z

(
z

z − 1

)α)−1

,

where |z| > 1 and |z − 1|α|z|1−α > |λ|.
Proof. By basic calculations we have

Z
[
E(α,β)(λ, ·)

]
(z) =

∞∑
k=0

∞∑
n=0

λk

(
n− k + kα + β − 1

n− k

)
z−n

=

∞∑
k=0

λkz−k
∞∑
s=0

(
s + kα + β − 1

s

)
z−s

=

∞∑
k=0

(
λ

z

)k ∞∑
s=0

(−1)s
(
−kα− β

s

)
z−s

=

(
z

z − 1

)β ∞∑
k=0

(
λ

z

)k (
z

z − 1

)kα

=

(
z

z − 1

)β (
1 − λ

z

(
z

z − 1

)α)−1

,

where the summation exists for |z| > 1 and |z − 1|α|z|1−α > |λ|.
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Proposition 5. Let α ∈ (0, 1] and β ≤ α + 1. Let R be the set of all roots of
the equation

(z − 1)α = λzα−1 . (5)

If all elements from R are strictly inside the unit circle, then

lim
n→∞E(α,β)(λ, n) = 0 .

Proof. If all roots of (5) are strictly inside the unit circle, then using theorem of
final value for Z-transform we easily get the thesis.

By Proposition 5 we get that for some order α there is a “good” λ such that all
elements from R are in the unit circle.

Corollary 1. Let λ ∈ R. If all elements from R (Proposition 5) are inside the
unit circle, then −2α < λ < 0.

Now let us introduce the Caputo–type difference operator.

Definition 2 ([18]). The Caputo–type h-difference operator aΔ
α
∗ of order α for

a function x : Na → R is defined by (aΔ
α∗x) (t) :=

(
aΔ

−(1−α) (Δx)
)

(t) , where
t ∈ Na+1−α and α ∈ (0, 1].

For the Caputo–type fractional difference operator there exists the inverse
operator that is the tool in recurrence and direct solutions of fractional difference
equations.

Proposition 6 ([18]). Let α ∈ (0, 1], a = α− 1 and x be a real valued function
defined on Na. Then (Δ−α (aΔ

α
∗x)) (t) = x(t) − x(a), t ∈ Nα .

Proposition 7 ([19]). Let a ∈ R, α ∈ (0, 1] and define y(n) := (aΔ
α∗x) (t),

where t ∈ Na+1−α, i.e. t = a + 1 − α + n. Then

Z [y] (z) =

(
z

z − 1

)1−α

((z − 1)X(z) − zx(a)) , (6)

where X(z) = Z[x](z) and x(n) := x(a + n).

In [19] we define the family of functions ϕ∗
k,α : Z → R, parameterized by k ∈

N0 and by α ∈ (0, 1] with the following values ϕ∗
k,α(n)=

{(
n−k+kα

n−k

)
, for n ∈ Nk

0, for n < k
.

Note that ϕ∗
k,α(n) = ϕ̃kα+1(n − k). Therefore these two families of functions

can be used alternatively. Moreover, using the Z-transform of the Caputo–
type operator for ϕ∗

k,α we can calculate that for k ∈ N1 the following relation:(
0Δ

α
∗ϕ

∗
k,α

)
(n + 1 − α) = ϕ∗

k−1,α(n) holds. For ϕ∗
k,α we have also the follow-

ing Z
[
ϕ∗
k,α

]
(z) = 1

zk

(
z

z−1

)kα+1

for z such that |z| > 1. Using the family

of functions ϕ∗
k,α the one-parameter Mittag–Leffler function can be written as

E(α) (λ, n) =
∑∞

k=0 λ
kϕ∗

k,α(n) . For α = 1 we have particular exponential func-
tion E(1)(λ, n) = (1 + λ)n.

The next Proposition is the particular case for the multi-indexed functions.



On Mittag–Leffler Stability of Fractional Order Difference Systems 213

Proposition 8 ([21]). Let α ∈ (0, 1] and a = α − 1. Then for n ∈ N0 we have(
Δ−αϕ∗

k,α

)
(n + a) = ϕ∗

k+1,α(n) .

Now, let us recall the definition of Riemann–Liouville–type operator, see for
instance [3], and consider initial value problems of fractional order systems with
this operator.

Definition 3. Let α ∈ (0, 1]. The Riemann–Liouville–type fractional
h-difference operator aΔ

αx of order α for a function x : Na → R is defined
by

(aΔ
αx) (t) :=

(
Δ
(
aΔ

−(1−α)x
))

(t) , (7)

where t ∈ Na+1−α.

Let us define the family of functions ϕk,α : Z → R parameterized by k ∈ N0

and by α ∈ (0, 1] with the following values ϕk,α(n) := ϕ̃(k+1)α(n − k) ={(
n−k+kα+α−1

n−k

)
, for n ∈ Nk

0, for n < k
. Then for z such that |z| > 1 we have Z [ϕk,α] (z) =

1
zk

(
z

z−1

)kα+α

. Moreover, we can write that E(α,α) (λ, n) =
∑∞

k=0 λ
kϕk,α(n) .

Proposition 9 ([19]). Let α ∈ (0, 1] and a = α − 1. Then for n ∈ N0 we have
(Δ−αϕk,α) (n + a) = ϕk+1,α(n) .

The operators presented in this section can be extended to vector valued
functions in a componentwise manner.

3 Mittag–Leffler Stability

Let us introduce the stability notions for fractional difference systems involv-
ing both the Caputo– and Riemann–Liouville–type (or equivalently, Grünwald-
Letnikov–type) operators.

Consider the difference systems of fractional orders α ∈ (0, 1]

(aΔ
α
∗x) (t) = f(t, x(a + t)) , (8a)

(aΔ
αx) (t) = f(t, x(a + t)) , (8b)

with the initial condition
x(a) = x0 ∈ R

k , (9)

where a = α − 1 ∈ (−1, 0] ⊂ R, t ∈ N0, f : N0 × R
k → R

k is a continuous
function.

The constant vector xeq is an equilibrium point from time t0 = 0 of frac-
tional difference system (8) if and only if (aΔ

α
∗xeq) (t) = f (t, xeq) = 0 (and

(aΔ
αxeq) (t) = f (t, xeq) in the case of the Riemann–Liouville difference sys-

tems) for all t ∈ N0.
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For simplicity, we state all definitions and theorems for the case when the
equilibrium point is the trivial solution, i.e. xeq = 0. There is no loss of generality
in doing so because any equilibrium point can be shifted to the origin via a change
of variables.

We study the relationship between the fact that the function f that appears
on the right hand side of (8) is Lipschitz with respect to x and solutions of (8).

Proposition 10. If x = 0 is an equilibrium point of system (8a), f is Lipschitz
with respect to x with Lipschitz constant L, then the solution of (8a) satisfies
‖x(a + n)‖ ≤ E(α,0)(L, n)‖x(a)‖, where α ∈ (0, 1].

Proof. Let f(n) := f(n, x(a + n)) and x(n) := x(a + n) for n ∈ N0. By applying
the fractional integral operator 0Δ

−α to both sides of (8a) and using Proposition
2 and Lipschitz condition one gets

|‖x(a + n)‖ − ‖x(a)‖| ≤‖x(a + n) − x(a)‖ = ‖
(
0Δ

−αf
)

(n + α− 1)‖
≤
(
0Δ

−α‖f‖
)

(n + α)‖ ≤ L
(
0Δ

−α‖x‖
)

(n + α− 1)‖ .

There exists a nonnegative function M(·) satisfying

‖x(a + n) − x(a)‖=L
(
0Δ

−α‖x‖
)

(n + α− 1) −M(n) . (10)

Using Z–transform for (10), we receive that ‖X(z)‖= z
z−1W (z)‖x0‖−W (z)M(z) ,

where ‖X(z)‖ = Z[‖x‖](z), M(z) = Z[M ](z) and W (z) =
(

1 − L 1
z

(
z

z−1

)α)−1

.

Applying Z−1 we get x(n) = E(α)(L, n)‖x(a)‖ −
(
E(α,0)(L, ·) ∗M

)
(n) . And

as for positive L and M(·) also:
(
E(α,0)(L, ·) ∗M

)
(n) > 0, then ‖x(n)‖ ≤

E(α)(L, n)‖x(a)‖ .

Observe that for α = 1 we have ‖x(n)‖ ≤ (1 + L)n‖x0‖.

Definition 4. Let x(x0, ·) denote the solution of the initial value problem (8)–
(9). The trivial solution of (8) is said to be

(i) stable if, for each ε > 0 and n0 ∈ N0, there exists δ = δ (ε, n0) > 0 such
that ‖x0‖ < δ implies ‖x(x0, k)‖ < ε, for all k ∈ Nn0 .

(ii) uniformly stable if it is stable and δ depends solely on ε, i.e. for each ε > 0
there exists δ = δ (ε) > 0 such that ‖x0‖ < δ implies ‖x(x0, k)‖ < ε, for all
k ∈ N0.

(iii) attractive if there exists δ(t0) > 0 such that ‖x0‖ < δ implies

lim
k→∞

x (x0, k) = 0 .

(iv) asymptotically stable if it is stable and attractive.
(v) uniformly asymptotically stable if it is uniformly stable and, for each ε >

0, there exists T = T (ε) ∈ N0 and δ0 > 0 such that ‖x0‖ < δ0 implies
‖x(x0, k)‖ < ε for all k ∈ NT .
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Let us define the stability in the sense of Mittag–Leffler.

Definition 5. The solution of the initial value problem (8)–(9) is said to be
Mittag–Leffler stable if

‖x(x0, n)‖ ≤
{
m(x0)E(α)(−λ, n)

}b
(11)

where α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(x) � 0, and m is locally Lipschitz
on x ∈ B ∈ R

n with Lipschitz constant m0.

Proposition 11. Mittag–Leffler stability implies asymptotic stability.

Proof. It follows from Proposition 5.

Now, let us extend the Lyapunov direct method to the case of fractional
order systems, which leads to the Mittag–Leffler stability. Let V : N0 → R and
V (n) := V (n, x(a + n)) for n ∈ N0.

Theorem 1. Let x = 0 be an equilibrium point of the system (8a) and D ⊆ R
n

be a domain containing the origin. Let V : N0 × D → R be a function that is
locally Lipschitz with respect to x and such that

α1‖x‖a ≤ V (n) ≤ α2‖x‖ab , (12a)

(
0Δ

β
∗V
)

(n) ≤ −α3‖x‖ab , (12b)

where n ∈ N0, x ∈ D, β ∈ (0, 1), α1, α2, α3, a and b are arbitrary positive
constants. Then x = 0 is Mittag–Leffler stable.

Proof. It follows from equations (12a) and (12b) that
(
0Δ

β
∗V
)

(n) ≤ −α3

α2
V (n)

There exists a nonnegative function M satisfying

(
0Δ

β
∗V
)

(n) + M(n) = −α3

α2
V (n) (13)

Taking the Z-transform of (13) and using Proposition 7 we get

(
z

z − 1

)1−β (
(z − 1)V(z) − zV (0)

)
+ M(z) = −α3

α2
V(z) , (14)

where nonnegative constant V (0) = V (0, x(a)) and V(z) = Z[V ](z), M(z) =
Z[M ](z). Then it follows that

V(z) =
z

z − 1

(
1 +

α3

α2

1

z

(
z

z − 1

)β
)−1

V (0)

− 1

z

(
z

z − 1

)β
(

1 +
α3

α2

1

z

(
z

z − 1

)β
)−1

M(z)

.
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If x(0) = 0, namely V (0) = 0, then the solution of (8a) is x = 0. If x(0) �= 0,
then V (0) > 0. Then taking the inverse Z-transform one gets that the solution
of (13) is as follows:

V (n) = E(β)

(
−α3

α2
, n

)
V (0) − E(β,β)

(
−α3

α2
, n− 1

)
∗M(n) .

Since E(β,β)

(
−α3

α2
, n− 1

)
∗M(n) > 0 for n ∈ N0, it follows that

V (n) ≤ E(β)

(
−α3

α2
, n

)
V (0) . (15)

Then substituting equation (15) into (12a) we get

‖x(x0, n)‖ ≤
[
V (0)

α1
E(β)

(
−α3

α2
, n

)] 1
a

,

where V (0)
α1

> 0 for x(a) �= 0. Let m = V (0)
α1

= V (0,x(a))
α1

≥ 0, then we have

‖x(x0, n)‖ ≤
[
mE(β)

(
−α3

α2
, n

)] 1
a

,

where m = 0 if and only if x(0) = 0. Since V is locally Lipschitz with respect to

x and V (0, x(a)) = 0 if and only if x(0) = 0, it follows that m = V (0,x(a))
α1

is also
Lipschitz with respect to x(a) and m(0) = 0, which implies the Mittag–Leffler
stability of system (8a).

Lemma 1. If β ∈ (0, 1] and y(b) ≥ 0, then
(
bΔ

β
∗y
)

(t) ≤
(
bΔ

βy
)

(t) , where

t ∈ Nb+1−β, aΔ
β and aΔ

β
∗ are the Riemann–Liouville– and the Caputo–type

fractional operators, respectively.

Proof. Note that for β = 1 we have equality. Now, let us consider the case for
β ∈ (0, 1). From [18] we get

(
bΔ

β
∗y
)

(n + b + 1 − β) =
(
bΔ

βy
)

(n + b + 1 − β) − y(b)

(
n + 1 − β

−β

)

=
(
bΔ

βy
)

(n + b + 1 − β) − y(b)

(
n + 1 − β

n + 1

)
,

(16)

for β ∈ (0, 1) and n ∈ (hN)0. Since y(b) ≥ 0 and
(
n+1−β
n+1

)
> 0, then we get

(
bΔ

β
∗y
)

(n + b + 1 − β) ≤
(
bΔ

βy
)

(n + b + 1 − β) ,

for n ∈ N0.
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(a) the graph of x (b) the graph of y

Fig. 1. The graphs for the initial value problem (17)-(18) for n = 0, . . . , 50

Fig. 2. The phase trajectory for the initial value problem (17)-(18) for n = 0, . . . , 50

Theorem 2. Assume that the assumptions in Theorem 1 are satisfied except

replacing aΔ
β
∗ by aΔ

β, then we have ‖x(x0, n)‖ ≤
[
V (0)
α1

E(β)

(
−α3

α2
, n
)] 1

a

, where

x(x0, ·) is the solution of (8b) with the initial condition (9).

Proof. It follows from Lemma 1 and V (n) ≥ 0 for n ∈ N0 that
(
0Δ

β
∗
)

(V ) ≤(
0Δ

β
)

(V ). Then
(
0Δ

β
∗
)

(V ) ≤
(
0Δ

β
)

(V ) < −α3‖x‖ab. Following the same

proof in Theorem 1 we get ‖x(x0, n)‖ ≤
[
V (0)
α1

E(β)

(
−α3

α2
, n
)] 1

a

.
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Fig. 3. The comparison of the norm of the solution to the initial value problem (17)-
(18) with

√
1.16 · E(0.5)(−0.2, n) for n = 0, . . . , 50

Now, let us give an example that illustrates our results.

Example 1. Consider the following system
(
aΔ

0.5
∗ x

)
(t) = −0.9 · x(a + t) − y(a + t) , (17a)

(
aΔ

0.5
∗ y

)
(t) = x(a + t) − 0.9 · y(a + t) , (17b)

with initial values
x(a) = 1, y(a) = 0.4 , (18)

where a = −0.5.
Then the point (0, 0) is the equilibrium point of the system (17). The values

of x and y for n = 0, . . . , 50 are displayed in Figures 1(a) and 1(b), respectively.
Figure 2 shows the phase portrait of (x, y) for n = 0, . . . , 50. Note that the points
at graphs at Figures 1 and 2 are connected in order to have the better resolution
of the behaviour of functions and trajectories. In fact, all graphs are discrete as
we are dealing with discrete case of functions and operators.

One can choose the function V (x, y) = x2+y2 that is positive definite and de-
crescent. Then function V (n) = V (x(n−0.5), y(n−0.5)) satisfies the assumptions
of Theorem 1, so the trivial solution of the considered system is Mittag-Leffler
stable and consequently, by Proposition 11 asymptotically stable.

The comparison of the norm of the solution to initial value problem (17)-(18)
with the Mittag-Leffler function E(0.5)(−0.2, n) multiplied by ‖(x(a), y(a))‖ =√

1.16 is presented in Figure 3 for n = 0, . . . , 50. The solution of (17)-(18) satisfies
the following inequality

‖(x(a + n), y(a + n))‖ =
√

(x(a + n))2 + (y(a + n))2 ≤
√

1.16 · E(0.5)(−0.2, n) .

4 Conclusions

The sufficient condition for Mittag–Leffler stability of the fractional difference
systems is presented. We show that the Lyapunov direct method can be extended
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to the case of fractional order systems and it leads to the Mittag–Leffler stability.
Our future work will be devoted to investigations of comparison the velocity of
convergence for different orders.
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17. Matignon, D., d’Andréa Novel, B.: Some results on controllability and obserav-
bility of finite–dimensional fractional differential systems. In: IMACS, IEEE-SMC
Proceedings Conference, Lille, France, pp. 952–956 (1996)

18. Mozyrska, D., Girejko, E.: Overview of the fractional h-difference operators. In:
Operator Theory: Advances and Applications, vol. 229, pp. 253–267. Birkhäuser
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Abstract. In this paper an extension of Lyapunov direct method for
non-integer order systems is presented. It allows to analyse a special
case of classic stability theory - the Mittag-Leffler stability. However,
there are some differences that are worth considering. Some of them are
analysed in presented examples.

1 Introduction

Non-integer order systems (often called fractional systems) are a rapidly develop-
ing field in technical and mathematical sciences. Most focus is oriented on their
properties (see for example [2, 5]) and applications (see for example [3, 4, 6, 10]).
The goal of this paper is to highlight one of the interesting results from the first
group.

Lyapunov direct method provides a way to analyse the stability of dynamical
systems without solving their differential equations. It is especially advantageous
when the solution is difficult or even impossible to find with classical methods.
Some basic analysis can be found in [7, 8] and [1].

Therefore, it is interesting to investigate extension of the method for non-
integer order systems. Such extension relies heavily on a notion of Mittag-Leffler
stability, which is presented along with the theorem, after which this paper is
titled. Application of the theorem will be illustrated with an example of RC
circuit with a supercapacitor, an example of system with diagonal matrix and
an example of system with Metzler matrix.

2 Non-integer Order Calculus

Before analysing of non-integer order systems stability, there are some definitions
that must be introduced.

In this paper, systems described with the Caputo fractional derivative (CFD)
are considered. CFD is given by the following formula

C
t0D

p
t f(t) =

1

Γ (p− n)

t∫

t0

f (n)(τ)dτ

(t− τ)p−n+1
, (1)
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where

Γ (x) =

∞∫

0

sx−1e−sds

is the Gamma function and n−1 < p < n. Also the one parameter Mittag-Leffler
function will be used given by

Eα(z) =

∞∑
k=0

zk

Γ (kα+ 1)
,

where α > 0 and z ∈ C.
It is worth notice that for α = 1 the Mittag-Leffler function becomes expo-

nential function.

3 Mittag-Leffler Stability

The definition of equlibrium point is the first element necessary for stability
analysis. For Caputo systems it does not differ from that for integer order sys-
tems.

Definition 1 (Equilibrium of non-integer order system). The solution of
equation (2) such that x(t) ≡ x0 = const is called the equilibrium.

The Mittag-Leffler stability can be formulated as follows [7].

Definition 2 (Mittag-Leffler stability). The solution of system

C
t0D

α
t x(t) = f(t, x), x(t0) = x0 ∈ Ω ⊂ Rn (2)

where α ∈ (0, 1), f : [t0,∞]×Ω → Rn, f is piecewise continuous in t and locally
Lipschitz with respect to x in its domain and Ω ⊂ Rn contains the origin, is
Mittag-Leffler stable if

‖x‖ ≤
(
m
(
x0

)
Eα

(
− λ(t− t0)

α
))β

where t0 is the initial time, λ ≥ 0, β > 0, m(0) = 0, m(x) > 0 and m(x) is
locally Lipschitz.

Usually the stability of equilibria is investigated. It can be observed from formula
(1) that x0 is an equilibrium of equation (2) iff f(t, x0) = 0, ∀t > t0. It can be
easily observed that Mittag-Leffler stability implies attractivity of equilibrium.

The direct Laypunov method can be extended to verify the Mittag-Leffler
stability. The following theorem [8] presents this extension.

Theorem 1 (Lyapunov direct method). Let x = 0 be an equilibrium of (2),
let D ⊂ Rn be the domain containing the origin. Let V (t, z) : [0,∞) ×D → R
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be a continuously differentiable of order β and locally Lipschitz with respect to z
function such that:

α1‖z‖a ≤ V (t, z) ≤ α2‖z‖ab, (3)
C
0 D

β
t V (t,x(t))

∣∣∣
x(t)=z

≤ − α3‖z‖ab, (4)

where x(t) is given by (2), t ≥ 0, z ∈ D, β ∈ (0, 1), α1, α2, α3, a, b are some
positive constants. Then x = 0 is Mittag Leffler stable.

The assumptions of theorem 1 can be relaxed in order to verify only attrac-
tivity of the zero solution.

Theorem 2. Let x = 0 be an equilibrium of (2), let D ⊂ Rn be the domain con-
taining the origin. Let V (t, z) : [0,∞)×D → R be a continuously differentiable
of order β and locally Lipshitz with respect to z function such that:

α1‖z‖a ≤ V (t, z) ≤ α2
C
0 D

−η
t ‖z‖ab,

C
0 D

β
t V (t,x(t))

∣∣∣
x(t)=z

≤ − α3‖z‖ab,

where x(t) is given by (2), t ≥ 0, z ∈ D, β ∈ (0, 1), η �= β,η > 0, |β − η| < 1,
α1, α2, α3, a, b are some positive constants. Then x = 0 is attractive.

Proofs of theorems 1 and 2 along with further modifications (including for
example analysis with K-class functions) can be found in [8].

4 Examples

In this section three examples are considered. There are used to demonstrate
theorem 1 but also to present some faults of the method concerning its practical
usage.

4.1 Non-integer RC System

The RC system shown in figure 1 consists of a resistor and a supercapacitor [11]
and can be described with the following non-integer order equation

C
0 D

α
t x(t) = − 1

RC
x(t), x(0) = x0.

It can be easily observed, that the solution is given by (see for example [5, 10])

x(t) = Eα

(
− 1

RC
tα
)
x0
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Fig. 1. RC circuit

It will be shown that V (t, z) = |z| is the Lyapunov function for the system.
It satisfies the inequality (3) with α1 = 1, α2 = 1, a = 1, b = 1. If β = α then

C
0 D

α
t V (t, x(t)) = C

0 D
α
t |x(t)| =

= C
0 D

α
t

∣∣∣∣Eα

(
− 1

RC
tα
)
x0

∣∣∣∣ =

= C
0 D

α
t Eα

(
− 1

RC
tα
)
|x0| =

= − 1

RC
Eα

(
− 1

RC
tα
)
|x0| = − 1

RC
|x(t)| .

It fulfils inequality (4) with α3 = 1/RC.

4.2 Non-integer Order with Diagonal Matrix

The following system with Caputo derivative is considered

C
0 D

α
t x(t) = Ax(t), x(0) = x0 ∈ Rn, α ∈ (0, 1],

where A as a stable diagonal matrix A = (aii), where aii < 0, ∀i ∈ {1, ..., n}.
The exact solution has the form

x(t) = Eα(Atα)x0, (5)

where x0 denotes the vector of initial conditions. It should be noted that (5) can
be written as

x(t) = [Eα(aiit
α)x0

i ]
T .

The 	1 norm of x is considered as a Lyapunov function i.e.

V (x) = ‖x‖,

‖x‖ =

n∑
i=1

|xi|.
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It fulfils the inequality (3) with α2 = α3 = a = b = 1.

‖x‖ ≤ V (x) ≤ ‖x‖.

The function V (x) can be written as

V (x) =

n∑
i=1

|Eα(aiit
α)x0

i |.

Calculating the derivative of order β = α, the following result is obtained

C
0 D

α
t V (x) =

n∑
i=1

C
0 D

α
t Eα(aiit

α)|x0
i |

=
n∑

i=1

aiiEα(aiit
α)|x0

i |

≤ max
i=1..n

aii

n∑
i=1

Eα(aiit
α)|x0

i |

= max
i=1..n

aii

n∑
i=1

∣∣Eα(aiit
α)x0

i

∣∣
= max

i=1..n
aii‖x(t)‖.

Therefore, in inequality (4), there is α3 = | max
i=1..n

aii|. Hence, the origin is also
stable for systems with diagonal matrix and every kind of initial conditions.

4.3 Non-integer Order Positive System

The following positive system with Caputo derivative is considered

C
0 D

α
t x(t) = Ax(t), x(0) = x0 ∈ Rn

+, α ∈ (0, 1], (6)

where Rn
+ is the space of nonnegative vectors in Rn and the matrix A is a stable

Metzler matrix from Mn×n. Metzler matrix is a matrix A for which

A = (aij); aij ≥ 0, i �= j.

The following theorem holds

Theorem 3 (see [9]). Non integer order positive system described by equation
(6) is asymptotically stable if and only if eigenvalues of Metzler matrix A are all
located in left complex half plane (A is a stable Metzler matrix).

One of the properties of stable Metzler matrices is that it has at least one negative
real eigenvalue witch has a positive eigenvector.

The 	1 norm is considered:
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‖x‖ =

n∑
i=1

|xi|.

It will be shown that the equilibrium (x = 0) of (6) is Mittag-Leffler stable.
The exact solution of (6) has the form

x(t) = Eα(Atα)x0. (7)

For the proof the following Lyapunov function is considered

V (x) =

n∑
i=1

wi|xi|, (8)

where wi are certain positive constants and xi are elements of the solution (7).
To verify the Mittag-Leffler stability of analysed system, it is necessary to

check if the conditions (3) and (4) are fufilled. The first condition can be written
as follows

(
min

j∈{1..n}
wj

)
‖x‖ ≤

n∑
i=1

wi|xi| ≤
(

max
j∈{1..n}

wj

)
‖x‖ (9)

so the constants α1 and α2 are respectively min
j∈{1..n}

wj and max
j∈{1..n}

wj .

To verify condition (4), it is necessary to calculate non-integer derivative of
order β of (8). Using (7) it can be written as

V (x) =
n∑

i=1

wi

∣∣eTi Eα(Atα)x0
∣∣ ,

where ei is the i-th unit vector.
Because the Mittag-Leffler function of Metzler matrix is a positive matrix,

and initial conditions are in Rn
+ then

V (x) = wEα(Atα)x0,

where w = [wi]i=1..n. The order of derivative β is chosen as β = α. After
calculating the derivative it is obtained that

C
0 D

α
t V (x(t)) = wAEα(Atα) · x0. (10)

Choosing w as a left eigenvector of A (positive and associated with rightmost
real eigenvalue) it can be observed that

wA = λw.

Remark 1. Existence and properties of desired eigenvector are a consequence
of Perron-Frobenius theorem.
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Then equation (10) takes form

C
0 D

α
t V (x) = λwEα(Atα) · x0

and because every element in (4.3) is positive

C
0 D

α
t V (x) = λ|wEα(Atα) · x0| = λ

n∑
i=1

wi|eTi Eα(Atα)x0| = λV (x).

From (9) and the fact, that λ is negative real number (from stability of system
(6)) one can see that α3 from (4) is

α3 = |λ|α2.

Hence, the origin is Mittag-Leffler stable.

5 Conclusion

This paper presents the extensions of Lyapunov direct method for non-integer
order systems. Some basics of non-integer calcusus are introduced along with the
definition of Mittag-Leffler stability. Then the authors presented an extension of
Lyapunov direct method and illustrated it with some examples.

From the three examples in that work, it can be easily seen that the method
does not provide the same tool as in integer order case. In classic approach, there
is no need to solve the differential equations in order to use Lyapunov function.
In non-integer order systems lack of chain rule implies that the exact solution
is indispensable for calculating the derivative. Therefore, that extension is not
useful in case of some complicated nonlinear systems, where finding the solution
is not straightforward.

Nonetheless, the results obtained in that paper show some usefulness of Lya-
punov direct method for linear Caputo systems where the solution is known.

Acknowledgment. Work partially realised in the scope of project titled ”De-
sign and application of noniteger order subsystems in control systems”. Project
was financed by National Science Centre on the base of decision no. DEC-
2013/09/D/ST7/03960.
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Abstract. Electromyography (EMG) is recently of growing interest of
doctors and scientists as it provides a tool for muscle performance veri-
fication. In this paper a new approach to EMG signal processing is con-
sidered. This approach is non-integer order filtering. Bi-fractional filter
is designed and filtering occurs through exact computation.

1 Introduction

Electromyography (EMG) is recently of growing interest of doctors and scientists
as it provides a tool for muscle performance verification. Medical sciences and
physiotherapy are not the only possibilities to use EMG signals. It can be found
also in sport, control science and computing. The main aim of the conducted
research relied on application of the muscle generated power for the prospective
use in robotics, where muscle work is exploited. First mentions of EMG were
in 1950’, when some very simple systems were build. Since then, the idea was
constantly developed and led to commercial myoelectric prostheses [6, 17, 18].

Analysis of bio-signals causes various significant issues due to the deterministic
nature of these signals and therefore implementation of these signals for the
control purpose is a very challenging task. Analysis of both – EMG and EEG
signals is the most difficult as the human brain has not been fully investigated
and is not entirely known by the researchers [1, 10, 12].

For this study purpose surface EMG has been chosen, which has some limits,
especially because of crosstalk and differentiations between joint motions and
individual digits. As the chosen method is non-invasive, overcoming the existing
limitation by using implantable myoelectric systems is impossible [18].

The second issue that must be taken into account is the dynamic asymmetry. It
is widely known that robots have no differences between arms. However, human
limbs function otherwise and this effect cannot be neglected when analysing
prostheses. It is a complicated task, because very little research was conducted

c© Springer International Publishing Switzerland 2015 231
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regarding assessment of the dominant side. It is believed that the source has its
origin in genetic or social development [1, 3, 7].

As mentioned above, EMG signals are a very popular data source applied
for the purpose of external environments control. The have been implemented
in numerous Human-Machine or Human-Computer Interaction interfaces. Their
potential does not limit to HMI or HCI usage as they are also deployed in many
clinical, industrial or interdisciplinary application [15].

In this paper a novel approach to analysing the EMG signal is presented. It
is based on fractional calculus as tool for filtration. The concept of non-integer
derivatives was first introduced by Liouville in XIX but as its usage were limited
by technology. Therefore, its rapid development takes place since 1950’ with
increasing computational power [11].

2 Theoretical Background

EMG signals are bio-electrical signals generated in muscles during their activity –
both voluntary and involuntary. This activity is usually controlled by the nervous
system. Analysis of electromyography signals is a very challenging task due to
the both internal and external artifacts present in signal. Internal artifacts are
a result of physical and/or anatomical muscle properties, where external occur
in noisy environment. The frequency range of the EMG signals is between 0 and
500 Hz [2, 8, 13, 14].

EMG signals are controlled by the nervous system and depend on both phys-
ical and anatomic state of muscle, which generates these signals. It is able to
provide significant source of information, which can be used for control. The
assessment is also able to provide information regarding various neuromuscular
disorders.

Discrete waveforms, known also as Motor Unit Action Potentials (MUPs),
form EMG signals. The occurrence of MUPs results from emission of muscle
fibres groups – Motor Units (MUs) [8, 19]. It is possible to record EMG signals
occurring during various muscle activity. It all depends on contraction force and
as a result – the more force is being used, the more complex the signal becomes,
what complicates the MUPs identification [13, 14, 19].

Any bio-signal, including EMG, is a set of electrical signals representing phys-
ical variable of interest. The signals are usually in form of time-function, what
enables analysis of its amplitudes, phase or frequency [13, 20]. In the Figure 1 a
sample EMG data was presented.

It is also important to mention that traditional prosthesis systems for upper
limb are usually based on EMG.

3 Non-integer Order Processing of EMG Signals

Because of presence of disturbances and noises (see figure 2) in the measured
signals appropriate processing is required. Unfortunately standard integer order
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Fig. 1. Sample EMG data recorded during four different arm movements

filters have a strong damping effect with the increase of frequency. This is unfor-
tunate, as EMG has very wide useful spectrum. Non integer order filters allow
processing that introduces damming of less than 20 db/dec by the multiplier of
its order α. One of important classes of non integer order filters are Bi-fractional
filters.

3.1 Bi-Fractional Filters

Bi-fractional filters (BFF) are a class of non-integer filters fully characterised by
three parameters:

– base order α
– damping coefficient b
– free coefficient c

and are given by the following transfer function

G(s) =
c

s2α + bsα + c
(1)
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Fig. 2. Sample EMG data recorded during four different arm movements

In this paper filters with bounded impulse responses are considered, that is
systems of base order α ∈ [1/2, 1). Another examples can be found in [5] or
in [4].

Equivalent representation of (1) is the realisation in the form of a system of
differential equations of order α. This system can take form (see [9])

C
0 D

α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2)

with the following matrices

A =

[
0 1
−c −b

]
(3)

B =

[
0
1

]
(4)

C =
[
c 0
]

(5)

In order to process the considered signal the BFF with following parameters
was chosen:

α = 0.7

b = 11.1688

c = 124.7412

(6)

which locate the cutoff frequency at 5Hz. Frequency response of the filter is
presented in the figure 3.
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Fig. 3. Frequency response of bi-fractional filter with parameters given by (6)
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Fig. 4. Sample EMG data recorded during four different arm movements

Because considered processing does not have an online character one can
benefit from finite length of signal and realize the filtration process exactly.
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3.2 Realisation of Filtering

Filtering will be realized by a numerical method proposed in [16] based on
Grünwald–Letnikov derivative

x(t) = (I − hαA)−1

(
hαBu(t)−

p∑
k=1

ckx(t− kh)

)
(7)

h = T/m, t = ph, p = 0, 1, . . . , m (8)

ck = (−1)k
(
α

k

)
, k = 1, 2, . . . , m (9)

uf (t) = Cx(t) (10)

where u(t) is the original signal and uf(t) is the filtered signal. Result of filtering
is presentedd in the figure (4).

4 Conclusion

The paper presents a novel application of non-integer order filter - namely bi-
fractional filter - to processing of EMG signals. Results show promise of the
method and require further examination especially in the context of processed
signal interpretation.
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Abstract. This paper describes reconstruction of the thermal conduc-
tivity coefficient in the time fractional diffusion equation. Additional
information for the considered inverse problem was given by the temper-
ature measurements at selected points of the domain. The direct problem
was solved by using the finite difference method. To minimize functional
defining the error of approximate solution the Fibonacci search algorithm
was used.

Keywords: inverse problem, time fractional diffusion equation, identi-
fication, thermal conductivity.

1 Introduction

In recent years the applications of mathematical models using the fractional
order derivatives become very popular in technical science. Different types of
phenomena in physics, biology, viscoelasticity, heat transfer, electrical engineer-
ing, control theory, fluid and continuum mechanics can be modeled by using the
fractional order derivatives [5,28,15,18]. The time fractional diffusion equation
is related with a continuous time random walk and it models the anomalous
diffusion in many fields, for example, the diffusion processes of contaminants in
porous media [10].

One of the first paper in which the authors used the method of fractional
calculus to solve classical inverse heat conduction problem is [2]. Authors of
this paper used a non-integer identified model as the direct model for the es-
timation procedure in solving the inverse heat conduction problem. The first
papers, in which the inverse problems for equations with fractional order deriva-
tives were considered, are Murio’s papers [20,22,24,23]. Murio in his works used
the mollification method. In papers [20,23] there are considered the problems
in semi-infinite domain. In the first one of these works the derivative with re-
spect to space is of the first order, whereas the derivative with respect to time is
the Riemann-Liouville fractional derivative. In the second paper the Gruünwald-
Letnikov fractional derivative was used. In both papers the heat flux and the
temperature on boundary of the domain were reconstructed in case of known

c© Springer International Publishing Switzerland 2015 239
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temperature measurements within the domain. In paper [22] the time fractional
diffusion equation with the Caputo fractional derivatives was considered. In this
paper as well, the heat flux and the temperature on boundary of the domain
were reconstructed, however the additional information in the inverse problem
was given by the double boundary condition on the other end of discussed interval
(the temperature and the heat flux were known there). In paper [24], apart from
the boundary conditions, the initial condition was additionally reconstructed.

Paper [19] describes identification of parameters in the Caputo type fractional
initial problem, the analytical solution of which is known. In calculations for min-
imizing the quadratic criterion the Marquardt algorithm was used. On the other
hand, in paper [26] several minimization algorithms (Levenberg-Marquardt al-
gorithm, Gauss-Newton algorithm and Nelder-Mead method) were compared
in application for identifying the parameters of the Riesz fractional advection-
dispersion equation. In conclusion the authors stated that in case of the consid-
ered problem the best choice was the Nelder-Mead method. The identification
problems are also considered in papers [29,32]. Moreover, identification of the
diffusion systems by fractional models is described in papers [11,12].

The parameter identification problem for integer-order systems was analysed
by many Authors. For solving problems of this kind several kinds of methods
were applied, for example the genetic algorithm [7,9,13,27], the particle swarm
optimization algorithm [1], the Taylor series approach [6], the functional iden-
tification approach [3], the sensitivity coefficients [17], and the finite-difference
scheme combined with an iteration method [14].

In the current paper we deal with the inverse problem for the time fractional
diffusion equation and we intend to reconstruct the thermal conductivity for
this equation on the basis of the values of temperature measured in selected
points of the domain. Basing on the given information about the temperature
measurements the functional is created which defines the error of approximate
solution. In order to minimize this functional the authors used the Fibonacci
search algorithm [16], whereas to solve the direct problem the finite difference
method was applied [21,4].

2 Formulation of the Problem

We consider a rod of length b (of circular cross section) with the insulated lateral
surface. The rod is made from the material of known specific heat c and known
density �. Whereas the thermal conductivity coefficient λ of this material is
unknown and needed to be determined. Temperature of the rod in the initial
moment is known as well as the boundary conditions on its ends. Moreover,
in order to solve the inverse problem we have given the temperature in internal
point of this rod. We assume that the distribution of temperature within the rod
can be modeled by using the time fractional diffusion equation. In paper [25] it is
shown that in case of porous materials the fractional diffusion equation enables to
reconstruct better the temperature distribution in comparison with the classical
heat conduction equation.
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Thus we discuss the following time fractional diffusion equation

c �
∂αu(x, t)

∂tα
= λ

∂2u(x, t)

∂x2
, (1)

defined in area D = {(x, t) : x ∈ [0, b], t ∈ [0, t∗)}, where α ∈ (0, 1) and c,
� and λ denote the specific heat, density and thermal conductivity coefficient,
respectively. The initial condition is also posed

u(x, 0) = ϕ(x), x ∈ [0, b], (2)

as well as the Neumann and Robin boundary conditions

−λ
∂u

∂x
(0, t) = q(t), t ∈ [0, t∗), (3)

−λ
∂u

∂x
(b, t) = h(t)

(
u(b, t) − u∞), t ∈ [0, t∗), (4)

where h describes the heat transfer coefficient and u∞ is the ambient tempera-
ture.

Fractional derivative with respect to time, which occurs in equation (1), will
be the Caputo fractional derivative [28,8] determined in our case as follows

∂αu(x, t)

∂tα
=

1

Γ (1 − α)

t∫

0

∂u(x, s)

∂s
(t− s)−α ds, (5)

where Γ (·) is the Gamma function [30].
Inverse problem, considered in this paper, consists in determination of the

thermal conductivity λ in such a way that temperature in selected points of
discussed area will adopt the preset values. So, the temperature measurements
((xi, tj) ∈ D):

u(xi, tj) = Ûij , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, (6)

are known, where N1 denotes the number of sensors and N2 means the number
of measurements taken form each sensor.

For the fixed coefficient of thermal conductivity the investigated issue becomes
a direct problem, solution of which is represented by the temperature values Uij

corresponding to the given value of the thermal conductivity coefficient. By
using the computed temperatures Uij and the measurement temperatures Ûij ,
the functional defining the error of approximate solution is created as follows:

J(λ) =

N1∑
i=1

N2∑
j=1

(
Uij − Ûij

)2
. (7)

By minimizing this functional we intend to find the approximate value of the
thermal conductivity coefficient.
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3 Numerical Example

In the numerical example the following data are given: α = 1
2 , b = 0.2, t∗ = 100,

ϕ(x) = 900, q(t) = 0, c = 1000, � = 2680, u∞ = 300 and

h(t) = 1200 exp
(45 − t

705
log

24

5

)
.

Exact value of the sought thermal conductivity coefficient λ is equal to 240.
Direct problem, defined by means of equations (1)–(4) for the fixed thermal

conductivity coefficient, was solved with the use of implicit scheme of the finite
difference method [21,4]. In result we obtained the distribution of temperature
in considered region representing the benchmark for approximate results. From
this distribution we select the values Ûij of temperature simulating the measure-
ments of temperature. In the following part of this paper we treat the values of
temperature, obtained in this way, as the exact values.

In order to investigate the influence of measurement errors on the exactness
of received results, and in consequence to examine the algorithm stability, we
execute a commonly used numerical experiment [31], in which the solution of
direct problem is perturbed by the pseudo-random error. Course of temperature,
received in this way, is used as the input data for the inverse problem.

It is assumed that the temperature values are known at a single measurement
point (N1 = 1). It means that in the area a single thermocouple is located at
a distance of 5 mm away from the boundary. From this thermocouple we obtained
100 measurements of temperature (N2 = 100). The calculations were made for
the exact values of temperature and the values perturbed by the pseudo-random
error of sizes 0.5, 1, 2 and 5%.

The grid used in the finite difference method is defined as follows

S =
{

(xi, tk), xi = iΔx, tk = kΔt, i = 0, 1, . . . , N, k = 0, 1, 2, . . . ,M
}

where Δx = b/N , Δt = t∗/M . Fractional derivative is approximated by for-
mula [21,4]:

D
(α)
t uk

i = σ(α,Δt)
k∑

j=1

ω(α, j)
(
uk−j+1
i − uk−j

i

)
, (8)

where

σ(α,Δt) =
1

Γ (1 − α) (1 − α) (Δt)α
,

ω(α, j) = j1−α − (j − 1)1−α.

Using approximations of the Neumann and Robin boundary conditions and the
difference quotient for the second order derivative with respect to space, we get
the following difference equations
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k ≥ 1, i = 0:

(
σ(α,Δt) +

2 a

(Δx)2

)
uk
0 −

2 a

(Δx)2
uk
1 =

= σ(α,Δt)uk−1
0 − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1
0 − uk−j

0

)
− 2

c �Δx
qk,

k ≥ 1, i = 1, 2, . . . , N − 1:

− a

(Δx)2
uk
i−1 +

(
σ(α,Δt) +

2 a

(Δx)2

)
uk
i −

a

(Δx)2
uk
i+1 =

= σ(α,Δt)uk−1
i − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1
i − uk−j

i

)
,

k ≥ 1, i = N :

− 2 a

(Δx)2
uk
N−1 +

(
σ(α,Δt) +

2 a

(Δx)2
+

2

c �Δx
hk

)
uk
N =

= σ(α,Δt)uk−1
N − σ(α,Δt)

k∑
j=2

ω(α, j)
(
uk−j+1
N − uk−j

N ) +
2

c �Δx
hk u

∞,

where uk
i = u(xi, tk), hk = h(tk), whereas a = λ

c � is the thermal diffusivity
coefficient.

The calculations are made on the grid of discretization intervals equal to
Δt = 1, Δx = b/100. A reasonable change of the grid density did not have
any significant influence on the obtained results. To avoid the inverse crime we
executed the calculations in the inverse problem and in the direct problem, used
for generating the pseudo-measurements, on the grids of different densities. For
minimizing functional (7) the Fibonacci search algorithm [16] is used.

In Figures 1 and 2 the absolute and relative errors of the restored temperatures
in measurement point are shown. In every case the reconstruction of temperature
is very good. The maximal absolute error does not exceed the value of 0.124 K,
while the relative errors are smaller than 0.014%. Reconstruction of the thermal
conductivity coefficient is also very good (see Table 1). In case of the exact
input data, the sought coefficient is restored with minimal errors (not exceeding
0.031%). For the perturbed input data, the errors of reconstructing the thermal
conductivity coefficient are generally smaller than the values of error in the input.
Only for the input data perturbed by error of size 1% the thermal conductivity
coefficient is identified with the error greater than the input error. But it is
still the acceptable error, particularly if we consider the error of temperature
reconstruction in this case. Maximal relative error of the temperature restoration
in this case is equal to 0.0113%, while the average value of this error is equal to
0.0092%. In Figures 3–5 distributions of the exact and reconstructed temperature
as well as the error of this reconstruction in measurement point are displayed in
case of the exact input data and the data perturbed by error of sizes 1 and 5%.
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Fig. 1. Average and maximal absolute errors of the temperature reconstruction in
measurement point for various perturbations of input data
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Fig. 2. Average and maximal relative errors of the temperature reconstruction in mea-
surement point for various perturbations of input data

Table 1. Reconstructed values of thermal conductivity coefficient and errors of this
reconstruction (λ – reconstructed value, δλ – percentage relative error)

Noise [%] λ δλ [%]

0 240.074 0.031
0.5 241.095 0.456
1 236.593 1.420
2 240.684 0.285
5 235.775 1.760
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Fig. 3. Exact (solid line) and reconstructed (points) distribution of temperature in
measurement point (a) and error of this reconstruction (b) for exact input data
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Fig. 4. Exact (solid line) and reconstructed (points) distribution of temperature in
measurement point (a) and error of this reconstruction (b) for input data perturbed
by 1% error
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Fig. 5. Exact (solid line) and reconstructed (points) distribution of temperature in
measurement point (a) and error of this reconstruction (b) for input data perturbed
by 5% error
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4 Conclusions

In the current paper we dealt with the inverse problem for the time fractional
diffusion equation in which we intended to reconstruct the thermal conductivity
coefficient on the ground of the values of temperature measured in selected points
of considered domain. To solve the direct problem we used the finite difference
method. Basing on the given information about the temperature measurements
we created the functional defining the error of approximate solution. In order to
minimize this functional we used the Fibonacci search algorithm.

Presented results show that in case of input data without perturbation the
error of the thermal conductivity coefficient reconstruction is minimal. For per-
turbed input data the errors of reconstructing the thermal conductivity coef-
ficient are generally smaller than the size of error in the input data. Only for
1% perturbation the thermal conductivity coefficient is reconstructed with error
greater than error of input data. However it is still the acceptable error, partic-
ularly if we consider the error of temperature reconstruction. Reconstructions of
temperature in every case are very good.

Acknowledgement. The Authors would like to thank the Referee for his con-
structive comments and suggestions.
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Abstract. Robust non-integer control is an emerging field in control
theory. Multiple works are focused on designing controllers with flat-
phase and robust stability margins. In this paper design of non-integer
order with robust properties is considered. This controller is designed and
analysed for the model of air heating process trainer system belonging
to the Department of Automatics and Biomedical Engineering of AGH
University and Science and Technology.

1 Introduction

The designing of control system for a heat transmission line is associated with two
major challenges. Firstly, the dynamical system of a plant is non-stationary, due
to varying gain while the heater and transmission line is warming-up. Secondly,
the study of stability becomes an infinite-dimensional problem, by the presence
of continuous time-delay in a dynamical system. Therefore there is a strong need
for a robust control system, resistant to changing parameters of the plant.

Bode in his famous work [4] discusses about an ideal shape of the loop transfer
function, to make the closed-loop system robustly stable and insensitive for gain
changes. The proposed transfer function has been later called Bode’s ideal cut-off
characteristic and it has a form (1) [1]

L(s) =

(
s

ωgc

)n

(1)

In the following paper, the robustness is achieved by increasing the controller
complexity – as it was proposed i.a. by Oustaloup in [8]. The fractional-order
PID (FOPID) controller provides more variables in tuning strategy and therefore
can be a good way to achieve preset goals related to robust control. The method
of tuning FOPID controller using multi-objective optimisation including robust
stability conditions has been discussed by Meng and Xue in [7]. The tuning of
PIαDμ controller parameters has been considered among others by Bauer et al.
in [5] or in [3], where integral absolute error is minimised. Another solution has
been presented by Barbosa et al. in [2], where the constrained optimisation was
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used to achieve robust control system. In the following work three criteria of
flatphase and robust stability margins have been selected and then used to form
an objective function in optimisation procedure, by which the optimal controller
setting have been obtained.

2 Problem Definition

2.1 Considered Linear Time Invariant Systems with Time Delay

There is given the Linear Time Invariant Systems (LTI) with Time Delay of
air heating process, which simplified model can be expressed by a second order
inertial system:

P (s) =
K

(T1s+ 1)(T2s+ 1)
e−sτ , (2)

where k=18.8, T1=7.783, T2=0.0014 and τ=0.5842. The considered model has
been precisely identified by the experiments on air heating process trainer sys-
tem. The frequency response of the pointed system can be seen in Fig. 1
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Fig. 1. The frequency response of the given two-inertia system

2.2 Fractional Order PID Controller

The fractional order controller PIαDμ is generalised classical PID, firstly pro-
posed by Podlubny in 1999 and represented by an equation (3)

C(s) = KP +KI
1

sα
+KDsμ α, μ > 0, (3)



Robust Non-integer Order Controller for Air Heating Process Trainer 251

where KP , KI and KD represent proportional gain, integral gain and derivative
gain respectively.

A feedback control system block diagram is shown in Fig. 2.

kP + kIs
−α + kDs

μ k
(T1s+1)(T2s+1)

er

-

yu

Fig. 2. Block diagram of the closed-loop system

There have been formulated the following controller design specification:

1. predefined phase margin φm and gain margin gm,
2. robustness to variations in the gain of the plant,
3. high-frequency noise rejection,
4. output disturbance rejection,
5. steady-state error cancelation.

The stability of the closed-loop system is achieved by analysing the open-loop
phase and gain margins. The higher stability margins, the more robust system
is. Therefore the following criteria have been formulated, based on Bode’s ideal
transfer function [6]:

– Gain margin
|C(jω)P (jω)| |ω=ωpm = 12dB (4)

– Phase margin
arg (C(jω)P (jω))|ω=ωgm

= 45◦ (5)

– Flat phase in gain crossover frequency (iso-damping property)

d arg (C(jω)P (jω))

dω

∣∣∣∣
ω=ωgm

= 0 (6)

Criteria (4) and (5) refer to robust stability margins and criterion (6) refers to
an iso-dumping property, which makes a closed-loop system robust in the per-
spective of gain variations [2]. To achieve these goals, the Simulated Annealing
optimisation method has been chosen for tuning PIαDμ controller parameters.
The optimisation process minimise an multi-objective function, that reflects how
far the behaviour of FOPID controller is from the above assumptions. By opti-
mising succeeded in obtaining an robust system, which Nyquist plot is shown in
Fig. 4. An evaluation of the objective function is shown in Fig. 3.

To implement controller, the irrational transfer function have to be approxi-
mated with a rational function. There are several methods to approximate irra-
tional transfer function arbitrarily close in the specified range [ωmin,ωmax] [1].
The Oustaloup continuous integer approximation is given by equation (7) [9].
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Fig. 4. The Nyquist plot with stability margins distinguished

Bode plots of the fractional system and its proposed rational Oustaloup approx-
imation is shown in Fig. 5. In this approach, the N = 8 order of fractional-
order integrator and derivative approximation has been selected in the range
ω ∈

[
10−6, 102

]
. It can be easily seen, that Oustaloup method gives satisfactory

results on desired frequency range.
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quency marked and the Oustaloup-Recursive approximation of designed controller

sγ ≈ K
N∏

k=1

s+ ω′
k

s+ ωk
, γ > 0, (7)

where poles, zeros and gain can be evaluated respectively as:

ω′
k = ωminω

(2k−1−γ)/N
u

ωk = ωminω
(2k−1+γ)/N
u

K = ωγ
h

ωu =

√
ωmax

ωmin

(8)

3 Sensitivity Functions

The sensitivity function S (9) determines how the disturbances are influenced
by feedback. In other words, whether the distortions are amplified or suppressed
by the closed loop. The complementary sensitivity function T (10) determines
how the measurement noises are influenced by feedback.

T (s) =
Y (s)

R(s)
=

C(s)P (s)

1 + C(s)P (s)
(9)
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S(s) =
E(s)

R(s)
=

1

1 + C(s)P (s)
(10)

The maximum sensitivities may be used as robustness measures (11).

MS = sup
ω

|S(jω)| MT = sup
ω

|T (jω)| (11)

4 Results

The described optimisation method has been used for tuning both classical PID
controller and FOPID controller. The optimal FOPID settings are collected in
Tab. 2, while the indicators of robustness are presented in Tab. 1. The step re-
sponse of closed-loop system is shown in Fig. 6. A Bode magnitude and phase
plots of open-loop system is presented in Fig. 7. It can be seen, that the magni-
tude response of control system with FOPID has slope of 14.5 dB per decade in
low-frequency side, while classical PID 20 dB per decade obviously. The detailed
comparison between classical PID and FOPID is presented in Tab. 3, includ-
ing maximum sensitivities (MS) and (MT ), the peak overshoot (σ) and rise
time (tr).

Table 1. Obtained stability margins

Phase margin 45.956◦

Phase crossover frequency 1.15 Hz
Gain margin -8.052 dB
Gain crossover frequency 0.32 Hz
Phase angle in ωcg -0.398◦

Table 2. Obtained controller parameters

kP 0.0035
kI 0.1268
kD 0.0206
α 0.7229
μ 0.7307

Table 3. Evaluation factor comparison for optimised classical PID and optimised
FOPID

evaluation factor PID FOPID
MS 1.64 1.66
MT 1.50 1.30
σ [%] 28 11
tr [s] 0.72 0.68
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Fig. 6. The comparison of step responses
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Fig. 7. The comparison of frequency responses

5 Conclusion and Further Research

Fractional-order controller allows for shaping the slope of both magnitude and
phase characteristics at high and low frequencies. The designed controller has
allowed to achieve stated assumptions: flat-phase and robust stability margins. It
has been shown, that fractional-order PIαDμ controller is suitable for control of
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the inertial system with time-delay and time-varying gain. The paper has shown
that simulated annealing optimisation method could be helpful in the tuning
process.

The further research is planned to implement PIαDμ controller in digital real-
time environment, based on RT-DAC board and MATLAB/RT-CON library,
and to conduct experiments on physical plant.
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Abstract. Paper presents the results of experimental research of fault
detection based on difference signal of plant and model controllers out-
put. The plant was simulated by electronic circuit with supercapacitor
’damaged’ by discharging it by the current source. The model of the plant
was described by fractional order differential equations. Such approaches
allowed for some processes and the newest technologies, obtain better
modelling accuracy. Model parameters was derived used identification
procedures based on step response signal. The fault detection problem
of this paper can be used as simple benchmark example to test new fault
detection rules before applying it to real systems.

Keywords: fault detection, fractional calculus, fractional order model.

1 Introduction

One of the methods to meets reliability requirements is fault tolerant. To make
these possible control systems need to have both solutions to detect and isolate
failures, as well as possibility to continuation of the control process in their pres-
ence [1,9,10]. The use of new control methods is possible by the development of
technology for sensors, transmission systems and actuators, but also the develop-
ment of computational tools, in terms of computing speed and software solutions.
The rapid development of technology, however, makes the existing mathematical
rules not enough precisely to describe the process or phenomena taking places in
the newest technological solutions [6]. Them therefore required new models that
are much more accurate. The fractional order differential equations for example,
could be used to describe more precisely some technological processes or used
elements. These allow, in many cases, significantly more accurately describe the
phenomena in some materials or elements [3,6]. It is particularly important in
the model-based fault detection systems [4,10]. The concept of fractional calcu-
lus has drawn the attention of many famous mathematicians for hundreds years.
But this kind of calculus was not popular until recent years when benefits stem-
ming from using it became evident in various scientific fields, including system
modeling and automatic control [5,15].
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2 Fractional Calculus

The fractional calculus have become very popular during last two decades. There
are a lot papers and books presented their advantages and possibility of used
[2,3,13,15]. Recent papers notion that fractional-order calculus should be em-
ployed where more accurate modeling and robust control are needed. Specifically,
fractional order calculus found its possibility to resolve complex mathematical
and physical problems and may be useful to modeling any system which has
memory and/or hereditary properties. In the field of automatic control fractional
calculus is used to obtain more accurate models, develop new control strategies
and enhance the characteristics of control systems [15]. Below only the main
definitions of fractional calculus used in this work are presented.

Among the several definition of fractional order differ-integral [3,5,16], the
Grünwald-Letnikov was used.

Definition 1. The continuous time Grünwald-Letnikov fractional differ-integral
is defined as follow:

GL
aD

t
αf(t) = lim

h→0

1

hα

[ t−a
h ]∑

j=0

(−1)j
(
α

j

)
f(t− jh) (1)

where m− 1 < α ≤ m ∈ N and α ∈ R (R is the set of real numbers) and while
[·] means integer part.

The binomial term in Definition 1 can be obtain by the following equation:

(
α

j

)
=

{
1 for j = 0
α(α−1)...(α−1+j)

j! for j > 0
(2)

In order to present the discrete fractional order model and controller the discrete
form of Grünwald-Letnikov definition was used. The most commonly discretiza-
tion schemes are the Euler expansion, Tustin rule, and the Al-Alaoui operator.
The Euler expansion method is a simple generalization of the familiar Grünwald-
Letnikov derivative

Δα
hf(t)|t=kh =

1

hα

k∑
j=0

(−1)j
(
α

j

)
f(t− jh) (3)

where t = kh are the values of the discretized continuous time. Transforming
samples of continuous time to the discrete time k = 0, 1, ... the Eq. (3) can be
rewrite as

Δα
hf(t) =

1

hα

t∑
j=0

(−1)j
(
α

j

)
f(t− j) (4)

Using the simplest discretization scheme for the Grünwald-Letnikov derivative
as in Eq. (3) and assuming for a sampling period h = 1, the fractional-order
difference in discrete time k can be defined as:
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Definition 2. Fractional order difference is given as follows:

Δαxk =
k∑

j=0

(−1)j
(
α

j

)
xk−j (5)

where α ∈ R, is a fractional degree, R, is the set of real numbers and k ∈ N is the
number of a sample for witch the approximation of the derivative is calculated.

For practical realization the number of samples taken into consideration has to
be reduced to the predefined number L. In this case the Eq. (4) is rewritten as:

Δαxk =

L∑
j=0

(−1)j
(
α

j

)
xk−j (6)

where L is a number of samples taken into account, called memory length and
with assumption that xk = 0 for k < 0 [3,16].

3 Model Based Fault Detection Mechanism

Different approaches for fault-detection using mathematical models have been
developed in the last 20 years. The task consists of the detection of faults in the
processes by using the dependencies between different measurable signals end
mathematical process models outputs. But such approaches require the precisely
knowledge of process model in both the form of a mathematical structure and
the parameters [4,7,14].

Figure 1 shows the scheme of the measurement system. The Host and Target
PCs were connected by Ethernet using xPC Matlab tools. All procedures pre-
pared on Host PC, after compiled were send and run on Target PC. Fig. 2 shows
the structure of model-based fault detection procedure. The reference signal r(t)
was applied to the input of both the model and the plant controllers. Without
disturbing signal (f(t) = 0), the control signals of both controllers uP (t) and
uM (t) are almost the same. In such case the difference signal d(t) is close to
zero. The fractional plant was simulated by supercapacitor. It store the electric

Frac�onal

Plant

Simulator

PC Host

PC Target
NI-DAQ

Ethernet

Fig. 1. Configuration of the measurement system
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output

energy into an electrical double layer, which is formed at a porous solid electrode
and electrolyte border. When a direct current voltage is applied, positive and
negative ionic charges within the electrolyte are accumulated at the surface of
the solid electrode[11]. Such special construction and specific materials generate
a large capacity, which effects on its dynamics. The best approaches to mathe-
matically modeling supercapacitor over a wide range of frequencies is using the
fractional order calculus.
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The electronic circuit of fractional plant with fault simulator was shown in Fig.
3. The voltage of supercapacitor was kept constant by voltage controlled voltage
source. The fault was generated by voltage controlled current source discharged
the supercapacitor. All voltages and currents were measured by analog inputs
of NI-DAQ [8]. The experimental setup contained the supercapacitor of nominal
capacity 0.22 F and nominal voltage 5.5 V.

4 Experimental Setup and Tests Results

Firstly the parametric identification based on discrete transfer function was per-
formed. The method was precisely described in [3,12]. The comparison of the
step response of continuous and identified discrete time model is presented in
Fig. 4. As it can be seen the accuracy of the identification is very high. Next the
identified model parameters were used to fault detection procedure according to
diagram shown in Fig. 2. The test results are shown in Fig. 5.

Generated the fault signal discharging the supercapacitor, the plant controller
had to generated the proportional controlling signal compensating the discharg-
ing effect, differ then the model controller. These resulted the difference signal
d(t) indicating fault occurrence. There were generated two types of fault signal
f(t): incipient and catastrophic. In both cases when the difference signal d(t)
crossing the threshold line, the fault was detected.

First curve shows the reference signal r(t). It was applied to both model
and plant controller. Next is the fault signal f(t) steering the current source
discharging the capacitor. Next two curves show the output signal of plant yP (t)
end model yM (t), and next the output signal of plant uP (t) and model uM (t)
controllers are presented respectively. Finally, the last curve shows the difference
signal d(t). Two dashed lines present the upper and lower limits. Crossed these
lines by difference signal d(t) was treated as fault.

5 Conclusion

The paper presents an example of the model based fault detection system with
the model defined by fractional order equations. The plant was simulated by RC
circuit with ultracapacitor charged by voltage controlled voltage source. The
fault was generated by voltage controlled current source discharging superca-
pacitor. Using fractional calculus it is possible to obtain more accurate models.
This is very crucial in model based method. Firstly the fractional order model of
RC circuit with ultracapacitor was derived. The used transfer function method
turned out to be good enough to plant identification. Next the model param-
eters were used to fault detection procedure. Presented fractional order model
based method can be treat as a simple benchmark examples to test the new fault
detection rules before applying it to real systems.
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Abstract. In the paper the problem of modeling elementary fractional
order plants at PLC platform is presented. Models of considered plants
were implemented at SIEMENS SIMATIC S7 300 platform with the
use of STEP7 SCL language. Finally, comparison of simulation results
and mathematical model is provided to demonstrate effectiveness of the
proposed method.
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1 Introduction

Past years brought many breakthroughs in many fields of science. Faster pro-
cessors and hardware are able to compute advanced problems more efficiently.
Thanks to artificial intelligence, self learning capabilities can be acquired. In
control theory domain, all before mentioned elements are just tools, which im-
prove algorithms in a sense of speed or additional capabilities. Most of current
used solutions are based on rough but well optimized approximations of math-
ematical representations of real life problems. Although simpler models proved
their value, next step for researchers in control theory, is to incorporate more
accurate models to utilize subtle features that are characteristic during on-going
processes. To tackle this idea, fractional calculus became an useful tool. Vis-
coelastic materials or anomalous diffusion processes can be described with the
use of fractional calculus only. Although idea of non-integer order is not new, in
past few years, many researches have been conducted [1] [2] [3]. Foundations of it
are dated around end of seventieth century, but practical applications appeared
around second half of twentieth century.

Main objective of this paper is to propose an implementation models ele-
mentary fractional order elements (derivative and integral) at PLC SIEMENS
platform[4]. This paper is organized as follows. After introduction, a short de-
scription of basics behind the mathematical idea is described, together with
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fractional models of derivative and integral elements. Third part is a description
of typical problems, which come with idea of hardware implementation fractional
calculus, and Oustaloup’s approximation. Next part is the Siemens PLC setup
combined with functions and function blocks, which are proposed algorithms to
solve predefined problem. Last two parts are simulation results and conclusion.

2 Fractional Calculus Basics

Starting point of fractional calculus idea is dated around 1695, when Leibniz and
L’Hospital were discussing idea of derivatives of non-integer order and possible
applications in various domains. First conclusions were indecisive and in 19th
century, Liouville in his paper created strong foundations of fractional deriva-
tives. Till second half of 20th century, idea of non-integer order was strictly
theoretic, however in past few decades, fractionals proved to be adequate in
solving more sophisticated problems.

In order to fully understand analysis of non-integer order, differentintegral
operator aD

α
t needs to be explained.

2.1 Differintegral Operator

Differintegral [5] operator aD
α
t is an crucial element, while modeling dynamic

objects.

Definition 1. Differintegral is described as follows:

aD
α
t f(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dα

dtα α > 0

1 α = 0

t∫
a

(dτ)
α

α < 0

(1)

where α is a real or complex order of derivative, a and t describe the range over
which to compute the result.

There are three definitions of differintegral operator, which are: Caputo def-
inition, Grünwald-Letnikov definition and Riemann-Liouville definition. In our
paper, we would like to concentrate on the first one.

Definition 2. Caputo differintegral

C
a D

αf(t) =
1

Γ (α− n)

t∫

a

f (n) (τ) dτ

(t− τ)α+1−n (2)

where n− 1 < α < n, and value of n is ceil of α and Γ is gamma function.
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The above definition contains an element that must be discussed briefly, to un-
derstand whole idea of non-integer order calculus.

In addition to above definition, discrete form of fractional order derivative
element should be presented.

Definition 3. Fractional order, discrete derivative element

Derivative element is described as follows:

y(t) = T0D
αu(t) (3)

where T0 is constant parameter.
By applying approximation with backward difference:

yn = h−αT0

n∑
j=0

ωjun−j (4)

where h is sample time. By taking into account the short memory principle:

yn = h−αT0

L∑
j=0

ωjun−j (5)

2.2 Fractional Order Integrals

In agreement with Riemann-Liouville’s conception, the notion of fractional order
integral of order R(α) > 0 is a natural consequence of Cauchy’s formula for
repeated integrals. This formula can be expressed as (see [3]):

Definition 4. Fractional order integrals

I
α
t f(t) = D

−α
c =

1

(α− 1)!

t∫

c

(t− τ)α−1f(τ)dτ (6)

where t < c and b ∈ Z.
As previously mentioned, discrete form of fractional order integral element

has to be presented.

Definition 5. Fractional order, discrete integral element

Integral element is described as follows:

0D
α
t y(t) = u(t) (7)

By incorporating approximation with backward difference:

h−α
L∑

j=0

ωjyn−j = un (8)
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After short transformations:

yn = hαun −
L∑

j=1

ωjyn−j (9)

2.3 Fractional Order Transfer Function

In domain of control theory, transfer function is an element, which cannot be
omitted. Transfer function, for fractional order analysis, just like differintegral
operator can be described with three definitions. Once again, Caputo definition
seems to be useful in most cases.

Definition 6. Caputo transfer function

L{0Dα
af(t)} = sαF (s) −

n−1∑
k=0

sα−k−1f (k) (0) (10)

where n solves the n− 1 ≤ p < n.

3 Oustaloup’s Approximation

Before describing Oustaloup approximation method, possible issues of fractional
calculus implementation in real-time applications need to be examined briefly
[6]. Regular modeling with appropriate tools that depend on mathematical for-
malism developed by Riemann and Louville, can be applicable directly. Problem
arises, when digital implementation on computer needs to be designed. Main
concern lies in infinite memory, which from obvious reasons, cannot be imple-
mented on recent machines. During calculation, integration from −∞ to current
point in time and non-integer differentiation of all past functions, takes place.
Such instance is unrealistic and needs to be solved with the use of different
approach.

As described previously, fractional calculus cannot be implemented directly
at regular computer, because of its limitations. Non-integer integrator object
requires infinite memory for calculation of historical data. However, band-
limit implementation of fractional-order controller, can be represented by
finite-dimensional approximation. For a sα, where α is a real number, many
approximations can be used. In this particular case, Oustaloup’s approximation
is described as follows [9]. It is often applied where a frequency band is consid-
ered within which the frequency domain responses should be fit by a bank of
integer order filters to the fractional order derivative [9]. For α : 0 < α < 1 let us
assume that frequency range to be fit is [ωA, ωB], the term s/ωu can be replaced
by:

C0
1 + s/ωb

1 + s/ωh
(11)
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where √
ωbωh = ωμ (12)

and
C0 =

ωb

ωu
=

ωu

ωh
(13)

Fitting quality around ωb and ωh may not be satisfactory. The Oustaloup’s
approximation model for sα can be represented as follows [9]

Ĥ (s) =

(
ωu

ωh

)α N∏
k=−N

1 + s/ω′
k

1 + s/ωk
(14)

where

ω′
k = ωb

(
ωh

ωb

) k+N+1/2−α/2
2N+1

(15)

and

ωk = ωb

(
ωh

ωb

) k+N+1/2+α/2
2N+1

(16)

are respectively the zeros and poles of rank. And 2N + 1 is the total number of
zeros or poles.

The ORA approximation was applied to check the correctness the build PLC
models. Results will be presented in the example.

4 Implementation of Elementary Fractional Order
Elements at Siemens PLC

At the Siemens PLC were implemented fractional modules:

– differentiator sα

– integrator
1

sα

Above elements were implemented on the Siemens PLC with CPU315. Sample
time in order to calculate values by either integrator or differentiator module
was not fixed and samples were calculated every 65ms with +/- 5ms margin. To
collect results from the device a simple Scada system based on ProTool/Pro was
used. Data was read by it with 500ms period and saved to .csv file. Data flow
throughout algorithm can be described with the use of the block diagram show
in figure 1. The source files of all elements of the program were written with the
use of STEP7-SCL language, the whole program was assembled with the use of
LD language in which Integrator and Differential block are incorporated.

The fractional-order differentiator described by discrete model (3)-(5) was
implemented as function block FB4. The data of this FB were saved in Data
Block DB4. Accordingly to that scheme, the fractional-order integrator, which
was presented in equations (7)-(9), is computed in function block FB3, and data
is stored in DB5. Actual history of signal is contained in data block DB2. Both
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Fig. 1. PLC Program Block diagram
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Fig. 2. Comparison of step response differentiation modules in Matlab and PLC im-
plementation for α = 0.2

function blocks use a group of common blocks. Firstly, function block FB1 is
responsible for computing ωj values from (5) and (9). It stores all computed

values in DB1. Function FC2 computes
∑L

j=a ωjxn−j where x is output signal
with history of length L. Function block FB2 shifts signal from data block DB2
by one and adds new value to an end.
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4.1 An Example

Tests of the implemented models were done via calculating the step response
of each model and comparing it with the step response of the MATLAB model
created with the use of ORA approximation.

Differentiator fractional module step response is shown in figures 2 and 3. In
figures 5 and 4 step responses of fractional order integrator are shown. How can
see step responses calculated with the use of MATLAB and PLC are similar.

SIEMENS SCL source code for differentiation module is presented below.

FUNCTION BLOCK Di f f e r e n t i a t o r

// Block Parameters
VAR INPUT

// Input Parameters
in : REAL;
alpha : REAL;
h : INT ;
T : REAL;

END VAR

VAR OUTPUT
// Output Parameters

out : REAL;
END VAR

VAR TEMP
// Temporary Var iab l e s

END VAR
VAR

// St a t i c Var iab l e s
s tep : REAL := 0 . 0 ;
value : REAL;

END VAR
step := EXP( alpha ∗ LN(0 . 0 6 5 ) ) ;
FB2 .DB2( newValue := in ) ; // updateS igna l
value := FC2( s i g n a l := DB12 . s i gna l , . . .
l ength := 128 , alpha := alpha , . . .
s h i f t := 0 ) ; // SignalSum
out := T ∗ value / s tep ; // equation (5)

;
END FUNCTION BLOCK

Source code in SCL language for integrator module is presented below.

FUNCTION BLOCK Int eg ra to r

// Block Parameters
VAR INPUT

// Input Parameters
in : REAL;
alpha : REAL;
h : INT ;
T : REAL;

END VAR

VAR OUTPUT
// Output Parameters

out : REAL;
END VAR

VAR TEMP
// Temporary Var iab l e s

value : REAL;
END VAR
VAR

// St a t i c Var iab l e s
s tep : REAL := 0 . 0 ;

END VAR
step := EXP( alpha ∗ LN( 0 . 0 7 ) ) ;
value := FC2( s i g n a l := DB2. s i gna l , . . .
l ength := 128 , alpha := alpha , . . .
s h i f t := 1 ) ; // signalSum
out := step ∗ i n − value ; // equation (9)
FB2 .DB2( newValue := out ) ; // updateS igna l

END FUNCTION BLOCK
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Fig. 3. Comparison of step response differentiator modules in Matlab and PLC imple-
mentation for α = 0.5
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tation for α = 0.8
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5 Summary

Final conclusions to the paper can be formulated as follows:

– The elementary fractional order plants can be implemented at PLC platform
with the use of normalized programming tools.

– The built elements can be applied to construct fractional order PID con-
trollers.

– The another interesting problem is also the numerical complexity of built
software. It can be tested with the use of methods proposed in [10]

– Differences between Matlab and SIEMENS PLC results are due to fact of
different real number representations at both platforms. Additionally sam-
pling time on Siemens PLC is not fixed, and it leads to small errors, which
can be observed, when compared to Matlab fixed time response.
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Abstract. The fundamental solution to the Cauchy problem for the
space-time-fractional advection diffusion equation with the Caputo time-
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1 Introduction

The constitutive equation for the matter flux j (see, for example, [1])

j = −a grad c + vc, (1)

where v is the velocity vector, in combination with the balance equation for
mass

∂c

∂t
= −div j (2)

gives
∂c

∂t
= aΔc− div (vc) (3)

or
∂c

∂t
= aΔc− c divv − v · grad c. (4)

Supposing v = const (or divv = 0), we obtain the standard advection diffu-
sion equation for the concentration

∂c

∂t
= aΔc− v · grad c. (5)

Similarly to analysis of nonlocal generalizations of the classical Fick or Fourier
law carried out in [2], [3], [4], [5] the time-nonlocal generalization of Eq. (1) can
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be considered. For example, the general time-nonlocal constitutive equation for
the matter flux can be written as

j (t) =

∫ t

0

K(t− τ) [−a grad c(τ) + vc(τ)] dτ (6)

and under the same assumptions as above leads to the advection diffusion equa-
tion with the general memory kernel K(t− τ):

∂c

∂t
=

∫ t

0

K(t− τ) [aΔ c(τ) − v · grad c(τ)] dτ. (7)

The time-nonlocal constitutive equation for the matter flux with the “long-
tail” power kernel

j (t) = D1−α [−a grad c(t) + vc(t)] , 0 < α ≤ 1, (8)

results in the time-fractional advection diffusion equation

∂αc

∂tα
= aΔc− v · grad c. (9)

Here Dαf(t) and dαf(t)
dtα are the Riemann-Liouville and Caputo time-fractional

derivatives, respectively [6], [7], [8]:

Dαf(t) =
dn

dtn

[
1

Γ (n− α)

∫ t

0

(t− τ)n−α−1f(τ) dτ

]
, n− 1 < α < n, (10)

dαf(t)

dtα
=

1

Γ (n− α)

∫ t

0

(t− τ)n−α−1 dnf(τ)

dτn
dτ, n− 1 < α < n , (11)

where Γ (α) is the gamma function.
The space-time-fractional advection diffusion equation with the Caputo time-

fractional derivative and the Riesz fractional Laplace operator has the following
form:

∂αc

∂tα
= −a(−Δ)β/2c− v · grad c. (12)

In this paper we will restrict ourselves to the orders of fractional derivatives
0 < α ≤ 1 and 1 ≤ β ≤ 2.

Space-time-fractional generalizations of advection diffusion equation were
studied by many authors [9], [10], [11], [12], [13], [14]. In the papers mentioned
above, one spatial coordinate was considered and several numerical schemes for
solving the problems were proposed. In the present paper, we obtain analytical
solution of the space-time-fractional advection diffusion equation in the case of
two space variables.
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2 Equation with Two Spatial Variables

Consider the space-time-fractional advection diffusion equation with two spatial
variables

∂αc

∂tα
= −a(−Δ)β/2c− vx

∂c

∂x
− vy

∂c

∂y
,

−∞ < x < ∞, −∞ < y < ∞, 0 < t < ∞,

(13)

under the initial condition

t = 0 : c = p0 δ(x) δ(y), (14)

where δ(x) is the Dirac delta function. The constant muptiplier p0 in Eq. (14)
has been introduced to obtain the nondimensional quantity c̄ used in numerical
calculations (see Eq. (35)).

It should be noted that the cumbersome aspects of space-fractional differ-
ential operators disappear when one computes their integral transforms. The
two-dimensional fractional Laplace operator is defined as an operator having
the following double Fourier transform with respect to the spatial coordinates x
and y [8]:

F
{
−(−Δ)β/2f(x, y)

}
= −

(
ξ2 + η2

)β/2
f̃(ξ, η), (15)

where the tilde denotes the transform, ξ and η are the Fourier transform vari-
ables:

F {f(x, y)} = f̃(ξ, η) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y) eixξ+iyη dxdy, (16)

F−1
{
f̃(ξ, η)

}
= f(x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f̃(ξ, η) e−ixξ−iyη dξ dη. (17)

It is obvious that Eq. (15) is a fractional generalization of the standard formula
for the Fourier transform of the classical Laplace operator corresponding to
β = 2:

F {Δf(x, y)} = −
(
ξ2 + η2

)
f̃(ξ, η). (18)

Recall that for its Laplace transform rule the Caputo fractional derivative
requires the knowledge of the initial values of the function f(t) and its integer
derivatives of order k = 1, 2, . . . , n− 1:

L
{

dαf(t)

dtα

}
= sαf∗(s) −

n−1∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n, (19)

where the asterisk denotes the Laplace transform with respect to time and s is
the transform variable.
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Fig. 1. Dependence of the solution on distance (α = 1, v̄x = v̄y = 0)

The integral transform technique results in the solution of the Cauchy problem
(13)–(14) in the transform domain

c̃ ∗(ξ, η, s) =
p0
2π

sα−1

sα + a(ξ2 + η2)β/2 − i(vxξ + vyη)
. (20)

After inverting the integral transforms we get

c(x, y, t) =
p0

4π2

∫ ∞

−∞

∫ ∞

−∞
Eα

{
−
[
a
(
ξ2 + η2

)β/2 − i(vxξ + vyη)
]
tα
}

× e−ixξ−iyη dξ dη,

(21)

where Eα(z) is the Mittag-Leffler function

Eα(z) =
∞∑

n=0

zn

Γ (αn + 1)
, α > 0, z ∈ C, (22)

and the following formula [6], [7], [8]

L−1

{
sα−1

sα + b

}
= Eα (−btα) (23)

has been used.
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Fig. 2. Dependence of the solution on distance (α = 1, v̄x = v̄y = 1)

3 Particular Cases of the Solution

If α = 1, then
E1(−z) = e−z (24)

and

c(x, y, t) =
p0
π2

∫ ∞

0

∫ ∞

0

exp
[
−a
(
ξ2 + η2

)β/2
t
]

× cos [(x− vxt)ξ] cos [(y − vyt)η] dξ dη.

(25)

Introducing the polar coordinate system in the (ξ, η)-plane

ξ = ρ cos θ, η = ρ sin θ, (26)

we obtain

c(x, y, t) =
p0
π2

∫ ∞

0

ρ e−atρβ

dρ

∫ π/2

0

cos [(x − vxt)ρ cos θ]

× cos [(y − vyt)ρ sin θ] dθ.

(27)

Substitution w = sin θ with taking into account the integral (A.1) from Ap-
pendix allows us to arrive at the final result

c(x, y, t) =
p0
2π

∫ ∞

0

e−atρβ

J0

[
ρ
√

(x − vxt)2 + (y − vyt)2
]
ρ dρ. (28)
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The solution (28) simplifies in the following two particular cases:

i) α = 1, β = 2

c(x, y, t) =
p0

4πat
exp

[
− (x− vxt)

2 + (y − vyt)
2

4at

]
. (29)

We have used Eq. (A.2) from Appendix to get the solution (29).

ii) α = 1, β = 1

c(x, y, t) =
p0
2π

at

[a2t2 + (x− vxt)2 + (y − vyt)2]
3/2

, (30)

where Eq. (A.3) from Appendix has been used.
Another typical particular case is obtained for α = 1/2. The corresponding

Mittag-Leffler function can be expressed as

E1/2(−z) =
2√
π

∫ ∞

0

e−u2−2uz du (31)

and the solution reads

c(x, y, t) =
p0
π3/2

∫ ∞

0

∫ ∞

0

exp
(
−u2 − 2a

√
tuρβ

)

× J0

[
ρ

√
(x− 2uvx

√
t)2 + (y − 2uvy

√
t)2
]
ρ dρ du

(32)
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Fig. 4. Dependence of the solution on distance (α = 0.5, v̄x = v̄y = 1)

with two particular cases:

i) α = 1/2, β = 2

c(x, y, t) =
p0

4a
√
tπ3/2

∫ ∞

0

1

u
e−u2

× exp

[
− (x− 2uvx

√
t)2 + (y − 2uvy

√
t)2

8a
√
tu

]
du.

(33)

i) α = 1/2, β = 1

c(x, y, t) =
2p0a

√
t

π3/2

∫ ∞

0

u e−u2

× 1[
(2a

√
tu)2 + (x − 2uvx

√
t)2 + (y − 2uvy

√
t)2
]3/2 du.

(34)

The numerical results for the solution c are shown in Figures 1–6 for various
values of the orders of fractional derivatives α and β and for various values
of the drift parameter v. In numerical calculations we have used the following
nondimensional quantities:
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c̄ =
a2/βt2α/β

p0
c, x̄ =

x

a1/βtα/β
, ȳ =

y

a1/βtα/β
,

v̄x =
tα(β−1)/β

a1/β
vx, v̄y =

tα(β−1)/β

a1/β
vy.

(35)

In Figures we have taken ȳ = 0 and have shown the dependence of the solution
on the coordinate x̄.

4 Concluding Remarks

We have analyzed the solution of the space-time-fractional advection diffusion
equation with the Caputo time-derivative of the order 0 < α ≤ 1 anf the Riesz
fractional Laplace operator of the order 1 ≤ β ≤ 2 in a plane. It should be
emphasized that the fundamental solution to the Cauchy problem in the case
0 < α < 1 has the logarithmic singularity at the origin for all values of the order
of the fractional Laplace operator 1 ≤ β ≤ 2. Such a singularity disappears only
for the advection diffusion equation with α = 1. Comparison of the corresponding
Figures shows that due to the logarithmic singularity of the solution at the origin
for 0 < α < 1 the influence of the drift parametr v is quite different than in the
case α = 1. In the last case, the increase of v results in decrease of the maximum
value of the solution and in its drift. For 0 < α < 1, the increase of v leads to
approaching of the corresponding curves to the asymptote x̄ = 0.

Appendix

The following integrals [15], [16] are used in the paper:

∫ 1

0

1√
1 − x2

cos
(
p
√

1 − x2
)

cos(qx) dx =
π

2
J0

(√
p2 + q2

)
, (A.1)

∫ ∞

0

e−px2

J0(qx)xdx =
1

2p
exp

(
− q2

4p

)
, p > 0, q > 0, (A.2)

∫ ∞

0

e−px J0(qx)xdx =
p

(p2 + q2)
3/2

, p > 0, q > 0, (A.3)

where J0(z) is the Bessel function of the first kind.
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Abstract. This paper presents generalization of Fractional Variable Or-
der Kalman Filter (FvoKF) and Improved Fractional Variable Order
Kalman Filter (ExFvoKF) algorithms for estimation of fractional vari-
able order state-space systems over lossy network. This generalization is
obtained for a state-space system based on one type of fractional vari-
able order difference (A-type) and assuming the knowledge about packets
losing. The generalization of ExFKF algorithm based on the infinite di-
mensional form of a linear discrete fractional variable order state-space
system and measurements equation augmentation. It required less re-
strictive assumptions than derivation of FKF. Finally, numerical simu-
lations of proposed algorithms are presented and compared.

1 Introduction

The Kalman filter has played an important role in systems theory and has found
wide applications in many fields such as signal processing, control, and communi-
cations. Recently there has been considerable interest in estimation and control
over communication networks, so researches show how traditional Kalman filter
or estimators can be applied to this kind of systems. In particular, there has
been considerable effort in analyzing the effect of variable and random delays
and packet loss (or dropout), such as in [1,2] or the effect of only packet loss
such as in [3]. More detailed investigation of estimation and control issue over
communication networks is presented in [4].

On the other hand, the fractional calculus, a natural generalization of tra-
ditional differential calculus for a case of derivatives and integrals in fractional
(non-integer) orders, was found as a very efficient tool for modeling, control and
signal processing. In [5], results of successful modeling for heat transfer process in
heterogeneous materials were presented. In signal processing it is used, for exam-
ple, to obtain new filter algorithms [6] and to describe complex noises dynamics
[7]. In [8] generalization of traditional Kalman Filter algorithm for Discrete Frac-
tional State Space System was proposed. Article [9] presents extension of this

� This work was supported by the Polish National Science Center with the decision
number DEC-2011/03/D/ST7/00260.
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algorithm with least restrictive assumption. Moreover, it also presents general-
ization of this algorithm for estimation over lossy communication network. In
[10] the use of fractional order Kalman Filter for state estimation in the case of
existing fractional order noise was presented.

The case, when order of the derivative is changing in time, becomes recently
intensively developed. In an article [11] the variable order equations are using to
describe a history of drag expression. The fractional variable order algorithms
can also be used to obtain variable order fractional noise [7], and to obtain new
control algorithms [12]. In papers [13,14] the variable order interpretation of the
analog realization of fractional orders integrators, realized as domino ladders was
presented.

In this paper we present generalization of FKF and ExFKF algorithms, given
in [9], for the Discrete Variable Order State Space Systems with measurements
obtained by lossy communication network. Both algorithms based on one type of
fractional variable order difference (A-type). Generalization of ExFKF algorithm
based on state vector augmentation, and require less restrictive assumptions to
state and covariance matrix prediction than for FKF.

This article is organized as follows. In Section 2 the Discrete Fractional Vari-
able Order State Space System is recall. In Section 3, the main contribution,
generalization of FKF and ExFKF algorithms for Discrete Variable Order State
Space System with measurements obtained by lossy communication network are
proposed. In Section 4 numerical results for proposed algorithms are presented
and compared.

2 Discrete Fractional Variable Order State Space System

The following definition constitutes a starting point for generalization of con-
stant fractional order difference operators onto a variable order case. A constant
fractional order difference operator is defined in the following way

Δαxk ≡
k∑

j=0

(−1)j
(
α

j

)
xk−j (1)

where (
α

j

)
≡
{

1 for j = 0 ,
α(α−1)...(α−j+1)

j! for j > 0 .

At least 3 different definitions of variable order difference operator can be
found in literature [15,16]. In this article we use only the first type, which is
obtained by replacing a constant order α by variable order αk.

Definition 1. The A-type of fractional variable-order difference is given by

AΔαkxk ≡
k∑

j=0

(−1)j
(
αk

j

)
xk−j (2)



Variable Order Fractional Kalman Filters 287

For such a definition, the discrete fractional A-type variable order system will
be defined as follows:

Definition 2. [17]The linear Discrete Fractional Variable Order System in
state-space representation, based on A-type of fractional variable-order differ-
ence, is given as follows:

AΔΥk+1xk+1 = Axk + Buk + ωk (3)

yk = Cxk + νk, (4)

where

xk+1 =A ΔΥk+1xk+1 −
k+1∑
j=1

(−1)jΥj,k+1xk−j+1 (5)

Υj,k = diag
[ (α1,k

j

)
. . .

(
αN,k

j

) ]

AΔΥk+1xk+1 =

⎡
⎢⎣

AΔα1,k+1x1,k+1

...
AΔαN,k+1xN,k+1

⎤
⎥⎦

and xk ∈ R
N is a state vector, αi,k ∈ R are time dependent (variable) orders of

system equations (where i is a number of state variable and k is a time of the
order) and N is the number of these equations.

�
More properties for the case of constant order (DFOSS) are presented in [18,19].

The system given by the Definition 2 can be rewritten as an m-finite dimen-
sional form in the following way

Definition 3. The linear discrete fractional variable order state-space system
in m-finite form (the form with the new m− th elements state vector) is defined
as follows

Xk+1 = Am,kXk + Bmuk + Iωk

− I

k+1∑
j=m+1

(−1)jΥj,kxk+1−j (6)

yk = CmXk (7)

where

Xk =

⎡
⎢⎢⎢⎣

xk

xk−1

...
xk−m+1

⎤
⎥⎥⎥⎦ , I =

⎡
⎢⎢⎢⎣

I
0
...
0

⎤
⎥⎥⎥⎦
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Am,k =

⎡
⎢⎢⎢⎣

(A + Υ1,k) −(−1)2Υ2,k . . . −(−1)mΥm,k

I . . . 0 0
...

...
...

...
0 . . . I 0

⎤
⎥⎥⎥⎦

Bm =
[
B 0 . . . 0

]T
, Cm =

[
C 0 . . . 0

]
being I ∈ R

N×N the identity matrix.

�

2.1 Lossy and Delayed Network

For the case of measurements over lossy network some part of packets are losing
during transmission, what has negative influence to efficiency of the estimation
process. In order to improve estimation algorithms not only measurements values
are needed but also information about packets losing γk is needed. The γk ∈
{1, 0} has value 1 when packet yk is obtained, and 0 when yk is lost.

3 Fractional Kalman Filter over Lossy Networks
(gFvoKF)

The Kalman filter for integer order systems with intermittent observations (packet
loss) was presented in [20,21]. Now, extensions of the fractional Kalman filter
algorithms for fractional order networked systems will be introduced.

Theorem 1. For the discrete A-type fractional variable order system, given by
the Definition 2, with intermittent observations the simplified Kalman filter al-
gorithm (called gFvoKF) is given by the following set of equations

AΔΥk+1 x̃k+1 = Ax̂k + Buk (8)

x̃k+1 = AΔΥk+1 x̃k+1 −
k+1∑
j=1

(−1)jΥj,k+1x̂k+1−j (9)

P̃k = (A + Υ1,k)Pk−1 (A + Υ1,k)
T

+ Qk−1 +

k∑
j=2

Υj,kPk−jΥ
T
j,k (10)

Kk = P̃kC
T (CP̃kC

T + Rk)−1 (11)

x̂k = x̃k + γkKk(yk − Cx̃k) (12)

Pk = (I − γkKkC)P̃k, (13)

where γk represents the knowledge of packet losses and initial conditions are

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)T ]

and νk and ωk are assumed to be independent with zero expected value. �
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Proof:
Due to the limited length of this article, we are compelled to present only

the most essential aspects of the proof. The main difference, in comparison to
gFKF algorithm [9], is in prediction Equations (8) and (10). The prediction of
state vector is obtained under the same simplifying assumption as in derivation
of FKF [8] and gFKF [9] algorithms (updated is only the last state vector):

x̃k+1 = E[xk+1|z∗k] = E[(Axk + Buk + ωk −
k+1∑
j=1

(−1)jΥj,k+1xk+1−j)|z∗k]

≈ Ax̂k + Buk −
k+1∑
j=1

(−1)jΥj,k+1x̂k+1−j .

The prediction of covariance error matrix is evaluated also with similar assump-
tion that was used in FKF derivation [8] ( E[(x̂l − xl)(x̂m − xm)T ] = 0 for
l �= m):

P̃k = E
[
(x̃k − xk)(x̃k − xk)T

]
= (A− Υ1)E[(x̂k−1 − xk−1)(x̂k−1 − xk−1)T ](A− Υ1,k)T

+ E[ωk−1ω
T
k−1] +

k∑
j=2

Υj,kE[(x̂k−j − xk−j)(x̂k−j − xk−j)
T ]ΥT

j,k

= (A + Υ1,k)Pk−1 (A + Υ1,k)
T

+ Qk−1 +

k∑
j=2

Υj,kPk−jΥ
T
j,k

The rest of the proof is obtained by minimizing the following objective function:

x̂k = min
x

[(x̃k − x)P̃−1
k (x̃k − x)T + γk(yk − Cx)R−1

k (yk − Cx)T ] (14)

The extremum is obtained from first order derivative of the objective function:

−2P̃−1
k (x̃k − x̂k) − 2CTR−1

k (yk − Cx̂k) = 0. (15)

After rearranging the equation, applying Matrix Inversion Lemma and denoting
that

Kk = P̃kC
T (CP̃kC

T + Rk)−1, (16)

estimation update relation (12) is obtained

x̂k = x̃k + γkKk(yk − Cx̃k). (17)

The covariance estimation error matrix is evaluated from its definition and has
the following form

Pk = E
[
(x̂k − xk)(x̂k − xk)T

]
= E [(x̃k + γkKk(Cxk + νk − Cx̃) − xk) (18)

(x̃k + γkKk(Cxk + νk − Cx̃) − xk)T
]

(19)

= (I − γkKkHk)P̃k + (−P̃kH
T
k + γkKkHkP̃kH

T
k + γkKkRk)KT

k γk (20)

= (I − γkKkC)P̃k. (21)
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3.1 Improved Fractional Variable order Kalman Filter for
Networked Systems (gExFvoKF)

In this section the generalization of Improved Fractional variable order Kalman
Filter for variable order case will be given.

Theorem 2. For the discrete fractional order system in a state-space represen-
tation introduced by the Definition 3 with intermittent observations the Kalman
filter (referred to as gExFvoKF) is given by the following set of equations

X̃k+1 = Am,kX̂k + Bmuk − I

k+1∑
j=m+1

(−1)jΥj,kx̂k+1−j (22)

P̃k = Am,kPk−1A
T
m,k + Qk−1 +

k∑
j=m+1

IΥj,kPk−jΥ
T
j,kI

T (23)

X̂k = X̃k + γkKk(yk − CmX̃k) (24)

Pk = (I − γkKkCm)P̃k (25)

where
Kk = P̃kC

T
m(CmP̃kC

T
m + Rk)−1

and γk represents the knowledge of packet loss. Noises νk and ωk are assumed
to be independent and zero expected value, and matrices Pk and Rk are positive-
defined. �
Proof: The proof will based on the proof of gExFKF [9] algorithm, and also
will present only the most essential aspects. The prediction of state vector is
obtained under less restrictive assumption as in the derivation of gFvoKF and
gFKF [9] algorithms, that E[xk+1−j |z∗k] = E[xk+1−j |z∗k+1−j ] = x̂k+1−j for j > m
(m newest state vectors are updated).

X̃k+1 = E[Am,kXk + Bmuk + Iωk − I

k+1∑
j=m+1

(−1)jΥj,kxk+1−j |z∗k]

= Am,kX̂k + Bmuk − I

k+1∑
j=m+1

(−1)jΥj,kx̂k+1−j

The prediction of the covariance estimation error matrix is evaluated from its
definition, under again less restrictive assumption that E[xkxj ] = 0 for k �= j
and k, j > m, and has the form:

P̃k = E
[
(X̃k − Xk)(X̃k − Xk)T

]
= Am,kE[(x̂k−1 − xk−1)(X̂k−1 − Xk−1)T ]AT

m,k

+ IE[ωk−1ω
T
k−1]IT +

k∑
j=m+1

IΥj,kE[(x̂k−j − xk−j)(x̂k−j − xk−j)
T ]ΥT

j,kI
T

= Am,kPk−1A
T
m,k + IQk−1I

T +
k∑

j=m+1

IΥj,kPk−jΥ
T
j,kI

T
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The rest of the proof is fully analogical to the proof of the gFvoKF algorithm
given by Theorem 1, and in this case the cost function has the following form:

X̂k = min
X

[(X̃k − X)P̃−1
k (X̃k − X)T + γk(yk − CmX)R−1

k (yk − CmX)T ] (26)

and it is easy to check that this function implies the following relations

X̂k = X̃k + γkKk(yk − CmX̃k) (27)

and
Pk = (I − γkKkCm)P̃k (28)

The rest of equations are the same.

4 Numerical Results

In this section some numerical simulations are given to show the effectiveness of
the proposed algorithms.

4.1 Simulation Methodology

All simulation results included in this paper are obtained for the discrete frac-
tional variable order state space system given by the following matrices:

A =

[
0 −0.1
1 0.2

]
, B =

[
0.2
0.3

]
, C =

[
0.4 0.3

]
, α1,k = α2,k = 0.5 + 0.2 sin

(
2πk

200

)
,

During experiments, we consider four sets of noises, as shown in Table 1, which
includes the measured variance of output noise, νk, and covariance of internal
noise, ωk. As it could be seen, the correlations between noises ω1,k and ω2,k

are much smaller than the value of noises variances, we can assume that noises
are independent (as it was assumed in gFvoKF and gExFvoKF proofs). The
transmission rate was equal to 85%, what means that 15% packets was lost. The
estimation error is defined as follows:

e =

180∑
k=50

[
(x̂k − xk)(x̂k − xk)T

]
(29)

The error e is defined for period k = 50 . . .180 in order to omit first part of es-
timation process which depends on initial conditions, because tested algorithms
have a different form of initial conditions. For comparison purposes, the improve-
ments of gExFvoKF algorithm with respect to gFvoKF are defined as:

e% =
egFvoKF − egExFvoKF

egFvoKF
100% (30)

where egExFvoKF and egFvoKF are estimation errors of the gExFvoKF and gF-
voKF filters, respectively.
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Table 1. Description of noises used in experiments

Noise number E[νkν
T
k ] E[ωkω

T
k ]

I 8.386210−5

[
0.0436 −0.0020
−0.0020 0.0422

]

II 0.0021

[
0.0980 −0.0044
−0.0044 0.0949

]

III 0.0092

[
0.0903 0.0027
0.0027 0.0855

]

IV 0.0399

[
0.2557 0.0230
0.0230 0.2309

]

The parameters of the fractional Kalman filters are:

P0 = 100I, x0 = [0, 0]T

The matrices Qk and Rk have values of measured variances of noises presented
in Table 1.

Example 1. Example of estimation and smoothing by using gFvoKF and gExF-
voKF for variable order case.

In this example, we compare two estimation algorithms, the variable order
gFvoKF and gExFvoKF, and we consider two different cases: in the first one,
whose results are presented in Table 2, the influence of parameter m in estimation
process is investigated for a fixed value of noise (noise I); the second case is a
comparison for a fixed value of parameter m (m = 20) and different noises, which
are included in Table 3.

Table 2. Estimation and smoothing results for gFvoKF and gExFvoKF filters for
different values of m (noise I), for variable order case

gFvoKF gExFvoKF algorithm
Para- Esti- Estimation Smoothing
meter mation x̂k|k x̂k−4|k x̂k−8|k
m e e e% e e% e e%
5 7.71 7.48 2.97 5.86 23.97 – –
10 7.71 7.32 5.04 5.70 26.08 5.67 26.42
20 7.71 7.29 5.43 5.67 26.48 5.64 26.83
50 7.71 7.44 3.50 5.81 24.66 5.78 25.04
100 7.71 7.44 3.47 5.80 24.75 5.78 25.10

As it can be seen on Table 2, the dependence between the parameter m and
the estimation error is not proportional, and the best results, in presented case,
are obtained for m ∈ [10, 20].
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Table 3. Estimation and smoothing results for gFvoKF and gExFvoKF filters (m =
20) for variable order case

gFvoKF gExFvoKF algorithm
Noise Esti- Estimation Smoothing
type mation x̂k|k x̂k−4|k x̂k−8|k

e e e% e e% e e%
I 7.71 7.29 5.43 5.67 26.48 5.64 26.83
II 18.81 18.10 3.75 14.58 22.48 14.54 22.72
III 18.38 18.14 1.32 16.62 9.60 16.55 9.95
IV 66.71 65.87 1.26 60.03 10.01 59.80 10.36

According to Table 3, it can be observed that the efficiency of the gExFvoKF
algorithm decreases when variance of noise increases. For low value of variance,
we obtain significant improvements in the smoothing action, whereas the im-
provements are not so significant for higher noise variance.

5 Conclusions

In this paper a generalization of Fractional Variable Order Klman Filter (gF-
voKF) and Improved Fractional Variable Order Kalman Filter (gExFvoKF) al-
gorithms for estimation of fractional variable order state-space systems over
lossy network was presented. Both algorithms were obtained for A-type of frac-
tional variable order difference. Also both algorithm use assumed knowledge
about packets losing. For both algorithms numerical results for different type of
noises and different parameter m were obtained and compared. Results confirm
more accurate estimation results of gExFvoKF algorithm, however, improve-
ments were not so significant. More significant improvements were obtained in
smoothing actions, for which only gExFvoKF only allows.
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8. Sierociuk, D., Dzieliński, A.: Fractional Kalman filter algorithm for states, parame-
ters and order of fractional system estimation. Applied Mathematics and Computer
Science 16(1), 129–140 (2006)

9. Sierociuk, D., Tejado, I., Vinagre, B.M.: Improved fractional Kalman filter and its
application to estimation over lossy networks. Signal Processing 91(3, SI), 542–552
(2011)

10. Sierociuk, D., Ziubinski, P.: Fractional order estimation schemes for fractional and
integer order systems with constant and variable fractional order colored noise.
Circuits, Systems, and Signal Processing (accepted to 2014)

11. Ramirez, L., Coimbra, C.: On the variable order dynamics of the nonlinear wake
caused by a sedimenting particle. Physica D-Nonlinear Phenomena 240(13), 1111–
1118 (2011)

12. Ostalczyk, P., Rybicki, T.: Variable-fractional-order dead-beat control of an elec-
tromagnetic servo. Journal of Vibration and Control 14(9-10), 1457–1471 (2008)

13. Sierociuk, D., Malesza, W., Macias, M.: On the recursive fractional variable-order
derivative – equivalent switching strategy, duality, and analog modeling. Circuits,
Systems, and Signal Processing (accepted to 2014)

14. Sierociuk, D., Malesza, W., Macias, M.: Switching scheme, equivalence, and analog
validation of the alternative fractional variable-order derivative definition. In: Pro-
ceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy,
December 10-13 (2013)

15. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators.
Nonlinear Dynamics 29(1-4), 57–98 (2002)

16. Valerio, D., da Costa, J.S.: Variable-order fractional derivatives and their numerical
approximations. Signal Processing 91(3, SI), 470–483 (2011)

17. Sierociuk, D.: System properties of fractional variable order discrete state-space
system. In: Proceedings of the 13th International Carpathian Control Conference
(ICCC), pp. 643–648 (2012)

18. Dzielinski, A., Sierociuk, D.: Stability of discrete fractional order state-space sys-
tems. JVC/Journal of Vibration and Control 14(9-10), 1543–1556 (2008)

19. Dzielinski, A., Sierociuk, D.: Reachability, controllability and observability of the
fractional order discrete statespace system. In: Proceedings of the IEEE/IFAC
International Conference on Methods and Models in Automation and Robotics,
MMAR 2007, Szczecin, Poland, pp. 129–134 (2007)

20. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M., Sastry, S.:
Kalman filtering with intermittent observations. IEEE Transactions on Automatic
Control 49, 1453–1464 (2004)

21. Shi, L., Epstein, M., Murray, R.M.: Kalman filtering over a packet dropping net-
work: A probabilistic approach. In: Proceedings of 10th Intl. Conf. on Control, Au-
tomation, Robotics and Vision Hanoi, Vietnam, ICARCV 2008, pp. 41–46 (2008)



Author Index

Bania, Piotr 113
Baranowski, Jerzy 81, 113, 125, 221, 231,

249
Bauer, Waldemar 81, 113, 125, 221, 231,

249, 265
Blasik, Marek 25
Brociek, Rafał 239
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