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Preface

This volume contains the papers selected for presentation at the 2014 Interna-
tional Conference on Brain Informatics and Health (BIH 2014), held as part of
the 2014 Web Intelligence Congress (WIC 2014) at the University of Warsaw,
Poland, during August 11–14, 2014. The conference was organized jointly by the
Web Intelligence Consortium, the University of Warsaw, the Polish Mathemati-
cal Society, and Warsaw University of Technology.

The series of Brain Informatics conferences began in China in 2006 with the
International Workshop on Web Intelligence Meets Brain Informatics (WImBI
2006). The next events were held in China, Canada, and Japan. Since 2012, the
conference topics have been extended with major elements of health informatics
in order to investigate some common challenges in both areas. In 2014, this series
of events visited Europe for the first time ever.

BIH 2014 received 101 paper submissions, in the areas of foundations of brain
understanding, brain-inspired problem solving, brain and health data manage-
ment, biomedical decision support, brain and health data analytics, healthcare
systems, biomedical technologies, as well as applications of brain and health in-
formatics. After a rigorous evaluation process, 29 papers were selected as regular
contributions, giving an acceptance rate of 28.7%, and are grouped into the first
seven sections of this volume.

The last five sections of this volume contain 23 papers selected for oral pre-
sentations in BIH 2014 special sessions. Additionally, the first paper in the last
section corresponds to one of the WIC 2014 tutorials. We would like to thank all
special session organizers and all authors who contributed their research results
to this volume.

The congress provided a very exciting program with a number of keynote
talks, regular and special sessions, workshops, tutorials, panel discussions and
social programs. We greatly appreciate our keynote speakers: Andrew Chi-Chih
Yao, Karl Friston, Henryk Skarżyński, Stefan Decker, Robert Kowalski, Sadaaki
Miyamoto, Yi Pan, John F. Sowa, and Andrzej Sza�las. We would also like to
acknowledge all tutorial and panel speakers for preparing high-quality lectures
and conducting inspiring research discussions.

A program of this kind would not have been possible without the dedication
of Marcin Szczuka and the whole local Organizing Committee, the administra-
tive support by Juzhen Dong, the strategic guidance by Andrzej Skowron, Ning
Zhong, and Jiming Liu, as well as all other chairs, ProgramCommittee members,
and external reviewers.

We would also like to thank our institutional patrons: the Ministry of Science
and Higher Education of the Republic of Poland and the Warsaw Center of
Mathematics and Computer Science.



VI Preface

We wish to express our gratitude to our sponsors: Dituel (Main Sponsor),
Google (Gold Sponsor), Human Brain Project, IOS Press (Web25 Event Spon-
sor), Core Technology, and Gemius. Without their generous support we would
never have been able to make this conference such a success.

We are also grateful to the Committee on Informatics of the Polish Academy
of Sciences, the Polish Artificial Intelligence Society, the World Wide Web Con-
sortium (Web25 Anniversary initiative), the European Brain Council (Year of
the Brain in Europe initiative), and the IEEE CIS ETTC Task Force on Brain
Informatics for help with publicizing the congress.

Finally, we wish to acknowledge Andrzej Janusz and Marcin Możejko for tak-
ing over the job of putting this volume together. We extend our highest appreci-
ation to Springer’s LNCS/LNAI team for their generous support. In particular,
we thank Alfred Hofmann, Anna Kramer, Ingrid Beyer, and Leonie Kunz for
their help in coordinating the publication of this volume.

August 2014 Dominik Ślȩzak
Ah-Hwee Tan

James F. Peters
Lars Schwabe
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Jerzy Grzyma�la-Busse University of Kansas, USA
Yi-Ke Guo Imperial College London, UK
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Diego Sona Italian Institute of Technology, Italy
Marcin Szczuka University of Warsaw, Poland
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Neuronal Morphology Modeling Based on Microscopy 
Reconstruction Data in the Public Repositories 
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Abstract. Neuronal morphology modeling is one of the key steps for reverse 
engineering the brain at the micro level. It creates a realistic digital version of 
the neuron obtained by microscopy reconstruction in a visualized way so that 
the structure of the whole neuron (including soma, dendrite, axon, spin, etc.) is 
visible in different angles in a three dimensional space. Whether the modeled 
neuronal morphology matches the original neuron in vivo is closely related to 
the details captured by the manually sampled morphological points. Many data 
in public neuronal morphology data repositories (such as the NeuroMorpho 
project) focus more on the morphology of dendrites and axons, while there are 
only a few points to represent the neuron soma. The lack of enough details for 
neuron soma makes the modeling on the soma morphology a challenging task. 
In this paper, we provide a general method to neuronal morphology modeling 
(including the soma and its connections to surrounding dendrites, and axons, 
with a focus on how different components are connected) and handle the chal-
lenging task when there are not many detailed sample points for soma.  

Keywords: Neuron Morphology Reconstruction, Neuronal Morphology  
Modeling, Soma Reconstruction. 

1 Introduction 

Reverse engineering the brain and simulation of brain activities at multiple scales in 
silicon will revolutionize the future of Information and Intelligence Science [1-5]. In 
order to understand the information processing mechanism of the brain at the micro 
level, biologically realistic neurons need to be visually modeled and simulated so that 
activities of different neuronal components can be simulated and observed. In addi-
tion, they are basic components to build neural pathways and neural networks for 
higher levels of modeling and simulations. 

Neural morphology modeling is either conducted by using manually sampled mor-
phological points data from researchers’ own lab, or from neuron databases. In order 
to make our approach more applicable to general sources, we acquire morphological 
data from the NeuroMorpho Project. This project currently contains data about more 
than 10 thousand neurons, covering 21 types of animals, and 123 types of cells, with 
contributions from 120 laboratories1. 

                                                           
1 NeuroMorpho Project by the George Mason University: [http://neuromorpho.org] 
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Most sampled morphological points data from various institutions follow the same 
rules for data representation. The SWC format is a widely adopted format [6], and all 
the morphological data from the NeuroMorpho Project can be downloaded as an 
SWC file [7]. The SWC files in the NeuroMorpho project repository often include 
concrete information on: the position and radius of soma, branch information (spatial 
position, radius, and how the sampled points are connected to each other) of dendrites 
and axons. The project provides a tool named 3D Neuron Viewer to observe the SWC 
file in a visualized environment, while the morphology shown by this tool is some-
what simplified. More detailed and realistic modeling can be made based on these 
data. 

Compared to the information for dendrites and axons in different neurons, contri-
buted data from different studies are always lack of detailed soma information. Espe-
cially how the soma and the dendrites, axons are connected are not clear in the  
reconstruction data. Hence in this paper, we provide a general process for neuronal 
morphology modeling based on the sampled data from the NeuroMorpho project, 
with a focus on how the different components of the neuron are connected. 

Section 2 discusses the data selection principles for the neuronal morphology mod-
eling based on NeuroMorpho data. Section 3 introduces the modeling process for 
dendrites and axons. Section 4 discusses how the soma is generated based on only a 
few sampled points. Section 5 discusses how different components of the neuron are 
bridged together and refined to be a unified structure. Section 7 discusses some  
related work. Section 8 concludes the paper.  

2 Data Selection for Neuronal Morphology Modeling 

As for neuron soma morphology modeling, some of the SWC files include more de-
tailed points to provide a contour of the soma in two dimensions, as shown in Figure 
1(a). This kind of data captures the morphology of the soma in a nicer way. While 
most of the SWC files in the NeuroMorpho project only provide three points, which 
capture much less morphological details of the soma. One of them indicates the center 
of the soma, while the other two are marked in the same line with the first one, indi-
cating the approximate size of the soma, as shown in Figure 1(b).  

Compared to Figure 1(b), it would be much easier using Figure1(a) to reconstruct 
the soma. But most of the data in the NeuroMorpho project repository follows the 
type of Figure 1(b). Hence, we select the type of data of Figure 1(b) for soma model-
ing (we try to recover many missing details), so that the proposed method can be ap-
plied to most of the sampled data from the NeuroMorpho project repository. 

Since axons were cut by most of the brain slices in the data from the NeuroMorpho 
project, in this paper, we select the files which contain relatively complete informa-
tion on dendrites and axons sampled points. 
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 (a)  (b) 

Fig. 1. Two Types of Descriptions of Neuron Soma. (a) A set of sampled points which provide 
the detailed contour of the soma in two dimensions as well as its connections with other com-
ponents of the neuron, adopted from [8]. (b) Three sampled points in green, indicating the size 
of the soma, the data is from the file with NeuroMorpho ID: NMO_00941. 

Some of the SWC files do not contain proper radius information. In this case, im-
portant morphology cannot be captured by the visualized neuron. For example, 49.1% 
of the morphology data in the NeuroMorpho project repository is reconstructed pyra-
midal neurons. There are two types of dendrites for this type of neuron, namely the 
basal dendrite and the apical dendrite. From the morphology perspective, the radius of 
the apical dendrite is much larger than the one of basal dendrite, while many of the 
SWC files ignore the difference on the radius of these two types of dendrites and set 
the radius values as the same. In this case, it will be hard to distinguish the types of 
dendrites (Figure 2 provides a comparative study on the reconstructed dendrites. Fig-
ure 2(a) is with the same radius value, while Figure 2(b) is with proper radius value. 
In Figure 2(b), it would be much easier to distinguish the apical dendrite from basal 
dendrites). In addition, improper radius value will have negative impact on the mor-
phology modeling of the soma. Hence, when modeling the neuronal morphology, 
only the data with proper radius values on dendrites will be selected.   

 

 
(a) The apical dendrite and the basal dendrites 
are with the same radius value (NeuroMorpho 
ID: NMO_06163) 

(b) The apical dendrite and the basal den-
drites are with the proper different radius 
(NeuroMorpho ID: NMO_00941) 

Fig. 2. A Comparative Study on the Morphology of the Modeled Dendrites 
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3 Modeling the Structure of Dendrites and Axons 

Based on the branch information on how the sampled points are connected with each 
other on dendrites, many edges can be constructed based on the ordered points. These 
edges collectively form the skeleton of the dendrites. A set of Quadrangular prisms 
are generated based on the edges and the radius of dendrites. Note that all the qua-
drangular prisms need to be connected together, since they collectively form an inter-
connected structure. The gaps between the quadrangular prisms need to be fixed so 
that all the quadrangular prisms form a unified structure (as shown in Figure 3). In our 
study, we use the polywire SOP in Houdini to implement the connections [9]. If two 
child nodes share the same parent node, one branch will be constructed first. There 
will be a gap on the first branch, and the second branch will be built starting from the 
location of the gap [8].  

 

   

Fig. 3. The Gap between Quadrangular Prisms Before (marked in red) and After (marked in 
green) Smoothing (NeuroMorpho ID: NMO_00941) 

Since the SWC file only contains the connections among sampled points for axons, 
the modeling process is similar to the process for dendrites. Figure 4 provides the 
modeled structures of dendrites and axons based on the upper discussed approach.  

 

 

Fig. 4. The Modeled Structures of Dendrites and Axons (NeuroMorpho ID: NMO_00206) 
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The green lines describe the axon, while the white lines describe the dendrites. The 
Catmull-Clark subdivision algorithm is used for sub dividing the surfaces so that the 
cross sections of dendrites and axons are close to round [10]. 

4 Basic Soma Morphology Construction 

For modeling the soma morphology, the first step is to fix the center of the soma in 
the three dimensional space. As for most SWC files in the NeuroMorpho project re-
pository, the point between the other two for soma should be the center of the soma. 
The second step is to generate a sphere based on the radius and the central point of the 
soma. In order to lay a foundation for bridging the soma, the dendrites and the axon, 
the generated spherical soma is actually composed of many quadrilateral surfaces, as 
shown in Figure 5(a). 
 

 
(a) Soma modeling by using half of its radius 
at first to avoid possible errors on the connec-
tions among the soma and the rest (Neuro-
Morpho ID: NMO_00941). 

(b) Soma modeling based on the full radius, 
with a dendrite root stick into the soma body 
(NeuroMorpho ID: NMO_02000). 

Fig. 5. The Generated Skeleton of the Soma and the Dendrites of a Neuron based on the Data 
from the NeuroMorpho Project Repository 

Some coordinates of the dendrites are very close to the soma surface, which brings 
difficulties to rebuild the connections among soma and dendrites (as shown in Figure 
5(b), if we use the full radius of the soma to generate the soma structure directly, one 
of the dendrite roots is into the soma.). Hence, firstly we use half of the radius to build 
the soma, as shown in Figure 5(a) (The dark pink structure is the soma rebuilt as the 
first step, the size of the soma will be extended to the size described in the light pink 
structure) in the later process. 

5 Bridging the Soma, Axon and the Dendrites 

5.1 Bridge Structure Generation 

In Section 3 and Section 4, the basic structure of the soma, the axon and the dendrites 
are built. Nevertheless, they are not connected with each other. Since the root of axon 
and each dendrite is a surface with four edges, and the soma surface is also composed 
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of many different sub surfaces with four edges, an extra four edges can be generated 
to connect the soma and the root of the dendrite or axon. The connected edges and 
surfaces form a polyhedron [11]. These polyhedrons serve as the bridge structures to 
connect the soma, the dendrites and the axon. Note that when trying to select the four-
edged surface on the soma to be connected to the dendrite root surface, the candidate 
should have the shorted distance to the specific dendrite root surface. The bridge 
structure among the soma, the axon and the dendrites are similar, hence we discuss 
the generation of the bridge structure between the soma and the dendrite as an illustra-
tion. From the implementation perspective, the skin SOP in Houdini is used. 

Note that the orientation of the surfaces of dendrite roots are stochastic, it is not 
possible for all of them to be parallel to the surface of the soma. Hence, the formed 
polyhedron is not necessarily a quadrangular prism, and the warped surfaces between 
the soma and the dendrites might have negative impact for modeling the neuron. 
Hence, we need to reconsider the order of the vertices on the root surface for den-
drites so that polyhedrons with better shapes can be generated and adopted. Given two 
surfaces, there are four ways to construct the polyhedron. The polyhedrons shown as 
Figure 6(a) and Figure 6(b) seem not that twisted and are clearly with better shapes 
compared to Figure 6(c) and Figure 6(d) to be part of a neuron. Hence, the modeling 
similar to Figure 6(c) and Figure 6(d) need to be avoided. 

Although within the original SWC file, the bridges are ignored, they are very im-
portant to shape the whole neuron. With the upper method, the roots of dendrites and 
the soma can be bridged together, and the morphology of the modeled neuron will be 
closer to the original data from the brain slice. 

Even it seems that the bridges among the soma and the dendrites are seamlessly 
connected. In fact, the surfaces that connect the soma and the dendrites on the bridges 
only share the coordinates with them. Hence they are not truly connected (as shown in 
Figure 7 (a), the purple structure and the green structure share the same coordinates at 
the connection points, while they are actually identical structures). We fuse those 
points which share the same coordinates. With this step, the separated soma and den-
drites structures are sutured together. 
 

 

Fig. 6. Four Possible Polyhedrons based on the Two Surfaces from the Root of Dendrite and 
Soma ((a) and (b) are with better shapes to be adopted for connection reconstruction) 
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5.2 Weight Control Based Soma and Bridge Enlarge Process 

In order to avoid possible errors, in our previous step, we use half of the radius to 
rebuild the soma. Since the bridging and suturing process has been finished, the size 
of the soma needs to be extended to its original size. There are two major considera-
tions for the enlarge process: Firstly, if we only enlarge the size of the soma, there 
will be penetrations among the bridge surfaces and the soma. Secondly, if we enlarge 
the size of the soma and proportionally enlarge the bridge surfaces together, there will 
be penetrations among the bridge surfaces and the dendrites. In order to solve this 
problem, we introduce a weight (ω) to control the enlarge ratios: ω 2  

where D is the distance of a point on the bridge to the center of the soma,  is the 
point on the bridge which holds the maximum value to the center of the soma. 
The weight distribution is shown in Figure 7(b). If ω 1, the surface will be in 
red, and if ω 2 the surface will be in yellow. After the enlarge process, a soma 
with its original size and its connected dendrites are shown in Figure 7(c). 

Up until now, we have constructed a completely enclosed polygon mesh (com-
posed of many quadrilateral surfaces) which describes the morphology of a neuron. 
This model can be widely applied to many three dimensional platforms for neuron 
reconstruction. 

For a more realistic modeling, one may need even finer neuron models. In this 
case, the Catmull-Clark subdivision algorithm can be applied to divide all the 
quadrilateral surfaces into smaller ones [10], so that the surface will be smoother, 
Figure 7(d) shows a refined version of Figure 7(c) by using this method. 

 

 

Fig. 7. Neuron sub-components Fusion and Refinement (NeuroMorpho ID: NMO_00941). (a) 
The soma, dendrites and their bridges; (b) The sutured neuron structure, with computed 
weights; (c) Enlarged structure based on the soma size and the weight control; (d) Surface 
refinement and smoothing process. 
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5.3 Optimization on the Penetration Structures 

In the process of bridging the soma and the dendrites, when the roots of two dendrites 
are too close, they may be connected with the same four-edged surface on the soma. 
In this case, one bridged structure will be penetrated into the other one, as shown in 
Figure 8(a), the yellow branch penetrates into the blue one. This kind of penetration is 
visually very strange and is not a standard 3-D object representation method. Hence, it 
should be optimized. Here we provide two strategies to solve this problem. 

Strategy 1: We rank the distances among the dendrite root surface and the candi-
date four-edge surfaces on the soma in reverse order. If the first and closest candidate 
has been picked up by another dendrite root, then the second one is chosen. Figure 
8(b) is an optimized structure on Figure 8(a) based on this strategy. 

Strategy 2: Refine the original four-edged surfaces by smaller ones, so that there 
will be more four-edge surfaces to be connected to. In this case, the possibility of 
having tow dendrites roots to be connected to one surface will be reduced. Figure 8(c) 
is an optimized structure on Figure 8(a) based on this strategy.  

Nevertheless, Strategy 2 will have impact on the shape of the soma, since the size 
of the bridge surface has been changed, and the shape of the bridge structure will be 
changed respectively. Hence, Strategy 1 is preferred in most cases. 

Figure 9 provides some screenshots on the full pictures of the modeled neuronal 
morphology based the SWC file with ID: NMO_00206 from the NeuroMorpho 
project repository (The green lines are axons, while the white lines are dendrites.  

 

 

Fig. 8. A Penetration Structure and Its Optimizations (NeuroMorpho ID: NMO_00941) 

 
(a) A modeled

 
neuron with a penetration structure

 

  

(b) Optimization by Strategy 1 (c) Optimization by Strategy 2 



 Neuronal Morphology Modeling Based on Microscopy Reconstruction Data 9 

 

Figure 9(a) is without the reconstructed soma, while Figure 9(b) is with a recon-
structed soma.). It shows that the modeling in this work capture major morphological 
characteristics of the neuron, and the modeled neuron provides a foundation for build-
ing complex neural pathways and neural networks. 

 

 

Fig. 9. Screenshots on the Full Pictures of the Modeled Neuronal Morphology 

6 Related Work 

Here we briefly discuss the relationship of our efforts compared to other related work. 
Neuronize is a tool for constructing realistic neuron morphologies [8]. The mass-
spring deformation algorithm is used to handle the connection between the soma and 
the dendrites [12, 13]. Although the results are close to the original morphologies in 
brain slices, enough number of sub-surfaces needs to be generated. This might be 
challenging for the computing resources when the modeled neural network contains 
huge number of neurons.  

Our method for handling the connections among the soma and the dendrites are re-
lated to the work in [14]. Namely, we start with a sphere which is composed of not so 
many sub-surfaces, then the Catmull-Clark subdivision algorithm is used for refine-
ment [10]. The difference between our work and the proposed method in [14] is that 
in their work, the soma is built at first, and the rest of the structures are extruded from 
the soma. While in our method, the modeling of dendrites, axons and the soma are in 
parallel, and the bridging structures are built after the modeling of these components. 
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7 Conclusion and Future Work 

This paper provides a general process to neural morphology modeling based on 
manually sampled reconstruction data from public neuronal morphology repositories. 
Given the branch data of dendrites and axons as well as their radius, the modeling of 
dendritic and axonal structures are relatively intuitive. We provide a general method 
for soma reconstruction and how the soma connects to the rest of the neuron 
components, and this method is especially practical when there are only a few 
sampled points on the soma. Hence, it can be applied to most of the modeling tasks. 

The data for modeling comes from the SWC files in the NeuroMorpho project 
reporsitory, and all the data within this repository share the same format. Hence, it is 
potentially effective to most of the data (In our study, we have conducted modeling of 
human, rat, and mouse neurons based on the data from this reporsitory by using the 
proposed method). Nevertheless, more modeling evaluation should be done on 
different animal species and different types of neurons. The whole modeling task is 
done by using the Houdini platform. Nevertheless, the concrete methods and 
strategies are platform independent, and can be adopted to any other three dimentional 
platforms. The neuron models can also be transformed to other platforms. 

Current morphological data in NeuroMorpho repository only contain branch in-
formation of dendrites, while there is no information on dendritic spins which are 
very important for building synapses. In addition, when detailed modeling is needed 
on axons, morphological data for myelin sheaths are also needed. Hence, additional 
data from other sources need to be included for more detailed neuron modeling. 
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Abstract. Although statistical graph comprehension has been inves-
tigated in cognitive psychology, it has not been reported in cognitive
neuroscience. The study designed an experimental condition, i.e., a sta-
tistical graph (SG), and two control conditions, i.e., a text (ST) and a
statistical graph with text (SGT), where the ST is a verbal description
of the information from the SG, and the SGT is a mixed graph + textual
description. We used fMRI to analyze the brain activity of 36 normal sub-
jects while they passively view the statistical information presented in
any of SG, ST, and SGT. The results indicate that statistical graph com-
prehension requires the involvement of both ventral and dorsal streams,
with more dependence on the ventral stream than the dorsal.

1 Introduction

Nearly 200 years ago, William Playfair (1786) first proposed the use of graphs
to represent data. Thus, a statistical graph is considered a vital information car-
rier because it facilitates easy remembering and comprehension. The statistical
graph is also widely used to represent quantitative data on science, business, and
education, which is an important part of statistical data analysis. To date, most
studies on statistical graph comprehension are limited to cognitive psychology
[1–3]. Some of the early studies mainly concentrated on perceptual aspects in
statistical graph comprehension, such as reading off a y-value from a bar or line
graph or extracting a trend from a line graph [3, 4]. Recent studies argue that
graph comprehension in reality is hierarchical: the represented data is explicitly
read off first before the information is interpreted [5]. A number of common as-
sumptions are given in the literature on graph comprehension [6]; however, these
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assumptions are rarely subjected to empirical test [7]. The main purpose of this
paper is to provide neuroscience evidence on statistical graph comprehension
through brain imaging.

A statistical graph is used to show spatial relationships among data, including
both graphical and non-graphical elements. Specific elements include graphical
components, such as X- and Y-axes and the entity (e.g., data point, bar, or line),
and non-graphical components, such as category labels in the X-axis (e.g., the
year or item’s name), numerical labels in the Y-axis, and title of graphics. As
most statistical graphs have titles and are accompanied by a linguistic context,
comprehending them is constrained by a cognitive system that processes the
graph and the language context in which the graph appears. To distinguish
the cognitive systems involved in graphical and verbal processing, the elements
of verbal description are extracted from the statistical graph, forming the text
that is contextually consistent with the verbal description. That is, both text
and statistical graph are expected to express the same statistical information,
although the graph reflects a combination of graphics and verbal description,
whereas the text only shows the verbal description. Thus, we select the text
as a control task for the statistical graph to examine the brain basis better
during statistical graph comprehension. To make the brain basis accurate, we
designed another control task, i.e., statistical graph with text [i.e., combination of
statistical graph and text, (SGT)], which can remove the low-level visual features.
Previous studies show that while verifying text-graphical tasks, subjects read the
text first before viewing the graphics [2, 8]. Other studies on SGT comprehension
show similar results, suggesting that SGT comprehension is text oriented [9, 10].
In the current study, while observing the SGT stimuli, subjects first read data
from the part of text before verifying them on the part of graph, weakening the
graphical cognitive operation in SGT. The results from the cognitive subtraction
between the statistical graph and SGT are then used to obtain the brain neural
basis of statistical graph comprehension.

2 Methods

2.1 Participants

Thirty-six volunteers (eighteen female and eighteen male; mean age ± standard
deviation (S.D.) = 22.5 ± 1.7) participated in this study. All of the subjects
were right-handed and native-Chinese speakers. The subjects had no history
of neurological or psychiatric illness, and no developmental disorders, including
reading disablities. All of the participants gave their written informed consent,
and the protocol was approved by the Ethical Committee of Xuanwu Hospital
of Capital Medical University and the institutional Review Board of the Beijing
University of Technology.
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2.2 Stimuli

In the experiment, 60 high-familiarity statistical events taken from the Internet
were used, with each described by a bar graph and a line graph to form 60
bar graphs (B1-B60) and 60 line graphs (L1-L60). Each statistical event was
standardized and reorganized by verbal description, which includes the various
items of the corresponding bar or line graphs to form 60 written texts (T1-
T60). The same index of each task represents the same content of statistical
information; e.g., Bi, Li and Ti denote the i-statistics described by a bar graph,
line graph, and text, respectively. In the current study, 40 bar graphs (B1-B40)
and 40 line graphs (L1-L40) were selected for separate statistical graph tasks.
The remaining 20 bar graphs, 20 line graphs, and 20 corresponding texts were
combined into 20 bar graphs with text control tasks (BT41-BT60) and 20 line
graphs with text control tasks (LT41-LT60). The 40 texts were selected as the
control tasks (T1-T40).

To create statistical graphs with the same data complexity, we used statistical
graphs with only 2 variables (only the x-axis and y-axis) and limited the number
of objects in each statistical graph to 4-6. All the statistical graphs had the same
size and brightness, same width for each bar in the bar graphs, same thickness
for each line segment, and same size for each specifier (e.g., circle, square, and
triangular) in the line graphs. The font and size of the labels in the statistical
graphs were also set in balance.

2.3 Procedure

Each subject completed 60 tasks consisting of 20 SG tasks (10 bar graphs and
10 line graphs), 20 SGT tasks (10 bar graphs with text and 10 line graphs with
text), and 20 ST tasks. The 40 subjects were divided into 4 groups, namely, G1,
G2, G3, and G4; the stimuli were counterbalanced across subjects, no individual
read the same event twice [11]. The distribution of the tasks is as follows: G1
= {B1-B10, L11-L20, BT41-BT50, LT51-LT60, T21-T40}, G2 = {B11-B20, L1-L10,
BT41-BT50, LT51-LT60, T21-T40}, G3 = {B21-B30, L31-L40, BT51-BT60, LT41-
LT50, T1-T20}, G4 = {B31-B40, L21-L30, BT51-BT60, LT41-LT50, T1-T20}.

These tasks were assigned into 3 sessions on average. The inter-session in-
tervals between sessions were 120 s. The order of SG, SGT, and ST stimuli
was pseudo-randomized in each session. Each SG, SGT, and ST stimulus was
presented for a period of 14, 18, and 16 s, respectively. Presentation time was
set according to the behavioral experiment prior to the fMRI study, in which
participants could understand fully the statistical information. After a stimulus
disappeared in each session, a question with two options was presented, and the
subjects were required to press the selected buttons (i.e., the left button denotes
the first option, and the right button denotes the second option). The time for
the subjects to answer the question was limited to 8 s and that for the remaining
tasks was limited to 6 s.

Prior to the experiment, the learning tasks of 2 SG tasks, 2 SGT tasks, and 2
ST tasks were prepared. To help the subjects fully understand their participation
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in the experiment, they were instructed to complete the practice tasks during
the fMRI.

2.4 Image Acquisition

Blood oxygenation level-dependent fMRI signal data were collected from each
participant using a Siemens 3-T Trio scanner (Trio system; Siemens Magnetom
scanner, Erlangen, Germany). Functional data were acquired using a gradient-
echo echo-planar pulse sequence (TR = 2000 ms, TE = 31 ms, FA = 90◦,the
matrix size = 64× 64 mm, Voxel = 4 × 4 × 4 mm, 30 slices, slice thickness = 4
mm, inter-slice interval = 0.8 mm, FOV = 240 × 240 mm). High-resolution T1-
weighted anatomical images were collected in the same plane as the functional
image using a spin echo sequence with the following parameters (TR = 130 ms,
TE = 2.89 ms, FA = 70◦, the matrix size = 320 × 320 mm, Voxel = 0.8 × 0.8 × 4
mm, 30 slices, slice thickness = 4 mm, inter-slice interval = 0.8 mm, FOV= 240×
240 mm). Stimulus presentation and data synchronization were conducted using
E-Prime 2.0 (Psychology Software Tools, Pittsburgh, USA). Prior to each run,
the first two (10 s) discarded volumes were acquired to enable the stabilization
of magnetization. The scanner was synchronized with the presentation of every
trial in each run.

2.5 Data Analysis

Data were analyzed using SPM8 software (Welcome Department of Cognitive
Neurology, London, UK, http://www.fil.ion.ucl.ac.uk). Images were collected to
obtain the differences in the timing of slice acquisition, followed by rigid body
motion correction. Data were realigned and normalized to the standard EPI
template. The registration of the EPI data to the template was verified for each
individual subject. All volumes were spatially realigned to the first volume. The
fMRI data were then smoothed with an 8 mm FWHM isotropic Gaussian kernel.
The hemodynamic response to the conclusion was modeled with the canonical
hemodynamic response function used in SPM8. No scaling was implemented for
the global effects. The resulting time series across each voxel was high-pass fil-
tered with a cut-off of 128 s to remove section-specific low frequency drifts in
the BOLD signal. An auto-regression AR (1) was used to exclude the variance
explained by the pervious scan. The least squares parameter estimates of height
of the best fitting synthetic HRF for each condition were used in pairwise con-
trasts and stored as a separate image for each subject. Using a random-effects
model in the group analysis, these images were then tested against the null hy-
pothesis that there is no difference between conditions using one-sided t-tests.
To obtain an accurate comparison, a region was considered significant if it has
50 or more contiguous voxels (400 mm3) and exceeds an alpha threshold of (p <
0.05, corrected) and (p < 0.001, uncorrected). The coordinates given by SPM8
were corrected to correspond to the atlas of Talairach and Tournoux (1988).
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3 Results

As shown in Table 1 and Fig. 1(a), compared with the control tasks (ST), the SG
tasks more significantly activated the ventral stream, including the lingual gyrus,
fusiform gyrus, posterior parahippocampal gyrus, and middle temporal gyrus, as
well as the dorsal stream, including the superior occipital gyrus, precuneus, and
superior parietal lobule. In Table 1, the cluster size (mm3) of activation in the
ventral stream was greater than that in the dorsal stream. Based on the brain
activation map [Fig. 1(a)], activity in the ventral stream was also stronger than
that in the dorsal stream during statistical graph comprehension.

Table 1. Brain activations during SG compared with that during ST (p <
0.05, corrected)

Coordinatesa

Anatomical regions x y z t Cluster size
( mm3)

Ventral stream 26224
Lt. lingual gyrus (BA18) -8 -74 2 12.01 1392
Rt. lingual gyrus (BA18) 8 -72 7 11.08 2112
Lt. fusiform gyrus (BA19) -26 -68 -5 16.10 5896
Rt. fusiform gyrus (BA19) 26 -68 -5 12.12 2056
Lt. paraphippocampal cortex (BA37) -32 -43 -8 20.10 9768
Rt. paraphippocampal cortex (BA19) 30 -55 -9 13.34 5000
Lt. middle temporal gyrus(BA19) -40 -83 19 8.95 808
Rt. middle temporal gyrus(BA19) 42 -81 19 6.80 568

Dorsal stream 8456
Lt. superior occipital gyrus (BA19) -32 -82 24 9.55 2648
Rt. superior occipital gyrus (BA19) 34 -78 30 7.40 2072
Lt. precuneus (BA7) -14 -68 44 7.74 2088
Rt. superior parietal lobule (BA7) 28 -66 46 6.98 1648

a The Talairach coordinates of the centroid and associated maximum t within con-
tiguous regions are reported. SG: statistical graph; ST: text; BA, Brodmann area;
Lt: left hemisphere; Rt: right hemisphere.

We also compared the SG with the SGT (SG vs. SGT). In Table 2 and Fig.
Fig. 1(b), the results show that only the ventral stream, including the lingual
gyrus, fusiform gyrus, and posterior parahippocampal gyrus, was activated more
significantly, but there was no dorsal stream. The results indicate that the sta-
tistical graph comprehension is more dependent on the ventral stream than on
the dorsal stream.

The ventral and dorsal streams are the two pathways for visual information
processing. A large number of studies show that the ventral stream is related to
the identification of the characteristics of objects (e.g., color, shape, and size),
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Fig. 1. Whole-brain statistical activation maps directly comparing the tasks. (a) SG
vs. ST: the contrast shows significant activation in the ventral and dorsal streams;
(b) SG vs. SGT: the contrast shows that only the ventral stream is activated more
significantly. SG: statistical graph; SGT: statistical graph with text; ST: text. All the
Statistical Parametric Mapping t of the contrasts thresholded at (a) p < 0.05, corrected,
Cluster size ≥ 400mm3; (b) p < 0.001, uncorrected, Cluster size ≥ 400mm3.

whereas the dorsal stream is used more in processing the spatial properties of
objects [12–15]. The fusiform gyrus is involved in the shape analysis of both
outline and fragmentation drawings [16], as well as object recognition. Activa-
tion in this region is increased gradually with a subjective rating of recognition
[17]. The lingual gyrus is associated with spatial attention [18], in which the se-
lective direction of visual attention is toward a location. Hopfinger et al. showed
that the fusiform gyrus and lingual gyrus are significantly activated when tar-
get selection is compared with the clues [19]. These results suggest that the
fusiform gyrus and lingual gyrus are related more to information selection and
recognition in statistical graphs. Moreover, the parahippocampal gyrus responds
to object-location associations [20, 21]. The dorsal stream, which consists of the
precuneus, superior parietal lobule, and superior occipital gyrus, is involved in
spatial processing [22]. Therefore, both ventral and dorsal streams are commonly
involved in statistical graph comprehension, in which the extracting and recog-
nition information (e.g., axis, label, bar, or line) engages the ventral stream in
perception processing, and the integrating information engages the dorsal stream
in space-related cognitive processing.

4 Discussion

Graph comprehension mainly includes three processes: encoding visual elements
(e.g., identify a bar, line, or axis), translating the elements into patterns (e.g.,
noticing that one bar is higher than the other or the slope of a line), and map-
ping the patterns to the labels (e.g., determining the value of a bar graph) [23].
However, the study of Bertin did not indicate which step is involved in either
perception operation or spatial processing. In future studies, the occurrence of
spatial processing in statistical graph comprehension is still debatable in cogni-
tive psychology.
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Table 2. Brain activations during SG compared with that during SGT (p <
0.001, uncorrected)

Coordinatesa

Anatomical regions x y z t Cluster size
( mm3)

Ventral stream 5272
Lt. lingual gyrus (BA18) -6 -76 2 5.51 1416
Rt. lingual gyrus (BA18) 8 -74 6 4.60 832
Lt. fusiform gyrus (BA19) -32 -41 -13 4.64 1248
Rt. fusiform gyrus (BA37) 38 -38 -18 4.34 616
Lt. paraphippocampal cortex (BA36) -34 -32 -22 4.79 640
Rt. paraphippocampal cortex (BA36) 34 -28 -19 4.39 520

a The Talairach coordinates of the centroid and associated maximum t within con-
tiguous regions are reported. SG: statistical graph; SGT: statistical graph + text;
BA, Brodmann area; Lt: left hemisphere; Rt: right hemisphere.

The results of the comparison between the SG and ST tasks suggests that
statistical graph comprehension requires the involvement of both ventral and
dorsal streams, in which the ventral stream is related to perception operation,
and the dorsal stream is associated with spatial processing. This result is con-
sistent with that of the hierarchical framework model [5] and that of Trickett
and Trafton’s study [24],which demonstrates that spatial processing is involved
in graph comprehension. In graph comprehension, the hierarchical framework
model considers that the explicitly represented data are read off first before the
information is integrated, which involves spatial processing. Trickett and Trafton
[24] further demonstrated that spatial processing is involved in a range of graph
tasks, regardless of the complexity of graphs.

Other studies also indicate that graph comprehension mainly depends on per-
ceptual operation. For example, according to Pinker’s model of graph compre-
hension [25], a reader first constructs a visual description of the display before
forming conceptual messages or propositions about variables depicted in the
graph. High-level inferential processes can operate conceptual messages. A sim-
ilar research is that of Shah et al. [26], which proposes another model: percep-
tual processes are “bottom-up encoding mechanisms” that focus on the visual
features of the display, whereas conceptual processes are equal to “top-down
encoding processes” that influence interpretation.

All these theories imply that graph comprehension mainly depends on per-
ceptual operation. However, in our study, the result in (SG vs. ST) suggests that
statistical graph comprehension requires both perceptual processing and spatial
processing, and the volume and response of activations in the ventral stream are
higher than those in the dorsal stream. Moreover, the result in (SG vs. SGT)
shows that the ventral stream is more activated, but there is no dorsal stream.
Summing up these results indicates that statistical graph comprehension de-
pends more on perceptual processing than on spatial processing. This finding is
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consistent with the description of a good statistical graph. The strength of good
statistical graphs as a form of representation is that they can make implicit
things explicit. Statistical graphs use location to group information about a sin-
gle element, which may be “adjacent” to any number of other elements. When
reading statistical graphs, the readers’ working memory forms a series of visual
chunks that support perceptual reasoning, making a direct comparison between
visual chunks possible. In other words, in statistical graph comprehension, the
perceptual operation comes first, followed by spatial processing.

Based on the experimental results, activation in the dorsal stream suggests
that statistical graph comprehension requires the involvement of spatial process-
ing; i.e., involving a certain degree of spatial analysis in graph comprehension
is necessary. However, more activation in the ventral stream indicates that per-
ceptual processing plays a dominant role in graph comprehension. Therefore,
relative to the dorsal stream, the ventral stream is involved more in the process
of graph comprehension.
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Abstract. The high dimensionality of functional magnetic resonance
imaging (fMRI) data presents major challenges to fMRI pattern classifi-
cation. Directly applying standard classifiers often results in overfitting
or singularity, which limits the generalizability of the results. In this pa-
per, we propose a ”Doubly Regularized LOgistic Regression Algorithm”
(DR LORA) which penalizes the voxels of the brain that are of no im-
portance for the classification using the Alternating Direction Method
of Multipliers (ADMM) and therefore alleviate this overfitting problem.
Our algorithm was compared to other classification based algorithms
such as Naive Bayes, Random forest and support vector machine. The
results show clear performances for our algorithm.

Keywords: fMRI, Logistic Regression, Alternating Direction Method
of Multipliers, LASSO, Classification.

1 Introduction

When people are looking at a magazine or browsing the Internet, they are at-
tracted by some photographs and images. Often, one is interested to check what
makes a generic photograph or image memorable? Brady et al. [1] showed that
humans are extremely adept at remembering thousands of pictures and a surpris-
ing amount of their visual details. But whereas some images stick in our minds,
others are ignored or quickly forgotten. Artists, advertisers and photographers
are routinely challenged by the questions: what makes a picture memorable?
Memorability qualifies something about the utility of a photograph toward our
everyday lives for example: educational materials, logos, advertisement, book
covers, websites etc. The quality of what makes an image memorable is hard
to quantify, yet our preliminary result suggests that using fMRI and exposing
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Fig. 1. What makes a picture memorable? Left panel: High memorable, right panel:
low memorable. Courtesy of Aude’s MIT group.

healthy individuals to structured images (scene versus faces) it is not an in-
explicable phenomenon, and confirms that areas of the brain are activated for
certain images [2]. People have the remarkable ability to remember thousands
of pictures they saw only once [3] even when they were exposed to many other
images that look alike. It seems that we do not just remember some pictures,
but we are able to recognize which precise image we saw along with some of
its details [4]. However, we can remember some images and forget others. In
other words, some pictures stick in our minds whereas others are forgotten. The
reasons why images are remembered may be highly varied; some pictures might
contain friends, a fun event involving family members, or a particular moment
during a trip. Other images might not contain any recognizable monuments or
people and yet also be highly memorable [5].

Isola et al. [6] characterized an image memorability as the probability that
an observer will detect a repetition of a photograph at various delays after ex-
position, when presented amidst a stream of images. This setting allowed to
measure long-term memory performance for a large collection of images (see
Fig.1 and Fig.2). With this approach they introduced a database for which they
have measured the probability that each picture will be recognized after a single
view. The database was mined to identify which features of the images correlate
with memorability, and trained memorability predictors on these features. Their
work constitutes an initial benchmark for quantifying image memorability. On
the other hand, imagine waking up and not recognizing your own bedroom or
your own house, being so lost as to be detached from space and time, and not
knowing what to do next. This is the experience of millions of individuals with
Alzheimer’s disease who have effectively lost connection to their memories of
space, are unable to retrieve past events and predict future ones. Any advances
in basic understanding of the spatio-visual memory system will help focus the
quest for therapies for Alzheimers disease, one of the most devastating brain
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Fig. 2. Mechanical Turk workers played a Memory Game in which they watched for
repeats in a long stream of images

diseases of the aging population. The challenge of mapping the brain systems
involved in visual memory also motivates the development of methods that in-
tegrate spatial information from functional magnetic resonance imaging (fMRI)
with the temporal dynamics provided by magnetoencephalography (MEG) and
electroencephalography (EEG) into a single model of the brain organization and
activity. Therefore, the application of pattern classification techniques for ana-
lyzing brain activity has increased and attracted machine learning community
in recent years.

Pattern classification methods focus the activity distribution of the entire
brain to discriminate different cognitive states or stimuli. The power of this
brain classification approach is motivated from the idea that all voxels, includ-
ing the ones with weak individual responses may carry important information
when analyzed jointly. However, the high dimensionality of fMRI data and the
interpretability of the classification weights remain as major challenges to this
class of approaches. The fMRI signal intensity (or its average) at each voxel
is usually taken as a feature (variable), with each brain volume (or each time)
treated as a sample (observation). Since typical fMRI datasets consist of consid-
erably more voxels ( thousands) than brain volumes ( hundreds) and subjects
( tens), direct application of standard classifiers, such as Linear Discriminant
Analysis (LDA), Quadratic discriminant Analysis (QDA), Regularized Discrim-
inant Analysis (RDA) and Support Vector Machine (SVM) where all the voxels
are used as variables, will likely result in overfitting and singularity. To reduce
the dimensionality of the variables, a common strategy is to reduce the feature
set to those voxels displaying significant expression or discriminant power. For
example, principal component analysis (PCA) can be applied prior to classifi-
cation, however, neither of these strategies considers the collective discriminant
information encoded by the voxel patterns, and thus may result in suboptimal
feature selection.

2 Method

The performance of a classifier depends significantly on the number of available
examples, number of features and complexity of the classifier. A typical fMRI
dataset contains far more features than the examples. In our dataset number
of features are on the order of tens of thousands while the number of training
examples are on the order of hundreds. Furthermore, many of the features may
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be irrelevant however they are still included in the dataset because of the lack
of sufficient knowledge about the information content of voxels. The high di-
mensionality of the features in an fMRI dataset makes the classification task
a difficult problem because of an effect called the curse of dimensionality. In
other words the number of training examples required to estimate the parame-
ters of a function grows exponentially with the number of features. The number
of parameters of the classifier increases as the number of features increases. As a
result, the accuracy and precision of the estimated parameters decrease, which
usually leads to poor classification performance. Given n p−dimensional feature
vectors, xi, forming the columns of a predictor matrix, x, our goal is to find
the corresponding n× 1 response vector, Y, containing the class label of xi. In
the context of fMRI, the feature vector usually comprises either signal intensi-
ties or summary statistics of p image voxels, and the n samples are either the
brain volumes or the subjects drawn from different populations. The problem
of fMRI classification can thus be posed as that of subspace learning for finding
a mapping that well separates feature vectors of different classes. Classification
algorithms integrating network structure information have been demonstrated
to improve variable selection accuracy to analyze functional magnetic resonance
imaging [7] and microarray data [8,9].

In this paper, we propose a ”Doubly Regularized LOgistic Algorithm” (DR
LORA) that permits more general penalties, such as spatial smoothness in ad-
dition to sparsity, to be integrated. DR LORA constructs upon the realization
that numerous standard classifiers can be reformulated and trained under a re-
gression framework which enables direct deployment of standard regularization
techniques, such as least absolute shrinkage and selection operator (LASSO) and
elastic net [10]. Building on this regression framework, we employ two penalties,
the first generates a sparse model which reduce the number of voxels, while the
second (a quadratic part of the penalty) encourages grouping effect and stabi-
lizes the regularization path, thus captures explicitly spatial correlations in brain
activity.

2.1 DR LORA: Doubly Regularized Logistic Regression Algorithm

For i = 1, ..., n, let yi and xi = (xi1, ..., xip)
t be the response variable and a

p-dimensional vector of features (or covariates or predictors) respectively. Con-
sider the case of logistic regression where yi|xi = x ∼ Bernoulli(π(x)), i.e.,
Binomial(1, π(x)), with

log

(
π(x)

1− π(x)

)
= α+

p∑
j=1

βjxij . (1)

This is a generalized linear model with link function g(π) = log( π
1−π ) [17].

Estimation of the vector parameters (α, β1, ..., βp) is usually performed by
maximizing the log-likelihood of the model, which is equivalent to minimizing
the quantity
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(α̂, β̂) = argmin
α,β

n∑
i=1

[
log(1 + exp(α+ xt

iβ))− yi(α+ xt
iβ)

]
. (2)

During the last decade, penalized methods have emerged as attractive approaches
for high-dimensional regression problems. Many types of penalties have been
proposed; most relevant are the Lasso, Ridge, Elastic-net, Smooth Lasso and
Weighted fusion penalty. These penalties all introduce stability into high-
dimensional models by penalizing large values of regression coefficients. They
conduct variable selection as well, by shrinking some of the coefficients all the
way to zero. Taking all these remarks into account, we propose to estimate the
vector parameters by the penalized criterion

(α̂, β̂) = argmin
α,β

n∑
i=1

[
log(1 + exp(α+ xt

iβ))− yi(α+ xt
iβ)

]
+ λ1

p∑
j=1

|βj |+ λ2Pc(β), (3)

where λ1 ≥ 0, λ2 ≥ 0 are tuning parameters, and

Pc(β) =

p−1∑
j=1

∑
i>j

{
(βi − βj)

2

1− ρij
+

(βi + βj)
2

1 + ρij

}
, (4)

ρij denotes the (empirical) correlation between the ith and the jth predictors.
The l1 part of the penalty generates a sparse model, while the quadratic part of
the penalty encourages grouping effect and stabilizes the l1 regularization path.

It is also interesting to note that the penalty Pc(β) can be written in a simple
quadratic form

Pc(β) = βtQβ, (5)

where Q = (qij)1≤i,j≤p is a positive definite matrix with general term

qij =

{
2
∑

s�=i
1

1−ρ2
is

if i = j

−2 ρij

1−ρ2
ij

if i �= j.
(6)

As stated earlier, the advantage of our algorithm are: (1) Combine the strengths
of all kind of LASSO-type models with a quadratic penalty designed to capture
additional structure on the features (voxels) in high dimensional setting. (2) De-
velop an easy and fast algorithm using the ”Alternating Direction Method of
Multipliers” approach to find optimal estimator. Alternating Direction Method
of Multipliers (ADMM) optimization is suited for distributed convex optimiza-
tion and distributed computing for big data. In the following, we emphasize on
the advantage of using ADMM on a general lasso-type model with a general
penalty term and we will show that this approach is powerful as it provides fast
and optimal solution. The problem formulation and its corresponding ADMM
algorithm are considered in the following section.
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2.2 Alternating Direction Method of Multipliers

Recently, the alternating direction method of multipliers (ADMM) has been
revisited and successfully applied to solving large scale problems arising from
different applications. In this section we give an overview of ADMM and its
application to solve our problem.

Consider the following optimization problem:

minimize f(β) + g(ξ)

subject to β − ξ = 0, (7)

where f and g are two convex functions and β, ξ ∈ Rp. In this optimization
problem, we have two sets of variables, with separable objective. The augmented
Lagrangian for this problem is:

Lτ (β, ξ, δ) = f(β) + g(ξ) + δt(β − ξ) + (τ/2)‖β − ξ‖22,

where δ is the dual variable for the constraint β − ξ = 0 and τ > 0 is a penalty
parameter.

The augmented Lagrangian methods were developed in part to bring robust-
ness to the dual ascent method, and in particular, to yield convergence without
strong assumptions like strict convexity or finiteness of f and g.
At iteration k, the ADMM algorithm consists of the three steps:

βk+1 := argmin
β

Lτ (β, ξ
k, δk) (8)

ξk+1 := argmin
ξ

Lτ (β
k+1, ξ, δk) (9)

δk+1 := δk + τ(βk+1 − ξk+1). (10)

In the first step of the ADMM algorithm, we fix ξ and δ and minimize the
augmented Lagrangian over β. In the second step, we fix β and δ and minimize
the augmented Lagrangian over ξ finally, we update the dual variable δ. Consider
now the generic problem

minimize l(β) + μβtQβ + λ‖β‖1, (11)

where l is any convex loss function. In an ADMM form, this problem can be
written as

minimize l̃(β) + g(ξ)

subject to β − ξ = 0, (12)

where l̃(β) = l(β) + μβtQβ and g(ξ) = λ‖ξ‖1. The ADMM algorithm can be
expressed on its scaled dual form as:

βk+1 := argmin
β

{
l̃(β) + (τ/2)‖β − ξk + ηk‖22

}
; (13)

ξk+1 := argmin
ξ

{
g(ξ) + (τ/2)‖βk+1 − ξ + ηk‖22

}
; (14)

ηk+1 := ηk + βk+1 − ξk+1. (15)
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The β-update is proximal operator evaluation. Since l̃ is smooth, this can be
done using Newton-Raphson method. The ξ-update has a closed form solution
given by

ξk+1 := Sλ
τ

(
βk+1 + ηk

)
,

where

Sκ(a) = (1 − κ/|a|)+a =

⎧⎨⎩a− κ if a > κ
0 if |a| ≤ κ

a+ κ if a < −κ

is the soft thresholding function introduced and analyzed by [11].

Stopping criteria
The primal and dual residuals at iteration k have the forms:

ekpri = (βk − ξk), ekdual = −τ(ηk − ηk−1).

The ADMM algorithm terminates when the primal and dual residuals satisfy
stopping criterion. A typical stopping criterion is when ‖ekpri‖ ≤ εpri, ‖ekdual‖ ≤
εdual. The tolerances εpri > 0 and εdual > 0 can be chosen using an absolute and
relative criterion, such as εpri =

√
pεabs + εrel max{‖βk‖2, ‖ηk‖2}; and εdual =√

pεabs + εrelτ‖ηk‖2, where εabs > 0 and εrel > 0 are absolute and relative
tolerances. A reasonable value for the relative stopping criterion is εrel = 10−3

or 10−4, while εabs depends on the scale of the typical variable.

2.3 Grouping Effect

The following Lemma tells us that the proposed method enjoys the grouping
effect property, which means that strongly correlated predictors tend to be in or
out of the model together.

Lemma. Given data (y,x), where x = (x1, ...,xp) and tuning parameters (λ1, λ2),

the response is centered and the predictors are standardized. Let β̂(λ1, λ2) = β̂

be the DR LORA estimate. If β̂iβ̂j > 0 and ρkl = ρ, for all (k, l) , then

1

‖y‖2

∣∣∣β̂j − β̂i

∣∣∣ ≤ 1− ρ2

2(p+ ρ− 1)λ2

√
2(1− ρ).

(16)

Comment. When we have highly correlated voxels (ρij → 1) then the right

hand side of (16) → 0. This forces β̂j ≈ β̂i which shows that the proposed
approach has the property of grouping effect.
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3 Experiments

fMRI Data from seven healthy subjects were kindly made available by one of the
authors of [2], Dr. Aude Oliva (an MIT’s Computer Science and Artificial Intelli-
gence Lab researcher). Data were used for validation of our proposed algorithm.
Using Amazons Mechanical Turk, sequence of images were presented (2222 im-
ages) and memorability scores were collected (memorable and forgettable), as
explained in [2]. Images and scenes were then categorized into four distinct con-
ditions: LowFace, HighFace, LowScene and HighScene (see Fig.3). Out of a total
of 2222, One hundred sixty fMRI images/scenes were presented in a block design
grouped by stimulus type (16 seconds of high memorable faces (20 faces), 10 sec-
onds rest (fixation), 16 seconds of low memorable scenes (20 scenes), 10 seconds
rest (fixation), 16 seconds of low memorable scenes (20 faces), 10 seconds rest
(fixation), etc). The fMRI protocol will allow us to use multivariate pattern anal-
yses to see if/which brain regions are encoding memorability of an image, after a
first exposure. The idea is to look at both cortical regions (that encode the type of
visual stimuli) and subcortical medial temporal regions, that are associated with
memory. Because memorability allows to predict later memory at the first expo-
sure of the image, and predict which types of images or faces will be remembered
or forgotten, it is an open question where and how memorability is represented
in the brain. Memorability is a new tool that could be used for detecting memory
deficits, either in short term memory, or in long term memory. Eight sessions
were created for each participant referring to the eight runs (7-14), with 39 slices
and repetition time: TR=2.5 seconds, and a TA (TA = TR (TR/N),)= 2.5 -

Fig. 3. During functional scanning, participants performed target detection on novel
and repeated stimuli from 4 classes: high memorability faces, low memorability faces,
high memorability scenes, low memorability scenes
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(2.5 / 39) = 0.0641). Before looking for brain regions in which the experimental
manipulation had an effect, we needed to preprocess data (realigning, filtering,
spatial normalization etc.) and specify parameters involved such as a) timing
parameters, b) data and design, c) subject and session to be able to do the in-
ference. Data were preprocessed using SPM8 (Wellcome Department of Imaging
Neuroscience, London, UK) [12] and custom Matlab routines. An artifact repair
algorithm (http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm [date last
accessed; 28 August 2007]) was first implemented to detect and remove noise
from individual functional volumes using linear interpolation of the immediately
preceding and following volumes in the time series. Functional images were then
corrected to account for the differences in slice acquisition times by interpolating
the voxel time series using sinc interpolation and resampling the time series us-
ing the center slice as a reference point. Functional volumes were then realigned
to the first volume in the time series to correct for motion. A mean T ∗

2 -weighted
volume was computed during realignment, and the T2-weighted anatomical vol-
ume was coregistered to this mean functional volume. Functional volumes were
high pass filtered to remove low frequency drift before being converted to per-
centage signal change in preparation for univariate statistical analyses or z-scored
in preparation for our analysis. Figure 4 shows two 3D images of the statistical
parametric mapping for group analysis between all subjects. It calculates the
effect of image stimulus on brain after testing hypotheses about regionally spe-
cific effects in our data. Colored regions are activated brain regions due to the
High-Scene stimulus. This is achieved by estimating the beta’s in the model and
testing the significance of each beta. The colored regions of the brain are related
to a significant beta of a specific voxel.

Fig. 4. Two 3D images of the statistical parametric mapping for group analysis between
all subjects. Left panel: LowFace condition. Right panel: HighScene condition.
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3.1 Evaluation of Classification Performance

The performance of DR LORA classifier on the memorability datasets in se-
lecting relevant features was assessed by computing the sensitivity, false posi-
tive rate, accuracy in feature selection and the 10-fold cross-validation accuracy.
To check the performance, we compared the algorithm to popular robust algo-
rithms such as support vector classifier (SVC), Random Forest classifier (RFC),
K-nearest neighborhood classifier (K-NNC) and Naive bayesian classifier NBC).
We randomly split the data into a training set representing 75% of the data and
the 25% remaining is considered as a test data designed to measure the perfor-
mance of the different methods.

The performance metrics such as precision, recall and accuracy were com-
puted as in Table 1. Let Y and Ŷ be random variables representing the class
and the prediction for a randomly drawn sample, respectively. We denote by
+1 and −1 the Face and Scene class, respectively. Further, we use the following
abbreviations for empirical quantities: P (# positive samples), N (# negative
samples), TP (# true positives), TN (# true negatives), FP (# false positives),
FN (# false negatives). We compare different classification methods using the

Table 1. Measures of performance

Measure of performance Estimated by SVC RFC K-NNC NBC DR LORA

Accu(Prediction) TP/Total 0.9375 1.00 0.3750 0.4375 1.00

prec(Precision) TP/(TP+FP) 1.00 1.00 0.67 0.67 1.00

rec(Recall) TP/P 0.91 1.00 0.31 0.36 1.00

Fig. 5. Response to memorability content in anatomically defined MTL ROIs (PHc,
PRc, posterior hippocampus, and anterior hippocampus). (a) Parameter estimates rep-
resenting activation during content blocks relative to baseline. (b) Representing acti-
vation during content blocks relative to repeated event. Error bars represent standard
error of the mean. Asterisks indicate significant differences from baseline (P < 0.05).
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mentioned measures of performance. We can see from Table 1 that the best
performances are given by the DR LORA, Random forest and support vector
machines; the worst performances are given by k-nearest neighbors and naive
Bayes classifier. In terms of model complexity, we note that DR LORA achieves
its best performance using a subset of 22961 voxels (30% reduction of voxels)
while the other competitors use the entire set of voxels which makes the inter-
pretation very difficult.

When encoding runs were contrasted based on subsequent memory
performance (high memorable > low memorable) for both faces and scenes,
differential activation was observed in defined MTL ROIs (parahippocampal
cortex, perirhinal cortex, posterior hippocampus, and anterior hippocampus), see
Figure 5.

4 Conclusion

In this paper, we tried to answer to the question: why some images are con-
sistently forgotten, while others are consistently remembered. For this end, we
have adapted the ADMM algorithm for a doubly regularized logistic regression
models. It has been demonstrated through the analysis of fMRI data set, that
the proposed algorithm gives good performances in both prediction and feature
selection viewpoints.
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Abstract. Visual decision-making involving pairs of individuals tasked
with determining the location of an object is a cognitive process combin-
ing independent systems together. Although it has been observed that
combined systems can improve each of the individual systems, it remains
a challenging problem to determine why and how this will occur. In this
paper, we use Combinatorial Fusion Analysis (CFA) as a methodology
through which we can effectively combine the decisions of two indepen-
dent visual cognition systems. An experiment with 20 trials is performed
in which participants are tasked with determining an object location,
and stating the uncertainty factor for their decision. Our results demon-
strate that the combination of two visual cognition systems using CFA
can match or improve the performance of each individual system only if
the pair of systems perform relatively well and are cognitively diverse.

Keywords: Combinatorial Fusion Analysis (CFA), Rank-Score Charac-
teristic (RSC) Function, Cognitive Diversity, Visual Cognition System.

1 Introduction

The cognitive process of perceptual decision-making – the act of making a defini-
tive judgment – involves the use of sensory systems (particularly visual cognition
systems) and has been of great interest to many fields of science. When individu-
als make a cognitive judgment or decision based on visual sensory input, he/she
is considered to be an independent visual cognition system. The use of combi-
nations of independent visual cognition systems in making a joint decision has
been an area of recent work [6–8],[15],[20]. The results of this research show that
effective combinations of multiple visual cognition systems can be constructed
to reach a more accurate joint decision than independent decisions alone.

Contemporary decision-making research focuses on human cognition systems
and its use and interpretation of visually retrieved information [1],[5],[14],[18],
with wide-reaching applications in areas such as virtual screening, image analy-
sis, task allocation, etc. The work of Bahrami et al. [1] explores joint perceptual

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 33–44, 2014.
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decision-making using multiple scoring systems, seeking a methodology to effec-
tively combine two human visual cognition systems. Given a pair of participants
tasked with reaching a joint image identification decision, Bahrami et al. [1] pro-
poses Weighted Confidence Sharing (WCS) as a predictive method (compared
to other decision-making methods) that best fit empirical data. The findings of
this study show that joint decision accuracy, as well as pair performance, can be
improved through communication between individuals. Ernst et al. [7] expanded
Bahramis’ study into a hypothetical example of two referees viewing a goal line,
sharing information as to whether or not the ball crossed the line. Ernsts study
also validates the effectiveness of WCS, since other predictive methods tend to
omit information that leads to an optimal joint decision.

In contrast to Bahrami and Ernsts studies, Koriat [15] assumes no communi-
cation between participants when seeking an optimal joint decision. He showed
that choosing the more confident participant in a pair, assuming conditions that
prohibited information exchange between individuals, could outperform either
participants individual performance. Other work has been done on the neural
basis of decision making [9],[25] and combining sensory informatics [10].

Each of Batallones et al. [2, 3], McMunn-Coffran et al. [20, 21], and Paolercio
et al. [23] expands upon the works of Bahrami and Ernst by further optimizing
joint visual cognition decisions. In this paper, Ernsts hypothetical soccer ball
experiment is implemented, with each of the 20 trials consisting of a pair of
participants determining the location of an object thrown into a plane from
a considerable distance. Each participant is separately asked to determine the
objects landing position, and the uncertainty factor of their decision (recorded
as a variably-sized radius about each participants respective decision location).
Here, each participant acts as a visual cognition system, where their responses
are collected as points on a two-dimensional Cartesian plane. These cognition
systems are then analyzed using Combinatorial Fusion Analysis (CFA).

CFA is an emerging information fusion paradigm defined and studied by Hsu
et al. [11–13]. It has been used successfully in several domain applications includ-
ing sensor fusion selection and combination [4], information retrieval [11],[22],
protein structure prediction [16], image recognition [17], target tracking [19], ge-
nomics sequencing [24], and virtual screening [25]. CFA entails a set of multiple
scoring systems A1, A2, . . . , Ap, such that each scoring system consists of a score
function sA. The rank function rA is obtained by sorting the score function sA.
A rank-score characteristic (RSC) function, fA, is obtained by composition of
sA with the inverse function of rA, sA ◦ r−1

A = fA. In this paper, the Cognitive
Diversity between two scoring systems A and B, d(A,B), is measured by the
area between fA and fB, d(fA, fB).

Section 2 describes the approach to combining visual cognition systems. It also
covers methods of combination including statistical means and the construction
of scoring systems. Score and rank combinations are offered and criteria for
positive vs. negative results are defined. Section 3 covers the results of the ex-
periments, and Section 4 concludes the paper with a summary and discussion of
further work.
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2 Combinations of Two Visual Cognition Systems

2.1 Using Statistical Means

Pairs of participants (dyads) who base cognitive decisions on visual data are
represented as two individual scoring systems P ,Q. In each trial, the independent
decisions of participants P, Q are each recorded as dP , dQ. These values represent
the participant’s decisions regarding the location they determine the object A to
have landed. The uncertainty factors of their decisions, σP , σQ, are also recorded,
where σ = 0.5r. Here, r is the radius (in inches) of a variably-sized circle centered
about each participant’s guess location.

As detailed by Bahrami et al. [1], meaningful predictions on the dataset can be
generated by combining independent scoring systems using WCS. To numerically
express the dyads’ joint decision, we employ a modified WCS model for Ernst’s
hypothetical scenario, detailed further in [7]. The uncertainty factors are empha-
sized to varying degrees in the generation of joint decisions Mi, i = 0, 1, 2, . . . , n,
where higher values of i imply increased significance and weight on the uncer-
tainty factor values of each participants’ decision. In this study, we restrict Mi

to i = 0, 1, 2, and calculate the joint decision as follows:

Mi =

dP

σi
P
+

dQ

σi
Q

1
σi
P
+ 1

σi
Q

, i = 0, 1, 2 (1)

where dP , dQ are the individual decisions, and σP , σQ are the uncertainty factors.

2.2 Establishing a Common Visual Space

To treat each participant as a visual cognition system, we record their decisions
as x- and y- coordinates. Each pair of visual cognition systems P , Q generates
a 2-dimensional Cartesian plane containing (Px, Py), and (Qx, Qy). To evaluate
this system, we treat the line PQ (the line between (Px, Py) and (Qx, Qy)), as
the Common Visual Space (CVS).

P QP ′ Q′M0

P QP ′ Q′
M1

P QP ′ Q′
M2

Fig. 1. Visualization of the CVS for M0, M1, and M2. Here, the line P ′Q′ displays
how the values i = 0, 1, 2 can affect the position of the statistical mean Mi in relation
to P and Q.
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Since the uncertainty factors σP , σQ can extend beyond PQ, we extend the line
to P ′Q′. To create this new line, we take the longer distance between |PMi| and
|MiQ|, appending 50% of this distance to the greater of the two. To preserve Mi

as the center of the line segment, we append |MiQ′−PMi| to P , thus generating
P ′ (assume that |MiQ| > |PMi| for the sake of this description)

2.3 Constructing Scoring Systems

To construct the scoring system for P ,Q, the positions of P and Q on P ′Q′ and
the uncertainty factors of P and Q are treated as the expected mean and the
variance of P and Q, respectively. It is assumed that each individual assigns the
highest score to the location where they believe the object landed. As we move
away from this point, the score decreases at a rate influenced by the value of
the observer’s uncertainty factor. From the perspective of each individual scoring
system, a higher score implies a higher probability that the object landed at that
point, while a lower score implies a lower probability that the object landed at
that point. The probability model by normal distribution is calculated as follows:

f(x, μ, σ) =
1

σ
√
2π

e−
(x−μ)2

2σ2 (2)

where x is a normal random variable, μ is the mean, and σ is the uncertainty
factor. Theoretically, a normal distribution spans to infinity, therefore our two
scoring systems P and Q create overlapping distributions that span the entire
visual space. Each of the 63 intervals di, i ∈ [1, 63] has a score by P and a score
by Q that range from 0 to 1. The values obtained by this method constitute our
score function.

After we generate the scores for each interval di, we rank di from highest
to lowest. The highest rank receives a smaller number, while the lowest rank
receives the largest number, thus establishing our rank function.

The scoring systems P and Q are constructed from the two visual cognition
systems P and Q, respectively. Each system is a score function s. The score
of di by the score function sP (or sQ) is computed as the probability that the
decision of the visual cognition system P or Q at location di contains the location
of the object. Hence, we are able to score each guess of both visual cognition
systems using a normal distribution N(P, σ2

P ), N(Q, σ2
Q), where σ2

P (or σ2
Q) is

the variance of P (or Q), and i ∈ [1, 63].

2.4 Score and Rank Combinations

Adhering to CFA methodology, we perform another iteration of processing both
the score and rank functions. Two methods of combination are used, which we
refer to as score combination and rank combination. The score combination is
defined as:

C(dj) =

∑2
i=1 si(dj)

2
, j ∈ [1, 63], (3)
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where si(dj) is the score at each interval dj . The rank combination function is
defined as:

D(dj) =

∑2
i=1 ri(dj)

2
, j ∈ [1, 63], (4)

where ri(dj) is the rank at each interval, dj , j ∈ [1, 63], and the score function
and rank function are s and r respectively. For each of the 63 intervals, the
score values and rank values of P and Q are combined respectively. The score
combination of systems P and Q is labeled as C, and the rank combination of
systems P and Q is labeled as D.

x

y

P

C

Mi

D

Q

A

Fig. 2. An example of analysis using M,C,D, P,Q comparing distances to the actual
A. Here, P and Q denote the individual systems, C and D represent score combination
and rank combination respectively, and Mi represents the statistical mean.

Each interval di in C and D are ranked, where CFA considers the top-ranked
intervals in C,D as optimal points (see Figure 2)

2.5 Cognitive Diversity and the Performance Ratio

Cognitive Diversity. The Rank-Score Characteristic Function (RSC) of the
scoring system A is defined as (see [12, 13]):

fA(i) =
(
sA ◦ r−1

A

)
(i) = sA

(
r−1
A (i)

)
(5)

where sA and rA are the score and rank functions of the scoring system A. The
rank-score characteristics function can be computed by sorting the score values in
sA(dj) using the rank value as the key, where j ∈ [1, 63]. The RSC calculates the
Cognitive Diversity by measuring the gap among Cognitive Diversity d(A,B)
of the two scoring systems A and B. Cognitive Diversity between two visual
cognition systems, d(P,Q), is defined by the two RSC functions fP , fQ of the
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scoring systems P and Q. Cognitive Diversity measures how distinct each scoring
system is relative to the other paired scoring system, where we can calculate
d(P,Q) = d(fP , fQ) by

d(P,Q) =

√∑63
i=1[fP (i)− fQ(i)]2

63
(6)

Yang et al. [25] defines positive and negative cases for pair combinations to
describe whether the combinations outperform each of their constituent systems.
Under a positive case, either score or rank combination has improved upon the
performances of the individual systems. If a pair of systems P and Q exhibit
Cognitive Diversity and/or high performance ratio, then this pair is likely to be
a positive case. The higher the Cognitive Diversity of the scoring systems, the
higher the likelihood for positive cases [11–13],[22].

Performance Ratio. The relative performance of individual systems within a
trial is called the Performance Ratio. Like Cognitive Diversity, there is a direct
relationship between performance ratio and the performance of the rank/score
combinations. Relatively good performances within a trial implies that their
combination will outperform each individual system as demonstrated by Yang
et. al. [25]. The properties of this ratio are as follows:

1. The ratio value is between zero and one, as the performance value of the
worse system is divided by the performance value of the better system

2. The ratio is not affected by the performance values themselves, but by the
performance difference within a pair of systems. For example, it is permissible
for two low performing systems to have a high performance ratio if the overall
performance difference is low, and vice versa.

To generate the performance ratio, we first invert all current performance values,
such that the performance values are directly related to actual performance (the
higher the value, the closer to actual the system is). These inverted columns
are normalized with respect to the largest value of all pairs. Normalization is
the rescaling procedure for a set of values from their original range to the range
(0, 1]. The performance ratio is derived by dividing the lower performing system
by the higher performing system, where this ratio is normalized once more to
the range (0, 1].

3 Experiments

3.1 Data Collection

Our experimental data collection consists of twenty randomly selected paired
participants in a public park, situated in a marked 25 by 30 feet grid. Each pair
of participants stood 40 feet from a marked prop and stood 10 feet apart from
one another. Parallel to the participants stood the head research coordinator
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with a 1.5 by 1.5 inch flat round object; the object was constructed of metal
washers with a peculiar design to satisfy three criteria: first, a static landing
with minimum residual movement; second, a satisfying visibility while airborne;
and third, upon landing, minuscule enough to stay subtle once on the ground.

The participants were directed to observe the object as the object was pro-
pelled from the coordinators persons onto to the marked grid. Our grid is an
emulation modeled after [2] with a slight visual enhancement for the observers.
The perimeter of the marked grid is outlined using orange flags placed at 5 foot
intervals. Two coordinators stood opposite of each other in the field, one top left
of the grid and the other top right of the grid facing the participants. Two other
coordinators stood next to each participant, respectfully.

Once the research coordinator throws the object, each participant, simultane-
ously and independently, instructs the far opposing researchers to the perceived
location of the object, where a marker is planted on the ground at each par-
ticipants’ chosen location. Due to the complexity of individual visual cognition
systems, the disparity between the location of the actual and the marker location
of each participant can vary widely or slightly depending on internal and exter-
nal factors, such as height, participant visual ability, weather conditions, and so
on. After the markers are placed, we quantify the observers uncertainty factors
using a tool similar to a divider caliper. This tool is introduced and explained
to the participant, and the uncertainty factor is recorded by placing the tool
over each participants marker location. The participants chose their uncertainty
factors around his or her respective marker location by directing a coordinator
to either increase or decrease the size of the tool. The tool emphasizes the shape
of a circle expanding or contracting about the participants marker location, al-
lowing the participant to decide how wide a circle is necessary to encapsulate
both their respective marker location and the actual object location.

Measurements for the tool provided participant uncertainty factor values: a
narrower circle radius yielded a smaller uncertainty factor value, while a wider
circle radius yielded a larger uncertainty factor value. Here, smaller uncertainty
values imply that a participant was confident in their decision, while larger
uncertainty values imply the opposite. After the uncertainty factor values were
recorded, the participants were shown their chosen marker locations and the
location of the actual object.

At the conclusion of the experiment, eight values were recorded for each trial.
The x- and y- coordinates for participants P and Q, the x- and y- coordinates
for the object A, and the uncertainty value radii for participants P and Q. This
methodology of data collection was performed a total of twenty times for this
experiment. This data is labeled as #09/15/2013.

After the data was collected, the decisions of P and Q, marked as P (and Q),
are used to obtain line segment PQ. We located the weighted confidence mean
of M0,M1, and M2 by using the uncertainty factor radii taken from P and Q as
σP and σQ. We extend the line segment PQ to P ′Q′. In order to join the two
visual cognition systems, we need to establish a common ground that accounts
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for the visual space of both participants. The 63 intervals along the P ′Q′ line
serve as the common visual space to be scored.

When the line segment P ′Q′ is divided into 63 intervals for eachMi, i = 0, 1, 2,
the intervals are scored according to the normal distribution of P and Q by using
the location of P and Q as the mean and σP and σQ as the standard deviation,
respectively. Both systems assume the set of common interval midpoints di, i ∈
[1, 63]. The score functions sP (di) and sQ(di) map each interval di to a score
in systems P and Q. The rank function rP (di) and rQ(di) map each di to a
positive integer from 1 to 63 by assigning 1 to the highest score and 63 to the
lowest score for each di.

For each of the statistical means M0, M1, and M2, we apply the score combi-
nation C and rank combination D given by formulas 3 and 4. The highest score
combination in the interval is chosen as the score combination C and the lowest
rank combination is chosen as the rank combination D. Then we calculate the
performance of each system P,Q,Mi, C,D, for i = 0, 1, 2 by calculating the dis-
tance of these five points to the actual object A. The performances of each point
are ranked from 1 to 5. The point with the shortest distance from the target is
ranked 1.

3.2 Results and Analysis

In Figure 3, the first column labeled Trial is the specific trial that was analyzed.
Column (a) provides the performances of P and Q in inches, which is the distance

M0 M1 M2 P Q M0 C D P Q M1 C D P Q M2 C D

Trial 1 (33.6,28.2) (12,8) 1 2 3 4 2 1 2 4 5 2 1 2 2 4 3 1 4 2
Trial 2 (5.4,27.8) (6,14) 2 1 3 1 5 4 1 1 2 5 1 2 2 2 4 1 4 3
Trial 3 (136.8,154.6) (16.5,15) 3 2 1 1 4 3 4 1 1 5 2 3 3 1 5 2 3 3
Trial 4 (7.2,41) (6,10) 3 2 1 1 5 4 1 1 2 4 3 4 1 2 4 3 4 1
Trial 5 (55.1,40.8) (21,9) 1 2 3 4 2 1 2 4 5 2 1 2 2 4 3 1 4 2
Trial 6 (86,27.6) (15,6) 3 2 1 4 1 3 1 4 4 2 3 4 1 4 3 1 4 2
Trial 7 (103.8,65.6) (18,13.5) 1 2 3 4 1 3 1 4 4 1 3 4 2 4 1 3 4 2
Trial 8 (12,22.2) (11,11) 3 2 1 1 4 3 4 1 1 4 3 4 1 1 4 3 4 1
Trial 9 (97.6,281.4) (29,17) 3 2 1 1 4 3 4 1 1 5 3 1 4 1 5 3 1 4
Trial 10 (80.8,57.6) (14.5,6) 3 2 1 4 1 3 1 4 5 2 4 1 3 5 2 4 1 3
Trial 11 (46,43.2) (9,10) 3 2 1 3 1 2 3 3 3 1 2 4 4 5 1 2 3 3
Trial 12 (58,45.7) (6,6) 3 2 1 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3
Trial 13 (11,58.5) (6,19) 2 1 2 1 4 3 1 4 1 4 3 4 2 3 4 1 4 2
Trial 14 (2,68.3) (6,14) 1 2 3 1 4 3 1 4 1 5 4 1 1 2 4 3 4 1
Trial 15 (12,35.5) (6,8) 2 1 3 1 5 4 1 1 2 4 3 4 1 2 4 3 4 1
Trial 16 (51.4,37.8) (10,8) 1 2 3 4 1 3 1 4 5 2 4 1 3 5 1 4 2 2
Trial 17 (28,13.2) (6,11) 3 2 1 3 2 1 3 3 5 1 3 1 4 5 1 3 1 4
Trial 18 (29.4,384.3) (6.5,15) 1 2 3 1 3 2 3 3 1 3 2 3 3 1 3 2 3 3
Trial 19 (18.3,53.6) (10,19.5) 1 2 3 1 5 4 1 1 2 4 1 4 3 2 4 1 4 3
Trial 20 (33.6,54.3) (13,8) 2 3 1 2 4 1 4 2 2 5 1 2 4 1 5 3 1 4

Trial (a): Per (P,Q) (b): Un. Factors (P,Q)
(c): Rank (d):Rank(P,Q,Mi,C,D) for i= 0,1, 2

Fig. 3. Summary of Experiment and Analysis of Results: (a): shows the performances
of systems P and Q; (b) shows the uncertainty factors for P and Q; (c) ranks the
performances of the statistical means M0, M1, M2; (d) ranks the performances of
the individual systems P and Q; score combination C, rank combination D, and the
statistical means Mi, i = 0, 1, 2.
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between P and the actual A, and the distance between Q and actual A. Column
(b) provides the uncertainty factor radii of P and Q.

In (b), there are green, white, and gray cells. The green cells indicate that
choosing the more confident system would lead to the more optimal decision
(by Koriats criteria). The gray cells indicate that uncertainty factor radii are
equal, implying that Koriats criteria does not apply. The white cells indicate
that choosing the more confident system (P or Q) does not lead to an optimal
decision. These cases exhibit situations opposite to Koriat’s criterion.

Column (c) ranks the relative performance of weighted means M0,M1, and
M2 against one another, within the scope of each trial. A yellow cell indicates
that the weighted mean is the highest ranked performer among P, Q, Mi, C,
and D. White cells indicate that the weighted mean is not the highest ranked
performer among its respective values of P, Q, Mi, C, and D.

Column (d) is broken up into 3 sub-columns. Each sub-column ranks P, Q,
Mi, C, and D in descending order of performance. The number 1 indicates the
best (or closest) performance to actual A, while the number 5 indicates the worst
(or farthest) performance from A. Multiple occurring values imply that a tie has
occurred for a performance ranking. If, for example, both C and D have the same
interval as their optimal decision, then they will share the same performance,
and subsequently the same performance rank. Red cells indicate when the score
combinations (D) (or the rank combination (C)) are superior to the individual
performances of P and Q. Gray cells indicate when C (or D) shares the same

Performance Ratio(plow/phigh)

0.3 0.4 0.5 0.6

Cognitive Diversity d(P,Q)

0.2

0.3

0.4
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0.6
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x

Line M0

Line M1

Line M2
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Negative Cases

Fig. 4. Positive and Negative Cases on Cognitive Diversity vs Performance Ratio
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performance as the best performer of P and Q. White cells (in the columns
of C and D) indicate when C (or D) fails to provide a superior decision when
compared to P and Q.

Figure 4 depicts positive cases and negative cases with respect to criteria, i.e.
Cognitive Diversity vs. performance ratio calculated in Section 2.5. Circle “o”
is the center of all positive cases where combinations of P and Q are better or
equal to the best of P and Q. “x” denotes the center of all negative cases where
the combined system of P and Q are but a positive case. Overall, we see that
Cognitive Diversity and performance ratio can be used to discriminate positive
vs. negative cases.

4 Discussion and Remarks

Our results demonstrate that CFA is a viable method to combine two visual
cognition systems. 13 of the 60 trials (based on M0,M1, and M2) show that C
or D perform better than P and Q, while 45 out of the 60 total trials perform
better than or equal to the best performer of P or Q. This gives an improvement
rate of 75%. Koriat’s criterion also gives a 75% correct rate (15 out of 20 trials).
The only case not covered by Koriat’s criterion or by the CFA framework is
Trial 11. Trial 3, 9, 17, and 20, which cannot be covered by Koriat’s criterion,
can indeed be improved by the CFA method, while Trial 12 and 18, on which
CFA does not perform well, can be covered by Koriat’s criterion.

Overall, CFA method compares favorably to the statistical mean Mi, i =
0, 1, 2. M0 improves P,Q in 4 out of 20 trials, while CFA improves M0 in 13 out
of 20 trials. M1 improves P,Q in 5 out of 20 trials, while CFA improves M1 in
11 out of 20 trials. Finally, M2 improves P,Q in 6 out of 20 trials, while CFA
improves M2 in 10 out of 20 trials. Overall, it is demonstrated that the CFA
framework compares favorably with the statistical means M0,M1, and M2.

While our current work demonstrated the power of the CFA framework using
the rank-score characteristic (RSC) function to measure the Cognitive Diver-
sity between two visual cognition systems. We are working on more experiments
to broaden our sampling practices. Nevertheless, we have shown that the CFA
method is useful in investigating joint decision making on visual cognition sys-
tems. It can also be expected to work well in other cognitive neuroscience do-
mains.
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Abstract. Regarding to aversive stimuli, previous studies on emotion response 
and formation are plentiful, whereas concentrations on the emotional recovery 
are comparatively insufficient. The present study focused on the discomfort in-
duced by looking at aversive pictures, and the emotional self-regulation during 
the following recovery period. A functional magnetic resonance imaging 
(fMRI) experiment with prolonged paradigm was recruited to investigate how 
brain-state shifted across three stages: picture viewing, earlier resting period, 
and latter resting period. Comparing with neutral pictures, aversive pictures ac-
tivated the caudate nucleus centric subcortical areas, which also kept firing dur-
ing the resting period. Meanwhile an activation pattern gradually appeared in 
fronto-parietal regions that were found negatively correlated to subcortical 
areas. Our findings suggest that the emotional recovery from discomfort is also 
a procedure accompanied by the strategy shift from passively suppressing emo-
tional response to actively controlling the attention. 

1 Introduction 

Numerous researches on emotional response and its modulation have been yielded 
along with the widespread use of the fMRI [1-3]. Compared with positive emotions, 
emotional experiences with negative valence induced by aversive stimuli are more 
instinctive, such as fear and disgust. Previous studies proposed specific circuits for fear 
and disgust respectively. In general, fear arouses a network composed of some pre-
fronto-limbic areas including amygdala, insula, orbitofrontal cortex (OFC), and ante-
rior cingulate cortex (ACC) [4]. On the other hand, the disgust-related processing is 
implicated to be associated with basal ganglia [5, 6]. However, the involvement of 
basal ganglia can’t be completely excluded from the fear-related network when threat 
is perceived. Evidence revealed that the caudate nucleus and putamen that are the primary 
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components of basal ganglia were activated during subjects observed the fearful body 
expressions [7]. Other neuroimaging studies specifically reported frontal activity together 
with subcortical activations during processing of threat-related facial expressions [8, 9]. 
In addition, concurrence of both fear and disgust appeared in some circumstances. Investi-
gations on blood-injection-injury (BII) phobia, spider phobia, and contamination-related 
obsessive-compulsive disorder (OCD) suggested all these disorders were characte-
rized by both fear and disgust [10, 11]. Given the debatable independence of fear-specific 
circuit and the tangled relationship between fear and disgust, we didn’t put focus on how 
to establish the respective network for fear and disgust, but concerned on the experience 
and self-modulation in treating the discomfort induced by both fear and disgust.  

Much of the progress has come from studies of aversive emotions, especially emo-
tion conditioning based on the classic Pavlovian paradigm, in which the formation 
and learning procedure of aversive emotions are particularly highlighted while the 
aftermaths are always overlooked [4, 12]. Relative to the stress response or emotional 
contagion, researches on the recovery from emotional discomfort is insufficient. It is 
more valuable to work out the recovery mechanism to those people who are suffering 
from traumas. For such a research, the longitudinal design is more preferable. Eryil-
maz, H. et al. [13] implemented an experiment by tracing the subsequent brain activi-
ty at the 90-second resting period following fearful movie clips. Their findings  
revealed that short emotional events may have prolonged effects on spontaneous brain 
states at rest. We employed a similar pattern that underlined the subsequent discom-
fort induced by aversive pictures. But the resting period was extended to 4 minutes 
since we supposed the recovery to be a slower and more gradual procedure. 

It has come to light that people are inclined to monitor their mood state and self-
regulate their emotion to comfortable levels [14]. Attention deployment and cognitive 
change are two effective strategies to modulate emotions [15]. The present study  
attempted to investigate the overall process of brain-state shift and emotional  
self-regulation during the dynamic recovery of subjects, from they began to perceive 
aversive stimuli until finished the following rest, and also to verify the involvement of 
strategies during the recovery when considering its role in mediating the emotional 
regulation.  

2 Materials and Methods 

2.1 Subjects 

We recruited twenty right-handed healthy postgraduates (10 females) with the mean 
age of 25 ± 1.3 years and normal or corrected-to-normal vision, to participate in the 
experiment. None of them reported any history of neurological or psychiatric diseas-
es. All the subjects signed the informed consent and this study was approved by the 
Ethics committee of Xuanwu Hospital, Capital Medical University. 

2.2 Stimuli 

Fifteen aversive pictures and fifteen neutral pictures were selected from the Interna-
tional Affective Picture System (IAPS) which is based on normative ratings in  
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valence and arousal [16]. The contents of pictures involving snakes, spiders, attacks, 
bloody wounds, and dead bodies were adopted for the aversive stimuli, with the mean 
valence of 2.61 ± 1.60 and the mean arousal of 6.30 ± 2.14. In contrast, pictures of 
household items in simple contexts (e.g., a cup on a table) were used as the neutral 
stimuli, with the mean valence of 5.01 ± 1.13 and the mean arousal of 3.05 ± 1.94. 

2.3 Experimental Design 

A one-group, “pre-post” test-designed fMRI experiment was used (see Figure 1). We 
presented the neutral pictures only in the pre-test session, and aversive pictures only 
in the post-test session. In each session, fifteen emotional pictures were successively 
displayed for 1 minute, at a rate of 4 seconds per picture. Subjects were required to 
view all the pictures carefully. A four-minute resting period subsequently followed 
the picture viewing stage (PVS), in which subjects were asked to keep their eyes open 
and relax without thinking. In order to compare different phases, we divided the rest-
ing period into two parts factitiously: the first minute named early resting stage (ERS) 
and the last three minutes named later resting stage (LRS). The interval between the 
pre- and post- tests was 15 minutes. 

2.4 MR Data Acquisition 

A 3.0 T MRI system (Siemens Trio Tim; Siemens Medical System, Erlanger, Germany) 
and a 12-channel phased array head coil were employed for the scanning. Foam pad-
ding and headphone were used to limit head motion and reduce scanning noise. 192 
slices of structural images with a thickness of 1 mm were acquired by using a T1 
weighted 3D MPRAGE sequence (TR = 1600 ms, TE = 3.28 ms, TI = 800 ms, 
FOV = 256 × 256 mm2, flip angle = 9°, voxel size = 1 × 1 × 1 mm3). Functional im-
ages were collected through a T2 gradient-echo EPI sequence (TR = 2000 ms, 
TE = 31 ms, flip angle = 90°, FOV = 240 × 240 mm2, matrix size = 64 × 64). Thirty 
axial slices with a thickness of 4 mm and an interslice gap of 0.8 mm were acquired.  

 

Fig. 1. Subjects should view 15 neutral pictures in the pre-test session and 15 aversive pictures in 
the post-test session separately. Each session started with a 1-minute PVS, followed by a 1-minute 
ERS and a 3-minute LRS subsequently. The interval of the two sessions was 15 minutes. Abbrev-
iations: PVS: picture viewing stage, ERS: early resting stage, LRS: later resting stage. 
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2.5 Data Preprocessing 

The preprocessing of fMRI data was implemented with SPM8 software (Wellcome 
Department of Cognitive Neurology, London, UK, http://www.fil.ion.ucl. ac.uk). The 
first two images have been discarded to allow the magnetization to approach dynamic 
equilibrium. The data format was converted to make the fMRI data available for the 
SPM software, then a series of stages followed: realignment that aimed at identifying 
and correcting redundant body motions, coregistering that merged the high resolution 
structural image with the mean image of the EPI series, normalization that adjusted 
the structural image to the MNI template and applied normalization parameters to EPI 
images, smoothing that had fMRI data smoothed with an 8 mm FWHM isotropic 
Gaussian kernel. After normalization, all volumes were resampled into 3×3×3 mm3 vox-
els. Head movement was less than 2 mm in all cases. 

2.6 fMRI Analysis 

Data from the two sessions were statistically analyzed by using SPM8. In one session, 
images of PVS, ERS, and LRS, and the contrasts among them were created indivi-
dually based on the general linear model. In the group-level, paired t-tests were im-
plemented for each stage to examine the different activated patterns between the  
pre-test and post-test. Moreover, one-sample t-tests were performed for the contrast 
images. For each session, the contrasts of ERS > PVS and LRS > PVS revealed the 
pattern of increased activation in the rest period compared with the picture viewing; 
the pattern of decreased activation was shown by the reverse contrasts. Activations 
reported survived an uncorrected voxel-level intensity threshold of p < 0.001 with 
minimum cluster size of k > 30 voxels. Regions of activation originally obtained in 
MNI coordinates were converted into Talairach coordinates with the GingerALE and 
labeled with Talairach Daemon (BrainMap Project, Research Imaging Center of the 
University of Texas Health Science Center, San Antonio, USA, http://brainmap.org). 

Functional connectivity analysis was also applied to elicit the relationship between 
activation patterns. The ROIs (radius=6 mm) were defined based on the exploratory 
results. The mean time-course across voxels within an ROI was extracted after the 
linear trend was removed, with the help of Resting-State fMRI Data Analysis Toolkit 
[17]. The Pearson correlation coefficients of the time courses between pairs of ROIs 
were used to determine the connectivity, with a threshold of the t-tests based on a 
Fisher's r-to-z transformation. Finally, a seed-oriented connectivity analysis was per-
formed voxel-by-voxel all over the brain.  

3 Results 

Paired t-Tests between Two Sessions. It was shown that the aversive pictures in the 
post-test induced stronger and more extensive activation, while the neutral pictures in 
pre-test activated nowhere but the visual cortex. Images were contrasted in couples  
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between the two sessions for each stage including the picture viewing, early resting 
period, and latter resting period. Increased activation was identified only in the  
contrast of Post-test > Pre-test, which may be associated with the discomfort caused 
by the aversive stimuli (see Table 1). In the PVS, significant brain activation was 
observed in visual cortex, posterior cingulate cortex, striatal-thalamic areas, motor 
cortex, and frontal cortex including the opercular and orbital parts. Activated regions 
reduced obviously in the ERS, involving the left lingual gyrus, left caudate nucleus, 
right superior temporal gyrus, and posterior cingulate on the right. In the LRS, only 
activations of left lingual gyrus, left caudate nucleus, and the rostral portions of right 
middle frontal gyrus were detected (see Figure 2). 

Table 1. Activated regions revealed by the paired t-tests. Loci of maxima are in Talairach 
coordinates in millimeters. All regions survived the statistical threshold of p < 0.001 
(uncorrected), cluster size k > 30 voxels. 

Stage 

(Post-test > Pre-test) 

Region BA Cluster Talairach Coordinates T-score 

x y z 

PVS L. MOG 19 805 -35 -67 -2 7.43 

 L. IFG / PreCG 44 / 6 94 -32 -5 31 6.53 

 L. MFG 46 10 -46 32 24 5.60 

 L. PCun 31 28 -7 -69 15 5.54 

 L. SOG 7 84 -18 -61 21 6.50 

 L. Insula / CN 68 -21 19 17 6.62 

 L. Thalamus 13 -23 -22 3 5.12 

 L. STG 41 11 -40 -40 12 5.87 

 R. FFG 37 34 32 -43 -15 6.62 

 R. CN 72 18 24 21 7.63 

 R. IFG 44 35 46 7 17 6.41 

 R. OFC 47 30 46 31 1 4.61 

 R. PoCG 4 42 46 -19 28 5.60 

 R. PreCG 6 47 38 -5 27 6.62 

 R. CG 31 29 12 -40 39 5.87 

 L.R. SMA 6 27 -2 -11 64 5.33 

 R. Thalamus 12 7 -10 18 5.75 

 R. PCun 7 19 15 -57 38 4.88 

ERS L. LinG 19 416 -26 -73 -2 5.54 

 L. CN 168 -23 19 17 5.01 

 R. STG 46 27 -38 13 6.16 

 R. PCC 30 / 31 33 13 -62 5 4.42 

LRS L.LinG 17 470 -18 -71 12 4.9 

 L. CN 108 -18 22 7 4.93 

 R. MFG 10 30 19 42 9 4.43 

Abbreviation: MOG: middle occipital gyrus, IFG: inferior frontal gyrus, MFG: middle frontal gyrus, PCun: 

precuneus, SOG: superior occipital gyrus, CN: caudate nucleus, STG: superior temporal gyrus, FFG: fusi-

form gyrus, OFC: orbital frontal cortex, PoCG: postcentral gyrus, PreCG: precentral gyrus, CG: cingulate 

gyrus, SMA: supplementary motor area, LinG: lingual gyrus, PCC: posterior cingulate cortex. 
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Fig. 2. Images were compared in couples between the two sessions for each stage with the 
paired t-tests. Increased activation was identified only in the contrast of Post-test > Pre-test with 
the threshold of p < 0.001 (uncorrected) and k > 30, revealed in MNI coordinates. The Color 
bar indicates the t-score. Abbreviations: PVS: picture viewing stage, ERS: early resting stage, 
LRS: later resting stage. 

Shift of Brain-State in the Post-Test. The emotional arousal in each stage brought 
by aversive pictures was revealed by the paired t-tests. However, the apparent differ-
ences across the three stages could not be identified unless the three stages were con-
trasted mutually. Thus, the contrasts of ERS vs. PVS and LRS vs. PVS in the post-test 
session were performed to show the processing of self-regulation and the shift of 
brain-state when subjects responded to the emotional discomfort (see Table 2). The 
contrast of ERS > PVS brought about the increased activation in fronto-parietal areas 
including angular gyrus and middle frontal gyrus, and the decreased activation in 
visual-spatial processing-related regions and areas corresponding to emotional sa-
lience, such as insula and hippocampus. The contrast of LRS > PVS inherited a ho-
mologous pattern, but with stronger increased activation in the fronto-parietal circuit 
and milder decreased activation in subcortical-limbic regions (see Figure 3).  

Relationship between Caudate and Fronto-Parietal Network. The activation in 
caudate nucleus (CN) and posterior cingulate cortex (PCC) can be observed through-
out the whole course in the post-test (see Figure 2). However, the activation in PCC 
dropped off as time passed, while the condition of CN seemed to be sustained, espe-
cially the one on the left. On the other hand, from the early rest to the latter rest, the 
activation of the fronto-parietal network (FPN) gradually emerged (see Figure 3).  
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Table 2. Regions significantly activated following ERS vs. PVS and LRS vs. PVS. Loci of 
maxima are in Talairach coordinates in millimeters. All regions survived the statistical 
threshold of p < 0.001 (uncorrected), cluster size k > 30 voxels.  

Contrast 

 

Region BA Cluster Talairach Coordinates T-score 

x y z

ERS > PVS L. AG 39 / 40 196 -46 -70 30 6.35 

 R. AG 40 113 54 -56 30 5.95 

 R. PCun 31 33 1 -70 31 4.38 

 R. MFG 9 15 32 16 42 4.80 

LRS > PVS L. AG 39 / 40 65 -49 -56 31 4.82 

 L. MFG 9 10 -32 22 39 4.67 

 R. AG 39 21 54 -59 30 4.77 

 R. SMG 40 33 43 -48 31 5.20 

 R. MFG 9 38 29 19 40 4.76 

ERS < PVS L. MOG 18 967 -13 -96 7 7.35 

 L. SPL 7 76 -27 -52 48 4.73 

 R. MOG 19 602 24 -84 3 8.36 

 R. SPL 7 215 23 -54 41 4.69 

 R. Hipp 27 244 5 -36 -6 6.67 

 R. Insula 13 153 40 -2 22 6.30 

 R. Putamen 32 27 -8 -3 5.00 

 R. PoCG 2 39 60 -23 36 4.50 

LRS < PVS L. MOG 18 1005 -15 -96 7 8.72 

 R. MOG 18 643 24 -87 3 8.12 

 R. PCun 7 121 29 -50 50 4.74 

 R. PoCG 2 35 54 -30 47 4.49 

Abbreviation: AG: angular gyrus, SMG: supramarginal gyrus, SPL: superior parietal lobule Hipp: hippocampus. 

 

Fig. 3. Regions of activation were revealed by contrasts of ERS vs. PVS and LRS vs. PVS. (A) 
Both increasingly and decreasingly activated regions were rendered on the surface of brain. As 
increasingly activated regions, the fronto-parietal network (FPN) gradually emerged; (B) the 
decreased activation was presented in the axial view in MNI coordinates.  
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In order to understand the roles CN and FPN played during the recovery from  
emotional discomfort, and make out the interrelation between them, the functional 
connectivity analysis was performed. Firstly, five ROIs corresponding to left CN, 
bilateral middle frontal gyrus (MFG), and bilateral angular gyrus (AG) were selected. 
All the coordinates for the five ROIs were taken from the activated regions in the 
latter rest period in consideration of the instability of the other two stages. The ROIs 
were oriented at (-18, 22, 7), (-32, 22, 39), (29, 19, 40), (-49, -56, 31), and (54, -59, 
30) respectively, in Talairach coordinates (see Table 1 and 2). The Pearson correlation 
coefficients of the time courses between any pair of the ROIs were calculated, 
followed by a t-test based on the Fisher's r-to-z transformation (see Figure 4). It 
turned out a significant negative correlation between left CN and right AG with the r 
value of -0.44 at two tailed 0.05 level. Connections between the left CN and other 
nodes could not be determined. In contrast, the other four nodes except CN 
demonstrated high correlation to each other, which may imply the existence of 
segregation between CN and other fronto-parietal nodes during the emotion recovery. 
At last, the voxel-based connectivity analyses were conducted, using the left CN 
(-18, 22, 7) and right AG (54, -59, 30) as the center respectively. A dissociable pattern 
with two separate networks was generated. The CN centric network primarily in-
volved the subcortical-limbic system, extending posteriorly to the visual cortex, and 
dorsally to the motor cortex. The AG centric network seemed to be associated with 
the default mode network (DMN), but mixed with some regions of emotional modula-
tion and cognitive control, such as OFG and MFG. 

4 Discussion 

The present study revealed an overall perspective from three aspects: different pat-
terns of brain activation induced by aversive stimuli, brain-state shift over the whole 
course of emotional self-regulation, and the neural circuits involved in these 
processing. From perceiving the fearful and disgusting pictures to reducing the emo-
tional discomfort by self-modulation, an intrinsic mode on how to deal with the aver-
sive emotions by switching strategies spontaneously emerged.  

4.1 Pathways for Transferring the Aversive Information and Discomfort 

The discomfort in the experiment was triggered by a complex emotion blending fear 
and disgust together, which caused activation mainly in caudate centric subcortical 
areas, but slightly in amygdala. The generation of the discomfort followed the transfe-
rence of aversive stimuli through the cortico-basal ganglia-thalamo-cortical loop. In 
general, the basal ganglia was described as a set of input structures that receive direct 
input from the cerebral cortex, and output structures that project back to the cerebral 
cortex via the thalamus [18]. In this case, aversive stimuli were passed to the subcortical 
areas consisting of basal ganglia and thalamus along the visual ventral stream, which 
can be evidenced by the connections between visual cortex and subcortical areas in the 
CN centric network (see Figure 4). However, the subcortical areas functioned not only 
as a relay station, but also a significant node for processing the emotional information.  
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Fig. 4. Results of functional connectivity analyses. (A) A significant negative correlation was 
found between left CN and right AG with the r value of -0.44 at two tailed 0.05 level. The 
negative correlation can be seen from the blood oxygen level dependent (BOLD) signals ex-
tracted from the two ROIs. (B) Two networks were disassociated by voxel-based connectivity 
analysis. The left CN centric network primarily involved the subcortical-limbic system, togeth-
er with the visual cortex, and motor cortex; the right AG centric network correlated with the 
default mode network (DMN), and extending to OFG and MFG.  

In previous studies, the subcortical pathway was proposed to provide a quick anal-
ysis of the affective properties of stimuli that serves as an initial template for subse-
quent processing [19]. Moreover, evidence also exists linking the caudate nucleus 
with aversive learning. Especially lesions to this region have led to failure in condi-
tioned emotional response, conditioned freezing and passive and active avoidance 
[20]. Thus, it is implied that the CN centric subcortical areas processed the aversive 
stimuli, and then delivered signals back to cerebral cortex accompanied with discomfort. 

4.2 The Function of Caudate in Processing Discomfort 

As a crucial element of the brain reward system that plays a critical role in the re-
sponse to pleasure and pain, CN centric basal ganglia is directly activated in anticipation 
of aversive stimuli [21]. In this study, the role of right CN in emotional response can 
be inferred from the inhibitory activation when picture viewing finished (see Figure 2). 
Most activation in the frontal and temporal cortices including the right CN decayed 
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rapidly from the resting periods began, which illustrated the dependence of such re-
gions on the emotional stimuli. Nevertheless, the consistent activation in left CN 
presented its participation in the aftertreatment to the aversive emotion, indicating the 
function of some parts of caudate engaging in the modulation during emotional 
recovery. This processing may be connected to motor functions. In addition to the 
emotional functions, the primary function of basal ganglia is proposed to control and 
regulate activities of the motor and premotor cortical areas to promote the voluntary 
movements and manual response inhibition [22]. The striatum, the main input station 
of the basal ganglia, is considered as an important region for stopping. It is suggested 
that the striatum is involved in proactive inhibitory control over the primary motor 
cortex (M1) by suppression [23]. A similar procedure may have been applied to  
emotional self-regulation. Associating the connection to the regulation of aversive 
emotion, it is more likely that the CN centric basal ganglia modulate emotion by sup-
pressing the emotional response to aversive stimuli.  

4.3 The Switch of Strategies on Emotional Self-regulation 

Different strategies can be applied to regulate emotional responses [15]. Over the 
whole course of post-test session, two dissociable networks were displayed supporting 
two different strategies on emotional self-regulation. The left CN centric network 
made up of subcortical areas, visual cortex, and motor cortex, referred to a passive 
“strategy” of suppression; the right AG centric network primarily based on the DMN 
network mixed with bilateral MFG and OFG, referred to a strategy of active control. 
These right AG related regions were highly consistent with the executive-control 
network (ECN) that has been verified to be connected to working memory and control 
processes [24]. During the recovery procedure, the connection between MFG and 
posterior parietal cortex (PPC) tended to be closer as time went on, with increasingly 
common activation in the relevant areas. As shown in Figure 3, the pattern of com-
mon activation can be revealed more conspicuously in the latter resting state than in 
earlier resting state through the longitudinal contrasts among stages. The involvement 
of DMN and ECN can be interpreted to the deployment of attention in the latter rest-
ing period, moving from concentration on aversive emotions to self-referential 
processes, such as mind wandering. The BOLD signal of the right AG rising after 
initiatory dropping suggested the effect of attention deployment was getting stronger 
in the latter resting period, and the discomfort caused by aversive stimuli was getting 
attenuated corresponding to the negative correlation between right AG and left CN. It 
is implied that subjects gradually shifted their concerns away from the turning point. 
Therefore, the emotional recovery from discomfort is also a procedure accompanied 
by the strategy shift from passively inhibiting emotional response to actively control-
ling the attention, although the both strategies were spontaneously utilized.  

5 Conclusion 

Two dissociable networks were revealed during the dynamic recovery from the dis-
comfort induced by aversive pictures. The left CN centric subcortical network was 
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found to be associated with the processing on aversive stimuli, and the right AG cen-
tric fronto-parietal network was related to attentional control. The spontaneous switch 
of the two networks underlaid the brain-state shift over the whole course of recovery, 
and enabled the transition of strategies from suppression to attention deployment, 
which facilitated the emotional self-regulation. 
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Abstract. The paper presents a novel multimodal-based methodology for  
consciousness study of individuals with unresponsive wakefulness syndrome. 
Two interfaces were employed in the experiments: eye gaze tracking system – 
CyberEye developed at the Multimedia Systems Department, and EEG device 
with electrode placement in the international 10-20 standard. It was a pilot 
study for checking if it is possible to determine objective methods based on 
multimodal techniques which could replace or support current expensive and 
difficult to access neuroimaging techniques, like fMRI, PET, utilizing in eval-
uation of consciousness state. The multimodal-based methodology consists of 
several phases of research involving subjects. Hearing examination based on 
objective methods (OAE, ABR), consciousness test based on analysis of visual 
activity, examination of visual neural pathway with Steady State Visually 
Evoked Potentials and EEG-based comprehension test were proposed. The re-
sults obtained within conducted experiments and presented in this paper suggest 
that proposed objective-subjective methodology could potentially be introduced 
into clinical facilities after further validation. 

Keywords: consciousness study, vegetative state, minimally conscious state, 
unresponsive wakefulness syndrome, gaze interaction, EEG, comprehension 
test. 

1 Introduction 

There has been important research utilizing EEG [1]–[3], positron emission tomogra-
phy (PET) [4], [5] and fMRI technology [6], [7] in the diagnosis of consciousness dis-
orders. Nevertheless, their role in clinical consciousness evaluation is still insignificant. 
In particular, PET and fMRI require specialist expensive equipment, so that their avail-
ability is very limited as a result. It is essential to point out that even when employing 
the standardized protocols like CRS-R, misdiagnosis of up to 40% regarding the  
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consciousness level of subjects in the vegetative state still occurs [8], [9]. Hence, we 
have developed the research method based on an eye-gaze tracking system and an EEG 
interface. Important advantages of the proposed approach are as follows: ease of per-
formance, portability and cost. The paper includes the results of experiments utilizing 
our method to evaluate the consciousness state of 10 subjects diagnosed as VS sub-
jects. We hypothesized that subjects in the vegetative state could be differentiated from 
those who manifest their consciousness by interacting with a computer employing 
multimodal interfaces. We believe that it is possible to decrease the ratio of misdiagno-
sis of subjects awaking from the coma basing on the approach that could be summa-
rized in this context as “the absence of proof is not proof of the absence”. 

2 Methods 

Employing two interfaces in the same experiments has contributed to idea of joining 
them together and to develop an integrated multimodal examination tool. Data fusion 
could deliver an added value associated with the integration of eye gaze tracking and 
EEG modules. In case of filtering and analysis EEG signals it is justified to utilize 
Kalman filtering, neural networks or soft computing algorithms. In the Subsection 2.1 
multimodal interfaces employed in the conducted experiment were presented, sepa-
rately. Nevertheless, the idea of creating an integrated multimodal examination plat-
form is considered by Authors in the context of planned experiments.  

2.1 Multimodal Interfaces  

Hearing Examination  
The assessment of each participant’s hearing threshold was necessary to being confi-
dent that they can hear therapists’ commands. The hearing of each subject was eva-
luated based on two objective methods: otoacoustic emission (OAE) and auditory 
brainstem response (ABR). Hearing examination was performed utilizing professional 
equipment of Vivosonic Integrity. In order to test the sound conducting mechanism 
and the efficiency of the cochlea click evoked otoacoustic emissions (TEOAE) were 
employed.  

Eye-Gaze Tracking  
All experiments based on subjects’ gaze activity were conducted utilizing the  
eye-gaze tracking system called CyberEye. The CyberEye was developed at the Mul-
timedia Systems Department of Gdansk University of Technology. Consequently, 
eye-gaze tracking technology became available in experiments carried out in coopera-
tion with “Light” Residential Medical Care Facility in Torun. The CyberEye’s angu-
lar resolution (3.3O) was less than best commercial eye-gaze trackers (ca. 0.5O).  
However, it was sufficient for the consciousness study of VS subjects and, more im-
portantly, it was definitely inexpensive. More detailed information on the CyberEye 
software and hardware can be found in some previous publications [10]–[12]. Utiliz-
ing the CyberEye system in studies with VS subjects was shown in Fig. 1.  
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Fig. 1. The subject during the consciousness test session 

The CyberEye is exploited in the so-called consciousness test in the first path of 
the proposed method. The consciousness test consists of twelve neuropsychological 
tasks based on gaze interaction. Assessment procedure of the level of single words 
understanding (comprehension of speech) or assessment of phonemic hearing is im-
plemented in the software form. 

The first task is preliminary and the subject’s interaction with the CyberEye system 
and his/her visual field is studied. This stage of the test is significant in order to dis-
play the content in relevant parts of the monitor screen.  

In addition, an essential aspect was the long-term nature of the experiments. These 
studies were conducted within 3 months. 

Electroencephalography  
EEG-based examination consisted of two steps according to the scheme shown in  
Fig. 4. Within the first step Steady State Visually Evoked Potentials (SSVEP) were 
recorded to assess if visual neural pathway is undegenerated. Within the second step 
of EEG-based examination a comprehension test was proposed. It enables to check if 
there is possible to confirm symptoms of subjects’ consciousness in objective way 
based on ‘names test’.  

SSVEP is a continuous visual cortical response evoked by repetitive stimuli with a 
constant frequency on the central retina. The SSVEP assumes that the response signal 
contains the same fundamental frequency as the stimulus being considered as one of 
BCI paradigms. In the literature [13] there were shown results of the analysis of 
SSVEP signals registered for stimuli frequencies changing from 1Hz to 100 Hz with 
the constant increment of 1 Hz. Increase of energy for frequencies corresponding to 
stimuli frequency is clearly visible in the range from 5-60 Hz. Due to the literature 
[14]–[16] the main area responsible for generating SSVEP responses is the primary 
visual cortex. It is activated by visual stimuli regardless the flickering frequency. 

Our experiments were conducted employing a professional EEG apparatus Neu-
ron-Spectrum 4/P with 19 active electrodes. Subject’s eyes were covered with a band 
and flashed with a LED stimulator on given frequencies as it was presented in Fig. 2. 
Flickering frequencies were chosen arbitrary as: 13, 15, 17 and 21 Hz. During record-
ings the international 10-20 system was used according to electrodes placement 
shown in Fig. 3.  
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Fig. 2. The subject under EEG-based examination with usage of Neuron-Spectrum 4/P  

 

 

Fig. 3. Electrode placement in the international 10-20 standard [17] 

Analysis of EEG recordings for SSVEP responses consisted of the following steps: 

1. select fragments of EEG recordings (duration of 30 seconds) for neutral state (open 
eyes) and for each stimuli frequency, 

2. filtrate signals with 10-25 Hz band-pass filter, 
3. windowing – the Hamming window was selected, 
4. determination of the amplitude spectra of selected fragments, 
5. subtraction of the calculated neutral state spectrum from each stimuli frequency 

spectrum, 
6. determination of the power spectra for each stimuli frequency. 

Listed above steps were conducted for each subject involved in the experiment. Final-
ly 3 subjects were not examined because of suspicion of epileptic tendencies. 

In the second step of EEG-based experiment the comprehension test being the ac-
tive paradigm was conducted. Exercise based on event related potentials (ERP) in-
duced by counting names was conducted. Subjects were instructed to count their own 
names while the therapist reads a list of various names. According to the assumption, 
the P300 response should be larger when subject counts his/her own name in compar-
ison to passive listening [18]. Thus, the comprehension test (names test) could be 
regarded as quick method for evaluation of subject’s consciousness in objective way.  
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2.2 Subjects 

This study was conducted in the “Light” Residential Medical Care Facility, Torun, 
Poland. Ten subjects were recruited from a group of 34 subjects residing in the center. 
(most of them with traumatic brain injury): three females and seven males. All of the 
subjects had been previously diagnosed as remaining in vegetative state and therapists 
had classified them into a group of ‘good prognosis subjects’. Informed consent was 
obtained from the subjects’ legal representatives. Table 2 presents the demographic 
and clinical data of the subjects, as well as the most important outcomes for CyberEye 
and EEG-based experiments.  

2.3 Method 

Eye-gaze tracking is related to one of two paths used for consciousness state evalua-
tion by the therapist. The second path is the analysis of the brain’s electrical activity, 
consisting of examination of visual neural pathway based on Steady State Visually 
Evoked Potentials (SSVEP), as well as comprehension test based on so-called names 
test. We consider that all subjects should be examined parallel in these two paths. 
However, in most cases it is impossible because of the different external and internal 
indispositions of subjects. The scheme of the method proposed and applied in our 
research is shown in Fig. 4. 

 

Fig. 4. The developed method of consciousness study utilizing multimodal interfaces 

The tasks of the consciousness test based on the CyberEye system include simple 
neuropsychological tasks. The aim of the consciousness testing is to make a diagnosis 
followed by stimulation of cognitive, linguistic and communication functions, memo-
ry, understanding, logical and abstract thinking.  

Within the EEG-based names test the sequence of 30 auditory stimuli were pre-
pared. The sequence included first names – 10 times the subject’s own name and 20 
unfamiliar names. Names were presented for each subject in the same order. The in-
ter-stimulus interval was set to 3000 ms. Data were collected at a sampling rate of 500 
Hz. The ERPs were averaged as a function of the subject’s own name and unfamiliar 
names. In order to ensure equivalent signal to noise ratios, the 10 unfamiliar names 
from each sequence were chosen. The total duration of EEG recording for each sub-
ject was 20 min. 
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3 Results and Discussion 

All results of experiments based on the analysis of eye-gaze tracking and brain’s elec-
trical activity have been stored in the database. The outcomes obtained from the Cy-
berEye system and the EEG interfaces were studied independently. The therapists 
evaluated the subjects’ consciousness level based on three features: correctness of 
performed neuropsychological tasks related to gaze interaction, analysis of P300 res-
ponses in the comprehension test, as well as their subjective observations (each case 
is different). 

3.1 Eye-Gaze Tracking Analysis 

The main criterion of the consciousness test in the first path of the proposed method 
was the correctness of test task performance. The credibility of the data obtained from 
the CyberEye system requires many repetitions of the test. The parameter ‘correct-
ness’ is a mean of all sums of correctly performed tasks of each examination session. 
Parameter ‘correctness’ is normalized and its maximum value is 1. Fig. 5 shows the 
box-whisker plot presenting the results of sessions based on the eye-gaze tracking 
during a 3-month observation period. We applied ‘mean / standard error (SE) / 
2⋅standard deviation (SD)’ types of box-whisker plot. Values of the determined cor-
rectness parameters were included in Tab. 2. Unfortunately, the results of only 5 of 10 
subjects were complete and suitable for further analysis. Incomplete results are caused 
by different indispositions of subjects, like excessive secretion or problems with neck 
contractures (e.g. subject 01). It is worth mentioning that the statistical analysis of 
data obtained within the investigation of this specific group of patients is problematic. 
These data cannot be analyzed in a quantitative sense. Each individual is different due 
to a different type of brain injury, due to damage of another area of brain, as well as 
different time passed since the accident. In the future research involving this group of 
patients it is anticipated to use rule-based decision systems, as the rough set method, 
because besides the diagnosis results, usually more information is available from a 
medical history of patients which can be used for reasoning about their actual condi-
tion and therapy prognosis. 

 

Fig. 5. Correctness of consciousness test performing within 3 months 
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According to the results presented in Fig. 5 three of patients revealed mean of all 
the tests at ca. 60% correctness. The other two patients achieved correctness of all 
tasks close to 50%. It should be mentioned that in case of vegetative patients the ex-
pected result equaled 0%.  

3.2 EEG Analysis 

The obtained results show in an objective way that each subject reacted for flickering 
frequencies with increase visual cortex response at precise stimulus frequency. The 
results obtained from occipital area placed electrodes for the particular subject are 
shown in Fig. 6. These results enable to assess that subjects’ visual neural pathways 
are undamaged, so that they could participate in tests involving the CyberEye system. 
The results confirmed also that SSVEP are generated mainly in the occipital cortex 
(points O1, O2 and Oz). Moreover, the energies of recorded signal on the stimuli fre-
quency compared to the energy of signal in 10-25 Hz frequency band could be ex-
pressed by formula (1): 

 ,
2510 Hz

ffy
relative E

E
E

−

=  (1) 

where: Effy – energy of signal at flickering stimuli frequency with tolerance of 0.5 Hz 
(i. e. for 13 Hz stimuli energy at 12.5–13.5 Hz frequency band);  
E10-25Hz – energy of recorded signal at flickering stimuli in 10-25 Hz frequency band. 

Energy of signal recorded during photo-stimulation rose minimum twice compared 
to records without any stimulation. After all, it also confirms that visual neural path-
way of each subject participated in experiment has been preserved. 
 
 
a) b) 

 

Fig. 6. Power spectra of SSVEP experiment for particular subject stimulated with selected 
flickering signals at a) 13 and b) 15 Hz, recorded from electrodes O1, O2 and Oz due to inter-
national 10-20 system of electrode placement 

In the names test a significant higher P300 was obtained when the subject’s own 
name had to be counted. The most significant electrodes were: C3, C4, Cz, P3, Pz and 
P4. In Fig. 7 the time plots for averaged ERP responses in period 0 – 1000 ms from 
stimuli presentation. 
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a) b) 

 

Fig. 7. Grand average of ERP responses for: a) unfamiliar names (SUN) and b) subject’s own 
name (SON) (b). Gray lines denotes EEG signals from most significant electrodes (C3, C4, Cz, 
P3, Pz, P4) while black line denotes their weighted mean value. 

In Tab. 1 there are  presented event-related amplitudes (in μV) at Pz for P300 com-
ponent in response to subject’s own name (SON) and subject’s unfamiliar names 
(SUN). The fourth column includes difference [μV] between amplitudes of SON and 
SUN. There is a hypothesis that level of subject’s consciousness should be related to 
the value of this difference. 

Table 1. Results of averaged ERPs amplitudes [μV] for each subject  

Subject ID SON response amplitude SUN response amplitude difference 
01 12.6 5.1 7.5 
02 6.8 3.8 3.0 
03 7.6 5.4 2.2 
04 12 5.7 6.3 
05 14.6 3.5 11.1 
06 9.1 4.9 4.2 
07 8.2 5.1 3.1 
08 16.3 6.2 10.1 
09 11.7 6.6 5.1 
10 16.6 6.4 10.2 

 
 

Obtained results suggest that some of studied subjects are able to detect their own 
first name consciously. It is known that speech processing can be observed in uncons-
cious state such as anesthesia or sleep [19], however using the active paradigm 
(counting subject’s own name) reduces probability of getting inaccurate results. Tab. 
2 contains general data related to participants, as well as results provided by the eye-
gaze tracking system and EEG interface. Moreover, the therapists were able to assess 
more precisely subjects’ consciousness state supported by multimodal interfaces.  
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Table 2. Demographic and clinical data and current diagnosis of the subjects  

Subject 
ID 

Sex 
Age 

(years) 
Cause 

Interval 
post-
ictus  

EGT 
(average of 
correctness) 

EEG 
(difference 

in [μV]) 

Post-
experimental 

diagnosis 
01 male 25 trauma 33 m – 7.5 LIS 
02 male 56 SCA 28 m 0.62 3.0 LIS 
03 male 37 SCA 9 m – 2.2 MCS 
04 male 31 trauma 13 m – 6.3 MCS+ 
05 female 40 trauma 72 m 0.64 11.1 LIS 
06 male 32 trauma 72 m – 4.2 MCS 
07 female 19 trauma 15 m 0.65 3.1 MCS+ 
08 male 36 trauma 14 m – 10.1 MCS 
09 male 29 trauma 19 m 0.48 5.1 MCS+ 
10 female 33 SCA 11 m 0.52 10.2 LIS 

SCA – sudden cardiac arrest; m – months; EGT – eye-gaze tracking 

 
It is difficult to determine correlation coefficient between values of the results pro-

vided by the eye-gaze tracking and EEG interfaces and state of subjects’ conscious-
ness. Nevertheless, obtained values indicate unquestionably that the studied human 
beings are conscious. 

4 Conclusions 

The correct diagnosis of state of patients emerging from coma after acute brain injury 
is very complex, yet an essential problem. Therapists of most centers, especially in 
developing countries like Poland, where our patients reside, do not verify the diagno-
sis of VS patients even by CRS-R criteria. Our approach of consciousness evaluation 
does not require expensive technology application and it could be applied at the pa-
tient’s bedside. Moreover, we can estimate the patient’s state conducting one of two 
proposed paths of examination. 

The results obtained from EEG experiments proved objectively that visual neural 
pathways of each subject from research group is undamaged and they could partici-
pate in therapy with the usage of CyberEye equipment. Moreover, results of the 
names test indicate that most subjects are able to detect their own first names correct-
ly. It is worth stressing that the role of the therapist’s subjective observation is signifi-
cant in this approach because neither the eye-gaze tracking system, nor the EEG  
interface includes information on the patient’s attitude and their different indisposi-
tions, like e. g. excessive secretion. Results presented in this paper suggest that our 
objective-subjective methodology could potentially be introduced into a clinical fa-
cilities after further validation. The next step of the analysis of the obtained results 
will be associated with using rough sets not only for interpretation of CyberEye’s data 
but also for the whole diagnosis based on CyberEye’s and EEG’ results in order to 
support therapists and neurologists in a more efficient way.  
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Abstract. Computer-based cognitive assessment programs for children have re-
cently become increasingly popular. This assessment tool has many advantages 
over traditional assessment approaches including the option of offering an im-
mediate feedback, the ability to systematize delivery of the test items and to 
modify the difficulty level and the ability to quantify progress. Purpose: the 
purpose of the study is to establish a reference baseline for the cognitive skills 
among Egyptian school-aged children. Method: This study is a cross-sectional 
prospective design. A sample of 223 healthy children of both sexes, of age 
ranged from 6-12 years, from urban areas’ elementary schools in Upper Egypt 
were recruited. Results: Rehacom program tool produced a separate progress 
report for the individual progress of every child. Conclusions: Based on the 
study`s results the executive function ability was the first to initiated followed 
by the logical reasoning and finally the topological memory and vigilance 

Keywords: Cognitive, Assessment, Normal Children, Upper Egypt, Rehacom 
program. 

1 Introduction 

Cognition is the mental action of process of gaining knowledge through thought, ex-
perience and the senses, so the word cognition is a cover for all of the mental activi-
ties that we engage in; our thoughts and our thinking [1]. Cognition can be divided 
into different domains of ability, which can be tested separately; the most important 
of these are attention and concentration, memory and learning, language, visuospatial 
function and executive functions [2]. Cognitive assessment is considered to become 
an important component of diagnosing learning and behavior problems in children. 
Intellectual deficits and learning disabilities may have an adverse effect on a child`s 
ability to comprehend and retain information [3]. It also plays an important role in 
academic placement decisions as it allows teachers, parents and clinicians to gain an 
understanding about a particular child`s capabilities in order to facilitate informed 
(academic and training) decisions [4].  
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Neuropsychological testing has been conducted in the past with paper and pencil 
test. Recently, more and more neuropsychological testing become computerized as 
computerization has made scoring much simpler and more accurate, it also allows for 
more complicated computations [5]. According to The American Psychological Asso-
ciation (APA), it identified six major benefits of computerized assessment including: 
(1) automated data collection and storage, (2) greater efficiency of use, (3) release of 
the clinician from test administration to focus on treatment, (4) greater sense of mas-
tery and control for the client, (5) reduced negative self-evaluation among clients that 
experience difficulty on the computer and (6) greater ability to measure aspects of 
performance not possible through traditional means, such as latency, strength and 
variability in response patterns [6]. 

Socioeconomic status (SES) is a multidimensional construct that includes not only 
measure of maternal wealth, but also education and social prestige. Many studies dis-
played the effect of low SES of the families and poorly parental education on their 
children's cognitive skills. Parental SES can affect an individual from very early devel-
opment in utero, as well as throughout life [7,8] . Stress, nutrition, parental care and 
cognitive stimulation have been suggested as some of the factors that mediate the im-
pact of SES on both brain structures and cognitive functions across development [9,10]. 

Children in low income countries are exposed to several diseases and adverse con-
ditions that affect brain development and cognition either through direct injury to the 
brain or lack of stimulating conditions [11, 12]. The goal of the ongoing paper is to 
assess the cognitive functioning of Egyptian school-aged children resident in urban 
areas, establishing a baseline value of cognitive skills among these children by using 
the Rehacom computerized program which is a method for assessment of cognitive 
domains among Egyptian school-aged children from families with low socioeconomic 
class. It is computer based software composed of several rehabilitation programs, 
designed to measure and rehabilitate different cognitive abilities. 

2 Method  

2.1 Subjects  

The present study was conducted on 223 healthy school-aged children recruited from 
urban elementary schools. The purpose of the study was establishing cognitive norms 
for the Egyptian school-aged children. The children were randomly selected by the 
simple protocol of sealed envelope approach" each child has the same chance of being 
selected" in order to reduce the probability of imbalance in children selection accord-
ing to the inclusive criteria. Initially, the study included 241 children. 18 children 
decided to quit before completion of the test procedures not because they did not want 
to complete but their parents had no time. The children age ranged from 6-12 years. 
The selection of children was based on their score in on "Draw a person test" and 
"Pediatric symptom checklist" to detect any mild cognitive impairment. They were 
able to follow instructions and understand commands during testing procedures. 
Children with history of mental, cognitive, neuromuscular disorders, epilepsy, visual, 
auditory defects or autistic features were excluded. All children were from families 
with low socioeconomic class and their parents had no or low level of education. 
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2.2 Testing Procedures 

Prior to beginning testing,  The Researches were provided approval from ethical 
committee faculty of physical therapy, Cairo university, school manager , and stu-
dents` parents consent for agreeing about participating their children in the study and 
were informed of any limits to confidentiality according to American Psychological 
Association, (2002) and NAN, (2003). All tests administered and scored in a manner 
that is consistent with the test publisher directions as standardized procedures are 
critical to valid interpretation.  The areas of cognitive domains of function assessed 
were including attention, memory, visual perception, executive functions. The child-
ren were given a brief demonstration of how the Rehacom programs is working in 
four tested domains , according to the  research protocol , before starting the actual 
testing. Participants were informed that they could quit at any time during the test 
procedures. All subjects performed a preliminary test to familiarize them with the sit-
up and testing procedures.  All subjects were started with level 1 on Rehacom. The 
administration of the tests should be based on the standardized procedures outlined in 
testing manuals. The testing procedures were conducted in an environment free from 
any distraction and noise which may affects children`s performance. 

2.3 Testing Protocol 

For logical reasoning program  
The type of test used is ‘completion of a series’. By increasing the difficulty of the 
logic succession and increasing supposition of several logic structures, the child should 
figure out the concepts underlying each problematic situation and to use these concepts 
to solve the logic problem. In the testing procedure, a picture series is shown with sim-
ple graphic figures. The child must find the relationship between the individual links of 
the series and through Induction derive a rule (figure reasoning), which clarifies what 
the next link of the series is [13] . When the child has established what the rule is - he 
must then select the relevant picture from a matrix of pictures. The matrix of pictures 
can be used by the patient to check that he has derived the correct rule. 
 
For vigilance Program  
In the test, the child works as a high-quality controller at the end of a manufacturing 
line in a factory (drinks and/or canned food production, furniture industry, electronics 
manufacturing or production of budget subjects) .the task is to identify which objects 
are not identical to the specimens, and remove them from the conveyor at the point 
indicated The aim of the program vigilance is to evaluate the child`s performance in 
the area of tonic attention, with specific attention focused on maintaining visual vigil-
ance, in difficult observation situations the child`s reaction skills are put under pres-
sure in that they are also exposed to irrelevant information.. 
 
For topological memory  
In this test, a varying number of cards (dependent on the level of difficulty) with con-
crete pictures or geometric figures are displayed on the screen. The child must me-
morize the location of the pictures. After a pre-set time – or manually, by pressing the 
OK button – the pictures in the matrix are hidden (turned face down). The objective 
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of this procedure is to evaluate the memory for visual-spatial information as by a 
means of ordering the pictures in a topological way, the possibility exists to elaborate 
and to consolidate, different memory strategies with the child.  

 
For exploration program  
The procedure allows assessment for visual exploration. The child is required to slowly 
search for a series - in locating these precise objects. Varieties of abstract and concrete 
stimuli are projected on a dark background Squares, triangles, circles, asterisks and 
other see symbols, numbers, letters, objects (flowers, cars etc.). The child has to search 
the surface for these various stimuli.  The stimuli are arranged in lines and columns. 

A circular cursor, which is the same size as a matrix unit, moves over the field line 
by line. In this way the exploration movements of the child can be controlled. Every 
time a previously defined stimulus is located, the child has to press the OK key on the 
Rehacom keyboard.   

3 Data Analysis 

Descriptive statistical analysis was used in the present study. Mean age for each level 
of each domain was calculated to conclude the progression for each ability with age 
(when it appeared on average, when it became stronger and when it peaked). A bar 
chart was used to display a comparison between the mean ages of first appearance of 
each domain. Another bar chart was used to display the rational development of the 
four cognitive domains. 

4 Results 

The study was conducted on 223 children of age ranging from 6 to 12 years with 
mean age 9.4538 years. Each child`s level of performance on the Rehacom program 
domains (exploration, logical reasoning, topological memory and vigilance) was 
measured. We considered the level of performance as an indicator for the presence of 
the cognitive ability. Data were analyzed along the dimension of age and the mean 
scores on each level of the four cognitive domains. Regarding the age there were sig-
nificant difference between 6 and 12 years in the level of performance on each do-
main which indicating developing of such domain of cognitive function. As described 
in (Table 1) & (Fig. 1) Exploration which is defined as the active searching of the 
field of vision for particular symbols: The levels ranged from 1 to 8, level 1 appeared 
at age 6 years and 9 months with mean age of 9.02 years. Level 8 appeared 11 years 
and 9 months with mean age 11.75 years. 

Logical reasoning which is the ability to think and make relations between objects: 
Levels ranged from 1 to 7, level 1 appeared at age 7years with mean age of 9.23 
years. Level 7 appeared at age 11 years and 9 months with mean age 11.75 years. 

Topological memory which is the ability to remember pictures: Levels ranged from 
1 to 3, level 1 appeared at age 8 years with mean age of 9.53 years. Level 3 appeared 
at age 11 years and 9 months with mean age 11.75 years.  
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Vigilance which is the ability to make sustained attention: Levels ranged from 0 
1to 3, level 1 appeared at age 8 years with mean age of 9.35 years. Level 3 appeared 
at age 11 years and 2 months with mean age 11.02 years. 

Table 1. The mean values of performance of children in four domains   

Vigilance Topological 
memory 

Logical 
reasoning 

Exploration 
level  Mean age  

9.35 9.53 9.23 9.02 1 
10.4310.25 10.04 9.52 2 
11.0211.75 9.97 9.93 3  

    10.53 10.32 4  
 --------   -------  10.95 11.15 5  

    10.83 11.17 6  
 --------   --------  11.75  ------ 7 

      11.75  8  
 
 

 

Fig. 1. Mean age for appearance of each ability 
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The development of the four cognitive domains with age  
As shown in figure 1 :Exploration appeared first at mean age 9.02, became stronger at 
mean age 9.93 and reached a peak at mean age 11.75.Then  Logical reasoning ap-
peared at mean age 9.23, became stronger at mean age 9.97 and reached a peak at 
mean age 11.75. Vigilance appeared then at mean age 9.35, became stronger at mean 
age 10.43 and reached a peak at mean age 11.02.At last Topological memory ap-
peared at age 9.53, became stronger at mean age 10.25 and reached a peak at mean 
age 11.75. 

 

 

Fig. 2. The development of the four cognitive domains with age 

5 Discussion 

The present study was conducted on 223 healthy school-aged children recruited from 
urban elementary school for the purpose of establishing cognitive norms for the Egyp-
tian school-aged children. The study focused on gathering normative data regarding 
the children’s cognitive development in specific domains: sustained attention, topo-
logical memory, logical reasoning and executive functions. Choosing the study sam-
ple to include children aged from 6 -12 years supports the finding of Bjorklund who 
stated that there is a huge amount of cognitive development that occurs after infancy, 
after the pre-school years and during the elementary school ages and even into ado-
lescence [14], and also this come in consistent with Coffey and his colleague who 
argued that Cognitive development is an active and ongoing process that is influenced 
by both internal and external stimuli from infancy to adolescence [15] . Almost all 
aspects of cognition show marked development after the pre-school years and during 
the elementary school ages: perception and attention, memory, conceptualizing,  
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problem solving and reasoning, symbolic processes. All of these have important im-
plications for education and other practical activities [16] . 

We worked with randomly selected children from families with low SES and poor 
educational level, in upper Egypt, to measure the children’s cognitive abilities. These 
children suffer from poor nutrition, parental care and diseases, which influence the 
process of cognitive development and brain structures. Our work is related to the 
work of Hackman and Raizada who postulated that, at least three cognitive domains 
(i.e. language, executive function and memory) have been suggested to be influenced 
by SES [17,18], and low SES children also perform more than their peers from high 
SES on tasks probing selective attention, inhibition, cognitive control and working 
memory [19,20,21,22]. 

Despite the few studies that have investigated structural brain differences asso-
ciated with SES, Hanson and colleague explored the relation between household in-
come and hippocampi and amygladae using a region of interest approacg in voxel 
based morphometry in a large scale (n=317) study of children (4-18 years) they 
showed that, children from families with lower income had less gray matter in bilater-
al hippocampi than children from families with high income [23] .  

The results of the present study showed that the executive function represented by 
the exploration task was started at mean age 9.02, became stronger at mean age 9.93 
and reached a peak at mean age 11.75. According to the Cognitive Complexity and 
Control (CCC) theory, the development of executive function can be understood in 
terms of age-related increases in the maximum complexity of the rules children can 
formulate and use when solving problems [24] . This also come in consistent with the 
work of Mariette Huizinga who tested children in three homogeneous age groups (i.e., 
7-, 11-, 15-year olds),to examine the age –related changes in executive function and 
found that executive function has a protracted course of development, beginning in 
early childhood and continuing into adolescence [25]. Executive control improves 
during the age range of 4–7 and 8–10 years [26].  

In the logical reasoning domain, according to Vygotsky (1978) great importance 
was placed on a child’s culture, he saw it as paramount to the emergence of reasoning 
skills [27]. Children from different cultures demonstrate differences in the timing of 
certain abilities, and in some cultures, formal operational reasoning may not appear at 
all because it has little bearing on everyday functioning [28,29]. The results of the 
present study showed that, it appeared at age 7 y with mean age 9.23, became stronger 
at mean age 9.97 and reached a peak at mean age 11.75. This comes in consistent with 
thoughts of piaget in Brophy and Van Sledright who stated that logical reasoning 
ability starts around age 7 years at time children begin to develop concrete operations-
cognitive capacities that enable them to solve concrete problems logically, and at age 
12 children begin to develop formal operations- cognitive capacities that enable them 
to engage in more abstract, hypothetical and purely symbolic thinking without being 
so dependent on direct experiences or concrete examples [30]. 

Memory refers to the complex process by which the individual encodes, stores, and 
retrieves information and for a memory to be useful one must be able to retrieve it 
[31]. Memory is not unitary but rather consists of a variety of different forms, each 
mediated by different component processes which in turn are subserved by different 
neural mechanisms [32]. In response to the results of the memory domain in the 
present study it showed that, Topological memory representing the visuospatial skill 
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which is the ability to produce and recognize figures and to form relationships among 
spatial locations,  appeared at mean age 9.53, became stronger at mean age 10.25 and 
reached a peak at mean age 11.75, which means that working memory and cognitive 
control, develop throughout late childhood and adolescence and continue to mature 
until young adulthood [33] . Tests of working memory have demonstrated that there 
are three active stages of maturation: early childhood, middle childhood, and early 
adolescence [34]. 

Attention can be conceptualized as the gateway for information flow to the brain 
and it is a complex system of interacting components that allows the individual to 
filter relevant and irrelevant information in the context of internal drives and inten-
tions, hold and manipulate mental representations and monitor/ modulate responses to 
stimuli [35] . Sustained attention is defined as the ability to stay on-task and to inhibit 
distracting stimuli over a prolonged period of time. It forms a component of the vigil-
ance network, and is assessed through tasks that require a participant to remain pre-
pared to respond to an infrequent target over an extended time [36]. The results of the 
present study showed that, Vigilance or sustained attention appeared then at mean age 
9.35, became stronger at mean age 10.43 and reached a peak at mean age 11.02.  
These results are closely in line with those recently reported by Steele and colleague 
as they measured attentional performance in preschool children, with several tasks 
involving the capacity to sustain attention for a prolonged period of time (Go/No-Go 
task) to visually search targets among distracters and to benefit from a target pre-
sented in a position spatially congruent with the response they found that, attentional 
performance extends to ages later than preschool [37]. 

The Outcome results of the present study showed that, executive function ability is 
the first to develop early as it initiated at age 6y &9m. that matches level 1 on explo-
ration domain on Rehacom and mastered at age 12 which is at level 8 (each domain 
on Rehacom program is ranged from 1 -24) . It considered as the base that control and 
regulate other behaviors, and therefore enable goal-directed behavior [24]. Shore 
claim that the years between three and five are especially important in the develop-
ment of executive function because of changes in brain development during this  
period, particularly in the frontal cortex, which is responsible for regulating and ex-
pressing emotion [38]. The logical reasoning ability started little a bit later as it begins 
at age 7 years as it needs more maturation of the brain structures which occurred dur-
ing late childhood and adolescence as piaget suggested that children from 7-11 years 
are concerned with knowing only the facts and therefore becomes confused when 
faced with the relative, probabilistic nature of human knowledge, children begin to 
apply mental operations to real, concrete problems, objects, or events [39]. Finally, 
sustained attention and topological memory are the latest domains to develop as they 
need more and more maturation of the brain they begin at 8y which comes in contact 
with Sowell and Gogtay Who stated that the cortex matures in a sequence that paral-
lels cognitive development. Brain regions mediating motor and sensory functions 
mature first, followed by temporal and parietal areas (which primarily mediate lan-
guage and spatial skills). Association areas (such as the prefrontal cortex and lateral 
temporal regions) mature last; these areas integrate information from sensory–motor 
regions and modulate processes like attention and working memory [40,41]. 
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6 Conclusion 

The present study was conducted in order to establish a baseline values for the cogni-
tive abilities (executive function, logical reasoning, topological memory and vigil-
ance) for Egyptian school-aged children using computerized cognitive program  
(Rehacom). Based on the study`s results the executive function ability was the first to 
initiated at 6 years and 9 months followed by the logical reasoning at 7 years and 
finally the topological memory and vigilance emerged at 8 years. The study suggests 
the usability of the computerized cognitive assessment tool “Rehacom” to detect the 
level of cognitive ability and variability of cognitive development patterns in school-
aged children. 
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Abstract. There are various kinds of methods on activated regions detection, 
including model-driven method and data-driven method, univariate method and 
multivariate method, frequency domain analysis and time-domain analysis etc. 
We investigated the problems of principal component analysis applied to acti-
vated regions detection，an autocovariance based principal component analysis 
method was proposed. Firstly，the time series were converted to the autocova-
riance series, and then the principal component analysis was employed. Mean-
while, the tactic of principal component selection was discussed. The validity of 
the proposed method was illustrated by experiments on a synthetic dataset and a 
real dataset. It was shown that the error rate of the new approach was lower 
compared with the principal component analysis itself. 

Keywords: Autocovariance, principal component analysis, functional Magnetic 
Resonance Imaging, statistic parameter mapping. 

1 Introduction 

FMRI data analysis can be roughly divided into two main categories: model-driven 
(hypothesis-driven) methods and data-driven methods. The general linear model 
(GLM) is most commonly used model-driven approach, which uses a canonical he-
modynamic response function (HRF) as the priori hypothesis.  Comparing to the 
classic statistical hypothesis testing approaches, Data-driven approaches do not make 
assumptions on the profile of the HRF. Like the Clustering, principal component 
analysis (PCA) [1-2], and independent component analysis (ICA) are the most widely 
discussed model-driven methods. 

PCA is frequently applied in the research of data reduction and signals denoise, it 
has also been applied to face recognition and other fields. PCA is also an approach to 
functional brain connectivity analysis and data-preprocessing [3]. It is also suitable 
for the processing of multivariate data.  

In PCA, the singular value decomposition (SVD) method is used for the computa-
tion of the covariance matrix to construct a series of corresponding components which 
are orthogonal to each other. The principal spatial variation of a signal can be 
represented by an image named eigenimage and temporal variation represented by the 
eigenvector [4-7]. We ranked these components in descending order of the amount of 
their variance, that is to say, the first principal component may correspond to the di-
rection with the largest variance in data and can account for the major variance of 
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signal change. We used the eigenimage chosen randomly to illustrate the transforma-
tion of signal space. The eigenimage is a similar description of the functional magnet-
ic resonance imaging (fMRI) activation map. Each principal component indicates its 
corresponding distribution brain network. Different principal components are ortho-
gonal and uncorrelated. As an exploratory multivariate statistical method, PCA has 
been previously used to analyze the fMRI data. Although PCA method is continuous-
ly making progress, its processing performance has to be improved. Baumgartner [8] 
found that fuzzy cluster analysis performs better than PCA, especially when signal-to-
noise ratio (SNR) is low. Thomas [9] pointed out that the PCA has its limitation when 
analyzing fMRI data, since task-dependent component may mix into other physiology 
noise signals. Because sometimes the brain areas of task activated are small, its com-
ponent may not in the first few components. Because of this, in order to improve PCA 
analysis performance, determining the related principal component has become a 
major problem we are faced with when trying to analyze fMRI data based on PCA 
method [10]. How to highlight the signal features and detect signal from noise is the 
key to the problem. To solve this problem, we proposed the autocovariance based 
PCA method.  

This paper was organized as follows. In Section 2, we first gave our method and 
then introduced the dataset used in our experiment. In Section 3, experimental results 
of the simulated dataset were given. In Section 4, experimental results of the real 
dataset were described. Finally, Section 5 gave discussion and concluding remarks. 

2 Methods and Materials 

2.1 Method 

Suppose the fMRI time-series data had a length of N, we used {xn(k)} to denote value 
of kth  voxel at time n. For each voxel, we computed its autocovariance series by for-
mula (1).  
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Where μ(k) denotes the mean value of time series for voxel k, and l is a lag time point 
[11]. Given m voxels in whole brain, the size of autocovariance series was p, we got 
an m×p matrix M. We then computed the singular value decomposition (SVD) of M, 
namely, SVD (M) =USV’. Let r be the rank of matrix M, r≤min (m, p). U and V are 
orthogonal matrices, where U is m×r and S is r×r diagonal matrix. The diagonal 
entries of matrix S are called singular value and they are ranked in descending order. 
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U’S is called principle component PCs, the variance of the column i of PC is denoted 

as  2
iis , each column vector of V is called the loadings of PC, and is also called eigen  
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time series. To determine the number of PCs, we need to take the following three 
conditions into consideration. First, one ratio α. The accumulating contribution rate α 
of first k principle components is defined as:  
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Generally speaking, the accumulating contribution rate of first four items is usually 
more than 50%. Let us assume that the threshold α equals to 50% or more, first k PCs 
larger than α will be considered further. Secondly, we can also draw eigenvalue spec-
tra map of variance (or its logarithm) against the order of PC. The inflection point 
(elbow point) of the map is reference value. Lastly, we need to observe column vec-
tors of V, which reflect changes in time series and are useful to determine whether 
their corresponding component is important. By choosing the largest 5 percent or the 
smallest 5 percent voxels in PCs, we can detect activation; the percentage can be ad-
justed according to the experiment. The methods are as follows: 

Autocovariance based PCA (APCA) method for activation detection: 
 

（1） Data preprocessing and normalization; 
（2） Compute each voxel’s autocovariance series using formula(1); 
（3） Form a m×p matrix M where m is the number of voxels and p is the 

size of autocovariance series; 
（4） Compute the singular decomposition M=USV’; 
（5） Determine number of PCs by taking overall consideration; 
（6） Choose the largest or smallest 5 percent voxels in selected k PCs; 
（7） Display result in order of voxel position. 

 
Here we compared the non-autocovariance PCA (NAPCA) method with APCA 

above. In the non-autocovariance method, there is no step 2 and in step 3, p is the 
length of original time series. The implementation of APCA made several references 
to method in [12-13]. 

2.2 Simulated Data and Real Data 

The dataset selected one slice of real fMRI data containing N = 1963 brain voxels 
with the series length T = 200. The paradigm was a block design. Three small activa-
tion foci of 21 voxels were created, and the activation time courses were obtained by 
the convolution of the experimental condition time courses with the HRF of SPM 
sampled at TP = 2s. The synthetic dataset is shown in Fig.1. Furthermore, Gaussian 
noise of zero mean value and standard deviation varies from 0.2 to 3.5 corresponding 
to SNR from 0.93 to 0.22, which is in the range of the SNR of real fMRI data. The 
data was smoothed spatially as commonly done for fMRI (FWHM = 4.5 mm = 1.5 
voxel) [14]. 
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The real dataset was a typical dataset, an auditory dataset from the Wellcome De-
partment of Imaging Neuroscience of the University College London. The data were 
acquired using a modified 2T Siemens MAGNETOM Vision system. Each acquisi-
tion consisted of 64 contiguous slices (64 x 64 x 64, 3mm x 3mm x 3mm voxels) 
(http://www.fil.ion.ucl.ac.uk/spm/data/). Acquisition took 6.05s, it consisted of 96 
acquisitions made (TR= 7s) from a single subject in blocks of 6 (42 seconds), giving 
16 42s blocks. The paradigm consisted of eight rest and auditory stimulation cycles, 
starting with rest. Auditory stimulation was bi-syllabic words presented binaurally at 
a rate of 60 per minute. The first complete cycle (12 scans) was discarded, leaving 84 
scans to analysis.  

 

 

Fig. 1. The real baseline based synthetic dataset 

3 Result of Simulated Data 

The number of PCs in APCA was determined by overall consideration. We drew an 
eigenvalue spectra map of variance against the order of PC in Fig. 2. From the fig, the 
elbow point of the APCA is located at 3, and NAPCA is located at 2. And then we 
need to observe changes in time series to determine whether their corresponding 
component is important. Fig. 3 reflects first three eigen-timeseries of APCA. The 
period of the second eigen-timeseries (solid line) is the same as that of the stimulated 
time series (dotted line). The first four eigen-timeseries of NAPCA is shown in Fig. 4. 
From Fig.4, we can see that the third period of eigen-timeseries is the same as the 
stimulated time series. Although the elbow point of the NAPCA is 2, the first two 
eigen-timeseries are not enough and the third eigen-timeseries should be considered. 
By taking overall these considerations, we finally determined number of PCs as three. 
Both APCA and NAPCA computed error rate at its corresponding SNR, we computed 
error rate for each component and got their average value. The results are shown in 
Fig. 5. We can see that APCA performs better than NAPCA regardless of SNR. 
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(a)                               (b) 

Fig. 2. The eigenvaluess of PCs for synthetic data.（a）APCA（b）NAPCA. 

 
 

 

Fig. 3. The first three eigen-timeseries of APCA 
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Fig. 4. The first four eigen-timeseries of NAPCA 

 

Fig. 5. The error rates and standard deviations of APCA and NAPCA on real baseline under 
different SNRs 

4 Result of Real Data 

For ACPA and NACPA, from Fig. 6, we had to take 4 PCs into consideration be-
cause of elbow points. The eigen time series of ACPA is shown in Fig. 7， where the 
form of first component was consistent with stimulation signal (shown in dotted line). 
The obtained activation map corresponding to the first principal component is shown 
in Fig. 9. The map is rendered by using xjView (http://www.alivelearn.net/xjview/). 
We got eigen time series in Fig. 8 by using NAPCA method. The form of the third 
component was consistent with stimulation signal (in dotted line), so we got activa-
tion map using the third principal component, shown in Fig. 10. 
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Fig. 6. The eigenvaluess of PCs for real data.（a）APCA（b）NAPCA. 

 
 

 

Fig. 7. The first three eigen-timeseries of APCA on auditory data 
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Fig. 8. The first three eigen-timeseries of NAPCA 

 
 

 

Fig. 9. The brain transverse overlay maps of activated results using APCA 
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Fig. 10. The brain transverse overlay maps of activated results using NAPCA 

5 Discussion and Conclusion 

The result of NAPCA method had too many activation reports, especially at ocular 
regions, which might be false positive. The experiment shows that autocovariance 
based PCA method was effective. In addition, when choosing PCs, we had to take 
accumulating contribution rate, inflection of eigenvalue map and eigen time series 
into consideration at the same time. 

PCA based method and clustering method both belong to the data-driven multiva-
riate method. From the experiments above, we can see that PCA method may not 
perform well when simply using it without other methods. Some researchers com-
pared fuzzy clustering method and general PCA method, they found out the following 
results [1]. Fuzzy clustering method and PCA method have a similar performance 
when researchers only take noises of device into consideration; however, clustering 
method is better if they also allow for physiology noise. Clustering method main-
tained the previous data, which is good for the interpretation of data; we can regard 
PCA method as a kind of cluster recognition.  PCA has some limitations, for it as-
sume that each principal component is orthogonal to every other. However, signal and 
noise, as well as the components of signals, may not have such an orthogonal rela-
tionship with each other, clustering analysis doesn’t have such a hypothesis.  

Some literatures analyzed the limitations of using existing model-based methods. 
The problem they have in common is that we have to set the HRF in advance, which 
lead to a result that different regions of brain are supposed to be the same. However, 
studies have shown that there are differences between different regions of brain, 
which bring about the limitation when trying to analyze [14-16].  

For model-free method such as some existing clustering methods, hierarchical 
clustering or K-means are usually adopted. Hierarchical clustering requires usually to 
determine exactly when to stop hierarchical tree and which layer should we choose. 
For K-means, we need to assign the cluster number in advance so it also has limita-
tion. We proposed the autocovariance-based PCA activation detection method. Expe-
riments had proved that this algorithm had a good performance; it also indicated that 
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doing some data transformation beforehand was feasible for improving Performance 
of PCA.  

There are several works to do, including seeking optimal size of the autocovariance 
series, using the simulated data [17] and doing further systematic study guided by 
Brain Informatics [18] in future. 
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Abstract. Recently, the Multivariate Pattern Analysis (MVPA) studies for 
fMRI not only focus on cognitive state prediction, but also explore the interpre-
tations of brain activity using model predictors (selected voxels). A model is 
considered to be good for interpreting brain activity if the selected voxels are all 
relevant to the specific cognitive state. Classical MVPA methods select voxels 
based on their prediction power; the selected ones are those that provide the 
best prediction performance. This precision based voxel selection method can 
guarantee the prediction performance, but it cannot ensure that all the selected 
ones are relevant. The interpretation of brain activity is therefore not ideal. This 
paper addresses this issue by introducing the concept of stability to the MVPA 
studies. If only the stability is emphasized in the selection process, the probabil-
ity of selecting irrelevant voxels is highly reduced with the sacrifice of the  
prediction precision. We, therefore, propose a method to combine the stability 
assessment with the prediction precision assessment. In this paper, the proposed 
voxel selection method is integrated into a linear sparse predictor, Random 
Subspace Sparse Bayesian Learning (RS-SBL). The experiment results of simu-
lation datasets demonstrate that our method can simultaneously reduce false 
positive and false negative rates while maintaining the prediction performance. 

Keywords: functional MRI, linear sparse modelling, multivariate voxel  
selection, stability. 

1 Introduction 

Functional MRI (fMRI) is a neuroimaging technique to investigate the relationship 
between brain regions with specific cognitive functions by measuring changes in 
brain blood flow signal (BOLD). Conventional fMRI analyses focus on investigating 
the interpretation of neural activity with univariate analysis, such as General Linear 
Model (GLM) [1]. The univariate analysis methods work on isolated voxels and they 
determine active brain regions with the most statistically significant voxels in  
response to a cognitive task.  
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In contrast to univariate analyses, Multivariate Pattern Analysis (MVPA) of fMRI 
attempts to informatively decode patterns of brain activity [2]. By measuring multi-
voxels simultaneously, MVPA is more sensitive and informative to the brain activity 
and robust to noise. Most recent MVPA methods [3-6] employ linear models that use 
individual voxels as predictors and time point volumes as samples. That is because 
the relevant voxels in response to cognitive states can be directly selected. As a result, 
the neural activity can be interpreted.  The conventional MVPA methods select the 
voxels by considering their prediction powers that the selected ones are those that 
provide the most precise prediction. However, only take the prediction performance 
into consideration, the selected voxels are specific to particular dataset and irrelevant 
voxels may be wrongly selected. In consequence, with such selected voxels, even if 
the prediction performance can be guaranteed, the brain activity can be misunders-
tood. For this reason, an urgent problem for MVPA is to select voxels that can interp-
ret the real neural activity and provide accurate cognitive state prediction. 

Biomarker discovery, which aims to select biomarkers to differentiate disease from 
normal state, uses similar analysis methods and faces the same problems as fMRI 
analysis. That is because: 1. the training datasets are usually with high feature-to-
sample ratio; 2. the selected predictors are expected to be predictive and meaningful, 
and the predictors are always sparse comparing with the high dimensional features; 3. 
correlations exist between predictors. In order to control the robustness of predictors, 
researchers (e.g. [7,8]) introduced the concept of stability to biomarker discovery 
techniques. They demonstrate that if the stability is higher, the predictors are more 
robust to noise and fewer noise predictors are selected. However, when predictors are 
fixed, the prediction performance is very poor. To deal with this, Kirk et al [9] inves-
tigated strategies to balance the robustness and prediction performance of biomarkers 
by optimizing both stability and predictive performance simultaneously. 

In this paper, we introduce the concept of stability to fMRI MVPA analysis, which 
has not been considered in this field before. We explore the advantages of bringing 
stability into voxel selection and propose a novel multivariate voxel selection method 
that wraps a proposed selection strategy around a novel MPVA method, Random 
Subspace Sparse Bayesian Learning (RS-SBL) [10]. Our method aims to select voxels 
that can accurately discriminate different cognitive states as well as enable precision 
interpretation of brain activity. RS-SBL is implemented by incorporating linear 
Sparse Bayesian Learning (SBL) [11] with random subspace method. The linear SBL 
is a linear sparse model that can overcome the overfitting problem resulted from high 
dimensionality. It is an advanced Compressive Sensing (CS) method that can provide 
a useful sparse solution even when the design matrix is in poor condition and no pa-
rameter needs to be set by cross-validation. The random subspace [12] can further 
overcome the overfitting problem, and can improve the stability of voxel selection. 
By using our selection strategy, combining stability and prediction precision assess-
ments, the probability of RS-SBL of selecting irrelevant voxels is highly reduced and 
only a small reduction of prediction precision is made. 

The paper is organised as follows. In section 2, we introduce sparse linear model-
ling methods for fMRI MVPA study. In section 3, we first explain the voxel select 
function of RS-SBL and then describe our proposed method; experiment results of 
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testing our method on simulation datasets are detailed in section 4. In the final sec-
tion, we make a conclusion of this paper. 

2 Linear Sparse Modelling for fMRI Analysis  

In fMRI analysis, constructing models for brain cognition state prediction using the 
whole brain voxels faces a common problem that the number of voxels is several 
orders of magnitude of time points. This is especially the case when doing individual 
subject analysis. Classical machine learning methods [13] fail to solve this problem 
due to overfitting. 

Sparse modelling avoids overfitting problem by constructing predictive models us-
ing a small subset of high dimensional features. A sparse model is expressed as: 

  ,  (1) 

where   is the design matrix composing of  observations and  features 
corresponding to a response vector ,   is a fixed feature-space trans-
formation, and  contains the coefficients of the model to be estimated. 

The results of fMRI analysis show that active brain regions responding to a cogni-
tive task are just a small part of the entire investigated area (e.g. whole brain). Moti-
vated by this observation, the decoding problem can be formalized by linear sparse 
modelling, with which direct relevance of each voxel to the response can be obtained 
and no transformation of  is needed. This gives: 

   , (2) 

where the non-zero elements of  indicate their corresponding voxels are rele-
vant to the cognitive state . The total number of relevant voxels , should be far 
less than the total number of voxels, that is . 

Given  and , the decoding problem is to learn . Constrained by the fMRI 
imaging technique, the number of samples n is always limited ( ), making the 
estimation of  difficult. The CS technique [14] offers an opportunity to solve this 
underdetermined problem with sparse constraint on  as long as the number of sam-

ples satisfying   , where  is a small constant [15]. Among them, 

least absolute shrinkage and selection operator (LASSO) is an efficient method for 
sparse linear regression: 

 | |  | | , (3) 
where  controls the trade-off between estimation error and sparsity. Most compres-
sive sensing algorithms (e.g. [16, 17])  have been proven to provide an accurate 
sparse solution if the design matrix satisfies the Restricted Isometry Property (RIP) 
condition. However, in the fMRI study, the spatial correlation of voxels leads to poor 
conditioned design matrix [10]. It is not easy to satisfy the RIP condition as well as 
mutual incoherence which is another condition required for exact sparse signal esti-
mation [18]. When several columns of  are highly correlated, the estimation of their 
corresponding non-zero elements is difficult that only part of them may be selected. 
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To address this problem, the elastic net method is proposed to provide a relaxation 
on poor conditioned matrix by adding a ℓ   penalty to Equation 3 where the corre-
lated voxels are highly grouped [4]. Another alternative approach, randomized ward 
lasso [6], is developed to reduce the spatial correlation by grouping correlated voxels 
together and using the average value of each cluster to construct design matrix. The 
former method considers the prediction power of the linear model while the latter one 
only focuses on the relevant voxel recovery. Moreover, the above methods involve 
penalty parameters that must be fixed beforehand using a hold-out method such as 
cross-validation.  

Random Subspace Sparse Bayesian Learning (RS-SBL) [10] is another compres-
sive sensing based linear sparse modelling method for fMRI analysis. It integrates the 
state-of-art compressive sensing method, Sparse Bayesian Learning, with random 
subspace assemble method to generate brain behavior predictors and prediction maps 
(constructed with selected voxels) from whole brain fMRI images. The random sub-
space method generates a set of subspace by randomly sampling a small subset of 
features, and a sparse model (constructed by linear SBL) is built for each subspace. 
With the implementation of random subspace method, the performance of linear SBL 
can be improved based on the following facts: 1. The correlation among features in a 
subspace can be tremendously reduced by random selection so that  better condi-
tioned matrix can be produced; 2. Discrepancy between sample size and feature size 
in a subspace is highly reduced. As a consequence, linear SBL can provide robust 
predictors for subspaces, and a final strong predictor can be constructed via an aggre-
gating process. Moreover, ensemble methods (e.g. random subspace) can increase the 
stability of predictors [12]. Benefiting from the linear sparse model, prediction maps 
are provided so that interpretation of neural activity can be investigated.  

3 Methods  

Instead of focusing on increasing the prediction power of the RS-SBL method, this 
paper makes special effort on the multivariate voxel selection process.  

 

Fig. 1. Framework for RS-SBL Multivariate Voxel Selection (MVS) 
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Fig. 1 shows the framework for the multivariate voxel selection part of the RS-SBL 
method. Given an input fMRI dataset , , the RS-SBL method selects a sub-
set of voxels  as relevant voxels together with a weight vector . The selected 
voxels are achieved by aggregating the voxels selected from all subspaces, which are 
the non-zero elements of the linear models. The weight of each selected voxel is pro-
portional to the frequency of this voxel being selected by sparse modelling during the 
random sampling process. In order to reduce the influence of the sampling random-
ness, RS-SBL is repeated R times and the weights of selected voxels are averaged 
over repetitions. The final selected voxels  are the top  voxels with highest 
weights. 

After voxel selection, the Sparse Bayesian Learning with linear kernel (SBL-Lin) 
method [10] uses the selected voxels for making prediction. SBL-Lin is employed 
here as it has similar or even better prediction performance to SVM method, which is 
the most popular predictor for fMRI data analysis. In addition, no parameter needs to 
be optimized via cross-validation.  

The conventional method for evaluating the selected voxels is to assess the perfor-
mance of their predictive model when model parameters (e.g. L,M and q) are set to be 
optimal.  Since cross-validation is often used to estimate the prediction power, dif-
ferent feature sets are selected for different partitioned sample subsets. These results 
in the selected voxels are not stable. For this reason, instead of using the conventional 
method, we optimize the voxel selection step with the introduction of stability as-
sessment. Stable voxels are the ones that consistently selected across cross-
validations, and irrelevant voxels are excluded via stability assessment as they are 
unstable. However, the prediction performance is poor if only stable voxels are used. 
Therefore, we propose a novel voxel selection strategy combining both stability and 
prediction precision assessments to select voxels stable in cross-validation process 
while returning robust prediction model. 

 

Fig. 2. Framework of Our Proposed Method 

Fig. 2 illustrates the framework of our proposed multivariate voxel selection 
method. Given parameter ,  and q, the multivariate voxel selection (MVS) 
works on a subset , which is randomly sampled from the whole input fMRI data-
set. After determining  selected voxels , the prediction model is applied on the 
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remaining dataset \ \ . The prediction performance is represented by the 
precision rate : 

 ∑ , (4) 

where  is size of  \ , ,  refers to the prediction model built by 
SBL-lin, and  is an indicator function, that 1 if   is true and  0 
vice versa.  

The Optimization process in the framework is to find an optimal set of voxels  
from fold cross validation with the optimisation of both stability and predic-
tion precision. This is achieved by maximising the joint probability [9]: 

   &  , ∑ . (5) 

However, this heuristic optimization process is intractable for high dimensional 
feature space, which is exactly the case in fMRI analysis. For this reason, an ap-
proximation method is applied by optimizing the following target function:                                                      ∑ , (6) 

where  is the th element of the feature set . This approach margins the selec-
tion and precision probability associated with individual voxel rather than voxel set 
(e.g. Equation 6). Our method returns a set of selected voxels with the associated  
score. By searching all possible values of parameter  and q, optimal relevant voxel 
set with the highest  score are selected.  

4 Experiment Results 

We test our methods on simulation datasets whose ground truth (i.e. ) is known. 
The simulation datasets are generated in the same manner as it is in [6] with 8000 and 100. In order to generate a design matrix  reflecting the key 
characteristic of fMRI image, which is spatial correlation of voxels, we construct  
using a smoothed i. i.d Gaussian random matrix with a 2D Gaussian filter of standard 
deviation 0.8. The  non-zero elements of  are grouped into different spatial 
clusters, and their values are randomly chosen from { 0.5,0.5}. The response vector 

 is then generated by the linear model (i.e. Equation 2) with additive noises (SNR = 
0.9).  Three datasets are generated with different number of non-zero elements, 16, 54, 128 respectively. 

In our experiment, the number of repetition time    is set to 50 and the parame-
ter  in cross-validation is fixed to 10. The candidate values of parameter L and  
used in random subspace process are selected from L 10,40,70,100  and M p, p, p,  respectively. In order to demonstrate the recovery and predic-

tion performance of our method, we compare our results with the results generated by 
other two optimization approaches: 
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• Stability. It selects the voxels with the highest stability score which is defined as ∑ ∑ . Same as , it is an approximation of 

stability probability of voxel sets  by margining the probabilities associated with 
individual voxels.  

• Precision. It is a conventional optimization strategy to select voxels from predic-
tion models. Under different parameter settings (e.g. , ), it calculates the preci-

sion score by ∑  and selects the  most frequently selected voxels 

across  repetitions as relevant voxels.  

The optimal values of parameters and relevant voxels are selected by maximizing 
the individual score of each approach. By defining real non-zero elements to be true 
positives, the performance of these approaches is represented by false positive rate, 
false negative rate, and precision from 10-fold cross-validation. 

4.1 Performance Comparison of Different Parameter Settings 

We use the simulation dataset 1 with parameter  equal to 16 to compare the per-
formance of different methods under different parameter settings.  

 

Fig. 3. Examples of Scores of Three Different Methods under Different Parameter Settings 

Example results with selected settings of  and  are presented in Fig. 3. The 
number of selected voxels, q, in MVS ranges from 1 to 30. It is clear that, with a given 
value of   and , the scores of our method and stability show similar trends: they 
both peak at 16, which is the true sparsity value of the dataset. Different from 
these two scores, the precision score becomes relatively stable when 5. This  
difference is caused by the strong correlation between relevant voxels. The sparse 
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modelling method is to seek the minimal set of voxels that provide the best prediction 
performance, where only one out of closely correlated relevant voxels is usually cho-
sen. The random subspace method enables the whole correlated voxel set to be  
selected, and the selected voxels are ranked by their prediction power. However, dif-
ferent training dataset  results in different voxel rank. As a result, when , 
various subsets of correlated voxels are chosen across repetitions; the stability increase 
with the increase of , because the selection of relevant voxels becomes covering the 
whole correlated relevant voxel set. Even the selected voxels are unstable; the predic-
tion precision can still be maintained with partial correlated voxel set. When , the 
stability decreases since some irrelevant voxels are wrongly selected. 

Moreover, at the highest score point, both the stability and our method detect 16 
relevant voxels correctly with the prediction accuracy of 0.944. On the other hand, 
the precision method only detect 14 relevant voxels but with higher prediction accu-
racy, 0.972. In addition, both the prediction and our methods find an optimal pair of , , while the stability method finds four pairs having the highest score.  

4.2 Comparison of Different Sparsity  

The number of non-zero elements in the dataset used above is very small ( 16) 
compared to the dimension of input voxels. The results show that the relevant voxels 
can be correctly detected with false positive rate equal to 0. In order to check the 
performance of our method on datasets with different number of non-zero voxels, we 
use another two simulation datasets with 54 1 … 70 and 128 150 
respectively.  

Table 1. Optimial Results Achieved with highest Scores of Three Different Methods 

  (L,M) Q Accuracy FN FP 
Dataset 

2 
Stability all pairs 

except 
(10,1600) 

2 0.898 0.963 0 

Precision (10,4800) 48 0.984 0.333 0.222 
 (100, 2667) 49 0.984 0.148 0.056 
 (70,3733) 57 0.984 0.167 0.222 
 (70,3733) 59 0.984 0.167 0.259 

Our Strategy (100,1600) 47 0.970 0.130 0 
   

Dataset  
3 

Stability (100,1600) 115 0.947 0.211 0.110 
Precision (40,4800) 137 0.964 0.273 0.344 

 (40,4800) 148 0.964 0.250 0.406 
 (40,4800) 149 0.964 0.250 0.414 

Our Strategy (100,1600) 129 0.951 0.172 0.180 

 
Table 1 shows the optimal results from the three methods with the two datasets. 

The results demonstrate that the stability method can highly reduce the false positive 
rate while introducing high false negative rate (e.g. dataset 2), as some significant 
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relevant voxels are unstable across repetitions. The precision method returns higher 
accuracy but introduces more noises. Among all three methods, our method makes the 
trade-off between relevant voxel selection accuracy and prediction performance. 
Compared to the precision method, our method can highly reduce the false positive 
and false negative rates with a small reduction in prediction precision. Moreover, the 
optimal values of parameters selected by our method are more stable that only one 
combination is selected. The other two methods, on the contrary, may select more 
than one optimal parameter settings.  Under these settings, the stability method se-
lect consistent voxel set, while the precision method returns different sets of voxels 
making difficult to decide which one to choose. 

5 Conclusion 

In fMRI analysis, MVPA has been the most popular method for brain cognitive state 
prediction. Previously, the MVPA studies mainly focus on the prediction power.  
Nowadays, it becomes popular to explore the interpretation of brain activity provided 
by the model predictors. Linear sparse modelling is an ideal approach, as the gener-
ated model weights are directly related to the voxels. Voxels with non-zero weights 
can be selected as relevant ones in response to a specific cognitive state. The conven-
tional MVPA methods detect the relevant voxels only based on their prediction pow-
er. The selected voxels tend to be specific to particular datasets especially when the 
feature-to-sample ratio of dataset is very high, which is always the case in fMRI anal-
ysis. In consequence, the interpretation of brain activity is not perfect by exploring 
those selected voxels.   

In this paper, we adopt the RS-SBL method for multivariate voxel selection and in-
troduce the concept of stability to the selection process. The experiment results dem-
onstrate that with the assessment of prediction precision, the sparse model selects 
voxels with the highest prediction power, but also those voxels contain irrelevant 
ones. Conversely, by employing the assessment of stability, the false positive selec-
tion is highly reduced, but it can result in the reduction in true positives and the pre-
diction precision. Our method combines both assessments that false positive and false 
negative rates are reduced while the prediction performance is maintained. The suc-
cessful application of our method on simulation datasets indicates the potential of 
using MVPA on real fMRI data to understand brain cognitive states. 
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Abstract. This paper describes improvement of the Hilbert-Huang transform 
(HHT) for detection of ERP components in the EEG signal. Time-frequency 
domain methods, such as the wavelet transform or matching pursuit, are com-
monly for this task. We used a modified Hilbert-Huang transform that allows 
the processing of quasi-stationary signals such as EEG. The essential part of the 
HHT is an Empirical Mode Decomposition (EMD) that decomposes signal into 
intrinsic mode functions (IMFs). We designed additional stopping criteria for 
better selection of IMFs in the EMD. These IMFs positively affect later com-
puted instantaneous attributes and increase classification success. We tested the 
influence of additional stopping criteria on classification reliability using the 
real EEG data acquired in our laboratory. Our results demonstrated that we 
were able to detect the P3 component by using the HHT with additional stop-
ping criteria more successfully than by using the original implementation of 
modified HHT, continuous wavelet transform and matching pursuit. 

Keywords: Electroencephalography, EEG signal processing, ERP detection, P3 
component, Hilbert-Huang transform, HHT, Empirical Mode Decomposition, 
EMD, stopping criteria. 

1 Introduction 

Our research group widely uses the methods of electroencephalography (EEG) and 
event related potentials (ERP) in its experiments. One of the main difficulties during 
the EEG signal processing is detection of ERP components. This is important for the 
interpretation of experimental results. It is common to use time-frequency domain 
methods, such as the wavelet transform or matching pursuit (MP) to locate ERP com-
ponents in the EEG signal. Another option is to use the Hilbert-Huang transform that 
was designed to process non-stationary signals and later modified for EEG signal 
processing.  

The HHT consists of two algorithms – empirical mode decomposition and Hilbert 
spectral analysis (HSA). The EMD decomposes a signal into IMFs. The IMF is a 
function which fulfills the following condition: The mean value of the envelope de-
fined by the local maxima and the local minima is zero at any point [1,2,3]. 
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The HSA applies the Hilbert transform on every IMF and allows us to compute the 
signal instantaneous attributes. 

The original HHT is not fully suitable for the ERP detection because the EEG sig-
nal is quasi-stationary. During the EMD envelopes are created around the processed 
signal. This process suffers from an over/undershoot effect. The over/undershoot 
effect slows down the convergence of the EMD and causes the distortion of created 
IMFs. We already modified the HHT in [4] by improving the EMD algorithm. It de-
composes the EEG signal into IMFs more precisely and minimizes the 
over/undershoot effect. 

The improvement described in this article includes the process of IMFs selection. 
Appropriately selected IMFs more reflect the signal physical properties (amplitude 
and frequency) and this selection is essential for later instantaneous attributes compu-
tation and the subsequent ERP detection. The IMF selection is controlled with a stop-
ping criterion of a sifting process. This process is a part of the EMD algorithm that 
acquires a single IMF from the signal.  

Every IMF should fulfill the condition described above. However, it is very diffi-
cult to fulfill this condition strictly, it means to achieve the zero mean value of the 
envelope at any point. Therefore it is recommended to use one of the following stop-
ping criteria - Cauchy convergence test [5] or standard deviation [6] in the sifting 
process. That is why we usually find only the estimation of ideal IMF using one of 
these stopping criteria. As a solution we designed two additional stopping criteria that 
help to find better IMFs and increase subsequent classification reliability. 

The article is organized in the following way. A short introduction into EEG signal 
processing by the HHT is given in section 2. It includes the brief description of the 
EMD algorithm and the Hilbert transform. The next section describes the proposed 
additional stopping criteria. Testing data, classifiers, and achieved results are summa-
rized in section 4. Conclusion is provided in the last section. 

2 HHT and Its Application on the EEG Signal 

2.1 Empirical Mode Decomposition 

The most important part of the HHT is the EMD algorithm. The goal of the EMD is to 
decompose signal into IMFs and the residue. The EMD is a data driven method and 
IMFs are derived directly from the signal itself [7]. The IMF represents a simple os-
cillatory mode as a counterpart to a simple harmonic function, but it is much more 
general: instead of constant amplitude and frequency, as a simple harmonic compo-
nent, the IMF can have a variable amplitude and frequency as the function of time [4]. 
The core of the EMD is the sifting process that acquires a single IMF from the signal. 
The EMD starts with the original (preprocessed) signal. In the sifting process we look 
for local extrema (minima and maxima) in the input signal and we create upper and 
lower envelopes by connecting local extrema with a cubic spline. Then we calculate  
 



102 T. Prokop and R. Mouček 

 

the mean curve by averaging the upper and lower envelopes and subtract the obtained 
mean curve from the input signal. Finally, if a stopping criterion is met, we have 
found an IMF and the sifting process ends. In other case the sifting process continues 
with the next iteration. After acquiring an IMF the sifting is finished and the EMD 
continues with obtaining the residue by subtracting the IMF from the signal. If the 
residue has at least two extrema, we set the residue as the current input signal and 
continue with the next sifting process. Otherwise the EMD is over and we have a set 
of IMFs and the residue.  

This basic algorithm is usable for both a general non-stationary signal and an EEG 
signal. We use the modified HHT (mHHT) to process the EEG signal. The EMD 
algorithm of the mHHT uses a modified mirror method [4] for the estimation of addi-
tional extrema to minimize or avoid the over/undershoot effect. Over/undershoot ef-
fect can occur when additional extrema are not well placed.  

Local extrema detection is an important part of the EMD. Envelopes do not have to 
cover the whole signal when incorrect extrema are detected. The mHHT detects local 
extrema with a delta difference method [4] that locates correct local extrema. It allows 
ignoring insignificant changes in the amplitude and detecting local extrema, even 
when there is no inflection point. 

2.2 Stopping Criteria 

The stopping criterion (SC) controls the selection of IMF in the sifting process. As we 
are trying to fulfill the IMF condition, amplitude variations of the individual waves 
become more even. Therefore Standard deviation (SD) or Cauchy convergence test 
(CC) is usually used as the stopping criterion: ∑ | | ,                                           (1) 

∑ | |∑ .                                              (2) 

A function in the current iteration of the sifting process is considered to be IMF, when 
the value of the stopping criterion is smaller than a threshold. The threshold value is 
selected empirically depending on the used stopping criterion and experimental  
design. 

2.3 Hilbert Transform 

The result of the EMD is an input to the Hilbert transform (HT). HT computes an 
analytical signal 

                                   (3) 

from every IMF, where  is the real part that represents the original signal,  
and  is the imaginary part that represents the Hilbert transform of . The  
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imaginary part contains original data with 90° phase shift. The analytical signal  
allows us to calculate signal instantaneous attributes: 

,                                          (4) 

,                                           (5) 

,                                            (6) 

where  is the instantaneous amplitude,  is the instantaneous phase and  
is the instantaneous frequency. The knowledge of amplitude and frequency is essen-
tial for ERP component detection.  

3 Proposed Modifications 

3.1 Additional Stopping Criteria 

We designed two simple additional stopping criteria (ASCs) to help the sifting 
process to select IMFs that better correspond to the signal trend. A better decomposed 
signal positively affects computed instantaneous signal attributes and it should also 
significantly increase the classification reliability. The ASC is met if its value is 
smaller than a threshold. The threshold is selected empirically and differs for both 
ASCs.  

New ASCs do not measure the convergence of the sifting process. They measure 
the distance of the mean curve from zero. We need to know if the sifting process con-
verges to zero and how close the mean curve to zero is. The sifting process returns the 
IMF only if it meets both stopping conditions - standard SC and ASC. 

3.2 Mean Value of Mean Curve  

The first ASC is the simple mean value of the mean curve (MV): ∑  .                                            (7) 

The mean value of the mean curve created from envelopes is zero if the mean value of 
envelopes is zero at any point. Of course, we are not trying to achieve the zero mean 
value strictly because of the effect described in 2.2. 

3.3 Dispersion from Zero 

The second ASC is based on the following standard deviation: 

∑ .                                    (8) 
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The standard deviation is a measure of the dispersion from the average. However, we 
are interested in how big dispersion from zero is, because the average of every IMF 
mean curve should be zero. We set  to zero and we get the formula for the second 
ASC: 

∑
,                                        (9) 

where ZD is the dispersion from zero. 

3.4 Iterations and Number of Created IMFs 

If we use ASC, the sifting process probably does more iterations to fulfill both condi-
tions. The comparison of the average number of iterations and the average number of 
created IMFs is shown in Table 1. The number of iterations increases rapidly when 
the ASC threshold value is close to zero. The more iterations the sifting process does, 
the more IMFs are created. 

Table 1. The average number of iterations and the average number of created IMFs during 
EMD 

ASC Threshold Average num-
ber of iterations 

Average number 
of IMFs 

Without ASC - 29.08 6,95 

ZD 0.1 29.12 6,95 

0.01 30.54 7,075 

0.001 104.61 8 

MV 0.01 29.16 6,95 

0.001 34.64 7,025 

0.0001 55.25 7,425 

4 Results 

4.1 Testing Data 

We tested our EMD modification on the real EEG data acquired in our laboratory 
from 20 different subjects. We recorded the data using the BrainAmp device with the 
sampling frequency 1 kHz. We tried to detect the P3 component in all cases. The tests 
were performed on 1s (1000 samples) long epochs. The original data consist of 30 
epochs of the target stimulus responses and 90 epochs of the non-target stimulus res-
ponses, though subsets of 30 epochs were selected randomly for the test. The testing 
data contained 30 averaged epochs. The first 100 data samples included in the average 
were used for the baseline correction. 
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Fig. 1. The averaged ERP waveforms for the target stimulus (with the P3 component) and the 
non-target stimulus (without any P3 component) 

We used the same data set, mHHT implementation, basic EMD settings and one 
classifier as in [4] to easy and objectively compare our results with the original im-
plementation of the mHHT. 

Typical averaged ERP waveforms for the target stimulus (creating the P3 compo-
nent) and the non-target stimulus are shown in Fig. 1. 

4.2 Classifiers 

We used three simple classifiers with ten configurations in total to obtain the average 
classification reliability. All classifiers iterate through the IMFs and compute average 
amplitude and frequency between 150ms and 650ms after stimuli. The first classifier 
detects the P3 component when the average amplitude is higher than the threshold and 
the average frequency lies between 0.2Hz and 3Hz. The second classifier shifts a 
window over the signal and computes the average frequency and the average ampli-
tude in this window.  The window length is between 150ms and 250ms and the win-
dow shift is 10ms (10 samples). It detects the P3 component if the average amplitude 
is higher than the threshold and the average frequency lies between 0.2Hz and 3Hz in 
the current window.  The last classifier assigns a score to every feature depending on  
 

-6
-4
-2
0
2
4
6
8

10
12
14

0 100 200 300 400 500 600 700 800 900 1000

A
m

pl
it

ud
e 
μV

Time [ms]

Original signals

The averaged ERP waveform for the target stimulus

The averaged ERP waveform for the non-target stimulus



106 T. Prokop and R. Mouček 

 

the feature value, evaluation function, and defined feature range or threshold. Features 
are again represented by the average amplitude and frequency. The P3 component is 
detected if the sum of scores for all features is higher than the threshold.  

Settings of the classifiers were not adjusted to testing data but correspond to the P3 
component properties. Results of all classifiers were summarized to present the aver-
age classification reliability. The average classification reliability reflects the quality 
of decomposed IMFs. 

4.3 Mean Value of Mean Curve Results 

We can see in Table 2 that the average classification reliability increased from 89.5% 
using the original algorithm of the mHHT to 90% with 0.0009 MV threshold. The 
maximum classification reliability achieved 95%. The classification success rapidly 
falls when the threshold value is close to zero. 

Fig. 2 shows differences between the fourth IMF created using the original algo-
rithm of the mHHT and the fourth IMFs created using MV ASC. IMFs created using 
the additional stopping criterion correspond better with the original signal trend. 

Table 2. The classification of the P3 component using MV ASC 

MV threshold Maximum classifi-
cation success [%] 

Minimum classifi-
cation success [%] 

Average classifica-
tion success [%] 

0,0009 92,5 87,5 90,00 

0,001 92,5 87,5 89,75 

0,025 92,5 87,5 89,75 

0,04 92,5 87,5 89,75 

0,05 92,5 87,5 89,75 

0,075 92,5 87,5 89,75 

0,09 92,5 87,5 89,75 

Without ASC 92,5 87,5 89,50 

0,005 90,0 85,0 88,75 

0,0025 90,0 85,0 88,50 

0,0005 95,5 85,0 88,25 

0,00075 92,5 85,0 88,00 

0,0004 95,0 82,5 87,00 

0,004 87,5 82,5 86,25 

0,0001 87,5 77,5 83,50 

0,00025 85,0 77,5 81,25 
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Fig. 2. The original signal and comparison of the fourth IMF created using the original mHHT 
with the fourth IMFs created using mHHT with MV ASC with 0,0009 and 0,009 thresholds 

4.4 Dispersion from Zero Results 

This additional stopping criterion seems to be more promising because it reflects 
more the IMF condition. We can see the classification results in Table 3. The maxi-
mum classification reliability increased to 95% in two cases and the average classifi-
cation reliability is 4.25% higher in comparison with the original algorithm of the 
mHHT. 

Table 3. The classification of the P3 component using ZD ASC 

ZD threshold 
Maximum classifi-
cation success [%] 

Minimum classifi-
cation success[%] 

Average classifica-
tion success [%] 

0,009 95,0 87,5 93,75 

0,01 95,0 87,5 93,00 

0,0075 92,5 87,5 91,25 

0,09 92,5 87,5 90,00 

Without ASC 92,5 87,5 89,50 

0,005 92,5 85,0 89,25 
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Table 3. (continued) 

0,001 90,0 85,0 87,50 

0,0009 90 85,0 87,50 

0,025 90 82,5 87,00 

0,075 90 82,5 86,75 

0,05 85 80,0 82,50 

0,0025 85 77,5 81,25 

 
Fig. 3 shows differences between the fourth IMF created using the original algo-

rithm of the mHHT and the fourth IMFs created using ZD ASC. IMFs created using 
the additional stopping criterion correspond better with the original signal trend. 

 

 

Fig. 3. The original signal and comparison of the fourth IMF created using the original mHHT 
with the fourth IMFs created using mHHT with ZD ASC with 0,009; 0,09 and 0,0075  
thresholds 

4.5 Comparison with CWT and MP 

In Table 4 we can see the best classification results of the P3 component detection 
using CWT, MP modified for ERP detection [8], original HHT, mHHT and mHHT 
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using ASC. The results of the mHHT are comparable to the results of widely used 
time-frequency domain algorithms. Modified HHT can achieve even better results by 
using ASC. 

Table 4. Comparison of MP modified for ERP detection, CWT, original HHT and mHHT with 
mHHT using ASC. CWT, mHHT, MP and original HHT results rewritten from [4] 

Method Classification 
success [%] 

The number of 
ERPs correctly 
detected 

The number of no 
ERPs correctly 
detected 

mHHT with ASC 95,0 20/20 18/20 
CWT 92,5 18/20 19/20 

mHHT 92,5 19/20 18/20 
Matching pursuit 90,0 18/20 18/20 

Original HHT 70,0 17/20 11/20 

5 Conclusion 

Our aim was to further improve the P3 component detection by the mHHT. We im-
proved the EMD algorithm to better decompose the EEG signal into IMFs. We fo-
cused on the sifting process that is the core of the EMD algorithm. We tried to control 
the sifting process with the additional stopping criteria. It should assure that returned 
IMFs will better correspond to the original signal trend. We expected that better sig-
nal decomposition would positively affect computed instantaneous signal attributes 
and also the following classification results. 

We designed two simple additional stopping criteria. The first is the simple mean 
value of the mean curve while the second is the dispersion of the mean curve around 
zero. Both additional stopping criteria measure the level of fulfillment of the IMF 
condition but not the convergence of the sifting process as the standard stopping crite-
rion does. 

We tested both ASCs on the real EEG data acquired in our laboratory during Odd-
Ball experiments. IMFs created with the algorithm using ASC correspond more to the 
signal trend while the number of iterations of the sifting process does not rise rapidly 
for the most of usable threshold values. If the threshold value is very close to zero, it 
makes amplitude variations of the individual waves more even and we lose important 
information about the signal. Such threshold values produce the high number of itera-
tions of the sifting process and negatively affect the classification success. 

The average classification reliability is 0,5% higher for the MV ASC and 4,25% 
higher for ZD ASC than for the original mHHT algorithm that does not use ASC. The 
maximum classification success is 2,5% higher for both ASCs than for the original 
mHHT algorithm. 

When we compare our best results with the best results of Continuous wavelet 
transform, Matching pursuit, original HHT and mHHT, we achieved even higher 
maximum classification success. 
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In the future we will focus on the development of the new classifier and integration 
of our modified HHT implementation into our EEG/ERP portal [9]. 
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Abstract. Spike sorting is often required for analyzing neural recordings to iso-
late the activity of single neurons. In this paper, a new feature extractor based 
on Wavelet and kernel PCA for spike sorting was proposed. Electrophysiology 
recordings were made in Sprague-Dawley (SD) rats to provide neural signals. 
Here, an adaptive threshold based on the duty-cycle keeping method was used 
to detect spike and a new spike alignment technique was used to decrease sam-
pling skew error. After spikes were detected and alimented, to extract spike fea-
tures, their wavelet transform was calculated, the first 10 coefficients with the 
largest deviation from normality provided a compressed representation of the 
spike features that serves as the input to KPCA algorithm. Once the features 
have been extracted, k-means clustering was utilised to separate the features 
and differentiate the spikes. Test results with simulated data files and data ob-
tained from SD rats in vivo showed an excellent classification result, indicating 
the good performance of the described algorithm approach. 

Keywords: Spike sorting, kernel PCA, Wavelet, k-means clustering. 

1 Introduction 

NEURAL action potentials, also known as nerve impulses or spikes, play an impor-
tant role in understanding the central nervous system. Nowadays, extracellular record-
ing of neural spikes has been very popular in the neurophysiological research. As the 
tip is surrounded by many neurons, an electrode can simultaneously pick up spikes of 
an unknown number of neurons. Usually the experimenter tries to optimize the re-
cording situation, so as to enhance the response of only one neuron. Unfortunately, 
experimental techniques are limited in achieving clear isolated recordings[1,2]. There-
fore, to increase the data yield of each experiment, spike sorting is a crucial step to 
extract coherent signals of a single target neuron from this mixture of responses. 

The spike sorting problem has received intense attention, and many solutions have 
been advanced. The basic algorithmic steps of spike classification are as follows:  

                                                           
* Corresponding author. 
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(1) spike detection, (2) extraction of distinctive features from the spike shapes, and (3) 
clustering of the spikes by these features[3,4]. The clustering problem is widely 
known and there are many methods to solve it[5]. The performance of any clustering 
method relies on the original differences among the groups in the data. Hence, the 
efficiency of the feature extraction method in signifying those differences is crucial 
for the success of clustering.  

Methods of spike sorting have been extensively studied during the last decades and 
a large number of techniques have been summarized in [5], such as the principal 
component analysis (PCA)[6,11], k-means clustering and Bayesian clustering[7], the 
wavelet based methods[4,8] , and filter-based methods[9].  

The most common method of feature extraction and reduction is still the principal 
component analysis (PCA)[10]. PCA is a powerful method employed to automatically 
select features and use them to create feature vectors. PCA seeks an ordered set of 
orthogonal basis vectors, the principal components, which capture the directions in 
the data of largest variation. A smaller subspace created by some of the initial prin-
cipal vectors is then used to make an approximate projection of the data. In this pro-
jection, clusters of different units in the data, corresponding to separate neurons, are 
revealed[11].  

However, for some complicated cases in spike sorting with particularly nonlinear 
characteristics, PCA performs poorly due to its assumption that the process data are 
linear. A new nonlinear PCA technique for tackling the nonlinear problem, called 
kernel PCA (KPCA), has been in development in recent years [12,13].  

KPCA is a type of kernel-based learning machine. PCA finds principal components 
minimizing data information loss in the input space, whereas KPCA searches them in 
the extended feature space[14]. KPCA can efficiently compute PCs in high-
dimensional feature spaces by means of integral operators and nonlinear kernel func-
tions. The basic idea of KPCA is to first map the input space into a feature space via 
nonlinear mapping and then to compute the PCs in that feature space[15].  

Being linear in the feature space, but nonlinear in the input space, KPCA thus is 
capable of deriving low-dimensional features that incorporate higher order statistics. 
Compared to other nonlinear methods, the main advantage of KPCA is that it does not 
involve nonlinear optimization[16]; it essentially requires only linear algebra, making 
it as simple as standard PCA. Due to these merits, KPCA has shown better perfor-
mance than linear PCA in feature extraction and classification in nonlinear systems. 

In this paper, a new feature extractor based on Wavelet and kernel PCA for spike 
sorting was proposed. Electrophysiology recordings were made in Sprague-Dawley 
(SD) rats to provide neural signals. Here, an adaptive threshold based on the duty-
cycle keeping method is used to detect spike and a new spike alignment technique 
was used to decrease sampling skew error. After spikes are detected and alimented, to 
extract spike features, their wavelet transform is calculated, the first 10 coefficients 
with the largest deviation from normality provided a compressed representation of the 
spike features that serves as the input to KPCA algorithm. Once the features have 
been extracted, k-means clustering is utilised to separate the features and differentiate 
the spikes. Test results with simulated data files and data obtained from SD) rats in 
vivo showed an excellent classification result, indicating the good performance of the 
described algorithm approach. 
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2 Methods  

A schematic of the proposed methodology is depicted in Fig. 1. For this methodology, 
neuronal spikes are detected by the duty-cycle keeping method [17] and aligned at the 
peak points. Each aligned spike is subsequently transformed into a series of wavelet 
coefficients by a discrete wavelet transform. A set of selected wavelet coefficients is 
used to extract Spikes features through kernel principal component analysis. The pro-
posed method was evaluated using MATLAB 7.0 (The MathWorks, Matik, MA, 
USA) based on the signals from SD rats. 

 

 

Fig. 1. A schematic of spike sorting flow based on wavelet an KPCA 

2.1 Data Collection 

2.1.1   Real Data 
Electrophysiology recordings were made in Sprague-Dawley (SD) rats（from the 
Experimental Animal Center of Peking University), weighing 230 g. All animal expe-
riments were carried out in accordance with the guidelines of the local animal welfare 
committee. The raw data were filtered and amplified before being analyzed at a  
25 KHz sampling rate and stored. During off-line analysis of each recording session, 
original Spike signals were detected through threshold method. All these data analysis 
were made through  Multi Channel Systems Inc. (MCS, Germany).  

Sensors used in electrophysiological experiments are homemade planar microelec-
trode array fabricated by the MEMS technique on silicon substrate[21,22]. The  
circular microelectrode sites with the diameter of 20 μm and distance of 100 μm were 
sputtered 250 nm platinum for recording. Working electrodes were lab-made CFME. 
The CFME is graphite monofilaments (Toary Industries, Japan) with the diameter of 
6~7 μm, built in a borosilicate glass sheath to attain electrical insulation and mechani-
cal. The carbon tip protruding from the sheathing by 10~100 μm provides an  
electroactive surface for electron transfer in electrochemical measurements. Refer-
ence/counter electrode is also homemade electrode painting with Ag|AgCl slurry 
which purchased from Dupont Co., Ltd (USA). The electrodes implanted in SD rats 
were under the guidance of stereotaxic frame (Stoelting, USA). 

2.1.2   Simulated Data 
The simulated signal has some advantages over the real signal for evaluating the  
performance of the algorithm, because it provides known solutions under different 
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conditions, such as real templates, firing time and so on. The simulated spike train 
was designed by using five spike templates and background noise. The background 
noise was taken from a segment of a real recording. After the spike events were ex-
tracted from the recording of a selected electrode, the noise traces were concatenated 
and regarded as the background noise. In this work, two example data sets were em-
ployed to test our method. In data sets, several spike shapes were added to the back-
ground to generate simulated signal. The two spike shape groups were shown in Fig2.  

 

 

Fig. 2. Spike shape groups for adding to the datasets. (a) three spike shapes for addingto 
dataset1, (b) five spike shapes for addingto dataset1 dataset2. 

2.2 Spike Detection and Alignment 

In order to make a research on spikes, we need to detect spike signals from a large 
number of noise signals. The current methods for detection of spikes include thre-
shold detection, peak value detection, nonlinear energy threshold detection, wavelet 
transform and other algorithms. The threshold detection method is the most widely 
used detection method. However, traditional adaptive threshold determined by mul-
tiples of the running root-mean-square (RMS) is unsusceptible to impede detection of 
lower-SNR neuronal spikes. As knowen, spike detection performance can be im-
proved by adopting adaptive thresholds that are estimated from near spike-free back-
ground noises or using nonlinear operators to enhance spike-to-noise ratios[17].  

In this work, an adaptive threshold based on the duty-cycle keeping method is 
used. As shown in Fig. 3, the duty-cycle of the signal, defined as the portion of data 
with larger magnitude than the duty-cycle threshold, is calculated. The error (ε) be-
tween the calculated duty-cycle and the desired value (15.85%) is used to adjust the 
duty-cycle threshold.  

Usually, sampling skew is one of the main issues that causes the waveform distor-
tion and results in the degradation of the sorting performance[18]. So spike segments 
are to be aligned at a particular point after detection. This method aligns spikes at the 
peak points, identified by the changing slope criterion(the sign of the slope of five 
sequential points changes when a new point is added on the right side and the first 
point on the left side is excluded). The spike data is a 128 dimensional vector and its 
peak appears at the 52th point.  

             
(a) (b)   
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Fig. 3. The neuronal spike detectors incorporated with adaptive thresholds derived by duty-
cycle (DS) keeping methods 

2.3 Feature Extraction  

In this study, we first implemented a four-level decomposition using Haar wavelets, 
which are rescaled square functions. Haar wavelets were chosen due to their compact 
support and orthogonality, which allows the discriminative features of the spikes to be 
expressed with a few wavelet coefficients and without a priori assumptions on the 
spike shapes. Then the lower wavelet coefficients were used to extract Spikes features 
through kernel principal component analysis. 

2.3.1   Selection of Wavelet Coefficients 
After spikes are detected and alimented, their wavelet transform is calculated, thus 
obtaining 128 wavelet coefficients for each spike. We implemented a four-level  
multiresolution decomposition using Haar wavelets. Each wavelet coefficient charac-
terizes the spike shapes at different scales and times. The goal is to select a few coef-
ficients that best separate the different spike classes. In our implementation, the first 
10 coefficients with the largest deviation from normality were used. The selected set 
of wavelet coefficients provides a compressed representation of the spike features that 
serves as the input to KPCA algorithm. 

2.3.2   The KPCA Algorithm 
The basic idea of kernel PCA is to first map the input data into a feature space X via a 
nonlinear mapping and then perform a linear PCA in F. Given a imput set Xx , x , … , x  , where the examples  x R ,  There must be a nonlinear function : x x  to map the original input space X into a high-dimensional feature space 
F. The map  and the space F are determined implicitly by the choice of a kernel 
function K , which computes the dot product between two input examples xi and xj 
mapped into F via k x , x x x                            (1) 

In space F, the covariance matrix of the mapped examples could be written as follow: C  T                                    (2) 

Assuming that the data are centered in F, the eigenvaluesλand eigenvectors v could be 
found through  
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                                     (3) 

Since all solutions v with 0 lie within the span of  X , X , … , X , we 
may consider the following equivalent problem:                                     (4) 

and represent v in terms of an n-dimensional vector q as T . Combining this 
with (3) and (4) and defining an n×n kernel matrix K by K T   leads to n

, The solution can be obtained by solving the kernel eigen-value problem: 

n                                     (5) 

A justification of this procedure is given by Scholkopf[16]. Now, performing PCA in 
F is equivalent to resolving the eigen-problem of Eq. (5). 

The PCs t of a test vector x are then extracted by projecting x  onto eigenvec-
tors vk in F, where 1, … , n t  v , x ∑ q x , xN                   (6) 

Before applying KPCA, mean centering in the high-imensional space should be per-
formed. The centered kernel matrix K can be easily calculated using the noncentered 
kernel matrix K: K K KE EK EKE                          (7) 

Where E 1/n.  
There exist a number of kernel functions. Most widely used kernel functions con-

tain Gaussian function, polynomial, sigmoidal, and inverse multiquadric type func-
tions [19]. In our study, only a Gaussian function exp x y /c  is considered to 
construct a statistical process model. Here, · is l2-norm and c is the width of a 
Gaussian function. 

2.4 Classification (Using k-means Clustering) 

Once the features have been extracted, k-means clustering is utilised to separate the 
features and differentiate the spikes. K-means clustering is a method that aims to par-
tition the spikes (using the selected feature space) into k clusters, in which each spike 
belongs to the cluster with the nearest mean. This is generally implemented as an 
iterative algorithm that converges towards the solution. Depending on the feature 
types (and their dimensionality) the number of iterations required for convergence 
will vary. For all the classification presented herein, the Matlab (‘kmeans’) function 
was used. This has been used to ensure that all methods converge to a near-optimum 
classification accuracy. 

3 Results 

3.1 Feature Extraction 

Fig.4 shows the wavelet coefficients for spikes in the data set shown in Fig.2. Coeffi-
cients corresponding to individual spikes are superimposed, each representing how 
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closely the spike waveform matches the wavelet function at a particular scale and 
time. Coefficients are organized in detail levels (D1–4) and a last approximation (A4), 
which correspond to the different frequency bands in which spike shapes are decom-
posed. In Fig.4, we observe that some of the coefficients cluster around different val-
ues for the different spike classes, thus being well suited for classification. It is clear 
from this figure that coefficients showing the best discrimination are not necessarily 
the ones with the largest variance. In particular, the maximum variance criterion 
misses several coefficients from the high-frequency scales (D1-2) that allow a good 
separation between the different spike shapes.  

For the same data, the comparison between the separability of PCA, Wavelet and 
KPCA were showed in Figure 5. The best two-dimensional (2D) of PCA, Wavelet 
and KPCA were chosen to cluster spikes from dataset1(Fig.2a).  We observed that 
using the KPCA, it is possible to clearly identify the three clusters. In contrast, when 
choosing the best two coefficients with Wavelet or the first two PCs from PCA, it is 
difficult to differentiate class1 and class2. 

 

 

Fig. 4. Wavelet transform of the spikes from Figure 2a and Figure 2b (panes a and b, respec-
tively) 

(a) 

 
(b) 
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Fig. 5. (a) Best two-dimensional (2D) of the wavelet coefficients selected from Fig.4a, 
(b)projections of the first two principal components of spikes in Fig2a, (c)projections of the 
first two KPCs 

3.2 Clustering of the Spike Features  

Fig.6 and Fig.7 showed the performance of the KPCA algorithm for the example da-
tasets (shown in Fig.2). From Figure 6, we can see the classification of dataset1 after  
 

 

Fig. 6. Outcome of the clustering algorithm for Spikes from dataset1(Fig.2(a)) 

     
(a)                         (b) 

 
(c) 
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clustering. In this case, spike shapes are easy to differentiate, for there were only three 
spike clusters. In Fig.7, there are 5 spike clusters, it is difficult to differentiate class2, 
class3 from class5, class4 respectively. However, in all these cases, the classification 
errors were very low (see Table 1).  

 
 

 

Fig. 7. Outcome of the clustering algorithm for Spikes from dataset2(Fig.2(b)) 

Errors of spike identification cumulatively derive from two sources: incorrect fea-
ture extraction and incorrect clustering. We compared the discrimination power of 
KPCA with other feature extraction methods using the same clustering algorithm, 
SPC. Specifically, we compared the outcome of classification with KPCA, wavelets, 
principal component analysis (using the first two principal components). Table 1 
summarizes the results(examples 1 and 2 were shown in Fig.6 and Fig.7, respective-
ly). Performance was quantified in terms of the number of classification errors. In 
general, the best performance was achieved by using KPCA algorithm. Since example 
1 was easier to cluster, all of the three methods did a good job. In example 2, there 
were five spike cluster, classification errors by KPCA algorithm was smaller than the 
others. 

Table 1. Number of Classification Errors for two Examples Obtained Using KPCA, PCA and 
WAVELET 

Example Number of 
Spike 

 
This work 

Sorting error 
PCA 

 
Wavelet 

Dataset1 117 0 2 1 

Dataset2 1428 8 16 14 
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4 Conclusion 

In this paper, a new Spike sorting method based on Wavelet and KPCA was proposed. 
KPCA can efficiently compute PCs in high-dimensional feature spaces by means of 
integral operators and nonlinear kernel functions. Compared to other nonlinear me-
thods, KPCA has the following main advantages: (1) no nonlinear optimization is in-
volved; (2) the calculations in KPCA are as simple as in standard PCA, and (3) the 
number of PCs need not be specified prior to modeling. However, KPCA has some 
problems that must be considered. The size of kernel matrix K becomes problematic 
when the number of samples becomes large. This can be solved by using a sparse ap-
proximation of the matrix K, which still describes the leading eigenvectors sufficiently 
well [20]. The selection of the kernel function is crucial to the proposed method since 
the degree to which the nonlinear characteristic of a system is captured depends on  
this function; In this paper, the radial basis kernel function exp x y /c  was 
considered. 

We verified the advantage of the KPCA method with respect to the spike detection 
and classification error. It will be beneficial for the real situations, where the signal 
quality can be degraded unpredictably. Further studies may be required to clarify this 
statement. Eventually, the assessments of the decoding performance presented in this 
paper should be applied to a highly reliable experimental data. 
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Abstract. This paper presents a method to remove ocular artifacts from elec-
troencephalograms (EEGs) which can be used in biomedical analysis in porta-
ble environment. An important problem in EEG analysis is how to remove the 
ocular artifacts which wreak havoc among analyzing EEG signals. In this paper, 
we propose a combination of Wavelet Transform with effective threshold and 
adaptive filter which can extract the reference signal according to ocular arti-
facts distributing in low frequency domain mostly, and adaptive filter based on 
Least Mean Square (LMS) algorithm is used to remove ocular artifacts from 
recorded EEG signals. The results show that this method can remove ocular ar-
tifacts and superior to a comparison method on retaining uncontaminated EEG 
signal. This method is applicable to the portable environment, especially when 
only one channel EEG are recorded. 

Keywords: electroencephalogram (EEG), ocular artifacts, adaptive filter, signal 
processing.  

1 Introduction 

Studies show clearly that mental health care represents a major cost to all nations and 
is increasingly becoming one of the most important aspects in Telecare and Tele-
health projects. Researchers want to build a home care system based on EEG and it is 
designed to monitor levels of individual mental disorders and collect feedback during 
treatment using EEG signals. But the recorded EEG signal were contaminated by 
other potential bioelectricity interferences, such as Ocular artifact from eye-
movement, electromyography (EMG) from muscle activity or baseline drift and pow-
er line interference, etc. [1]. These signals may be usually much higher than that of 
the neural signals, so it is necessary for these noises to be removed. Ocular artifact 
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from eye-movement is a major source of contamination of the EEG. So it is important 
to use effective methods to remove the ocular artifacts from recorded EEG signal. 

Many traditional approaches have been proposed to remove or attenuate such ocu-
lar artifacts from recorded EEG in recent years. Widely used methods for attenuating 
ocular artifacts are based on time domain [2] or frequency domain [3] techniques. 
Independent Component Analysis (ICA) is a good method which is developed with 
respect to blind source separation and the aim is to obtain components that are ap-
proximately independent [4]-[6]. But to remove ocular artifacts, a reference signal is 
necessary which requires tedious visual classification of the components [7], [8]. 
Some methods have been used in the modeling of ocular artifacts components based 
on improved support vector machine (SVM) [9] to isolate them from the EEG [10]. 
Wavelet transform [11], [12] approach is becoming more and more popular for the 
analysis of biomedical data. Stationary Wavelet Transform (SWT) is a method which 
neither relies upon the reference ocular artifacts nor visual inspection. As frequency 
precision is also improved, researchers have often used SWT to detect the ocular arti-
facts region and then selected the correct threshold to remove the interferences [13]. 
However, the ocular artifacts, since they have an overlapping spectrum cannot be 
removed by SWT. These techniques are unlikely to provide sufficient accuracy to 
purify EEG signals. 

In this paper, we proposed a method based on wavelet transform and adaptive filter 
to remove the ocular artifacts. Adaptive algorithms [15] play a very important role in 
many diverse applications, such as communications, acoustics, speech, radar, sonar, 
seismology, and biomedical engineering. In general, the adaptive filter adjusts its coef-
ficients to minimize the squared error between its output and a primary signal. In sta-
tionary conditions, the filter should converge to the Wiener solution. Conversely, in 
non-stationary circumstances, the coefficients will change with time, according to the 
signal variation, thus converging to an optimum filter [14].  The transfer function of 
adaptive filter is adjusted according to an optimizing algorithm. The adaptation is di-
rected by the error signal between the primary signal and the filter output. The optimiz-
ing criterion mostly used is the Least Mean Square (LMS) algorithm. In a portable 
environment, it is necessary to deal with contaminated EEG signal, especially when the 
recorded EEG signal has only one channel. We use wavelet transform to decompose 
contaminated EEG signal, then, apply effective threshold on the detail coefficients at 
last three levels, using wavelet transform again to reconstruct signal. We don’t deal 
with all wavelet coefficients and only for three layers coefficients, because the last 
three levels coefficients contain the most information of ocular artifacts. So, we use 
this reconstructed signal instead of recorded electrooculogram (EOG) signal as the 
input reference signal of adaptive filter. This combination can do remove ocular arti-
facts from contaminated EEG signal well and this allows us to lever the biggest advan-
tage of adaptive filter: it can follow the changes and automatically adjust its parameter 
to achieve optimal performance of the filter when the statistical properties of input 
signal are changing. Through the comparison results, the performance of the proposed 
method is better than comparison method on retaining the EEG signal without conta-
minated by ocular artifacts. It is effective even if the EEG signals have only one chan-
nel and hence is particularly suitable for portable applications. 
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The paper is structured as follows: Section 2 provides a detailed introduction with 
respect to the method in this paper. Section 3 presents  the results of our study. In 
section 4 we discuss our results. Conclusion and the limitations of this study will be 
given in section 5. The data processing during the research is conducted through the 
MATLAB tool. 

2 Methodology 

EEG signals are contaminated by other biological signals, among them, the ocular 
artifacts have the greatest interferences. This contamination is considered to be an 
additive noise within the EEG signal. So we can get the following expression: 
 

EEG (t) EEG (t) k OAs(t)rec true= + ⋅     (1) 

where, 

EEG (t)rec : the recorded EEG signal, 

EEG (t)true : the EEG signal due to cortical activity and without interference, 

k OAs(t)⋅ : the ocular artifacts due to eye movement. 

We can get the EEG (t)rec  from the EEG (t)true  by removing the k OAs(t)⋅  

efficiently. In this paper, we applied a method which based on wavelet transformation 
and adaptive filter.  

 

 

Fig. 1. Flowchart for correction of contaminated EEG 

Using adaptive filter to remove the ocular artifacts from recorded EEG signal al-
ways needs a reference channel. Considering the more portable data recording envi-
ronment, there is even no synchronous channel to record ocular artifacts signal, so 
here, we use wavelet transformation to obtain the reference ocular artifacts signal for 
adaptive filter. First, we apply wavelet decomposition to decompose the contaminated 
EEG signal, and select Daubechies 3 wavelet as mother wavelet function, because its 
coefficients are the simplest. Then approximation coefficients and detail coefficients 
are computed form seven levels of wavelet decomposition. Second, we use threshold 
value on detail coefficients at last three levels for processing. By analyzing the fre-
quency spread of the EEG data, the ocular artifacts are mainly concentrated in the low  
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frequency band, we can only process the last three levels detail coefficients with a 
hard threshold to extract the reference EOG signal, and use different threshold value 
to each level. The threshold value is an empirical value which based on the relation-
ship of each level coefficients variance and mean. Third, we apply wavelet recon-
struction on the new wavelet coefficients and obtain the reconstructed signal which 
contains a large amount of information of ocular artifacts and little information of 
EEG signal. Finally, we use adaptive filter to remove the ocular artifacts from record-
ed EEG signal, the reconstructed signal is used as the input reference signal of adap-
tive filter. Fig.1 shows the flowchart for correction of contaminated EEG with our 
method. 

Adaptive filter algorithm have several choices, in this paper, we choose the most 
simple and commonly used algorithm: least mean square (LMS). An adaptive system 
based on the LMS algorithm has a good performance when the environmental noise is 
a stationary random signal. The LMS algorithm is outlined in the following set of 
equations [15]: 

The error signal of adaptive filter is: 
 

T

T

e(n) d(n) y(n)

d(n) x (n)w(n)

d(n) w (n)x(n)

= −
= −
= −

                    (2) 

Where, x(n) is the input signal, T Ty(n) x (n)w(n) w (n)x(n)= = is the output of 
adaptive filter, d(n) is the reference signal, w(n)  is the filter’s weight coefficients. 
Using the steepest descent method, we get the update recursive relation of filter 
weight coefficients: 

T Tw(n 1) w(n) 2 x(n)[d(n) x (n)w(n)]+ = + μ −              (3) 

Where, μ is the convergence factor. So: 

w(n 1) w(n) 2 x(n)e(n)+ = + μ        (4) 

This is known as the iterative formula of filter weight coefficient based on LMS 
algorithm. The weight coefficient at the next time slice can be determined by the 
weight coefficient on current time slice and the error function for the proportion of 
input. 

3 Results 

EEG data with ocular artifacts are taken from the CHB-MIT Scalp EEG Database 
[16]. EEG recordings of 22 pediatric subjects with intractable seizures, are monitored 
for up to several days following withdrawal of anti-seizure medication to characterize 
their seizures and assess their candidacy for surgical intervention. The data are  
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sampled at a rate of 256 samples per second. We chose an epoch without Seizures to 
validate our method. In the pre-processing part, we remove the baseline drift from the 
raw EEG signal and intercepted 1 to 40Hz from the chosen signals to avoid the influ-
ence of power line interference and baseline drift. Then we apply the method to the 
pretreatment EEG data. Fig. 2 shows the ‘approximation’ and ‘detail’ plot for the 
contaminated EEG signal. Fig.3 shows the reconstructed signal. 

The process of detail coefficients at last three levels is carried out by using thre-
shold. The choice of threshold is an empirical value which based on the relationship 
of coefficients standard deviation and coefficients mean. We extracted the last three 
levels coefficients and recorded as detail5, detail6 and detail7. The processed coeffi-
cients recorded as newdetail5, newdetail6 and newdetail7. The different thresholds 
used in this work are as follows: 

 
(i)      If  the absolute value of detail5 coefficient value >  2.3 ∗ the standard 

deviation of detail5 
then newdetail5 coefficient value = detail5 coefficient value 
else   newdetail5 coefficient value = 0 
 

(ii)     If  the absolute value of detail6 coefficient value >  1.5 ∗ the standard 
deviation of detail6 

then newdetail6 coefficient value = detail6 coefficient value 
else   newdetail6 coefficient value = 0 

 
(iii)    If  the absolute value of detail7 coefficient value >  0.4 ∗ the standard 

deviation of detail7 
then newdetail7 coefficient value = detail7 coefficient value 
else   newdetail7 coefficient value = 0 
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Fig. 2. ‘Detail’ (from the top down one to seven line) and ‘Approximation’ (the bottom line) 
plot. It is distinct that the information of ocular artifacts is almost contained in the detail coeffi-
cients at last three levels. 



 Artifacts Reduction Method in EEG Signals with Wavelet Transform 127 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-500

0

500

1000
Contaminated EEG

A
m

pl
itu

de
(μ

v)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-500

0

500

1000

Time(samples)

Reconstructed signal

A
m

pl
itu

de
(μ

v)

 

Fig. 3. The reconstructed signal 

After threshold processing, we get the reference signal through wavelet reconstruc-
tion. Adaptive filter is used to remove ocular artifacts, the reconstructed signal is used 
as an input reference signal. In this paper, the order of adaptive filter is 5, and this not 
only reaches the purpose of noise removal, but also reduces the processing time of 
algorithm. Fig.4 shows the recorded EEG signal contaminated by ocular artifacts and 
the corrected EEG signal processed by our proposed method. In order to see clearly, 
only half of the signal is shown. Fig.5 shows the wave time-frequency diagram of 
original and corrected EEG signals. Fig.6 shows the power spectra of the contami-
nated EEG and corrected EEG. Note that the part of output in low frequency domain 
is attenuated and the high frequency part in more than 13 Hz is retained. This indi-
cates that the ocular artifacts are actually removed. From the results, it can be seen 
that the ocular artifacts are reduced both in time and frequency domains. Particularly, 
in the frequency domain, a corrected EEG signal is generated which preserves the 
intrinsic components of the recorded EEG.  

We also do a comparison with an existing method. The stationary wavelet trans-
form (SWT) with threshold method described in [17] and our new model were applied 
to this contaminated EEG. The parameters of the adaptive filter remain unchanged. 
The results are shown in Fig.7. The SWT with threshold reduces the noise to a certain 
degree, but still leaves significant distortion in the EEG signal, at the same time, our 
method retains the EEG signal without ocular artifacts. We also can find similar result 
from the comparison of power spectral density in Fig.8. 
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Fig. 4. The contaminated EEG signal and the corrected EEG signal in time domain. In order to 
see clearly, only a part of the signals are drawn. 
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Fig. 5. The wave time-frequency diagram of original and corrected EEG signals. At the same 
time point, it is clearly that ocular artifacts in corrected EEG is much smaller than it in conta-
minated EEG. 
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Fig. 6. Power spectral density plot 
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Fig. 7. Contaminated EEG and corrected EEG using two methods. In both of subgraph, the blue 
line is contaminated EEG signal, the red line is the corrected EEG signal with our new method 
and the green line is the corrected EEG signal with threshold method described in [18]. The 
second subgraph is the part amplification of first subgraph. 
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Fig. 8. The power spectral density of two corrected EEG signals. The SWT with threshold 
method in [17] has a large distortion in more than 13Hz frequency domain and the proposed 
method shows a beautiful tracking performance in this comparison. 

4 Discussion 

In this paper, we introduce a new method that combines wavelet transform with thre-
shold and adaptive filter techniques to remove the ocular artifacts from contaminated 
EEG signals. We apply our methods on contaminated EEG signals and obtain good 
results. From the Fig.5, we can obviously see that the EEG signal part below 13Hz in 
frequency domain which includes ocular artifacts is greatly weakened and Fig.6 
shows that the components above 13Hz are retained. We made a comparison power 
spectral density plot in Fig.6 shows that the powers of the in Fig.7 and Fig.8, the re-
sults show that the combination of wavelet transform and adaptive filter is superior to 
the method in [17]. 

EEG signal is composed by messes of frequency contents that vary as a function of 
time and recording site. Wavelet techniques can be employed to analyze such a non-
stationary signal which facilitates multi-resolution analysis in the time–frequency 
plane. The most remarkable advantage of adaptive filter based on LMS algorithm is 
its adaptive preservation of components intrinsic to the EEG recordings. In addition, 
adaptive filter can adapt their coefficients to abrupt changes in the line frequency or 
modifications due to ocular artifacts. Our method proposed in this paper combines the 
two algorithms by keeping the merits of each algorithm to cancel ocular artifacts. We 
have demonstrated the effectiveness of our model in section two and shown how we 
can eliminate ocular artifacts even when their frequency band is overlapping with the 
EEG signal. By using wavelet transform to extract ocular artifacts reference signal 
avoids the trouble of recording ocular artifacts with another channel synchronously, 
which means significant pratical value to portable EEG equipment. From this pers-
pective, employing such signal analytical processing together with portable EEG re-
cording equipment is the necessary analytical processing, that is vitally important, 
especially for real-time application. 

We therefore conclude that our new method is able to provide good attenuation  
levels for most types of ocular artifacts interference presents in EEG signals. The 
removal of ocular artifacts from EEG signals in projects, especially in portable  
environment Telecare and Telehealth project [18], is a promising application.  
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The usability constraints in portable environments require single channel processing 
that is efficient in real time and robust. 

5 Conclusion 

In this paper, a method, for removing the ocular artifacts from EEG signal through 
combining wavelet transform and adaptive filter, is proposed. Wavelet transform with 
effective threshold is used to extract reference ocular artifacts signal, and adaptive 
filter with extracted reference signal is used for ocular artifacts removal. The results 
indicate that the method in this paper can remove the interferences of ocular artifacts 
effectively and it is an efficient technique for improving the quality of EEG signals in 
biomedical analysis. The wave time-frequency diagram and power spectral density 
are used as performance metrics in this paper. 

In future study, improvement of some parameters and algorithm will be the major 
considerations. Beyond that, we will apply this method on our portable project the 
EUFP 7 Project - Online Predictive Tools for Intervention in Mental Illness 
(OPTIMI). 
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Abstract. Colorectal cancer (CRC) is a relatively common cause of death 
around the globe. Predictive models for the development of CRC could be high-
ly valuable and could facilitate an early diagnosis and increased survival rates. 
Currently available predictive models are improving, but do not fully utilize the 
wealth of data available about patients in routine care nor do they take advan-
tage of the developments in the area of data mining. In this paper, a first attempt 
to generate a predictive model using the CHAID decision tree learner based on 
anonymously extracted Electronic Medical Records is reported, showing an 
area under the curve (AUC) of .839 for the adult population and .702 for the age 
group between 55 and 75. 

1 Introduction 

Colorectal cancer (CRC) is the second most common newly diagnosed cancer and the 
second most common single cause of death in the EU (cf. [2]). Survival is directly 
related to the stage of cancer at time of diagnosis. The 5-year survival ranges from 
>90% in stage I CRC (no lymphatic or haematogenous metastases) to 8-30% in stage 
IV CRC (distant metastases). It is therefore important to detect CRC at the earliest 
possible stage. In various countries, screening programs have been initiated. In the 
Netherlands for example, the entire population above 55 and below 75 is screened for 
blood in the stool followed by a colonoscopy when positive. This screening however, 
is far from optimal: attendance rates are relatively low (65% in a Dutch trial, 35% in 
Spain), and CRC is only detected in 6-7% of the patients that test positive for blood in 
the stool. 
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It is clear that more effective screening methods are needed, so that the population 
at risk can be identified more easily. As the General Practitioner (GP) is the first to 
see such patients, risk models that utilize the information available to the GP already 
before seeing the patient are a natural starting point. Various prediction algorithms 
have been developed, including the QCancer prediction model [5] and the Bristol-
Birmingham equation [9]. These approaches however apply more traditional statistic-
al methods to come to a risk score, make use of information from questionnaires and 
are hypothesis driven. Alternative approaches, such as data mining have not yet been 
applied in this domain, and could potentially deliver valuable insights into more com-
plex interactions between risk factors and the development of CRC. 

In this paper, an anonymized Electronic Medical Records (EMR) dataset, shared 
from a network of GP’s in the Utrecht region in the Netherlands, is used to create a 
first risk classification model for CRC using data mining techniques. The dataset con-
sists of the patient records of over 140,000 patients from 2006 till 2011 of whom 492 
became CRC cases during this time interval. Data include general characteristics of 
the patient (age, gender, observation time), structured and coded information on con-
sults (dates, description of the findings such as symptoms and diagnoses in the form 
of ICPC codes, a structured coding approach used worldwide, see e.g. [7], medication 
(prescription data and ATC code of the type of medicine1), and information about 
referral to specialists. In this initial research, various subsets of the dataset have been 
used to evaluate the contribution of the different parts of the dataset. The algorithms 
deployed is the CHAID decision tree learning algorithm (cf. [6]) as the specialists 
need to be able to understand the resulting predictive models. 

This paper is organized as follows. First, the dataset that has been obtained is de-
scribed and analyzed in more detail in Section 2. Section 3 describes the preparation 
of the data to facilitate the learning and the choice of the algorithms. In Section 4 the 
results are shown, and finally, Section 5 is a discussion. 

2 Dataset Description 

This Section describes the characteristics of the dataset, which includes four parts in 
total. The first part of the dataset concerns the general characteristics of the patients. 
The dataset covers the period between January 1st 2006 and December 31st 2011. We 
only selected patients that were registered at one of the participating GP practices for 
a period of at least 6 months. This results in a total of 142,061 patients. Each patient is 
described by age, gender, ZIP code, practice code, the date of registration at the prac-
tice and the date of leaving (if available). The age distribution of the patients in the 
dataset is shown in Figure 1. The age distribution for the CRC patients is shown in 
Figure 2. Clearly, CRC occurs much more frequently among older patients. 

                                                           
1 See http://www.whocc.no/atc/structure_and_principles/ 
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Fig. 1. Age distribution in dataset 

  
Fig. 2. Age distribution CRC patients 

The second part of the dataset addresses the consultations of the patients referred to 
above with their GP. A total of 1.16 million coded consultations are present. From the 
consultations, the start date and ICPC code are only used. When looking at the distri-
bution of the number of consults with a specific ICPC code (shown in Figure 3) a 
long tail distribution can be seen. A total of 691 distinct ICPC codes are present in the 
dataset covering the consults. Frequently occurring diagnosis include A97 (no dis-
ease, 5.25% of the consultations), A99 (general disease, non-specific, 3.51%), R44 
(influenza vaccination, 2.67%), R74 (upper respiratory infection acute, 1.87%), and 
R05 (cough, 1.44%). Codes A97 and A99 are generally considered as “not meaning-
ful”, code R44 is linked with flue prevention that in general is taken by 1-20% of the 
patients in each practice. Figure 4 shows the number of consults per patient during 
their registration period organized in bins of size 2, clearly showing that patients with 
a limited number of visits to the GP are most common. 
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Fig. 3. ICPC consult distribution (number of records per ICPC code). 
Note that only a fraction of the ICPC codes is shown on the y-axis. 

 

 

Fig. 4. The number of patients for a given number of consults 

 
When focusing on medication (the third part), Figure 5 shows that the distribution 

of the ATC codes. The data used for this part includes the prescription date and the 
ATC code. Medication is a much larger dataset (around 3.9 million records). Fre-
quently occurring codes here are N05 (psycholeptics, 7.4%); A02 (antacids, 5.1%), 
R03 (anti-asthmatics, 5.1 %) and C09 (agents acting on the renin-angiotensin system, 
4.8%). A total of 92 distinct ATC codes (on level H2) are present in the dataset. The 
spread of the number of prescriptions per patient shows a similar distribution com-
pared to the number of consults. 

Finally data is present about the referral to medical specialists (referral date and 
specialism is used). Here, 92 unique forwarding specializations are present and 
around 30,000 records. Again, a long tail distribution is observed, with laboratory 
(32.7%), x-ray (10.2%) and physical therapy (10.1%) being the most frequently en-
countered specializations. 
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Fig. 5. ATC code (medication) distribution (number of records per ATC code). 

Note that only a fraction of the ATC codes is shown on the y-axis. 

3 Data Preparation and Algorithm Deployment 

In order to learn appropriate predictors from the dataset described in Section 2, a 
number of selection steps have been performed. First, the data preparation is dis-
cussed, followed by the algorithm variations that have been applied to enable the 
learning of predictive models. 

3.1 Dataset Preparation 

Given the dataset that is available, the most relevant predictors occur or are regis-
tered within the period of 6 months of the diagnosis of CRC. As a result, for CRC 
patients only the data is selected 6 months prior to the first diagnosis with CRC. For 
patients that are not diagnosed with CRC a random period of 6 months during their 
registration period is selected. The next step taken is to combine all the records of 
individual patients (i.e. the basic patients data, the records per consult, for each me-
dication prescribed and for each referral) into a single record. At this stage, the tem-
poral nature of the data is no longer considered (it is future work to exploit this more 
using temporal data mining techniques) as counts are just taken for each ICPC code, 
ATC code, and referral during the six month period. Of course, the ICPC code for 
CRC has been excluded from this dataset. As the data is rather sparse, additional 
attributes have been added that count the number of records in certain groups, for 
instance ICPC codes starting with a D are diagnoses associated with the digestive 
system and ATC codes starting with an S concern medications for sensory organs. 
Table 1 shows the overall resulting set of attributes per individual patient (as said, in 
a single record).  
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Table 1. Description of patient record used for learning 

Attribute Values Explanation 
Age Integer The age of the particular patient 
Gender m/f The gender of the patient 
ICPC_A01, …. , 
ICPC_Z67 

Integer A total of 691 attributes including a count of the num-
ber of cases the specific ICPC code was recorded for 
the patient during the selected 6 month period. 

ATC_A01, …. , 
ATC_V09 

Integer A total of 92 attributes including a count of the num-
ber of cases the specific ATC code was recorded for 
the patient during the selected 6 month period. 

Referral_cardiology, 
…., Referral_urology 

Integer A total of 92 attributes including a count of the num-
ber of cases a referral to a specific specialism was 
recorded for the patient during the selected 6 month 
period. 

ICPC_Group_A,.., 
ICPC_Group_Z 

Integer A total of 17 attributes including a count of the num-
ber of cases an ICPC code from this group was record-
ed for the patient during the selected 6 month period. 

ATC_Group_A,…, 
ATC_Group_V 

Integer A total of 14 attributes including a count of the num-
ber of cases an ICPC code from this group was record-
ed for the patient during the selected 6 month period. 

3.2 Data Mining Algorithm and Setup 

As this is the first endeavor to see whether interesting predictors can be found within 
the dataset, and it is essential for medical specialists to understand what the predictive 
model looks like a choice has been made to use the CHAID algorithm and create a 
decision tree. Tests with the C5.0 algorithm as proposed by (cf. [12]) have also been 
run but showed lower accuracies. It can be seen that the dataset is highly imbalanced 
(492 CRC cases in over 140,000 patients). As a result, a misclassification cost has 
been added for misclassifying an actual CRC patients as a non-CRC patient. The val-
ue thereof has been set proportional to the ratio between CRC cases and the total 
number of patients in the specific part of the dataset, the cost of misclassifying a non-
CRC patient as a CRC patient has been set to 1. Furthermore, a maximum tree depth 
of 5 has been set, and the minimum number of records in a child branch has been set 
to 50. The significance level for splitting a node was set to 0.05. 

For the learning, different sets of attributes are used as input for the learning algo-
rithm to judge the benefits of using them: 

• Age. As has been shown in the data analysis, age is a highly suitable predictor 
for CRC, therefore as a benchmark age as a single attribute it considered. 

• Age, gender, and all ICPC codes. Age and gender combined with the ICPC 
codes on a detailed level. This provides all available information on the pre-
cise diagnoses the GP has registered for the patient. 
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• Age, gender, and high level ICPC, ATC, and referrals. This concerns the 
two standard attributes (age and gender) extended with the count for ICPC and 
ATC high-level categories as well as referrals. 

• All. All the attributes listed in Table 1 are used. 

Furthermore, two subsets were created covering different age ranges: the entire 
adult population (i.e. 18 or above, including all CRC cases) and the screening subpo-
pulation (between 55 and 75, including 254 CRC cases). After selecting the appropri-
ate subset, the dataset was split up into a training set of 60% of the patients and a test 
set of the remaining 40% each part having approximately the same percentage of 
CRC cases. As a means of evaluating the predictive capabilities an ROC curve is 
generated on the test set and the area under the curve (AUC) is calculated. 

4 Results 

The procedure described above (both the data preparation as the data mining) has 
been implemented in IBM SPSS Modeler and used to generate results. First, the re-
sults are presented which cover the entire adult population of patients (i.e. 18 or 
above). Table 2 shows the performance on the set-aside test set for the various setups 
of the attributes uses as input for the learning algorithm whereas a visualization of the 
simple decision tree performance is shown in Figure 6.  

Table 2. Results of predictive model for entire adult population on test set 

Attributes AUC with CHAID 
Only ICPC .836 
High level .839 
All .834 
Benchmark (pure age) .778 

 
In the graph and from the table it can be seen that age is already quite a good pre-

dictor for CRC, which makes sense when you see the age distribution of CRC patients 
compared to the entire population (Figures 1 and 2). However, using more informa-
tion does clearly pay off although the differences between the more extended setups 
are quite marginal. More precisely, the difference between using pure age and the 
extensions is significant (p < 0.05, one-tailed test following [4]) whereas the differ-
ences between the extensions are not significant. When looking at the best tree which 
covers all the high level groups for ICPC and ATC codes (although the differences 
are very small) the aspects that play a crucial role in the decision tree that has been 
formed include (in order of importance): age, medication from the A (alimentary tract 
and metabolism), N (nervous system), and L (antineoplastic and immunomodulating 
agents) category. ATC code L medication is related with CRC through the indications 
ulcerative colitis or Crohn. ICPC categories T (endocrine/metabolic and nutritional), 
Z (social problems), D (digestive), U (urological), X (female genital), and L (muscu-
loskeletal) are related to CRC. Hereby, some factors can be seen as confounding fac-
tors (e.g. medication signals that there is a problem which needs to be cured), but 
apparently these are better present in the data and provide a better predictive value 
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than the underlying symptoms or disease. This could be due to two factors: (1) the 
registration of medication is better, or (2) the medication can be used to treat multiple 
diseases and the combination of these diseases is a better predictor.  

 
Fig. 6. ROC curve of simple CHAID for population > 18 

Table 3 shows the performance for patients aged between 55 and 75 (i.e. the target 
population of screening approach) and Figure 7 shows the accompanying ROC 
curves. It is clear that CRC for this subset of patients is harder to predict. The differ-
ences in performance between the different variants are now much larger, here using 
solely the age does not result in a good predictive capability. Using all concepts is 
clearly best compared to the other variations of the subsets of attributes used. The 
approach performs significantly better compared to using only age or only ICPC  
(p < 0.05, one-sided test cf. [4]). 

Table 3. Results of predictive model for age group between 55 and 75 

Attributes AUC with CHAID 
Only ICPC .579 
High level .658 
All .702 
Benchmark (pure age) .619 

 
The predictive model for CRC that has been created no longer considers age as an 

important criterion, but the top five predictor with the highest importance are (again 
in order of importance): ATC codes L01 (antineoplastic agents), A03 (antispasmodic 
and anticholinergic agents and propulsuves), and B03 (antianemic preparations), and 
ICPC codes H70 (otitis externa), the high level S (skin) category. The association of 
these ICPC codes with CRC has to be studied. 
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Fig. 7. ROC curve of simple CHAID for patients between 55 and 75 

5 Discussion 

In this paper a data mining approach has been deployed on a large set of medical 
records in order to create a predictive model for CRC. The results of a first explora-
tion using a relatively straightforward approach show that a reasonable area under the 
curve can be obtained. Even for the difficult case where age is no longer a very dis-
tinguishing feature it has been shown that the approach can identify patients at risk. 
The area under the curve obtained in the general adult population was .839. When 
looking at the literature scores around .89 for females and .91 for males have been 
reported (cf. [5]), in [9] several datasets have been studied and the AUC’s vary be-
tween 0.75 and 0.92. Clearly, the performance highly depends on the available infor-
mation where the information most frequently used in related work includes lab  
results that have not been considered in this work at the moment. 

For future work, we aim to apply more sophisticated algorithms that can derive 
more information from the data compared to the current algorithm. Hereby, a viable 
options is to take the temporal course of events into account (see e.g. [11], [8], and 
[10’]). In addition, we would like to apply state-of-the-art data mining algorithms 
such as bagging approaches (cf. [1]). Initial attempts have shown a tendency that 
these approaches overfit the data, but more tweaking might result in improved per-
formance, although this of course does take away part of the insightfulness of the 
results. Furthermore, learning on multiple levels of abstraction (by using medical 
ontologies) could provide valuable insights as well, as argued in [14]. Finally we 
would like to combine various datasets with the currently available information.  
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The idea is to combine the current dataset with nutritional and genetic data (e.g. as 
gathered in the EPIC longitudinal study, [13]) and also include specialist data.  
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Abstract. Electronic health records (EHRs) are becoming an increas-
ingly important source of patient information. Unfortunately, EHR data
do not always directly and reliably map to medical concepts that clini-
cal researchers need or use. Some recent studies have focused on EHR-
derived phenotyping, which aims at mapping the EHR data to specific
medical concepts; however, most of these approaches require labor inten-
sive supervision from experienced clinical professionals.

In this paper, we use Limestone, a nonnegative tensor factorization
method to derive phenotype candidates from claims data with virtually
no human supervision. Limestone represents the interactions between
diagnoses and procedures among patients naturally using tensors (a gen-
eralization of matrices). The resulting tensor factors are reported as phe-
notype candidates that automatically reveal patient clusters on specific
diagnoses and procedures. To the best of our knowledge, this is the first
study that successfully extracts useful phenotypes by applying sparse
nonnegative tensor factorization to a large, public-domain EHR dataset
covering a broad range of diseases. Our experiments demonstrate the in-
terpretability and the promise of high-throughput phenotypes generated
from tensor factorization.

Keywords: EHR phenotyping, tensor factorization, dimensionality
reduction.

1 Introduction

Electronic health records (EHRs), an important source of detailed patient in-
formation, are increasingly becoming prevalent within the U.S healthcare sys-
tem, with federal incentives for meaningful use of EHRs serving as a major
driving force. The complexity of the data stored in EHR systems has grown
with the widespread adoption of EHRs. EHRs are composed of a diverse ar-
ray of data, such as structured information (e.g. diagnosis, medications, lab
results), molecular sequences, unstructured clinical progress notes, and social
network information. Effective integration and efficient analysis of EHRs help
physicians make informed clinical decisions; providers improve patient safety;
and researchers discover new knowledge and facilitate investigations [1]. While
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data-driven approaches are revolutionizing the field of medical informatics [1–3],
several formidable challenges arise from the application of EHR data to clini-
cal research. These include: (i) diverse population, where the data cover patients
from various providers who use different and incompatible EHR systems; (ii) het-
erogeneous and noisy information; (iii) sparsely sampled event sequences with
varying time scales; (iv) modeling interactions amongst different data sources
(types); and (v) reluctance of medical practitioners to act on any recommenda-
tions unless they can understand the findings and reconcile them with existing
domain knowledge. The interpretability constraints arise because medical pro-
fessionals are accustomed to reasoning based on concise and meaningful medical
concepts, or phenotypes. Recent work has focused on EHR-based phenotyping,
a process to map raw EHR data into meaningful medical concepts, Phenotyping
approaches learn medically relevant characteristics of the data [4] and is crucial
for supporting genome-wide association studies [5].

State of the art phenotype developments rely primarily on approaches that are
heuristic, rule, and iterative based, and are a collaborative team effort between
clinicians and IT experts [4, 6]. Examples of large-scale phenotyping efforts are
typified by the Electronic Medical Records and Genomics (eMERGE) Network
[7], which explores the use of EHRs to obtain phenotypic information at multi-
ple medical institutions, and the Observational Medical Outcomes Partnership
(OMOP) [8]. However, phenotypes are often disease-centric and the development
of a phenotype for a single disease can take months [9]. Thus, data mining and
machine learning tools have been leveraged for high-throughput phenotyping,
or efficient and automated phenotype extractions to reduce manual develop-
ment [4, 10]. Yet, current high-throughput methodologies cannot generate large
amounts of candidate phenotypes and achieve good performance without human
annotated samples [10]. Therefore, two major limitations of existing phenotyping
efforts are (i) the need for human annotation of case and control samples, which
take substantial time and effort and (ii) the lack of formalized methodology to
derive novel phenotypes.

One possible approach for high-throughput phenotyping of EHR data is to
use dimensionality reduction techniques [4]. The “ideal” phenotype (i) repre-
sents complex interactions between several sources, (ii) is concise and easily un-
derstood by a medical professional, and (iii) maps to domain knowledge. Thus,
phenotyping can be viewed as a form of dimensionality reduction, where each
phenotype forms a latent space [4]. Matrix factorization, a common dimension-
ality reduction approach, is insufficient as it cannot concisely capture structured
EHR source interactions, such as multiple procedures performed to treat a single
disease. A more natural transformation is tensor factorization, which utilizes the
multiway structure to produce concise and potentially more interpretable results.
We recently proposed Limestone, a nonnegative tensor factorization model, to
simultaneously generate multiple phenotypes from EHR data with minimal hu-
man supervision [11] for the problem of characterizing heart failure. Our pilot
study extracted 50 phenotypes from Geisinger Health System’s EHRs that were
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Table 1. List of notations used in this paper

Symbol Definition

λ,a vector
A matrix

X ,M tensor
i tensor element index (i1, i2, · · · , iN )
xi tensor element at index i
◦ outer product

evaluated by an experienced cardiologist. The results were extremely promising,
as 82% of the phenotypes generally mapped to a medical concept.

This paper briefly describes the Limestone model and evaluates the model
on a publicly available, realistic set of claims data covering a much broader
range of diseases. Our experimental results demonstrate the conciseness of the
resulting phenotypes. Furthermore, we analyze the phenotypes associated with
four common chronic disease conditions.

2 Preliminaries and Related Work

This section describes the preliminaries of matrix and tensor decomposition and
related tensor factorization work. Table 1 provides a key for the symbols used in
the paper. For indexing of matrix A, we denote the (i, j)th element as aij and
the jth column as aj .

Matrix Decomposition. Matrix factorization (MF) is a common dimen-
sionality reduction approach, which represents the original data using a lower
dimensional latent space. Standard MF approaches find two lower dimensional
matrices that when multiplied together approximately produce the original ma-
trix, X ≈WH. Although many matrix decomposition techniques exist, singular
value decomposition and nonnegative matrix factorization (NMF) are two com-
mon algorithms used to reduce the feature dimension.

Tensor Decomposition. A tensor is a generalization of matrices to higher
dimensions. Tensor representations are powerful because they can capture rela-
tionships for high-dimensional data. A tensor is rank-one if it can be written as
follows:

Definition 1. The outer product of N vectors, a(1) ◦ a(2) ◦ · · · ◦ a(N), pro-
duces a rank-one, N th order tensor X where each element xi = xi1,i2,··· ,iN =

a
(1)
i1

a
(2)
i2
· · ·a(N)

iN
.

Tensor factorization (decomposition) is a natural extension of matrix factor-
ization and utilizes information from the multiway structure that is lost when
modes are collapsed to use matrix factorization algorithms [12, 13]. The CAN-
DECOMP / PARAFAC (CP) [14, 15] model is a common tensor decomposition
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and can be viewed as a higher-order generalization of singular value decompo-
sition [16]. The CP model approximates the original tensor X as a sum of R
rank-one tensors and can be expressed as

X ≈
R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r

= �λ;A(1); . . . ;A(N)�.

Note that �λ;A(1); . . . ;A(N)� is shorthand notation to describe the CP decom-

position, where λ is a vector of the weights λr and a
(n)
r is the rth column of

A(n). The CP tensor decomposition has been used for concept discovery [17],
network analysis of fMRI data [18], and community discovery [19]. The details
of computing the CP decomposition and other tensor decomposition models can
be found in [16].

Some domain applications may desire nonnegative components, a higher-order
generalization of NMF. Nonnegative tensor factorization (NTF) requires the el-
ements of the factor matrices and the weights to be nonnegative. A broad survey
of practical and useful NMF and NTF algorithms can be found in [20]. Our pa-
per will focus on the nonnegative CP alternating Poisson regression (CP-APR)
model to fit sparse count data [21]. For convenience, the CP-APR optimization
problem is provided:

min f(M) ≡
∑
i

mi − xi logmi

s.t M = �λ;A(1); ...;A(N)� ∈ Ω

Ω = Ωλ ×Ω1 × · · · ×ΩN

Ωλ = [0,+∞)R

Ωn = {A ∈ [0, 1]In×R | ||ar||1 = 1 ∀r},

where M is the CP tensor factorization that approximates the observed tensor
X , Ω is the sample space of M, and In refers to the size of the nth mode.
Details of the algorithm and model are presented in the paper by Chi and Kolda
[21].

3 Limestone Overview

Limestone is a tensor factorization model to achieve high-throughput phenotyp-
ing from EHR data. The model is an extension of CP-APR to produce concise
phenotype definitions for better interpretability. For this paper, we construct
a tensor using the count of the co-occurrences between diagnoses and proce-
dures. Thus, each tensor element denotes the number of times a procedure p
is performed to treat diagnosis d for patient p. This third-order tensor is then
approximated using the CP decomposition M = �λ;A(1),A(2),A(3)�, shown in
Figure 1. The factor matrix for the nth mode,A(n), defines the elements from the



146 J.C. Ho, J. Ghosh, and J. Sun

Fig. 1. Generating candidate phenotypes from the patient × diagnosis × procedure
tensor using CP tensor factorization

Fig. 2. An example of the kth candidate phenotype produced from the tensor factor-
ization, and the interpretation of the tensor factorization result. The green text, blue,
and red text correspond to non-zero elements in the patient, diagnosis, and medication
factors, respectively.

mode that comprise the candidate phenotypes. Limestone minimizes the pres-
ence of “minuscule and unnecessary” factor components via a hard-thresholding
operator [22]. The hard-threshold constraint sets individual factor components

a
(n)
jr that are below a specified threshold (γn) to zero.
We provide an illustrative example of a Limestone phenotype from the claims

record data in Figure 2. Given the kth phenotype, a
(j)
ik represents the probability

of seeing the ith element in the jth mode. In our example, hypertensive disease
was the only non-zero element in the kth column of the diagnosis factor matrix
while there are 5 non-zero elements in the kth column of the procedure factor
matrix. The percentage of patients with the phenotype is calculated using the
percentage of non-zero elements in the jth column of the patient factor ma-
trix. The candidate phenotype shows that 45.4% of the patients had a non-zero
element in the kth column.
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4 Experimental Results

4.1 Data Description

The Centers for Medicare and Medicaid Services (CMS) provides the CMS Link-
able 2008-2010 Medicare Data Entrepreneurs’ Synthetic Public Use File (DE-
SynPUF), a publicly available dataset that contains inpatient, oupatient, carrier,
and prescription drug event claims in addition to the patient summary files. The
claim records have been synthesized from 5% of the 2008 Medicare population,
spans 3 years, and is over 100 gigabytes (GB) in size . Although the relation-
ships between some of the variables have been altered to protect the privacy
of the beneficiaries, the data can still provide interesting and insightful pheno-
types. A detailed description of the data can be found on the CMS website1.
Our experiments focus on a random subset of 10,000 patients from Sample 1
(CMS released the data in 20 separate samples). The EHR tensor is constructed
from the carrier claim records using the diagnosis and procedure codes. Since
individual International Classification of Diseases (ICD-9) diagnosis codes and
Healthcare Common Procedure Coding System (HCPCS) procedure codes cap-
ture fine-grained information, we grouped the codes using the Unified Medical
Language System Metathesaurus2, which contains the source vocabularies for
over 150 sources, including ICD-9-CM and HCPCS. Aggregating the individ-
ual diagnosis codes and procedure codes results in a constructed tensor that is
10,000 patients by 129 diagnoses by 115 procedures.

4.2 Threshold Selection

Limestone uses predefined thresholds for each mode, γn, to zero out “probabilis-
tically unlikely” elements. These thresholds provide a tunable knob to adjust
the conciseness of the candidate phenotypes. Domain constraints can be used to
determine the threshold values (e.g., a phenotype should only contain a maxi-
mum of 3 unique diagnoses). However, we explore the effect of the threshold on
the number of non-zero phenotypes along the diagnosis and procedure modes.
Figure 3 shows a boxplot of the number of non-zero elements per phenotype
based on the various threshold values. Note that a low threshold (γ = 0.001)
results in a large number of elements. As the threshold increases, the pheno-
types become more concise and more easily interpretable. Based on the plots,
the threshold of 0.05 was chosen to allow for slightly more complex phenotype
definitions.

1 The website URL is
http://www.cms.gov/Research-Statistics-Data-and-Systems/

Statistics-Trends-and-Reports/SynPUFs/DE Syn PUF.html
2 Information about Metathesaurus is located at
http://www.nlm.nih.gov/research/umls/knowledge sources/

metathesaurus/index.html

http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/SynPUFs/DE_Syn_PUF.html
http://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/SynPUFs/DE_Syn_PUF.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
http://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/index.html
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Fig. 3. The distribution of factor elements along the three CMS tensor modes. Zeros
entries are omitted from the plot.

4.3 Chronic Disease Phenotypes

The United States spends more than 75% of its medical care cost on the treat-
ment of chronic diseases [23]. Furthermore, 68.4% of the Medicare population
suffers from 2 or more chronic diseases [24]. Thus, phenotypes relating to chronic
disease factors such as heart failure, diabetes, and arthritis can help medical
professionals tailor treatment options based on patient’s phenotypes and reduce
overall healthcare costs. The dataset provides chronic disease indicators that we
will use to identify phenotypes associated with specific chronic diseases3.

Table 2. Two phenotypes related to heart failure. The blue and red colors indicate
the diagnosis and procedure elements respectively. Within each type, the elements are
ordered in decreasing magnitude.

Heart Failure Phenotype 1
(36.7% of patients)

Other forms of heart disease

Complications of surgical and medical care
Hematology and Coagulation Procs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Cardiovascular System
Chemistry Pathology and Laboratory Tests
Cardiovascular Procs.
Organ or Disease Oriented Panels

Heart Failure Phenotype 2
(30.9% of patients)

Other forms of heart disease
Ischemic heart disease

Hospital Inpatient Svcs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Table 2 depicts two phenotypes related to heart failure. More than 1 in 3
Medicare patients exhibit the first phenotype while a smaller portion (but still
substantial) have medical characteristics typified by the second phenotype. The

3 A patient’s chronic condition flag cannot be perfectly reproduced due to the synthetic
claim process used.



High-throughput Phenotyping 149

Table 3. Four phenotypes related to diabetes and arthritis. The blue and red col-
ors indicate the diagnosis and procedure elements respectively. Within each type, the
elements are ordered in decreasing magnitude.

Diabetes Phenotype 1
(34.8% of patients)

Diseases of other endocrine glands
Other metabolic and immunity disorders

Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Cardiovascular System
Ophthalmology Procs.
Cardiovascular Procs.
Urinalysis Procs.
Diagnostic/Screening Processes or Results

Diabetes Phenotype 2
(33.1% of patients)

Diseases of other endocrine glands

Chemistry Pathology and Laboratory Tests
Organ or Disease Oriented Panels
Hematology and Coagulation Procedures
Surgical Procs. on the Cardiovascular System
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Arthritis Phenotype 1
(29.1% of patients)

Arthropathies and related disorders

Physical Medicine and Rehabilitation Procs.
Eval. and Mgmt. of Office or Other Outpatient Svcs.

Arthritis Phenotype 2
(38.6% of patients)

Arthropathies and related disorders
Rheumatism, excluding the back

Eval. and Mgmt. of Office or Other Outpatient Svcs.
Surgical Procs. on the Musculoskeletal System
Surgical Procs. on the Cardiovascular System
Cardiovascular Procs.
Hematology and Coagulation Procs.

second phenotype suggests a higher degree of severity as there is an additional
heart disease and it requires hospital inpatient services. The two phenotypes
demonstrate the potential ability to derive novel phenotypes via a data-driven
approach that could otherwise be difficult and time-consuming.

Table 3 depicts another four chronic-disease phenotypes relating to diabetes
and arthritis. There are several other chronic disease phenotypes that were ex-
tracted, but due to space constraints are not shown in this paper. Note that these
phenotypes shown are concise and easily interpretable. In particular, arthritis
phenotype 1 contains just 1 diagnosis and 2 procedures and is exhibited in 29%
of the population. The procedures are also consistent with known character-
istics of the disease, as arthritis sufferers undergo rehabilitation to strengthen
their joints. Similar to Table 2, the four phenotypes also demonstrate the power
to automatically capture disease severity. Diabetes phenotype 1 suggests dia-
betes related complications that require cardiovascular surgery, while the second
arthritis phenotype captures patients with multiple chronic conditions.

5 Conclusion

This paper shows that Limestone offers a data-driven solution to simultaneously
generate multiple phenotypes from a diverse EHR population without expert
supervision. The experimental results on 10,000 patient records from the CMS
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De-SYNPUF dataset demonstrate the conciseness and interpretability of the ten-
sor derived phenotypes. The phenotypes underscore the promise of Limestone for
high-throughput phenotyping with minimal human intervention. Limestone can
potentially be used to rapidly characterize, predict, and manage a large num-
ber of diseases, thereby promising a novel, data-driven solution that can benefit
very large segments of the population. Future work will focus on generalizing
the sparse nonnegative tensor factorization to multi-relational tensors [19] to
incorporate multiple EHR data sources and examine quasi-Newton methods to
improve computational speed of the algorithm [25].
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Abstract. The paper aims at two tasks of electronic medical record (EMR) 
processing: EMR retrieval and medical term extraction. The linguistic pheno-
mena in EMRs in different departments are analyzed in depth including record 
size, vocabulary, entropy of medical languages, grammaticality, and so on. We 
explore various techniques of information retrieval for EMR retrieval, including 
five retrieval models with six pre-processing strategies on different parts of 
EMRs. The learning to rank algorithm is also adopted to improve the retrieval 
performance. Finally, our retrieval model is applied to extract medical terms 
from EMRs. Both coarse-grained relevance evaluation on department level and 
fine-grained relevance evaluation on treatment level are conducted.  

Keywords: Learning to Rank, Medical Record Retrieval, Professional Informa-
tion Access. 

1 Introduction 

Electronic medical records (EMRs) are a special kind of text corpus written by physi-
cians. Medical text mining aims at extracting knowledge from EMRs, constructing a 
knowledge base (semi-)automatically, and finding new knowledge [1]. Mining medi-
cal text from an EMR database is important for case study. The course and treatments 
of similar cases provide important references, in particular, for medical students or 
junior physicians. There are many potential applications, e.g., comorbidities and dis-
ease correlations [2], acute myocardial infarction mining [3], assessment of healthcare 
utilization and treatments [4], outpatient department recommendation [5], virtual pa-
tient in health care education, and so on. 

Finding relevant information is the first step to mining knowledge from diverse 
sources.  Different information retrieval systems have been developed to meet these 
needs. This paper focuses on professional information access and addresses the sup-
ports for experts of medical domain.  PubMed, which comprises more than 22 million 
citations for biomedical literature from MEDLINE, provides information retrieval 
engines for finding biomedical documents. Information retrieval on medical records 
has been introduced to improve healthcare services [5-6]. Medical records are similar 
to scientific documents in that both are written by domain experts, but they are differ-
ent from several aspects such as authorship, genre, structure, grammaticality, source, 
and privacy.  Biomedical literatures are research findings of researchers. The layout 
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of a scientific paper published in journals and conference proceedings are often com-
posed of problem specification, solutions, experimental setup, results, discussion and 
conclusion. To gain more impacts, scientific literatures are often made available to  
the public. Grammatical correctness and readability are the basic requirements for 
publication. 

In contrast, medical records are patients’ treatments by physicians when patients 
visit hospitals. The basic layout consists of a chief complaint, a brief history, and a 
course and treatment. From the ethical and legal aspects, medical records are privacy-
sensitive. Release of medical records is restricted by government laws. Medical 
records are frequently below par in grammaticality. That is not a problem for the un-
derstanding by physicians, but is an issue for retrieval.   

How to retrieve relevant EMRs effectively and efficiently is an essential research 
topic. TREC 2011 [7] and 2012 [8] Medical Records track provides test collections 
for patient retrieval based on a set of clinical criteria. Several approaches such as con-
cept-based [9], query expansion [10], and knowledge-based [11] have been proposed 
to improve the retrieval performance. In this paper, we investigate medical record 
retrieval on an NTUH dataset provided by National Taiwan University Hospital. Giv-
en a chief complaint and/or a brief history, we would like to find the related EMRs, 
and propose examination, medicine and surgery that may be performed for the input 
case. Both basic IR models and learning to rank models are explored and discussed. 

The structure of this paper is organized as follows.  The characteristics of the do-
main-specific dataset are addressed and analyzed in Section 2.  The basic retrieval 
models and the learning to rank approach are explored in Section 3. Section 4 de-
scribes the medical term extraction model and the finer-grained relevance evaluation 
on course and treatment level.  Finally, Section 5 concludes the remarks. 

2 An Electronic Medical Record Dataset 

The experimental materials come from National Taiwan University Hospital (NTUH). 
There are 113,625 EMRs in the NTUH dataset. Each EMR is composed of three ma-
jor parts – say, a chief complaint, a brief history, and a course and treatment. A chief 
complaint is a short statement specifying the purpose of a patient’s visit and the pa-
tient’s physical discomfort, e.g., Epigastralgia for 10 days, Tarry stool twice since last 
night, and so on.  It describes the symptoms found by the patient and the duration of 
these symptoms. A brief history summarizes the personal information, the physical 
conditions, and the past medical treatment of the patient. A course and treatment de-
scribes the treatment processes and the treatment outcomes in detail, where medica-
tion administration, inspection, and surgery are recorded.  

There are 113,625 EMRs in the NTUH experimental dataset after those records 
consisting of scheduled cases, empty complaints, complaints written in Chinese, and 
treatments without mentioning any examination, medicine, and surgery are removed. 
Table 1 lists mean (μ) and standard deviation (σ) of chief complaint (CC), brief histo-
ry (BH), course and treatment (CT), and EMR in terms of the number of words used 
in the corresponding part. Here a word is defined to be a character string separated by 
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spaces. The patient and the physician names are removed from the dataset for the 
privacy issues. In general, the brief history is the longest, while the chief complaint is 
the shortest. 

The 113,625 EMRs are categorized into 14 departments based on patients’ visits. 
The statistics is illustrated in Table 2. Departments of Internal Medicine and Surgery 
have the first and the second largest amount of data, while Departments of Dental and 
Dermatology have the smallest amount. From the linguistic point of view, we also 
investigate the vocabulary size and entropy of the medical language overall for the 
dataset and individually for each department.  Table 3 summarizes the statistics. 
Compared with the word entropy for general English, the entropy of the medical lan-
guage used in NTUH dataset is 11.15 bits per word, a little smaller than Shannon 
entropy (i.e., 11.82 bits per word) [12] and larger than Grignetti entropy (i.e.,  9.8 bits 
per word) [13]. Departments related to definite parts of body, e.g., dental, ear, nose & 
throat, ophthalmology and orthopedics, have lower entropy.  Comparatively, depart-
ments related to generic parts have larger entropy. In particular, Department of Oph-
thalmology has the lowest entropy, while Department of Internal Medicine has the 
largest entropy.   

Medical records are frequently below par in grammaticality. Spelling errors are 
very common in this dataset. Some common erroneous words and their correct forms 
enclosed in parentheses are listed below for reference: histropy (history), ag 
(ago/age), withour (without), denid (denied), and recieved (received).  Some words 
are ambiguous in the erroneous form, e.g., “ag” can be interpreted as “ago” or “age” 
depending on its context. Besides grammatical problems, shorthand notation or ab-
breviation occurs very often. For example, “opd” is an abbreviation of “outpatient 
department” and “yrs” is a shorthand notation of “years-old”. Furthermore, physicians 
tend to mix English and Chinese in the NTUH dataset. That makes medical record 
retrieval more challenging. 

Table 1. Mean and Standard Deviation of NTUH EMRs in Words 

component mean (μ) standard deviation (σ) 
chief complaint (CC) 7.88 3.75 

brief history (BH) 233.46 163.69 
course and treatment (CT) 110.28 145.04 

EMR 351.62 248.51 
 

Table 2. Distribution of the NTUH EMRs w.r.t. Department Type 

Dental 1,253 Dermatology 1,258 Ear, Nose & Throat 7,680 
Internal  

Medicine 
34,396 Neurology 2,739 Obstetrics 

& Gynecology
5,679 

Oncology 4,226 Ophthalmology 3,400 Orthopedics 8,814 
Pediatrics 11,468 Rehabilitation 1,935 Psychiatry 1,656 
Surgery 23,303 Urology 5,818
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Table 3. Vocabulary Size and Entropy of the Medical Language w.r.t. Department Type 

Vocabulary 
Size 

Entropy Vocabulary 
Size

Entropy Vocabulary 
Size

Entropy 

Dental Dermatology Ear, Nose & Throat 
15,036 9.74 26,914 10.32 48,452 9.88 
Internal Medicine Neurology Obstetrics & Gynecology 

415,279 11.06 55,301 10.62 65,760 10.46 
Oncology Ophthalmology Orthopedics 

101,361 10.81 27,765 9.70 47,082 9.79 
Pediatrics Rehabilitation Psychiatry 

175,555 10.86 51,328 10.50 67,390 10.64 
Surgery Urology Overall 

203,677 10.76 53,853 10.25 786,666 11.15 

3 EMR Retrieval 

Given a chief complaint and/or a brief history, physicians plan to retrieve the similar 
cases from the historical EMRs and reference to the possible course and treatments.  
Chief complaints and/or brief histories in the historical EMRs can be regarded as que-
ries. Section 3.1 describes the basic models and Section 3.2 shows the experimental 
results. Section 3.3 introduces learning to rank [14] to EMR retrieval. Section 3.4 
shows the results and compares them with the basic IR models.  

3.1 Basic Models for EMR Retrieval 

Words may be stemmed and stop words may be removed before indexing. Spelling 
checker is introduced to deal with spelling errors and typos. Besides words, medical 
terms are also recognized as indices. Different IR models can be explored on different 
parts of EMRs. In the empirical study, Lemur Toolkit is adopted and five retrieval 
models including TF-IDF, Okapi, KL-divergence, cosine similarity, and indri are 
experimented. 

3.2 Results of the Basic Retrieval Models 

In the experiments, 10-fold cross validation is adopted.  Given a chief complaint, the 
output is the retrieved top-n EMRs.  We aim to evaluate the quality of the returned n 
EMRs. There is no ground truth or relevance judgments available, surrogate relevance 
judgments are therefore used. Recall that each medical record belongs to a depart-
ment.  Let the input chief complaint belong to department d, and the departments  
of the top-n retrieved medical records be d1, d2, …, dn.  Here, we postulate that  
medical record i is relevant to the input chief complaint, if di of medical  
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record i is equal to d.  In this way, we can compute precision@k, mean average preci-
sion (MAP), and nDCG as traditional IR. 

Five retrieval models with six strategies (S1)-(S6) defined as follows are explored.   
 
S1:  using chief complaints 
S2:  S1 with stop word removal 
S3:  S1 with porter stemming 
S4:  S1 with both stop word removal and porter stemming 
S5:  using chief complaints and the first two sentences in brief histories 
S6:  S5 with porter stemming 
 

For strategies S5 and S6, we extract gender (male/female), age (0-15, 16-45, 46-60, 
61+), and other information from brief history besides chief complaints. 

Top 5 and Top 10 EMRs are retrieved and compared. Table 4 shows the experi-
mental results. Overall, the performance tendency is Okapi > TF-IDF > cosine > KL > 
indri no matter which strategies are used. Removing stop words tend to decrease the 
performance. Using porter stemming is useful when chief complaints are employed 
only. Introducing brief histories decreases the performance. The Okapi retrieval 
model with strategy S3 performs the best. In fact, Okapi+S3 is not significantly better 
than Okapi+S1, but both are significantly better than Okapi with other strategies (p 
value <0.0001) on MAP and nDCG.  When S3 is adopted, Okapi is significantly bet-
ter than the other models. 

We further evaluate the retrieval models with precision@k shown in Table 5.  The 
five retrieval models at the setting k=1 are significantly better than those at k=3 and 
k=5.  Most of the precision@k are larger than 0.7 at k=1.  It means the first medical 
record retrieved is often relevant. Okapi with strategy S3 is still the best under preci-
sion@k.  Moreover, we examine the effects of the parameter n in the medical record 
retrieval. Only the best two retrieval models in the above experiments, i.e., TF-IDF 
and Okapi with strategy S3, are shown in Fig 1. We can find MAP decreases when n 
becomes larger in both models.  It means noise is introduced when more medical 
records are reported.  The Okapi+S3 model is better than the TF-IDF+S3 model in all 
the settings.  

Table 6 further shows the retrieval performance in terms of MAP, nDCG and pre-
cision@k with respect to department type.  Note four departments have entropy less 
than 10 shown in Table 3, i.e., Departments of Dental, Ear, Nose & Throat, Ophthal-
mology, and Orthopedics. The performances of query accesses to medical records in 
these departments are more than 0.8200 in all the metrics.  In particular, the retrieval 
performances for Department of Ophthalmology are even more than 0.9155.  Compa-
ratively, Department of Internal Medicine, which has the largest entropy, achieves the 
average performance.  Department of Oncology gets the worst retrieval performance 
because tumor may occur in different organs.  The precision@1 to access medical 
records in this department is only 0.3685, which is the worst of all. 
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Table 4. MAP and nDCG of Basic Retrieval Models with Different Strategies 

Model Metric S1 S2 S3 S4 S5 S6 
Top 5 

TF-IDF 
MAP 0.6858 0.6776 0.6860 0.6780 0.6700 0.6685 
nDCG 0.7529 0.7456 0.7535 0.7461 0.7385 0.7370 

Okapi 
MAP 0.6954 0.6871 0.6965 0.6875 0.6800 0.6774 
nDCG 0.7622 0.7545 0.7626 0.7551 0.7489 0.7469 

KL 
MAP 0.6715 0.6634 0.6692 0.6612 0.6691 0.6654 
nDCG 0.7396 0.7316 0.7385 0.7305 0.7380 0.7350 

cosine 
MAP 0.6857 0.6818 0.6868 0.6827 0.6521 0.6503 
nDCG 0.7520 0.7485 0.7534 0.7488 0.7217 0.7203 

indri 
MAP 0.6638 0.6582 0.6604 0.6558 0.6557 0.6527 
nDCG 0.7328 0.7274 0.7305 0.7264 0.7251 0.7220 

  S1 S2 S3 S4 S5 S6 
Top 10 

TF-IDF 
MAP 0.6651 0.6584 0.6660 0.6590 0.6502 0.6487 
nDCG 0.7481 0.7420 0.7486 0.7422 0.7348 0.7330 

Okapi 
MAP 0.6734 0.6672 0.6749 0.6678 0.6588 0.6566 
nDCG 0.7559 0.7498 0.7564 0.7498 0.7427 0.7404 

KL 
MAP 0.6517 0.6444 0.6499 0.6430 0.6489 0.6465 
nDCG 0.7362 0.7297 0.7352 0.7285 0.7329 0.7307 

cosine 
MAP 0.6648 0.6611 0.6660 0.6622 0.6340 0.6331 
nDCG 0.7473 0.7437 0.7481 0.7447 0.7186 0.7181 

indri 
MAP 0.6446 0.6395 0.6422 0.6380 0.6365 0.6339 
nDCG 0.7305 0.7256 0.7285 0.7246 0.7221 0.7192 

Table 5. precision@k of Retrieval Models on the Department Level with Different Strategies 

Model Precision 
@k S1 S2 S3 S4 S5 S6 

TF-IDF 

k=1 

0.7185 0.7103 0.7188 0.7105 0.7031 0.7013 
Okapi 0.7280 0.7197 0.7293 0.7203 0.7136 0.7109 
KL 0.7041 0.6958 0.7020 0.6933 0.7021 0.6984 
cosine 0.7184 0.7138 0.7193 0.7149 0.6857 0.6827 
indri 0.6960 0.6907 0.6926 0.6879 0.6880 0.6857 
TF-IDF 

k=3 

0.6259 0.6196 0.6269 0.6204 0.6132 0.6117 
Okapi 0.6371 0.6316 0.6384 0.6326 0.6238 0.6231 
KL 0.6073 0.5997 0.6055 0.5988 0.6120 0.6105 
cosine 0.6273 0.6236 0.6279 0.6245 0.5983 0.5970 
indri 0.5986 0.5947 0.5967 0.5935 0.5986 0.5973 
TF-IDF 

k=5 

0.5963 0.5911 0.5980 0.5928 0.5863 0.586 
Okapi 0.6072 0.6034 0.6099 0.6050 0.5973 0.5965 
KL 0.5775 0.5719 0.5770 0.5725 0.5842 0.5838 
cosine 0.5972 0.5933 0.5984 0.5951 0.5741 0.5741 
indri 0.5698 0.5670 0.5691 0.5676 0.5713 0.5702 
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Fig. 1. MAPs of TF-IDF and Okapi under Different n’s 

Table 6. Retrieval Performance w.r.t. Department Type Using Okapi Retrieval Model and 
Strategy S3 

Department MAP
@5

nDCG
@5

MAP
@10

nDCG
@10

precision 
@1 

Dental 0.8545 0.8825 0.8295 0.8744 0.8755 
Dermatology 0.6531 0.7083 0.6263 0.7003 0.6901 
Ear, Nose & Throat 0.8443 0.8770 0.8282 0.8715 0.8640 
Internal Medicine 0.7001 0.7867 0.6695 0.7688 0.7381 
Neurology 0.4843 0.5762 0.4612 0.5731 0.5232 
Obstetrics & Gynecology 0.7779 0.8121 0.7635 0.8100 0.8000 
Oncology 0.3233 0.3847 0.3236 0.4185 0.3685 
Ophthalmology 0.9265 0.9419 0.9155 0.9371 0.9377 
Orthopedics 0.8518 0.8888 0.8326 0.8802 0.8736 
Pediatrics 0.6667 0.7278 0.6509 0.7290 0.6977 
Rehabilitation 0.6088 0.6772 0.5921 0.6771 0.6390 
Psychiatry 0.8323 0.8631 0.8183 0.8608 0.8487 
Surgery 0.6120 0.6971 0.5889 0.6943 0.6535 
Urology 0.7651 0.8035 0.7494 0.8037 0.7873 

3.3 Ranking Models for EMR Retrieval 

In addition to the fundamental retrieval models, we adopt the learning to ranking 
model to retrieve the EMRs. Assume a training set is composed of N medical records.  
Each medical record is regarded as a query.  For each query qi, we retrieval top 200 
medical records, m1, m2, …, m200, with an IR model. Then, we extract features be-
tween qi and m1, qi and m2, …, qi and m200.  SVM rank along with these features is 
employed to learn a ranking model.  We will use it to re-rank the initial retrieval  
results.  
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Table 7. Performance of Learn-to-Rank EMR Models 

Model Metric BOW MT SYMP 

TF-IDF 
MAP 0.6989 0.6997 0.7013 
nDCG 0.7620 0.7628 0.7640 

Okapi 
MAP †0.6957 †0.6964 *0.6992 
nDCG †0.7593 †0.7597 *0.7618 

KL 
MAP 0.6970 †0.6968 †0.6977 
nDCG †0.7595 †0.7592 †0.7604 

cosine 
MAP †0.6939 †0.6933 †*0.6968 
nDCG †0.7571 †0.7565 †*0.7597 

indri 
MAP †0.6875 †0.6935 †*0.6954 
nDCG †0.7516 †0.7567 †*0.7585 

 
In the experiments shown in Section 3.2, the methodology of bag-of-words is 

adopted.  Here we explore two more feature sets: medical terms and symptoms.  The 
medical terms such as examination, medicine, and surgery are extracted from the 
course and treatment of the retrieved medical records. We describe the details of med-
ical term extraction in Section 4.1.  

Physicians often use some fixed patterns to describe symptoms.  The following 
shows some examples for the JJ+NN+NN pattern: left breast pain, congenital heart 
disease, and bilateral neck mass.  We formulate 20 common patterns as follows ma-
nually to capture symptoms:  (1) JJ NN (and) NN NN, (2) JJ NN NN, (3) JJ (of) NN, 
(4) VBD NN, (5) NN NN (and) NN, (6) NN (and) NN, (7) JJ VBG NN, (8) VBG NN, 
(9) JJ NN (and) VBG, (10) NN (of) NN, (11) JJ NN, (12) JJ FW, (13) JJ VBG (and) 
VBG, (14) VBG (with) NN, (15) NN NN, (16) JJ VBG, (17) JJ JJ NN, (18) NN 
(with) VBG, (19) NN VBG, (20) NN.  The longest-first strategy is adopted. 

3.4 Results of the Ranking Models 

Table 7 shows the performance of learning-to-rank electronic medical record retrieval 
models. Top 5 EMRs are retrieved and compared. BOW, MT, and SYMP denote bag-
of-words, medical terms, and symptoms, respectively.  From column part, using 
symptoms is better than using bag-of-words and using medical terms, where * denotes 
SYMP is better than BOW with p<0.05. From raw part, TF-IDF model is better than 
the other four models, where † denotes 95% confidence. 

4 Medical Term Extraction 

In Section 3, our methods for retrieving EMRs are shown. In addition to the evalua-
tion at department-level, we extract the medical terms such as examination, medicine, 
and surgery from the course and treatment of the retrieved EMRs. This section shows 
our extraction models and their performances.  
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4.1 Extraction Models 

To extract the relevant medical terms form EMR, the technology of medical term 
recognition [15] is required. In this work, Ontology-based and pattern-based ap-
proaches are adopted. The ontology-based approach adopts the resources from the 
Unified Medical Language System (UMLS) maintained by National Library of Medi-
cine. The UMLS covers a wide range of terms in medical domain, and relations be-
tween these medical terms.  Among these resources, the Metathesaurus organizes 
medical terms into groups of concepts. Moreover, each concept is assigned at least 
one Semantic Type.  Semantic Types provide categorization of concepts at a more 
general level, and therefore are well-suited to be incorporated.  The pattern-based 
approach adopts patterns such as “SURGERY was performed on DATE” to extract 
medical terms [16-17].  The idea comes from the special written styles of medical 
records.  A number of patterns frequently repeat in medical records.  The following 
lists some examples for the pattern “SURGERY was performed on DATE”: para-
centesis was performed on 2010-01-08, repositioning was performed on 2008/04/03, 
incision and drainage was performed on 2010-01-15, and tracheostomy was per-
formed on 2010/1/11.   

We follow the pattern-based approach to extract frequent patterns from medical 
record dataset and apply them to recognize medical terms.  The overall procedure is 
summarized as follows. 

(a) Medical Entity Classification: Recognize medical named entities including 
surgeries, diseases, drugs, etc. by the ontology-based approach, transform them into 
the corresponding medical classes, and derive a new corpus. 

(b) Frequent Pattern Extraction: Employ n-gram models in the new corpus to ex-
tract a set of frequent patterns. 

(c) Linguistic Pattern Extraction: For each pattern, randomly sample sentences 
having this pattern, parse these sentences, and keep the pattern if there is at least one 
parsing sub-tree for it. 

(d) Pattern Coverage Finding: Check coverage relations among higher order pat-
terns and lower order patterns, and remove those lower patterns being covered. 

4.2 Results and Discussion 

We evaluate the performance of medical term extraction as follows. The input is a 
chief complaint and a brief history, and the output is top-1 course and treatment se-
lected from the historical NTUH medical records. Recall that examination, medicine 
and surgery are three key types of medical entities specified in a course and treatment. 
We would like to know if the retrieved medical record adopts the similar course and 
treatment as the input query.  Thus the evaluation unit is the three types of entities.  
We extract examinations, medicines and surgeries from the courses and treatments of 
an input query and the retrieved medical record, respectively, by medical term recog-
nition.  They are named as GE, GM, and GS for ground truth (i.e., the course and 
treatment of the input query), and PE, PM, and PS for the proposed treatment (i.e., the 
course and treatment of the returned medical record), respectively. The Jaccard's  
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coefficient between the ground truth and the proposed treatment is a metric indicating 
if the returned medical records are relevant and interesting to physicians.  It is defined 
as: total number of common entities in the ground truth and the proposed answer di-
vided by sum of the entities in the ground truth and the proposed answer for each 
query.  The evaluation is done for each medical entity type.  That is, Jaccard's coeffi-
cient for examination=|GE∩PE|/|GE∪PE|, Jaccard's coefficient for medi-
cine=|GM∩PM|/|GM∪PM|, and Jaccard's coefficient for surgery=|GS∩PS|/|GS∪PS|.  
Note that the denominator will be zero, if both the ground truth and the proposed 
answer do not contain any medical entities of the designated type.  In this case, we set 
Jaccard's coefficient to be 1.  The average of the Jaccard's coefficients of all the input 
queries is considered as a metric to evaluate the performance of the retrieval model on 
the treatment level. 

Table 8 lists the fine-grained relevance evaluation on the course and treatment level 
with Jaccard's coefficient. Total 663 examinations, 2,165 medicines, and 1,483 surge-
ries are used in the treatments. Total 54,679, 64,607, and 88,647 medical records 
mention examinations, medicines, and surgeries in their treatments.  We count the 
number of the same examinations (medicines or surgeries) appearing in both ground 
 

Table 8. Jaccard's Coefficients of Basic and Ranking Retrieval Models on the Course and 
Treatment Level 

Strategy Top-1 TF-IDF Okapi KL cos indri 

S1 
examination 0.3332 0.3448 0.4351 0.3362 0.4501 

medicine 0.2501 0.2995 0.2222 0.2846 0.2035 
surgery 0.1115 0.1406 0.0847 0.1358 0.0776 

S2 
examination 0.3109 0.3376 0.4017 0.3305 0.4202 

medicine 0.2445 0.2980 0.2370 0.2865 0.2257 
surgery 0.1154 0.1397 0.0961 0.1393 0.0898 

S3 
examination 0.3515 0.3499 0.4399 0.3437 0.4535 

medicine 0.2589 0.3000 0.2245 0.2897 0.2055 
surgery 0.1131 0.1394 0.0844 0.1339 0.0764 

S4 
examination 0.3289 0.3447 0.4076 0.3362 0.4259 

medicine 0.2539 0.2988 0.2389 0.2905 0.2267 
surgery 0.1168 0.1406 0.0950 0.1376 0.0879 

S5 
examination 0.3728 0.3816 0.3690 0.3814 0.3639 

medicine 0.3166 0.3289 0.3112 0.3292 0.3042 
surgery 0.1851 0.1954 0.1821 0.1882 0.1758 

S6 
examination 0.3727 0.3810 0.3679 0.3826 0.3636 

medicine 0.3147 0.3278 0.3101 0.3291 0.3035 
surgery 0.1835 0.1936 0.1803 0.1875 0.1743 

Ranking 
examination 0.3852 0.3852 0.3847 0.3890 0.3846 

medicine 0.3291 0.3301 0.3310 0.3348 0.3313 
surgery 0.2012 0.2007 0.2013 0.2005 0.1999 



162 H.-H. Huang, C.-C. Lee, and H.-H. Chen 

 

truth and the treatment of the top-1 returned medical record.  The number is norma-
lized by total number of examinations (medicines or surgeries) in both treatments for 
each query.  If both do not recommend any examinations (medicines or surgeries), the 
Jaccard's coefficient is regarded as 1.  The five retrieval models and the seven strate-
gies used in the above experiments are explored again in the fine-grained evaluation. 
S1 to S6 are based on the basic retrieval models describe in Section 3.2. Ranking is 
the learning-to-rank model with symptom features shown in Section 3.3. Overall, the 
performance of examination prediction is larger than that of medicine prediction, 
which is larger than that of surgery prediction in all models.  Considering brief history 
(i.e., strategies S5 and S6) benefits medicine and surgery prediction. Excluding the 
learning to rank approach, the Okapi model with strategy S5 achieves the best per-
formance on medicine and surgery prediction (i.e., 0.3289 and 0.1954), and Indri with 
strategy S3 achieves the best performance on examination prediction (i.e., 0.4535). In 
other words, the information from brief history induces noises in examination predic-
tion. The Comparison between S5 and the Ranking shows that the learning to rank 
approach improves the performances on all the examination, medicine, and surgery 
predictions in all the five models.  

5 Conclusion 

This paper aims at mining the professional knowledge from medical records. We 
compare different retrieval models under different strategies on department and 
course and treatment levels. In addition, ontology-based and pattern-based approaches 
are adopted to extract medical terms. Both coarse-grained and fine-grained relevance 
evaluations with various metrics are conducted.  

Some linguistic phenomena in EMRs are identified. The medical records in medi-
cal languages of smaller entropy tend to have better retrieval performance. The de-
partments related to generic parts of body such as Departments of Internal Medicine 
and Surgery may confuse the retrieval, in particular, for Departments of Oncology 
and Neurology.  

In the experiments of basic retrieval models, five retrieval models and six index 
strategies are tested. The Okapi model achieves the best performance. Query accesses 
to the medical records in medical languages of smaller entropy tend to have better 
performance. The performance of departments related to generic parts of body such as 
Department of Oncology and Department of Neurology are worse than average per-
formance. In the experiments of the learning to rank approach, we explore the ranking 
approach on five retrieval models and three index strategies. Under the learning to 
rank algorithm, the TF-IDF model with the symptoms strategy achieves the best  
performance. Applying learning to rank technique is significantly better than those 
models. 

Our mining approach can be adopted in various applications. The medical record 
retrieval can be applied to create a search engine that delivers similar medical records 
for education and case study. The outpatient recommendation system is another appli-
cation. For example, a patient can search for the appropriate outpatient department by 
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inputting the patient’s chief complaints. The medical term extraction can be applied to 
analyze the correlations between drug and symptoms. Moreover, a medical assistance 
system can be constructed to detect the anomalous treatments and remind the physi-
cians to double-check their diagnosis. 
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Abstract. Recently there has been a growing attention on the use of web and 
social data to improve traditional prediction models in politics, finance, market-
ing and health, but even though a correlation between observed phenomena and 
related social data has been demonstrated in many cases, yet the effectiveness 
of the latter for long-term or even mid-term predictions has not been shown. In 
epidemiological surveillance, the problem is compounded by the fact that infec-
tious diseases models (such as susceptible-infected-recovered-susceptible, 
SIRS) are very sensitive to current conditions, such that small changes can pro-
duce remarkable differences in future outcomes. Unfortunately, current or near-
ly-current conditions keep changing as data are collected and updated by the  
epidemiological surveillance organizations. In this paper we show that the time 
series of Twitter messages reporting a combination of symptoms that match the 
influenza-like-illness (ILI) case definition represent a more stable and reliable 
information on “current conditions”, to the point that they can replace, rather 
than simply integrate, official epidemiological data. We estimate the effective-
ness of these data at predicting current and past flu seasons (17 seasons overall), 
in combination with official historical data on past seasons, obtaining an aver-
age correlation of 0.85 over a period of 17 weeks covering the flu season. 

Keywords: Twitter mining, epidemiological surveillance, predictability of 
health-related phenomena. 

1 Introduction 

Prediction of social phenomena in politics, finance, marketing and health is tradition-
ally based on historical data of the same type, i.e. on time series S(t) = (st−n,...st−1, st )  

taken up until and including the time t in which the prediction is produced. These data 
are used to train predictors based on linear or non-linear regressions, machine learn-
ing, or model-based methods [1], the latter being the hardest way to do prediction 
since they require deep insight into the observed phenomenon. In recent research [2-
11], it has been shown that better predictions can be obtained when augmenting his-
torical data with social data, such as the frequency time series K(t) of a keyword in 
web search data or in micro-blogs.  
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Even though a correlation between observed phenomena and related social data has 
been demonstrated in many cases, yet the effectiveness of the latter for long-term or 
even mid-term predictions has not been shown. Furthermore, the usefulness of social 
observations is usually limited to recent values (kt and kt-1). 

More related to the research described in this paper is the problem of predicting 
health-related phenomena, such as disease outbreaks. A seminal work in this area is 
[6], in which the level of influenza (influenza-like illness, ILI) in the U.S. is estimated 
using the relative frequency of search queries related to influenza-like illness. Similar-
ly, in [7], the authors demonstrate that query search volumes associated to Dengue 
fever can predict the incidence of Dengue. Another recent study [8] analyses the prob-
lem of predicting the tendency of hand-foot-and-mouth disease (HFMD), clustering 
HFMD-related search queries, medical pages and news reports. In some cases, a cor-
relation between search volumes and disease trends has been identified and, in 2008, a 
Google service, Flu Trends1 (GFT), was developed to estimate and predict influenza 
activity by aggregating Google search query volumes. However, web search peaks 
can be completely unrelated to the incidence of a disease, as search behaviors change 
over time and discussions on traditional media may become reflected in search pat-
terns. For example, GFT overestimated peak flu during the 2013 season2, following 
breaking news on bird flu cases in China.  

In [9,10] Twitter messages are used to predict flu trends. The advantage of Twitter 
(and micro-blogs in general) is that, unlike for user queries, a context is provided to 
distinguish cases in which a user is actually infected from those in which he/she is 
expressing fear of being infected. For example, Lamb et al. [9] separate tweets report-
ing infection (flu) from those expressing concerns and fear (“a little worried about flu 
epidemic!”), using a classifier trained with a number of specific linguistic features, 
like expressions of concern. The correlation of the related time series of Twitter mes-
sages with official ILI data published by the Center for Disease Control and Preven-
tion3 (CDC) is reported to be 0.98 in 2009 and 0.79 in 2011.  

We note however that the studies mentioned so far do not actually “predict” disease 
trends, though they have been shown to correlate more or less well with available data 
on disease outbreaks provided by official epidemiological data. Rather, since both 
Twitter and GFT provide real-time data, methods based on these data are able to pro-
vide an “instant” forecast, while epidemiological data become available typically with 
one week of delay. A more interesting objective is to make a mid or long-term predic-
tion, i.e. to be able to predict an influenza peak several weeks in advance. This objec-
tive is targeted in [11], where a model-based predictor is defined. The system uses an 
ensemble of SIRS4 (susceptible-infected-recovered-susceptible) epidemic models to 
simulate the number of people infected with influenza in all major US cities. The 
authors use a data assimilation technique to adjust observable and non-observable  
 

                                                           
1 http://www.google.org/flutrends/ 
2 http://www.nature.com/news/when-google-got-flu-wrong-1.12413 
3 www.cdc.gov/  
4 en.wikipedia.org/wiki/Epidemic_model  
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model state variables. The predictor is based on historical data, along with real-time 
data on humidity, official CDC reports, and GFT estimates. The model has shown to 
accurately predict the influenza peak up to 9 weeks before in 2012. On week 52, prior 
to the influenza peak in all main cities, 63% of the city forecasts were accurate, where 
accuracy is computed in terms of precision at predicting the peak in a ±1window.  

The forecasting model described in [11] is by far the most complex and accurate 
presented in literature. However, the actual improvement obtained thanks to the use of 
GFT is not clear and, as a matter of facts, the authors note than in a previous study 
they used only GFT data, but then decided to employ an alternative metric that only in 
part relies on GFT. In this paper, we do not aim to define a better predictor, rather, our 
objective is to mitigate the causes for which a very complex calibration model is 
needed, as described in [11]. Infectious diseases models (such as SIRS) are very sen-
sitive to current conditions, such that small changes can produce remarkable differ-
ences in future outcomes. Unfortunately, current or nearly-current conditions, e.g. the 
estimated number of infected individuals at time t, t-1.., as provided by the official 
surveillance organizations (for example, CDC), keep changing as data are locally 
collected and updated. On the other side web-based indicators, such as GFT, are sta-
ble but less reliable, since they might be affected by other phenomena (fear of being 
infected, information needs, etc.) than the one being observed. Furthermore, the case 
definition for ILI patients provided by CDC, requires a combination of symptoms5 
that cannot be mirrored accurately by GFT, as noted also in [11]. 

In this paper we show that the time series of Twitter messages reporting a combina-
tion of symptoms that precisely match the ILI case (hereafter denoted as ILI-Tweets) 
represent a stable and reliable information on “current conditions”, to the point that 
they can reliably replace official ILI data (ILICDC). Using ILI-Tweets, we can produce 
reliable mid-term forecasts with a simpler model than the one in [11]. 

The paper is organized as follows: in Section 2, we summarize our method to ex-
tract ILI-Tweets. We also show that ILICDC data, as published weekly by CDC, are 
quite variable especially in the shot run (e.g. the current and past two-three values), 
but, when they eventually stabilize, there is a remarkably high correlation with our 
ILI-Tweets: in other terms, the ILICDC curve tends to overlap with our ILI-Tweets 
curve as official data gets stable. In Section 3 we present our forecasting model, based 
on ILI-Tweets and historical ILICDC data on past seasons. Section 4 is dedicated to 
evaluation: we both validate our model on current (on-going) 2013 flu season and 
retrospectively, on the past 17 seasons for which ILICDC data are available, including 
outlier seasons. Section 5 concludes the paper. 

2 Using Twitter Data for Syndromic Surveillance 

This section shortly described the algorithm used to extract ILI-related messages from 
Twitter. Further details can be found in [12-14]. 

                                                           
5 http://www.acha.org/ILI_Project/ILI_case_definition_CDC.pdf 
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2.1 Tracking Twitter Messages Reporting ILI Symptoms 

Twitter mining algorithms used in previous health-related studies have measured the 
occurrence of single pre-specified terms, consisting of either the name or synonyms of 
a clinical condition (e.g: H1N1 or swine flu) or of words, arbitrarily chosen by the 
authors, related to the clinical syndrome itself (e.g. flu, vaccine, tamiflu) and/or to 
specific expression, e.g. fear of infection [9]. However, this kind of approach may 
suffer from major biases, which we will illustrate with an example. Consider the fol-
lowing striking difference in the usage of terms describing the same health conditions, 
the first by a clinician, the second by a patient: “Clinicians should maintain a high 
index of suspicion for this diagnosis in patients presenting with influenza-like symp-
toms that progress quickly to respiratory distress and extensive pulmonary involve-
ment.”6 “For the past 3 days I have had a stuffy, runny nose, congested chest, fever, 
sore ears and throat and burning eyes. I’ve been taking cold and flu medication, and 
it doesn't help”7. Clearly, the patient’s symptoms should induce “a high index of sus-
picion”, but the similarity between these symptom descriptions is not so obvious as to 
allow capture by an automated system, for two reasons: First, in blogs and forums, 
people are motivated by a communication need (frequently “one-to-one”, between 
just two individuals), rather than by an information need, and therefore naïve lan-
guage is often preferred to technical language. Thus, understanding the way people 
talk about medical terms (diseases, symptoms, and treatments) in “peer to peer” 
communications is crucial for an effective monitoring of health-related behaviors 
based on social data. Second, it is likely that, in their tweets, most users will describe 
a combination of symptoms rather than a diagnosis. An approach that takes into ac-
count only disease-related keywords can miss a large volume of messages in which 
users include a mix of signs and symptoms that may in reality be describing a clinical 
syndrome. With reference to the previous example, high co-occurrence rates of symp-
toms like runny nose, congested chest, sore ears etc. may be used to trigger an alarm 
in syndromic surveillance systems.  

To cope with these issues, we adopted an entirely different approach. We first de-
veloped an algorithm to automatically learn a variety of expressions that people use to 
describe their health conditions, thus improving our ability to detect health-related 
“concepts” expressed in non-medical terms and, in the end, producing a larger body 
of evidence. We then implemented a Twitter monitoring instrument to finely analyze 
the presence and combinations of symptoms in tweets. We transformed five common 
syndrome definitions into a Boolean query, thereby basing our analysis on a combina-
tion of symptoms (each expanded with a set of correspondent naïve terms) rather than 
on a suspected or final diagnosis. For example, the Boolean query for influenza, 
matching at best the official CDC definition for ILI (see Section 1), is: 

(1) [(fever)∨ (chills)) ∨  (malaise) ∨  (headache) ∨  (myalgia)] ∧  [(cough) ∨  
(pharyngitis) ∨  (dyspnea)] 

This query is extended replacing the technical terms with the disjunction of its corres-
pondent naïve terms retrieved by our algorithm, for example: malaise malaise, 
unease, discomfort, weakness, feeling of sickness, feel sick, bodily discomfort, body 

                                                           
6 www.ncbi.nlm.nih.gov/pubmed/20085663 
7 ehealthforum.com 
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aches, body pain, pain in body. Query expansion with naïve terms considerably in-
creases the number of matches, thus providing a statistically reliable body of evi-
dence. An example of tweet matching the ILI query is: “If this is the flu! I am going to 
be so pissed: fever, nausea, neck pain, sore throat, all this coughing.. its back to 
bed!”. Furthermore, we geo-localize our matching tweets using a variety of methods, 
not described here for sake of space (the interested reader is referred to our publica-
tions). Therefore, we can produce a reliable estimate of ILI cases in U.S. and even 
more fine-grained geographical distributions, for selected regions.  

Detection of naïve language and symptom-driven keyword analysis (rather than 
disease-driven) represent a major difference with previous methods for syndromic 
surveillance. First, knowledge of naïve language provides a considerably larger cor-
pus of evidence. Then, second, knowledge of patients’ language allows fine-grained 
queries to be performed on the Twitter corpus, separating, for example, patients with 
simple cold symptoms from those with an allergy, or a “true” ILI, thus solving a 
“noise” problem pointed out in [11], and not considered, e.g. in [9]. Third, our metho-
dology (similarly to [9]) is very reliable in selecting only tweets of people that actual-
ly complain of being infected, rather than people worried by the possibility of being 
infected. In fact, people may say “I’m scared about this flu” but they are unlikely to 
say “I’m afraid to get fever, nausea, body aches, and cough!”.  

2.2 Creation of the ILI Tweets Dataset  

We started collecting our ILI-related Twitter data since February, 2012. We used the 
available Twitter API8 and a set of 78 disease-related naïve terms to track about 100% 
of the total traffic including these words. In peak periods (e.g. February 2013, January 
2014), we collected over 3000 Tweets per day matching the ILI query (1). Additional-
ly, we could monitor the higher or lower incidence of individual symptoms during a 
specific period under observation, e.g. cough, pharyngitis and chills have been the 
predominant symptoms complained of by influenza patients in past year (2012-13). 
The correlation of our data with official flu reports in the US during the past season 
2012-13 was remarkably high (around 0.99%), and better, even, than Google Flu 
Trends (GFT) over the same period, however we started our collection after the peak 
period. For the current season, which we could monitor since the early beginning of 
the infection, the correlation is confirmed to be very high, as shown in Figure 1a. The 
correlation of ILI-Tweets was 0.965 against 0.947 of GFT. Notice also that both GFT 
and ILI-Tweets curves seems to be shifted one week in advance with reference to 
CDC. Figure 1b shows that, when shifting the ILI-Tweets curve one week to the right, 
there is an almost perfect overlapping with CDC. This is a phenomenon that we ob-
served also during the past 2012-2013 season, and can be explained by the fact that 
patients’ reaction on the web and on social media is instantaneous: they send a mes-
sage as the symptoms occur. Instead, there might be a delay between the occurrence 
of the illness and the visit to a doctor, with subsequent registration of the case.  

We also remark that our method is applicable to any frequent disease, not just flu, 
and is not prone to fluctuations in web search behaviors. These results makes our  

                                                           
8 https://dev.twitter.com/docs/streaming-apis 



 Pred

 

ILI-Tweets data potentially
which are, instead, rather u
from their healthcare provid
publications (e.g. Pub-46 m
to week 46), and our ILI-T
for comparison. Figure 2 sh
to our ILI-Tweets curve. N
dered in [11]; in this study,
though the method is robus
dictions would have been th

 

Fig. 1a. Final correlation dur
Tweets (smoothed with Loess
CDC is 0.947, correlation’ of I

Fig. 1b. As for Fig. 

                                            
9  http://stn.spotfire
norm_z_score.htm 

-1.60

-1.10

-0.60

-0.10

0.40

0.90

1.40

1.90

42 47

Tweets-Sm

-1.60

-1.10

-0.60

-0.10

0.40

0.90

1.40

1.90

42 47

Tweets-S

dicting Flu Epidemics Using Twitter and Historical Data 

y more useful for ILI predictions than official CDC d
unstable as US States clean and submit additional ILI d
ders. Figure 2 shows the ILICDC curves in subsequent C

means the CDC publication on week 47, including data
Tweets curve, as on week 52. All curves are z-normaliz
hows that, as ILICDC values become stable, they get clo

Note also that the problem of data fluctuation is not con
 predictions ILICDC data, but at the end of the season. E

st against fluctuations, we don’t know if the quality of p
he same with varying ILICDC data. 

 

ring 2013-14 flu season, between CDC data (as on Pub-9), 
s) and Google Flu (already smoothed). Correlation of GFT 
ILI-Tweets vrs CDC is 0.965. 

1a, when shifting ILI-Tweets and GFT one week ahead 

               
.com/spotfire_client_help/norm/ 

52 57 62

mooth GFT CDC-Pub-11

7 52 57 62

Smooth GFT CDC-Pub-11

169 

data, 
data 

CDC 
a up 
zed9 
oser 
nsi-

Even 
pre-

ILI 
 vrs 

 



170 G. Stilo et al. 

 

3 Summary of Prediction Models 

In this Section we describe our prediction model. More precisely, we consider the 
following available data sources:  

1. , the time series of historical ILI data on past sea-

sons i-k, where n=20 or 3910;  

2. , the time series associated to the current year . 

We assume that in week m the official values from week 40 to week m-1 are publicly 
available.  

3. , the time series of Twitter messages associated to 

the current year , whose combination of reported symptoms match the ILI case. We 

assume that in week m the number of matching and associated tweets is known. 
While both  and  are stable,  values are unstable, as shown 

in Figure 2. Such fluctuations, though not substantial, are critical for early predictions, 
i.e. when m is small (<7-8 values, as discussed in Section 4). On the other side, early 
predictions are definitively more interesting than late predictions: this motivates our 
choice of using Twitter data rather than  values. Our predictor is based on 2 

alternative models: 

1. Prototype: we derive a prototype curve, obtained trough z-normalization and 
alignment of past curves, centered on the seasonal peak. The prototype provides an 
“average” ILI profile, but is not temporally anchored; 

2. Fusion: A temporally anchored curve, obtained trough z-normalization of past 
seasons, similarity ranking and fusion of past seasons, as compared with available 
values of the season to be predicted, represented by the Twitter curve.  

The best model is automatically selected, as discussed later. The steps of our me-
thodology are the following:  

Step 1: z-normalization 

All time series are normalized using the z-score. Figure 3 shows the result of this step, 
limited to past seasons. Note that there are a few seasons that are “outliers”, i.e. they 
behave quite differently from the others, either because they have a very early peak 
(e.g. 09/10, 03/04) or because they have a very late peak (e.g. 08/09). Instead, it is not 
infrequent that a season has a double peak. 

Step 2: Derivation of Prototype curve (Method 1) 

As mentioned before, we define two prediction methods. Our first method is based on 
the derivation of a prototype curve. To obtain such prototype, curves in Figure 3 are 
shifted to align their seasonal peak. An average ILI profile is then derived, as shown 
in Figure 4.  

                                                           
10  National surveillance data goes from week 40 to week 20 of the subsequent year until season 

2001-2002, while n=39 since 2002-2003. 
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prediction curve based on combining these seasons. Known values in current season 
are represented by the known m values of . Note that another advantage of using 

rather than is that the m-th value is available in week m, while ILICDC 

data, besides being subject to fluctuations, become available with one week of delay. 
We now describe the sub-phases of method 2. In what follows, for simplicity we use 
the same notation for normalized and not normalized time series.  

Step 3.1: derive the “early graphs”  

For every  we consider only the first m values, which 

are also available (either real or estimated from Twitter) for year . We call these 

the “early graphs”, denoted as . 

Step 3.2: Compute point-wise quadratic distance 

For every value  (or ) in  we compute its quadratic distance with 

reference to  and assign a score to the season with the closest value in week j.  

Step 3.3 Select the most similar season(s)
 

We explored two scoring schemas: 

1) Boolean: a season receives a + 1 for every best-matching week, regardless 

of the week; 
2) Weighted: a season receives a score weighted by , e.g. scores are 

higher for matches in weeks j closest to current week m. 

With the Boolean scoring method, we select all the season with a score .With 
the Weighted method, we select all the seasons with a non-zero cumulative score. Let 
[Y*] be the set of seasons selected by any of the two scoring methods. A normalized 
prediction graph is created by averaging the values, in each week, of the selected sea-
sons [Y*]. In both methods, the contribution of each selected season is smoothed by 
the inverse of cumulated weight.  

Step 4. Select best predictors 

In Step 2 and Step 3 we defined two prediction methods: one is based on an average 
ILI profile, the second is based on past most similar seasons. Experiments (see the 
evaluation Section) show that neither approach is entirely satisfactory: in general, 
very early predictions (based on very few values of the early graph) and outlier sea-
sons (as those shown in Figure 3) are better predicted using the average profile me-
thod, while when a certain number of week values are available, the similarity curve 
performs best. To select the best predictor we used a classifier to automatically select 
the best predictors, given the number of available weeks and the absolute distance 
between absolute values of previous seasons.  
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Note that a similar re-weighting procedure is initially applied to estimate the value 

 of flu cases in the early graph for Yi, given the number of Twitter messages com-

plaining flu in week k. Furthermore, if the selected similar seasons have different 
scores, their contribution to the computation is smoothed by their score.  

Finally, in Figure 5 we show our prediction for year 13/14. The prediction is ob-
tained using the Fusion method (method 2) with Weighted scoring, however the two 
scoring techniques were experimentally found to have no striking difference in per-
formance. According to our real-time estimate, the peak is predicted in weeks 5-6. 
The season starts on week 48 and ends on week 16, for a total of 22 weeks. 

4 Evaluation Based on Past Seasons 

Since the current season is still in progress and we started collecting our ILI Tweets 
data on February 1st, 2013, we do not have a fully available season to test our me-
thod. In previous Section, we have already remarked that, from week 43 to week 2 of 
season 13/14, our correlation with official data is 0.94, however the actual peak is not 
yet known at the time we are writing.  

To evaluate the quality of our approach, we then performed the following experi-
ment: under the reasonable hypothesis of statistically independent seasons, we remove 
seasons one at the time, and we then try to predict them retrospectively. For example, 
to predict season 02/03 we use data from all the other seasons, and we then compare 
our prediction with the ground truth. Table 1 shows the correlation results obtained 
when using the method based on Fusion with Weighted scoring on the white rows, 
and Prototype on the orange rows. Note that selection of the method is automatically 
determined as described in step 4 of Section 3, however, season 08/09 (in yellow) was 
not recognized as an outlier, due to the late secondary peak (see Figure 2), therefore 
results are based on the Fusion method. In the Table 1, rows are the years to be pre-

dicted, and columns are the “m”, e.g. “45” means that we predict week 45 for year  
based on weeks 40-45. Cells (j,k) are the Pearson’s correlation between the predicted 
and actual curves for year j, from week 40 up to week k. The last row of Table 1 is the 
average correlation of all our predictions with reference to the actual values of the 
seasons to be predicted.  

As already remarked, we do not actually have the  values for years previous 
than 2013 (since, as previously noted, we started collecting flu-related tweets on Feb-
ruary 2013). However, under the hypothesis that our method exhibits a stable and 
strong correlation with the flu seasons (as shown for partial but large fractions of sea-
sons 12/13 [13-15] and 13/14), the effect of knowing  is simulated simply by 
considering the correspondent known values for .  

Note also that, even though in this experiment the early curves for a year to be pre-
dicted are represented by the ILICDC values rather than by the Twitter estimate of these 
values (as it should be in our method), the correlation values in Table 1 are not necessar-
ily optimistic, since, even if we could use stable ILICDC values for a year to be pre-
dicted (which, as already noted, is not the case) rather than un-official ILI-Tweets, still 

yk
i

Yj

T (Yj )

T (Yj )

S(Yi )
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ILI-Tweets keep an advantage over ILICDC data, since they provide an extra “real-
time” value for week m. By comparing the values in cells (j,k) with (j,k+1) it is seen that 
one extra value almost always has a positive effect on performance. 

Table 1 shows for example that, in week 48 (which may be considered a relatively 
early prediction, usually 4-8 weeks before the peak), the average obtained Pearson’s 
correlation is 0,80. As expected, the correlation grows with the length of the available 
early curve, up to 0,94 on week 18. The average total correlation, i.e. the average of 
values in the last row, is 0,85. 

Table 2 shows the average precision in predicting the peak over all historical data: 
the columns are the weeks in which the prediction is made, and precision for a season 
is computed as in [11]: 1 if prediction is accurate within ±1week of the observed ILI 
peak, else it is 0. Even though the comparison is based on uneven data (17 seasons US-
wide in our case, season 12/13 and individual predictions for 108 cities11, in [11]), we  
 

Table 1. Retrospective prediction (using mixed approach) 

Year / week 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 8 9 Avg 

97/98 0,77 0,89 0,89 0,92 0,86 0,60 0,87 0,83 0,87 0,84 0,81 0,89 0,92 0,92 0,98 0,98 0,98 0,87 

98/99 0,75 0,78 0,94 0,96 0,92 0,86 0,86 0,97 0,98 0,98 0,98 0,97 0,98 0,98 0,97 0,95 0,97 0,93 

99/00 0,48 0,44 0,44 0,78 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,98 0,88 

00/01 0,84 0,71 0,52 0,84 0,69 0,62 0,93 0,88 0,89 0,88 0,88 0,92 0,93 0,97 0,98 0,99 0,98 0,85 

01/02 0,82 0,54 0,88 0,97 0,97 0,98 0,95 0,92 0,94 0,97 0,96 0,98 0,97 0,97 0,96 0,97 0,97 0,92 

02/03 0,91 0,56 0,91 0,88 0,78 0,95 0,97 0,97 0,93 0,98 0,96 0,97 0,98 0,96 0,97 0,98 0,96 0,92 

03/04 0,10 0,68 0,94 0,68 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,95 0,87 

04/05 0,89 0,46 0,95 0,93 0,86 0,98 0,92 0,77 0,88 0,83 0,76 0,91 0,91 0,96 0,95 0,97 0,98 0,88 

05/06 0,82 0,87 0,74 0,62 0,90 0,89 0,88 0,86 0,78 0,85 0,82 0,87 0,91 0,87 0,90 0,96 0,97 0,85 

06/07 0,90 0,85 0,70 0,83 0,93 0,97 0,95 0,83 0,83 0,81 0,87 0,90 0,96 0,97 0,98 0,94 0,98 0,89 

07/08 0,63 -0,19 0,73 0,51 0,81 0,90 0,97 0,79 0,86 0,88 0,91 0,95 0,90 0,93 0,89 0,91 0,92 0,78 

08/09 0,44 0,54 0,50 0,64 0,63 0,38 0,35 0,29 0,45 0,53 0,54 0,52 0,58 0,53 0,63 0,61 0,59 0,52 

09/10 0,66 0,66 0,76 0,84 0,88 0,94 0,96 0,94 0,95 0,95 0,93 0,97 0,96 0,98 0,98 0,99 1,00 0,90 

10/11 0,99 0,87 0,93 0,88 0,93 0,98 0,95 0,96 0,96 0,85 0,91 0,92 0,87 0,88 0,96 0,94 0,97 0,93 

11/12 0,69 0,85 0,77 0,84 0,78 0,77 0,68 0,84 0,80 0,78 0,73 0,84 0,86 0,85 0,85 0,88 0,89 0,81 

12/13 0,60 0,45 0,85 0,69 0,89 0,86 0,78 0,88 0,88 0,93 0,91 0,92 0,97 0,99 0,99 0,99 0,99 0,86 

Person Mean 0,70 0,62 0,78 0,80 0,86 0,85 0,87 0,85 0,87 0,87 0,87 0,90 0,91 0,92 0,93 0,94 0,94 0,85 

Table 2. Precision at peak prediction (retrospective, all seasons) 

Week 43 44 45 46 47 48 49 50 51 52 1 2 3 4 5 6 7 

Prec. 0,5630,5630,5630,563 0,625 0,625 0,5 0,5 0,563 0,563 0,688 0,75 0,75 0,75 0,938 0,913 0,813

 
                                                           
11  Our data are hardly comparable with [11], since in that paper predictions are made separate-

ly for different cities. Unfortunately, even though we can more finely geo-localize our ILI 
Tweets, data at the city level are too few for a reliable prediction, because of the well known 
difficulty to obtain systematic and reliable location indicators in tweets. 

±1
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note that in [11] (Table 2) the total % accuracy on week 52 is 0.631 against 0.563 in 
Table 2, on week 1 is 0.638 against 0.688, on week 5 is 0.739 against 0.938, and both 
predictions have a small drop on week 6 (0.733 and 0.913).  

In [11] the authors also compute a total U.S. prediction accuracy obtained as an av-
erage of 10 regions, using the Health and Human Service (HHS) region scale: in this 
experiment, which is more comparable with our data, the accuracy of forecasts in year 
12/13 ranged from 0.595 on week 52 to a high 0.90 in week 5, after the seasonal peak 
(the season last year had a rather anticipated peak). In the same year, our peak predic-
tion on week 52 was 3 weeks after the actual peak, while since week 2 the prediction 
was correct (0 distance). Furthermore, the correlation of our Fusion curve with the 
actual ILI curve was 0.88 in week 52 and 0.97 on week 5 (see Table 1, last row). We 
finally note that correlation is a better performance measure than accuracy in peak 
prediction since, as previously shown in Figure 2 and 3, many seasons have more than 
one peak.  

5 Conclusions 

The major strength of the predictor presented in this paper is the reliability of values 
that represent the “current state” of the system, as demonstrated by Figures 1 (a and b) 
and 2 and in our previously published work [13-15].  

We are not aware of previous studies that recognized (and solved) the problem of 
fluctuation of real-time ILICDC data publications, since all papers, including [11], do 
not actually predict in real-time, but only at the end of the season, when ILICDC data 
are eventually stable and reliable. Furthermore, ILI-Tweets collected according to our 
methodology overcome all the limitations of GFT data, also highlighted in [11], i.e.: 

 

1. Media news may inflate GFT ILI estimates; 
2. GFT ILI does not accurately model the CDC case definition for ILI, which re-

quires a precise combination of symptoms (captured by ILI-Tweets). GFT esti-
mates may then be affected by other types of respiratory diseases. 

For truly real-time prediction, the problem of unreliable knowledge on “current 
conditions” is critical, since infectious diseases models are very sensitive to fluctua-
tions, such that small changes can produce remarkable differences in future outcomes. 
If accurate data are available in real-time (as for our ILI-Tweets), even simpler predic-
tors based on historical data may obtain good performance both in terms of correla-
tion and peak prediction. 
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Abstract. Hospital charges are determined by numerous factors. Even
the cost for the same procedure can vary greatly depending on a pa-
tient’s conditions, complications, and types of facilities. With the advent
of Obamacare, estimating hospital charges has become an increasingly
important problem in healthcare informatics. We propose a hierarchi-
cal ensemble of α-Trees to delicately deal with this challenging prob-
lem. In the proposed approach, multiple α-Trees are built to capture the
different aspects of hospital charges, and then these multiple classifiers
are uniquely combined for each hospital. Hospitals are characterized by
unique weight vectors that explain the subtle differences in hospital spe-
cialties and patient groups. Experimental results based on the 2006 Texas
inpatient discharge data show that our approach effectively captures the
variability of hospital charges across different hospitals, and also provides
a useful characterization of different hospitals in the process.

Keywords: decision tree, α-divergence, ensemble classifiers, healthcare.

1 Introduction

One of the most notable and immediate impacts of the Patient Protection and
Affordable Care Act (PPACA, also called Obamacare) has been a surge of inter-
est in modeling and predicting hospital costs in the USA. In particular, to set up
and run an Affordable Care Organization (ACO), a type of health care organi-
zation greatly encouraged by PPACA, being able to predict such costs is critical
since ACOs get reimbursed for a fixed amount per patient, which is dramatically
different from the fee-for-service model that has ruled healthcare in the USA all
these years. Recent studies have revealed that hospital bills in the United States
vary greatly across regions and hospitals [17,2,5]. Although such comparisons
may help bringing transparency to the current healthcare landscape, comparing
hospital charges based on procedure billing codes overlook the true nature of the
cost. The procedure codes used in billing systems are abstracted forms of actu-
ally performed procedures, and such codes do not capture the full information
about a patient’s conditions, complications, and types of facilities. Regarding
the cost variation across hospitals, teaching hospitals tend to treat more critical

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 178–187, 2014.
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patients. In essence, estimating hospital charges is a multi-faceted problem, and
it is also important to discriminate costs that are legitimate versus those that
are primarily due to bad practices/management, fraud, etc. Thus predictive and
explanatory modeling of hospital costs has become a new and key challenge in
health informatics.

In this paper, we classify expensive hospital charges using a novel, data-
driven machine learning approach. Texas Department of State Health Services
released inpatient discharge data ranging from year 1999 to 2007.1 The datasets
contain a wide range of billing information including patient demographics,
types of diagnoses and procedures, length of stays, and hospital names. The
demographic features cover patients’ age, gender, ZIP codes, and their insur-
ance plans. Our goal is to build a classification model for the expensive hospi-
tal bills, and to better explain the variability in hospital charges. Since many
other states also provide similar discharge data, such a model will have national
impact.

There have been several efforts to use statistical methods for predicting hos-
pital charges, with generally weak results [23,8,11]. For the Inpatient Dataset,
even a suitably regularized logistic regression model, fails to provide a com-
prehensive view on cost variations. First, most of the features are categorical
variables; dummy-coding those variables results in a very high-dimensional de-
sign matrix2. Furthermore, we observed that interactions among variables have
substantial effects on hospital costs. Including such interaction terms further
increases the dimensionality of the design matrix.

In contrast, decision tree models are attractive candidates for this kind of
dataset. Categorical variables and interaction terms are naturally handled in
decision trees. We observed that classical decision trees (e.g. CART and C4.5)
fit reasonably well to the data. However, the variations across hospitals are not
adequately captured by these models. Also, most of the key splitting features are
based on patient demographics and diagnosis. To better explain the variability
across hospitals, a thorough exploratory analysis of the dataset was performed,
which indicated that a multilevel (hierarchical) approach is needed.

To visualize this issue in more detail, consider a subset of the 2006 Texas inpa-
tient data based on the ten most common diagnoses and ten biggest hospitals in
Texas. Figure 1 (a) shows the histogram of hospital charges. As can be seen, the
distribution of hospital charges is a mixture of several distributions. One main
factor for the cost variation is, of course, the diagnosis variable. Figure 1 (b)

1 Texas is chosen as it provides access to rich and comprehensive datasets. It is also
appropriate since a very high profile and influential article by Atul Gawande, showing
that one of its counties (McAllen) had inexplicably much higher Medicare costs than
other counties, setting off a national debate on health costs in the USA [13].

2 A dummy variable is an indicator variable that takes the value 0 for absence or 1 for
presence of some categorical effect. For example, for a gender variable that takes a
value from {Male, Female, Unknown}, dummy-coding creates two indicator variables
I(gender = Male) and I(gender = Female).
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Fig. 1. Histograms and density plots for the 2006 Texas inpatient data. The horizontal
axis represents the range of hospital charges in log-scale (base 10).

shows the cost distributions grouped by the diagnosis variable. The major peaks
of the mixture distribution are well captured by the diagnosis variable. Although
subtle, the cost distributions are also affected by the hospital variable. Figure 1
(c) shows the cost distributions grouped by the hospital variable for the coronary
atherosclerosis diagnosis. We notice that some hospitals exhibit different cost
distributions from the others, but the hospital effect is less noticeable compared
to the diagnosis variable.

This paper proposes a hierarchical mixture of decision trees to delicately deal
with such issues. To describe the overall idea, let us assume that we have a set
of three different decision trees {T1, T2, T3}, where each decision tree captures
different aspects of the data. For example such trees may be obtained using a
different subset of features, as in a Random Forest. If we ignore the hospital
effect, a uniform ensemble is given as:

Y =
1

3
T0(X) +

1

3
T1(X) +

1

3
T2(X) (1)

where X and Y represent the feature and class random variables respectively. As
shown in Figure 1 (c), each hospital has a slight different pricing mechanism and
patient group. Thus, instead of mixing the decision trees with uniform weights,

one could estimate a hospital-specific weight vector
[
w0(H) w1(H) w2(H)

]�
where H represents hospital. Using a link function f , our hierarchical ensemble
is written as:

Y = f(w0(H)T0(X) + w1(H)T1(X) + w2(H)T2(X)) (2)

where the weight vector characterizes a hospital specific pricing mechanism.
Although the proposed idea is simple, we have not addressed the critical

building blocks of the algorithm: obtaining distinct decision trees that capture
different aspects of the data. The diversity of bagging-based decision trees is
somewhat limited when the size of training data is big; decision trees from sub-
samples remain almost the same. Random Forests [4] is also not a good solution,
since it typically requires hundreds of trees and lacks interpretability.
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Instead, we use a novel and effective alternative for producing diverse trees by
varying the splitting criteria. Specifically, we use the α-Tree [18,19], which is a
generalization of C4.5 that uses α-divergence splitting criterion. By adjusting α,
one can obtain different splitting criteria, and hence different tree structures. The
information gain criterion of C4.5 is a special case of the α-divergence splitting
criterion. An extension of the α-divergence splitting criterion also covers Gini
(from CART) and DKM [10] splitting criteria. In this paper, we extensively
use α-Tree to build a set of diverse classifiers. We then propose a hierarchical
ensemble of α-Trees which can capture the subtle cost variability across hospitals
using the Texas inpatient data.

2 Background

Decision trees are rule-based classification algorithms that can be obtained
through:

1. selecting a splitting feature based on a certain criterion,
2. partitioning input data based on the selected splitting feature, and then
3. recursively repeating this process until certain stopping criteria are met.

Decision trees use different splitting criteria, e.g. C4.5 and ID3 use Information
Gain and Information Gain Ratio [20], CHAID uses the Chi-squared test, and
CART [3] uses the Gini impurity measure. There are numerous other impurity
measures such as misclassification rate and Hellinger distance. It is generally
believed that no single splitting criterion is guaranteed to outperform over the
other criteria [12, p. 161].

A divergence, Dα(P‖Q), is a function that measures the distance between two
distributions: P and Q. There exists many different kinds of divergences such as
f -divergence [9] and β- and γ-divergences [7]. α-Tree uses α-divergence [1,24],
defined as follows:

Dα(P‖Q) =

∫
x αP(x) + (1− α)Q(x) − P(x)αQ(x)1−αdx

α(1− α)
(3)

where P and Q are two probability distributions, and α is a real number. The α-
divergence was introduced by Chernoff [6] to upper-bound the theoretical error
probability of classification tasks. The mathematical form of α-divergence is
closely related to those of Renyi entropy [21], Tsallis entropy [22], and generalized
diversity index [16]; all four share the exponent term α.

If both P and Q are proper probability density functions (i.e.
∫
x
P(x)dx =∫

x Q(x)dx = 1), then Equation (3) simplifies to:

Dα(P‖Q) =
1−

∫
x
P(x)αQ(x)1−αdx

α(1 − α)
. (4)
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Some special cases are:

D−1(P‖Q) =
1

2

∫
x

(Q(x)− P(x))2

P(x)
dx (5)

lim
α→0

Dα(P‖Q) = KL(Q‖P) (6)

D 1
2
(P‖Q) = 2

∫
x

(
√
P(x)−

√
Q(x))2dx (7)

lim
α→1

Dα(P‖Q) = KL(P‖Q) (8)

D2(P‖Q) =
1

2

∫
x

(P(x) −Q(x))2

Q(x)
dx (9)

Equation (7) is Hellinger distance, and Equations (6) and (8) are KL-divergences.
Note that α-Divergence is always positive and is zero if and only if P = Q. Hence,
α-divergence can be used as a (dis)similarity measure between two distributions.

α-Tree is a generalization of several decision trees, such as C4.5 and CART.
The impurity reduction criterion in C4.5 can be written as a divergence maxi-
mization criterion as follows:

min
∑
x

P(x)H(Y | x)

= max H(Y )−H(Y | X)

= max
∑
x,y

P(x, y) log
P(x, y)

P(x)P(y)

= max KL(P(X,Y )‖P(X)P(Y ))

= max lim
α→1

Dα(P(X,Y )‖P(X)P(Y ))

Replacing the KL divergence with the α-divergence yields the α-Tree algorithm,
outlined in Algorithm 1. Thus, the α-divergence criterion selects a splitting
feature which gives the maximum α-divergence between P(X,Y ) and P(X)P(Y ).
The C4.5 splitting criterion can be obtained using α = 1.

The α value determines the selection of splitting features, and different val-
ues can yield distinct splitting features. This property was used to increase the
diversity of base trees in an ensemble framework [19].

3 Hierarchical Ensemble of α-Trees

Before building a hierarchical ensemble of α-Trees, we introduce some notation.
An array of α-Trees is defined as:

T(X) =
[
Tα1(X) Tα2(X) · · · TαA(X)

]�
(10)
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Algorithm 1. α-Tree

Data: S = {(X, Y )}, α
Result: T
Xi∗ = argmaxXi Dα(P(Xi, Y )‖P(Xi)P(Y )) ;
if stopping criteria(S)=True then

E[Y | S ] ;
else

Tleft = α-Tree({(X,Y ) | Xi∗ = 0}, α) ;
Tright = α-Tree({(X,Y ) | Xi∗ = 1}, α) ;

end
T = {Tleft, Tright} ;

where A is the number of α-Trees, and αi �= αj ∀ i �= j. For a specific data point
xi, T(xi) is an A-dimensional real-valued vector. A basic Ensemble of α-Trees
averages the outputs of the constituent trees T(X):

EAT(X) =
[
1
A

1
A · · ·

1
A

]
T(X) (11)

The performance of EAT can be improved by using a convex combination of the
tree outputs:

CEAT(X) =
[
wα1 wα2 · · ·wαA

]
T(X) = w�T(X) (12)

where CEAT stands for Convex Ensemble of α-Trees. The weights are estimated
by maximizing the log-likelihood function:

LC(w) =
∑
i

yi log f(w
�T(xi)) + (1− yi) log(1− f(w�T(xi))) (13)

where xi and yi represent the feature vector and class label of the ith data point.
We use a logic function for the link function f . CEAT, which is newly introduced
in this paper, takes into account the performance difference of different trees.
For example, if Tα1 performs better than Tα2 , CEAT weights Tα1 more than Tα2 .

A Hierarchical Ensemble of α-Trees (HEAT) is a generalization of CEAT
where the weight vector can vary across hospitals. Mathematically, HEAT is
written as follows:

HEAT(X) =
[
wα1(H) wα2(H) · · ·wαA(H)

]
T(X) = w�(H)T(X) (14)

where H is a hospital random variable. The hospital-specific weight vector is
estimated by maximizing the log-likelihood function:

LH(w(H)) =
∑
i

yi log f(w
�(hi)T(xi)) + (1− yi) log(1− f(w�(hi)T(xi)))

(15)

In addition, a regularization term
∑

i(1 − wαi(H))2 can be added to the above
equation so that a maximum aposteriori solution is obtained instead. For our
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problem which involved a very large data set, this term had little effect and was
subsequently ignored.

HEAT is summarized in Algorithm 2.

Algorithm 2. HEAT

Data: S = {(X, Y )}
Result: Tα, {w(H)}
for α in 0 : A do

Tα = α-Tree(X,y, α);
end

{w(H)} = argminLH(w(H));

4 Experimental Results

We use Texas Inpatient Public Use Data File from the Texas Department of
State Health Services (DSHS). Hospital billing records collected from 1999 to
2007 are publicly available through their website. Each yearly dataset contains
about 2.8 millions events with more than 250 features. Specifically, we use the
inpatient records from the fourth quarter of 2006. Except for a few exempt hos-
pitals, all the hospitals in Texas reported inpatient discharge events to DSHS. In
this paper, any hospital charges above 50,000 dollars are defined as an expensive
hospital charge, setting up a two-class problem. The expensive hospital charges
are predicted among the patients who stayed one day in hospitals. Patients who
stayed for more than one day are excluded from our study, since the hospital
charges for the longer stays are dominated by hospital accommodation charges.
Identifying the differences in hospital accommodation charges is a slightly dif-
ferent problem, and is not our focus in this paper.

Different values of α produce different decision trees. Figure 2 shows three
α-Trees by setting α = 0, 1, 2. For simplicity, we only showed the first level, and
one side of the second level splits. As can be seen, these three trees have different
splitting features. The first α-Tree with α = 0 splits based on the age variable3,
and then drills down to the specialty unit variable. The second α-Tree with α = 1
first looks for whether a patient is in his twenties, and then checks whether a
patient received an implantation of cardiac resynchronization defibrillator (ICD-
9 procedure code: 00.51). The last α-Tree with α = 2 first examines the expensive
procedure code (00.51), and then asks the age of a patient. Note that these three
α-Trees highlight different aspects of the data.

Figure 3 (a) shows the pair-wise correlation between α-Trees. The values of
α are 0, 1, 2, 4, 8, 16, and 32. As expected, the correlation between trees with
similar values of α tends to be higher. Note that after α > 8, changing α doesn’t

3 The age variable is binned. age=1 represents that a patient is a teenager, and age=2
means that a patient is in his twenties.
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(c) α = 2

Fig. 2. Different tree structures obtained by changing the value of α. For simplicity,
we only showed the first level, and one side of the second level splits.
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Fig. 3. (a) Pair-wise correlation between α-Trees (left) and (b) AUC comparison on
hold-out datasets (right)

produce different tree structures. In this paper, we used three α-Trees with
α = 0, 1, 2 respectively. To be able to estimate the weights of CEAT and HEAT,
the trees need to be linearly independent.

In this example, we partitioned the Texas data into training (90%) and test
(10%) sets, and measured hold-out Areas Under the Receiver Operating Charac-
teristics Curves (AUC). Figure 3 (b) shows the results obtained from 30 random
partitions of training and test sets. As can be seen, the median AUC values are
ordered as: HEAT > CEAT > EAT > C4.5. Table 1 shows the estimated HEAT
weight vectors. Observe that each hospital has a unique weight vector. For ex-
ample, the hospital charges from Hospital 431000 are explained almost purely
by T0, while the charges from Hospital 102 require all three classification trees:
T0, T1, and T2.
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Table 1. Weight Vectors for HEAT

Hospital ID w0 w1 w2

102 7.06 16.48 8.60
118000 14.00 10.13 7.17
124000 13.18 -4.82 0.45
154000 12.89 13.81 8.57
235000 8.03 15.92 8.54
331000 9.88 6.02 4.56
347000 4.62 15.37 7.64
409000 -3.31 20.91 8.52
431000 29.14 -0.83 5.32
474000 -4.03 1.72 -0.03

5 Discussion

This paper introduced a novel hierarchical ensemble of diverse α-Trees and
showed that it can capture the hospital effect on hospital charges effectively to
better predict expensive hospitalizations. Although we used the hospital iden-
tity variable to condition the hierarchical weight vectors, such vectors can be
conditioned on other variables such as geographical regions or hospital types as
well. Moreover, one can impose multi-level hierarchies such as a hospital (level
2) in a county (level 1), as done in multi-level modeling [14,15]. The proposed
algorithm was formulated as classification tasks. It would be worthwhile to in-
vestigate regression extensions of α-Trees, and their hierarchical ensembles, to
directly predict actual costs.
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Abstract. Despite of the spread of Electronic Health Records (EHRs) in
Spanish hospitals and Spanish occupying the second place in the ranking
of number of speakers, to the best of our knowledge there are no natural
language processing tools for medical texts written in Spanish.

This paper presents an approach based on OpenNLP to process nat-
ural language texts written in Spanish for information extraction. The
main goal is to integrate our development with cTAKES. As cTAKES
has been specifically trained for the clinical domain, in this paper we will
train the main modules from a general purpose annotated Spanish corpus
and an in-house corpus developed with medical documents, testing both
on a set of medical documents. Best performance of individual compo-
nents when tested with medical documents: Sentence boundary detector
accuracy = 0.872; Part-of-speech tagger accuracy = 0.946; chunker =
0.909.

Keywords: Natural Language Processing, Electronic Health Record,
Machine Learning.

1 Introduction

Despite of Spanish occupying the second place in the raking of number of speak-
ers with more that 500 million speakers (according to [4]) as far as our knowl-
edge there is no natural language tool for Spanish processing. In particular in
the health domain those tools exist for English but not for Spanish even though
the adoption of hospital Electronic Health Record (EHR) technology is currently
significantly growing and expected to grow. According to [1], back in 2009, Spain
was the second on EHR adoption, with roughly 60%, meanwhile it was projected
to have an adoption of 83% by 2013, with Nordic countries leading and US dou-
bling its adoption in the 2011-2013 period. Electronic Health Records contain
both structured and not structured information such as: the patient’s medical
history, diagnoses, medications, treatment plans, immunization dates, allergies,
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radiology images, and laboratory and test results. This information is being col-
lected and managed by a health care provider or organization. The access to
textual information is crucial for clinical trials design, or patients retrieval by a
certain criteria to name just a few.

Thus, in this paper we present a first approach towards integrating Spanish
processing language capabilities in cTAKES [20]. In fact we start by adapting the
sentence detector (SD), part-of-speech (PoS), and chunker modules of OpenNLP
[16]. The paper contributions are as follows: i) modules for sentence detector,
PoS, and chunker are trained with a general purpose and an Spanish corpus; ii)
a set of Spanish medical related texts is manually annotated; iii) implementation
of the OpenNLP modules (Sentence Detector, Part-of-speech, and Chunker) for
Spanish are tested on the annotated texts.

The rest of the paper has been organized as follows: In section 2 a review of the
tools for Natural Language Processing (NLP), specially in the medical domain,
is done. The basic modules of OpenNLP in which our approach is based, the
approach to train the models with Spanish texts, and the performance of the
models are presented in section 3. To end with, section 4 presents the main
conclusions obtained so far as well as the future lines of development.

2 Related Works

Patient medical records contain valuable clinical information expressed in narra-
tive form. Meystre et al. in [15], analyze different uses of information extraction
from textual documents in the EHR. According to them, this process implies a
special challenge because, for instance, they contain telegraphic and shorthand
phrases, abbreviations, acronyms and spelling errors.

The rapid and increasing growth of EHR or EMR (Electronic Medical Record)
has generated a significant development in Medical Language Processing systems
(MLP), Information Extraction techniques and applications [20], [15], [10], [27],
[7], [8], [6], [9], [11], [3]. MLP systems have been contructed to analyze different
types of medical reports (e.g. radiology, mammography, pathology, discharge
summaries, biopsy).

To process radiology reports, a medical text processor is described in Fried-
man et al. [10]. Clinical documents are analyzed in order to transform them
into terms belonging to a controlled vocabulary. In [7] the MedLEE system is
presented. MedLEE was developed to extract structures and to encode clinical
information from textual patient reports. The first version of MedLEE was eval-
uated in chest radiology reports. MedLEE was extended to work on mammogra-
phy reports and discharge summaries [8], electrocardiography, echocardiography
and pathology reports [9]. In [11], the performance of MedLEE using differents
lexicons (LUMLS, M-CUR, M+UMLS) was evaluated.

Patient discharge summaries (PDS) are processed using MENELAS [27] to
extract information from them. MENELAS can analyze reports in French, En-
glish and Dutch. cTAKES, a clinical Text Analysis and Knowledge Extraction
System is introduced in [20]. cTAKES is an open-source NLP system that uses
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rule-based and machine learning techniques to process and extract information
to support clinical research. The cTAKES components are sentence boundary
detectors, tokenizers, normalizers, part-of-speech (PoS) taggers, shallow parsers
and named entity recognition (NER) annotators. HITEx (Health Information
Text Extraction) [13], an open-source application based on Gate framework,
were developed to solve common problems in medical domains such as diagnoses
extraction, discharge medications extraction and smoking status extraction. HI-
TEx has been also used in [26] to extract the main diagnosis from a set of
150 discharge summaries. Co-morbidity and smoking status showed a positive
performance.

MedTAS/P [3] is a system based on the open source framework that use NLP
techniques, machine learning and rules to automatically map free-text pathology
reports into concepts represented by CDKRM (Cancer Disease Knowledge Rep-
resentation Model) for storing cancer characteristics and their relations. Fiszman
et al. [6] introduce Sym Text, a NPL tool to extract relevant clinical informa-
tion from radiology (Ventilation/Perfusion lung scan) reports. Sym Text was
also evaluated on chest radiograph reports in order to establish if the expres-
sion “central venous catheter” is mentioned in the report [25]. To evaluate the
use of current NLP techniques in an automatic knowledge acquisition domain, a
system is introduced in Taboada et al. [21]. The system reuses OpenNLP, Stan-
ford parsers, SemRep and UMLS NormalizeString service as building blocks, all
of them open-source tools. Using an ontology, clinical practice guidelines docu-
ments are enriched. In Thomas et al., [24] a NLP program to identify patients
with prostate cancer and to retrieve pathologic information from their EMR is
evaluated. The results show that NLP can accurately do it.

To process clinical text in German, some systems have been developed [18],
[12]. To parser summary sections of cytopathological findings reports an ap-
proach called Left-Associative Grammar (LAG) was used in MediTas [18], a
Medical Text Analysis System for German. For the German SNOMED II ver-
sion another parser is presented in [12] a NLP. The parser divide a medical term
into fragments which might contain other SNOMED terms.

A multilevel annotated corpus for Catalan and Spanish known as AnCora
(ANnotated CORporA) [14], [23], [2], [19], is available (http://clic.ub.edu/
corpus/). It has almost half a million words ready to test NLP systems. The
3LB-CAT/ESP corpora [17], [22] was expanded and enriched with semantic in-
formation in order to generate AnCora.

3 Method

In the incoming sections we detail the process followed to train models that can
be later used to extract information from medical Spanish texts. Our process
trains models from OpenNLP [16] to extract information on medical texts. As
there is no medical Spanish corpus we have used a general purpose AnCora [22]
corpus as it is already annotated to train the models and later, a process of
manually annotating medical texts has been followed so to be able to test and

http://clic.ub.edu/corpus/
http://clic.ub.edu/corpus/
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calculate the performance of the models. Firstly, we present the main components
of OpenNLP; then we present the corpus used and finally the measures we will
use to validate the trained models and their results.

3.1 Preliminaries

Apache OpenNLP [16] library supports the most common NLP tasks, such as
tokenization, sentence segmentation, part-of-speech tagging, named entity ex-
traction, chunking, parsing, and coreference resolution. These tasks are usually
required to build more advanced text processing services. OpenNLP also includes
maximum entropy and perceptron based machine learning. We describe below
the components that we have trained in this paper:

– Sentence detector: The OpenNLP Sentence Detector can detect if a punc-
tuation character marks the end of a sentence or not. In this sense a sentence
is defined as the longest white space trimmed character sequence between
two punctuation marks. The first and last sentence make an exception to
this rule. The first non whitespace character is assumed to be the begin of a
sentence, and the last non whitespace character is assumed to be a sentence
end. Usually sentence detection is done before the text is tokenized.

– Tokenizer: The OpenNLP Tokenizers segment an input character sequence
into tokens. Tokens are usually words, punctuation, numbers, etc.

– Part-of-speech (PoS) tagger: The Part of Speech Tagger marks tokens
with their corresponding word type based on the token itself and the context
of the token. A token might have multiple PoS tags depending on the kind of
token and its context. The OpenNLP PoS Tagger uses a probability model
to predict the correct PoS tag out of the tag set. To limit the possible tags
for a token, a tag dictionary can be used which increases the tagging and
runtime performance of the tagger.

– Chunker: Text chunking consists of dividing a text in syntactically corre-
lated parts of words, like noun groups, verb groups, but does not specify
their internal structure, nor their specific role in the main sentence.

3.2 Corpus

AnCora [22] consists of a Catalan corpus (AnCora-CA) and a Spanish corpus
(AnCora-ES), each of them of 500,000 words (the Spanish version actually has
547,212 words, 17,375 sentences and 1,635 different documents). The corpus
is annotated at different levels: i) Lemma and Part-of-speech, ii) Syntactic con-
stituents and functions, iii) Argument structure and thematic roles, iv) Semantic
classes of the verb, v) Denotative type of deverbal nouns, v) Nouns related to
WordNet synsets, vi) Named Entities, vii) Coreference relations. AnCora corpus
is mainly based on journalist texts.

Due to the lack of annotated resources for the clinical domain in Spanish, we
have built our own gold standard dataset with linguistic annotations. The set
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is composed by 29 documents containing 745 sentences and 10,241 words, from
which 2,259 words are unique.

Three different Computer Science experts assisted by a Physician and a Com-
putational Linguistic expert performed the annotation task on the generated
corpus. For this aim an in-house platform was generated to avoid errors in the
annotation process. The annotation was done using the EAGLES [5] tags. To
measure the quality of the in-house developed annotations, we report a method
for inter-annotator agreement (IAA) similar to the one used in [20]. The method
basically computes for those cases of disagreement in the annotation of a par-
ticular term the possible tags that have been assigned to that tag in any other
sentences and then decides on the most frequent annotation.

3.3 Evaluation Metrics

Two kind of metrics have to be defined: on the one hand, the metrics to evaluate
the performance of the training and testing models, and on the other hand, the
parameters to run OpenNLP. In the first case, the standard metrics: precision,
recall, accuracy, and F-Measure have been used [20].

The validation of all the models is done on the basis of a 10-fold cross-
validation with 80/20 split as in [20] where 80% is used for training and 20% for
testing.

On the other hand, OpenNLP requires to set the values for: i) number of
iterations which is the number of times the training procedure should iterate
when to find the best the model’s parameters; ii) cut-off that is the number of
times a feature must have been seen in order to be considered into the model.

3.4 Training the Models

The process that has been developed is depicted in figure 1. The process is
composed of the following phases:

1. AnCora training models construction. In a first step models for the Sentence
Detector, PoS and Chunker are obtained using the AnCora corpus. Note
that the tokenizer is not trained as AnCora already provides tokens.

2. Manual annotation of the in-house corpus. A program for sentence detection
is used to split the corpus into sentences. Starting from there, by means
of a tools developed for this task three independent persons annotate the
medical corpus. The tool makes it possible for annotators to correct the
sentence detection, tag the PoS and perform the chunker annotation.

3. Medical corpus training models (from now on called in-house corpus). The
set of documents annotated are splited into training and evaluation datasets.
The training set will be used to train models with the same 10-fold cross-
validation method used for the AnCora corpus.

Note that OpenNLP’s Tokenizer is not trained. Instead, we have built a tok-
enizer in order to extract the tokens in the medical texts to annotate, in which
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Fig. 1. Training the models

we have taken into account punctuation symbols, multiple spaces and line breaks
to determine the tokens.

In what follows we detail how the Sentence Detector, the PoS, and the Chunker
have been trained. An aggregated view of the results is found in table 1.

Sentence Boundary Detector. Experiments were conducted splitting the
training dataset into ten folds of an equivalent number of documents inside each
fold. In order to be trained by OpenNLP, each fold has its documents separated
by blank lines with one sentence per line.

We experimented with iteration values ranging from 100 to 600 and cut-off
values from 1 to 16 for each fold. The optimal values resulted to be 600 iterations
and a cut-off of 16 for the AnCora corpus, and 475 iterations and a cut-off of 7
for the in-house corpus (these corresponds to the values of iterations and cut-off
to which models generated have in average the highest F-Measure).

For these values, the best models obtained performed for AnCora corpus with
a precision of 0.948, a recall of 0.963 and a F-Measure of 0.955. For the in-house
corpus the performance values obtained are precision of 0.827, a recall of 0.714
and a F-Measure of 0.766.

The main source of errors in this particular component were due to headings
or sentences that did not use proper punctuation symbols, so the models were
not able to reproduce the sentences correctly.

Part-of-Speech Tagger. As in the Sentence Detector, the experiments were
conducted by splitting the training dataset into ten folds of an equivalent number
of documents inside each fold. The tokens used were generated using an in-house
developed platform to easily generate EAGLES [5] tags.
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We experimented with iteration values ranging from 100 to 400 and cut-off
values from 1 to 10 for each corpus. The optimal values (obtained as in the
case of Sentece Detector) were 100 iterations and a cut-off of 2 for the AnCora
corpus, and 100 iterations and a cut-off of 1 for the in-house corpus. The medical
documents include great amounts of abbreviations and short sentences, so the
cut-off value is intended to be low.

Ancora corpus showed an accuracy of 0.921 while in-house corpus got an
accuracy of 0.774.

Chunker. For this component, the training dataset was split into ten folds of an
equivalent number of sentences in each fold. Each of them has different sentences
separated by blank lines with one term with the corresponding PoS tag and the
Chunker tag. Chunker tags used are: Nominal Phrases (NP), Adjetival Phrases
(AP), Verbal Phrases (VP), Adverbial Phrases (RP) and Others (O).

We determined the optimal iterations and cut-off values by experimenting
with iteration values ranging from 100 to 400 and cut-off values from 1 to 10. The
optimal values (obtained as in the case of Sentece Detector) were 100 iterations
and a cut-off of 3 for the AnCora corpus, and 150 iterations and a cut-off of 3
for the in-house corpus.

The precision, recall an F-Measure for the Ancora corpus were 0.908, 0.907,
and 0.907 respectively. In-house corpus performed with a precision of 0.852, a
recall of 0.860, and a F-Measure of 0.856.

Table 1. General Precision, Recall, F-Measure and Accuracy values obtained

AnCora In-house corpus

Sentence Detector
Precision 0.948 0.828
Recall 0.963 0.714
F-Measure 0.955 0.766
Part of Speech
Accuracy 0.921 0.774
Chunker
Precision 0.908 0.852
Recall 0.907 0.860
F-Measure 0.907 0.856

3.5 Comparison of the Models

Once the models have been generated, both with the manual annotated medical
corpus and with the general purpose AnCora corpus, we compare the results.
The main goal behind the experiment is to detect how models behave and to
be able to analyze whether domain specific annotated corpus help to create new
models ourperforming or not models generated with generic corpora.

Trained models are intended to be applied in the medical environment. This
way, the comparison is done with the following process: i) From the ten models
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generated for the best iterations and cut-off values for each corpus in each com-
ponent (Sentence Detector, PoS, and Chunker), the one with the best F-Measure
and accuracy is the one selected to evaluate; ii) The medical texts that have not
been used in the training of in-house corpus’ selected model for each component
are the ones used to evaluate both the AnCora and in-house corpus; iii) Results
are gathered from the evaluation and can be observed in the table 2.

Table 2. Values comparison when evaluating the models with medical texts

AnCora In-house corpus

Sentence Detector
Precision 0.904 0.904
Recall 0.842 0.842
F-Measure 0.872 0.872
Part of Speech
Accuracy 0.946 0.836
Chunker
Precision 0.904 0.891
Recall 0.914 0.894
F-Measure 0.909 0.893

Once the results have been analyzed, it can be seen that the training on
the Sentence Detector is the same when the maximal values are obtained and
the best model for those values is selected for evaluation, so the differences
in the corpora are not significant for the delimitation of the phrases in a general
corpus or a medical one for Spanish texts. The results for both corpora have
obtained a precision of 0.904, a recall of 0.842 and a F-Measure of 0.872.

However, performance is more important when analyzing the Part of Speech
and the Chunker, because of all the medical concepts and the huge differences in
the way physicians write texts. AnCora corpus outperforms the in-house corpus
on the Part of Speech, while both performed similarly in the Chunker. Accuracy
for the AnCora corpus in the Part of Speech was 0.946, while in-house corpus
performed 0.836. In the Chunker evaluation, the results are similar: the AnCora
corpus showed a precision of 0.904, a recall of 0.914 and a F-Measure of 0.909.
In-house corpus performed with a precision of 0.891, a recall of 0.894 and a
F-measure of 0.893 for the same component.

4 Conclusions

This paper has presented a first approach towards integration of new Spanish
Natural Language Processing models into cTAKES modules. Results presented
have shown the performance of the models applied to a set of medical docu-
ments. These results show so far that general purpose corpora with hundreds
of thousands of terms outperform specific domain corpora in Spanish texts, but
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particularly trained models can perform similarly. Note that these results com-
ply with the results presented in [20]. Future work on building a bigger in-house
corpus and comparing with other general purpose corpora will be done, together
with the integration of these models into cTAKES.
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Abstract. The documents selection related brain information based on
the data-brain ontology not only has an important significance in the pro-
motion of data-brain ontology, but also lays the foundation for knowl-
edge integration. However, traditional research of documents selection
focuses on the concept, and cannot meet the requirement of the system-
atic Brain Informatics study. This paper analyzes the characteristics of
source knowledge firstly with concepts, attributes and relations. Then,
we calculate the weight of documents by using the improved method
of VSM. Finally, the experiments using real documents associated with
brain science are given and calculating the weight of each document
achieves a better effect of ranking selection.

1 Introduction

Brain Informatics (BI) is an interdisciplinary field among computing science,
cognitive science and neuroscience [11]. A systematic BI methodology includes
four issues: systematic investigations for complex brain science problems, sys-
tematic experimental design, systematic data management and systematic data
analysis/simulation [3] [12]. Meanwhile, systematic brain data management is a
core issue of the systematic BI methodology, which effectively integrates multi-
mode and closely-related brain big data for meeting various requirements coming
from different aspects of the systematic BI study.

BI needs a Data-Brain to describe heterogeneous brain data and represents
various relationships among multiple human brain data sources. On one hand,
data-brain can provide a brain data knowledge framework based on the BI
methodology to integrate various brain-data related domain ontology. On the
other hand, obtaining the brain-data conceptual model from the data-brain pro-
vides machine-readable data description and guides relevant information collec-
tion. The data, information and knowledge are integrated together based on the
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model of methodology, which explicitly carries out systematic brain-data man-
agement, with respect to all major aspects and capabilities of human information
processing systems (HIPS).

The Data-Brain is a domain-driven conceptual model of brain data, which
represents multi-aspect relationships among multiple human brain data sources,
with respect to all major aspects and capabilities of HIPS, for systematic inves-
tigation and understanding of human intelligence [3] [4].

Systematic investigations and systematic experimental design have resulted in
a brain big data, including various primitive brain data, brain data related infor-
mation, such as extracted data characteristics, related domain knowledge, etc.,
which come from different research groups and include multi-aspect and multi-
level relationships among various brain data sources [7]. It is necessary to realize
systematic brain data management whose key problem is to effectively integrate
multi-mode and closely-related brain big data for meeting various requirements
coming from different aspects of the systematic BI study [12]. Brain informatics
provenances provide a practical approach to realize the information-level (i.e.
metadata-level) integration of brain big data. However, no matter what way, it
needs to select brain informatics sources from a large amount of documents to
meet the needs of systematic brain data management. How to determine which
documents include the brain informatics sources? This is a question connect-
ing the documents with required sources. In the final analysis, we need to find
the required documents, that is to say, it is the question of documents ranking
selection.

In order to solve the problem of documents ranking, as early as in 1997,
Lee proposed the method of vector space model [9] and Egghe et al. proposed
completing documents ranking using the fuzzy sets [6], which only consider the
proportion of terms instead of the location of terms in the document. In 2001,
Danilowicz et al. proposed the method based on Markov chain [5], discussing
related documents ranking selection and considering the frequency or location
of key words in the document. In 2007, Xing Jun et al. calculated the weights for
document ranking through the method of ontology relation distance and neural
network [10]. This paper analyzes the characteristics of concepts, attributes and
relations of brain informatics sources based on the data-brain ontology and the
weight of attributes is adopted to calculate the weight of a document for selecting
sources.

In this paper we put forward a research on Brain Informatics provenances
selection for the Data-Brain ontology. The remainder of this paper is organized
as follows. Section 2 discusses the characteristics analysis of BI provenances.
Section 3 describes the determination of the document level. Section 4 provides
experimental analysis and results. Finally, Section 5 gives concluding remarks.

2 The Characteristics Analysis of BI Provenances

In brain science, the metadata describing the origin and subsequent processing
of biological images is often referred to as “provenance”. They are the metadata,
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which describe the origin and subsequent processing of various human brain data
in the systematic BI study. As stated in our previous studies, BI provenances
can be divided into data provenances and analysis provenances [12]. Data prove-
nances describe the brain data origin by multi-aspect experiment information,
including subject information, how experimental data were collected, and what
instrument was used; etc. Analysis provenances describe what processing in a
brain dataset has been carried out, including what analytic tasks were performed,
what experimental data were used, what data features were extracted, and so
on. Here, the acquisition of BI provenances is mainly related to the recognition
of concepts, attributes and relations and the characteristics of BI provenances
can be introduced as follows.

2.1 The Characteristics of Concepts

In order to effectively select concepts of BI sources, we need to solve the following
problems. What are the characteristics of concepts? How to select them in the
document?

Definition 1. Concepts, they are key terms, which usually describe related
equipments, operations, analysis and analytical results.

The BI study can be mainly divided into two stages, experimental stage and
analysis period. Each stage includes some key concepts. For example, it con-
tains experimental tasks, experimental materials, experimental methods and so
on in the experimental stage. Moreover, it contains analytical tasks, analytical
tools, data feature, activations and so on in the analysis period. Here, there are
some concepts which are commonly used but are not possible in the literatures.
Hence, concepts can be divided into the abstract concepts and the informational
concepts.

Definition 2. Abstract Concepts, there are some real knowledge which cannot
be used to reflect the terms in the experimental stage and analysis period. For
example, Experimental-Group and Analytical-Process are the abstract concepts.

Definition 3. Informational Concepts, there are some real knowledge which
can be used to reflect the terms in the experimental stage and analysis period.
For example, Experimental-Task, Operator, Analytical-Tool, and so on are the
informational concepts.

2.2 The Characteristics of Attributes

There are some characteristics of attributes among BI sources in addition to
some key concepts. So, we need to introduce the characteristics of attributes in
order to increase the amount of data.

Definition 4. Attributes, there are terms which describe detailed information
of informational concepts among the experimental process and analytical process.
For example, there are detailed information which describes that experimental-
tasks contain the task-name, the designer, whether or not to press the key, the
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sensitive channel, the task-content, task-number, task-type and types-of-stimuli-
presentation.

2.3 The Characteristics of Relations

There are some characteristics of relations among BI sources in addition to some
key concepts, attributes. So, we need to introduce the characteristics of relations
in order to understand the meanings of BI sources.

Definition 5. Relations, they are defined as the relationship between the con-
cepts if two concepts appear at the same paragraph among BI sources. For ex-
ample, the relationship between the Experiment and Brain-Data is this relation
called has-result-data, which describes these two concepts that are Experiment
and Brain-Data.

3 The Determination of Documents’ Level

In order to select the BI sources and understand the characteristics of BI sources,
the documents’ level is determined by the characteristics of BI sources. How to
choose the documents is decided by the concepts, attributes, relations contained
in the documents because the number of documents is an important problem. In
a document, we use the weight of concepts, attributes and relations to evaluate
the importance of this document. Hence, we adopt the VSM method combined
with the characteristics of the BI sources to fix the weight of a document. Finally,
the level of documents is decided through fixing the weight of documents.

3.1 The Weight of Concepts

The number of concepts in a document and the location appeared in the Data-
Brain are considered to compute the weight of concepts. Meanwhile, the tradi-
tional VSM method combined with the characteristics of BI sources is improved
to calculate the weight of concepts. In order to understand the location of con-
cepts in a document, the definitions are introduced as follows:

Definition 7. The First of Text, generally, the sum of introduction, back-
ground and related work is made into the first of text.

Definition 8. The Tail of Text, generally, the sum of conclusion and references
is made into the tail of text.

Definition 9. The Middle of Text, generally, the rest of a document removing
the first of text and the tail of text is the middle of text.

The value of concepts is considered by the location and frequency in a docu-
ment because concepts mainly concentrated in the text. Thus, we set the correla-
tion coefficient of emergence position for m1, m2, m3, representing the concepts
that appear in the first of text, the middle of text and the tail of text and
m1+m2+m3=1. Generally, because the first of text is the background and re-
lated work, and the tail of text is the conclusion and references, the probability
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of appearing in above two parts is small relatively. Hence, set the correlation
coefficient for m1=m3=0.4. The probability of concepts appearing in the middle
of text is too large, so set the correlation coefficients in this area for m2=0.2 [2].
Hence, the weight of concepts in a document is:

Wd,c = 1 + ln(m1f1d,c +m2f2d,c +m3f3d,c) (1)

In this formula, m1f1d,c , m2f2d,c , m3f3d,c are the frequency of concepts that
appear in the first of text, the middle of text and the tail of text. The weight of
a document is shown as follows:

W c
d = (1− α) + α

√∑
c∈dW

2
d,c

aver(
√∑

c∈dW
2
d,c)

(2)

Here, α is the slope and is usually 0.7. aver(
√∑

c∈dW
2
d,c) is the average num-

ber of documents [1]. It is very important to calculate the weight of a document
according to concepts. By using the improved VSM method combined with the
proportions of concepts in the Data-Brain, the weight of a document is com-
puted. In the process of obtaining BI sources, the importance of concepts laid
the foundation for the selection work.

3.2 The Weight of Attributes

The number of attributes in a document and the location appeared in the Data-
Brain are considered to compute the weight of attributes. Meanwhile, the charac-
teristics of concepts combined with the characteristics of BI sources are improved
to calculate the weight of attributes. Generally, attributes belong to the concepts
and we consider that attributes after concepts appeared in a document. There-
fore, we set two coefficients. One is the coefficient of the weight of concepts, which
is the proportion of total number of concepts. The other is the coefficient of the
weight of attributes, which is the proportion of attributes in the total concepts.
Therefore, put a document with symbol d and the attributes are represented by
symbol a, then the weight of a in the d is:

Wd,a = qc · fd,a · qa (3)

In this formula, qc is the coefficient of the weight of concepts and qc =
c∑n

i=1 ci

(n is the number of concepts), qa is the coefficient of the weight of attributes
and qa = a∑

m
i=1,a∈c ai

(m is the number of attributes)

fd,a =

{
1, if the attribute appears

0, otherwise

then, adopting (2) to calculate the weight of a document.
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It is very important to calculate the weight of a document according to the
attributes. The characteristics of attributes combined with the characteristics
of BI sources are improved to calculate the weight of attributes. In the process
of obtaining the BI sources, the attributes are very important for the selection
work and calculating the weight of attributes greatly improves the accuracy of
documents’ weights.

3.3 The Weight of Relations

The relationship is the description between concepts based on the data-brain
ontology and it is considered that we calculate the weights if the relationship
between two concepts is in the same paragraph. There are many relationships
between concepts among the BI sources and they are related as long as these two
concepts appear in the same paragraph. There are two factors influencing the
weight of relationships, one is the location which appeared in a document, and
the other is the proportion of relations in the Data-Brain. The location of rela-
tions in a document refers to appearing in the same sentence, different sentences
or a paragraph and different positions have different weights. Meanwhile, the
proportion of relations in the Data-Brain also affects the weight of a document.
In order to understand the location of relations in a document, the definitions
are shown as follows:

Definition 10. The Distance d of Concepts, two related concepts in a doc-
ument appeared in the same sentence, different sentences and in the same para-
graph with different relative weights, named d1, d2, d3, and d1 > d2 > d3.

The relation between concepts is r, the weight of relation is:

Wd,r = 1 + l · ln(d1f1d,r + d2f2d,r + d3f3d,r) (4)

In this formula, d1f1d,r, d2f2d,r, d3f3d,r are the frequency of relation that
appears in the same sentence, different sentences and in the same paragraph. l is
the weight of relation in the data-brain. How to decide the weight of relations in
the data-brain is a difficulty. The definition of [14] is more suitable and is shown
as follows:

Definition 11. m or n is a concept, the relation between m and n is,
relation(m,n) = 1

w+1 if m and n have indirect correlation through the number
of w concepts;
relation(m,n) = 1 if m and n have direct correlation.

Then, we adopt (2) to calculate the weight of relations and calculate the
weight of a document according to the relationship between concepts and the
proportion in the data-brain ontology.
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3.4 The Determination of Priority among the Documents

The determination of priority among the documents is fixed by the weight of
concepts, attributes and relations from above analysis and is obtained by linear
relationship. The weight of a document is: Wd = oW c

d + pW a
d + qW r

d , the o, p,
q is a constant respectively, o+p+q=1, W c

d , W
a
d , W

r
d is the weight of concepts,

attributes and relations respectively.
The determination of priority among the documents is obtained by the weight

of concepts, attributes and relations. And the selection of BI sources meets
the needs of the systematic brain-data management and realizes the document
ranking.

4 Experimental Analysis and Results

The concepts, attributes and relations are identified in a document based on the
data-brain ontology in order to verify above methods to select documents, includ-
ing 15 concepts and 90 attributes, as shown in Figure 1. We recognize the con-
cepts from the first, the middle, the tail of text based on the most manual rules
and a few dictionary rules. The attributes such as the number of experimental-
task, the type of stimulus-presentation are identified according to the knowledge
of named entity recognition. There are relationships and statistics if two concepts
appeared in the same paragraph.

Fig. 1. The ontology of the data-brain

The description algorithm of experimental process is shown as Table 1:
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Table 1. The description algorithm of experimental process

Algorithm 1 The Description of Experimental Process

Input: sample set S of literatures, the number n of paragraphs, the number m of sentences

Output: the weight of the document of S

1. For i in S

2. Extracting the information of paragraph of literature I;
3. Recognizing the first, the middle, the tail of the text;
4. End for
5. For j=1 to n

6. Recognizing concepts, counting the number of concepts, calculating the weight of concepts;

7. Recognizing attributes, counting the number of attributes, calculating the weight of attributes;

8. For k=1 to m

9. Recognizing relations, counting the number of relations, calculating the weight of relations;
10. Calculating the weight of documents;
11. End for

This paper mainly uses the data set which are real documents associated
with the field of BI. Moreover, we download some literatures from the
MEDLINE/PubMed, testing 50 documents and generating the weight of doc-
uments [8]. The weight of documents is shown as Table 2. At the same time, we
calculate the weight of concepts, attributes, relations and the weight of docu-
ments, seeing as the second, third, fourth, fifth column in Table 2. Meanwhile,
we design a questionnaire of experts which is composed of ten categories prob-
lems and has 100 the total score based on the BI provenance model to verify
the correctness of the weight [13]. Then the experts judge the documents and
the result is shown as the sixth column in Table 2. At last, we can see the order
of documents is consistent using this method compared with the judge of ex-
perts. From above analysis, we can see that the method of selecting the required
documents is effective.

Table 2. The comparison between the value of a document and experts’ decision

The number

(1)

The weight

of concepts

(2)

The weight

of attributes

(3)

The weight

of relations

(4)

The weight of

a document

(5)

Experts’

decision (6)

1

2

3

4

5

6

7

8

9

50

3.01106

2.15205

2.01465

2.15201

1.86524

1.51244

0.64242

1.86525

1.70000

1.28995

0.35807

0.35807

0.35289

0.35444

0.33370

0.32022

0.30104

0.32852

0.30207

0.30830

0.55999

0.51717

0.15722

1.51244

0.51480

0.66202

0.30000

1.28995

0.83827

0.66202

1.21454

0.98745

0.79273

1.24111

0.84749

0.78043

0.40315

1.07798

0.88231

0.70891

61

59

57.5

61.5

58

57

51

60

58.5

56.5
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5 Conclusions

Research on BI provenances selection for the Data-Brain ontology is a new
project. This paper proposes a selection method based on the data-brain ontol-
ogy through the analysis of characteristics and experimental results show that
this method is effective. It is also the key technology of selecting BI sources.
Furthermore, the obtained documents can be used to support sources-selection,
provenances mining, the process planning of systematic brain data analysis; etc.
All of these will be studied in our next work.
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Abstract. Finding and learning related research is a necessary work in
Brain Informatics studies. However, the keyword-based search on brain
and mental big data center often brings a large amount of unnecessary
results. It is very difficult to find needed research from those results for
researchers. This paper proposes a Brain Informatics research recommen-
dation system based on the Data-Brain and BI provenances. By choos-
ing interest aspects from the Data-Brain and applying the unification of
search and reasoning based on Data-Brain interests, the more accurate
search can be realized to find really related literatures for supporting
systematic Brain Informatics studies.

1 Introduction

Brain informatics (BI) is an interdiscipline of computer science, cognitive science
and neuroscience, and it proceeds to a systematic study from the macro and mi-
cro perspectives on human information processing mechanism [9,10]. The system-
atic BI methodology includes four aspects: systematic investigation for complex
brain science problems, systematic design of cognitive experiments, systematic
brain data management and systematic brain data analysis/simulation [1,11].
Such a systematic study involves with various experimental design methods
and analytical methods. The researchers often need to search a large amount
of literatures, which are closely related to their studies, for comprehending the
experimental design methods and analytical methods.

A brain and mental big data center has been developed to support the sys-
tematic research of Brain Informatics. The researchers can search related study
on this system based on Data-Brain and BI provenances. However, the keyword-
search often brings a lot of unnecessary results. In current, the brain and mental
big data center stores 98 literatures. After submitting the word “Induction” on
the system to find research about the human cognitive function “Induction”, the

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 208–217, 2014.
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number of results is 36. This is a very large proportion. When this system collects
a large amount of data, It will be a serious problem to researchers. Researchers
have to take a long time to find their really needed research. Like on PubMed,
after submitting the word “Induction” on it to find literatures about the hu-
man cognitive function “reasoning”, the number of results is 435269. Therefore,
this paper proposes a Brain Informatics research recommendation system.Four
element classes are selected from the Data-Brain to acquire the uses’ interests.
Then, a more accurate search are realized by applying the unification of search
and reasoning based on the obtained interests.

The remainder of this paper is organized as follows. Session 2 gives the dis-
cussion of background and related work. a more accurate search are realized by
applying the unification of search and reasoning based on the obtained interests.
Based on the preparations, Session 5 proposes a research interests based strat-
egy for refining the literature query. Furthermore, a case study is provided in
Session 6 to introduce the experiments and the results. Finally, Section 7 gives
concluding remarks.

2 Background and Related Work

2.1 The Data-Brain and BI Provenances

In order to support systematic BI studies, the Data-Brain has been proposed
to represent functional relationships among multiple human brain data sources,
with respect to all major aspects and capabilities of human information process-
ing system [1,2]. It is domain-driven and can be constructed by a BI methodology
based approach [1,2]. In our previous studies, a prototype of the Data-Brain has
been constructed by using the Web Ontology Language(OWL).

BI provenances are the metadata describing the origin and subsequent pro-
cessing of various human brain data in the systematic BI study [4]. It includes
data provenances and analysis provenances. The BI data provenances focus on
the origin of BI data and involves with multi-aspect experimental information,
including subject, experimental processes, measuring equipments, etc. In our
previous studies, a Data-Brain based approach has been developed to construct
BI provenances. By this approach, multi-aspect experimental information can
be extracted from literatures and stored into the BI data provenances by using
the Resource Description Framework (RDF). These BI data provenances become
a kind of new metadata about literatures which can describe researches more
detail than tiles of literatures.

2.2 The Interests-Based Unification of Search and Reasoning

In the past few years, we have developed the interests-based unification of search
and reasoning (I-ReaSearch) [5], which has a deeper analysis on the interests
comparing with additional research service systems. This method treats the key-
words of literature titles as interests. However, those title-based interests cannot
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precisely express the BI research interests because titles are too simple to de-
scribe the whole studies.

By extending the I-reaSearch method, we develop a research recommendation
system based on the Data-Brain and BI provenances. We define interest aspects
based on the Data-Brain and acquire users’ research interests from BI prove-
nances. By using these research interests and the I-reaSearch method, the BI
research recommendation system can provide a more accurate literature search.
From the data-brain and the BI provenances of literatures, we can precisely ex-
press the interests of brain informatics researchers, and we can accurately express
the main content of literatures.

3 The Brain Informatics Interest

Adding users’ interests into the literature search can effectively improve the
accuracy of results. Because the users’ current research interests have a close
relationship with his past research interests. they can be obtained based on
users’ published literatures.

In our previous studies [5], keywords of literature titles were treated as in-
terests. However, as stated above, BI data provenances are the metadata of
literatures which can describe researches more detail than tiles of literatures.
Hence, they are better information sources for defining users’ research interests
than titles of literatures. Based on the Data-Brain and BI provenances, new
definitions about research interests can be given as follows.

An Interest aspect, denoted by e(k), is a hierarchy of concepts in the Data-
Brain, which describes a kind of focuses in systematic BI experiments.

An Interest, denoted by te(k) (i), is a concept in the interest aspect e(k), which
describes a focus in systematic BI experiments.

Owing to the BI methodology based modeling approach, the Data-Brain in-
cludes four dimension, the function dimension,the experiment dimension, the data
dimension and the analysis dimension, corresponding to the four aspects of BI
methodology, respectively. Each dimension includes a or several sub-dimensions
which describe different sub-aspects of systematic BI studies. According to the
definitions about dimensions of the Data-Brain, the experiment dimension bind-
ing the function dimension is used to describe systematic design of cognitive ex-
periments. Hence, for developing this BI research recommendation system, users’
research interests should be selected from the sub-dimensions in the experiment
dimension and the function dimension, including Cognitive Function, Device
Type, Perceptional Channel and Subject Type [3,12].

Cognitive function is a sub-dimension of function dimension in the Data-
Brain. It includes multiple subclasses, such as Attention, computation, Reason-
ing. It is an important research content of BI. Different cognitive functions result
to different experimental designs and different analytical methods. Therefore, the
cognitive function is chosen as an interest aspect for defining similar researches
in the BI research recommendation system.
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Device type is a sub-dimension of experiment dimension in the Data-Brain. It
contains multiple subclasses, for example, fMRI, ERP, Eye-Movement. It is an
important factor in BI studies and affects the experimental design and the choice
of analytical methods. Therefore, the device type is an indispensable interest
aspect for defining similar researches in the BI research recommendation system.

Perceptional channel is a sub-dimension of experiment dimension in the Data-
Brain. It includes Visual, Auditory and other subclasses. Different perceptional
channels need different experimental designs and analytical methods. Therefore,
researchers must consider the perceptional channel when they search the similar
researches. It is also chosen as an interest aspect.

Subject type is a sub-dimension of experiment dimension in the Data-Brain. It
contains Normal-Subject, Patient-Subject and College-Student, etc. It is also an
important influence factor for the design of experiments and analysis. Therefore,
the BI research recommendation system takes the subject type as an interest
aspect.

4 Measuring Research Interests

In this section, a series of formulas stated in [5] will be refined to quantize
the research interests for the BI research recommendation system. Let i, j, k be
positive integers (i, j ∈ I+), yte(k)

(i) , j be the number of literatures in BI data
provenances that involved in interest te(k) (i) during the time interval j.

Cumulative interest[7], defined as CI
(
te(k) (i) , n

)
, is the sum of appearing

times of interest te(k) (i) during the n time intervals. It can be expressed as:

CI
(
te(k) (i) , n

)
=

n∑
j=1

yte(k)
(i) , j (1)

It is assumed the appearing times of the te(k) (i) during the considered n time
intervals. This represents the users’ research interests in the past, and can affect
the users’ current research interests.

The users’ research interests during the n time intervals can be acquired by
means of the researchers’ cumulative interests. However, because the research
interests of users dynamically change over time, the research interests during
the time interval j may be different from research interests during the previous
time interval j− 1 and during the next time interval j +1. Therefore, the users’
current research interests cannot be simply considered as research interests in
the past. The impact of departed research interests on the users’ current has to
be discuss based on our previous studies [6,7].

The topics that researchers are interested in dynamically change over time.
The researcher maybe lose interests in some topics and generate interests in
other topics in sudden. The retained interests have a close relationship with the
researcher’s current interests. This phenomenon is similar with the forgetting
mechanism of cognitive memory. Therefore, a model about retained interest can
be developed according to the power function of cognitive memory retaining.
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RI
(
te(k) (i) , n

)
=

n∑
j=1

yte(k)
(i) , j ×AT−b

te(k)(i)
(2)

In which Tte(k)(i) is the duration of interest te(k) (i). yte(k)
(i) , j is the appearing

times of interest te(k) (i) during every time interval j, and
∑n

j=1 yte(k)
(i) , j ×

AT−b
te(k)(i)

is the value of retained interest of te(k) (i) during contained n time

intervals.
Because retained interests are closely related to the users’ current interests,

we can predicate the current interests by means of retained interests. The param-
eters “A” and “b” are used to calculated this kind of correlation. “A” controls
the difference of retained interest with current interest, and makes them have
minimum difference. “b” is used to control the decaying speed on lost interests.
In this study, the value of “A” is 0.855, and the “b” value is 1.295.

Some topics maybe have a high value on retained interests but a low value
on cumulative interests, because these topics is current interests but in the past
the research isn’t interested on it.

5 A Framework of Unifying Search and Reasoning in
Brain Informatics Research Recommendation System

Based on the above definition and measurement about research interests, an
framework of unifying search and reasoning can be proposed to develop a BI re-
search recommendation system. It can improve the accuracy of literature searches
based on users’ research interests. The details are introduced as follows.

The system provides four query conditions for searching needed literatures.
Each condition is corresponding to an interest aspect. Users can choose a query
condition and submit a keyword to start a query. After receiving the query
request, the BI recommendation system will the other three aspects’ interests
which are BDI1, BDI2, BDI3 will be obtained from the BI Provenances that
extracted from the users’ literatures in the brain and mental big data center
system.

Here we come up with a unification of search and reasoning method based
on brain informatics, which is named “BDI-ReaSearch”. The process of BDI-
ReaSearch can be expressed as below:

hasInterests(U,BDI1, BDI2, BDI3), hasQuery(U,Q), executesOver(Q,D),

¬contains(Q,BDI1, BDI2, BDI3)

→ BDIReaSearch(BDI1, BDI2, BDI3, Q,D) (3)

In which the meaning of hasInterests(U,BDI1, BDI2, BDI3) is that the user
“U” has a serious of interests “BDI1, BDI2, BDI3” to brain informatics.
hasQuery(U,Q) denotes that user “U” inputs a query “Q” to acquire similar
research. executesOver(Q,D) denotes that the query “Q” which user inputs ex-
ecutes over database “D”. The meaning of ¬contains(Q,BDI1, BDI2, BDI3) is
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that query “Q” does not contain the research interests “BDI1, BDI2, BDI3”.
BDIReaSearch(BDI1, BDI2, BDI3, Q,D) denotes that user carry out the uni-
fication of search and reasoning method based on the brain informatics interests
BDI1, BDI2, BDI3.

However, how to proceed BDIReaSearch(BDI,Q,D) unification of search
and reasoning? The following we select the strategy that redefines query “Q”.
The BI research recommendation system calculates the users’ retained interests
by the formula RI

(
te(k) (i) , n

)
. Then this system makes use of users’ interests

to refine the query so that it contains research interests “BDI”. The process of
BDI-ReaSearch can be further expressed as below:

hasInterests(U,BDI1, BDI2, BDI3), hasQuery(U,Q), executes(Q,D),

¬contains(Q,BDI1, BDI2, BDI3)→
refinedas(Q,Q′), contains(Q′, BDI1, BDI2, BDI3), executesOver(Q′, D) (4)

In which refinedas(Q,Q′) denotes that the query “Q” inputted by user is refined
as “Q′”. contains(Q′, BDI1, BDI2, BDI3) denotes that the query “Q′” contains
users’ research interests ”BDI1, BDI2, BDI3” to BI Provenances. The meaning
of executesOver(Q′, D) is that the refined query “Q′” executes over database
“D”.

In the BI research recommendation system, the algorithm of research recom-
mendation is shown in Table 1.

Table 1. The algorithm of research recommendation

Algorithm Research Recommendation

Input: cognitiveFunctionValue, username
Output: literatureResults
1. literatures = getLiterature(username)
2. Ror each interest aspect
3. For each interest of interest aspect
4. interests = getInterest(Literatures)
5. retainedInterestValue = getValue(interests)
6. End For
7. Initialize maxRetainedInterestValue(j) = retainedInterestValue(1)
8. For each interest of interest aspect
9. If(retainedInterestValue(i)> retainedInterestValue(i-1)) then
10. maxRetainedInterestValue(j) = retainedInterestValue(i)
11. End If
12. End For
13. End For
13. literatureResults = getResult(cognitiveFunctionValue, maxRetainedInter-
estValue(1), maxRetainedInterestValue(2), maxRetainedInterestValue(3))
14. return literatureResults



214 J. Han et al.

6 Experiments and Results

In this section, a realistic use case will be used to illustrate the proposed frame-
work of unifying search and reasoning. A prototype of BI research recommenda-
tion system was developed based on a group of BI data provenances, which are
extracted from 98 literatures, as shown in Fig.1.

Fig. 1. The number of results

BI researchers can search related researches based on this prototype. For ex-
ample, Dr. Liang is a BI researcher. He want to search researches about the
human cognitive function “Inductive Reasoning”. When he directly performs
a query on those BI data provenances based on a query condition “Cognitive
Function = Induction”, a group of research information can be obtained. Fig.2
is the corresponding SPARQL query and Table 3 gives the query results in-
cluding 36 research information. The BI research recommendation system can
improve the accuracy of this query. The system provides the four interest as-
pect,including Cognitive Function, Device Type, Subject type and Perceptional
Channel, as query conditions. When Dr. Liang chooses Cognitive Function as the
query condition and input the keyword “Induction”, the system automatically
take other three query conditions as interest aspects to calculate the values of
retained interests, respectively. The Table 2 gives the results of calculation. As
shown in this table, the interests “fMRI”, “Normal-Subject’ and “Visual” have
the biggest values of retained interest in those three interest aspects. Using these
three interests to perform the redefinition algorithm of query stated in Section 5,
a group of research information can be obtained shown in Table 4. The number
of results is shown in Fig.1.

Table 4 includes 11 research information. Comparing with Table 3, 25 results
are removed. The reason is to take Dr. Liang’ current research interests into
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Fig. 2. The SPARQL query

Table 2. The values of retained interests in three interest aspects

Device Type Value Subjects Type Value Perceptional Channel Value

fMRI 1.078 Normal-Subject 1.448 Visual 1.546
ERP 0.535 Patient-Subject 0.166 Visual 0

Table 3. The results returned by the simple query

ID title Cognitive
Function

Device
Type

Subject
Type

Perceptional
Channel

1 ERP characteristics of sentential
inductive reasoning in time and
frequency domains

Inductive
Reasoning

ERP Normal-
Subject

Visual

2 An fMRI study of the numerical
Stroop task in individuals with and
without minimal cognitive impair-
ment

Inductive
Reasoning

fMRI Patient-
Subject

Visual

... ... ... ... ... ...
36 The Role of Category Label in

Adults’ Inductive Reasoning
Inductive
Reasoning

fMRI Normal-
Subject

Visual

account. As shonw in Table 2, Dr. Liang is focusing on fMRI experiments of
visual tasks, which adopt normal subjects.

From the experiment above, we know that this BI research recommendation
system can greatly shorten the time of brain researchers querying literatures. As
a result, it can make researchers find appropriate articles more quickly.
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Table 4. The results returned by the BI research recommendation

ID title Cognitive
Function

Device
Type

Subject
Type

Perceptional
Channel

1 the FMRI research: the inductive
reasoning of figure

Inductive
Reasoning

fMRI Normal-
Subject

Visual

2 Dynamics of Frontal, Striatal, and
Hippocampal Systems during Rule
Learning

Inductive
Reasoning

fMRI Normal-
Subject

Visual

... ... ... ... ... ...
11 The Role of Category Label in

Adults’ Inductive Reasoning
Inductive
Reasoning

fMRI Normal-
Subject

Visual

7 The Conclusion and Future Work

This paper concerns mainly on the researchers’ interests in brain informatics, and
takes advantage of them for research recommendation. In the brain informatics
research recommendation system, we select the cognitive function, device type,
perceptional channel and subject type as interest aspects. We have quantified
the departed research interests. And to the dynamic change of research interests,
we study retained interest according to the forgetting mechanism of cognitive
memory. The retained interests closely relate with the users’ current research
interests, and they have been quantified. In addition, we have come up with the
unification of search and reasoning based on Data-Brain and BI provenances
named as “BDI-ReaSearch”. Using the users’ research interests, we redefine the
sparql statement.

In this paper, we do not take the weight of literatures level into consideration.
In future study, we will consider it and add it into calculation. And we should
add the most popular research contents of the users’ research domain to their
interests. Then we can provide better services for brain science research.
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Abstract. Lots of heterogeneous complex data are collected for diag-
nosis purposes. Such data should be shared between all caregivers and,
often at least partly automatically processed, due to its complexity, for
its full potential to be harnessed. This paper is a feasibility study that
assesses the potential of Hadoop as a medical data storage and processing
platform using EEGs as example of medical data.
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1 Introduction

The diagnosis process often involves multiple clinicians/specialists and a large
number of ordered tests. As a result, huge amounts of heterogeneous data are
gathered and scattered in many locations (or islands of data). Table 1 shows the
scale of data produced in and spread across the healthcare system. To further
compound the problem, different locations often use non-interoperable systems
and file formats, if the data is indeed digitized. A McKinsey Global Institute
(MGI) report on the US healthcare system ([1]) shows that up to 30% of data
that includes medical records, laboratory and surgery reports, is not digitized
and that the video and monitor feeds that make up most of the clinical data
produced are not stored but used real time. Such a setting makes it hard for
caregivers to access a patient’s full history and get a full picture of his/her con-
dition. As it stands, needless tests may be ordered and diagnoses delayed and/or
missed, not to mention data security more easily breached. The prevalence of
misdiagnoses is estimated to be up to 15% in most areas of medicine ([2]). And
a study of physician-reported diagnosis errors ([3]) finds most cases are due to
testing (44%) or clinician assessment errors (32%).

A case from The Washington Post exposes all those issues ([4]). A patient
struggling with depression is diagnosed with a meningioma1, unrelated with the

� The EEGs used in this paper were kindly provided by Prof. Dr. Ir. Michel van Putten
(Dept. of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente and
MIRA, University of Twente, Enschede, The Netherlands), who we also thank for
useful comments on the paper.

1 A brain tumor.
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patient’s depression and not in need of monitoring, according to the attending
clinician at the time. Four years, many moves across US states and many consul-
tations (with other clinicians) later, and with her condition steadily worsening,
the patient is hospitalized and the meningioma, gone under the radar for years,
is finally rediscovered and pinpointed as the cause of the patient’s near-fatal
condition. This case stresses the necessity of care continuity and easy access to
patient history: had the meningioma been known to clinicians after the initial
diagnosis, the patient may have been spared years of misery, a possible fatal
outcome and enjoyed a better quality of life.

To solve such issues, authorized caregivers need fast and reliable access to a
shared medical data repository containing tests’ data and their interpretations.
An international data repository would ideally be needed but is unlikely to be
created in the foreseeable future for legal reasons. So national scale repositories
should at least be created. The MGI report cited earlier ([1]) argues that sharing
medical data offers huge premiums such as a drastic reduction of healthcare costs
and waste and improved patient outcomes and quality of life through allowing
remote patient monitoring, easing comparative effectiveness studies and clinical
decision systems deployment and increasing data transparency.

Sharing data would also provide a trove of data on which competing au-
tomated medical data interpretation methods can easily be tested, compared,
interpreted and reproduced. So far, the automated medical data interpretation
methods aiming at reducing the clinicians’ workload and easing the diagnosis
process have been of limited use as they are tested on distinct, usually small
data, making them hard to reproduce and interpret with any certainty.

The MGI report ([1]) also points out there are critical technical hurdles to
overcome before medical data can be shared, analyzed properly and its full po-
tential uncovered,e.g standardizing formats, ensuring systems’ interoperability,
integrating pre-existing, fragmented and heterogenous datasets and providing
sufficient storage. So any potential design for a medical repository should take
into account the distributed nature of the data2, its heterogeneity and size and
the diversity of file formats and platforms used across healthcare institutions.
The data should also be easy to access for further, complex processing.

In this paper, we show that a rather low cost technical solution (and possi-
ble storage platform for medical data) that fits those constraints and requires
minimal changes to current state of the art storage and processing techniques
already exists: the Hadoop platform. In what follows, we will take EEG data as
example of medical data.

The rest of this paper is organized as follows. We introduce Hadoop, explain
why it is a good fit for medical data storage and show how EEGs can be stored
with Hadoop (Section 2). The example of EEG feature selection by exhaustive
search is then used to lay out why complex data processing should also be done
with Hadoop (Sections 3 and 4).

2 Healthcare institutions are unlikely to let their data be stored externally.
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Table 1. Medical data statistics (2009 data, last year for which records are available)
from [5]

Netherlands USA OECD5

EEG3 100,000/167GB N/A N/A

MRI4 726,000/15.9TB 28 million/614TB 42 million/921TB

CT4 1.1 million/36.7TB 70 million/2.3PB 104.5 million/3.4PB

Fig. 1. EEG showing an adult’s normal eyes-closed EEG segment

Contributions. In this paper, we give a proof of concept for an EEG repository
by :
– explaining why Hadoop fits the constraints imposed on potential medical

data repositories
– showing how to store EEG data in a Hadoop framework
– proving that EEG data can be analyzed on national scale on Hadoop by

designing and benchmarking a representative machine-learning algorithm

1.1 Related Work

Hadoop has been found a viable solution for storing and processing big data
similar to medical data, such as images in astronomy ([6]) or power grid time
series, which unlike medical time series, are unidimensional time series ([7]).

[8] is, to the best of our knowledge, the first paper to consider storing med-
ical data and EEGs in particular with Hadoop and show it is a promising
solution in need of more testing. [8] suggest exploring the ”design and bench-
marking of machine learning algorithms on [the Hadoop] infrastructure and pat-
tern matching from large scale EEG data.” and this is one of the goals of our
paper.

3 Assuming standard 20-minute EEGs in EDF+ format. File average size: 13.7MB.
4 Assuming average size of 23MB per MRI and 35MB per CT.
5 Based on data from OECD countries with available data from exams performed
in and outside of hospitals i.e the USA, Greece, France, Belgium, Turkey, Iceland,
Luxembourg, the Netherlands, Canada, Denmark, Estonia,the Czech Republic, the
Slovak Republic, Chile, Israel and South Korea.
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2 Hadoop: A Good Fit for Medical Repositories’
Constraints

2.1 Introduction to Hadoop

Hadoop, an open source platform managed by the Apache open source com-
munity, has 2 core components: the Hadoop Distributed File System (HDFS)
and the job management framework or MapReduce framework. The HDFS is
designed to reliably store huge files on all cluster machines. Each HDFS file is
cut into blocks and each block then replicated and stored at different physical
locations in the cluster to ensure fault tolerance. The HDFS has a master/slave
architecture with one master server called Namenode managing the filesystem
namespace and regulating the file access by clients and multiple slave servers
(one per cluster node) called Datanodes managing the storage in the nodes they
run on. The Namenode maps the file blocks to the Datanodes and gives the
Datanodes instructions to perform operations on blocks and serve filesystem
clients’ read and write requests. The Hadoop MapReduce framework also has
a master/slave architecture with a single master called jobtracker and several
slave servers (one per cluster node) called tasktrackers. MapReduce jobs are sub-
mitted to the jobtracker, which puts the jobs in a queue and executes them on
first come/first serve basis. The jobtracker assigns tasks to the tasktrackerswith
instructions on how to execute them.

2.2 Hadoop and Parallel Data Processing: The Mapreduce Model

MapReduce is a programming model for data-intensive parallelizable processing
tasks (introduced in [9]) designed to process large volumes of data in parallel,
with the workload split between large numbers of low level commodity ma-
chines. The MapReduce framework, unlike parallel databases, hides the complex
and messy details of load balancing, data distribution, parallelization and fault-
tolerance from the user in a library, thus making it simpler to use the resources
of a large distributed system to process big datasets. The MapReduce model re-
lies on 2 successive functions to transform lists of input data elements into lists
of output data elements: a mapper function and a reducer function. Each input
data element is transformed into a new output data element by the mapper.
The transformed elements are then aggregated by the reducer to return a single
output value. A simple example is files word count: in this case, the mapper as-
sociates a number of words to each of the input files while the reducer function
sums the values obtained during the mapping step.

2.3 Hadoop for Medical Data Storage

The Hadoop platform provides a solution to the technical hurdles outlined by
the MGI report ([1]) described earlier (Section 1).

First of all, Hadoop was designed to scale with large data. It is currently
being used at Facebook to store about 100PB of user data, i.e data much bigger
than national scale medical data which ranges from dozens of terabytes (e.g. the
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Netherlands) to petabytes of data (e.g. the USA) annually as shown in Table 1.
So Hadoop can easily handle national scale amount of medical data.

Moreover, Hadoop can store heterogeneous formats of data, in particular un-
structured data, and if there is a method to extract the data from the files that
store it6, the data can then be fed to Hadoop MapReduce for further analysis
and processing.

Hadoop is also tolerant to node failure. The HDFS relies on replication (by
default 3 copies on 3 Datanodes per file block) to ensure file blocks are not lost
if a data server fails. If a Datanode fails and some data blocks have less than
a set minimum of copies, the Namenode orders the replication of the affected
blocks in some available Datanodes to bring back the replication factor of the
blocks to safer levels. The probability of losing a block in a 4000 nodes’ cluster
in a day (respectively in a year) in the case of uncorrelated failures of multiple
nodes is about 5.7× 10−7 (respectively 2.1× 10−4) ([10]). At Yahoo! in 2009 for
example, only 641 blocks were lost out of 329 million on 17720 nodes i.e a loss
rate of 1.9×10−4% ([10]). The only problem left is the Namenode as the HDFS is
unusable if the Namenode fails. Namenode crashes rarely occur though ([11])(1
in 4 years at Facebook) and solutions limiting the crash impact are already
being deployed. One such solution is the AvatarNodes in use at Facebook: 2
AvatarNodes, an active and standby one, replace the unique Namenode and
receive the Datanodes messages in its stead. The Standby AvatarNode thus
contains up-to-date information about block locations and can be started in
under a minute to replace the Namenode (or Active AvatarNode) if it fails. This
solution cuts cluster planned downtime by 50%. Data stored with Hadoop will
therefore be constantly available.

Hadoop was built for parallel processing (via MapReduce described in Section
2.2) and we study the feasibility EEG data processing with Hadoop with the
example of feature selection by exhaustive search in Section 3.

2.4 Hadoop and EEG Storage

An EEG is a multidimensional time series obtained by capturing the brain’s
electric activity with scalp electrodes. Figure 1 shows an example of EEG. The
increasingly popular EDF+ format is used to store EEGs and contains all the
information about the EEG recording, both metadata in a header encoded in
UTF-8 and raw data in binary format. The metadata includes patient informa-
tion and EEG signal technical attributes (e.g. equipment details and sampling
rate). Annotations on the EEG, such as context of recording or EEG events
labels, may also be stored in the EDF+ file. See [12] for format details.

HDFS does not call for any set file format, so we store EEGs in EDF+ in
HDFS. We anonymize EEGs before storage for security reasons. Keeping EEGs
as EDF+ files has many advantages. No additional data formatting is needed
and existing tools for EDF+ files, eg. visualization tools, can still be used. And

6 Such methods currently exist at the sites where the different types of data are stored.
There is,at most, a need to translate those methods into Java, Python, Perl or any
other language that can be interfaced with Hadoop.
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as EDF+ files are mainly binary files, the size of the stored EEGs is small: 2500
EDF+ files (dataset 1 in Section 4 and Table 2(a)) i.e to about 2 years of EEG
data at the local hospital take up 46.5GB whereas the same data7 would take
up 1TB when in a relational database.

3 EEG Feature Selection with Hadoop

EEG interpretation is arduous even for trained specialists due to the mass of
data to interpret8 and non-specific, age or context-dependent patterns and arti-
facts. For example, the patterns for a chewing artifact and an epileptic seizure
are similar. Machine learning-based methods ([14,15]) are being developed to
ease the interpretation for clinicians, though the methods’ scalability remains
an issue. Instead of reducing algorithm complexity as in most studies aiming
to lower the computational cost of machine-learning methods, we opt for using
more commodity hardware with Hadoop and show, here, with EEGs as exam-
ple, that parallelizable machine learning tasks and translatable to a sequence of
map/reduce can be run in manageable times.

3.1 Feature Selection as Example EEG Machine Learning
Algorithm

Most automated EEG data interpretation methods classify or cluster EEGs
and select suitable features for classification/clustering (eg. fractal dimension
in [14,16]) prior to it. Other approaches ([17]) select, quantify, visualize some
”relevant” EEG features through time and present them to a practitioner who
then interprets them and their variations to derive conclusions on the EEG. So
the key task in the automated interpretation of EEG is feature selection so we
pick a feature selection algorithm on EEG as example of machine-learning al-
gorithm to determine whether Hadoop is suitable for medical data processing
compared to other more traditional frameworks. We purposely choose an algo-
rithm with exponential complexity for feature selection (exhaustive search) as
achieving manageable execution times with Hadoop for this worst-case algorithm
would entail achieving even more reasonable execution times for more common
less computationally expensive algorithms. The goal of this study is not to eval-
uate the accuracy of the feature selection algorithm but to test whether running
feature selection (as a sample machine-learning algorithm) on Hadoop has any
benefits compared to using more traditional processing platforms.

3.2 Tested Features and Rationale for the Choice of Features

To test the feature selection algorithm, we choose a mix of 9 clinically-relevant
and more general time-series features shown to be relevant for EEG

7 With one table for metadata, one table for raw data and one tuple per raw data
point.

8 A routine 20 minute EEG fits in 109 A4-pages with the guidelines of the American
Clinical Neurophysiology Society [13]
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processing in literature: 4 features computed in the time domain (fractal dimen-
sion, mean amplitude, amplitude standard deviation, normalized Hjorth mobility
and complexity9) and 5 in the frequency domain (frequency bands percentages
(α band,β band,θ band,δ band)10, the α to δ ratio, high to low frequency ratio
(high frequency being frequencies above 25Hz), brain symmetry index (BSI) and
spectral entropy). These features detect many pathologies and patterns: EEG
asymmetries as in focal seizures or hemispheric ischemia with the BSI defined in
[18], temporal lobe seizure with the Hjorth mobility and complexity([15]), high
frequency artifacts with the high to low frequency ratio ([19]), hypofunctional
patterns with the α to δ ratio and iso-electric ([19]), low-voltage EEGs with
the mean amplitude ([19]). The fractal dimension separates normal sequences
and other sequence types ([16]) and normal EEGs and Alzheimer patients EEGs
([14]). An extra feature, the nearest neighbour synchronization (mNNC) (defined
in [17]), used to detect seizures ([19]), sleep or encephalopathies ([17])11 is com-
puted in the feature computation step (to measure scalability) but not used for
classification.Each of the 9 features can be picked alone or in combination with
a variable number of the other features. So there are

∑9
i=1 C

i
9 = 511 distinct

possible ways to pick a feature set from the 9 features. This paper doesn’t aim
to assess the classification performance of the chosen features. The features were
only picked as sample EEG features for scalability tests so others may have been
selected for this study.

3.3 Performing EEG Feature Selection with Exhaustive Search

We evaluate each of the 511 possible feature combinations to select the best fea-
ture combination for our classification problem. Figure 2 summarizes the feature
evaluation steps. For simplicity, we choose KNN as classifier but the same prin-
ciple applies to other classifiers. We then implement this algorithm in 4 steps in
MapReduce:
1. Map: Extract the segments of interest from the original EEG files and com-

pute all features for each of the segments
2. Reduce: Build one dataset per feature combination
3. Map: Train the classifier and assess its performance for each feature set
4. Reduce: Choose the feature set that maximizes mean accuracy (for all classes).

Details on the classifier and EEG segments of interest are found in Section 4.1.

4 Experiments

This section describes the experiments performed and their setup. Table 2 sum-
marises the hardware and software properties of the experimental servers.

9 2-dimensional feature.
10 The EEG waves are grouped by frequency in 4 main bands: δ band for frequencies

from 0.5 to 4 Hz, θ band for frequencies from 4 to 7 Hz, α band for frequencies
from 7 to 12 Hz and β band for frequencies from 12 to 30 Hz. The frequency band
percentage is therefore a 4-dimensional feature.

11 The mNNC value increases in seizures and decreases in sleep or encephalopathies.
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Fig. 2. EEG feature selection steps

4.1 Details on EEG Classification

EEG labeling hinges on properties such as sequence type and patient age so
feature selection can be done only on segments of similar properties. Only eyes-
closed segments from adult EEGs are used in this paper. The feature selection
principle is unchanged for other age groups and segment types. We use KNN
as a classifier. We assess a feature set’s performance by the mean classification
accuracy (mean of the accuracy for all classes) and run 3 rounds of the Shuffle
and Split cross-validation, with 30% of the data used as training set per iteration,
to reduce overfitting and minimize the prediction error. We have 3 EEG classes:
normal, normal but for increased β wave (often due to medication) and abnormal.

4.2 Dataset Description

We use a dataset of 2500 EEGs for the experiments. This amount of data is
about 30% of the EEG data collected monthly12 in the Netherlands and about
2 years of data from the local hospital13. All EEGs in the dataset were recorded
on patients in a hospital setting following the International 10/20 System with
Ag/AgCl electrodes and using a common average reference. Only the 19 channels
common to all EEGs are kept for calculations, with each channel sampled at
250Hz. All 9 features from Section 3.2 and mNNC are computed on the whole
dataset (hereafter named dataset 1-Table 2(a)) to check the scalability of feature
computation. To test feature selection by exhaustive search, we use a subset of
1000 files from dataset 1 for which the class label is known precisely (hereafter
named dataset 2). The EEGs in both datasets predominantly represent standard
EEGs (15 to 40 minutes’ EEGs) i.e the most common EEGs in clinical practice
(91.6% of the EEGs recorded per year at the local hospital).

4.3 Benchmarking the EEG Exhaustive Search Feature Selection

Setup. We test EEG feature selection with python and with Hadoop Streaming.
To speed up the python code, we use the joblib library to parallelize parts of the

12 And about a third of the annual Dutch data in filesize.
13 Medisch Spectrum Twente, Enschede, The Netherlands.
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Table 2. Server and EEG test file characteristics

(a) Characteristics of experimental datasets

Dataset Number Total size Minimum Maximum Number of files of duration Number of
of files of files EEG EEG <15mn 15 40mn 1 >2h values

duration duration to 40 mn to 1h to 2h

dataset 1 2500 46.51GB 10s 3h 9mn 204 2201 90 253 19
(feature computation (7.4% (79.5% (3.25% (9.14% (0.69% 578,648,474,500
only) of files) of files) of files) of files) of files)

dataset 2 1000 16.06GB 10s 2h 8mn 50s 73 909 33 35 1
for classification (5.6% (69.9% (2.54% (2.69% (0.08% 6,828,505,000
subset of dataset1) of files) of files) of files) of files) of files)

(b) Characteristics of the servers used in the experiments

Server OS Software used Processor RAM Number of nodes

Server for Parallel openSUSE 12.3 Python 2.7.3 AMD OpteronR© 64GB 1
Python experiments Milestone 2(x86-64) with joblib 0.7d library Processor 4226

Kernel version scikit-learn 0.14 (6 cores)
3.6.3-1-desktop scikit-learn 0.14 2 processors

Hadoop cluster Ubuntu 12.04.2 Python 2.7.3 IntelR©XeonR© CPU 7.8GB 15
LTS(x86-64) with scikit-learn 0.10 E3110@3.00GHz
Kernel version Hadoop streaming jar (2 cores)
3.2.0-40-generic from Cloudera Hadoop CDH3u6 1 processor

feature selection: features are computed EEG by EEG with several tasks running
concurrently and several feature combinations are tested for classification at the
same time. The number of jobs running concurrently is RAM-bound.
We selected Hadoop Streaming as Hadoop interface as we can write python code
with it. This allows us to reuse most of the code from the python with joblib
approach, thus easing the performance comparison between both approaches
tested. There are 30 available map slots in the Hadoop cluster (2 maps per
node) so that up to 30 maps run at the same time until the Hadoop map jobs
are done. Similarly there are 30 possible reduce slots. Unless otherwise stated,
we run 2 maps per node for the Hadoop Streaming jobs. We compute all features
over windows of 1800 ms in both Hadoop and Python approaches. 1800 ms of
EEG data equals 450 points per channel with the standard frequency of EEG
signal i.e 250Hz and about 9 eye blink artifacts (shortest known EEG events).

Experiment 1: Feature computation In the first set of experiments, we only per-
form the first step of feature selection (described in Section 3.3), i.e EEG segment
extraction and feature computation, on part or all of dataset 1. For each exper-
iment, execution times are recorded. Figures 3(a), 3(b), and 3(d) were obtained
using all of dataset 1. Figure 3(d) explores the evolution of feature computation
times when the number of cores of the Python server is made to vary. Fea-
ture computation execution times grow linearly with the size of processed files
for both Hadoop and Python solutions (Figure 3(e)) but the Python execution
times grow 4.5 times faster than the Hadoop ones. Therefore, feature extraction
with Hadoop is especially beneficial for large files and scales to a national scale
amount of data. Based on the interpolations of Figure 3(e), extracting the 10
features from Section 3.2 for the whole annual Dutch EEG data(i.e 167GB-Table
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(a) Hadoop solution (b) parallel Python solution
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1) would take about 11 hours and 7 minutes with Hadoop compared to more
than 2 days with Python. The Python execution time decreases exponentially
with the number of active cores/CPUs (Figure 3(d)) but an infinite number of
CPUs would be needed to reach the same performance as Hadoop!

Experiment 2: Brute-force classification and feature selection Experiments de-
scribed here all use dataset 2 (see Section 4.2 and Table 2(a) for details) and
test the time it takes to assess the classification performance of all possible 511
feature combinations 14. 253295 EEG segments are extracted from dataset 2,
i.e 113,982,750 values or 1.67% of the total values in the original files. Table 3
summarises the results of implementing the feature selection algorithm described
in Section 3.3 with Hadoop Streaming and Python. Due to recurrent memory
errors, only 154 feature combinations out of 511 (30.14%) were tested for clas-
sification with Python. The execution times for Python classification in Table
3 are estimates based on available data. Insufficient RAM per Hadoop node led
to all 511 combinations being tested with 37 successive jobs15 instead of one so
that only 1 map would run per node and not 2. The current implementation is
clearly subpar as map slots become available as the job runs but are unusable
until the job ends and the next starts. This is however easily fixed, with the
right user privileges, by setting the maximum number of maps per node to 15
so that at any time only one map runs per node: all 511 classifications can then
run in a single Hadoop job. Table 3 shows that even this suboptimal solution
evaluates the classification performance of all feature sets faster than Python.
The gap in classification execution times between Hadoop and Python widens
with the size of datasets to classify (Figure 3(f)). For very small datasets (33
training and 67 test points), Python outperforms Hadoop slightly (1.82 minutes
for Python and 2.4 minutes with Hadoop to test all 511 combinations). Hadoop
has overall a clear edge over Python as dataset size rises: the classification runs
about 64.76 times faster on Hadoop. Classifying dataset 2’s sequences, even in
suboptimal conditions with Hadoop, runs 29.9 to 34.1616 times faster than with
Python (see Table 3). So Hadoop is more suited for large datasets’ classification.
Hadoop also scales linearly with the size of classification input files17 (Figure
3(c)) and handles feature dimensions’ increase better than Python (about 2 or-
ders of magnitude faster than Python (Figures 3(a) and 3(b))).

4.4 Discussion

The experiments (Section 4.3) show Hadoop as a scalable and promising solution
to process EEGs if the task at hand it parallelizable (e.g. feature computation)

14 All features except nearest neighbor synchronization.
15 36 testing 14 combinations at a time and 1 testing 7 combinations at a time.
16 Compared to the estimated upper and lower bounds for the Python job respectively.
17 Files obtained by extracting all eyes closed segments from the original EDF+ files

and applying each of the 9 tested features on the extracted segments.
15 Result of 37 successive jobs instead of only one job testing all 511 combinations
16 Estimates based on data available.
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Table 3. Execution times for whole feature selection process on dataset 2 and each of
its steps

Segment extraction& Feature computation Classification only Complete feature
feature computation and formatting selection
only for classification selection

Execution Hadoop 30.35min 1h7min20s 32h25min52s9 33h33min12s
time streaming

parallel 97.9min 97.9min estimated lower bound: estimated lower bound:
Python 11 days 47min10 11days2h25min

estimated upper bound: estimated upper bound:
12 days 14h34min 12 days 16h2 min

even if it is CPU-intensive and RAM-bound (classification with all possible fea-
ture combinations). It goes to prove that a cluster of commodity hardware (15
machines with Dual core processors and only 7.8GB of RAM here) is better at
processing complex data than a single highly specialized powerful server if the
task is a series of (semi-)independent steps that can run in parallel. Hadoop has
also been shown to be able to process a national scale amount of data with a
quite small number of cluster machines. This is also a rather cheap solution: a
cluster like the experimental one costs 10000 to 20000 euros i.e 1000-1500 eu-
ros per machine as compared to above 3000 euros per machine for the type of
server used in the Python experiments. Owning a Hadoop cluster is in theory not
needed as web services like Amazon Elastic Map Reduce (EMR) offer access to
Hadoop clusters tailored for diverse processing needs. This is not doable, though,
given the sensitivity of medical data. And we can boost the Hadoop performance
further by optimizing the code we wrote by mostly reusing the Python one, via
for example, changing the Hadoop configuration parameters to solve memory is-
sues or using other Hadoop Python frameworks like mrjob or Dumbo that don’t
require map/reduce inputs and outputs to be strings passed via stdin/stdout
and should thus need less processing RAM or using machine-learning algorithms
optimized for the platform (Mahout library).

5 Conclusions

Hadoop is a promising solution for EEG storage and processing. Computation
times for complex parallelizable machine-learning algorithms are notably reduced
compared to more traditional means of computation and become manageable.
The gain in computation times grows with data amount to process, Hadoop
scaling easily with national scale data. So it would seem that it is better to
process data with many commodity machines rather than with one extremely
powerful server, when the processing task is parallelizable. In future, we would
like to extend this work to other medical data types such as MRI or CT and
study how to integrate data from computations run on diverse types of medical
data (e.g. MRI and EEG). We would also like to run more tests on medical data
querying (especially natural language querying). And Hadoop data security also
needs to be explored further.
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Abstract. In the continuing goal to merge the fields of computational
neuroscience with medical based neurodiagnostic clinical research this
paper presents advancements on machine learning Big Electroencephalo-
gram (EEG) Data. The authors’ clinical decision-support systems (CDSS)
presented in previous work was able to distinguish, within minutes,
pathological oscillations hidden in terabytes of complex signal analy-
sis. This paper presents training and learning elements that compliment
and advance this previous work. This paper shows how perceptrons,
that predate modern-day neural network constructs, remain relevant in
many modern classification applications where a clear linear separation
is present in the data. Furthermore, the perceptrons also compliment the
domain adaptation covariant shifts later used when the system is used in
the neuroICU (Intensive Care Unit). Accordingly, we present supervised
learning for the neuroICU using single-layer perceptron classifiers.

1 Introduction

In a healthy human brain there is a precise interaction of neural activities that
renders multiple types of normal oscillatory synchronization [1] [2] [3] [4]. Con-
versely, when one develops a neurological illness (pathology) this synchronization
is disrupted where some of these disorders have hypersynchronous oscillations
while others have general alterations in synchronization. These abnormal syn-
chronization processes are found in the pathological oscillations associated with
several neuropsychiatric disorders including epilepsy [5], acute brain injury [6],
Alzheimer’s [7] [8], autism [9], post-neurosurgery Intensive Care Units (ICU)
seizures [10], stroke [11], schizophrenia[12], dementia [13] and, in particular, basal
ganglia disorders such as Parkinson’s disease [14]. Additionally, both the afore-
mentioned pathological states and normal states have superimposed noise and
artifact that a robust machine learning system needs to discern and ignore. Ac-
cordingly, we present advances in neuroclustering that convert Big EEG Data
into a machine learning state that will improve the efficiency of learning and
detecting these aforementioned pathologies.
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In previous work the authors have shown that theoretical domain adaptation,
which seeks to relate patterns in new patients to those in the larger established
database, has shown some promise for neurosurgeons where there is a critical
need to have the learning performed on a large previous distribution of neuro-
ICU patients and then quickly train on a new neuro-ICU patient [15] [16] [17]. If
the issue of using domain adaptation was resolved, the second challenge would
be to overcome the complexities of EEG signals in the human brain in order
to develop classification rules which can accurately detect pathological oscilla-
tions. These complexities include the subjective nature of what constitutes a
pathological oscillation [18], and the huge dimensionality of the human brain,
which has approximately 100 billion neurons each having about 1,000 connec-
tions (synapses)[19]. Moreover, neurological pathological activity may manifest
itself differently from animal to animal or individual to individual [20] [21]. Be-
cause of this, it is necessary to not only collect large distributions of data sets
in order for a machine to learn, but also a unique set of classification rules for
each individual.

1.1 Big EEG Data

The authors are focused on developing a system to monitor patients recover-
ing from surgery in the neuroICU ward. A single central server will need to be
capable of monitoring and detecting pathological oscillations in all the patients
from all the neuroICU wards across the country. Each day 320 neurosurgeries are
performed in the US [22] where the average stay is for three days, Each patient
is monitored with either sub-dural or dural electrodes at 1200 hz on 21 channels.
This means that at any time there are 320 x 3 = 960 patients being monitored
x 21 channels = 20,160 channels operating at 1200 hz = 24 million signals per
second need to be disseminated and identified as pathological or artifact. Fur-
thermore, these 24 million signals per second need to be constantly compared
against hundreds of terabytes of stored neuro data from previous clients.

To overcome these challenges the authors have developed a system called
neuroClusteringTM that is capable of dynamically ignoring artifact and convert-
ing complex signal analysis (see Fig.1 §I) into singular x, y points that constitute
machine-learning-friendly clusters (see Fig.1 §III) . This is illustrated in Fig.1
where in a domain of time versus amplitudinal strength (see Fig.1 §II-c) in EEGs
of a person during seizure (pathological oscillations also include specific types of
oscillations neurosurgeons are interested in), artifact remain stationary in contin-
uous clustered segments (see Fig.1 §III-i) while pathological oscillation activity
should move in contrast thereof (see Fig.1 §III-k). To validate the hypothesis one
needs to show that random amplitudinal distribution of artifact should be low
during periods of normal neural activity because it is not coherent. The authors
have already started patenting, and illustrated in detail, this technique, called
neuroClustering, [23] [24] [15] and it is therefore not the subject matter of this
paper.
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Fig. 1. neuroClustering: (Illustrates portion of patient’s original EEG shown in §I. S
II illustrates the 3 steps of neuroClusteringTM which yield the final neuroClusterTM of
the patient. §I-a shows shows one of the 18 EEG signals. §I-b illustrates one portion of
the EEG extrapolated in §II-c which is with a spline to extract � time§II-d and ampli-
tudinal area values §II-e. Each point in §II-f represents one instance per 0.333 seconds.
§III-h is the centroid of cluster in §II-g & II-f and is instantiated onto §III showing
the point at §III-i which is in the normal cluster §III-j & §III-k being a pathological
oscillation and §III-l being artifact.

2 Classifying Feature Clusters

We begin training the system with a typical EEG as shown in Fig.2(a). After
applying the neuroClustering algorithm, we see the results instantiated on the
scatter plot as shown in Fig.2(b). The window at the bottom contains a black
line bisected by a red line. This black line is called the feature line; it represents
the temporally sequential layout of the scatter plot above it. The bisecting red
line running through the feature line is a running average of that line, and
is referred to as the feature threshold ; anything falling below this threshold is
automatically ignored by our identification algorithm. As Fig.2(c) and (d) show,
the feature line is used by the users (human clinical experts) of the system to
classify pathological as well as non-pathological oscillations.

The next step in classification is for the user to click inside desired segments
above the feature threshold to be assigned a classification. For example, if a
user identifies a seizure, and wishes to classify it as such, the user will click on
the related feature that rises above the feature threshold, at which point the
program fills in the clicked area with a shade of white as shown by arrow 1 in
Fig.2(c). Note that the individual cluster points associated by this white shaded
area are highlighted in a new color, in this case purple. This cluster is known
as the feature cluster. Additionally, upon selecting the feature area below, the
centroid to the feature cluster is calculated and displayed in red, as indicated by
arrow 2 in Fig.2c). This cluster can now be classified, and later used to train the
system.
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In this example, the user designates this particular feature cluster as being a
seizure. The user may also select other surrounding segments that are artifact
and classify them as such, arrows 3 & 5 in Fig.2d, that instantiate two new
centroids shown by arrows 4 & 6 in Fig.2d. In this example, the system has
now classified one pathological feature cluster and two non-pathological feature
clusters. With these feature clusters marked, we can now continue on to training
the system as shown in Fig.3.

(a) (b)

1

2

(c)

3

4

5

6

1

2

(d)

Fig. 2. Classifiying pathological oscillations vs. artifact: Original EEG compris-
ing both a pathological oscillation and artifact (a), converted to neuroClusters (b),
classifying a pathological oscillation (c), and classifying artifact (d).

3 Linearly Separable Attributes in Feature Clusters

After user has finished classifying pathological and artifact as illustrated in
Fig.2(c) & (d), those feature clusters are stored so that the information can
later be used to train the system. The system will be trained against two dif-
ferent single-dimensional hyperplanes based on two-dimensional (X,Y), linearly
separable attributes culled from these feature clusters. The first hyperplane is
based on two attributes: the are length (X) vs. feature area (Y). These two at-
tributes, when used together, have high covariance above the feature threshold.
Turns out that the covariance between X and Y is different between patholog-
ical feature clusters and artifact feature clusters; therefore, the data is linearly
separable in most cases. The second hyperplane has similar properties to the
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first, and incorporates two additional features: cDistance and pCount. cDistance
is a number indicating the average distance between a feature cluster’s points
and its centroid, while pCount is simply the number of points a feature cluster
contains. If we take X= pCount

cDistance vs. Y= area
cDistance , together these features give

us data that is linearly separable.

4 The User Training Tool

The system’s training tool, as shown in Fig.3 (a), instantiates a plot of all
the previously classified feature clusters, which includes both pathological and
artifact. This is illustrated by all of the selected feature clusters having checks
as shown on the left hand side (see Fig.3 (a) arrow 1). Staying on Fig.3 (a);
arrow 2 points to the blue points which represent the pathological oscillations
classified in Fig.2(c) & (d) while arrow 3 points to smaller green points that
represent artifact in Fig.2(c) & (d). Upon selecting the“train” button on the
bottom left-hand corner of the training tool, the system calculates the linear
classifier that separates the feature clusters, illustrated by the red line pointed
to by arrow 4. In this particular case though, the data is distributed linearly in
one easy-to-discern set of pathological feature clusters to the right of the line
and another on the left-hand side of the line representing artifact.

Considering that the classifier line in the hyperplane shown in Fig.3 is a line
that was trained on the feature area (X) versus arc length (Y), there may be
times when there is conflicting pathological oscillations and artifact in the plane
that cannot be differentiated one from the other. This prevents the learning
algorithm from converging, thus rendering it unable to create a hyperplane. In
these cases we can deselect the outliers in this plane that are classified as artifact,
excluding them from the training set, as shown in Fig.3(b). While this allows
convergence in this plane, the system is now vulnerable to misclassification,
potentially causing false negatives or false positives.

For this reason,wemust also train against the other plane based onX= pCount
cDistance

vs. Y= area
cDistance , including the artifact that was excluded from the previous plane.

Creating a hyperplane here allows us to express the difference in density between
pathological feature clusters and feature clusters representing artifact. Therefore,
if the perceptron trained on the first plane activates on incorrect information, the
second perceptron is very likely to not activate on that information in the second
plane, which greatly reduces the likelihood of false positives (see Fig. 3(b)).

5 The Perceptron Learning Algorithm (PLA)

There is limited use for a single-layer perceptron having only two inputs, as this is
typically a scenario designed for teaching students in an academic environment;
however, our approach clearly demonstrates that the simplest of constructs can
indeed be a potent annex. Much of the motivation behind this implementation
is based on the notion that complexity should be introduced into a system only
when the simplicity of that system impedes the production of meaningful results.
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Fig. 3. Training Window: (a) Listed trained elements (arrow 1), Pathological oscil-
lation (arrow 2), artifact (arrow 3) and perceptron classifier (arrow 4) b Different data
in same plane, but showing elimination of outliers from the plane in the foreground.

Our version of the perceptron was purposely limited to two dimensions, as we
only require a single dimension hyperplane for data classification. Once trained,
the perceptron formula h ∈ H is expressed as:

h(X) = sgn

((
2∑

i=1

WiXi

)
+ θt

)
(1)

where θt is the bias and Wi is the weight vector. Converting to vector form, the
perceptron definition becomes h(X) = sgn(WTX+ b) where the sgn function is
the binary decision maker, concluding the algorithm:

sgn(x) =
{

1 if x > 0
−1 otherwise (2)

The perceptron algorithm lends itself well to supervised classification. Our
learning algorithm accepts a set of input vectors X where each vector has a pre-
determined classification (created through the classification tool), pathological
oscillation (1) or artifact (-1), as training data. The predetermined classifica-
tion is considered the desired output of sgn(x). The algorithm receives user-
identified training data constructed using the software’s classification tool. As
Fig. 3 demonstrates, the algorithm creates a single-dimensional hyperplane upon
convergence. This is accomplished by adjusting weight vectors and a bias until
the algorithm correctly classifies each element in the training set - i.e. the inde-
pendent classification of sgn(x) matches the desired output states. To contend
with the possibility of non-convergence, we limit our algorithm to a specified
max epoch where, if reached, the algorithm is abandoned, and therefore never
converges; the training data is considered not to be linearly separable.
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Algorithm 1. Perceptron Learning Algorithm (PLA)

Accepts: training vectors X[], float learningRate, int maxEpoch
Returns: weight vectors W[], bias
Initialize variables, use arbitrary weights to start
W[1]=1.0f, W[2]=1.0f, float bias=0f, int epoch=0, float accuracy=0f
while (epcoh <maxEpoch and accuracy �= 1) do
for each vector vx in vectors X do
(y ← sgn((W [1] ∗ vx.X) + (W [2] ∗ vx.Y ) + bias)
if (y �= vx.Class) then
make adjustments for the next pass
bias← (bias+ (learningRate ∗ vx.Class) ∗ 1)
W [1]← (W [1] + (learningRate ∗ vx.Class) ∗ vx.X)
W [2]← (W [2] + (learningRate ∗ vx.Class) ∗ vx.Y )

end if
check accuracy and increment epoch
accuracy ← ComputeAccuracy(X,W, bias)
epoch++

end for
end while

6 The Data Attributes

To recap, our identification process incorporates two individual, single-layered
perceptrons each trained against a different plane culled from the resultant data
found in our scatter plot. The first perceptron is trained against vectors repre-
senting feature area over the arc length of the feature cluster. The feature area is
derived from the temporally sequential graph of the scatter plot where the points
are between when the graph first crosses above the feature threshold line and
when if falls back below the line. Fig.2(c) illustrates this in the white highlighted
area pointed to by arrow 1. In this case the summation of the Trapezoidal Rule
was applied to calculate the approximate area: TRAP = (LEFT+RIGHT)/2

b∫
a

f(x) dx ≈
n∑

i=0

(
f(xi−1) + f(xi)

2

)
Δxi (3)

This was favored over performing actual integration, since the level of accuracy
obtained through the integral was deemed unnecessary and expensive. The arc
length calculation was performed using the summation of Euclidean distance
between vector positions over the course of an event:

d(q,p) =

√√√√ n∑
i=1

(qi − pi)2 (4)

Fig.2(c) illustrates such an event where arrow 2 directs attention to the points
in purple belonging to the highlighted cluster. A high degree of covariance exists
between the area and arc length during events surrounding pathological oscilla-
tion, showing vectors as being farther away from the origin. For artifact, area
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tends to progress more slowly relative to arc length, forcing vectors to remain
closer to the origin. Using our data, we discovered that even with reasonably
good training in this plane, the degree of false positives can be as high as 15%
in signals containing a high degree of noise combined with artifact.

The authors introduced another perceptron based on a different plane that
would examine additional attributes after the first perceptron activates. Here we
trained the second perceptron on attributes: feature area over average distance
from centroid vs. point count of the feature cluster over average distance from
centroid as shown in equation 4. This data allows the perceptron to gauge the
density of the cluster being evaluated.

7 Experiments

The authors’ goal was to validate the hypothesis that single-layer, two-
dimensional perceptrons could, in fact, be trained to identify pathological brain
oscillations with a high degree of sensitivity and precision. Our experiment was
set up using a customized software suite built and tailored specifically for this
research. The dataset consisted of twenty-two EEG files that spanned almost 120
days of data collected from four individual laboratory rats, and amounted to over
forty-two gigabytes in total size. All of these files were processed through our
software algorithms. For this experiment, data normalization was not performed.

It should be noted here that during the perceptron training process, it was nec-
essary to modify the training set several times per animal. Because our percep-
tron algorithm does not produce an optimal hyperplane, it is easily overtrained
so that there exists no optimal margin between the two classes of data. In most
cases, less training data worked best so long as the sampling was good, keeping
the training set to an average of five seizures and fifteen non seizure events. The
algorithm processed one tenth of the data, which was then re-examined by the
trainer for sensitivity, precision, and effectiveness. After the trainer identified
false positives, and/or false negatives, several of those misclassified events were
used to re-train the system. This process was repeated up to three times per rat
before the entire dataset was processed, after which we recorded the final results
of the experiment; they were as shown in Table 1.

8 Results

This experiment was performed using data from epileptic rats, however, this
research is aimed towards addressing human epileptic seizures. Human data,
while similar to the rat data, has its own set of challenges with respect to artifact
and epileptiform pattern drift. There were a total of four animals for which EEG
data sampled at 1000 Hz was analyzed. The animal subjects were labeled 246,
288, 307, and 309. In addition to the EEG data were Excel spreadsheets, created
by trained researchers, identifying all the seizures within each file for each animal.
The goal here was to have the system automatically identify epileptiform activity,
and match all of the seizure entries perviously identified by trained researchers
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contained in the spreadsheets for each animal. To ensure proper comparison to
other seizure identification methods, a standard of performance measurement
was adopted here:

– True positive (TP): correctly classified as an epileptiform event.
– True negative (TN): correctly classified as a non-epileptiform event.
– False positive (FP): incorrectly classified as an epileptiform event.
– False negative (FN): incorrectly classified as non-epileptiform event (a miss).
– Sensitivity is defined as: S= TP

TP+FN

– Specificity is defined as: K= TN
TN+FP

In our results, the true negatives were not tracked. Essentially, everything not
classified as a seizure qualifies as being TN. As such, actual specificity cannot
be provided here. In its stead, we present precision: P= TP

TP+FP .
Out of the four animals, animal 246 was the most difficult to train for.

The EEG was plagued with much artifact and other anomalous frequency drift
throughout. In fact, the initial results for 246 were 89.6% sensitivity with preci-
sion of only around 85% due to false positives. In this case, a differential filter
was applied to 246 EEG. The final results for animal 246 saw improvement in
both sensitivity (95.6%) and precision (89.7%).

Table 1. Results of identifying pathological oscillations representing seizures in rats
from 42 gb of EEG data

Rat Sensitivity False Positives Precision

307 267 out of 281 = 95.00% 8 (281/289) = 97.00%

288 136 out of 141 = 96.40% 0 100.00%

246 108 out of 113 = 95.60% 12 (108/120) = 90.00%

309 311 out of 316 = 98.40% 28 (311/339) = 91.70%

Total results 822 out of 851 = 96.60% 48 (822/870) = 94.50%

Out of the 42gb of total data for all animals, 822 of the 851 pathologic oscil-
lations were identified which equals a 96.60% sensitivity. Out of the identified
pathological oscillations there were 48 false positives, leaving us with a 94.50%
precision rate. The final results for each rat are shown in table 1. The identifica-
tion routine was able to process almost 8gb of EEG per hour. This performance
isn’t all that bad, but can be improved upon in a big way. The current sys-
tem places a lot of processing power towards displaying graphical information
the entire time it is processing. If the graphical processing were taken out, it
is estimated that performance could be increased by over 2x. Other simple im-
provements to the efficiency of the algorithms could get us close to processing
the entire 42gb used in this experimentation within an hour or less.
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9 Conclusions and Future Work

The experiments show that in terms of adding a classification rule based system
onto the original neuroClustering developed by the authors is a viable option
so long as it will also be in a form conducive to domain adaptation. Utilizing
perceptrons in the manner described in this paper to aid the neurosurgeons se-
lecting what kind of pathological oscillations they are interested in and what
they want the machine to deem as artifact, has shown to be a viable option that
certainly renders the need to continue honing and refining the perceptron based
method illustrated and defined in this paper and these experiments. For our
future work we will test various thresholds in the perceptron algorithms against
large sets of data and see where the strengths and weaknesses of timing and con-
fidence levels pan out. Overall the results of these experiments are encouraging
and are a source to drill down deeper into the methodologies presented in these
experiments.
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Abstract. Efficient encoding of Roman rules is based on the neural bases of 
mathematical cognitive abilities. The present imaging studies have shown that 
information granule representing a form of Roman rules is associated with 
arithmetical domain-sensitive parietal cortex, indicating a switch from the data 
to the information granule retrieval of memory rules. So far, however, little is 
known about the developing neural substrate for the establishment of rules from 
data to information granule. The aim of the present fMRI study is to investigate 
whether and how mathematical intelligence might be enhanced from data to in-
formation granule of Roman arithmetic rules in the parietal cortex. Concerning 
the same rules, the paired t-test analysis indicated that different activation in the 
bilateral parietal lobule associated with different retrieval levels. In conclusion, 
the present study yielded some evidence that a successful model for knowledge-
building of rules is accompanied by modifications of brain activation patterns.  

Keywords: data, information granule, experiential knowledge, parietal lobule, 
mathematical intelligence. 

1 Introduction 

When we face a new problem our eagerness to solve it often leads us to accept the 
experiential response that comes to mind, so that we implement it with delay. Very 
often this will not be the most effective solution available. The best approach, particu-
larly with conceptual rule problems, is to form an information granule from which we 
can perfectly constitute the rule of data and associated semantic information fusion [1]. 

                                                           
* Corresponding authors. 
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Cognitive and psychological studies converge in the view that the experiential 
knowledge can influence problem perception [2, 3]. So far, only a few functional MRI 
studies have investigated the information processing machines of arithmetic learning 
along with the parietal areas [4, 5]. These results support the view that the parietal 
regions are associated with mental operations including guessed results (data retrieval) 
based on background knowledge [6]. From previous studies, the inferior parietal lobule 
contributes to attentional selection and orientation for a number processing circuit [7]. 
The right inferior parietal lobule has been specifically linked to the representation of 
quantity [8] and relatively specific for episodic memory [9]. The stronger activation 
within the left superior parietal lobule in mnemonic retrieval has been interpreted as 
reflecting attentional processes differentially engaged as a result of perceived familiari-
ty [10]. It can be concluded that the network involved in skilled mathematics perfor-
mance in educated adults has been well established. 

The present study investigated how information granule is formed by comparing in-
formation rules (after learning, namely post-test) with syntax and semantics to data 
rules (before learning, namely pre-test) with background knowledge using the same 
tasks (e.g. III×VII) during fMRI. On the practice phase, participants were asked to 
learn the Roman rules, and produce the result from memory to solve Roman arithmetic 
tasks with two-digit Roman operators. These were presented on a computer for a total 
duration of approximately 2 h before entering the second scanner (post-test). In pre-test 
(before learning), rules with data form (without syntax and semantics and with back-
ground knowledge) showed greater activation in the right parietal areas, right angular, 
right precuneus and left precueus (BA 7/31) than information granules of the same 
rules subsequently. Granular rules, on the other hand, showed greater activation in the 
left superior parietal lobule and the left precuneus (BA 19) than rules with data form. 
This shift of activation within the parietal lobe from a set of subareas in parietal cortex 
predominance to another set of subareas in the parietal cortex was interpreted to 
represent a shift from processing unsure symbolic relations to processing sure symbolic 
relations. The post-test could show that the observed relative decrease of action in the 
right parietal areas was specifically related to semantic and logical relations among 
elements in a Roman problem. This finding was interpreted to be because of uncertain 
relations between elements for the choice of a dominant background strategy as a solu-
tion strategy for tasks with data form. It is more likely that training effects in rules 
resulted from the storage of interdependencies among elements. A study on retrieving 
the simpler mathematical fact [6] also indicated that the parietal areas are closely 
linked to the representation of information stored in encoded memory. These results 
suggest that training leads to different brain activation patterns in the encoding of 
memory depending on background knowledge as well as on the time of training. 

The studies reviewed so far investigated information- encoded changes in brain ac-
tivation patterns once learning had taken place. It is unclear, however, how the storage 
changes take place from data to information granule. In the present brain imaging 
study, the process of encoding itself is investigated for healthy participants performing 
a Roman task. The twice tests investigated here consisting similarly of 28 Roman trials 
(e.g. III×VII), took place during the scanning session itself. Training consisted of a 
large number of tasks with two-digit Roman operator (e.g. XII×IX) in a higher fre-
quency of repetition for one set of problems until participants had mastered them per-
fectly. After training, subjects took part in a post-test scanning. A difference between 
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an information granule retrieval test and a data retrieval test is that in the previous stu-
dies, the comparison was between data retrieval (unstored rules) and granule retrieval 
(rules to be stored in memory) in decision-making processes [11] while in the present 
study the problems solved were compared data to information by mathematical rules. 
In particular, we expected to specify the nature of the information granule processes 
mediated by parietal and other brain regions. We did so by measuring in data and gra-
nular tasks not only the effects of background knowledge on neural activity but also 
the effects of accumulated information. Although the same tasks could explain greater 
activity for data than for information retrieval, these two ways of same rules retrieval 
can be expected to have different effects on accuracy.  

2 Method 

2.1 Participants 

Eight of twelve right-handed healthy young adults (5 female, mean age=23.6±3.3) 
performed both pre-test (before learning, namely data retrieval) and post-test (after 
learning, namely granule retrieval). All were right-handed and native Chinese speakers 
with normal or corrected-to-normal vision. Written informed consent was obtained 
from all participants in accordance with the Ethical Commission of MRI center of 
Beijing Normal University. Participants received monetary in compensation for partic-
ipation. One subject was omitted because of unsuccessful data acquisition and exces-
sive head motion. Two subjects were removed from imaging analyses due to correct 
answer exceeding 90% and one other subject was removed due to body reason without 
the recording of the second imaging data. This fMRI resulted in 8 subjects for imaging 
analyses. 

2.2 Stimuli and Procedure 

The entire experiment was divided into three phases: the first phase involved acquiring 
functional MRI data for unknown rules guessing; the second entailed learning and 
training until mastering the Roman rules perfectly; and the third phase involved obtain-
ing functional MRI images during mnemonic retrieval of Roman rules. On a single 
day, a participant guessed Roman rules before learning (pre-test, namely Phase 1), 
learned and training the Roman rules (phase 2), and demonstrated the ability to store 
the rules after learning (post-test, namely phase 3). Functional MR scans were acquired 
before and after learning, and these data form the basis of the current report. 

The subject response recordings were performed using E-Prime software package. 
The participants’ task was to guess and solve the same 28 Roman problems in a  
scanner (i.e. V× VII). In a previous study, Masataka et al. had investigated that the 
neuronal correlates of reading Roman numerals and the results revealed that the alpha-
betical symbols had numeric meaning [12]. To examine neural mechanisms of Roman 
rules, we present a set of stimuli repeatedly and examine how the brain‘s response to 
the same rules change over time. 

Twenty-eight Roman rules made up the fMRI test. Making the two tasks for the 
comparison of memory encoding the same ensured that the differences in results  
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between data and information granule retrieval could not be due to differences between 
tasks, but were only due to the quality of the retrieval of information encoded effects. 
The sequence of the twenty-eight Roman problems varied randomly from trial to trial 
through the test. Before the pre-test scanning, the participants were given a tutorial on 
Roman problem guessing. On the practice phase, before post-test fMRI scanning, par-
ticipants were introduced to these Roman rules. They solved large numbers of Roman 
problems until mastering them perfectly. 

A trial began with the presentation of the red star for 0.5 s, the presentation of the 
condition items for 3.5 s, then the Roman problem for not more than 2 s and a pause 
(white cross in the center) for (5.5-RT) s (RT: reaction times of choosing answer). RT 
was measured from the onset of the presentation of the given answer. The 2 s was giv-
en to ensure that participants could complete the guess, for unknown Roman problems, 
or the solving for well-known Roman problems from the very beginning of the choos-
ing answer. During answer was presented, participants were requested to respond by 
pressing either the left or right button with right-hand for selecting right answer on a  
2-button handheld device. There was a (5.5-RT) s rest interval for before the next trials 
began. 

2.3 Magnetic Resonance Methods 

The study was performed using a 3.0-Tesla Siemens Scanner (Magnetom Trio, Erlan-
gen, Germany) with a receive-only whole head coil in the MRI center of Beijing Nor-
mal University. Firm foam padding was used in order to minimize and restrict head 
motion. Axial multisclice T2*-weighted EPI images with BOLD contrast were ob-
tained (TR=2000 ms, TE=30 ms, flip angle=90°, matrix= 64×64, 4-mm slice thickness 
and slice gap=0.6 mm, in-plane resolution 3.125×3.125 mm，33 axial slices parallel to 
anterior commissure–posterior commissure (AC–PC) plane). For anatomic localiza-
tion, a structural scan was obtained for each participant using a T1-weighted sequence. 
Scanning parameters were as follows: TR=2530 ms, TE=3.39 ms; flip angle=7°, acqui-
sition matrix= 256×256, isotropic resolution =1×1 mm. slice thickness = 1.3 mm, 
number of slices = 144. 

2.4 Data Processing and Statistics Analysis 

All preprocessing and statistical analyses were conducted using SPM8. Slice timing 
correction was first applied to the EPI images, adjusting slice timing based on the mid-
dle slice. Next, the fMR images were realigned and co-registered to the participant’s 
own T1-weighted MR images. The anatomical image was processed using a unified 
segmentation procedure combining segmentation, bias correction, and spatial normali-
zation to the MNI template [13]; the same normalization parameters were then used to 
normalize the fMR images. Finally, a Gaussian kernel of 6 mm FWHM was applied to 
spatially smooth the images in order to conform to the assumptions of the GLM im-
plemented in SPM8. 

Statistical analysis was based on the general linear model (GLM) on individual sub-
jects’ data. First-level analyses estimating contrasts of interest for each subject were 
modeled by a series of impulses convolved with a canonical hemodynamic response 



246 W. Zhao et al. 

 

function. The first-level multiple regression model included one condition at encoding 
for each participant, given by the crossing of “data retrieval” [correct and incorrect 
responses by unconfident judgment (pre-learning rules) and “information granule” 
[correct responses followed by confident judgment (post-learning rules)].  

The group analysis concerned whole-brain contrasts between stimulus-driven effec-
tive related to the retrieval of the target object by performing t tests on these images, 
treating each subject as a random effect. A within-subject paired samples t-test mod-
eled the two relevant events types [correct and incurrent trials vs. correct trials]. Our 
standard statistical threshold was set to p < 0.05, FDR uncorrected at the voxel level. 
We note that no voxels met the standard threshold on some occasions, For this, the 
results obtained when the statistical threshold is relaxed to p < 0.001 uncorrected with 
cluster-level correction for multiple comparisons at p <0.05. Region of interest (ROI) 
on the parietal voxel showed a significant effect with the MARSBAR toolbox for use 
with SPM8.  

3 Results 

3.1 Behavioral Data 

When comparing data with granule retrieval, tests revealed significant differences in 
accuracy (63.0% vs. 95.0%, t = −8.5, P< 0.0001), and not significantly different for 
button-press tasks nor for correct responses when comparing the two tasks. 

3.2 Brain Activation Patterns 

The fMRI analyses tested for regions showing an effect of successful granule after 
learning, comparing correct/sure trials (post-test) minus all trials (pre-test). This re-
vealed a significant cluster of activation in the left precuneus (BA 19)/Superior parietal 
lobule (BA 7) (x, y, z = -36, -72, 39; Figure 1). Activity in the right inferior parietal 
lobule/angular gyrus/precuneus (BA 39) (x, y, z = 45, -66, 39; Figure 1), the left pre-
cuneus (BA 31/7) (x, y, z = -6,-63, 27; Figure 1) and the left precuneus (BA 7) ( x, y, z 
= -6, -60, 39; Figure 1) at data processed whether the target object would be unconfi-
dently guessed at retrieval, highlighting confidence of stimulus processing at granular 
level. At a lower uncorrected level of significance, the reversed comparison showed 
activation also in other regions of the active network (Table 1). 

 

Fig. 1. Granule retrieval vs. Data retrieval 
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Table 1. Differential brain responses to data and information retrieval in stereotactic space 

 

4 Discussion 

4.1 Granular Effects in the Behavioral Data 

For tasks with identical stimuli, retrieving information granule is hardly any easier in 
comparison to data retrieval dependent only on experience. The difference in  
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key-pressing between data retrieval of Roman rules and information granule of Roman 
rules was not significant. The learning effects observed here are clearer than those for 
data retrieval tasks using the same rules. This might be for two reasons. First, the learn-
ing was more extensive semantic processing in information retrieval tasks than in data 
retrieval tasks. Second, perhaps more importantly, there was an additional 2 hours 
rehearsal between the two tests. The solution to coarse-grained rules could have been 
retrieved at error rate of less than 5%, and no answer could be given before the asso-
ciated output value was retrieved. The accuracy might therefore reflect the learning 
effect in the case of granular rules. 

4.2 Granular Effect in the fMRI Data 

We observed changes in activation in the left parietal areas and other brain regions due 
to training, indicating a shift from a guess associated with more effort to information 
retrieval including the correlation among elements. While data retrieval of Roman 
arithmetic tasks are assumed to be solved by mathematically skilled participants via 
retrieving the result from experiential knowledge, which may be due to a lack of know-
ledge regarding information among elements in expression. Retrieving the same  
Roman rule from granule enables the participant to connect the result from rule presen-
tations, building some or all of the intermediate associations required for the solution 
of an encoded problem. A systematic change in activation patterns consisting of an 
activation decrease in some brain areas and an activation increase in others can indicate 
that encoding induced the development of new cognitive processes or representations, 
or that the degree of logical communication of processing components involved in 
granularity has changed. The pattern of the change in brain activation observed here is 
compatible with a shift from guessing to granule retrieval for the Roman rules: parietal 
areas are assumed to support different functions necessary in mathematical thinking 
[14]. In the following, we will discuss this interpretation in detail. 

Within the left parietal areas, we observed larger activations for granule rules within 
the left superior parietal lobule and the left precuneus (BA 19). These regions are en-
gaged when information retrieval is accompanied by the recollection of event details 
[15]. The left superior parietal cortex activations have been reported to responsive to 
calculation [16], learning strategy [17], variability in experience dependent plasticity 
[18] and effect of calculation [19]. As expected, these findings suggest that develop-
mental increases in simple relational retrieving abilities are associated with a shift from 
a laborious executive and working memory towards focal activation in superior parietal 
regions associated with more automatic and efficient problem solving. In initial stu-
dies, one hypothesis is that the precuneus participates as part of the mind’s ‘eye’ to 
reinstate visual content during retrieval [20]. It has also been suggested assumed that 
precuneus activity influences elaborating highly integrated and associative information, 
rather than directly processing external stimuli [21], with an important role for precu-
neus in retrieval of episodic memory[9][22]. Here, we present evidence that the func-
tion of precuneus is particularly important for explicit representation associated with 
semantic and logical relations among elements in rules. Thus, learning increased the 
retrieval of highly correlative information among elements. 
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We further observed some region within the left parietal areas in the two tests. Acti-
vation within the left precuneus has been observed in number processing [3], and is 
assumed to cause acalculia and a selective deficit in arithmetic by lesion studies [23, 
24]. Thus, left precuneus is a brain region critical to numerical ability [25]. Given these 
findings, one would predict that data and granule rules would overlap due to their 
common reliance on experiential knowledge. The different areas observed in the two 
tests are therefore compatible with our interpretation of a shift from direct guessing to 
result retrieval for the same rules. In contrast to previous results from training study 
[26], the left precuneus also referred to as the sensory cortices, which controls the right 
hand, was found to correspond to the manual module. 

5 Conclusion 

We investigated the specificity of parietal cortex activations by directly comparing 
activity during data and information granule retrieval using fMRI. We examined 
whether activity in the left superior parietal lobule and left precuneus (BA 19) during 
high-correlation elements would be specific to the granule retrieval. Our findings sug-
gest that left superior parietal lobule and left precuneus (BA 19) activity during solving 
Roman problems is memory specific (i.e. associating elements) and is related to the 
explicit requirement of details among elements in rule processing. The results demon-
strate that the left superior parietal lobule and precuneus (BA 19) correlated with the 
enhancing of human mathematical abilities. Simultaneously, the present study revealed 
different activity: the right inferior parietal lobule, the angular gyrus and bilateral pre-
cuneus showing greater activity for data than for information granule during data and 
granule retrieval of Roman rules. The results demonstrate that this parietal region re-
sponds most strongly to manipulations of representational difficulty relying on pre-
vious experience [27]. 
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Abstract. Semantic networks inspired by semantic information pro-
cessing by the brain frequently do not improve the results of text clas-
sification. This counterintuitive fact is explained here by the multiple
inheritance problem, which corrupts real-world knowledge representation
attempts. After a review of early work on the use of semantic networks in
text classification, our own heuristic solution to the problem is presented.
Significance testing is used to contrast results obtained with pruned and
entire semantic networks applied to medical text classification problems.
The algorithm has been motivated by the process of spreading neural
activation in the brain. The semantic network activation is propagated
throughout the network until no more changes to the text representation
are detected. Solving the multiple inheritance problem for the purpose
of text classification is similar to embedding inhibition in the spreading
activation process – a crucial mechanism for a healthy brain.

Keywords: text classification, semantic networks, multiple inheritance
problem, spreading activation networks, inhibition.

1 Introduction

The neurocognitive approach to language has not led to practical algorithms [1]
in natural language processing (NLP). Semantic networks, inspired by the work
on human semantic memory, are a convenient way to store general information
about the world. Using graphical notation network nodes are identified with con-
cepts, and edges with semantic relations, allowing for direct logical inferences [2].
This seemed to be an obvious improvement over the most popular representation
of texts in form of vectors built by counting the number of distinct words in a
“bag-of-words” approach [3].
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In [4], experiments with bag-of-words, stemmed words, noun phrases, stem-
med noun phrases, key phrases, stemmed key phrases, WordNet synonyms, and
WordNet hypernyms were presented. In WordNet [5], a huge lexical database
of the English language, words are grouped together by their synonymy with
basic semantic relations between them. An artificial intelligence scholar would
call it one of the largest non-monotonic logical systems. Unfortunately, in [4]
experiments did not demonstrate the superiority of using synonyms and hy-
pernyms over a bag-of-words. Only certain combinations of phrases and words
improved results. In case of a general purpose semantic network using synonyms
and hypernyms does not help much. This was unacceptable and non-intuitive
for many researchers. How can adding knowledge to a representation based on
a simple word count degrade text classification performance? Isn’t adding such
associations the key to how brains work?

Let us think of a simple example: “Humans have two legs”, “John is a hu-
man”, “John has one leg”. In this semantic network, ”John” inherits multiple
contradictory properties: having one leg and having two legs. Such a small se-
mantic network exposes an important fact: in real life not all assertions about
the world are true all the time. In such cases, how should the knowledge encoded
in a semantic network be used for inference? While episodic memory may come
to rescue [6], it would lead to significant complication of the algorithm. It took
many years to find the answer to this problem. In essence, a general purpose
semantic network must be pruned before it may be used to enhance a text rep-
resentation. From the artificial intelligence and NLP perspective, one needs to
solve the multiple inheritance problem before using a non-monotonic knowledge
representation system.

Inspired by many findings relevant to neurolinguistics [7–9], our goal is to
create a neurocognitive language processing approach inspired by the spread-
ing neural activation over a large semantic brain network [6]. Thus far, we have
developed a practical method for pruning semantic networks in a way that im-
proves the results of text categorization. Our algorithm spreads activation from
one term to the other, inferring facts not present in the text, but preserving only
those facts that improve text classification, avoiding unnecessary inheritance.
In this way relevant “pathways of the brain” [1] are discovered. We will show
that text classification with a pruned semantic network is significantly
better than a baseline model, while using entire network does not lead
to improvements.

2 Background and Significance

Text classification is pursued by the statistical machine learning community;
the term “multiple inheritance” comes from the field of artificial intelligence.
Textbooks on artificial intelligence mention statistical learning, but the converse
is rarely true. The multiple inheritance problem has been rarely addressed in
literature on text classification. Google Scholar cites over 10,100 articles that
mention “text classification” and some version of a semantic network. Only 127
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Table 1. Text classification with semantic networks started in 1998 and continues
today. This table summarizes only the early work. Multiple sources were used to create
semantic networks, but none of the papers addressed the multiple inheritance problem.

Publication Task Semantic Network Data set Algorithm

[11] Categorization WordNet Reuters Ripper
— — WordNet USENET Ripper
— — WordNet Digital Tradition Ripper
[12] Clustering WordNet Reuters K-center
[13] Clustering WordNet Reuters K-center
[14] Categorization WordNet Reuters SVM
— — WordNet Amazon SVM
[15] Clustering MeSH PubMed K-center
— — MeSH PubMed Hierarchical
— — MeSH PubMed Suffix Trees
[16] Categorization Wikipedia Reuters SVM
— — Wikipedia OHSUMED SVM
— — Wikipedia 20 Newsgroups SVM
— — Wikipedia Movies Reviews SVM
[17] Categorization WordNet Reuters AdaBoost
— — WordNet OHSUMED AdaBoost
— — MeSH OHSUMED AdaBoost
— — AgroVoc FaoDoc AdaBoost

of them mention “multiple inheritance”. That is not to say that the term “mul-
tiple inheritance” is unknown to the language processing community. There are
over 1,600 articles on “multiple inheritance” and “semantic networks”. Most of
them, however, discuss semantic similarity and dismiss the multiple inheritance
problem by taking maximal, average or minimal paths between two terms [10].
Semantic similarity will not be discussed in this paper, the focus will be on text
classification using semantic networks.

Typical work in this field follows four steps: choose a semantic network, match
words from text with the elements from the semantic network, expand the text
representation by adding or replacing semantically related elements, and then
classify documents using the expanded representations (see Table 1). Using this
scheme various research groups made important observations.

In [11], it was shown that more general terms give better categorization than
less general terms. The optimal level of generalization, however, was different
for each data set. In [12], the same was shown for clustering. In addition, it
was concluded that it is better to keep terms from lower levels of hierarchy
rather than just replace them with terms from higher levels. In [13], the results
from [12] were replicated and mapping terms from WordNet was further studied.
It was found that ambiguities present in WordNet might render it useless when
adding hypernyms. It was concluded that part of speech tagging is insufficient for
disambiguation of word senses. Taking the most frequent meaning, as in [12], is
helpful but clearly not sufficient. In [14], mapping text to WordNet was improved
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by using the Steiner tree cost. The effect of sample size on levels of generalization
was studied. First, it was found that adding hypernyms works better for small
data, but the depth of generalization does not show any regularity. Second, it
was discovered that as the sample size is increased, the behavior of different
depths stabilizes and converges, but at the cost of decreased improvements.

WordNet was not the only source of adding semantics. In [15], Medical Subject
Headings (MeSH) was used for representing the text and improving clustering.
In [16], Wikipedia was used as a semantic network: Wikipedia’s articles became
concepts and links from the articles to most similar web pages became associative
relations. In [17], WordNet, MeSH, and the United Nations Food and Agricul-
ture multilingual agriculture thesaurus (AgroVoc) were used with marginal text
categorization improvements.

Work in the early years of text classification with semantic networks lacked
a mechanism vital to the healthy brain: inhibition. Google Scholar cites around
46,000 publications on inhibition in brains. Brain studies show that inhibition
is crucial for normal functioning of associative memory [18], and too low inhibi-
tion may lead to epilepsy, schizophrenia and a “formal thought disorder” [19].
Surprisingly, the neurofunctional and neuroanatomical “lack of inhibition” has
a long-lost brother in the field of artificial intelligence: the multiple inheritance
problem in non-monotonic reasoning [20, p. 206]. A machine retrieves all related
nodes from a semantic network with the same conviction as a patient with a
formal thought disorder. Inheritance along all edges cannot be allowed because
not every fact about the world is true or relevant in a given context. General
solutions like “default logic”, “circumscription”, or “truth maintenance systems”
require inference with negations, rules for overriding default values, closed-world
assumption, or infinite computing power [2]. These requirements make them
unsuitable for the large semantic networks that are currently available for auto-
mated text processing.

Evidently finding the ideal solution to the multiple inheritance problem is
going to be quite difficult. In this paper an algorithm is proposed that removes
just enough inference paths to significantly improve text classification perfor-
mance. We contrast it with a scenario where no pruning of semantic network is
done, and problems due to the multiple inheritance cancel advantages of added
semantics, making classification improvements statistically not significant.

3 Databases and Document Collection

OHSUMED. The OHSUMED document collection, named after the Oregon
Health and Science University School of Medicine, was created to benchmark
information retrieval algorithms. It contains 348,566 PubMed papers published
between 1987-1991 in 270 medical journals [21]. All papers have titles but only
233,445 have abstracts of an average length of 167 words. The papers have
been manually indexed with 14,626 distinct Medical Subject Headings (MeSH).
There are on average 253 papers per one MeSH. The inter-indexer consistency
measured using 760 papers was between 61%-75% [22]. The challenge is to create
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Fig. 1. Example of spreading activation matrices using semantic network with and
without a solution to the multiple inheritance problem. The top right matrices show the
features space and distances after entire semantic network has been applied (Figure 2
with all nodes and edges). The bottom right matrices show the feature space and
distances after solving the multiple inheritance problem (Figure 2 without the dotted
nodes and edges). Documents cluster according to the class labels only if the pruned
semantic network is used.

an automated system that will do the indexing with competency comparable to
human experts.

Researchers have created many such systems [23–25]. It is rare that someone
would use all the data to develop and benchmark an algorithm but there is no
consensus on how to split the data. One might say that the “Heart Diseases”
(HD) subset is a common one. It has 12,417 training instances (years 1987-
1990), 3,630 testing instances (1991 year), and 119 MeSH codes. The multiple
inheritance problem is very complex so for clarity we have reduced the data set
down to just ten MeSH codes. 4 of them, “endocarditis, bacterial”, “aortic valve
stenosis”, “heart neoplasms”, and “mitral valve stenosis” are used to develop the
edge/node pruning algorithm and 6 of them, “mitral valve insufficiency”, “atrial
fibrillation”, “aortic valve insufficiency”, “cardiomyopathy, hypertrophic”, “car-
diomyopathy, congestive”, and “heart arrest” are used for final benchmarking.

The UMLS Metathesaurus. The Unified Medical Language System (UMLS)
is a set of tools, websites and databases created and maintained by the National
Library of Medicine, a division of U.S. National Institutes of Health. The UMLS
has two main components: implementation resources (software) and knowledge
sources (databases). We are interested just in one knowledge source - Metathe-
saurus - and one implementation resource - MetaMap. In particular, we used the
2009AB version of the Metathesaurus as a source of medical semantic data and
the 2009 version of MetaMap Transfer (MMTx) to map PubMed abstracts and
titles to UMLS Metathesaurus medical concepts. After parsing the HD data set,
MetaMap discovered 21,127 unique concepts out of the 2,181,062 available in
the Metathesaurus. Every concept had to be part of one root branch of the se-
mantic network: “clinical finding”, “body structure”, “substance”, “procedure”,
or “pharmaceutical”, otherwise the concept was discarded.
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The 2009AB version of the UMLS Metathesaurus is a conglomerate of 101 in-
dividual biomedical semantic networks, also called “source vocabularies”. Each
sub-network has its own set of concepts and relations; when these are com-
bined, it contains 26,762,104 relations. We followed the 21,127 concepts present
in the HD data set along the following edge types: “other related” (RO), “related
and possibly synonymous” (RQ), “similar or like relationship’ (RL), “children”
(CHD), “parent” (PAR), “broader” (RB), “narrower” (RN), and “source as-
serted synonymy” (SY). After 14 steps of spreading activation, we reached all
2,131,301 semantically related concepts using 11,250,022 distinct connections1.
As a solution to the multiple inheritance problem, we proposed an algorithm that
reduces the 11,250,022 connections to a bare minimum that improves automated
indexing of PubMed citations.

4 Problem Identification and Methods of Solution

The Multiple Inheritance Problem. Let’s start with an illustrative text
categorization problem. There are four documents, each containing just one of
the following medical terms: “aortic valve insufficiency”, “aortic valve stenosis”,
“mitral valve insufficiency”, “mitral valve stenosis”. Let’s say that the first two
documents belong to the class “A” and the other two to the class “B”. The vector
space representation would look like the first matrix on the left in Figure 1.
There would be equal distances between all documents, offering no learning
generalization. Let’s assume now that the four terms come from a semantic
network like the one in Figure 2. As with every medical dictionary, a disease
can be categorized by a location or by a pathophysiology. That is the case in
our “small world” example: each disease inherits two concepts. Even though
the inheritance by location and by pathophysiology is always true, it is not
always relevant to the categorization task at hand. If unpruned network is used
(Xt+1 = XtR) the distances calculated for enhanced representation do not lead
to good clusters (upper right matrix in Figure 1), and will lower the chances of
correct classification.

On the other hand, if the relative frequency of a medical term in a class is
used to denote its belongingness, we would find that certain edges connect med-
ical terms from opposite classes. When that happens, documents from opposite
classes become more similar and less distinguishable. In our example, connec-
tions to “valve insufficiency” and “valve stenosis” come from opposite classes.
This situation can be repaired by removing at least one edge connecting “valve
insufficiency” and at least one edge connecting “valve stenosis”. Removing both
edges will allow for removing also the nodes “valve insufficiency” and “valve
stenosis”. This leads to a reduced semantic network shown in Figure 2, with-
out the elements marked with dotted lines. Spread activation (Xt+1 = XtR

′)
in the pruned network leads to a representation of documents from the same

1 CHD = 2,137,767; PAR = 2,137,767; RB = 1,087,501; RL = 34,066; RN = 1,087,501;
RO = 5,304,808; RQ = 287,280; SY = 49,846.
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Fig. 2. Semantic network with an imposed document/term classification task. First,
relative frequency is used to assign class to a node (see Figure 1). Second, edges that
connect nodes belonging to different classes are identified. Third, conflicting nodes and
edges (marked with dotted lines) are removed. This procedure prunes the semantic
network, solving the multiple inheritance problem in text classification tasks.
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Fig. 3. Generalized semantic network with an imposed document/term classification
task. Just by using relative frequencies we identify four types of nodes that receive
activation and eight types of edges that carry the activation. We can empirically check
which edge-pruning procedure improves the text classification task and use it as a
heuristic solution to the multiple inheritance problem. Edges are enumerated in the
order of their performances in Table 3.

class grouped tighter than documents from opposite classes (lower right matrix
Figure 1). Is there a way to do this programmatically on a larger scale?

Edge Pruning. The conflict and non-conflict edge types shown in Figure 2, can
be generalized for any binary classification problem. Let’s call the positive class
“this” and the negative class “other”. The relative frequency will be used
to assign class to a node. If we include spreading activation, it will give us four
types of nodes: an old node belonging to the class “this”, an old node belonging
to the class “other”, a new node belonging to the class “this”, and a new node
belonging to the class “other”. If we exclude feedback loops, we will have eight
edge types that connect the four node types, as shown in Figure 3. The learning
process in a given context (here text categorization) should empirically determine
which semantic associations should be inhibited. Therefore in the training phase
a check is made to see if any improvement will result from removal of selected
edge types. This will indirectly show whether the distances between vectors
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representing documents change in favor of or against the two-class separation.
This is not an ideal solution, where all unnecessary nodes are removed, but it
offers sufficient separation. Such pruning method allows for unattended spreading
of concept activations.

What is meant here by “unattended spreading activations”? Let’s say that
f is a Heaviside step function. Our goal of pruning the semantic network is to
get a map, Xt+1 = f(XtR), that can be applied to the data iteratively until
the document/term matrix stops changing Xn+1 = Xn for n � 0. This means
that the pruning process has to be iterative. Let’s say that P i is a function that
removes one type of edge, then R′ = P i(Xt+1, Xt, R). If R′ �= R, then some
edges were removed, and we need to reset the training matrix Xt := X0 to its
initial state. We keep applying P i(Xt+1, Xt, R) and resetting Xt until R′ = R
for all t. Once the pruning procedure P i is completed, the next procedure, P j ,
is done, and so on. Which pruning procedures improve text categorization and
the order in which pruning is applied should be empirically determined.

Text Categorization. After final representation is generated classification is
done using the support vector machines (SVM) with cosine kernel. This way
SVM becomes insensitive to very short or very long documents. Cosine kernel
SVMs have only one parameter that has to be tuned by the user: “cost” of
regularization. This parameter has been optimized checking results for its values
from 2−1 to 25 with 20.25 increments. All features are binary: the text either
mentions the concept or it does not. The best models were selected using a
16-fold cross-validation, with classification quality measured by the F1 score,
a harmonic mean between precision and recall. Once the best model with the
best pruning procedure was selected, it has been used for the final testing. All
spreading activation models were compared to a model without the feature space
enrichment and tested for significance.

Final Testing. The statistical significance of the F1 score improvement is mea-
sured using a paired t-test [26]. For each classification label we have a total of 17
F1 scores for the baseline model and the same number for the enhanced model,
resulting in 17 pairwise comparisons. We used “endocarditis, bacterial”, “aortic
valve stenosis”, “heart neoplasms”, and “mitral valve stenosis” to find the best
pruning procedure. Then we added “mitral valve insufficiency”, “atrial fibrilla-
tion”, “aortic valve insufficiency”, “cardiomyopathy, hypertrophic”, “cardiomy-
opathy, congestive” and “heart arrest” to see if the improvement generalized
over different labels, a total of ten labels. Thus, the t-test across all experiments
has 170 pairwise comparisons. The Pearson correlation coefficient is used to see
if the data is improved by the same factor across different classes. If the baseline
model is correlated with the enhanced model there is a stable improvement.

Concept Space Visualization. The changes to the semantic network rely on
assigning medical concepts to a class based on the relative frequency measure.
We use the class belongingness to identify edges connecting nodes from different
classes. We can visualize the process. Each medical concept is represented by two
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relative frequencies2: rf3this and rf3other. If the semantic network separates two
classes well, we should see concepts travel to the top-left corner and the bottom-
right corner (rf3this � rf3other or rf3this � rf3other). On the other hand, if the
network does not separate classes, then most concepts will have similar relative
frequencies (rf3this ≈ rf3other) and will lie along the x = y line.

Relative frequency snapshots might not be enough to see a divergent or con-
vergent trend, but if we follow the centers of the relative frequencies and connect
them with arrows, the trend becomes apparent. If the arrows point outward, then
the trend confirms separation by spreading activation. If the arrows are parallel
to the x = y line, then there is no separation trend, and spreading activation
causes more harm than good.

5 Results

Spreading Activation without the Edge-Pruning Technique. First ex-
periments had to determine which semantic relationships and their combinations
yield the best results. Table 2 shows that only parent relationships (“is-a”) im-
prove classification performance. Other relationships or combinations tried did
not improve the results. This finding is consistent with the work already pub-
lished (Table 1). The vector feature space increases in size from 21,127 concepts
to 40,134 concepts. Surprisingly, it takes almost 60 iteration steps before the
feature space stabilized (lower right graph in Figure 4). Sixty multiplications of
such huge matrix, even in a sparse format, is computationally demanding. It
would be impractical for the full OHSUMED data set and impossible for the full
PubMed database. If we look carefully at the relative frequency pathways, we
notice a peculiar behavior where two classes initially diverge but then collapse
(lower right graph in Figure 4). This is also congruent with others’ work, where
they would find a step of iteration with the largest separation, for example step
9, and use that for testing, sometimes without much success [11–14]. Other au-
thors also reported that each class requires a different number of iterations, so
this would not be a good source of generalization.

Figure 4 and Table 5 support evidence that 152,559 parent-child relations are
enough to cause very complex behavior. There is some improvement in perfor-
mance but not statistically significant (p-value=0.01259 at best, p-value=0.02618
overall). The improvement is almost random because it does not correlate well
with the baseline model. The Pearson correlation coefficient between the base-
line model and the enhanced model over all 170 runs of SVM is 0.66; it ranges
between 0.29 and 0.81 depending on the class label. In summary, this means that
152,559 relations react differently to different classes, need more computational
time and are not a reliable source of background knowledge.

Spreading Activation with Edge-Pruning Technique. This is uncharted
territory. At the start 152,559 parent-child relations are included. Spreading ac-
tivation and removing one edge type at a time requires restart of the process

2 The power = 3 greatly enhances signal for concepts with rfclass ≈ 1.
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Table 2. Performance of various UMLS relation types after 60 steps of spreading acti-
vation without the edge-pruning technique. This table shows the SVM macro F1 using
16-fold cross-validation, improvement when compared to a model with no spreading
activation (δ), and the number of unique edges and unique nodes used during the 60
steps of activation. The best-performing relationship is PAR (parent), and it has been
used for network pruning experiments.

REL Type FCV
1 (δCV ) Edges (Nodes)

RL + RB + SY 0.6286 (-0.1212) 129,003 (41,972)
RB + SY + PAR 0.6477 (-0.1021) 225,796 (51,672)
RL + RB 0.6523 (-0.0976) 116,592 (38,544)
RL 0.7064 (-0.0435) 35,231 (23,897)
RL + SY 0.7091 (-0.0408) 41,868 (25,870)
SY + PAR 0.7103 (-0.0395) 167,126 (43,354)
RB + PAR 0.7356 (-0.0143) 207,727 (47,888)
RB + SY 0.7488 (-0.0010) 78,939 (31,266)
RB 0.7498 (-0.0001) 68,270 (28,294)
SY 0.7509 (+0.0010) 24,437 (20,459)
PAR 0.7758 (+0.0252) 152,559 (40,134)

Table 3. Performance of PAR relationship after 60 steps of spreading activation with
eight types of edge removal procedures. Edge types are defined in Figure 3. This table
shows the SVM macro F1 using 16-fold cross-validation, improvement when compared
to a model with no spreading activation (δ), and the number of unique edges and
unique nodes used during the 60 steps of activation. The best four edge types were
chosen for permutation experiments.

Node A → Node B FCV
1 (δCV ) Edges (Nodes)

Old Other → Old Other [8] 0.7485 (-0.0014) 18,786 (18,782)
Old This → Old Other [7] 0.7487 (-0.0012) 18,942 (18,844)
Old This → Old This [6] 0.7535 (+0.0037) 19,375 (18,926)
Old Other → Old This [5] 0.7593 (+0.0095) 19,618 (18,879)
Old This → New This [4] 0.7736 (+0.0237) 147,857 (39,269)
Old Other → New This [3] 0.7740 (+0.0242) 117,064 (32,946)
Old This → New Other [2] 0.7746 (+0.0247) 139,621 (38,039)
Old Other → New Other [1] 0.7757 (+0.0258) 63,957 (24,436)

Table 4. The best sequence of edge removal calculated using macro F1 on classes
“endocarditis, bacterial”, “aortic valve stenosis”, “heart neoplasms”, and “mitral valve
stenosis”. Four out of eight removal procedures from Table 3 were permuted and the
best sequence was chosen for final testing. Removing all edges that connect medical
concepts that did not appear in any of the training documents worked best (edge types
numbered 1-4 in Figure 3).

Node A Node B FCV
1 (δCV ) Edges (Nodes)

(1) Old Other New This [2]
(2) Old Other New Other[1]
(3) Old This New Other[3]
(4) Old This New This [4] 0.7857 (+0.0358) 51,405 (21,684)
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Table 5. Final results using PAR relations without edge pruning. PAR relations with-
out pruning offer poor improvement of the F1 score on the cross-validation and the
test sets. None of the improvements offers statistical significance when a paired t-test
was used to compare models with and without the semantic enhancement. ∗Data used
for finding the best types of semantic relationships and the best pruning procedures.

Class name (size) FCV
1 (δCV ) FTEST

1 (δTEST ) p-value

aortic valve insufficiency (239) 0.6026 (-0.0267) 0.6226 (-0.0697) 0.91325
aortic valve stenosis∗ (341) 0.7725 (+0.0096) 0.6621 (-0.0281) 0.25232
atrial fibrillation (222) 0.6511 (+0.0463) 0.6713 (+0.0559) 0.05404
cardiomyopathy, congestive (253) 0.6009 (+0.0171) 0.6092 (-0.0211) 0.23898
cardiomyopathy, hypertrophic (192) 0.7799 (+0.0507) 0.7640 (+0.0140) 0.01259
endocarditis, bacterial∗ (310) 0.8242 (+0.0182) 0.7211 (+0.0017) 0.19099
heart arrest (405) 0.6952 (-0.0071) 0.6966 (-0.0234) 0.68066
heart neoplasms∗ (197) 0.7729 (+0.0275) 0.6512 (+0.1032) 0.17259
mitral valve insufficiency (295) 0.6007 (-0.0338) 0.6087 (+0.0259) 0.86898
mitral valve stenosis∗ (172) 0.7335 (+0.0485) 0.7627 (+0.0448) 0.07377

across all experiments 0.7034 (+0.0150) 0.6770 (+0.0103) 0.02618

Table 6. Final results using PAR relations with the best edge-pruning procedure. Edge
pruning offers good improvement of the F1 score on the cross-validation and the test
sets. Four out of ten data sets achieved statistically significant improvement when a
paired t-test was used to compare models with and without the semantic enhancement.
∗Data used for finding the best types of semantic relationships and the best pruning
procedure. ∗∗Data with statistically significant categorization improvement.

Class name (size) FCV
1 (δCV ) FTEST

1 (δTEST ) p-value

aortic valve insufficiency (239) 0.5924 (-0.0370) 0.6733 (-0.0190) 0.99374
aortic valve stenosis∗ (341) 0.7787 (+0.0158) 0.6853 (-0.0048) 0.15238
atrial fibrillation (222) 0.6731 (+0.0683) 0.7172 (+0.1019) 0.00088∗∗

cardiomyopathy, congestive (253) 0.6363 (+0.0526) 0.6590 (+0.0287) 0.00240∗∗

cardiomyopathy, hypertrophic (192) 0.7879 (+0.0587) 0.8235 (+0.0735) 0.00334∗∗

endocarditis, bacterial∗ (310) 0.8149 (+0.0089) 0.7273 (+0.0078) 0.34398
heart arrest (405) 0.6886 (-0.0136) 0.6667 (-0.0533) 0.79991
heart neoplasms∗ (197) 0.8019 (+0.0565) 0.7229 (+0.1749) 0.01222
mitral valve insufficiency (295) 0.6262 (-0.0083) 0.6452 (+0.0624) 0.56264
mitral valve stenosis∗ (172) 0.7471 (+0.0621) 0.8062 (+0.0883) 0.00429∗∗

across all experiments 0.7147 (+0.0264) 0.7127 (+0.0460) 0.00003

each time there is a change to the semantic network. After 60 iterations the
algorithm stops. This means that Xt+1 = f(XtR

′) and rfclass must be calculated
on average between 73 and 1,082 times, depending on the edge type from Table 3.
After that the four best-performing edge types are used and the order in which
they are being applied to the semantic network is permuted. The best sequence of
pruning (edge type 2, then 1, then 3, and then 4, see Table 4) requires on average
451 Xt+1 = f(XtR

′) and rfclass operations, but reduces the initial 152,559 edges
to a more modest 51,405, cutting the number of active concepts by half.
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Fig. 4. Relative frequencies of the UMLS Metathesaurus concepts as they change with
spreading activation steps. The X-axis and Y-axis have relative frequencies correspond-
ing to the class “other” and the class “heart neoplasms”, respectively. First three images
show spreading activation on 1, 10 and 60 steps of the 1991 citation year data set. The
top images show spreading activation using PAR relations that were pruned using the
best edge-pruning procedure from Table 4. The bottom images show spreading activa-
tion using PAR relations that were not pruned in any way. The two images on the right
show the 60-step pathway of the relative frequency centers as they move outward or
inward and then settle down and stabilize around the 30th iteration with the pruning
and around the 50th iteration without the pruning.

Figure 4 and Table 6 offer evidence that 51,405 parent-child relations create a
predictable behavior. Spreading activation stabilizes around the 30th iteration.
It has slightly better separation around ten iterations. After that, the relative
frequency centers move back (upper right graph in Figure 4), but not nearly as
much as in the case of spreading activation without edge pruning. The improve-
ment is statistically significant in the case of four out of ten labels (best p-value
0.00088), three of which were not used during the best pruning sequence-seeking
process. The improvement across all 170 subsets is statistically significant (p-
value=0.00003). The Pearson correlation coefficient between the baseline model
and the enhanced model over all 170 runs of SVM is 0.72 and ranges between 0.17
and 0.87, depending on the class label. In summary, the 51,405 parent-child re-
lations offer good performance improvement, need less computational resources,
and are a good source of background knowledge.

6 Conclusion and Discussion

Language competence at the human level may require detailed neurocognitive
models that combine several kinds of memory: recognition, semantic, episodic
and short-term working memory, in addition to the iconic spatial and other types
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of imagery that goes beyond representation based on verbal concepts. Such sys-
tems, requiring embodied cognition, are not practical at present. It is therefore
worthwhile to identify and solve specific problems that pose a challenge to the
current NLP approaches. Semantic network stores default and commonsense
knowledge. Multiple inheritance problem can be solved by adding inhibition to
network links. The network is pruned to adjust it to the current knowledge,
avoiding confusion and contradictions. The algorithm presented in this paper
identified PAR relations as the only one that lead to significant improvements.
Although the number of medical concepts in our experiments has been limited
the role of inhibition of some associations has been clearly demonstrated. Under-
standing practical applications of inhibition in the design of semantic memory
shows the way to applications of the same techniques to other types of memories
implemented by other types of networks. Experiments with classification of med-
ical collections of texts show that adding inhibition indeed in many cases leads to
significant improvements of results. This is merely one way of pruning semantic
networks. Insights from granular information processing imply that a dynamic
balancing of semantic generality and specificity could be a useful approach for
subsequent refinements of the proposed method.

References

1. Lamb, S.M.: Pathways of the Brain: The Neurocognitive Basis of Language. John
Benjamins Publishing Company (1999)

2. Russell, S.J., Norvig, P., Davis, E.: Artificial intelligence: a modern approach. Pren-
tice Hall (2010)

3. Joachims, T.: A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization. In: Proc. of the 14th ICML, pp. 143–151. Morgan Kaufmann (1997)

4. Scott, S., Matwin, S.: Feature engineering for text classification. In: ICML 1999,
pp. 379–388 (1999)

5. Fellbaum, C.: WordNet. Wiley (1999)
6. Duch, W., Matykiewicz, P., Pestian, J.: Neurolinguistic approach to natural

language processing with applications to medical text analysis. Neural Net-
works 21(10), 1500–1510 (2008)

7. Billingsley, R.L., McAndrews, M.P., Crawley, A.P., Mikulis, D.J.: Functional MRI
of phonological and semantic processing in temporal lobe epilepsy. Brain 124(6),
1218–1227 (2001)

8. Tivarus, M.E., Ibinson, J.W., Hillier, A., Schmalbrock, P., Beversdorf, D.Q.: An
fMRI study of semantic priming: modulation of brain activity by varying semantic
distances. Cogn. Behav. Neurol. 19(4), 194–201 (2006)

9. Duffau, H., Gatignol, P., Mandonnet, E., Peruzzi, P., Tzourio-Mazoyer, N., Capelle,
L.: New insights into the anatomo-functional connectivity of the semantic system:
a study using cortico-subcortical electrostimulations. Brain 128(4), 797–810 (2005)

10. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet::similarity: Measuring the
relatedness of concepts. In: Demonstration Papers at HLT-NAACL, pp. 38–41.
ACL (2004)

11. Scott, S., Matwin, S.: Text classification using WordNet hypernyms. In: Use of
WordNet in Natural Language Processing Systems: Proc. of the Conference, pp.
38–44. ACL (1998)



Multiple Inheritance Problem 265

12. Hotho, A., Staab, S., Stumme, G.: Wordnet improves text document clustering.
In: Proc. of the 26th Annual International ACM SIGIR Conf. on Semantic Web
Workshop, pp. 541–544 (2003)

13. Sedding, J., Kazakov, D.: WordNet-based text document clustering. In:
COLING 3rd Workshop on Robust Methods in Analysis of Natural Language Data,
COLING, pp. 104–113 (2004)

14. Mavroeidis, D., Tsatsaronis, G., Vazirgiannis, M., Theobald, M., Weikum, G.:
Word sense disambiguation for exploiting hierarchical thesauri in text classifica-
tion. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD
2005. LNCS (LNAI), vol. 3721, pp. 181–192. Springer, Heidelberg (2005)

15. Yoo, I., Hu, X.: A comprehensive comparison study of document clustering for a
biomedical digital library MEDLINE. In: Proc. of the 6th ACM/IEEE-CS Joint
Conference on Digital Libraries, pp. 220–229. IEEE (2006)

16. Gabrilovich, E., Markovitch, S.: Overcoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with encyclopedic knowledge. In: Pro-
ceedings of the 21st National Conference on AI, pp. 1301–1306 (2006)

17. Bloehdorn, S., Hotho, A.: Boosting for text classification with semantic features.
In: Mobasher, B., Nasraoui, O., Liu, B., Masand, B. (eds.) WebKDD 2004. LNCS
(LNAI), vol. 3932, pp. 149–166. Springer, Heidelberg (2006)

18. Khader, P., Knoth, K., Burke, M., Ranganath, C., Bien, S., Rosler, F.: Topography
and dynamics of associative long-term memory retrieval in humans. Journal of
Cognitive Neuroscience 19(3), 493–512 (2007)

19. Leeson, V.C., Simpson, A., McKenna, P.J., Laws, K.R.: Executive inhibition and
semantic association in schizophrenia. Schizophrenia Research 74(1), 61–67 (2005)

20. Crevier, D.: AI: The tumultuous history of the search for artificial intelligence.
Basic Books (1993)

21. Hersh, W., Hickam, D.: Use of a multi-application computer workstation in a clin-
ical setting. Bulletin of the Medical Library Association 82(4), 382–389 (1994)

22. Funk, M.E., Reid, C.A.: Indexing consistency in MEDLINE. Bulletin of the Medical
Library Association 71(2), 176–183 (1983)

23. Yang, Y., Pedersen, J.: A comparative study on feature selection in text categoriza-
tion. In: Fisher, D. (ed.) Proc. of the 14th ICML, pp. 412–420. Morgan Kaufmann
(1997)

24. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

25. Joachims, T.: Text categorization with support vector machines: Learning with
many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

26. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. The Jour-
nal of Machine Learning Research 7, 1–30 (2006)



 

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 266–277, 2014. 
© Springer International Publishing Switzerland 2014 

Ontology-Based Text Classification for Filtering 
Cholangiocarcinoma Documents from PubMed 

Chumsak Sibunruang and Jantima Polpinij 

Intellect Laboratory, Faculty of Informatics, Mahasarakham University,  
Mahasarakham, Thailand 

{chumsak.s,jantima.p}@msu.ac.th 

Abstract. PubMed is a search engine used to access the MEDLINE database, 
which comprises the massive amounts of biomedical literature. This an make 
more difficult for accessing to find the relevant medical literature. Therefore, 
this problem has been challenging in this work. We present a solution to re-
trieve the most relevant biomedical literature relating to Cholangiocarcinoma in 
clinical trials  from PubMed. The proposed methodology is called ontology-
based text classification (On-TC). We provide an ontology used as a semantic 
tool. It is called Cancer Technical Term Net (CCT-Net). This ontology is inter-
grated to the methodology to support automatic semantic interpretation during 
text processing, especially in the case of synonyms or term variations.  

Keywords: PubMed, Ontology, CCT-Net, Text Classification, Cholangiocarci-
noma. 

1 Introduction 

Cancer is a diseases that can affect any part of the body. The causes of cancer are 
various, complex, and only partially understood. One identifying feature of cancer is 
the rapid creation of unregulated cells that grow uncontrollably beyond their  
usual boundaries. Afterwards, the unregulated cells http://en.wikipedia.org/wiki/ 
Cell_growthcan then attack adjoining parts of the body and spread to other organs. 
This is referred to as metastasis, and then metastases are the major cause of death 
from cancer. There are over 100 different types of known cancers that affect humans. 
At present, WHO reports that cancer becomes a leading cause of death worldwide, 
accounting for 8.2 million deaths in 2012 [1][2]. Furthermore, the worldwide burden 
of cancer rose to an estimated 14 million new cases per year. It can be found that the 
world’s total new annual cases occur in Africa, Asia and Central and South America 
estimated at 60% [2].  

In general, the previous knowledge relevant to cancer in clinical triala can offer the 
several benefits for further researches and clinical decisions. A solution to find this 
knowledge can be done through PubMed, where it is a search engine developed by the 
National Center for Biotechnology Information (NCBI). The purpose of PubMed is to 
use for retrieving biomedical information from MEDLINE database. Unfortunately, 
with the exponentially increasing rate of the medical literatures, large volume of 
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search can be made more difficult for accessing to find the most relevant documents. 
This is because the traditional knowledge discovery from PubMed abstracts involves 
the use of several manual processes. The health professionals enter search terms into a 
web portal to produce a clinically relevant abstract retrieval [3].  

To cope this problem, an easy-to-use retrieval tool is required to support clinicians 
with retrieving relevant information for clinical decision making. Therefore, this 
becomes the main motivation for this investigation. In this work, we not only present 
an application of content-based text classification (CBTC) to explore an enhanced 
solution for finding of the cancer documents, but also improve the method of CBTC 
by using our semantic tool, called Cancer Technical Term Net (CCT-net). This tool is 
used to support the semantics in the domain of text analysis. Finally, the improved 
methodology of CBTC is called ontology-based text classification (On-TC). 

It is noted that our case study concentrates on the search of cancer documents relat-
ing to clinical trials in the particular domain of Cholangiocarcinoma (CHCA). This is 
because these documents can be used to support for advance researches or medical 
decisions of the clinicians. We are interested for CHCA, because it is one of the most 
common cancer in the Northeast Thailand. A main cause of CHCA in the North-
east Thailand is from the traditional habit of eating uncooked fish, repeated exposure 
to liver fluke, and consumption of nitrosamine-contaminated food [4]. These are ma-
jor risk factors. Although CHCA is a rare cancer, especially in the Western countries, 
it has the world’s highest prevalence in Northeastern Thailand. 

2 Literature Reviews 

There are some researches that mentioned in the problem of searching the relevant 
biomedical literature from PubMed. Firstly, PubMed is the biggest biomedical litera-
ture repository that contains more than 18 million articles and still keeps growing [5]. 
Large volume of search can be made more difficult for accessing to find relevant 
documents. Secondly, it is hard to express the specific relevance of users in the given 
keyword query [6]. Therefore, many results will be typically retrieved. As these prob-
lems mentioned, many researchers still pay attention to improve the quality of search 
on PubMed. However, biomedical researchers require not only an efficient search 
engine system, but also a tool used to automatically search for synopsis knowledge 
from PubMed. In reality, it is never easy to extract useful knowledge from PubMed. 
Traditionally searching for relevant knowledge from PubMed is a process that, the 
user reads the article’s title to consider appropriateness and may then read the abstract 
to determine relevance. Indeed, this is time-consuming and labour-intensive, especial-
ly when a search returns a large number of abstracts and where each abstract contains 
a large volume of information [7].  

In the last decade, the need for discovering the hidden knowledge from PubMed is 
also required, where automatic knowledge discovery allows the researchers to con-
duct quality work, avoid repetition, and generate new. Therefore, many researches 
also pay attention to study about how to extract knowledge from PubMed. For exam-
ples, [8] studied the possibility of utilizing the co-occurrence of MeSH terms in 
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MEDLINE citations associated with the search strategies optimal for evidence-based 
medicine. Afterwards, all evidence-based medicines will be stored as a knowledge 
base. Pustejovsky et al. [9] presented a system, called Acromed, which finds 
acronym-meaning pairs as part of as set of information extraction tools designed for 
processing and extracting data from abstract in the MEDLINE database. The results 
of this system are entered into a large, continuously updated database of acronyms for 
the biomedical literatures. Demner-Fushman & Lin [10] proposed a series of know-
ledge extractors, which employ a combination of knowledge-based and statistical 
techniques, for automatically identifying clinically relevant aspects of MEDLINE 
abstracts. The system started with an initial list of citations retrieved by PubMed, and 
then their system brings relevant abstracts into higher ranking positions. Finally, the 
MEDLINE abstracts will generate answer that directly responses to physicians’ ques-
tions. They showed the experiments on a collection of real-world clinical questions 
that this approach significantly outperforms the already competitive PubMed baseline. 
Song et al. [11] proposed how to extract procedural knowledge rather than declarative 
knowledge. This technique applies machine learning method with deep language 
processing features. 

3 Preliminary: The CCT-Net 

Cancer Technical Term Net (CCT-Net) is the cancer technical terms set which is an 
association of cancer stage, modalities used, and specific drugs used. Also, the CCT-
net it is organized by meaning and variation of terms, so cancer technical terms in 
close proximity are related. This ontology is firstly proposed in [12].  

The background of the CCT-Net is from the problem of term variation. For exam-
ples, the term ‘chemotherapy’ and ‘radiotherapy’ can be changed by domain experts,  
when these terms are used together. These terms can be combined as ‘chemoradiothe-
rapy’, or ‘chemoradiation’. Sometimes, these terms are represented as abbreviations 
such as ‘CTh/RTh’, ‘CT/RT’, ‘CTRT’. If these terms are made understanding of hu-
man, the variation of these terms is not a problem. In contrast, if these terms are au-
tomatically analysed by a computing system, this becomes a significant problem, 
called ‘the problem of ambiguity in language’.  

As the problem mentioned above, we proposed the CCT-Net to handle the problem 
of term variations, where the pre-existing ontologies such the National Cancer Insti-
tute’s Thesaurus and Ontology do not offer information relating to a domain specific 
variations in terms used by domain experts [13].  

The entries of the CCT-Net are term-concepts mapping. It is applied from the basic 
idea of WordNet [14]. The associations in the mapping are conceptual and term-
concept relations harness synonyms or term variations. For example, the concept 
‘specific drugs used’ is similar to the concept ‘chemotherapy’ because chemotherapy 
describes a particular form of drug therapy. However, ‘chemotherapy’ is also a dis-
tinct treatment concept contained within ‘therapeutic modalities’. These associations 
can be shown as Fig 1. 
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Fig. 1. The overview of the CCT-Net  

In the CCT-Net, it consists of five main concept mappings: (1) histology, (2) dis-
ease stage, (3) therapeutic modalities, (4) timing of therapeutic modalities, and (5) 
specified drugs used. Each concept contains many sub-concepts that are shown as 
Table 1. 

Table 1. Summary of the CCT-Net  

List Main Concept Name Number of 
Sub-concepts 

Examples 

1  Histology 7 Squamous cell carcinoma 
Adenocarcinoma 

2  Therapeutic modality 7 Surgery, Chemotherapy 
3  Disease stage 5 0, I, II 

4  Timing of therapeutic modality 3 Adjuvant, Concurrent 
5  Specific drugs used 366 Cispatin, 5-FU 

 
In this context, a concept can be expressed by many terms and each term can be 

synonymy or variation of term. For an example, 

{Treatment, surgery, chemotherapy, radiotherapy} 
{Drugs, cisplatin, carboplatin, 5-FU, cyclophosphamide} 

The first example represents that the terms of ‘surgery’, ‘chemotherapy’, and ‘ra-
diotherapy’ are in the cancer treatment concept, meanwhile another represents that 
‘cisplatin’, ‘carboplatin’, ‘fluorouracil 5-FU’, and ‘cyclo-phosphamide’ are in the 
cancer drugs concept. Meanwhile, one cancer technical term can be referred to other 
concepts or terms in another concept. For an example, {chemotherapy, cisplatin}, it 
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means that chemotherapy which is a cancer treatment concept uses cisplatin which is 
a drug in cancer drug concept. 

To acquire for the association of cancer stage, modality, and drug concepts, we ap-
ply the simple statistic concept [15] to estimate rule generation probabilities. The 
estimate can be created simply by counting the number of occurrences of each key-
word by category. The probability of a cancer technical term (t) being a rule, if it is 
preceded by a tag determiner (D) is estimated by: 

 

Pr(w| D) = The number of times t is a tag <D> 
    The number of times t occurs 

 

(1) 

Suppose we are gathering the term of cancer treatment ‘radiotherapy’ and its syn-
onyms called ‘synsets’ [15]. Terms and synsets are connected through meaning-based 
relations. This is a set of semantic network. Suppose there are ten documents in a 
collection, and there are four documents use the term ‘RT’ referred to ‘radiotherapy’ 
and three documents also use the term ‘radiation therapy’ referred to ‘radiotherapy’. 
Therefore, Pr (‘RT’| the tag ‘radiotherapy’) is 0.4 and Pr (‘Radiation therapy’| the tag 
‘radiotherapy’) is 0.3, respectively. Finally, a concept and its terms can be 
represented in format of the hierarchical tree. This example can be presented as in  
Fig 2.  

 

Fig. 2. An example of therapeutic modality concept in the CCT-Net 

We developed the CCT-Net by using following sources: general information of 
cancer, cancer drugs, cancer staging, cancer treatment, documents of cancer, and so 
on. In this stage, we also obtained the cancer technical terms from more than 500 
cancer documents that are gathered from PubMed.  

4 The Method of Ontology-Based Text Classification 

This section describes the details of our ontology-based text classification. It consists 
of three main processing steps. 

4.1 Tokenization and Document Representation 

In general, word segmentation [15] is the first and obligatory task in natural language 
processing because word is a basic unit in linguistics. We rely on the CCT-Net that is 
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approached to select keyword features, where this ontology is used as a dictionary. 
These features can indicate to the relevant oncology documents. Afterwards, each 
word is weighted by tf-idf [15, 16]. It is used for providing a pre-defined set of fea-
tures for exchanging information. Each unique word wi corresponds to a feature with 
tf(wi, di), the number of times word wi occurs in the document di, as its value. Refin-
ing the requirement representation, it has been shown that scaling the dimensions of 
the feature vector with their inverse document frequency idf(wi) leads to improved 
performance. idf(wi) can be calculated from the document frequency df(wi), which is 
the number of documents in which word wi occurs. It is described as follows. 

                            idf (wi)  =  1+ log ( |D| / df (wi)) (2) 
 

Finally, text contents on web sites are represented in a structured “bag of words” 
(as vector space model) [16] representation. The representation method is equivalent 
to an attribute value representation used in machine learning. It is noted that this work 
utilizes the CCT-Net to analyze the variations of each term. Then, these variations are 
in the same concept. For instance, consider these words ‘radiotherapy’, ‘radiation 
therapy’ and ‘RT’. Although they are presented in different forms, they will be ana-
lyzed and interpreted as a feature having the same meaning if they are in the same 
concept. 

4.2 Pruning the BOW Size  

We consider that if some words occur very rarely and cannot be regarded as statistical 
evidence, they can be removed prior to classification as rare words. For a pre-defined 

threshold δ, a term word t is discarded from the representation, if  tf-idf (t) < δ. This 
approached was firstly found in [17]. This work applied the Mixed Min and Max 

model (MMM) to find the threshold δ that is a minimum term word weighting of the 
BOW. The MMM has been developed by Fox and Sharat [18]. There are two opera-
tions in the MMM: union and intersection. The union operation is used for finding a 
minimum, while the intersection operation is to find a maximum. Let T be the BOW 

and t be the term words that are weighted based on tf-idf. It can be determined that t ∈ 
T. The degree of membership for union and intersection are defined as follows: 

 
(3) 

 
(4) 

The MMM algorithm attempts to soften the Boolean operation by considering the 
range of terms weight as a linear combination of the minimum and maximum term 
weighting. In this work, we interest only the minimum of the MMM. They can be 
computed as follows: 

Min (δ) = Cor1 * max (tf-idf) + Cor2 *min (tf-idf)   (5)

Max (δ) = Cand1 * max (tf-idf) + Cand2*min (tf-idf)  (6)

1 2 ... 1 2max( , ,..., )
nt t t nT t t t∪ ∪ =

1 2 ... 1 2min( , ,..., )
nt t t nT t t t∩ ∩ =
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where Cor1, Cor2 are “soften” coefficients of “or”operator, and Cand1, Cand2 are softness 
coefficients of “and” operator. To give the maximum of the document weight more 
importance while considering “or” query and the minimum of the document more 
importance while considering “and” query. In general, they have Cor1 > Cor2 and Cand1 
> Cand2. For simplicity, it is generally assumed that Cor1 = 1 - Cor2 and Cand1 = 1 - 
Cand2. The best performance usually occurs with Cand1 in the range [0.5, 0.8] and Cor1 
> 0.2 [19]. In this our experiment, we select 0.5 of coefficients. Finally, we can get 

the threshold δ. 

4.3 Searching of the Relevant Documents through Text Classification 

The basic concept of text categorization may be formalized as the task of 
approximating the unknown target function Φ: D x C → {T, F} by means of a 
function Φ: D x C → {T, F} - called the classifier -  where C = {c1, c2, ..., c|C|} is a 
predefined set of categories, and D is a set of documents. If Φ(di, cj) = T, then di is 
called a positive member of cj, while if Φ(di, cj) = F, it is called a negative member of 
cj. This work applies two algoriths for text classification model construction, called 
text classifier, and then text classifier will be used to find the most relevant CHCA 
docuemnts from PubMed. 

4.3.1   kNN –Based Text Classification 
k-Nearest Neighbor is one of the most popular algorithms for text categorization 
[20][21][22][23]. The kNN classifier is based on the assumption that the classification 
of an instance is most similar to the classification of other instances that are nearby in 
the vector space (or bag of words obtained from the step of text representation). In 
general, the idea behind k-Nearest Neighbor algorithm is quite straightforward. To 
classify a new document, the system finds the k nearest neighbors (as relevant 
documents) among the training documents, and uses the categories of the k nearest 
neighbors to weight the category candidates [20]. After k nearest neighbors are found, 
several strategies could be taken to predict the category of a test document based on 
them. However, a fixed k value is usually used for all classes in these methods, 
regardless of their different distributions. Equation (7) and (8) below are two of the 
widely used strategies of this kind method. 

 
 

 

(7) 

 

 

(8) 

where di is a test document, xj is one of the neighbors in the training set, y(xj, ck) ∈ {0, 
1} indicates whether xj belongs to class ck, and similarity (di, xj) is the similarity 
function for di and xj. Equation (7) means that the predication will be the class that 
has the largest number of members in the k nearest neighbors; whereas equation (8) 
means the class with maximal sum of similarity will be the winner. The latter is 
thought to be better than the former and used more widely [24]. 
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4.3.2   SVM –Based Text Classification 
The basic concept of SVM [25] is to build a function that takes the value +1 in a “re-
levant” region capturing most of the data points, and -1 elsewhere. The dataset can be 
separated by the following primal optimization problem: 
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where ν ∈ {0,1} is a parameter which lets one control the number of support vectors 

and errors, ξ is a measure of the mis-categorization errors, and ρ is the margin. When 

we solve the problem, we can obtain w and ρ. Given a new data point x to classify, a 
label is assigned according to the decision function that can be expressed as follows:  

f(x) = sign ((w ⋅ Φ (xi) - ρ) (11) 

where αi are Lagrange multipliers and we apply the Kuhn Tucker condition. We can 
set the derivatives with respect to the primal variables equal to zero, and then we can 
get: 

W = Σαi ⋅ Φ(xi)  (12) 

There is only a subset of points xi that lies closest to the hyperplane and has nonze-
ro values αi. These points are called support vectors. Instead of solving the primal 
optimization problem directly, the dual optimization problem is given by:  
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where K(xi, xj) = (Φ(xi), Φ(xj)) are the kernels functions performing the non-linear 
mapping into the feature space based on dot products between mapped pairs of input 
points. They allow much more general decision functions when the data are nonli-
nearly separable and the hyperplane can be represented in a feature space. The kernels 
frequency used is polynomial kernels K(xi, xj) = ((xi 

. xj)+1)d , Gaussian or RBF 

(radial-basis function) kernels K(xi, xj) = exp (-||xi - xj||
2/2σ2).  We can eventually write 

the decision from equation (14) and (15) and the equation can be illustrated as follow: 
 

f(x) = sign ( αi K(xi, x) - ρ) (15) 
 

For SVM implementation, we use and modify LIBSVM tools from the National 
Taiwan University [26] in our experiments, since we select the RBF kernels for model 
building.  
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5 The Experimental Results and Discussion 

We estimated the common evaluation of text classifiers by using an accuracy mea-
surement [16]. Consider the confusion matrix in Table 2. 

Table 2. The confusion matrix 

Document Retrieval Expert judgment 
Yes No 

System judgment Yes True Positive (TP) False Positive (FP) 
No False Negative (FN) True Negative (TN) 

 

Let FP be a false positive or α error (also known as Type I error) and FN be a false 
negative or β error (also known as Type II error). TP is a true positive and TN is a 
true negative. Then, a FP normally means that a test claims something to be positive, 
when that is not the case, while FN is the error of failing to observe a difference when 
in truth there is one. The accuracy can be calculated as follow: 

Accuracy  =           TP +TN         
 TP + FP +FN +TN 

(16) 

We test with 300 cancer oncology documents as dataset. In this dataset, there are 
100 documents of Cholangiocarcinoma. We also compare the techniques of document 
retrieval between the method of text classification that does not use the the CCT-Net 
and the method of the text classification with the CCT-Net (or the ontology-based text 
classification). The results of the ontology-based text classification by using the kNN 
can be shown in Table 3. 

Table 3. The experimental results of kNN-based Text Classification 

Method Number of k Accuracy (%) 
Without CCT-net 3 77.40 

5 78.50 
With CCT-net 3 83.50 

5 84.00 

Consider Table 3, the method of the kNN-based text classification that did not use 
the CCT-Net returns the lower accuracy than the use of the ontology-based text classi-
fication method (On-TC). However, by using On-TC, it is more effective for retriev-
ing the relevant documents from the dataset. Then, we experiment over the particular 
domain of Cholangiocarcinoma documents. This may demonstrate that if we apply 
this method to retrieve the documents from PubMed, the method may be more effec-
tiveness in filtering and selecting the relevant oncology documents from PubMed.  

However, by using kNN, k is the most important parameter in a text classification 
system based on kNN. In the classification process, k nearest documents to the test 
one in the training set are determined firstly. Then, the predication can be made 
according to the category distribution among these k nearest neighbors. Generally 
speaking, the class distribution in the training set is uneven. Some classes may have 
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more samples than others. Therefore, the system performance is very sensitive to the 
choice of the parameter k. And it is very likely that a fixed k value will result in a bias 
on large categories. This should be improved in the future. 

In addition, we also estimated the common evaluation of the SVM text classifier by 
using accuracy rates. It shows the results in Table 4. The SVM text classifier also 
shows a satisfactory accuracy because the solution of the SVM method gives an op-
timal hyperplane, which is a decision boundary between non-relevant and relevant 
information. The effectiveness of the SVM text classifier model can be increased with 
a small bag of words that consists of suitable features. However, it can be seen that, 
by using the CCT-Net, the accuracy is improved. 

Table 4. The experimental results of SVM-based Text  Classification 
 

Method Accuracy (%) 
Without CCT-net 87.50 
With CCT-net 92.50 

 
As the results in Table 3 and 4, this would demonstrate that our method, called the 

ontology-based text classification method or On-TC, can achieve substantial im-
provements. However, the results of the On-TC methodology are still good in terms 
of accuracy but they show a failure rate. This is because some key-terms are used in 
other particular domains. For example, the key-terms of ‘chemotherapy’ and ‘radio-
therapy’ can be found in other domains such as skin cancer or breast cancer. It may 
lead to misunderstanding during the process of text analysis and then this leads to 
poor accuracy of the On-TC methodology. 

6 Conclusion and Future Work 

PubMed provides literature resources to support their advance researches or medical 
decisions. Statistically, there are more than 18 millions biomedical related documents. 
In the last decades, it had been exponentially increasing in a vast amount of biblio-
graphic information stored in electronic format. Therefore, PubMed becomes an ac-
cumulation of health information. This information covers different illnesses with a 
huge range of results regarding different disease types, symptoms, treatments, disease 
causing factors (genetic and environmental) as well as candidate genes that could be 
responsible for the onset of these diseases. Information regarding illness is dispersed 
over various areas such as health researches and disease treatment. Indeed, these 
health documents are valuable and costly 

In this work, we present the method of ontology-based text classification used to 
retrieve the relevant documents from PubMed. The objective of this document re-
trieval is to find the Cholangiocarcinoma documents in clinical trials from PubMed. 
This is because these documents can be used to support for advance researches or 
medical decisions of the clinicians. Also, we provide Cholangiocarcinoma documents 
as the searching goal because in the Northeastern Thailand, this area is the world’s 
highest prevalence. Our method of ontology-based text classification (ON-TC) has 
driven on two algorithms: kNN and SVM. The results of SVM-based On-TC is better 
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than the results of kNN-based On-TC. Also, it can be seen that by using the CCT-Net 
as the semantic tool in ON-TC, the accuracy of Cholangiocarcinoma document re-
trieval is improved. After testing by F-measure, the experimental results can demon-
strate that our proposal may provide a preliminary indication of more effectiveness in 
retrieving relevant documents from PubMed.  

In our future work, we will use the CCT-Net to support the method of knowledge 
extraction from the Cholangiocarcinoma documents that are retrieved from PubMed.  
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Abstract. Traditional medicines can play a major role in global health care, due 
to its indigenous nature, easy access, and cost effectiveness. However, know-
ledge of this intellectual property is in danger of being lost. It is either undocu-
mented or if documented, it is inaccessible and local in context. World Health 
Organization signifies the necessity to preserve and maintain this knowledge. 
Unani medicines, a subfield of traditional medicines, have been continuously 
practiced in Asia for about 2500 years, and it is facing the same situation of 
knowledge lost. To preserve knowledge of Unani medicines, initial kind of an 
effort has been done but a formal semantic structure, that is machine readable 
and reusable, is required to preserve this knowledge efficiently and effectively. 
This research focuses on conceptual structure of Unani medicines by presenting 
domain ontology which includes core principles and philosophy of Unani medi-
cines, diseases, symptoms, diagnosis, drugs, and treatment. Knowledge about 
fundamentals is captured from expert interviews and books and then this know-
ledge is converted into ontologies using Protégé. Although it is not exhaustive 
domain ontology, however it may serve as a starting point for any knowledge 
based application of Unani medicines. In this research a semantic queries based 
case study along with a prototype expert system is also proposed. 

Keywords: Traditional medicines, Unani medicines, Tibb Unani, domain  
ontology, knowledge management. 

1 Introduction  

In the whole world, the practice of traditional medicines is there since ancient times. 
It is a common belief that these have less side effects and less costly. Despite of their 
cultural roots, recent research signifies considerable medicinal benefits of herbs. 
However, traditional medicines need rigorous scientific investigation. As estimated by 
World Health Organization (WHO), 70% of the African and Asian population uses 
traditional medicines for their everyday health care needs [1] and 30% global popula-
tion relies on traditional medicines [2]. In 2015, global market for traditional medi-
cines will reach at US $ 114 billion [3]. 
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The importance of traditional medicines has been recently recognized by WHO. To 
enhance the role of traditional medicines in national healthcare of member countries, 
WHO suggested preserving the indigenous knowledge of traditional medicines, in its 
strategy [1]. Unfortunately this knowledge is mostly undocumented, and as the know-
ledgeable traditional healers are passing away, this great knowledge asset vanishes 
along with them. Whereas, documented knowledge is mostly in local languages, non-
standardized, diverse, and inaccessible. In addition, if principles, practices, and con-
cepts of traditional medicines are preserved and standardized, later it can be compared 
according to latest scientific methods [4] and included in national/international 
healthcare systems.  

Unani medicines (aka Tibb e Unani) is a modified version of Greco-Arabic tradi-
tional medicines. It encompasses medical traditions of Greek, Arab, Persian, and  
Indian regions [5], in 2500 years of its practice. It is still being practiced in India, 
Pakistan, Iran, Afghanistan, Nepal, Bangladesh, Srilanka, Indonesia, Malaysia, Cen-
tral Asia, and Arab countries. However, Unani Medicines still lacks a large scale 
scientific study. The Unani medicines have strong documented heritage. There are 
hundreds of books on its principles and treatment philosophy, herbal formulas, and 
therapies. Most of these books are written in Arabic, Persian, Hindi/Urdu, and local 
Indian languages. There are different constraints involved e.g. the content is multi-
lingual, it is widespread time and space wise, its terminologies, and principles are 
non-standardized and above all lack of governmental interests.  

Before conducting any scientific research, knowledge of Unani medicines needs 
preservation and translation into international languages so that access for this infor-
mation across the globe becomes possible. In recent past, an effort from government 
of India to preserve knowledge of different domains of Indian traditional medicines 
including Unani medicines has been done [23], but it has its limitations. Efforts to 
preserve this knowledge systems of Japan [7], Korea [6], Thailand [8-11], China [15-
22] and Africa [12-14] have been there since last decade. The concepts and practices 
of Unani medicines have some overlapping with other systems of traditional medi-
cines, however it is fundamentally different with its own principles, concepts, and 
formulas that cannot be processed and represented with existing software applications 
of other traditional medicines domains, however, they can be compared and integrated 
later, if possible. 

To compile, preserve and share knowledge of Unani medicines, a knowledge  
management framework is required. That needs to be based on Web services to store 
standard, semantically annotated multilingual, and reusable knowledge into a Web 
database. The proposed framework provides collaboration between domain experts of 
Unani medicines, researchers, traditional healers, and academicians, and it serves as 
an infrastructure for future computerization of Unani Medicines. In this framework, 
ontologies provide formal semantic structure. For the upcoming knowledge manage-
ment framework, a domain ontology for Unani medicines along with semantic queries 
and prototype expert system is presented in this paper. This is the first effort of its 
kind in the domain of Unani medicines. The domain ontology contains upper level 
concepts of Unani medicines domain; their relationships with other concepts and data, 
and object properties. The objective of this work is to provide a framework to  
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preserve, standardize, and validate this knowledge of Unani medicines as per modern 
scientific principles and then ultimately making it possible to include this system of 
traditional medicines in mainstream healthcare systems. The proposed ontology can 
be employed in design and development of intelligent applications like decision sup-
port system for diagnostics, prediction, and prescription.  

Section 2 summarizes the related work already done by using ontologies in tradi-
tional medicines domain. In section 3, ontology modeling steps are listed along with 
the given ontology. Section 4 describes proposed expert system. In section 5, a case 
study of semantic queries is presented. 

2 Literature Review 

A survey of few ongoing efforts in knowledge management of traditional medicines 
using ontologies has been presented. However, this is not an exhaustive effort and 
chiropractic, reiki, massage, reflexology, meditation, and yoga like therapies are not 
included.  

Ontology of traditional Korean medicines has been developed by Jang et al. for 
symptoms, diseases, and treatments [6]. An effort based on ontology for Japanese 
traditional medicines Kampo, is presented by Arita et. al. [7]. Some efforts to develop 
Thai herbal ontology can be seen in [8-11]. 

For African traditional medicines, an ontology is proposed by Atemezing and  
Pavon [12] which is further updated by Ayimdji et al. [13]. Another ontology was 
designed for African traditional herbs by Oladosu et al. [14]. Traditional Chinese 
medicines (TCM) seems rich in computational efforts, Chen [15] and Mao [16] pro-
posed domain ontology for the problem of semantic heterogeneity. Multiple efforts on 
semantic Web and TCM domain modeling using ontology are available in [17-22]. 

Traditional Knowledge Digital Library abbreviated as TKDL [23] is a closely re-
lated application for the domain of Unani medicines and needs special focus. It is an 
online data base developed by the Indian government. It contains principles, formula-
tions, definitions, and core concepts of different traditional medicines disciplines 
being practiced in India. It includes Ayurveda, Unani medicines, Yoga, and Siddha. In 
TKDL the local medicines knowledge in Hindi/Urdu, Arabic, Persia is translated into 
English, French, Spanish, German, and Japanese. In TKDL, around 0.25 million her-
bal formulas have been transcribed by 2011. TKRC, International Patent Classifica-
tion (IPC) based classification system, has been specially evolved from this project.  

Traditional medicines knowledge is encoded in TKRC using XML, Unicode, and 
Metadata. However, the database storing knowledge of TKDL is text-based [24] it has 
no formal semantic structure like ontologies, that limits its scope and it also lacks 
support of Web-services that is needed for integration with upcoming software appli-
cations. In TKDL, text based queries are allowed, but support for semantic queries is 
not available yet. Whereas, to get full benefits of semantic Web, a formal semantic 
structure similar to ontologies is needed i.e. structural data for reusability, extendibili-
ty, and automatic machine processing.  
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3 Ontology Modeling for Unani Medicines 

During last decade for knowledge sharing and its organization, ontologies are being 
developed and used. Ontology is an explicit and formal specification of shared con-
ceptualization, as defined by Gruber [25]. Every ontology mainly includes classes, 
attributes possessed by these classes, hierarchies, and link between individuals of the 
classes.  

Huang[26] mentioned that in knowledge-based systems building and development 
of a domain model is an integral part. High level of analytical and abstract approach is 
required for building ontology. Noy and McGuiness suggested simple method for 
creating ontology [28]. Following are the steps involved in ontology development: 

3.1 Determine the Domain and Scope of Ontology 

Few simple and basic question are devised by Noy and McGuiness[28] which helps in 
this phase. First step of ontology building is limiting its scope and defining the do-
main. The domain of ontology is Unani medicines and scope is limited to core Unani 
medicines principles, related to symptom, diseases, diagnosis, and treatment.  

3.2 Consider Reusing Existing Ontologies (if any) 

Unani medicines domain ontology has been created first time according to our best 
possible knowledge so no other existing ontology can be used here. However, existing 
ontology of other traditional medicines can be of great help in integration and devel-
opment of Unani medicines ontology at software level in future. 

3.3 Enumerate Important Terms in the Ontology 

Core concepts and terminologies of Unani medicines have been gathered both from 
explicit ways and by tacit knowledge. Explicit knowledge is enumerated from text 
and reference books of Unani medicines. However, tacit knowledge is acquired from 
experts by interviews, discussions, etc. This knowledge is then used in defining 
classes, attributes, and concepts of Unani medicines ontology. 

3.4 Define Class and Class Hierarchy 

In this phase hierarchy of core concepts (in the form of classes here), their super and 
sub classes has been defined as shown in Fig. 1. Gruber discussed different approach-
es in developing a class hierarchy [25]. Top level concepts are identified as super 
classes in our ontology. Proposed ontology is developed using Protégé [27]. 

The Identified Classes. The Unani_Medicines_Principle class is the most integral 
part of our ontology. It covers core philosophical concepts of Unani medicines. These 
concepts differentiates Unani medicines from other domains of traditional medicines.  
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Fig. 1. Class Hierarchy and Concepts 

Unani medicines, takes a holistic approach towards the whole human body and soul  
and divides core concepts into seven components, known as Umoor-e-Tabiya [29] in 
Urdu language. These are Element (Arkaan), Temperaments (Mizaj), Humours (Ak-
hlaat), Faculties (Quwa), Organs (Aa’za), Functions (Afa'al), and Pneumas (Arwaah). 
Fig.  2 explains all the relations that exist between Unani medicine principle class of 
our ontology. 

Other classes includes Disease and Limitation which describes different diseases of 
patient, limitation of foods or medicines patient is allergic with or precautions for a 
specific disease. It also includes information about the risks and side effects. Whereas, 
class of Natural Products explains that drugs in Unani medicines can be obtained from 
four type of natural sources i.e. Animals, plants, minerals, and ecology. Class of Pulse 
Analysis is used in diagnosis process, an expert practitioner may judge different signs 
and symptoms by analyzing pulse rate and type of pulse. The class of Signs and 
Symptoms includes all the signs and symptoms that can possibly exist for diseases. In 
Unani medicines ontolgy mainly Eye color, tongue color, tongue coating color, skin 
color, etc are the important symptoms that are observed carefully by practitioners to 
diagnose the problems. Class of Stool and Urine Examination keeps the details of 
texture, color, and other features that can be useful for examination. Whereas, classes 
of Therapy and Treatment suggests drug to be used, therapies to be employed to treat 
the patient according to Unani medicine treatment practices. 
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Fig. 2. Ontology Model 

3.5 Define Class Properties (or Slots) 

Classes and their hierarchy is not enough to preserve all the semantics of the domain. 
For this purpose, there exists an association between every instance of a class in the 
form of properties (or attributes). 

The Data Properties. Data properties are of two types: simple or complex. Simple 
properties contains primitive data of concepts that comprises of strings, numbers, etc 
whereas a complex data property contains other objects. In proposed ontology there 
are four simple data properties as shown in Fig. 3. 

• Disease Full Name. This property is of string type and it maintains the full 
name of the disease in English. 

• Disease Local Name.  It is of string type and saves the local name of the dis-
ease. 

• Herb Full Name. It is also of string type and saves herb full name in local 
languages.  

• Herb Scientific Name. It is saves the scientific name of herb in English. 

The Object Properties. In ontology, two or more classes (or concepts) and their 
objects are linked to each other by defining object properties between them. Object 
properties can also exist independently in ontologies. A short description of used 
object properties is given in Fig. 3.  

hasDisease associates symptoms with its diseases. Every symptom has a disease 
associated with it. hasElement relates any of Temperament value with related value of 
Element according to Unani Medicines principle. hasHumour relates temperament  
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with humour and provides any one of four humour values (Blood, Phlegm, Yellow-
Bile or BlackBile) that is in excess in patient’s body. Excess of any humour may 
cause specific diseases related to that humour. hasState relates any of four elements 
with relevant value from four States. 

 

Fig. 3. Data and Object Properties 

hasSymptoms relates patient disease with any associated Symptom for example 
having body temperature increased, decreased, or normal which helps in identification 
of Temperament or Disease, and ultimately in Diagnosis. hasTemperament  links 
concept of Temperament with concept of Humour. SuggestedTreatment suggests 
treatment for diseases. For Example, in a treatment of any specific disease a practi-
tioner may advise a simple or compound herb formulation to patients. 

 

Fig. 4. Classes and its Relation 

In Fig. 4, Symptom and Diseases are linked to each other using hasSymptom and 
hasDisease properties. The property hasHumour relates Humour to Symptom. Each 
Humour is associated to temperament through one to one relationship using hasTem-
perament property. Also, every disease has suggestedTreatment using hasTreatment 
property. After once defining all the classes, subclasses, data properties, object prop-
erties and facets, individuals are created. Individuals (or objects in object oriented 
paradigm) are like specific instances of classes. 

4 Proposed Expert System 

A prototype expert system is build after defining all of the concepts, properties, indi-
viduals and the relation that exist between them in Unani medicines ontology. In this 
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section, it is explained that how proposed ontology of Unani medicines can be used in 
a clinical decision support system. 

The architecture of this prototype system is presented in Fig. 5. There are mainly 
five components in our system; Domain Knowledge Acquisition, Unani Medicines 
Ontology, Database (OWL/RDF), Inference System, and User Interface. There are 
three associated roles of Knowledge Engineer, Domain expert and Users. Knowledge 
engineer acquires domain knowledge from the Unani medicines domain experts and 
practitioners, and text books. Domain ontology structure and representation has been 
created in Protégé editor. For inference, JENA API has been used to import and 
process ontology. Database fields have been populated with Unani medicines facts 
and information. The process starts when user requests through user interface which 
executes a query. It activates the inference system that infers the facts using rules 
based on Unani Medicines domain ontology.  

Jena API is used for developing expert system based on our Unani medicines On-
tology. Unani medicines expert system prototype takes the symptoms from user and 
returns the information of user Temperament and Humour. Then, after this result 
disease is diagnosed and treatment is suggested to patient. 

 

Fig. 5. Architecture of Proposed Expert System 

Unani medicine expert system starts with the details of patient which are saved in a 
file. Then, first question is asked from the patient about its pulse rate. The answer 
selected by the user is saved in Java bean which can be accessed on all pages after this 
selection. The second question  is about the Tongue. It has three types of questions 
related to tongue: color, coating color,  and its texture. Third question is related to 
skin color and texture and fourth question is about eye color. After getting answers for 
all the questions, SPARQL query is executed with the above selected values and 
humour, temperament, disease, and treatment is returned based on selected 
symptoms.Expert system takes values from the selected radio buttons and generates 
query string based on those symptoms for getting a disease. 
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5 Case Study 

Psilosis is a disease that can occur in both children and adults causing diarrhea. As 
case study of symptoms, treatment and cure for this intestinal disease are observed 
and its symptomatology is shown in Fig. 6. A weak pulse rate is observed for this 
disease. Color of tongue coating seems to be white and color of tongue itself is red. In 
symptomatology of Pilosis there exists AND relationship in three symptoms located 
at lower left position in diagram. These symptoms must need to exist for given dis-
ease as they have AND relationship between them. Optional symptoms have OR rela-
tionship with them, are related to texture of skin and tongue. Hence for Psilosis to be 
occurred our ontology has information about five symptoms in which three are com-
pulsory and two are optional. Rules are then defined for the diagnosis of patient’s 
disease after finalizing Symptomatology. These rules will help in query building. 

 

Fig. 6. Psilosis Symptomatology 

Following few self explanatory rules are defined for Psilosis.  

RULE 1: RULESTART “ Psilosis Disease” 

  IF (PulseRate is Weak AND TongueColor is Red AND 

TongueCoatingColor is White OR TongueTexture is with bristles  

OR SkinTexture is Dry) 

THEN Disease is Psilosis  

ENDRULE 

Rule 1 explains that Disease will be diagnosed as Psilosis if above five mentioned 
symptoms exists in patient. 

RULE 2: RULESTART “Isphagol_Husk SuggestedTreatment” 

IF (Disease is Psilosis)  

THEN suggestedTreatment is Isphagol_Husk   

ENDRULE 
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Rule 2 suggests the medicine named Isphagol_Husk for the treatment of disease 
Psilosis. Isphagol_Husk is a natural formulation according to Unani Medicines. 

RULE 3: RULESTART “Phlegm Humour” 

IF (PulseRate is Weak AND TongueColor is Red AND 

TongueCoatingColor is White OR TongueTexture is with_Bristles 
OR SkinTexture is Dry) 

 THEN Humour is Phlegm  

ENDRULE 

Rule 3 describes that Phlegm as Humour of the patient if symptoms exist. 

RULE 4: RULESTART “ColdAndMoist Temperament” 

IF (Humour is Phlegm)  

THEN Temperament is ColdandMoist  

ENDRULE 

In rule 5, it is clear that if Phelgm is the Humour then Temperament of the patient 
would be ColdAndMoist. Temperament is linked to Humour using hasTemperament 
object property defined in Unani medicines. Temperament is one of the key concept 
to diagnose any disease according to core Unani medicines principles. While prescrib-
ing any medicine Unani practitioner carefully observes the temperament of patient. 

In the same way, by using the proposed ontology, decision support system can in-
fer facts from family history and signs and symptoms of disease, and helps in pre-
scription of drugs for the treatment of Psilosis.  

5.1 SPARQL Queries and Results 

For executing queries in protégé SPARQL queries are developed for retrieving results 
according to selection criteria. For every RULE defined above, a query is presented 
against it. However, in this paper a single query is enough to present a method of 
building a query from rules. 

 

Fig. 7. Query for Disease 
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Query for Getting Disease. SPARQL query in Fig. 7 is for selecting disease based 
on multiple symptoms build against Rule 1. Object property hasDisease is used for 
retrieving results. Optional symptoms for Psilosis are defined using “OPTIONAL” 
keyword. 

6 Conclusion and Future Work 

A domain ontology is proposed for knowledge preservation of Unani Medicines, a 
Traditional Medicines system practiced mainly in Asia. This is the first domain 
ontology of its kind build in this domain. Patient’s disease, symptoms, diagnosis, 
treatment is covered by keeping the core principles of Unani Medicines. The ontology 
organizes common understanding for information of the domain both for human and 
for software agents; it serve as the base semantic structure that links concepts of 
Unani Medicines with each other, by restricting the types and values of each concept 
with semantic search and navigation. Thses above mentioned features are previously 
not possible in text-based databases, like traditional knowledge digital library, that 
have no built-in conceptual structure and offer only keyword based search. In future, 
ontology will be further expanded to broaden its depth and breadth and can be 
employed in knowledge management frameworks, clinical decision support systems 
and machine learning applications of Unani Medicines. 
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Abstract. We evaluated the efficiency of robotic therapy for stroke survivors 
by using a computational approach in motor theory with a stroke rehabilitation 
model. In computational neuroscience, hand movement can be represented by 
population coding of neuronal preferred directions (PDs) in the motor cortex. 
We modeled the recovery processes of arm movement in conventional and  
robotic therapies as reoptimization of PDs in different learning rules, and com-
pared the efficiencies after stroke. Conventional therapy did not induce com-
plete recovery of stroke lesions, and the neuronal state depended on the training 
direction. However, robotic therapy reoptimized the PDs uniformly regardless 
of the training direction. These observations suggest that robotic therapy may 
be effective for recovery and not have a negative effect on motor performance 
depending the training direction. Furthermore, this study provides computation-
al evidence to promote robotic therapy for stroke rehabilitation. 

Keywords: Motor learning, Motor cortex, Preferred direction, Reinforcement 
learning, Reaching. 

1 Introduction 

The incidence of stroke was approximately 17 million in 2010, with 33 million people 
who previously had a stroke still being alive [1]. Most people survive a first stroke but 
often have significant morbidity. Loss of functional movement is a common conse-
quence of stroke, for which a wide range of interventions has been developed includ-
ing constraint-induced movement therapy (CIMT), electromyographic biofeedback, 
mental practice with motor imagery, and robotics. Some treatments show promise for 
improving motor recovery, particularly those that focus on high-intensity and repeti-
tive task-specific practice. In particular, robotic devices are considered novel tools 
that can be used alone or in combination with novel pharmacological agents and other 
bioengineered devices. In addition, robotic devices can measure motor performance 
objectively and provide detailed insight into the process of stroke recovery. However, 
existing evidence is limited by poor trial designs [2]. 

On the other hand, the motor map of the motor cortex is not static. The motor cor-
tex provides a substrate for adaptive changes during the acquisition of motor skills 
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and functional recovery after lesions. Indeed, the neuronal circuitry creates a dynam-
ic, adaptive map that generates the motor commands required to accomplish desired 
actions under different conditions [3, 4]. Thus, the motor cortex may be involved in 
the acquisition, retention, and recall of procedural skills. Task-oriented training with 
motor learning identified as robotic therapy can also induce plasticity changes in the 
cerebral cortex [5, 6]. A few studies have addressed the mechanisms underlying cor-
tical reorganization of specific arm-rehabilitation methods, e.g., CIMT and bimanual 
training, in the context of voluntary motor activity in skill-learning scenarios [7, 8]. 

The present study investigated how robotic therapy influences recovery of motor 
performance in stroke survivors by using a computational model of motor control 
with a stroke model [9, 10]. Hand movement can be represented by population coding 
of neuronal preferred directions (PDs) based on computation in the motor cortex [11]. 
In addition, we postulated that a robotic device could generate a force that helps 
achieve a reaching task with maximal effort of subjects, and modeled conventional 
and robotic therapies as supervised learning and reinforcing learning, respectively. 
Conventional therapy did not induce complete recovery after a stroke lesion and the 
neuronal state depended on the training direction. However, robotics therapy reopti-
mized the PDs uniformly for all directions. In addition, the result persisted when 
training targets were limited. These observations suggest that robotic therapy is effec-
tive for recovery in stroke rehabilitation, and it does not have a negative effect on 
motor performance depending the training direction. 

2 Computational Model 

We considered a center-out arm-reaching task, and simulated hand movements  
according to a population vector (PV) with a stroke model [10]. The targets were 
randomly generated in eight directions uniformly aligned on a circle, i.e., target direc-
tions of 0°, 45°, 90°…315°. We also performed simulations in which the targets were 
limited to impaired directions of 0°, 45°, and 90°. The situation was assumed to in-
volve training in arm extension movement. In both sessions, the rehabilitation process 
consisted of 1200 trials. 

2.1 Motor Cortex Model 

Motor learning can be divided into kinematic and dynamic components. A previous 
study of whole-arm reaching movement in monkeys indicated that the levels of activi-
ty of many motor cortex neurons change systematically with the direction of the ex-
ternal load even if the movement path does not change [12]. On the other hand, the 
PD of neurons shifts in the direction of applied force in the velocity-dependent curl 
force field, and shifts back in the oppose direction in the washout epoch [3]. Thus, the 
external force generated by robotic devices could change PDs in the motor cortex, and 
we modeled hand movement as a PV of motor cortex neurons. 
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Fig. 1. Computational model of the motor cortex. (a) Example of a neuron’s activation pattern 
as truncated cosine tuning. The red marks indicate activity, and the blue dotted line indicates 

the fitted cosine curve. (b) Illustration of population coding. (c) Movement directions in center-
out reaching task. The gray zone indicates the movement direction impaired by stroke. Panels 
(d) and (e) show neuronal states in the motor cortex. Left panels show histograms of preferred 
directions. Right panels show neuronal population coding (gray lines) and population vectors 
(black arrows). (d) Normal motor cortex before stroke. (e) Damaged motor cortex after stroke.  

Neural Model. The motor cortex contains neurons that are selectively activated de-
pending on the direction of hand movement [11]. In particular, the direction of motion 
in which the neuron is maximally active is called the PD θi 

p. In this study, we post-
ulated that PDs are influenced by noise ni ~ N(0, σn

2) as θi 
p + ni. In addition, the activi-

ty of the neuron (i.e., firing rate) is attenuated according to differences in the direction 
of movement from the PD fitting cosine curve (Fig. 1a). Therefore, the activity of a 
neuron, ui(θd), can be modeled by a cosine function with the firing rate noise εi [13]: 

 ( ) cos( ) (1 )d d p
i i i iu n i Nθ θ θ ε

+
 = − − + ≤ ≤   (1) 

where θd and N are the desired movement direction and the number of neurons, re-
spectively. The operator [·]+ is defined as [·]+ ≡ max{·, 0}. The firing-rate noise is 
given as signal-dependent multiplicative noise (SDN) [14]: 

 cos( )d p
i i i inε ν θ θ

+
 = − −   (2) 
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where νi is Gaussian white noise with unity covariance, i.e., vi ~ N(0, σv
2). The SDN 

plays an important role in motor planning [15]. Note that we assumed the number of 
motor cortex neurons N = 500, with an initial uniform distribution of PDs (Fig. 1d, 
left), and set the noise parameters σn = 0.022, σv = 0.15, with reference to experimen-
tal observations [15, 16]. 
 
Population Coding of Movement. We postulated that hand movement can be 
represented by population coding of neuronal activities as the PV, which is a means 
by which information is encoded in a group of neurons [9] (Fig. 1b). According to 
population coding (Fig. 1d, right), the PV represented as v(θd)∈R2 can be given by 

 
1

1
( ) ( )

N
d d

i i
i

u
N

θ θ
=

= ⋅v p  (3) 

where pi = [cos(θi 
p + ni), sin(θi 

p + ni)]
T, which is the basis vector of the PD. 

 
Reaching Impairment after Stroke. Stroke seems to affect movement only within a 
certain range of directions. The directional control of reaching after stroke can be 
simulated by cell death in a PV model of movement control [10]. To model the effect, 
we removed neurons with PDs in the first quadrant (Fig. 1c). This restricted the range 
of movement for the 45° direction, while movements the 0° and 90° directions de-
viated from the desired directions (Fig. 1e). 

2.2 Effects of Rehabilitation 

We modeled the effects of rehabilitation on motor function as motor adaptation. The 
aims of motor adaptation are to shift the actual encoded direction closer to the desired 
direction, i.e., active learning component, and to shift the PDs of the individual neu-
rons toward the desired direction, i.e., passive learning component (self-organizing 
component). Thus, the leaning rule is described as the following cost function: 

 2 2

1

( ) ( )
N

d h d
i

i

J uθ θ λ θ
=

= − −   (4) 

where θh and λ are the PV direction and free parameter, respectively. Through mul-
tiple rehabilitation trials, the PDs are updated in accordance with the learning rule. 
The updated rule is denoted using active and passive updating commands, wa and wp, 
respectively, by 

 ( 1) ( ) ( ) ( )p p
i i a pt t w t w tθ θ+ = + +  (5) 

where t is the number of trials. The passive component is derived from the deviation 
of the cost function with respect to a neuron’s PD, i.e., ∂J/∂θi 

p: 

 ( ) ( ( )) sin( ( ) ( ) ( ))d d p
p p i i iw t u t t t n tα θ θ θ= ⋅ ⋅ − −  (6) 
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Fig. 2. Illustration of conventional and robotic therapies. (a) Arm movement training using 
robotic manipulandum. (b) Arm movements in the therapies. In conventional therapy, move-
ment error is observed. In robotic therapy, there is no directional error, as the assistive robotic 
force is generated to reduce error. (c) Block diagram of active learning components. Blue dot-
ted and red dashed arrows indicate supervised learning (conventional therapy) and reinforce-
ment learning (robotic therapy) approaches, respectively. 

where αp is the learning rate, set equal to 0.002 according to a previous study [7]. 
Moreover, we defined the active updating command as different forms representing 
conventional and robotic therapies (Fig. 2). 
 
Conventional Therapy. In previous studies [7, 8], the active learning component was 
defined as a supervised learning. Thus, we adapted supervised learning as conven-
tional therapy in accordance with those studies (Fig.2b-c). Similar to the passive 
component, the active update component is derived from deviation of Eq. (4): 

 ( ( ))
( ) ( ( ) ( ))

| ( ( )) |

d
d hi

a aC d

u t
w t t t

t

θα θ θ
θ

= ⋅ ⋅ −
v

 (7) 

where αaC is the learning rate, set equal to 0.05 in accordance with a previous study 
[7]. Notably, we adjusted the angular error between the desired and PV directions to 
fall within the interval –π ≤ θd – θh < π. 
 
Robotic Therapy. In robotic therapy, the robot generates assistive force to achieve 
the motor task, i.e., reduce error and increase the range of movement (Fig. 2a). Such 
training involves two interacting processes: the subject trying to move and the robot 
applying forces to the subject’s arm. A fundamental principle of motor learning is that 
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movement practice improves motor function; however, the role of applied robotic 
forces in improving motor function is still unclear. We assumed that the robotic ther-
apy induced reinforcement learning rather than supervised learning because the task is 
always achieved with robotic support and a reward in the form of task achievement is 
presented, e.g., sound and explosion of targets (Fig. 2c). The explicit feedbacks may 
increase subjects’ motivation to promote reinforcement learning [17]. We assumed 
that the robotic device would generate an assistive force to achieve the reaching task 
with maximal effort of the subject [21, 22]. 

Suppose that the expected cost-to-go function is 

 
0

( ) ( )
N t

k

k

V t r t kγ
−

=

= +  (8) 

for a general reward function r(t), where the discount rate of reward γ is assumed to 
be 0.9. To solve this optimization problem, we adopted a temporal difference (TD) 
learning method. The TD learning updates the policy to minimize the reward predic-
tion error known as TD error δ(t) given by 

 ˆ ˆ( ) ( ) ( 1) ( )t r t V t V tδ γ= + + −  (9) 

where ˆ( )V t  is the estimated value. Then it is updated by 

 ˆ ˆ( 1) ( ) ( )V t V t tβδ+ = +  (10) 

where the learning rate β is 0.05. In addition, the active component in the update rule 
is given by 

 ( ) ( ) ( )a aR iw t t n tα δ= ⋅ ⋅  (11) 

where αaR is the learning rate, set equal to 10. A previous primate study suggested that 
dopamine cells in the basal ganglia appear to mimic the TD error signal [18]. Moreo-
ver, we defined the following reward function: 

 2( ) 1 ( )r t f tκ= −  (12) 

where f is the affected robotic force and κ is the scaling parameter set equal to 10. The 
reward function requires subjects to improve the motor performance by reducing the 
affected force via the haptic interaction with the robotic manipulandum. In this study, 
we defined the robotic force according to the following simplified form: 

 ( )d hf fθ θ π π≡ − − ≤ <  (13) 

The assistive force in stroke rehabilitation plays a role in reducing the directional 
error (Fig. 2b: right). 
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Fig. 3. Effects of rehabilitation in conventional and robotic therapies. The top and bottom rows 
show the results of conventional and robotic therapies, respectively. (a) Angular errors between 
the target position and PV during rehabilitation trials. (b) Reoptimization of PD distribution 
after rehabilitation. (c) Population coding of neurons. 

The learning rule updates the policy that describes the “best” PD’s rotation to max-
imize reward [16]. Notably, the best updating rule during trials was obtained from the 
iterative calculations. 

3 Results 

We carried out numerical simulations for the motor recover process in different reha-
bilitation approaches, i.e., conventional and robotic therapies. In both therapies (Fig. 
3), directional errors decreased across trials (Fig. 3a). However, the PD of the neurons 
was reoptimized to different states depending on the approach used (Fig. 3b). In con-
ventional therapy, no neurons had a PD of around 45°, as surrounding neurons were 
increased to make up for the deficit in neurons at 45°. As a result, the PVs directed 
toward the targets were modified, although they were detected in population coding. 
On the other hand, the robotic therapy made up for the deficits of other neurons. Loss 
of population coding recovered completely, and the directional error was smaller than 
with conventional therapy. We calculated the mean and standard distribution (SD) 
values for eight targets after rehabilitation (Fig. 4a). The errors (mean ± SD) were 
2.7° ± 1.6° and 0.53° ± 0.46° in conventional and robotic therapies, respectively. 
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Fig. 4. Performance changes during conventional and robotic therapies. (a) Rewards during 
both therapies. Left and right panels indicate the profiles during conventional and robotic thera-
pies, respectively. (b) Temporal difference (TD) error during robotic therapy. 
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Fig. 5. Effects of rehabilitation for limited target directions after rehabilitation. The top and 
bottom rows indicate the results of conventional and robotic therapies, respectively. (a) Angular 
errors for several targets after rehabilitation of all targets (blue dotted lines) and limited targets 
(red solid lines). (b) Reoptimization of the distribution of preferred directions. (c) Population 
coding of neurons. 

During conventional therapy, the reward value was gradually increased at early tri-
als, and converged with 1 after about 300 trials (Fig. 4a: left). Notably we used fol-
lowing definition of the reward function rc(t) in conventional therapy: 
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where ρ is the boundary threshold of target area. When the angular error between the 
target direction and PV is less than ρ, the hand position is within the target area and 
the task is achieved. We set the boundary threshold as 5° around target directions. In 
contrast, it was just below 1 with variability during robotic therapy, and the variability 
of reward remained during whole trials (Fig. 4a: right). However, the TD error de-
noted by Eq. (9) was decreased in an exponential manner during trials, and converged 
about 0 at late trials (Fig. 4b). 

We also examined the situation when the presented targets were limited only to the 
first quadrant area (Fig. 5). After rehabilitation, the mean directional errors did not 
differ between the two approaches. However, the directional error varied markedly for 
different targets in conventional therapy, i.e., 3.7° ± 4.2°. The directional error of 
directions was greater in the second and fourth quadrants (e.g., 180° and 270°, respec-
tively) than in other directions (Fig. 5a). In contrast, the error in robotic therapy 
showed smaller variation, i.e., 3.2° ± 1.0°. In addition, although robotic therapy re-
covered PDs in the impaired direction similar to the results for the eight targets, con-
ventional therapy did not (Fig. 5b–c). 

4 Conclusion 

We evaluated the effects of robotic therapy for stroke survivors from the viewpoint of 
neural computation in the motor cortex. Hand movement was represented by popula-
tion coding of neuronal PDs in the motor cortex based on computation. Although 
active assistance exercise is the primary control paradigm that has been explored for 
the development of robotic therapy, we postulated that the robotic device would gen-
erate an assistive force to achieve a reaching task with maximal effort of the subject 
[19, 20]. Indeed, we found that robotic therapy had advantages over conventional 
therapy. Although both therapies decreased directional error across the rehabilitation 
trials, conventional therapy did not recover loss of neurons in the area of the lesion. In 
contrast, robotic therapy reoptimized the PDs uniformly for movement directions. The 
robotic therapy showed smaller degrees of variability in directional errors compared 
with the conventional therapy. Large errors remained after rehabilitation for limited 
targets. However, the changes in robotic therapy were smaller than those seen with 
conventional therapy. In conclusion, we suggest that robotic therapy is an efficient 
means of generalizing motor function. Furthermore, this study provides computational 
evidence to promote the use of robotic therapy for stroke rehabilitation. 

The understanding that recovery of brain function after stroke is imperfect has 
prompted decades of effort to achieve faster and better recovery through environmen-
tal manipulation using robotic devices [21]. In the search for an optimal method of 
training, the results presented here may encourage the use of robotic therapies for 
restoring motor function. Several strategies have been proposed, including assistive 
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techniques, challenge-based methods, haptic simulation, and coaching. There is a 
need for head-to-head comparisons of control algorithms in randomized, controlled 
clinical trials, and for improved models of human motor recovery to provide a more 
rational framework for designing robotic therapy control strategies [22]. Recently, a 
linear dynamics model was developed to describe the trial-by-trial evolution of motor 
performance in chronic stroke survivors who underwent a rehabilitation protocol 
based on a robot-assisted arm extension task [23]. In future studies, we will combine 
the motor performance model with stroke rehabilitation models to develop an optimal 
robotic therapy approach. 
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Abstract. In this paper, we propose a new health monitoring system
(HMS) based on a new classification method consisting of the real time
support vector machines (RTSVM). The new HMS denoted by RTSVM-
MS deals with problems of monitoring systems in intensive care unit
(ICU). The main aim of this new system is to considerably reduce the
rate of false alarms and keep a high and stable level of sensitivity. Be-
sides, it overcomes the main issue of the existing HMS by proposing a
classification model that considers the variation of the patient states over
time. In addition, the thresholds set has to be modified when patients
are getting better. However, thresholds are stable and do not translate
the states of patients over time since, all existing systems in ICU do
not take into account of the patients’ states evolution. Our proposal has
the ability to generate an initial model that classifies states of patients
to normal and abnormal (critical) using the LASVM. Then, it updates
its model by considering the evolution in the states of patients using
RTSVM. As a result, the new system gives what the medical staff wants
as information and alarms relative to monitored patient.

Keywords: Health monitoring system, Real Time SVM, Intensive care
unit.

1 Introduction

Intensive care unit (ICU) is a special department in hospital devoted to patients
whose conditions are life threating. It provides intensive care to patients and try
to control critical states. Unfortunately, the experience and clinical skills of the
medical staff and care-givers are not always enough to give the best treatment
or action to patients. To this end, ICU is equipped by sophisticated monitoring
devices such as health monitoring system (HMS). The principal aim of HMS is
to measure and alert medical staff when patient has a critical state. The current
HMS function is based on threshold set by care-givers. An alarm is trigged when
its limits are violated. Current monitoring systems are developed to especially
provide a high sensitivity and do not miss true alarms.

In many research studies [9],[21] authors prove that there were an excessive
number of alarms trigged by the HMS. This can affect the working conditions
and make the patient state worst. The most trigged alarms are considered as
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false alarms. Studies have demonstrated that the presence of false or clinically
insignificant alarms ranges from 80% to 99% [19]. The myriad of the alarm
number creates a bad environment in ICU and reduces trust of care-givers to this
system. Besides, it causes a continuous stress to both medical staff and patients.
To avoid the noise of false alarms, the medical staff may silence, disable or even
ignore the alarms [1]. By this behavior, true alarms are missed and patient will be
in real danger. Furthermore, in [13] authors have reported that in Massachusetts
General Hospital in 2010 the result of turning off alarms have caused the death
of a patient.

Improving the HMS in ICU, reducing the number of false alarms, and increas-
ing the positive ones have attracted the intention of many researchers over the
past ten years. Several researchers have focused on this problem in ICU. We can
mention the use of the digital signal processing in [7] where there is also a clinical
validation study for two recently developed on-line signal filters, the use of trend
extraction methodology based on the time evolution of signals in [11], and the
use of the intelligent monitoring [18] detailed through the time series technology
and multi-agent sub-systems. Moreover, there were several other studies [3], [20]
that have reported and detailed this issue and how to overcome it.

To this end, we propose in this paper a new HMS based on a new machine
learning technique which is the real time support vector machines (RTSVM).
The RTSVM is a modified version of the standard SVM which can improve the
model of classification in the test phase. Our proposal reduces the number of
ignored or ineffective alarms, conserves the important sensitivity and simulates
the expert reasoning. Besides, it takes into account of the evolution of the patient
states over time.

The rest of the paper is structured as follows: Section 2 describes the health
monitoring system in ICU. Section 3 provides an overview of the support vec-
tor machines and the LASVM. Section 4 illustrates our proposal which is the
monitoring system based on RTSVM. Section 5 presents and analyzes the ex-
perimental results. Section 6 concludes the paper.

2 Health Monitoring System in ICU

Monitoring patient in critical care environments such as intensive care units
(ICUs) and operating rooms involves estimating the status of the patient, re-
acting to events that may be life-threatening, and taking actions to bring the
patient to a desired state. There is the use of medical devices when monitoring
patients. Besides, the current HMS generates important data and information
relative to the monitored patient. Physiological variables such as heart rate,
blood pressure, temperature, ventilation, and brain activity are measured and
constantly monitored on-line. Each variable has a practical limits or threshold,
when a parameter exceeds its limits an alarm is trigged.

Table 1 shows an example of some measured parameters with their thresholds.
Alarms are generated by crossing a given limit. Unfortunately, it is not the

best method to indicate the patient states. There is not a consideration of the
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Table 1. Some measured parameters

Medical parameters Min. value Max. value

Heart Rate 50 120
Respiratory rate 5 25

Pulse rate 65 115
Saturated percentage of Oxygen in the blood 90 130

simultaneous evolution of different parameters. The information that the medical
staff generally wants is the detection of critical changes in a patient conditions.

To guarantee patient safety, a high sensitivity in detecting clinically relevant
situations is desired. However, this requirement causes the high number of alarms
generated by the HMS. Studies have demonstrated that the majority of alarms
created by patient monitoring systems have no clinical relevance. Borowski et
al. [7] recorded monitoring data of 68 patients in a medical ICU. As a result,
only 15 % of all alarms were clinically relevant. Furthermore, there were two
other studies that have illustrated this problem. The first one is the survey of
German ICUs detailed in [1] where authors conclude that more than 50 % of
all alarms were irrelevant. The second one, is the national on-line survey on
the effectiveness of clinical alarms which have reported the same results in [17].
Moreover, in [13], only 10 % of all alarms were taken into account by care-givers
and 50% of all relevant alarms were not correctly identified.

With the large number of false alarms, care-givers do not trust the used mon-
itoring system anymore and are becoming desensitized. As a results, care-givers
ignore the majority of alarms and consider this system as a measurement tool
not as a monitoring one. Due to the high rate of false alarms, the sensitivity
of the current HMS is not close to 100%. There were 75 life-threating situa-
tions, where no alarm occurred, reported in the Federal Institute for Drugs and
Medical Devices (BfArM) in Germany. Besides, missing true alarms caused, be-
tween 2002 and 2004, 237 deaths related to device alarms [14]. New solutions are
needed to manage and process the continuous flow of information and to provide
efficient and reliable decision support tools. The reduction of false alarms and
keeping a high rate of sensitivity are the main purpose of many researches. We
can mention the monitoring based on machine learning [4], [5].

As a result, the future patients monitoring system has to allow the medical
staff to be more confident in the HMS. It has not to be a simple measurement
tool but a monitoring one by providing important medical information. In order
to avoid the issues indicated above, the monitoring system should be improved.
To this end, we propose a new HMS based on real time support vector machines.
This latter makes it possible to detect different patients’ states as desired and
needed by medical staff. The RTSVM is trained from expert decisions and can
simulate the expert task for new observations.
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3 Support Vector Machines and Its Incremental Version

3.1 The Standard SVM

Support vector machines (SVM) is a very popular method for binary classifica-
tion data. It has been introduced by Vapnik in 1995 [12]. The basic idea was to
find an hyperplane which separates data into its two classes with a maximization
of the margin.

Fig. 1. The optimal hyperplane

1. Case of linearly separable data: Given a training set of observations
(xi, yi), i = {1....m} where xi ∈ Rn and y ∈ {1,−1} (as illustrated in Fig-
ure 1, left). Training SVM means solving the following optimization problem.⎧⎨⎩min 1

2 ||w||2 + C,w ∈ Rd, b ∈ R,
subject to
yi(xiw + b) ≥ 1for i = 1, ...,m.

(1)

After finding the w and b, we use the decision rule to classify the new ob-
servations:

fw,b(x) = sign(wTxi + b). (2)

2. Case of non-linearly separable data: SVM can also be used to separate
classes that cannot be separated with a linear classifier (as shown in Figure 1,
right). In this case, the original observations are mapped into a feature space
(high dimensional may be infinite) using non-linear functions called feature
functions φ. In the new space, the two classes can be separated with a linear
classifier.

The data mapping is defined through the function Φ. This latter is pre-
sented by Rd → RD(D �� d), with RD is HILBERT space.
To detect the hyperplane, we have to solve the optimization problem defined
as follows using the slack variable ξi:
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min
1

2
||w||2 + C

m∑
i=1

ξi, w ∈ Rd, b ∈ R, (3)

subject to
yi(xiw + b) ≥ 1− ξi, ξi ≥ 1for i = {1, ...,m} . (4)

In a previous work, we have proposed a monitoring system based on the SVM
[2] and interesting results have been obtained. However, the system was tested in
batch mode and it needs a high execution time to be trained with a large dataset.
To overcome the SVM limitations, we have improved the proposed HMS based
on a new incremental and on-line versions of SVM which is the LASVM [6]. The
following subsection describes the LASVM technique used in our proposal.

3.2 The Improved Version of SVM: The LASVM

The LASVM proposed in [6] presents a well-known incremental algorithm. It is
a modified and improved version of the SVM. It solves the problem of large data
in the training phase that are added over time.

Besides, the LASVM is considered as an efficient incremental method success-
fully applied in several works such as in [15], [22].

The LASVM algorithm is based on the sequential minimal optimization (SMO)
implemented by the libsvm tool [10]. Actually, the LASVM algorithm contains
two main procedures mainly the process and reprocess procedures. The main
advantages that the LASVM offers is being faster and using less memory than
the SVM. The monitoring system based on the LASVM (LASVM-MS) [5] has
shown efficient results by decreasing the number of false alarms and keeping a
high level of sensitivity. In addition, it uses the same model for all new obser-
vations. However, patient’s states change over time and medical staff needs a
model that takes into account of this change. To this end, we propose a new
technique consisting of the RTSVM.

4 Monitoring System Based on Real Time SVM

This section presents our proposal consisting of the monitoring system using real
time SVM (RTSVM-MS). We explain the RTSVM algorithm then, we move to
presenting our new system.

4.1 RTSVM Algorithm

The real time SVM (RTSVM) algorithm is presented as follows.
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Begin

for each new observation Xi do
Yi ← LASVM(Xi)
if Xi is not a candidate then
AddErrorSet(Xi)

else
AddCandidate (Xi, Yi) at the CandidateSet.

end if
for each time interval do
Print CandidateSet
Update CandidateSet from Expert Decision
LASVM ← Update(LASVM, parameters)

end for
end for
End

Based on the pseudo code of RTSVM algorithm, we notice that the RTSVM
takes as input the original model of classification obtained in training phase
using LASVM. When we have a new vector (set of measured variables), RTSVM
assigns to this vector a label equal to −1 if this vector represents an alarm or +1
otherwise. In back office, RTSVM checks the nature of the new vector, if it is a
candidate (may be a support vector), the RTSVM adds it to the CandiateSet.
During the classification of new medical data, the expert should validate the
CandidatesSet. The validation consists of proving or modifying the label assigned
by the RTSVM.

After the validation of the CanditatesSet, we update the original model pa-
rameters. This step has many advantages mainly reducing the execution time
of training by re-training the LASVM with only the CandidatesSet (and not
using the whole dataset). In addition, it improves the original model over time
to adapt it to the new patient states.

4.2 Description of the Proposed System

Actually, SVM classification and the majority of classification techniques, use
the model built in the training phase to classify all new observations in test
phase. However, there are always an evolution and change of data over time. In
real-world situations, data dynamically change and the class of their labels could
change from one class to another over time. Data are often continuously collected
in time and, more importantly, the concepts to be learned may also evolve in
time. It is necessarily to take into account of the evolution of data in both training
and test phases. As a result, real-time systems are needed to better analyze data
over time. In [23], authors have recently proposed a real time system applied
in medical field for integrating simultaneous rtfMRI and EEG data streams. In
our case, we focus on the improvement of the ICU by proposing a new real time
monitoring system. The RTSVM-MS uses as input the model produced by the
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Fig. 2. The architecture of the RTSVM-MS

LASVM technique in the training phase. Then, it starts classification of new
observations arriving from the monitoring system device. Finally, it improves
the current model through the validation of the expert. Figure 2 reports the
structure of our proposed system as described in the RTSVM algorithm.

In our case, data describe the measured medical parameters of patients that
dynamically change and their states could be more or less critical over time. It is
necessarily to take into account of the evolution of data in both training and test
phases. Our new monitoring system RTSVM-MS is characterized by taking into
account of all new states of patients over time. It also updates the model built by
the LASVM each time interval. These updates avoid the missing of important
information and guarantee an easier and more effective monitoring.

5 Experiments

5.1 The Framework

For the evaluation of our proposal (RTSVM-MS), we test it using real datasets
from MIMICII database taken from Physiobank [16]. This database includes
data from hemo-dynamically unstable patients hospitalized in 1996 in ICU of
the cardiology division in the Teaching Hospital of Harvard Medical School.

We used 14 databases relative to several patients containing different phys-
iological parameters. From these parameters, we can mention the Heart Rate
(HR), Oxygen Saturation (SpO2), Non-Invasive Blood Pressure (NBP), Respi-
ratory rate (Resp), and Artery Blood Pressure (ABP). Table 2 details real-world
databases taken from MIMICII where #Attributes and #Instances denote re-
spectively the total number of measured parameters and the total number of
instances for a specific database.
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Table 2. Description of the used datasets

Databases #Attributes #Instances

Patient 01 6 4101
patient 02 8 42188
patient 03 8 42188
patient 04 7 42188
patient 05 9 42188
patient 06 9 5350
patient 07 7 11300
patient 08 7 10600
patient 09 12 5700
patient 10 5 42188
patient 11 7 42188
patient 12 7 42188
patient 13 9 42188
patient 14 7 42188

5.2 Evaluation Criteria

To test our new monitoring system i.e. RTSVM-MS, we essentially use three
evaluation criteria described as follows.

1. The false alarm reduction rate (FARR) [7] defined by:

FARR =
Suppressed false alarms

Total number of false alarms
. (5)

2. The sensitivity (S) that represents the ability of the system to detect positive
results. It is defined by:

S =
TP

TP + FN
. (6)

3. True positive (TP) defined as critical states that people correctly diagnosed
it as critical.

5.3 Results and Discussion

In this section, we report the results of our proposal using the evaluation criteria
and then, we detail all obtained results. As follows, the main steps followed to
get the final results are illustrated.

1. We divide the patient dataset into two sets: training set and test set.
2. We build the initial model through the LASVM by using the training set.
3. In test phase, we start classifying the observations using the model obtained

in training phase to alert medical staff when a patient has a critical state.
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4. For each interval time fixed a priori by care-givers, the expert validates the
candidate set (probably a support vector).

5. Based on the candidate set, RTSVM generates the new model.

6. We continue the classification of the remaining observations in the test phase.

The main problem of the current monitoring system is the high number of
false alarms. The results obtained in Table 3 shows the rate of suppressed alarms
by the different proposed systems.

Table 3. Suppressed false alarms for different patients’ datasets

Databases FARR SVM-MS FARR LASVM-MS FARR RTSVM-MS

patient 01 95,14 96,59 98,84
patient 02 98,89 99,42 99,75
patient 03 99,3 99,42 99,95
patient 04 96,46 98,34 98,96
patient 05 96,84 97,83 99,55
patient 06 95,68 97,64 98,83
patient 07 99,05 99,36 99,64
patient 08 96,15 97,68 98,68
patient 09 96,89 97,99 99,59
patient 10 80,23 87,2 95,35
patient 11 97,96 99,02 99,31
patient 12 96,87 98,83 99
patient 13 95,6 97,22 99,6
patient 14 98,41 98,84 99,89

Based on the first criterion, we remark that the new system RTSVM-MS has
the highest rate of suppressed false alarms for all datasets. The improvement in
the results is due to taking into account of the evolution of patient states over
time. In fact, reducing false alarms is very important however, keeping a high
level of sensitivity is needed. Lives of patients depend on trigged alarms and
missing a true alarm can present a real threat for their lives.

Table 4 illustrates the sensitivity of the RTSVM-MS compared to the other
monitoring systems that used LASVM, SVM, and the current system (CS). We
can notice from Table 4 that the RTSVM-MS has a stable and high sensitivity
compared to the other systems. Despite the high number of trigged alarms, the
current system looses its sensitivity especially for patients 08 (23.3%) and 09
(4.6%) due to the bad setting of threesholds.

To proves the performance of the new system, true positive alarms are com-
pared to the expert opinions. Note that true alarms consist of alarms generated
by the monitoring system and indicating a real critical state of the patient.
Table 5 shows the results.

From table 5, we can remark that the RTSVM-MS gives very similar results
to the expert who indicates the critical cases where alarms should be generated.
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Table 4. Sensitivity of the RTSVM-MS, LASVM-MS, SVM-MS, and the current
system

Databases CS SVM-MS LASVM-MS RTSVM-MS

patient 01 100 86,41 94,17 99,68
patient 02 100 80,76 87,08 98,14
patient 03 100 68,24 79,05 97,7
patient 04 97,78 88,63 97,33 99,2
patient 05 97,34 66,32 79,4 98,1
patient 06 48,36 85,87 87,68 95,56
patient 07 100 94,44 94,44 94,44
patient 08 23,3 81,55 89,32 94,17
patient 09 4,6 67,97 71,21 96,25
patient 10 87,01 87,96 92,7 99,78
patient 11 36,28 85,8 94,43 89,54
patient 12 95,5 77,6 88,45 90,23
patient 13 100 88,12 90,17 99,51
patient 14 100 63,41 70,59 98,42

Table 5. Number of true positive alarms of the monitoring systems vs. the expert

Databases TA-CS TA-SVM-MS TA-LASVM-MS TA-RTSVM-MS Expert

patient 01 309 267 291 308 309
patient 02 1076 869 937 1056 1076
patient 03 740 505 585 723 740
patient 04 4533 4109 4512 4599 4636
patient 05 1942 1323 1584 1957 1995
patient 06 883 1568 1601 1745 1826
patient 07 54 51 51 51 54
patient 08 24 84 92 97 103
patient 09 27 399 418 565 587
patient 10 2002 2024 2133 2296 2301
patient 11 378 894 984 933 1042
patient 12 1232 1001 1141 1164 1290
patient 13 6909 6088 6230 6875 6909
patient 14 697 442 492 686 697

In addition, we remark that in contrast to the new monitoring system, the current
system has a trouble to detect true positive alarms. This is obvious especially
for patients 06, 08, and 09.

6 Conclusion

In this paper, we have avoided the main problems of monitoring system in in-
tensive care unit (ICU). We have presented a new technique based on the SVM
consisting of real time SVM (RTSVM). This new technique is used to propose
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a new monitoring system more efficient than the current one. The new system
significantly improves the working conditions in ICU by detecting true positive
alarms and reducing the frequency of false alarms. In addition, our proposal has
the capacity to identify patients’ critical states over time. It updates the initial
classification model through new observations in order to follow patient states
evolution. As a result, the new system based on the RTSVM offers to the med-
ical staff better working conditions and makes trigged alarms more significant.
Furthermore, it helps care-givers to take the best decisions.
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Abstract. Dementia is the loss of cognitive brain functioning including
thinking, remembering, and reasoning to such an extent that it interferes
with a person’s daily life and activities. Individuals with high levels of in-
telligence, educational, and occupational attainment may sustain greater
brain damage before demonstrating functional deficit. This is mainly con-
tributed to their cognitive reserve, the mind’s resistance to damage of the
brain. This paper proposes brain aerobics, a set of stimulating mental
exercises that aims at building the cognitive reserve to protect elderly
people from developing dementia’s symptoms. Brain aerobics exercises
are developed for mobile devices for ease of use. Experimental results
demonstrate the benefits of the proposed brain aerobics in increasing IQ
levels by 7.2% for elderly people who have dementia high risk factors.

Keywords: Dementia, Brain Aerobics, Mental Exercises, Alzheimer’s
Disease.

1 Introduction

Dementia is a degenerative condition that affects brain functions and mental
ability severely enough to interfere with a person’s daily activities. Dementia
is normally associated with memory loss, cognitive dysfunction, and difficulty
of thinking and communication. According to World’s Alzheimer’s 2013 Report,
there are more than 35 million people worldwide living with Alzheimer condition,
and the number is expected to double by 2030 [1]. In its 2012 report, World
Health Organization (WHO) has called upon governments and policy makers
to give dementia a global public health priority, calling on countries to develop
health care systems to look after people living with dementia conditions [15].

Dementia is mainly attributed to brain cells damage that impedes the com-
munication between these cells, causing brain not to carry out its functions
normally. Damage of brain cells is mainly associated with normal aging, how-
ever, that doesn’t mean that everyone develops dementia with aging. Despite the
fact that aging is a significant risk factor for dementia and Alzheimer’s disease,
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yet many seem to keep excellent memories and perform challenging mental tasks
while in their 80s age and beyond.

Interestingly, autopsy studies have found that sizable number of cognitively
normal old people have shown brain abnormalities similar to those of Alzheimer’s
decease patients [7, 5]. This was mainly explained by the concept of Cognitive
Reserve which has been defined as the ability of an individual to tolerate progres-
sive brain pathology without demonstrating clinical cognitive symptoms. Studies
have suggested that susceptibility to age-related memory changes and dementia
are related to many variables such as education, literacy, IQ and engagement
in leisure activities [13, 9]. Later studies [12] theorize that brain may have the
ability to develop connections that maintain extra neurons and connections to
compensate for the rise in dementia.

In this paper, we propose brain aerobics, a set of stimulating brain exercises
and activities to help in building a Cognitive Reserve to protect from developing
Alzheimer’s symptoms. We have developed a mobile device application for the
brain aerobics exercise. Users can exercise using the application any time they
like. We have evaluated our proposed brain aerobics on thirty different individ-
uals, ten of them are with high AD risk factors. We have measured the partici-
pants’ IQ before and after using the brain aerobics exercises. Results showed a
16.1% average improvement of IQ test results for all the participants and a 7.2%
average improvement for the ten participants who have AD high risk factors.

The remainder of this paper is organized as follows: Section 2 describes the
brain aerobics exercises. Section 3 presents the experimental setup and results.
In Section 4, we discuss the related research that this work is based on. We
conclude with final comments in Section 5.

2 Exercises

Our approach focuses on building the cognitive reserve for people with high
AD risk factors. An application, named brain aerobics, with several exercises is
developed for handheld mobile devices to support this approach. The application
is designed to help the users exercising their brains and building their cognitive
reserve on daily bases. The application provides an option that allows the user to
specify the times he/she likes to exercise and to remind him/her with an alarm
at the specified times.

2.1 Cubes Exercise

In this exercise, the tablet’s screen is divided into 16 cubicles organized in four
rows by four columns. Randomly, some of the 16 cubicles are selected and a single
small red cube is inserted in each of them. Figure 1 shows a sample screenshot.
The screen is displayed for thirty seconds where the user is required to memorize
the exact locations of all the red cubes. The application then displays on the
screen the same 16 cubicles but without the red cubes as shown in Figure 2. The
user is required to tap on the cubicles that had the red cubes. Once the user is
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done, he/she can tap on the submit button. If the user managed to successfully
remember the locations of all the red cubes, the exercise is repeated but with the
red cubes randomly placed on different locations. In case the user failed to tap
on the correct cubicles, the exercise with the same layout is repeated again. The
total number of red cubes varies from 1 to 15 and adjusted so the complexity
of the layout increases after each successful try. The application keeps track of
the total score giving one point for each successful try. The user can pause and
continue the exercise at any time.

Fig. 1. Sample screenshot for the Cubes exercise

The cubes exercise comes in three levels. The number of small red cubes that
may be inserted in a cubical is increased with each level. In level-2, one or two
small red cubes can be inserted in a cubical. Figure 3a is a sample screenshot
of cubes exercise level-2. In level-3, up to four small red cubes can be inserted
in a cubical. Figure 3b shows a sample screenshot of the level-3 cubes exercise.
The user advances to a higher level after managing to get a score of 30 in the
previous level.

2.2 Numbers Exercise

In this exercise, the tablet’s screen is divided into 16 cubicles. Three two digit
numbers are randomly generated. Each number is placed randomly on a cubical.
Figure 4 shows a sample screenshot. The screen is displayed for thirty seconds
where the user is required to memorize the exact location and the exact value of
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Fig. 2. Sample answers screenshot for the Cubes exercise

each of the three numbers. The application then displays on the screen the same
16 cubicles without the numbers. The user is required to tap on each cubical
that had a number and insert the exact value that was displayed before. A
popup keyboard appears on the screen for the user to insert the number. Once
the three numbers are inserted, the user can tap on the submit button. If the
user managed successfully to remember the locations and values of the three
numbers, the same exercise is repeated but with three different numbers that
are randomly placed on different locations. In case the user failed to tap on the
correct cubicles and insert the correct values, the same exercise with the same
numbers is repeated again. The application keeps track of the score giving one
point for each successful recall. The number exercise comes in three levels. Three
digit numbers can be inserted in a cubical for Level-2 and four digit numbers
can be inserted in a cubical for level 3. The user moves to the next level after
managing to get a score of 30 in the previous level.

2.3 Shapes Exercise

In this exercise, the tablet’s screen is divided into 12 cubicles. Three shapes from
a large group of shapes are randomly selected. In each of the 12 cubicles, one of
the three shapes is displayed. Figure 5 shows a sample screenshot. The screen
is displayed for thirty seconds where the user is required to memorize the exact
locations and shapes. The application then displays on the screen the same 12
cubicles without shapes in them. The application also displays the three shapes
where the user is required to drag one of them and place it in a cubical that
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(a)

(b)

Fig. 3. Sample screenshots of Level-2 and Level-3 of the Cubes Exercise
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Fig. 4. Sample screenshot for the Numbers exercise

had the same shape displayed before. Once the user insert shapes in all of the
cubicles, he/she can tap on the submit button. If the user managed to successfully
remember the correct shape in each cubical, a new iteration is repeated but with
three different shapes that are randomly placed on different locations. In case
the user failed to complete the task, the same exercise is repeated again. The
application keeps track of the score giving 1 point for each successful recall.
Similar to the previous exercise, the shapes exercise comes in three levels. Four
shapes are used for Level-2 and five shapes are used for level 3. The user moves
to the next level after managing to get a score of 30 in the previous level.

2.4 Spot the Difference Exercise

In this exercise, 6 text lines are displayed on the screen. Each line consists of a sin-
gle letter or a single digit number that is repeated over and over across the whole
line. In each line, a different letter or a different number is inserted in various lo-
cations. Figure 6a shows a sample screenshot for the exercise where lines of letter
o are displayed and few letter c are injected in various locations. Figure 6b shows
a similar sample screenshot but for the number 5 repeated and number 2 injected
in various locations. The user is required to spot all of the odd letters or odd num-
bers and tap on them. The application keeps track of the score giving 1 point for
each successful try. This exercise comes also in three levels. The complexity is in-
creased for Level-2 and Level-3 by restricting the user to spot the different letters
or numbers in a specific time interval. Similar to the previous exercises, the user
moves to higher levels after successfully getting 30 points.
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Fig. 5. Sample screenshot for the Shapes Exercise

(a)

(b)

Fig. 6. Sample screenshots for Spot the Difference Exercise
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Fig. 7. Sample screenshot for the Next Shape in the Sequence Exercise

2.5 Next Shape in the Sequence Exercise

In this exercise two rows of three boxes that make up series from right to left
are displayed on the screen. The third row on the screen is a third series that is
missing one element. Figure 7 shows a sample example. The user is required to
analyze the two series and find the next shape in the sequence that completes the
third series. The answer choices are displayed at the bottom of the screen. The
user is required to just tap on the correct choice. Similar to the previous exercises,
the application keeps track of the score giving one point for each successful
answer. This exercise comes also in three levels with different complexity. Similar
to the previous exercises, the user moves to higher levels after successfully getting
30 points.

3 Results

The participants considered in the study are volunteers from Darat Samir
Shamma, a senior residential care facility and housing located in Amman, Jor-
dan. Thirty participants were selected, ten of them are people with AD high
risk factors (age is more than 60 years old who have family history of AD). The
average age for all the participants was 51.7 years and the average age for the
ten participants with AD high risk factors was 69.3 years. All participants were
asked to use the brain aerobic exercises for one hour each day over a period of
two months.

All the participants were instructed on how to use the brain aerobics applica-
tion and how to exercise. The participants have been also requested to take the
Wechsler Adult Intelligence Scale [14] test before starting the exercises and the
Raven’s Matrices [11] test after the two months exercising period. On average,
participants showed a 16.1% improvement of their IQ test results. The ten par-
ticipants who have AD high risk factors showed a 7.2% average improvement of
their IQ test results.
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4 Related Work

Many researchers have focused on mental exercises for the care and prevention
of dementia. Kawashima [8] proposed Learning Therapy based on using sys-
tematized problems in arithmetic and Japanese language as training tasks to
improves the cognitive functions of dementia patients and healthy seniors. Bre-
ton et al. [4] proposed a computer-based tool for the elderly to improve their
memory by performing mental activities and physical exercise at the same time
using Kinect sensors. Guan-Feng et al. [6] proposed gesture recognition based
on 3D serious games to prevent dementia by increasing brain usage and physical
activities of users.

Other research focused on building cognitive reserve to delay the onset of the
dementia symptoms. For example, Antoniou et al. [2] proposed using foreign
language learning programs aimed at older populations for building cognitive
reserve as language learning engages an extensive brain network that is known
to overlap with the regions negatively affected by the aging process. Pike [10]
suggested art therapy treatment to improve cognitive performance of elderly
people.

Some research has also focused on using mobile devices for dementia patients.
Coppola et al. [3] suggested utilizing tablets and iPads with dementia patients
to portray favorite music and family photographs via apps developed in close
partnership with geriatric facilities.

5 Conclusions

In this paper, we have presented brain aerobics, a mobile device application that
can be used for mental exercising. Brain aerobics aims at building cognitive re-
serve for people who have dementia high risk factors to delay the manifest of
the disease’s symptoms. Evaluation results indicate that brain aerobics simplifies
mental exercising and improves IQ levels of the participants. The simplicity of
running brain aerobics would hopefully increase the adoption of mental exercis-
ing among elderly people.

Acknowledgements: The authors would like to thank Darat Samir Shamma’s
staff, especially Ms. Miaad Tarabsha, for their assistance and support.
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Abstract. In neurosurgical treatment of the Parkinson Disease (PD)
the target is a small (9 x 7 x 4 mm) deep within brain placed struc-
ture called SubthalamicNucleus (STN). The goal of the Deep Brain
Stimulation (DBS) surgery is the permanent precise placement of the
stimulating electrode within target nucleus. As this structure poorly dis-
criminates in CT1 or MRI2 it is usually stereotactically located using
microelectrode recording. Several microelectrodes are parallelly inserted
into the brain and in measured steps they are advanced towards expected
location of the nucleus. At each step, from 20 mm above the target, the
neuronal activity is recorded. Because STN has a distinct physiology,
the signals recorded within it also present specific features. By extract-
ing certain features from recordings provided by the microelectrodes, it
is possible to construct a classifier that provides useful discrimination.
This discrimination divides the recordings into two classes, i.e. those
registered within the STN and those registered outside of it. Using the
decision tree based classifiers, the best results have been obtained using
the Random Forest method. In this paper we compared the results ob-
tained from the Random Forest to those provided by the classification
based upon rules extracted by the rough set approach.

Keywords: Parkinson’s disease, DBS, STN, Decision Tree, Random
Forest, Rough Set, Classification Rule, RSES.

1 Introduction

Recordings obtained by means of microrecording during PD DBS surgeries can
be discriminated into those obtained from the STN and from structures adja-
cent to it. It is possible due to specific physiology of the STN . This physiology
manifests in the activity that differs from that observed in neuronal structures

1 Computer Tomography.
2 Magnetic Resonance Imaging.
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being both dorsal3 and ventral4 to this structure [1][2]. Authors in [3][4][5] pro-
vided computational basis for calculation of attributes that when calculated for
neurophysiological recordings can be successfully used for their discrimination.
Those attributes have been used for construction of various decision tree based
classifiers. The clinical database presently contains 16377 recordings obtained
during 153 surgeries. In the case of both Random Forest and C4.5 the obtained
sensitivity is above 0.9 and specificity above 0.98. Such results clearly fulfill the
requirements for medical appliance [6] and allowed us to develop a recommender
system that is currently in clinical use during neurosurgeries at Warsaw Institute
of Psychiatry and Neurology. The goal of this paper if to compare results ob-
tained from Random Forest to those generated by the classification based upon
rules extracted by the rough set approach.

2 Methods

Parkinson Disease (PD) is a chronic and progressive movement disorder. The
risk factor of the disease increases with the age. As the average human life span
elongates also the number of people affected with PD steadily increases. Accord-
ing to the present medical knowledge, the PD disease is caused by low levels
of the neurotransmitter: dopamine. Dopamine is produced by specific cells in
deep placed brain region called Substantia Nigra pars compacta (SNc). The
main cause of PD is cell-death of those cells. As the main cause of death of
those cells is not clear, different treatments focus on symptom’s improvements.
The main treatment for the disease is the pharmacological one. Unfortunately,
as more SNc cells are dying, the level of the dopamine is fast changing. PD pa-
tients have to take medications more often which may result in strong symptoms
fluctuations (ON / OFF states). In such cases, patients may be qualified for the
surgical treatment of the PD.

2.1 STN DBS Surgery in PD

STNDBS surgery stands for Deep Brain Stimulation of the SubthalamicNucleus.
Goal of the surgery is the placement of the permanent stimulating electrode into
the STN . This nucleus is a small – deep in brain placed – structure that unfortu-
nately does not show well neither in CT5 nor MRI6 scans. Above techniques allow
only for approximate localization of the STN . Stimulating electrode, when prop-
erly placed disrupts overactive neural circuits that are responsible for the forming
of the rigidness which is typical for the advanced stage of the PD disease. Incor-
rect placement of the stimulating electrode might evoke various serious adverse
side effects such as severe emotional imbalance [7].

3 Anatomically located above.
4 Anatomically located beneath.
5 Computer Tomography.
6 Magnetic Resonance Imaging.



Intraoperative Decision Making with Rules for STN DBS in Parkinson’s 325

During the process of selection of the part of the STN into which the per-
manent electrode will be implanted a series of test stimulations are performed.
During those stimulations the improvement of the patient condition is assessed.
Care is also taken to exclude any areas which when stimulated produce side
effects. As these procedures require interaction between patient and neurologist,
the general anesthesia cannot be used during the neurosurgical phase of the STN
DBS surgery. Patient must be conscious and is only locally anesthetized.

Having only an approximate location of the STN , during DBS surgery a
precise localization of the STN is achieved by means of stereotactic navigation
and intra-operative mapping based on microrecording. During the surgery, by
means of probing microelectrodes, brain activity in areas near the expected STN
location is recorded. Typically neurosurgeons use 3 to 5 parallel microelectrodes.
Electrodes are advanced to a position that is about 10 mm above expected STN
location. Later electrodes are advanced for about 15 mm with 1 mm steps. At
each step a 10 s long recording of brain tissue activity is obtained. All recordings
analyzed in this paper were sampled with 24 KHz.

Computer classification of recordings performed during surgery at operation
theatre gives neurosurgeons valuable information about which of the electrodes
and at which depths passed through the STN . In this way a precise dorsal and
ventral boundaries of the STN are obtained and finally the stimulating electrode
can safely be implanted.

Main advantages given by the recommender (decision support) system during
STN DBS surgery are:

– From classification of the recordings it is possible to obtain information,
which of the electrodes passed through the STN . It is also possible to ob-
tain depth at which given electrode entered and exited this structure. When
taking into account that information from all electrodes, the rough dorsal
and ventral boundaries of the STN can be estimated.

– Besides the results of classification, values of the attributes give additional
information that can be used to estimate the brain activity at any electrode
inspected depth. Usually the best treatment results are obtained when the
stimulating electrode is placed in one of the most active areas [7].

– One of the risks of the STN DBS surgery involves incorrect placement of
the stimulating electrode. As part of the STN is involved in the control of
emotions (limbic part), and in the vicinity of the STN – among others – are
structures involved in emotions, eye movement and sight (OP - optic tract),
wrong placement of the stimulating electrode might lead to life threatening
situations. Additional computer based verification of the STN boundaries
reduces risk of improper placement of the stimulating electrode.

– Any surgery is in some measure stressful for the patient. Recommender sys-
tem allows faster selection of right areas for test stimulations. This shortens
the time of the surgery when patient has to be awake.
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2.2 Attributes Description

Attributes extracted from DBS recordings can be divided into two groups:

Spike based attributes are calculated basing on the occurrence of the neu-
ronal action potentials i.e. spikes. The neural tissue is electrically active and
its information processing involves generation and transmission of electrical
impulses. Those impulses – spikes – are generated in neurones mainly by the
sodium (calcium) membrane channels activations. Microelectrode registers
the spiking activity from neurons that are within the 50 μm radius around
its recording lead. As shape of spikes generated by a single cell is character-
istic, derived from its morphology [1] and mostly unchanging, it is possible
to calculate those attributes for all cells within 50 μm radius or for any of
them separately.

Background based attributes are calculated basing upon the signal’s back-
ground noise. Cells that are farther than 50 μm away from electrode’s lead
are too far away for their spikes to be clearly registered. Their summary
electrical activity creates the background noise ever present in signals ob-
tained from microrecording. This background activity is a rough measure of
amount and activity of neuron cells in the broader vicinity of the electrode.

There is one decision attribute that has value STN for recordings from the STN
and value MISS for all other recordings. For each 10 s long recording there are
five spike based attributes, four background attributes and four attributes being
the five element wide moving average of background attributes.

AvgSpkRate is the average number of spikes detected per second
AvgSpkRateScMax maximal AvgSpkRate observed for single cell
BurstRatio percentage of intervals between spikes that are smaller than 33 ms
BurstRatioScMax maximal BurstRatio observed for single cell
MPWR power of the derived meta signal, explained in detail in [5]

RMS Root Mean Square of the signal
PRC80 80th percentile of amplitude’s module
LFB power of the signal’s background in range 0 − 500 Hz
HFB power of the signal’s background in range 500 − 3000 Hz

MRMS five element wide moving average of RMS
MPRC80 five element wide moving average of PRC80
MLFB five element wide moving average of LFB
MHFB five element wide moving average of HFB

In Table 1 one can observe, that for all background attributes and for 3 out
of 5 spike based attributes the Q3 for MISS class is below Q1 for STN class.

Out of 16377 recordings, 3736 (22.8 %) recordings have decision attribute
STN . 12641 (77.2 %) have decision attribute MISS.
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Table 1. Statistics for attributes

Attributes Class Q1 Q2 Q3 μ σ

AvgSpkRate
MISS 0.000 0.000 7.400 5.555 9.859

STN 10.700 18.900 29.225 21.509 15.181

AvgSpkRateScMax
MISS 0.000 0.000 4.700 3.578 6.334

STN 6.500 11.300 18.000 13.261 9.597

BurstRatio
MISS 0.238 0.414 0.596 0.195 0.262

STN 0.458 0.603 0.727 0.551 0.230

BurstRatioScMax
MISS 0.194 0.333 0.510 0.165 0.231

STN 0.361 0.495 0.632 0.469 0.221

MPWR
MISS 0 0 858 448.025 546.937

STN 1023 1315 1595 1275.836 485.373

RMS
MISS 0.939 1.006 1.153 1.064 0.230

STN 1.757 2.069 2.493 2.190 0.598

PRC80
MISS 0.962 1.011 1.137 1.064 0.196

STN 1.702 1.982 2.362 2.087 0.530

LFB
MISS 0.825 1.005 1.284 1.164 0.741

STN 2.592 3.833 5.851 4.778 3.725

HFB
MISS 0.909 1.032 1.339 1.185 0.532

STN 3.028 4.205 6.009 4.942 3.021

MRMS
MISS 0.998 1.020 1.195 1.111 0.212

STN 1.653 1.929 2.254 1.997 0.466

MPRC80
MISS 0.999 1.022 1.183 1.106 0.190

STN 1.614 1.852 2.145 1.916 0.427

MLFB
MISS 0.976 1.027 1.400 1.304 0.735

STN 2.512 3.566 5.107 4.180 2.559

MHFB
MISS 0.997 1.056 1.496 1.336 0.623

STN 2.903 3.861 5.184 4.341 2.267

2.3 Rough Set Approach

All above data can be stored as a decision table. Such table would have 16377
rows – objects. For each object there are defined 13 condition attributes i.e.
AvgSpkRate ... MHFB and one decision attribute Class.

Together they form a decision system S = (U,A) where U is the set of objects
and A is the set of attributes. For any attribute a ∈ A and object u ∈ U the
value of attribute a for object u is denoted as a(u).

Crucial to the rough set is the definition of the indiscernibility relation.
Indiscernibility relation is defined for a subset of attributes B ⊆ A and is denoted
as IB. Two elements are in relation IB iff for any attribute from B, its value is
equal for both of them [8][9].

x IB y ⇐⇒ ∀a∈B a(x) = a(y) (1)
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This relation obviously is reflexive, symmetric and transitive. From this, re-
lation IB is an equivalence relation and partitions the set U into equivalence
classes.

Now, we define IND(B) as:

IND(B) = {(x, y) ∈ U2 : x IB y} (2)

Having defined the IND one can provide the definition of the reduct of infor-
mation system. B ⊂ A is said to be a reduct of information system if IND(B) =
IND(A) and no proper subset of B has this property. B ⊂ A is a decision reduct
if IND(B) = IND(d) where d is a decision attribute.

Those reducts can further be used for obtaining attribute dependencies [10]
and finally, rules that lead from the values of the conditional attributes to value
of the decision attribute [11].

In information system the set of attributes A consists of set of conditional
attributes C and decision attribute d. If C = {c1, ..., cm} is the set of conditional
attributes then decision rule can be formulated as

(ci1 = v1) ∧ ... ∧ (cik = vk) =⇒ (d = vd) (3)

where
1 ≤ i1 < ... < ik ≤ m

If any object has conditional attributes that satisfy the left hand site of a rule,
its outcome gives value of the decision attribute of that object.

While rules basing on equality of attributes to certain values might have a
very big confidence, they may have low support and as such are poorly suited
for generalization and for further classification.

Much more general rules can be obtained when conditional attributes are not
expected to be equal to certain values but to fall into certain ranges. This ranges
are obtained by cutting the initial range of the attributes into intervals.

Fox example let’s inspect the following rule

(PRC80 < 1.15279) ∧ (MRMS < 1.22111) =⇒ (CLASS = MISS)

which applies to 7854 recordings and states that they have not been recorded
within the STN .

In contrast to decision tree classification, not every u ∈ U must be matched
by some rule. This leads to possible existence of objects for whom there are no
fitting rules and which cannot be classified using given rule set. This feature is
measured by the coverage of the rule set which gives the fraction of the tested
objects that can be classified.

Classification Results

The following results were obtained using the Random Forest method and by
means of classification based upon rules extracted by the rough set approach.
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For Random Forest the Weka7 v. 3.7.9 implementation has been used. Rough
Set based classification has been done using RSES8 v. 2.2.2 software [12]. All
classifiers were run on unconstrained database containing described attributes
for 16377 DBS recordings from 153 neurosurgeries.

Random Forest Classification Results

Random Forest Classification for All Objects with Division into 90%
for Training and 10% for Testing Purposes

Human classification
STN MISS Total

RF classification
STN 353 20 373
MISS 29 1236 1265
Total 382 1256 1638

sensitivity = 353
353+29 ≈ 0.924 specificity = 1236

1236+20 ≈ 0.984

accuracy = 353+1236
353+29+1236+20 ≈ 0.970

For training of this classifier a random subset containing 90 % of objects have
been chosen. Classifier has then been tested on remaining 10 % of objects. Both
sensitivity and specificity are very good and above 0.9. The Kappa statistic was
also very good: 0.916. Coverage for level 0.95 was 99.451 % of objects.

Random Forest Classification for All Objects with Division into 60%
for Training and 40% for Testing Purposes

Human classification
STN MISS Total

RF classification
STN 1317 79 1396
MISS 110 5045 5155
Total 1427 5124 6551

sensitivity = 1317
1317+110 ≈ 0.923 specificity = 5045

5045+79 ≈ 0.985

accuracy = 1317+5045
1317+110+5045+79 ≈ 0.971

For training of this classifier a random subset containing 60 % of objects have
been chosen. Classifier has then been tested on remaining 40 % of objects. Both
sensitivity and specificity are very good and above 0.9. The Kappa statistic was
also very good: 0.915. Coverage for level 0.95 was 99.435 % of objects.

7 www.cs.waikato.ac.nz/ml/weka
8 logic.mimuw.edu.pl/~rses/start.html

www.cs.waikato.ac.nz/ml/weka
logic.mimuw.edu.pl/~rses/start.html
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Random Forest Classification for All Objects With Ten Fold
Cross–Validation

Human classification
STN MISS Total

RF classification
STN 3473 169 3642
MISS 263 12472 12735
Total 3736 12641 16377

sensitivity = 3473
3473+263 ≈ 0.930 specificity = 12472

12472+169 ≈ 0.987

accuracy = 3473+12472
3473+263+12472+169 ≈ 0.974

Both sensitivity and specificity are very good and above 0.9. Especially good
is the specificity 0.987 which is very important in case of DBS[5]. The Kappa
statistic was also very good: 0.924. Coverage for level 0.95 was 99.432 % of ob-
jects. This classifier is currently in clinical use during neurosurgeries.

RSES Rule Based Classification Results

RSES Rule Classification for All Objects with Division into 90% for
Training and 10% for Testing Purposes

Human classification
STN MISS Total

RSES classification
STN 153 133 286
MISS 119 740 859
Total 272 873 1145

sensitivity = 153
153+119 ≈ 0.562 specificity = 740

740+133 ≈ 0.848

accuracy = 153+740
153+119+740+133 ≈ 0.780 coverage = 1145

1638 ≈ 0.699

In this case the specificity is acceptable but the sensitivity is very poor. Clas-
sifier failed to adequately detect objects from the STN class. It is also evident
that resulting rules fail to classify over 30% of the objects.

RSES Rule Classification for All Objects with Division into 60% for
Training and 40% for Testing Purposes

Human classification
STN MISS Total

RSES classification
STN 607 504 1111
MISS 516 2720 3236
Total 1123 3224 4347

sensitivity = 607
607+516 ≈ 0.541 specificity = 2720

2720+504 ≈ 0.844

accuracy = 607+2720
607+516+2720+504 ≈ 0.765 coverage = 4347

6550 ≈ 0.664
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In this case the specificity is acceptable and the sensitivity is even worse than
in previous case. Classifier failed to detect almost half of objects from the STN
class. Resulting rules fail to classify over 33% of the objects.

RSES Rule Classification for All Objects with Ten Fold
Cross–Validation

Human classification
STN MISS Total

RSES classification
STN 155.5 131.5 287
MISS 127.9 709.8 837.7
Total 283.4 841.3 4347

sensitivity = 155.5
155.5+127.9 ≈ 0.548 specificity = 709.8

709.8+131.5 ≈ 0.844

accuracy = 155.5+709.8
155.5+127.9+709.8+131.5 ≈ 0.769 coverage = 1124.7

1637 ≈ 0.687

In this case the specificity is acceptable and the sensitivity is as poor as in two
previous cases. Classifier failed to detect almost half of objects from the STN
class. Resulting rules fail to classify over 33% of the objects.

Classifications based on rules extracted from raw attributes by the rough set
approach give good specificity. Still the sensitivity is very poor and over 30 % of
objects are not matched by any rule.

RSES Rule Based Classification Results for Discretized Attributes

In following classifications, the conditional attributes have all been discretized i.e.
cut into adjacent intervals. Cuts were made automatically by the RSES package.
Number of intervals produced per attribute ranged from two for AvgSpkRate
up to eight for MHFB. Resulting cuts were not of uniform size.

RSES Rule Classification with Attribute Cut Done for All Objects
with Division into 90% for Training and 10% for Testing Purposes

Human classification
STN MISS Total

RSES classification
STN 359 38 397
MISS 24 1216 1240
Total 383 1254 1637

sensitivity = 359
359+24 ≈ 0.937 specificity = 1216

1216+38 ≈ 0.970

accuracy = 359+1216
359+24+1216+38 ≈ 0.962 coverage = 1637

1637 = 1.000

In this case both specificity and sensitivity are very good and above 0.9.
Classifier has also perfect coverage. In comparison to analogous Random Forest
results RSES provided slightly better sensitivity and slightly worse specificity.
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RSES Rule Classification with Attribute Cut Done for All Objects
with Division into 60% for Training and 40% for Testing Purposes

Human classification
STN MISS Total

RSES classification
STN 1446 160 1606
MISS 79 4865 4944
Total 1525 5025 6550

sensitivity = 1446
1446+79 ≈ 0.948 specificity = 4865

4865+160 ≈ 0.968

accuracy = 1446+4865
1446+79+4865+160 ≈ 0.964 coverage = 6550

6550 = 1.000

In this case also both specificity and sensitivity are very good and above 0.9.
Classifier has also perfect coverage. In comparison to analogous Random Forest
results RSES provided better sensitivity and worse specificity.

RSES Rule Classification with Attribute Cut Done for All Objects
with Ten Fold Cross–Validation

Human classification
STN MISS Total

RSES classification
STN 355.7 35.7 391.4
MISS 17.7 1227.9 1245.6
Total 373.4 1263.6 1637

sensitivity = 355.7
355.7+17.7 ≈ 0.953 specificity = 1227.9

1227.9+35.7 ≈ 0.972

accuracy = 355.7+1227.9
355.7+17.7+1227.9+35.7 ≈ 0.967 coverage = 1637

1637 = 0.687

In this case specificity and sensitivity are very good and above 0.95. Classifier
has perfect coverage. In comparison to analogous Random Forest results RSES
provided better sensitivity and worse specificity. Still in case of both classifiers
the sensitivity and specificity were above 0.93.

3 Summary

As shown in Table 2, in all tested cases the rough set rule based classification
did not perform well when run on raw nondiscretized attributes. That was due
to the continuous nature of all conditional attributes. Sets of rules produced by
RSES for continuous attributes were huge and most of those rules matched only
single objects. For example, rule generation for 90 % (14739 objects) subsample
of objects with continuous attributes resulted in 154651 rules basing on equality
of attributes. Not surprisingly such rule set had poor coverage during the test
phase, more than 30 % of test object were not classified at all.
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However when rules were produced basing on the discretized attributes, the
obtained results were very good and in some aspects they outperformed those
produced by the Random Forest. In all test scenarios (i.e. 90 % train & 10 % test;
60 % train & 40 % test; 10 fold cross–validation) while the RSES provided better
sensitivity the Random Forest approach gave better specificity. On average the
RSES sensitivity was better by 0.02 and Random Forest specificity was better
by 0.015.

In conclusion it must be stated that both methods, i.e. Weka implementation
of Random Forest and RSES implementation of rough set rule based classifica-
tion for discretized attributes gave very good and comparable results. Also in
both cases after the classifier / rule set has been constructed, the classification
of new objects is very fast and certainly feasible for use at the operation theatre.

Table 2. Sensitivity, specificity and coverage

Sensitivity Specificity Coverage

90% train; 10% test
Weka RF 0.924 0.984 1.000

RSES 0.562 0.848 0.699

Cut RSES 0.937 0.970 1.000

60% train; 40% test
Weka RF 0.923 0.985 1.000

RSES 0.541 0.844 0.664

Cut RSES 0.948 0.968 1.000

10 fold cross–validation
Weka RF 0.930 0.987 1.000

RSES 0.548 0.844 0.687

Cut RSES 0.953 0.972 1.000
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5. Ciecierski, K., Raś, Z.W., Przybyszewski, A.W.: Foundations of automatic system
for intrasurgical localization of subthalamic nucleus in Parkinson patients. In: Web
Intelligence and Agent Systems, 2014/1, pp. 63–82. IOS Press (2014)

6. Walker, H.K., Hall, W.D., Hurst, J.W. (eds.): Clinical Methods: The History, Phys-
ical, and Laboratory Examinations, 3rd edn. Butterworths, Boston (1990)

7. Israel, Z., Burchiel, K.J.: Microelectrode Recording in Movement Disorder Surgery.
Thieme Medical Publishers (2004)

8. Pawlak, Z.: Rough sets: Theoretical aspects of reasoning about data. Kluwer, Dor-
drecht (1991)

9. Pawlak, Z.: Theoretical Aspects of Reasoning about Data Series. Theory and De-
cision Library D 9 (1991)

10. Pawlak, Z.: Rough sets and information systems. Podstawy Sterowania 18(3-4),
175–200 (1998)

11. Bazan, J., Skowron, A., Synak Dynamic, P.: Dynamic reducts as a tool for extract-
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1 Institute of Informatics, Silesian University of Technology
ul. Akademicka 16, 44-100 Gliwice, Poland

{Magdalena.Lachor,Adam.Switonski,Andrzej.Polanski}@polsl.pl
2 Polish-Japanese Institute of Information Technology Aleja Legionów 2,

41-902 Bytom, Poland
{Konrad.Wojciechowski}@pjwstk.pl

3 Department of Neurorehabilitation, Departament of Neurology, Medical University
of Silesia, Central University Hospital, ul.Medyków 14, 40-752 Katowice, Poland

m.boczarska@gmail.com
4 Departament of Neurosurgery, Medical University of Silesia, Central University

Hospital, ul. Medyków 14, 40-752 Katowice, Poland
skwiek@csk.katowice.pl

Abstract. The most common method used by neurologist to evalute
the Parkinson’s Disease patients are different rating scales. They give
overall picture of the PD patient, but are not objective and different
experts can make different observations. In this article the results of
correlation between UPDRS evaluation and different quality measures
calculated based on MOCAP data recorded during walking for group of
PD patients with implanted DBS stimulator have beed presented. This
is a continuation of our previous research related to analysis of gait in
Parkinson’s Disease Patients.

Keywords: Parkinson’s disease, UPDRS, gait, MOCAP.

1 Introduction

Diagnosis of medical disorders and rehabilitation therapy can significantly ben-
efit from multimodal measurement and analysis of human gait with motion cap-
ture technology (MOCAP). With huge concentration on MOCAP technology
and the constant improvement of quality and exactness of registered movement
medical fields like physical therapy, orthopedics, neurology and neurosurgery
start not only benefit but to relay on data acquired through MOCAP technol-
ogy. This is all possible with the high level of accuracy and precision with which
MOCAP systems measure the kinematics and geometrics of human gait. Impor-
tant to notion is that along with kinematics of movement such approach allows
additionally to record video, ground reaction forces and EMG signal, which form

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 335–344, 2014.
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a synchronized multimodal measurement. Such collected data can be assessed
with all clinical data already collected about the patient and thus significantly
increase the quality of diagnostics and therapy. In the referenced publications
[1][2][3][4] a wide scope of studies have been applied to the problem of use of
MOCAP analysis of human gait among neurological disease patients. In those
publications a research was conducted to obtain several indices, that could as-
sess the neurological patients and the severity of their illness. The quality of
those indices and their evaluation were measured among neurological patients
and were proved to be meaningful. Those indices however where evaluated using
different MOCAP system technology and with different approach to the asset
of processing MOCAP data results. Moreover the patients, who were target of
those experiments have different neurological disorders.

The Parkinson’s disease (PD) is one of the most common neurodegenartive
and movement disorder, which affects with the highest probability the older
people, although the cases of the young pearsons with diagnosed PD are also
known. The Parkinson’s disease is manifested by several different symptoms
and increases with time. The reason of this illness is not known so far and
due to methods of treatments are symptomatic and not causal. Up to date
exist two types of treatment methods rely on medication or surgical operations.
The motor symptoms of Parkinson’s disease are caused by the deficiency of
dopamine in the brain, therefore used drugs are intended to supplement the lack
of this key neurotransmitter. Unfortunately, with the progresses of the disease
the medication are insufficient and due to this fact the increased emphasis on
alternative methods of treatments has been placed. One of such a method is the
deep brain stimulation (DBS for short). The DBS is a surgical procedure, which
aims to implant the medical device into targeted brain area. However, the issue
how to select this specific place in the brain to eliminate as much as possible
symptoms with whom patient is struggling the most is still not clear. The DBS
blocks electrical impulses from a targeted parts of the brain. It brings the greatest
benefit in the treatment of symptoms associated with movement disorders such
as bradykinesia, dyskinesia, muscle rigidity, tremor or gait disturbances.

In order to evalute the level of Parkinson’s disease severity, the neurologists
use different rating scales to make their observations unified. The developed
assessment methodologies take into account motor or non-motor skills or both
of them. There exists several different approaches but one of the most widely
used is the Unified Parkison Disease Rating Scale (UPDRS)[17]. The UPDRS
consists of six parts, which allows to rate different aspects of PD patient’s quality
of life. The III part is dedicated to motor symptoms and contains 18 questions
and each item is measured on a five-point scale. Evaluation carried in this way
allows to give the complete picture of the patient illustrating his/her response
to treatment. However, the main disadvantage of such methods is subjectivity
due to the fact, that two evaluators can make various observations of the same
patient. In this article we would like to analyse the correlation between the
subjective evaluation of PD patients group based on III part of UPDRS scale
related to gait and quantitative indices calcualted based on MOCAP data.
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2 Experiment and Methods

The experimental scenario assumed analysis of movement during different types
of walking under four experimental conditions denoted as sessions. The studied
group consists of five subjects.

2.1 Patients

Research was conducted on a subset of 4 male and 1 female patients with idio-
pathic Parkinson disease. Detailed clinical data are provided in Table 1.

Table 1. Clinical data

Every patient in studied group was subjected to the DBS surgery at Parkin-
son’s Disease Treatment Centre in Medical University of Silesia, Katowice. Surg-
eries where performed between November 2005 and September 2011. Patients
were classified using CAPSIT [10] recommendations for a DBS treatment by a
team of specialists in a field of Parkinson disease. The process and methodology
of stereotactic surgery performed during DBS implantation as well as the com-
plications, where widely described and can be found in [7][12][13][14][15]. The
DBS electrode (Model 3389, Medtronic, Mineapollis) and internal pulse genera-
tors (Soletra, Medtronic, Mineapollis) were implanted in those subset of patients
[8][9][10].

2.2 Experimental Procedures

The participants who took part in the experiment were asked to perform four
types of walking along a five-meter path (Fig. 1B). The tasks were based on
walking in normal way, walking faster then normal, but with caution, without
running, along the line and tandem (the top of one foot should touch the heel of
the opposite foot). The line and tandem types of walking have been performed
along black line located in the middle of the walking path. The walking tasks
were repeated during four experimental conditions called sessions. Before the ex-
periment each PD patient was asked to not taking medication for 12 hours before
the test. During first session subjects were without medication and the stimula-
tor was turned off (S1 - MedOFF StimOFF). During second session the subjects
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were still without medication but the stimulator was turn on (S2 - MedOFF
StimON). The next session was recorded after taking by the subjects suprather-
apeutic dose of L-dopa, the stimulator was turn off (S3 - MedON StimOFF).
The last session was performed, when the subjects were under the influence of
drugs and with stimulator turned on (S4 - MedON StimON). After each session
the overall condition of the patient was evalueted by neurogolist according to III
part of the UPDRS scale.

2.3 Data Recording

All measurement have been performed in multimodal human motion laboratory
located in Polish-Japanese Institute of Information Technology (Bytom, Poland).
The laboratory is equipped in 10-camera, 3D motion capture system (Vicon) for
kinematic data analysis, two Kistler platforms for ground reaction forces mea-
surement (GRF), Dynamic Electromyography System (EMG) from Noraxon en-
abling 16-channel measurement of muscle potentials and 4 video cameras with
HD 1080. The computations were performed on data written in c3d files contain-
ing spatial positions of all body markers during a MOCAP session and asf/amc
files containing parameters of the skeletal model such as angles, velocities and
orientations [11]. The spatial position of the patient was obtained based on 39
reflective body markers located on all body segments (4 on Head, 5 on Torso,
14 on left and right side of upper limbs, 16 on left and right side of lower body)
as presented in Fig. 1A [16].

A B

Fig. 1. A. 3D position of the patient B. Laboratory system
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2.4 Gait Abnormality Indices

Based on the literature review three different quantitative measures have been
selected to evalute the gait abnormalities among PD patients. Two indices (WDA
and ASSS) reflect the assymetry between left and right side of the upper limbs,
while DI parameter reflects the decomposition between pair of joints of the
lower limbs during movement. The residual value of each parameter have been
calculated for each patient across four sessions. The final value of each parameter
was calcualted as artihmetic average across all strides during one trial, then
average across all trials during session. The notion of single step has been defined
as interval between foot off of one leg and heel strike of the ipsilateral leg, while
stride as interval between foot off of one leg and heel strike of contralateral
foot (two consecutive steps). The schematic illustraiton of differences between
step and stride has been presented in Fig. 2. The detailed description of the
parameters has been presented below.

Fig. 2. Illustration of consecutive events during walking. FO - foot off, FS - heel strike

Wrists Distance Asymmtery is used to reflect the assymetry between dis-
tances traveled by left and right wrists and has been proposed in [4] to evaluate
gait abnormalities in the early stages of Parkinson’s disease. This parameter has
been denoted as WDA and defined in a following way:

WDA =
(45− arctan(

WDlarger

WDsmaller
))

90
· 100% (1)

where variable WDsmaller is related to shorter distance traveled by one of the
wrist, while WDlarger to the grater wrist distance. The notion of wrist distance
has been defined as the length of the marker trajectory. Let us assume that
Pi = (xi, yi, zi) is a position of a joint in 3D space in the i - th frame, then
distance between position in an i-th frame and the frame next in order will be
calculated as:

ΔPi =
√
(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 (2)

The wrist distance has been calculted as a sum of marker shifts from the
center of coordinate system and calcualted according to the following formula:

WD =

∫
f(P (t))dt ∼=

n∑
i=1

ΔPi (3)
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Arm Swing Size Symmetry is also dedicated to illustrate the difference
between upper limbs. The Symmetry is calculated to measure the similarity
between range of angle during arm swing [1]. The ASSS parameter is defined as:

ASSS =
ASsmaller

ASlarger
· 100% (4)

The variable denoted as Arm Swing (AS) is calcualted for left and right side. The
ASlarger and ASsmaller relate to larger and smaller difference between maximum
and minimum shoulder flexion/extension angles.

AS = maxSFE −minSFE (5)

Decomposition Index has been proposed in [2] to analyse the decomposition
between three pairs of joints as knee-hip, knee-ankle and hip-ankle. DI was de-
fined as percentage of stride when one joint is moving while the another is not.
When angular velocity of the joint is more than 5 [deg/s] then it is moving. If
the velocity is below assumed threshold, then it does not move. The final value
of DI for one trial has been calcualted as an average between DI calculated for
left and right side separately in accordance with the follwing formula:

DI =
DIleft +DIright

2
(6)

The angular velocity can be represented as a three dimensional vector quantity
(wx, wy , wz) [6][5]. The elements wx, wy and wz of vector W do not depend on
each other and can be respectively defined as rates of change of rotation angle
about the x, y and z axis. If the rotation represents by unit quaternion Q and
treat quaternion Q as representing rotation relative to the neutral position of
frames, angular velocity W (t) can be computed based on the following equation:

W (t) =
2

Q(t)
∗ dQ

dt
(7)

3 Results

For each patient the mean value of five coefficients (WDA, ASSS and DI for
knee-ankle, knee-hip and hip-ankle pairs of joints) during four sessions have
been calculated as presented in Fig. 3 - 7 (the bar charts on the left side). The
results were compared with gait evaluations obtained based on III part of UP-
DRS scale related to gait. The UPDRS guidelines by which a gait assessment
has been performed by neurologist, before each session are presented in Table
2. The Pearson’s linear correlation coefficients between MOCAP quantitative
measures and UPDRS evaluation for five PD patients are presented in Fig. 3 -
7 (the scatter plots on the right side). The correlation coefficient is equal to the
slope of the least-squares reference line in the scatter plot. The calculated indices
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Table 2. Criterions for the assessment of gait accordance with the UPDRS scale [17]

SCORE CRITERIONS

0 Normal

1 Walks slowly, may shuffle with short steps, but no festination (hastening steps)
or propulsion.

2 Walks with difficulty, but requires little or no assistance; may have some fes-
tination, short steps, or propulsion.

3 Severe disturbance of gait, requiring assistance.

4 Cannot walk at all, even with assistance.

Fig. 3. RIGHT: Residual values of DI (Knee-Ankle) parameter calculated for five PD
patients across four experimental conditions. LEFT: Scatter plot of MOCAP-based
and UPDRS-based evaluations.

Fig. 4. RIGHT: Residual values of DI (Knee-Hip) parameter calculated for five PD
patients across four experimental conditions. LEFT: Scatter plot of MOCAP-based
and UPDRS-based evaluations.
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Fig. 5. RIGHT: Residual values of DI (Hip-Ankle) parameter calculated for five PD
patients across four experimental conditions. LEFT: Scatter plot of MOCAP-based
and UPDRS-based evaluations.

Fig. 6. RIGHT: Residual values of ASSS parameter calculated for five PD pa-
tients across four experimental conditions. LEFT: Scatter plot of MOCAP-based and
UPDRS-based evaluations.

Fig. 7. RIGHT: Residual values of WDA parameter calculated for five PD pa-
tients across four experimental conditions. LEFT: Scatter plot of MOCAP-based and
UPDRS-based evaluations.



The Analysis of Gait in Parkinson’s Patients with Implanted DBS 343

and UPDRS evaluation analysed across four sessions reflect similar correlations,
which absolute values ranging between 0.47-0.69. The best correlation has been
obtained for the Decomposition Index calculated for knee-ankle pair of joints.
The parameters ASSS and WDA showed the same level of interdependence with
UPDRS, what is in accordance with the fact, that both of them reflect difference
between movement of left and right side of upper limbs.

4 Conclusion

In this article the comparison between two different methods used to evalu-
ate gait abnormalities in Parkinson’s Disease Patients have been presented. For
each patient the residual values of five quantitative measures calculated based
on kinematic data during four experimental conditions have been obtained. The
MOCAP-based evaluations have been compared with the UPDRS-based eval-
uations taking into account only score awarded to the patients based on gait
observations. Despite the small group of investigated PD patients, the prelimi-
nary results reflect, that exists correlation between evaluation of gait based on
MOCAP data and observations of neurologist based on UPDRS scale. However
the usefulness of the proposed MOCAP-based method of gait evaluation need
to be confirmed based on a larger group of examined subjects.
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Abstract. Deep brain stimulation (DBS) is a well established method used as 
treatment in patients with advanced Parkinson’s disease (PD). Our main 
purpose is to increase precision of DBS method by determining which parts of 
cortex are stimulated in different set-ups. In this paper we have analyzed MRIs 
that are performed as a standard procedure before and after the DBS surgery.  
We have used 3D Slicer for registration of MRIs with anatomical brain atlas. In 
addition, we have generated trajectories of neural tracts (tractography) 
connecting  STN with cortex using data colected by DTI (Diffusion Tensor 
Imaging). In the following step we have used Rougt Set Theory to compare 
MRI data with neurological findings acquired by neurologists. We have tested 
prediction of DBS electrode contact’s position and stimulating parameters in 
individual patients on improvements of particular neurological symptoms. Our 
results may give a basis to set optimal parameters of stimulation and electrode’s 
position in order to obtain the most effective PD treatment. 

Keywords: Deep Brain Stimulation, Parkinson’s disease, 3D image analysis, 
RSES, MRI, DTI. 

1 Introduction 

The treatment of PD by the DBS is now used worldwide as a method that improves 
patients’ health when pharmacological treatments become ineffective. The first expe-
riments were performed on monkeys treated with MPTP that caused Parkinson-like 
state [1]. In fact, the first tests of the compound MPTP were performed by a drug-
dealer who synthetized meperidine analog that caused that young cocaine addicts after 
taking it, could not move anymore [2]. In the 1980’s a French neurosurgeon at the 
UJL Hospital in Grenoble, Alim-Louis Benabid was routinely performing lessoning 
of the thalamus in the brains of severely affected patients with Parkinson'. On the 
animal experiments basis, Benabid, also a professor of biophysics, in 1987 performed 
the first stimulation of the thalamus and later in the 90’s has changed the target to the 
Subthalamic nucleus (STN) [3]. Nowadays, the major targeted structures are: STN [4] 
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anatomical position of the electrodes contact and parameters of stimulation we have 
proposed rules that can predict related neurological effects.  In the next step, we have 
verified our predictions by comparing them with neurological diagnosis for each indi-
vidual patient.    

2 Methods 

In this section we describe how to define relationship between electrode’s position 
and STN. We have determined anatomical positions of important for our project 
structures by performing registration [8–10] of the individual patient’s brain with the 
brain atlas [11, 12] and use postoperative imaging to locate exact position of im-
planted  DBS electrodes.  Then our experimental data are compared with an SPL-PNL 
atlas by localizing anterior and posterior commissure (AC-PC) line and brain’s mid-
line and aligning them with the atlas.  

2.1 Data for Processing  

In this project, we have processed the following sets of data: preoperative magnetic 
resonance imaging (pre-OP MRI), postoperative MRI (post-OP MRI), preoperative 
diffusion weighted imaging (pre-OP DWI), and 2008 SPL-PNL brain atlas. In several 
cases, in order to find DBS electrode, we have used the postoperative computer tomo-
graphy (CT) instead of the post-OP MRI. It is important for our project that MRI data 
has small slice spacing and is performed in the 3D image acquire mode (equal spacing 
in all directions). We have analyzed data from nine patients with advanced Parkinson 
disease (PD), and with implanted DBS electrodes. The image processing in this work 
was performed by means of 3D Slicer, available as an open source-license from 
www.slicer.org. In the preparation for our analysis, we have performed the following 
steps as described below and illustrated as a diagram in Fig. 2.  

2.2 MRI Registration 

We have performed pre-OP versus post-OP images registration in order to mark elec-
trode’s contacts positions according to the post-OP MRI. The registration procedure 
has to be performed separately for each patient. As normally many images are taken 
from the same subject, only a simple linear registration using Slicer “BRAIN FIT” 
module had to be applied. Parameters for the registration were as follows: use center 
of head align, only rigid registration phase, 100 000 samples, and 1500 iterations. A 
quality of the registration was evaluated by comparing structures’ surface coverage of 
the MRI measurements with the atlas. 

After post-OP MRI to pre-OP MRI registration, the output transform was applied 
to the post-OP MRI images. Thanks to this transformation, DBS electrode became 
visible in preoperative images. In the next step electrode trajectory was marked with a 
ruler tool, setting its parameters to 0.5 mm point spacing and 1.5 mm point size.  
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Fig. 2. In our procedures we have used different registration phases. First we have performed a 
linear registration of pre- to post-operative imaging. Next we apply local nonlinear registration 
to brain atlas followed with ROI selection and DTI generation. 

These parameters were used in order to estimate exact positions of Medtronic (type 
3389) electrode’s contacts. As different Medtronic stimulating electrodes have differ-
ent parameters, and DBS contacts are not visible in MRI, we used the following elec-
trode’s parameters: distance from the tip to the first contact – 1.5 mm, contact spacing 
- 0.5 mm, and length of each contact -1.5 mm. The key point was to find out and to 
mark the distal tip of the electrode at the beginning of the visible in MRI electrode 
trajectory (see below Fig. 5). The 0.1 mm slice step was used to achieve sufficient 
accuracy when marking the starting point. The end of the trajectory was marked to-
ward the dorsal part of brain, as close as possible to the skull. Having marked the 
electrode trajectory, the contacts positions could be marked using the fiducial points 
on the ruler according to the electrode’s specification. 

2.3 Generation of the Tractography 

In the following step, a tractography separately for each contact was generated on the 
basis of DTI data from the pre-OP DWI. The DWI to diffuse tensor-imaging (DTI) 
data was estimated by the least squares approximation. 

Following the DTI estimation, it was possible to generate tracts specific for a given 
contact. At this step it was necessary to use the “Tractography Interactive Seeding” 
module (3D Slicer). Previously created fiducial points were used with the following 
module parameters: linear measure start point: 0.3, minimum path length: 20 mm, 
maximum path length: 800 mm, stopping criteria: fractional anisotropy, stopping 
track curvature: 0.7 and integration step length: 0.5. According to the generated trac-
tography for a given contact, the seed spacing was increased and the stopping value 
was decreased until it was possible to record connections to the dorsal parts of brain. 

The next step, after acquiring tractography for a given contact, was to normalize 
the brain’s position. For this purpose anterior (AC) and posterior (PC) commissures   
had to be marked by patient’s MRI registration to so-called AC-PC transform. In all 
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procedures, we have used the SPL PNL brain atlas from 2008 [11]. In the registration 
procedure, we have performed a local registration of the brain’s region of interest, to 
minimize errors that may occur when the whole brain registration is used. At this step, 
the appropriate brain parts were selected and cropped using relevant modules in 
3DSlicer. The same procedure was applied in all cases, paying attention to select a 
similar region of interest as in the brain atlas.  After the registration process the result-
ing linear transform was applied to AC-PC models and marked with fiducial points, 
one point per each structure. 

Afterwards, brain’s midline was marked with at least three fiducial points. Pre-
ferred method for this procedure was to use axial planes of MRIs where the midline is 
visible. When both the AC-PC and the midline annotation structures were selected, 
the AC-PC transform module (3DSlicer) was used to generate relevant linear trans-
form that was applied to the whole brain MRI. 

When brain images were aligned to AC-PC line we have marked regions of interest 
(ROI) by tracing tractography from the given electrode’s contacts. In this paper, we 
have focused on three somatotopic areas representing lip, foot and hand in each he-
misphere [13, 14]. These areas have variable positions in different patients, but there 
are some anatomical structures that help their identifications: anterior-posterior com-
miserates when projected to the cortex determine area of interest - AC position sepa-
rates pre-SMA from SMA, as well as Cingulate, central and precentral sulci (Fig. 5). 
After registering we have estimated how many tracts are leading in proximity of each 
ROI. 

2.4 Rough Set Approach 

Our experimental data have been analyzed with the Rough Set Exploration System 
(RSES) version 2.2  [14] based on rough set theory proposed by Pawlak[15]. 

The structure of data is an important point of our analysis. It is represented in the 
form of information system or a decision table. We define after Pawlak [15] an infor-
mation system as S = (U, A), where U, A are nonempty finite sets called the universe 
of objects and the set of attributes, respectively. If a  A and u  U, the value a(u) 
is a unique element of V (where V is a value set). The indiscernibility relation of any 
subset B of A or I(B), is defined [15] as follows: 

 ,   |  ,  (1) 

Having in discernibility relation we define the notion of reduct B⊂A is a reduct of 
information system if IND(B) = IND(A) and no proper subset of B has this property. 
In case of decision tables decision reduct is a set B⊂A of attributes such that it cannot 
be further reduced and IND(B) ⊂ IND(D). All reduct set in the system consists of set 
of attributes C – conditional attributes, and attribute D – decision attribute. In general 
if any object in a set satisfies given set of C attributes it returns value of given D 
attribute, which is the result of classification process. 

In our experiment we build attributes type C from neurological data acquired by 
doctor and visual analysis data acquired during our experiments in Slicer. Basing on 
this data we can create decision rules. 

∈ ∈
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These rules are created based on training set and are later evaluated to classify test 
subset of data. By using only such rules we would end having a lot of redundant data 
for all of the patients with similar results. In order to limit number of rules we reduce 
them to reducts. It can be accomplished by different techniques for example by using 
discretization function on data, creating ranges of values for given decision class for 
given attribute. There are different algorithms available for creating those, among 
them LEM2 algorithms, covering algorithms, genetic algorithms and exhaustive algo-
rithms. In this stage of project with yet limited data for analysis best results were ac-
quired using exhaustive algorithm. 

Since not all data was complete for patients analyzed during this research some ob-
jects appeared with MISSING values. In RSES we have possibility to choose how to 
approach such data, we can: 

• fill empty values with most common value for given attribute 
• fill empty values with most common value for given decision class 
• analyze data without taking into account empty values 
• treating missing values as information  

3 Results 

As described in the Methods section registered and processed MRI/DTI data were put 
as objects with their attributes in the decision table (see below).  Fig. 3 illustrates the 
DTI tractography generated for whole STN after registration patient’s imaging data to 
the brain atlas. There are placed registered thalamus and electrode on MRI patient’s 
data (Fig. 3). There are many neuronal tracts in this figure showing connections of 
different cortical areas with STN, but normally DBS electrode activates only a small 
number of these connections. Which connections are activated it depends on the exact 
position of the electrode in relationship to the STN.  In Fig. 4 is shown an example of 
the electrode’s contact position in STN.  The electrode trajectory and electrode’s con-
tacts served as points of interest for generating target tracts. Using this approach we 
were able to determine number of tracts leading to given ROI and use this data in 
decision table described later in this section.  In this project, we have studied effects 
of the selected contact on both neurological effects and results of our analysis from 
3DSlicer. In order to do this we have prepared different data sets as input for RSES 
and performed different experiments changing sets of parameters in order to deter-
mine the most efficient and accurate method. 

At the first step, we have selected a single electrode’s contact for each patient’s 
scan. In the next step, we have marked characteristic brain structures and areas, which 
we have used for counting tracts generated with particular stimulation amplitude. It 
gave us a quantitative relationship between the stimulation amplitude to stimulated 
region. When this data was gathered we applied RSES to a set of objects organized 
into decision table, based mainly on neurological and Slicer data (Tab. 1). 

 
 
 



 Rough Set Rules 

 

Fig. 3. An example of the trac
and electrode are marked in d
sagittal (vertical in this figure)

Fig. 4. A sagittal view of MRI
picture: thalamus as a large str
as c0_l,…, c3_I.  The thin lin
two lower contacts are in STN

 

Help to Optimize Parameters of Deep Brain Stimulation 

 

ctography that was generated from the whole STN. The thalam
dark gray in the sagittal view of the brain. There are put toge
 and coronal (horizontal) views of the right brain MRIs. 

 

I registered to anatomical atlas. Two structures are visible in 
ructure and under it smaller STN. Electrode’s contacts are labe
ne represents trajectory of implanted electrode. In this exam

N, and the upper contact is in the thalamus. 

351 

mus 
ether 

this 
eled 

mple, 



352 A. Szymański and A

 

Fig. 5. Above image present 
structures that helped in determ
CS – central sulcus, CingS – c
ry motor area, preSMA – pre
hand, foot areas of SMA, and f

Table 1. A part of the input ta
was on/off; UPDRS <code> - 
L/R amplitude of contact - sele
L/R fiducial region size  – S
SlicerMAX / SlicerMIn L/R tr

Patient # 
DBS 
BMT 
UPDRS III 
UPDRS 30 - Postural Stabili
L - selected contact   
L - amplitude of contact   
R - selected contact   
R - amplitude of contact 
SlicerMAX L - fiducial regio
SlicerMAX L - tracts lip 
SlicerMAX R - fiducial regio
SlicerMAX R – tracts lip 

A.W. Przybyszewski 

 

ROI classification of patient’s brain with marked major b
mining ROI used in our experiments, AC- anterior commiser

cingulate sulcus, M1 – primary motor cortex, SMA – suplame
e SMA. Notice neural pathways connecting contact #2 with 
foot area of M1. 

able. DBS: 0/1 - DBS   on/off; BMT: 0/1 – L-DOPA medica
UPDRS III/for particular movement; L/R selected - contact L
ecte contact amplitude for left/right side; SlicerMAX / SlicerM

Slicer tractography radius in mm for selected electrode cont
racts lip – number of tractc reaching proximity of lip ROI. 

  20   10   10   25   25 
0 0 1 0 1 
1 1 1 0 1 
7 13 16  

ty 3 3   1   
2 1 1 1.5 1.5 

2.5 2 2 1.5 1.5 
2 1 1 1.5 1.5 

2.5 3.2 3.2 1.5 1.5 
on size 5.5 6 6 8 8 

2 20 20 22 22 
on size 5 5 5 8.5 8.5 

4 15 15 35 35 

brain 
rate,  
enta-

lip, 

ation 
L/R; 
MIn 
tact; 



 Rough Set Rules Help to Optimize Parameters of Deep Brain Stimulation 353 

 

Table 2. We have compared statistics for choosing selected contact (the upper table) and 
selected amplitude(the lower table) for the right side for UPDRS III with all data from slicer. 
Notice that prediction for selecting proper amplitude was more accurate. 

 

 
In order to get decision rules rows and columns of Table 1 must be exchanged so that 
measurements of different objects (patients) are in rows and their attributes (meas-
urements results) are in columns. Then we can get equivalent rule to each row, for 
example the first raw gives:   

 (‘Pat#’=20)&(‘DBS’=0)&(‘BMT’=1)&(‘UPDRS_III’=2)&(‘UPDRS_30’=3)&… 
&(‘SlicerMAX_region_size_L’=5.5)&(‘SlicerMAX_lip_tracts_L’=2)&(‘SlicerMAX_r
egion_size_R’=5.5)&(‘SlicerMAX_lip_tracts_R’=2)=>’selected_contact’= 2  (2) 

In all experiments we used neurological data based on Unified Parkinson Disease 
Rating Scale (UPDRS). In an early stage of this research we reduced the number of 
attributes to UPDRS III, which refers to the Motor Examination [16]. For each patient 
neurological data consists of few series of measurements, containing data set with and 
without medications or before and after DBS procedure. From interactive DTI label  
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seeding in Slicer we have added parameters for generating tracts for given patient, 
namely region size, stopping value, number of tracts in proximity of each ROI – lip, 
foot and hand. In Slicer for each patient we have collected two measurements, first 
using parameters that allowed us to show only few tracts leading into the ROI, de-
scribed with tag MIN in our data set and second where number of tracts to the ROI’s 
is close to 30-40, this measurement was tagged as MAX. 

Having defined the data set we have performed following case scenarios. In first 
scenario we used exhaustive algorithm, and split of 60% to 40% of learning to testing 
part of data set (Tab 2). In the rest of scenarios we used 4 fold cross validation me-
thod (Tab 2 and 4). 

First we tried to analyze full data set consisting of 53 attributes and 20 objects. For 
this data set we have conducted studies to choose as decision attribute for each expe-
riment: left contact, left contact amplitude, right contact and right contact amplitude. 
In cases where there were two contacts involved we use notation 1.5 to mark that both 
contact 1 and 2 were used in a given case. 

Table 3. This are an example results generated for choosing the left contact from data set 
containing all attributes related to motoric functions of patients. As we can see with this set up 
we were able to achieve 62.5% of accuracy with full result set coverage. 

 

 
Other test cases included ability to predict both selected contacts and amplitude cho-
sen for given case based on reduced data set. It included testing for:  

• selecting left electrode contact giving only neurological data for right side de-
scribed by UPDRS like rigidity of right lower extremities, right hand tremor, etc.  

• selecting left electrode contact for giving UPDRS III . 

Both data sets included as well as previous experiments 20 objects and respectively 
32 and 15 attributes. Our preliminary results demonstrated that accuracy of prediction 
of selected contact is greater in case when we have used UPDRS III with data ac-
quired from Slicer. Moreover it can be further seen that we were able to better predict 
amplitude for given contact that selecting one. 
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Table 4. In the upper part are results of predicting selection of left side contact amplitude based 
on attributes from UPDRS III, and the lower part we have used the only right side specific 
UPDRS for given disorder to determine the same contact amplitude. Notice an increase in 
accuracy when attributes and decision parameters were for specific UPDRS. 

 

4 Conclusions 

We have analyzed MRI data of patients who underwent the DBS surgery in order to 
determine if data mining may help to increase precision of this method.  We have 
applied rough set theory to standard data recorded before and after surgery in order to 
determine whether we were able to optimize selection of proper stimulating parame-
ters in an individual patient. Our results showed that this approach is more accurate in 
prediction of used stimulating amplitude for given electrodes than in selecting a con-
tact. We are planning to apply our method to larger population of patients in order to 
introduce it in the clinical practice. 
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Abstract. One of the most common variants of mood disorders is depression. 
According to various authors, the incidence of depression in the population is 3-
10 %, in Parkinson's disease (PD) – 40-50 % of patients. Most researchers are 
considering depression in PD as endogenous and finds it to be an important and 
independent component of the disease manifestations. We examined 49 patients 
with PD complicated by depression. All patients underwent MRI followed by 
postprocessing using FreeSurfer (http://surfer.nmr.mgh.harvard.edu). When de-
pression occurs it affects lingual area, parahippocampal areas on both sides and 
straight gyrus. Regression analysis showed a predominant involvement of the 
frontal and temporal brain lobes. Prognostically three most important areas in-
volved in the formation of depression were revealed - right and left parahippo-
campal area and the average occipital-temporal sulcus. The risk of depression 
manifestation, against the background of left parahippocampal cortex thinning 
at rates below 2,597 mm, increases 46.8 times. 

Keywords: Parkinson’s disease, depression, MRI, voxel based morphometry. 

1 Introduction 

There are motorized and non-motorized isolated symptoms of Parkinson's disease 
(PD). Motor symptoms include hypokinesia, rigidity, resting tremor and postural in-
stability in the later stages of the drug attached dyskinesias and motor fluctuations. 
Non-motor symptoms in PD are autonomic disorders, affective (anxiety, depression) 
and psychotic disorders (nightmares, hallucinations, illusions, and, rarely, delusions) 
and sleep disorders [2,3]. 

One of the most common types of mood disorders is depression. According to var-
ious authors, frequency of depression in the population is 3-10 %, while in the PD 
patients it occurs in 40-50 % of cases (avg.) [4]. 

Depression – is mental disorder that significantly impacts social adjustment and 
quality of life, characterized by abnormally low mood with a pessimistic assessment 
of themselves and their position in reality, inhibition of intellectual and motor activi-
ty, reduced motivation [1]. 
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Depression in PD may be of endogenous and exogenous origin. Endogenous de-
pression is associated with a deficit of monoamines to the specific disease; exogenous 
depression is associated with the patient’s response to steadily progressive chronic 
disease. However, most researchers currently understand depression in PD as  
endogenous and considers it an important and independent component of disease 
manifestations. This view is supported by several facts: first – in 15-25 % of cases 
depression occurs before the motor symptoms, often for a year, and second – depres-
sion accompanies PD more often than other chronic physical and neurological pathol-
ogies that lead to comparable disability, and the third – depression does not usually 
correlate with the severity of PD [7,8]. Moreover, the presence of depression is an 
independent risk factor for PD [11]. 

Depression in PD is associated with physiological changes in brain metabolism. 
Perhaps the lack of dopamine production plays a role in emotion regulation disorder. 
Moreover, impaired noradrenalin and serotonin output might play significant role  
[1], [20]. 

Depression in PD is explained by frontostrial dysfunction, with a key role in its de-
velopment being withdrawn to caudate nuclei involvement into pathological process. 
Mesocorticolimbic and serotonergic systems, that modulate frontostrial and limbic 
structures state, may play important role in PD pathogenesis [12], [15]. It is believed 
that dysfunction of serotoninergic system is responsible for anxiety and aggression 
occurrence in PD patients with depression [17]. 

Depression can occur at any stage of PD, but often it (30 %) precedes first clinical 
motor manifestations (like hypokinesia, rigidity, resting tremor) [19]. In general most 
patients with PD severity of depressive symptoms can be mild or moderate and meets 
the criteria of "minor depression" or "dysthymia". Only in 3-8 % of patients depres-
sion is severe and reaches the level of a psychotic [3], but it usually does not end with 
suicide attempts [7]. 

For depression diagnostics in PD they usually use focused and careful questioning 
basing on special scales (Hamilton Depression Rating Scale, Beck, Montgomery - 
Berg et al.) It has been suggested that prolonged PD treatment with levodopa is likely 
to cause depression, possibly due to the influence of DOPA - containing drugs on 
serotonin metabolism [6]. 

Depression in PD does not depend on age, duration and severity of illness or cogni-
tive impairment. Maximum frequency of depression is observed in patients with stage 
1 by Hoen/Yahr, then it is being reduced by two steps, re- increases in step 3-4, and 
finally reduced in patients with stage 5. The incidence of depression is higher with the 
debut of the disease at a younger age (under 55 years) and akinetic - rigid form of PD 
in female patients, and at fast temp of disease progression [9]. 

According to various authors, depressive symptoms in PD impair the quality of life 
to a greater extent than the severity of motor disorders [21]. Depression in PD affects 
activities of daily living, quality of life, reduces patient compliance (willingness to 
carry a doctor's prescription), aggravates the course of the underlying disease, often 
turnes to be a risk factor for dementia in PD. In addition, depression in PD patients 
significantly impairs the quality of life for families living with the patient or care for 
him [18]. 
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In 2008, American and Hungarian researchers have published a joint work of vox-
el- based morphometry in patients with Parkinson's disease complicated by depression 
[10]. The study included 23 patients with depression and 27 without it. The analysis 
showed an inverse score proportion according to MADRS depression scale and sever-
ity of morphological changes in the right medial temporal gyrus, anterior and medial 
cingulate gyri, and the parahippocampal gyrus. Researchers have found that depres-
sion in Parkinson's disease is associated with orbitofrontal, right temporal region and 
limbic system volume decrease. 

In 2010, a group of Dutch scientists have performed a study to compare the severi-
ty of depressive disorders in PD with brain gray matter volume indicators [16]. Total-
ly 53 patients were included. It has been shown that the severity of apathy was  
associated with decrease of gray matter in several areas of the cerebral cortex: precen-
tral gyrus, inferior parietal gyrus and inferior frontal gyrus on both sides, cingulate 
gyrus, and right precuneus. Cingulum and the inferior frontal gyrus involvement cor-
responded to the results of earlier studies on depression in patients with Alzheimer's 
disease. In the same year, and then in 2011, these data were confirmed by their  
Serbian colleagues [13 ,14]. 

However, to date the estimate is not the thickness of the cerebral cortex in  
depression in patients with PD and no attempts were made to identify prognostically 
important parameters that may be allowed to predict the development of depressive 
disorders in these patients.  

The goal of this study was thickness determination of the morphometric characte-
ristics of the cerebral cortex in Parkinson's disease complicated by depression and to 
establish their prognostic significance. 

2 Materials and Methods 

Total we examined 49 patients with idiopathic Parkinson's disease, according to the 
British Brain Bank criteria. [4] The study included patients with stage 3 by 
Hoen/Yahr, 31 patients had an akinetic -rigid form of the disease (63.3 %), others had 
a mixed form of PD (36.7%). Assessment of mental function was carried out using 
Beck Depression questionnaire. The main group consisted of patients with a total 
score greater than 16 (29 patients), which corresponded to the depression of moderate 
severity and higher. The control group were patients with PD with a total score of less 
than 9, what means – there was no depression (20 patients). General characteristics of 
the patients are presented in Table 1. 

Table 1. General patients characteristics 

Patients groups Number of 
patients 

Age, avg. Beck score Disease  
duration 

Depression 29 62,7±6,3 19,3±2,7 6,3±3,3 

No depression 20 58,4±8,1 5,5±2,7 5,2±3,6 
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The examination consisted of a clinical evaluation of patients with disease staging, 
MR imaging (Siemens 1.5T), obtaining T1-WI , T2-WI, coronal, axial sagittal slices. 
Additionally T1 MPRAGE was obtained and postprocessed using FreeSurfer soft-
ware. 243 were subjected to statistical analysis of right and left hemispheres brain 
structures. Correlations were calculated using Spearman's test. Data processing was 
performed using Statistica 8.0 of package StatSoft using Mann-Whitney test. 

3 Results 

We have identified significant differences in cortical thickness in both left and right 
hemispheres (Table 2,3) 

Table 2. Cortical thickness differences (mm) in left hemisphere between patients with and 
without depression (M - median ; LQ - lower quartel, UQ - top quartel) 

Localization Depression 
(Beck>16) 
M [LQ;UQ] 

No depression 
(Beck<9)  
M [LQ;UQ] 

p-value 

Parahippocampal area 2,465 
[2,265;2,559] 

2,824 
[2,493;3,046] 

0,0393 

G. frontalis inferior orbi-
talis 

2,449 
[2,257;2,506] 

2,736 
[2,449;2,871] 

0,0492 
 

G. temporalis superior, 
part polaris 

3,232 
[3,155;3,367] 

3,592 
[3,409;3,744] 

0,0245 

G. temporalis superior, 
part temporalis 

2,100 
[2,065;2,163] 

2,388 
[2,257;2,527] 

0,0148 

S. occipitalis medial tem-
poralis, part Lingualis 

1,913 
[1,882;1,968] 

2,109 
[1,962;2,241] 

0,0192 

Table 3. Cortical thickness differences (mm) in right hemisphere between patients with and 
without depression (M - median ; LQ - lower quartel, UQ - top quartel) 

Localization Depression 
(Beck>16) 
M [LQ;UQ] 

No depression 
(Beck<9)  
M [LQ;UQ] 

p-value 

Parahippocampal area 
2,395 

[2,321;2,466] 
2,649 

[2,582;2,775] 
0,0087 

G. occipitalis medial temporalis, 
part parahippocampalis 

2,879 
[2,782;3,132] 

3,244 
[3,115;3,332] 

0,0245 

G. rectus 
2,033 

[1,926;2,348] 
2,333 

[2,252;2,396] 
0,0236 

S. occipitalis medial temporalis, 
part Lingualis 

1,816 
[1,778;1,889] 

2,054 
[1,957;2,208] 

0,0148 
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After statistical analysis we performed graphical processing for visual confirmation 
(Fig. 1, 2). 

 
(a)     (b) 

Fig. 1. Medial surface of cerebral hemisphere with the most important areas involved in the 
pathogenesis of depression in PD (a – patients with depression, b – patients without depres-
sion). 

     
(a)     (b) 

Fig. 2. Caudal surface of cerebral hemisphere with the most important areas involved in the 
pathogenesis of depression in PD (a – patients with depression, b – patients without depression) 

Table 4. Correlation of cortical thickness and BDI points in the left hemisphere of depressed 
patients (p <0,05) 

Localization L 

Lingual area -0,703 

G. occipital-temporal medial, part Lingualis -0,729 

S. occipitalis anterior -0,657 
S. temporalis inferior -0,735 
Broadman area VI -0,637 
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Table 5. Correlation of cortical thickness and BDI points in the right hemisphere of depressed 
patients (p <0,05) 

Localization R 

Lingual area  -0,709 
Pericalcarine area  -0,683 
S. calcarinus -0,644 
S. occipitalis middle and Lunatus -0, 762 
S. orbitalis lateralis -0,716 
Broadman area VI -0,755 

Graphical representation of cortical thickness on the degree of depression in PD 
dependence was formed using the regression coefficient (Fig.3). 

 
(a)     (b) 

Fig. 3. Regression dependence of cortical thickness on the severity of depression in left  
hemisphere 

 

 
(a)     (b) 

Fig. 4. Regression dependence of cortical thickness on the severity of depression in right  
hemisphere 
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(a)     (b) 

Fig. 5. Regression dependence of cortical thickness on the severity of depression in temporal 
lobes of right and left hemispheres (a – right hemisphere, b – left hemisphere) 

To determine the risk of depression occurance depending on cortical thickness in 
most important, outlined above, zones odds ratio was calculated (Table 6). Median 
was used as critical values. 

Table 6. The odds ratio for depression in patients with PD, depending on the thickness of the 
cerebral cortex 

Brain structure Critical value  
(median, mm) 

Odds ratio 
(OR) 

95% confidence 
interval (CI) 

Left parahippacampal area 2,597 46,8 11,14-106,1 
Right parahippacampal area 2,395 9,1 1,77-46,77 
S. occipital-temporal medial 
– part Lingualis 

1,913 9,6 1,89-49,33 

4 Discussion 

Our data indicate the presence of a relatively small number of structures involved in 
the pathogenesis of depression in PD patients. First of all, you should pay attention to 
the lesions of lingual area and some of its components, in particular S. occipital-
temporal medial, pars Lingualis, which has significantly reduced thickness of cortical 
layer in both hemispheres. In addition, we observed strong negative correlation be-
tween lingual cortical areas on both sides and total BDI points. The combination of 
these facts allows to use lingual cortex thickness of the middle occipital- temporal 
sulcus as a predictor of depression in PD patients. 

The results reflect not only clinical syndrome of dementia in PD, but also the exist-
ing morphological component. This is shown in parahippocampal regions lesions on 
both sides and connection of the main structures that are affected in PD depression, 
that is, lingual region of the middle occipital- temporal sulcus, and the main structure 
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involved in the formation of dementia - the lingual region of the middle occipital- 
temporal gyrus [5]. 

An interesting fact is straight gyrus lesion, which was also found by Bulgarian re-
searchers. The function of this structure is not currently established yet, so, taking into 
account the data from both studies, we can assume that it participates in human mood 
background formation. 

Taking into account performed regression analysis, we can say that depression 
mainly affects the structures of frontal and temporal lobes. The most important of 
these structures have significant differences from the control group and a negative 
correlation with the BDI. 

One of the most important aspects of the study was to identify markers predicting 
the occurrence of depression in patients with Parkinson's disease. Three most impor-
tant areas were outlined - right and left parahippocampal areas and the average  
occipital- temporal sulcus. Left parahippocampal region, which increases the risk of 
depression in patients (46,8%) with cortical thinning below 2,597 mm, represents the 
greatest value. 

This work not only confirms the data obtained by foreign researchers, but also re-
veals new evidence of brain damage in PD patients with depression. Considering the 
ongoing debate about the nature of depression in Parkinson's disease, it is worth say-
ing that our study confirms the endogenous cause of this complication. Besides, we 
obtained new tools for prediction of this complication development and, as a result, it 
becomes possible to monitor patients more carefully and administer appropriate ther-
apy in time. 
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Abstract. The adoption of hospital EHR technology is significantly
growing and expected to grow. Digitalized information is the basis for
health analytics. In particular, patient medical records contain valuable
clinical information written in narrative form that can only be extracted
after it has been previously preprocessed with Natural Language Pro-
cessing techniques. An important challenge in clinical narrative text is
that concepts commonly appear negated. Though worldwide there are
nearly 500 million Spanish speakers, there seems to be no algorithm for
negation detection in medical texts written in that language.

Thus this paper presents an approach to adapt the NegEx algorithm
to be applied to detect negation regarding clinical conditions in Spanish
written medical documents. Our algorithm has been trained with 500
texts where 422 different sentences and 267 unique clinical conditions
were identified. It has been tested for negated terms showing an accuracy
obtained is of 83,37%. As in the detection of definite affirmed conditions,
the results show an accuracy of 84,78%.

Keywords: Natural Language Processing, Negation Detection, Medical
texts.

1 Introduction

Health data analytics highly relies on the availability of Electronic Health Records
(EHRs). The adoption of hospital EHR technology is significantly growing and
is expected to continue growing. While one third of the US hospitals (35%) had
already implemented some kind of EHR technology in 2011, it is expected that
by 2016 nearly every US hospital (95%) will use EHR technology.

EHR contains both structured and not structured information such as: the
patient’s medical history, diagnoses, medications, treatment plans, immunization
dates, allergies, radiology images, and laboratory and test results. This informa-
tion is being collected and managed by a health care provider or organization.
Analysis of this information can make it possible to develop evidence-based de-
cision making tools that providers can use to improve patient’s care.
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However technology for health care data analysis is not mature enough due
to, among other reasons, a lack of standards, interoperable data schemas and
natural text and image processing tools. In particular in this paper we focus on
natural text processing.

Patient medical records contain valuable clinical information written in nar-
rative form. Thus, in order to find relevant information it is often necessary to
extract it from free-texts in order to support clinical and research processes.
An important feature of the clinical narrative text is that it commonly encloses
negation concepts. According to Chapman et al. [1], around half of all clinical
conditions in narrative reports are negated.

Several systems and methods have been proposed for negation detection [1],
[2], [3], [4], [5] [6], [7], [8], [9], [10], [11], [12].

NegEx is introduced in [2] to identify negation terms. In order to identify
negated finding and diseases, NegEx algorithm uses regular expressions to de-
termine the scope of trigger terms. A clinical condition is marked as negated
whether within the scope of a trigger term. NegEx was applied to selected sen-
tences from discharge summaries with a 94.5% specificity, 84.5% precision and
78% sensivity.

In [1], NegEx’ performance is analyzed taking into account different kinds
of clinical reports. The study uses three types of negation phrases: pre-UMLS,
post-UMLS and pseudo-negation. Negation phrases were extracted from previ-
ous analysis of NegEx on discharge summaries, a system called SymText and
also negation phrases were added by the authors. NegEx obtained an average
precision of 97%. However, precision ranged from 84% to 19% depending on the
section of the pathology report.

Recently, challenges in translation of negation triggers from English negation
lexicon (NegEx) to Swedish, French and German have been analyzed in [3]. OWL
and RDF multilingual lexicon version were developed based on an extended
NegEx version proposed in [4].

Elkin et al. [5] introduce a method based on NegEx to identify the scope of the
negation trigger. The method is applied to small segments generated by isolating
sentences from health records. Precision and recall values of 91.2% and 97.2%,
were respectively obtained.

The extended NegEx version, called ConText [4], is based on regular expres-
sions and helps to determine whether a clinical condition not only is negated,
but also if it is hypothetical, historical or experienced by someone other than
the patient. To do this, several contextual properties (hypothetical, historical or
the experiencer) are taken into account to modify clinical conditions.

In [6] Negfinder, a program to identify negated patterns present in medical
documents, is described. Documents are preprocessed replacing a concept by its
UMLS concept ID. Then, negations are distinguished and grammar rules are
used to associate them with single or multiples concepts preceding or succeeding
them. The sensivity and specificity obtained from evaluation when Negfinder
was applied to medical documents to detect negations were between 91% and
96%.
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A hybrid approach was proposed in [7]. The approach combines regular ex-
pression matching with grammatical parsing to automatically detect negations in
radiology reports. Negated phrases were identified with sensitivity and precision
values of 92.6% and 98.6%, respectively.

Skeppstedt [8], [9], [13] adapted the English rule-based negation detection sys-
tem, NegEx to Swedish. The results [8] showed lower precision and recall values
than results obtained for the English version. In [9], NegEx system adapted to
Swedish is analyzed to a subset of free-text entries from the Stockholm EPR
corpus. Particularly, the study has been centered in SNOMED CT terms having
the semantic categories ’finding’ or ’disorder’. Recently, in [14] Swedish health
records are studied emphasizing the analysis on four entities: Disorder, Find-
ing, Pharmaceutical Drug and Body Structure. The study investigated how well
named entity recognition methods work on clinical texts written in Swedish and
whether to divide the Medical Problem category into more specific entities could
be meaningful.

On the other hand, several methods based on machine learning techniques
have been proposed [10], [11], [12]. A machine learning system, consisting of two
classifiers to determine the scope of negation in biomedical texts, is introduced
in [10]. The classifiers determine if the tokens in a sentence are negation signals
and find the full scope of these negation phrases. An error reduction of 32.07%
w.r.t similar systems was obtained [11] in different text types.

In [12] a pattern learning method is proposed in order to automatically identify
negations in medical narrative texts. According to the authors, the accuracy is
improved with respect to other methods based on a machine learning approach.
Four steps integrate the method: corpus preparation, regular expression pattern
learning, patterns selection and classifier training.

Though there are 500 million Spanish speakers worldwide (According to [15])
as far as our knowledge there is no learning method for negation detection in
medical text written in Spanish.

Thus in this paper we present an approach to adapt the NegEx algorithm
to be applied to detect negation regarding diseases in Spanish written medical
documents. The paper contributions are as follows: i) a list of terms for Spanish
is compiled from clinical reports containing those terms that identify negation;
ii) the frequency of the terms has been calculated on a corpus to compare the
values to the corresponding ones in English for which the analysis has already
been performed; iii) an implementation of the NegEx algorithm for Spanish and
iv) the evaluation of the algorithm with Spanish texts.

The rest of the paper has been organized as follows: in section 2 we present
the adaptation of the method proposed by [3] to work with Spanish texts. In
this section we also present the list of terms that have been identified in Spanish
as triggers for negation. In section 3 we present the results of applying the
implementation of our approach over 500 medical texts, containing 422 different
sentences and 267 unique clinical conditions. To end with, section 4 presents the
main conclusions obtained so far as well as the future lines of development.



An Approach to Detect Negation on Medical Documents in Spanish 369

2 Method

In this section we present the approach we have followed to adapt NegEx algo-
rithm for Spanish texts. The approach we present is similar to the one presented
in [3].

In order to do so the processes depicted in figure 1 have been performed:

1. Medical texts annotation. Several medical texts have been manually an-
notated to detect situations in which terms appear to be negated.

2. Labelling of terms. The terms from NegEx are extracted and translated
into Spanish. The list of terms is enriched with those that have been previ-
ously detected in the annotated medical texts and known synonyms.

3. Frequency calculation. Using a corpus the frequency of negated terms
is calculated to categorize them according to their appearance (frequency).
This makes it possible to compare the most frequently used terms in Spanish
in comparison to those in English.

4. Evaluation. The NegEx algorithm is adapted to Spanish using the list of
terms previously categorized and evaluated with a set of real clininal texts.

Fig. 1. Steps of the approach

In the following sections we detail these processes.

2.1 Medical Documents Annotation

In order to be able to detect negation, one of the requirements of the algorithm
is to have a Gold Standard or a corpus of Spanish expressions. This is the first
problem to be overcome as there is not such standard for Spanish texts. Conse-
quently, the first step is to build such a corpus. The result of this process will be
a set of annotated sentences to act as Gold Standard to test the performance of
the negation detection algorithm.

2.2 Labelling of Terms

Another required process is to generate the translation to Spanish of the con-
cepts found in the original NegEx lexicon as negation terms (see an example in
table 1). Next, the lexicon has to be enriched with synonyms and clinical related
common phrases in Spanish. Translation was done by a team composed by Com-
puter Science Researchers, Physicians and Computational Linguists experts. It
is interesting to note that not only terms used in [2] were translated but also
the terms of the lexicon in the implementation of ConText [4] were translated.
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Table 1. Example of translated terms

Term in English Term in Spanish

can be ruled out se puede descartar
can rule him out

can rule out

no, not no

no evidence sin evidencia
no evidencia

no new sin novedad

no support for no hay soporte para

no suspicion of ninguna sospecha de

not had no teńıa

Fig. 2. Phases of the labelling process

According to [3], each translated term is assigned a certain category: i) Definite
Negated Term, ii) Probable Negated Term, iii) Pseudo Negated Term.

This process of terms labelling is depicted in figure 2 and includes the depicted
steps.

2.3 Frequency Calculation

Once all the sentences of the corpus are categorized, the frequency of each term
of the lexicon on the corpus is calculated. The median value of the frequency for
each term is also calculated and then the terms are categorized as follows:

– No appearance: For those terms with frequency equal to zero.
– Infrequent: Used to categorize those terms which frequency is greater than

zero but lesser than the median value.
– Frequent: Those terms that appear with frequencies higher than the median

value.
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2.4 Evaluation

In order to validate the Spanish approach for negation detection a test dataset
composed by pieces of previously (manually) annotated text written in Spanish
is required. The testing corpus was generated by spliting into sentences the texts
in the corpus previously described. This sentences were indexed using Apache
Lucene [16]. For the indexing process the ICD-10 standard [17] is used to iden-
tify the sentences with an underlying clinical condition. After this process was
completed, the set of sentences selected is manually annotated. Then the per-
formance of the algorithm will be tested on the set of testing examples and
results are shown. It is important noting that the NegEx algorithm has not been
changed in its essence and only the terms used as triggers have been changed.
Our aim is to show that due to the different structure of spanish language in
comparison to that of english the performance of the algorithm should not be
too high and consequently extensions of NegEx to deal with the morpho-sintatic
struture of spanish is required to improve results. In what follows we present the
results of applying the process in a set of selected texts.

3 Results

The Spanish approach has been programmed in Java, and it has been tested
using 500 reports obtained from SciELO [18] as input corpus. In the extraction
process the entitled sections: “Reporte de caso” (Case report), “A proposito de
un caso” (About a case), “Caso clinico” (Clinical case) and similar ones were
used. The resulting corpus is composed of 1,164,712 words, 65,605 out of which
are different words.

In order to validate the approach the calculation of the frequency of terms for
negation in Spanish texts has been performed to compare the obtained frequen-
cies with those reported in the literature for English. In what follows we present
the results obtained, in detail.

3.1 Frequency of Terms in Spanish

The frequencies shown in this section were calculated using the algorithm pre-
sented in Section 2.3. The results of the application of this algorithm are pre-
sented in the following section.

3.2 Lexical Analysis

Tables 2, 3 and 4 show the relative frequencies for terms both in Spanish and
English which demonstrate Definite Negated Existence, Probable Negated Exis-
tence and Pseudo Negated Existence, respectively.

Note that the frequencies for frequent Definite and Probable Negated terms
are higher in Spanish, whether Pseudo Negated terms are more frequent in En-
glish. Generally speaking, infrequent terms perform similarly in both languages,
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Table 2. Definite Negated Terms frequencies in Spanish and English

Spanish (58) English (60)

Frequent Infrequent No appearance Frequent Infrequent No appearance

14 20 23 4 24 32

Table 3. Probable Negated Terms frequencies in Spanish and English

Spanish (50) English (78)

Frequent Infrequent No appearance Frequent Infrequent No appearance

4 17 29 3 37 38

Table 4. Pseudo Negated Terms frequencies in Spanish and English

Spanish (18) English (16)

Frequent Infrequent No appearance Frequent Infrequent No appearance

1 13 4 2 13 1

though Probable and Pseudo Negated Terms appear more frequently in English
(see table 5). It is important to note that some of the terms that were obtained in
the labelling process do not appear in the corpus that has been used for testing
and evaluating the algorithm which may affect the quality of the results.

3.3 Validation of NegEx implementation for Spanish

The Spanish version has been tested with 500 reports where we have identified
422 different sentences and 267 unique clinical conditions. Our experiments show
the following performance values: A precision of 49.47%, a recall of 55.70% and
a F-Measure of 52.38% were obtained when using the Definite Negated terms as
the positive set in the classification task. This process also showed an accuracy
of 83.37%. When the Definite Existence terms were used as the positive set, a
precision of 86.86%, a recall of 95.2% and a F-Measure of 90.84% were obtained.
In this case, the accuracy is similar to the previous one with a value of 84.78%.

We observed that the number of False Positives is high and that makes the
precision of the algorithm to go very low for the cases specially of negation
detection. The reason behind this result was expected as we firstly showed as
the structure of Spanish differs from that of English and the rules implemented
to calculate the scope of negation in English not always agrees with those to
analyze negation in Spanish. Consequently, future research will be done in order
to adapt Negex not only by translating triggering terms but also by adding rules
after a deeper analysis of the negation process in Spanish grammar.
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Table 5. Comparison of frequencies in Spanish and English

4 Conclusions

In this paper we have presented an adaptation of the NegEx algorithm to be
used for clinical texts written in Spanish. First, a list of terms has been identi-
fied both from the translation of those identified previoulsy in NegEx and later
enriched with synonyms and terms from manual annotation of medical texts
in Spanish. Second, the frequency of terms in Spanish has been calculated and
compared to that of the terms in English. The differences in frequencies of the
terms in both languages suggests that the corpus can be biased an should be
enlarged to contain appearances of those terms that do not appear. Finally, an
implementation of NegEx algorithm adapted for Spanish has been evaluated
and values of accurary and recall sugest that the results can yet be improved if
the scope is properly adapted. On the other hand some of the terms that were
identified as negated terms did not appear in the corpus that has been used sug-
gesting also that the corpus has to be enlarged to contain all the possible negated
terms. Thus as future work we propose to generate an improved version of the
Spanish corpus and to annotate more sentences to be used for evaluation with
a new implementation of the algorithm. Besides as it has also been mentioned,
improvement of NegEx with rules that govern the negation process in spanish
should improve results obtained so far.
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Smith, J., Ardö, A., Linde, P. (eds.) ELPUB. ICCC Press, Washington, DC (1999)



Are Some Brain Injury Patients Improving More

Than Others?

Zaigham Faraz Siddiqui1, Georg Krempl1, Myra Spiliopoulou1,
Jose M. Peña2, Nuria Paul3, and Fernando Maestu4

1 Otto-von-Guericke University Magdeburg, Germany
{siddiqui,krempl,myra}@iti.cs.uni-magdeburg.de

2 Technical University of Madrid, Spain
jmpena@fi.upm.es

3 Complutense University of Madrid, Spain
jpaul68@hotmail.com

4 Complutense & Technical University of Madrid, Spain
fernando.maestu@ctb.upm.es

Abstract. Predicting the evolution of individuals is a rather new min-
ing task with applications in medicine. Medical researchers are interested
in the progress of a disease and in the evolution of individuals subjected
to treatment. We investigate the evolution of patients on the basis of
medical tests before and during treatment after brain trauma: we want
to understand how similar patients can become to healthy participants.
We face two challenges. First, we have less information on healthy par-
ticipants than on the patients. Second, the values of the medical tests for
patients, even after treatment started, remain well-separated from those
of healthy people; this is typical for neurodegenerative diseases, but also
for further brain impairments. Our approach encompasses methods for
modelling patient evolution and for predicting the health improvement
of different patient subpopulations, dealing with the above challenges.
We test our approach on a cohort of patients treated after brain trauma
and a corresponding cohort of controls.

1 Introduction

Data mining is increasingly used on clinical data for purposes of diagnosis and
treatment. In the context of neurodegenerative diseases and of events that dis-
rupt mental functions, like traumatic brain damage and vascular brain lesions,
medical researchers want to understand the evolution of the patients and to
know whether a similar state as for healthy people can be reached. We propose
a mining method that captures the evolution of patients subjected to treatment
after brain trauma and juxtaposes them to the participants of a control cohort.

The context of our work is the monitoring of patients with a disease or impair-
ment that affects their mental abilities, e.g. Parkinson, brain trauma or coma
after excessive alcohol consumption. While there are treatments known to im-
prove patient state, at least for some patients, it is also evident in many cases
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that the mental abilities of healthy controls are not recovered. Hence, our task
is to identify subpopulations of patients, whose mental abilities become closer
to those of some controls. We face two challenges. First, the results of the med-
ical tests on the mental abilities of patients, even after treatment, are still very
different from those of the controls, so that a direct comparison between treated
patients and healthy cohort participants is not conclusive. Second, we have a lot
of clinical data on the patients but much less on the controls, so that the evo-
lution of patients can be modelled but the evolution of the controls cannot. To
deal with these challenges, we model the evolution of the patients and identify
subpopulations that become (asymptotically) similar to controls.

The study of patient evolution on the basis of timestamped clinical data has
been largely influenced by the seminal work of Cox [1] on censored failure times
and age-specific failure rates. As pointed out by Fitzmaurice et al., [1] ”. . . was
followed by a rich and important body of work that established the conceptual
basis for the modern survival analysis” [2]. Survival analysis is not applicable
to this problem, because there is neither a well-defined target event, nor ex-
plicit timepoints to guide the learner. Although there is a control population
to juxtapose to the patients, there are no target values to predict, because the
assessments of the controls are very different from those of the patients. Hence,
we resort to unsupervised approaches to model the evolution of individuals.

The contributions of our EvolutionPredictor are as follows. We model the evo-
lution of subpopulations of patients, on whom only two moments are available,
where these two moments are not defined as timestamps1. We use this model
to compute a future/target state for each patient. We show that the projected
target state of patients allows a reasonable comparison to a control population,
the recordings of which are very different from the patient recordings.

The paper is organized as follows. In Sec. 2 we discuss related work. In Sec. 3
we present our materials and the mining workflow for modelling evolution and
projection of patients after treatment. In Sec. 4, we report on the results of our
experiments on brain trauma patients. The last section concludes our study.

2 Related Work

Data mining methods are only recently deployed for analysis of brain patholo-
gies or injury conditions. The authors of [3] analyse data from neuropsychological
tests (concerning attention, memory and executive function tests) from 250 sub-
jects before and after a treatment instrumented by a cognitive tele-rehabilitation
platform. Their objective is to predict the expected outcome based on the cog-
nitive affectation profile and the performance on the rehabilitation tasks. Our
objective is not the prediction of a well-defined outcome, but rather of the future
similarity between treated patients and a population of healthy people.

In [4], the authors present an artificial neural network model that predicts in-
hospital survival following traumatic brain injury according to 11 clinical inputs.

1 The one moment is ”before” the treatment began, the other moment is ”after” the
treatment began, but without knowing when exactly the treatment began or ended.
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A similar approach was taken by Shi et al [5], who also consider neural networks
and logistic regression, but rather study recovery from brain surgery. Andrews et
al. discuss methods for prediction of recovery from brain injury, including short-
term evolution of patients [6]. The effect of cognitive therapies along longer
periods (6 months to 1 year) is studied in [7,8]. Brown et al. learn decision trees
on variables that include physical examinations and indices measuring injury
severity, as well as gender, age and years of education [7]. Rovlias and Kotsou
further consider pathological markers and the output of computer tomography,
and learn CART trees [8]. Our study is different from the aforementioned ones,
because we do not learn a model on patient recovery (we do not have recovery
data), but rather study the evolution of the patients towards a control population.

Close to our work are the works [9,10], which predict the progression of glau-
coma from cross-sectional (rather than longitudinal) data. The methods learn
temporal models on trajectories. A trajectory is built by fitting so-called ”partial
paths” upon the cross-sectional data: path construction involves selecting one
healthy individual and one patient, labelling them as start and end and then re-
ordering the remaining cross-sectional instances based on the shortest path from
start to end. Our approach shares with [9,10] the need to construct a trajectory
of evolution: in principle, we could construct a ”partial path” by combining the
recordings of the controls and the recordings of the patients during treatment.
But this would imply ignoring part of the already avaialble temporal information
(pre-treatment data). Moreover, the Trauma Brain Injury dataset of [11], which
we use, shows that the control individuals are too different from the patients:
this might lead to long and unrealistic partial paths. Thus, we rather build a
single projected moment, using data before and after the begin of treatment,
and do not involve the recordings of the controls in our learning process.

A separate thread of work models and monitors how sub-populations (clus-
ters) evolve over time. The framework MONIC [12] encompasses a set of ’transi-
tions’ that a cluster may experience, a set of measures and a cluster comparison
mechanism that assesses whether a cluster observed at some timepoint has sur-
vived, disappeared, merged or become split at the next timepoint. Later frame-
works [13,14] build upon MONIC to explain evolution: they model the clusters
and their transitions as nodes, resp. edges of an evolution graph. In [15], we
build upon [14] to learn a Mixture of Markov chains that capture the evolution
of different subpopulations. We take up the idea of subpopulations here, but our
goal is to predict rather than model the evolution of the subpopulations.

3 Materials and Methods

Given is a cohort of patients X , for which we measure a set of assessments A,
e.g. performance at cognitive tests, results of laboratory tests etc, before (tpre)
and after (tpost) the treatment started. Our goal is to predict how close the
assessment values of these patients can become to the assessments of a control
cohort Y, assuming that the treatment continues. We pursue this goal by first
building clusters of patients that evolve similarly from tpre to tpost. Then, we
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compute a projection of each patient’s future assessments, using (a) the patient’s
assessments, and (b) assessments observed in the cluster to which the patient
belongs. Finally, we compare these projected assessment values to the values
observed in the control cohort. In the following, we first describe the materials
of our analysis, then we present the work flow of EvolutionPredictor.

Notation: For each moment t and patient x ∈ X , xt is the vector of assessments
of x at t: the instantiation of x at t or patient x at t. The set of moments is
T = {tpre, tpost, tproj}, where tpre stands for instantiations before treatment, tpost
for instantiations after the treatment started and tproj for a future moment, not
further specified. Hereafter, we skip the index t, i.e. xtpre ≡ xpre.

It is stressed that tpre, tpost and tproj are moments ordered in time, but not
timepoints in the strict sense, since we do not define a distance among them.
The reason is that the duration of treatment among the patients varies, and
so does the elapsed time between the incident (traumatic brain injury) and the
commence of the treatment. As with many cohorts, the data (cf. subsection
3.1) are too few, so we cannot afford to distinguish among different treatment
durations and elapsed time intervals.

3.1 Materials: The TBI Dataset

The Traumatic Brain Injury dataset (TBI) contains assessments on cognitive
tests for 15 patients with brain injury and for 14 controls [11]. These tests are
recorded once for the controls and twice for the patients – at moments tpre and
tpost. The cognitive tests are listed on Table 1 (cf. for details [11]).

3.2 The EvolutionPredictor Work Flow

The tasks of our workflow are: (1) bootstrap sampling over the set of patients
X ; (2) clustering the patient instantiations at each t ∈ {tpre, tpost}, building a
clustering ζt; (3) building an evolution graph G(ζpre, ζpost) of patients evolv-
ing similarly; (4) using the topological space of G(ζpre, ζpost) to compute the
projection, i.e. the projected instantiation of each x ∈ X into the future xproj .

Bootstrap Sampling and Clustering at Each Moment. Our Evolution-
Predictor learns from the set of patients X . Since X is small (as is the case for
many cohort datasets), we perform bootstrap aggregation [16] over X . Subse-
quent instance of each out-of-sample patient (i.e., xpre, xpost) are removed. We
apply K-Means over the instances at each moment t, and build a set of clusters
ζt.

Building a Cluster Evolution Graph. We use the concepts of MONIC
[12,17] to build a graph of cluster transitions from tpre to tpost. For each c ∈ ζpre
and c′ ∈ ζpost, we define their intersection as: c∩ c′ = {x ∈ X : xpre ∈ c∧xpost ∈
c′}. If c∩c′ �= ∅, we draw an edge (c, c′) and assign to it the weight w(c,c′) =

|c∩c′|
|c∪c′| .
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Table 1. Acronyms and description of cognitive tests2 from the TBI dataset from [11]

Name Description

TMT-B Train Making Test-Part B: measures cognitive flexibility (frontal lobe)

BTA Brief Test of Attention (total score).

WCST-NC Wisconsin Card Shorting Test: Percentage total score of conceptual level
(#categories correctly achieved); also measures cognitive flexibility

WCST-RP Wisconsin Card Shorting Test: # preservative responses (represent error)

FAS Phonetic fluency test which uses as cues letters F, A, and S as the initial
letters for the patients to start the production of words

ICP Measures ability to perform daily activities, and awareness of the disease

CIV Verbal Intelligent Quotient: measures ability to handle verbal material

CIM Performance IQ: ability to handle visio-spatial/non-verbal material

CV Verbal comprehension index (VCI)

MT Working memory (WM): measures the subject’s ability to maintain infor-
mation in short-term memory and recall it

OP Perceptual organization (PO)

VP Processing Speed Index (PSI)

IAC Attention/Concentration Index (ACI)

IMG General Memory Index (GMI)

IRD Delayed Recall Index (DRI)

We thus build a directed transition graph G(ζpre, ζpost), where the weights of
the edges emanating from the same cluster add to 1.0. We define:

firstmatch(c) = argmaxc′∈ζpostw(c, c
′) (1)

i.e. the first match of a pre-treatment cluster c is the post-treatment cluster with
the highest weight among the clusters linked to c.

On Figure 1(a), we show the instantiations of example individuals at time-
points tpre (yellow) and tpost (aubergine); the corresponding clusters are in (b);
the transition arrows and weights are in (c). The yellow star indicates the ”pro-
jection” of the individual marked as a red star; projections are explained next.

Projecting Patient Assessments into the Future. Let x ∈ X be a patient,
c ∈ ζpre be the cluster containing xpre ,and cfm be the firstmatch(c) (Eq. 1.)

Further, we denote the centroid of an arbitrary cluster clu as ĉlu. We define the
hard projection of x from tpre to tproj as the instantiation of x such that the
value of each a ∈ A is determined by the values in xpre and in ĉ, ĉfm:

projH (x, tpre, tpost) = xpre(a) + (ĉfm(a)− ĉ(a)) for each a ∈ A (2)

2 The acronyms were derived from the original Spanish names. Therefore, the textual
descriptions do not reflect the acronyms. We also provide the English acronyms in
parentheses.
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POST

PRE

w=1.0

w=0.75

w=0.25

(a) (b) (c)

Fig. 1. Clustering, Evolution Graph, Soft Projection: (a) the nodes are patient instan-
tiations at tpre (yellow) and tpost (aubergine) – instantiations of the same individual are
linked with dashed arrows; (b) clustering is done at each moment and (c) the evolution
graph is built by connecting pre- and post-treatment clusters that share individuals;
the edge weights are used to compute soft projections, as for the red-star instance

We define the soft projection of x from tpre to tproj as an instantiation, the
values of which are influenced by all clusters in ζpost that are linked to c:

projS (x, tpre, tpost) = xpre(a) +
∑

c′∈ζpost

(
ĉ′(a)− ĉ(a)

)
· wc,c′ for each a ∈ A (3)

where wc,c′ is the weight of a transition edge.
Hence, we learn models ζpre and ζpost on some individuals and then assess the

projection location of other (or the same) individuals. On Figure 1(c) we show
the soft projection of an individual (red star): the projected position is outside
both post-treatment clusters, since the individual is located at the rim of the
pre-treatment cluster.

4 Experiments

We evaluate our method by first testing whether the projection captures the
evolution of the patients reliably. To this purpose, we project from tpre to tpost,
i.e. on known instances. Then, we show the results of the projection from tpost to
tproj, which we juxtapose to the controls from TBI dataset. We have no ground
truth for this projection, so we rely on the validity of the first projection. We
first describe the framework and then discuss our findings.

4.1 EvaluationFramework

To evaluate the performance of the projections we are inspired by the Mean
Absolute Scaled Error (MASE) [18], which was originally designed to alleviate
the scaling effects of Mean Absolute Error(MAE). To define our variation of
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MASE, we assume an arbitrary set of moments T = {t1, t2, . . . , tn}. For an in-
dividual x, we define the MASE of the last instantiation xn as: MASE(x) =

d(xproj , xn)/
1

n−1

∑n−1
i=2 d(xi, xi−1), where d() is the function computing the dis-

tance between two consecutive instantiations of the same individual x. This
function normalizes the error of EvolutionPredictor at the last moment tn (nom-
inator) to the error of a naive method (denominator), which predicts that the
next instantiation of x will be the same as the previous (truly observed) one.
If the average distance between consecutive instantiations is smaller than the
distance between the last instantiation and its projection, then MASE is larger
than 1. Obviously, smaller values are better.

We further compute the number of times (Hits()) the correct cluster is pre-
dicted for a patient x. Assume that instantiation xpre belongs to cluster cpre and
let cproj denote the firstmatch(cpre) (cf. Eq. 1) at the projection moment tproj .
We define: Hits(x) = 1, if cproj is same as cpost (i.e., cluster closest to xpost),
otherwise Hits(x) = 0. Higher values are better.

For model purity, we compute the entropy of a cluster c towards a set of
classes ξ, where the entropy is minimal if all members of c belong to the same
class, and maximal if the members are equally distributed among the classes. We
aggregate this to an entropy value for the whole set of clusters ζ, entropy(ζ, ξ).

In general, lower entropy values are better. However, the labels used by the
EvolutionPredictor are Control and Patient: if a clustering cannot separate well
between patient instantiations and controls, this means that the patient instan-
tiations (which are the result of the projection done by our EvolutionPredictor)
have become very similar to the controls. Hence, high entropy values are better.

For learning evolutionary prediction model, we use a bootstrap sampling [16]
with a sample size of 85% and 10,000 replications. Model validation is done with
the help of out-of-sample data. For clustering the union of projected instances
and the controls, we use K-Means clustering. We use bootstrap sampling with a
sample size of 75% and 1000 replications, and vary K = 2, . . . 8.

4.2 Findings

Validation of the Projection from tpre to tpost. In the first experiment,
we project the patient instantiations from tpre to tpost. Since the true instantia-
tions at tpost are known, we use these projections to validate EvolutionPredictor,
whereupon evaluation is done with the MASE and Hits measures (cf. subsection
4.1). Figure 2 depicts the hard and soft projections of the pre-treatment patient
instantiations, while Table 2 depicts the MASE and Hits values for each patient
separately. We perform 10,000 runs and average the values per run.

On Figure 2, we see that the hard projection (yellow) and soft projection
(green) behave very similarly. Both predict the patient instantiations at tpost very
well: the mean values for the projected patient instantiations are almost identical
to the true instantiations, and the shaded regions (capturing the variance around
the mean) overlap with the variance of the true values almost completely.

The first row of Table 2 enumerates the 15 patients in the TBI dataset,
the subsequent rows show the MASE values for the hard, respectively the soft
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Fig. 2. Variance plots for patient projections, where tproj is set to predict the (already
known) instances at tpost: the solid lines represent the mean values of the true patient
instantiations at moment tpre, tpost and of the projected patient instantiations, while
the surrounding regions (same color as the solid line) represent the variance of the
instantiations; the two projections overlap almost completely with the true distribution
at tpost, both with respect to the line of the mean and to the region of the variance

Table 2. Hard and soft projection of patients from tpre towards tpost, with MASE
and Hits per patient: low MASE is better, values larger than 1 are poor; high Hits are
better, 1.0 is best; averages over all patients exclude outlier patient #14

IDs #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 Avg

MASE

Soft 0.29 0.14 0.12 0.19 0.24 0.83 0.13 0.22 0.15 0.21 0.58 0.22 0.37 3.24 0.34 0.27

Hard 0.22 0.09 0.10 0.14 0.16 0.90 0.07 0.17 0.13 0.20 0.29 0.23 0.34 3.49 0.42 0.24

Hits 0.86 0.62 0.93 0.62 0.95 0.99 0.86 0.89 0.96 0.96 0.54 0.87 0.77 0.81 1.00 0.83

projection. The last row shows the Hits value per patient. The last column aver-
ages the MASE and Hits values over all but one patients: patient #14 is excluded
from the computation, because prior inspection revealed that this patient is an
outlier, for whom few assessments are available. All other patients exhibit low
MASE values (lower is better), indicating that our projection mechanisms pre-
dict well the patient assessments at tpost.

Projection from tpost to the Future tproj . In the second experiment, our
EvolutionPredictor projects the patients after treatment start towards a future
moment tproj , which corresponds to an ideal final set of assessments that the
patient might ultimately reach through continuation of the treatment. We do
not have a ground truth to evaluate the quality of our projections. Rather, we
use a juxtaposition of patients and controls, depicted on Figure 3. We show the
averages of values per population through a solid line, around which we expand
to the variance of values for each variable. The cyan line and surrounding cyan
shaded region stands for the moment tpre, denoted as ”Pre” in the legend; the
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Fig. 3. Average assessment values and variance regions for controls and for patients
before (Pre) and after treatment start (Post) for 16 variables: despite some overlaps,
lines and regions of patients are mostly distinct from those of the controls
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Fig. 4. Average assessment values and variance regions for controls and for patients
before (Pre) and after treatment start (Post), and as result of Hard (yellow) and Soft
(green) projection: the projected patient assessments are closer to the controls

blue line and region stand for the moment tpost (”Post”), while the ”Controls”
are marked by the red line and red shaded region. Except for Gender and Age,
for which controls have been intentionally chosen to be similar to the patients,
patients differ from controls. Even where we see overlap between the red area
and the cyan (Pre) or the blue (Post) area of the patients, as for assessments
CIM and CV, we also see that the average values are different.

Figure 4 shows the same lines and areas for assessments before and after treat-
ment start (Pre:cyan, Post:blue) as the reference Figure 3, but also the projected
assessment values (Proj: green/yellow). These projected assessments are closer
to the controls, indicating that at least for some of the assessments (FAS1, ICP,
CIM, CV, MT, VP), treatment continuation may lead asymptotically to similar
values as for the controls.
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Fig. 5. Controls clustered with the patients before treatment (Pre: red), after treat-
ment start (Post: yellow), with the Hard projection (green) and the Soft one (blue
dashed): entropy drops as the number of clusters increases, but has higher (better)
values for the projected instantiations, indicating that these are closer to the controls

Clustering Patients with Controls. We investigate whether the patients can
be separated from the control population through clustering. We skip the assess-
ments TMT-B, BTA, WCST-NC and WCST-RP, which have been recorded only
for some patients. We cluster the controls with the patient instantiations before
treatment (Pre: red line), after treatment start (Post: yellow line), with the Hard
projected instantiations (green line) and with the Soft projection (blue dashed
line). We use bootstrapping with a sample size of 75% with 1000 replications.
On Figure 5, we show the entropy, as we vary the number of clusters K. Higher
values are better, because they mean that the clustering cannot separate controls
from patients. High values are achieved only for the projected instantiations.

On Figure 5, the entropy values are very high for the clusters containing
controls together with projected patients, whereby soft projection and hard pro-
jection behave identically. The high values mean that the clustering algorithm
cannot separate between projected patients and controls on similarity; the in-
stances are too similar. This should be contrasted with the clusters containing
controls and patients before treatment (red line): entropy is low and drops fast
as the number of clusters increases, indicating that patients before treatment are
similar to each other and dissimilar to controls. After the treatment starts, the
separation between patients and controls on similarity (yellow line) is less easy,
but an increase in the number of clusters leads to fair separation. In contrast,
projected patients are similar to controls, even when the number of clusters
increases: the small clusters contains still both controls and patients.

5 Conclusion

We investigated the problem of predicting the evolution of patients being treated
after brain injury and we propose a mining workflow.
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Key points: The mining workflow EvolutionPredictor clusters patients on similar-
ity (of their assessments) before and after the treatment began, and then it tracks
how each cluster evolves. It builds a cluster evolution graph that captures the
transitions of patient clusters before (PRE) to after treatment (POST). Then,
our EvolutionPredictor uses the cluster transitions to project each patient to a
future moment, on the basis of what is known on the patient’s thus far. The core
of our approach is the projection mechanism, for which we propose two variants.

We have experimentally validated EvolutionPredictor on the Trauma Brain
Injury dataset [11]. We have first applied the method on known data and have
shown that the projected values are almost identical to the true ones. Then, we
have compared the projected assessments to those of a control population, and
we have shown that some patient assessments are projected close to the controls.

We studied treatment after brain trauma, but our EvolutionPredictor is ap-
plicable to any impairment, where progression or the process of recovery is of
interest. The clusters we find may be of use in personalized medicine.

Shortcomings and Future Work: The projected assessments have not yet be
evaluated against the assertions of a human expert about the patients’ health
state after treatment. We are currently in the process of acquiring such data for
an additional evaluation. A further shortcoming is that we ignore the duration
of treatment; this is planed as future step.

The evolution of brain trauma or impairment conditions is difficult to mea-
sure at the functional level. However, the scholars anticipate that the use of
neuroimaging, e.g., MEG, could lead to the detection of progressive changes in
the connectivity patterns even before they translate into changes at the memory,
movement or orientation functions. Regularly recording MEG images before and
during treatment of patients, allow a more effective evaluation of treatment by
providing hints and indicators about the effectiveness of a particular therapy.
A next step for our work will be the integration of MEG data into our mining
workflow, to check whether the evolution of patients towards the subcohort of
controls can be modelled more effectively with the MEG images.
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Objects”.
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”Data Mining and Stream Mining for Epidemiological Studies on the Human
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Abstract. Chronic diseases such as diabetes and hypertension have been recog-
nized in the last decade among the principal causes of death in the world. Miti-
gating and controlling the elicited risks necessitate a continuous monitoring to 
produce accurate recommendations for both patients and physicians. For pa-
tient, it will help in adjusting his/her lifestyles, medications, and sport activities. 
However, for physicians, it helps in taking guided therapy decision. In this pa-
per, we propose an adaptive Expert System (ES) that relies, not only on a set of 
rules validated by experts, but also linked to an intelligent continuous monitor-
ing scheme that copes with semi-continuous data streams by implementing 
smart sensing and pre-processing of data. In addition, we implemented an  
iterative data analytic technique that learns from the past ES experience to con-
tinuously improve clinical decision-making and automatically generates vali-
dated advices. These advices are visualized via an application interface. We  
experimented the proposed system using different scenarios of monitoring 
blood sugar and blood pressure parameters of a population of patients with 
chronic diseases. The results we have obtained showed that our ES combined 
with the intelligent monitoring and analytic techniques provide a high accuracy 
of collected data and evident-based advices.  

Keywords: Expert System, continuous monitoring, analytics, diabetes, blood 
pressure, healthy advice generation. 

1 Introduction and Related Work  

With the advances in emerging technologies such as biosensors, mobile devices, and 
communication networks, remote monitoring of patients with chronic diseases is be-
ing considered as an efficient and cost-effective solution to reduce the burden on pa-
tients as well as on governments. It allows monitoring of patients wearing biosensors 
connected to their mobile devices and enabled with network connection to relay the 
collected vital signs (i.e. readings) to a back-end server. To cope with the high speed 
and volume of continuous data streams collected from sensors, a couple of challenges 
should be addressed. These challenges cover data acquisition, data processing, data 
analytics and visualization. 
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Many works have been conducted to address independently each one of the above 
challenges and proposed solution for M-health monitoring. In data analytics, there are 
some interesting works on the design of expert systems for automatic decision taking. 
In [1], the authors present a decision support system where the final aim is to provide 
a patient with a health score that reflects the expert system engine’s interpretation of 
readings coming from clinical measurements. The final score (medium, average, or 
low priority) is then conveyed to medical staff to further assess the case and take any 
appropriate action. The authors in [2] present a rule-based decision support system. 
Decisions are taken using decision trees, rules, and transformation of rules into fuzzy 
logic. In [3], authors present a remote server that provides clinical decision support. 
Once this server receives data and data date stamps over the Internet, it will provide 
automated analysis to assist doctors in decision taking. 

For diabetes, METABO [4] is a monitoring and management system that aims at re-
cording and interpreting patient’s context as well as providing decision support to both 
patient and doctor. This is based on a glucose meters, and physical activity sensors. 
The authors in [5] propose a fuzzy expert system for blood pressure and hypertension. 
This is a rule-based system that simulates an expert-doctor behavior for diagnosis. For 
the same class of patients (i.e. diabetes), authors in [6] present another system to sup-
port patients and doctors to determine their diet plans.  

The authors in [7] present a case-based and rule-base reasoning system for com-
bined therapies, in this case for lifestyle and pharmacology. The knowledge base in this 
system is constructed using fuzzified input values, which are subsequently de-fuzzified 
after reasoning to produce concise outputs. Another use of fuzzy logic in health-related 
diagnosis is presented in [8] where authors claim that fuzzy logic is an effective tool 
for accurate diagnosis of heart and blood pressure measurements.  

Most of research initiatives in expert systems and DSS do not cope with the conti-
nuous monitoring generating a high volume of data which, makes it very challenging 
in retrieving accurate data, processing this data, and generating validated clinical de-
cision. Also, none of the works above tackles closing the loop and further checks if 
the proposed clinical recommendations will impact the patient’s future readings col-
lected in the next cycle.  

In this paper, we tried to address few of the above challenges by providing an end-
to-end solution that implements the following: 

• An adaptive continuous monitoring scheme that copes with semi-continuous 
data streams and implements smart sensing and pre-processing of data.  

• An iterative data analytic technique that learns from the past ES experiences to 
continuously improve the knowledge base, the rules, thus automatically gene-
rates validated clinical advices for better decision-making.  

• A visualization dashboard that displays generated advices. 
• Closing the loop and further evaluates that the suggested advices impacted the 

readings collected in the next monitoring cycle. Therefore, it will allow  
continuous improvements and optimization of rules, knowledge base, and  
advices. 
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2 Architecture 

2.1 Overview  

The monitoring system depicted in Fig. 1 describes the set of entities involved  
in an end-to-end M-health monitoring of patients. These include key processes such 
as data acquisition, data processing and analytics, recommendation generation and 
visualization.  

 

Fig. 1. End-to-End M-Health Monitoring Overview 

Fig. 1 illustrates the overall M-health monitoring lifecycle scheme that starts with 
collecting data from sensors by the data acquisition module. Then data is filtered and 
pre-processed before being stored in the database. In addition to these readings, the 
database includes also patient’s profile and other historical clinical data. These data 
are used as input to the expert system, which maps these data on a set of rules that are 
validated a priory by human medical experts. The generated output is mapped to a set 
of recommendations stored in a database and visualized by patients and physicians. 
Recommendations are food intake, medications, lifestyle and exercises. The physi-
cians have the right to validate, update, and or extend these advices through the visua-
lization interface before they are stored in the knowledge base database. Finally, the 
knowledge retrieved from physician’s recommendations is used by the learning mod-
ule to enrich the set of rules with new rules and or to update existing rules. 

2.2 Rules Description and Validation 

We have developed a set of rules for each monitored parameter. For instance, rules 
for blood sugar, blood pressure and a composition of rules for both vital signs. The 
table below provides a sample for each category of these rules. 
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Table 1. Rules Description 

Rules Description 

Blood 
Sugar 
(BS) 

1. IF (Fasting BloodSugar is >=200) THEN (fbglucose is very high)  
2. IF (Fasting BloodSugar is >=125) THEN (fbglucose is High)  
3. IF (Fasting BloodSugar is 50 - 70) THEN (fbglucose is Low)  
4. IF (Fasting BloodSugar is < 50) THEN (fbglucose is very Low)  
5. IF (Fasting BloodSugar is >=70) THEN (fbglucose is Normal) 

Blood 
Pressure 
(BP) 

1. IF (SYSTOLIC is < 90) AND (DIASTOLIC is <60) THEN (BP is low)  
2. IF (SYSTOLIC is 90 - 120) AND (DIASTOLIC is 60-80) THEN (BP is normal)  
3. IF (SYSTOLIC is 120 - 139) AND (DIASTOLIC is 80 -90) THEN (BP is preHigh)  
4. IF (SYSTOLIC is 140 -160) AND (DIASTOLIC is 90 - 100) THEN (BP is stage1High) 
5. IF (SYSTOLIC is >160) AND (DIASTOLIC is > 100) THEN (BP is stage2High)  

Compo-
site (BP 
& BS) 

1. IF (BP is normal) AND (fbglucose is normal) THEN (FoodIntake is normal) AND (Lifestyle & Exercise is regular) 
AND (Medication is NoChange) 

2. IF (BP is preHigh) AND (fbglucose is high) THEN (FoodIntake is strict) AND (Lifestyle & Exercise is moderate) 
AND (Medication is Consult & Change) 

3. IF (BP is stage1High) AND (fbglucose is high) THEN (FoodIntake is strict) AND (Lifestyle & Exercise is regular) 
AND (Medication is Consult & Change)  

4. IF (BP is stage2High) AND (fbglucose is high) THEN (FoodIntake is strict) AND (Lifestyle & Exercise is stop) AND 
(Medication is Consult & Change) 

5. IF (BP is stage2High) AND (fbglucose is vLow) THEN (FoodIntake is strict) AND (Lifestyle & Exercise is stop) 
AND (Medication is Consult & Change)  

2.3 Smart Data Sensing and Acquisition  

Data acquisition involves usage of sensors, mobile devices, and backend servers. 
Streams of continuous data collection from sensors induce a set of challenges includ-
ing for instance the significance of collected data, its consistency, and its accuracy. 
Therefore, we implemented some smartness at different levels mentioned above. At 
the sensor, we re-program it to report only changes in collected data, also move to 
sleep mode if recorded readings are stable/normal over a period of time, then resume 
sensing if patient context changes. At the mobile device retrieving the sensory data, 
pre-processing functions were implemented such as data filtering and cleansing. 
These intelligent features implemented in sensors, and mobile devices reduced consi-
derably the volume of collected data and insured a better data accuracy. In addition, 
the data gathered are seamlessly exposed as a Web service (Sensing as a Service) 
after being deployed on an application server that authorized applications can access 
and use (e.g. Expert System).  

2.4 Adaptive Expert System for Data Analytics 

For the adaptive expert system, we have developed two main features: 1) adapts to the 
volume of data streams received from continuous monitoring and 2) adapts to the 
updated knowledge gathered from different monitoring cycles. Data are filtered and 
pre-processed for the purpose of reducing their quantity and improving their quality. 
The data analytic scheme closes the loop and further evaluates if the suggested advic-
es impacted the readings collected in the next monitoring cycle. Therefore, it will 
allow continuous improvements and optimization of rules, generated knowledge base, 
and advices. 
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2.5 Advice Processing and Validation  

The expert system generates a set of outputs in form of high, low, very high, etc. 
These outputs are mapped to a set of concrete recommendations covering the follow-
ing areas: food intake, medications, and lifestyle and exercises. Recommendations are 
generated automatically based on the results of the expert system and validated by 
medical human expert through a visualization interface, then stored into a database. 
Further validations are done to compare if the advices have adjusted the level of BS 
and BP readings collected in the next monitoring cycle. 

3 Implementation 

3.1 Experimental Setup 

Fig. 2 describes the experimentation setup we have used to validate our approach. 
This implementation is for semi-continuous monitoring of patients with BS and BP. 

 

Fig. 2. M-Health Monitoring Setup  

The following is the implementation details of the main components involved in 
the end-to-end monitoring: 

• WBSN: Wireless Body Sensor Networks consists of sensors placed in the body, 
which communicate and synchronize with the backend using various protocols 
(e.g. Bluetooth, Wi-Fi). The sensors we have used include Zephyr BioHarness-3, 
iBGStar® Blood Glucose Meter for iPhone, and Zephyr HxM heart Rate  
sensor. 

• Mobile devices: iPhone 4S, Android tablet. 
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• Database server: MySQL server. 
• Expert system: (Jess) Jess is a rule engine and scripting environment written en-

tirely in Java. Using Jess APIs, we built Java application that reason using know-
ledge we supply in the form of declarative rules as in Table 1. 

• Web Server / Middle Layer: Web Server acts as the middle layer, which serves 
the Restful Web Services. 

3.2 Data Collection, Filtering, and Pre-processing  

We used a total of 13650 readings, which were related to Blood Sugar (BS) and 
Blood Pressure (BP). Data were recorded from semi-continuous monitoring of 70 
patients for a period of 6 months. The BP readings include two values namely: Systol-
ic and Diastolic, and the BS readings include five readings that are: fasting, pre-
prandial, after meal, bedtime, and random.  

Collected data is processed at the source before being sent to the mobile device and 
to the database. Filters were implemented to remove irrelevant readings (e.g. damaged 
measurements, redundant readings, and incomplete data). Also, pre-processing was 
made to remove inaccurate readings, insignificant readings, or sensors’ errors. 

3.3 Implementations 

We have implemented components to support data collection, processing, and visuali-
zation. These include a couple of restful Web services, Expert System, and visualiza-
tion module:   

Restful Web services: three Web services were implemented to help in the processing 
of collected readings. The BP and BS web services provide an interface with a re-
quired set of operations to create, read, update, and delete BP and BS readings. The 
third Web service is Expert System Web service that provides an interface to the vi-
sualization module to retrieve readings from the database. 

Expert System implementation: it is developed using JESS, a Java based engine. Rules 
were specified using Common LISP (CLISP) type syntax, and then readings are in-
ferred using JESS engine to generate a set of advices. 

Visualization Interface: the generated advices include Food Intake, Medication, exer-
cises and Lifestyle advices. They are visualized through an E-health portal where the 
patient has a read-only access while the physician has read-write access to be able to 
edit and update these advices.  

3.4 Test Scenarios  

We describe hereafter the key scenarios we have experienced within our monitoring 
scheme.   
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Fig. 3. Scenarios configuration  

Fig. 3 illustrates the configuration of three scenarios we have developed to evaluate 
our semi-monitoring scheme using readings collected from 70 patients:  

 
Scenario 1: blood sugar monitoring: the expert system gets the BS readings as inputs, 
infers those readings on the set of BS rules described in table 1 to generate a set of 
outputs in form of  (Fluctuating High, High, Low, Fluctuating Low, Fluctuating, 
Normal, VHigh). In this scenario, we calculate the average matching readings to gen-
erated outputs. The result of this experiment is reported in Fig. 4 and Fig. 5. 
 

 

 

Fig. 4. BS readings inputted to the expert system 
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Fig. 7. Generated inferences of BP readings  

Scenario 3 (Combination BS and BP): the expert system uses, as input, the outputs 
generated from scenario 1 and 2. Then, it infers them on the set of composite rules of 
BS and BP as described in table 1 to generate outputs in the form of recommendations 
on life style, exercise, medication, and food intake. The result of this experiment is 
reported in Fig. 8.   

 

Fig. 8. Generated inferences for both BP and BS readings 

3.5 Automated Advices 

As mentioned above, advices are generated automatically based on the ES recom-
mendations and considered lifestyle, medications, exercises and food intake. The 
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advices below are related to patient number 38 in Fig. 8, for which a high BS and BP 
readings were recorded over a period of 6 months.   

 
Very High: Bloor Sugar and Blood Pressure. 
 

Your blood sugar and blood pressure is very high.  
Symptoms: Dry mouth, thirst, frequent urination, tiredness, blurred vision, and over time.  
Diagnosis: Reasons for high blood sugar include eating too much, being less active than usual, being sick 
or under stress, or needing an adjustment in your diabetes medicine. 
Precautions: Your blood sugar may be too high to exercise safely, putting you at risk of ketoacidosis.  
Lifestyle: lifestyle modifications are recommended for you. Postpone your workout until your blood sugar 
drops to a safe pre-exercise range. 
Medications: You may need to increase the dose of current medications to adjust your blood sugar and 
blood pressure. Please consult with an expert.  
Food in Take: Adjust your food and follow a strict diet by dietician.   
Sport activities: Do not start any sport activity. 
Short-term Risks: Risk of cardiovascular attacks (Stroke, Heart attack) 
Long-term Risks: High blood sugar levels over a long period can lead to organ damage, commonly re-
ferred to as diabetic complications. 
Action: Consult urgently with your doctor. 
 

4 Results and Discussion  

The results reported from the above scenarios evaluated three main characteristics of 
our semi-continuous monitoring scheme: (1) the ability to conduct semi-continuous 
monitoring of different parameters (e.g. BS and BP) and generate the appropriate 
decisions based on the adaptive expert system, (2) generates automated recommenda-
tions from monitoring composite parameters namely BP and BS, and (3) validates 
whether the automated recommendations matches at certain level the recommenda-
tions of medical experts.  

Fig. 4 and Fig. 5 illustrate the inputs and outputs of the BS expert system. Fig. 4 
shows the readings obtained from semi-continuous monitoring of 70 patients. It calcu-
lates the average BS obtained over a monitoring period of 6 months. Fig. 5 illustrates 
the output generated after inferring the reading of Fig. 4 on a set of BS rules. The 
results show fluctuating BS readings with around 80% are high, very high, to fluctuat-
ing high, 10% low to fluctuating low, and the rest are normal readings. These results 
prove that the BS expert system is able to provide accurate outputs correlated with the 
received readings. The risk in this monitoring situation of vascular complications due 
to high BS is significantly high. 

Fig. 6 and Fig. 7 illustrate the inputs and outputs of the BP expert system. Fig. 6 
shows the readings obtained from semi-continuous monitoring of 70 patients. It calcu-
lates the average BP obtained over a monitoring period of 6 months. The obtained 
values of BP are consistently normal. Fig. 7 illustrates the output generated after in-
ferring the readings of Fig. 6 on a set of BP rules. The results show an average BP 
readings with around 50% as normal, 35% PreHigh, 10% Stage1High and 
Stage2High, and the rest of readings are low. These results prove that the BP expert 
system is able to provide accurate outputs correlated with the entered readings.  
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According to the generated outputs, it is unlikely that these patients will have a risk of 
vascular complications. 

Finally, Fig. 8 illustrates the output of a composite BP and BS readings and the re-
lated recommendations. For each patient, two outputs are generated: one records the 
result of BP monitoring and the second records the result of BS monitoring. A good 
percentage of patients whose BP and BS are high, necessary urgent actions should be 
taken in order to react to such situation; this includes for example, consulting imme-
diately with a physician, take overdose medication.   

5 Conclusion  

Continuous sensing and monitoring of health metrics generate a massive amount of 
data. Generating clinically validated recommendations to patients under monitoring is 
of prime importance to protect them from the risk of falling into severe health degra-
dations. Physicians also can be supported with automated recommendations that gain 
from historical data and increasing learning cycles.  

In this paper, we proposed an adaptive ES supported by a smart monitoring and an 
iterative data analytics techniques. Smart monitoring implemented, for instance, pre-
processing of data and intelligent sensing (e.g. stop/resume sensing based on patient’s 
context: sleeping, in activity). However, iterative data analytics implemented the 
loopback feature that continuously improved rules, knowledge base, and generated 
advices. Both techniques reduced data quantity and improved data quality. The advic-
es generated are visualized via an application interface.  

We conducted a series of experiments using different scenarios of monitoring 
blood sugar and blood pressure parameters of a population of patients with chronic 
diseases. We obtained interesting results that prove that our ES combined with the 
intelligent monitoring and analytic techniques provide a high accuracy of collected 
data and appropriate advices. As future work, we are planning to complete the other 
features of our proposed system mainly the loopback evaluation, and then continuous-
ly compare the recommendations generated from our ES with those of medical ex-
perts. This will require a close collaboration with medical expert for validating the 
accuracy of ES recommendations. We are also planning to experiment other classifi-
cation techniques for data analytics and decision-making.  

References 

1. Basilakis, J., Lovell, N.H., Celler, B.G.: A decision support architecture for telecare patient 
management of chronic and complex disease. In: 29th Annual International Conference of 
the IEEE Engineering in Medicine and Biology Society, EMBS 2007, pp. 4335–4338. IEEE 
(2007) 

2. Tsipouras, M.G., Exarchos, T.P., Fotiadis, D.I., Kotsia, A., Naka, A., Michalis, L.K.: A de-
cision support system for the diagnosis of coronary artery disease. In: 19th IEEE Interna-
tional Symposium on Computer-Based Medical Systems, CBMS 2006, pp. 279–284. IEEE 
(2006) 



 An Adaptive Expert System for Automated Advices 399 

 

3. Ramesh, M.V., Anu, T., Thirugnanam, H.: An intelligent decision support system for en-
hancing an m-health application. In: Ninth International Conference on Wireless and  
Optical Communications Networks (WOCN), pp. 1–5. IEEE (2012) 

4. Georga, E., Protopappas, V., Guillen, A., Fico, G., Ardigo, D., Arredondo, M.T., et al.: Data 
mining for blood glucose prediction and knowledge discovery in diabetic patients: The 
METABO diabetes modeling and management system. In: Annual International Conference 
of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 5633–5636. 
IEEE (2009) 

5. Azian Azamimi, A., Zulkarnay, Z., Nur Farahiyah, M.: Design and development of Fuzzy 
Expert System for diagnosis of hypertension (2011) 

6. Pintér, P., Vajda, L., Kovács, L.: Developing a decision support system to determine carbo-
hydrate intake of diabetic patients. In: IEEE 10th International Symposium on Applied  
Machine Intelligence and Informatics (SAMI), pp. 427–430. IEEE (2012) 

7. Nnamoko, N., Arshad, F., England, D., Vora, J.: Fuzzy Expert System for Type 2 Diabetes 
Mellitus (T2DM) Management Using Dual Inference Mechanism. In: 2013 AAAI Spring 
Symposium Series (2013) 

8. Morsi, I., El Gawad, A., Zakria, Y.: Fuzzy logic in heart rate and blood pressure measuring 
system. In: IEEE Sensors Applications Symposium (SAS), pp. 113–117. IEEE (2013) 
 
 



Application of Artificial Neural Networks for the

Diagnosis of the Condition of the Arterio-venous
Fistula on the Basis of Acoustic Signals

Marcin Grochowina1, Lucyna Leniowska1, and Piotr Dulkiewicz2

1 Institute of Technology, University of Rzeszów,
al. Rejtana 16, 35-310 Rzeszów, Poland

{gromar,lleniow}@ur.edu.pl
http://www.kmia.ur.edu.pl/

2 Nefron Sp z o.o., Rzeszów, Poland
http://www.nefron.eu

Abstract. The paper presents an innovative method for the diagnosis
of the arterio-venous fistula based on recorded acoustic signals. A fistula
is an artificial connection between an artery and a vein made to obtain
a suitably large blood flow for haemodialysis. If the fistula does not
work properly, thrombosis or other health- or life-threatening conditions
may develop. Based on the analysis of sound generated by blood flowing
through the fistula, the occurrence of pathological conditions may be
diagnosed. An artificial neural network implemented using an FANN
(Fast Artificial Neural Network) library has been used to evaluate the
fistula condition.

Keywords: artificial neural networks, arterio-venous fistula, telemedicine.

1 Introduction

Acoustic emission is an effect used in the diagnostics of constructions, food, tools,
in the surveillance of the condition of equipment and constructions, in testing
fatigue and cracking in materials, detection of material defects, etc. [1][2]. The
propagation of acoustic waves for diagnostic purposes may also be successfully
used in medicine, because the human body emits a number of sounds, specific
for biological processes. Physiological processes, such as breathing, digestion or
blood circulation, generate acoustic waves, frequently used in history taking as
a primary source of information about the patients health condition. Further-
more, following surgical interventions, new and non-natural connections between
tissues or organs may be formed in the human body. They are sources of acous-
tic waves as well, and their characteristics may provide additional diagnostic
information. The surgical procedure to make an arterio-venous fistula is an ex-
ample of such an intervention. Analysis of sounds emitted by the fistula can be
used to diagnose its condition. An artificial neural network is a convenient tool
which supports the analysis as it helps to detect pathological changes with an
uncomplicated algorithm.
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2 Analysis of Fistula Condition Based on the Sounds It
Generates

The term “fistula” originates from a Latin word and when used in medicine, it
means connecting two or more organs due to pathological processes, treatment-
related complications or intentionally by a surgical procedure.

Fig. 1. Scheme of the arterio-venous fistula

The arterio-venous fistula is defined here as an artificially formed connection
between an artery and a vein, usually located in the wrist in which it provides a
bypass for blood flow in one of the two arteries which supply blood to the hand.
However, other locations of the fistula are also possible, such as on the collar
bone or the thigh. Due to the intervention, a vessel forms just beneath the skin

(Fig.2.) in which needle insertion provides access to arterial blood with a flow
rate of up to 1000 ml/min, being crucial for patients with renal disorders in need
of dialysis [3].

When a fistula is formed correctly, it provides smooth and continuous blood
flow; however, to maintain this condition, the patient has to perform certain
activities, such as appropriate physical exercises involving the hand, the wrist
and the forearm. Furthermore, the dialysis access should be treated with utmost
care and protected. Any person with an arterio-venous fistula must adjust their
life style to new requirements this element involves. The fundamental aspect of
this is to examine the arterio-venous fistula on ones own daily. The examination
entails gently pressing ones fingers to the fistula and checking blood pulsation
throughout the length of the arterio-venous fistula. When the fistula works prop-
erly, a noticeable and distinct pulsation noise can be detected, usually in one,
specific section. When a patient fails to be attentive and disciplined in this as-
pect, the fistula lumen may be gradually stenosed until it is completely occluded
and, in extreme cases, blood flow completely ceases (Fig.3.) .
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Fig. 2. Fistula located in the wrist

Fig. 3. Arterio-venous fistula: normal (a), stenosed (b), extremely stenosed (c), com-
pletely occluded (d)

Such situations usually occur in patients after a kidney transplant procedure
in whom the fistula is no longer used and who, therefore, stopped to take care
of it, even though its maintenance is in their interest. Fistula stenosis leads to
reduced blood flow or turbulent flow, which can be monitored using an ultra-
sonic flow meter with a feature of flow measurement based on the Doppler effect
(Fig.4.). In the case of extreme stenosis, blood flows through the vessel only
when systolic pressure exceeds a certain limit value; this means that if the pa-
tients arterial pressure is low for a certain period, blood flow in the fistula may
cease completely. Such situations are conducive to the formation of thrombi or,
in a longer perspective, adhesions which lead to the complete and permanent
occlusion of the fistula [4].

As the fistula vessel is located just beneath the skin, it is possible to detect the
characteristic pulsation related to the rhythm of arterial pressure fluctuations
due to heartbeat by touching. Furthermore, the characteristic, pulsating hum of
blood flowing through the vessel can be heard using a stethoscope. To record the
sound generated by the fistula, the only operation needed is to accommodate a
microphone in the stethoscope and connect it to an analogue-to-digital converter.
Based on the characteristic features of signals recorded this way, the condition
of the fistula can be determined and, in particular, its possible stenosis which
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Fig. 4. Ultrasonic image with marked blood flow in a normal (a) and a stenosed (b)
fistula

Fig. 5. Temporal sound profile for a normal fistula (a) and a fistula with significant
pathological changes (b)

may lead to occlusion. The signal profile for a fistula without any pathological
conditions has an amplitude higher than zero throughout the cardiac cycle and
it is maintained constant between the maxima when the heart contracts.

Fistula stenosis leads to changes in the acoustic signal it generates (Fig.5.). Its
amplitude between the maxima is no longer constant, but it is reduced instead
the more, the larger fistula stenosis is; it may even be zero when the vessel
becomes temporarily occluded. In the case of considerable pathology, differences
with respect to a normal signal are so large that they can be heard. However,
sound analysis in the time domain is rather difficult in terms of algorithms to
be used, in particular with respect to recording signals from fistulae with less
significant pathological changes, and an evident solution is to transfer the signal
to the frequency domain and process it further in this form. The frequency
spectrum of a signal from a normal fistula has a very minor contribution of low
frequencies (up to approx. 50 Hz), with its maximum in the 150-250 Hz range.
Subsequently, the amplitude of the components gradually declines to approx. 1
kHz (Fig.6.).

The acoustic signal typical of a pathological fistula (Fig.7.) has a large con-
tribution of components around 150 Hz and in the 350-400 Hz range, increased
contribution of components below 50 Hz and minor effects of components around
200 Hz. In moderately pathological cases, the characteristic sign is that the con-
tribution of low-frequency components is increased with slight only changes of
the spectrum profile compared to the normal shape.
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Fig. 6. Frequency spectrum for a signal of a normal fistula: a) single patient, b) syn-
thesis of 64 cases with maximum, mean and minimum values marked

Fig. 7. Frequency spectrum for a signal of a strongly pathological fistula: a) single
patient, b) synthesis of 64 cases with maximum, mean and minimum values marked

3 FANN Library

An FANN (Fast Artificial Neural Network) library was used in this project [5].
It is a C-programming language library distributed with a GPL licence which
provides a programmers interface for the comprehensive use of artificial neural
networks from their generation through training using several available algo-
rithms to their use in users applications.
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The input layer contains a number of neurons corresponding to the number of
inputs to the network, while the number of neurons in the output layer is usually
equal to the number of parameters to be recognised by the network. However,
it is less simple to determine the number of hidden layers and neurons they
contain. There are no rules to define those parameters and they are selected
experimentally. The definition of the neuron activation function is important
for the network to train and work properly. This is usually a unipolar sigmoid
function

y(x) =
1

1 + e−βx
(1)

or bipolar

y(x) =
2

1 + e−βx
− 1 (2)

its slope can be determined using parameter β (Fig.8.). When β → ∞, the
function becomes a threshold function.

Fig. 8. Examples of three unipolar (a) and bipolar (b) sigmoid functions with different
slopes

The FANN library can be used to determine the slope of a function separately
for each layer; usually, however, it is set as identical for all layers. When the
activation function has a large slope, the result of network operation is close to
extreme values (0 or 1), while smaller slope functions yield intermediate values.
The training process may use one of the available algorithms. Training algorithms
are usually based on backward error propagation; however, network error values
are computed in different ways. The FANN library has several solutions available.

The ”FANN TRAIN INCREMENTAL” algorithm computes the error and
changes the values of weights in the neuron for each training model. Therefore,
the weights are changed more than once during one epoch to avoid situations
whereby the training process is stopped, because a minor change in the weights
has led to an increased mean squared error, even though the optimum solution
has not been achieved.
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Algorithms of the FANN TRAIN BATCH family compute the mean squared
error for all training models and the resulting values are propagated backward in
the network being trained from its outputs to inputs once per epoch. This method
is much faster and enables the use of additional built-in global optimisation
mechanisms; however, it may lose certain characteristic features found in a minor
fraction of training models only.

4 Developing a Classification System for Sounds
Generated by the Fistula

Approx. 200 model signals were used in the neural network training process from
more than ten different patients with different physiological conditions of their
bodies, in particular before and after dialysis, with different pulse and arterial
pressure values. Five different mobile telephone models were used to acquire the
training material: Sony Xperia Mini, Samsung Chat 335, Samsung Galaxy S3,
LG Swift L5 and myPhone a210. Distortions of frequency characteristics due to
audio systems of different telephones were irrelevant for the problem in question
when the noise removal mode was switched off.

Fig. 9. Signal processing before spectral analysis: input signal (a), window function
(b) and signal prepared for analysis (c)

The KissFFT library [7] available based on the BSD licence was used for signal
frequency analysis; it enables fast Fourier transform to be computed through a
programmers interface based on the mixed-radix algorithm [8]. Local maxima
of sound intensity are marked in the data string which overlap the maximum
systolic pressure values. The centre of the time window function is located in
those points. (Fig.9.). To compensate for the spectral broadening effect, the
Hamming window was used.
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The spectral range to be analysed was limited to 1 kHz, because the fraction
of higher-frequency components was negligible and irrelevant for the analysis.
Information about spectral components in the 1-1024 Hz range with 1 Hz reso-
lution is fed to 1024 neural network inputs. The number of network layers was
set to 3, while the number of neurons in the hidden layer was experimentally
determined to be 32. When the number of neurons in the hidden layer was lower
than 21, it was impossible to train the network in the defined period of 200
epochs, while when increased above 32, no reduction in the number of epochs
necessary for appropriate training was seen (Fig.10.).

Fig. 10. Relationship between network training time and number of neurons in the
hidden layer

Before analysis in the neural network, the spectrum is normalised as this
process appeared to be necessary (Fig.11.). The result of network operation
is the degree of consistency between the recorded signal and average reference
signals during the network training process.

Fig. 11. Data flow in the diagnostic system

It appeared within testing that additional determination of the noise level in
the recorded signal was necessary. When a signal other than that emitted by the
fistula was fed to the system, pathology was diagnosed, while normal signals were
frequently diagnosed as pathological due to noise and unwanted environmental
signals. To prevent this, the neural network was modified so that it determined
the degree of consistency not only with respect to normal reference signals, but
also to pathological reference signals. Therefore, the extended version of the
neural network has two outputs. They show values which indicate the degree of
consistency with normal and pathological signals. An additional decision block
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Fig. 12. Data flow in the system with additional classification of pathological signals

in which fuzzy logic was used finally determines whether the profile tested has
recorded a normal or pathological acoustic signal from a fistula or else whether
the noise level makes diagnosis impossible (Fig.12.).

Each output from the neural network may have a value in the ¡0; 1¿ range. As
any signal needs to be explicitly classified as normal or pathological, only those
cases are acceptable in which a value close to 1 is one output value and a value
close to 0 is another. If not, the measurement is considered inconclusive. ex-nor
is the logical function whose table of truth corresponds to those criteria. The
function was compiled based on a relationship for two-valued logic:

x� y = x y + xy (3)

Initially, the simplest definitions for s-norms and t-norms were assumed:

S(x, y) = max(x, y) and T (x, y) = min(x, y) (4)

As a result, given that x = 1− x, the result was:

exNor(x, y) = max(min(1− x, 1− y),min(x, y)) (5)

Considering the algorithm, it proved more straightforward to describe the
function with the following assumptions

S(x, y) = x+ y − xy and T (x, y) = xy (6)

when reduced:

exNor(x, y) = 1− x− y + 2xy + (x− x2)(y2 − y) (7)

Finally, when simplified, which does not have any significant impact on the
form of the function, the following function was used [6]

exNor(x, y) = 1− x− y + 2xy (8)

For the network training process to be correct, noise signals without any
sounds emitted by the fistula were included among the training models together
with normal and pathological signals. To eliminate any cases of wrong diagnosis,
the system was extended with a pulse signal detection unit. If the signal to be
analysed contains a characteristic, cyclic pulse signal within the defined limits,
the subsequent part of the system based on FFT transform and the neural
network is activated. When pulse cannot be detected, the input signal is rejected.
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Fig. 13. Graphic visualisation of ex-nor functions given by relationships (5) (a) and
(8) (b)

Fig. 14. Data flow in the system (version with pulse detection)

The pulse detection algorithm has a digital low-pass filter with an infinite impulse
response (IRR) (Fig.14.) whose limit frequency is at a level of several hertz,
preceded by a block which rectifies the signal tested.

On the subsequent stage, local maxima in the profile are detected and their
distance is calculated. For an acoustic signal from a fistula, the maxima are
distributed at regular distances and indicate the maximum values of systolic
pressure. For signals without pulse, the result is an image of maxima distributed
quite randomly, and the constant period of their occurrence cannot be deter-
mined (Fig.15. Fig.16.).

When maxima which occur at regular intervals are found, the signal is trans-
ferred to further processing using the neural network.

5 Summary

The possibility of reliable, fast and relatively simple diagnosis of the condition
of the arterio-venous fistula is an important issue for many patients undergoing
dialysis. As there are considerable differences in the signal generated by the fis-
tula, pathological conditions can be diagnosed and avoided. The paper presents
an original method for the diagnosis of the arterio-venous fistula based on acous-
tic signals recorded e.g. using a mobile phone. Because a neural network is used
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Fig. 15. Result from the pulse detection unit: normal fistula signal (a), rectified signal
(b) filtered signal (c), local maxima found (d)

Fig. 16. Result from the pulse detection unit: noise signal (a), rectified signal (b) low-
pass filtered signal (c), local maxima found (d)

for the diagnostics, it can be clearly stated whether any risk due to fistula steno-
sis exists. As continuous wavelet transform is used to analyse signals, the pulse
detection process can be simplified and additional features of the signal to be
analysed can be revealed which cannot be found in the analysis in the frequency
domain. Longer observations of the same patient indicate that slow but system-
atic changes in the fistula signal spectrum are not directly related to the fistula
condition. Therefore, further studies may be useful to identify reasons for such
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changes and to obtain further information which can be used for extended diag-
nostics based on the analysis of acoustic signals emitted by the arterio-venous
fistula.
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Abstract. This paper studies the performance of recently introduced
asymptotic statistics for connectivity inference in the frequency domain,
namely via information partial directed coherence (iPDC) and infor-
mation directed transfer function (iDTF) and compares them to the
behaviour of a classic time domain multivariate Granger causality test
(GCT) by using Monte Carlo simulations of three widely used toy-models
under varying the simulated data record lengths. In general, the false-
positive rates for non-existing connections and the false-negative rates
for existing connections are found to decrease with longer record lengths.

Keywords: Partial Directed Coherence, Directed Transfer Function,
Granger Causality, Null hypothesis test performance.

1 Introduction

This paper examines the comparative statistical performance of the connectiv-
ity detection problem [1] for three popular neural connectivity estimators that
enjoy rigorously known description of their asymptotic behaviour. In addition to
the Granger causality test (GCT) from [2], we recently derived rigorous results
[3,4] about the asymptotic behaviour of information partial directed coherence
(iPDC) and information directed transfer function (iDTF) [5] which are quanti-
ties that respectively generalize partial directed coherence (PDC) [6] and directed
transfer function (DTF) [7] to correctly describe coupling effect size issues.

Exploiting three widely used toy models selected from the literature, we car-
ried out Monte Carlo simulations to verify the performance of the connectivity
null hypothesis under their derived optimum rejection criteria as a function
of data record length (K) showing them compatible with their expected large
sample behaviour. We complemented the study by computing false-positive and
false-negative test rates for each estimator alternative.
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2 Methods and Results

2.1 Monte Carlo Simulations

Following our recently proposed the information PDC and information DTF [5],
and their corresponding rigorous asymptotic statistics for both measures (see [3]
and [4] for details) we here examine their statistical performance against that
of the well-established time-domain GCT [2]. We do so via Monte Carlo simula-
tions performed in the MATLAB environment by using its “normally distributed
pseudorandom number” generator to simulate system innovation noise processes,
which were furthermore assumed zero mean unit variance and uncorrelated. To
test the performance of the latter three connectivity estimators, for each toy
model and at each data record length we selected K = {100, 200, 500, 1 000,
2 000, 5 000, 10 000} repeating 1 000 simulations for each case. For each simula-
tion, the first 5 000 data points were discarded to eliminate possible transients.
We used the Nuttal-Strand algorithm for multivariate autoregressive (MAR)
model estimation and the Akaike information criterion (AIC) for model order
selection [8]. iPDC and iDTF detection threshold was set for α = 1% and p-
values were computed at 32 uniformly separated normalized frequency points
covering the whole interval.

A connection was deemed detected for a given pair of structures if its p-value
resulted less than α for some frequency within the interval. This connectivity
decision criterion is somewhat lax and tends to overestimate the presence connec-
tivity for iPDC and iDTF. In particular for iPDC, it should detect connectivity
more often than GCT does.

The reader may access our open MATLAB codes for both iPDC and iDTF
asymptotic statistics used in this study at www.lcs.poli.usp.br/∼baccala/pdc.

Next we describe and probe the toy models:

2.2 Model 1: Closed-Loop Model

Model 1 is an {N = 7}-variable model borrowed from [9] (Fig. 1). It has two
distinct disconnected substructures: {x1, x2, x3, x4, x5} and {x6,x7}, which share
a same common frequency of oscillation. The set of equations that describes the
model is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.95
√
2x1(t− 1)− 0.9025x1(t− 2) + 0.5x5(t− 2) + w1(t)

x2(t) =− 0.5x1(t− 1) + w2(t)

x3(t) = 0.4x2(t− 2) + w3(t)

x4(t) =− 0.5x3(t− 1) + 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1) + w4(t)

x5(t) =− 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1) + w5(t)

x6(t) = 0.95
√
2x6(t− 1)− 0.9025x6(t− 2) + w6(t)

x7(t) =− 0.1x6(t− 1) + w7(t)

(1)

with wi standing for innovation noises.
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Fig. 1. Diagram depicting the essential elements of Model 1 represented by Eq. 1
from [9]. The elements x1 to x5 establish closed-loop connections, with short and long
connected paths, while x6 and x7 are part of completely separate substructure, i.e.
disconnected from {x1, ..,x5}, but sharing a common frequency of oscillation.
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(d)

Fig. 2. This figure depicts the result of (a) iDTF and (b) iPDC estimations obtained
with a data simulation of Model 1, given by Eq. 1, with K = 2 000 points and α = 1%,
where standard subplotting lay-out with variables in columns representing the source
and in rows the target structures is used, and in each subplot the x-axis represents the
frequency and y-axis the iDTF and iPDC scaled in [0 1] interval. The main-diagonals
with grayed-background subplottings contain the power spectra. (c) Note, as theoreti-
cally expected, that according to iDTF estimation nodes can reach one another among
{x1, x2, x3, x4, x5}, as although some magnitudes of iDTF are very small, they are
all statistically significant. (d) While iPDC estimate shows immediate adjacent node
connectivity pattern.



Detectability Performance of Asymptotic DTF and PDC 415

A single trial example of iDTF and iPDC connectivity estimation in the
frequency domain are respectively depicted in Figs. 2a and b, with significant
values, at α = 0.01, represented by black solid lines. The corresponding connec-
tivity graph diagrams are contained in Figs. 2c and d, where arrow thickness
represents estimate magnitude. Note that iPDC reflects adjacent connections
Fig. 2b and d, while iDTF represents reachability aspects of the directed struc-
ture [10].

Granger Causality Test for Model 1. Fig. 3 summarizes the performance
of Granger causality test for data record lengths K = {100, 200, 500, 1 000, 2 000,
5 000}. As expected, for K > 200, GCT properly detects the connectivity pres-
ence and absence.

Fig. 3. In this and all the figures that follow, the pattern contains subplots with
variables in columns representing the sources and while the target structures lie in
rows. Each subplot possesses boxplots of the distribution of −log10(p-value) for Granger
causality test for 1 000 Monte Carlo simulations over different record lengths K =
{100, 200, 500, 1 000, 2 000, 5 000}, marked as 1, 2, 3, 4, 5 and 6, respectively, on the
x-axis of each subplot. Since α = 0.01 values above 2 (dashed-line) indicate rejection
of the null-hypothesis of connectivity absence.
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Fig. 4. Model 1 boxplot performance summary of iPDC asymptotics

Information Partial Directed Coherence Asymptotics Performance for
Model 1. Fig. 4 summarizes the performance of asymptotic statistics for iPDC
for the Model 1 for the same data and record lengths as those for GCT. As can
be seen comparing Figs. 3 and 4, iPDC’s asymptotic performance is similar to
GCT’s.

Information Directed Transfer Function Asymptotics Performance for
Model 1. Fig. 5 summarizes the performance of the asymptotic statistics for
iDTF. The boxplots clearly show that for larger sample size iDTF correctly
detects the reachability structure shown in Fig. 2c. Note that the weakest or
farthest connection (x2 → x1) requires longer record lengths for proper detection.
A modified DTF measure combined with partial coherence, called direct directed
transfer function (dDTF) [11], was not explored here as its asymptotic statistics
are not yet available.
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Fig. 5. Model 1 boxplot performance summary of iDTF asymptotics

2.3 Model 2: Five-Variable Model

Model 2 is graphically represented in Fig. 6 with its corresponding set of defining
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.95
√
2x1(t− 1)− 0.9025x1(t− 2) + w1(t)

x2(t) = 0.5x1(t− 2) + w2(t)

x3(t) =− 0.4x1(t− 3) + w3(t)

x4(t) =− 0.5x1(t− 2) + 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1) + w4(t)

x5(t) =− 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1) + w5(t)

(2)

where wi stand for unit variance uncorrelated zero mean Gaussian innovations.

3

2

1 4 5

Fig. 6. Diagram depicting the essential elements of Model 2 introduced by [6]
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GrangerCausalityTestPerformance. UsingK={100, 200, 500, 1 000, 2 000}
for Model 2, Fig. 7 shows that GCT’s performance improves with increased record
length. At K = 200, GCT already performs well with false-negative rate bellow
5%, reaching false-negative rates below 2% for K = 2 000.
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Fig. 7. GCT performance for Model 2

iPDC Asymptotics Performance for Model 2. For Model 2, as seen in
Fig. 8, the pattern of iPDC performance is similar to GCT’s. Yet iPDC’s false-
negative rates are slightly higher than GCT’s. For example its performance for
K = 2 000 is between 3.0% and 5.5%. False-negative rates are practically negli-
gible when K > 200 for both GCT and iPDC.

2.4 Model 3: Modified Five-var Model

To further probe the statistical behaviour of GCT and iPDC, we simulated
the five-channel toy model originally introduced in [6] under a variant of its
formulation as proposed by [12] reproduced here for reference in Fig. 9.
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Fig. 8. iPDC performance for Model 2

The corresponding set of equations is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = 0.95
√
2x1(t− 1)− 0.9025x1(t− 2)

+ e1(t) + a1e6(t) + b1e7(t− 1) + c1e7(t− 2)

x2(t) = 0.5x1(t− 2)

+ e2(t) + a2e6(t) + b2e7(t− 1) + c2e7(t− 2)

x3(t) =− 0.4x1(t− 3)

+ e3(t) + a3e6(t) + b3e7(t− 1) + c3e7(t− 2)

x4(t) =− 0.5x1(t− 2) + 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1)

+ e4(t) + a4e6(t) + b4e7(t− 1) + c4e7(t− 2)

x5(t) =− 0.25
√
2x4(t− 1) + 0.25

√
2x5(t− 1)

+ e5(t) + a5e6(t) + b5e7(t− 1) + c5e7(t− 2)

(3)

additionally containing the large exogenous input e6(t) and the latent variable
e7(t). In the simulations ei(t) were uncorrelated zero mean unit variance Gaus-
sian innovation noises and the parameters were chosen ai ∼ U(0, 1), bi = 2 and
ci = 5, i = 1, . . . , 5 as in [12]. Also for reference, ns = 2 000 data length were
used in [12].

The proposal in [12] of introducing exogenous/latent variables is an interest-
ing idea which allows investigating the influence of large common additive noise
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3
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e6

a1

a2

a4
a5

a3

4

e 7z-1 z-1

+
ci bi

Fig. 9. Diagram depicting the essential elements of model introduced by [12] modified
from [6]. For each simulation, the parameters ai were chosen randomly from uniformly
distributed [0 1] interval, and all bi = 2 and ci = 5, while the innovations, ei, were
drawn from random variables with N{0, 1}

sources on the performance of GCT and iPDC. Here, in order to assess the
impairment that the extra exogenous/latent variables possibly inflict on null
hypothesis testing, we repeated the procedure not just under the same conditions
of [12], but also using a broader range of data record sizes:

K = {100, 200, 500, 1 000, 2 000, 5 000, 10 000}.

GCT Performance in the Presence of Exogenous Noise, Model 3. The
GCT performance for Model 3 can be appreciated in Fig. 10. When compared
with Model 2, GCT’s performance deteriorates in the presence of exogenous
noise. Interestingly its performance with respect to detecting existing connec-
tions increases with longer data records, while in absence of connections, the
false-positive rate increases sharply for the K = 10 000 case. For K = 500 the
false-positive rates are around 5%, and increase to almost 40% for K = 10 000.
False-negative rates are negligible.

iPDC Performance in the Presence of Exogenous Noise. As seen in
Fig. 11, iPDC performance in detecting connectivity is similar to GCT’s. As
noted before, iPDC tends to have higher false-positive rates compared to GCT
due to possibly the chosen frequency domain detection criterion of using a single-
frequency with significant p-value as indicative of a valid connection.

The false-positive rates go from 10% for K = 100 up to 48% for K = 10 000.



Detectability Performance of Asymptotic DTF and PDC 421

0

2

4

0
5

10
15

0

2

4

0

2

4

0
5

10
15

0

2

4

0

2

4

0

2

4

0
5

10
15

0

2

4

0

2

4

0

2

4

0
5

10
15

0

2

4

0

2

4

0
5

10
15

0
5

10
15

0

2

4

0

2

4

0
5

10
15

x5

x4

x3

x2

x1

Simulation sample size 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

10
0

20
0

50
0

10
00

20
00

50
00

10
00
0

-lo
g1

0(
p-

va
lu

e 
G

C
T)

Fig. 10. GCT performance on Model 3
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3 Discussion

In this study we gathered simulation evidence of the performance of three sta-
tistical connectivity tests: one in time domain, usually considered as the gold-
standard and two new frequency domain measures. The results are mutually
corroborative.

The asymptotic results gauged via Monte Carlo simulations showed good large
sample fit and robustness. In the presence of large exogenous/latent variables,
we observed poor performance for large samples possibly due to the poor per-
formance of MAR model estimation algorithm under low signal-to-noise ratio.
Interestingly, however, a good performance was attained around K = 2 000, as
used by [12], for both GCT and iPDC (see Figs. 10 and 11). Current investiga-
tion is centered on comparing different algorithms for multivariate autoregressive
estimation.
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Abstract. We employ toy models to re-examine the notion of causality
and its implications in unravelling networks in neuroscience. We con-
clude that even though multivariate representations of neural dynamic
data is indispensable, current popular terminologies for addressing con-
nectivity are insufficiently precise and may even be misleading for fully
describing the breadth of information multivariate models now provide.
This imposes the need to consider a brand new link centered paradigm of
network description where the directed nature of the links plays a central
role.

Keywords: G-connectivity, G-influentiability, Link-Centered Networks,
Partial Directed Coherence, Directed Transfer Function.

1 Introduction

From its usage and meaning at large, given its inherent character as a ’directed’
binary relation, this paper discusses ’causality’s’ insufficiency as a notion for
neuroscience applications.

Together with other means for quantifying dependence between observations
such as correlation, it offers the possibility of characterizing neural systems in
terms of their ’connectivity’, a subject of much recent attention [1,2].

Because of their conceptual importance and appeal, ’connectivity’ and ’causal-
ity’ have upsurged in all sorts of contexts, some inappropriate. Offering a fair
and comprehensive critical review of all such contending proposals is perhaps
premature given the reigning conceptual confusion. We think that setting a pos-
itive agenda is more productive. Here we do so by proposing a fresh and brand
new classification for interpreting connectivity networks that aims at clarifying
issues and which puts former conceptual conflicts to rest. We began to address
this matter in the epilogue to [3], a book collecting state-of-the-art estimators
of neural connectivity based on multivariate time series analysis.

The recent establishment of rigorous quantitative asymptotics [4,5] for mul-
tivariate frequency domain connectivity estimators has provided operational

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 424–435, 2014.
c© Springer International Publishing Switzerland 2014
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criteria to probe for two complementary multivariate concepts: ’G-connectivity’
and ’G-influentiability’ introduced in [4], which we now further elaborate.

After a brief conceptual review of why one cannot dispense with multivariate
descriptions, we show that the simple statement of connectivity as causality is
insufficient and must be replaced by more fundamental descriptions which shift
the current paradigm of network analysis from its ’node activity’ centered basis
to a new standpoint stressing the nature of the links between structures. A
number of examples are used in the exposition. For conciseness, details about
them are consigned to notes at the end.

Partial directed coherence (PDC) [6] and Directed Transfer Function (DTF)
[7] are used throughout the text as illustrative tools under their recently derived
asymptotics [4,5].

2 Causality

Having permeated history since Aristotle, causality can be summed up by the
latin phrase: Sublata causa, tollitur effectus - i.e. Doing away with cause, sup-
presses the effect which works as its operational definition. To determine what
constitutes a cause: remove it and see what else also disappears. It is easy to
see why it permeates experimental science: researchers learn by interacting with
their objects of inquiry. This is an old discipline whose debate is classical [8,9].
Most importantly, causality entails a binary relation where cause readily implies
effect.

Recently the word causality has been employed in probabilistic reasoning to
describe changes in conditional probabilities that underlie Bayesian networks
[10,11]. But it is from physics and system theory that causation has become
inextricably associated with time and the impossibility of effects prior to the
inception of causes with many technically specific consequences like the Kramers-
König relations to mention just one [12].

In neuroscience, usage of the term is relatively new, hardly much older than
a couple of decades, and it is on the increase. Because of its traditional gist
involving several epistemic issues from different areas, it is common to see it
misused. Whereas the above classical notion is entirely appropriate in experi-
mental contexts where the experimenter is able to intervene severing some nerve
or knocking out a gene, the word in neuroscience is hardly, if ever, applied that
way. Rather it is often applied to situations where one must infer the mecha-
nisms at play solely from the evolution of measured quantities. This is rather
common either because precise targeted intervention is impractical or due to
anima nobilis constraints. The technically correct term in this case is ‘Granger’
causality - or G-causality, for brevity. Despite its ultimate early roots in Wiener’s
work [13], it was made practical while addressing empirical economic relation-
ships thru bivariate time series analysis. In neuroscience, G-causality has been
employed to the full spectrum of neural activity signals.
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2.1 The Bivariate Case

As originally proposed, a time series x1(n) G-causes x2(n) if knowledge of its past
helps predict x2(n) [14]. In contrast to correlation, an older albeit still popular
measure of dependence, G-causality is unreciprocal, i.e. if x1(n) G-causes x2(n)
it does not necessarily follow that x2(n) G-causes x1(n). This lends it its strictly
directed nature as a connectivity measure.

When x1(n) G-causes x2(n) but x2(n) does not G-cause x1(n), one may speak
of feedback free dependence [15]. As it rests on the ability to predict, its inference
is contingent on how prediction is performed. First, the class of predictive models
must be chosen, many add designations like linear or nonlinear to G-causality
to stress this. The next issue is how to evaluate prediction improvement, for
example, via least-mean-square-error (MMSE) prediction reduction [16].

Linear models under MMSE criteria remain popular for several reasons: (a)
their merits and limitations are well known, (b) their appropriateness is easily
diagnosed, (c) they are able to encode the same information that underlies the
existence of correlation and (d) they can be easily expressed in the frequency

  

      

Fig. 1. (a) PDC showing x1 → x2 influence corroborated by the delay of -2 lags in
x2 with respect to x1 shown (with some difficulty) by the cross-correlation function
maximum (b) for the model in Note 2
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domain, a convenient property, given the ready physiological interpretability of
quantities like the EEG over frequency bands [17].

Whether in the time or frequency domain, comparative statistical performance
issues apart, all bivariate methods practically yield the same result as long as
an adequate model can be fit. A good early example of this equivalence may
be found in [6] for frequency domain descriptions and is true of both whether
one is addressing the G-causality detection problem or tackling its quantification
problem [18]

In this sense, bivariate modeling factorizes the cross-correlation/spectrum
function in view of the autocorrelation/spectrum functions of the observed se-
ries. In the process, correlation information becomes exposed in its directed
coupling quality. This can be appreciated in Fig. 1 which portrays the pairwise
directional coupling as immediately evident from PDC computation even though
directionality may also be deduced from estimating relative signal latency. An-
other interesting example where PDC works but correlation/coherence inference
is less immediate can be appreciated in Ex. 7.4 (Fig. 7.6) from [19].

Use of computed pairwise G-causality to deduce the connectivity structure for
networks of more than two simultaneously time varying quantities fails. This is
readily apparent from in Fig. 2 where, despite a very definite coupling structure
(contained and correctly captured by Fig. 3 (d) - see further details in Note
3), leads erroneously to active links between almost all first five variables. The
exceptions are the x2 → x1 and x3 → x1 links. The x6 and x7 variables are
detached from the others and the sole relation of x6 towards x7 is correctly
captured.

It is failure in scenarios like this that demand considering multivariate ap-
proaches.

2.2 The Multivariate Case

A general possible signal representation of a multivariate time series is via au-
toregression: ⎡⎢⎣ x1(n)

...
xN (n)

⎤⎥⎦ =
∑
r

Ar

⎡⎢⎣ x1(n− r)
...

xN (n− r)

⎤⎥⎦+

⎡⎢⎣ w1(n)
...

wN (n)

⎤⎥⎦ (1)

where the dynamics of the x(n) = [x1(n) . . . xN (n)]T process depends on its
associated w(n) = [w1(n) . . . wN (n)]T innovations process whose white nature,
i.e. the fact that observations at different time instants are uncorrelated, is such
that the dependence structure among the xi’s are encoded in the A(r) matrices
whose aij(r) coefficients represent the linear interaction effect of the past r-th
lagged xj(n − r) observation onto xi(n). In the N = 2 case aij(r) = 0 for all r
implies absence of G-causality [14]. This criterion for G-causality determination
is also popular in the N > 2 case [20].
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Fig. 2. The use of pairwise PDC to estimate G-causality for the model described in
Note 5 shows links between almost all of the first five pairs of variables and does not
reflect the correct dependence structure that multivariate PDC in Fig. 3(d) captures.
Note that x6 and x7 are detached from the rest of the network.

An alternative to (1) is the moving average representation:

x(n) =
∑
r

Hrw(n− r) (2)

where the dependence structure is encoded in the hij(r) coefficients of the Hr

matrices. In the N = 2 case, hij(r) = 0 for all r is equivalent to the aij(r) = 0 for
all r condition and may be used for detecting G-causality. For N > 2, however,
this is not the case.

Under very general conditions, (1) and (2) constitute equally valid represen-
tations, their choice dictated in practice by modeling convenience under model
parsimony and estimation ease.

The frequency domain renditions of (1) and (2) constitute respectively what
became known as PDC [6] and DTF [7] which we have shown [21] can be ex-
pressed in terms of more fundamental processes associated with x(n). When
N ≤ 3 there is only one such fundamental process: the innovations w(n) pro-
cess. This is what underlies the above theoretical equivalence of G-causality’s
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determination forN = 2. WhenN > 2 it is possible to define the so-called partial
processes whereby one subtracts the effect of all the time series from xi(n) , i.e.:

ηi(n) = xi(n)− E[xi(n)|xi] (3)

where E[xi(n)|xi] is the conditional expectation of xi(n) on the collective of all
other processes xi that exclude xi(n). Explicit consideration of (3) is what has
allowed generalizing PDC and DTF to quantities that are readily interpreted in
terms of information theory [21] and whose full generality adequately addresses
coupling effect size issues [19].

The values of the information scaled DTF and PDC for the data generating
model of Fig. 2 leads respectively to the results in Figs. 3(a) and (b) whose
connectivities are summed up by allied directed graph diagrams in Figs. 3(c)
and 3(d). The actual imposed system structure is accurately recovered by the
3(d) diagram (see Note 3).

Some features in Fig. 3 are immediate to realize. The arrows indicating cou-
pling differ markedly between Figures 3(c) and 3(d), except for x6(n) and x7(n)
connections which are detached from the other structures but whose mutual cou-
pling is essentially bivariate and unidirectional confirming PDC/DTF/pairwise
G-causality equivalence when N = 2.

Though not readily apparent from the latter discussion, it is easy to show
that PDC and DTF constitute inverse functions of sorts. In fact, DTF is usually
computed using models like (1) which are inverted into a frequency domain
representation resembling (2). Topological structure representation under DTF
and PDC result identical if and if only their defining matrices are invariant
under inversion. In fact, the latter topological structures constitute digraphs in
graph theory where significant connecting arrows are representable by boolean
’1’ values and absent ones by ’0’. PDC connections reflect the so-called graph
adjacency matrix (and thus also the imposed model connectivity structure in Fig.
2) and its inverse, under boolean operations is the graph reachability matrix [22]
which portrays whether a given graph node may be reached from the starting
node even if intermediate nodes must be traversed. Once more, when only pairs
of structures are under analysis, adjacency and reachability are equal. DTF is
theoretically nonzero whether a direct adjacent link is active or if there is active
indirect signal coupling via other pathways towards the signal target. PDC is
nonzero only when immediate adjacent links are non zero but not otherwise.
In the example of Fig. 3 signals from any of the first five structures reach one
another albeit loosely in some cases whereas x6 and x7 are disconnected from
the latter first five ones.

Further insight into reachability may be obtained from the following example
in Fig. 4 (adapted from [23] and also discussed in[24] with a slightly different
interpretation). The structure is an exclusively feedforward one. In it, PDC re-
flects the structure (Fig. 4a) at all frequencies, but DTF does not, because the
coupling from x1(n) to x3(n) occurs via a filter that exactly delays the signal
to match that which flows from x1(n) through x2(n) cancelling it upon reach-
ing x3(n). Though the ’physical connection’ from x1(n) to x3(n) exists and is
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active, it has no ultimate influence on x3(n). Messing with any link, or even
better yet, under the ’sublata’ clause above, removing x1(n) changes everything:
x2(n)’s oscillations disappear but x3(n)’s spectrum only changes slightly. It is
important to convince oneself that intervening on the links, rather than on the
structures, also disrupts the observed balance. As such, the often overlooked role
of the exact nature of the links must also be taken objectively into account.

Coupled with the latter observations and because PDC and DTF provide
different and complementary views on time series coupling by describing the
links we introduced the terminology we discuss next.
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Fig. 3. Simulation results for the information scaled versions of DTF (a) and PDC
(b) using 2000 data points under an α = 1% decision threshold [5,4] using the model
described in Note 3. The respective connectivity graph representations reveal PDC’s
(d) estimates closely mirror the imposed model ’anatomy’ whereas to varying degrees
of strength DTF’s (c) show how much net directed influence exists between variables.
x6 and x7 are unconnected to the other variables. See further remarks in Note 5.

3 G-Connectivity and G-Influentiability

The sum total of the examples so far is that the notion of G-causality alone
is insufficient for a clear understanding of the dependence network between ob-
served variables. For this reason, under the need to consider multivariate cou-
plings, we proposed the concepts of G-connectivity (GC) and G-influentiability
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Fig. 4. iPDC (a) and iDTF (b) results for the simulated model from Note 4, and their
respective graphical representations (c) which reflects G-connectivity and (d) which
mirrors G-influentiability whereby x1(n)’s influence on x3(n) results fully cancelled
out

(GI) in [4]. GC reflects the aij(r) coefficient/PDC/adjacency status and man-
ages to pinpoint the active immediate directed coupling between time series
but excludes active interactions taking place via intermediate observed struc-
tures which are captured by GI using hij(r) coefficient/DTF/reachability rep-
resentations. The G-designation, albeit dispensible, in addition to an homage
to Granger, is a reminder that these properties are derived from the predictive
multivariate (N > 2) modeling of simultaneously observed dynamical magni-
tudes; GC/GI do not necessarily reflect the intervention based causation of Sec.
2. Note that despite the employment of linear models, the concepts herein are
in principle applicable in absolute generality.

A network using G-connectivity (GC) information describes the network’s
’perceived’ anatomy as in Fig. 3(d), whereas its G-influentiability (GI) network
reflects the net totals of directed influence. GC networks contain those links
that are direct and active whereas GI networks are made of links that are active
regardless of whether the signal must flow through some structure in between
for its effect to be felt or not, i.e. it contains both direct plus indirect active
pathways. It is important to have in mind that the network analysis procedures
that have of late become so popular [1,25,26] may lead to very different results
depending on whether analysis algorithms are fed with GC or GI structures
calling for the need to interpret the results accordingly.
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What jointly the GC/GI descriptions allow is a means for classifying networks
according to the nature of their links (and ultimately the dependence structure
between variables). This motivated our definition in [23,4] of a link -centered
standpoint for the analysis of networks where links are classified according to
their nature as in Table 1 which expresses objective operational criteria for link
classification in terms of PDC and DTF. Bear in mind that the latter have
equivalent time domain characterizations as well [20] that could be used in their
stead.

Table 1. G-connectivity/influentiability based classification of directed network de-
pendence

Direct Indirect

Active PDC �= 0 PDC = 0 and DTF �= 0

Inactive PDC = 0 DTF = 0

4 Conclusions and Final Remarks

Thus far we have deliberately avoided some of the applicable technical time series
jargon, like ’impulse response’ function [20] and Sims-causality [27,28] because
they evoke little to those uninitiated, but for whom the present network ideas
are, nonetheless, important.

Other ideas like dDTF [29] which combines DTF and partial coherence were
not explicit considered since jointly PDC and DTF achieves similar goals in
more generality. Another reason for stressing PDC/DTF, besides their funda-
mental character [21], is their recent generalization to describe the interaction
over blocks of variables [30,31] and the introduction of canonical decompositions
for further addressing block interactions [32].

Sometimes (pairwise) G-causality is described as a measure of temporal signal
precedence. This is questionable even in the bivariate case when feedback is
present. In the multivariate case, relationships as we have shown are far more
complex and this interpretation becomes untenable.

Today’s prevailing paradigm for talking about how brain areas interrelate is
dominated by the notions of ’functional’/’effective’ connectivity [33]. Much of
their popularity is due to the prevalence of correlation measures for the former
and ’ad hoc’ modelling for the latter [34]. Whereas some measure of structure
is loosely implicit in ’effective’, the more immediate notion of functional con-
nectivity is very limited as it leads to undirected networks when compared to
the directed network description tools of PDC/DTF whose estimation reveals so
much more.
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The overall conclusion from our argument is that connectivity analysis, as
we have come to understand it, cannot dispense with jointly examining the
dynamics of neural signals through modeling their multivariate behavior. The
dependence structure of multivariate signals has two complementary aspects to
it - one of connectivity and another of influentiability whose nature must always
be precisely kept in mind.

The possibility of describing links in some detail via tools like DTF/PDC
speaks in favour of a new paradigm for network description/comparison. Under
this paradigm, it is the active/inactive nature of links that matters, and whether
they are direct or indirect is what becomes something of a central concern.

Acknowledgements. CNPq Grants 307163/2013-0 to L.A.B. and 309381/2012-
6 to K.S. are also gratefully acknowledged and to NAPNA - Núcleo de Neu-
rociência Aplicada from the University of São Paulo. Part of this work took
place during FAPESP Grant 2005/56464-9 (CInAPCe).

Notes and Comments

1. All results here were obtained by processing data simulated from ’toy’ ex-
amples with 2000 time samples with model order estimates obtained via
Akaike’s criterion. Null hypothesis thresholds assumed α = 1%. All innova-
tions wi(n) were zero mean uncorrelated unit gaussian. Computations used
the package AsympPDC package from

http://www.lcs.poli.usp.br/~baccala/pdc

which is to harbour scripts for the examples herein.

2. The toy x1 → x2 G-causal system simulated in Fig. 1 is:

x1(n) = 1.96 cos(π/4) x1(n− 1)− (.98)2x1(n− 2) + w1(n)

x2(n) = 0.5 x2(n− 1) + x1(n− 1) +
√
20w2(n)

3. The simulations used in Figs. 2 and 3 come directly from Model I with
addition of Eq. (5) in [35].

4. The simulations behind the example in Fig. 4 were performed via the fol-
lowing equations:

x1(n) = −(.98)2x1(n− 2) + w1(n)

x2(t) = 0.5x2(n− 1) + x1(n− 1) + w2(n)

x3(n) = −0.1 x3(n− 1) +

+∞∑
k=0

(.5)kx1(n− 2− k) + x2(n− 1) + w3(n)

The summation in the last equation was simulated using an internal hidden
variable.
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5. It is instructive to compare Fig. 2 to Fig. 3(a), DTF differs markedly from
pairwise G-causality. At the common resonance frequency, DTF becomes
zero for some pairs, i.e. there is no directed influentiability at those frequen-
cies, something we imposed by design [35]. This lack of influentiability is
brought about by the existence of multiple pathways that cancel one an-
other as in the example of Fig. 4 but only at the resonance frequency. The
model was designed to do exactly this.
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6. Baccalá, L.A., Sameshima, K.: Partial directed coherence: a new concept in neural
structure determination. Biol. Cybern. 84(6), 463–474 (2001)
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2 Escola Politécnica, University of São Paulo,

São Paulo, SP, 05508-900, Brazil
baccala@lcs.poli.usp.br

http://www.lcs.poli.usp.br/˜baccala/en

Abstract. Resting-state Functional Magnetic Resonance Imaging (FMRI) anal-
ysis has consistently shown the presence of specific spatial activation patterns.
Independent component analysis (ICA) has been the analysis algorithm of choice
even though its underlying assumptions preclude deeper connectivity analysis.
By combining novel concepts of group sparsity with contiguity-constrained clus-
terization, we developed a new class of Local dimension-reduced Dynamical
Spatio-Temporal Models (LDSTM) for estimating whole-brain dynamical mod-
els whereby the causal relationships between well localized spatial components
can be identified. Experimental results of LDSTM on group resting-state FMRI
data reveal physiologically plausible spatio-temporal brain connectivity patterns
among participants.

Keywords: Resting-State FMRI, Spatio-Temporal Models, Brain Connectivity,
Multiscale Analysis and Sparsity.

1 Introduction

In resting-state FMRI data analysis there is an ever growing and pressing need for accu-
rately describing how brain regions are dynamically interrelated [3]. Due to the neuro-
physiological nature of the BOLD signal, resting-state interactions are inseparable (in
space and time) so that splitting the problem into separate space and time approaches
is unrealistic specially if the focus lies in characterizing large spatial scale changes
due to subtle interactions originating from a small number of regions of interest. The
chief challenge is that any Dynamical Spatio-Temporal Model (DSTM) of FMRI data
sets demands many parameters to describe what also is a large number of observed
variables that nonetheless enjoy a great deal of spatial redundancy. In addition, most
DSTMs in current use are problematic when it comes to estimating the spatial origin of
signal variability as often only a relatively small sample size is available under largely
unfavourable SNR (Signal-to-Noise) conditions [6,16,20,23].

Here we examine new classes of dimension-reduced DSTMs for resting-state net-
work estimation. Dimension-reduced DSTMs were introduced by Wikle and Cressie
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[22] to capture nonstationary spatial dependence under an optimal state representation
via the Kalman filter thereby turning them into effective tools for modelling spatially
continuous phenomena that change rapidly in space. In the original Wikle-Cressie for-
mulation, the DSTM invokes an a priori defined orthogonal basis to expand the redis-
tribution kernel of a discrete time/continuous space linear integro-difference equation
(IDE) in terms of a finite linear combination of spatial components [22]. This idea
was further supported in [11] and extended in [18] who considered parameterized re-
distribution kernels of arbitrary shape that meet homogeneity conditions in space and
time. Even though the change of basis proposed in [22] improve one’s understanding of
high-dimensional processes, it by no means ensures sparse solutions which are key to
achieving statistically robust dynamical descriptions.

Robustness is frequently sought by indirect means as in LASSO regression [21], in
basis pursuit for model selection and denoising [4], in sparse component analysis for
blind source separation [27] and in iterative thresholding algorithms for image decon-
volution and reconstruction [9,14]. These methods promote sparsity by maximizing a
penalized loss function via a compromise between the goodness of fit and the number of
basis elements that make up the signal. Recently, more attention has been given to group
sparsity, where groups of variables are selected/shrunken simultaneously rather than in-
dividually (for a review see [2]) by minimizing an objective function that includes a
quadratic error term added to a regularization term that considers a priori beliefs or
data-driven analysis to induce group sparsity [25,24,26].

This paper presents a state-space formulation suited to data sets of high dimension-
ality, such as FMRI, by taking advantage of spatial wavelet analysis to provide a data
representation requiring fewer significant parameters. We combine group sparsity and
contiguity-constrained clusterization to initialize an Expectation Maximization (EM)
algorithm constructed especially to identify Local dimension-reduced DSTMs (LD-
STMs) whose columns of the observation matrix act as point-spreading functions. We
used simulated data to evaluate our approach’s ability for signal recovering and model
estimation detection compared to the traditional EM algorithm. Our new method was
also used to study resting-state patterns of brain activation in real group FMRI data from
healthy volunteers under a Multiplexed Echo Planar Imaging sequence [13] (allowing
very short repetition time).

2 Problem Formulation

DSTM problems may be formulated as state space models where space-related mea-
surements zt depend on the dynamical evolution of a suitably defined state xt through a
linear gaussian model

xt = Hxt−1 +wt (1)

zt = Axt + vt , (2)

where zt is an M dimensional column vector of observed signals at time t, xt is an K
dimensional column vector of unknown states, A is an unknown M×K observation
matrix, H is an unknown K×K state-transition matrix, wt is an innovation process and
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vt is additive noise. Both wt and vt are assumed zero mean gaussian respectively with
covariance Q and R. The state-transition matrix H, the observation matrix A together
with Q and R and the state xt must be inferred from zt .

For years, the Expectation Maximization (EM) algorithm has been the favourite tool
to tackle the problem of estimating the system states and the model parameters from
(1,2) [19], since they have been proved to at least converge to a local maximum of the
overall log-likelihood function of (1,2) [10]. The traditional EM algorithm starts with a
randomly generated solution and then proceeds by re-iterating its two main steps until
the maximum conditional expected likelihood is achieved. The E-step consists of re-
placing the unknown states by their expected value given the data and current model
parameter estimates. Under gaussian assumptions the expected system states are ob-
tained by the so called Rauch-Tung-Striebel (RTS) smoother [17]. This is followed by
the M-step which estimates the model parameters by maximizing the conditional ex-
pected likelihood from previous E-step. However, for high dimensional systems, the
model (1,2) becomes indeterminate and using the EM algorithm without proper initial-
ization usually greatly deteriorates estimate quality.

3 Algorithm Details

3.1 Sparsifying Orthogonal Transformation

The goal of this paper is to solve (1,2) by assuming that the columns of A act as point-
spreading functions. This hypothesis means that ak, where ak is the k-th column of A,
can be perfectly described by few wavelet coefficients forming localized spatial pat-
terns. Given {φk}1≤k≤M an wavelet basis in RM , the first step is to calculate the wavelet
representation of the matrix of observations Z≡ (zk,t)k,t

Ẑ≡ (〈zt ,φk〉)k,t =ΦZ, (3)

whereΦ is the M×M orthonormal matrix, whose rows are the φk’s. Since Z =AX+V,
this notation satisfies Ẑ = Ŝ+ V̂, where Ŝ =ΦAX.

3.2 Signal Denoising

The transform Φ should be chosen such that an contiguity-constrained clustering of
the rows of Ẑ provides the elements that approximate of the rows of X̂. But before
clustering the rows of Ẑ, we should denoise it based on the sparsity assumption. This
is the second and most important step of our algorithm. To do so we consider that
st = Axt admits a sparse representation lying in a particular Besov space Bs

1,1, chosen
for containing smooth functions with localized singularities [15], so that the problem
of approximating zt by st ∈ Bs

1,1 can be expressed by adding a penalization term to

‖zt − st‖2
2 requiring that ‖st‖s,1 be small, where ‖st‖s,1 is the Bs

1,1 norm of st . In other
words, we want to minimize the following functional

f (st ) = ‖zt − st‖2
2 + ‖st‖s,1 = ‖zt − st‖2

2 +∑
k

λk|ŝk,t |, (4)
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where ŝk,t = 〈st ,φk〉 [9]. The above functional is coercive and strictly convex which
implies that it has a unique global minimum for each t. If λk = λ , for all k, the minimum
value of (4) is obtained via the soft-thresholding operator [12]

ŝk,t = sign(ẑk,t )max(|ẑk,t |−λ ,0). (5)

The problem of using the estimator (5) for all t is that those coefficients set to zero
for some values of t may not be so for other values of t even for large λ values. To
overcome this problem we propose tying the ŝk,t ’s together for different values of t and
using the recently introduced group-separable regularizer [24]

min
ŝk

1
2
‖ẑk− ŝk‖2

2 +λk‖ŝk‖2, (6)

where ẑk and ŝk be the k-th row of Ẑ and Ŝ respectively, whose solution is attained by
the vector soft-thresholding operator [5]

ŝk =
max(‖ẑk‖2−λk,0)

‖ẑk‖2
ẑk. (7)

3.3 Clusterization

The third step consists in estimating sk = akxk, where xk is the k-th row of X, by clus-
tering the rows of Ŝ and then applying the inverse transform of Φ

sk = ∑
i∈Ik

φ−1
i ŝi, (8)

where φ−1
i is the i-th column of Φ−1 (ΦT, for wavelet transforms) and Ik contains

the indexes of the k-th group. The clustering algorithm uses a measure of dissimilarity
which enforces cluster spatial contiguity by combining the instantaneous correlation
between the rows of Ŝ and the physical distance between the φks’ centers of mass. The
algorithm begins defining each time series ŝk , 1≤ k≤M as a singleton cluster. At each
step, we join the pairs of clusters (A,B) which minimize the following criterion

max{dist(ŝi, ŝ j) : i ∈ A, j ∈ B}, (9)

where

dist(ŝi, ŝ j) =

{
∞, ‖φ̄i− φ̄ j‖2 > r

1−|cor(ŝi, ŝ j)|, otherwise,
(10)

where φ̄i =
∫
Rd s|φi|2ds/

∫
Rd |φi|2ds defines de center of mass of φi.

Though the measure of dissimilarity (9) already embodies much of the structure be-
hind the spatial components in (1,2), deciding the tree cut level (i.e. how many clusters
to consider) remains a problem. To address this we note that the height of a node is
related to the correlation between the coefficients within the node. The correlation co-
efficient r has a well-known statistic whose upper limit with an (1−α/2)% confidence
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for the transformation 0.5loge(
1+r
1−r ), under the null hypothesis of independence, is ap-

proximately given by
u = z(1−α/2)

√
1/(N− 3) (11)

where z(1−α/2) is the standard normal distribution.
Hence we set the value for cutting the tree as h = (exp(2u)+1)/(exp(2u)−1). This

is an interesting quantity since it enables estimating the number of spatial components
and yet depends neither on the actual noise level nor on the number of variables but
solely on sample size.

3.4 LDSTM Estimation

The last step consists of estimating the system states of (1,2) using the scores produced
by the first component of a Principal Component Analysis (PCA) of sk. The remainder
of the algorithm follows the steps of traditional EM algorithm for state space estima-
tion [19] except that the A matrix estimation is modified to accommodate linear equality
constraints ensuring well localized ak’s. The least squares problem we solve is as fol-
lows

min
ak
‖akxk−Z‖2

2

subject to Cak = 0, (12)

where C = (ci, j)i, j is an M×M matrix with ci,i = 1 if VAR(sk
i,t )> 0 and ci, j = 0 other-

wise.

4 Numerical Illustration

4.1 Model Description

Based on a simulated data we examine how the algorithm presented in this paper per-
forms under different conditions. We created a vector time series measured over an one
dimensional space, sampled regularly in space (Δs = 0.30 e M = 256) and time (Δ t = 1
e N = 500). The observation matrix that we used is drawn on Fig. 1 (A) which shows
the columns of

A = [f80f180f100],

where fμ = [ f1,μ , . . . , fM,μ ]
T with fi,μ = f (iΔs−μ) and f is the Gaussian density func-

tion. The observations were corrupted by white Gaussian noise with covariance matrix

R = σ2I128,128,

with σ2 accounting for the SNR level defined as SNR = 10log10(VAR(s)/σ2) where
s = vec([Ax1 · · ·AxN ]) and vec stands for the column stacking operator. The dynamics
of the spatial components evolved according to the transition matrix

H =

⎡⎣ .5 −.5 0
0 .5 0
0 0 0

⎤⎦ ,
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and a zero mean Gaussian innovation process with covariance matrix

Q =

⎡⎣ 1 .5 0
.5 2 0
0 0 2

⎤⎦ .

Fig. 1 (B) shows the sample variance for a simulated DSTM using the above parameters
with SNR =−19db.
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Fig. 1. (A) Measurement matrix A and (B) sample variance of the example model with N = 500
and SNR =−19db

4.2 Algorithm Setup

We used Daubechies (D2) functions to transform the data and studied the performance
of our method by executing 100 Monte Carlo simulations, where we took the statistics
of those runs (mean and variance). We define the values for λk based on an estimate for
σ2 presented next. If R = σ2IM×M , then v̂k ∼N

(
0,σ2IN×N

)
, where v̂k is the k-th row

of V̂, since Φ is orthogonal. By assumption zt is sparse underΦ , so most of {ŝk,t}∀k are
zero. Provided that fifty percent of {ŝk,t}∀k are zero, we define the following unbiased
estimator for σ2

σ̂2 = median∀k ˆVAR{ẑk,t}, (13)

where ˆVAR denotes temporal sample covariance.
If VAR{ŝk,t}= 0, we have that ẑk,t are i.i.d normal variables, so

(N− 1) ˆVAR{ẑk,t}
σ2 ∼ χ2

N−1 (14)

implies that an interval with (1−α) confidence for σ2 is given by[
(N− 1)σ̂2

χ2
1−α/2,N−1

,
(N− 1)σ̂2

χ2
α/2,N−1

]
, (15)
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where χ2
α/2,N−1 is the α/2-th percentile of the chi-square distribution with N− 1 de-

grees of freedom.
Using the fact that ‖ẑk‖2 = (N− 1) ˆVAR{ẑk,t}, the equation (15) provides the value

of λk we set

λk =
(N− 1)2σ̂2

χ2
α/2,N−1

, (16)

with α = 0.05/M.
We set the clustering parameter r to 3 although results are similar for r = 1,3 and 5.

4.3 Results

Algorithm effectiveness was evaluated by the following two criteria:

– System states: each estimated state was associated to the simulated state it corre-
lated most with. We then took the absolute value of the correlation between them
as a measure of source similarity.

– Model parameters: calculated as the capacity of recovering the causal relation-
ships between the system states using the Partial Directed Coherence (PDC) [1].
We choose the PDC because besides providing an information theoretic measure
of information flow its calculation takes into account the estimates of the transition
matrix H and the innovation processes’ covariance matrix Q.

The mean absolute values of the correlation coefficient between the simulated and
estimated states versus SNR are shown in Fig. 2 (A) for LDSTM and traditional EM.
We observe that LDSTM outperforms EM and gave very good results for all the three
channels even under very unfavourable SNR. Fig. 2 (B) shows the PDC of x2 towards
x1 for different SNR levels compared to EM estimates. There is a clear pattern which
shows that PDC magnitude decreases as SNR decreases, but fortunately, the estimated
shape remains perfectly preserved.

5 Experimental Results

For illustration, we used FMRI images from seven healthy volunteers under a resting-
state protocol. The study was approved by local ethical committee and written informed
consents from all participants were obtained.

5.1 Image Data Acquisition

Whole brain FMRI images (TR= 600ms, TE= 33ms, 32 slices, FOV= 247×247 mm,
matrix size 128× 128, in plane resolution 1.975× 1.975 mm, slice thickness 3.5mm
with 1.8mm of gap) were acquired on a 3T Siemens system using a Multiplexed Echo
Planar Imaging sequence (multi-band accelerator factor of 4) [13]. To aid in the lo-
calization of functional data, high-resolution T1-weighted images were also acquired
with an MPRAGE sequence (TR = 2500 ms, TE = 3.45 ms, inversion time = 1000 ms,
256×256 mm FOV, 256×256 in-plane matrix, 1×1×1 mm voxel size, 7 ◦ flip angle).
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Fig. 2. LDSTM (solid lines) versus EM (dashed lines) comparison of efficiency in recovering
source temporal information and estimating model parameters. (A) Lines represent the mean
correlation between the simulated hidden state xk,t and the estimated hidden state x̂k,t across 100
simulations. Vertical error bars denote the 95% confidence interval of the mean value. (B) Dotted
lines represent the theoretical PDC of x2 towards x1. Others represent the estimated PDC of x2
towards x1 using LDSTM (solid) and EM (dash).

5.2 Preprocessing

Motion and slice time correction and temporal high pass filtering (allowing fluctua-
tions above 0.005Hz) were carried out using FEAT v5.98. The FMRI data was aligned
to the grey-matter mask via FreeSurfer’s automatic registration tools (v. 5.0.0) result-
ing in extracted BOLD signals at regions with preponderantly neuronal cell bodies. To
further group analysis by temporal concatenation, individual gray matter images were
registered to MNI stereotactic standard space using a 12 parameter affine transform.

5.3 Results

Using 3D Daubechies (D2) functions to generate the spatial wavelet transform up to
level 3 (other parameters as in Section 4.2), the LDSTM analysis identified thirty nine
well localized spatial components comprise cortical (18), subcortical (2) and cerebellar
(19) regions. Spatial components (ak’s) of the cortical and subcortical regions are shown
in Figure 3. We are not showing cerebellar regions due to space constraints, even though
they also form well localized bilateral activity patterns. Let us identify the region in the
i-th row and j-th column of the Figure 3 as ei, j. Regions include occipital pole (e1,1

and e1,2), lateral and superior occipital gyrus (e2,1 and e2,2), superior temporal gyrus
(e3,1 and e3,2), motor (precentral gyrus (e4,1 and e4,2)) and sensory cortices (superior
parietal gyrus (e5,1 and e5,2)), default mode network (precuneus and posterior cingulate
(e1,3 and e1,4)), inferior frontal gyrus and anterior cingulate (e2,3, e2,4, e3,3 and e3,4))
and thalamus (e4,3 and e4,4).

Unsurprisingly these spatial components reflecting most of the data variability co-
incide with traditional resting-state regions observed across different individuals, data
acquisition and analysis techniques [7,3]. The results draw attention to the fact that they
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Fig. 3. Cortical and subcortical components identified by LDSTM (see text)
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Fig. 4. FMRI resting-state analysis using LDSTM. Numbers represent different components.
Components numbered twice represent two components located at the same region. (A) Connec-
tivity map showing components whose system states are connected via the PDC. (B) PDC plots
for each arrow drawing in (A). Dashed lines denote the 95% confidence interval of the mean
value (solid lines).

were obtained without any additional assumption, such as independent or stationary
sources, apart from requiring ak spatial localization. Interest in this finding was stressed
by [8] who suggested that FMRI analysis tools should highlight other mathematical
characteristics rather than independence.

Furthermore, the lack of any artificial stochastic model constraints allows us studying
the brain connectivity between the identified components. Fig. 4A shows the connec-
tivity network estimated by PDC based on the reconstructed system states. In addition
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to showing that the connectivity is present mainly in low frequencies, a fact that has
already been observed in several studies [3], the results shown in Fig. 4 B describe the
existence of dynamic causal interactions between resting-state regions.

6 Conclusions

In this work, an EM-based algorithm was presented for LDSTM identification. More
specifically, our method uses vector soft-thresholding operators to project high dimen-
sional datasets into smoothness spaces where we can represent the system’s spatial
components with a reduced number of parameters. This is achieved by introducing a
contiguity-constrained hierarchical clustering algorithm to group time series of wavelet
coefficients characterizing the spatio-temporal variability of the data. PCA and con-
strained least squares provided initial estimates for the system states and the transition
matrix, respectively. Finally, we presented simulated results showing that the LDSTM
can outperform the traditional EM-algorithm even under mild conditions. The worst
case scenario happened when we dealt with very large data such as FMRI in which
it would be impossible to use the traditional EM-algorithm. In this case the LDSTM
showed encouraging experimental results suggesting that this new technique can parce-
late the human brain into well localized regions with physiologically plausible spatio-
temporal brain activation patterns.
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1 Introduction

The problem of localization of sources of brain electrical activity from electroen-
cephalographic (EEG) and magnetoencephalographic (MEG) recordings contin-
ues to attract researchers’ and practitioners’ attention. A myriad of solutions
have been proposed, with the neural activity index (AI) introduced in [1] being
a prime example of a successful approach to this problem. The AI is a function
of the output of the linearly constrained minimum-variance (LCMV) filter [2]
evaluated at the locations within region of interest (ROI), with the assumption
that it is maximized when evaluated at true source locations. However, for the
AI, this assumption has not been confirmed by the proof.

Recently, a new paradigm has emerged in spatial filtering community, which
focuses on localization of sources from EEG and MEG recordings based on dual-
and multi-source extensions of classical LCMV filter, see [3, 4] and references
therein. In particular, the work [4] introduced four new multi-source activity
indices, which were proved to achieve maximum value when evaluated at true
source locations irrespective of signal-to-noise ratio (SNR), assuming that ob-
served signal and noise covariance matrices are known exactly, and provided that
an exhaustive search within ROI is performed.

In this paper we propose a family of activity indices, which are reduced-rank
extensions of the multi-source activity index (MAI) introduced in [4], which itself
can be seen as an extension of the AI to multi-source case. We prove that the
proposed indices achieve maximum value when evaluated at true source locations
for any SNR and any nonzero rank constraint, under the same assumptions
made in the previous paragraph for the (full-rank) activity indices introduced
in [4]. This result shows in particular that this key property is not confined
to a selected few activity indices, which opens the question whether a certain
optimization problem can be designed to select the optimal activity index for a
given experiment.

Indeed, it shall be emphasized that the desirable properties of the activity
indices described above hold under the assumption of perfect model knowledge.
When conditions are not ideal, we can still count on getting closer to the correct
solution compared with other localizers. In practice, signal and noise covariance
matrices are unknown, thus they are estimated from the measurements. This
estimation introduces perturbation in the values of activity indices, and this
problem is especially acute if the sources are closely positioned, possibly corre-
lated, and if the background activity is high. From a mathematical standpoint,
such settings yield forward models in EEG and MEG ill-conditioned. Thus, we
shall expect the proposed family of reduced-rank neural activity indices to be
especially useful in such settings, as the reduced-rank methods have been estab-
lished as powerful tools which are robust against ill-conditioned systems, see,
e.g., [5–9] and references therein.

The paper is organized as follows: in Section 2 we introduce the EEG/MEG
measurement model considered along with the AI and MAI indices. In Section 3
we introduce the proposed family of reduced-rank neural activity indices, and in
Section 4 we show, through a series of numerical examples, its applicability in
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dipole source localization in ill-conditioned settings using realistically simulated
MEG data. We close with Section 5 where areas of future research are discussed.

A short version of this paper has been presented at conference [10].

2 Preliminaries

We consider the case of EEG/MEG measurements produced by l dipole sources
using an array of m sensors, and assume that the sources’ activity changes in
time, but their positions θ = (θ1, . . . , θl)

t remain the same during the measure-
ment period, where θi denotes the position of the i-th source. Then, the vector
y composed of the measurements by m sensors at a given time instant can be
modeled as [11]:

y = A(θ)q+ n, (1)

where A(θ) is the m × 3l array response matrix representing material and geo-
metrical properties of the medium in which the sources are submerged relevant
for EEG or MEG measurements; q represents dipole moments at locations θ at
a given time instant:

q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qx(θ1)
qy(θ1)
qz(θ1)

...
qx(θl)
qy(θl)
qz(θl)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R3l, (2)

where (qx(θi),qy(θi),qz(θi))
t are the Cartesian components of the dipole mo-

ment at i-th source location, and the zero-mean random vector n represents
measurement noise and spontaneous background brain activity. The array re-
sponse matrix A(θ) is of full-column rank 3l and we assume that q and n are
uncorrelated.

In terms of (1), spatial filtering allows for estimation of dipole source moments
q (when source locations θ are known), and for source localization by defining a
neural activity index as a function of θ, with the assumption that the maximum
value of the activity index is achieved if evaluated at true source locations. It is
the latter source localization problem in which we focus on in this paper.

The idea of using a neural activity index as a localizer originates in [1], where
the following activity index (AI) has been proposed for the single-source case,
i.e., l = 1 in (1):

AI(θ) :=
tr{S(θ)−1}
tr{G(θ)−1} , (3)

where tr{·} indicates the trace of the matrix,

S(θ) := A(θ)tR−1
y A(θ), (4)
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and
G(θ) := A(θ)tR−1

n A(θ), (5)

where Ry and Rn are covariance matrices of y and n, respectively. However, it
has been unclear whether AI(θ) achieves its maximum value when evaluated at
true source locations.

To circumvent this difficulty, a multi-source extension of AI(θ) has been re-
cently proposed in [4] for the general case l ≥ 1:

MAI(θ) := tr{G(θ)S(θ)−1} − 3lx, (6)

where lx is the unknown number of concurrently active sources. The key prop-
erties of MAI(θ) are summed up in the following theorem [4, p. 485]:

Theorem 1. The MAI(θ) in (6) is a non-negative and bounded function of θ,
which achieves maximum value for θ = θ0, where θ0 are the true source locations,
in which case lx = l, where l is the number of active sources.

The applicability of the MAI(θ) has been already demonstrated in [4]. In
particular, a practical method for determining the number of active sources can
be deducted from Theorem 1 as follows: initiate the search with lx = 1, find
maxθ MAI(θ), and increase lx until the value of maxθ MAI(θ) saturates. Thus,
from now on we assume that the number of active sources l has been identified.

It shall be noted that the maximum of MAI(θ) is achieved for S(θ0)
−1. Thus,

small changes in S(θ0) may cause huge changes in S(θ0)
−1 if the former is ill-

conditioned [12]. In our case, this could be the result of closely positioned sources
and high background activity. In such situations, G(θ0) will be ill-conditioned
as well.

Let us now introduce the following estimate:

M̂AI(θ) := tr{Ĝ(θ)Ŝ(θ)
−1
} − 3lx, (7)

where

Ĝ(θ) := A(θ)tR̂n
−1

A(θ), (8)

and

Ŝ(θ) := A(θ)tR̂y
−1

A(θ), (9)

where R̂y and R̂n are the estimates of Ry and Rn, respectively. Obviously, the
value of (7) will differ from (6) for a given θ. More crucially, its argument of the
maximum is likely to change from θ = θ0 due to sensitivity of S(θ0)

−1 to even
smallest changes of an ill-conditioned S(θ0). This is a fundamental problem as
it makes source localization using MAI(θ) very prone to errors in ill-conditioned
settings. In the next section, we provide a solution that allows for robust source
localization in ill-conditioned settings by introducing the reduced-rank extension
of MAI(θ).
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3 Proposed Activity Indices

In this section we propose first a family of reduced-rank activity indices achieving
maximum value when evaluated at true source locations for uncorrelated dipole
sources and any nonzero rank constraint.

We introduce the reduced-rank extension of MAI(θ) in (6) as:

RR-MAIT1(θ, r) := tr{G(θ)PR(G(θ)r)S(θ)
−1} − r, (10)

where r is a natural number such that 1 ≤ r ≤ 3l, and PR(G(θ)r) is the or-
thogonal projection matrix onto R (G(θ)r), i.e., the subspace spanned by the r
eigenvectors corresponding to the r largest eigenvalues of G(θ). The following
theorem establishes the key properties of the RR-MAIT1(θ, r):

Theorem 2. Let us fix a rank constraint r such that 1 ≤ r ≤ 3l, and consider
uncorrelated sources such that

Rq = I3l. (11)

Then RR-MAIT1(θ, r) in (10) is a non-negative and bounded function of θ, which
reaches its global maximum for θ = θ0, where θ0 are the true source locations.

Proof: To simplify notation, we denote below G := G(θ), and S := S(θ),
with G0 := G(θ0) and S0 := S(θ0), where θ0 are the true source locations. Such
shortened notation does not introduce ambiguity, one needs to keep in mind
however that G and S depend on θ, and G0 and S0 on θ0.

Let us pick r ∈ {1, . . . , 3l}, and consider EV D(G) = MΓM t with M =
(m1, . . . ,m3l) and eigenvalues organized in nonincreasing order, so that PR(Gr)

in (10) can be expressed as:

PR(Gr) = MrM
t
r, (12)

where Mr := (m1, . . . ,mr) are the eigenvectors corresponding to the r largest
eigenvalues of G. Then one has:

tr{GPR(Gr)S
−1} = tr{GMrM

t
rS

−1}. (13)

Using matrix inversion lemma, we express S−1 as {cf. (A3) in [4, Appendix A.]}:

S−1 = G−1 +G−1K(R−1
q +G0 −KtG−1K)−1KtG−1, (14)

where K := A(θ)tR−1
n A(θ0) ∈ R3l×3l. Denote

Z = R−1
q +G0 −KtG−1K. (15)

Insertion of (14) into (13) yields

tr{GMrM
t
rS

−1} = tr{MrM
t
r}+ tr{GMrM

t
rG

−1KZ−1KtG−1} =
r + tr{Z−1

(
KtMrM

t
rG

−1K
)
}. (16)
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Denote
Yr := KtMrM

t
rG

−1K, (17)

so that
tr{GMrM

t
rS

−1} = r + tr{Z−1Yr}. (18)

Consider now Z in (15). The matrix G0−KtG−1K therein is shown below (A4)
in [4, Appendix A.] to be positive semidefinite for any θ and θ0. Thus, Z is
positive definite and satisfies the following relationship:

Z � R−1
q , (19)

where � denotes Loewner ordering, i.e., Z − R−1
q is positive semidefinite. Note

also that Yr is positive semidefinite, because MrM
t
rG

−1 is positive semidefinite.
Hence, the value of tr{GMrM

t
rS

−1} is always at least r, and consequently, (10)
is a non-negative function.

Next, relationship (19) is equivalent to [13, p.471]

Rq � Z−1. (20)

Using relationship (20) in (18) we have:

tr{GMrM
t
rS

−1} = r + tr{Z−1Yr} ≤ r + tr{RqYr}, (21)

with equality if θ = θ0. We now employ assumption (11) to simplify (21) to

tr{GMrM
t
rS

−1} = r + tr{Z−1Yr} ≤ r + tr{Yr}. (22)

Consider now
SVD(R−1/2

n A(θ)) = UΣV t

and
SV D(R−1/2

n A(θ0)) = U0Σ0V
t
0 ,

with singular values organized in both cases in nonincreasing order, so that Yr

(17) can be expressed as

Yr := (V0Σ
t
0U

t
0UΣV t)(MrM

t
rG

−1)(V ΣtU tU0Σ0V
t
0 ). (23)

We can also express G as

G = V ΣtU tUΣV t = V ΣtΣV t, (24)

and
PR(Gr) = VrV

t
r = V Ir3lV

t, (25)

where Ir3l contains as its r × r principal submatrix the identity matrix of size r
and zeros elsewhere. Thus, Yr takes the form

Yr = (V0Σ
t
0U

t
0UΣV t)(V Ir3lV

tV (ΣtΣ)−1V t)(V ΣtU tU0Σ0V
t
0 ) =

V0Σ
t
0U

t
0UΣIr3l(Σ

tΣ)−1ΣtU tU0Σ0V
t
0 = V0Σ

t
0U

t
0UIr3lU

tU0Σ0V
t
0 . (26)
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Therefore, one has

tr{GMrM
t
rS

−1} ≤ r + tr{Yr} = r + tr{V0Σ
t
0U

t
0UIr3lU

tU0Σ0V
t
0 } =

r + tr{U0Σ0Σ
t
0U

t
0UIr3lU

t} = r + tr{B0C}, (27)

where B0 = U0Σ0Σ
t
0U

t
0 and C = UIr3lU

t. Matrices B0 and C are symmetric
with eigenvalues organized in nonincreasing order. Thus, from [14] we obtain

tr{GMrM
t
rS

−1} ≤ r + tr{B0C} ≤ r + tr{Σ0Σ
t
0I

r
3l}. (28)

In particular, the form of U and U0 for which equality is achieved in the second
inequality is satisfied if θ = θ0 in view of [14]. Note that tr{Σ0Σ

t
0I

r
3l} is a fixed

positive number for a given θ0. Thus, one has

tr{GMrM
t
rS

−1} ≤ r + tr{Σ0Σ
t
0I

r
3l}, (29)

with equality achieved if θ = θ0. This fact proves that (10) reaches its global
maximum for θ = θ0, where θ0 are the true source locations. �

The above Theorem demonstrates that the key properties of MAI(θ), as given
in Theorem 1, are attained by the whole family of indices of the form (10),
provided the sources are uncorrelated. A natural question is whether we can
design other families of activity indices achieving maximum value when evaluated
at true source locations. This will be discussed in Section 5.

Furthermore, based on the above considerations, we take the liberty of propos-
ing another reduced-rank activity index:

RR-MAIT2(θ, r) := tr{G(θ)PR(S(θ)r)S(θ)
−1} − r, (30)

for 1 ≤ r ≤ 3l. This alternative index has the desirable property of being fully
independent from the m − r smallest eigenvalues of S(θ) for any θ. This fact
can be easily observed from the eigenvalue decomposition EVD(S(θ)) = NΛN t

with N = (n1, . . . , n3l) and eigenvalues organized in nonincreasing order, as
PR(S(θ)r)S(θ)

−1 can be expressed as:

PR(S(θ)r)S(θ)
−1 = NrN

t
rS(θ)

−1 = NrN
t
rNΛ−1N t = NΛ†

rN
t, (31)

where Nr := (n1, . . . , nr) are the eigenvectors corresponding to the r largest
eigenvalues of S(θ), and the diagonal matrix Λ†

r contains on its diagonal the
vector (λ−1

1 , . . . , λ−1
r , 0, . . . , 0).

This property suggests that one should expect better performance of the ac-
tivity index RR-MAIT2(θ, r) in (30) compared with RR-MAIT1(θ, r) in (10),
specially for closely positioned sources and high background activity. To verify
this hypothesis, we will consider both families of activity indices in the numer-
ical simulations in Section 4. Note that a similar proof of Theorem 2 for the
RR-MAIT2(θ, r) in (30) is currently being developed.
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4 Numerical Example

We consider the case of estimating the position of l = 3 dipole sources through
the indices previously described. Let us assume that the dipole source com-
ponents are allowed to change in time as q(t) = (q1(t), . . . ,q9(t))

t, where
qi(t) = sin(iπ(t/150 − 1)), for i = 1, . . . , 9, and t = 0, 1, . . . , 300. Then, Q is
defined as

Q = [q(0),q(1), . . . ,q(300)] =

⎡⎢⎣q1(0) . . . q1(300)
...

...
q9(0) . . . q9(300)

⎤⎥⎦ . (32)

Note that, under these conditions, Rq = I.
MEG measurements were generated using the Helsinki BEM library [15] with

a head model composed by three tessellated meshes which were nested one inside
the other in order to approximate the geometry of the scalp, skull, and brain.
Such head model was created based on the anatomical information of “Subject
# 1” of the MEG-SIM portal, which is a repository that contains an extensive
series of real and simulated MEG measurements for testing purposes [16]. In
particular, the volume modeling the brain was constructed with 11520 triangles,
and it is shown in Figure 1. There, we show the centroids of the triangles under
which the dipole sources were located, as well as the centroids of 100 neighboring
triangles which define a region-of-interest (ROI) around the sources. The large
number of triangles used to approximate the head’s anatomy in BEM guarantees
that the modeling errors are negligible.

Fig. 1. Tessellated mesh of the brain showing the dipoles’ positions (in red) and the
ROI around them (in blue)
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Fig. 2. Mean localization errors as a function of SNR and rank. The vertical lines on
top of the bars indicate the (±) standard error, while horizontal lines indicate those
groups with significant differences (�p < 0.05, ��p < 0.01).



456 T. Piotrowski et al.

Next, the three dipole sources were located 2 mm below their corresponding
triangle (i.e., going downward in the normal direction to the surface). Since the
distances from the dipoles to the surface are not much larger than the length of
the triangles sides, the MEG data generated through the Helsinki BEM library
can be considered a very close approximation to real MEG measurements. Hence,
MEG data corresponding to the simultaneous activation of the three sources
were generated using an array of m = 275 magnetometers with the spatial
distribution of the VSM MedTech MEG system considered in the MEG-SIM
portal. Finally, uncorrelated (in time and space) random noise N ∼ N (0, σ2)
was added to the measurements, and the signal-to-noise ratio (SNR) was defined
as SNR = 10 log10 ‖ A(θ)Q ‖F / ‖ N ‖F in decibels (dB), where || · ||F denotes
the Frobenius norm of the matrix. Different values of σ2 were set in order to
obtain SNR levels of 3, 6, and 9 dB.

Under these conditions, we computed the indices MAI(θ), RR-MAIT1(θ, r),
and RR-MAIT2(θ, r), for θ corresponding to a combination of three positions
chosen from the centroids in the ROI, but actually located 2, 4, and 6 mm below
the surface (i.e., a small bias in the position search was introduced). Therefore,
we evaluated each index for

(
100
3

)
× 3 = 485100 possible values of θ. Further-

more, we tested our proposed reduced-rank indices for different rank values. In
all cases, the estimated positions (denoted by θ̂) were taken as the value of θ
for which the maximum value of the corresponding index was achieved. Then,
the total error in the estimation was computed as the sum of the minimum dis-
tances from each of the real to the estimated positions. All calculations were
repeated for at least 50 independent realizations of the noise, then the mean
total error was obtained. The results of this exhaustive evaluation process are
shown in Figure 2. In addition, we performed two-sample t-tests between the
errors of MAI and RR-MAI for different rank values (but same SNR) in order
to establish if there were indeed differences in the performance. Note that the
largest errors correspond to cases when the position of dipoles originally located
in one hemisphere of the brain are mistakenly estimated in the opposite side.
On the other hand, the minimum error is a reflection of the bias we introduced
in the position at the moment of computing the indices. Our results show that
significant improvement can be obtained through the reduced-rank indices with
a considerable rank reduction, specially for the case of low SNR and when using
RR-MAIT2.

5 Areas of Future Research

The family of reduced-rank activity indices introduced in Theorem 2 are guar-
anteed to get true source locations irrespective of the SNR, for any nonzero rank
constraint. Thus, at first sight it may appear that there is no trade-off usually
associated with reduced-rank methods. However, such trade-off becomes visible
if we note that the assumption (11) is necessary for inequality (29) to hold, with
equality if θ = θ0. This fact leads to rather subtle algebraical considerations,
which reveal that for arbitrarily correlated sources, the less correlated the sources
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are, the lower the rank r0 may be chosen such that RR-MAIT1(θ, r) will get true
source locations for all rank constraints r such that r0 ≤ r ≤ 3l.

Moreover, the proof of Theorem 2 may be readily modified to prove that
other families of reduced-rank localizers have the key property established in
Theorem 2 for RR-MAIT1(θ, r). For example, one may introduce the reduced-
rank extensions of the event-related localizers, which were introduced in [4] along
with MAI(θ). It will be specially interesting to see which family of the reduced-
rank activity indices will perform best in a given practical setup, where theorems
such as Theorem 1 and Theorem 2 hold only approximately. More generally,
one will perhaps need to consider a hierarchical optimization problem, where
the aim may be to maximize the steepness of the activity index in vicinity of
the argument of the maximum θ = θ0, among rank constraints and form of the
index. Whether such optimization problem is feasible remains to be seen.

On the other hand, in the present form, a brute-force search over a region of
interest is needed to implement the proposed activity indices in practice. To ease
the computational load, a recursive source localization procedure approximating
RR-MAIT1(θ, r) (or RR-MAIT2(θ, r)) needs to be derived. An example of such
algorithm is given in [4]. Indeed, it can be readily applied to the proposed family
of reduced-rank activity indices. Moreover, such recursive procedure should be
extended in the future to the adaptive case, where the positions of the sources
θ = (θ1, . . . , θl)

t are time-dependent. In such a case, one will have to take into
consideration also the possible change in the number of active sources l.
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Abstract. How information processes in the human brain relate to action for-
mation is an interesting research question and with the latest development of 
brain imaging and recording techniques more and more interesting insights 
have been uncovered. In this paper a cognitive model is scrutinized which is 
based on cognitive, affective, and behavioural science evidences for situation 
awareness. Situation awareness has been recognized as an important phenome-
non in almost all domains where safety is of highest importance and complex 
decision making is inevitable. This paper discusses analysis, modelling and si-
mulation of three scenarios in the aviation domain where poor situation aware-
ness plays a main role, and which have been explained by Endsley according to 
her three level situation awareness model. The computational model presented 
in this paper is driven by the interplay between bottom-up and top-down 
processes in action formation together with processes and states such as: per-
ception, attention, intention, desires, feeling, action preparation, ownership, and 
communication. This type of cognitively and neurologically inspired computa-
tional models provide new directions for the artificial intelligence community to 
develop systems that are more aligning with realistic human mental processes 
and for designers of interfaces of complex systems. 

Keywords: Situation Awareness, Perception, Attention, Intention, Bottom-Up, 
Top-Down, Cognitive Modelling and Simulation. 

1 Introduction 

Situation Awareness (SA) describes the subjective quality of awareness of a situation 
a person is engaged in. The construct of SA is a nontrivial challenge mainly because 
of poor understanding in the scientific area of human cognition and the associated 
complexity in practical areas where SA is relevant, for example: aviation, air traffic 
control, maintenance, healthcare, intelligence, power systems, transportation, etc. The 
latest findings from brain imaging and recording techniques in the last decade provide 
the opportunity to uplift the understanding of cognitive processes in the human brain 
and more specifically the interplay among those for action selection. It seems that 
most of the basic actions are pre-stored as habitual tasks through the effects of prior 
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learning, and will activate unconsciously when a relevant stimulus is perceived [1]. 
Nevertheless, it is an innate ability of human beings to control in a conscious manner 
habitual actions adhering to a situation and/or to react in novel situations where no 
prior learning or experience exists. Conscious action formation turns out to be com-
plicated; especially the complex interplay among bottom-up and top-down processes 
behind it has to be addressed to provide more insight in action selection [2–5]. Fur-
thermore, there are various viewpoints about conscious awareness and it seems from 
the latest findings that we develop awareness of action selection related to a situation 
just before the action execution, and it may be the case that this awareness has a deci-
sive effect on actually executing the action, but it may equally well be the case that 
the awareness state has no effect on whether the action is performed (cf. [2, 6, 7]). 
Therefore, from the current evidences from cognitive, affective, and behavioural 
sciences, the process behind SA in parallel to action formation can be reformed to-
gether with considering the factors explained in well known past SA models. 

With the lessons learned from tragic events that have occurred in the aviation do-
main, more attention has been given to the importance of SA in the aviation domain 
(cf. [8, 9]). There are more than fifteen definitions for SA in the literature [10], and 
still it is debate over what SA actually is, what it comprises, what factors impact it. 
Mica R. Endsley in [11] put forward a working definition which became the most 
widely used definition among many researches. According to Endsley, SA is: 

"the perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future" ([12], 
pp. 36). 

Based on this definition Endsley highlighted three elements 1) perception, 2) com-
prehension, and 3) projection, as the necessary conditions for SA which are three 
levels of which one is followed by the other to develop complete (subjective) aware-
ness. Furthermore, it has been found that based on the safety reports in the aviation 
domain for the period of 1986 to 1992, 76% of errors related to SA were because of 
Level 1 (i.e., failure to correctly perceive information), 20.3% were Level 2 (i.e., fail-
ure to comprehend the situation), and 3.4% were Level 3 (i.e., failure to project situa-
tion into future) [8, 9]. Therefore, this statistical information provides an indication of 
the importance of those three factors on SA. Furthermore, Endsley has indicated how 
attention, goals, expectations, mental models, long-term memory, working memory 
and automaticity contribute to situation assessment as cognitive processes [12, 13]. To 
get a more detailed picture of such interplay, in this paper both the insights derived 
from Endsley’s SA model and the latest neurocognitive findings have been utilized 
and brought together. 

Research like this may have benefits especially for the artificial intelligence com-
munity to consider more natural computational models for complex systems where 
emergent behaviours need to be analyzed and simulated. Furthermore, through such 
simulations, system (or interface) designers can validate the quality of their designs 
and may come up with fine-tuned designs which are guaranteed with better action 
selection minimizing data related errors. Below, in Section 2 introduces the SA model 
by Endsley. Section 3 explains the proposed neurologically inspired cognitive model 
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mainly by adapting the work in [14], and three simulation experiments are discussed 
in Section 4. Finally concludes the paper with a discussion. 

2 Situation Awareness by Endsley 

System automation has been rapidly improved, and has facilitated more robust sys-
tems. Therefore, obtaining information is not difficult though finding the relevant and 
most important information is more challenging due to information overloading [13]. 
Developing operator interfaces, automation concepts and training programs are im-
portant areas where theoretical SA models can contribute to minimize human errors in 
complex systems [12, 13]. As mentioned in the previous section, Endsley’s model 
with three levels of SA has obtained the highest attention (though some are not fully 
accepting this definition (e.g., [15])). According to Endsley, Level 1 is the first step to 
achieve the SA which concerns to perceiving status, attributes, and dynamics of rele-
vant elements in the environment [12, 13, 15]. It is the most important factor for bet-
ter SA and having a wrong perception always ends up with poor SA. As reasons to 
have poor Level 1 SA are indicated: data not available, data hard to detect, failure to 
monitor/observe data, misperception of data, and memory loss [8, 9]. Level 2 takes 
the awareness beyond being sensitive to the perceptual information but to develop the 
understanding by binding the relevant perceptual information to ones goals through 
comprehension [12]. Incomplete or incorrect mental models and over-reliance on 
default values have been identified as reason for poor Level 2 SA [8, 9]. Level 3 fur-
ther extends the awareness so that it will obtain the ability to project the future actions 
[12]. According to Endsley each higher level of SA depends on the success of the 
lower level [12, 13]. Incomplete/poor mental models and over-projection of current 
trends have been noted as the main reasons behind poor Level 3 SA [8, 9]. More de-
scriptive information about each level with examples from the aviation domain can be 
found in [16]. Furthermore, this model includes more mechanisms behind information 
processing (based on information processing theory in [17]) that includes attention, 
goals, expectations, mental models, long-term memory, working memory and auto-
maticity for situation assessment (cf. [13]). According to Endsley’s view SA and situ-
ation assessment are different: product and process respectively [13]. The summary 
from Endsley in [12], p. 49 provides some useful indications of how this model can be 
related with neurocognitive literature (in Section 3): 

3 Description of the Computational Model 

This section presents a computational cognitive model for SA based on the latest find-
ings and evidence from cognitive, affective, and behavioural sciences. The underlying 
research evidence behind this model has been separately explained in [14]; there also 
the role of cognitive control in action formation is illustrated in more detail. There-
fore, here only a condensed summary will be provided as a theoretical basis. 
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3.1 Overview of the Model 

Fig. 1 below highlights the adapted cognitive model for SA from [14] and in Table 1 
listed abbreviations for the state labels in it. The model uses two world states WS(s) 
and WS(b) as inputs, for stimulus s and effect b. The stimulus s represents any exter-
nal (or even internal) change that may lead to an action execution. To reduce the 
complexity of computations in this model it is assumed to be that stimulus s is a com-
pound input (alternatively it is possible to use s as a vector sk, k = 1, 2, … where k 
inputs are taken in parallel).  

The effect bi represents the effects of the execution of an action ai. The input world 
states WS(s), and WS(b) lead to sensor states SS(s), and SS(b), and subsequently to 
sensory representation states SR(s), and SR(b), respectively. This model includes the 
aspects of both conscious (through a top-down process: internally guided based on 
prior knowledge, intentions, and long-term desires [5, 18]) and unconscious (through 
a bottom-up process: mainly driven by salient features of external stimuli [18]) 
processes behind action formation. Automaticity concerns the unconscious behaviour 
according to Endsley [13].  The unconscious process of action formation has been  
modelled in here in a causal manner by combining an as-if body loop (see Damasio 
[19]) and a body loop (see James [20]); for more details see [14]. According to  
 

 

 

Fig. 1. Overview of the computational cognitive agent model. The arrow  represent a direct 
activation to state B from state A, arrow  represent a direct suppression to state B from state 
A, arrow  represent a suppression to all the complements of ‘ith’ state on Bi from state Ai 
(where ‘i’ presents an instance of a perticuler state), and  represent a direct activation to 
state Bi from state Ai while supressing all the complements of ‘ith’ state on Bi from state Ai. 

 

F(bi) 

action execution 

effect prediction (as-if body loop) 

SR(bi)

 SS(s) SR(s)WS(s) 

 SS(bi)

WS(bi) 
EA(ai)

PAwr(ai,bi,s) 

PA(ai) 

PD(bi)

Per(bi,s) 

Att(bi,s)

SD(bi)

CInt(bi,s) 

PO(ai, bi)

EO(ai, bi,s)



 Neurologically Inspired Computational Cognitive Modelling of Situation Awareness 463 

 

Table 1. Nomenclature for Fig. 1 

WS(W) world state W (W can be either 
stimulus s, or effect b) 

PAwr(a,b,s) prior-awareness state for action a 
with b and s 

SS(W) sensor state for W Att(b,s) attention state for s on b 
SR(W) sensory representation of W CInt(b,s) conscious intention state for s on b 
PD(b) performative desires for b EA(a) execution of action a 
SD(b) subjective desires for b Per(s,b) perception state for s on b 
PA(a) preparation for action a F(b) feeling for action a and its effects b 
PO(a,b) prior ownership state for action a

with b 
EO(a,b,s) communication of ownership of a 

with b and s 

 
Damasio the cognitive process of action selection is based on an internal simulation 
process prior to the execution of an action. Effects of each relevant action option 
PA(ai) (a stimulus s will have many options i=1..n) are evaluated (without actually 
executing them) by comparing the feeling-related valuations associated to their indi-
vidual effects. Each option on PA(ai) suppresses its complementary options on ai for 
all PA(aj) with j≠i (see Fig. 1), and therefore by a kind of winner takes it all principle 
naturally the option that has the highest valuated effect felt will execute through the 
body loop (for more details see [14]). 

• as-if body loop: PA(ai) → SR(bi) → F(bi) 
• body loop: PA(ai) → EA(ai) → WS(bi) → SS(bi) → SR(bi) → F(bi) 

In parallel to action preparation prior ownership (in how far does a person attribute 
an action to him or herself or to another person) of the action will be developed, as 
explained in [21]. Ownership and performative desires states also relate to the un-
conscious processes (for more details see [14]). PD(b) facilitates short-term desire 
effects on action execution. Furthermore, in this model Per(bi,s) gets a direct effect 
from the stimulus s and therefore it will enable to develop bottom-up perception 
which further leads to strengthen action preparation (see Fig. 1) [22]. This phenome-
non is particularly useful in a fight-or-flight situation. Therefore a suddenly developed 
very strong perception (due to salient features in a stimulus) may execute an action 
without enabling top-down control (cf. [14]). 

In this model action formation is initiated through the as-if body loop and because 
of the limited capacity of the human brain to process all action options, bottom-up 
attention will play its role as described in [18] (see [14]). Due to this bottom-up atten-
tion, higher-order cognitive processes will enable and start to control current action 
formation. Here an important role is played by the internally activated subjective in-
tentions on cognitive content [18, 23, 24]. This is in line with the idea of transforming 
Level 1 SA to Level 2 SA in Endsley’s model in terms of a process. The prefrontal 
cortex (PFC) has a higher-order connectivity with other cortical and subcortical areas 
and therefore, when sensory inputs need more attention in top-down driven control-
ling, it plays a role of integrator [25, 26]. Furthermore, brain circuits related to cogni-
tive control seem to consist of loops rather than linear chains (cf. [4]) and this can be 
clearly seen from the associations among states in Fig. 1. Posterior parietal cortex 
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(PPC) and PFC seem to be playing unique roles in bottom-up and top-down attention-
al systems respectively and a close interaction among these two has been observed 
when orienting the attention [18]. This explains the possible interplays among these 
two and how such an interaction will contribute to sophisticated cognitive control 
with suppression mechanisms (for more details see [14]). In Fig. 1 to model bottom-
up attention an effect from F(b) to Att(b,s) is provided, and then top-down attention 
modulates PA(ai) (i.e., increasing the activation of option ai while suppressing all its 
complementary options PA(aj) for all j≠i). This leads to a cyclic dependency and 
eventually with the other states (SD(b), CInt(b,s) and Per(b,s)) this will select an op-
tion from the competing set through a cognitive bias. 

In literature intentional actions are related to a brain network that involves SMA 
proper and pre-SMA and further an increase of activation of pre-SMA has been ob-
served when participants attend to their intention [4, 27]. Therefore, attention to inten-
tion has been hypothesized as one mechanism for control of actions and this has been 
modelled through a loop: Att(b,s), SD(b) and CInt(b,s). Subjective desires (or consti-
tutive desires) SD(b) is essential in top-down control to facilitate alternative interpre-
tations (or even to further extend the meaning) on performative desires [3]. 

Awareness is one of the challenging phenomena in human cognition, and as hig-
hlighted in the introduction there are various viewpoints related to this. Based on 
many evidences it is assumed to be that we develop awareness of action selection 
related to a situation just before the action execution [2, 6, 7]. Nevertheless, Moore 
and Haggard have highlighted that this awareness may have a decisive effect on ac-
tually executing the action [2] (therefore in Fig. 1 there is a direct relation between 
EA(a) and PAwr(a,b,s)). More importantly, the cognitive processes behind this de-
velopment of awareness are important, which is why they have been given more 
weight in this model. Therefore, based on such recent research finding the choice was 
made to let the model deviate from the traditional idea of first developing a proper 
awareness before getting to decision making (as highlighted, for example, by 
Endsley). With this difference and by having cyclic loops, the model proposed here 
deviates from what Endsley proposed, and more attention has been given to the action 
selection as a wider process covering decision making. Furthermore, Moore and Hag-
gard have highlighted the interplay between prior and retrospective (relative to action 
execution) awareness of action [2], but for the simplicity of this model retrospective 
awareness was not included. Finally through EO(a,b,s) the agent can communicate its 
information to the outside. In addition to the highlighted relations among states all the 
remaining dependencies (including suppression processes) have been explained in 
more detail in [14]. 

3.2 Dynamics of the Model 

The computational model was mathematically compiled as proposed in [28] to simu-
late situations. Each connection between states have been given a weight value (ωji: 
weight of state j to i) that varies between +1 and -1. Weight values are non negative in 
general, except if it is a suppressive (or inhibiting) link (see Fig. 1 caption). To model 
the dynamics following the connections between the states as temporal–causal  
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relations, a dynamical systems perspective is used as explained in [28]. Therefore, 
each state includes an additional parameter called speed factor γi, indicating the speed 
by which an activation level is updated upon received input from other states to the 
state ‘i’. Two different speed factor values are used as fast and slow: fast value is for 
internal states and slow value is for external states (i.e., for WS(W), SS(W), EA(a), 
and EO(a,b,s)). Activation of a state is depending on multiple other states that are 
directly attached to it. Therefore incoming activation levels from other states are 
combined to some aggregated input and affect the activation level according to a dif-
ferential equation as in (1). As the combination function for each state a continuous 
logistic threshold function is used as in equation (2), where σ is the steepness, and τ 
the threshold value. When the aggregated input is negative, (3) is used. To achieve the 
temporal behaviour of each state as a dynamical system, a difference equation is used 
in the form of equation (4) (where Δt is the time step size). More details about the 
dynamics of the model can be found in [14]. 

 ∑                                                  1  

 , , 1   0                 2  

 0  0                                                          3  

 ∆  , , ∑    ∆                      4  

4 Analysis of SA on the Proposed Model Based on Simulations 

In this section by simulations it will be explained how situation awareness related 
incidents can be explained through this proposed model. For this, three situations 
were selected from the document ‘Enhancing Situational Awareness1’ in ‘Flight Op-
erations Briefing Notes’ from the Airbus Company. They have provided 3 generic 
examples for each of the three levels of the SA described by Endsley: 

• For Level 1 SA: ‘Focusing on recapturing the LOC and not monitoring the G/S’ 
• For Level 2 SA: ‘Applying a fuel imbalance procedure without realizing it is an engine fuel 

leak’ 
• For Level 3 SA: ‘Expecting an approach on a particular runway after having received ATIS 

information and being surprised to be vectored for another runway’ 

These three generic examples were modelled as an implementation in Java, based 
on the mathematical basis explained in the previous section. For each scenario, three 
different sets of input data were used in XML format with dedicated parameter val-
ues. All the input information and parameter values (step size (Δt), speed factor (γ), 
total time slots, steepness (σ), threshold (τ), and weight values) for each state can be 
found in an external appendix2. 

                                                           
1 http://www.airbus.com/fileadmin/media_gallery/files/ 
 safety_library_items/AirbusSafetyLib_-FLT_OPS-HUM_ 
 PER-SEQ06.pdf 
2 http://www.few.vu.nl/~dte220/BIH14Appendix.pdf 
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4.1 Simulation for a Level 1 SA Example Incident 

The reason behind this example incident is poor SA due to a failure to moni-
tor/observe data, as highlighted in Section 2. A pilot has observed only one device 
(LOC) though he/she was supposed to take into consideration data from two devices 
(LOC and G/S). Due to these missing data, the pilot has developed a strong percep-
tion related to action selection only based on LOC, while his perception should have 
been for action selection in line with the integrated reading of LOC and G/S. Due to 
this incomplete input the appropriate perception was unable to develop and as a con-
sequence of that the pilot has not developed the ‘right’ situation awareness, but in-
stead of an awareness based on incomplete situation information. For the sake of  
simplicity of the simulation it is assumed that the current stimulus includes salient 
features of the LOC device but not strong data from the G/S device. From that stimu-
lus agent will prepare for two action options PA(a1) and PA(a2) where action a1 is 
based on information from the device LOC and action a2 is based on information 
from both devices. Fig. 2 provides simulation results for this scenario; more enlarged 
graphics can be found (for all simulations) in the previously mentioned external ap-
pendix. It can be clearly seen from these that from the given input stimulus the agent 
has obtained sufficiently large effects on SR(si) and PD(bi) for both options (i.e. for 
i={1,2}). Nevertheless, it clearly shows that the agent has developed very strong 
PA(a1) (with a max of 0.86) and Per(b1,s) (with a max of 0.86). For action option a2 it 
has a relatively weak Per(b2,s) (max of 0.25) that contributes to develop a poor PA(a2) 
(max of 0.17). Therefore, merely through this effect of incomplete perception (as 
Endsley highlighted) the agent has not developed the right situation awareness (in this 
case it would have been PAwr(a2,b2,s)) but the situation awareness PAwr(a1,b1,s) 
(max of 0.74) based on wrong perception; note that SA is a subjective term and al-
ways the agent will develop an awareness and the argument is whether that’s the right  
 

 

Fig. 2. Simulation details for Level 1 SA example 
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awareness for that situation. Subsequently the agent has shown sufficient strengths for 
all the other states related with option a1, and finally has executed the action EA(a1) 
(max of 0.81) with a PAwr(a1,b1,s) of max 0.74. 

4.2 Simulation for a Level 2 SA Example Incident 

In this situation the problem is with the Level 2 SA and according to the incident the 
reason may be due to an incorrect mental model. In this situation the pilot has ob-
served all the necessary data with a correct and complete perception, and noted a 
problem with fuel usage. Nevertheless, the pilot was unable to realize that the reason 
was a fuel leak in the engine, and therefore he has decided to follow fuel imbalance 
procedure, whereas the recommendation is not to apply fuel imbalance procedure if 
fuel leak is suspected [29]. Fig. 3 provides the simulation information for this scena-
rio. Here for the given stimulus the agent will internally prepare for two action op-
tions: a1 is to execute the fuel imbalance procedure and a2 is to deal with a fuel leak in 
the engine. For this simulation all the states involve identical parameter values for the 
action options 1 & 2 separately, except for SD(bi) and CInt(bi,s). This shows the im-
pact of subjective desires and intention of top-down control on other states. The agent 
starts action formation with the input stimulus that triggers two action options as men-
tioned. At the beginning it clearly shows that the rate of activation for Per(b1,s) and 
Per(b2,s) are almost the same (similarly the other pairs: PA(ai), SR(bi), and F(bi)), but 
the development of SD(b1) and CInt(b1,s), the rates of increase related to action option 
a2 have been significantly declined. The states SD(b2) and CInt(b2,s) have not been 
activated with sufficient strength (which was assumed to be the relevant mental model 
to interpret the situation as an engine fuel leak) and therefore the state Att(b1,s) has 
increased rapidly (with a max of 0.85) due to the cyclic dependency highlighted 
among SD(b1), CInt(b1,s) and Att(b1,s). Therefore, naturally the agent has been led to  
 

 

Fig. 3. Simulation details for Level 2 SA example 
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select option a1: s/he developed a strong prior awareness PAwr(a1,b1,s) (with a max of 
0.77) and has executed option a1 (i.e., EA(a1)) with a maximum activation value of 
0.54. Having the same parameter values for each state on the respective action options 
but only different values for each option on SD(bi), CInt(bi,s) has sufficiently ex-
plained the behavior of SA in Level 2: inability of binding the perceptual information 
relevance to the subjective goals through comprehension. 

4.3 Simulation for a Level 3 SA Example Incident 

In this scenario a pilot was expecting an approach on a particular runway (let’s say 
R14) and while he is preparing for that he gets an instruction from the air traffic con-
troller (ATC) to be vectored for a different runway (let’s say R35). Here it is assumed 
that landing on R14 is the most common action and therefore without getting a direct 
request from ATC the pilot was preparing for the habitual task. Due to this new ATC 
instruction now the pilot may be unable to immediately adjust for this new situation 
as he may have not loaded the necessary mental model to execute the new instruction. 
This may go together with the effect of ‘over-projection of current trends’ as men-
tioned in Section 2 as one of the possible reasons behind poor Level 3 SA. Therefore, 
it is assumed here that due to this over-projection of current trends, the pilot is unable 
to immediately project the necessary future actions. Therefore first s/he needs to in-
ternally suppress current action execution and needs to get ready for the relevant  
action choice for the new ATC instruction. Simulated behaviour of this situation is 
presented in Fig. 4. Two stimuli were used for this scenario but they occur at different 
time points: one at time t=0 and the other one at time t=100. More specifically, it has 
been assumed that at t=100 the agent is getting the ATC instruction and by that time 
the agent was already performing an action with the intention of approaching to R14 
(labelled as action option a1, whereas the new action after t=100 is labelled as a2). 
From Fig. 4 it shows that the agent has initiated action formation for option a1 and has  
 

 

Fig. 4. Simulation details for Level 3 SA example 
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developed sufficiently high activation of PD(b1) (max of 0.64), PA(a1) (max of 0.89), 
Per(b1,s) (max of 0.85), SR(b1) (max of 0.70), F(b1) (max of 0.77), Att(b1,s) (max of 
0.84), SD(b1) (max of 0.82), CInt(b1,s) (max of 0.90), PO(a1,b1) (max of 0.68), 
PAwr(a1,b1,s) (max of 0.82), EA(a1) (max of 0.81), and EO(a1,b1,s) (max of 0.82) (in 
the order mentioned here). Nevertheless, having a new instruction at t=100, the agent 
has started to suspend its current action and enabling the relevant states to execute 
option a2. Related to option a2, the respective states have obtained slightly higher 
activation values in the same order as for option a1. Furthermore, it can be clearly 
observed that to fully execute action a1, the agent has taken roughly 60 time intervals 
but for a2 to be fully activated it has taken more than 80 time intervals (due to the 
mental overload: to suppress the current action and to form the new action selection). 

5 Discussion 

This paper has presented a neurologically inspired cognitive model (which was 
adapted from [14]) and has provided simulation results for 3 incident examples where 
poor SA was expected as put forward by Endsley. The obtained results explain the 
different scenarios. The model has been designed according to the latest neurocogni-
tive evidence, and therefore it deviates a bit from the somewhat linear model that 
Endsley proposed originally. More specifically, this research shows how models that 
were designed according to the earlier cognitive science tradition and often assume 
linear causal cascades from sensory input to behavioural output, can be refined and 
enriched by incorporating more recent evidence on actual brain processes in which 
cyclic processes play a major role. Such model refinement often leads to dynamic 
systems style models with cyclic causal cascades instead of linear ones, as is clearly 
shown here (see also [28]). This work can be further extended to explain more specif-
ic scenarios in the aviation domain and also to other areas that are applicable. 
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Abstract. Neuroimaging studies of rare disorders, such as dyslexia, re-
quire long term, multi-centre data collection in order to create repre-
sentative disease specific cohorts. However, multi-site data have inherent
heterogeneity caused by site specific acquisition protocols, scanner set-
up, etc. The aim of this study was the analysis of the influence of the
two confounding factors: site location and field strength on feature se-
lection procedure. We propose two methods: site-dependent whitening
and site-dependent extension and compare with naive approach using
classification accuracy as a quality measure of selected features subset.
The proposed methods outperform the naive approach, and significantly
improves the classification performance of developmental dyslexia.

Keywords: dyslexia, multi-site data, MRI, feature selection,
classification.

1 Introduction

Currently high-resolution magnetic resonance (MR) images of the human brain
especially non-quantitative T1-weighted are available in several large-scale multi-
centre data repositories. This provides great opportunity to study large number
of subjects, resulting in increased sensitivity for detection of subtle anatomical
patterns but poses several methodological issues. Up to date it was demonstrated
with voxel-based morphometry (VBM) [3] that despite the MR scanner differ-
ences in hardware [18] and magnetic field strength [11] multi-centre data can be
classified using Support Vector Machine (SVM) [1] as one cohort in Alzheimer
Disease studies. However, to our knowledge, there are only two published studies
using multivariate approaches on developmental dyslexia performed on anatom-
ical images of adults (39 dyslexic and 38 controls, [13]) and on fMRI children
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data (13 dyslexic who showed reading gain and 12 who did not gain from in-
tervention, [7]). Univariate analyses with VBM based on datasets used in this
paper have been published before for the French [2], [8], [12], and the Polish
children [9].

In this paper, we analyzed neuroimaging data of developmental dyslexia (106
control and 130 dyslexic children) aquired at 3 different countries. The image
data were pre-processed using standard pipelines to extract cortical features.
This included an unbiased within-subject template space and image creation us-
ing robust, inverse consistent registration, then obtained information was used
in skull stripping, Talairach transform, atlas registration and spherical surface
mapping and parcellation [14],[15]. The significant dependency between data
distribution and site location and field strength was observed. We examine how
feture selection and in consequence a classification accuracy is affected by this
effect. We propose two methods that incorporate the site-specific information
during discrimination, namely: site-dependent whitening and site-dependent ex-
tension. They were compared with naive approach, which assumes homogeneity
of the data. The significant improvement in discrimination performance was ob-
served when site-dependent information were used.

The rest of this paper is organized as follows: firstly, we describe data aqusition
and procedure of cortical features extraction; secondly, the classification and
feature selection algorithms are described; then, we present methods for dealing
with site-dependent data; finally, the comparison results of proposed methods
with naive approach are presented and disscussed.

2 Materials and Methods

2.1 Participants

The analyzed dataset consists of 236 T1-weighted, children images coming from
3 countries: 81 Polish children – 35 control (22 girls) and 46 dyslexic (20 girls);
84 French children – 45 control (23 girls) and 39 dyslexic (14 girls); 71 German
children – 26 control (10 girls) and 45 dyslexic (22 girls). Participants came from
diverse social backgrounds and finished at least one and a half years of formal
reading instruction to differentiate serious problems in reading acquisition from
early delays that are not always persistent. Dyslexic participants were either
identified in school, or were specifically requesting clinical assessment of their
reading problems. Participants were recruited following the criteria below: age
between 8,5 and 13,7 years; IQ higher than 85, or an age-appropriate scaled
score of at least 7 on WISC Block Design, and 6 on WISC Similarities, no
formal diagnosis of ADHD, no reported hearing, sight or neurological problems.
The inclusion criterion for dyslexic children was defined as more than 1.5 SD
below grade level on a standardized test of word reading, whereas for controls it
was less than 0.85 SD below grade level.
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All studies were approved by local ethics committees (CPP Bicêtre in France;
Medical University of Warsaw in Poland; Uniklinik RWTH Aachen in Germany).
The children and their parents gave informed written consent to participate in
the study.

2.2 Imaging Procedure

High-resolution T1-weighted images were acquired in 3 different countries, the
brief summary of data set is in Table 1, details of aqusition are described below:

French Sample. For 13 control and 11 dyslexic children, whole brain images
were acquired on a 3 Tesla (3T) Siemens Trio Tim MRI platform with either
12-channels head coil with the following parameters: acquisition matrix: 256 ×
256 × 176, TR=2300 ms, TE=4.18 ms, flip angle=9 deg, FOV=256 mm, voxel
size: 1× 1× 1 mm, and for 32 control and 28 dyslexic with 32-channels head coil
with the following parameters: acquisition matrix=230 × 230 × 202, TR=2300
ms, TE=3.05 ms, flip angle=9 deg, FOV=230 mm, voxel size=0.9 × 0.9 × 0.9
mm.

German Sample. For 11 control and 35 dyslexic children, whole brain images
were acquired on a 3T Siemens Trio Tim scanner using a standard birdcage
head coil with the following specifications: acquisition matrix: 256× 256× 176,
TR=1900 ms, TE=2.52 ms, flip angle=9 deg, FOV=256 mm, voxel size: 1×1×1
mm. For 15 control and 10 dyslexic, T1-weighted images were acquired on a 1.5T
Siemens Avanto scanner using a standard birdcage head coil with the following
parameters: acquisition matrix: 256× 256× 170, TR=2200 ms, TE=3.93ms, flip
angle=15 deg, FOV=256 mm, voxel size: 1× 1× 1 mm.

Polish Sample. For 35 control and 46 dyslexic whole brain images were ac-
quired on a 1.5T Siemens Avanto platform with 32-channels phased array head
coil. T1-weighted images had the following specifications: acquisition matrix:
256 × 256 × 192; TR = 1720 msec; TE = 2.92 msec; flip angle=9 deg, FOV =
256, voxel size 1× 1× 1 mm.

Table 1. The number of considered control and dyslexic children in the analysis coming
from three countries and two different field strengths

French sample German sample Polish sample

Field strength 3T 3T 1.5T 1.5T

# Control 45 11 15 35

# Dyslexic 39 35 10 46



474 P. P�loński et al.

2.3 Data Pre-processing and Feature Extraction

The MR images data were pre-processed in order to retrieve features, which
later would be used for the purpose of classification. We were interested in
cortical metrics of subject’s brain such as thickness and volume of particu-
lar brain regions. To extract reliable volume and thickness estimates, images
where automatically processed with the longitudinal stream [15] in FreeSurfer
image analysis suite, which is documented and freely available for download on-
line (http://surfer.nmr.mgh.harvard.edu/). Specifically an unbiased within-
subject template space and image is created using robust, inverse consistent
registration [14]. Several processing steps, such as skull stripping, Talairach
transforms, atlas registration as well as spherical surface maps and parcellations
are then initialized with common information from the within-subject template,
significantly increasing reliability and statistical power [15]. Procedures for the
measurement of cortical thickness have been validated against histological analy-
sis [16] and manual measurements [10], [17]. Freesurfer morphometric procedures
have been demonstrated to show good test-retest reliability across scanner man-
ufacturers and across field strengths [5], [15]. For each subject we obtained a
vector of features constituted of cortical measures. We used the Destrieux Atlas
[4] to extract 742 features used for further analysis. These included fold index,
average thickness, surface area, grey volume and mean curvature for 74 brain
structures for left and right hemisphere.

2.4 Classification and Feature Selection

Let’s denote data set as D = {X1,X2, ...,XN ,C}, where Xi is a i-th feature
vector, Xi ∈ RM , where N = 742 is a feature number and M = 236 is a
sample count, C is a vector with discrete class number, where class value is from
set {control, dyslexic}. Additionally, for each sample there is information about
location and field strength, noted as Xl and Xs respectively.

As a discrimination method the logistic regression (LR) algorithm was used
[6]. To measure the discrimination power the Area Under Curve (AUC) com-
puted on 10-fold cross validation (CV) was employed. The features selection was
performed with step-forward manner [6]. The pseudocode of applied procedure
is described in the Algorithm 1 listing. As an optimal number of features in the
subset we select the number of features from which the classification performance
is constant or is starting to decrease with gearter features number [6]. It is worth
to note that, in feature selection procedure CV folds were drawn before testing
every new candidate subset of features to improve generalization ablitity.

2.5 Cofounding Factors Correction

In order to deal with the influence of site location and scanner field strength
variability we investigate two approaches. Their performance will be compared
with naive approach, which assumes homogeneity of the data.

http://surfer.nmr.mgh.harvard.edu/
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Algorithm 1: The applied feature selection procedure.

input : D = {X1,X2, ...,XN ,C},
L number of maximal features to consider in selection.

output: The selected optimal subset S of features.
begin

Let’s denote as S0 = {} an empty feature subset
for k in 1 .. L do

for i in 1 .. N do
Build a classifier Ki using as a feature subset {Sk−1,Xi}
Draw folds for CV
Compute perfomance of classifier Ki with AUC on 10-fold CV

Select classifier Kj with highest ACU on 10-fold CV
Set Sk = {Sk−1,Xj}

Among candidate subsets Sk select one which statisfy selection criteria.

Site-Dependent Extension (SDE). We included the information about the
site location and field strength by adding them as additional features into the
subjects’ set of features. Thus, we expand the attributes space used by the classi-
fication algorithm. The starting subset of features in feature selection procedure
is S0 = {Xl,Xs}. We called this approach as site-dependent extension (SDE).

Site-Dependent Whitening (SDW). Each measured i-th feature Xi can be
expressed as sum of true feature value Xtrue

i and site-dependent vector Γ:

Xi = Xtrue
i + Γ, (1)

The site-dependent vector Γ can be approximated with linear combination of
site-dependent features:

Γ = β1Xl + β2Xs. (2)

The β parameters can be computed with linear regression by solving the equa-
tion:

Xi = β1Xl + β2Xs + β0, (3)

where β0 is representing an expected value of Xtrue
i . The estimate of Xtrue

i can
be found by substracting from measured value the site-dependent factors value,
as desribed in the following equation:

X̂i
true

= Xi − β1Xl − β2Xs. (4)

Applying this procedure to each feature will remove the site dependency from
the data. After using the SDW, the feature selection procedure is performed with

estimated true feature vectors X̂i
true

. We called this approach as site-dependent
whitening (SDW).
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3 Results

From 742 features describing the cortical properties of the analyzed subjects, the
462 features are significantly dependent (p-value < 0.05) from at least one of the
factors: site location or scanner field strength. To visualize the site-dependency
the boxplots with respect to site factors are presented in the Fig.1 for one selected
feature (with the lowest p-values). After applying the SDW, all features were
independent from site loction and scanner field strength (p-values > 0.999). In
the Fig.1 are presented results of SDW transformation on selected feature.
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Fig. 1. The dependency of a selected feature (average cortical thickness of right hemi-
sphere gyrus occipitotemporalis medialis) on the country and scanner field strength.
The upper plots present the original feature values, lower with the SDW applied. For
each plot a p-value computed with t-test is provided.

The procedure of feature selection was performed for each approach: naive,
SDW, SDE. The discrimination power measured as AUC on 10-fold CV for
number of feaures varying from 1 to 50 is presented in the Fig.2. As an opti-
mal subset size a solution with 25 features was selected for each approach1. It

1 For SDE method there were 25 cortical features descibing a brain structures and
two additional describing the site-dependend factors.
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Fig. 2. Classification accuracy during step-forward feature selection presented as mean
and standard error over 10-fold CV for approaches: naive, SDW, SDE

can be observed from the Fig.2, that for more than 25 features in the subset
the classification performance does not increase or even decrease for all exam-
ined methods. The AUC for examined methods for selected optimal subset of
features is presented in the Table 2. The performance of the SDW and SDE is
approximately 12% higher than naive approach, while SDW and SDE has very
similar results (with higher standard deviation of SDW method). The all pro-
posed methods with selected optimal features give significantly better results
than performing disrimination on all available features, which give 0.61 ± 0.10,
0.56 ± 0.06, 0.62 ± 0.08 AUC on 10 fold-CV for using naive, SDW and SDE
approaches respectively. In the Fig.3 a Receiver Operating Characteristic curve
(ROC) for selected 25 features subset is presented for each method. From ROC
curves we can observe that SDW and SDE give similar performance, and they
overcome the naive approach.

For selected the optimal subset of 25 features the performance of other than
LR algorithms: Random Forest and linear Support Vector Machine (SVM) was
tested. The obtained results of AUC on 10-fold CV are presented in the Table
2. The SDW and SDE gained higher results than naive approach for all used
classifiers. However, there is an increase in the difference between performance
of SDW and SDE on Random Forest and SVM classifiers. It is the highest for
SVM, where SDW is better than SDE by 0.086 on average.
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Fig. 3. Receiver Operating Characteristic curves obtained on selected subset of 25
features for three approaches

Table 2. The performance of different classifiers on selected subset of 25 features
computed as mean and standard deviation of AUC computed on 10-fold CV for different
approaches: naive, SDW, SDE

LR Random Forest SVM

Naive 0.728 ± 0.089 0.640 ± 0.130 0.616 ± 0.090

SDW 0.824 ± 0.155 0.690± 0.076 0.737 ± 0.081

SDE 0.832 ± 0.098 0.660 ± 0.082 0.651 ± 0.090

4 Discussion

The analysis of neuroimaging data of developmental dyslexia was presented. The
data consists of 106 controls and 130 dyslexic subjects and each of them was de-
scribed with 742 cortical features. There were two dfficulties in analysis of this
data which we overcame. Firstly, the analyzed data is highly dimensional, in
our case a number of features is three times larger than number of subjects -
it is so-called ’large p, small n’ problem. Thus, using all available features can
lead to poor classification performance. The logistic regression classifier obtains
a 0.61 AUC performance with all available features and treating homogeneously
features from all locations. We applied the step-forward feature selection which
optimize the AUC on 10-fold CV to select a subset of 25 featues, which is only
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a 3.4% of all features. After feature selection the classifier performance increase
to 0.73 (with naive approach). The second problem, is data dependency to site
location and scanner field strength. In our case, 62% of features significantly
depend on at least one of the site factors (with p-value < 0.05). We propose two
methods to cope with this problem, namely: site-dependent whitening (SDW)
and site-dependent extension (SDE). The SDW method approximates and sub-
stracts a site-dependent part from feature value. The all features after SDW
were independent to site factors (p-value > 0.999). The SDE method extends
the features space by adding the site factors. For each of the proposed method
a procedure of feature selection was repeated. This increase the discrimination
accuracy on 25 selected features to 0.82 and 0.83 for SDW and SDE, respectively.
This is an improvement by about 12% (in AUC difference) over naive approach
after feature selection and over 25% better than naive approach with all features
used in classification. What is more, without site-dependency correction the se-
lection of optimal features number will be ambiguous. For naive approach the
increase in classfication performance with increasing the feature number from 1
to 25 is not as clearly visible as for SDW or SDE.

To conclude, the first attempt to classify anatomical T1-weighted data of
dyslexic and control children acquired at 3 different countries was made. The high
dimensionality and dependency to site specific factors of the data were overcome
with feature selection and proposed methods: SDW and SDE. This significantly
improves the discrimination performance. The performed study showed that fea-
ture selection and including the information about site factors are important in
analysis of neuroimaging data.
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Effects of hardware heterogeneity on the performance of SVM alzheimer’s disease
classifier. NeuroImage 58(3), 785–792 (2011)

2. Altarelli, I., Monzalvo, K., Iannuzzi, S., Fluss, J., Billard, C., Ramus, F., Dehaene-
Lambertz, G.: A functionally guided approach to the morphometry of occipitotem-
poral regions in developmental dyslexia: Evidence for differential effects in boys and
girls. The Journal of Neuroscience 33(27), 11296–11301 (2013), PMID: 23825432

3. Ashburner, J., Friston, K.J.: Voxel-based Morphometry—The methods. NeuroIm-
age 11(6), 805–821 (2000)

4. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D.,
Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T.: An automated labeling
system for subdividing the human cerebral cortex on MRI scans into gyral based
regions of interest. Neuroimage 31(3), 968–980 (2006)



480 P. P�loński et al.
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Abstract. Human brain imaging techniques, such as Magnetic Reso-
nance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been
established as scientific and diagnostic tools and their adoption is grow-
ing in popularity. Statistical methods, machine learning and data min-
ing algorithms have successfully been adopted to extract predictive and
descriptive models from neuroimage data. However, the knowledge dis-
covery process typically requires also the adoption of pre-processing,
post-processing and visualisation techniques in complex data workflows.
Currently, a main problem for the integrated preprocessing and mining
of MRI data is the lack of comprehensive platforms able to avoid the
manual invocation of preprocessing and mining tools, that yields to an
error-prone and inefficient process. In this work we present K-Surfer, a
novel plug-in of the Konstanz Information Miner (KNIME) workbench,
that automatizes the preprocessing of brain images and leverages the
mining capabilities of KNIME in an integrated way. K-Surfer supports
the importing, filtering, merging and pre-processing of neuroimage data
from FreeSurfer, a tool for human brain MRI feature extraction and
interpretation. K-Surfer automatizes the steps for importing FreeSurfer
data, reducing time costs, eliminating human errors and enabling the
design of complex analytics workflow for neuroimage data by leveraging
the rich functionalities available in the KNIME workbench.

Keywords: MRI, DTI, FreeSurfer, FSL, Data Workflows, Data Mining.

1 Introduction

Neuroimages are produced by several techniques such as positron emission to-
mography (PET), magnetic resonance imaging (MRI), functional MRI (fMRI)
and diffusion tensor imaging (DTI). Nowadays, neuroimaging methods are the
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primary source of information in neuroscience and the further processing of brain
images has exponentially increased the quantity of data to be analysed. In [1],
the authors discuss the complexity of the knowledge discovery process for human
brain data, especially when it requires information fusion from heterogeneous
sources, e.g. age, genders, genetic makers, EEG, morphological measures, etc.
Neuroimages need to be processed to extract relevant features before it is possible
to perform any kind of analysis [2] together with clinical and genomics informa-
tion. This phase generates segmented and reconstructed 3D images and numeri-
cal summaries, such as areas, volumes, thicknesses, signal intensities, probability
distributions and diffusion values [1].

It is often desirable to process neuroimages of a large number of subjects in
an almost fully automated pipeline. Although this may introduce some overes-
timations [1], this approach is definitely faster than manual segmentation and
is leading to a high-throughput data generation. As a consequence, managing,
filtering and, in general, pre-processing large volumes of data from many hori-
zontal and vertical surveys has become a critical component of the knowledge
discovery process of brain data. For example, neuroscientists often need to con-
vert and import neuroimage data from several sources into a single table format
for an integrated analysis in their preferred analytical platform [3]. This data
preparation phase is clearly a time consuming task, which is also error prone
when carried out manually. Moreover, the choice of the appropriate tools for
statistical analysis and data mining is often critical for a fast prototyping of
complex data workflows, their documentation and deployment. The Konstanz
Information Miner (KNIME) [4,5] is a popular open-source software for data
analysis workflows. KNIME has a very intuitive and user-friendly interface, an
elegant and powerful extension mechanism based on the plug-in technology of
the Eclipse rich client platform, and a seamless integration of other platforms
such as Weka and R. Several KNIME extensions are available for specific al-
gorithms and application domains, many of which are contributed by scientific
communities, such as Cheminformatics and Bioinformatics.

In this paper, a novel and unique KNIME plug-in for Neuroscience, K-Surfer1,
is presented. K-Surfer facilitates the design and deployment of fully automated
workflows for extracting, managing and analysing statistical measures produced
by FreeSurfer and FSL. K-Surfer reduces time costs for importing and merging
neurological data and eliminates human errors from this process. K-Surfer is
unique in the sense that it allows neuroscientists to integrate in a unique envi-
ronment the preprocessing and mining tasks of the neuroimage analysis pipeline.

This paper has been organized in the following way. Section 2 gives an overview
of the process and tools for brain MRI data acquisition, processing and analysis.
In Section 3, the main characteristics of KNIME are briefly presented. Section 4
provides a detailed description of the proposed KNIME extension, K-Surfer. A
case study is illustrated in Section 5 using the FreeSurfer tutorial data. Finally,
conclusions and future works are discussed in the Section 6.

1 https://sourceforge.net/projects/ksurfer/

https://sourceforge.net/projects/ksurfer/
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2 Background on Brain MRI Data Analysis

Diagnostic imaging of the human brain provides in vivo images related both
to its structures and its functionalities. Several brain imaging techniques exist;
Magnetic Resonance Imaging (MRI) is well known for its high image quality in
terms of spatial resolution and signal to noise ratio (SNR) [6]. Moreover, MRI
does not use ionizing radiation (X-rays) or radioactive tracers and thus it is safer
than other methods such as Computed Tomography (CT).

Magnetic resonance is able to provide static anatomical information (struc-
tural MRI), dynamic physiological information (functional Magnetic Resonance
- fMRI) or diffusion indices (Diffusion Tensor Imaging - DTI). Different amounts
of diffusion weighting (Diffusion Weighted Imaging - DWI) return diffusion co-
efficients such as Mean Diffusivity (MD) or Fractional Anisotropy (FA). These
diffusion indices, which show the main moving direction of water molecules, al-
low performing tractography, a technique for tracing fibre bundles within white
matter [6].

Software for neuroimaging processing could be roughly categorized into mono-
lithic and modular implementations. Examples of the monolithic approach are
SPM [7], BrainVoyager [8], and Caret [9], while modular software examples are
3DSlicer [10], Camino [11], FreeSurfer [12] and FSL [13]. Rex et al. [14] list ad-
vantages and disadvantages of monolithic and modular software. FreeSurfer and
FSL are popular examples of the modular approach: their tools and scripts can
be used in conjunction for obtaining best results.

FreeSurfer [12] is an open-source suite of tools for conducting both volume-
based and surface-based analysis. FreeSurfer users are able to drive the default
processing stream for anatomical analysis by the UNIX shell script recon-all.
Moreover, FreeSurfer provides the tool TRACULA (TRActs Constrained by Un-
derLying Anatomy) for performing tractography, that is the reconstruction of a
set of 18 major white-matter pathways from DWI data. TRACULA workflow
is managed by the UNIX shell script trac-all, which is composed of three steps:
a pre-processing phase, the ball-and-stick diffusion model fitting and the gen-
eration of the probability distributions for each white-matter bundle. For the
ball-and-stick model fitting, TRACULA uses bedpost, a tool from FSL’s library.
The FMRIB Software Library (FSL) [13] provides freely available image analysis
and statistical tools for fMRI, MRI and DTI brain data. Similarly to FreeSurfer,
FSL is composed of several modules for three main tasks: structural, functional
and diffusion analysis.

Merging, managing and analysing the multi-dimensional data generated by
FreeSurfer and FSL is not straightforward and requires an accurate and detailed
knowledge of their tools, conventions and file formats.

There have been a few attempts to automatize commands writing for ex-
porting FreeSurfer data2. For example, Matlab/Octave scripts are provided by
default installation. FreeSurfer provides three command-line tools for extracting
measures of interest into a table format: asegstats2table, aparcstats2table and

2 https://surfer.nmr.mgh.harvard.edu/fswiki/UserContributions/Scripts

https://surfer.nmr.mgh.harvard.edu/fswiki/UserContributions/Scripts
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tractstats2table. Since each of the three default scripts is able to extract a specific
type of data only, joining together volume, thickness and diffusion values requires
additional work. Manually merging this data with demographical/clinical data
and finally importing them into an analytics platform, makes the process slow
and may add a source of errors that should not be in fact ignored.

Neuroimaging in Python Pipelines and Interfaces (Nipype)3 is one of the
attempts to automatize the writing process of FreeSurfer/FSL scripts. Nipype
provides a Python interface for wrapping specific FreeSurfer functionalities such
as the reconstruction, but it does not provide any wraps or tools for importing,
visualising or analysing numerical data from FreeSurfer. PySurfer4 is another
example of Python library intended for use with FreeSurfer. However, its aim
is giving a simpler interface than FreeSurfer scripts for displaying neuroimages,
e.g. fMRI Activation or Volume, Conjunction Map.

This paper introduces a novel tool, K-Surfer, for automatically importing,
managing and analysing FreeSurfer/FSL data into KNIME, a modern, user-
friendly and extendible data analytics platform.

3 The Konstanz Information Miner (KNIME)

Several commercial and open-source software implementing data mining al-
gorithms exist. The Konstanz Information Miner (KNIME) [4,5], along with
STATISTICA, SAS JMP and IBM SPSS Modeler, has received high satisfac-
tion ratings in the last edition of the largest survey of data mining, data sci-
ence and data analytics professionals in the industry [15]. Some commercial
and widely used software provide robust tools for statistical analysis. However,
apart from the cost for their license, they cannot be easily extended with new
functionalities, nor easily integrated with external tools. KNIME provides an
easy-to-use platform for data analysis, manipulation, visualisation and reporting.
KNIME is developed in Java and is based on Eclipse, an integrated development
environment (IDE) for programmers. KNIME seamlessly integrates R and Weka,
making it a good choice for completeness and user-friendliness at the same time.
However, the most interesting aspect in KNIME is the use of a graphical rep-
resentation of the data workflows: KNIME manages the analysis process using
workflows made by nodes (processes) linked by edges (data flows). Each node
encapsulates a specific algorithm, such as database integration, pre-processing
techniques, descriptive and predictive model learners, statistical tests, visuali-
sation: hundreds of nodes are provided in the base installation and many more
can be easily downloaded and installed when required. Nodes can have one or
two inputs and output ports: inputs and outputs are managed by means of an
internal data table format which is optimised for sequential access and can scale
up with the use of the secondary memory when the main memory is not suf-
ficient. Nodes may also provide data visualisation (Views), which supports an
interactive data exploration approach. In particular, the Hiliting functionality,

3 http://nipy.org/nipype
4 http://pysurfer.github.io/

http://nipy.org/nipype
http://pysurfer.github.io/


K-Surfer 485

a unique characteristic supported by KNIME, allows sharing data selection in
different nodes and views. This functionality is particularly effective for the in-
teractive exploration of data.

4 K-Surfer

K-Surfer is a novel KNIME plug-in that contributes a number of nodes and
meta nodes to integrate neuroimage data formats (FreeSurfer and FSL) into
KNIME and to allow their further data mining analysis with the KNIME al-
gorithms. K-Surfer simplifies the importing of multi-dimensional data for group
analysis based on the volume, thickness and diffusion data of neuroimages. Its
user-friendly nodes configuration dialogues do not require the user to write UNIX
shell commands and scripts. K-Surfer uses the configuration to generate and ex-
ecute appropriate commands and scripts transparently to the user. In particular,
K-Surfer automatically detects the file system structure generated by FreeSurfer
and the files of interest, and manages the environment variables required by the
various FreeSurfer tools. K-Surfer automatizes the selection and importing of
neuroimages data for further analysis, thus reducing time costs and eliminating
potential human errors. K-Surfer allows importing any set of measures of inter-
est for any set of subjects in a table format into KNIME workflows, ready for
any analysis process with other KNIME nodes. For example, K-Surfer makes it
possible to quickly build a workflow for statistical analysis and data mining for
longitudinal studies and for merging neuroimage data to other heterogeneous
data (information fusion), such as demographic, behavioural, clinical, genomics
and proteomics data. K-Surfer also integrates the FreeSurfer tool for the visu-
alisation of 3D brain tracts into KNIME, to allow an immediate comparison of
numerical and visual findings.

4.1 Requirements and Software Architecture

The main purpose of K-Surfer is to provide a communication interface between
KNIME and FreeSurfer/FSL that complies to several functional requirements.
In particular, for assuring the data quality, software for this goal must:

– automatize steps for importing measures FreeSurfer/FSL data (volume, thick-
ness, diffusion measures);

– prepare data in a table format for statistical analysis and data mining;
– provide a graphical user interface for selecting subjects of interest and pa-

rameters;
– automatically detect folders and files from the installation root of FreeSurfer;
– automatically set environment variables, such as FreeSurfer home and sub-

jects directory;
– be able to import data from both local and remote machines;
– avoid the use of intermediate and supporting files;
– ensure the uniqueness of row IDs in the generated data tables;
– provide name conventions for attributes following FreeSurfer specifications;
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– guide the user to the data management;
– extend current functionalities of FreeSurfer scripts for converting text files

into table format and, in particular, allow:

• importing measures related to one or more brain tracts as a single step;
• selecting subjects of different studies stored in different directories;
• merging volume, thickness and diffusion data tables;

– provide a graphical user interface to visualize the probability distribution of
single white-matter pathways.

K-Surfer is developed in Java as an Eclipse plug-in for KNIME SDK v2.8.2
under MacOS and Linux5. It is compatible with FreeSurfer v5.3, FSL v5.0 and
KNIME Desktop v2.9. K-Surfer is distributed as a jar archive (350 kB) and it is
installed by simply moving the archive into the dropins folder of KNIME/Eclipse.
Before using any K-Surfer node, the FreeSurfer home path must be set in the
Preference menu of KNIME. Figure 1 depicts the K-Surfer software architec-
ture. The text files produced by FreeSurfer/FSL, e.g. pathstats.overall.txt and
aseg.stats.txt, are stored in the Data Layer. K-Surfer is integrated to the KN-
IME environment to provides functionalities at the Application Layer by means
of FreeSurfer tools. Other KNIME nodes also provide data preprocessing, data
fusion, data analysis and visualization at the Application Layer. For example,
it is straightforward to import and integrate other kind of information such as
behavioural data.

Fig. 1. K-Surfer software architecture

5 FreeSurfer and FSL are only available for UNIX.
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K-Surfer nodes can be combined with other KNIME nodes to build complete
data workflows of brain MRI data for preprocessing-analysis-visualization tasks.
The next section describes the features of K-Surfer nodes and their configuration
options in detail.

4.2 K-Surfer Nodes and Meta Nodes

After the installation, K-Surfer nodes are available in the Node Repository of
KNIME under the root category K-Surfer (area (a) in Fig. 2). The subcategory
Meta Nodes contains meta nodes (see below for a description of meta nodes)
that provide sub-workflows, i.e. single nodes containing workflows with nodes
and even other meta nodes. These meta nodes combine K-Surfer nodes and
KNIME nodes to provide complex workflows for specific tasks as single nodes
(modularization). The area (b) of Fig. 2 shows a simple KNIME workflow project
to showcase all K-Surfer nodes and meta nodes, while the area (c) in Fig. 2 shows
the Node Description of a selected node. The current implementation of K-Surfer
includes 5 nodes and 2 meta nodes described in the following:

• FSDDIoverall - FreeSurfer Diffusion Data Import overall. This node
extracts anisotropy and diffusivity values averaged over an entire pathway as
calculated by TRACULA. The FSDDIoverall node uses the FreeSurfer script
tractstats2table to import the measures into a data table. The configuration
dialog contains a tab Options for selecting one or more subjects and a tab
Tracts and Attributes for selecting one tract and one or more metrics, such
as Mean Diffusivity or Fractional Anisotropy.

• FSDDIbyvoxel - FreeSurfer Diffusion Data Import by voxel. This
node extracts diffusion measures as a function of the position along the
trajectory of the pathway, as calculated by TRACULA. The FSDDIbyvoxel
node uses the FreeSurfer script tractstats2table to import the measures into
a data table. The configuration dialog contains a tab Options for selecting
one subject and a tab Tracts and Attributes for selecting one tract and one
metric, such as Mean Diffusivity or Fractional Anisotropy.

• FSVDI - FreeSurfer Volume Data Import. This node extracts the
volumes of specific structures, calculated during the FreeSurfer processing
stream (recon-all). The FSVDI node uses the FreeSurfer script asegstats2table
to import the statistics of the subcortical segmentation into a data table.
The configuration dialog contains a tab Options for selecting one or more
subjects.

• FSTDI - FreeSurfer Thickness Data Import. This node extracts the
thickness and other measures of specific structures, calculated during the
FreeSurfer processing stream (recon-all). The FSTDI node uses the FreeSurfer
script aparcstats2table to import the statistics of the cortical segmentation
into a data table. The configuration dialog contains a tab Options for select-
ing one or more subjects and a tab Measures for selecting the left or right
hemisphere and one measure among Surface Area, Gray matter volume, Av-
erage Thickness and Thickness Standard Deviation.
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• FSPV - FreeSurfer Pathways Viewer. This node visualises the proba-
bility distribution of single white-matter pathways or all white-matter path-
ways simultaneously as calculated by TRACULA. The FSPV node uses the
FreeSurfer tool freeview adding, for each chosen tract, default values for
visualisation.

The two K-Surfer meta nodes combine and extend the nodes listed above. Thanks
to these meta nodes unique functionalities are provided:

• Add Class Attribute (overall). This meta node uses two FSDDIoverall
nodes to add a new column containing the class attribute to a diffusion table.
E.g., for group analysis, the user may need to add a class attribute, such as
healthy control patient and affected patient.

• Select multiple tracts (overall). This meta node allows importing the
diffusion values of multiple tracts at once by using the FSDDIoverall node.
In the next section, a simple case study for analysing FreeSurfer tutorial
data is presented to provide a step-by-step guide for using K-Surfer.

Fig. 2. Screenshot of KNIME workbench (a) K-Surfer nodes category, (b) Workspace
containing K-Surfer nodes, (c) Node Description for FreeSurfer Diffusion Data Import
overall
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5 A Case Study Using FreeSurfer Tutorial Data

K-Surfer makes FreeSurfer data analysis simpler and faster. This simple case
study uses the tutorial data6 provided by FreeSurfer. The tutorial dataset con-
tains MRI data of a small set (ten) of healthy subjects generated by recon-all
and trac-all scripts. Furthermore, a text file containing information about age
and gender is available. For the sake of a demonstration, here it is hypothesized
that the first five subjects are affected patients (PAT) and the remaining five
are control patients (HC). The choice of measures to analyse depends on the
particular neurodegenerative disease to investigate. For example, Parkinson’s
disease is well known for affecting the volumes of encephalic areas. In this case
of study the class ”PAT” is treated as affected by a disease that influences the
diffusion indices (e.g. Amyotrophic Lateral Sclerosis). Thus, only nodes for ex-
tracting this kind of measures are used, but similar workflows can be designed
for investigating volumes or volumes and diffusion measures together. The work-
flow in Figure 3 is designed for the task of accepting or rejecting the hypothesis
that the means of diffusion indices in Left Anterior Thalamic Radiations are
equal between PAT and HC subjects. It contains two FSDDIoverall nodes, one
for importing PAT subjects (orange area) and the other for HC subjects (green
area). Fig. 4.a shows the Options tab of the configuration panel of the node
FSDDIoverall for selecting subjects of interest. Fig. 4.b depicts the tab Tracts
and Attributes, for selecting the tract of interest and the attributes (in this case
Left Anterior Thalamic Radiations and Fractional Anisotropy, Mean Diffusiv-
ity, Axial Diffusivity and Radial Diffusivity). Once executed, the FSDDIoverall
node generates an output table in which the columns are named following the
convention: coded_name_of_tract:attribute, where coded_name_of_tract is
the standard abbreviation for the tract used by FreeSurfer. The KNIME node
Joiner is used to join the output of the FSDDIoverall node to a table containing
data about gender, age and diagnosis, which is imported from a text file with
the CSV Reader node, for both PAT and HC subjects. Using the Concatenate
node the data tables of the PAT and HC subjects are merged and a node Color
Manager associates a color to each class. The yellow area of Fig.3 shows a sub-
workflow for a simple statistical analysis. The node Scatter Matrix provides a
graphical representation of the data and a box plot about Fractional Anisotropy
of each class is generated with the node of type Conditional Box Plot. This lat-
ter node also returns Robust Statistics (Lower Quartile, Upper Quartile, etc.).
The Statistics node calculates statistical moments such as minimum, maximum,
mean, standard deviation, variance and median. A node of type Independent
groups t-test is added for performing a Levene-test, used for assessing the equal-
ity of variance between two groups, and an independent groups t-test. The Test
statistics view of this node gives an overview of the results of the test in term
of p-values. Since tutorial data consisting all in healthy control subjects, the
t-test result leads to accept the null hypothesis. In brown areas of Fig.3, two
FSPV nodes are added for visualizing and comparing the reconstructed tracts

6 https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Data/

https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Data/
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of PAT 1 and HC 1 subjects. The differences related to diffusion indices of the
Left Anterior Thalamic Radiations in the two groups can be investigated using a
Data Mining approach. The output provided by concatenating the two groups,
is the input for a k-Means node (red area of Fig.3). The Crosstab node gives
the contingency table related to the clusters and chi-square test statistics. Re-
garding classification, in the blue area of Fig.3 the workflow for Decision Tree
learner is showed. A Partitioning node is added to split the data in two sets,
67% for the training set and the rest for the test set. A Scorer node at the end of
the workflow provides the Confusion Matrix and a table of accuracy statistics.
Using K-Surfer nodes together with other standard KNIME nodes, it is possible
to perform even more complex analysis. For example the Add Class Attribute
(overall) meta node can be used in combination with the Select multiple tracts
(overall) meta node for obtaining a data table containing multiple tracts and
their relative attributes.

Fig. 3. Case Study workflow for confuting the null hypothesis that ”the means of
diffusion indices in Left Anterior Thalamic Radiations are equal between PAT and HC
subjects”
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Fig. 4. (a) Tab Options and (b) tab Tract and Attributes of the configuration panel of
FSDDIoverall node for the case study

6 Conclusion

High resolution and a non-invasive approach make MRI technologies both a
very accurate and desirable diagnostic tool. Mining neuroimage data represents
a promising approach for supporting diagnosis, monitoring treatment and dis-
covering new knowledge about brain functions and neurological deficits [16].
However, the overwhelming availability of experimental data and the complex-
ity of the preprocessing and data selection phases, is a main bottleneck in brain
MRI data analysis. Surprisingly, a comprehensive data analytics environment
for managing and analysing neurological data does not exist yet.

Among several well-known and general-purpose analytics platforms, KNIME
stands out for its usability, friendliness and extendibility. The main goal of this
study was to extend its functionalities by designing and implementing K-Surfer,
a bundle of new KNIME nodes for importing, managing and analysing neuroim-
age data generated by FreeSurfer and FSL. K-Surfer automatizes the overall
process and helps to reduce time costs and human errors by removing the need
for low-level data manipulation. With K-Surfer importing multiple measures
from many neuroimage surveys and integrating heterogeneous data sources are
straightforward and automatic operations.

As future work, further K-Surfer nodes will be developed, for example, for vi-
sualising cortical and subcortical segmentation. Since FreeSurfer easily interop-
erates with other tools, like Caret and 3D Slicer, K-Surfer could also be extended
to support their data formats.
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Abstract. A kind of metacognitive and cognitive activity patterns in
the brain have been found in the task state, showing the gradient distri-
bution from abstract to concrete processing in the frontal and parietal
cortex especially. In our early study, it is observed that this kind of gra-
dient organization is intrinsic and prepared in the resting state. Learning
experience is a process from metacognitive to cognitive processing, which
might change the spontaneous activity patterns in the resting brain. This
study is to explore how the learning experience, including both long-term
practice and short-term task experience, influences the intrinsic gradient
organization in the human brain. Focused on the task-evoked metacogni-
tive and cognitive pattern regions, by comparing four resting state data,
before and after task performing in Day 1 before practice named pre-pre
and pre-post respectively, and before and after task in Day 7 after 5-day’s
practice, named post-pre and post-post respectively, we investigated the
change of gradient organization in the human brain with the approach
of functional connectivity (FC) analysis. The result showed that the gra-
dient organization is quite stable across the four resting states, which is
similar with our previous finding. Task performance enhanced the corre-
lation between cognitive and mixed functional network, especially after
long-time practice, suggesting the key role of cognitive network in the
task execution. Moreover, after long practice, the internal connectivity
within the metacognitive network and the connection between mixed
and cognitive functional network were both weakened, which suggested
a functional modulation and separation when task performance became
more and more skilled and automatic.

1 Introduction

Recent researches suggest that the gradient organization from concrete to ab-
stract processing is widely distributed in the frontal and parietal cortex using
functional MRI (fMRI) in the task state [1–6]. And our previous study shows that
this kind of gradient organization is observed in the resting brain. It is intrinsic
and prepared in the resting state [7]. This distribution is divided into three layers:
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metacognition, mixed and cognition. Cognitive processing is relative specific, and
the main function comprises information extraction, characterization and oper-
ations. Metacognitive processing is the function of monitoring and reflection,
which is more abstract and can be seen as the cognition of cognition [1, 8]. In
addition, some researches also show cognition is related to task-positive voxels
and metacognition is related to task-negative voxels in the task-state [7, 9, 10].
This study focuses on the change of gradient organization influenced by short
time task performance and long-time practice.

Researches find the problem-solving strategies would be changed after a long-
time practice or learning (for example, see [11]). In addition, the human brain
networks will be dynamic configuration during the learning phase, and the func-
tional connectivity is dynamic to support the consolidation of previous experi-
ence [12, 13]. It is suggested that the dynamic characteristics of the human brain
played a key role in stability and plasticity [13].

This study is to explore how the learning experience, including both long-term
practice and short-term task experience, influences the intrinsic gradient organi-
zation in the human brain. Since learning experience includes the process from
metacognitive to cognitive processing, we hypothesized as following: before the
long-time learning, the connection between the metacognitive and cognitive net-
work would be stronger; but after practice, the connection between them would
weakened because of the skilled processing. According to the task-evoked pat-
tern [1, 14, 15] and our previous study, we predefined six regions of interest (ROIs)
to focus on in this study. Two regions are related to metacognitive processing: an-
gular gyrus (ANG) and Brodmann Area 10 (BA10), the regions of lateral infe-
rior prefrontal cortex (LIPFC) and posterior parietal cortex (PPC) are related to
mixed processing, and the regions of horizontal intraparietal sulcus (HIPS) and
posterior superior parietal lobule (PSPL) belong to the cognitive network.

2 Material and Methods

2.1 Subjects

Twenty-one subjects (15 males, 6 females, and 23.14 ± 1.32 years old) from
Beijing University of Technology participated in the study. All of the participants
were right-handed and reported with no history of neurological or psychiatric
disorders. Written informed consent was obtained from each participant.

2.2 Data Acquisitions

Participants were scanned on 3.0 Tesla Siemens MRI scanner with the parame-
ters: repetition time/echo time = 2000/31 ms, thickness/gap = 3.2/0 mm, ma-
trix = 64 × 64, axial slices number = 32 and field of view = 200 × 200 mm2.
Voxel size: 3.125×3.125×3.2mm3. The whole brain functional images using an
echo planar imaging (EPI) sequence were acquired over all sessions. There were
five-days practices and the practice lasted for one hour in each day in order to
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improve the proficiency. Each participant was scanned including both a 4 × 4
Sudoku task [16] and two resting states in Day 1 and Day 7 (Fig.1). During the
rest scans, each participant was instructed to relax with their eyes closed and
move as little as possible and each participant took part in two fMRI scans that
lasted approximately 90 min.

Fig. 1. This study compared four resting state: two resting states scanning in the first
day before and after task, named pre-pre and pre-post respectively; after five days
practice, two resting states scanning in the seventh day before and after task, named
post-pre and post-post respectively. The present study aimed to reveal short time tasks
and long-term practice or learning effect on functional organization in four resting state.

2.3 Preprocessing of Functional Data

Images were firstly preprocessed using data processing assistant for resting-state
fMRI (DPARSF, http://rfmri.org/DPARSF) over sessions respectively. FMRI
preprocessing steps included: first, the first 7 images were discarded for mag-
netization equilibrium; second, all the images were corrected for the acquisition
time delay by slice timing; third, those were realigned to the first volume for
head-motion correction in each session; fourth, all the images were spatially
normalized to the Montreal Neurological Institute (MNI) EPI template and re-
sampled to 3.0 mm cubic voxels. Subjects (2 subjects) with head motion more
than 3.0 mm of maximal translation (in any direction of x, y or z) or 1.5◦ of
maximal rotation throughout the course of scanning were excluded from further
analysis. After those, data were spatially smoothed (4 mm full width at half max-
imum Gaussian blur) and temporally band-pass filtered into the frequency range
of 0.01-0.08 Hz to reduce the effects of low-frequency drift and high-frequency

http://rfmri.org/DPARSF
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noise, followed by a multiple linear regression analysis to remove several sources
of spurious variances [10]: (i) six parameters obtained by rigid body correction
of head motion, (ii) global brain signal, (iii) signal from a ventricular region of
interest, and (iv) signal from a region centered in the white matter. The resid-
ual of the linear regression was considered the neuronal-induced signal of each
corresponding region.

2.4 Functional Connectivity Analysis

We focused on six predefined regions [1] in Tabel 1 and the detail information
of the seeds was listed in Table 1. Then, we used the software package of data
processing assistant for resting-state fMRI (DPARSF) [17] to acquire each pre-
defined regions of interest (ROIs) time series by averaging the time series over
all voxels within each ROI. For the current study we examined correlations as-
sociated with six predefined seed regions and we calculated Pearson correlation
coefficients of time series (BOLD signals) between any pair of the seeds, fol-
lowed by a Fisher’s r-to-z transformation [18] to improve the normality of the
correlation coefficients. The final one sample t-test (two-tailed) was based on the
threshold of p < .05 (corrected) to test the stability of gradient distribution and
paired t-test was based on the threshold of p < .05 (uncorrected) to the change
of gradient distribution. The individual within-subject was then averaged across
subjects to give a group-wise matrix for each resting state.

Table 1. The Talairach coordinates of the centers of six predefined regions of interest

Seed Size
Talairach Coordinates
x y z

ANG 4 ∗ 4 ∗ 4 -41 -65 37
BA10 4 ∗ 4 ∗ 4 -35 49 7
LIPFC 5 ∗ 5 ∗ 4 -43 23 24
PPC 5 ∗ 5 ∗ 4 -23 -63 40
HIPS 4 ∗ 4 ∗ 4 -34 -49 45
PSPL 4 ∗ 4 ∗ 4 -19 -68 55

3 Results

3.1 The Stability of the Gradient Distribution

With different thresholds, we found that six brain regions showed stable gra-
dient distribution (Fig.2: under FDR both 0.05, Fig.3: under FDR both 0.01
and Bonferroni both 0.05/15). And this gradient organization mainly shows the
regions from ANG and BA10 networks to LIPFC and PPC networks to HIPS
and PSPL networks in human brain cortex.



Practice and Task Experience Change the Gradient Organization 497

Fig. 2. The functional connectivity between the predefined ROIs with the threshold of
FDR corrected p < 0.05. The red line denotes metacognitive network, green one denotes
mixed network, blue one denotes cognitive network, gray one denotes the connection
between networks.

Fig. 3. The functional connectivity between the predefined ROIs with the threshold
of FDR corrected p < 0.01 and Bonferroni corrected p < 0.05/15. The result of two
corrective methods are the same. The red line denotes metacognitive network, green
one denotes mixed network, blue one denotes cognitive network, gray one denotes the
connection between networks.
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3.2 Connective Changed across Metacognitive-Mixed-Cognitive
Network

By comparing the difference within the four resting state data, change within
or between the functional networks were observed. The following four pictures
(Fig.4) shows correlation coefficient between each brain area. Contrast (pre-post
vs. pre-pre resting state) analysis showed the connection between mixed (PPC)
and cognitive (PSPL) network was enhanced (p=0.056) and the connectivity be-
tween metacognitive (BA10) and cognitive (PSPL) network was weakened signif-
icantly (p=0.04). Contrast (post-pre vs. pre-pre resting state) analysis indicated
the connectivity of the internal mixed network (LIPFC, PPC) was increased
significantly (p=0.052) and the internal metacognitive network (ANG, BA10)
was weakened marginally (p=0.087) and mixed (PPC) and cognitive (HIPS)
networks was weakened significantly (p=0.022). Contrast (post-post vs. post-
pre resting state) analysis mainly showed the internal network connectivities
changed: between mixed and cognitive networks were also enhanced (For exam-
ple: LIPFC-HIPS (P=0.052), LIPFC-PSPL (P=0.013), PPC-HIPS (P=0.034)).

Fig. 4. The individual within-subject was averaged across subjects to give a group-wise
matrix for each resting state

4 Discussion

By comparing the four resting states with different thresholds, we found there is
a stable gradient organization in the resting brain, which is consistent with the
result found in task-evoked or resting state data [1, 14]. There is a great deal of
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evidence to suggests that the possibility of the existence of gradient organization
in the resting state: (I) the coordinates of the gradient organization’s intrinsic
networks in spatial terms is similar to two anticorrelated intrinsic functional
networks in human brain [10]. For example our predefined seed of PPC (-23,
-63, 40), HIPS (-34, -49, 45) and PSPL (-19, -68, 55) is near to the task-positive
seed of IP (-25, -57, 46). Our predefined seed of ANG (-41, -65, 37) is near
to the task-negative seed of LP (-45, -67, 36) [7]. Here, in this study , we find
LIPFC was involved in the task-positive networks. As to the our predefined seed
of BA10 (-35, 49, 7), the connectivity with other networks was observed. This
Brodmann Area 10 (BA10) is special in being exclusively connected only with
supramodal regions of the cortex [19]. It indicates that that region is involved in
the information and communication from multiple regions [1]. This is consistent
with the results of our study; (II) with the process of human evolution and
learning, the organization of the human brain networks would be changed by the
change of experience [20–22]. Besides, brain was not only limited to the gradient
distribution but also there are some uncertain connection between brain areas.

In addition, the result indicates that the gradient organization is changed by
the learning experience, including long time practice and short term task experi-
ence. The result showed that task performance enhanced the correlation between
cognitive and mixed functional networks, especially after long time practice sug-
gesting the key role of cognitive network in the task execution. Moreover, the
connection within network weakened (PPC and HIPS: p=0.022) in the post-pre
resting state, and the internal network of metacognition weakened, the inter-
nal network of mixed enhanced (LIPFC and PPC: p=0.052), which suggests a
functional brain networks separation and modulation after long time practice
and no task effects. The change of the gradient organization indicates the hu-
man brain has a certain plasticity. The word ’plastic’ comes from the Greek
language and the main ingredient is resin which means the ability to undergo a
change such as a structure or a shape change and so on. Alvaro Pascual-Leone
et al stress plasticity is an obligatory result of all neural activity (even mental
practice), and also stress environmental pressures, functional significance, and
experience are critical factors [21]. But beyond that, it indicates learning and
plasticity of the brain are inseparable. Human brain networks will be dynamic
configuration during the learning phase [12]. Also studies show that functional
connectivity in the brain function are dynamic to support the consolidation of
previous experience [23].

It could be with the increase of number of practice, the division of labor
between networks becomes clearer and more modular, and presents function
separation. Metacognition is more abstract and can guide the establishment of
the new rules. When the participant was solving the task problems, especially in
the early stage with nonproficiency, the metacognition played a key role to per-
form the task efficiently [1]. When after reaching a certain proficiency, metacog-
nition may reduce the level of involvement, while some brain regions such as
cognitive regions can finish the work alone, in order to achieve a high degree of
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automation [24, 25]. This result is similar to a triarchic theory of learning [20]
and it indirectly reflects the brain is capable of a kind of plasticity.

In addition, some researches suggest the whole brain has certain stability,
adaptive and dynamic optimal balance under the interference of the task in
time [13]. So the next job is the further exploratory analysis to investigate the
change of gradient organization in the whole brain under the interference of the
task in time and long-term task.
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Abstract. Biomedical experts are confronted with ”Big data”, driven
by the trend towards precision medicine. Despite the fact that humans
are excellent at pattern recognition in dimensions of≤ 3, most biomedical
data is in dimensions much higher than 3, making manual analysis often
impossible. Experts in daily routine are decreasingly capable of dealing
with such data. Efficient, useable and useful computational methods,
algorithms and tools to interactively gain insight into such data are a
commandment of the time. A synergistic combination of methodologies
of two areas may be of great help here: Human–Computer Interaction
(HCI) and Knowledge Discovery/Data Mining (KDD), with the goal of
supporting human intelligence with machine learning. Mapping higher
dimensional data into lower dimensions is a major task in HCI, and
a concerted effort including recent advances from graph-theory and al-
gebraic topology may contribute to finding solutions. Moreover, much
biomedical data is sparse, noisy and time-dependent, hence entropy is
also amongst promising topics. This tutorial gives an overview of the
HCI-KDD approach and focuses on 3 topics: graphs, topology and en-
tropy. The goal of this intro tutorial is to motivate and stimulate further
research.

Keywords: Knowledge Discovery, Data Mining, HCI-KDD, Graph-
based Text Mining, Topological Data Mining, Entropy-based Data
Mining.

1 Introduction and Motivation

Experts in the life sciences have to deal with large amounts of complex, high-
dimensional, heterogenous, noisy, and weakly structured data sets and massive
sets of unstructured information from various sources [1], [2]. ”Big Data” [3]
in the medical domain is driven by the trend towards precision P4-medicine
(Predictive, Preventive, Participatory, Personalized) and has resulted in an ex-
plosion in the amount of generated data sets, in particular ”-omics” data, for

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 502–515, 2014.
© Springer International Publishing Switzerland 2014
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example from genomics, proteomics, metabolomics, etc. [4]. Within such data,
relevant structural patterns and/or temporal patterns (”knowledge”) are often
hidden and not accessible to the expert. The progressively trend towards data
intensive science, which is nearly a reverse of the classical hypothetico-deductive
approach, makes optimization of discovery tools imperative [5], and calls for vi-
sual data mining approaches [6]. This paper is organized as follows: In section 2
some key terms are briefly explained. In section 3 the basic idea of the HCI-KDD
approach is presented, along with the seven research areas involved, however, in
the following we concentrate briefly on only three of them: In section 4 on graph-
based data mining, in section 5 on topological data mining and in section 6 on
entropy-based data mining, concluding by emphasizing that the combination of
such approaches may bring added values. In the limited space given, such vast
topics can only be touched, so the goal of this tutorial is to provide a coarse
overview, to motivate and stimulate further research and to encourage to test
crazy ideas.

2 Glossary and Key Terms

Algebraic Topology: is concerned with computations of homologies and ho-
motopies in topological spaces [7].

Alpha Shapes: family of piecewise linear simple curves in the Euclidean plane
associated with the shape of a finite set of points [8]; i.e. α-shapes are a
generalization of the convex hull of a point set: Let S be a finite set in
R3 and α a real number 0 ≤ α ≤ ∞; the u-shape of S is a polytope that
is neither necessarily convex nor necessarily connected. For α → ∞ the α-
shape is identical to the convex hull of S [9]; important e.g. in protein-related
interactions [10].

Betti Number: can be used to distinguish topological spaces based on the
connectivity of n-dimensional simplicial complexes: In dimension k, the rank
of the k-th homology group is denoted βk, useful in the presence of noisy
shapes, because Betti numbers can be used as shape descriptor admitting
dissimilarity distances stable under continuous shape deformations [11].

Graph mining: is the application of graph-based methods to structural data
sets [12], a survey on graph mining can be found here [13].

Homomorphism: is a function that preserve the operators associated with the
specified structure.

Homotopy: Given two maps f, g : X → Y of topological spaces, f and g are
homotopic, f  g, if there is a continuous map H : X × [0, 1] → Y so that
H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X [14].

Homology: (and cohomology) are algebraic objects associated to a manifold,
which give one measure of the number of holes of the object. Computation
of the homology groups of topological spaces is a central topic in topology;
if the simplicial complex is small, the homology group computations can be
done manually; to solve such problems generally a classic algorithm exists
[15].
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Human–Computer Interaction: study, design and development of the inter-
action between end users and computers; this classic definition goes back to
the work of Alan Newell and Herbert Simon, and HCI research has in the
last decades focused almost exclusively on ergonomics of the user interface,
while the HCI-KDD approach concentrates almost exclusively on human–
data interaction.

Information Entropy: is a measure of the uncertainty in a random variable.
This refers to the Shannon entropy, which quantifies the expected value of
the information contained in a message.

Manifold: is a fundamental mathematical object which locally resembles a line,
a plane, or space.

Network: Synonym for a graph, which can be defined as an ordered or un-
ordered pair (N,E) of a set N of nodes and a set E of edges [16]. Engineers
often mention: Data + Graph = Network, or call at least directed graphs as
networks; however, in theory, there is no difference between a graph and a
network.

Pattern discovery: subsumes a plethora of machine learning methods to de-
tect complex patterns in data sets [17]; applications thereof are, for instance,
graph mining [18] and string matching [19].

Persistent Homology: Persistent homology is an algebraic tool for measuring
topological features of shapes and functions. It casts the multi-scale organi-
zation we frequently observe in nature into a mathematical formalism [20].

Simplicial Complex: is made up of simplices, e.g. a simplicial polytope has
simplices as faces and a simplicial complex is a collection of simplices pasted
together in any reasonable vertex-to-vertex and edge-to-edge arrangement.
A graph is a 1-dim simplicial complex.

Small world networks: are generated based on certain rules with high clus-
tering coefficient [16, 21] but the distances among the vertices are rather
short in average, hence they are somewhat similar to random networks and
they have been found in several classes of biological networks, see [22].

Topological Entropy: is a nonnegative real number that is a measure of the
complexity of a dynamical system [23].

3 The HCI-KDD Approach

Humans are very good at pattern recognition in the low-dimensional space, al-
though humans do not see in three spatial dimensions directly, but rather via
sequences of planar projections integrated in a manner that is sensed if not
comprehended. Humans spend a lot of their life time to learn how to infer three-
dimensional spatial data from paired planar projections. Years of practice have
tuned a remarkable ability to extract global structures from representations in
lower dimension. On the other hand, computers can be used to deal with high-
dimensional data, where we can make use of the benefits of computational topol-
ogy [24], e.g. by replacing a set of point cloud data with a simplicial complex,
which converts the data into global topological objects. To combine the most
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Fig. 1. This image, created originally by A. Holzinger as logo for his group, emphasizes
the importance of the interaction between high-dimensional computational spaces in
Rn and highlights the reality that current devices only allow data visualization in
R

2. Consequently, the major task of Human–Computer Interaction is to map data
from high-dimensional spaces into lower-dimensional spaces, hence enabling interaction,
which is the most difficult and challenging task in this field.

desirable of these formidable talents might highly benefit the knowledge discov-
ery process [25]. The most critical and not easy endeavour is in interaction and
visualization (see Figure 1).

The original idea of the HCI-KDD [26] approach (Figure 2) is in combining
aspects of the best of two worlds: Human–Computer Interaction (HCI), with
emphasis on perception, cognition, interaction, reasoning, decision making, hu-
man learning and human intelligence, and Knowledge Discovery/Data Mining
(KDD), dealing with data processing, computational statistics, artificial intelli-
gence and particularly with machine learning [27].

Whilst interactive knowledge discovery encompasses the horizontal process
ranging from physical aspects of data (left in Figure 2) to the human aspects
of information processing (right in Figure 2), data mining can be seen vertically
and deals specifically with methods, algorithms and tools for finding patterns in
the data. In the HCI-KDD approach, seven (the new magical number 7) essential
research areas can be determined as outlined in Figure 2, including: Area 1: Data
integration, data fusion and data mapping; Area 2: mining algorithms and Area
6: data visualization [28], [29], [30]. This tutorial focuses on three hot topics:

Area 3: Graph-based Data Mining (GDM) [31], [32], [33],[34].
Area 4: Entropy-based Data Mining (EDM) [35], [36].
Area 5: Topological Data Mining (TDM) [37].
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In the biomedical domain as in some other domains issues of Area 7: privacy,
data protection, safety and security are mandatory [38].

Fig. 2. The big picture of the HCI-KDD approach: KDD encompasses the whole hor-
izontal process chain from data to information and knowledge; actually from physical
aspects of raw data, to human aspects including attention, memory, vision, interaction
etc. as core topics in HCI, whilst DM as a vertical subject focuses on the development
of methods, algorithms and tools for data mining (Image taken from the hci4all.at
website, as of May, 2014)

4 Graph-Based Data Mining

Graph-Theory [39] provides powerful tools to map data structures and to find
novel connections between single data objects [16, 40]. The inferred graphs can
be further analyzed by using graph-theoretical, statistical and machine learning
techniques [41]. A mapping of already existing and in medical practice approved
knowledge spaces as a conceptual graph (as e.g. demonstrated in [32] and a sub-
sequent visual and graph-theoretical analysis can bring novel insights on hidden
patterns in the data, which exactly is the goal of knowledge discovery. Another
benefit of a graph-based data structure is in the applicability of methods from
network topology and network analysis and data mining, e.g. small-world phe-
nomenon [42, 43], and cluster analysis [44, 45]. However, the first question is
”How to get a graph?”, or simpler ”How to get point sets?”, because point cloud
data sets (PCD) are used as primitives for such approaches. The answer to this
question is not trivial (see [46]), apart from “naturally available” point clouds,
e.g. from laser scanners, protein structures [47], or text mapped into a set of
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points (vectors) in Rn. Sticking on the last example, graphs are intuitively more
informative as example words/phrase representations [48], and graphs are the
best studied data structures in computer science, with a strong relation to log-
ical languages [49]. The beginning of graph-based data mining approaches was
two decades ago, some pioneering work include [50–52]. According to [49] there
are five theoretical bases of graph-based data mining approaches such as (1)
subgraph categories, (2) subgraph isomorphism, (3) graph invariants, (4) min-
ing measures and (5) solution methods. Furthermore, there are five groups of
different graph-theoretical approaches for data mining such as (1) greedy search
based approach, (2) inductive logic programming based approach, (3) inductive
database based approach, (4) mathematical graph theory based approach and (5)
kernel function based approach [53]. However, the main disadvantage of graph-
theoretical text mining is the computational complexity of the graph represen-
tation, consequently the goal of future research in the field of graph-theoretical
approaches for text mining is to develop efficient graph mining algorithms which
implement effective search strategies and data structures [48].

In [54] a graph-theoretical approach for text mining is used to extract relation
information between terms in ”free-text” electronic health care records that are
semantically or syntactically related. Another field of application is the text
analysis of web and social media for detecting influenza-like illnesses [55].

Moreover there can be content-rich relationship networks among biological
concepts, genes, proteins and drugs developed with topological text data mining
like shown in [56]. According to [57] network medicine describes the clinical
application field of topological text mining due to addressing the complexity of
human diseases with molecular and phenotypic network maps.

5 Topological Data Mining

Closely related to graph-based methods are topological data mining methods;
for both we need point cloud data sets - or at least distances - as input. A
set of such primitives forms a space, and if we have finite sets equipped with
proximity or similarity measure functions simq : S

q+1 → [0, 1], which measure
how “close” or “similar” (q + 1)-tuples of elements of S are, we speak about a
topological space. A value of 0 means totally different objects, while 1 corresponds
to equivalent items. Interesting are manifolds, which can be seen as a topological
space, which is locally homeomorphic (that means it has a continuous function
with an inverse function) to a real n-dimensional space. In other words: X is a
d -manifold if every point of X has a neighborhood homeomorphic to Bd; with
boundary if every point has a neighborhood homeomorphic to B or Bd

+ [58].
A topological space may be viewed as an abstraction of a metric space,

and similarly, manifolds generalize the connectivity of d-dimensional Euclidean
spaces Bd by being locally similar, but globally different. A d-dimensional chart
at p ∈ X is a homeomorphism φ : U → Rd onto an open subset of Rd, where
U is a neighborhood of p and open is defined using the metric. A d-dimensional
manifold (d-manifold) is a topological space X with a d-dimensional chart at
every point x ∈ X [59].
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For us also interesting are simplicial complexes (”simplicials”) which are
spaces described in a very particular way, the basis is in Homology. The rea-
son is that it is not possible to represent surfaces precisely in a computer system
due to limited computational storage; thus, surfaces are sampled and represented
with triangulations. Such a triangulation is called a simplicial complex, and is a
combinatorial space that can represent a space. With such simplicial complexes,
the topology of a space from its geometry can be separated. Zomorodian [59]
compares it with the separation of syntax and semantics in logic.

Topological techniques originated in pure mathematics, but have been adapted
to the study and analysis of data during the past two decades. The two most
popular topological techniques in the study of data are homology and persistence.
The connectivity of a space is determined by its cycles of different dimensions.
These cycles are organized into groups, called homology groups. Given a rea-
sonably explicit description of a space, the homology groups can be computed
with linear algebra. Homology groups have a relatively strong discriminative
power and a clear meaning, while having low computational cost. In the study
of persistent homology the invariants are in the form of persistence diagrams or
barcodes [60].

In data mining it is important to extract significant features, and exactly
for this, topological methods are useful, since they provide robust and gen-
eral feature definitions with emphasis on global information, for example Alpha
Shapes [9].

A recent example for topological data mining is given by [61]: Topological text
mining, which builds on the well-known vector space model, which is a standard
approach in text mining [62]: a collection of text documents (corpus) is mapped
into points (=vectors) in Rn. Moreover, each word can be mapped into so-called
term vectors, resulting in a very high dimensional vector space. If there are n
words extracted from all the documents then each document is mapped to a
point (term vector) in R� with coordinates corresponding to the weights. This
way the whole corpus can be transformed into a point cloud data set. Instead of
the Euclidean metric the use of a similarity (proximity) measure is sometimes
more convenient; the cosine similarity measure is a typical example: the cosine
of the angle between two vectors (points in the cloud) reflects how “similar” the
underlying weighted combinations of keywords are. Amongst the many different
text mining methods (for a recent overview refer to [63]); topological approaches
are promising, but need a lot of further research.

Due to finding meaningful topological patterns greater information depth can
be achieved from the same data input [64]. However, with increasing complexity
of the data to process also the need to find a scalable shape characteristic is
greater [65]. Therefore methods of the mathematical field of topology are used
for complex data areas like the biomedical field [65], [60]. Topology as the math-
ematical study of shapes and spaces that are not rigid [65], pose a lot of possi-
bilities for the application in knowledge discovery and data mining, as topology
is the study of connectivity information and it deals with qualitative geometric
properties [66].
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One of the main tasks of applied topology is to find and analyse higher dimen-
sional topological structures in lower dimensional spaces (e.g. point cloud from
vector space model as discussed in [64]). A common way to describe topological
spaces is to first create simplicial complexes, because a simplicial complex struc-
ture on a topological space is an expression of the space as a union of simplices
such as points, intervals, triangles, and higher dimensional analogues. Simpli-
cial complexes provide an easy combinatorial way to define certain topological
spaces [66]. A simplical complex K is defined as a finite collection of simplices
such that σ ∈ K and τ , which is a face of σ, implies τ ∈ K, and σ, σ′ ∈ K
implies σ ∩ σ′ can either be a face of both σ and σ′ or empty [67]. One way to
create a simplical complex is to examine all subsets of points, and if any sub-
sets of points are close enough, a p-simplex (e.g. line) is added to the complex
with those points as vertices. For instance, a Vietoris-Rips complex of diameter
ε is defined as V R(ε) = σ|diam(σ) ≤ ε, where diam(ε) is defined as the largest
distance between two points in σ [67]. A common way a analyse the topological
structure is to use persistent homology, which identifies cluster, holes and voids
therein. It is assumed that more robust topological structures are the one which
persist with increasing ε. For detailed information about persistent homology,
see [67], [68], [69].

6 Entropy-Based Data Mining

In the real medical world, we are confronted not only with complex and high-
dimensional data sets, but usually with sparse, noisy, incomplete and uncertain
data, where the application of traditional methods of knowledge discovery and
data mining always entail the danger of modeling artifacts. Originally, informa-
tion entropy was introduced by Shannon (1949), as a measure of uncertainty in
the data. To date, there have emerged many different types of entropy methods
with a large number of different purposes and applications. Here we mention
only two:

Graph Entropy was described by [70] to measure structural information con-
tent of graphs, and a different definition, more focused on problems in infor-
mation and coding theory, was introduced by Körner in [71]. Graph entropy is
often used for the characterization of the structure of graph-based systems, e.g.
in mathematical biochemistry, but also for any complex network [72]. In these
applications the entropy of a graph is interpreted as its structural information
content and serves as a complexity measure, and such a measure is associated
with an equivalence relation defined on a finite graph; by application of Shan-
nons Equation with the probability distribution we get a numerical value that
serves as an index of the structural feature captured by the equivalence relation
[41].

Topological Entropy (TopEn), was introduced by [73] with the purpose to
introduce the notion of entropy as an invariant for continuous mappings: Let
(X,T ) be a topological dynamical system, i.e., let X be a nonempty compact
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Hausdorff space and T : X → X a continuous map; the TopEn is a nonnegative
number which measures the complexity of the system [74].

Hornero et al. [75] performed a complexity analysis of intracranial pressure
dynamics during periods of severe intracranial hypertension. For that purpose
they analyzed eleven episodes of intracranial hypertension from seven patients.
They measured the changes in the intracranial pressure complexity by applying
ApEn, as patients progressed from a state of normal intracranial pressure to
intracranial hypertension, and found that a decreased complexity of intracranial
pressure coincides with periods of intracranial hypertension in brain injury. Their
approach is of particular interest to us, because they proposed classification
based on ApEn tendencies instead of absolute values.

Pincus et al. took in [76] heart rate recordings of 45 healthy infants with
recordings of an infant one week after an aborted sudden infant death syndrom
(SIDS) episode. They then calculated the ApEn of these recordings and found
a significant smaller value for the aborted SIDS infant compared to the healthy
ones.

Holzinger et al. (2012) [77] experimented with point cloud data sets in the
two dimensional space: They developed a model of handwriting, and evaluated
the performance of entropy based slant and skew correction, and compared the
results to other methods. This work is the basis for further entropy-based ap-
proaches, which are very relevant for advanced entropy-based data mining ap-
proaches.

7 Conclusion and Future Outlook

Discovering knowledge in complex, high-dimensional data sets needs a concerted
effort of various topics, ranging from data preprocessing, data fusion, data inte-
gration and data mapping to interactive visualization within a low-dimensional
space. For this reason, graph-based and topological methods are very useful, since
they provide robust and general feature definitions and may support a ”global
information view”. A promising area of future research is in graph-theoretical
approaches for text mining, in particular to develop efficient graph mining algo-
rithms which implement robust and efficient search strategies and data structures
[48]. Such approaches could be combined with techniques from machine learning,
e.g. multi-agents and evolutionary algorithms [78]. However, there remain many
open questions, for example about the graph characteristics and the isomor-
phism complexity [49], to mention just only one. A further promising research
route is to combine such methods with entropy-based approaches, which have
extensively been applied for analyzing sparse and noisy time series data, but so
far have not yet been applied to weakly structured data in combination with
techniques from computational topology. Consequently, the inclusion of entropy
measures for discovery of knowledge in high-dimensional biomedical data is a
big future issue, opening a lot of challenging research routes [35].

The grand vision for the future is to effectively support human learning with
machine learning. The HCI-KDD network of excellence is proactively support-
ing this vision in bringing together people with diverse background - sharing a
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common goal: finding solutions for dealing with big and complex data sets. A
recent output of the network can be found here [79] (for more information please
refer to www.hci4all.at).
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Abstract. High-throughput genomic profiling technology provides us
detailed information of biological systems. However, it also increases the
dimensionality in data, which makes it harder to identify key features and
their relations to other features hidden in feature spaces. In this paper
we propose a new idea based on the structure learning for the Gaussian
Markov random field, which provides us an efficient way to represent
a feature space as a collection of small graphs, where nodes represent
features and edges represent conditional dependency between features.
In our approach a collection of small graphs is created for each subgroup
of a cohort, where our interest lies in finding characteristic patterns in
each subgroup graph compared to the other subgroup graphs. A simple
but effective method is proposed using polarized adjacency matrices to
find topological differences in collections of graphs.

Keywords: Graph Patterns, Adjacency Matrix, Gaussian Markov Ran-
dom Field, Structure Learning, Sparse Inverse Covariance Matrix.

1 Introduction

Modern high-throughput genomic profiling technologies provide us fine details
about biological systems. For example, whole-transcript microarrays or next gen-
eration sequencing provide information on thousands or millions subsequences of
human DNA and their products. As these technologies become more accessible
at lower cost, they become a popular basis for modern computational biology
studies [15].

One of the goals in computational biology studies using high-throughput ge-
nomic profiles is to identify so-called biomarkers from a large amount of features
representing genes, exons, miRNAs, etc., that contribute to the development of
certain diseases. These biomarkers are also studied in terms of their relations to
other features, so that we can hopefully identify controllable parts of biochemi-
cal circuits that may affect disease development. However, when the number of
features to be considered is very large, it becomes challenging to find biomarkers
and their relations so to understand the underlying systems.

Structure learning of feature space can help identify the relations among fea-
tures, and especially a graphical representation of such structure can be useful
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since graphs provide decomposable view of structures. For this purpose, a simple
probabilistic graphical model, called the Gaussian Markov random field (Gaus-
sian MRF or GMRF), fits well, for which efficient structure learning methods
are also available.

Gaussian MRFs have been quite popular in various areas such as biostatis-
tics [10,14,41] and image analysis [6,11,26]. The first idea of structure learning
of GMRFs goes back to covariance selection [8] and model selection problems for
the Gaussian concentration graphs [5]. However, efficient methods for structure
learning of GMRFs have been appeared only recently beginning with [29], and
finally a convex optimization framework combining parameter estimation and
model selection steps was first proposed in [43], which became a focus of many re-
search areas including machine learning, statistics, and optimization [1,12,13,43].

Since the outcome of structure learning is a graph, it is natural to consider
visualizing the graphical structure to aid our understanding and to better use our
insights toward comprehending complex systems. This is also the key element
in the HCI-KDD approach [16, 31, 38], which searches for a tight integration of
computer analysis with human interpretation.

2 Structure Learning of Gaussian MRFs

2.1 Gaussian Markov Random Field (GMRF)

Briefly speaking, the Markov random field (MRF) is a collection of p random
variables represented as nodes in a graph, where the conditional dependency
structure of nodes is represented by undirected edges between nodes. We denote
a graph by G = (V,E), where V is the set of all nodes (|V | = p in our setting)
and E is the set of all edges. A graph is an MRF if its elements satisfy the
Markov properties [34], which also enable us to compute the joint probability
function of the random variables in a factorized form.

The Gaussian MRF (GMRF) is a special type of MRFs, where the random
variables, collected as elements in a vector x ∈ !p, follow the multivariate Gaus-
sian distribution N (μ,Σ) with a mean vector μ and a covariance matrix Σ,
whose probability density function is expressed as

p(x) = (2π)−p/2 det(Σ)−1/2 exp

(
−1

2
(x− μ)TΣ−1(x − μ)

)
.

For the Gaussian MRF, the Markov properties simplify to the condition that
whenever the (i, j)th entry of the inverse covariance matrix (also known as the
precision matrix) Σ−1

ij = 0, then there exists no edge between the two nodes i

and j [34]. The condition Σ−1
ij = 0 also implies that the two random variables

xi and xj associated with the nodes i and j are conditionally independent given
all the other nodes [20], i.e.,

Σ−1
ij = 0 ⇔

P (xi,xj |{xk}k∈{1,2,...,p}\{i,j})
= P (xi|{xk}k∈{1,2,...,p}\{i,j})P (xj |{xk}k∈{1,2,...,p}\{i,j}).

(1)
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This can be summarized as that the graph G of a GMRF represents the condi-
tional (in)dependence structure of a feature space from which the vectors x are
sampled.

In general, the entries of the inverse covariance matrix represent conditional
correlation between the corresponding random variables [20]. When the underly-
ing distribution is the Gaussian, Σ−1

ij = 0 also implies conditional independence
of the two random variables xi and xj , giving our statement in (1).

2.2 Structure Learning of GMRFs

As we discussed, the graphical structure of a GMRF is determined by the nonzero
patterns in the inverse covariance matrix Σ−1. To estimate such a matrix, we
use the framework of the maximum likelihood estimation as described in the
following. Let us denote a collection of n feature vectors x1,x2, . . . ,xn, each with
length p, sampled independently and identically from a multivariate Gaussian
distribution N (0, Σ−1), whose distribution function is given by,

p(x) = (2π)−p/2 det(Σ)−1/2 exp

(
−1

2
xTΣ−1x

)
.

The mean of the Gaussian is assumed to be the zero vector without loss of gen-
erality (the observations can be simply centered to achieve this). The likelihood
function to describe the chance to observe the collection of the n feature vectors
D = {x1,x2, . . . ,xn} from N (0, Σ−1) is written as,

L(Σ−1,D) =
n∏

i=1

p(xi) ∼
n∏

i=1

det(Σ)−1/2 exp

(
−1

2
(xi)TΣ−1xi

)
.

Therefore the log likelihood function (omitting constant terms and scaled by
2/n) becomes,

LL(Σ−1,D) = log det(Σ−1)− tr(SΣ−1), (2)

where S := 1
n

∑n
i=1 x

i(xi)T is the sample covariance matrix and tr(A) is the
trace (the sum of diagonal elements) of a square matrix A. Our task is then
finding a matrix Σ−1 ∈ !p×p that maximizes the log likelihood function.

2.3 Sparsity in the Inverse Covariance Matrix

Amongst the inverse covariance matrices that maximize the log likelihood func-
tion in (2), we prefer to finding a matrix that is as sparse as possible, in other
words, having as many zero entries as possible. The reason is that otherwise the
resulting graphical structure of the GMRF will be densely connected, in which
case interpretation or visualization becomes difficult.

A typical way to obtain a sparse Σ−1 is to minimize the �1 norm of the
matrix (as defined below) together with maximizing the log likelihood function.
A convex minimization problem achieving both goals can be described as follows,

min
Θ∈�p×p

− LL(Θ,D) + λ‖Θ‖1

subject to Θ � 0, ΘT = Θ.
(3)
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Here Σ−1 has been replaced by Θ for notational convenience. We use the �1
norm of Θ defined by

‖Θ‖1 :=

p∑
i=1

p∑
j=1

|Θij |,

whose value becomes small when Θ is sparse. The parameter λ > 0 in (2)
therefore controls how sparse the matrix Θ will be, that is, large values of λ
will produce sparser solutions. The constraints Θ = ΘT and Θ � 0 specify
that the matrix Θ should be symmetric and positive definite (that is, all of its
eigenvalues are strictly positive). These are required to be consistent with the
fact that Σ is a covariance matrix (which is symmetric positive semidefinite) and
that Σ−1 should be invertible so that S = (Σ−1)−1 is well defined. Regularizing
the �1 norm is known to induce sparsity in solutions and used in many recent
applications such as penalized regression with the lasso [37] or the elastic net [45]
regularizer, online manifold identification [23], spatio-temporal Markov random
fields [33], and compressed sensing [2, 22].

Collecting the formulations in (2) and (3), we can summarize the structure
learning with GMRFs as follows:

min
Θ∈�p×p

− log detΘ + tr(SΘ) + λ‖Θ‖1

subject to Θ � 0, ΘT = Θ.
(4)

In this optimization problem the sample covariance matrix S := 1
n

∑n
i=1 x

i(xi)T

∈ !p×p is the only input. Depending on the number of features p, the entire
matrix S can be computed and given to the optimization, or its entries can be
computed on-the-fly as required during optimization.

2.4 Polarized Adjacency Matrices

From the solution Θ∗ of the optimization problem in (4), we can construct an
adjacency matrix A as follows that represents the associated GMRF graph G,

Aij =

{
1 if Θ∗

ij �= 0,

0 if Θ∗
ij = 0 or i = j,

for i, j = 1, 2, . . . , p.

Here each row (and column) corresponds to a node, and when Aij = 1 there is
an edge between two nodes i and j, and no edge if Aij = 0. The diagonal of A
is set to zero since we do not consider self-connections of nodes.

For each entry Aij , we also consider the associated polarity representing if
the correlation between the two nodes i and j is positive or negative. Such
information comes from the covariance matrix S which is already created as an
input to the problem (4). Using this, we define the polarized adjacency matrix
Ã,

Ãij =

⎧⎪⎨⎪⎩
+1 if Θ∗

ij �= 0 and Sij > 0 for i �= j,

−1 if Θ∗
ij �= 0 and Sij < 0 for i �= j,

0 if Θ∗
ij = 0 or i = j.

(5)
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3 Finding Differences in Subgroup Graphs

With a cohort of n patients, suppose that there are K subgroups of patients
according to clinical data, defined by grades or stages of a disease, age groups,
genders, responds to a therapy, etc. The structure learning with GMRF prob-
lem (4) can be solve for each subgroup separately, to generate K polarized ad-
jacency matrices Ã1, Ã2, . . . , ÃK where Ãk represents the subgroup graph Gk of
features.

Our interest is to characterize topological differences between two graphs cor-
responding to two different subgroups represented by Ãr and Ãs, for r �= s, in
order to facilitate the identification of differences in features (nodes) and differ-
ences in feature relations (edges). The numbers of nodes and edges in “difference
graphs” are expected to be smaller than the numbers in the original graphs, and
therefore finding difference graphs will enable us to generate more understand-
able representations and visualizations.

Finding differences in graphs can be seen as an instance of the (sub)graph
isomorphism problem checking if connected components from graphs Gr and
Gs match or not. However, (sub)graph isomorphism problems are typically very
costly to solve [36,39,42], and therefore we suggest a simple alternative algorithm
comparing edges between two graphs based on the polarized adjacency matri-
ces (5) and then consider only the connected components according to differences
in edges.

3.1 Polarized Edge Difference

Before discussing a difference graph, we first define a matrix J that represents
polarized edge differences, for which the meaning will be clear as we explain the
definition. For two polarized adjacency matrices Ãr and Ãs, r �= s, we define

Jrs = |Ãr − Ãs|, for r, s = 1, . . . ,K. (6)

Here the absolute value operator is taken for each element of a matrix. The
elements of this matrix satisfy the following properties:

(i) Jrs
ij = 0 ⇔ Ãr

ij = Ãs
ij ,

(ii) Jrs
ij = 1 ⇔ One of |Ãr

ij | or |Ãs
ij | is 1, the other is 0,

(iii) Jrs
ij = 2 ⇔ Ãr

ij = −Ãs
ij .

The above three cases correspond to (i) if an edge is shared with the same
polarity, (ii) if an edge exists only in one graph but not in the other graph, or
(iii) if an edge exists in both graphs but with different polarities. Note that Jrs

is symmetric in terms of the arguments r and s.
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3.2 Polarized Graph Subtraction

Using the matrix Jrs in (6), we define our “difference graph” as the polarized
graph subtraction Gr−Gs, defined in terms of its adjacency matrix A(Gr−Gs),

A(Gr −Gs)ij =

⎧⎪⎨⎪⎩
1 if Ar

ij = 1 and Jrs
ij = 1,

κ if Jrs
ij = 2,

0 otherwise.

(7)

This matrix represents a graph having the edges from Gr which is not in Gs, and
the edges shared between the two graphs but with different polarities (indicated
by the value κ ≥ 1). If κ = 1 is chosen then A(Gr − Gs) becomes a regular
adjacency matrix, but κ > 1 can be used to display the corresponding edges
differently in visualization, for example. Note that when Jrs

ij = 2, then Ar
ij = 1

is implied and therefore the condition is omitted.
The time complexity of computing (7) is O(p2), and therefore (K2p2) for all

pairwise comparisons of K subgroup graphs. However, they can be drastically
reduced by considering only the connected components in graphs, given that
there are only a few small connected components in each graph. (In this case
the above definitions have to be modified to consider the union of nodes from
the connected components of two graphs.)

4 Experiments

To demonstrate our proposed approach, we used a genomic data set consist-
ing of gene expression profiles of p = 20492 features (genes, more specifically,
transcripts) from n = 362 breast cancer patients.

4.1 Data Preparation

Our data set was created by combining three publicly available gene expression
data sets from the Gene Expression Omnibus (GEO)1 with the accession IDs
GSE1456, GSE7390, and GSE11121. All gene expression profiles in the three
data sets were obtained with the Affymetrix GeneChip Human Genome HG-
U133A microarray platform2.

The raw data (CEL files) downloaded from the GEO website were normalized
and summarized for gene features with the frozen RMA algorithm [28], the
gene features of the “grade A” were chosen for further analysis according to the
NetAffx probeset annotation v33.1 from Affymetrix (so that the total number
of features is to be p = 20492 afterward), and the microarrays with low quality
according to the GNUSE [27] error scores > 1 were discarded (so that n = 392
afterward).

1 http://www.ncbi.nlm.nih.gov/geo
2 http://www.affymetrix.com

http://www.ncbi.nlm.nih.gov/geo
http://www.affymetrix.com
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Fig. 1. Graphical representation of feature spaces corresponding to grades 1, 2, and 3
breast cancer subgroups, obtained with the structure learning of GMRFs (λ = 1.6).
Nodes are colored according to their p-value of predicting overall survival times as
univariate predictors in Cox models for each subgroup (darker color = smaller p-value).
Edge types represent polarity in correlation: solid = positive, and dashed = negative.
Node labels show the corresponding gene symbols.

4.2 Subgroup Graphs

To generate subgroup graphs, we considered the “grades” of breast cancer (the
following information is from http://www.macmillan.org.uk):

– Grade 1: the cancer cells look similar to normal cells and grow slowly.
– Grade 2: the cancer cells look different from normal cells and grow faster

than grade 1 cells.
– Grade 3: the cancer cells look very different from normal cells and grow much

faster than grade 1/2 cells.

http://www.macmillan.org.uk
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Fig. 2. Subgroup differences in graphical representation of feature spaces. Nodes are
colored according to their p-value of predicting overall survival times as univariate
predictors in Cox models for each subtype (darker color = smaller p-value). Edge
types represent polarity in correlation: solid = positive, and dashed = negative. Node
labels show the corresponding gene symbols. If shared edges have different polarities,
then the edges are shown in thick lines (no such case here).

Using the clinical annotation of patients in our data, we split the expression
data into three groups corresponding to the three grades, solved the structure
learning problem with GMRFs (4) (the parameter λ = 1.6 was chosen for all
cases which produced small numbers of connected components), and generated
the polarized adjacency matrices Ã1, Ã2 and Ã3 respectively to the cancer grades,
according to the definition (5).

The graphs G1, G2, and G3 represented by Ã1, Ã2 and Ã3 are shown in
Figure 1. Here, we showed only the connected components with at least two nodes
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for compact visualization. The node colors were determined by the p-values from
the likelihood ratio test for using each node feature as an univariate predictor
(versus the null predictor) of overall survival time in the Cox proportional hazard
model [4]. The darker the color is, the more significant the corresponding p-value
is. We used five color levels for p-value intervals: [1e-5, 1e-4), [1e-4, 1e-3), [1e-3,
1e-2), [1e-2, 1e-1), and [1e-1, 1).

Although some differences of subgroups are already recognizable in Figure 1,
the detailed differences are still not easy to find. Interestingly, we found some
evidences telling the importance of genes corresponding to hub nodes in Figure 1
for breast cancer, including ASPN [3], SFRP1 [19], and ADH1B [24].

4.3 Subgroup Difference Graphs

The purpose of computing subgroup difference graphs is to produce a smaller
graphical structure that shows differences between subgroups, so that the graph
and its visualization will be more comprehensible.

Figure 2 shows the subgroup difference graphs computed as the polarized
graph subtraction defined in (7). As we can see, the difference is now clearer
compared to Figure 1, for example Figure 2 (b) shows a small important portion
of a complex structure in Figure 1 (b). We also observed that the structure of
grade 3 cancer is much more complicated than these of grades 1 and 2, seeing
Figure 2 (d): it is somewhat expected considering the nature of cancer progres-
sion. Figure 2 (c) shows the difference of grade 2 compared to grade 3, providing
a potential information to better understand cancer development.

5 Conclusion and Outlook

We have presented a new approach to represent high dimensional feature spaces
as sparse graphs and to compare them for better understanding of complex bi-
ological systems using a simple yet useful method based on polarized adjacency
matrices. We demonstrated our method for characterizing subgroup graph pat-
terns for difference grades of breast cancer, but our technique can be considered
for comparing graphs from many other different subgroups.

Structure learning of GMRFs in (4) is a convex optimization, which was
suggested by Yuan and Lin [43] and solved with an available interior point
method [40] at the time. Later, more efficient optimization methods have been
developed based on a dual formulation and a coordinate descent algorithm [1],
another coordinate descent formulation together with the lasso algorithm [13],
a projected gradient method [12], Nesterov’s optimal first order methods and
smoothing techniques [7, 25], alternating direction methods [35, 44], and prox-
imal Newton methods [9] combined with curvature information to have faster
convergence [17, 18, 32]. Although optimization methods have been improved to
deal with large values of p efficiently, computing these for many subgroups of a
sample is challenging in terms of memory and computation requirements, and
therefore we still need to search for better methods for such settings.
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The determination of the sparsity control parameter λ in (4) is not simple. It
is closely related to a notion in statistics called consistency in variable selection,
which relates the number of nonzero coefficients we can estimate with statistical
power to the sample size n and the number of features p. When p � n, more
care is needed for choosing λ. For more details, we refer to [21, 30].

As we see in Figures 1 and 2, the visualization of graphs can play a crucial
role for identifying important genes and their relations to other genes in graphs.
In particular, the coloring of nodes according to their predictive power and dif-
ferent types of edges according to positive/negative correlation make it easier to
understand the underlying structure. This is a good example indicating that a
tight integration of machine learning, data mining and visualization techniques
will be necessary for successful understanding of complex systems.
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29. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection
with the lasso. Annals of Statistics 34, 1436–1462 (2006)
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Abstract. Cancers follow a clonal Darwinian evolution, with fitter sub-
clones replacing more quiescent cells, ultimately giving rise to macro-
scopic disease. High-throughput genomics provides the opportunity to
investigate these processes and determine specific genetic alterations
driving disease progression. Genomic sampling of a patient’s cancer pro-
vides a molecular history, represented by a phylogenetic tree. Cohorts
of patients represent a forest of related phylogenetic structures. To ex-
tract clinically relevant information, one must represent and statistically
compare these collections of trees. We propose a framework based on an
application of the work by Billera, Holmes and Vogtmann on phyloge-
netic tree spaces to the case of unrooted trees of intra-individual cancer
tissue samples. We observe that these tree spaces are globally nonposi-
tively curved, allowing for statistical inference on populations of patient
histories. A projective tree space is introduced, permitting visualizations
of evolutionary patterns. Published data from four types of human ma-
lignancies are explored within our framework.

Keywords: phylogenetic tree, moduli space, tumor evolution, genomics.

1 Introduction

A tumor is the result of successive accumulation of genetic alterations. As al-
terations accumulate, clones of higher fitness are selected, which drives cancer
progression. The clonal aspect of cancer is a unifying and defining characteristic
of an otherwise diverse set of diseases. In the last five years, next generation
sequencing has illuminated the landscape of genomic alterations in a large num-
ber of tumors. The Cancer Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) have led this effort, sequencing thousands of tumors
spanning the spectrum of human malignancies, leading to the identification of
recurrent alterations that indicate mechanisms of convergent evolution in certain
genes and pathways. Large cross-sectional studies, however, are not designed to
capture the dynamic nature of tumor evolution, and longitudinal NGS studies,
sequencing a tumor at multiple time points within an individual are only emerg-
ing. [6,10,12,14] Key questions in tumor dynamics surround the mechanisms of

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 528–539, 2014.
c© Springer International Publishing Switzerland 2014



Moduli Spaces of Phylogenetic Trees Describing Tumors 529

acquired drug resistance, the emergence of subclones with metastatic potential,
the clinical stratification of patients according to observed tumor evolution, and
the design of personalized drug treatment regimens to steer tumor evolution.

The rise of dominant clones in a tumor can be inferred by sequential se-
quencing of an individual’s disease. Successive genomic snapshots may represent
defined temporal intervals, progression of disease through predefined stages, or
successive anatomic sites to which a cancer has spread. In all of these scenarios
we make observations about an evolutionary process and can represent the rela-
tionships between genomic snapshots as a phylogenetic tree. When large cohorts
of cancer patients are studied, yielding a forest of such phylogenetic trees, we
require a mathematical framework in which to reason about aggregate evolu-
tionary behaviors. We must be able to, at a minimum, directly compare two
evolutionary histories. Here, we apply the work of Billera, Holmes and Vogt-
mann [3] and Sturm [13] on geometric spaces of phylogenetic trees to provide
a framework for statistical inference and visualization of evolutionary histories.
Our work provides a compact language for cancer biologists and oncologists to
use in describing longitudinal NGS data.

2 Description of the Space of Trees

We can understand the relation between m different genomes following clonal
evolution as a phylogenetic tree with m leaves. A phylogenetic tree is a weighted,
connected graph with no circuits, having m distinguished vertices of degree 1
labelled {1, . . . ,m}, and all other vertices of degree ≥ 3. Edges that terminate
in leaves are “external” edges and the remaining edges are “internal”.

When the external branches all have length 0, the tree space we have described
(where the nonzero weights are on the internal branches) was introduced and
studied by Billera, Holmes, and Vogtmann. Specifically, the structure of the
internal branches is captured by the BHVm−1 construction (where the m − 1
index arises from the fact that they consider rooted trees). Allowing potentially
nonzero weights for the m external leaves corresponds to crossing with an m-
dimensional orthant. Therefore, the space we wish to study is simply

Σm = BHVm−1 × (R≥0)m.

We refer to Σm as the evolutionary moduli space.

2.1 The Metric Geometry of Evolutionary Moduli Spaces

As described above, the space Σm is just a set of points. The key insight of
Billera, Holmes, and Vogtmann is that this space is equipped with a natural
metric that endows the space with an intrinsic geometry.

The metric on BHVm−1 is induced from the standard Euclidean distance on
each of the orthants, as follows. For two trees t1 and t2 which are both in a given
orthant, the distance dBHVm−1

(t1, t2) is defined to be the Euclidean distance
between the points specified by the weights. For two trees which are in different
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quadrants, there exist (many) paths connecting them which consist of straight
lines in each quadrant. The length of such a path is the sum of the lengths of
these lines, and the distance dBHVm−1(t1, t2) is then the minimum length over
all such paths. There is an analogous metric on Σm, which can be regarded as
induced from the metric on BHVm−1. Specifically, for a tree t, let t(i) denote
the length of the external edge associated to the vertex i. Then

dΣm(t1, t2) =

√√√√dBHVm−1
(t̄1, t̄2) +

m∑
i=1

(t1(i)− t2(i))2,

where t̄i denotes the tree in BHVm−1 obtained by forgetting the lengths of the
external edges (e.g., see [11]).

The metric space (Σm, dΣm) allows us to talk meaningfully about the distance
between two evolutionary histories. But more importantly, dΣm allows us to
describe the geometry of Σm, specifically curvature. Curvature can be seen in
the behavior of triangles; given side lengths (�1, �2, �3) ⊂ R3, a triangle with
these side lengths on the surface of the Earth is “fatter” than the corresponding
triangle on a Euclidean plane. We can be more precise about this by looking
at the distance from a vertex of the triangle to a point p on the opposite side
— in a fat triangle, this distance will be larger than in the the corresponding
Euclidean triangle.(Thin triangles are defined analogously.)

Alexandrov observed that this perspective makes sense in any geodesic metric
space [2]. A metric space M is a geodesic metric space if any two points x and y
can be joined by a path with length precisely d(x, y). Then given points p, q, r,
we have the triangle T = [p, q, r] with edges the paths connecting each pair of
vertices. These paths specify edge lengths, and so we can find a corresponding
triangle T̃ in Euclidean space. Given a point z on the edge [p, q], a comparison
point in T̃ is a point z̃ on the corresponding edge [p̃, q̃] such that d(z̃, p̃) = d(p, z).

We say that a triangle T in M satisfies the CAT(0) inequality if for every
pair of points x and y in T and comparison points x̃ and ỹ on T̃ , we have
d(x, y) ≤ d(x̃, ỹ). If every triangle in M satisfies the CAT(0) inequality then we
say that M is a CAT(0) space. More generally, let Mκ denote the unique two-
dimensional Riemannian manifold with curvature κ. Then we say that a geodesic
metric spaceM is CAT(κ) if every triangle in M satisfies the inequality above for
the comparison triangle in Mκ. Gromov gave a condition for a cubical complex
to be CAT(0), and using this condition Billera, Holmes, and Vogtmann showed
that BHVm−1 is CAT(0). An immediate generalization of their argument yields
the analogous result for Σm.

Theorem 1. The space Σm is a CAT(0) space.

2.2 Statistics on Evolutionary Moduli Spaces

Sequencing longitudinal cancer samples can be regarded as sampling from a dis-
tribution on the evolutionary moduli space. Differences between the distributions
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associated with different tumors can be used to predict different evolutionary tra-
jectories. First, we must justify the use of distributions on Σm. One can set up
many aspects of the formal apparatus of probability theory on any complete
metric space with a countable dense subset (i.e., a Polish spaces).

Theorem 2. The space Σm is a Polish space.

There are many natural distributions on Σm (e.g., uniform selection of tree
topology followed by uniform selection of edge weights from a range [a, b]). The
principal virtue of establishing that Σm is a CAT(0) space is that in this con-
text, there exist well-defined notions of mean and variance. An account of basic
statistical procedures for such spaces has recently been given by Sturm [13]. The
correct notion of the mean of a set of points is a generalization of a centroid: we
define the Fréchet mean and variance in Σm.

Definition 1. Given a fixed set of n trees {T0, . . . Tn−1} ⊆ Σm, the Fréchet
mean T is the unique tree that minimizes the quantity

E =

n−1∑
i=0

dΣm(Ti, T )
2.

The variance of T is the ratio E
n .

Sturm’s work provides an iterative procedure for computing the mean in Σm,
and by exploiting the local geometric structure of Σm, Miller, Owen, and Provan
produce somewhat more efficient algorithms for computing the mean.

There are many natural test statistics defined in terms of the Fréchet mean.
One can use resampling and Monte Carlo simulation to obtain confidence inter-
vals and perform inference, but practical study of such procedures and the de-
velopment of the theoretical foundations for inference are both work in progress.

2.3 The Projective Evolutionary Moduli Spaces

We are primarily interested in classifying and comparing distinct evolutionary
behaviors by understanding the relative lengths of edges: rescaling edge lengths
does not change the relationship between the branches. Thus, we will also use the
quotient space of Σm by the equivalence relation that for each orthant, the tree
{ti} is equivalent to the rescaled tree {λti}, i.e., the subspace of Σm consisting
of the points {ti} in each orthant for which the constraint

∑
i ti = 1 holds. We

will denote this quotient by PΣm, the evolutionary projective moduli spaces.
This space of trees (without external edges) of fixed length was studied by

Boardman and is denoted by τm−1. The space of m external branches that sum
to a fixed length is an m − 1 dimensional simplex, which we denote Tm−1. As
we are requiring that the length of internal branches plus the external branches
sum to a fixed constant, we can describe our space as the join of τm−1 and Tm−1:

PΣm = τm−1 � Tm−1.
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Since for the applications we describe herein the trees have either 3 or 4 leaves,
it is instructive to describe explicitly the spaces PΣ3 and PΣ4. In the case of 3
leaves all structure is in the external branches and PΣ3 is a triangle. The triangle
has three vertices and 3 edges; below we provide biological interpretations for
these regions of the space in the context of different experiments. In the case
of four leaves, τ3 is a set of 3 points reflecting the three possible topologies
of unrooted 4-trees and PΣ4 becomes a richer space in which to compare and
visualize evolutionary modes.

There is a natural projection map Σm → PΣm given by rescaling. However,
a number of warnings apply to the use of this projection. Notably, PΣm is not
a CAT(0) space (it is a CAT(1) space). As a consequence, we cannot compute
meaningful averages or variances in general. Moreover, the metric structure on
PΣm is complicated. Even for a single simplex Δn, treating Δn as a subspace of
Rn does not lead to sensible statistical procedures. In this case, an approach to
inference was introduced by Aitchison [1]. In work in progress we are studying
the integration of Aitchison’s transformation with PΣm.

2.4 Triplet Data

In the context of cancer patients, triplet samples are often comprised of 1) nor-
mal tissue, 2) malignant tissue at diagnosis, and 3) malignant tissue at a later
clinical time point such as local relapse. The moduli space of unrooted phylo-
genetic 3-trees, Σ3, is a Euclidean 3-orthant whose basis vectors represent the
3 external edge lengths (ln, ld, lr). We project each tree onto PΣ3, the space
formed by the intersection R3+∩S2, by rescaling the branch lengths. This space
is visualized in Figure 1

The general case of three nonzero external branch lengths is called branched
evolution and such phylogenetic trees will be found far from the boundary of
PΣ3. We would also like to understand the possible singular cases that occur
when one or more branches degenerate. If all branch lengths are zero then we
have the trivial situation of no evolution among the three samples.

The edges of PΣ3 represent trees in which a single branch has collapsed to
zero. As ln → 0 we have the situation where the diagnosis and the relapse
are completely distinct tumors whose earliest common ancestor is in fact normal
tissue. We call this divergent evolution. As ld → 0 we have the situation where the
diagnosis is a perfect intermediate between the normal and relapse genotypes, the
well known case of linear evolution. Lastly, as lr → 0 we have the situation where
the relapse sample is actually the intermediate between normal and diagnosis
genotypes, indicating the emergence of an ancient clone that was not dominant
at the time of diagnosis. We call this revertant evolution.

The vertices of PΣ3 represent trees in which two branches have collapsed to
zero. Near the “shared” vertex is the case where the tumor genomics are al-
most identical between diagnosis and relapse samples with respect to normal
tissue. From a clinical perspective, no further mutations are needed beyond the
diagnosis stage for the disease to relapse, and we term this scenario frozen evolu-
tion. Near the “diagnosis” vertex is the case where the relapsed tumor is almost
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Fig. 1. Evolutionary modes in PΣ3. A: frozen evolution, B: branched evolution,
C: divergent evolution, D: linear evolution, E: somatic hypermutation.

identical to normal, healthy tissue with respect to the lesion at diagnosis. This
would be a highly unusual set of genotypes to observe since advanced cancers re-
quire some genomic deviation from normal. Near the “relapse” vertex is the case
where the tumor at diagnosis is essentially the same as normal tissue compared
to the number of mutations specific to the relapsed disease. Rapid accumula-
tion of mutations can result from a shifting fitness landscape during medical
therapy, and this region of the space can indicate somatic hypermutation. This
scenario does not imply that the lesion at diagnosis has zero difference from nor-
mal tissue, but rather that the difference is dwarfed by the number of mutations
accumulated in the relapsed sample.

2.5 Quadruplet Data

Quadruplet samples can arise from 1) normal tissue, 2) malignant tissue at
diagnosis, and 3) malignant tissue at local relapse and 4) malignant tissue from
distant metastasis. Unrooted trees constructed from quadruplet data contain
a single internal edge, implying 3 possible tree topologies. We decompose the
moduli space of unrooted phylogenetic 4-trees, Σ4, into the product of spaces
for its internal and external edges respectively, BHV3 ×R4+. Upon rescaling of
the branch lengths we project each tree onto PΣ4, the space formed by τ3 � T3,
which is the join of a set of three points and a tetrahedron.

In Figure 2, we illustrate the two components of PΣ4. A quadruplet is rep-
resented by a point in the star plot and a point in the tetrahedron. The three
arms of the star plot represent the three possible tree topologies, and they meet
at an origin corresponding to the degenerate case of a length zero internal branch.
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Fig. 2. Evolutionary modes in PΣ4. Each tree, A—E, is represented by a pair of points.
The three arms of the star plot specify the internal branch, and thus the topology, while
the tetrahedral plot describes the external branches.

The vertices of the tetrahedron correspond to trees having only one nonzero
external branch, the edges to trees with two nonzero external branches, and the
faces to trees with three nonzero external branches.

3 Case Studies

We now turn to the recent cancer genomics literature for examples of different
patterns of tumor evolution. We examine the progression of two major hemato-
logic malignancies for which there is abundant triplet data: acute myelogenous
leukemia and follicular lymphoma. Then we shift to the highly aggressive solid
tumors arising in the exocrine pancreas, pancreatic ductal adenocarcinoma, for
which there is publicly available quadruplet data. In each case study we visu-
alize aggregate evolutionary behavior and compute centroid trees via an imple-
mentation of Definition 1 (Section 2.2) given by [8]. Useful acronyms for the
ensuing sections are WGS (whole genome sequencing) and WES (whole exome
sequencing).
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3.1 Relapsed Acute Myelogenous Leukemia

Acute myelogenous keukemia (AML) accounts for about 80% of acute leukemia
in adults with a median survival time of less than three years, accounting for
more than 1% of cancer deaths in the US. AML is caused by the abnormal rapid
growth of myeloid progenitor cells interfering with normal hematopoeisis. Most
patients die from relapse after chemotherapy and subsequent disease progression,
with relapse free survival at only 40%. [9] The molecular mechanism of relapse
in AML is not fully understood. In a recent study of relapsed AML, [6] the
evolution to relapse was followed in 8 patients who received both induction and
consolidation chemotherapy. The time to relapse varied between 235 - 961 days,
and the investigators found that treatment did not eliminate the original cancer
clone in any of the patients. WGS was performed on all 8 patients and an average
of 21 protein changing mutations per patient were revealed.

Relapse
Diagnosis

Normal

Fig. 3. Frozen linear evolution from diagnosis to relapse observed in 8 AML patients.
Patients are represented by red circles, scaled by their total number of mutations. The
centroid of the distribution is represented as a gold star, and its associated phylogenetic
tree is visualized.

When mapped to PΣ3 all patients are near the ”frozen evolution” vertex il-
lustrating that very few mutations were specific to either diagnosis or relapse
samples (Figure 3). Despite the genotypes being virtually shared between diag-
nosis and relapse, the latter is a far more dangerous clinical entity. Also worth
noting is the recurrence of mutations in genes that regulate DNA methylation
such as DNMT3A, IDH1, and IDH2. The combination of frozen evolution, mu-
tations that could affect global methylation patterns, and clinical progression of
disease hints that the majority of evolution in this cancer is occurring beyond
the DNA level. Indeed, recent reports suggest that relapse in AML is driven by
epigenetic deregulation. [7]
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3.2 Follicular Lymphoma Transformation to Diffuse Large B-Cell
Lymphoma

Follicular lymphoma (FL) is a common lymphoid cancer, comprising 13% of
all mature B-cell neoplasms. Roughly 20% of FL cases undergo a histologic
transformation to more aggressive lymphoma phenotype resembling diffuse large
B-cell lymphoma. While the prognosis of FL as a whole is 80% at 5 years, the
prognosis for tFL is far worse at 20% survival after 2 years. Two recent genomic
studies independently analyze patients with FL–tFL sample pairs and assess
the evolutionary behavior of the transformation. In the first paper, [12] WES
was performed on 12 patients, only 4 of whom had matched normal tissue. For
the 8 patients in which somatic mutations could not be reliably called, a panel
of 52 genes with established roles in lymphomagenesis was used as a surrogate
genotype. In the second paper, [10] WES was performed on 4 patients and WGS
was performed on 6 patients. We pool this data into three distinct groups based
on genotype construction: WGS (6 patients), WES (8 patients), and curated
gene panel (8 patients).

tFL

FL

Normal

tFL

FL

Normal

tFL

FL

Normal

Fig. 4. Different degrees of branched evolution observed in patients with FL–tFL trans-
formation. Colored circles are scaled by patients’ total number of mutations. Genotype
construction strategy affects the degree of branched vs. linear evolution observed in
WGS (red), WES (green), and curated gene panel (blue). The centroids of the three
distributions are represented as gold stars, and their associated phylogenetic trees are
visualized.

The pooled data is visualized in Figure 5, with different colorings for the three
groups. Until recently there was no consensus on the evolutionary mode of FL–
tFL transformation, with some data even pointing to a linear process.[5] Figure
5, however, clearly demonstrates that the majority of the data fall in the bulk
of PΣ3 and represent a branched evolutionary process. Comparison between the
different genotype constructions further reveals that the degree of branched vs.
linear evolution observed depends on the data curation strategy.
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3.3 Metastatic Pancreatic Cancer

Cancer of the exocrine pancreas accounts for roughly 85% of all pancreatic ma-
lignancies and is the 4th leading cause of cancer-related deaths in the United
States. In a recent study, [4] 13 cases of widely metastatic pancreatic ductal ade-
nocarcinoma (PDAC) were studied at autopsy using a genome-wide detection
method of structural rearrangements. The anatomic sites represented among
the metastases include liver, lung, diaphragm, adrenal glands, peritoneum, and
omentum.

We are interested in evolutionary histories involving distinct anatomical re-
gions. To cast this data as quadruplets of successive anatomic sites of disease,
we consider the hypothesis that the liver should represent the first metastatic
location of PDAC. There is direct anatomical communication between the ex-
ocrine pancreas and the liver, via the common bile duct, while many of the other
metastatic sites are only reachable via hematogenous spread of cancer cells. Fur-
thermore, the liver receives a large fraction of cardiac output and might therefore
be responsible for seeding the various more distant sites via the blood. For these
reasons we are interested in differentiating between metastases to the liver vs.
other sites. We partition the large number of samples per patient into the fol-
lowing disjoint subsets: normal tissue (1), primary pancreatic tumor (1), liver
metastases (∼ 5), non-liver metastases (∼ 5).

All combinatorial 4-trees are inferred from this data and their mapping to
PΣ4 is visualized in Figure 6. We denote the normal tissue sample by N, the
primary pancreatic tumor by P, the liver metastases by LM, and the non-liver
metastases by nLM. Contrary to our hypothesis that liver metastases give rise to
metastases in other tissues, we find that the centroid of the data corresponds to

LiverMet

nonLiverMet

Pancreas

Normal

Fig. 5. Both linear and branching behavior observed in 10 cases of metastatic PDAC. A
strong tendency toward (N,P),(LM,nLM) topology in is seen in the star plot on the left.
The majority of genetic alterations are acquired at the primary tumor stage. Evolution
to LM and nLM do not appear to be linearly related. The centroid of the distribution
is represented as a gold star, and its associated phylogenetic tree is visualized.
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a tree with branched ancestry between LM and nLM. Furthermore, we observe
that there is no branching in the progression from normal tissue to primary
disease to metastatic potential. In other words, the trajectory leading to the
common ancestor of LM and nLM is a linear one.

4 Conclusions

A rigorous, quantitative study of clonal evolution in cancer requires a consistent
mathematical formulation. Herein we present a natural application of the work
on BHV spaces [3] to the setting of unrooted phylogenetic trees representing
malignant tissue samples in individual patients. Exploring the distributions of
evolutionary modes in different cancers has direct implications for personalized
medical management and prognostication. For example, tuning the intensity of a
patient’s chemotherapeutic regimen requires an understanding of how treatment
perturbs the natural evolutionary path of the cancer. As the collection of intra-
individual, longitudinal genomic data sets accelerates, it will become unfeasible
to directly reason about large forests of phylogenetic trees. Thus, we propose a
framework for visual and statistical exploration of tumor evolutionary data that
can augment the intuition of cancer biologists and oncologists.
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2. Alexandrov, A.: Über eine verallgemeinerung der riemannschen geometrie. Schr.
Forschungsinst. Math. Berlin 1, 33–84 (1957)

3. Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the Space of Phylogenetic
Trees. Advances in Applied Mathematics 27(4), 733–767 (2001)

4. Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Steb-
bings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., McBride,
D.J., Varela, I., Nik-Zainal, S.A., Leroy, C., Jia, M., Menzies, A., Butler, A.P.,
Teague, J.W., Griffin, C.A., Burton, J., Swerdlow, H., Quail, M.A., Stratton, M.R.,
Iacobuzio-Donahue, C., Futreal, P.A.: The patterns and dynamics of genomic in-
stability in metastatic pancreatic cancer. Nature 467(7319), 1109–1113 (2010)

5. Carlotti, E., Wrench, D., Matthews, J., Iqbal, S., Davies, A., Norton, A., Hart, J.,
Lai, R., Montoto, S., Gribben, J.G., Lister, T.A., Fitzgibbon, J.: Transformation
of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent
evolution from a common progenitor cell or by direct evolution from the follicular
lymphoma clone. Blood 113(15), 3553–3557 (2009)



Moduli Spaces of Phylogenetic Trees Describing Tumors 539

6. Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey,
J.K., Young, M.A., Lamprecht, T., McLellan, M.D., McMichael, J.F., Wallis, J.W.,
Lu, C., Shen, D., Harris, C.C., Dooling, D.J., Fulton, R.S., Fulton, L.L., Chen, K.,
Schmidt, H., Kalicki-Veizer, J., Magrini, V.J., Cook, L., McGrath, S.D., Vickery,
T.L., Wendl, M.C., Heath, S., Watson, M.A., Link, D.C., Tomasson, M.H., Shan-
non, W.D., Payton, J.E., Kulkarni, S., Westervelt, P., Walter, M.J., Graubert,
T.A., Mardis, E.R., Wilson, R.K., DiPersio, J.F.: Clonal evolution in relapsed acute
myeloid leukaemia revealed by whole-genome sequencing. Nature 481(7382), 506–
510 (2012)

7. Li, S., Hricik, T., Chung, S.S., Bar, H., Brown, A.L., Patel, J.P., Rapoport, F.,
Liu, L., Sheridan, C., Ishii, J., Zumbo, P., Gandara, J., Lewis, I.D., To, L.B.,
Becker, M.W., Guzman, M.L., D’Andrea, R.J., Michor, F., Park, C.Y., Carroll,
M., Levine, R.L., Mason, C.E., Melnick, A.M.: Epigenetic deregulation in relapsed
acute myeloid leukemia. Blood 122(21), 2499 (2013)

8. Miller, E., Owen, M., Provan, J.S.: Polyhedral computational geometry for aver-
aging metric phylogenetic trees (2014)

9. Ohtake, S., Miyawaki, S., Fujita, H., Kiyoi, H., Shinagawa, K., Usui, N., Okumura,
H., Miyamura, K., Nakaseko, C., Miyazaki, Y., Fujieda, A., Nagai, T., Yamane, T.,
Taniwaki, M., Takahashi, M., Yagasaki, F., Kimura, Y., Asou, N., Sakamaki, H.,
Handa, H., Honda, S., Ohnishi, K., Naoe, T., Ohno, R.: Randomized study of in-
duction therapy comparing standard-dose idarubicin with high-dose daunorubicin
in adult patients with previously untreated acute myeloid leukemia: the JALSG
AML201 Study. Blood 117(8), 2358–2365 (2011)

10. Okosun, J., Bödör, C., Wang, J., Araf, S., Yang, C.Y., Pan, C., Boller, S., Cit-
taro, D., Bozek, M., Iqbal, S., Matthews, J., Wrench, D., Marzec, J., Tawana,
K., Popov, N., O’Riain, C., O’Shea, D., Carlotti, E., Davies, A., Lawrie, C.H.,
Matolcsy, A., Calaminici, M., Norton, A., Byers, R.J., Mein, C., Stupka, E., Lis-
ter, T.A., Lenz, G., Montoto, S., Gribben, J.G., Fan, Y., Grosschedl, R., Chelala,
C., Fitzgibbon, J.: Integrated genomic analysis identifies recurrent mutations and
evolution patterns driving the initiation and progression of follicular lymphoma.
Nature Genetics 46(2), 176–181 (2014)

11. Owen, M., Provan, J.: A fast algorithm for computing geodesic distances in tree
space. IEEE/ACM Transactions on Computational Biology, 1–18 (2011)

12. Pasqualucci, L., Khiabanian, H., Fangazio, M., Vasishtha, M., Messina, M., Holmes,
A.B., Ouillette, P., Trifonov, V., Rossi, D., Tabbò, F., Ponzoni, M., Chadburn,
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Abstract. Pathogenic bacteria present a large disease burden on hu-
man health. Control of these pathogens is hampered by rampant lateral
gene transfer, whereby pathogenic strains may acquire genes conferring
resistance to common antibiotics. Here we introduce tools from topolog-
ical data analysis to characterize the frequency and scale of lateral gene
transfer in bacteria, focusing on a set of pathogens of significant public
health relevance. As a case study, we examine the spread of antibiotic
resistance in Staphylococcus aureus. Finally, we consider the possible role
of the human microbiome as a reservoir for antibiotic resistance genes.

Keywords: topological data analysis, microbial evolution, antibiotic re-
sistance.

1 Introduction

Pathogenic bacteria can lead to severe infection and mortality and presents an
enormous burden on human populations and public health systems. One of the
achievements of twentieth century medicine was the development of a wide range
of antibiotic drugs to control and contain the spread of pathogenic bacteria,
leading to vastly increased life expectancies and global economic development.
However, rapidly rising levels of multidrug antibiotic resistance in several com-
mon pathogens, including Escherichia coli, Klebsiella pneumoniae, Staphylococ-
cus aureus, and Neisseria gonorrhoea, is recognized as a pressing global issue
with near-term consequences [15,23,26]. The threat of a post-antibiotic 21st cen-
tury is serious, and new methods to characterize and monitor the spread of
resistance are urgently needed.

Antibiotic resistance can be acquired through point mutation or through hor-
izontal transfer of resistance genes. Horizontal exchange occurs when a donor
bacteria transmits foreign DNA into a genetically distinct bacteria strain. Three
mechanisms of horizontal transfer are identified, depending on the route by which
foreign DNA is acquired [16]. Foreign DNA can be acquired via uptake from an
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external environment (transformation), via viral-mediated processes (transduc-
tion), or via direct cell-to-cell contact between bacterial strains (conjugation).
Resistance genes can be transferred between strains of the same species, or can
be acquired from different species in the same environment. While the former is
generally more common, an example of the latter is the phage-mediated acquisi-
tion of Shiga toxin in E. coli in Germany in 2011 [18]. Elements of the bacterial
genome that show evidence of foreign origin are called genomic islands, and are
of particular concern when associated with phenotypic effects such as virulence
or antibiotic resistance.

The presence of horizontal gene transfer precludes accurate phylogenetic char-
acterization, because different segments of the genome will have different evolu-
tionary histories. Bacterial species definitions and taxonomic classifications are
made on the basis of 16S ribosomal RNA, a highly conserved genomic region be-
tween bacteria and archaea species [25]. However, the region generally accounts
for less than 1% of the complete genome, implying that the vast majority of
evolutionary relationships are not accounted for in the taxonomy [5]. Because of
the important role played by lateral gene transfer, new ways of characterizing
evolutionary and phenotypic relationships between microorganisms are needed.

Topological data analysis (TDA), and persistent homology in particular, has
been shown to be an effective tool for capturing horizontal evolutionary processes
at the population level by measuring deviations from treelike additivity. Initial
work in this direction characterized recombination in viral evolution, particularly
in influenza, where genomic reassortment can lead to the emergence of viral
pandemics [3]. Further work established foundations for statistical inference in
population genetics models using TDA [8]. We provide a brief overview of TDA
and persistent homology in Section 2, for additional reviews see [2][7].

In this paper we explore topics relating to horizontal gene transfer in bacte-
ria and the emergence of antibiotic resistance in pathogenic strains. We show
that TDA can not only quantify gene transfer events, but also characterize the
scale of gene transfer. The scale of recombination can be measured from the
distribution of birth times of the H1 invariants in the persistent barcode di-
agram. It has been shown that recombination rates decrease with increasing
sequence divergence [9]. We characterize the rate and scale of intraspecies re-
combination in several pathogenic bacteria of public health concern. We select a
set of pathogenic bacteria that are of significant public health interest based on
a recently released World Health Organization (WHO) report on antimicrobial
resistance [26]. Using persistent homology, we characterize the rate and scale of
recombination in the core genome using multilocus sequence data. To extend
our characterization to the whole genome, we use protein family annotations as
a proxy for sequence composition. This allows us to compute a similarity matrix
between strains. Comparing persistence diagrams gives us information about the
relative scales of gene transfer at arbitrary loci. The species selected for study
and the sample sizes in each analysis are specified in Table 1. Next, we explore
the spread of antibiotic resistance genes in S. aureus using Mapper, an algorithm
for partial clustering and visualization of high dimensional data [19]. We identify
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Table 1. Pathogenic bacteria selected for study and sample sizes in each analysis

Species MLST profiles PATRIC profiles

Campylobacter jejuni 7216 91
Escherichia coli 616 1621
Enterococcus faecalis 532 301
Haemphilus influenzae 1354 22
Helicobacter pylori 2759 366
Klebsiella pneumoniae 1579 161
Neisseria spp. 10802 234
Pseudomonas aeruginosa 1757 181
Staphylococcus aureus 2650 461
Salmonella enterica 1716 638
Streptococcus pneumoniae 9626 293
Streptococcus pyogenes 627 48

two major populations of S. aureus, and observe one cluster with strong enrich-
ment for the antibiotic resistance gene mecA. Importantly, resistance appears
to be increasingly spreading in the second population. Finally, we consider the
risk of horizontal transfer of resistance genes from the human microbiome into
an antibiotic sensitive strain, using β-Lactam resistence as an example. In this
environment, benign bacterial strains can harbor known resistance genes. We
use a network analysis to visualize the spread of antibiotic resistance gene mecA
into nonnative phyla. Each individual has a unique microbiome, and we specu-
late that microbiome typing of this sort may useful in developing personalized
antibiotic therapies.

These results demonstrate the important role the HCI-KDD approach can
play in tackling the challenges of large scale -omics data applied to clinical set-
tings and personalized medicine: Interactive visualization through graph and
network construction, data mining global invariants with topological algorithms,
and knowledge discovery through data integration and fusion [11][10].

2 Topological Data Analysis and Persistent Homology

Topological data analysis computes global invariants from point cloud data.
These global invariants represent loops, holes, and higher dimensional voids in
data. A topological representation of the data is constructed by building a set
of triangulated objects representing the connectivity of the data at different
scales, called a filtration. Various constructions exist for triangulating data. The
most efficient approach for large scale data is the Vietoris-Rips complex, which
associates a simplex to a set of points if they are pairwise connected. In this
way, the complex is specified purely by its 1-skeleton, which can be efficiently
computed.

Given a filtration, persistent homology is an algorithm to associate homology
groups to each scale, which give information about the invariants in the data. H0
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gives information about the connectivity, H1 about loops, etc. The output of the
algorithm is a set of intervals corresponding to topolgoical features present at
different scales. The homology information can be compactly summarized as a
barcode diagram, in which invariants are represented as horizontal line segments
with the birth and death scales as the left and right edge of the line segment,
respectively. Alternatively, the homology information can be represented as a
persistence diagram, a 2-d plot in which intervals are represented as points on a
(birth,death) plane.

For the purposes of studying biological sequence data, and horizontal evo-
lutionary processes in particular, these approaches are widely useful, as it was
shown in [3] that sequence datasets with treelike phylogeny will have vanishing
higher homology. The observed homological features are therefore direct evidence
for horizontal exchange amonst the sequences in a sample. These topological con-
structions become a natural way of reasoning about evolutionary relationships
between organisms in cases where treelike phylogeny is not appopriate.

3 Evolutionary Scales of Recombination in the Core
Genome

The genes comprising the bacterial genome can be largely paritioned into two
groups: the core genome, consisting of those genes that are highly conserved
and characteristic of a given species classification, and the accessory genome,
consisting of those genes whose presence can be variable even within strains
of the same species. We first sought to examine scales of recombination in the
core bacterial genome using multilocus sequence typing (MLST) data. MLST is
a method of rapidly assigning a sequence profile to a sample bacterial strain.
For each species, a predetermined set of loci on a small number of housekeeping
genes are selected as representative of the core genome of the species. As new
strains are sequenced, they are annotated with a profile corresponding to the
sequence type at each locus. If a sample has a previously unseen type at a given
locus, it is appended to the list of types at that locus. Large online databases
have curated MLST data from labs around the world; significant pathogens can
have several thousand typed strains (over 10,000 in the case of Neisseria spp.).
Because different species will be typed at different loci, examining direct inter-
species genetic exchange with this data is unfeasible, however MLST provides a
large quantity of data with which to examine intraspecies exchange in the core
genome. However, because the selected loci are generally all housekeeping genes,
this type of recombination analysis will be only informative about genetic ex-
change in the core genome. Mobile genetic elements will have separate rates of
exchange.

We investigate horizontal exchange in the core genome for twelve pathogens
using MLST data from PubMLST [13]. For each strain, a pseudogenome can be
constructed by concatenating the typed sequence at each locus. Using a Ham-
ming metric, we construct a pairwise distance matrix between strains and com-
pute persistent homology on the resulting metric space. Because of the large
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number of sample strains, we employ a Lazy Witness complex with 250 land-
mark points and ν = 0 [6]. The computation is performed using javaplex [21].
An example of our output is shown in Figure 1, where we plot the H1 bar-
code diagrams for K. pneumoniae and S. enterica. The two species have distinct
recombination profiles, characterized by the range of recombinations: K. pneu-
moniae recombines at only one short-lived scale, while S. enterica recombines
both at the short-lived scale and a longer-lived scale. We repeat this analysis for
each species, and plot the results as a persistence diagram in Figure 2. Among
the bulk of pathogens there appears to be three major scales of recombination,
a short-lived scale at intermediate distances, a longer-lived scale at intermediate
distances, and a short-lived scale at longer distances. H. polyori is a clear outlier,
tending to recombine at scales significantly lower than the other pathogens.

(a) Klebsiella pneumoniae (b) Salmonella enterica

Fig. 1. Barcode diagrams reflect different scales of genomic exchange in K. pneumoniae
and S. enterica

We define a relative rate of recombination by counting the number ofH1 loops
across the filtration and dividing by the number of samples for that species. The
results are shown in Figure 3, where we observe that different species can have
vastly different recombination profiles. For example, S. enterica and E. coli have
the highest recombination rates, while H. pylori is substantially lower than the
others. Coupled with the smaller scale of recombinations suggests that the H.
pylori core genome is relatively resistant to recombination except within closely
related strains.

4 Protein Families as a Proxy for Genome Wide
Reticulation

Protein family annotations cluster proteins into sets of isofunctional homologs,
i.e., clusters of proteins with both similar sequence composition and similar
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Fig. 2. The H1 persistence diagram for the twelve pathogenic strains selected for this
study using MLST profile data. There are three broad scales of recombination. To the
right is the birth time distribution for each strain. H. pylori has an earlier scale of
recombination not present in the other species.

function. A particular strain is represented as a binary vector indicating the
presence or absence of a given protein family. Correlations between strains can
reveal genome-wide patterns of genetic exchange, unlike the MLST data which
can only provide evidence of exchange in the core genome. We use the FigFam
protein annotations in the Pathosystems Resource Institute Center (PATRIC)
database because of the breadth of pathogenic strain coverage and depth of ge-
nomic annotations [24]. The FigFam annotation scheme consists of over 100,000
protein families curated from over 950,000 unique proteins [14].

For each strain we compute a transformation into FigFam space. We transform
into this space because the frequency of genome rearrangements and differences
in mobile genetic elements makes whole genome alignments unreliable, even for
strains within the same species. As justification for performing this step, it has
been shown experimentally that recombination rates decrease with increasing
genetic distance [9]. After transforming, we construct a strain-strain correlation
matrix and compute the persistent homology in this space. In Figure 4 we show
the persistence diagram relating the structure and scale between different species.
We find that different species have a much more diverse topological structure in
this space than in MLST space, and a wide variety of recombination scales. The
large scales of exchange in H. influenzae suggest it can regularly acquire novel
genetic material from distantly related strains.
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Fig. 3. Relative recombination rates computed by persistent homology from MLST
profile data

5 Antibiotic Resistance in Staphylococcus aureus

S. aureus is a gram positive bacteria commonly found in the nostrils and upper
respiratory tract. Certain strains can cause severe infection in high-risk popu-
lations, particulary in the hospital setting. The emergence of antibiotic resis-
tant S. aureus is therefore of significant clinical concern. Methicillin resistant
S. aureus (MRSA) strains are resistant to β-Lactam antibiotics including peni-
cillin and cephalosporin. Resistance is conferred by the gene mecA, an element
of the Staphyloccoccal cassette chromosome mec (SCCmec). mecA codes for a
dysfunctional penicillin-binding protein 2a (PBP2a), which inhibits β-Lactam
antibiotic binding, the primary mechanism of action [12]. Of substantial clinical
importance are methods for characterizing the spread of MRSA within the S.
aureus population.

To address this question, we use the FigFam annotations in PATRIC, as
described in the previous section. PATRIC contains genomic annotations for 461
strains of S. aureus, collectively spanning 3,578 protein families. We perform a
clustering analysis using the Mapper algorithm as implemented in Ayasdi Iris
[1]. Principal and second metric singular value decomposition are used as filter
functions, with a 4x gain and an equalized resolution of 30. This results in a
graph structure with two large clusters, connected by a narrow bridge, as shown
in Figure 5. The two clusters are consistent with previous phylogenetic studies
using multilocus sequence data to identify two major population groups [4].
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Of the 461 S. aureus strains in PATRIC, 142 carry the mecA gene. When we
color nodes in the network based on an enrichment for the presence of mecA,
we observe a much stronger enrichment in one of the two clusters. This suggests
that β-Lactam resistance has already begun to dominate in that clade, likely due
to selective pressures. More strikingly, we observe that while mecA enrichment
is not as strong in the second cluster, there is a distinct path of enrichment
emanating along the connecting bridge between the two clusters and into the
less enriched cluster. This suggests the hypothesis that antibiotic resistance has
spread from the first cluster into the second cluster via strains intermediate to
the two, and will likely continue to be selected for in the second cluster.

Fig. 4. Persistence diagram for a subset of pathogenic bacteria, computed using the
FigFam annotations compiled in PATRIC. Compared to the MLST persistence dia-
gram, the Figfam diagram has a more diverse scale of topological structure.

6 Microbiome as a Reservoir of Antibiotic Resistance
Genes

While antibiotic resistance can be acquired through gene exchange between
strains of the same species, it is also possible for gene exchange to occur between
distantly related species. It has been recognized that an individual’s microbiome,
the set of microorganisms that exist symbiotically within a human host, can act
as a reservoir of antimicrobial resistance genes [20,17]. It is of substantial clini-
cal interest to characterize to what extent an individual’s microbiome may pose
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Fig. 5. The FigFam similarity network of S. aureus constructed using Mapper as imple-
mented in Ayasdi Iris. We use a Hamming metric and Primary and Secondary Metric
SVD filters (res: 30, gain 4x, eq.). Node color is based on strain enrichment for mecA,
the gene conferring β-Lactam resistance. Two distinct clades of S. aureus are visi-
ble, one of which has already been compromised for resistance. Of important clinical
significance is the growing enrichment for mecA in the second clade.

a risk for a pathogenic bacteria acquiring a resistance gene through horizontal
transfer from an benign strain in the microbiome.

To address this question, we use data from the Human Microbiome Project
(HMP), a major research initiative performing metagenomic characterization of
hundreds of healthy human microbiomes [22]. The HMP has defined a set of
reference strains that have been observed in the human microbiome. We collect
FigFam annotations from PATRIC for the reference strain list in the gastroin-
testinal tract. We focus on the gastrointestinal tract because it is an isolated
environment and likely to undergo higher rates of exchange than other anatomic
regions. Of the 717 gastrointestinal tract reference strains, 321 had FigFam an-
notations. We computed a similarity matrix as in previous sections, using corre-
lation as distance. The resulting network is shown in Figure 6, where strains are
colored by phyla-level classifications. While largely recapitulating phylogeny, the
network depicts interesting correlations between phyla, such as the loop between
Firmicutes, Bacteroides, and Proteobacteria.

Next, we searched for genomic annotations relating to β-Lactam resistance.
10 strains in the reference set had matching annotations, and we highlight those
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Fig. 6. The FigFam similarity network of gastrointestinal tract reference strains iden-
tified in the Human Microbiome Project. The green diamond identifies the strains
carrying resistance to β-Lactam antibiotics.

strains in the network with green diamonds. We observe resistance mostly con-
centrated in the Firmicutes, of which S. aureus is a member, however there
is a strain of Proteobacteria that has acquired the resistance gene. Transfer of
β-Lactam resistance into the Protebacteria is clinically worrisome. Pathogenic
Proteobacteria include S. enterica, V. cholerae, and H. pylori, and emergence of
β-Lactam resistance will severely impact currently used antibiotic drug
therapies.

The species composition of each individual’s microbiome can differ substan-
tially due to a wide variety of poorly understood factors [22]. In this case, an
individual’s personal microbiome network will differ from the network we show
in Figure 6, which was constructed from the set of all strains that have been
reported across studies of multiple individuals. The relative risk for acquiring
self-induced resistance will therefore vary from person to person and by the in-
fectious strain acquired. However, a network analysis of this type can be used
to assess risk and give clues as to possible routes by which antibiotic resistance
may be acquired. In the clinical setting, this could assist in developing person-
alized antibiotic treatment regimens. We propose a more thorough expansion
of this work, examining the full range of antibiotic resistance genes in order to
quantify microbiome risk factors for treatment failure. We foresee an era of ge-
nomically informed infectious disease management in the clinical setting, based
on an understanding of a patient’s personal microbiome network profile.

7 Conclusions

In this paper we have brought some ideas from topological data analysis to bear
on problems in pathogenic microbial genetics. First, we used persistent homol-
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ogy to evaluate recombination rates in the bacterial core genomes using MLST
profile data. We showed that different pathogens have different recombination
rates. We expanded this to gene transfer across whole bacterial genomes by using
protein family annotations in the PATRIC database. We found different scales
of recombination in different pathogens. Next, we explored the spread of MRSA
in S. aureus populations using topological methods. We identified two major
population clusters of S. aureus, and noted increasing resistance in a previously
isolated population. Finally, we studied the emergence of β-Lactam resistance in
the microbiome, and proposed methods by which personal risk could be assessed
by microbiome typing. Each stage of this analysis represents a successful appli-
cation of the HCI-KDD approach to biomedical discovery. Our results point to
the important role for graph mining and topological data mining in health and
personalized medicine.

Acknowledgements. The authors thank Gunnar Carlsson for access to the
Ayasdi Iris platform. KJE thanks Chris Wiggins, Daniel Rosenbloom, and Sakel-
larios Zairis for useful discussions. KJE and RR were supported by NIH grant
U54-CA121852, Multiscale Analysis of Genomic and Cellular Networks.

This publication made use of the PubMLST website (http://pubmlst.org/)
developed by Keith Jolley [13] and sited at the University of Oxford. The devel-
opment of that website was funded by the Wellcome Trust.

References

1. Ayasdi Inc.: Iris, http://www.ayasdi.com

2. Carlsson, G.: Topology and data. Bulletin-American Mathematical Society 46(2),
255 (2009)

3. Chan, J.M., Carlsson, G., Rabadan, R.: Topology of viral evolution. Proceedings
of the National Academy of Sciences of the United States of America 110(46),
18566–18571 (2013)

4. Cooper, J.E., Feil, E.J.: The phylogeny of Staphylococcus aureus - which genes
make the best intra-species markers? Microbiology 152(5), 1297–1305 (2006)

5. Dagan, T., Martin, W.: The tree of one percent. Genome Biol. 7(10), 118 (2006)

6. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In:
Proceedings of the First Eurographics Conference on Point-Based Graphics, pp.
157–166. Eurographics Association (2004)

7. Edelsbrunner, H., Harer, J.: Computational topology: an introduction. American
Mathematical Society (2010)

8. Emmett, K., Rosenbloom, D., Camara, P., Rabadan, R.: Parametric inference using
persistence diagrams: A case study in population genetics. In: ICML Workshop on
Topological Methods in Machine Learning (2014)

9. Fraser, C., Hanage, W.P., Spratt, B.G.: Recombination and the Nature of Bacterial
Speciation. Science 315(5811), 476–480 (2007)

10. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge Discovery and interactive Data
Mining in Bioinformatics-State-of-the-Art, future challenges and research direc-
tions. BMC Bioinformatics 15(suppl. 6), 11 (2014)

http://www.ayasdi.com


Characterizing Scales of Genetic Recombination and Antibiotic Resistance 551

11. Holzinger, A.: Human-computer interaction and knowledge discovery (HCI-KDD):
What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A.,
Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127,
pp. 319–328. Springer, Heidelberg (2013)

12. Jensen, S.O., Lyon, B.R.: Genetics of antimicrobial resistance in Staphylococcus
aureus. Future Microbiology 4(5), 565–582 (2009)

13. Jolley, K.A., Maiden, M.C.: BIGSdb: Scalable analysis of bacterial genome varia-
tion at the population level. BMC Bioinformatics 11(1), 595 (2010)

14. Meyer, F., Overbeek, R., Rodriguez, A.: FIGfams: yet another set of protein fam-
ilies. Nucleic Acids Research 37(20), 6643–6654 (2009)

15. Neu, H.C.: The Crisis in Antibiotic Resistance. Science 257(5073), 1064–1073
(1992)

16. Ochman, H., Lawrence, J.G., Groisman, E.A.: Lateral gene transfer and the nature
of bacterial innovation. Nature 405(6784), 299–304 (2000)

17. Penders, J., Stobberingh, E.E., Savelkoul, P.H., Wolffs, P.F.: The human micro-
biome as a reservoir of antimicrobial resistance. Frontiers in Microbiology 4 (2013)

18. Rohde, H., Qin, J., Cui, Y., Li, D., Loman, N.J., Hentschke, M., Chen, W., Pu,
F., Peng, Y., Li, J., Xi, F., Li, S., Li, Y., Zhang, Z., Yang, X., Zhao, M., Wang,
P., Guan, Y., Cen, Z., Zhao, X., Christner, M., Kobbe, R., Loos, S., Oh, J., Yang,
L., Danchin, A., Gao, G.F., Song, Y., Li, Y., Yang, H., Wang, J., Xu, J., Pallen,
M.J., Wang, J., Aepfelbacher, M., Yang, R.: Open-source genomic analysis of shiga-
toxin–producing E. coli O104:H4. New England Journal of Medicine 365(8), 718–
724 (2011)

19. Singh, G., Mémoli, F., Carlsson, G.: Topological methods for the analysis of high
dimensional data sets and 3d object recognition. In: Eurographics Symposium on
Point-Based Graphics. The Eurographics Association, Prague (2007)

20. Sommer, M.O., Church, G.M., Dantas, G.: The human microbiome harbors a di-
verse reservoir of antibiotic resistance genes. Virulence 1(4), 299–303 (2010)

21. Tausz, A., Vejdemo-Johansson, M., Adams, H.: Javaplex: A research software pack-
age for persistent (co)homology (2011), Software available at
http://code.google.com/javaplex

22. The Human Microbiome Project Consortium: Structure, function and diversity of
the healthy human microbiome. Nature 486(7402), 207–214 (2012)

23. Thomas, C.M., Nielsen, K.M.: Mechanisms of, and Barriers to, Horizontal Gene
Transfer between Bacteria. Nature Reviews Microbiology 3(9), 711–721 (2005)

24. Wattam, A.R., Abraham, D., Dalay, O., Disz, T.L., Driscoll, T., Gabbard, J.L.,
Gillespie, J.J., Gough, R., Hix, D., Kenyon, R., Machi, D., Mao, C., Nordberg,
E.K., Olson, R., Overbeek, R., Pusch, G.D., Shukla, M., Schulman, J., Stevens,
R.L., Sullivan, D.E., Vonstein, V., Warren, A., Will, R., Wilson, M.J.C., Yoo,
H.S., Zhang, C., Zhang, Y., Sobral, B.W.: PATRIC, the bacterial bioinformatics
database and analysis resource. Nucleic Acids Research 42(D1), D581–D591 (2013)

25. Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the
primary kingdoms. Proceedings of the National Academy of Sciences of the United
States of America 74(11), 5088–5090 (1977)

26. World Health Organization: Antimicrobial Resistance: global report on surveillance
2014 (2014),
http://www.who.int/drugresistance/documents/surveillancereport/en/

http://code.google.com/javaplex
http://www.who.int/drugresistance/documents/surveillancereport/en/


On Graph Extraction from Image Data

Andreas Holzinger, Bernd Malle, and Nicola Giuliani

Research Unit Human-Computer Interaction, Institute for Medical Informatics,
Statistics & Documentation, Medical University Graz, Austria

{a.holzinger,b.malle,n.giuliani}@hci4all.at

Abstract. Hot topics in knowledge discovery and interactive data min-
ing from natural images include the application of topological methods
and machine learning algorithms. For any such approach one needs at
first a relevant and robust digital content representation from the im-
age data. However, traditional pixel-based image analysis techniques do
not effectively extract, hence represent the content. A very promising
approach is to extract graphs from images, which is not an easy task.
In this paper we present a novel approach for knowledge discovery by
extracting graph structures from natural image data. For this purpose,
we created a framework built upon modern Web technologies, utilizing
HTML canvas and pure Javascript inside a Web-browser, which is a very
promising engineering approach. Following on a short description of some
popular image classification and segmentation methodologies, we outline
a specific data processing pipeline suitable for carrying out future sci-
entific research. A demonstration of our implementation, compared to
the results of a traditional watershed transformation performed in Mat-
lab showed very promising results in both quality and runtime, despite
some open problems. Finally, we provide a short discussion of a few open
problems and outline some of our future research routes.

Keywords: data preprocessing, image segmentation, graphs, graph-
based algorithms, graph extraction, image analysis, image content an-
alytics, knowledge discovery, data mining.

1 Introduction and Motivation

Big challenges in the biomedical domain are today in the development of new
methods, algorithms and tools for the effective analysis and interpretation of
complex biomedical data [1]. Within such data sets, relevant structural and/or
temporal patterns (“knowledge”) are often hidden, difficult to extract, thus not
directly accessible to a biomedical expert, consequently, a major challenge is in
interactive Knowledge Discovery and Data Mining which relies heavily on ma-
chine learning approaches. However, many of the classical methods are based
on the assumption that the data objects under consideration are represented
in terms of feature vectors, or collections of attribute values; Bunke (2003) [2],
for example, argued that graphs have a representational power that is signif-
icantly higher than the representational power of feature vectors. Moreover,
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graph-theory provides powerful tools to map data structures and to find novel
connections between data objects [3] and allow the application of statistical and
machine learning techniques [4].
Methods from computational geometry and algebraic topology may also be of
great help [5], and could be combined with machine learning approaches, e.g.
evolutionary algorithms [6], [7]. Promising future research routes in this field
are in interactive visual data mining together with graph-based data analysis
[8], [9]. Another benefit of a graph-based data structure is in the applicability
of methods from network topology and network analysis and data mining, e.g.
small-world phenomenon [10], and cluster analysis [11] to mention only two.

The application of graph theory to image analysis (see e.g. [12]) is in the focus
of research for some time and still poses a lot of challenges and calls for new
approaches.

2 Definitions

In this work we are dealing with natural images, which includes every digital
image taken from real world scenes, for example biomedical images from der-
moscopy (epiluminescence microscopy). The starting point of our calculations is
the conversion of such a digital image into a topographic map, which we need for
graph extraction. Caselles et al. (1999) [13] provide some necessary definitions:

Definition 1 (digital image). A digital image is modelled as a real function
u(x), where x represents an arbitrary point of the plane and u(x) denotes the
grey-level at x. Let u : Ω → R be an image, i.e., a bounded measurable function.

Definition 2 (upper level set). Given an image u, we call upper level set of
u any set of the form [u ≥ λ] where λ ∈ R.

Definition 3 (connected component). Let X be a topological space. We say
that X is connected if it cannot be written as the union ot two nonempty closed
(open) disjoint sets. A subset C of X is called a connected component id C is a
maximal connected subset of X, i.e., C is connected and for any conected subset
C1 of X such that C ⊆ C1, then C1 = C.

Definition 4 (upper topographic map). The upper topographic map of an
image is the family of the connected components of the level sets od u, [u ≥ λ],
λ ∈ R.

Definition 5 (topographic map). If u belongs to a function space, such that
each connected component of a level set is bounded by a countable or finite number
of oriented Jordan curves, we call topographic map the family of these Jordan
curves.
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3 Related Work

3.1 Traditional Image Classification

In the biomedical domain there has been a shift in demands, from software as-
sisting in the production and processing of image data, analysed by humans
alone, to software systems to represent, discover and evaluate knowledge. In [14]
the authors describe a method of image classification which might be catego-
rized as traditional, in the sense that it does not segment an image into logical
substructures and attempts to compute relations among those. Instead, it uses
metrics based on pixel values, divided into 1st order statistical parameters which
describe the global structure of an image, and 2nd order statistical parameters
which describe the neighborhoods of individual pixels.

– 1st order parameters. Amongst the global parameters are those that use
grey-value probabilities (histogram values) as the building blocks of their
formulas. They include variance (as a measure of homogeneity), skewness
(asymmetry of the value distribution), kurtosis (shape, either peaked or flat)
and energy as well as entropy.

– 2nd order parameters. In order to calculate those, the probability of grey-
value co-occurrence is used as a basic concept. Using these values, the local
/ neighborhood parameters Energy, Entropy, Contrast, Homogeneity and
Correlation are computed.

Once the needed metrics were taken, a C4.5 algorithm was used to build a de-
cision tree and classify the images. Although the algorithm is not a segmentation
approach as such and thus not immediately usable in the endeavour to extract
graph structures out of image data, it could provide regional information usable
as classifiers in tasks such as identifying structural / topographical primitives.
Therefore it might constitute a building block in the preprocessing pipeline of a
more extensive procedure.

3.2 Watershed Methods

Watershed algorithms [15] got their name from the fact that they treat images
as topographic maps, that is as ’landscapes’ with height structures. The seg-
mentation of those landscapes into regions of pixels belonging together is then
performed by assuming drops of water raining down on the map, following paths
of descent into low areas until they form ’lakes’, which in watershed terminology
are called catchment basins. This can be thought of in one of various ways: by
simulating drops raining from above, by immersing the whole landscape into an
ocean (with holes punched into the deepest spots of the landscape, so the water
can enter.), but also by using topographical distance measures like Minimum
Spanning Trees (MST). A usual watershed processing pipeline consists of the
following steps:

1. Transformation into a topographic map. The color or gray values of
the pixels in an image are converted to height information; for example, if



On Graph Extraction from Image Data 555

given a grayscale from 0 (black) to 255 (white), one could assume 255 to be
the highest possible peak in a landscape and 0 the deepest reachable point,
thereby converting the image into a three-dimensional structure of voxels
with coordinates (x, y, z). As a first step, the application of a gradient filter
in order to produce continuous ’crests’ throughout the landscape might be
in order.

2. Finding local minima. In order to be able to fill a topographical relief with
imaginary fluid by immersion, one first has to find the points through which
the fluid can enter the landscape (or above which points it accumulates,
depending on one’s view). This is akin to finding the set of local minima in
the image interpreted as topographical relief. This can easily be done in an
image, by inspecting small regions of the image in sequence and finding the
ones with the lowest value (one would probably use color or computed grey
values). If such an operation would result in a significant percentage of all
pixels marked as minima, which is often the case with watershed methods,
a suitable subset of the computed minima (= seed points) can also be used
instead.

3. Finding catchment basins. The main point in using watershed methods
is finding regions that spatially belong together. They are usually seen as
caverns or ditches separated by crests (the formations already extracted from
color / grey value information earlier). This is done by using an algorithm to
simulate flooding, so that the water accumulates in basins until it reaches a
crest. At this point the basin can either ’flow over’, filling an adjacent deep
region as well, or the flooding can be stopped by erecting a virtual water-
shed. Another way to see this is by visualizing the voxels as vertices of a
graph; based on this structure, the voxels belonging to a nearest minimum
can be found by applying traditional, well-tested and well-understood graph
algorithms such as Minimum Spanning Trees (MST). In order to find the
voxels belonging to a catchment basin, the edges between them would first
be assigned a weight corresponding to the distance they represent. By intro-
ducing auxiliary vertices connecting the first set of minimum points in the
landscape via an edge of weight zero, a connected MST can be found which
encompasses all the vertices in the graph. The individual subtrees starting
at the set of minimum points then form the output of the algorithm.

4. Erecting watersheds. Functioning as an artificial divide between two adja-
cent catchment basins, watersheds provide the final segmentation lines of the
process described. When to erect a watershed vs. letting two regions merge
(by being overflowed from one side) is a question depending on how many
segments are wanted, so no universal decision criterion exists. As watershed
methods often produce over-segmented images, this is a very important point
in implementing such a procedure.
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Fig. 1. MST view of finding catchment basins: According to [16] a minimum span-
ning tree can be computed using auxiliary (virtual) vertices. The weight of the edges
represents a dissimilarity measure between pixels / voxels.

3.3 Region Merging

This section briefly describes a region merging algorithm which was published
by [17]. This algorithm forms the basis of our own image segmentation imple-
mentation whose results will be discussed in a later section.

The original digital image can be interpreted as a directed, conservative
weighted graph G, whose vertices V are the pixels themselves, where every (non-
bordering) vertex has eight edges to its neighbouring nodes. Every edge e ∈ E is
weighted with the difference of the intensity values i ∈ {0 . . . 255} of the pixels
it connects. In this initial phase every pixel also constitutes its own region. To
group similar pixels into a region R, where R is a subset of V , the following steps
(written as pseudo algorithm) are needed:

1. Sort all edges e ∈ E in ascending order.
2. For all edges e do:

(a) Check if the pixels connected by e are already in the same region. If yes,
continue to the next edge.

(b) If not, check if there exists a boundary between the regions under obser-
vation. There exists a boundary if the minimum edge weight connecting
those regions is greater than the minimum of the maximum internal
MST-edges of the respective regions, where MST denotes the Minimum-
Spanning Tree of the regions the pixels belong to.

(c) If a boundary exists, continue to the next edge.
(d) Else, merge the regions and update any pertinent properties (internal

MST, avg color, gradients, etc.).

3.4 Segmentation Techniques Using Hybrid Approaches

Aside the rather traditional approaches mentioned earlier there has also been
published some interesting work in methods using anterior knowledge about
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object primitives, employing supervised learning etc. An example of this is the
approach described in [18]. First, they propose extracting known and unknown
objects from an image - this of course presupposes the existance of such knowl-
edge and an efficient lookup possibility in an object database. Once those prim-
itives are established, they compute object histograms over several different dis-
tances for each single object previously found. Thus they strive to derive an
understanding about the global image structure from individual regions. For in-
stance, if an object were a tree, and its histograms of surrounding objects would
comprise (in ascending order of distance): 3 trees, 7 tress, 25 trees..., one could
infer that the image depicted a forest. If, however, the histograms would show: 3
trees and 3 windows, 5 trees and 5 windows, 7 trees and 7 windows..., the image
might rather depict an alley. Although in our work we are not yet concerned
about object recognition or category discovery, this modern approach is rather
similar to ours and we are looking forward to seeing further advancement in the
area.

4 Experimental Setup

Our overall goal is to establish a software framework for graph extraction and
graph analysis which is open source and accessible via a Web site. Specifically, as
technology in Virtual Machines has improved dramatically since the late 2000s,
it is now feasible to conduct such computations client side in a language like
Javascript, which would have been fantastic only a few years back. The advan-
tages to this approach are manifold: First, the possibility of running a low-cost
infrastructure as scaling is done automatically by users providing their own com-
putational power. Second, we have to store only the compressed graph structure
(in JSON) along with some metadata concerning the algorithms and parameters
used; storing the complete images is no longer required. Third, the processing
is done faster because the additional computation time necessary in Javascript
is now less than the time it takes to upload an image. Fourth, we can thus
make use of the amazing visualization capabilities now offered for free by mod-
ern Javascript libraries; this will allow our users to immediately see and interact
with the results of our computations.

4.1 Processing Pipeline

In extracting a graph from a natural image, we generally follow 4 consecutive
steps whose specific implementation may be switched and whose input and out-
put datastructures may vary depending on the chosen segmentation algorithm.
Nevertheless, they form a logical flow which we intend to formalize in later
versions of our framework in order to provide a standard procedure that user
extensions can be plugged into.

1. Image Preprocessing. As a first step we may need to apply some prepro-
cessing operations, e.x. the conversion to an intensity (grayscale) image or a
background separation step. In any case both input and output of this step
are images.
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2. Algorithmic Preprocessing. There exist a wide variety of image segmen-
tation algorithms, some of which are graph-based (like the region merging
approach described earlier), while others would use clustering, compression
etc. Therefore, the second step in our pipeline consists of providing the datas-
tructures needed by the particular class of segmentation method. For the
example case in this paper, we transform the image to an initial graph struc-
ture, with every pixel forming it’s own region, and provide an adjacency list
and edge list representation for further computations.

3. Image Segmentation. The core of our processing pipeline consists of the
actual image segmentation step, which transforms the datastructures pro-
vided to it into a label map denoting each pixels affiliation to a region. In
this step users should be able to choose among different classes and specific
implementations of algorithms. In the future we also intend to give users the
opportunity to implement and upload their own code, which will be injected
into the pipeline.

4. Graph extraction. Based on the label map produced in the preceding step
we can now extract the graph structure by first computing the region cen-
troids followed by a Delaunay triangulation on the resulting set of vertices.
Additionally, depending on the chosen segmentation algorithm and imple-
mentation, a representative feature vector will be stored for each region.
This might include information like average color, gradients, or environment
histograms, and in the future will be adaptable by the user as well.

Fig. 2. A depiction of our computational pipeline: The input image (1) is transformed
by a simple preprocessing step (2), then we segment the image using the Meyers 1994
watershed algorithm (Matlab implementation) [19] (3). Once the regions are obtained,
centroids (4) as well as k-nearest neighbors (5) are computed and the graph is stored
as a JSON datastructure visualized by the three.js Javascript framework (6).
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5 Results

As we are building our graph extraction framework from the ground up, we
have yet only implemented a single algorithm to demonstrate its feasability:
We chose the Kruskal-based region merging algorithm described in [17] and
implemented it in Javascript, adding two additional parameters to the algorithm:
While the original paper only utilized k, which defined an input to the threshold
computation above which two regions would be merged, we are also using s
(size-threshold), the minimum size of pixels a region has to contain in order to
be considered in the final graph construction phase, as well as m (max-merge-
size) which gives the maximum amount of pixels a region may be grown to.

Fig. 3. Result of applying a Kruskal based region merging algorithm to an image of
numerous small scale regular structures. (1) Input image, (2) Result with parameters
k = 1150, s = 0,m = ∞, (3) Result with parameters k = 150, s = 5, m = 500, (4)
Result with parameters k = 50, s = 2, m = 150.

In order to be able to compare our results, we performed a watershed-based
segmentation plus graph extraction in Matlab as well. To that purpose, we chose
a simple algorithm wich converts the RGB into an intensity image, performs a
top hat filtering followed by a grey level threshold computation. It then converts
the image to a binary matrix which the watershed is finally performed on. The
algorithm only uses 1 parameter d to control its behavior - the size of the disk-
shaped morphological structuring element that is used in the top hat filtering.

Fig. 4. Results of applying a Matlab Watershed algorithm to an image of numerous
small scale regular structures. (1) Input image, (2) Result with parameter d = 5, (3)
Result with parameter d = 10, (4) Result with parameter d = 20.
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As we haven’t implemented the watershed segmentation ourselves and there
are diverse ways of doing this, we will not delve into details about the quality
of the resulting images. However, we would like to compare the execution time
of both algorithms for the different parameter settings as well as the resulting
graph sizes, as those are important for any further computation. Our test system
was equipped with a Core i5 Quad IvyBridge CPU, 8 GB of RAM and an SATA
III SSD drive. No hardware acceleration was used in either case.

Table 1. Runtimes and graph sizes for different algorithms & parameter settings

Algorithm k s m d Nr.Vertices Runtime in ms

ML / Watershed 5 2,350 493

ML / Watershed 10 5,065 1,044

ML / Watershed 20 6,323 1,359

JS / Kruskal 1150 0 ∞ 3,952 3,178

JS / Kruskal 150 5 500 4,169 3,220

JS / Kruskal 50 2 150 13,916 3,863

Although at first glance it would seem that the Matlab based watershed algo-
rithm clearly outperforms the Javascript based Kruskal segmentation, it is worth
noting that the latter has only been in existence for about 2 weeks and no op-
timization has been performed on the code (see below). Moreover, since region
merging depends on a sorted edge list for the original image graph, this base
operation does not change with different parameters. Last, our Kruskal based
method for the most extreme set of parameters produces a graph of about twice
the number of vertices than the largest graph emitted by ML / Watershed.

6 Open Problems

Graph based analysis of image data on the Web (-browser) is still a novel topic.
Consequently, there are many open issues to address, two of which will affect us
in the immediate future.

– Performance. Even though our first results are already very promising and
could not have been achieved only a few years ago, there is still a small
gap in the performance of Javascript and highly optimized, Desktop-based
compiled libraries. In order to address this issue, we propose to perform
three improvements on our initial code base. First, our code currently uses
generic Javascript data types, while typed datastructures allow significantly
higher performance - this can be done by simple refactoring. Second, new
technologies like asm.js would enable us to write low-level pieces of code in
C and compile them to highly optimized Javascript. This requires special
support by JS Virtual Machines, but has already shown the potential to
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speed up code execution to within 2x the runtime of native compiled C code.
Third, a shift to parallel implementations of our algorithms would provide
the opportunity to outsource those operations to a GPU (e.x. via WebGL),
which could reduce runtime to a small fraction of today’s.

– Quality of extracted graphs. At this point we can already extract graph
structures of different sizes and forms, but we lack a metric to judge if the
obtained graph is suitable for further computation towards a given goal. As
there seem to be no scientific graph analysis libraries available in JS today,
we will have to implement our own in order to compare the results to those
obtained by traditional image segmentation or manual diagnosis [20].

7 Conclusion and Future Work

Hot and promising topics for future research in knowledge discovery and data
mining from natural image data is in the application of sophisticated topological
methods and machine learning approaches, where natural images are seen as
topographical landscapes, or map structures, similar to a terrain network [21]. On
such landscapes autonomous multi-agents [17] [22], e.g. ant-robots [23], can leave
markings on ”interesting” areas, where such markings can be sensed by all robots
and allow them to cover the unknown terrain without direct communication with
each other, e.g. to discover anomalies, similarities or dissimilarities in images -
exactly the aim of knowledge discovery and data mining. In the near future we
will focus on the following issues:

– Multistage processing. To get even better results on small scale regular
structures, it could be useful to perform several passes of our methods. For
instance, background separation could be achieved with certain parameters
in a first step. Afterwards one can apply the method again in order to find
similar structures within the remaining boundaries.

– Compression / reconstruction of images via topographic maps.
When a digital image is converted to a topographic map, the whole im-
age information could theoretically stay complete, in which case the image
can be fully restored afterwards. This might lead to a new approach in image
compression.

– Similarity measure on graph structures. One major problem of tak-
ing a single digital image is measurement errors (artefacts) stemming from
electronic fluctuations in the picture taking device. We could avoid these mis-
takes by taking pictures in short sequence and merging them in a meaningful
way. Furthermore identifying similarities and differences between these im-
ages could help to improve the quality and stability of the resulting graphs,
thus enabling us to get more reliable results from the data.

– Extendable Web based research platform. In order to make our plat-
form valuable to a variety of researchers, we not only need to implement
a range of algorithms ourselves, but enable our users to easily exchange
their results or even upload their own code to test it on predefined im-
ages. This would be interesting from our perspective as storing different
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image− algorithm− parameter sets opens up the way to meaningful com-
parisons of results as well as to applying machine learning techniques on
the whole processing pipeline. Moreover, it is also desirable to our users as
they could use our platform as a publishing service, making their research
accessible / reproducible via simple bookmarking.
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Abstract. This conceptual paper discusses a graph-based approach for
on-line terrain coverage, which has many important research aspects and
a wide range of application possibilities, e.g in multi-agents. Such ap-
proaches can be used in different application domains, e.g. in medical
image analysis. In this paper we discuss how the graphs are being gener-
ated and analyzed. In particular, the analysis is important for improving
the estimation of the parameter set for the used heuristic in the field of
route planning. Moreover, we describe some methods from quantitative
graph theory and outline a few potential research routes.

1 Introduction

The on-line terrain coverage problem is very important and can be found in
many different real world applications in diverse areas ranging from farming [1]
to search and rescue [2].

There are a few research attempts on terrain coverage based on genetic algo-
rithms, in particular ant-robots [3], and in [4] a simultaneous on-line coverage
strategy for multi-robots is presented, which assures robust coverage of the sur-
face regardless of the shape of the unknown environment. This is very interesting
as ant-robots can cover terrain by leaving ”markings” in the terrain, similar as
in nature, and these markings can be sensed by all robots and allow them to
cover the unknown terrain without direct communication with each other. Such
approaches can be used for knowledge discovery and interactive data mining
[5, 6].

By means of smart autonomous single agents or a swarm, these applications
pursue the main objective to cover an unknown environment without any a
priori information. For the multi-agent case this problem is known as NP -hard
[7]. The coordination of multi-agent systems have been investigated extensively

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 564–573, 2014.
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[8]. There are examples for the coordination of multi-agent systems in biology
[9, 10] and physics [11] inspired approaches as well as economic based control
models [12, 13].

While the agents visit each location at least once, they create a graph to repre-
sent the actual information of the environment. Through continuous sensing and
data collection, the graph will change during the whole run time. To optimize
the coverage process the agents try to find suitable routes based on the ac-
tual graph. There are established heuristics to solve the route planning problem
[14–18]. The quality of the determined solutions depends on the used parameter
set of the heuristic. Therefore it is necessary to analyze the available graph be-
fore. As a result we are able to estimate and adjust the heuristic parameters to
find optimized routes.

This paper is structured as follows. Firstly, the general terrain coverage as-
sumptions and an overview of the graph building process are presented. Secondly,
we describe the optimization process from the current coverage to Terrain net-
works through to the routes. Thereafter an introduction of quantitative analysis
and the measurement of graphs are presented. The last section summarizes the
advantages of a continuous graph analysis in the field of terrain coverage. Fur-
thermore we will outline potential applications.

2 Graph-Based Terrain Coverage Model

The terrain coverage problem can be described with the help of a graph. In
general the range of the sensors will determine the size of a cell which is rep-
resented by a node. The environment which is blocked by an obstacle is not
transferred into the graph. The possible crossings between adjacent cells are
represented by the edges. Consequently an undirected graph G = (V,E) with
the costs cvi,vj represents the environment. In our case the costs are encoded on
the considered property like energy consumption. The cost matrix is defined on
the edges (vi, vj) ∈ E. Furthermore the agents can move between two connected
cells within one time step. While the agents are visiting a cell they can sense two
different things. They can check all eight adjacent cells for obstacles. Besides
the components can sense the cost function for the current cell. Only for two
adjacent and sensed vertices we are able to determine the true costs to traverse
the referring edge.

For the on-line terrain coverage problem there is limited information of the
environment. While the agents traverse the environment they collect new data of
costs and general connections between the cells. Therefore the individual graph
of each agent is changing during the run time in a continuous way. In addition
the individual graph is used to exchange the actual information. As a result there
is a global graph representing the combined information of all agents.

The swarm of autonomous agents is self-coordinated and organized by an
auction based approach [13], [19]. There are different advantages using an auction
based model without a central coordinator, called planning and control agent.
On the one hand a decentralized and more robust behavior is expected. There
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is for example no need of direct and permanent communication links. Besides
failures by the planning and control agent would affect the swarm in a negative
way. In the worst case the whole swarm would collapse. On the other hand
for a self-coordinated auction based approach, the agents try to maximize their
individual profits in an opportunistic way. Consequently the global efficiency is
increased.

The exploration of the swarm can be organized by different approaches [13],
[20, 21]. In general there are tasks representing parts of the unknown environ-
ment. Each agent uses the currently available and matched graph for deter-
mining possible routes. In previous researches [22] a multi-objective ant colony
algorithm [23] is used to determine routes considering multiple objectives. For
example the agents are able to find good routes which are as safe, short, robust,
most informative and economical as possible at the same time. This is a signif-
icant improvement for real world applications. For further information on the
described terrain coverage approach we recommend [19].

3 Optimization Process

Next we explain our conceptional optimization process for an autonomous multi-
agent system. First of all each agent creates an individual graph representing the
information about the sensed environment only. As long as an agent does not
have a current task, auctions will be initiated by this agent. Every agent within
the same communication network participates with a bid. Before the agents
determine their routes, they exchange the individual graphs. The auctioneer
agent merges the graphs by determining the union of known vertices. Besides
some additional costs to traverse the edges can be added to the graph.

Next the matched graph will be used to estimate missing information of ver-
tices and edges/costs for unknown parts of the environment. The transformation
from the coverage to the matched Terrain network for two agents at t = 5 and
t = 21 is shown in Figure 1. The estimation is necessary to enlarge the so-
lution space of possible routes. There are different approaches using intervals
[24], probability distributions [25] or Fuzzy Logic [26] to describe and deter-
mine costs under uncertainties [27]. Already known cells are used to estimate
the unknown cells. For this purpose we use the method of diffusion. The closer
an unknown cell is to a known cell, the higher is the probability that the costs
are similar. Therefore, a diffusion function is introduced which describes the in-
fluence of known costs as a function of distance. The diffusion function can be
either constant or non-constant. For example interval boundaries for the costs
ci,j ∈ [bi,j , bi,j ] of unknown edges are determined by the weighted mean of all
diffused costs starting from known cells. The resulting graph called Terrain net-
work is the basis of further graph analysis. In general a Terrain network is an
undirected multigraph which is connected and weighted. In Section 4 we present
quantitative graph measurements which can be used for analysis. Because of the
analysis results concerning the characteristics, structure and complexity of the
graph, the understanding and optimization is facilitated in general. Furthermore
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the results are used to define a good parameter set for heuristics which solve the
route planning problem. In addition the analysis can be used to define an au-
tonomous decision maker for multi-objective optimization. The decision maker
evaluates the influences of the different objectives to select one of the compro-
mise solutions. Considered objectives may be the minimization of the energy
consumption, directional changes and route length as well as the maximization
of the information content described by the number of unknown vertices. For
example at the beginning of the coverage process the route length should at-
tach more weight. While the coverage process the weight for routes with higher
information content should be increased.

Finally the agents use the optimized parameter set and decision maker to find
a good solution for the route planning problem. The agent with the best bid
concerning the objective function wins the auction. In Figure 2 we visualize the
previous described generic optimization process using networks.

4 Quantitative Analysis of Terrain Networks

Graph analysis is currently ubiquitous and has been inspired by interdisciplinary
applications such as the World Wide Web [28, 29] and Network Biology [30–32].
Triggered by the hype dealing with the analysis of complex networks, it turned
out that besides exploring random networks the analysis of non-random graphs
is crucial too [33–35]. Finally this insight led to the term complex networks
[33], [36] representing graphs whose network topology is neither regular nor ran-
dom. Besides investigating the topology of graph classes such as random graphs,
small world graphs and various complex networks, the quantitative analysis of
networks has been proven useful [37–39]. Instead of only describing structural
information of networks [40, 41], quantitative graph theory relates to quantify
structural information by using a measurement approach.

The simplest case is defining graph measures M : G −→ R which capture
structural information of the graphs. Those measures are called complexity mea-
sures [42, 43] that map graphs to the reals. Examples for simple graph complexity
measures are the famous Wiener index and Randić index given by [44]

W (G) :=
1

2

N∑
i=1

N∑
j=1

d(vi, vj) (1)

and
R(G) :=

∑
(vi,vj)∈E

[kvikvj ]
− 1

2 , (2)

respectively. We define G = (V,E) and d(vi, vj) is the shortest distance between
the (vi, vj) ∈ V . Furthermore kvi is the vertex degree of vi.
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Fig. 1. Terrain network transformation for a) t=5 and b) t=21. Estimated vertices and
edges are in gray.
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In the future, we focus on measuring the complexity of Terrain networks by
using known complexity measures [44]. For instance, it would be interesting
whether these measures can fully discriminate the structure of the networks as
it is likely that the networks are non-isomorphic. Note that the discrimination
power of information-theoretic and non-information-theoretic graph measures
have been investigated extensively [45–48]. Also, we aim to cluster the complexity
values by using known techniques [49] and interpret those clusters. Then we get
clusters which contain graphs for a given scenario. This leads to results how the
graph may interrelate with each other.

Another branch of quantitative graph theory is graph comparison by using
graph similarity/distance measures [50–52]. This relates to measure the struc-
tural similarity/distance between graphs which can be done by employing several
paradigms. Exact graph matching [50–52] relates to determine isomorphic and
subgraph isomorphic relations. In case the networks are large, the resulting mea-
sures may be inefficient. In case of our Terrain networks, we intend to use inexact
graph matching that comprises the well-known graph edit distance (GED) [50]
and various other measures, e.g., those which are based on using property strings
[53, 54]. The Terrain networks can be classified by using supervised and unsu-
pervised techniques. This would allow defining graph classes for each scenario
and to determine their characteristic structural features.

5 Conclusions and Future Work

In the future we will further investigate structural features and the complexity
of Terrain networks. In particular, we will compare the complexity of Terrain
networks with those of other network classes and draw conclusions thereof. This
approach is particularly interesting for knowledge discovery and data mining
from natural images, e.g. complex biomedical images [55] where multi-agents,
e.g. ant-robots can explore the image as an topological landscape and the au-
tonomous robots leave markings on ”interesting” spots, where these markings
can be sensed by all robots and allow them to cover the unknown terrain with-
out direct communication with each other, hence to discover anomalies, sim-
ilarities or dissimilarities within such an image. Such approaches can also be
useful for overcoming local optima problems in image segmentation, where such
an approach takes advantage of random operators and multi-individual search
algorithms, so that the best single agent tries to find a global solution [56]. Dur-
ing the autonomous agents covering the unknown terrain they have to make
decisions on task allocation and route planning. First results show that there
is a need to develop an autonomous process to determine a good parameter
set for route planning heuristics, e.g. ant-colony optimization. Particularly, such
approaches can be very beneficial when combined with evolutionary algorithms
[57] which together have enormous potential in further research on graph-based
data mining and knowledge discovery.
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Abstract. Heart rate variability (HRV) is the variation of the time in-
terval between consecutive heartbeats and depends on the extrinsic reg-
ulation of the heart rate. It can be quantified using nonlinear methods
such as entropy measures, which determine the irregularity of the time
intervals.

In this work, approximate entropy (ApEn), sample entropy (SampEn),
fuzzy entropy (FuzzyEn) and fuzzy measure entropy (FuzzyMEn) were
used to assess the effects of three different cardiac arrhythmia suppressing
drugs on the HRV after a myocardial infarction.

The results show that the ability of all four entropy measures to dis-
tinguish between pre- and post-treatment HRV data is highly significant
(p < 0.01). Furthermore, approximate entropy and sample entropy are
able to differentiate significantly (p < 0.05) between the tested arrhyth-
mia suppressing agents.

Keywords: Data Mining, Entropy, Heart Rate Variability, Cardiac
Arrhythmia Suppression.

1 Introduction

Heart rate variability (HRV) is the variation of the time interval between con-
secutive heartbeats. It highly depends on the extrinsic regulation of the heart
rate (HR) and reflects the balance between the sympathetic and the parasympa-
thetic nervous system [1]. In studies of HRV, both time- and frequency-domain
measures are typically used by practitioners and researchers [1,2]. Additionally,
there exist non-linear measures such as the Poincaré Plot [3] and entropy mea-
sures [4]. The later one were used in this study. We applied the entropy measures
on recordings from the Cardiac Arrhythmia Suppression Trial (CAST), a large
postinfarction trial, with data before and after cardiac arrhythmia suppression

D. Ślȩzak et al. (Eds.): BIH 2014, LNAI 8609, pp. 574–585, 2014.
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treatments [5]. Our goal was to examine the effects of antiarrhythmic medication
on various entropy measures.

2 Methods

2.1 Data and Study Population

All data used in this paper have been taken from Physionet.org [6], a free-access,
on-line archive of physiological signals. Particularly, data are obtained from the
CAST RR Interval Sub-Study Database [5], which consists of 1543 24-hour RR-
interval records from 809 subjects. The database is divided into three sub-groups
based on the cardiac arrhythmia suppression medication (Encainide, Flecainide
and Moricizine) received by the subjects. For almost all subjects, there is a
pair of records representing baseline and on-therapy data available. In total,
1464 records for 731 subjects (599 men and 132 women) have been used and 75
subjects have been excluded due to incompleteness of data (i.e., just baseline or
just on-therapy data available), three subject were excluded additionally, because
there were no recordings at the used time window. The age distribution of the
subjects is represented in Figure 1. One-hour RR-intervals at 6pm have been
extracted for all subjects to decrease computation time and to avoid daytime
dependent variations. The Cardiac Arrhythmia Suppression Trial (CAST) was
originally started to analyze the effect of suppressing ventricular arrhythmias by
antiarrhythmic drugs after myocardial infarction (MI) on the survival rate [7].
The data are divided in three sub-groups depending on the treatment (Encainide,
NE = 260 (44 female, 216 male); Flecainide, NF = 207 (43 female, 164 male);
Moricizine, NM = 264 (45 female, 219 male)).

2.2 Analysis of Heart Rate Variability

Heart rate variability is analyzed by the following entropy measures: approximate
entropy (ApEn) [8], sample entropy (SampEn) [9], fuzzy entropy (FuzzyEn) [10]
and fuzzy measure entropy (FuzzyMEn) [11].

2.3 Approximate Entropy (ApEn)

Approximate Entropy measures the logarithmic likelihood that runs of patterns
that are close remain close on following incremental comparisons [12]. We state
Pincus’ definition [12,13], for the family of statistics ApEn(m, r,N),:

Definition 1. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series u(t), a sequence of vectors x(1)m,xm(2), . . . ,xm

(N −m+ 1) in IRm is formed, defined by

xm(i) := [u(ti), u(ti+1), . . . , u(ti+m−1)] . (1)

Define for each i, 1 ≤ i ≤ N −m+ 1,

http://physionet.org
http://www.physionet.org/physiobank/database/crisdb/
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Fig. 1. Age distribution of subjects per gender

Cm
i (r) :=

number of j such that d[xm(i),xm(j)] ≤ r

N −m+ 1
, (2)

where d[x(i),x(j)] is the Chebyshev distance given by:

d[xm(i),xm(j)] := max
k=1,2,...,m

(
|u (ti+k−1)− u (tj+k−1) |

)
. (3)

Furthermore, define

φm(r) := (N −m+ 1)−1
N−m+1∑

i=1

logCm
i (r) , (4)

then the Approximate Entropy is defined as

ApEn(m, r,N) := φm(r) − φm+1(r) . (5)

2.4 Sample Entropy (SampEn)

Richman and Moorman showed in [14] that approximate entropy is biased to-
wards regularity. Thus, they modified it to Sample Entropy. The main difference
between the two is that sample entropy does not count self-matches, and only
the first N −m subsequences instead of all N −m + 1 are compared, for both
φm and φm+1 [14]. Similar to ApEn above, SampEn is defined as follows:
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Definition 2. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series U(t), a sequence of vectors xm(1),xm(2), . . . ,xm

(N − m + 1) ∈ Rm is formed, defined by eq. (1). Define for each i, 1 ≤ i ≤
N −m+ 1 ,

Cm
i =

number of j such that d[xm(i),xm(j)] ≤ r and i �= j

N −m+ 1
, (6)

where d[(i), (j)] is the Chebyshev distance (see eq. (3)). Furthermore, define

φm(r) := (N −m)−1
N−m∑
i=1

Cm
i (r) , (7)

then the Sample Entropy is defined as

SampEn(m, r,N) := log(φm(r)) − log(φm+1(r)) . (8)

2.5 Fuzzy (Measure) Entropy (Fuzzy(M)En)

To soften the effects of the threshold value r, Chen et al. proposed in [15] Fuzzy
Entropy, which uses a fuzzy membership function instead of the Heaviside func-
tion. FuzzyEn is defined the following way:

Definition 3. Fix m, a positive integer and r, a positive real number. Given a
regularly sampled time series U(t), a sequence of vectors xm(1),xm(2), . . . ,xm

(N −m+1) ∈ Rm is formed, as defined by eq. (1). This sequence is transformed
into xm(1),xm(2), . . . ,xm(N−m+1), with xm(i) := {u(ti)−u0i, . . . , u(ti+m−1)−
u0i}, where u0i is the mean value of xm(i), i.e.

u0i :=

m−1∑
j=0

ui+j

m
. (9)

Next the fuzzy membership matrix is defined as:

Dm
i,j := μ(d(xm

i , xm
j ), n, r) , (10)

with the Chebyshev distance d (see eq. (3)) and the fuzzy membership function

μ(x, n, r) := e−(x/r)n . (11)

Finally, with

φm :=
1

N −m

N−m∑
i=1

N−m∑
j=1,j �=i

Dm
i,j

N −m− 1
, (12)

the Fuzzy Entropy is defined as:

FuzzyEn(m, r, n,N) := lnφm − lnφm+1 . (13)
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Liu et al. proposed in [16] Fuzzy Measure Entropy, which introduces a
distinction between local entropy and global entropy, based on FuzzyEn. It is
defined as:

FuzzyMEn(m, rL, rF , nL, nF , N) := lnφm
L − lnφm+1

L + lnφm
F − lnφm+1

F , (14)

where the local terms φm
L and φm+1

L are calculated as in eq. (12) and the global
terms φm

F and φm+1
F are calculated with eq. (10) and eq. (12), but with xm(i) :=

{u(ti)−umean, . . . , u(ti+m−1)−umean}, where umean is the mean value of the
complete sequence u(t).

Parameters of all entropy measures were selected according to [17].

2.6 Statistical Analysis

For better comprehension we will call from here on the Encainide group record-
ings before treatment EA and after treatment EB, the recordings of the Fle-
cainide group pretreatment will be marked with FA and the postreatment ones
FB. The same scheme is used for MA and MB as abbreviations for the pre- and
postreatment recordings of the group receiving a medication with Moricizine.

First differences in the entropies of the groups’ pretreatment recordings, i.e.
between EA, FA, and MA (the baseline), were tested using the Kruskal Wallis
test, since the three groups are assumed to be independent but not normally
distributed. Afterwards we tested again with a Kurskal Wallis test for differences
between the groups’ entropies after the treatment, i.e. between EB, FB, and MA.
Subsequently, the effect of the treatment was tested with a Wilcoxon signed-rank
test for paired samples without normal distribution, by comparing the entropies
of EA with EB, FA with FB, and MA with MB.

Further on we tested if there was any sex-based difference in the entropy
values. Therefore we used the Wilcoxon rank sum test to test the female members
of the group EA against the male members of the same group. The same was
done for FA, MA and EB, FB, MB.

Finally, the connection of the various entropy values was investigated using
scatter plots and Pearson’s linear correlation coefficient on the results before and
after the treatment.

For all tests their implementation in The MathWorks MATLAB was used.
The test results were declared significant for p < 0.05 and highly significant for
p < 0.01.

3 Results

Figure 2 shows the distribution of entropy values of the groups before and after
treatment. All posttreatment recordings show lower entropy values than their re-
spective pretreatment counterparts. No significant difference between the three
medication groups could be detected in the entropies of the pretreatment record-
ings, as can be seen in Table 1. The same table shows, that ApEn and SampEn
were significantly different for the recordings after the treatment between the
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three groups (p < 0.05). This was not the case for FuzzyEn and FuzzyMEn. In
the same table it can also be seen, that all four entropy measures show a highly
significant difference between the subjects entropy of heart rate variability before
and after treatment (p < 0.01 for all tests).

No significant difference was found between female and male subjects in the
three groups before as well as after the treatment, see Table 2 for details.

Table 1. Results of the Kurskal-Wallis test and the Wilcoxon signed rank test of the
recordings before and after treatment with different medications

Entropy Measure P-Value

EA vs. FA vs. MA:
ApEn 0.2974
SampEn 0.1267
FuzzyEn 0.2765
FuzzyMEn 0.2635

EB vs. FB vs. MB:
ApEn 0.0307
SampEn 0.0448
FuzzyEn 0.1698
FuzzyMEn 0.1055

EA vs. EB:
ApEn < 0.01
SampEn < 0.01
FuzzyEn < 0.01
FuzzyMEn < 0.01

FA vs. FB:
ApEn < 0.01
SampEn < 0.01
FuzzyEn < 0.01
FuzzyMEn < 0.01

MA vs. MB:
ApEn < 0.01
SampEn < 0.01
FuzzyEn < 0.01
FuzzyMEn < 0.01

Figure 3 and Table 3 show the connection of the readings of the various
entropy determining methods. Figure 3 contains scatter plots of the pairwise
comparisons of the methods and the histogram for each method, respectively. It
can be seen that the distribution of the results of all methods is highly asymmet-
rical. The scatter plots show that, in general, values of ApEn were higher than
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Fig. 2. Boxplot of the entropy values of the recordings before treatment (top) and
afterwards (bottom)
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Table 2. Results of the Wilcoxon rank sum test of the recordings before and after
treatment with different medications separated by subject’s sex

Entropy Measure P-Value

EA-female vs. EA-male:
ApEn 0.2080
SampEn 0.1662
FuzzyEn 0.4064
FuzzyMEn 0.3250

FA-female vs. FA-male:
ApEn 0.3373
SampEn 0.2893
FuzzyEn 0.5245
FuzzyMEn 0.3996

MA-female vs. MA-
male:

ApEn 0.8994
SampEn 0.6603
FuzzyEn 0.7494
FuzzyMEn 0.7204

EB-female vs. EB-male:
ApEn 0.8012
SampEn 0.7465
FuzzyEn 0.8820
FuzzyMEn 0.7473

FB-female vs. FB-male:
ApEn 0.9715
SampEn 0.9237
FuzzyEn 0.4545
FuzzyMEn 0.1055

MB-female vs. MB-
male:

ApEn 0.7690
SampEn 0.4302
FuzzyEn 0.3772
FuzzyMEn 0.3294
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those of SampEn and FuzzyEn, whereas they are slightly lower than reading of
FuzzyMEn. Results of SampEn tended to be lower then those of FuzzyEn and
FuzzyMEn. The direct comparison of FuzzyEn and FuzzyMEn showed higher
values for FuzzyMEn. Nevertheless, the scatter plots show a reasonably linear
connection between all methods. Table 3 quantifies this observation, showing
high correlation coefficients for the pairwise comparison of all methods.
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Fig. 3. Scatter plot matrix and histograms of the entropy values of the recordings before
treatment (left) and afterwards (right) in order to visualize the connection between
different entropy measures

Table 3. Pearson’s linear correlation coefficients for entropy values before and after
treatment (all p < 0.01)

Before Treatment (A) After Treatment (B)
Ap Samp Fuzzy FuzzyM Ap Samp Fuzzy FuzzyM

ApEn 1 0.9210 0.8822 0.9111 1 0.8736 0.8185 0.8601
SampEn 0.9210 1 0.9649 0.9750 0.8736 1 0.9341 0.9509
FuzzyEn 0.8822 0.9649 1 0.9936 0.8185 0.9341 1 0.9889
FuzzyMEn 0.9111 0.9750 0.9936 1 0.8601 0.9509 0.9889 1

4 Discussion

The results of the first test on the three pretreatment groups (EA vs. FA vs. MA)
did not reveal any significant differences. Therefore the null-hypothesis of a con-
sistent baseline population is accepted and further posttreatment comparisons
are reasonable.

Testing the differences between the posttreatment groups (EB vs. FB vs. MB),
though, yielded mixed results. While ApEn and SampEn showed significantly
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different results for the diverse treatments, FuzzyEn and FuzzyMEn did not.
Further investigation of these methods is necessary to determine the cause of
these differences.

Cardiac arrhythmias are a disruption in the regularity of the heart rhythm.
Therefore, they cause a distinct alteration in the HRV and in all measures quanti-
fying it. Sethuraman et al. reported, that even one single ectopic beat (a certain
type of cardiac arrhythmia) causes a striking alteration of the HRV [18]. As
Encainide, Flecainide and Moricizine aim to suppress cardiac arrhythmia, the
prominent reduction of the irregularity and therefore the highly significant dif-
ference between pre- and posttreatment as seen in Figure 2 and Table 1 was
expected. It remains an open question, however, if these differences can be at-
tributed solely to the reduction of cardiac arrhythmias, or whether the heart’s
sinus rhythm is changed as well. Methods of ectopic beat correction will be
necessary for further data mining regarding this matter [19].

The fourth test, which looked for differences due to the sex of the subjects,
showed no significant results. This is in accordance with Beckers et al., who
showed in [20] a difference in the entropy based on sex, but reported that this
effect vanishes for subjects older than 40 years. This is the case for most of the
subjects in our used data.

The qualitative investigation of the connection between the four entropy mea-
sures using scatter plots (Figure 3) revealed obvious pairwise linear relationships.
Therefore, the usage of Pearson’s linear correlation coefficient is justified. As
listed in Table 3, the highest correlations where found between FuzzyEn and
FuzzyMEn. These readings suggest that the extension of FuzzyEn by a global
term influences the results only by a constant value. This similarity between
FuzzyEn and FuzzyMEn is also in accordance with the findings of the second
test. Again, the striking reduction in all entropy measures between pre- and
posttreatment is visible.

In general, Mäkikallio et al. found in [21] higher ApEn values for postinfarc-
tion patients compared to a healthy age matched control group. In our data this
effect seems to be reduced after the treatment with any of the three medications.
However, simply reducing the amount of cardiac arrhythmias and therefore re-
ducing the entropy of the HRV for patients after a myocardial infarction does
not reduce mortality. In fact, the postinfarction treatment with (Na+) channel
blocking antiarrhythmic agents (class I, e.g. Encainide, Flecainide and Mori-
cizine) is associated with increased mortality [22]. This suggests the presence of
more extensive alterations of the HRV than cardiac arrhythmias alone. As stated
above, ectopic beat correction will be necessary for further investigation.

4.1 Limitations

Due to the lack of availability of the related survival outcome data, we could not
evaluate the predictability of the tested entropy measures on mortality.
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5 Conclusion

In our study, all four entropy measures (approximate, sample, fuzzy and fuzzy
measure entropy) are significantly different before and after antiarrhythmic treat-
ment. However, as also addressed by Holzinger et al. in [4], the problem of how to
use entropy measures for the classification of pathological and non-pathological
data still remains, as a simple reduction of entropy in HRV does not necessarily
reduce mortality after a myocardial infarction. Further research using ectopic
beat correction for entropy-based data mining in HRV will be necessary.
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Abstract. We propose a graph-based analysis framework to study the
dynamics of visual gaze from web users. Our goal is to extract the main
characteristics of the information foraging process from an attention-
centric perspective. Our approach consists of modeling web objects, such
as images and paragraphs, as nodes. The visual transitions are repre-
sented as edges. With the resulting graphs, several standard metrics
were computed. We performed an initial empirical study with 23 sub-
jects. The visual activity was captured using an eye tracking device. The
results suggest that a graph based analysis can capture in a reliable way
the dynamics of user behavior and the identification of salient objects
within a web site.

Keywords: Web User Behavior, Visual Gaze Patterns, Graph Theory.

1 Introduction

The need for understanding the evolution of Web usage have led to incorpo-
rate new sources of data to the stack of standard analysis. As the Web is no
longer a static ecosystem where users can only perform simple tasks, the idea of
considering usage as an evolving, time-dependent phenomena emerges as a fea-
sible alternative to disentangle the underlying factors that drive user’s decision
making.

Originally, common approaches have been exploiting the concept user sessions,
which are extracted from the set of web logs stored on the server. For years, this
approach has been the foundation of the Web Mining research. Although the
results have showed several success cases, there are two main limitations that
threaten the current reliability and future improvement [5,6].

Given the above, using only a click-stream-based data source, such as web logs,
does not necessary reflect web user behavior [9]. Both academia and industry
have addressed this issue and have put efforts into finding new sources that could
support and improve the analysis.

Secondly, web sessions provide a estimation of the interests for a inter-page
basis, but they do not give any insight about the actions and preferences within
a web page. Given the dynamism and complexity of the current web applica-
tions, we consider that this issue is highly relevant and should be taken into
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consideration. For example, several web sites are single page application, which
have leveraged the power of Javascript-based frameworks to improve user expe-
rience. In this case, the question is how to analyze user behavior when there is
no explicit transition between pages?

One feasible alternative that has been considered is the analysis of the users
visual gaze. Several approaches have been proposed in order to study of the user
explore an interface and conduct the information foraging process. Therefore,
applications for identification of salient objects and analysis of page layout have
contributed to enrich the understanding and also provides new lines of research,
specifically in Information Retrieval.

Although this line of research have shown important results and have con-
tributed to improve the understanding of the users in a more detailed way, they
have not acknowledged the relevance of the time component. Currently, the anal-
ysis is based on snapshots without considering the evolution of the variables over
time.

In this work, our main goal is to support the understanding of the attention
allocation process and propose ways to infer user interest. We obtained users
data through a empirical study with 23 subjects whose navigation and visual
activity was tracked using server-side and eye tracking devices.

Using a graph-based analysis framework, web objects within web pages are
represented as nodes The edges are generated from the transitions extracted from
the the visual gaze activity. This representation produces continuously growing
graphs that encapsulate the user activity within a web page.

The initial results suggest that a graph based analysis can capture in a reliable
way the dynamics of user behavior and the identification of salient objects within
a web site.

2 Related Work

One of the most remarkable lines of research has been developed by Buscher
et al. The main motivation comes from the need for understanding how people
allocate visual attention on web pages, taking into account the relevance of this
for both web developers and advertisers.

A study from 2009 performed an eye tracking-based analysis in which 20 users
were shown 361 pages while performing information foraging and inspection
tasks [3]. The main assumption was that gaze data could represent a proxy of
attention. From that, an analysis framework was developed by first generating
a tool that allows DOM elements to be characterized and a mapping performed
between gaze data and the DOM elements. The second part involves the use of
machine learning techniques to predict salient elements on a web page.

In this study, the concept of fixation impact is introduced. It allows the iden-
tification of which elements are under the gaze of the user at a certain time.
It follows empirical studies that show that human vision is characterized by a
narrow window of high acuity along with the standard gaze area. Thus, when
visualizing an element, it also means that other elements in the surroundings
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are being considered. Therefore, given a fixation point, a DOM area is selected
in order to identify every element under it. A distance score is given to each
element based on its coverage, assuming a Gaussian distribution. The fixation
impact is computed using this distance and also incorporating a time dimension,
which means the fixation duration.

The information obtained in the previous step is used to predict salient ele-
ments. After performing a selection of the ten features that provide the highest
information gain, Linear Regression was used in order to identify the measures
that most influence the fixation impact scores. The results showed that positional
features obtained the highest weights.

Another line of research has been developed by Velasquez et al., where the
main goal is to identify the most relevant elements on a web site by using the
concept of Website Keyobjects [8]. A web site object is considered as any group
of words having some kind of structure, and in the same way, multimedia files
which are shown on the web site pages, including all kinds of pictures, images,
sound and animations. Objects based on word structure need to be inside a
delimitation such as paragraphs, tables or other kinds of tag separation.

Then, from the definition of Website object, a Web site Keyobject is derived
as follows: One or a group of website objects that attract the user attention and
characterize the content of a page or website . This definition states which web
objects get more attention and are more interesting to the user and therefore,
identify which object types would help to improve the presentation, usability
and content of the web site. The identification of the Keyobjects involved pri-
marily the analysis of web logs and a measure of time spent. In order to validate
the findings, surveys were conducted, which do not provide a strong level of
confidence for the results. The authors addressed this issue, and in [7] they in-
corporated eye-tracking methodologies to replace the use of surveys. With this,
they were able to validate the approach by having an objective measure of the
user attention.

3 Methodology

We performed an exploratory analysis based on monitoring the visual activity
during web user navigation. The experiment consists of asking a set of subjects
to explore a defined web site based on a standard foraging task using an eye-
tracking device that stores all the visual gaze activity. No specific instructions
are given to the subjects.

The specific steps are described as follows:

1. The eye tracking device is calibrated according to the subject characteristics
and the initial web page of the site is presented.

2. The subject begins the web exploration. His behavior is tracked with the
eye tracking device and additionally the by the server, which stores the web
session.

3. Two re-calibration procedures are performed during the experiment to verify
the quality of the data extracted by the eye tracker.



Characterizing Web User Visual Gaze Patterns 589

3.1 Implementation

Experimental Group. For the experiment, a group of 23 people were chosen.
The average age was 26.1 years (with a variance of 2.2 years). The group involved
was mainly composed of university students and professionals, from different
fields. According to their own experience (no test was developed for measuring
this), one considered him/herself an expert on web navigation, 12 considered
their knowledge as average and the other two think they are basic users.

Target Web Site. The analysis was performed on the website of the MBA
program that is offered by the Industrial Engineering Department at the Uni-
versity of Chile1. This site has been running since January 2011 and provides
information about the courses, the methodology of the plan, teachers, student
profiles, etc., as well as some pages for applying to the program.

At the time of the analysis, the site was composed of 29 pages and 359 DOM
objects, which appear 1014 times in total. This means that an object can ap-
pear on more than one page. This phenomena is usual with common objects as
banners, menus, footers, headers, etc. The average number of objects per page
is 31.9 and their average size is 418.6 pixels wide and 100.1 pixels high.

Tracking Device. To capture eye movements and to measure pupillary dila-
tion an eye-tracker system was used, which is video-based combined pupil and
corneal reflection. These kinds of devices are the most advanced system for mea-
suring this kind of movements according to the degree of accuracy obtained with
them. In particular the device corresponds to eye-tracker model Eyelink 1000,
developed by SR Research. This device is composed of a main screen with a
high speed camera and an infrared emitter, connected to a host computer which
does the data processing. There is one more computer which is also connected
to the host. This one allows the researcher to develop the experiments and get
the data in an easy way. It also shows in real time the same stimulus that the
participants see. The whole setup for a trial takes around 2 to 5 minutes.

4 Analysis

After collecting the data from each subject, we transformed it into a graph
representation. Each web element from a web page, such an text paragraph or
an image, is represented as a node, giving it an unique identification.

Links in the graph represent the transitions in the visual gaze reported by the
eye tracking device. Figure 1 shows an example. In this case, suppose that an
user fixes the attention initially on the green picture. Then, the user moves to
the central paragraph. This transition is represented as a directed edge between
two nodes.

1 http://www.mbauchile.cl

http://www.mbauchile.cl
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Therefore, each transition adds a new node to the corresponding graph, which
makes it a directed structure. One may think that instead of a graph represen-
tation, only sequence lists are being obtained, but the evidence shows that users
tend to go return to previously seen elements, which generates directed cycles.
All the data from the graph generation is stored, thus, it is feasible to inspect
all the process.

Fig. 1. Transformation from visual gaze activity to a graph representation

Each user generates a graph for each page he visits. Therefore, the maximum
number of graphs per user is 29. The graphs for the same page vary from user
to user, as the attention allocation process is different for each of them.

4.1 Salient Object Recognition

Salient object recognition is one the most relevant types of analysis tasks that
can be performed when studying user attention. To achieve such task, we propose
to use the concept of Network Centrality.

In Graph theory, Network Centrality metrics express the relevance of a node
within a graph. This type of metrics originated from the Social Network Analysis
field in order to identify the degree of influence within a group of individuals [4].

One of the most common measures of centrality is called eigenvector centrality
[2,1]. Given the adjacency matrix A from a graph G, this centrality is defined as
the principal eigenvector, given the following equation:

λv = Av (1)

where λ is the eigenvalue (constant) and v the eigenvector. The interpretation of
this equation is that a node has a high eigenvector score if it is adjacent to nodes
that are themselves high scorers. The intrinsic idea of this metric is the notion of
influence: If a node influences just one other node, who subsequently influences
several other nodes, then the first node in that chain is highly influential. Other
interpretation that could be more related to control flow analysis, is that the
eigenvector centrality provides a model for nodal risk, in the sense that a node
long term equilibrium risk of receiving traffic is a function of the risk level of its
neighbors.
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Although the application of this metric appears promising in a data flow
context, it must be noted that, given its nature, there some assumptions that
need to be taken into account. Firstly, it assumes that traffic is able to move via
unconstrained walks. Secondly, it assumes that a node influence all its neighbors
at the same time.

Another measure of centrality is the degree centrality. Given a graph G =
(V,E), where V is the number of nodes and E the number of edges, the degree
centrality for a node i is defined as CD = deg(i), which means, the number of
ties incident upon a node. The interpretation of this is that degree centrality
represents immediate effect in a network. For example, if a certain proportion
of nodes are infected, the probability of infection is a function of the number of
nodes the node is adjacent to.

It can be seen that degree and eigenvector centrality metrics share certain
aspects. But while degree centrality focuses on immediate risk/influence, eigen-
vector centrality is related to the long term risk/influence.

Closeness centrality is defined, for a given node, as the sum of all the graph-
theoretic distances from all the other nodes. The notion of distance in this case
is defined as the length of the shortest path between two nodes. In the data flow
context, this metric is relevant in the sense that it can be interpreted as the
expected time of arrival of data to a certain node. Nodes with a low closeness
score have short distances from the rest, which allow them to receive data sooner.

It must be noted that the use of this metric implies a discussion on the concept
of reachability, in the sense that closeness metric only provides meaningful results
if the graph under study is a connected graph.

Finally, betweenness centrality. Freeman defined this metric as the share of
times a node i needs a node k in order to reach a node j via the shortest path.
If gij is the number of geodesic paths from i to j and gikj is the number of these
geodesic paths that pass through node k, then the betweenness centrality is of
node k is defined as :

CB =
∑
i

∑
j

gikj
gij

(2)

with i �= j �= k.
We applied the above metrics to resulting graphs for each page visited for

each user. The main goal is to analyze if the nodes that have a high score are
correlated with the ones in which the users spend more time.

In order to generate a comparison, each centrality metric was computed for
each node in the graph, and the scores were aggregated along the group of users.

As a measure of the user attention, the time spent on each element was cal-
culated, as a proxy for the visual fixation.

Therefore, for each node that was visualized by any user, there is a set of four
centrality scores and also a measurement of the time spent.

Figure 2 shows the aggregated results for the salient element recognition for
the 29 pages the conform the web site under study. The representation in the
plot is the following: closeness (red), degree (blue), betweeness (green) and eigen-
vector (yellow). The time spent on each object is represented by the black line.
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Fig. 2. Centrality metric and time spent scores for each node

We performed a comparison process in order to find which centrality metric
behaves more similar to the time spent for each node. As this is an exploratory
study, we chose two ways to compare centrality metrics to time spent.

The first way is to use the RMSE as a metric of closeness betweeen the cen-
trality and the time. The idea is to find, an an aggregated way, which centrality
curve has the lowest RMSE. Figure 3 shows, for one subject, the values of the
RMSE for all centrality metrics along the web session.

We computed the average RMSE value for each centrality metric, and the re-
sults shows that the metric that has the lowest score is the eigenvector centrality,
followed by the closeness centrality.

This result seems logical as the concept of influence in graphical interfaces,
such as a web site, is related to how the attention to a specific element affects
the attention to the rest. An example of this could be the following: A colorful
image which is displayed in a web site eventually could guide the attention of
the user to the elements that surrounds it. Therefore elements that are adjacent
to this image, will receive more attention (in terms of time spent on a fixation),
that elements that are far. Thus, an element will be influential if it is at the
same time linked to other elements which are influential as well.

The second way to explore the results was to use a correlation metric between
the centrality values and the time spent on each element. This analysis is different
to the previous one in the sense it does not have as goal to find the level of fit
between two curves. In this case, we would like to explore if there is a dependency
between the variables.

We used the Pearson correlation coefficient for calculating a dependence score.
Therefore we assumed the scenario of a linear correlation and that the data
follows a Normal distribution.
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Fig. 3. Example of RMSE values for all centrality metrics for each page for one subject

The results showed that the highest value for correlation was obtained by the
eigenvector centrality (r = 0.41), although the level of confidence is not sta-
tistically significant. No other centrality metric obtained a plausible correlation
score.

5 Conclusions and Future Work

In this work, we have explored how the web user behaves from a visual gaze
perspective. In order to formalize our analysis, we used a graph based framework,
which allowed to computed several metrics. With these initial results, we are not
able to generate strong conclusion, but we can use them as a motivation in the
sense of showing that the centrality metrics can be used as a proxy to identify
the salient objects from a web page. The tracked problem is relevant, as it is
always desired to have an estimation of which elements the user will focus on.

Future work aims to continue refining the metrics and transforming the cur-
rent set up into a prediction problem.

Acknowledgments. This work was supported by the FONDEF-CONICYT
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