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Abstract. The paper proposes a trend prediction model based on an incremental 
training set update scheme for the BELEX15 stock market index using the 
Least Squares Support Vector Machines (LS-SVMs) for classification. The 
basic idea of this updating approach is to add the most recent data to the train-
ing set, as become available. In this way, information from new data is taken  
into account in model training. The test results indicate that the suggested  
model is suitable for short-term market trend prediction and that prediction ac-
curacy significantly increases after the training set has been updated with new  
information. 

Keywords: Stock market trend prediction, Least Squares Support Vector Ma-
chines (LS-SVMs), Model update. 

1 Introduction 

The stock market index, as a hypothetical portfolio of selected stocks, is commonly 
used to measure overall market or particular sector performance [1]. Recent studies 
[2], indicated that trading strategies guided by predictions regarding the direction of 
change in the prices could be more effective and could generate a greater yield in 
comparison to the precise predictions of the level of financial instrument prices. As a 
result, the world’s largest financial markets are now turning to trading in stock market 
indices more and more often. Consequently, predicting the direction of the movement 
of the price of financial instruments has now become a current area of academic  
research. 

In numerous studies, the algorithms of machine learning proved to be quite effec-
tive in predicting the direction of movement of the value of stock indices and contrib-
uted to the increase in yield and reduction in the risk involved in trading. Some of the 
more frequently adopted methods include the following: Artificial Neural Networks 
(ANNs) [3], linear and multi-linear regression (LR, MLR) [4], genetic algorithms 
(GAs) [4], and Support Vector Machines (SVMs) [5]. According to [1], the most 
widely used methods for stock market trend prediction include approaches based on 
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SVMs. In [6], it was further indicated that in most cases the LS-SVMs, and SVMs 
outperform other machine learning methods, since in theory they do not require any 
previous a priori assumptions regarding data properties. Moreover, they guarantee an 
efficient global optimal solution.  

As a result of the fact that the financial market is a complex, evolving and dynamic 
system whose behavior is pronouncedly non-linear, non-stationary and stochastic [5], 
mining the stock market tendency is a challenging task. Evolving and non-stationary 
as characteristics imply that the distribution of financial time series changes over a 
period of time. Thus, to obtain systematically good predictions under such circum-
stances, it may be necessary to update the underlying models. 

The existing stock market trend prediction systems usually focus on several as-
pects: feature selection, the selection of prediction model and feature evaluation. The 
problem of model updating, however, has so far not been studied in sufficient detail, 
particularly in the field of stock market trend prediction. Model updating strategies 
that correspond to time-evolving systems, including the stock rate index, can usually 
be undertaken from two perspectives: as incremental learning systems [7, 8, 9, 10], 
where the respective models are updated online as new instances become available 
during the training phase, and as batch learning systems [11, 12], where a collection 
of training instances can be updated prior to model re-training. In this paper, the se-
cond model update approach is considered, where the new data over a given time 
period are added to the initial training set and the respective model is then re-trained. 
In [11] and [12] similar concepts are presented, but for a different subject matter. To 
our knowledge, the proposed approach of model updating has so far not been used for 
stock market trend index prediction.  

In this paper LS-SVMs will be used to create a prediction model, but any classifi-
cation technique is suitable for the application of the proposed model updating  
algorithm. The problem of stock index trend prediction is modeled as a binary classi-
fication problem. Experimental results, benchmarking the standard and updated mod-
el, show that prediction accuracy can be increased after updating the initial training 
set with new available data.  

The proposed algorithm offers a systematic approach for model updating based on 
new instances as they become available.  

The rest of this paper is organized as follows: Section 2 presents the basic theory of 
LS-SVMs for classification. Section 3 presents the used updating methodology. Sec-
tion 4 gives data set analysis and presents the experimental results. Finally, Section 5 
provides the conclusions. 

2 Least Squares Support Vector Machines for Classification 

The Least Squares Support Vector Machines, proposed by Suykens in [13], includes a 
set of linear equations which are solved instead of a Quadratic Programming (QP) for 
classical SVMs. Therefore, LS-SVMs are more time-efficient than standard SVMs, 
but with lack of sparseness. 
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Let’s study a training group of a total of N examples T={xi, yi} 1
N
i=

. In the learning 

phase, the model is formed based on the known training data (x1, y1), (x2, y2), …,  
(xN, yN), where xi are the input vectors, and yi are the labels of binary classes that were 
assigned to them. Each input vector consists of numeric features, while yi ∊{−1, +1}.  

According to [13] LS-SVMs for binary classification were defined as follows:  
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where ϕ  is a non-linear function that maps input vectors in some higher dimensional 

feature space. The weight vector of the hyper plane is marked by a w, while b is the 
scalar shift, that is, weight threshold. The variable ek represents the allowed errors of 
classification, while the parameter γ controls the process, that is, the relationship be-
tween the complexity of the model and the accepted error of classification.  

After solving the optimization problem defined by (1) and (2), a solution can be 
found in [13], the function of the separation of LS-SVM classifications is defined as:  
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where 
kα  represent the support vectors (Lagrange multipliers), and b is a constant. 

),( kxxK  represents the Kernel function, which is defined by the dot product be-

tween x and xk.  
As presented in [14], on the basis of twenty different groups of data, the best gen-

eral prediction rate was given by LS-SVM classifiers with a RBF (Radial basis func-
tion) kernel. In addition, according to [15] in cases where the number of examples for 
classification is much greater than the number of features, the use of the RBF kernel 
is also recommended. Accordingly, the RBF kernel was used, defined by:  
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When training the LS-SVM model it is necessary to determine the value of param-
eter γ, as well as the parameters of the selected kernel, in this case the width σ. One of 
the ways to determine these parameters is the k fold Cross - Validation procedure in 
combination with a Grid - Search, described in more detail in next section. 
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size and the LS-SVM model is built k times with the current pair (γ, σ). Each time, 
one of the k subsets is used as the test set and the other k – 1 subsets are combined to 
form a training set. After k iterations, the average hit rate is calculated for the current 
pair (γ, σ). The entire process is repeated with an update of the parameters (γ, σ) until 
the given stopping criterion is reached, in this case the maximization of the hit rate, 
although other criterions can be used, depending on the nature of the classification 
problem. The parameters (γ, σ) are updated exponentially in the given range using 
predefined equidistant steps, according to the grid-search procedure. After obtaining 
the optimal (γ, σ) combination, the LS-SVM final forecasting model is formed ac-
cording to (3) and (4). 

The model is then employed for the prediction of the stock market trend for one 
step ahead.  

The first step is the selection of a test instance xt from the test set t=(xt, yt). It 
should be noted that at the moment of applying the model on the current test vector xt, 
the value of the associated target value yt is unknown.  

After that, based on the value of the parameter P, it is necessary to update the ini-
tial training set T=(x, y) for the next prediction step with P past instances from t= 
(xt, yt), which are known at the moment. Before the selection of the next xt for the 
next step, the initial training set is updated by adding stock data from the previous P 
steps, which are known at that moment, and the model is re-trained. The update and 
re-training are performed in every P-th iteration of the test loop until the given num-
ber of instances in the test set is reached.   

The training set in the proposed algorithm includes data which were observed after 
the model was initially constructed, as well as the initial data. The updating model 
algorithm was designed to make full use of the information, as soon as it becomes 
available. 

4 The Experiment and Results 

4.1 The Data Used in the Experiment 

The value of the Belex15 index determines the price of the most liquid stocks traded 
on the regulated market of the Belgrade Stock Exchange. The series consists of six 
sizes which are determined for each day: the closing price, the change in the value of 
the index in relation to the previous trading day, in percentages, the opening price, 
highest price, lowest price and the trading volume.  

The available data were divided into two groups. The first group consisted of 1811 
records required for the training model, from October 26, 2005 to December 31, 2012. 
For the second group of data, data from January 3, 2013 to December 31, 2013 were 
used. A total of 253 days of trading were selected that represent whole trading year. 
The data from the first group were assigned to the training set, while the data from the 
second were used for the test set. 
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4.2 Feature Selection and Model Formation 

For stock market trend prediction, features are usually selected from a group of tech-
nical or fundamental indicators. In this study, the technical indicators as input features 
were used to predict the stock market trend. In our previous study [16], we established 
the basis for the formation of a standard LS-SVM model for predicting the trend of 
the Belex15 index. There, the process of features selection was studied in more detail, 
along with the characteristics of the time series. The conducted analyses selected two 
lagged values of the logarithmic return that were statistically determined based on the 
values of the auto-correlational coefficients. The Exponential Moving Average 
(EMA), as the moving average of the closing price calculated using a smoothing fac-
tor to place a higher weight on recent closing prices, was then also selected based on 
its features. This indicator can be used to calculate the values backwards to an almost 
infinite number of steps (for example, EMA5, EMA100 or EMA200), which is an 
important characteristics of modeling time series. The EMA feature is consequently 
adjusted with respect to the time horizon, thus the selected period for calculating the 
EMA transformation consisted of the previous 10 days. The Moving Average Con-
vergence-Divergence (MACD), as the indicator that measures the strength and direc-
tion of the trend and momentum, was added to the current model as it was determined 
in [17] to be effective in optimizing the investment strategies on emerging markets.  

The detailed mathematical formulations for the applied transformations and indica-
tors are given in Table 1.  

Table 1. Input features 

Features Formula 
Closing price CPt, t= 1,2, ... N
Logarithmic return rt=logCPt – logCPt-1

EMAN EMAN= )1(** 1 kEMAkr tt −+ −
; = 2 ( + 1)⁄  

MACD MACD = EMA12 –EMA 26

rt-1 rt-1=logCPt-1– logCPt-2 
rt-2 rt-2=logCPt-2 – logCPt-3 

 
The abovementioned transformations contribute to the stationary nature of the se-

ries, which additionally increases the effectiveness of the machine learning algorithm.  
In the proposed model, the variable to be predicted is the future trend of the stock 

market. The feature which serves as a label for the class is a categorical variable used 
to indicate the movement direction of the logarithmic return on the Belex15 index 
over time t. If the logarithmic return over time t is larger than zero, the indicator is 1. 
Otherwise, the indicator is −1. Figure 2 shows the trend fluctuations. It can be deter-
mined that in reality the market price trend does not constantly follow a straight line; 
it is volatile, and the line fluctuates up and down repeatedly, rendering it challenging 
for prediction.  
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Fig. 2. Trend fluctuations 

Based on the previous analysis, the following prediction model was created 

 ),,,( 111021 −−−−−= ttttt MACDEMArrSVMLSy  (5) 

In order to form the LS-SVM models, LS-SVMlab [18] was used.  

4.3 Experimental Results 

As a general measure for the evaluation of the prediction effect, the Hit Ratio (HR) 
was used, which was calculated based on the number of properly classified results 
within the test group: 
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where POi is the prediction output of the i-th trading day. POi equals 1 if is actual 
value, for the i-th training day, otherwise, POi equals 0, and m is the number of data in 
the test group [19].  

Table 2 shows a comparison of the hit rates obtained using the model updating al-
gorithm (MU-LS-SVMs) with different step sizes P = {1, 2, 5, 10, 20} with the Ran-
dom walk (RW) benchmark model and the LS-SVM model without update. The RW 
uses the current value to predict the future value, assuming that the latter in the fol-
lowing period (yt+1) will be equal to the current value (yt). Step sizes are defined 
based on the definition of the short time stock market periods [20] and previous ana-
lyzes of the available time series [16]. 

The influence of the model update algorithm is clearly positive, since all updated 
models outperformed the model without update. It can be assumed that both MU LS-
SVM1 and MU LS-SVM2 will outperform other models because of the observed 
strong autocorrelation factors in a time series for lag one and two. In addition, it can 
be seen that from other group of models, the best accuracy was achieved using the 
MU LS-SVM10 model, which further supports the validity of the selected parameters 
of the EMA features. 
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Table 2. Prediction accurancy of different prediction models 

Model Hit rate 
RW 0.5000 
LS-SVM 0.5396 
MU-LS-SVM1 0.5555 
MU-LS-SVM2 0.5555 
MU-LS-SVM5 0.5436 
MU-LS-SVM10 0.5476 
MU-LS-SVM20 0.5436 

 
Furthermore, the comparison of the MU LS-SVM1, RW and LS-SVM model on a 

temporal sequence basis which corresponds to the real frameworks of trading on the 
Belgrade stock exchange was studied, including the weekly, biweekly, monthly, bi-
monthly, and quarterly work regime. This went on until entire trading year. The re-
sults are shown in Table 3. 

Table 3. The models comparison results on the predefined time-sequence 

Time Sequences RW LS-SVM MU LS-SVM1 

0-5 0.6000 0.6000 0.6000 
0-10 0.8000 0.8000 0.8000 
0-20 0.7000 0.7000 0.7000 
0-40 0.6000 0.6750 0.6500 
0-60 0.6000 0.6167 0.6333 
0-80 0.6125 0.6000 0.6125 
0-100 0.6100 0.6300 0.6400 
0-120 0.6083 0.6500 0.6583 
0-140 0.5714 0.6286 0.6357 
0-160 0.5438 0.5875 0.5938 
0-180 0.5389 0.5889 0.5944 
0-200 0.5200 0.5500 0.5550 
0-220 0.5113 0.5520 0.5611 
0-240 0.5125 0.5542 0.5625 
0-252 0.5000 0.5397 0.5556 

 
It can be noted that in the approximated first trading month, the rate of the hits is 

identical for all presented models. This can be explained by insufficient additional 
new training data and it is in favor of the previously noted strong correlation in the 
available data series. The longer the time period, the more dominant the prediction 
based on the proposed model update algorithm.  

This algorithm extends computational time. The time needed to obtain the predic-
tions increases for all the models that implement the update approach, compared to 
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the model trained with an initial training set (by approximately 150 seconds compared 
to 100 seconds). Nevertheless, an increase in computational time is compensated with 
an increase in the quality of the prediction results. 

The results are obtained for one-day-ahead predictions using data over an extended 
period of time, one trading year, and exceed most of the time horizons presented in 
[5], [19], [21], [22], but are still in their mid-range. The results are reliable, based on 
all the currently available information, representing all the forms of model behavior.  

5 Conclusion 

A practical approach to building a dynamic model for the stock market trend predic-
tion is proposed. Although the complexity of the calculations in the proposed algo-
rithm is increased when compared to training only one forecasting model, it brings 
significant improvements in terms of stock market prediction accuracy. Every in-
crease in precision is considered an exceptional contribution as it leads to an increase 
in the return and the decrease in the risk involved in trading.  

As far as further research is concerned, first, in the proposed approach, prior in-
formation was not excluded. Since short periods of time were observed in the time 
series analyzed in this paper, the issue was not dealt with separately. In the case of the 
longer periods of time, the prediction model should not include all the available data. 
Thus, past information should be removed using a new methodology designed for that 
purpose. 

Finally, most studies in this field deal with the prediction of market indices and the 
price of financial instruments on developed markets. It is important to emphasize that 
the prediction rate obtained in this study belongs to the stock index of emerging mar-
ket of the Republic of Serbia, and that it gave competitive results.  
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