Parallel Dual Tree Traversal on Multi-core
and Many-core Architectures
for Astrophysical N-body Simulations

Benoit Lange!:?* and Pierre Fortin?

! Sorbonne Universités, UPMC Univ Paris 06, ICS, F-75005, Paris, France
2 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,
LIP6, F-75005, Paris, France;
CNRS, UMR 7606, LIP6, F-75005, Paris, France
{benoit.lange,pierre.fortin}@lip6.fr

Abstract. In astrophysical N-body simulations, Dehnen’s algorithm,
implemented in the serial falcON code and based on a dual tree traver-
sal, is faster than serial Barnes-Hut tree-codes, but outperformed by
parallel CPU and GPU tree-codes. In this paper, we present a parallel
dual tree traversal, implemented in the pfalcON code, targeting multi-
core CPUs and many-core architectures (Xeon Phi). We focus here on
both performance and portability, while preserving Dehnen’s original al-
gorithm. We first use task parallelism, with either OpenMP or Intel TBB,
for the dual tree traversal. We then rely on the SPMD (single-program,
multiple-data) model for the SIMD vectorization of the near field part
thanks to the Intel SPMD Program Compiler. We compare the pfalcON
performance to related work, and finally obtain performance results that
match one of the best current tree-code implementations on GPU.

Keywords: dual tree traversal, task parallelism, SIMD, SPMD model,
N-body problem.

1 Introduction

The N-body problem describes the computation of all pairwise interactions among
N bodies (or particles). In astrophysics, such N-body simulations are essential and
widely used for galactic dynamics studies. The direct computation of all
pairwise interactions among N bodies leads to a prohibitive O(N?) runtime com-
plexity. Hierarchical methods [2,5] have therefore been introduced to reduce this
runtime complexity: thanks to an octree data structure, the force field is decom-
posed in a near field part, directly computed, and a far field part approximated
with various expansions. In astrophysics, the Barnes-Hut tree-code is one of the
most used algorithms for serial and parallel CPU executions (see for example
treecodel in NEMO! and GADGET-2 [12]). Recently, parallel implementations

* This work undertaken (partially) in the CALSIMLAB framework is supported by
the public grant ANR-11-LABX-0037-01 of the French National Research Agency
(ANR) as part of the “Investissements dAvenir” program (ANR-11-IDEX-0004-02).

! A Stellar Dynamics Toolbox: http://bima.astro.umd.edu/nemo

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 716-727, 2014.
© Springer International Publishing Switzerland 2014

http://bima.astro.umd.edu/nemo

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures v

on GPUs (Graphics Processing Units) [3,4] have also been developed which out-
perform multi-core CPUs. Dehnen’s algorithm [6], implemented in the serial fal-
cON code (Force ALgorithm with Complexity O(NN)), is one order of magnitude
faster than serial executions of Barnes-Hut tree-codes [6, 8], mainly thanks to its
dual tree traversal (DTT). But parallel tree-codes implementations, on one or two
multi-core CPUs or on one GPU, then manage to outperform falcON [8]. The par-
allelization of falcON is therefore crucial to exploit its algorithmic asset on current
parallel architectures. But contrary to tree-codes algorithms, this DTT does not
exhibit natural parallelism.

In this paper, we present a parallel dual tree traversal, implemented in the pfal-
cON (parallel falcON) code, that efficiently exploits two levels of parallelism on
one single shared-memory node (we do not consider distributed-memory paral-
lelism here). We first target multi-core parallelism on CPUs whose number of cores
is constantly increasing, as well as on new many-core architectures like the Intel
Xeon Phi whose compute power is similar to high end GPUs. We also target SIMD
parallelism because of its increasing importance in the overall CPU performance:
128-bit SSE, 256-bit AVX, and 512-bit Xeon Phi vector units.

Contributions. Our contributions are thus two-fold. Firstly, we use task paral-
lelism for the DTT on both multi-core CPUs and on the Xeon Phi. This requires
a recursive formulation of the falcON code, as well as adequate atomic operations
and memory barriers in order to obtain an efficient implementation. We detail how
this can be achieved for both OpenMP tasks and Intel TBB (Threading Building
Blocks) tasks, and how we manage to preserve Dehnen’s original algorithm in the
parallel tree traversal. Secondly, we use Intel SPMD Program Compiler (ispc)
and its SPMD (single-program, multiple-data) model for the SIMD vectorization
of the direct computation required for the near field part. We show that such ap-
proach enables us to have one single portable source code for this direct computa-
tion which is very efficient on both SSE and AVX, as well as on Xeon Phi vector
instructions. Best performance is here obtained via a hybrid strategy that effi-
ciently combines scalar and vector code. In the end, we show performance results
that match the GPU Bonsai code which is currently one of the fastest GPU tree-
codes [3].

Related work. An MPI parallelization of Dehnen’s algorithm has been briefly
presented in [10], but is based on a complete rewriting of the algorithm in Fortran
90, not on the highly optimized C++ falcON code. Recently, the exaFMM-dev soft-
ware has included an implementation of Dehnen’s algorithm that also uses task
parallelism for the dual tree traversal [13,14], but in a different way that requires
the rewriting of this traversal. As for SIMD programming, exaFMM-dev uses C++
template metaprogramming for the hand-tuned kernel of the direct computation
part. In the following, we will thus highlight the differences between pfalcON and
exaFMM-dev and compare their performance.

In the rest of this paper, Sect. 2 describes N-body algorithms, especially
Dehnen’s algorithm. In Sect. 3, we detail how we have used task parallelism and
SPMD programming in the pfalcON code. Section 4 presents performance results

718 B. Lange and P. Fortin

A B A
T A mazx By @ By
\: R \; @
A ‘ o B
. \max . B@@
(a) MAC is applied to (A, B). (b) If MAC fails, B is split.
A

[" @- ’ * Task @&
= . e e

(c) If MAC(A, By) fails, A is split. (d) Tasks spawn when MAC fails.

Fig. 1. Dual tree traversal in Dehnen’s algorithm

and comparisons with other codes. Finally, concluding remarks will be presented
in Sect. 5. More technical details are available in the research report [9].

2 N-body Algorithms

We focus here on galactic simulations and on hierarchical N-body algorithms,
where the 3D particle space is hierarchically decomposed thanks to an octree whose
leafs contain at most Nerit particles.

The Barnes-Hut tree-code algorithm [2] computes the gravitational forces
among N particles with a O(N In N) runtime complexity thanks to monopole (and
possibly quadrupole) moments. For each target body, the octree is here recursively
traversed and “body-cell” or “body-body” interactions are evaluated depending
on a multipole acceptance criterion (MAC). The loop on the target bodies is par-
allel which enables CPU parallel implementations with multi-threading and/or
with MPT [12]. Recently, this inherent parallelism has been efficiently exploited
to develop GPU implementations that run entirely on the GPU [3,4]. For exam-
ple, the Bonsai code, which relies on monopole and quadrupole moments and on
a specific MAC, enables speedups around 20 on GPU compared to a multi-core
CPU implementation [3].

Dehnen’s algorithm [6] can be considered as a nontraditional fast multipole
method [5], specific to the relatively low precisions required in astrophysics. This
O(N) algorithm indeed relies on “cell-cell” interactions. This requires specific, low
precision local expansions based on cartesian Taylor expansions, and a specific
MAC that can balance (along with the expansion order, which is fixed to 3) the
accuracy and the computation cost. This MAC is defined for two cells (A4, B) (see
Fig. 1(a)) as: "™ f/#mes < g where is an input parameter (6 = 0.6 by de-
fault) that balances accuracy and computation cost, and ¢ mq, denotes an upper
limit for the distance of any body within the node C' from its center of mass [6].

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 719

Once the octree has been built and the multipole moments have been calculated,
the interactions are computed in two steps.

The first step (interaction phase) relies on the dual tree traversal (DTT) pre-
sented in Figs. 1(a),1(b),1(c). If the MAC succeeds between two cells (A, B), their
interactions can be approximated: both local expansions of A and B are updated
thanks to the mutuality of gravity (see Fig. 1(a)). If the MAC fails, the larger cell
(B here) is split and the MAC is applied between A and all the children of B (see
Fig. 1(b), with 8 children in 3D). This is applied recursively, and A can then be
split when the MAC fails with A as the larger cell (see Fig. 1(c)). This thus leads
to a dual recursive traversal of the octree. When the MAC fails for two octree
leafs, or when the number of particles is too low (depending on empirical thresh-
olds [6]), the direct computation is used instead of the expansions. Thanks to this
DTT, Dehnen’s algorithm consistently uses the mutuality of gravity to halve the
computation cost in the near field part as well as in the far field part. After the
interaction phase, the evaluation phase is recursively used to evaluate the local
expansion of each cell for each body within this cell.

All these features have been implemented in the falcON? code (Force ALgo-
rithm with Complexity O(N)) which offers O(NN) computation times one order of
magnitude smaller than serial executions of Barnes-Hut tree-codes [6, 8].
Moreover, these computation times are much less sensitive to the distribution of
particles: this is very important for astrophysical simulations where the particle
distributions representing galaxies or groups of galaxies are highly non-uniform.

The interaction and evaluation steps correspond together to the most time con-
suming part. The octree construction has a non-negligible computation time, but
it does not have to be performed at every time-step. Moreover, the interaction
step represents around 95% of the total time for both the interaction and evalu-
ation steps, which makes it crucial for the overall performance of falcON. In the
following, we will thus see how the interaction and evaluation steps of Dehnen’s
algorithm can be efficiently parallelized in a new pfalcON code.

3 pfalcON: A Parallel falcON

The dual tree traversal of the interaction step was described as a recursive algo-
rithm in [6], but was implemented using a stack-based approach in the falcON
code. In practice when an interaction fails the MAC, it is pushed in one of the
available stacks according to its type (“cell-cell”, “body-cell”...). The stacks are
then regularly popped in a specific order. When using tasks to process interac-
tions, the task runtime will have to store the tasks (i.e. the interactions) in mem-
ory. The original stacks in falcON then become redundant. We have thus removed
these stacks and rewritten falcON as a recursive code (more convenient for task
parallelism), where recursive calls process interactions in the same order as in fal-
c¢ON. This new code will be hereafter referred to as rfalcON.

2 Available in http://carma.astro.und.edu/nemo/, version 3.6 . We use here the gyr-
falcON full-fledged N-body code (GalaxY simulatoR using falcON).

http://carma.astro.umd.edu/nemo/

720 B. Lange and P. Fortin

Besides, local Taylor expansions are allocated on the fly during the dual tree
traversal in the original falcON code. This enables to save memory by allocating
these expansions only when they are effectively required for each cell. In paral-
lel executions, concurrent memory allocations have to be serialized at the system
level, which can become a performance bottleneck. In rfalcON we thus allocate
these expansions for each non-empty cell during the step which computes mul-
tipole moments. This implies some memory overhead, which is not problematic
since current N-body simulations on one single node are more limited by the com-
pute power than by the available memory. With such features, rfalcON is slightly
faster than falcON (around 8%) for the interaction step.

3.1 Task Parallelism for the Dual Tree Traversal

On multi-core CPUs, loop-based parallelism (like in OpenMP) is suitable for tree-
codes, but clearly not here for the DTT of the rfalcON interaction phase since
there is no explicit parallel loop. Task parallelism, firstly introduced in Cilk and
now available in OpenMP (since version 3.0) and in Intel TBB, is here much more
suitable for such recursive algorithm. Tasks are specified in the source code by the
programmer, and then managed during the execution by a runtime which dynam-
ically schedules these tasks on the available threads. Such dynamic load balancing
is especially useful in astrophysical N-body simulations where the particle distri-
butions, hence the computation loads, are highly non-uniform.

In pfalcON, each time an interaction fails the MAC, we thus simply create one
task for each of the (up to) eight interactions involving the children of the larger
cell: see Fig. 1(d). However, due to the consistent use of the mutuality of gravity
in Dehnen’s algorithm, a task updates both cells A and B (either local expansions
or particles) when the interaction is effectively computed. Hence different tasks
can update the same cells concurrently which requires synchronization among the
tasks to avoid conflicts. We need here the lightest synchronization mechanism to
have the smallest overhead on the parallel execution. That is why we use here
atomic operations and memory barriers on one specific flag per cell to indicate if
the cell is already being updated or not.

More precisely, we use here one bit (the Most Significant Bit - MSB) in one
32-bit integer variable (named val in the falcON code). Such variable is stored
in each octree cell to describe various features of this cell, and only 25 bits are
currently used. When a task needs to update a given cell, it first has to set this bit
to 1 while checking that the bit was not already set to 1 (by another task): the two
operations must be performed atomically. In case the bit was already set to 1, we
use busy waiting since the cell update is a very fast operation. Another possibility
is to suspend the current task and make the underlying thread treat another task:
no performance gain was obtained in our tests in doing so. When the update is
over, the bit is reset to 0: such write must include a memory barrier to ensure that
(i) the write is performed after the computation and that (ii) subsequent reads are
performed after this write. With OpenMP, we use atomic capture and atomic
update operations. With TBB, the whole field val is declared as an atomic integer
and we use a compare and swap operation to check the bit value and set it to 1.

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 721

In practice, we expect very few concurrent accesses to the same cells (which may
increase the overhead of using atomics operations) since the number of cells in the
octree is many orders of magnitude higher than the number of threads used.

In the exaFMM-dev software [13,14], task parallelism is applied to the DTT dif-
ferently. In order to avoid conflicts, the traversal is strongly rewritten using one
list of children cells for cell A and one list for cell B [13]. These two lists are halved
which results in up to four tasks that must be computed among the four half-lists.
Task barriers are then used to isolate tasks that can be performed in parallel with-
out conflicts. As mentioned in [13], this implies some extra computations since
cells A and B can be opened at the same time, whereas only one cell would have
been opened in the original Dehnen’s algorithm. On the contrary, in pfalcON we do
not require a rewriting of the DTT and we do not introduce extra computations.

Besides, we also have to control the task computation grain for efficient par-
allel executions. Spawning too small tasks may not enable to offset the task cre-
ation overhead, whereas spawning only large tasks may result in an overall load
imbalance among threads. We thus introduce a threshold (T'CT, Task Creation
Threshold) to stop task creation: when there are less than T'CT particles in the
two cells A and B (or in the cell A if A = B) no task is created for the remainder
of this traversal (but atomic operations are still required). According to the O(N)
runtime complexity, such linear threshold is indeed well-suited to control the com-
putation grain size. Appropriate TCT values for OpenMP and TBB are around
1000 or 10000. It can be noticed that a similar threshold is used in exaFMM-dev in
order to reduce the number of extra computations introduced by the exaFMM-dev
task parallelism.

As far as the evaluation step is concerned, the task parallelism is straightfor-
ward to implement since there is no conflict among the tasks. We also use a thresh-
old like TCT in order to control the task computation grain.

3.2 Portable and Efficient SIMD Direct Computation

SPMD model. Many works have already been published on the efficient vectoriza-
tion of the direct computation for the near field part (see for example [1,7,14]).
We target here both efficiency and portability on various vector instruction sets
(SSE, AVX, Xeon Phi). We thus focus on the SPMD (single-program, multiple-
data) model, where all computations are written as scalar ones and it is up to the
compiler to merge such scalar computations in SIMD instructions. The main ad-
vantages are the ease of programming and the portability: the programmer needs
neither to write the specific SIMD intrinsics for each architecture, nor to know the
vector width, nor to implement data padding with zeroes according to this vector
width. On CPU, such programming model is available in OpenCL (OpenCL im-
plicit vectorization), as well as in the Intel SPMD Program Compiler (ispc) [11].
Compared to OpenCL, ispc has especially the following advantages [11]: (i) ispc
kernel launches are faster and (ii) the same memory space and data structures
can be shared between the C/C++ code and the ispc code. These are very impor-
tant for pfalcON since SIMD computations are performed with small computation
grains (usually a few tens of particles per leaf) and require a tight integration in

722 B. Lange and P. Fortin

the dual tree traversal and in the octree data structure. We will therefore rely here
on the SPMD-on-SIMD model of ispc.

ispc technical features. In ispc, each scalar control flow corresponds to a pro-
gram instance (similar to an OpenCL work-item). The group of program instances
will be merged in one gang (similar to a CUDA warp or to an AMD OpenCL
wave-front) to be processed concurrently with SIMD instructions. The gang size
(denoted gs) of the gang is usually set to one or two time(s) the width of the un-
derlying SIMD vector. Depending on the available instruction level parallelism
and on the register pressure, it can be indeed more efficient (or not) to use twice
the vector width. When the number of items to process is greater than the gang
size, the programmer implements the mapping via an explicit loop over all items
(contrary to CUDA and OpenCL, where warps/wave-fronts are scheduled by the
runtime) [11]. This gives us more control to efficiently and safely implement the
direct computation with the mutuality of gravity.

Direct computation kernels. We first focus on the direct computations between
two different leafs A and B (pair computations). We first determine the leaf with
the greatest number of particles (say A here). Each program instance is then in
charge of one of the first gs particles in A, which leads to a SIMD processing of
these gs particles. Interactions between these gs particles and the first particle of
B are then processed concurrently: the first particle in B is therefore replicated
in the underlying SIMD vector. Force and potential are then updated in A (no
conflict among the program instances), as well as in the first particle of B (with
ispc reductions among the program instances in the gang). This is iterated over
all particles in B. Once all particles in B have been treated, the whole process is
restarted for the next gs particles in A.

We now focus on the direct computations among all particles within one given
leaf (own computations). In this case, we proceed as in [7] by using as much as
possible the (efficient) pair computation along with the mutuality of gravity, and
we start by isolating the first gs particles. Interactions between these first gs parti-
cles and the remaining particles are then computed by the pair computation ker-
nel (with the mutuality of gravity). After this, the interactions among the first
gs particles are then computed (similarly to the pair computation, but without
the mutuality of gravity here). The whole process is restarted with the remaining
particles, whose first gs particles are isolated.

Besides, moving from arrays of structures (AoS - as in the scalar falcON) to
structures of arrays (SoA - more efficient for vector loads and stores) in falcON
would have required very important programming efforts: we therefore keep the
AoS data layout (like in exaFMM-dev for example) and rely on the fact that for di-
rect computations the O(N) memory access times can be rapidly overlapped with
the O(N?) computation times. Moreover, we also use software pipelining in pfal-
cON with double buffering: we process two interactions at the same time, the first
one being computed while data for the next one are being loaded in registers. This
has been implemented in both the scalar pfalcON (referred to as pfalcON-scalar)
and the SIMD code. Finally, we rely on the rsqrt ps intrinsic SIMD function as a

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 723

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 23456 7 8 9 10 11 12 13 14 15 16
Number of particles Number of particles
—falcON —pfalcON-scalar —pfalcON-ISPC —pfalcON-ISPCx2 —falcON —pfalcON-scalar —pfalcON-ISPC —pfalcON-ISPCx2

(a) Own computations with AVX (b) Pair computations with AVX

Fig. 2. Performance of the different kernels for direct computations on AVX instruction
set. For pair computations between cells A and B, only the number of particles N4 in
cell A is indicated: for each value of N4, Ng ranges from 1 to Na.

floating-point reciprocal square root estimate, followed by one Newton-Raphson
iteration to match floating point single precision.

4 Performance Results

For performance tests, we use three compute servers: SSE-server with two Intel
X5650 CPUs (each having 6 SSE cores with 2-way SMT at 2.67 GHz) and 48 GB of
memory, AVX-serverwith two Intel E5-2660 CPUs (each having 8 AVX cores with
2-way SMT at 2.20 GHz) and 32 GB of memory, and Xeon-Phi which is a 5110P
Xeon Phi (60 cores with 4-way SMT at 1.053 GHz) used in native mode as a distant
server. For pfalcON, we use OpenMP (3.1) and TBB (4.1) with GCC (4.7.3), since
GCC specific optimizations are used in falcON, and with ICC (14.0.0) on Xeon-
Phi for the SIMD intrinsics. exaFMM-dev? is used with ICC and TBB, and Bonsai*
is run on NVIDIA GPUs (C2070 or K20c, both in SSE-server) with CUDA 5.0.

We will use two distributions of 10M particles: an artificial uniform distribution
inside a 3D cube, and a Plummer distribution as a classical (non-uniform) astro-
physical model [8]. All codes compute both forces and potentials, for all particles,
with single precision floating point arithmetic. We also use in each code appropri-
ate softenings for the near field part of the gravity [8].

4.1 SIMD Direct Computation

Figure 2 presents the performance of different direct computation kernels
presented in Sect. 3.2; namely the original scalar implementation in falcON,
pfalcON-scalar and two SIMD versions in pfalcON: with the gang size set to the
underlying vector width (pfalcON-ISPC) or to twice this vector width (pfalcON-
ISP(Cx2). This last ispc feature is however not yet available on the Xeon Phi,
where we will therefore only use pfalcON-ISPC. The comparison is here performed

3 https://bitbucket.org/rioyokota/exafmm-dev, commit 4bd77a5, 2013-09-12.
* https://github.com/treecode/Bonsai, version 8d8e4c0d19, 2013-04-21.

https://bitbucket.org/rioyokota/exafmm-dev
https://github.com/treecode/Bonsai

724 B. Lange and P. Fortin

for numbers of particles that fit in the gang size, and on AVX instruction set: simi-
lar results have been obtained on SSE and Xeon Phi (see [9]). We always consider
here 25 flops to compute the forces and potentials between two particles (using
the mutuality of gravity). Results in Fig. 2 implies that, depending on the num-
ber of particles, especially when there is not enough particles to fill the SIMD vec-
tor, it may be better to use our scalar kernel pfalcON-scalar, or the SIMD kernel
of pfalcON-ISPC; instead of the SIMD kernel of pfalcON-ISPCx2. We therefore
propose, and use hereafter, the following hybrid strategy, based on the underlying
vector width (provided by an ispc function call).

For own computations of N particles, we first compute the number of particles
N,, = |[N/w| x w that correspond to multiples of the vector width w, and the
remainder N, = N — N,,. Then we apply specific thresholds for each SIMD ar-
chitecture to process N,, and N, (with AVX: T} = 6, Tz = 72; see [9] for SSE and
Phi). For example for N,,, we use: pfalcON-ISPCx2 if Ty < N, ; pfalcON-ISPC
if Ty < Ny, < Ty ; pfalcON-scalar if Ny, < T .

For pair computations of cells A and B with N4 and Np particles (N4 > Npg),
we first compute Ny, 4 and N, 4. We then apply specific thresholds (with AVX:
Ts1=8,Tp1=2,Tgo =32, Tpo = 13) following this strategy (firstly for N, a
and secondly for N, 4): we use pfalcON-ISPCx2 if Ny, 4 > 2xVectorWidth and
Npa+ Np>Tso and Np >Tpa; otherwise, we use pfalcON-ISPC if
Np.a+ Np >Ts 1 and Ng > Tg 1 ; otherwise we use pfalcON-scalar.

Figures 3(a),3(b),3(c) show that our ispc hybrid strategy leads on SSE and
AVX to performance that is mainly similar or better than the hand-tuned kernels
of exaFMM-dev [14] for low numbers of particles. For higher numbers of particles,
ispc clearly outperforms exaFMM-dev thanks to a gang size set to twice the vec-
tor width. On the Xeon Phi, we also obtain similar or better performance than
exaFMM-dev, except for the high values of NV with own computations: this is mainly
due to the current lack of pfalcON-ISPCx2 on the Xeon Phi.

Finally, we evaluate in Fig. 3(d) the SIMD performance gain on the overall in-
teraction step: values on top of each bar correspond to the speedups of pfalcON
with ispc over the scalar rfalcON. We optimally choose here the Nerit value for
each code on each architecture: for rfalcON the optimal Ncrit value is 8, whereas
for the SIMD pfalcON code this is 32 for AVX and Xeon Phi, and 8 for SSE. The
SIMD pfalcON code offers thus performance gains over rfalcON of 5% on one SSE
core, but of up to 24% (resp. 92%) on one AVX (resp. Xeon Phi) core.

4.2 Task Parallelism

Figure 4 presents speedups of pfalcON over the serial rfalcON code. With both
OpenMP and TBB, and for both uniform and non-uniform distributions of par-
ticles, we obtain very good speedups up to 15.8 on AVX-server and up to 60 on
Xeon-Phi. Similar or better parallel efficiencies have been obtained on SSE-server
(speedups up to 13.8, not shown here). Once the overhead of using task and atomic
operations is taken into account (for 1 thread), we indeed obtain linear speedups
on up to 32 physical CPU cores. On the Xeon Phi, using two hardware threads per
core (denoted as 2-way SMT) enables us to improve the speedup from 50 (with 60

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 725

9 12
8
7 0 Lhh
|y
6 B | ‘M‘M“,n‘y‘”
2
g° g6
T4 (]
3 4
) ,
2 /
I — e |
0 0 T T T T T T T 1
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Number of particles Number of particles
—pfalcON-own —exafmm-own —pfalcON-pair —exafmm-pair —pfalcON-own —exafmm-own —pfalcON-pair —exafmm-pair
(a) On one SSE core. (b) On one AVX core.
140 HfalcON x1.62 x1.92
120 —
3 ¥ pfalcON
2,5 100 —
) /b 5w |
3 /fw iz
815 \ ’ l I \ £
5) ‘ | ‘ ‘HM = 60
1 i ‘ “ \ \ \
NVRGL o
05 N \J N\ x1.05 x1.19 x1.04 x1.24
— — 20
0 - - - - - - y
1 2 4 8 16 32 64 128 256 0 -
Number of particles SSE- AVX- Phi- SSE- AVX- Phi-
—pfalcON-own —exafmm-own —pfalcON-pair —exafmm-pair Uniform Uniform Uniform Plummer Plummer Plummer
(c) On one Xeon Phi core. (d) Overall interaction step.

Fig. 3. Figs. 3(a),3(b),3(c): performance comparison for direct computations (only up
to 256 particles because of the Nerit limit within each leaf). For pair computations, we
use the same number of particles in both cells. Fig. 3(d): computation times on one
CPU core for the overall interaction step on the two 10M distributions.

threads) to 60 (with 120 threads on 60 cores). Using two hardware threads is in-
deed required to reach best performance on this architecture, but performance
drops for too many threads (with 4 hardware threads per core - 4-way SMT).
These results show that our task parallelism with atomic operations is very well
suited for multi-core CPUs, and scales well on the Xeon Phi. For the evaluation
step, good speedups (around 12 on AVX-server, and around 32 on Xeon-Phi, not
shown here) are obtained, these speedups being mainly limited by the very small
computation times of this step in our tests.

4.3 Comparison with exaFMM-dev and Bonsai

Finally, we now compare in Fig. 5 the following codes: (i) the original falcON, (ii)
the SIMD pfalcON on AVX-server (GCC+OpenMP with 32 hardware threads)
and on Xeon-Phi (ICC+TBB with 120 hardware threads), (iii) the SIMD
exaFMM-dev code with 1 or 32 threads on AVX-server (ICC+TBB), (iv) and fi-
nally Bonsai on one C2070 GPU and on one K20c GPU. We compare here two
multi-core CPUs (AVX-server TDP: 2 x 95W) with one GPU (maximum power
consumption: 238W for C2070 and 225W for K20c) and with one Xeon Phi (TDP:
225W), since this corresponds to the same power consumption. Optimal Nerit

726 B. Lange and P. Fortin

32 64
16 = 32
16
8 » Y P
s : s :
g, : 3 s R
g < g < <
@ (%) @ 4
g R
2 = = =
2
i 1
05 05
1 2 a 8 16 16x2. 1 2 a 8 16 32 64 60x2 60x4
Number of threads Number of threads
TBB-Uniform TBB-Plummer ‘OpenMP-Uniform —OpenMP-Plummer ~ —Linear TBB-Uniform —TBB-Plummer —Linear
(a) On AVX-server. (b) On Xeon-Phi.

Fig. 4. Speedups obtained by pfalcON on multi-core and many-core architectures

100,00

100,00

10,00

Time (s)

(a) 10M uniform. (b) 10M Plummer.

Fig. 5. Computation times (interaction and evaluation steps) for various N-body codes

values are used for falcON, pfalcON and exaFMM-dev, whereas Bonsai uses its
own specific thresholds (Njeqr = 16 and Ngpip = 64, see [3]). As recommanded
for astrophysical N-body simulations [8], we use § = 0.6 for falcON, pfalcON and
exaFMM-dev, and § = 0.75 for Bonsai (default value) whose expansions and MAC
are different [3]. For falcON, pfalcON and exaFMM-dev, we consider here only the
interaction and evaluation steps, and for Bonsai we consider the corresponding
“tree-traverse” step.

Speedups between pfalcON and exaFMM-dev are similar. Since falcON is some-
what faster for serial executions, pfalcON is then also somewhat faster than
exaFMM-dev for parallel executions. As far as the Xeon Phi is concerned, there
is no performance gain compared to the two multi-core CPUs, mainly because
astrophysical N-body simulations offer small computation grains for the direct
computations: there is usually too few particles per leaf to fill at best the vec-
tor units of the Xeon Phi. The Xeon Phi however outperforms the C2070 for the
non-uniform Plummer distribution. Finally, pfalcON on AV X-server outperforms
Bonsai on the C2070 GPU. Using the newer K20c GPU, Bonsai outperforms pfal-
cON on AVX-server for the uniform distribution, but the performance results are
much more closer for the more realistic Plummer distribution. Non-uniform dis-
tributions are indeed more challenging for GPU codes, whereas pfalcON on AV X-
server is few sensitive to the particle distribution. Lastly, we emphasize that 50M
distributions can be run on SSE-server and AVX-server, but not on any GPU.

Parallel Dual Tree Traversal on Multi-core and Many-core Architectures 727

5 Conclusion and Future Work

We have presented a parallel version of the dual tree traversal which is the most
challenging and time consuming part in Dehnen’s algorithm. Very good speedups
are obtained, Dehnen’s original algorithm is preserved, no extra computations are
introduced, and the SPMD model is shown to be suitable for efficient and portable
SIMD vectorization. Since falcON is faster than serial Barnes-Hut tree-codes, pfal-
cON with such parallel speedups should outperform any parallel tree-code on one
single node with multi-core CPUs. Besides, pfalcON is faster than or almost as fast
as GPU tree-codes like Bonsai for astrophysical distributions, but we emphasize
that GPU tree-codes are limited by the GPU memory, and MPI communications
on multiple nodes with GPU are usually penalized by the PCI bus. The pfalcON
code is available at https://pfalcon.lip6.fr.

Future work will be focused on the other parts of falcON (mainly the octree
construction [13]), on distributed-memory parallelism, and on applying such par-
allel algorithm to other applications than astrophysics. Another (challenging) task
would be to efficiently combine the best algorithm, namely the dual tree traversal,
with the most powerful hardware currently available, namely GPUs.

References

1. Arora, N.; Shringarpure, A., Vuduc, R.: Direct n-body kernels for multicore plat-
forms. In: Proc. of the Int. Conf. on Parallel Processing (ICPP), pp. 379-387 (2009)
2. Barnes, J.E., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Na-
ture 324(4), 446-449 (1986)
3. Bédorf, J., Gaburov, E., Zwart, S.P.: A sparse octree gravitational N-body code
that runs entirely on the GPU processor. J. Comp. Phys. 231(7), 2825-2839 (2012)
4. Burtscher, M., Pingali, K.: An Efficient CUDA Implementation of the Tree-Based
Barnes Hut n-Body Algorithm. GPU computing Gems Emerald edition, p. 75 (2011)
5. Cheng, H., Greengard, L., Rokhlin, V.: A Fast Adaptive Multipole Algorithm in
Three Dimensions. Journal of Computational Physics 155, 468-498 (1999)
6. Dehnen, W.: A Hierarchical O(N) Force Calculation Algorithm. J. Comp. Phys. 179,
27-42 (2002)
7. Fortin, P., Lamotte, J.L.: Fast Multipole Method on the Cell B.E.: the Near Field
Part. In: Int. Parallel Computing Conf. (ParCo), vol. 19, pp. 323-330 (2009)
8. Fortin, P., Athanassoula, E., Lambert, J.-C.: Comparisons of different codes for
galactic N-body simulations. Astronomy & Astrophysics 531, A120 (2011)
9. Lange, B., Fortin, P.: Parallel dual tree traversal on multi-core and many-core archi-
tectures for astrophysical N-body simulations, http://hal.upmc.fr/hal-00947130
10. Londrillo, P.; Nipoti, C., Ciotti, L.: A parallel implementation of a new fast algo-
rithm for N-body simulations. In: Comp. Astro. in Italy: Methods and Tools (2002)
11. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU pro-
gramming. In: Innovative Parallel Computing (InPar 2012), pp. 1-13. IEEE (2012)
12. Springel, V.: The cosmological simulation code GADGET-2. Monthly Notices of the
Royal Astronomical Society 364(4), 1105-1134 (2005)
13. Taura, K., Nakashima, J., Yokota, R., Maruyama, N.: A Task Parallel Implemen-
tation of Fast Multipole Methods. In: SC Companion, pp. 617-625 (2012)
14. Yokota, R.: An FMM Based on Dual Tree Traversal for Many-core Architectures.
Journal of Algorithms and Computational Technology 7(3), 301-324 (2013)

https://pfalcon.lip6.fr
http://hal.upmc.fr/hal-00947130

	Parallel Dual Tree Traversal on Multi-coreand Many-core Architectures for Astrophysical N-body Simulations

	1 Introduction
	2 N-body Algorithms
	3 pfalcON: A Parallel falcON
	3.1 Task Parallelism for the Dual Tree Traversal
	3.2 Portable and Efficient SIMD Direct Computation

	4 Performance Results

	4.1 SIMD Direct Computation
	4.2 Task Parallelism
	4.3 Comparison with exaFMM-dev and Bonsai

	5 Conclusion and Future Work

	References

