
Modeling and Simulation of a Dynamic
Task-Based Runtime System for Heterogeneous

Multi-core Architectures

Luka Stanisic1, Samuel Thibault2, Arnaud Legrand1,
Brice Videau1, and Jean-François Méhaut1

1 CNRS, Inria, University of Grenoble, France
firstname.lastname@imag.fr

2 University of Bordeaux, Inria, France
samuel.thibault@labri.fr

Abstract. Multi-core architectures comprising several GPUs have be-
come mainstream in the field of High-Performance Computing. However,
obtaining the maximum performance of such heterogeneous machines is
challenging as it requires to carefully offload computations and manage
data movements between the different processing units. The most promis-
ing and successful approaches so far rely on task-based runtimes that
abstract the machine and rely on opportunistic scheduling algorithms.
As a consequence, the problem gets shifted to choosing the task gran-
ularity, task graph structure, and optimizing the scheduling strategies.
Trying different combinations of these different alternatives is also itself
a challenge. Indeed, getting accurate measurements requires reserving
the target system for the whole duration of experiments. Furthermore,
observations are limited to the few available systems at hand and may be
difficult to generalize. In this article, we show how we crafted a coarse-
grain hybrid simulation/emulation of StarPU, a dynamic runtime for
hybrid architectures, over SimGrid, a versatile simulator for distributed
systems. This approach allows to obtain performance predictions accu-
rate within a few percents on classical dense linear algebra kernels in a
matter of seconds, which allows both runtime and application designers
to quickly decide which optimization to enable or whether it is worth
investing in higher-end GPUs or not.

1 Introduction

High-Performance Computing architectures now widely include both multi-core
CPUs and GPUs. Exploiting the tremendous computation power offered by such
systems is however a real challenge. Programming them efficiently is a first con-
cern, but managing the combination of computation execution and data transfers
can also become extremely complex, particularly when dealing with multiple
GPUs. In the past few years, it has become very common to deal with that
through the use of an additional software layer, a runtime system, based on the
task programming paradigm [3,4,7]. Applications are expressed as a task graph

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 50–62, 2014.
c© Springer International Publishing Switzerland 2014



Modeling and Simulation of a Dynamic Task-Based Runtime System 51

with data dependencies, i.e., a Directed Acyclic Graph (DAG), and provide both
CPU and GPU implementations for the tasks. The runtime can then schedule
the tasks over all available computation units, and automatically initiate the
entailed data transfers. Scheduling heuristics such as HEFT or work stealing are
used to automatically optimize that execution [3]. Application programmers are
thus relieved from scheduling concerns and technical details.

As a result, the concern becomes choosing the right task granularity, task
graph structure, and scheduling strategies optimizations. Task granularity is of
a particular concern on hybrid platforms, since a tradeoff must be found between
large tasks which are efficient on GPUs but expose little task parallelism, and
a lot of small tasks for CPUs but are less efficient on GPUs. The task graph
structure itself can have an influence on execution time, by requiring more or
less communication compared to computation, which can be an issue depending
on the available bandwidth on the target system. Last but not least, optimizing
scheduling strategies has been a concern for decades, and the introduction of
hybrid architectures only makes it even more challenging.

Getting accurate measurement results for all combinations is not trivial and
it requires reserving the target system for a long period, which can become pro-
hibitive. Moreover, experimenting over a wide range of different platforms is also
necessary to make sure that the resulting strategy choices are generic, and not
only suited to the few target systems which were available to developers. Finally,
since execution time on real machine exhibit variability, dynamic schedulers tend
to make varying scheduling decisions, and the obtained performance is thus far
from deterministic. This makes performance comparisons more questionable and
debugging of non-deterministic deadlocks inside such runtimes even harder.

Simulation is a technique that has proven extremely useful to study complex
systems and which would be a very powerful way to address these issues. Per-
formance models can be collected for a wide range of target architectures, and
then used for simulating different executions, running on a single commodity
platform. Since the execution can be made deterministic, experiments become
completely reproducible, also making debugging a lot easier. Additionally, it is
possible to try to extrapolate target architectures, for instance by trying to in-
crease the available PCI bandwidth, the number of GPU devices, etc. and thus
even estimate performance which would be obtained on hypothetical platforms.
Cycle-accurate simulation of GPUs has hence received a lot of attention recently.
However, the current solutions are extremely costly and not precise enough for
helping runtime and application designers (see Section 2). Instead, we claim that
a top-down modeling approach should be used.

In this article, we show how we crafted a coarse-grain hybrid simula-
tion/emulation of StarPU [3] (see Section 3), a dynamic runtime system for
heterogeneous multi-core architectures, on top of SimGrid, a simulation toolkit
specifically designed for distributed system simulation. Although our work is
based on the StarPU runtime system, it could be applied to other runtimes. Our
contribution are the following:



52 L. Stanisic et al.

– we present in details models that are essential for good performances and
quantify their impact on overall prediction (Sections 5, 6, and 7);

– we validate our models by systematically comparing traces acquired in sim-
ulation with those from native executions in a wide variety of settings;

– we show that our approach allows to obtain predictions accurate within
a few percents for both Cholesky and LU factorizations on four different
generations of GPUs, within a few seconds on a commodity laptop, and we
illustrate how it allows to conduct preliminary exploratory studies easily
(Section 8).

2 Related Work

In most other scientific fields, simulation is used to evaluate complex phenomena
and to address all the difficulties raised by the conduction of real experiments
such as cost, reproducibility, and extrapolation capability. As a result, many
detailed micro-architecture level simulators of GPUs have been developed in
the last years. For example GPGPU-Sim [5], one of the most commonly used
cycle-accurate GPU simulator, runs directly NVIDIA’s parallel thread execution
(PTX) virtual instruction set and simulates every detail of the GPU. It is thus
very useful for obtaining insights into architectural design problems for GPUs.
However, no comparison to an actual GPU is provided in [5] and although the
trends predicted by GPGPU-Sim are certainly interesting, it is not clear that it
can be used to perform accurate performance prediction of a real hardware. A
few other GPU-specific simulators have therefore been developed (e.g., Barra [9]
for the NVIDIA G80 or Multi2Sim [11] for the AMD Evergreen GPU). Such
specialization allow Multi2sim to report predictions within 5 to 30% of native
execution for several OpenCL benchmarks. While this prediction is quite impres-
sive, it comes at the price of a very long simulation time as every detail of the
GPU is simulated. The average slowdown of simulations versus native execution
is reported to be 44, 000× while the one of GPGPU-Sim on a similar scenario is
about 90, 000×[11].

In the context of tuning HPC runtimes, expectations in term of simulation
accuracy are extremely high. It is thus difficult to rely on a simulator that may
provide the right trends but with a 50% over/under estimation. Choosing the
right level of granularity or the correct scheduling heuristic can not be done with-
out precise and quantitative predictions. Such errors come from an inadequate
level of details and can be avoided. Therefore, we propose to use a top-down
modeling approach such as promoted by the SimGrid project [8], which provides
a versatile simulation toolkit to study the behavior of large-scale distributed sys-
tems like grids, clouds, or peer-to-peer systems. SimGrid builds on fluid network
models that have been proven as a reasonable alternative to both simple ana-
lytic models and expensive, difficult-to-instantiate packet-level simulations [12]
and have recently been extended to simulate accurately MPI applications on
Ethernet networks [6]. In a fluid model, communications, represented by flows,
are simulated as single entities rather than as sets of individual packets and the



Modeling and Simulation of a Dynamic Task-Based Runtime System 53

bandwidth allocated to flows is constrained by the network resource capacity.
While such models ignore all transient phases between two steady-state operation
points, they are very flexible and allow to easily account for network topology
and heterogeneity as well as many non-trivial phenomena (e.g., RTT-unfairness
of TCP or cross-traffic interferences) [12] at a very low simulation cost. In the
next sections, we explain how StarPU has been ported on top of SimGrid and
how multi-GPU architectures have been modeled within SimGrid.

3 Porting StarPU over SimGrid

StarPU relies on a task-based abstraction with a clear semantic, which eases
the modeling. A StarPU execution consists in scheduling a graph of tasks with
data dependencies (i.e., a Directed Acyclic Graph) on the different computing
resources, while taking care about data localization. Hence, from the model-
ing perspective, there are three main components to take into account: StarPU
scheduling, computation on the different computing resources, and communica-
tion between the computing resources.

Since StarPU scheduling is generally dynamic and opportunistic, the decisions
taken when simulating should be as close as possible to the ones taken in a native
execution. The most natural approach is thus to execute the StarPU code related
to scheduling decisions and to replace actual task execution with SimGrid calls.
Yet, to make sure that simulation is carried out in a reproducible and controlled
way, SimGrid exports a specific thread API (similar to the POSIX one) that
allows the SimGrid kernel to control the scheduling of all application threads. In
simulation, such threads run in mutual exclusion and are scheduled upon com-
pletion of simulated data transfers and simulated computations. Therefore, any
direct regular call to the POSIX threads had to be abstracted as well. Likewise,
in simulation mode, any memory allocation on CPUs or GPUs has to be faked
as no actual data processing is done and no actual GPU is necessarily available
on simulation machines. Last, since schedulers may use runtime statistics to take
scheduling decisions, time had to be abstracted as well to make sure that simu-
lation time (instead of current time) is used in a consistent way. When running
on top of SimGrid, StarPU applications and runtime are thus emulated since
the actual code is executed, but any operation related to thread synchroniza-
tion, actual computations of CPU-intensive kernels, or data transfer is in fact
simulated. More precisely, the control part of StarPU is executed to dynamically
inject computation and communication tasks in the simulator.

For simplicity reasons, each CPU and GPU is represented as a SimGrid host
with specific characteristics and it comprises one or several threads which man-
age synchronization and signaling to StarPU, whenever transfer or computation
kernels end. The characteristics of the GPUs and of the communication intercon-
nect are measured beforehand on the target machine and expressed in term of
processing power, bandwidth, and latency. As a result, such approach is very dif-
ferent from the classical ones described in Section 2 where architecture is modeled
in detail and coarse-grain performances are derived from fine-grain simulation
of GPU internals.



54 L. Stanisic et al.

Table 1. Machines used for the experiments

Name Processor Number of Cores Frequency Memory GPUs
hannibal Intel Xeon X5550 2× 4 2.67GHz 2× 24GB 3×QuadroFX5800
attila Intel Xeon X5650 2× 6 2.67GHz 2× 24GB 3×TeslaC2050
conan Intel Xeon E5-2650 2× 8 2.0GHz 2× 32GB 3×TeslaM2075
frogkepler Intel Xeon E5-2670 2× 8 2.6GHz 32GB 2×K20

In such a modeling, the overhead of the runtime (e.g., the time needed to
take scheduling decisions, to manage synchronizations or to manage internal
queues) is not accounted for in the simulation and only the parts related to the
application execution are simulated. As we will see in the rest of the article,
such a naive emulation coupled with a simple modeling of computation and
communications may be enough for some applications on some platforms but
can lead to gross inaccuracies in others. Showing merely a few examples where
simulation and native execution match would hence not be a validation. Instead,
we tried to (in)validate our model by conducting as much experiments as possible
in a large variety of settings until we find a situation where our simulation fails
producing a good prediction. These critical experiments were generally very
instructive as they allowed us to understand how to improve our modeling.

In the rest of the article, we present the different sources of errors we identified
and the kind of prediction that can be done once they are fixed.

4 Experimental Setting

We conducted series of experiments to (in)validate our modeling approach. All
conclusions were drawn from analyzing and comparing GFlop/s rate, makespans
and traces of StarPU on one hand (called Native in the following), and StarPU
on top of Simgrid (called SimGrid in the following) on the other.

Before running applications, StarPU needs to obtain a calibration of the plat-
form, which consists in measuring bandwidths and latencies for communication
between each processing unit, together with evaluating timings of computation
kernels [2]. Such information is used to guide StarPU schedulers’ decisions when
delegating tasks to available workers. StarPU has thus been extended to gener-
ate at the same time a (XML) SimGrid description of the platform, which can
later be used for simulation purposes. It is important to understand that only
the calibration, which is meant to be run once and for all on the target system
before conducting any performance investigation, is used in the SimGrid simula-
tion and that it is not linked to the application being studied. The only condition
is that the application can use only computation kernels that have been mea-
sured, of course. Such a clear separation allowed all the simulations presented
in this paper to be performed on personal commodity laptops. This separation
also allows to simulate machines we don’t have access to, knowing merely their
characteristics (i.e., computation kernel runtimes and memory bandwidth).

To study the validity of our models, we used the systems described in Ta-
ble 1. These NVIDIA GPUs have distinct characteristics and belong to different



Modeling and Simulation of a Dynamic Task-Based Runtime System 55

Table 2. Typical duration of runtime operations

Transfer queue GPU memory GPU memory Pinned RAM
Operation management allocation deallocation allocation

(cudaMalloc) (cudaFree) (cudaHostAlloc)
Time 10µs 175µs 125µs 650µs/MB

generations, which intends to demonstrate the validity of our approach on a
range of diverse machines. Regarding applications, we decided to focus on two
common dense linear algebra kernels: cholesky and LU factorization. Regard-
ing task granularity, we fixed a relatively large block size (960 × 960) as it is
representative of what is typically used to achieve good performances. In our ex-
periments, CPUs were only controlling the execution and scheduling of the tasks
while GPUs had the roles of workers, meaning that whole computation was done
entirely on multiple GPUs. We focused on this kind of scenario as GPUs have
stable performance and provide a significant fraction of computational power in
dense linear algebra. We also investigated situations involving both CPUs and
GPUs a the same time. Although the initial results were excellent, we could not
include them in this article due to lack of room and decided to instead present
in detail the specifics of GPU modeling.

This whole work was done in the spirit of open science and reproducible re-
search. Both StarPU and Simgrid software are free software available online. All
experiment results presented in this paper are publicly available on figshare [13].
Supplementary data, which is not presented in this paper due to space limita-
tion, are also available at the same location along with all the scripts, raw data
files and traces which allow to regenerate this document.

Finally, assessing the impact of our various modeling attempts is quite diffi-
cult. Some of them are specifically linked to the modeling of the StarPU runtime,
while others are more linked to the modeling of communications or to the com-
putation variability. Obtaining a good predictive power is the combination of
a series of improvements. Hence, comparing different runtime modeling options
with a native execution while having a poor modeling of communications and
computations would not be very meaningful. So instead, we evaluate our differ-
ent runtime modeling options while using the best options for communication
and computation modeling. Likewise, when we evaluate various communication
modeling options, we always use the best modeling option of runtime and com-
putations, which allows us to evaluate how much accuracy we may lose by over-
looking this particular aspect.

5 Modeling Runtime System

Since StarPU is dynamic, inaccurate emulation of the control part would pro-
duce different scheduling decisions and would damage prediction of the overall
execution time. We show how, in some cases and if not treated correctly, this
can produce misleading results, and present how these issues were eliminated.



56 L. Stanisic et al.

Conan Cholesky Attila LU

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
runtime modeling)
SimGrid (smart)

Native

Fig. 1. Illustrating the influence of modeling runtime. Careless modeling of runtime
may be perfectly harmless in some cases, it turns out to be misleading in others.

As we already mentioned, process synchronizations, memory allocations of
CPU or GPU, submission of data transfer requests are all faked in simulation
mode, whereas such operations in native execution do take time and have an im-
pact on the overall performance. Several delays were included in the simulation
to account for their overhead (Table 2 depicts typical duration of such opera-
tions). Another (probably the most) influential parameter for accurate modeling
of runtime proved to be the size of GPU memory. Such hardware limits force the
scheduler to swap data back and forth between the CPUs and GPUs. These data
movements saturate the PCI bus, producing a tremendous impact on overall per-
formance. It is thus critical to keep track of the amount of memory allocated
by StarPU during the simulation to make sure the scheduler will behave in the
same way for both real native executions and simulations.

Figure 1 illustrates the importance of taking into account the runtime pa-
rameters described above. Each curve depicts GFlop/s rate of experiments rep-
resenting 90 different matrix dimensions (matrix dimension 80,000 corresponds
to ≈25GB). Solid line Native shows the execution of StarPU on the native ma-
chine, while the other two are the results of the simulation: naive for execution
without any runtime adjustments and smart with all of them included. The left
plot depicts a situation where all these optimizations have very little influence
as both naive and smart lines are almost overlapping with the native line. On
the other hand, for some other machines and applications (plot on the right),
having a precise modeling of runtime is critical as otherwise, simulation may
highly overestimate the performance for the larger matrix size. Nonetheless, we
remind that the excellent predictions achieved in these examples are also the
result of the careful modeling of communications and computations, which we
will present in the next Sections.

6 Modeling Communication in Hybrid Systems

Due to the relatively low bandwidth of the PCI bus, applications running on
hybrid platforms often spend a significant fraction of the total time transferring
data back and forth between the main RAM and the GPUs. Modeling com-
munication between computing resources is thus of primary importance. As a



Modeling and Simulation of a Dynamic Task-Based Runtime System 57

CPU

GPU2

GPU1

GPU0

(a) Crude modeling

CPU

GPU2

GPU1

GPU0

(b) More elaborated modeling

Fig. 2. Communication and topology modeling alternatives. In the crude modeling, a
single link is used and communications do not interfere with each others. The more
elaborated modeling allows to account for both the heterogeneity of communications
and the global bandwidth limitation imposed by the PCI bus.

first approximation (see Figure 2(a)), the transfer time between resources could
be modeled as a single link with a latency and a transfer rate corresponding
to typical characteristics of the PCI bus. However, such modeling does not ac-
count for many architectural aspects. First, the bandwidth between CPU and
GPU is asymmetrical. Second, communication characteristics are not uniform
among all pairs of CPUs and GPUs, as it depends on the chipset architecture.
We decided to account for it by using a dedicated uplink and a downlink with
different characteristics for each pair of resources (see Figure 2(b)). Furthermore,
any communication between two resources has to go through a common shared
link (in bold), which represent the maximum capacity of the PCI bus. Modeling
contention in such a way is however insufficient as depending on resources in-
volved in a communication, data transfers may be serialized or not. For example,
although most CUDA transfers are serialized whenever they involve the same
resource, on some systems it is possible to transfer both from GPU0 to GPU1

and from GPU1 to GPU0 at the same time.

QuadroFX5800 TeslaC2050

TeslaM2075 K20
0

1000

2000

3000

0

1000

2000

3000

0 100 200 0 100 200
LD(pitch) parameter [KB] 

T
im

e 
[m

s]

0

250

500

750

20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s

Experimental
Condition

SimGrid (naive
network modeling)
SimGrid (heterogeneous
network but no pitch)
SimGrid (smart)

Native

Fig. 3. Transfer time of 3,600 KB using
cudaMemcpy2D depending on the pitch
of the matrix

Fig. 4. Performance of the LU application
on hannibal (QuadroFX5800 GPUs) using
different modeling assumptions



58 L. Stanisic et al.

Additionally, to move chunks of matrices between resources, StarPU relies on
the cudaMemcpy2D function. First, the performance of this function is not exactly
the same as the one of cudaMemcpy, which was used in the original calibration
process. Even more importantly, it turns out that the pitch (i.e., the stride of the
original matrices) can have a significant impact on transfer time on some GPUs
(see Figure 3) whereas it can be relatively safely ignored on others. Therefore,
communication time is modeled as a piece-wise linear function of data payload
and whose slope and intercept depend on the pitch of the matrix.

Again, for a given application and a given target architecture, it may not
be necessary to take care of all such details to obtain a good prediction. For
example, as illustrated on Figure 4, a naive network modeling such as the one
on Figure 2(a) proved excellent predictions when matrix dimension is smaller
than 40,000. Beyond such size, a more precise modeling of the network (as in
Figure 2(b)) is necessary. Beyond 66,240, the behavior of cudaMemcpy2D changes
drastically and has to be correctly modeled to obtain a good prediction of the
performances.

7 Modeling Computation

When running simulation, the actual result of the application is of no interest.
Hence the execution of each kernel is replaced by a virtual delay accounting
for its duration. In our initial approach, we used the mean duration of each
computation kernel, which was benchmarked by StarPU during the calibration
phase. Although this was producing satisfactory results, using a fixed value leads
to a deterministic schedule in simulation. This may bias the simulation and
does not allow to verify the ability of the scheduling algorithms to handle the
variability of the resources.

Therefore, we modified StarPU to capture the timing of every computation
during a Native execution. Such collection of data can then be used to analyze
the computation time distribution which can be approximated using irregular
histograms [10], as regular ones (with uniform bin-width) revealed very inefficient
at representing details of distributions where a small but non-negligible fraction

hannibal: 3 QuadroFX5800 attila: 3 TeslaC2050 conan: 3 TeslaM2075 frogkepler: 2 K20

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

C
holesky

LU

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

Checking predictive capability of the simulation

Fig. 5. Checking predictive capability of our simulator in a wide range of settings



Modeling and Simulation of a Dynamic Task-Based Runtime System 59

of values are an order of magnitude larger than the vast majority of measure-
ments. Such approximation can then be used in the simulation by generating
pseudo-random variables from the histograms.

Although this technique allows to obtain different simulated schedules by
changing the seed of the simulation, no significant gain in term of accuracy could
be observed for the applications and machines we used so far. The makespan is
always very similar in both cases (mean duration vs. random duration following
an approximation of the original distribution). Nonetheless, we strongly believe
that in some more complex use cases, e.g., sparse linear algebra algorithms, using
fine models like histograms may provide more precise predictions.

8 Prediction Accuracy in a Wide Range of Settings

As we explained in the previous section, a careless modeling of any aspect of
runtime, communications or computations, can lead to gross inaccuracies for
particular combinations of machines and applications. We show in this section
that we managed to cover the most important issues, which enables us to ob-
tain excellent prediction of performances. Figure 5 depicts the performance as a
function of the size of the matrix for the two applications LU and Cholesky and
for the four different hybrid systems we described in Table 1. For most combi-
nations, the prediction obtained with SimGrid is very accurate. The only two
scenarios where the error is larger than a few percents is for the LU kernel on
conan and frogkepler when our prediction slightly overestimates the (bad) per-
formances for large matrices. The trend is however perfectly predicted as well as
the size beyond which performance drops.

A closer look at traces (see Figure 6) allows to see that this approach does not
only provide a good estimation of the total runtime but also offers an accurate
simulation of the scheduling details. Since even with the same parameters, native
traces differ from an execution to another, a point-to-point comparison with a

Fig. 6. Comparing execution traces (native execution on top vs. simulated execution at
the bottom) of the Cholesky application with a 72, 000× 72, 000 matrix on the Conan
machine. Traces are not perfectly identical since the execution is not deterministic but
the behavior of the simulation is representative of the real execution.



60 L. Stanisic et al.

DMDA DMDAR DMDAS

0

500

1000

1500

20K 40K 60K 80K 20K 40K 60K 80K 20K 40K 60K 80K
Matrix dimension

G
F

lo
p/

s Experimental
Condition

SimGrid

Native

Fig. 7. Cholesky on Attila: studying the impact of different schedulers

simulation trace would not make sense. However, we can check that both traces
are indeed extremely close, which allows to study and understand the potential
weaknesses of a scheduler.

For example, the reason for the performance drop observed on Figure 5 and
which is more and more critical with newer GPUs can be explained by the
need to move data back and forth between the GPUs and the main memory
whenever matrix size exceeds the memory size of the GPUs. The scheduler we
used in Figure 5 is the DMDA (Deque Model Data Aware) scheduler. Although
it schedules tasks where their termination time (including data transfer time)
will be minimal, it does not take care of the number of available data buffers on
each GPU. Such greedy strategy may be harmful as GPU may be overloaded
with work and forced to evict some data, as it cannot handle the whole matrix.
Two other strategies DMDAR and DMDAS were designed to tend to execute
tasks whose data is already on the GPU, before tasks whose data is not yet
available. Therefore, we decided to check whether these two other schedulers
could stabilize performances at the peak or not. To this end, we first ran the
corresponding simulations and obtained a positive answer (Figure 7). Later,
when the target system became accessible again, we confirmed these results by
running the same experiments and as can be seen on Figure 7, our simulations
were again perfectly accurate.

It is important to mention that the time to run each simulation typically takes
few seconds compared to sometimes several minutes for a real experiment. Com-
pared to architecture-level simulators (see Section 2) whose average slowdown
of simulations versus native execution is of the order of magnitude of several
dozens of thousands, our coarse-grain simulation allows to obtain a speedup of
ten to a hundred depending on the workload and on the speed of the machine.
Furthermore, since the target system is not required anymore, it is easy to run
series of simulations in parallel.

9 Conclusion and Future Work

In this article, we have explained how to model and simulate using SimGrid
a task-based runtime system on a hybrid multi-core architecture comprising



Modeling and Simulation of a Dynamic Task-Based Runtime System 61

several GPUs. Unlike fine-grain GPU simulators that have been proposed in
the past and which focus on architectural details of GPUs, our coarse-grain
approach allows to accurately predict the actual running time and to perform
extremely quickly extensive simulation campaigns to study various alternatives.
We demonstrated the precision of our simulations using the critical method, i.e.,
by testing our models and by conducting as much experiments as possible in
a large variety of settings (two standard dense linear algebra applications, four
different generations of GPUs, several scheduling algorithms) until we found a
situation where our simulation failed at producing a good prediction, in which
case we fixed our modeling. Such a tool is extremely interesting for both StarPU
developers and users as it allows (i) to easily and accurately evaluate the im-
pact of various parameters or scheduling alternatives (ii) to tune and debug
applications on a commodity laptop (instead of requiring a dedicated access to
a high-end machine) in a reproducible way (iii) to obtain reliable comparison
of performance estimations that may allow to detect problems with some real
experiments(perturbation, configuration issue, etc.).

Now that we have proven the efficiency of this approach on dense linear alge-
bra kernels, we intend to continue with this work in three directions. First, we
plan to explore using both CPUs and GPUs as computation units. While initial
investigation on classical hybrid multi-core computers showed perfect results, we
expect that dealing with large NUMA machines comprising hundreds of cores
will be much harder. Second, StarPU was recently extended to exploit clusters
of hybrid machines by relying on MPI [1]. Since SimGrid’s ability to accurately
simulate MPI applications has already been demonstrated [6], combining both
works should allow to obtain good performances predictions of complex applica-
tions on large-scale high-end HPC infrastructures. Third, many numerical appli-
cations have been recently ported on top of StarPU, including dense (MAGMA
and PLASMA) and sparse linear algebra (QR-MUMPS), and FMM methods.
Such applications are less regular and are thus likely to be more challenging
to model. However, a reliable performance evaluation methodology would bring
considerable insights to the developers.

Acknowledgments. This work is partially supported by the SONGS ANR
project (11-ANR-INFRA-13). We warmly thank Paul Renaud-Goud for his help
with the initial investigation of validity and Emmanuel Agullo for motivating
this study and providing insights on its usefulness.

References

1. Augonnet, C., Aumage, O., Furmento, N., Namyst, R., Thibault, S.: StarPU-MPI:
Task Programming over Clusters of Machines Enhanced with Accelerators. In:
Träff, J.L., Benkner, S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp.
298–299. Springer, Heidelberg (2012)

2. Augonnet, C., Thibault, S., Namyst, R.: Automatic Calibration of Performance
Models on Heterogeneous Multicore Architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009
Workshops. LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010)



62 L. Stanisic et al.

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency
and Computation: Practice and Experience 23, 187–198 (2011)

4. Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ortí, E.S.:
An Extension of the StarSs Programming Model for Platforms with Multiple GPUs.
In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851–
862. Springer, Heidelberg (2009)

5. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: ISPASS, pp. 163–174 (2009)

6. Bedaride, P., Degomme, A., Genaud, S., Legrand, A., Markomanolis, G., Quinson,
M., Stillwell, L.M., Suter, F., Videau, B.: Toward better simulation of mpi appli-
cations on ethernet/tcp networks. In: 4th International Workshop on Performance
Modeling, Benchmarking and Simulation of HPC Systems (PMBS) (November
2013)

7. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra, J.:
DAGuE: A Generic Distributed DAG Engine for High Performance Computing.
In: IEEE International Symposium on Parallel and Distributed Processing, pp.
1151–1158. IEEE Computer Society (2011)

8. Casanova, H., Legrand, A., Quinson, M.: SimGrid: A Generic Framework for Large-
Scale Distributed Experiments. In: Proceedings of the 10th IEEE International
Conference on Computer Modeling and Simulation (UKSim) (April 2008)

9. Collange, S., Daumas, M., Defour, D., Parello, D.: Barra: A Parallel Functional
Simulator for GPGPU. In: IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication, pp. 351–360 (2010)

10. Denby, L., Mallows, C.: Variations on the histogram. Journal of Computational
and Graphical Statistics 18(1), 21–31 (2009)

11. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: A Simulation
Framework for CPU-GPU Computing. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT 2012,
pp. 335–344. ACM, New York (2012)

12. Velho, P., Schnorr, L., Casanova, H., Legrand, A.: On the validity of flow-level TCP
network models for grid and cloud simulations. ACM Transactions on Modeling
and Computer Simulation 23(3) (October 2013)

13. Companion of the StarPU+SimGrid article. Hosted on Figshare (2014),
http://dx.doi.org/10.6084/m9.figshare.928095, online version of this article
with access to the experimental data and scripts (in the org source)

http://dx.doi.org/10.6084/m9.figshare.928095

	Modeling and Simulation of a Dynamic Task-Based Runtime System for Heterogeneous Multi-core Architectures 

	1 Introduction
	2 Related Work
	3 Porting StarPU over SimGrid
	4 Experimental Setting
	5 Modeling Runtime System
	6 Modeling Communication in Hybrid Systems
	7 Modeling Computation
	8 Prediction Accuracy in a Wide Range of Settings
	9 Conclusion and Future Work
	References




