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Abstract. While standard locking libraries are common and easy to use, dele-
gation algorithms that offload work to a single thread can achieve better perfor-
mance in multithreaded applications, but are hard to use without adequate library
support. This paper presents an interface for delegation locks together with li-
braries for C and C++ that make it easy to use queue delegation locking, a ver-
satile high-performance delegation algorithm. We show examples of using these
libraries, discuss the porting effort needed to take full advantage of delegation
locking in applications designed with standard locking in mind, and the improved
performance that this achieves.

1 Introduction

In many programming languages, locking is still the dominant synchronization mech-
anism that multithreaded programs use to protect their critical sections. Especially in
systems programming languages, lock-based multicore programming is supported by
libraries which are readily available and easy to use. Recently, particularly in programs
manipulating shared data structures protected by a single lock, researchers have inves-
tigated ways of offloading critical sections to a single processor core and letting them
be executed by the same thread [3, 4, 7, 9–11]. Such delegation algorithms, which ef-
fectively bring the operations of critical sections to the data instead of bringing data
to where the operations execute, have significant performance advantages on modern
multicores and are often superior to implementing concurrent data structures either by
fine-grained locking or in lock-free ways [3, 4]. Alas, this style of multicore program-
ming is very hard to employ without adequate library support.

This paper presents an interface for delegation locks and two libraries for C and C++
that make a versatile high-performance delegation algorithm, called queue delegation
locking (Sect. 2), easy to use. More specifically, we describe the most important aspects
of the programming interfaces of our libraries (Sect. 3 and 4), and our experiences in
porting code of significant size (≈ 16 300 LOC) to using this library both in effort
required as well as in performance improvements that this brought (Sect. 5). To the best
of our knowledge, our libraries1 are the first to provide portable support for delegation.
By portable we mean that they only require the presence of a compiler that adheres to
the C11/C++11 standards. In addition, we discuss issues that are involved when one
wants to modify existing multithreaded programs that have been written with standard
locking in mind to take full advantage of delegation locking (Sect. 7).
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2 Queue Delegation Locking

The delegation algorithm we use, called Queue Delegation (QD) locking [6], is a new
efficient delegation algorithm whose idea is simple. When, e.g., a shared data structure
protected by a single lock is contended, the threads do not wait for the lock to be released.
Instead, they try to delegate their operation to the thread currently holding the lock (called
the helper). If the operation does not read from the shared structure, successful delegation
allows a thread to immediately continue execution, possibly delegating more operations
or doing other work. The helper thread is responsible for eventually executing delegated
operations in the order they arrived to ensure linearizability. This implies that reading
from the shared data structure needs to wait for all prior operations so that no outdated
data is ever read. Most kinds of critical sections can be delegated with this scheme, and
waiting is only needed when effects of a critical section need to be visible.

QD locking is realized by placing delegated operations in a delegation queue. The
operations are stored in order of their arrival, and thus their linearization point is the suc-
cessful enqueueing into the delegation queue. However, the enqueueing can fail when
the lock holder is not accepting any more operations. This happens when the queue is
already full or when the helper already executed all operations it found and is about to
release the lock. If delegation fails, the thread has to retry until it succeeds to either take
the lock itself or delegate its operation to a new lock holder.

The delegation queue is implemented as a fixed size buffer which stores operations
together with arbitrarily sized parameters, e.g. some data to insert. This avoids the allo-
cation of additional memory to pass data for each operation. An atomically incremented
offset is used to access the buffer and automatically close the queue when it is full. If the
required data exceeds the remaining space in the queue, the queue still closes, but the
delegation has to be retried. A standard mutual exclusion (mutex) lock is used only to
determine the helper thread to which operations are delegated.2 Our libraries also come
with a lock which allows multiple readers in parallel. We base our multiple readers QD
(MRQD) lock on the mutex lock agnostic write-preference readers-writer lock algorithm
of Calciu et al. [2]. As a reader indicator we use reader groups [5], which essentially is
a counter that is distributed over many cache lines to avoid false cache invalidations.

The QD lock is accessed using a delegate function. When needed, e.g. for reading
data, futures can be used to wait until the data is available. Futures can be as simple
as having the delegated operation setting a flag upon completion or writing data to a
predetermined location. MRQD locks come with an additional trade-off: For consis-
tency, readers have to wait immediately for previously delegated operations before they
can all access in parallel. By the time the read operation is performed it is guaranteed
that any previously delegated operation on the same QD lock has finished. Read-only
critical sections using the rlock and runlock functions work exactly as in traditional
readers-writer locks. To ease porting of existing code we also provide lock and unlock
on QD and MRQD locks, which are simply forwarded to the underlying mutex lock.
For more information on the queue delegation algorithm, e.g. hierarchical NUMA vari-
ants or susceptibility to starvation, see a companion paper [6] describing QD locking in
detail.

2 Our libraries use a test-and-test-and-set lock for this; for the reasoning of this choice refer
to [6].
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3 C Library

We will present the C API of our QD locking library through examples. Let us first con-
sider the implementation of a shared integer (ShInt) that can be accessed concurrently
by several threads. All operations on ShInts are supposed to be atomic. A ShInt can be
represented with the following C structure which employs an MRQD lock to coordinate
concurrent accesses to it.

1 typedef struct { MRQDLock lock; int value; } ShInt;

Now consider a mult operation that multiplies a ShInt with an integer value and
stores the result back on the ShInt. Since MRQD locks support the traditional locking
operations lock and unlock, the mult function could be implemented like this:

1 void mult1(ShInt* v1, int v2) {
2 LL_lock(&v1->lock); v1->value = v1->value * v2; LL_unlock(&v1->lock);
3 }

This implementation is easy to understand, but it may not be very efficient when a
ShInt is contented on a multicore machine. One reason is that every thread has to wait
for the thread currently holding the lock to release it before its execution can proceed.
With thread preemption, the OS can force the lock holding thread to be suspended for
an arbitrary amount of time. Since mult does not return any value, we could instead
delegate the responsibility of executing the critical section to another thread that has
already acquired the lock. This is easy to do using the LL_delegate function from the
QD locking library:

1 typedef struct { ShInt* v1; int v2; } MultMsg;
2 void mult_cs(unsigned int sz, void* msgP) {
3 MultMsg* msg = (MultMsg*)msgP;
4 msg->v1->value = msg->v1->value * msg->v2;
5 }
6 void mult2(ShInt* v1, int v2) {
7 MultMsg msg = {.v1 = v1, .v2 = v2};
8 LL_delegate (&v1->lock, mult_cs, sizeof(msg), &msg);
9 }

The LL_delegate call (line 8) either executes the mult_cs function in the current thread
while holding the lock or delegates the responsibility to execute it to the current lock
holder. As long as all accesses to the ShInt are done by threads that have acquired the
lock, mult1 and mult2 are equivalent in the sense that it is impossible to detect which
one is used. The parameters to LL_delegate are the lock, the function with the code of
the critical section, the message size and a pointer to the message data. The message
data and the message size will be passed to the delegated function when it is executed.
The programmer cannot rely on that the mult_cs function is executed by the current
thread or that the message data is not copied to another location. Many threads can
delegate critical sections to the same helper, which has the performance advantage that
the manipulated data can stay in the same private cache while it is being manipulated.

Extending the example, suppose we now also want the result of the multiplication as
a return value. We can create the function mult_res for that purpose:
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1 typedef struct { ShInt* v1; int v2; int* retval; } MultResMsg;
2 void mult_res_cs(unsigned int sz, void* msgP) {
3 MultResMsg* msg = (MultResMsg *)msgP;
4 msg->v1->value = msg->v1->value * msg->v2;
5 *msg->retval = msg->v1->value;
6 }
7 int mult_res(ShInt* v1, int v2) {
8 int res;
9 MultResMsg msg = {.v1 = v1, .v2 = v2, .retval = &res};

10 LL_delegate_wait (&v1->lock, mult_res_cs , sizeof(msg), &msg);
11 return res;
12 }

The delegated function writes back the result to the location pointed to by retval in
MultResMsg (line 5). Here we are using a variant of delegate called LL_delegate_wait
(line 10), which waits for the delegated function’s execution before it returns. Unsur-
prisingly, LL_delegate_wait also guarantees that the lock is held by the thread that ex-
ecutes the delegated function. Instead of returning the actual value from mult_res one
could return at this point a future that will contain the result when it is ready. However,
in a low-level language such as C, constructing this future is something that needs to
be done by the program itself. In the next section we will see how the situation changes
in C++.

The QD locking library also supports read-only critical sections:

1 int read(ShInt* v) {
2 int res;
3 LL_rlock(&v->lock); res = v->value; LL_runlock(&v->lock);
4 return res;
5 }

Using read-only critical sections is a powerful way to support multiple parallel read
operations. Mixing read-only critical sections with delegated critical sections can give
excellent performance. Since threads can delegate critical sections without waiting for
the actual execution they can continue and issue a read-only critical section. Read-
critical sections are thus more likely to bulk up so that more can execute in parallel than
if a readers-writer lock without delegation was used.

We have almost gone through all functions in the locking library for C. The only
ones left are the LL_delegate_or_lock family of functions. These provide the same
functionality as LL_delegate but avoid the overhead that LL_delegate has in creating a
separate buffer for copying the message for the delegated critical section to the current
lock holder. Creating this buffer can be particularly expensive when the size of the buffer
is not known at compile time and needs to be allocated dynamically. Dynamic memory
allocation is expensive and can be a scalability problem on multicores. The code at the
top of the next page shows how this family of functions is used. The enqueue function is
for a concurrent queue. The function enq is not shown for lack of space but we can as-
sume that it is a non-thread-safe enqueue function which copies the data into the queue
data structure. The LL_delegate_or_lock function (line 5) attempts to get a message
buffer of the specified size for a critical section. If LL_delegate_or_lock succeeds a
buffer address will be returned, otherwise NULL is returned and the lock is acquired.
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1 void enqueue_cs(unsigned int sz, void* m) {
2 enq(*((Queue**)m), sz - sizeof(Queue*), &((char*)m)[sizeof(Queue*)]);
3 }
4 void enqueue(Queue* q, int dSize, void* d) {
5 void* buff = LL_delegate_or_lock (q->lock, dSize + sizeof(Queue*));
6 if (buff == NULL) {
7 enq(q, dSize, d);
8 LL_delegate_unlock (lock);
9 } else {

10 memcpy(buff, &q, sizeof(Queue*));
11 memcpy(&((char*)buff)[sizeof(Queue*)], d, dSize);
12 LL_close_delegate_buffer (q->lock, buff, enqueue_cs);
13 }
14 }

The function LL_delegate_unlock (line 8) is used to unlock the lock when no mes-
sage buffer was acquired. LL_close_delegate_buffer (line 12) will indicate to the lock
holder that the message buffer is fully written. After the LL_close_delegate_buffer
call, the delegated function (provided as parameter) can be executed with the message
buffer given as parameter.

4 C++ Library

While the C library performs very well, its interface restrictions mean that a C++ pro-
grammer has to write many function wrappers so that operations could be delegated. For
this reason, we also developed a C++11 implementation of QD locking, which makes
delegation in C++ code easier. It provides the same variants of QD locks as the C li-
brary, namely qdlock and mrqdlock. For the user, it provides two delegation interfaces:
delegate_n, which detaches the execution entirely, and delegate_f, which returns a
future that is bound to the critical section. The initial example in C could look similar
to this in C++:

1 mrqdlock lock;
2 void mult_cs(int* a, int b) { *a = *a * b; }
3 void mult(int* v1, int v2) {
4 lock.lock(); mult_cs(v1, v2); lock.unlock();
5 }

From the parameters to the critical section, it is clear what data needs to be transferred.
As the type of each object is known at compile time, the compiler can produce code to
forward the data to the critical section.

3 void mult(int* v1, int v2) {
4 lock.delegate_n(&mult_cs, v1, v2);
5 }

Furthermore, with C++11 lambda functions it is not even necessary to have a separate
named function, like mult_cs above, for the critical section.
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3 void mult(int* v1, int v2) {
4 lock.delegate_n([](int* a, int b) { *a = *a * b; }, v1, v2);
5 }

Even with these simple examples one can see the flexibility of the library. Using
functors – which lambda functions are – or normal function pointers, the library takes
them together with their parameters and passes them to the QD lock, serializing each
element as needed. However, this flexibility comes at a price. To determine the types
of the parameters, a function is constructed by the compiler, which can deserialize the
parameters and passes them to the function or functor specified by the user. This ad-
ditional function pointer needs to be passed to the lock together with the parameters,
resulting in a one word overhead when compared to the C version of the library. This
can be avoided only for non-overloaded functions by passing the function address as a
template parameter to the library code.

4 lock.delegate_n<void (*)(int*, int), &mult_cs>(v1, v2);

Due to language restrictions, we need to specify the function signature as well, so that
the compiler can type-check it later. For convenience, we provide a macro which inserts
the function signature automatically.

4 lock.DELEGATE_N(&mult_cs, v1, v2);

To return values from critical sections or wait for their actual execution, we use
futures. This allows the programmer to execute an arbitrary amount of code between
issuing a critical section and the point where the return value or side effect of it needs
to be visible to the system.

1 int read(int* shared) {
2 auto future = lock.delegate_f ([=shared]() -> int { return *shared; });
3 return future.get();
4 }
5 void add_two_and_wait_for_first (int* shared) {
6 auto future = lock.delegate_f ([=shared]() -> void { *shared += 1; });
7 lock.delegate_n ([=shared]() -> void { *shared += 1; });
8 future.wait();
9 }

10 void add_two_and_block_both (int* shared) {
11 auto future1 = lock.delegate_f ([=shared]() -> void { *shared += 1; });
12 auto future2 = lock.delegate_f ([=shared]() -> void { *shared += 1; });
13 future2.wait();
14 }

In the last example the waiting for the second future is sufficient, as the order of delega-
tions is preserved. If a future is destructed, the behaviour depends on the implementation
used, which is currently std::future. To avoid ambiguity it is best to always store the
return value of delegate_f and explicitly decide when the future needs to be invoked.

For a more complicated example, we will use std::map in a thread-safe way. While
the example does not actually use concurrency, the code could be plugged into a con-
current program. It first inserts two values, then reads one back using a delegation, and
finally reads the other value back using rlock. Remember that rlock has to wait for the
completion of prior delegated sections, which means the future.get() call at the end
will always immediately return the value.
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1 #include<map>
2 #include "qd.hpp"
3 int main() {
4 std::map<int, double> map;
5 mrqdlock lock;
6 lock.delegate_n ([&map]() { map.insert(std::make_pair(21, 2.56)); });
7 lock.delegate_n ([&map]() { map.insert(std::make_pair(42, 3.14)); });
8 auto future = lock.delegate_f ([&map](int key) {return map[key];}, 42);
9 lock.rlock(); double r2 = map[21]; lock.runlock();

10 double r1 = future.get();
11 }

5 Queue Delegation Locking for the Erlang Term Storage

In this section we will discuss the applicability of delegation locking to protect a shared
key-value store, namely the Erlang Term Storage (ETS). ETS is a heavily used part of
the Erlang programming language and is implemented in C for efficiency reasons. Er-
lang programs can use ETS as shared memory between threads (Erlang processes). Be-
ing shared memory, ETS has become a scalability concern on multicore machines [5].
Because of the complexity of ETS, it is difficult to apply efficient fine grained locking
or lock-free techniques. This is especially true for the ordered_set ETS table type that
is implemented as an AVL tree. Such ETS tables are currently protected by a single
readers-writer lock. We will describe the steps we went through when porting the ETS
code to use an MRQD lock instead of a readers-writer lock and the performance we got.

5.1 Porting

We have chosen to focus on the ETS operations insert, delete and lookup when port-
ing. The first two operations are interesting since they do not have any return value
and can thus be delegated to the current lock holder without any need to wait for their
execution. The lookup operation is interesting because it can help us show how well
QD locking works together with the multiple-readers extension. We divided the porting
work into three steps of increasing difficulty, where each step produced working code
that we could benchmark to measure the resulting performance. We started from an
ETS code base of eight files with a total of 16 277 lines of code.

Step 1, delegate and wait: In this step we just delegate the original critical section and
wait for its actual execution with the LL_delegate_wait function from the C library. In
most situations this works without any semantic change of the original code. However,
if thread-local variables are accessed inside the critical section, as was the case in ETS,
care must be taken so the right thread-local variable is accessed. In ETS, the thread-local
variable access was subtle since it was done in the read-unlock call of a readers-writer
lock. To fix this issue we simply moved the read-unlock call to after the issuing of
the critical section. Another way to deal with this problem would have been to pass a
reference to the thread-local variable to the delegated function. In total this step required
changing about 400 lines of code (60 of which were changes and 340 were additions,
many to integrate with the existing locking structure).
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Step 2, delegate without wait: To delegate without waiting for the actual execution
of the critical section required more changes. The original code did some checking of
parameters inside the critical section that could result in a return value indicating an
error. These checks did not need to be done inside the critical section and could simply
be lifted out. The parameters to the insert and delete functions are allocated on the
heap of the issuing thread (process in Erlang terminology) and can be deallocated as
soon as the functions have returned. Therefore it is not safe to send references to these
values to delegated critical sections. Instead, we changed the original code to allocate
a clone of the value and send a reference to the clone. For the insert case, the clone
is in a form that can be inserted directly into the table data structure. The effort of
allocating a clone is therefore not wasted since a clone would need to be created anyway
to store the object. Furthermore, since the cloning is done outside the critical section,
this modification can also decrease the length of the critical section. However, if the
object being inserted is replacing an existing larger object, the original code had less
memory management cost because it would just overwrite the existing object. For the
delete operation, both the allocation of the cloned key and its subsequent freeing incurs
an overhead compared to the original code. This step required changes in about 400
more lines of code (760 if one starts counting the differences from the original code).

Step 3, delegate and copy directly into the QD queue: In this step we got rid of the
need to do more memory management than the original code by copying all parameters
needed in the critical section directly into the queue buffer of the QD lock. This also
had the benefit of improving the cache locality for the helper thread that is executing
the critical sections. Because all needed data for the critical sections is stored in a con-
tinuous array, data for several operations can potentially be read with a single cache
miss. The only additional porting effort required in this step was the serialization of the
key and the object to a form that can be stored directly into the QD queue. This step
required changing only about 100 more lines of code.

5.2 Performance Evaluation

We used ets_bench, a benchmark from BenchErl [1] to evaluate the performance and
scalability of ETS tables of type ordered_set after applying each porting step described
in the previous section. A detailed description of ets_bench can be found in a paper
about the scalability of ETS [5], but basically it measures the performance of ETS under
variable contention levels and distributions of operations. We ran the benchmark on an
Intel(R) Xeon(R) E5-4650 (2.70GHz) chip with eight cores and two hardware threads
per core (i.e., a total of 16 hardware threads running on eight cores). The machine ran
Debian Linux 3.10-0.bpo.2-amd64 and had 128GB of RAM. All code was compiled
using GCC version 4.7.2 with -O3. We pinned the software threads to logical processors
so that the first eight software threads in the graphs were pinned to separate cores. Each
configuration was run three times and we report the average run time. The minimum
and maximum are shown as bars when varying enough to be visible.

The update only scenario presented in Fig. 1(a) shows the run time of N threads
(Erlang processes) performing 222/N operations each. The inserted objects are Erlang
tuples with an integer key randomly selected from the range [0, 216]. The operations are
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Fig. 1. Scalability Benchmarks for ETS. Dataset size is 216.
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Fig. 2. Benchmarks varying the size of data. Using eight threads for all measurements.

insert or delete with equal probability. The line labeled Default represents the default
readers-writer lock used by ETS. It is optimized for frequent reads and the uncontended
case. Therefore, it does not scale well with parallel writers. We also include the state-of-
the-art readers-writer lock DR-MCS presented by Calciu et al. [2]. The MCS lock [8]
that DR-MCS uses to synchronize writers is good at minimizing cache coherence traf-
fic in the lock hand over. However since MCS is a queue based lock, the thread that
executes critical sections is likely to alternate between the cores. This is causing a lot
of expensive cache coherence traffic inside the critical section which is one reason why
its performance is worse than all delegation based locks. CC-Synch [3] is included in
our comparison to show an alternative delegation locking mechanism that can be used
with the same interface as QD locking. MRQD-copy, which is corresponding to port-
ing step 3 in the previous section, performs best in all contended cases. MRQD-copy is
closely followed by MRQD-wait, CC-Synch (both step 1) and MRQD-malloc (step 2).
MRQD-wait, CC-Synch and MRQD-malloc are almost indistinguishable except for the
case with two threads. MRQD-malloc performs better in this case because of its ability
to continue directly after delegating work.

Figure 2(a) shows how the performance varies with the set size (key range) while
the thread count is fixed to eight. The figure shows that the performance advantage of
delegation based locks compared to DR-MCS is larger with smaller set sizes. This is
expected since with smaller set sizes, the length of the critical sections is smaller and
the helper thread can keep most data in the private cache while executing operations.
The larger slowdown is caused by running out of shared cache and hitting memory.
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Figure 2(b) shows performance with varied value size and thread count fixed to eight.
MRQD-malloc is least affected by the size of the value passed together with the key to
the insert operation. The reason is that MRQD-malloc clones the key and the value
before the critical section so that the size of the critical section stays largely unaffected
by the value size. MRQD-copy, which is the best performing variant for value sizes
up to a few cache lines, has to read the whole value from the queue inside the critical
section. In Fig. 2(b) we use the key range [0, 210] to make the effect of the value size
more visible.

In Fig. 1(b) we show the performance when 80% of the operations are lookups and
the rest are inserts and deletes with equal probability. Unsurprisingly, since they use
the same read synchronization algorithm, the order between MRQD-copy, MRQD-
malloc, MRQD-wait and DR-MCS is the same as in the update only scenario. With
99% lookup operations the difference between MRQD-copy, MRQD-malloc, MRQD-
wait and DR-MCS is very small, but the performance advantage of the four delegation
based algorithms gets larger and larger with more updates. Due to space limitations we
only show measurements for 80% lookups in this paper.

6 Related Synchronization Algorithms

QD locking comes from the same line as other delegation locking techniques such as
the detached contexts algorithm by Oyama et al. [9], the flat combining algorithm by
Hendler et al. [4], and the Synch algorithms by Fatourou and Kallimanis [3]. The com-
mon property of all these techniques is that a helper thread can execute critical sections
for other threads. Under contention this means that the same processor core can execute
many critical sections, one after the other, and thereby keep the protected data in the
same fast private cache. In the uncontended case the delegation locking algorithms be-
have like traditional locking algorithms, although most of them have a small overhead
for opening the delegation data structure.

The algorithm of Oyama et al. shares with QD locking the ability to continue a
thread’s execution immediately after delegation. However, unlike QD locking, under
high contention it will starve the helper thread. Furthermore, its need to allocate con-
texts for critical sections can easily become another bottleneck. While flat combining
has a very efficient handover of critical sections to the helper thread, it does not exe-
cute critical sections in arrival order, which means that threads have to block until their
delegated section is executed in order to maintain linearizability. The Synch algorithms
execute the critical sections in arrival order and have efficient handover of critical sec-
tions. To avoid the problem of starving helper threads, they allow the helper to stop
helping. In this case the thread owning the next delegated section becomes the new
helper, which means that all threads must wait until their section is executed as well.

In short, QD locking offers delegation without waiting, and does not starve helper
threads, which we have not found possible in other algorithms. This is achieved through
a preallocated queue buffer which enables both a fast handover and limiting the amount
of work a helper thread has to do. Experiments reported elsewhere [6] show that QD
locking performs better than other delegation algorithms at various contention levels.
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7 Discussion

Many delegation algorithms have been shown to outperform non-delegating locking
approaches, but compared to traditional locks the support for programming with dele-
gation has been somewhat limited so far. Code for using flat combining3 and the Synch
algorithms4 is available online, but significant work is required to use them in programs
other than the benchmarks these implementations were written for. Making use of del-
egation based locking thus requires a substantial investment from programmers. The
libraries presented in this paper aim to make it easier to use delegation locking, lower-
ing the entrance barrier and enabling more programs to take advantage of them. In fact
the APIs of our libraries can be used for other delegation locking schemes as well.

As has been illustrated in this paper, many types of critical sections can be ported
straightforwardly. However, some other types of critical sections cannot use delegation
algorithms. As an example, hand-over-hand locking interleaves lock and unlock calls,
resulting in partially overlapping critical sections, which cannot be delegated. This is
not a problem for many applications, as the most common use of locks allows critical
sections to be tranformed into subroutines.

For latency critical programs a complaint could be that the helper can get stuck ex-
ecuting critical sections for other threads. This is actually not a big problem as the
maximum amount of help that a thread does can be limited using a parameter to
the lock. Furthermore, if the critical section allows for delegating without waiting for
the actual execution, threads can continue where they would have needed to wait with
traditional locking. The ability to continue without waiting for the actual execution of a
critical section could even make QD locking an attractive alternative if otherwise only
non-blocking algorithms would be considered.

8 Future Work and Concluding Remarks

To ease the porting of large programs with many locks and critical sections, it would
be useful to have a tool that detects critical sections that can be used with delegation
locking. Such a tool would need to detect if the critical section can be factored into a
function or if it uses thread local variables. Additionally, the tool could detect implicit
return values from the critical sections and decide whether delegation without waiting
for the actual execution can be used or not.

More options for performance tuning in the libraries will be added in the future.
For example, a companion paper presents a hierarchical QD (HQD) lock variant for
NUMA systems [6]. On such systems, it has faster delegation and execution at the
cost of more often having to wait for delegate calls to succeed. This means that it is not
always better to use this variant on NUMA systems, but rather depends on the workload.
Another extension would be to make delegate wait passively instead of spinning. The
libraries also could incorporate other locking and delegation algorithms to facilitate
comparisons. For the C library it is already possible to use it to compare against a few
other locking algorithms, including DR-MCS and CC-Synch as used in this paper.

3 http://github.com/mit-carbon/Flat-Combining
4 https://code.google.com/p/sim-universal-construction/

http://github.com/mit-carbon/Flat-Combining
https://code.google.com/p/sim-universal-construction/
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All in all, there is room to improve the libraries, but also potential to apply them. For
writing new code, the idea to delegate operations is fairly intuitive, but when porting
from lock and unlock some effort is required to achieve optimal performance. Even
then, experiments in this and other papers show that delegation can improve perfor-
mance twofold and sometimes more. For many applications this may be enough incen-
tive to give QD locking a try, and the libraries presented here make it a lot easier to get
started.
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