On Interactions among Scheduling Policies:
Finding Efficient Queue Setup Using
High-Resolution Simulations

Dalibor Klusacek!:2 and Simon Téthl:2

L CESNET a.l.e., Zikova 4, Prague, Czech Republic
2 Faculty of Informatics, Masaryk University
Botanicka 68a, Brno, Czech Republic
{xklusac,toth}@fi.muni.cz

Abstract. Many studies in the past two decades focused on the prob-
lem of efficient job scheduling in HPC and Grid-like systems. While many
new scheduling algorithms have been proposed for systems with specific
requirements, mainstream resource management systems and schedulers
are still only using a limited set of scheduling policies. Production sys-
tems need to balance various policies that are set in place to satisfy both
the resource providers and users (or virtual organizations) in the system.
While many works address these separate policies, e.g., fairshare for fair
resource allocation, only few works try to address the interactions be-
tween these separate solutions. In this paper we describe how to approach
these interactions when developing site-specific policies. Notably, we de-
scribe how (priority) queues interact with scheduling algorithms, fair-
share and with anti-starvation mechanisms. Moreover, we present a case
study describing how an advanced simulation tool was used to find new
configuration for an actual resource manager deployed in the Czech Na-
tional Grid, significantly increasing its performance.

Keywords: Scheduling, Queues, Fairshare, Simulation.

1 Introduction

For many years, researchers have been searching for a perfect job scheduling
algorithm that would improve the performance of HPC and Grid-like systems.
Still, there are few algorithms that are being used in practice [18] as can be seen in
many production schedulers applied in nowadays general resource management
systems. For example, the core of the system is generally based on the trivial first
come first served (FCFS) approach and backfilling is typically the most advanced
option available [2,1,17,18]. Since backfilling has been proposed in 1995 [13], it
is obvious that there is some misunderstanding between the research community
and system administrators concerning “what is really important”.

In this paper we show that the problem of operating a production scheduler
is far more complex than just choosing a proper scheduling algorithm. Using
our experience from Czech National Grid Infrastructure MetaCentrum [14] we

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 138-149, 2014.
© Springer International Publishing Switzerland 2014

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 139

explain several additional challenges that appear when searching for a functional
solution. These problems are related to the fact that real systems must meet far
more complicated requirements than those that are typically considered in classi-
cal research papers. For example, real life systems have to focus on maintaining
fairness among users of the system [9,19], rather than just trying to optimize
simple criteria like the average slowdown or makespan. In practice, it quickly
turns out that those widely used “theoretical” models and optimization goals
are mostly impractical in real life [5,18].

The contribution of this paper is based on our ability to provide detailed in-
sight into a real, complex job scheduling system. In detail, we explain several
important features that current resource managers offer to the system admin-
istrator in order to establish robust, efficient and fair computing infrastructure
(Section 2). In Sections 3 and 4, we provide a real life example from MetaCen-
trum, describing how the actual resource manager has been reconfigured in order
to increase the overall performance and fairness. Furthermore, Section 5 demon-
strates how advanced simulation and evaluation tools can be used to evaluate
new possible setups of complex scheduling systems prior actual deployment. We
conclude the paper in Section 6.

2 Main Components of a Resource Management System

Resource managements systems are rather conservative in their choices of schedul-
ing policies and mostly rely on well established and robust approaches [18]. The
desired overall behavior is then achieved through the interactions of a chosen set
of policies and additional mechanisms. This section describes these commonly
employed components of resource management systems and their impacts.

2.1 Ordering Policy

Ordering policies determine the order of jobs in which they are then processed
by a scheduling policy. Resource management systems usually provide a set of
static ordering policies (ordering between two jobs does not change once estab-
lished) as well as dynamic policies. Jobs can be either kept in the order of their
arrival (static ordering), or can be ordered dynamically according to their length
(Shortest Job First, Longest Job First), according to their resource requirements
(Largest CPU/Memory Requirements First,...) or their (user configured) pri-
ority. Combinations of ordering policies are also possible [1,7].

Fairshare is a dynamic priority ordering policy designed to provide user-to-
user fairness. Job ordering is usually based on users previous resource consump-
tion [7,12]. Typically, the more resources a user consumes the lower her priority
becomes. Fairshare self-balances itself around an equilibrium where all users have
consumed the same amount of resources. Practical implementations of fairshare
also reflect aging [7] by periodically decreasing all recorded consumption using
so called decay factor [1]. This is suitable for systems with faster job turnaround
times that put higher emphasis on more recent resource consumption.

140 D. Klusééek and S. Téth

2.2 Scheduling Policy

Commonly used scheduling policies range from trivial FCFS, aggressive back-
filling (no reservations), to EASY [13] or Conservative backfilling [7], each with
it’s own shortcomings. FCFS guarantees the execution of jobs in the order of
arrival by considering the first job only (provided by the ordering policy). FCFS
will wait until the first job can be executed and only then continues processing
the rest of the jobs. FASY backfilling [13] builds on top of FCFS but instead
of strictly following the job order as mandated by the ordering policy it only
guarantees the earliest possible start for the first job. Other jobs are allowed to
start, as long as they do not interfere with the first job’s reservation. Conserva-
tive backfilling extends EASY by providing reservation for every job that cannot
start immediately. Remaining jobs are allowed to start as long as they do not
interfere with any previously established reservation. The notions of “first job”
and the order of jobs are mandated by the ordering policy as was described in
Section 2.1.

Job starvation is an undesirable process where a particular job (or a user)
is subject to excessive wait time due to the presently configured policies. The
notion of excessive is of course subject to interpretation. For example, fairshare
ordering priority will deliberately cause starvation of users with recent high re-
source consumption, which is however considered desirable. FCFS and Conser-
vative backfilling algorithms provide anti-starvation mechanisms, guaranteeing
that jobs are not undesirably delayed. More aggressive forms of backfilling like
EASY or aggressive backfilling need to be combined with other mechanisms
in order to prevent starvation, as they can delay the execution of certain jobs
without any bounds [15].

2.3 Queue Configuration

Previously presented policies provided by resource management systems are rela-
tively simple. At the same time, a single policy cannot cover the usually complex
requirements used in production systems. To deal with more complex require-
ments, resource management systems provide the notion of queues which can be
configured separately. Then, it is the interaction between queue-specific policies
and the global system policies that dictates the overall behavior of the system.

Queues can handle different policies, that are mostly represented by a set
of various limits [1,2,17]. These limits then apply on jobs that are executed
from that queue. The limits usually cover per-user, per-group and per-queue
limitations concerning the maximum number of running jobs and/or amount
of particular resource type (e.g., CPU cores). Queues can also be configured to
have access to only a subset of available resources, e.g., limiting a queue to a
particular cluster of machines. Such policy establishes pools of resources, where
several queues can compete for a limited set of resources, thus preventing a
(potentially dangerous) saturation of the entire system.

While such configuration can increase resource fragmentation [7], it is neces-
sary when dealing with different classes of users accessing the system. We need to

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 141

be very careful when saturating the system with jobs from a single user, or even
when saturating the system with a single class of jobs. For example, saturating
the system with long running jobs (i.e., jobs with expected runtime of several
weeks) will naturally lead to great deterioration in performance characteristics
of the system (e.g., huge wait times for shorter jobs).

Such situations are approached in different manners. For example, in Zeus
cluster in PL-Grid, all long jobs as well as jobs that require whole node(s) are
planned ahead using reservations which enables the forward detection of poten-
tial problems [4]. In Ohio Supercomputer Center several combined approaches
are used together. For example, long serial jobs are only allowed if a user is able
to reasonably explain why he or she needs to run such a long experiment [16].
Moreover, parallel jobs have in general smaller maximal runtime limit compared
to sequential jobs. Also, per-user and per-group limits are used together with
fairshare accounting [16].

Surprisingly, we are not aware of any work that would describe how to deter-
mine suitable combinations of global policies and queue configurations. Clearly,
a more in-depth analysis must be performed to better understand these issues.
We provide such a case study in the following text.

3 Configuration of MetaCentrum Resource Manager

So far, we have provided an overview of several techniques that are available in
current resource management systems. In the remaining text we demonstrate
how these techniques interact together. We also describe how existing setup
can be significantly improved by proper reconfiguration, using a real-life based
example from MetaCentrum (Sections 4 and 5).

Before we start, we would like to stress out that there is no widely accepted and
universal definition describing “the one and only suitable setup of the system”. In
fact, different people and/or organizations may have different notion of “what is
efficient” when it comes to job scheduling. In this paper, we use examples coming
from the Czech NGI MetaCentrum. The approaches and solutions presented in
the following sections are presented in the context of this system. Still, we believe
that they are applicable to a wide range of systems.

3.1 Historical Setup

Historically, MetaCentrum used three major queues (long, normal, short) that
had different maximum walltime limits per job (30 days, 24 hours, 2 hours),
different priorities (70, 50, 60) and different limits on maximum running con-
current jobs of one user (70, 300, 250). Together with the user limits, long and
short queues were also limited to a subset of machines. Using the combination of
priorities, user limits and limited resource pools the system originally provided
balanced performance for each of the three job classes (under 2 hours, 2-24 hours,
up to 30 days). There was also a low priority (20) queue called backfill that
only accepted single node jobs (max limit per user is 1000) that run up to 24

142 D. Klusiéek and S. Téth

hours. Beside these, there were several other queues for special purposes, e.g.,
administrator’s testing queue. Still, majority of jobs used those 4 main queues.
A scheme of the historical setup is shown in Fig. 1.

(priority 70/1440 CPUs)

direction of job selection and anti-starvation process,

go to next queue
IIIIIIIIII jobs ordered by fairshare

direction of job selection and anti-starvation process,
go to next queue

T T[] —

direction of job selection and anti-starvation process
go to next queue

backfill -II-IIII.ordered by fairshare
(priority 20/2000 CPUs)

direction of job selection and anti-starvation process,

short
(priority 60/2300 CPUs)

normal
(priority 50/2400 CPUs)

Fig. 1. Historical queues setup as applied in MetaCentrum

Jobs were dynamically ordered within queues using priorities based on fair-
share [7]. A backfill-like algorithm was used to scan the queues, starting with
the highest priority queue. It immediately started every job that could execute.
Those jobs that could not start immediately received reservations using an anti-
starvation mechanism (see Section 2). A reservation blocked every node that
was potentially suitable to execute a job, that is any node that is capable of
providing the requested amounts of resources and properties. This approach has
been applied as classical reservations computed according to estimated comple-
tion times of jobs were very imprecise. This was caused by the fact that users
of the system often did not provide detailed runtime estimates, instead simply
choosing one of the job classes available (under 2 hours, 2-24 hours, up to 30
days). By reserving all suitable nodes the scheduler was able to guarantee the
earliest possible start time, at the cost of decreasing opportunities for backfilling.

3.2 Problems with Historic Setup

The major problem with the historic setup was that it only used one queue for
jobs longer than 1 day. Therefore, this queue had to be used by every job that was
expected to last longer than 24 hours. At the same time, it was also used by very
long jobs that are “dangerous” as we have explained in Section 2.3. Therefore, the
queue had quite strict limits concerning number of available CPUs (1440), while
short, backfill and normal had significantly larger pools of CPUs (2300, 2000
and 2400, respectively). While such a restriction was necessary, it was obvious
that it limits efficient usage of resources.

For example, our historic workload logs indicated that majority of utilized
CPU time was based on jobs from long queue. An example of job arrivals and

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 143

Bl (s e e e S e o

~
5]
=
5
=

15000 (- ot
long
10000 |
soo0
o |

~ mbackfill

- Mnormal

number of arrived Jobs

1115 81143 15113 22113 29.1.13 5213 12213 19213 26213 5313 12313 19313 326313

short
long
N o | mhackfil
.

o S | - | | | | £

1115 8113 15113 22113 29113 5213 12213 19213 26213 5313 12313 19313 26313

used CPU weeks

Fig. 2. Job arrivals (top) and used CPU time (bottom) per week and queue

CPU time distribution with respect to queues is shown in Fig. 2. Clearly, long
queue, having the least CPUs was at the same time responsible for the most of
the overall utilization (see Fig. 2 (bottom)).

4 Proposed Modifications of the Scheduling Scheme

After performing detailed analysis of historic workloads, MetaCentrum manage-
ment decided that a new setup of the whole scheduling system must be devel-
oped. We now present main features of the two new setups that were proposed
and evaluated (Section 5), in order to remove aforementioned inefficiencies.

4.1 Conservative Extension

The first considered modification was rather conservative. The main goal was to
increase the pool of available CPUs for longer jobs. In the first step, long queue
has been refined into 5 queues. The one with the longest maximum job walltime
limit is called q 2w plus (up to 30 days) and has the maximum priority. Next,
there are q 2w, q 1w, q 4d, q 2d with decreasing priorities and walltime limits (2
weeks, 1 week, 4 days and 2 days, respectively). Normal and short queues are
now called q 1d and q 2h while q 4h is a new queue with walltime limit being 4
hours. The scheme of the system with newly refined queues is shown in Fig. 3.
Once the long queue has been replaced with several new queues it is now pos-
sible (and safe) to increase the number of CPUs for selected newly created queues
as is shown in Fig. 3. Importantly, we have significantly increased the number of
CPUs for jobs lasting at most 2 weeks, while very long jobs (q 2w plus) obtain
at most 1024 CPUs!. No other modifications were considered in this scheme.

! Different queues may share some CPUs, i.e., in general, CPUs available for a given
queue are not exclusively reserved for such a queue.

144 D. Klusiéek and S. Téth

direction of job selection and anti-starvation process

-
q_2w ‘--I. jobs ordered by fairshare
(priority 90/1024 CPUs)

direction of job selection and anti-starvation process

q_1w ‘-I.-I jobs ordered by fairshare
(priority 80/1024 CPUs)

direction of job selection and anti-starvation process

_2w_plus
(priority 100/1024 CPUs)

— q_4d(70/1536) — q_2d(60/1536) — q_2h(50/5000)—> q_4h(40/5000) —

IIIIIIIIII jobs ordered by fairshare

direction of job selection and anti-starvation process

q_1d
(priority 30/5000 CPUs)

Fig. 3. The scheme of queues with refined walltime limits

4.2 Complex Extension

While the conservative modification described in the previous section was rather
simple and straightforward, we also tried to develop a more complex modifica-
tion that would also address overall fairness and efficiency of the anti-starvation
mechanism.

Concerning fairshare, we have replaced the original single-resource aware
mechanism that only reflected CPU consumption with a new multi-resource
aware solution that also reflects RAM consumption. As discussed in the litera-
ture, single-resource based fairshare is highly unfair for heterogeneous systems
and workloads [6,8,12]. Beside the fairshare metric itself, we have also started
to consider the effect of newly added queues on fairness. For example, if a job
has low priority (due to the fairshare) but ends up in a high priority queue (due
to its walltime) it will often start much earlier than a high priority job resid-
ing in a low priority queue, which is highly unfair. Therefore, we have proposed
more complex modification of the scheduling scheme, which extends the previ-
ous conservative, multi-queue setup. In this case, the queues are only used to
(1) setup CPU limits and (2) provide information on job’s mazimum walltime
(if not specified directly by a user). All (major) queues have the same priority,
i.e., the ordering in which a job is being selected for execution is now only based
on a given user’s fairshare. Therefore, those queues are now only “virtual” and
the actual scheduling process is performed over one single queue that contains
all jobs from those “virtual” queues, as depicted in Fig. 4.

In the second step, we have proposed a modification of the anti-starvation
mechanism. So far, all suitable nodes were reserved for starving job (see Sec-
tion 3.1), which often led to resource wasting. Since the queues are now more
fine-grained with respect to maximum job runtime, we can compute estimated
job completion times far more precisely and only reserve those CPUs that are
expected to be the soonest available. The calculation of reservations uses runtime

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 145

q_2w (priority 50) ‘- “virtual queue” }7
q_1w (priority 50) ‘-Il “virtual queue” }7

... other queues follow: q_4d — q_2d — gq_2h — q_4h —

q_1d (priority 50) ‘IIIIIIIIII “virtual queue” T

1 main queue dynamically reordered by fairshare

direction of job selection and anti-starvation process

jobs transferred into the main queue

1 main
scheduling queue

T

Fig. 4. “Virtual queues” with only 1 main scheduling queue managed by fairshare

estimates (or refined queue walltime limits) of currently running jobs. Reserva-
tions are updated in every scheduling cycle with respect to dynamic changes like
early completing jobs or changes in fairshare-based priorities.

5 Experimental Evaluation

The two possible modifications of the scheduling scheme described in Section 4
were experimentally evaluated through detailed simulations. It must be said
that according to MetaCentrum management, the conservative extension was
the prime candidate to become the new production setup in MetaCentrum. The
intuition within the management was that it is a simple and safe evolution of
the historical setup. On the other hand, we believed that the complex exten-
sion was more suitable for our purposes, as it introduces new and important
features including multi-resource fairshare and optimized anti-starvation mech-
anism. Therefore, it was necessary to perform detailed simulations, analyzing
pros and cons of these two candidates.

5.1 Simulation Environment

The simulations were performed using our GridSim-based job scheduling simu-
lator Alea [10]. Alea provides advanced capabilities that allow for very detailed
and complex simulations. These capabilities include support of several schedul-
ing algorithms, complex job specifications (based on standard qsub syntax used
in real systems), multi-resource aware fairshare policies, multi-queue setups in-
cluding related limits, etc. Alea is regularly used in MetaCentrum to test new
setups prior their deployment in the production service.

5.2 Simulation Results

The simulations used a historic workload from MetaCentrum, covering 5 months
of execution in 2013. This workload contains 376,722 jobs coming from 302

146 D. Klusééek and S. Téth

different users and is publicly available at: www.fi.muni.cz/~xklusac/workload.
Due to the space limitations, we only present the most important findings related
to performance and fairness.

The initial comparison considered all 3 scenarios (historic, conservative and
complex). The avg. weighted wait/response time (AWWT/AWRT) [3] and the
avg. weighted slowdown (AWSD) [3] were used to measure the general perfor-
mance. These metrics are weighted by jobs CPU consumption to prevent that
smaller jobs have a relatively larger impact on a metric than jobs with a higher
resource consumption [3]. Concerning fairness, we have used a per-user metric
called normalized user wait time (NUWT) [11]2. Then we have measured the avg.
of all NUWT values (ANUWT) and their standard deviation (NUWT-dev). The
lower the average value and/or the standard deviation are, the more efficient and
fair are the results, respectively [11].

The results for these metrics are shown in Table 1 with the best results being
highlighted by bold font. Clearly, the complex extension is highly improving,
delivering (nearly) best results in all criteria. In fact, the slightly worse NUWT-
dev is acceptable as the ANUWT has decreased significantly compared to the
historic scenario. Surprisingly, the conservative approach has worse results than
both considered setups, which was not anticipated. In fact, all criteria have shown
large deterioration compared to historic and complex scenarios. Importantly, the
large standard deviation of normalized user wait times (NUWT-dev) suggested
that the deteriorating results are likely related to insufficient fairness.

Table 1. General results concerning performance and fairness

AWWT AWRT AWSD ANUWT NUWT-dev

historic 33795 629448 2.32 0.11 0.50
conservative 56207 647769 4.37 1.07 13.52
complex 18346 609909 1.66 0.08 0.56

The initial experiment was a surprise, indicating that conservative extension
s not a good solution due to a significant deterioration in both performance and
fairness related metrics. To better understand the situation, we have measured
how the two new setups influence the wait times of users in the system. For
this purpose, we have measured the percentage of users/jobs having their wait
time (WT) improved or deteriorated compared to the original (historic) setup.
Also, we have measured the average improvement/deterioration of wait times
for these jobs. The overall results are presented in Table 2. For most criteria, the
complex setup behaves similar to the conservative. A closer inspection reveals
that the actual problem is the huge difference in the avg. wait time for delayed
jobs. Complex increases the avg. job wait time by 2.1 hours while conservative

2 In NUWT, the total user wait time is normalized by the amount of user-consumed
CPU time. It uses the same idea as classical maz-min fairshare [6], i.e., users with
high CPU consumption may wait longer than (so far) less active users.

www.fi.muni.cz/~xklusac/workload

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 147

Table 2. Detailed results showing impact on users wait times

users with ~ jobs with avg. WT' users with jobs with avg. WT

impr. impr. impr. deter. deter. deter.

WT(%) WT(%) (hours) WT(%) WT(%) (hours)
conserv. 26.5 13.9 6.7 19.2 2.7 55.7
complex 31.1 13.4 7.2 13.9 3.2 2.1

increases it by 55.7 hours on average! Such a huge increase corresponds with the
overall unsatisfactory results seen in Table 1.

Still, further analysis was required to exactly identify the source of the prob-
lem. So far, the data indicated that this a fairness-related problem caused by huge
wait times of particular jobs. Therefore, we have decided to construct heatmaps
showing the avg. wait time of jobs (shown by color intensity) with respect to
time (z-axis) and queues (y-axis) for both considered extensions. Fig. 5 shows
the results for conservative (top) and complex (bottom) approaches. Using this
“high resolution” tool, we can better understand why the conservative approach
performs much worse compared to the complex extension.

LT | Il Jlll*'lll”l L 1 I a
q9.4n I
a_2n IIIII
924 | |
q_4d
q_iw
q_2w
q_2w_plus | 1

ERE] | I Hl | | 1 1
q_4h

a_2n | i

924 1

o_4d 1

qw ‘

q_2w

q_2w_plus |

5219
12.2.13]
19.2.13]
26.2.13|

5319
12.3.13|
19.3.13|
26.3.13|

24.13]

9.4.13]
16.4.13]
23.4.13|
30.4.13]

7.5.13|
14.5.13]
215.13]
28.5.13|

46.13
11.6.13]
18.6.13]
256.13]

Fig. 5. Heatmap of avg. wait time (in minutes) wrt. queues and time for conservative
(top) and complex (bottom) extensions

As was mentioned in Section 4, the conservative approach uses fixed ordering
of queues which is potentially dangerous as low priority queues may be “blocked
out” by higher priority queues, which is unfair with respect to global fairshare.
This “blocking effect” is a result of the applied (historic) “greedy” anti-starvation
mechanism. Fig. 5 (top) shows such situations on several occasions where the
low priority q 1d and q 4h queues exhibit significant delays compared to higher
priority queues. As can be seen, this situation does not appear for complex
approach (see Fig. 5 bottom) as (1) all queues are only virtual and all jobs are
strictly ordered using fairshare and (2) an optimized anti-starvation mechanism
is used.

148 D. Klusééek and S. Téth

To sum up, the experiments surprisingly demonstrated that a simple conser-
vative extension of known setup is not a good solution. They revealed previously
unexpected results such that it is not sufficient to simply increase the pool of
available CPUs for longer jobs, without also improving fairness-related features
and the anti-starvation mechanism. For example, it turned out that as soon as
longer jobs can use more CPUs it means that also the (original) anti-starvation
mechanism can occupy more CPUs which blocks all other waiting jobs. More-
over, it was shown that a multi-queue based solution with fixed queue ordering
is dangerous as it ignores global fairshare. From this point of view, the complex
extension increases fairness as now a user with high fairshare-based penalty can-
not cheat by sending his or hers jobs into a higher priority queue, such as q 2w,
or so. Similarly, shorter jobs having high priorities are not unfairly overtaken by
longer jobs (from high priority queues). Also, thanks to the new multi-resource
aware fairshare mechanism [12] we are now able to properly establish fairness
priorities subject to (highly) heterogeneous resources and jobs.

6 Conclusion and Future Work

We have shown that an efficient job scheduling is a very complex problem when
realistic scenarios are considered. Unlike many prior works that only consider
scheduling algorithms, we have provided a detailed insight into the complexity of
the problem, using several real-life based examples. Especially, we have stressed
out how several particular components of the system interact together and influ-
ence the resulting performance. Using a real-life based example, we have shown
that detailed simulations can be very useful when looking for a better setup of a
given system. The proposed complex extension is currently applied in production
use within MetaCentrum’s TORQUE resource manager.

Still, this work has some limitations, e.g., several decisions used in this pa-
per are based on an empirical knowledge, an expert assessment or hand-tuned
parameters. In the future we would like to develop more rigorous methods that
would allow to (semi)automatically identify proper and efficient setups of par-
ticular policies. For starters, it would be very helpful to have some method for
an efficient dynamic adaptation of various queue limits.

Acknowledgments. We highly appreciate the support of the Grant Agency of
the Czech Republic under the grant No. P202/12/0306 and the support provided
by the programme LM2010005 funded by the Ministry of Education, Youth, and
Sports of the Czech Republic is highly appreciated. The access to the MetaCen-
trum computing facilities and workloads is kindly acknowledged.

References

1. Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2 (January 2014), http://docs.adaptivecomputing.com

http://docs.adaptivecomputing.com

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

On Interactions among Scheduling Policies: Finding Efficient Queue Setup 149

. Adaptive Computing Enterprises, Inc. Moab workload manager administrator’s

guide, version 7.2.6 (January 2014), http://docs.adaptivecomputing.com

. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global Grid computing for

job scheduling. In: GRID 2004: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 374-379. IEEE (2004)

. Flis, L., Lason, P., Magrys, M., Ozieblo, A., Twardy, M.: Effective utilization of

mixed computing resources on zeus cluster. In: Cracow Grid Workshop, pp. 105—
106. ACC Cyfronet AGH (2012)

. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation.

In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2005. LNCS, vol. 3834, pp. 257-282. Springer, Heidelberg (2005)

. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-

inant resource fairness: Fair allocation of multiple resource types. In: 8th USENIX
Symposium on Networked Systems Design and Implementation (2011)

. Jackson, D.; Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In:

Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87-102.
Springer, Heidelberg (2001)

. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multi-resource allocation: Fairness-

efficiency tradeoffs in a unifying framework. In: 31st Annual International Confer-
ence on Computer Communications (IEEE INFOCOM), pp. 1206-1214 (2012)

. Kleban, S.D., Clearwater, S.H.: Fair share on high performance computing sys-

tems: What does fair really mean? In. In: Third IEEE International Symposium
on Cluster Computing and the Grid, pp. 146-153. IEEE Computer Society (2003)
Kluséacek, D., Rudova, H.: Alea 2 — job scheduling simulator. In: 3rd International
ICST Conference on Simulation Tools and Technique, ICST (2010)

Kluséicek, D., Rudovd, H.: Performance and fairness for users in parallel job
scheduling. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U. (eds.)
JSSPP 2012. LNCS, vol. 7698, pp. 235-252. Springer, Heidelberg (2013)
Klusécek, D., Rudova, H.: Multi-resource aware fairsharing for heterogeneous sys-
tems. In: Job Scheduling Strategies for Parallel Processing (2014)

Lifka, D.A.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph,
L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 295-303. Springer,
Heidelberg (1995)

MetaCentrum (January 2014), http://www.metacentrum.cz/

Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
on Parallel and Distributed Systems 12(6), 529-543 (2001)

Ohio Supercomputer Center. Batch Processing at OSC (February 2014),
https://www.osc.edu/supercomputing/batch-processing-at-osc

PBS Works, PBS Professional 12.1, Administrator’s Guide (January 2014),
http://www.pbsworks.com

Schwiegelshohn, U.: How to design a job scheduling algorithm. In: Job Scheduling
Strategies for Parallel Processing (2014)

Wierman, A., Harchol-Balter, M.: Classifying scheduling policies with respect to
unfairness in an M/GI/1. In: 2003 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pp. 238-249. ACM (2003)

http://docs.adaptivecomputing.com
http://www.metacentrum.cz/
https://www.osc.edu/supercomputing/batch-processing-at-osc
http://www.pbsworks.com

	On Interactions among Scheduling Policies:Finding Efficient Queue Setup Using High-Resolution Simulations

	1 Introduction
	2 Main Components of a Resource Management System
	2.1 Ordering Policy
	2.2 Scheduling Policy
	2.3 Queue Configuration

	3 Configuration of MetaCentrum Resource Manager
	3.1 Historical Setup
	3.2 Problems with Historic Setup

	4 Proposed Modifications of the Scheduling Scheme
	4.1 Conservative Extension
	4.2 Complex Extension

	5 Experimental Evaluation
	5.1 Simulation Environment
	5.2 Simulation Results

	6 Conclusion and Future Work
	References

