
Characterizing the Performance-Energy Tradeoff

of Small ARM Cores in HPC Computation

Michael A. Laurenzano1,2, Ananta Tiwari1,3, Adam Jundt1, Joshua Peraza1,
William A. Ward, Jr.4, Roy Campbell4, and Laura Carrington1,3

1 EP Analytics
2 Dept. of Computer Science and Engineering, University of Michigan, USA

3 Performance Modeling and Characterization Lab.,
San Diego Supercomputer Center, USA

4 High Performance Computing Modernization Program, U.S. Dept. of Defense, USA
{michaell,ananta.tiwari,adam.jundt,joshua.peraza,

laura.carrington}@epanalytics.com,
{william.ward,roy.campbell}@hpc.mil

Abstract. Deploying large numbers of small, low-power cores has been
gaining traction recently as a system design strategy in high performance
computing (HPC). The ARM platform that dominates the embedded and
mobile computing segments is now being considered as an alternative
to high-end x86 processors that largely dominate HPC because peak
performance per watt may be substantially improved using off-the-shelf
commodity processors.

In this work we methodically characterize the performance and en-
ergy of HPC computations drawn from a number of problem domains
on current ARM and x86 processors. Unsurprisingly, we find that the
performance, energy and energy-delay product of applications running
on these platforms varies significantly across problem types and inputs.
Using static program analysis we further show that this variation can
be explained largely in terms of the capabilities of two processor sub-
systems: single instruction multiple data (SIMD)/floating point and the
cache/memory hierarchy; and that static analysis of this kind is suffi-
cient to predict which platform is best for a particular application/input
pair. In the context of these findings, we evaluate how some of the key
architectural changes being made for upcoming 64-bit ARM platforms
may impact HPC application performance.

1 Introduction

As large-scale high performance computing (HPC) systems have grown in size
and the scope of problems being solved, reducing their power consumption has
become a first-class problem. Indeed, many argue that power consumption is one
of the primary constraints on the size of upcoming HPC systems [4][5][20][27][30].
We see this impacting industry, academia, and government, where substantial
effort and resources are being marshaled to improve energy efficiency in HPC
centers. On the other hand, the problems being solved on HPC systems, ranging

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 124–137, 2014.
c© Springer International Publishing Switzerland 2014



Characterizing the Performance-Energy Tradeoff of Small ARM Cores 125

from basic research to solving day-to-day problems in defense and industry, have
HPC users demanding more and more performance out of their systems.

In response to these forces, HPC system architects have sought out designs
that deliver higher performance with lower power budgets. One of the design
alternatives that has gathered much attention along these lines is to use a large
number of small, low-power cores in place of a smaller number of large, power-
hungry cores. In particular, ARM processors, the dominant platform in the em-
bedded and mobile computing domains, are being considered. The argument
for using a large number of ARM cores is twofold. First, low-power cores are
often more energy efficient than high-end cores [17]. Second, having come from
domains which have always been power constrained, ARM designs in particular
have been engineered to be frugal with power; careful attention having been
given to include only those features that are worth the extra power they con-
sume [7]. However, the question remains: are those features well-suited to HPC
applications?

Current 32-bit ARM platforms such as ARMv7 have limitations that preclude
their immediate use in modern HPC systems: only 4GB of memory are supported
per process [15], and the ISA and hardware support for vector math is limited [8].
Ameliorating these limitations is one of the purposes of ARMv8, a 64-bit version
of the ARM architecture, which is set to be released in early to mid 2014. Among
other improvements, ARMv8 includes the ability to natively address significantly
more than 4GB of memory, along with support for IEEE754 double-precision
(DP) math and vectorized DP operations [14]. Still, it remains unclear whether
these improvements will impact the ability of ARMv8 to deliver satisfactory
performance to broad classes of HPC applications, and to what extent they will
improve upon existing ARMv7 processors.

In this work, we characterize the performance and energy of ARM and x86
platforms by drawing compute kernels and applications from a number of HPC
problem domains. These benchmarks are methodically characterized in terms
of their performance and power on several ARMv7 (32-bit) and x86 processors.
We examine performance, energy and energy-delay product (EDP), finding that
these metrics vary by least an order-of-magnitude on a given implementation,
and that they depend on the specific features of the application being run. We
employ static program analysis on the benchmark kernels to characterize their
behavior in terms of memory and floating point operations. From these char-
acteristics, we develop simple regression models for performance, energy, and
EDP disparities across applications, finding that these are largely explainable
as functions of the memory and floating point characteristics of the compiled
application. Building upon this insight, we present a model for estimating how
performance is likely to change with improvements in the CPU and memory of
upcoming 64-bit ARMv8 systems, finding that both have significant impacts on
the performance of a broad class of applications.

The rest of this paper is structured as follows. Section 2 discusses work in the
literature related to this paper. Section 3 explains the experimental methodology
used in this work to assess the performance and power characteristics of HPC



126 M.A. Laurenzano et al.

applications. Section 4 presents a methodical evaluation of two ARM platforms
on a number of compute kernels and application benchmarks, followed by a
discussion of the factors underlying the performance and energy characteristics
of the applications and how these characteristics are likely to be impacted by
the introduction of 64-bit ARM platforms. Finally, Section 5 concludes.

2 Related Work

This section describes the related literature in two areas that intersect with our
work: using ARM cores in HPC and HPC Performance Modeling.

2.1 ARM in High Performance Computing

Rajovic et al. [26] evaluate the performance and energy efficiency of the Tegra
2, Tegra 3, and Quadro 1000M on a set of HPC microkernels. The Tegra 2
and 3 contain two and four core ARM Cortex-A9 processors respectively, and
the Quadro 1000M is a discrete mobile GPU. Padoin et al. [24] compare the
scalability and energy efficiency of a PandaBoard, Snowball, and Tegra 2 when
running High Performance Linpack. Ou et al. [23] compare energy and cost ef-
ficiency of a PandaBoard containing an ARM Cortex-A9 with an Intel Core2
Q9400 on three applications: web server throughput, an in-memory database,
and video transcoding. They find that the PandaBoard achieved the greatest
energy efficiency gains in less computationally intensive applications (the in-
memory database in their study). Fürlinger et al. build a cluster of second-
generation Apple TV devices which utilize an ARM Cortex-A8 [13]. They eval-
uate CPU and memory performance compared to a BeagleBoard and system
performance per watt running High Performance Linpack compared to systems
on the Green500 list.

Blem et al. [7] focus on the specific microarchitectural implementations of
ARM and x86 processors, comparing an ARM Cortex-A8, ARM Cortex-A9, In-
tel Sandybridge, and an Intel Atom. By showing that the Atom could achieve
similar energy consumption to the Cortex-A9 when controlling for microarchi-
tectural features, they conclude that ISA is not major determinant of energy
efficiency, instead finding that ARM and x86 implementations are simply differ-
ent engineering design points.

Our work complements this existing body of literature. Our contribution is
to document the performance and energy impact ARM cores have on a wide
range of HPC computational benchmarks, as well as to show that the variability
in performance and energy can largely be attributed to FP/SIMD computation
and interactions with the memory subsystem.

2.2 HPC Application Performance Modeling

Kerbyson et al. propose some of the seminal ideas in predictive application
performance and scalability modeling, showing that it is possible to accurately



Characterizing the Performance-Energy Tradeoff of Small ARM Cores 127

model the performance for a single application and that the model depends on
specifics of the implementation of that application [18][19]. Several other works
show how to use an application-independent approach to modeling performance,
using a variety of application characteristics collected as traces of the running
application, then mixing those with the results of measurement microkernels that
are deployed on the system to predict performance for the application/system
pair [10][28]. Snavely et al. [29] show that while a cycle accurate simulator could
be very accurate, it was infeasible for a full-scale HPC application. Instead, they
show that it is possible to tractably predict performance using a few important
features.

Carrington et al. [9] show that simple combinations of metrics are infeasible
to use for precisely predicting HPC application performance. In this work we
show that even simple, static features of HPC applications can be employed to
provide useful insights into the direction and magnitude of their performance
and energy characteristics, even while precise performance prediction with those
features may not be feasible.

3 Analysis and Measurement Methodology

The aim of this work is to characterize an extensive set of HPC application bench-
marks in terms of their performance, energy and energy-delay product (EDP) on
a several ARM processor configurations. This section discusses the methodolog-
ical considerations made to develop these characterizations. We begin by dis-
cussing the performance measurement methodology, followed by a discussion of
a methodology for attributing the wall-level power draw to the workload running
on a system. Last, we describe a set of program analysis tools and methodologies
that are deployed in the evaluation to develop energy models.

3.1 Performance Measurement

This work evaluates a number of HPC application kernels and benchmarks for
performance and power. Our approach to measuring performance on application
kernels is to manually insert timing instrumentation around the key computa-
tional loops, avoiding measurement of initialization and finalization code such as
parsing arguments, reading files, allocating/freeing memory and output valida-
tion. The performance of these activities is important, yet in benchmark kernels
they tend to be greatly over represented as a fraction of runtime relative to their
runtime in full application codes. Many HPC benchmarking packages such as
the NAS Parallel Benchmarks [6], pcubed [21] and polybench [25] adopt a sim-
ilar rationale, providing (sometimes multiple) timers around important phases
of computational work.

3.2 Attributing Power to a Workload

The goal of our power measurement methodology is to isolate the power draw
consumed only by the CPUs running the application. To isolate the power draw



128 M.A. Laurenzano et al.

in this fashion we measure system-wide power draw during long-running com-
putational kernels at several core counts, with the purpose of deriving the power
contribution only of the cores actively involved in the computation. We begin
with the formulation of system-wide power shown in Equation 1.

W i
system = i ∗Wactive + (N − i) ∗Widle +Wother (1)

The elements of Equation 1 are i, the number of active cores, W i
system, the

measured power using i active cores andN , the total number of available cores on
the system. The goal of producing an equation in this form is to derive Wactive,
the power draw of a single active core, Widle, the power draw of a single idle core
and Wother , the power draw of all other system components. Because there are
three unknowns (Wactive, Widle and Wother), measurements at three core counts
(i = c1, c2, c3) is sufficient to produce system of equations, shown in Equation 2,
to which we can apply any of a number of numerical techniques to approximate
the unknowns. In this work we use Gaussian elimination.

⎡
⎣
W c1

system

W c2
system

W c3
system

⎤
⎦ = Wactive

⎡
⎣
c1
c2
c3

⎤
⎦+Widle

⎡
⎣
N − c1
N − c2
N − c3

⎤
⎦+Wother

⎡
⎣
1
1
1

⎤
⎦ (2)

This framing of the problem makes several assumptions. First, it assumes
that Wactive, Widle and Wother do not depend on the number of cores that are
active. For this assumption to hold, the workload must be carefully selected so
that each additional running instance of the kernel produces a similar additional
power draw increase. This means ensuring that running instances do not compete
with one another for processor resources like cache and interconnect, which would
introduce execution stalls and reduce circuit-level switching activity. Second, this
formulation resolves Wactive, Widle and Wother only for a particular benchmark.
Empirically, however, we found that Widle and Wother for a particular system
are stable across a range of computational kernels, indicating that these values
are relatively independent of the workload running on the system. Therefore,
we utilize this methodology for only a few kernels on each system to estimate
Widle and Wother for the system, allowing us to isolate the power per active
core for any workload by plugging the full system power measurement for that
workload W i

system, along with Widle and Wother, into Equation 1.

3.3 Program Static Analysis Tools

In this work we employ two binary analysis tools to analyze application codes.
In particular, we use the EPAX toolkit [12] to analyze the static properties of
ARM binaries and the PEBIL toolkit [22] on x86 binaries. Static binary analysis
is the act of examining a compiled binary program to extract information about
the properties of the code and data that reside within that program. EPAX
and PEBIL accomplish this by reading the executable from disk, parsing and
disassembling its contents, then writing out a file containing a number of details
about the machine-level instructions in the program as well the relationship



Characterizing the Performance-Energy Tradeoff of Small ARM Cores 129

between those instructions such as their membership in high-level structures
such as basic blocks, loops, and functions. In this work, we use EPAX on ARM
binaries and PEBIL on x86 binaries to extract a number of features we expect
to be salient to HPC applications, including counts of floating point and vector
(SIMD) operations, along with the counts and properties of memory operations.
When possible to gather at compile-time, we augment the information gathered
by EPAX and PEBIL with information about the sizes of key data structures
within the important computational loops. As we show in Section 4.3, this array
of static properties is enough to make informative predictions about the direction
and magnitude of the relative amount of energy consumed when running the
application on ARM and x86 systems.

Table 1. Platform configurations

Intel Sandy Bridge ARM Cortex-A9 ARM Cortex-A15

Name Dell Poweredge T620 Dell Copper nCore BrownDwarf Y-class

Platform x86 64 64-bit ARMv7 32-bit ARMv7 32-bit

Processor 8-core 2.6GHz Xeon E5-2670 4-core 1.6GHz Marvell MV78460 4-core 1.4GHz TI 66AK2E05

D-Cache Shared 20MB L3, Priv. Shared 2MB L2, Priv. 32KB L1 Shared 4MB L2, Priv.

256KB L2, Priv. 32KB L1 32KB L1

Memory 32GB 1333MHz DDR3 4GB 1333MHz DDR3 2GB 1600MHz DDR3

FP/SIMD SSE, AVX VFPv3-D32, no SIMD VFPv4, NEON

Notes Turbo and HT disabled - c66x DSP cores disabled

Table 2. Benchmarks and applications

Type Programs Summary

Compute

Kernels

PolyBench[25] adi, atax, bicg, cholesky, doitgen,

dynprog, fdtd-2d, fdtd-ampl, gemver,

gesummv, grammschmidt, jacobi-2d,

mvt, seidel, symm, trisolv, trmm

Other covcol, dct, dsyr2k, dsyrk,

matmulinit, mm, stencil-3d, strmm,

strsm, swim, tce

linear algebra, data mining,

stencils

Application

Benchmarks

Mantevo[16] miniMD, CoMD, miniGhost

CORAL[1] AMGmk, MILCmk

Trinity[11] miniFE, GTC

molecular dynamics, finite

element, finite difference,

quantum chromodynamics,

plasma physics

4 Evaluation

4.1 Experimental Setup

We utilize three distinct platforms throughout this evaluation, summarized in
Table 1. These test platforms consist of a high-end Intel Sandy Bridge E5-2670,
a popular configuration among the largest modern supercomputers [2]. We also



130 M.A. Laurenzano et al.

use two energy-efficient ARM server platforms: a Cortex-A9 based Dell Cop-
per server and a Cortex-A15 based nCore BrownDwarf Y-class supercomputer.
For power measurement, we use a Yokogawa WT310 digital power meter [3]
to measure AC power draw of the entire system at the wall. Power measure-
ments for each benchmark run are then isolated using the approach described in
Section 3.2.

On our test platforms we deploy 28 compute kernels and 7 application bench-
marks, summarized in Table 2. Many of the compute kernels are drawn directly
from the Polyhedral Benchmark Suite [25], while others are augmented versions
thereof or hand-written compute kernels of our devising. For each compute ker-
nel we generate a total of eight configurations, consisting of the cross product
of double- and single-precision (DP and SP) versions of the benchmarks and
data set sizes that are large enough that they fit into each of the four levels of
the memory hierarchy on all systems (L1 , L2 and L3 Cache1 as well as main
memory). This yields a total of 224 compute kernels. The sizes of the four data
sets were chosen carefully so that both the DP and SP versions fit into the same
level of the memory hierarchy on all systems (SP data types generally consume
half the memory of their DP counterpart). For our particular test platforms,
we use 10-15KB of SP data for L1, 80-100KB of SP data for L2, 700-900KB
of SP data for L3 and 50-70MB of SP data for main memory. The seven ap-
plication benchmarks are also described in Table 2, which are drawn from the
Mantevo [16], CORAL [1] and NERSC-8 Trinity [11] benchmark suites and rep-
resent applications from among a number of unique computational domains. For
most applications we use both DP and SP versions. The exception to this is min-
iMD, for which we were unable to compile the DP version on either of the ARM
platforms. Benchmarks and applications are compiled with gcc, using optimiza-
tion level -O3 and vectorization support flags: -funsafe-math-optimizations
-mavx on the Sandy Bridge and -funsafe-math-optimizations -mfpu=neon2

on both ARM systems. We pin threads to cores to ensure that no thread migra-
tion occurs during any experimental runs. All performance, power, energy and
EDP numbers presented are the average of three runs.

4.2 Performance and Energy Characterization

We begin the evaluation by presenting performance and energy characteriza-
tions of the compute kernels and benchmark applications on all systems. Fig-
ure 1 shows distributions of the performance 1(a)-1(b), energy 1(c)-1(d) and
EDP 1(e)-1(f) for the compute kernels, grouped according to floating point pre-
cision (SP/DP) and which memory level the kernel exercises (L1/L2/L3/MM)
and normalized to the Intel Sandy Bridge system, where values greater than

1 Neither the Cortex-A9 nor the Cortex-A15 have L3 cache, and thus they have two
sizes that fit into main memory.

2 Without -funsafe-math-optimizations, SIMD NEON instructions will fail to ma-
terialize on the ARM systems because those instructions do not adhere to the
IEEE754 standard.



Characterizing the Performance-Energy Tradeoff of Small ARM Cores 131

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.5

1.0

2.0

5.0

10.0

N
or

m
al

iz
ed

 R
un

tim
e

(a) Cortex−A15 measured runtime

DP SP

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.5
1.0
2.0

5.0
10.0
20.0

N
or

m
al

iz
ed

 R
un

tim
e

(b) Cortex−A9 measured runtime

DP SP

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.05

0.10

0.20

0.50

1.00

N
or

m
al

iz
ed

 E
ne

rg
y

(c) Cortex−A15 measured energy

DP SP

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.05
0.10
0.20

0.50
1.00
2.00

5.00
10.00

N
or

m
al

iz
ed

 E
ne

rg
y

(d) Cortex−A9 measured energy

DP SP

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.02
0.05
0.10
0.20
0.50
1.00
2.00
5.00

10.00

N
or

m
al

iz
ed

 E
D

P

(e) Cortex−A15 measured EDP

DP SP

L
1

L
2

L
31

M
M L
1

L
2

L
31

M
M

0.1

0.5
1.0

5.0
10.0

50.0
100.0

N
or

m
al

iz
ed

 E
D

P

(f) Cortex−A9 measured EDP

DP SP

Fig. 1. Distributions of the runtime (a)-(b), energy (c)-(d) and energy-delay product
(e)-(f) for single-core compute kernels on ARM Cortex-A15 and Cortex-A9, relative
to Intel Sandy Bridge. Distributions are shown as box plots, which highlight the the
maximum (upper tail), 75th percentile (box upper-bound), median (line within box),
25th percentile (box lower-bound) and minimum (lower tail). Interested readers can
find more detailed charts at http://epanalytics.com/data/euro-par2014/.

one for runtime indicate ARM performance suffers relative to the Sandy Bridge
system, and values less than one for energy and EDP identify benchmarks that
are more energy efficient when executed on the ARM systems. Three interesting
trends can be observed. First, in almost all cases the SP versions of the kernels
show better characteristics on the ARM systems over their DP counterparts,
an issue that should be resolved on future 64-bit ARM systems. Second, there
is substantial variation in runtime even within a particular grouping of ker-
nels, suggesting that performance, energy and EDP have a substantial software

http://epanalytics.com/data/euro-par2014/


132 M.A. Laurenzano et al.

component, rather than being a simple property of the hardware. Third, the
larger the working set, the worse the efficiency is on the ARM systems. For
example, the Cortex-A15 energy results show that median L1-Cache energy im-
provement is more than double that of main memory energy improvement. This
suggests that there is room to improve the efficiency of HPC applications by im-
proving the cache and memory architecture of the ARM platforms. We refer the
interested reader to http://epanalytics.com/data/euro-par2014/ to find a
more detailed treatment of these charts.

In Figure 2, we present similar findings on the performance 2(a), the energy
2(b) and the energy-delay product 2(c) for the application benchmarks.

0

5

10

15

20

25

30

N
o
rm

a
li

z
e
d

 R
u

n
ti

m
e (a) Runtime

Cortex-A15 Cortex-A9

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
o
rm

a
li

z
e
d

 E
n

e
rg

y (b) Energy

Cortex-A15 Cortex-A9

m
in

iM
D

-S
P

m
in

iF
E

-S
P

m
in

iF
E

-D
P

A
M

G
m

k
-S

P

A
M

G
m

k
-D

P

G
T

C
-S

P

G
T

C
-D

P

M
IL

C
m

k
-S

P

M
IL

C
m

k
-D

P

C
o
M

D
.e

o
m

-S
P

C
o
M

D
.e

o
m

-D
P

C
o
M

D
.l

j-
S

P

C
o
M

D
.l

j-
D

P

m
in

iG
h

o
s
t.

lr
g

-S
P

m
in

iG
h

o
s
t.

lr
g

-D
P

m
in

iG
h

o
s
t.

s
m

l-
S

P

m
in

iG
h

o
s
t.

s
m

l-
D

P

M
E

A
N

-S
P

M
E

A
N

-D
P

M
E

A
N

10
0

10
1

10
2

N
o
rm

a
li

z
e
d

 E
D

P

(c) Energy-delay product

Cortex-A15 Cortex-A9

Fig. 2. Runtime (a), energy (b) and energy-delay product (c) for quad-core application
benchmarks on an ARM Cortex-A15 and Cortex-A9, relative to an Intel Sandy Bridge.
Note that (c) is plotted on a log scale.

4.3 Attributing Energy Characteristics to Static Program Features

In Section 3.3, we described two static binary analysis tools, PEBIL for x86
and EPAX for ARM, which were employed to collect information about the the

http://epanalytics.com/data/euro-par2014/


Characterizing the Performance-Energy Tradeoff of Small ARM Cores 133

0.0

0.2

0.4

0.6

0.8

1.0

1.2

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●

●●●●●●●
●●●●

●●
●●●

●●
●

●●

●

(a) Cortex−A15 DP energy
N

or
m

al
iz

ed
 E

ne
rg

y

Kernel (ordered by measured energy)

● Measured
Modeled

0.0

0.2

0.4

0.6

0.8

1.0

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●

●●●●
●
●

●●

(b) Cortex−A15 SP energy

N
or

m
al

iz
ed

 E
ne

rg
y

Kernel (ordered by measured energy)

● Measured
Modeled

0.0

0.5

1.0

1.5

2.0

●●
●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●
●●
●
●●●●

●●
●●
●
●

(c) Cortex−A9 DP energy

N
or

m
al

iz
ed

 E
ne

rg
y

Kernel (ordered by measured energy)

● Measured
Modeled

0

1

2

3

4

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●
●●●●

●●
●●●

●●●
●●
●●

●●

●

(d) Cortex−A9 SP energy

N
or

m
al

iz
ed

 E
ne

rg
y

Kernel (ordered by measured energy)

● Measured
Modeled

Fig. 3. Measured and modeled energy for Cortex-A15 (a)-(b) and Cortex-A9 (c)-(d).
A statistical measure of the variation in kernel energy that is explained by the models
(adjusted R-squared) is (a) 90%, (b) 64%, (c) 80% and (d) 76%.

memory/cache and floating point/SIMD operations that reside within the key
loops of the compute kernels. Specifically, we collect the counts of instructions,
memory operations, floating point operations, the number of bytes moved per
memory operation, and the size of the key data structure(s) in the loop. We then
use multivariate linear regression to build models of the energy consumption
(normalized to Sandy Bridge) of the compute kernels as a function only of these
terms and some of their simple variants (e.g., floating point ops per instruction),
along with 10-fold cross validation on the models. Figure 3 shows the measured
and modeled energy consumption for the Cortex-A15 3(a)-3(b) and the Cortex-
A9 3(c)-3(d), again normalized to the Intel Sandy Bridge.

Two interesting features are apparent from Figure 3. First, we observe that
the models capture a significant fraction of the variation in energy across the
compute kernels. Visually, this can be seen where the shape of the modeled
energy points follows the shape of the measured energy points. A statistical
measure of this property is given by the adjusted R-squared of the model [31].
Adjusted R-squared is the percentage of variation captured by the model, where
a perfect model would capture 100%. The models shown in Figures 3(a), 3(b),
3(c) and 3(d) have adjusted R-squared measures of 90%, 64%, 80% and 76%
respectively. Qualitatively, the models account for the majority of the energy
variation across benchmarks. Second, the models are able to correctly predict
which system uses the least energy to run a particular compute kernel in 210 of
the 224 kernels. We take care to note that these models are imprecise, lacking



134 M.A. Laurenzano et al.

exactness in the energy prediction of any particular compute kernel. Neverthe-
less, they are surprisingly useful for estimating the direction and magnitude of
the energy difference between the ARM and x86 systems.

1.0

1.2

1.4

1.6

1.8

2.0
(a) Compute kernels

Sp
ee

du
p

●

●

●

●

●
●

●

●

●
●

●

●●
●●●

●

●

●

●

●●
●

●

●
●

●

●

●

●●
●

●

●
●●
●●
●

●

●
●

●
●
●●
●●●●
●●●

●
●●●●●●

●●●●●
●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●
●●●
●

●
●●
●
●●●
●
●
●●●●●
●
●

●

●

SP/DP Kernels (ordered by speedup)

●

Fast CPU + Fast Memory
Fast CPU m

in
iM

D
-S

P
m

in
iF

E
-S

P
m

in
iF

E
-D

P
A

M
G

m
k
-S

P
M

IL
C

m
k
-S

P
M

IL
C

m
k
-D

P
C

o
M

D
.e

o
m

-S
P

C
o
M

D
.e

o
m

-D
P

C
o
M

D
.l

j-
S

P
C

o
M

D
.l

j-
D

P
m

in
iG

h
o
s
t.

lr
g

-S
P

m
in

iG
h

o
s
t.

lr
g

-D
P

m
in

iG
h

o
s
t.

s
m

l-
S

P
m

in
iG

h
o
s
t.

s
m

l-
D

P
M

E
A

N
-S

P
M

E
A

N
-D

P
M

E
A

N

1.0

1.2

1.4

1.6

1.8

2.0

S
p

e
e
d

u
p

(b) Application benchmarks

Fast CPU + Fast Memory

Fast CPU

Fig. 4. Estimated speedup conferred by CPU and memory speed improvements in 64-
bit ARM systems for (a) compute kernels (b) and application benchmarks. The thick
red line shows the theoretical speedup that would be achieved if scaling by the CPU
clock rate increase (2.6/1.6 = 1.625).

4.4 Implications for 64-Bit ARM

Implementations of 64-bit ARM platforms are expected to arrive in early to mid
2014. It is widely anticipated that 64-bit ARM will improve upon the current 32-
bit implementations by offering higher clock rates, improvements in the memory
architecture, and more complete vector math support, for example by supporting
2-wide DP SIMD operations and fully adhering to the IEEE754 standard. We es-
timate the impact of these factors on performance by examining the relationship
those factors have to performance on the Sandy Bridge system. In particular,
we dial down the memory and processor clock frequencies on the Sandy Bridge
system to 800MHz and 1.6GHz respectively to measure the speedup between the
low and high clock rate runs, which represents how much benefit is conferred to
the application by running on hardware which has faster compute and memory
resources. Similarly, we estimate the impact of faster CPU only by dialing down
only the memory. The estimated speedups produced by this approach are pre-
sented in Figure 4, showing in 4(a) that increasing a slow clock rate by a factor
of 1.625 confers a speedup of at least 1.625x for a majority (81%) of compute
kernels. This suggests that clock rate increases in 64-bit ARM systems are likely
to show substantial improvements for the performance of many HPC applica-
tions. In 4(b), we present the application benchmarks speedups when speeding
up only the CPU clock rate (blue/dark), and both the CPU and memory clock
rates (orange/light). From these results and the results in 4(a), we can infer



Characterizing the Performance-Energy Tradeoff of Small ARM Cores 135

that increases in the speed of the cores, as opposed to the memory, account for
the largest share of the speedups in the applications. We conclude from these
insights that improvements in the clock rates of 64-bit ARM implementations
are likely to have a substantial benefit to HPC applications, while memory speed
plays a significant but quantitatively less important role.

5 Conclusion

Using a large number of small, low-power cores has been gaining ground as
a design strategy to improve the energy efficiency of upcoming HPC systems.
As ARM is the dominant platform in the mobile and embedded computing
segments, many believe that ARM is a viable competitor to the high-end x86
systems that make up a substantial fraction of large-scale HPC systems today.
In this work, we methodically documented the performance and energy charac-
teristics of a number of HPC computations on several current ARM platforms.
We found that performance and energy efficiency of the ARM systems varies by
up to an order-of-magnitude and depends on the computational and memory
characteristics of the application. Moreover, we showed that this variability can
be described as a function of two important processor subsystems: the floating
point/SIMD unit and the cache/memory hierarchy. Finally, we investigated the
performance implications that 64-bit ARM systems will have, finding that HPC
applications stand to benefit substantially from changes in the CPU and memory
subsystems.

Acknowledgments. This work was supported in part by the U.S. Department
of Defense HPCMP PETTT program (Contract No: GS04T09DBC0017 though
DRC) and by the U.S. Air Force Office of Scientific Research under AFOSR
Award No. FA9550-12-1-0476. We also wish to thank Mr. Tim Carroll and Dr.
Mark Fernandez of Dell for providing early access to the Cortex-A9 based Dell
Copper ARM server.

References

1. CORAL Benchmark Codes (2013), https://asc.llnl.gov/CORAL-benchmarks/
2. The Top 500 list (November 2013), http://www.top500.org
3. Yokogawa: WT300 Series Digital Power Meters, http://tmi.yokogawa.com/

us/products/digital-power-analyzers/digital-power-analyzers/wt300-

series-digital-power-meters/

4. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., et al.: The landscape of
parallel computing research: A view from berkeley. Technical report, Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(2006)

5. Attig, N., Gibbon, P., Lippert, T.: Trends in supercomputing: The european path
to exascale. Computer Physics Communications 182(9), 2041–2046 (2011)

https://asc.llnl.gov/CORAL-benchmarks/
http://www.top500.org
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/
http://tmi.yokogawa.com/us/products/digital-power-analyzers/digital-power-analyzers/wt300-series-digital-power-meters/


136 M.A. Laurenzano et al.

6. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The nas
parallel benchmarks summary and preliminary results. In: Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, 1991, pp. 158–165. IEEE (1991)

7. Blem, E.R., Menon, J., Sankaralingam, K.: Power struggles: Revisiting the risc
vs. cisc debate on contemporary arm and x86 architectures. In: HPCA, pp. 1–12
(2013)

8. Buttari, A., Dongarra, J., Langou, J., Langou, J., Luszczek, P., Kurzak, J.: Mixed
precision iterative refinement techniques for the solution of dense linear systems.
International Journal of High Performance Computing Applications 21(4), 457–466
(2007)

9. Carrington, L., Laurenzano, M., Snavely, A., Campbell, R.L., Davis, L.P.: How well
can simple metrics represent the performance of hpc applications? In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, SC 2005, p. 48. IEEE
Computer Society, Washington, DC (2005)

10. Carrington, L., Snavely, A., Gao, X., Wolter, N.: A performance prediction frame-
work for scientific applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J. J., Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS,
vol. 2659, pp. 926–935. Springer, Heidelberg (2003)

11. Cordery, M., Austin, B., Wassermann, H., Daley, C., Wright, N., Hammond, S.,
Doerfler, D.: Analysis of cray xc30 performance using trinity-nersc-8 benchmarks
and comparison with cray xe6 and ibm bg/q (2013)

12. Analytics, E.P.: EPAX Toolkit: Binary Analysis for ARM (2014),
http://epaxtoolkit.com/

13. Fürlinger, K., Klausecker, C., Kranzlmüller, D.: Towards energy efficient parallel
computing on consumer electronic devices. In: Kranzlmüller, D., Toja, A.M. (eds.)
ICT-GLOW 2011. LNCS, vol. 6868, pp. 1–9. Springer, Heidelberg (2011)

14. Goodacre, J.: Technology preview: The armv8 architecture. White Paper (Novem-
ber 2011)

15. Goodacre, J., Cambridge, A.: The evolution of the arm architecture towards big
data and the data-centre. In: Proceedings of the 8th Workshop on Virtualization
in High-Performance Cloud Computing, p. 4. ACM (2013)

16. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
(2009)

17. Hölzle, U.: Brawny cores still beat wimpy cores, most of the time. IEEEMicro 30(4)
(2010)

18. Kerbyson, D.J., Alme, H.J., Hoisie, A., Petrini, F., Wasserman, H.J., Gittings, M.:
Predictive performance and scalability modeling of a large-scale application. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (CDROM),
Supercomputing 2001, pp. 37–37. ACM, New York (2001)

19. Kerbyson, D.J., Jones, P.W.: A performance model of the parallel ocean program.
Int. J. High Perform. Comput. Appl. 19(3), 261–276 (2005)

20. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carson, W., Dally, W., Denneau,
M., Franzon, P., Harrod, W., Hill, K., et al.: Exascale computing study: Technology
challenges in achieving exascale systems (2008)

21. Laurenzano, M.A., Meswani, M., Carrington, L., Snavely, A., Tikir, M.M., Poole,
S.: Reducing energy usage with memory and computation-aware dynamic fre-
quency scaling. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011,
Part I. LNCS, vol. 6852, pp. 79–90. Springer, Heidelberg (2011)

http://epaxtoolkit.com/


Characterizing the Performance-Energy Tradeoff of Small ARM Cores 137

22. Laurenzano, M.A., Tikir, M.M., Carrington, L., Snavely, A.: Pebil: Efficient static
binary instrumentation for linux. In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems & Software, ISPASS 2010, pp. 175–183. IEEE (2010)

23. Ou, Z., Pang, B., Deng, Y., Nurminen, J.K., Yla-Jaaski, A., Hui, P.: Energy- and
cost-efficiency analysis of arm-based clusters. In: Symposium on Cluster, Cloud
and Grid Computing, CCGRID (2012)

24. Padoin, E.L., de Oliveira, D.A., Velho, P., Navaux, P.O., Videau, B., Degomme,
A., Mehaut, J.-F.: Scalability and energy efficiency of hpc cluster with arm mpsoc

25. Pouchet, L.-N.: PolyBench: The Polyhedral Benchmark suite (2012),
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

26. Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovik, N., Ramirez, A.: Experiences
with mobile processors for energy efficient hpc. In: Design, Automation and Test
in Europe Conference and Exhibition, DATE (2013)

27. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

28. Sharkawi, S., DeSota, D., Panda, R., Stevens, S., Taylor, V., Wu, X.: Swapp: A
framework for performance projections of hpc applications using benchmarks. In:
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum, IPDPSW 2012, pp. 1722–1731. IEEE
Computer Society, Washington, DC (2012)

29. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.:
A framework for performance modeling and prediction. In: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Supercomputing 2002, pp. 1–
17. IEEE Computer Society Press, Los Alamitos (2002)

30. Snir, M., Gropp, W., Kogge, P.: Exascale research: Preparing for the post–moore
era (2011)

31. Vogt, W.P., Johnson, R.B.: Dictionary of statistics & methodology: A nontechnical
guide for the social sciences. Sage (2011)

http://www.cse.ohio-state.edu/~pouchet/software/polybench/

	Characterizing the Performance-Energy Tradeoff of Small ARM Cores in HPC Computation

	1 Introduction
	2 Related Work
	2.1 ARM in High Performance Computing
	2.2 HPC Application Performance Modeling

	3 Analysis and Measurement Methodology
	3.1 Performance Measurement
	3.2 Attributing Power to a Workload
	3.3 Program Static Analysis Tools

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance and Energy Characterization
	4.3 Attributing Energy Characteristics to Static Program Features
	4.4 Implications for 64-Bit ARM

	5 Conclusion
	References




