MPI Trace Compression
Using Event Flow Graphs

Xavier Aguilar!, Karl Fiirlinger?, and Erwin Laure!

! KTH Royal Institute of Technology,

High Performance Computing and Visualization Department (HPCViz)
and Swedish e-Science Research Center (SeRC),
Lindstedvagen 5, 10044 Stockholm, Sweden
? Ludwig-Maximilians-Universitit (LMU) Munich,
Computer Science Department, MNM Team,
Oettingenstr. 67, 80538 Munich, Germany

Abstract. Understanding how parallel applications behave is crucial for
using high-performance computing (HPC) resources efficiently. However,
the task of performance analysis is becoming increasingly difficult due
to the growing complexity of scientific codes and the size of machines.
Even though many tools have been developed over the past years to
help in this task, current approaches either only offer an overview of the
application discarding temporal information, or they generate huge trace
files that are often difficult to handle.

In this paper we propose the use of event flow graphs for monitoring
MPI applications, a new and different approach that balances the low
overhead of profiling tools with the abundance of information available
from tracers. Event flow graphs are captured with very low overhead,
require orders of magnitude less storage than standard trace files, and
can still recover the full sequence of events in the application. We test this
new approach with the NERSC-8/Trinity Benchmark suite and achieve
compression ratios up to 119x.

Keywords: MPI event flow graphs, trace compression, trace reconstruc-
tion, performance monitoring.

1 Introduction

Current petascale systems provide massive computing power to run scientific
simulations in many disciplines ranging, for example, from weather modeling to
protein structure analysis. However, their efficient use requires optimized ap-
plications with several levels of parallelism, efficient inter-process communica-
tion for complex network topologies and optimized memory access through deep
memory hierarchies. Therefore, tools to characterize and better understand the
performance behavior of applications are an essential part of the HPC landscape.

Performance tools for HPC systems have been widely studied and developed
over the last years. These tools can be divided into two families: profilers and

F. Silva et al. (Eds.): Euro-Par 2014, LNCS 8632, pp. 1-12, 2014.
© Springer International Publishing Switzerland 2014

2 X. Aguilar, K. Fiirlinger, and E. Laure

tracers. Profilers generate reports with execution statistics, whereas tracers pro-
duce time-stamped event log files. Profilers are less intrusive and more scalable
than tracers but profilers do not maintain a record of the structure and sequence
of events. In contrast, tracers give the whole picture of what happened during the
run time of an application, but are limited in scalability due to the huge amount
of data they generate. Current tracing methodologies can produce trace files in
the order of gigabytes for only a few minutes of application execution [1]. The
size of the trace files also grows drastically as the number of cores used by an ap-
plication increases. Thus, new scalable methods for performance data collection
maintaining sequence and temporal order of the information are needed.

In this paper, we propose a novel approach for application characterization
using event flow graphs which is designed to combine the advantages of profiling
and tracing. This method has the scalability of profiling without discarding the
temporal ordering of events performed by the application. We have implemented
our solution in the Integrated Performance Monitoring tool (IPM) [2,3], a light-
weight and scalable profiling tool for parallel applications. It uses a hash table in
memory to store performance data and provides rich metrics about MPI-related
events such as MPI timings, communication volume and the communication
topology. IPM is open-source and is available freely from http://www.ipm2.org
under the LGPL license.

The rest of this paper is structured as follows: In Sect. 2 we define and de-
scribe our approach for generating MPI event flow graphs. Section 3 shows some
experimental results using the NERSC-8/Trinity Benchmark Suite. In Sect. 4
we review some of the related work in trace compression. The paper ends with
future work and conclusions in Sect. 5 and Sect. 6, respectively.

2 MPI Event Flow Graphs

In this work, we use and extend the definitions of Fiirlinger et al. [4] for a formal
treatment of performance monitoring events. We start with an MPI application
with n processes (identified by their ranks [0..n — 1]), where each process i is
characterized by a set of events E; C E where F represents all the events that
happened during the run time of the application. An event can be any action
performed by the application, but in this work we restrict ourselves to MPI
operations. In other words, an event is an MPI primitive call.

Each event e has a signature 6(e) that captures the aspects of the events
we are interested in. We can think of the signature as a k-tuple of components
5(e) = (6%(e), 82(e), ..., 6% (e)) which represent relevant metrics, such as the type
of MPI call, communication partner rank, data transfer size, callsite (source
code position), or program region. The mapping from event to signature is not
necessarily injective and therefore statistics are recorded for each different signa-
ture value. Hence, we can conceptually represent the performance behavior of an
MPI process as a table where each row is an event indexed by its signature and
each column is a different statistic (number of occurrences, minimal duration,
maximal duration, etc.).

http://www.ipm2.org

MPI Trace Compression Using Event Flow Graphs 3

In practical terms, the performance behavior is recorded in a hash table in
memory which is implemented in IPM with the event signatures §(e) being used
as the hash keys. The values in this hash table are performance metrics such as
the number of occurrences and different timings (minimum, maximum and total
duration) of each event. This lets us store performance data in the hash keys as
well as in the table entries, thereby reducing the monitoring overhead. Notice
that if we include the event timestamp as a component of the signature, we have
a model for tracing. If the timestamp is omitted, we lose the temporal dimension
of the data and instead have a model for profiling since we cannot know the order
in which the events happened during the application’s run time. However, as we
show in this paper, the temporal ordering of events can nevertheless be fully
recovered by keeping track of a (very short) history of the event signatures.

Consider again an MPI application with n processes and a set of events F; =
{ep, €1, ...,em } belonging to process with rank i. Let d(e) : E; — S; be the
signature function at rank i and s? € S; an initial signature value. Then &'(e)
with

§'(eo) = (s7(eo))
(5’(61‘) = ((5(61‘_1),(5((31’)) ifi>0

represents the signature history for . Then, the directed weighted graph G =
(Ni, Li, w;, s9) with the event signatures forming the set of nodes N; and the
signature history the set of edges L;

Ni = {(5(61)} e; € Ei
L; = {5/((3,’)} e; € E;
wit L N wi(l) = [{e; 8 (e;) =1} leL;

is the event flow graph for the MPI rank i with s{ as the initial node of the
graph. In other words, in the event flow graph the nodes correspond to the MPI
calls performed by the application and the edges correspond to the transitions
between them. The edge weight (w;) or edge count is the number of transitions
between nodes. Figure 1 depicts a simple MPI application and the corresponding
event flow graph for one of its MPI processes, where MPI Init is the initial node
of the graph. Notice that the application has as many graphs as MPI processes.

2.1 Reconstructing Traces from Event Flow Graphs

For the simple example in Fig. 1 we see that the event flow graph completely
captures the behavior of an MPI process. It contains all the events performed
by the process (nodes of the graph) and the transitions between them (edges
between nodes). Therefore, the path N; = {s?,s!...s"} from the initial node s?

to the final node s} of the graph corresponds to the event trace for process with
rank i. The total number of events (length of the path) in the trace is

S wil)+1 V€L

4 X. Aguilar, K. Fiirlinger, and E. Laure

MPI_Init

i

void main(int argc, char *argv[]) { |

MPI_Init(...);
MPI_Comm_size(...); MPI_Comm_size
MPI_Comm_rank(..., &myrank);]

for(1 = O’ 1 < 10’ i++) { MPI_Comm_rank

if (myrank is even) - :|

MPI_Send(...); 1

else
MPI_Recv(...); MPI_Send
MPI_Reduce(...); 10]/)9
} _Reduce
MPI_Finalize();

} 1
MPI_Finalize

Fig. 1. A simple MPI program and the event flow graph generated for an MPI process
with an even rank number

HEH

2
o]

and the number of times that each event e; appears, also known as node cardi-
nality for the node d(e;), is

Z w;(in edges(d(e;)))

In other words, the number of events in the trace is the sum of all edge weights
of the graph plus one and each event appears as many times as the total weight
of its incoming edges.

In this paper we are only concerned with reconstructing the sequence of events
in a trace (time stamps and intervals between events are topics for future work).
It is clear that the trace can be easily reconstructed for simple cases such as linear
graphs and graphs with a single loop such as the one in Fig. 1. However, there
are cases that cannot be reconstructed using flow graphs in this manner. This
occurs for applications with conditional branches within a loop, for example, the
code snippet in Fig. 2. When reconstructing the trace, we cannot know the order
of the calls after the MPI Barrier across loop iterations.

Thus, we extended our model to cover such cases. Firstly, we added a sequence
number to the exit edges of the branch nodes (that is, nodes with more than
one exit edge). This new weight is defined as a 2-tuple < N;N > where the first
element is the sequence number for that edge and the second element is the
edge count as defined above. With this extra data, we always know which edge
was taken in a branch node when traversing the graph. Figure 3 shows this new
extended model.

Secondly, we changed our directed graphs to multidigraphs, that is, directed
graphs with more than one edge between the same two nodes. This new graph

MPI Trace Compression Using Event Flow Graphs 5

for(i =0; i < 10; i++) {

MPI_Barrier(...);
if (i < 5) MPI_Bcast
MPI_Bcast(...); 37 2
else . 5 S
MPT_Gather(...); MP1_Barrier MPLGather MPLReduce
9

MPI_Reduce(...);
}

Fig. 2. Example of a conditional branch within a loop and its corresponding event flow
graph

model can represent applications in which the conditional branches within a loop
vary across loop iterations as depicted in Fig. 3.

MPI_Comm_rank

1,1
MPI_Barrier 1
MPI_Send 11 MPI_Send MPI_Finalize
MPI_Barrier /
MPI _Re CcVv MPI_Comm_rank 1 MPI_Barrier /

1,1
MPI_Barrier 2,1
MPI_Send O
MPI_Finalize MPI_Recy

0 ~NOoO O WN =

Fig. 3. A sequence of MPI operations and the corresponding multidigraph

2.2 Compressing Edges in Branch Nodes

As shown in the previous section, our new event flow graphs are multidigraphs
with sequence numbers in edges that have the same source node. Thereby, we can
always reconstruct the event trace associated with an application without any
loss of temporal order information by traversing the graph edges in ascending
order of their sequence number.

However, creating multiple edges between nodes to record the sequence order
can lead to huge graphs. In fact, our experiments showed that this situation
is quite common among real applications which sometimes have flow graphs
with thousands of edges going out from one node. Nevertheless, those graphs
usually exhibit repetitive patterns in terms of the multiple edges between nodes
as shown in Fig. 4. In that case, the application calls MPI Barrier followed by
MPI Recv 10 times, then it calls MPI Barrier followed by MPI Send 10 times,
afterwards it again calls MPI Barrier followed by MPI Recv 10 times, and so on,
until MPI Recv and MPI Send have each been called 30 times.

As we can see in the figure, the sequence numbers for those edges in the
event flow graph follow different arithmetic progressions, that is, the difference
between two consecutive numbers in the sequence is constant. In such cases, the

6 X. Aguilar, K. Fiirlinger, and E. Laure

1,10

3.10 MPI_Recv

5,10
MPI_Barrier
2’10 1’5’2’10 MPI_Recv
4.10 AN MPI_Barrier 2,6,2,10
MPL Send T
6.10 MPI_Send
a) Nodes with uncompressed b) Nodes with compressed

(a) P P
edges. edges.

Fig. 4. Branch compression of multiple edges between nodes

set of edges can be compressed into a single one as long as their edge count is
the same. Using this approach, the new weight for the compressed edges is a 4-
tuple < N, N, N, N > where the first element is the first number of the sequence,
the second element is the last number of the sequence, the third element is the
stride and the last element of the tuple is the edge count. For instance, the set
of edges [1,10],[3,10],[5,10] in Fig. 4 from the MPI Barrier to the MPI Send
node can be compressed into a single edge with weight < 1,5,2,10 >. Hereby,
we increase the readability of the graphs and reduce the space needed to store
them. For irregular patterns without a clear stride no compression is possible
and individual edges need to be stored.

2.3 Implementation in IPM

We have extended IPM to generate MPI event flow graphs as described in the
previous section. IPM maintains event statistics such as the total duration, the
minimum and maximum time and the number of occurrences for all MPI calls.
These statistics are stored in a hash table using the event signatures described
in Sect. 2 as the hash key for each event.

To record the transitions between events, we introduced a second hash table
that contains pairs of event signatures. This “history” hash table keeps infor-
mation on transition pairs of event signatures (d(e;—1),0(e;)). IPM keeps track
of the last event signature by storing it in a variable and updating it each time
there is a new insertion into the transition hash table. Moreover, IPM also keeps
track of branches within loops by checking if there are two pairs in the transi-
tion hash table (< d(e;), d(ej) >, < d(e;), d(ex) >) where 6(e;) # 6(ex). If that is
so, each element is given a sequence number indicating their arrival order. IPM
also joins elements in the transition hash table to compress the number of edges
between nodes as described in Sect. 2.2. It keeps track of the old branches for
each node. When a branch finishes, IPM checks if the sequence number of the
branch follows an arithmetic progression in relation to any of the older branches
of that particular node. If that is the case and if both branches have the same

MPI Trace Compression Using Event Flow Graphs 7

edge count, the two branches are compressed into a single branch. Upon pro-
gram termination, IPM constructs the event flow graph for each MPI process by
matching pairs of event edges.

3 Experiments

In order to test our approach for trace reconstruction from MPI event flow
graphs, we used the following mini-applications from the NERSC-8/Trinity
Benchmarks suite [5]: AMG, an algebraic multigrid solver for linear systems on
unstructured grids; GTC, a 3D Particle-in-cell code (PIC) with a non-spectral
Poisson solver used for gyrokinetic particle simulation of turbulent transport
in burning plasma; MILC, a code for simulating four dimensional SU(3) lat-
tice gauge theory to study quantum chromodynamics (QCD); SNAP, a proxy
application that models the performance of a modern discrete ordinates neu-
tral particle transport application, PARTISN [6]; MiniDFT, a plane-wave DFT
mini-kernel that computes self-consistent solutions for the Kohn-Sham equations;
MiniFE, a mini-application that implements different kernels representative of
implicit finite-element applications; MiniGhost, a mini-application that imple-
ments a difference stencil across a homogenous three dimensional domain.

The experiments were performed on a Cray XE6 with 2 twelve-core AMD
MagnyCours at 2.1 GHz per node. The nodes are interconnected through a
Cray Gemini Network, each of them having a total of 32 GB DDR3 memory.
The benchmarks were compiled with Intel 12.1.5 and run using the small test
case that is provided for each one of them.

3.1 Overhead

Figure 5 shows for each benchmark the percentage of overhead introduced by
IPM over their total running time (writing the graph files to disk is also included
in the percentage). These experiments were run using strong scaling except for
SNAP, MILC and GTC. As depicted in the figure, the overhead introduced to
generate the event flow graphs is almost negligible, being always below 2%.

3.2 Compression Ratios

Table 1 shows the compression ratio for each benchmark in terms of file size
between our flow graph file and a standard trace file for that application gener-
ated by IPM, in other words, it shows how many times smaller the event flow
graph file is compared to the standard trace file. It is important to be aware
that both files contain exactly the same amount of information for each MPI
call: call name, bytes sent or received, communication partner and callsite. As
our current implementation generates one flow graph per MPI process, the table
shows statistics for the minimum, maximum and average compression ratios for
all processes within each application. The results in the table demonstrate that
the compression depends on the nature of the benchmark. For instance, we have

8 X. Aguilar, K. Fiirlinger, and E. Laure

Minighost ——
MiniFE --%--

Overhead %

0 1 0;] 260 360 460 5‘00 660 760 800
MPI Processes

Fig.5. Percentage of overhead over total running time introduced in the NERSC-

8/Trinity benchmarks when generating their event flow graphs

applications such as SNAP with flow graph files 119 times smaller than the stan-
dard linear trace whereas in other applications such as AMG the compression
ratio is 1.76. In terms of file size, the amount of disk space required to store the
traces for a run with 96 cores of SNAP is 1.1 GB whereas the space required for
the event flow graphs is only 10 MB.

In order to explain this variance in the compression we need to look into some
graph metrics. Table 2 gives statistics for the number of nodes, the number of
links and the average cardinality of nodes in the graphs. Remember that the node
cardinality is the number of instances an event d(e;) happened during the run
time of the application as explained in Sect. 2.1. The figures in the tables show
that low compression ratios are related to graphs with a large number of nodes
with low cardinality such as AMG or MiniDFT. In contrast, graphs consisting
of a few nodes with high node cardinality exhibit very good compression ratios.

As explained in Sect. 3, each event is identified uniquely using a signature
defined by several metrics. Furthermore, each one of these events is eventually
converted into a node in the event flow graph. Therefore, the metrics used as
signature elements have an important role in the cardinality of the graph. In
our experiments, the event signature was composed of the MPI call name, the
MPI rank, the number of bytes associated with the call and the call site. Thus,
it is not surprising that applications with huge graphs (such as AMG) have a
large number of different call sites and message sizes - this was confirmed by our
experiments. The variability in the number of call sites and the sizes of messages
leads to a greater number of signatures, and consequently more nodes in the
resulting graph.

Finally, we performed another set of experiments with some of the NERSC-8
benchmarks and a five-point stencil code computing a wave 2D equation [7] to
measure the increase ratio in file size as we increase the number of simulation
time steps. Figure 6 shows that standard trace files increase linearly with the
number of simulation steps whereas the event flow graph (EFG) files do not.
For most of the benchmarks, the small increment in the graph file size is caused

MPI Trace Compression Using Event Flow Graphs 9

by the addition of new edges to the graphs due to the execution of different
call paths as the number of simulation steps increases. (For GTC the number
of nodes also increases due to a variation in the size of messages.) However,
applications that execute the same loop over time such as the 5-stencil code
have constant event flow graph size irrespective of the number of simulation
steps. For applications like that, the only difference between graphs from runs
with different simulation times is their node cardinality.

MiniGhost EFGs —+—

Table 1. File compression ratios MiniGhost Trace Files -

| 5D-Stencil EFGs -

33 [5D-Stencil Trace Files ~B

s - ik-

Benchmark Ranks Min Max Avg SNAP Trace il -6

3t GTC EFGs - ®-

AMG 96 170 185 176 o GTC Trce Fils ~4-
GTC 64 37.95 47.65 46.60 § 251

MILC 96 38.67 39.44 39.03 >

SNAP 96 75.37 210.88 119.23
MiniDFT 40 3.14 839 4.33 L5t
MiniFE = 144 15.23 2225 19.93
Minighost 96 3.84 5.72 4.85 [\

x1 X 3
Increase ratio in Simulation Steps

Fig. 6. Increase in file size when increasing
simulation steps

Table 2. Number of nodes, edges and cardinality of nodes in the event flow graphs

Num. of nodes Num. of edges Node Cardinality
Benchmark Ranks Min Max Avg Min Max Avg Min Max Avg
AMG 96 4973 15115 9,348.94 5652 17287 10,586.47 4.44 4.83 4.59

GTC 64 114 130 114.50 120 151 121.20 96.52 109.53 109.10
MILC 96 6330 6347 6330.18 97426 97443 97426.18 1653.01 1657.31 1657.27
SNAP 96 22 28 24.77 340 1729 1,120.26 7,007.50 17,805.91 14,149.22

MiniDFT 40 512 1087 690.30 873 5851 1,980.38 12.39 63.01 27.29
MiniFE 144 73 280 161.08 75 282 163.08 33.86 50.35 45.10
Minighost 96 89 95 92.33 91 135 111.04 12.13 13.89 13.13

4 Related Work

Performance tools for HPC systems have been studied and developed for years.
Extrae and Paraver [8,9], and also ScoreP with Vampir [10,11], are tracing
toolsets used to visualize the behavior of MPI applications over time. They
provide lossless traces that include all the events that happened while the ap-
plication was running. However, these traces are huge and their size increases
linearly with the number of MPI processes. Therefore, the use of such toolsets is
limited by scalability constraints. In contrast, our current work with event flow

10 X. Aguilar, K. Fiirlinger, and E. Laure

graphs shows that we can capture the events and their temporal order as tracers
do while storing it in files that are a few orders of magnitude smaller. However,
our approach is still in an early stage and more work is needed to reach the same
level of usability and information granularity as that provided by current tracing
tools, for example, including continuous data such as timestamps or hardware
performance counters in the trace.

Our work is also related to lightweight profiling tools such as mpiP [12] or
Gprof [13]. These tools generate profiles of aggregated information with very low
overhead. Although these tools can provide a good overview of the performance
problems for a particular application, they lack the temporal order of data needed
for in-depth performance analysis. In contrast, IPM can provide temporal order
in the performance data using event flow graphs. Additionally, IPM also provides
standard reports with aggregated statistics.

Scalatrace [14] is a tracing framework that provides on-the-fly lossless trace
compression of MPI communication traces. It implements intra-node compres-
sion describing single loops with RSDs [15] and using techniques such as callpath
compression. Scalatrace also implements inter-node compression at the end of
the run when each process trace is merged into a single one for the whole appli-
cation. Scalatrace comes with a replay mechanism for a later analysis of those
traces. Our work differs from Scalatrace in the sense that we do not compress
series of events, but instead record the behavior of an application using graphs.
We believe this approach has better compression ratios and much less overhead
as discussed in Sect. 3. Furthermore, our approach also makes it possible to
replay traces later for the purposes of performance analysis. Nevertheless, our
current implementation still lacks inter-node compression, generating one file per
process. This is subject to future work though.

Krishnamoorthy et al. use SEQUITUR to compress traces creating context-
free grammars from the sequence of MPI calls [16]. In order to achieve better
compression, the trace is not compressed at an event level, but instead every call
argument is compressed in a different stream. This loses any program structure
in the resulting trace and makes it unreadable. In contrast, our approach keeps
the program structure, thus allowing us to easily visualize the traces.

Kniipfer et al. use Complete Call Graphs (CCGs) to compress post-mortem
traces according to the call stack [17]. This approach builds a call graph and re-
places similar repeated sub-trees with a reference to a single instance. Therefore,
CCGs can be very useful for trace analysis tools, reducing their memory footprint
and allowing them to deal with bigger traces. However, this method does not elim-
inate the burden of generating large traces while the application runs.

Flow graphs have been widely used in other areas of computer science such as
code generation and analysis. In those contexts, compilers generate flow graphs
from their intermediate representation (IR) where nodes are code blocks and
edges are branches that a program may take. Our work differs in the sense that
the nodes in our graphs are communication events instead of code blocks. In
addition, the edges of our event flow graphs are not possible branches but rather
transitions that actually happened during the execution.

MPI Trace Compression Using Event Flow Graphs 11

5 Future Work

Using event flow graphs in the analysis of MPI parallel applications opens up
many possibilities such as developing new tools to visualize, navigate and interact
with graphs. Possible visualization features could be graph coloring depending
on different metrics or highlighting differences among graphs to detect load im-
balance among processes. The graph approach also allows the use of different
algorithms and techniques for automatic graph analysis, for instance, detecting
loops in the graph and time spent in those loops. Furthermore, these new per-
formance tools could provide trace reconstruction features for just some sections
of the graph or a couple of iterations of a graph cycle.

Our current implementation of the event flow graphs in IPM does not keep
any time information on call duration in the graph. Thus, trace reconstruction
with timestamps is not possible yet. Therefore, we are looking into methods
for trace reconstruction that include time information. Furthermore, we want to
apply those methods for the reconstruction of any continuous data in the trace,
for example, hardware performance counters.

Finally, another aspect we want to explore in the future is inter-node trace
compression across ranks. Our current version always generates one flow graph
per process. However, it is usual in parallel application that a set of processes
has similar or identical behavior. In such cases, the graphs generated by those
processes will be similar as well, and thus, they can be compressed into a single
graph that could be used to describe that whole set of processes with similar
execution.

6 Conclusion

Performance analysis through tracing is the best method to understand the be-
havior of applications. However, tracing techniques have scalability limitations
due to the amount of information that is generated. In this paper we have pre-
sented a disruptive approach for performance tracing of MPI parallel applica-
tions using event flow graphs. This new method combines the scalability and
low overhead of profiling methods with the lossless information capabilities of
tracing tools. We evaluated our implementation using several mini-applications
from the NERSC-8/Trinity Benchmark Suite. The experiments showed promis-
ing results, achieving file compression ratios up to 119 with overheads below 2%.
Furthermore, the use of applications with longer simulations would allow even
better compression ratios because the same paths in the application are executed
more times. Although our work is still at an early stage, we believe it has strong
potential to be a way towards developing performance analysis tools that are
effective at an exascale level.

References

1. Labarta, J., Gimenez, J., Martinez, E., Gonzalez, P., Servat, H., Llort, G., Aguilar,
X.: Scalability of visualization and tracing tools. In: Proc. 11th Parallel Computing
Conf. (ParCo 2005), pp. 869-876 (2005)

12

10.

11.

12.

13.

14.

15.

16.

17.

X. Aguilar, K. Fiirlinger, and E. Laure

. Fuerlinger, K., Wright, N.J., Skinner, D.: Effective performance measurement at
petascale using ipm. In: 2010 IEEE 16th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 373-380. IEEE (2010)

Aguilar, X., Fiirlinger, K., Laure, E.: Online performance data introspection with
ipm. In: The 15th IEEE International Conference on High Performance Computing
and Communications (2013) (to be published)

Firlinger, K., Skinner, D.: Capturing and visualizing event flow graphs of mpi
applications. In: Lin, H.-X., Alexander, M., Forsell, M., Kniipfer, A., Prodan, R.,
Sousa, L., Streit, A. (eds.) Euro-Par 2009 Workshops 2009. LNCS, vol. 6043, pp.
218-227. Springer, Heidelberg (2010)

NERSC-8 / Trinity Benchmarks WWW site, http://www.nersc.gov/systems/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

Alcouffe, R.E., Baker, R.S., Dahl, J.A., Turner, S.A., Ward, R.: Partisn: A time-
dependent, parallel neutral particle transport code system. Los Alamos National
Laboratory, LA-UR-05-3925 (May 2005)

MPICH wiki, http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt
Pillet, V., Labarta, J., Cortes, T., Girona, S.: Paraver: A tool to visualize and
analyze parallel code. In: Proceedings of WoTUG-18: Transputer and Occam De-
velopments, vol. 44, pp. 17-31 (1995)

Servat, H., Llort, G., Huck, K., Giménez, J., Labarta, J.: Framework for a produc-
tive performance optimization. Parallel Computing 39(8), 336-353 (2013)
Knitipfer, A., Rossel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D.,
Geimer, M., Gerndt, M., Lorenz, D., Malony, A., et al.: Score-p: A joint perfor-
mance measurement run-time infrastructure for periscope, scalasca, tau, and vam-
pir. In: Tools for High Performance Computing 2011, pp. 79-91. Springer (2012)
Kniipfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Miiller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139-155. Springer (2008)

Vetter, J.S., McCracken, M.O.: Statistical scalability analysis of communication
operations in distributed applications. In: ACM SIGPLAN Notices, vol. 36, pp.
123-132. ACM (2001)

Graham, S.L., Kessler, P.B., Mckusick, M.K.: Gprof: A call graph execution pro-
filer. ACM Sigplan Notices 17(6), 120-126 (1982)

Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R..: Scalatrace: Scalable
compression and replay of communication traces for high-performance computing.
Journal of Parallel and Distributed Computing 69(8), 696710 (2009)

Havlak, P., Kennedy, K.: An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems 2(3), 350
360 (1991)

Krishnamoorthy, S., Agarwal, K.: Scalable communication trace compression. In:
Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 408-417. IEEE Computer Society (2010)
Knupfer, A., Nagel, W.E.: Construction and compression of complete call graphs
for post-mortem program trace analysis. In: International Conference on Parallel
Processing, ICPP 2005, pp. 165-172. IEEE (2005)

http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/systems/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://wiki.mpich.org/mpich/images/1/17/Wave2d.cpp.txt

	MPI Trace Compression Using Event Flow Graphs

	1 Introduction
	2 MPI Event Flow Graphs
	2.1 Reconstructing Traces from Event Flow Graphs
	2.2 Compressing Edges in Branch Nodes
	2.3 Implementation in IPM

	3 Experiments
	3.1 Overhead
	3.2 Compression Ratios

	4 Related Work
	5 Future Work
	6 Conclusion
	References

