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Abstract. Process discovery techniques try to generate process models from
execution logs. Declarative process modeling languages are more suitable than
procedural notations for representing the discovery results deriving from logs of
processes working in dynamic and low-predictable environments. However, ex-
isting declarative discovery approaches aim at mining declarative specifications
considering each activity in a business process as an atomic/instantaneous event.
In spite of this, often, in realistic environments, process activities are not instan-
taneous; rather, their execution spans across a time interval and is characterized
by a sequence of states of a transactional lifecycle. In this paper, we investigate
how to use discriminative rule mining in the discovery task, to characterize life-
cycles that determine constraint violations and lifecycles that ensure constraint
fulfillments. The approach has been implemented as a plug-in of the process min-
ing tool ProM and validated on synthetic logs and on a real-life log recorded by
an incident and problem management system called VINST in use at Volvo IT
Belgium.

Keywords: Process Discovery, Rule Mining, Discriminative Mining, Non-Atomic
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1 Introduction

Process discovery techniques are widely considered as critical for successful business
process management and monitoring. In particular, the discovery of declarative models
can be used in complex environments where process executions involve multiple alter-
natives and high flexibility is needed [2] [9]. Consider, for example, a business process
for handling natural disasters. This type of process is totally unpredictable and should be
adapted every time to specific conditions characteristic of specific cases. Using declar-
ative models for describing processes like this, allows analysts to define generic con-
straints to be followed during the process execution instead of explicitly representing
the flows of events allowed. At runtime, anything that does not violate these constraints
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is possible. In this way, process participants are free to adapt their tasks to the envi-
ronment characteristics as long as these general rules are respected. At the same time,
models remain under-specified and easy to understand for humans.

Existing process discovery techniques for generating declarative specifications, do
not take activity lifecycles and their characteristics into consideration, even if, in many
practical cases, activities are non-atomic. In the reality, activities have a duration span-
ning over time intervals in which transactional states (a.k.a. event types) of the activity
can occur. The sequences of event types that occur when an activity is executed, char-
acterize the lifecycle of that activity. For example, when an activity a is executed, the
lifecycle (@assign, Gstart; Gcompicte) can take place, including event types assign, start,
and complete. If available, this information is very relevant to be considered when min-
ing an event log, since it allows analysts to understand not only the constraints between
activities but also the ones that relate event types appearing inside the lifecycle of one
single activity.

In 2010, the IEEE Task Force on Process Mining has adopted XES (eXtensible Event
Stream) [19] as the standard for storing data in event logs. XES supports a specific
extension (Lifecycle Extension) to keep track of information related to the lifecycle of
an activity in a log. In addition, XES defines a standard transactional model for activity
lifecycles in a log through a state machine describing the allowed sequences of event
types for an activity.

Starting from this definition, in this paper, we present a novel approach to discover
declarative specifications from logs with a strong focus on the activity lifecycles. For de-
scribing declarative models, we use Declare, a declarative process modeling language,
first introduced in [15], that combines a formal semantics grounded in Linear Temporal
Logic (LTL) on finite traces' with a graphical representation. Here, we slightly mod-
ify the original semantics of Declare constraints to adapt it to the non-atomic case. In
addition, the proposed approach relies on the notion of constraint activation [5]. For
the constraint “every request is eventually acknowledged” each request is an activation.
This activation becomes a fulfillment or a violation depending on whether the request
is followed by an acknowledgement or not.

In our approach, in a first phase, starting from a log, we try to group together events
belonging to the same lifecycle of the same activity (discharging the “malformed” life-
cycles according to an input transactional model for activity lifecycles like, e.g., XES).
The lifecycle identification can be done using (i) a FIFO-based approach [6], or (ii)
event correlations [3]. The FIFO -based approach is a typical “conservative approach”
first in-first out, in which if a new upcoming event can be connected to two events oc-
curred in the past and belonging to two different lifecycles, the priority is given to the
one that occurred before. With event correlations, events are connected as part of the
same lifecycle whenever they share common values for some data attributes. This ap-
proach can only be applied if events in the log carry data. In our implemented prototype,
we have used the FIFO-based approach, but the tool can be easily extended to support
lifecycle identification through event correlations.

In a second phase of our approach, we generate a set of candidate Declare con-
straints (over non-atomic activities) considering the constraints that are most frequently

! For compactness, we will use the LTL acronym to denote LTL on finite traces.
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activated in the log. In this way, we discover information about the inter-relations be-
tween lifecycles of different activities.

In a third phase, we use discriminative rule mining to retrieve characteristics of the
lifecycle of an activation of a constraint that discriminate between cases in which that
activation is a fulfillment and the cases in which the activation leads to a violation for
that constraint. For example, we want to find rules like “if a registration ends with
an abortion the user cannot be notified via e-mail”, or “if an analysis is suspended
more than twice then eventually a check should be executed”. Using discriminative rule
mining we can discover intra-relations between transactional states inside the lifecycle
of a constraint activation that discriminate between cases in which the activation is
a fulfillment and cases in which the activation is a violation. In particular, we use a
decision tree to learn from contrasting training data discriminative rules related to the
lifecycle control flow. Lifecycles are encoded, in the form of Declare constraints, as
features of the tree and the resulting decision rules are used to express the lifecycle
characteristics able to discriminate between fulfillments and violations.

The approach presented in this paper has been implemented as a plug-in of the ProM?
process mining toolset. This prototype has been used to validate our technique on both
synthetic logs and a real life log recorded by an incident and problem management
system called VINST in use at Volvo IT Belgium.

The paper is structured as follows. Section 2 provides a preliminary background
about the Declare language, introduces the concepts of non-atomic activities and activ-
ity lifecycles and provides an overview on discriminative rule mining. Next, Section 3
illustrates the approach, based on the combination of declarative process mining al-
gorithms (extended to the non-atomic logs) and discriminative mining approaches. In
Section 4, the experimentation is discussed. Section 5 reports some conclusion and
future work.

2 Background

In this section, we introduce some preliminary knowledge needed to understand the
techniques presented in this paper. In particular, in Section 2.1, we give an overview of
the Declare language. In Section 2.2, we describe the transactional model for activity
lifecycles defined in the XES standard. Finally, in Section 2.3, we give some background
about discriminative rule mining.

2.1 Declare: The Language

Declare is a language for describing declarative process models first introduced in [15].
A Declare model consists of a set of constraints applied to (atomic) activities. Con-
straints, in turn, are based on templates. Templates are abstract parameterized patterns
and constraints are their concrete instantiations on real activities. Templates have a user-
friendly graphical representation understandable to the user and their semantics can
be formalized using different logics [14], the main one being Linear Temporal Logic
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Table 1. Graphical notation and LTL formalization of some Declare templates

TEMPLATE FORMALIZATION NOTATION
responded existence(A,B) 0A — OB Ae—B
response(A,B) 0(A — OB) Ae—>B
precedence(A,B) -BW A A —>»e B
alternate response(A,B)  0(A — O(—~Au B)) Ae—B

alternate precedence(A,B) (-BW A) AO(B — O(-BW A)) A =—»e B

chain response(A,B) O(A — OB) A —> B
chain precedence(A,B) 0O(OB — A) A =—>e B
not resp. existence(A,B) 0A — -0OB Aef— B
not response(A,B) O(A — -0B) A oft» B
not precedence(A,B) O(A — —~0B) A —jjpe B
not chain response(A,B) (A — ~OB) A =i> B
not chain precedence(A,B) (A — ~OB) A =jpe B

over finite traces, making them verifiable and executable. Each constraint inherits the
graphical representation and semantics from its templates. The major benefit of using
templates is that analysts do not have to be aware of the underlying logic-based for-
malization to understand the models. They work with the graphical representation of
templates, while the underlying formulas remain hidden. Table 1 summarizes some De-
clare templates. The reader can refer to [1] for a full description of the language. Here,
we indicate template parameters with capital letters (see Table 1) and real activities in
their instantiations with lower case letters (e.g., constraint ((a — Ob)).

Consider, for example, the response constraint (J(a — Ob). This constraint indicates
that if @ occurs, b must eventually follow. Therefore, this constraint is satisfied for traces
such as (a, a, b, ¢), (b, b, ¢, d), and {a, b, ¢, b), but not for (a, b, a, c) because, in this case,
the second instance of a is not followed by a b. Note that, in trace (b, b, ¢, d), the con-
sidered response constraint is satisfied in a trivial way because a never occurs. In this
case, we say that the constraint is vacuously satisfied [11]. An activation of a constraint
in a trace is an event whose occurrence imposes, because of that constraint, some obliga-
tions on other events in the same trace. For example, a is an activation for the response
constraint J(a — Ob), because the execution of a forces b to be executed eventually.

An activation of a constraint can be a fulfillment or a violation for that constraint.
When a trace is perfectly compliant with respect to a constraint, every activation of the
constraint in the trace leads to a fulfillment. Consider, again, the response constraint
O(a — Ob). In trace (a, a, b, ¢), the constraint is activated and fulfilled twice, whereas,
in trace (a, b, ¢, b), the same constraint is activated and fulfilled only once. On the other
hand, when a trace is not compliant with respect to a constraint, an activation of the
constraint in the trace can lead to a fulfillment but also to a violation (at least one
activation leads to a violation). In trace (a, b, a, c), for example, the response constraint
O(a — Ob) is activated twice, but the first activation leads to a fulfillment (eventually
b occurs) and the second activation leads to a violation (b does not occur subsequently).
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Fig. 1. XEs Standard and BPI Challenge 2013 transactional models for activity lifecycles

2.2 Activity Lifecycle

In real business applications, activities cannot be considered as atomic/instantaneous
events, but they traverse different states in their lifecycle. Consider, for example, activ-
ity Check. This activity, during its execution can traverse different transactional states
like, e.g., (i) schedule (Checkschedule), meaning that a check has been scheduled, (ii)
start (C'hecksiqrt), indicating that the check activity has started its execution, and (iii)
complete (Checkcompicte), meaning that the check has been completed.

A transactional model for activity lifecycles represents the set of the admissible se-
quences of states that an activity can assume during its lifecycle. Figure 1 depicts the
XES standard transactional model [10], which allows keeping track in the log of in-
formation related to activity lifecycles. In particular, the model is provided as a state
machine describing the admissible flows of the different states an activity can assume.
In addition, using the Lifecycle Extension provided in XES, users can customize the
transactional model allowed in an event log.

Figure 2 reports an example that we will use as running example throughout the pa-
per. In the figure, t; represents an execution trace containing only atomic activities (a,
b, and c¢). t; includes non-atomic activities and different event types assumed by activi-
ties a, b and c (based on the XES standard transactional model). Activity a appears with
three event types (once with assign, and twice with start and complete) b occurs with
two event types (twice with start and complete), and activity ¢ appears only with event
type start. From this example, it is clear that we need a mechanism to connect events
belonging to the same activity lifecycle together. In this paper, we use a conservative,
FIFO-based approach. Using this approach, events at positions 1, 3 and 6 for activity a
are grouped together, and, also, events at positions 5 and 7. Events at positions 2 and 4,
and events at positions 8 and 10 for activity b are grouped together. Notice that, execu-
tions of activities can overlap. For example, the first lifecycle of activity a in the figure
completes after that the first lifecycle of activity b has started. Also notice that some
lifecycles are malformed, like the one of activity ¢ that does not have a completion.
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Fig.2. An example of a trace including atomic activities (tp) and traces composed of non-atomic
activities (t; and t2)

2.3 Discriminative Mining

Discriminative mining aims at extracting, from an existing set of data, patterns that are
discriminative with respect to a given criterion. In the literature, several branches of
works, differing with each other based on the type of mined patterns (e.g., sequences
or rules), fall under this umbrella, like, for example, discriminative pattern mining [8],
discriminative sequence mining [12] or classification rule approaches [18]. All these
approaches are usually based on supervised or non-supervised learning techniques. In
this work, we exploit decision tree supervised learning [7] in order to mine a set of
declarative rules that discriminate between fulfillments and violations of a given con-
straint. Decision trees have been applied in the context of discriminative rule mining
(also on top of other techniques) for their capability to construct readable rules [18].
Decision tree learning uses a decision tree as a model to predict the value of a tar-
get variable based on input variables (features). Decision trees are built from a set of
training dataset. Each internal node of the tree is labeled with an input feature. Arcs
stemming from a node labeled with a feature are labeled with possible values or value
ranges of the feature. Each leaf of the decision tree is labeled with a class, i.e., a value
of the target variable given the values of the input variables represented by the path
from the root to the leaf. Moreover, each leaf of the decision tree is associated with a
support (support) and a probability distribution (class probability). Support represents
the number of examples in the training dataset that follow the path from the root to
the leaf and that are correctly classified; class probability is the percentage of examples
correctly classified with respect to all examples following that specific path.

In this work we rely on the Weka J48 implementation of one of the most known
decision tree algorithms, the C4.5 algorithm [16], which exploits the normalized infor-
mation gain to choose, for each node of the tree, the feature to be used for splitting the
set of examples.

3 Approach

Figure 3 illustrates our proposed approach. Given a log containing non-atomic activities
and a transactional model for activity lifecycles as a reference, it returns as output (i) a
set of Declare constraints with non-atomic activities, and (ii) for each constraint, a set
of characteristics of the involved activity lifecycles, which are possibly related to the
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Fig. 3. An overview of the proposed approach

fulfillment or to the violation of the constraint. Roughly speaking, the approach takes
into consideration a list of candidate Declare constraints (involving non-atomic activ-
ities), and it uses standard discovery techniques [13] for identifying fulfillments and
violations for each of them. Then, a discriminative rule mining approach is used to find
the characteristics of the lifecycle of an activation of a candidate constraint that allows
us to discriminate between cases in which that activation was a fulfillment, and cases
in which the activation was a violation for the considered constraint. In the following
sections, we describe the main steps of the approach in detail.

3.1 Lifecycle Consistency Checking

The first step of our proposed technique aims at processing the input log to (i) connect
together activity states belonging to the same lifecycle, and (ii) remove all the “mal-
formed” lifecycles that are not consistent with the input transactional model. As already
mentioned in Section 2, there are two possibilities for grouping event types of an activ-
ity belonging to the same lifecycle. One way to do it is by using event correlations as
explained in [3]. If the event log contains (event) data attributes, it is possible to con-
nect activity states that share some data values, e.g., an event id. However, this approach
is applicable only if attributes that can be used to connect events exist. Therefore, for
our experimentation, we decided to implement a conservative approach that is less pre-
cise, but applicable also in cases of logs with no data attributes or with data attributes
that cannot be used for event correlation. In particular, we use a FIFO-based algorithm.
We explain this approach using our running example in Fig. 2, and using the XES stan-
dard transactional model for activity lifecycles as reference. Based on this transactional
model, events in trace t; of the example can be grouped in separate lifecycles in different
ways. For example, acompiete at position 6 can be connected with agq,¢ at position 3,
or with ag4,¢ at position 5. Applying our FIFO-based algorithm, we can disambiguate
the correlation using a conservative approach. This means that a.compiete at position 6 is
connected with the agq,¢ event that occurred first, i.e., the one at position 3. Following
this approach, we can identify, in trace t;, the following lifecycles:

a1 = (@assign (1), @start (3), Acomplete(6)),

az = (astart(5), Gcomplete (7)),

b1 = (bstart(2), beomplete (4)).
b2 = (bstart(8); beomplete (10)),

- c1 = (Cstart(9)),

where numbers between brackets indicate the position of the event in the trace.
As already mentioned, when we have all the lifecycles grouped together we can fil-
ter out the ones that are inconsistent with respect to the input transactional model. For
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Table 2. LTL formalization of some Declare templates with non-atomic activities

TEMPLATE FORMALIZATION
responded existence(A,B)  0A; — OB;
response(A,B) O(Af — OB;)
precedence(A,B) -B; WAy

alternate response(A,B) O(Af — O(—ArU By))
alternate precedence(A,B)  (—=B; W Af) AO(B; — O(=B; W Ay))
chain response(A,B) O(Af — OBy)

chain precedence(A,B) 0(OB; — Ay)

not responded existence(A,B) 0A; — —=0B;

not response(A,B) O(Af — =0By)

not precedence(A,B) O(Af — =0By)

not chain response(A,B) O(Af — -0OBy)
not chain precedence(A,B) O(Ay — -~OB;)

example, in our case, lifecycle c; is not allowed in the XES standard model, since a com-
pletion is missing. For this reason, this lifecycle will be filtered out and not considered
for further analysis. The outputs of this step of our proposed approach are, respectively,
the filtered log and the list of all the activities lifecycles (described by sequences of
event types) that are contained in the log.

3.2 Boundary State Detection

The aim of this step is to abstract the activity lifecycles in the log by replacing them
with placeholders marking the start and the end of each lifecycle in the log. This trans-
formation is needed to discover Declare constraints with semantics for non-atomic ac-
tivities described in Table 2. The formulas are straightforward and directly follow by the
corresponding formulas in standard Declare. The idea is that, for verifying constraints
involving non-atomic activities, it is sufficient to take into account the boundary states
of lifecycles (in the table the initial state is indicated with “7”” and the final one with “f™),
abstracting away from the lifecycle details. For example, for the response template, it
is enough to verify that the final state of activity A (A) is followed by the initial state
B (B;). In general, we consider most of the constraints valid for non-overlapping life-
cycles. The only exceptions are the semantics of templates responded existence and not
responded existence that we consider valid also for overlapping lifecycles of parallel
activities.

In this step of the approach, we take as input the filtered log obtained by the previous
step and produce a new log in which internal states of each lifecycle (i.e., states that
are neither initial nor final) are filtered out. Trace t; of our running example would be
transformed into trace <aassign’ bstarts bcompletea Gstarts Gcompletes Gcompletes bstarts
beomplete)- Event asiqr¢(3) is filtered out because it is not a boundary event in lifecycle
a1 = (aassign (1), @start(3), Gcompiete(6)). Events in the log are further transformed
by abstracting away from the specific event type that corresponds to the first or the last
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event of each lifecycle: each starting state will be indicated with “i”” and each final state
with “f”. For instance, t; would become (a;, b;, by, a;, ap,ar,b;,by).

3.3 Discovering Inter-Lifecycle Relations

In this step, the boundary state log derived from the previous step is mined using the
approach presented in [3] to discover Declare constraints with semantics for non-atomic
activities described in Table 2. As shown in the table, this semantics take into consider-
ation only the boundary events of the activity lifecycles. The outcome of this step of the
approach is a set of candidate Declare constraints connecting elements of different life-
cycles (inter-lifecycle relations). For each candidate, we extract the set of fulfillments
and the set of violations in the log. These sets will be input of the supervised learning
problem defined in the next step of our proposed technique needed to find intra-lifecycle
relations discriminating between lifecycles of constraint activations that eventually lead
to a fulfillment and lifecycles of activations that lead to a constraint violation.

3.4 Discovering Intra-Lifecycle Relations

In the previous step of our proposed approach, we extract fulfillments and violations
for a list of candidate constraints describing inter-lifecycle relations between activities
in the log. For example, in trace t; of our running example, beompiete (4) is a fulfillment
for constraint (1(b ;o Qa;) (in this case b ¢ is eventually followed by a;), whereas
beomplete (10) is a violation for the same constraint. Note that, at this point of our ap-
proach, we take again into consideration the entire lifecycles connected to the bound-
ary events in the log and we analyze their control flow characteristics to discriminate
between lifecycles of activations that are fulfillments and the ones that are violations
for each candidate constraint. These characteristics will be expressed, in turn, using
Declare. In this case, the Declare constraints express intra-lifecycle relations between
event types of the same activity.

This problem can be reformulated in terms of a supervised learning problem. For
each candidate constraint constr, defined over a pair (a, b), with a activation of constr,
the features of the lifecycle of a discriminating with respect to fullfillments/violations
of constr, are learned from a set L of sequences representing all the lifecycles of a in
the log. These sequences are classified in two sets L y,,; and L.;0; according to whether
the lifecycle corresponds to a fulfillment or to a violation of constr.

For example, consider traces t; and ts in our running example and constraint J(ay —
sz) Lifecycles a; = <astart; acomplete) and az = <aassign’ Gstart, acomplete> in trace
t; correspond to fulfillments for the considered constraint since they are followed by
an occurrence of b;. Lifecycles as = {(astart> Gsuspend> Cresumes Geomplete)> Ga =
<aassign, Gstarts Gsuspends dresumes acomplete>7 and as = <aassign, Greassign> Gstarts
acmnplete) in trace to correspond to violations. Therefore, in this case, we have L ¢, =
{<asm7"t, acomplete>,<aassign7 Astart, acomplete>} and Lo = {(astarta Asuspends
Qresumes acomplete>’ <aassign’ Astarts Asuspends dresumes acomplete>’ <aassign’ Qreassigns
Astart, acomplete>}-

From these sets, we could learn, for example, that it is likely that O(a ;o Ob;)

is verified when agq,¢ 1s immediately followed by acompiete but is not immediately
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preceded by ay.cqssign in the lifecycle of a. In particular, we exploit decision tree learn-
ing in order to identify the conditions (decision rules) on the lifecycle of an activation
given the training sets L y,,; and L;q;.

Each lifecycle of an activation a is encoded in terms of a set of Declare constraints
(over the states of the lifecycle). In particular, each lifecycle is encoded as a vector of
(boolean) values representing whether all these (intra-lifecycle) constraints are satisfied
or not on that lifecycle. The decision tree is trained using the intra-lifecycle conditions
as features and the classification of the lifecycle as part of L f,; or L,;,;. The analysis of
the tree allows us to retrieve the set of conditions on the features which possibly make
the constraint under consideration fulfilled or violated. Figure 4 shows a possible deci-
sion tree generated over the lifecycle of the running example described above. In order
to have the inter-lifecycle constraint O(a; — Ob;) fulfilled, the intra-lifecycle con-
ditions O(astart — Olcompiete) (chain response between asiqre and acomplete) and
—0(Oareassign — @start) (chain precedence between areqssign and asiqre) should
hold. In summary, the result of the decision tree learning will be a set of Declare con-
straints over the states of the lifecycles of a which would bring to fulfillments or to
violations for O(ay — Ob;).

D(areassign — oastart)

Violated O Fullfille Q

Fig. 4. A decision tree generated over the lifecycle of the running example

4 Experiments

In order to evaluate the proposed approach, we have implemented it as a plug-in of
the process mining tool ProM. Then, the implemented plug-in has been applied to (i) a
set of execution logs synthetically generated (to verify its capability to capture known
discriminating behaviors); (ii) a real-life log (to check the scalability and the applica-
bility of the approach to real-life settings). All the experiments have been conducted on
a machine with an Intel i7 processor (limiting the execution to just one core), 8 GB of
RAM and the Oracle Java virtual machine installed on a GNU/Linux Ubuntu operating
system and are discussed in this section.

4.1 Synthetic Log Analysis

The purpose of the synthetic log analysis is to verify whether the discriminative rules
discovered reflect the actual discriminating behaviors (with respect to constraint fulfill-
ments/violations) of the execution logs under examination. To this aim, four synthetic
logs have been generated, taking inspiration from the insurance claim process presented
in [4]. The process describes the handling of health insurance claims in a travel agency,
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starting from the registration up to the claim archiving. The approach has been applied
to each synthetic log and discriminative rules have been extracted. In the following
subsections, we illustrate how we have generated the logs and the results obtained.

Synthetic Log 1. Synthetic Log 1 contains 1000 traces in which Register occurs with
one of the following possible lifecycles:

( Registerstart, Registercomplete )

( Registeraport )

( Registerassign, Registersiart, Registercomplete )
( Registersiart, Registerqport )

( Registersiart, Registersuspend, Registeraport )

Whenever Register is aborted (see second, fourth and fifth lifecycle in the list),
the claimer is notified via phone; on the other hand, if the registration completes nor-
mally (see first and third lifecycle in the list), the e-mail notification is required. There-
fore, in the log, whenever Register is aborted, the response constraint J(Register —
ONotify by phone) is verified, otherwise this constraint does not hold.

Synthetic Log 2. Synthetic Log 2 contains 1000 traces in which the non-atomic activity
Send questionnaire occurs with one of the following possible lifecycles:

( Send questionnairesiart, Send questionnairecompliete )

( Send questionnaireyithdraw )

( Send questionnaireassign, Send questionnaireyithdraw )

( Send questionnairesiart, Send questionnairesyspend. Send questionnaireqport )

( Send questionnairecomplete )

When Send questionnaire is withdrawn or aborted (see second, third and fourth life-
cycle in the list), Skip response for skipping the response is executed. On the other
hand, whenever Send questionnaire completes normally (see first and fifth lifecycle in
the list), Skip response is not executed. Therefore, in the log, the response constraint
O(Send questionnaire — O(Skip response)) is verified only if Send questionnaire
does not complete normally (i.e., with withdraw or abort).

Synthetic Log 3. Synthetic Log 3 contains 1000 traces in which the non-atomic activity
High medical history check occurs with one of the following possible lifecycles:

( High medical history checkyithdraw )

( High medical history checksiart, High medical history checkcompiete)
( High medical history checksiqrt, High medical history checkqport)

( High medical history checkassign, High medical history checkqutoskip)
( High medical history checkassign, High medical history checkstart,

High medical history checkcompiete )

When High medical history check does not complete normally (see first, third and
fourth in the list), Contact hospital is executed eventually. On the other hand, in cases in
which the verification procedure completes normally (see second and fifth lifecycle in
the list), there is no need to contact the hospital. Therefore, in the log, the response con-
straint J(High medical history check — OContact hospital) holds if and only if
High medical history check fails.
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Table 3. Synthetic Log Results
LOG INTER-LIFECYCLE RELATION INTRA-LIFECYCLE RELATION
1 response(Register,Notify by phone) exactly (1,Registerqgport)

exclusive choice
response (Send questionnaire, Skip response) (Send questionnairegport,
Send questionnaireyithdraw)

2

— alternate response
3 response (High medical history check, Contact hospital) (High medical history checkstart,
High medical history checkcompiete)

alternate succession

4 response(Register, Notify by email) (Registerresume Registercompiete)

Synthetic Log 4. Synthetic Log 4 contains 1000 traces in which the non-atomic activity
Register occurs with one of the following possible lifecycles:

- ( Registerstart, Registersuspend, Registerresume, Registercomplete )

- ( Registersiart, Registersyspend, Registeraport )

- ( Registersiart, Registersuspend, Registerresume, Registersyspend, Registerresume,
Registercomplete)

- ( Registerstart, Registersuspend, Registerresume, Registersuspend, Registeryithdraw )

When Register is suspended and ends with an abort or a withdraw (see second and
fourth lifecycle in the list), or Register is suspended (and resumed) more than once
(see third lifecycle in the list), the claimer has to be notified via phone; if there is only
one suspension correctly resumed, i.e., a single cycle suspend/resume and, eventually, a
normal completion (see first lifecycle in the list), the claimer can be notified via e-mail.
Therefore, in the log, whenever Register is suspended and not resumed, or suspended
more than once, the response constraint (J( Register — QNotify by phone) is veri-
fied, otherwise this constraint does not hold.

Discussion of the Results. Table 3 shows some of the constraints discovered. For
Synthetic Log 1 and the response constraint between Register and Notify by phone the
discriminative rule discovered is exactly(1, Registerport). Whenever Registerport OC-
curs (exactly once, since it cannot occur more than once based on the XES transactional
model), the claimer has to be notified via phone. This result confirms the rationale be-
hind the construction of Synthetic Log 1: whenever a registration is aborted, the claimer
has to be notified via phone, otherwise Notify by phone is not executed.

Concerning Synthetic Log 2 and the response constraint between Send questionnaire
and Skip response, the exclusive choice between Send questionnairegpor+ and
Send questionnaire.,ithdraw 1S discovered as discriminative rule. If and only if the life-
cycle of Send questionnaire contains either Send questionnairegport — Or
Send questionnaire,,;ipdraw, the questionnaire response is skipped. This perfectly fits
with the behavior characterizing the log: whenever Send questionnaire cannot complete
normally, the questionnaire response is skipped.

The response constraint between High medical history check and Contact hospital
in Synthetic Log 3 is valid when the intra-lifecycle relation — alternate response be-
tween High medical history checksory and High medical history checkcompicte
holds. If and only if High medical history checksiqry is not followed by
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Table 4. BPI 2013 Results
INTER-LIFECYCLE RELATION INTRA-LIFECYCLE RELATION CLASS PROB. SUPPORT

not responded existence

(1) precedence (Accepted,Completed) (Completedeancetiea.Completedoiosed) 0.65 3711
init(Accepted )V
2) precedence d,A ted ¥n¥t( P Assigned 0.75 92
@p (Queued. Accepted) init (Acceptedw ait implementation)
co-existence
(3) precedence (Queued, Completed) (Completedin varr,Completedcanceiiod) 0.8 4551
) ) — responded existence
(4) response (Completed, Queued) (Completedpoumived,Completedciosed) 0.98 7570
. 3 . _ - ot responded existence
(5) responded existence (C'ompleted, Accepted) (Completedeaneoriea,Completedoiosed) 0.66 3771
(6) responded existence (Completed, Queued) co-existence 0.8 4595

(Completedry carr,Completedcancelled)

High medical history checkcompiete, the hospital has to be contacted. The result is in
line with what described in Synthetic Log 3: whenever, in the lifecycle of
High medical history check, there is a High medical history checksiqr+ that is not fol-
lowed by High medical history checkcompicte, the hospital has to be contacted.

Finally, for Synthetic Log 4 and the response constraint between Register and
Notify by email, the discriminative rule discovered for the verification of this con-
straint is the alternate succession between Registerycsume and Registercomplete. If
and only if Register,esume 18 followed by Registercompicte and not more than one
Registeryesume 1 executed before Registercompiete (at most one suspend/resume cy-
cle occurs), then the response constraint between Register and Notify by email is ver-
ified. This result is in line with the behavior injected into Synthetic Log 4: whenever
Register is suspended and and correctly resumed at most once, the customer is notified
via e-mail.

4.2 BPI Challenge 2013

The proposed approach has also been applied to a real-life log. The log, which was pro-
vided for the BPI Challenge 2013 [17], has been taken from an incident and problem
management system called VINST. The VINST system includes the activities required
to diagnose the root causes of incidents and to secure the resolution of those problems
ensuring high levels of service quality and availability of services operated by Volvo
IT. The log contains 7,554 cases and 65,533 events and is characterized by four differ-
ent activities (Accepted, Completed, Queued and Unmatched) and 14 event types like
In Call, Assigned, Cancelled, Resolved and Closed. The transactional model for activity
lifecycles followed in the log is reported in Figure 1 on the right hand side.

Table 4 shows a list of discovered constraints and, for each of them, the (intra-
lifecycle) rules to discriminate between fulfillments and violations. The last two columns
of the table also report class probability and support associated to each discovered dis-
criminative rule.

The first row of the table (1) suggests that a possible discriminating behavior for
which Completed is preceded by Accepted is that either Completed ¢ gnceiieqa O Com-
pletedciyseq occurs in the lifecycle of Completed. The same rule is also discriminating
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for fulfillments/violations of the responded existence between Completed and Accepted
(i.e., the constraint assessing that whenever Completed occurs, then, Accepted has to
occur in the future or has already occurred before). In the second row of Table 4 (2), we
can see that whenever the lifecycle of Accepted starts with Accepted sssigneq Or With
Acceptedvwy qit Tmplementation, Accepted is preceded by Queued. These results are the
ones with the lowest class probability and support. For example, the class probability of
the rule in (1) (0.65) indicates that only in 65% of the cases in which the constraint is ac-
tually verified, the corresponding discriminative rule also holds. Similarly, the support
of (2) indicates that the cases in which the constraint and the corresponding discovered
discriminative rule are both verified are 92.

On the other hand, the remaining rules present both a reasonable class probabil-
ity (> 0.8) and a good support (> 4500). In particular, the co-occurrence of Com-
pletedr,, cqu and Completedcgneelleq discriminates both on the precedence (3) and
on the responded existence (6) between Queued and Completed, i.e., whenever both
In Call and Cancelled occur in the lifecycle of Completed, it means that Completed is
preceded by Queued or, more in general (with a slightly higher support), that Queued
occurs at least once before or after Completed.

Finally, the discovered discriminating behavior with the highest class probability (al-
most 1) and support (more than 7000) is the one related to the response constraint be-
tween Completed and Queued (6): Queued eventually follows Completed if and only
if only one among Completed gesorveq and Completedciyseq occurs in the lifecycle of
Completed.

5 Conclusion and Future Work

This paper presents a novel approach for the discovery of declarative process models
from logs containing non-atomic activities. Discriminative rule mining is used to char-
acterize the lifecycle of each constraint activation and discriminate between lifecycles
that ensure that the activation is a fulfillment and lifecycles that correspond to violations
of the constraint under examination.

In order to assess the applicability of the proposed approach, we applied it to four
synthetic logs and a real-life log recorded by an incident and problem management
system in use at Volvo IT Belgium. Our experiments show the effectiveness of the
approach and its applicability in real-life scenarios. As future work, we will conduct a
wider experimentation of the proposed framework on several case studies in real-life
scenarios and different transactional models for activity lifecycles. In addition, we will
implement the identifications of lifecycles through event correlations and compare this
approach with the FIFO-based approach presented in this paper.
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