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Abstract. Context-aware systems make use of contextual information to
adapt their functionality to current environment state, or user needs and habits.
One of the major problems concerning them is the fact, that there is no war-
ranty that the contextual information will be available, nor certain at the time
when the reasoning should be performed. This may be due to measurement er-
rors, sensor inaccuracy, or semantic ambiguities of modeled concepts. Several
approaches were developed to solve uncertainty in context knowledge bases, in-
cluding probabilistic reasoning, fuzzy logic, or certainty factors. However, han-
dling uncertainties in highly dynamic, mobile environments still requires more
consideration. In this paper we perform comparison of application of different
uncertainty modeling approaches to mobile context-aware environments. We also
present an exemplary solution based on modified certainty factors algebra and
logic-based knowledge representation for solving uncertainties caused by the im-
precision of context-providers.

Keywords: context-awareness, mobile devices, knowledge management,
uncertainty.

1 Introduction

Context-aware systems aim to make use of context information to allow devices or ap-
plications to behave in a context-aware, thus “intelligent” way. The variety of sensors
available on mobile devices, and almost unbounded access to the Internet, allows for
building more advanced reliable context-aware systems. However, many context-aware
systems are based on the assumption that the information they require is always avail-
able and certain. In mobile environments these assumption almost never hold.

Contextual data can be delivered to the mobile context-aware system in several dif-
ferent ways: directly from the device sensors [13], from other devices sensors, over
peer-to-peer communication channels [2,11], from external data sources like contextual
servers [6], from reasoning engines that based on the low-level context and a contextual-
model, provide higher-lever context [17]. In each of this cases, the system may experi-
ence problems caused by the uncertain contextual information.
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Although there are many solutions for uncertainty handling in knowledge bases,
there is still little research in the field of mobile context-aware systems. The mobile
environment is highly dynamic which requires from the uncertainty handling mecha-
nism to adjust to rapidly changing condition. Probabilistic and machine learning ap-
proaches cope very well with most common uncertainties types, but they need time to
learn an re-learn. What is more, they use a model that is not understandable for the user,
and therefore it cannot be modified by him or her. Fuzzy logic approaches can be used
to model uncertainty in an understandable form, but they mainly cope with uncertainty
caused by the lack of human precision which is not the primary focus in mobile context-
aware system. The aforementioned facts were the main factors why we decided to use
rule-based solution for context-based modeling and reasoning. Therefore, the primary
objective of the research presented in this paper was to find the best uncertainty han-
dling mechanism that will support rule-based knowledge representation and solve most
common uncertainties that are present in mobile context-aware systems.

The rest of the paper is organized as follows. Section 2 presents current state of the
art and discusses main drawbacks of available solutions with respect to mobile context-
aware systems and presents the motivation for our work. Section 3 describes our ap-
proach of applying certainty factor algebra to ALSV(FD) logic. It also tackles the issue
of modeling dynamics of certainty factors. A simple use case scenario is presented in
Section 4 and summary and possible future work was included in Section 5.

2 Related Work and Motivation

Uncertainty of data may be defined in different ways and can be caused by various
different factors. However, we can distinguish three general types of uncertainties [19]:

1. Uncertainty due to lack of knowledge – that comes from incomplete information
both at the model level or if the information is not provided by the sensors,

2. Uncertainty due to lack of semantic precision – that may appear due to semantic
mismatch in the notion of the information,

3. Uncertainty due to or lack of machine precision – which covers machine sensors
imprecision and ambiguity. Although the lack of machine precision may also be
caused by erroneous sensors readings, this type of uncertainty is beyond the scope
of this classification.

Among many proposals of uncertainty handling mechanisms [21] like Hartley Theory,
Shannon Theory, Dempster-Shafer Theory, the following have been found the most
successful in the area of context-awareness:

– Probabilistic approaches, mostly based on Bayes theorem, that allows for describing
uncertainty caused by the lack of machine precision and lack of knowledge [12,5].

– Fuzzy logic, that provides mechanism for handling uncertainty caused by the lack
of human precision [8,22]. It ignores law of excluded middle allowing for impre-
cise, ambiguous and vague descriptions of knowledge.

– Certainty factors (CF), that describe both uncertainties due to lack of knowledge
and lack of precision [9,1]. They are mostly used in expert systems that rely on the
rule-based knowledge representation.
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– Machine learning approaches, that use data driven rather than model driven ap-
proach for reasoning [14]. They allow for handling both uncertainties due to lack
of knowledge and lack of precision.

Methods presented above provide different capabilities of representing and handling
diverse types of uncertainties listed at the begining of the section. They also require
different implementation effort. The comparison of uncertainty handling mechanisms
with respect to these criteria was presented in Table 1.

Machine learning approaches deal very well with uncertainties caused by the lack of
knowledge and imprecise measurements, as they provide high generalization features,
which allows them to make correct decisions on previously unseen data. Probabilistic
methods provide handling mechanisms that best fits uncertainties caused by the lack
of precision and ambiguity, as they can express vague information in terms of proba-
bility. It allows to project the uncertainty to the output and value it with respect to the
probability. However, implementation effort of both probabilistic and machine learning
approaches is rather high. What is more, the model cannot be directly modified by the
user, as it requires expert knowledge in probability theory and machine learning.

Fuzzy logic allows for imprecise, ambiguous and vague descriptions of knowledge.
This is very often source of uncertainties caused by the lack of human precision as hu-
man operates on concepts that semantic notion is vague as ”tall”, ”small”, etc. Although
this type of uncertainty is also present in context-aware systems, it is beyond the scope
of this paper.

Certainty factors are able to describe both uncertainties related to lack of knowledge,
and related to lack of machine precision, which are the most common uncertainties
in context-aware systems. One of the main advantages of certainty factors over other
uncertainty handling mechanisms is that they can be easily incorporated into existing
rule-based system without the necessity of redesigning or remodeling knowledge base.
They also require a very low implementation effort.

Table 1. Comparison of uncertainty handling mechanisms. Full circles represent full support,
whereas empty circles represent low or no support.

Uncertainty source
Lack of
knowledge

Semantic
imprecision

Machine
imprecision

Implementation
effort

Probabilistic ◗ ❍ ● High
Fuzzy Logic ❍ ◗ ◗ Medium
Certainty Factors ◗ ❍ ● Low
Machine learning ● ❍ ● High

From the comparison presented in the Table 1 we choose certainty factors as the best
method for modeling most common uncertainty in mobile context-aware systems that
are: uncertainty due to lack of knowledge and lack of precision. Certainty factors cope
well with these uncertainties and are easy to design and implement. What is more, to-
gether with rules they can be easily understood and modified by the user, which is one
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of the most important features in nowadays user-centric intelligible systems. Therefore
the primary motivation for this work was to incorporate modified certainty factor al-
gebra into a logic-based knowledge representation called XTT2 in a way that fits best
the mobile environment requirements. These are defined as: ability to adapt to dynam-
ically changing context and ability for handling uncertainties caused by the lack of
knowledge and lack of precision. We decided to use XTT2 rule-based knowledge rep-
resentation [15], as it is used by the HeaRTDroid – a prototype of a lightweight rule
inference engine dedicated for mobile devices [16]. These required us to 1) incorporate
certainty factors handling in ALSV(FD) logic which is the foundation of rule repre-
sentation used in XTT2, 2) provide dynamic adaptation of certainty factors, both at the
ALSV(FD) formulae level and on the rule representation level, 3) propose inference
strategy that will allow for making decisions under uncertainty. The following sections
describe in details the results of our research.

3 Applying Certainty Factors to ALSV(FD) Logic

Certainty factors (CF) are one of the most popular methods for handling uncertainty in
rule-based expert systems. However, for a long time they were under strong criticism
regarding lack of theoretical background and the assumption of independence of con-
ditions for rules of the same conclusion which not always hold [10]. As a response to
these, the Stanford Modified Certainty Factors Algebra was proposed [20]. It accommo-
dated two types of rules with the same conclusion: cumulative rules (with independent
list of conditions) and disjunctive rules (with dependent list of conditions). As it will be
shown in this section, this makes the certainty factors fit ALSV(FD) logic generalised
and simple attributes.

The basic elements of the language of Attribute Logic with Set Values over Finite
Domains (ALSV(FD) for short) are attribute names and attribute values. There are two
attributes types: simple which allows the attribute to take a single value at a time, and
generalized that allows the attribute to take set values. The values that every attribute
can take are limited by their domains. For the purpose of further discussion let’s assume
that: Ai represents some arbitrarily chosen attribute, Di is a domain of this attribute,
and Vi represents a subset of values from domain Di, where di ∈ Vi. Therefore we can
define a valid ALSV(FD) formula as Ai ∝ di for simple attributes, where ∝ is one of
the operators from set =, �=,∈, �∈ and Ai ∝ Vi for generalized attributes, where ∝ is
one of the operators from set =, �=,∼, �∼,⊂,⊃.

3.1 Certainty Factors Algebra

Rule in CF algebra is represented according to formula:

condition1 ∧ condition2 ∧ . . . ∧ conditionk → conclusion (1)

Each of the elements of the formulae from equation (1) can have assigned a certainty
factor cf(element) ∈ [−1; 1] where 1 means that the element is absolutely true; 0
denotes element about which nothing can be said with any degree of certainty; −1
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denotes an element, which is absolutely false. The CF of the conditional part of a rule
is determined by the formulae:

cf(condition1 ∧ . . . ∧ conditionk) = min
i∈1...k

cf(conditioni)

The CF of conclusion C of a single i-th rule is calculated according to a formula:

cfi(C) = cf(condition1 ∧ . . . ∧ conditionk) ∗ cf(rule) (2)

The cf(rule) defines a certainty of a rule which is a measure of the extent, to which
the rule is considered to be true. It is instantiated by the rule designer, or it comes from
a learning algorithm (like for instance an association rule mining algorithms). Major
departure from the traditional Stanford Certainty Factor Algebra [4] is an attempt to
remove the major objection raised against it concerning conditional dependency of rules
with the same conclusions. To address this issue, rules with the same conclusions were
divided into two groups: cumulative ans disjunctive. Cumulative rules have the same
conclusions and have independent conditions (i.e. value of any of the conditions does
not determine values of other rules conditions). The formula for calculating the certainty
factor of the combination of two cumulative rules is given in (3).

cf(C) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cfi(C) + cfj(C) − cfi(C) ∗ cfj(C) if cfi(C) ≥ 0, cfj(C) ≥ 0

cfi(C) + cfj(C) + cfi(C) ∗ cfj(C) if cfi(C) ≤ 0, cfj(C) ≤ 0

cfi(C)+cfj(C))
1−min {|cfi(C)|,|cfj(C)|} if cfi(C)cfj(C) �∈ {−1, 0}

(3)

Disjunctive rules have the same conclusions but are conditionally dependent (i.e. value
of any of the conditions determine values of other rules conditions).

The equation for calculating certainty factor of a disjunctive rule is presented in (4).

cf(C) = max
i∈1...k

{cfi(C)} (4)

The calculation of the CF for the rules are performed incrementally. This means that
for instance for a pair of rules i− th and i− th+ 1, there is calculated certainty factor
cfk(C) that later is taken into the equation (3) or (4) together with rule i − th + 2 to
calculate cfk+1(C).

3.2 Certainty Factors in ALSV(FD) Formulae

Every ALSV(FD) formula is a logical expression that can be either true or false ac-
cording to a value of an attribute in consideration. We can therefore translate every
ALSV(FD) formula as a conjunction or alternative of equality formulae. In particular
the formula Ai ∈ Vi can be translated into a form:

(Ai = V 0
i ) ∨ (Ai = V 1

i ) ∨ . . . ∨ (Ai = V k
i ) (5)
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where the V k
i is a k-th element from a subset Vi of domain Di, and Ai is a simple

attribute. On the other hand, for the general attributes Ai, the formulae of a form Ai ∼
Vi can be translated into:

(A0
i ∈ Vi) ∨ (A1

i ∈ Vi) ∨ . . . ∨ (Ak
i ∈ Vi) (6)

whereAk
i is a k-th element of a set representing by the general attributeAi. This formula

can be further recursively rewritten as a conjunction of formulaes from equation (5).
Similarly we can continue for every formula in the ALSV(FD) logic. Such a nota-

tion allows us to use certainty factors algebra for evaluating the formulae for uncertain
attributes values, treating these formulae as a set of cumulative or disjunctive rules. In
particular, we can represent the alternative of equality formulae from equation (5), as a
set of logical rules of a form:

(Ai = V 0
i ) → Satisfied

(Ai = V 1
i ) → Satisfied

. . .

(Ai = V k
i ) → Satisfied

(7)

Every rule CF is assigned a value 1 for simplicity, so the certainty of a formula is
determined by the certainty of conditional expressions on the left hand side. The rules
are disjunctive, as the value of Ai can be only one (as it is simple attribute), hence
the equation (4) applies to this. On the other hand, rule interpretation of formulae (6)
generates a set of cumulative rules, as the attribute Ai can take multiple values that
do not depend on each other, and hence the equation (3) applies to this case. Real-life
examples of these transformations were given in Section 4.

What is more, when dealing with logic that operates finite domains, the negative
certainty factors may be as valuable as the positive ones. Let us consider the example
from equation (7). Assuming that V

′
i = Di \ Vi, we can add additional rule to the

equation, that will cover the false cases of the ALSV(FD) fromula Ai ∈ Vi:

(Ai �= V
′0
i ) ∧ (Ai �= V

′1
i ) ∧ . . . ∧ (Ai �= V

′l
i ) → Satisfied (8)

Supposing that we have no positive certainty on the value of attribute Ai, but we
know which of the values the attribute does not take for sure, we can notice the depen-
dence below: (

cf(Ai = V
′l
i ) = −1

)
⇒

(
cf(Ai �= V

′l
i ) = 1

)

The formula above can now be applied together with rule from equation (8) to infer the
certainty factor of the ALSV(FD) formulae in consideration.

3.3 Modeling the Dynamics of Certainty Factors

In many context-aware systems that operate in highly dynamic environments, once ob-
served data cannot be treated as certain for unlimited period of time. For instance user
activity observed five minutes ago, may not be certain right now. Therefore, adding ex-
piration time to attributes values can improve uncertainty handling in case of lack of
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data. The expiration time may be assigned to the attribute in a form of a function over
time that decreases certainty factor of an attribute value. Let us consider the expiration
time for a value of attribute A to be defined as expiration(A). The simplest expiration
time function may be defined as a linear function, that decreases certainty factor of an
attribute value over time down to a zero:

cf(V,Δt) =

{
cf(V ) ∗ expiration(A)−Δt

expiration(A) if Δt ≤ expiration(A)

0 otherwise

where Δt is a difference between the current time and the time when the value V of the
attribute A was observed. Different attribute types may have different expiration time
functions assigned. Expiration time may be assigned arbitrarily by the system designer
in cases when the attribute expiration time is not influenced by the environment dynam-
ics. In other cases, the expiration time function should be dynamically adjusted with
respect to the environment dynamics.

Fig. 1. Dynamics of a location sensor over time [3]

Such a functionality can be achieved with learning middleware approach [3]. Learn-
ing middleware is a system that uses linear regression to learn sensors usage patterns
from historical data. It automatically generates a model of sensor activity which can be
used to dynamically modify the expiration time for the attributes values.

Figure 1 shows the exemplary GPS sensor usage pattern obtained by the learning
middleware. The curve describes the probability of the sensor change its reading in
particular point of time. We can define this probability as a dynamics of the attribute. Let
us consider expiration time for a value of an attribute A to be defined as expiration(A),
and the dynamics of an attribute value over time obtained from the learning middleware
to be defined as dynamic(A, t), where dynamic(A, t) ∈ [0; 1]. We can now define the
dynamic expiration time of an attribute A as

expiration(A, t) = expiration(A) ∗ (1− dynamic(A, t))

This will allow to shorten the expiration time in cases where there is a high prob-
ability, that the value of the sensor will change, and leave the long expiration time in
cases where there is a very low probability that the value of the sensor will change (i.e.
location at night).
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One of the main disadvantages of the learning middleware is that it needs time and
data to learn sensor dynamics. The other approach that allows to discover sensor dy-
namics is based on the entropy of previous n readings. The entropy is a measure of
amount of uncertainty in the data. It can be calculated according to the equation below:

entropy(A, n) = −
∑

x∈X

x

n
log2

x

n

where X is a set of all different readings, and x
n is a proportion of the number of read-

ings such that A = x to total number of readings taken into consideration. Assuming
that n = 4 and we have following readings from GPS sensor: still, still, moving, mov-
ing, the entropy of this data equals 1, because we have equal number of still and moving
readings. This is equivalent for high dynamics of data. However, if the readings from the
sensor looks as follows still, still, still, still, the entropy equals 0, which is an equivalent
for low dynamics of data. The expiration dime can be therefore determined according
to the equation:

expiration(A, n) = expiration(A) ∗ (−log2
1

n
− entropy(A, n))

4 Applying Certainty Factors to XTT2 Tables

The certainty factor handling mechanism described in Section 3 operates on the level
of ALSV(FD) formulaes, which are foundation of the rule-based knowledge represen-
tation called eXtended Tabular Trees [18] version 2 (XTT2 for short). An XTT2 rule is
of the form:

(condition1) ∧ (condition2) ∧ . . . (conditionn) −→ RHS

where conditioni is one of the admissible ALSV(FD) logic formulaes, and RHS is
the right-hand side of the rule covering conclusions. In practice the conclusions are
restricted to assigning new attribute values, thus changing the system state. Similar
rules are grouped within separated tables, and the system is split into such tables linked
by arrows representing the control strategy. An example of XTT2 table is presented in
Figure 2. It describes a fragment of a context-aware recommendation system, that based
on the user activity, weather and user profile suggests nearby points of interests.

Fig. 2. Example of XTT2 table with uncertain data
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The system consists of three simple attributes: weather, activity and poi, and one
generalized attribute: user_profile. Let consider, that we know that there is going to be
sunny weather with certainty 0.3, cloudy with 0.1, and rainy with 0.6. The user selected
that he is interested in suggestions about places for eating in 60%, culture in 20%,
entertainment in 80% and sightseeing in 20%. User may be independently interested
in different recommendations, hence the values are trated as disjoint and the sum does
not have to be equal 100%. We also have an information from the activity recognition
sensor that the user have been recently walking with certainty 0.8, running with 0.1
certainty and driving with certainty 0.1. Having this information we can now calculate
certainty factors for every rule conditions. We use equation (4) (disjunctive rules) to
simple attributes, and equation (3) (cumulative rules) to generalized attributes.

After calculation we should get the results presented in Table 2. The last column
shows the certainty of a conclusion of a rule calculated according to the equation (2).
From the calculations we see that we should suggest user either indoor-eating places
or theaters and cinemas, because both have the highest certainty factors. We have no
knowledge on which of these two suggestions should have a greater priority, because
the certainty factors for all the rules were assigned 1 for simplicity. This however can
be changed in the future by taking into consideration user feedback. If the user decides
that a better suggestion would be the theaters and cinema, the certainty factor of rule
producing this conclusion should be increased (if possible) and the certainty factors of
remaining rules can be decreased. This will allow the to make better decisions in the
future, when the system faces the same or similar situation.

Table 2. The certainty factors for rules presented in figure 2

(?) weather (?) user_profile (?) activity cf(conditions) cf(rule) cf(conclusion)
0.3 0.6 0.8 0.3 1 0.3
0.6 0.6 0.8 0.6 1 0.6
0.6 0.6 0.1 0.1 1 0.1
0.6 0.84 0.8 0.6 1 0.6
0.6 0.36 0.8 0.36 1 0.36
0.3 0.36 0.8 0.3 1 0.3

5 Summary and Future Work

In this paper we presented an approach for the uncertainty handling in mobile context-
aware environments. We provided comparison of application of different uncertainty
modeling approaches to this class of systems and chose one that best fits requirements
of such environment. These requirements were defined as ability to adapt to dynam-
ically changing context and ability for handling uncertainties caused by the lack of
knowledge and lack of precision. Based on the comparison of capabilities of different
uncertainty handling mechanisms we decided to use certainty factors. We provided a
solution that allows to bind this formalism with ALSV(FD) logic and XTT2 rule-based
representation that are used by the HeaRTDroid inference engine dedicated for mobile
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platforms. We also described two approaches that allow for automatic adaptation of
certainty factors values with respect to dynamically changing context.

As a future work we plan to implement and evaluate the certainty factor based ap-
proach described in this paper in HeaRTDroid 1 inference engine. We also plan to use
mediation techniques [7] to collect feedback from users and modify certainty factors
of XTT2 rules, so they can better fit user preferences. What is more, we would like to
compare the approach presented in this paper with a solution that is based on Bayesian
networks. Although certainty factors algebra copes very well with uncertainties on the
ALSV(FD) level, we believe that it can be successfully replaced by the probabilistic
approach on he XTT2 tables level. The XTT2 tables can be interpreted as a tabular
conditional probability distributions (CPDs), where the CPDs are learned from statisti-
cal analysis of the system performance. The XTT tablesh can be connected to form a
graph, which also can be easily translated into Bayesian network without the necessity
of redesigning the knowledge base.
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