
Antonis Bikakis
Paul Fodor
Dumitru Roman (Eds.)

 123

LN
CS

 8
62

0

8th International Symposium, RuleML 2014
Co-located with the 21st European Conference
on Artificial Intelligence, ECAI 2014
Prague, Czech Republic, August 18–20, 2014, Proceedings

Rules on the Web
From Theory to Applications

Lecture Notes in Computer Science 8620
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Antonis Bikakis Paul Fodor
Dumitru Roman (Eds.)

Rules on the Web
From Theory to Applications

8th International Symposium, RuleML 2014
Co-located with the 21st European Conference
on Artificial Intelligence, ECAI 2014
Prague, Czech Republic, August 18-20, 2014
Proceedings

13

Volume Editors

Antonis Bikakis
University College London
Department of Information Studies
Gower Street, London WC1E 6BT, UK
E-mail: a.bikakis@ucl.ac.uk

Paul Fodor
Stony Brook University
Department of Computer Science
Stony Brook, NY 11794, USA
E-mail: pfodor@cs.stonybrook.edu

Dumitru Roman
SINTEF, University of Oslo
Forskningsveien 1, 0314 Oslo, Norway
E-mail: dumitru.roman@sintef.no

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09869-2 e-ISBN 978-3-319-09870-8
DOI 10.1007/978-3-319-09870-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945231

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The International Web Rule Symposium, RuleML, has evolved from an an-
nual series of international workshops since 2002, international conferences in
2005 and 2006, and international symposia since 2007. RuleML 2014, the eighth
symposium of this series, collocated in Prague, Czech Republic, with the 21st
European Conference on Artificial Intelligence (ECAI-2014), brought together
researchers and practitioners from industry, academia, and the broader AI com-
munity, and presented new research results and applications in the field of rules.
It was a premier place to meet and to exchange ideas from all fields of rules and
reasoning technology, and created an important bridge between academia and
industry in the field of rules, logics, and semantic technology, stimulating the
cooperation and interoperability between business and research.

This annual symposium is the flagship event of the Rule Markup and Mod-
eling Initiative (RuleML). RuleML (http://ruleml.org) is a non-profit umbrella
organization. It consists of several technical groups organized by representatives
from academia, industry, and public sectors working on rule technologies and
applications. Its aim is to promote the study, research, and application of rules
in heterogeneous, distributed environments, such as the Web. RuleML acts as
an intermediary between various “specialized” rule vendors, industrial and aca-
demic research groups, as well as standardization bodies such as W3C, OMG,
OASIS, and ISO. One of its major contributions is the Rule Markup Language, a
unifying family of XML-serialized rule languages spanning across all industrially
relevant kinds of Web rules.

The technical program of RuleML 2014 included presentations of novel rule-
based technologies, such as Semantic Web rule languages and standards, rule
engines, formal and operational semantics, and rule-based systems. Besides the
regular track, RuleML 2014 included three special tracks: Rules and Human
Language Technology, Learning (Business) Rules from Data, and Legal Rules
and Norms. These tracks reflect the significant role of rules in several research
and application areas, which include: the relation between natural language and
rules, automation of business rules generation from existing data, and aspects
related to legal rules and norms for Web and corporate environments.

Special highlights of this year’s RuleML Symposium included two keynote
talks, two invited talks, and one tutorial:

– Prof. Luc De Raedt (Katholieke Universiteit Leuven, Belgium): “On Proba-
bility, Rules and Learning” (Keynote talk)

– Prof. Adrian Paschke (Freie Universität Berlin, Germany): “Rules, Events
and Actions in Semantic Complex Event Processing” (Keynote talk)

– Prof. Arild Waaler (University of Oslo, Norway): “Efficient Mapping Rules
in OBDA” (Invited talk)

VI Preface

– Prof. Jürgen Angele (Procitec GmbH and Semedy AG, Zug, Switzerland):
“Rule-Based Clinical Decision Support” (Invited talk)

– Prof. Johannes Fürnkranz (TU Darmstadt, Germany): “Rule Learning” (Tu-
torial)

In addition, the program included the 8th International Rule Challenge, ded-
icated to practical experiences with rule-based applications, and the RuleML
2014 Doctoral Consortium, which focused on PhD research in the area of rules
and markup languages.

This volume includes 17 full papers and six short papers, which were pre-
sented during the technical program of RuleML 2014, as well as one paper and
two abstracts for the keynote and invited talks. The papers were selected from 48
submissions through a peer-review process. Each paper was reviewed by at least
two members of the Program Committee and the Program Committee chairs.

A special thanks is due to the excellent Program Committee for their hard
work in reviewing the submitted papers. Their criticism and very useful com-
ments and suggestions were instrumental in achieving a high-quality publication.
We also thank the symposium authors for submitting high-quality papers, re-
sponding to the reviewers comments, and abiding by our production schedule.
We further wish to thank the keynote and invited speakers for contributing
their inspiring talks. We are very grateful to the organizers of the 21st European
Conference on Artificial Intelligence (ECAI-2014) for enabling this fruitful collo-
cation with RuleML 2014. RuleML 2014 was financially supported by industrial
companies, research institutes, and universities and was technically supported
by several professional societies. We wish to thank our sponsors, whose financial
support helped us to offer this event, and whose technical support allowed us
to attract many high-quality submissions. Last, but not least, we would like to
thank the development team of the EasyChair conference management system
and our publisher, Springer, for their support in the preparation of this volume
and the publication of the proceedings.

August 2014 Antonis Bikakis
Paul Fodor

Dumitru Roman

Organization

General Chair

Leora Morgenstern Leidos Corporation, USA

Program Chairs

Antonis Bikakis University College London, UK
Paul Fodor Stony Brook University, USA
Dumitru Roman SINTEF/University of Oslo, Norway

Local Chairs

Jan Rauch University of Economics, Prague,
Czech Republic

Tomáš Kliegr University of Economics, Prague,
Czech Republic

Stanislav Voj́ı̌r University of Economics, Prague,
Czech Republic

Track Chairs

Rules and Human Language Technology

Francois Levy LIPN, University of Paris, France
Adam Wyner University of Aberdeen, UK

Learning (Business) Rules from Data

Tomáš Kliegr University of Economics, Prague,
Czech Republic

Davide Sottara Arizona State University, USA

Legal Rules and Norms

Monica Palmirani Universitá di Bologna, Italy
Guido Governatori NICTA, Australia

VIII Organization

International Rule Challenge Chairs

Theodore Patkos FORTH-ICS, Greece
Adam Wyner University of Aberdeen, UK
Adrian Giurca BTU Cottbus-Senftenberg, Germany

Dotoral Consortium Chairs

Petros Stefaneas National Technical University of Athens,
Greece

Monica Palmirani Universitá di Bologna, Italy
’

Publicity Chair

John Hall Model Systems, UK

Social Media Chair

Adrian Giurca BTU Cottbus-Senftenberg, Germany

Rule Responder Chairs

Adam Wyner University of Aberdeen, UK
Zhili Zhao Freie Universität Berlin, Germany

Program Committee

Darko Anicic
Grigoris Antoniou
Tara Athan
Martin Atzmueller
Ebrahim Bagheri
Nick Bassiliades
Bernhard Bauer
Guido Boella
Johan Bos
Jerome Boyer
Lars Braubach
Christoph Bussler
Federico Chesani
Abdelghani Chibani
Horatiu Cirstea
Jack G. Conrad

Bruno Cremilleux
Claudia D’Amato
Agnieszka Dardzinska
Christian De Sainte Marie
Juergen Dix
Schahram Dustdar
Vadim Ermolayev
Riguzzi Fabrizio
Jacob Feldman
Michael Fink
Giorgos Flouris
Enrico Francesconi
Fred Freitas
Norbert E. Fuchs
Johannes Fürnkranz
Aldo Gangemi

Organization IX

Dragan Gasevic
Martin Giese
Adrian Giurca
Guido Governatori
Matthias Grabmair
Brigitte Grau
Christophe Gravier
Alex Guazzelli
Giancarlo Guizzardi
Ioannis Hatzilygeroudis
Stijn Heymans
Martin Holena
Yuh-Jong Hu
Jǐŕı Ivánek
Tomas Kliegr
Stratos Kontopoulos
Tobias Kuhn
Brian Lam
Evelina Lamma
Florian Lemmerich
Francois Levy
Senlin Liang
Francesca Lisi
Emiliano Lorini
Yue Ma
Michael Maher
Petr Masa
Angelo Montanari
Grzegorz Nalepa
Jose Ignacio Panach Navarrete
Adeline Nazarenko

Monica Palmirani
Jeffrey Parsons
Adrian Paschke
Theodore Patkos
Célia Da Costa Pereira
Wim Peters
Luis Ferreira Pires
Mark Proctor
Zbyszek Ras
Antonino Rotolo
Luiz Olavo Bonino Da Silva Santos
Giovanni Sartor
Rolf Schwitter
Guy Sharon
Milan Simunek
Davide Sottara
Ahmet Soylu
Petros Stefaneas
Umberto Straccia
Terrance Swift
Daniela Tiscornia
Ioan Toma
Leon van der Torre
Wamberto Vasconcelos
Giulia Venturi
George Vouros
Renata Wassermann
Radboud Winkels
Adam Wyner
Amal Zouaq

External Reviewers

Harald Beck
Krzysztof Kluza
Benjamin Jailly
Konstantinos Kotis

Antonis Koukourikos
Christoph Redl
Kia Teymourian

X Organization

RuleML 2014 Sponsors

Organization XI

Partner Organizations

Invited Talks

On Probability, Rules and Learning

(Abstract)

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, POBox 2402, 3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. Rules represent knowledge about the world that can be used
for reasoning. However, the world is inherently uncertain, which may
affect both rules and data. Indeed, rules capturing expert knowledge are
only an approximation of a complex reality, and data may be uncertain
due to missing values, noisy measurents, or ambiguities.

While a wide variety of formalisms and techniques exist to cope with
uncertainty, the approach taken will be based on probabilistic (logic)
programming [3]. More specifically, it shall be centered around the proba-
bilistic Prolog, ProbLog [2] (see also http://dtai.cs.kuleuven.be/problog/),
which extends the programming language Prolog with probabilistic facts
and is based on Sato’s distribution semantics [7]. It combines the de-
ductive power of Prolog with the ability to state the belief that certain
facts are true, very much as in probabilistic databases. As such it is a
natural rule-based representation for dealing with uncertainty. ProbLog
supports probabilistic inference, that is, it can compute the probability
P (Q|E) of a query Q given some evidence E [5].

It also supports learning. To learn parameters, it starts from ex-
amples that are partial interpretations (that is, partial descriptions of a
possible world), and employs an Expectation-Maximisation approach [5].
ProbLog rules can be learned using a generalization of traditional rule-
learning algorithms [4]. These rules are learned form uncertain data.

ProbLog has been applied to a number of applications in domains
such as bioinformatics [1], action- and activity recognition [8] and robotics
[6].

References

1. De Maeyer, D., Renkens, J., Cloots, L., De Raedt, L., Marchal, K.: Phenetic:
network-based interpretation of unstructured gene lists in e. coli. Molecular BioSys-
tems 9(7), 1594–1603 (2013)

2. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, IJCAI-2007 (2007)

3. De Raedt, L., Kimmig, A.: Probabilistic programming concepts. CoRR
abs/1312.4328 (2013)

4. De Raedt, L., Thon, I.: Probabilistic rule learning. In: Frasconi, P., Lisi, F.A. (eds.)
ILP 2010. LNCS, vol. 6489, pp. 47–58. Springer, Heidelberg (2011)

XVI L. De Raedt

5. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I.,
Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic programs us-
ing weighted Boolean formulas. Theory and Practice of Logic Programming (TPLP)
FirstView (2014)

6. Nitti, D., De Laet, T., De Raedt, L.: A particle filter for hybrid relational domains.
In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2764–2771. IEEE (2013)

7. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of the 12th International Conference on Logic Programming,
ICLP-1995 (1995)

8. Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.A.: Probabilistic event calculus
for event recognition. CoRR abs/1207.3270 (2012)

Reaction RuleML 1.0 for Rules, Events and

Actions in Semantic Complex Event Processing

Adrian Paschke

Freie Universitaet Berlin, Germany

paschke@inf.fu-berlin.de

Abstract. Reaction RuleML is a standardized rule markup language
for the representation and interchange of reaction rules. This paper gives
an introduction to the core knowledge representation mechanisms of
Reaction RuleML 1.0 such as multi-sorted signatures and their interpre-
tation, action primitives for knowledge updates, interchange and
testing, order-sorted external type systems and the Reaction RuleML
metamodel, scopes and mode declarations, semantic profiles, imports of
documents, modules and messages. These mechanisms form the basis for
an adequate treatment of rules, events and actions, as needed in seman-
tic complex event processing (SCEP), such as, interchange, translation
and testing based on the intended semantics defined in semantic profiles;
modularization and distribution of knowledge interfaces with their sig-
natures defining, e.g., complex event detection patterns; closed scoped
reasoning on top of scoped modules with dynamic constructive views
on meta knowledge; transactional complex actions; conversation based
message interchange for question answering (Q&A) and rule-based agent
architectures such as RuleResponder, etc.

Efficient Mapping Rules in OBDA

Arild Waaler, Dag Hovland, Martin G. Skjæveland,
and Evgenij Thorstensen

Department of Informatics, University of Oslo, Norway

{arild, hovland, martige, evgenit}@ifi.uio.no

Ontology-based information systems (IS) need to combine reasoning and query
answering over ontologies with building and maintain collections of mappings
between ontologies and data sources. In its most general form, a mapping is a
rule φ � ψ stating that a query φ (the body) over the data sources corresponds to
a query ψ (the head) over the ontology. To answer the query ψ, an IS has to find
the mappings related to ψ, execute the queries they specify over the data sources,
then use the mappings to map the answers back to the ontological vocabulary.
The choice of mappings is therefore tightly connected to the complexity of query
answering, both over ontologies and databases.

A well-studied type of mappings are global-as-view (GAV) mappings, com-
mon in Ontology-based data access (OBDA) settings. A GAV mapping has the
form QDB(x) � A(x), and associates the answers to a query Q over the data
sources to a single atomic concept or role A from the ontology. Such mappings
enjoy some nice computational properties. In particular, the lack of existential
variables in the right-hand side allows for the efficient unfolding of an ontology
query into queries over the data sources, as well as efficient checking of properties
such as redundancy and inconsistency.

Another example of a useful type of mappings are GAV mappings where each
variable on the right-hand side occurs once, and constants do not occur. Such
a mapping QDB(x) � A(x) can always be applied to a query containing A,
and unification between the right-hand side of this mapping and the query is
simply a matching. The resulting substitution is thus a homomorphism from the
mapping head to a subquery. As a consequence, with these types of mappings,
given two queries Q and Q′ over the ontology with Q ⊆ Q′, an unfolding φ′ of
Q′ can be transformed into an unfolding of Q by applying the homomorphism
σ that witnesses the query containment to φ′.

More broadly we will demonstrate the role that mapping rules play in the de-
velopment, use and inner workings of an OBDA IS and illustrate how queries over
an ontology is rewritten to SQL queries over a large corporate data store. We will
also illustrate the problem of exponential blow-up of rewritten queries caused by
the complex relationship between the ontology, mappings, and databases. The
example material that we will use are queries collected from geologists with a real
need to be able to efficiently formulate complex queries over multiple databases,
and ontology and mappings developed in an effort to solve the problem; devel-
oped the context of the Optique project.1

1 optique-project.eu.

Table of Contents

Keynote Talks

Reaction RuleML 1.0 for Rules, Events and Actions in Semantic
Complex Event Processing . 1

Adrian Paschke

Regular Track

A Logical Characterization of a Reactive System Language 22
Robert Kowalski and Fariba Sadri

On Using Semantically-Aware Rules for Efficient Online
Communication . 37

Zaenal Akbar, José Maŕıa Garćıa, Ioan Toma, and Dieter Fensel

Conceptual Model Interoperability: A Metamodel-driven Approach 52
Pablo Rubén Fillottrani and C. Maria Keet

On Verifying Reactive Rules Using Rewriting Logic 67
Katerina Ksystra, Nikos Triantafyllou, and Petros Stefaneas

Using Rules to Develop a Personalized and Social Location Information
System for the Semantic Web . 82

Iosif Viktoratos, Athanasios K. Tsadiras, and Nick Bassiliades

Checking Termination of Logic Programs with Function Symbols
through Linear Constraints . 97

Marco Calautti, Sergio Greco, Cristian Molinaro, and
Irina Trubitsyna

A Datalog+ RuleML 1.01 Architecture for Rule-Based Data Access in
Ecosystem Research . 112

Harold Boley, Rolf Grütter, Gen Zou, Tara Athan, and Sophia Etzold

A Hybrid Diagnosis Approach Combining Black-Box and White-Box
Reasoning . 127

Mingmin Chen, Shizhuo Yu, Nico Franz, Shawn Bowers, and
Bertram Ludäscher

Multi-valued Argumentation Frameworks . 142
Pierpaolo Dondio

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based
Systems with Modified Certainty Factors Algebra . 157

Szymon Bobek and Grzegorz J. Nalepa

XX Table of Contents

The Hardness of Revising Defeasible Preferences . 168
Guido Governatori, Francesco Olivieri, Simone Scannapieco, and
Matteo Cristani

From Guidelines to Practice: Improving Clinical Care through
Rule-Based Clinical Decision Support at the Point of Care 178

Ayesha Aziz, Salvador Rodriguez, and Chris Chatwin

Rules and Human Language Technology

Requirement Compound Mining and Analysis . 186
Juyeon Kang and Patrick Saint-Dizier

Semi-automated Vocabulary Building for Structured Legal English 201
Shashishekar Ramakrishna and Adrian Paschke

Basics for a Grammar Engine to Verbalize Logical Theories
in isiZulu . 216

C. Maria Keet and Langa Khumalo

Formal Rule Representation and Verification from Natural Language
Requirements Using an Ontology . 226

Driss Sadoun, Catherine Dubois, Yacine Ghamri-Doudane, and
Brigitte Grau

Learning (Business) Rules from Data

Learning Business Rules with Association Rule Classifiers 236
Tomáš Kliegr, Jaroslav Kuchař, Davide Sottara, and Stanislav Voj́ı̌r

Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit
Rating for Preference Learning . 251

Ladislav Peska and Peter Vojtas

Learning Association Rules from Data through Domain Knowledge and
Automation . 266

Jan Rauch and Milan Šim̊unek

Using Discriminative Rule Mining to Discover Declarative Process
Models with Non-atomic Activities . 281

Mario Luca Bernardi, Marta Cimitile,
Chiara Di Francescomarino, and Fabrizio Maria Maggi

Legal Rules and Norms

Modeling Obligations with Event-Calculus . 296
Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn

Table of Contents XXI

A Process for Knowledge Transformation and Knowledge
Representation of Patent Law . 311

Shashishekar Ramakrishna and Adrian Paschke

Legal Responsibility for the Acts of Others: A Logical Analysis 329
Clara Smith, Erica Calardo, Antonino Rotolo, and Giovanni Sartor

Author Index . 339

Reaction RuleML 1.0 for Rules, Events and

Actions in Semantic Complex Event Processing

Adrian Paschke

Freie Universitaet Berlin, Germany
paschke@inf.fu-berlin.de

Abstract. Reaction RuleML is a standardized rule markup language for
the representation and interchange of reaction rules. This paper gives an
introduction to the core knowledge representation mechanisms of Reac-
tion RuleML 1.0 such as multi-sorted signatures and their interpretation,
action primitives for knowledge updates, interchange and testing, order-
sorted external type systems and theReaction RuleMLmetamodel, scopes
and mode declarations, semantic profiles, imports of documents, modules
and messages. These mechanisms form the basis for an adequate treat-
ment of rules, events and actions, as needed in Semantic Complex Event
Processing (SCEP), such as, interchange, translation and testing based
on the intended semantics defined in semantic profiles; modularization
and distribution of knowledge interfaces with their signatures defining,
e.g., complex event detection patterns; closed scoped reasoning on top
of scoped modules with dynamic constructive views on meta knowledge;
transactional complex actions; conversation based message interchange
for Question Answering (Q&A) and rule-based agent architectures such
as RuleResponder, etc.

1 Reaction RuleML for Reaction Rules

RuleML is a knowledge representation language designed for the interchange of
the major kinds of Web rules in an XML format that is uniform across various
rule logics and platforms. It has broad coverage and is defined as an extensible
family of sublanguages, whose modular system of schemas permits rule inter-
change with high precision. RuleML 1.0 encompasses both Deliberation RuleML
1.0 and Reaction RuleML 1.01.

Reaction RuleML is a standardized rule markup language and semantic inter-
change format for reaction rules and rule-based event processing. Reaction rules
include distributed Complex Event Processing (CEP), Knowledge Representa-
tion (KR) calculi, as well as Event-Condition-Action (ECA) rules, Production
(CA) rules, and Trigger (EA) rules. [17] Reaction RuleML 1.0 incorporates this
reactive spectrum of rules into RuleML 1.0 employing a system of step-wise ex-
tensions of the Deliberation RuleML 1.0 foundation starting with an extension
of Derivation Rules (DR) for spatio-temporal-interval reasoning. [2,20]

1 http://reaction.ruleml.org

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 1–21, 2014.
c© Springer International Publishing Switzerland 2014

http://reaction.ruleml.org

2 A. Paschke

Reaction RuleML defines a generic rule syntax distinguishing between meta-
data, interface and implementation enabling distributed andmodularized (scoped)
rulebases and rules.The syntax comeswithpredefined algebra operators and anon-
tological RuleML metamodel for the definition of general concepts such as events,
actions, time, intervals, space, processes, agents and messages. It supports exten-
sible generic syntax elements and sorted/typed extensions with external ontolo-
gies and procedural attachments. Semantic Profiles attach semantics to Reaction
RuleML rulebases andmessages and enable the semantic interpretation and inter-
change, e.g., in distributed rule-based agent system such as RuleResponder2, and
rule-based Complex Event Processing (CEP) architectures [23].

This paper is an introduction to the core mechanism of Reaction RuleML as
representation language and interchange format for reaction rules, events and
actions. The survey is organizes as follows: Section 2 gives a compact overview
of the terms, formulas and primitives in the Reaction RuleML language. Section
3 describes the approach towards multi-sorted signature definitions and section
4 defines the multi-sorted semantics for such signatures. Section 5 explains how
external type systems and the Reaction RuleML metamodel can be used for
external sorts (types). The mechanism of dialects and semantic profiles, defin-
ing the intended semantics for the evaluation of Reaction RuleML knowledge
bases, is described in section 6. The mechanisms for modularization with scopes
and scoped reasoning is introduced in section 7 and the conclusion in section
8 highlights how this core mechanism described in this paper can be used for
expressive and efficient rule-based Semantic Complex Event Processing (SCEP).

2 Introduction to the Reaction RuleML Language

This section introduces some of the main language elements of Reaction RuleML.
The XML element (tag) names and their ”@” attributes names are given in
brackets. Their full content models and definition can be found in the Reaction
RuleML 1.0 specification3. For better understanding, we sometimes also present
them in a non-normative formal notation in this paper. The language of Reaction
RuleML includes different types of terms, formulas and performatives:

Definition 1. Terms

– constants, which are distinguished into individual terms (Ind) (built from
the constant symbols) and datatype terms (Data) (typically from an exter-
nal data type system), and variables (Var) (using variable symbols).

– positional complex terms (Expr) of the form t(t1...tn), where t1, ..., tn
are terms themselves, and list terms (Plex) of the form [t1...tn]

4 including
empty lists [].

2 http://responder.ruleml.org [18]
3 http://wiki.ruleml.org/index.php/Content_Models_of_Reaction_RuleML_1.0
4 Special interpretations of lists can be introduced in semantic profiles, e.g. [p t1...tn] ≡
p(t1...tn).

http://responder.ruleml.org
http://wiki.ruleml.org/index.php/Content_Models_of_Reaction_RuleML_1.0

Reaction RuleML 1.0 for Rules, Events and Actions 3

– uniterms (as in SWSL [7]) are HiLog [6]) terms, which are generalizations
of (first-order logic) complex terms, where the expression symbols can be used
as individuals, functions and predicates and where variables are allowed to
occur anywhere in the term including the function name, predicate name and
object identifier name of an individual.

– unpositional slotted terms (slot) (as in POSL [3]) t(slot1− > t1...slotn− >
tn), with order of the slots (named arguments) being immaterial.

– frame terms (as in SWSL [7], PSOA RuleML [4] and RIF [5,1]), which
are based on F-Logic [8], of the form toid[slot1− > t1...slotn− > tn], where
toid (frame object identifier, oid), slot1, ..., slotn (slot attributes of the
frame object), t1,...,tn (attribute values) are terms themselves and the order
of the frame slots is immaterial.

– psoa terms (positional-slotted, object-applicative) (as in PSOA RuleML [4])
which apply a function or predicate symbol, possibly instantiated by an ob-
ject, to zero or more positional or slotted arguments, o#f([t1,1...t1,n1] ...
[tm,1...tm,nm]p1− > v1 ... pk− > vk) is a psoa term if f ∈ Const and o, t1,1,
..., t1,n1 , ..., tm,1, ..., tm,nm , p1, ..., pk, v1, ..., vk, m ≥ 0, k ≥ 0 are base
terms.

– equality terms (Equal) t = s, where t and s are terms and equation =
being unoriented (symmetric) or oriented (directed).

– typed terms (@type) (as in Rule Responder [15,18] and RBSLA [10,12])
of the form t#s, where t is a term of type s, i.e. all individuals of t are
members of s.5

– reified terms (Reify) (as in SWSL [7]) treat any RuleML content as a
term.

– metadata terms (meta) (as in RBSLA’s metadata annotated labelled logic
and used in Reaction RuleML’s scoped reasoning) are any Reaction RuleML
terms t used in metadata formulas to define meta knowledge.

– external terms (@iri) (as in Rule Responder [15,18] and RBSLA [10,12])
tiri, where iri is a resource identifier referencing or querying external data
(from external data sources / knowledge bases) or externally defined built-in
functions or predicate invocations (such as libraries from RuleML, SWRL
[24], RIF DTB [24])), as well as procedural attachments (as implemented
e.g. in Prova [21]).

– remote messaging terms (Send, Receive) (as in Rule Responder [15,18]
and implemented e.g. in Prova [21]) of the form t@a where t is a RuleML
term which is remote from @a.

With uniterms Reaction RuleML provides the ability to reify certain formu-
las, so that they can be used as terms, and vice versa to represent these uniterms
as formulas, which are then interpreted as truth or modal statements. This form
of uniterm reification in Reaction RuleML is restricted to objects (which are
treated as ”first-class” citizens in the Reaction RuleML language) of different
sorts such as events (Event), actions (Action), times/spatials/intervals (Time,

5 Subclass relationship in Reaction RuleML is represented by a rule s1(t#s1) →
s2(t#s2).

4 A. Paschke

Spatial, Interval), operators (Operator), fluents (Fluent), states and situa-
tions (Situation). This gives Reaction RuleML dialects the expressiveness of
HiLog [6], enabling them to treat such uniterms as objects and as statements
about objects at the same time, which is necessary, e.g., for active processing
of object operations and functions as well as the model-theoretic truth interpre-
tation of their effects. Reaction RuleML dialects and their semantic profiles by
defining the signatures can introduce restrictions on the use of uniterms, e.g.,
permitting using them only as predicates (non-reified dialects) or as individ-
ual objects and functions (reified dialects). While the default interpretation in
non-reified dialects is by means of (truth) value interpretation, in reified active
dialects their interpretation is as terms or as effect-full active functions in active
dialects. In dialects where there might be ambiguity (e.g., uniterms are used both
as formulas and as terms), the intended interpretation can be made explicit by
the attribute @per with fillers "copy" (uninterpreted complex term), "value"
((truth) value interpretation), "modal" (modal interpretation) and "effect"

(active effect-full function), as the following examples in Reaction RuleML XML
syntax illustrate:

<!-- action execution --> <!-- complex term --> <!-- (truth) value interpretation -->
<Action> <Action> <Action>

<Expr per="effect"> <Expr per="copy"> <Expr per="value">
<Fun>book</Fun> <Fun>book</Fun> <Fun>book</Fun>
<Var>Flight</Var> <Var>Flight</Var> <Var>Flight</Var>

</Expr> </Expr> </Expr>
</Action> </Action> </Action>

This attribute is also applied to equality terms and external terms which
can be used as predicates and as functions. External terms reference or query
(using the @iri attribute with XPath/Xpointer queries) an external resource.
Furthermore, typed terms (@type) can refer to internal types defined by the local
vocabulary term name of a type signature, as well as external types defined in
an external type systems (see section 5). Note, the different sorts of Reaction
RuleML terms are not necessarily distinct, e.g., a uniterm can be defined by an
external term and can be given a type, making it an external typed uniterm.

A more general form of reification is supported by reified terms (Reify)
which allow any RuleML formula or term available within the current dialect as
content, treating it as a term for making statements about statements on which
meta reasoning can be preformed.

While simple terms and uninterpreted complex terms are not formulas, the
other Reaction RuleML terms, such as uniterms, equality terms, etc., can be
used to represent atomic formulas. More general formulas are built from atomic
formulas via logical connectives and operators (e.g., modal operators).

Definition 2. (Formulas) A formula can have the following forms:

– Atoms: An atomic formula (Atom) is a formula.
– Connectives/Operators: conjunction (And), disjunction (Or), negation

(classical negation (Neg), default negation (Naf) and polymorphic negation
(Negation), which can be given a specific interpretation by a semantic profile

Reaction RuleML 1.0 for Rules, Events and Actions 5

(Profile) and/or an assigned type (@type), e.g., inflationary negation as
in production rules, explicit negation as weaker form of true classical nega-
tion in extended logic programs, etc.), modal operators (Operator), where
the modal operator is given as an operator type (using @type), e.g. temporal,
alethic, deontic modal operators), algebra operators (various predefined oper-
ators from the temporal, spatial, interval, event, action algebras of Reaction
RuleML, as well as the generic (Operator), which can reuse operator types
defined in external vocabularies).

– Quantifiers: universal (guarded) quantification (”Forall declare variables
such that guard formula”), existential (guarded) quantification (”Exists
declare variables such that guard formula”) and a generic (guarded) quan-
tifier (”Quantifier declare variables such that guard formula”), which can
be given a specific interpretation by a semantic profile and/or an assigned
type).

– Signatures: a signature formula (signature) defines the signature of a
knowledge formula, e.g., a rule interface signature, event pattern signature,
frame type signature, etc.

– Constraints: a constraint formula is either a guard constraint / pre
constraint (guard) or a post constraint (after), an entailment constraint
(Entails), an constraint rule (e.g., a integrity constraint of the form ”if
[constraints] then false”, a weight / cardinality rule, a choice rules, etc.), or
a test (with pre-defined expected entailed answers).

– Rules: a rule (Rule) is a formula made up of internal formulas (rule parts)
which vary depending on the type of rule. In its most general form in Reaction
RuleML it consists of the following rule parts:
• on: the on formula (on(φ)), where φ is an event formula (Event) defin-
ing possibly quantified event pattern signatures (signature) for atomic
events or complex events described by event algebra operators.

• if: the if formula (if(φ)), where φ is a condition formula (also
called pre-constraint condition) consisting of atoms (Atom), connec-
tives (And, Or, negations), operators (modal operators), constraints and
quantifiers.

• then: the then formula (then(φ)), where φ is a (logical) conclusion for-
mula consisting of quantifiers, atoms, negation connectives and a generic
operator (which can be typed with logical connectives such as a conjunc-
tion and modal operators).

• do: the do formula (do(φ)), where φ is an action formula (Action) con-
sisting of quantifiers, atomic actions, complex actions defined by action
algebra operators and action performatives (see performatives).

• after: the after formula (after(φ)), where φ is a (post constraint)
condition formula.

• else: the else formula (else(φ)), where φ is an (else) conclusion formula.
• elseDo: the elseDo formula (elseDo(φ)), where φ is an (alternative)
action formula.

– Entailments: Entailment formulas (Entails) of the form φ � ϕ, where
φ and ϕ are rulebase formulas. Entailment formulas are used to assert or

6 A. Paschke

query that a sequence of formulas in the first rulebase φ entails the sequence
of formulas in the second rulebase ϕ.

– Equivalences: An equivalence formula (Equivalence) of the form φ ≡ ϕ
is ”syntactic sugar” for a pair of conjoined converse rule formulas.

– Facts: a fact is an atomic formula (including facts made of uniterms repre-
senting events, times, spatial, intervals, etc).

– Modals: A modal formula is a formula whose main logical operator is a
modal operator (Operator(φ)). An atomic modal formula is a modal formula
which contains one and the only modal operator.

– Meta Knowledge: meta knowledge formula (@φ), where φ is a meta knowl-
edge formula represented by an atomic, negation, modal, rule, equivalence,
equality, rule or entailment formula using metadata terms.6

– Queries: a query formula (Query) is either an atomic formula, a connective
/ operator formula (e.g., modal formulas), or a signature formula (e.g., an
event pattern signature).

– Answers: an answer formula (Answer) is the result of a query represented
in terms of ”solved” formulas (ground atoms, oriented equations with the
variable bindings, or entailments).

– Messages: are structural formulas (Message) used to interchange knowl-
edge.

– Rulebases: are structural formulas (Rulebase) introducing a static struc-
turing of groups of Reaction RuleML formulas as modules.

– Document: a structural document formula (RuleML) is an (ordered) trans-
actions of performatives (knowledge actions) on the knowledge base
(KB).

– Test Suites: Test suites are special structural formulas representing test
knowledge bases (TestSuite), consisting of a Test Assertions base
(Assert) (typically a set of facts, events or actions) and multiple Test
Cases (TestItem). [9]

Meta knowledge formulas represent the metadata and the knowledge interface
of knowledge implementations / representations.

Definition 3. (Metadata and the Knowledge Interface) The optional
explicit meta knowledge comprises descriptive metadata (meta) and the
knowledge interface, which contains information about the knowledge scope
(scope), guard constraints (guard), intended semantics (evaluation), explicit
signature (signature), qualifying metadata (qualification) and quantifiers
(quantification).

The knowledge implementation is a knowledge instance (a representa-
tional knowledge object) of the knowledge interface. Furthermore, several
knowledge formulas can have further specialized meta knowledge, such as

6 Reaction RuleML dialects and semantic profiles might impose further restrictions
on the meta knowledge formulas such as permitting only unary formulas consisting
of simple name-value pairs (@name(value) or name = value).

Reaction RuleML 1.0 for Rules, Events and Actions 7

a truth/uncertainty degree (degree) for atomic formulas (Atom) and equa-
tions (Equal), message information (Message) such as conversation identifier
(cid), protocol (protocol), sender/recevier agent (sender, receiver), etc.
Several meta knowledge attributes specify additional information, e.g. about, sort
(@type), arity (@arity), cardinality of set values (@card, @maxCard, @minCard),
relative weight (@weight), default quantification closure (@closure), infer-
ence/execution direction (@direction), ordering (@index), remote resource lo-
cator (@iri), global node identifier (@node), internal key and key reference
(@key, @keyref), input-output mode declaration (@mode), material implication
(@material), equality orientation (@oriented), interpretation semantics of re-
lations and functions (@per), prefix and vocabulary definition for ”webized” IRI
mappings (@prefix, @vocab), processing/execution safety (@safety), reasoning
and execution style (@style), and indeterminism/determinisms of functions and
operators (@val).

Rule base formulas (Rulebase) introduce a (possibly nested) structuring of
groups of knowledge formulas, called modules (see section 7). Queries (Query)
and answers (Answer) interpret rule bases as queries and answers from the KB.
Tests are special knowledge bases (TestSuite) with a test assertion base (ground
knowledge formulas) and test items (TestItem) consisting of a test query and
expected answer. [9] Messages (Message) transport RuleML documents as their
payload. RuleML documents and messages can be included (XInclude) and im-
ported (Consult). A RuleML document is a RuleML knowledge base which
permits (ordered) transactions of performatives, which are (complex) knowl-
edge update actions.

Definition 4. Performatives are (complex) action formulas which perform
actions on the knowledge of a Reaction RuleML KB. Reaction RuleML de-
fines performative actions for asserting (Assert), retracting (Retract), up-
dating/modifying (Update), importing/consulting (Consult), querying (Query),
answering (Answer), testing (Test), sending (Send), receiving (Receive) and gen-
eral acting (Action) on knowledge.

3 Signature Definitions

To determine which terms and formulas are well-formed Reaction RuleML uses
signature definitions (signature). [13] Signatures are syntactic patterns which
define the language structures in which symbols are allowed to occur so that
matching instantiations of such signatures are considered to be well-formed.

Definition 5. (Signature) A signature T is a tuple
〈T , SC,MOD,C, arity, sort, scope, mode〉, where T = {T1, .., Tn} is the
signature pattern / signature declaration, with each Ti and T being
symbols denoting signature names, called sorts, C is the set of constant
symbols, called the universe, which might be possibly further partitioned into

8 A. Paschke

– different non-overlapping domains of discourse, called scopes, where SC =
{Sc1, .., Scm} with each Scj ∈ (SC) being symbols denoting the scope name
of a subset domain of the set of all constants.

– pairwise disjoint sets of input-output symbols, called modes, where MOD =
{Mod1, ..,Modo} with each Modk ∈ MOD being symbols denoting the mode
of these subsets of all constants

The function arity gives the number n of sorts in the signature pattern of a
sort T , called the arity. The function scope associates with each symbol c in the
universe its scope SCj ∈ SC. The function mode associates with each symbol c
in the universe its mode Modk ∈ MOD. The function sort associates with each
symbol c in the universe its sort.

More about scopes and modes can be found in section 7. To support poly-
morphism Reaction RuleML, in general, allows defining multiple (to countably
infinite) signatures with the same signature name, which only differ in their in-
ner definition. However, Reaction RuleML dialects, such as classical Reaction
RuleML dialects, can restrict this to only allow one signature definition with
a unique name per sort.

Reaction RuleML needs to represent knowledge formulas and terms / individ-
ual objects of different sorts such as events, actions, time and intervals, states,
situations, etc. Reaction RuleML dialects therefore support two possible ways to
model different sorts of individuals in a structure. The first one is for unsorted
Reaction RuleML dialects, which need to be compliant to standard FOL.
These dialects assume that there is a single universe of discourse, containing
unsorted individuals which are only distinguished by different predicates and
functions. The second approach, for sorted Reaction RuleML dialects, is to
use a multi-sorted signature, which defines several sort domains instead of just
one universe of discourse. In the following we define the multi-sorted base signa-
ture, which introduces predicates and functions. This signature can be further
extended by sorted dialects in Reaction RuleML.

Definition 6. (Multi-sorted Base Signature for Sorted Di-
alects) The multi-sorted base signature Sb is defined as a tuple 〈T , P ,
F ,C, SC,MOD, arity, sort, scope, mode〉 where T = {T1, .., Tn} is a set of
symbols called sorts, P is a sequence of predicate symbols 〈P1, .., Pn〉, called
predicates, F is a finite sequence of function symbols 〈F1, .., Fm〉, called
functions, and the rest is a signature as defined before. The function sort
associates with each predicate, function or constant its sort as follows:

– if c is a constant, then sort(c) returns the signature sort T of c.
– if p is a predicate of arity k, then sort(p) is a k+1-tuple of sorts, sort(p) =

(T1, .., Tk, Tk+1), where each term ti of p is of some sort Tj (repetitions are
allowed) and Tk+1 is of sort predicate.

– if f is a function of arity k, then sort(f) is a k+1-tuple of sorts, sort(f) =
(T 1; ::;Tk;Tk+1), where (T1; ::;Tk) (repititions allowed) defines the sorts of
the domain of f and Tk+1 defines the sort of the range of f .

Reaction RuleML 1.0 for Rules, Events and Actions 9

Additional meta knowledge can be attached to the knowledge formulas and
terms. Reaction RuleML therefore supports a labelled logic extension7, which
allows to label knowledge terms and formulas with additional meta knowledge
annotations. The extended signature with additional meta knowledge is the
combined signature of the base signature and the meta knowledge signature.

Definition 7. (Multi-Sorted Base Signature with Meta Knowledge) The
base multi-sorted signature Sb extended with meta knowledge is defined as the
union of the base knowledge signatures and the meta knowledge signatures:
Sbmeta = 〈Sb ∪ Smeta,@〉. The additional function @ is a meta function which
associates with each symbol in Sb its set of meta knowledge from Smeta.

To explicitly annotate knowledge formulas or terms with a set of additional
meta knowledge labels (meta knowledge formulas) the function @ is introduced.

Definition 8. (Meta Annotations / Labels) The function @ is a par-
tial injective labelling function that assigns a set of meta knowledge formulas
@(L1), ..,@(Ln) to a knowledge formula or term φ.

The implicit form @(L1), ..,@(Ln) φ, where φ is a knowledge formula or term
and Li is a meta knowledge formula, expresses that @(φ) = L1, .., Ln. The
Reaction RuleML XML syntax distinguished different meta knowledge formulas,
as listed in section 2.

Each Reaction RuleML dialect can further partition the base sorts of the
multi-sorted base signature into further sorts and restrict or extend them in the
dialects’ signatures, which are used to specify which formulas and terms are
well-formed. Reaction RuleML dialects define signatures for required subsets of
the sorts of terms and formulas, as they have been introduced in the previous
section 2. For instance, signatures for Time and Interval in the temporal rea-
soning dialects, restrictions of the rule formula signatures to only if and then

parts (in DR-RRML), or, e.g., Action signatures with predefined primitive ac-
tion sorts for asserting, retracting and updating knowledge in production rule
dialects (PR-RRML), or Event sorts in event processing dialects (ECA-RRML,
CEP-RRML). Further restrictions or extension can be introduced in semantic
profiles (see section 6). For instance, a semantic profile for Datalog reasoning
imposes the restriction of a function free signature, i.e., F = ∅. Furthermore,
with signature formulas (signature) further domain signatures can be also
directly defined in the knowledge interface declarations in a Reaction RuleML
document.

4 Multi-sorted Semantic Interpretation

For attributing meaning (or truth values) to sentences (well-formed formulas) in
Reaction RuleML multi-sorted semantic structures are used.

7 As pioneered in the RBSLA project http://rbsla.ruleml.org [12].

http://rbsla.ruleml.org

10 A. Paschke

Definition 9. (Multi-sorted Semantic Structure) An interpretation (se-
mantic structure) I for a multi-sorted base signature Sb consists of the following.

– A non-empty set U , called the universe of I, and for every sort Ti the set
of members of I of sort Ti is T I

i ⊆ I. The universe of I is the union of its
sorts: U = T I

1 ∪ ... ∪ T I
n .

– the structure interprets predicate, function and constant symbols in accor-
dance with their sorts as follows:
• if c is a constant symbol and sort(c) = T then cI ⊆ T I .
• if p is a n-place predicate relation symbol and sort(p) = 〈T1, ..., Tn, Tn+1〉
then pI ⊆ T I

1 × ...× T I
n− > T I

n+1.
• if f is a n-place function symbol and sort(f) = 〈T1, ..., Tn, Tn+1〉 then

pI ⊆ T I
1 × ...× T I

n− > T I
n+1.

Reaction RuleML permits the union of its sort to be not necessarily disjoint
and sorts can be subsets of other sorts including order-sorted hierarchies (see
section 5). The variable assignment and satisfaction for any Reaction RuleML
(dialect) language Φ are defined in the usual way.

Definition 10. (Variable Assignment) The assignment function σ from the
set of variables X (or a subset) of Φ into the universe U(Φ) must respect the
sorts of the variables (in order-sorted type systems also subtypes). That is, if Xi

is a variable of type T , then σ(X) ∈ T I. In general, if φ is a typed predicate or
function in Φ and σ an assignment to the interpretation I, then I |= φ[σ], i.e.,
φ is true in I when each variable Xi of φ is substituted by the values σ(X) wrt
to its sort.

Reaction RuleML dialects are restricted to finite assignments where φ is de-
fined on all free variables of φ. Furthermore, for typical logic programming di-
alects, since the assignment to constant and function symbols is fixed and the
domain of discourse corresponds one-to-one with the constants c in the signa-
ture, it is possible to identify an interpretation I with a subset of the (extended)
Herbrand base.

Reaction RuleML permits different sets of partially or totally ordered truth
values TV which are defined in its dialects and semantic profile signatures.
Classical semantic profiles typically use two Boolean values T = true and F =
false, i.e. TV = {T, F}. Other logic programming profiles e.g., equilibrium
logics (answer set programming) and partial equilibrium logics (well-founded
semantics) are three-valued logics with an additional U = undefined value and
a truth order such as true > undefined > false. In (order) sorted dialects also a
special object value ⊥ for terms which are meaningless or empty with respect to
the sort signatures can be allowed in the valuation function. Further constraints
can be imposed in a profile, e.g., for negation operators, such as the widely
adopted reverse truth ordering that negation operator must be anti-monotonic
or double negation law for default negation (Naf) and explicit negation (Neg) in
extended logic programs with extended well-founded semantics, etc. In general,
Reaction RuleML uses a multi-valued uncertainty degree between [0..1] with the

Reaction RuleML 1.0 for Rules, Events and Actions 11

typical assignment to truth values of 0 for F , 1 for T and 0.5 for U in three-valued
logics. A general truth valuation function V al(ϕ, σ) gives to every sentence
ϕ and assignment σ a truth value V al(ϕ, σ) ∈ TV for ϕ in the model σ.

If a semantic structure I assigns the value true to a well-formed formula φ,
with σ being an assignment to the semantic structure, then φ is said to be a
model of that formula, written with Tarski’s satisfaction relation as I |= φ[σ].
Accordingly, we say a formula φ is satisfied by an interpretation I (φ is true in
I: I |= φ) iff I |=σ φ for all variable assignments σ. φ is valid iff I |= φ for every
interpretation I.

Definition 11. (Model) Let I be an interpretation of a Reaction RuleML di-
alect language Σ. Then I is a model of a closed formula φ, if φ is true wrt I.
Further, I is a model of a set φ of closed formulas, if I is a model of each formula
of φ. I is a model of a Reaction RuleML knowledge base Φ, I |= Φ, iff I |= φ for
every formula φ ∈ Φ.

Reaction RuleML dialects and their semantic profiles refine their intended
models and the set of allowed semantic structures, which are used for the entail-
ment definitions. For instance dialects and their profiles for classical first-order
logic interpretation consider the set of all semantic structures and the intended
models are all models, modal logics instead typically deal with possible world
models, whereas logic programming profiles typically use Herbrand semantic
structures and minimal models, stable models or well-founded models.

For proofs, if I is a set of structures of Σ, then Φ ⇒ Ψ means that for every
structure I ∈ I which is a model of Φ, I is also a model of Ψ . Logical entailment
in Reaction RuleML is defined with respect to the set of intended models.

Definition 12. (Entailment) If I is a set of semantic structures then a for-
mula φ entails a formula ϕ, written as φ � ϕ, iff for every semantic structure
Ii ∈ I, if it is an intended model of φ then it is also an intended model for ϕ.

After this general introduction of the basic mechanisms of multi-sorted signa-
tures and their multi-sorted interpretations in Reaction RuleML, the following
sections now highlight further syntactic and semantic extension mechanism of
Reaction RuleML.

5 Metamodel and External Type Systems

The design of the (Reaction) RuleML language follows widely accepted design
principles for good language design such as minimality, referential transparency,
orthogonality and it is designed to be extensible. [16,2,20] For common elements
which occur in most typical rule languages, Reaction RuleML introduces generic
XML elements. These generic XML elements can be given a specific sort using
the typing mechanism (@type) of RuleML. [2] For instance, a generic operator
(Operator) can be typed as, e.g., logical connective, modal operator, and algebra
operator. A polymorphic negation (Negation) can be typed as, e.g. negation-as-
failure or classical negation. A generic quantifier (Quantifier), can be typed as

12 A. Paschke

Fig. 1. Defining Event Types as Metamodel Event Class

universal or existential quantifier. Variables (Var) and terms (Ind, Data, Expr)
can be typed. Any of the typical objects in reaction rules such as times (Time), in-
tervals (Interval), events (Event), actions (Action), fluents (Fluent), situations
(Situation), semantic profiles (Profile), messages (Message), agents (Agent),
protocols (Protocol), etc., are introduced as generic XML elements which can be
given a specific type. All these generic XML elements are sort extension points in
the Reaction RuleML language which can be given a specific type.

Their types can come from the Semantic Metamodel of Reaction RuleML
which defines typical sorts of the Reaction RuleML vocabulary in an ontological
metamodelling approach (using OWL as representation language). A type is
defined as a class definition which has properties and values. The properties
are distinguished into meta properties and normal class properties. Their range
is defined by possible values (data or object type values). The class gives the
definition of a type (a sort). Figure 1 illustrates the approach.

Using this metamodelling approach top level ontology types are defined
in the Reaction RuleML metamodel. Other ontologies can further special-
ize one of these top-level types. For ease of use and efficient XML process-
ing, syntactic short cuts are introduced as specific XML elements in Reac-
tion RuleML. For instance, <Forall> is the short cut XML element used for
the generic typed <Quantifier type="ruleml:Forall">, instead of <Negation
type="ruleml:InflationaryNegation"> the short cut element <Naf> can be
used as the typical sort of negation in production rules, etc.

The metamodel and other external type systems are introduced in the
signature of Reaction RuleML as externally defined sorts.

Definition 13. (External Type Alphabet) An external type alphabet T is a
finite set of monomorphic sort symbols built over the distinct set of terminological
class concepts of an (external type) language.

Definition 14. (Combined Type Signature) A combined type signature ST
is the union of all its constituent signatures including the external type signa-
tures: ST = 〈S1 ∪ .. ∪ Sn ∪ T1 ∪ .. ∪ Tk〉.

Reaction RuleML 1.0 for Rules, Events and Actions 13

A semantic structure with external types is a multi-sorted interpretations of
the combined signature ST , where the constants, predicates and function sym-
bols in the combined signature are interpreted in accordance with their (exter-
nal) sorts. For variables the assignment function of variables into the combined
universe must respect the sorts of the variables. The type systems typically
considered in Reaction RuleML are built-in and data type vocabularies (a set
of external datatype symbols that have a fixed interpretation in any semantic
structure) and order-sorted type systems (i.e., with sub-type relations such as
object-oriented class hierarchies, e.g., Java classes or ontologies).

Definition 15. (Order-sorted Type System) A finite order-sorted type sys-
tem OTS comes with a partial order ≤, i.e., TS under ≤ has a greatest lower
bound glb(T1, T2) for any two types T1 and T2 having a lower bound at all. Since
TS is finite also a least upper bound lub(T1, T2) exists for any two types T1 and
T2 having an upper bound at all.

For order sorted logics and reasoning with, e.g., hybrid polymorphic order-
sorted unification, we refer to [11] and for an implementation in Prova [18,21] and
OO-jDrew. The external types and their ”real” objects, such as events, actions,
processes, etc., that Reaction RuleML models and uses for reasoning may have
rather complex composite structures. To make clear that the inner composition of
the representation elements of the universe of a Reaction RuleML structure and
their inherent meanings, where it is not for interpretation of sorts, functions and
predicates, is not relevant, we use isomorphic structures for the interpretation
in Reaction RuleML.

Definition 16. (Isomorphism) Let I1, I2 be two interpretations of a signature
with sorts T1, .., Tn and let, then f : U1 → U2 is an isomorphism of I1 and I2 if
f is a one-to-one mapping from the universe of I1 onto the universe of I2 such
that:

1. For every sort Ti, t ∈ T I1
i , iff f(t) ∈ T I2

i

2. For every constant c, f(cI1) = cI2

3. For every n-ary predicate symbol p with n-tuple t1, .., tn ∈ U1, 〈t1, .., tn〉 ∈ pI1

iff 〈f(t1), .., f(tn)〉 ∈ pI2

4. For every n-ary function symbol f with n-tuple t1, .., tn,∈ U1,
f(f I1(t1, .., tn)) = f I2(f(t1), .., f(tn))

This isomorphism ensures that any conclusion must hold in all isomorphic
structures.

6 Dialects and Semantic Profiles

Dialects in Reaction RuleML provide a certain layer of general representation
expressiveness by defining the dialects language, typically for a particular sort of
reaction rules or a combination of different sorts. Semantic profiles in Reac-
tion RuleML are used to define the intended semantics for knowledge interpre-
tation (typically a model-theoretic semantics), reasoning (typically entailment

14 A. Paschke

regimes and proof-theoretic semantics), and for execution (e.g., operational se-
mantics such as selection and consumption policies and windowing techniques
in complex event event processing). That is, they further detail the syntax and
semantics of a dialect and provide necessary information about the intended
semantics for Reaction RuleML knowledge representations as required for inter-
change, translation, inference, and verification and validation. A dialect has a
default semantic profile defining the default semantics, i.e., the semantics which
by default is used for interpretation. Deviating semantic profiles (Profile) can
be specified (evaluation) on all formulas and terms in Reaction RuleML giving
them a different interpretation and execution from the default semantics. Multi-
ple alternative semantic profiles are allowed with or without a priority ordering
and their scope can be specified (see section 7).

Semantic profiles might define specialized or deviating structures (e.g., defin-
ing certain truth valuations for negation), intended models (e.g., in terms en-
tailment regimes) and axioms and propositions (e.g., domain independent meta
axioms of a theory, e.g., for calculi such as event calculus, situation calculus),
as well as proof-theories and properties of operational semantics (e.g., process
semantics and protocols, windowing techniques, selection and consumption poli-
cies in complex event processing and actions), etc. And, they might specialize the
language of a dialect, e.g., by limiting the dialect’s signature to subsignatures.

Definition 17. (Subsignature) A signature S1 is a subsignature of S2, i.e.,
S1 ⊆ S2 iff S1 is a signature which consists only of symbols from S2 without
changing their sort and arity.

Semantic Profiles can be defined internally within a Reaction RuleML docu-
ment (Profile) or externally. External semantic profiles can be referenced by
their profile name (@type) and imported by their resource identifier (@iri). Their
specification can be given in any XML format (content), including RuleML for-
mulas (formula), as well as other formal and textual languages (which are not
directly machine processable). For non-Reaction RuleML profiles a semantics-
preserving translation function τ needs be defined in order to allow interpreta-
tions of Reaction RuleML knowledge bases with the profile’s semantics.

Definition 18. (Semantic Profile) A semantic profile, SP =
〈SSP , ΣSP , ISP , ΦSP , τSP 〉, (partially) defines a profile signature SSP , a
language ΣSP , an interpretation ISP , a domain-independent theory ΦSP , and a
semantics-preserving translation function τSP (·) which translates from Reaction
RuleML to the profile’s language / signature (and vice versa with the inverse
function τ−1

SP).

Note, a semantic profile does not need to provide a full definition, since a
semantic profile is interpreted as a substructure of the expanded profile semantic
multi-structure of a Reaction RuleML dialect, i.e., the partial definitions in a
profile are completed with the default semantic profile of the dialect by expanding
the profile multi-structure, which is used for interpretation.

Reaction RuleML 1.0 for Rules, Events and Actions 15

Definition 19. (Expanded Profile Semantic Multi-Structure) A profile
semantic multi-structure I = 〈IR, ID, ISP 〉 is a set of semantic structures such
that IR is the basic structure of Reaction RuleML, ID is the default structure of
the dialect, and ISP is itself a semantic multi-structure consisting of the struc-
tures of the used semantic profiles ISPi . For the interpretation the modifying
expansion of I is used, which is obtained as follows:

1. IR is modified and expanded with ID and the expansion is used as default
interpretation.

2. ID is modified and expanded with ISP and the expansion is used as profile
interpretation. In case ”n” alternative substructures are define in ISP , there
are also n alternative expansions and one of the n expansions is used for
interpretation. It is up to the interpreter to decide which one to use, e.g., by
priority ordering of the profiles).

That is, the expanded interpretation of a semantic multi-structure first se-
lects one of the (expanded) profile semantics and if there is no profile semantics
defined, then it will use the default semantics of the dialect.

Definition 20. (Substructure) Given two semantic structures I1 and I2, I1 is
a substructure of I2 iff:

– U1 ⊆ U2, i.e., the universe of I1 is a subset of the universe of I2 (with the
universe of a multi-sorted structure being the union of its sorts).

– I1 is obtained by restricting the interpretation of I2 to the universe U1 of I1,
i.e.,
• for every sort T and individual a from U1, a ∈ T I1 iff a ∈ T I2 .
• if c is a constant then cI1 = cI2 .
• for every predicate symbol p of arity n and for every n-tuple of individuals
from U1, 〈a1, .., an〉 ∈ pI1 iff 〈a1, .., an〉 ∈ pI2 .

• for every function symbol f , f I1 is the restriction of f I2 to U1, i.e., the
restriction of a function f : A → B to a subset of its domain A′ ⊆ A is
the function f ′ : A′ → B written as f ′ = f � A.

Definition 21. (Reduct and Expansion) Given two signatures S1 and S2, if
S1 ⊆ S2 and I2 is a structure for S2, then the reduct, written as I1 = I2 � S1, of
I2 to S1 is a structure I1 without the symbols which are not in S1. Conversely,
I2 is the expansion of I1 to S2. The universe U1 of I1 is the union of sorts of
I2 ∈ S1, i.e., U1 ⊆ U2, with the same interpretation in I1 and I2.

As we will see in the next section, interpretations might differ in modules for
knowledge defined with local and private scopes.

7 Modularization and Scoped Reasoning

Reaction RuleML supports knowledge modularization and distribution. A syn-
tactic way to distribute knowledge locally within a KB is by separating the

16 A. Paschke

representation of a knowledge formula into several syntactic parts and connect-
ing and conjoining them syntactically by key-keyref pairs (@key, @keyref). The
key is a local (”webized”) identifier, with a unique name assumption, which can
be defined as meta knowledge on any Reaction RuleML language element. A key
reference is a local reference (within a KB) using the key as locator to connect
and conjoin the key element with the key reference element. Multiple references
to a key element are possible (1 : m as well as n : m by defining both key and
keyref on pairwise conjoint elements). The resulting combined syntax elements
need to be well-formed to allow meaningful interpretations, i.e., key-keyref pairs
need to be on similar syntactic elements and for each key reference a matching
unique key needs to be defined in a KB. A typical application of the key-keyref
mechanism is the separation of the knowledge interface with signatures from
the knowledge implementation, so that both can be represented and reused in-
dependently. This enables, e.g., template definitions (e.g., abstracted signature
patterns, knowledge templates), modularization and information hiding, e.g., by
publishing the interface in a document distributed from the document with the
(possibly private) implementation. With XML Inclusion (XInclude) such dis-
tributed documents can be syntactically included into one KB enabling local key
intra-references within it. Furthermore, with the @iri attribute remote resources
can be referenced as external terms and external (RuleML) documents and mes-
sages (Message) can be consulted/imported (Consult) or received (Receive) as
modules to the KB.

Definition 22. (Module and Submodule) A module Φ is a tuple 〈@φ, φ〉,
where φ is an ordered or unordered finite set of knowledge formulas φi ∈ φ
(without or with duplicates) and @φ is an ordered or unordered finite set of
meta knowledge formulas @φi ∈ @φ, called the module interface. A module Ψ
is a submodule of Φ if Ψ ⊆ Φ.

The importing Reaction RuleML KB is the super module of all modules. All
asserted, imported and received rule bases are submodules of this KB module.
The module’s knowledge interface might explicitly declare the meta knowledge
of the module. This includes, e.g., the module’s descriptive metadata such as the
module’s name and source, the declaration of the module’s signature patterns,
the intended semantic profiles, scopes, modes and further quantifications and
qualifications such as validity times, prioritization for conflict handling, etc. As
described in section 6 the semantic profile predefines the intended semantics, in-
cluding, e.g., the semantic properties and assumptions such as closed world, open
world, etc. As described in section 3 modes partition the universe into subsets
having a different mode. Reaction RuleML predefines the modes (@mode) ”+”
(input mode), ”−” (output mode) and ”?” (open mode, i.e., input and output).
Scopes define subsets of the universe as domain of discourse which are used for
interpretation. Reaction RuleML predefines the scopes (@scope) ”global” (glob-
ally visible), ”local” (visible with local interpretation) and ”private” (hidden and
not visible outside of the module). Dialects might introduce further scopes such
as, e.g. ”supremum” and ”infima” which expand the scope of nested submod-

Reaction RuleML 1.0 for Rules, Events and Actions 17

ules to its least upper bound or greatest lower bound. Further, namedmetadata
scopes (scope) can be defined and used as scoped domain of discourse.

Definition 23. (Metadata Scope) Let KB be a KB. A metadata scope KB@

(aka constructive view on KB), which is defined by one or more closed metadata
(constraint) formulas {@(L1), ..,@(Ln)} on the KB, is a submodule KB@ ⊆ KB,
where for every formula φ in KB@ their metadata @(φ) satisfies the metadata
constraints defined by the metadata scope. The scope’s sub-signature S@ is said
to be the scoped domain of discourse.

Scoped reasoning can be performed on such metadata scopes (aka con-
structive views on the KB) by defining closed scoped literals in conditions,
queries, event patterns. Scope literals are interpreted in the the scoped domain
of discourse and by default have the scopes’ closure. The scope definition of a
scope literal might contain variables. In addition to scopes Reaction RuleML
supports guards which act as additional pre-conditional constraints on the lit-
eral. To illustrate this interaction between scopes, guards, and the knowledge
base in scoped reasoning, the following rule program (in Prova syntax to avoid
the long XML syntax of Reaction RuleML) makes decisions on the basis of rules
which have been authored by different persons and only applies those rules from
trusted authors.

%simplified decision rules of an agent
@author(developer1) r(X):-q(X).
@author(developer2) r(X):-s(X).
q(2).
s(-2).
% for simplicity this is a fact, but could be also a complex rule which computes the trust
% value from the reputation value of developer1
trusted(developer1).
% the rule defines a scope @author(A) on the goal r(X) and a guard pre-constraint that all
% found authors (bound to variable A) must be trusted.
p(X):- @author(A) r(X) [trusted(A)].
% query results only in the solution X=2, because developer1 is trusted but developer2 is not
:-solve(p(X)).

By default a Reaction RuleML KB and its (sub-)modules are contextually
annotated by metadata about their source (@src([Locator])) and their name
(@label([OID])), with Locator being the KB’s source location (location of Re-
action RuleML document) and OID being the implicitly or explicitly defined ob-
ject identifer. By default, the scope of relations and functions is global and their
arguments’ scope is local. A global scope corresponds to a metadata scope defined
over all knowledge qualified with the source of the KB (@source([Locator])) and
the local scope corresponds to the metadata scope defined over all knowledge
qualified with the name of the module (@label([OID])). The mode of formulas
when used as conditions, constraints, queries and event patterns is ”+” (input)
and the mode of conclusions, answers and active actions is ”−” (output); with
a corresponding mode for their constant arguments and by default for variables
the mode is ”?” (open). The default quantification scope is universal (Forall).
There is a nested submodule inheritance, i.e., meta knowledge defined on outer
modules is automatically inherited to the inner modules.

18 A. Paschke

The set of input formulas In and the set of output formulas Out are visible
and can be imported and accessed by other modules. Accordingly their scope
must be either global or local. The set of formulas with private scope consists of
internal formulas Priv and hence not accessible by other modules. This is used
for defining the semantics of imports (Consult, XInclude) and the composition
semantics of modules.

Definition 24. (Import) A document KB′ is said to be an import to a doc-
ument KB, if it is directly imported into KB (or it is imported into another
document, which is directly imported into KB). An imported document KB′

becomes a module of the KB.

Semantic profiles might specify an additional translation and renaming map-
ping, e.g., to consistently map all imported local symbols into the local symbols
of the importing KB. Furthermore, they can define the concrete module com-
position semantics, e.g., as a conservative composition using renaming output
transformations on the output formulas and outer join operator for the compo-
sition, and a mechanism to avoid cyclic imports.

The interpretation of such a multi-module KB is defined as a modular ex-
tension of the semantic multi-structure, which was already used for importing
semantic profiles.

Definition 25. (Modular Semantic Multi-Structure) A modular semantic
multi-structure M = 〈MKB0 ,MKB1 ,MKB2 , ..〉 is a set of semantic structures
such that MKB is the semantic structure of the importing KB and MKBk

is
a set of semantic structures of the imported modules. The semantic structures
MKB and all structures MKBk

are required to coincide in the mappings of global
symbols in all semantic structures. But, they might differ for local and private
symbols in their interpretation using the module scope to constrain the domain
of discourse to allow deviating local interpretations in each MKBk

.

The module composition semantics defined in a semantic profile can specify
how to do the expansion of the modular semantic multi-structure. The default
is that the semantics of imported modules expands to the semantics of the im-
porting KB. But, other composition semantics can be defined in the semantic
profile of the importing KB.

Reaction RuleML supports actions for sending (Send) and receiving
(Receive) knowledge via messages (Message) in messaging reaction rules
(@style="messaging"). Messages interchange Reaction RuleML documents as
their payload between agents (Agent), which are rule-based agents (aka infer-
ence services). The sent RuleML documents are imported to the KB of the
receiving agent using the primitive(s) defined in the received document to ac-
tively process the knowledge in the receiver’s KB. An important difference to
”standard” imports, as described before, is, that these knowledge updates are
local to the conversation scope of the message interaction which takes place
in the execution scope of messaging reaction rules. A typical application of
this conversation-based interactions is distributed Question-Answering (Q&A)

Reaction RuleML 1.0 for Rules, Events and Actions 19

between distributed KBs (i.e., agents providing query interfaces to their KBs),
where the send and receive actions in messaging reaction rules act as queries and
answers to external KBs. They can be given a truth-valued interpretation in the
model-theoretic semantics and can be interpreted as goals which are proven by
the external knowledge. An important aspect in this distributed interaction is the
interface declaration of knowledge, in particular the signatures and their scope
visibility. The agent conversations might follow certain protocols (Protocol) and
might be given an additional pragmatic interpretation (directive). For further
information we refer to the RuleResponder project. [15,18,19]

8 Conclusion - Reaction RuleML for Reaction Rules

In this paper we have introduced the core mechanisms of Reaction RuleML as
XML-based representation and interchange language for reaction rules. Multi-
sorted signature definitions and multi-sorted interpretations allow events,
actions, times, etc., as ”first-class citizens” in the language, with their sorts pos-
sibly defined in external (order-sorted) type systems such as ontologies and
object class hierarchies. Syntactic and semanticmodularization enables knowl-
edge imports as modules and distribution of knowledge interface definitions from
knowledge implementations/representations, referenced locally (@key, @keyref)
or globally (@node, @iri). Scopes define visibility properties and local closed in-
terpretation of terms and formulas in modularized KBs. Metadata scopes act
as constructive views on the KB by dynamically selecting knowledge from the KB
by their descriptive and qualifying metadata annotations, enabling scoped rea-
soning. Semantic profiles define possible intended semantics for the evaluation
of Reaction RuleML KBs. For instance, profiles defining certain calculi such as
situation calculus or event calculus can be used for the logical interpretation of
the domain-dependent theories represented in the KR-RRML dialect. Profiles for
temporal reasoning (including temporal modal logic profiles) can be used for rep-
resentations in the temporalDR-RRML. Active dialects such as PR-RRML,ECA-
RRML and CEP-RRML support active reaction rules (@style="active") with
implicit or explicit (complex) events and with active actions such as knowledge
update actions defined in terms of primitives. Various logics have been proposed
for such active rules reaching from event/action logics, temporal action languages,
evolving logic programs to other non-monotonic logics such as transaction logic.

With extensible algebra operators, complex event patterns (event signatures),
complex actions, as well as pre- and post-conditions Reaction RuleML provides
the required representational expressiveness for such kind of active reaction rules.
We highlight some of the features for efficient SCEP in Reaction RuleML 1.0,
which become possible with the described core mechanism in this paper.

– Knowledge update actions and other effect full (complex) actions tran-
sit the knowledge base from one state to the next. Reaction RuleML makes
an implicit rule base assumption for such update primitives, which means
the knowledge update is interpreted as a (sub)module in the KB. The mod-
ule is annotated with various metadata such as the rule base’s module name,

20 A. Paschke

the source and a state time stamp. This metadata can be used for efficient
life cycle management. For instance, a module can be simply retracted by
retracting all knowledge which is in the metadata scope of this module. A
transition of transactional updates (@safety=transaction), which leads to
a set of modules in the KB, can be easily rolled-back by reverting the tran-
sition on the metadata scopes of these modules.

– Complex event patterns can be defined by signature definitions using
event algebra operators which are interpreted by semantics profiles (such
as the interval-based event calculus event algebra [22]).

– Various selection an consumption policies for event instance sequences
can be defined in terms of scopes and guard constraints. For instance, using
the metadata time stamp of event instances in the KB, a guarded metadata
scope can define a time window in the guard constraint selecting only events
with a meta data time stamp within the defined window.

– Typical functionalities of event processing as described in the Reference
Architecture of the Event Processing Technial Society [23], such as event
preparation functions with selection and filtering, event analysis functions
for transformations and ratings, detection functions with complex event pat-
terns, and event reactions with routing by sending and receiving messages,
can be represented in terms of (messaging) reaction rules in CEP-RRML [14].

– With messaging reaction rules conversation based pragmatic interac-
tions between knowledge processing agents (e.g. distributed event process-
ing agents - EPAs - or rule-based Q&A inference services) are possible
following agent based coordination and negation protocols as well as
(possibly concurrent) event-action workflows.

References

1. Hallmark, G., Paschke, A., de SainteMarie, C.: RIF Production Rule Dialect, W3C
Recommendation, 2nd edn. (February 2013), http://www.w3.org/TR/rif-prd/

2. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of
Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

3. Boley, H.: Integrating Positional and Slotted Knowledge on the Semantic Web.
Journal of Emerging Technologies in Web Intelligence 4(2), 343–353 (2010)

4. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

5. Boley, H., Kifer, M.: RIF Framework for Logic Dialects, W3C Recommendation,
2nd edn. (February 2013), http://www.w3.org/TR/rif-fld

6. Chen, W., Kifer, M., Warren, D.S.: HiLog: A foundation for higher-order logic
programming. Journal of Logic Programming 15(3), 187–230 (1993)

7. Battle, S., et al.: Semantic Web Services Language (SWSL), W3C Member Sub-
mission (September 2005), http://www.w3.org/Submission/SWSF-SWSL/

8. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-oriented and Frame-
based Languages. J. ACM 42(4), 741–843 (1995)

http://www.w3.org/TR/rif-prd/
http://www.w3.org/TR/rif-fld
http://www.w3.org/Submission/SWSF-SWSL/

Reaction RuleML 1.0 for Rules, Events and Actions 21

9. Paschke, A.: The ContractLog Approach Towards Test-driven Verification and Val-
idation of Rule Bases - A Homogeneous Integration of Test Cases and Integrity
Constraints into Evolving Logic Programs and Rule Markup Languages (RuleML).
International Journal of Interoperability in Business Information Systems (2005)

10. Paschke, A.: Rule Based Service Level Agreements (RBSLA), RuleML project (De-
cember 2006), http://rbsla.ruleml.org/

11. Paschke, A.: A typed hybrid description logic programming language with polymor-
phic order-sorted dl-typed unification for semantic web type systems. In: OWLED
(2006)

12. Paschke, A.: Rule based service level agreements: RBSLA; knowledge representation
for automated e-contract, SLA and policy management. Idea Verlag GmbH (2007)

13. Paschke, A.: Rules and logic programming for the web. In: Polleres, A., d’Amato,
C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 326–381. Springer, Heidelberg (2011)

14. Paschke, A.: Semantic Complex Event Processing. Tutorial at Dem@Care Summer
School on Ambient Assisted Living, Chania, Crete, Greece, September 16-20 (May
2013), http://www.slideshare.net/swadpasc/dem-aal-semanticceppaschke

15. Paschke, A., Boley, H.: Rule Responder, RuleML project (October 2007),
http://responder.ruleml.org/

16. Paschke, A., Boley, H.: Rule Markup Languages and Semantic Web Rule Lan-
guages. In: Giurca, A., Gasevic, D., Taveter, K. (eds.) Handbook of Research
on Emerging Rule-Based Languages and Technologies: Open Solutions and Ap-
proaches, pp. 1–24. IGI Publishing (May 2009)

17. Paschke, A., Boley, H.: Rules Capturing Events and Reactivity. In: Giurca, A.,
Gasevic, D., Taveter, K. (eds.) Handbook of Research on Emerging Rule-Based
Languages and Technologies: Open Solutions and Approaches, pp. 215–252. IGI
Publishing (May 2009)

18. Paschke, A., Boley, H.: Rule Responder: Rule-Based Agents for the Semantic-
Pragmatic Web. International Journal on Artificial Intelligence Tools 20(6), 1043–
1081 (2011)

19. Paschke, A., Boley, H., Kozlenkov, A., Craig, B.L.: Rule responder: Ruleml-based
agents for distributed collaboration on the pragmatic web. In: Proceedings of
the 2nd International Conference on Pragmatic Web, ICPW 2007, Tilburg, The
Netherlands, October 22-23. ACM International Conference Proceeding Series,
vol. 280, pp. 17–28. ACM (2007)

20. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:
Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

21. Paschke, A., Kozlenkov, A.: Prova - Prolog + Java Rule Language, Open Source
project (October 2006), https://prova.ws/

22. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

23. Paschke, A., Vincent, P., Alves, A., Moxey, C.: Tutorial on advanced design pat-
terns in event processing. In: Proceedings of the Sixth ACM International Con-
ference on Distributed Event-Based Systems, DEBS 2012, Berlin, Germany, July
16-20, pp. 324–334. ACM (2012)

24. Polleres, A., Boley, H., Kifer, M.: RIF Datatypes and Built-ins 1.0, W3C Recom-
mendation (June 2010), http://www.w3.org/TR/rif-dtb

http://rbsla.ruleml.org/
http://www.slideshare.net/swadpasc/dem-aal-semanticceppaschke
http://responder.ruleml.org/
https://prova.ws/
http://www.w3.org/TR/rif-dtb

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 22–36, 2014.
© Springer International Publishing Switzerland 2014

A Logical Characterization
of a Reactive System Language

Robert Kowalski and Fariba Sadri

Department of Computing,
Imperial College, London, UK
{rak,fs}@doc.ic.ac.uk

Abstract. Typical reactive system languages are programmed by means of rules
of the form if antecedent then consequent. However, despite their seemingly
logical character, hardly any reactive system languages give such rules a logical
interpretation. In this paper, we investigate a simplified reactive system lan-
guage KELPS, in which rules are universally quantified material implications,
and computation attempts to generate a model that makes the rules true.

The operational semantics of KELPS is similar to that of other reactive
system languages, and is similarly incomplete. It cannot make a rule true by
making its antecedent false, or by making its consequent true whether or not its
antecedent becomes true. In this paper, we characterize the reactive models
computed by the operational semantics. Informally speaking, a model is reac-
tive if every action in the model is an instance of an action in the consequent of
a rule whose earlier conditions are true.

Keywords: reactive systems, model generation, completeness, LPS, KELPS.

1 Introduction

State transition systems play an important role in many areas of Computing. They
underpin the operational semantics of imperative programming languages, the dynam-
ic behavior of database management systems, and many aspects of knowledge
representation in artificial intelligence. In many of these systems, state transitions are
performed by executing reactive rules, which describe relationships between earlier
and later states. Reactive rules occur explicitly as condition-action rules in production
systems, event-condition-action rules in active databases, and transition rules in Ab-
stract State Machines [4]. They are implicit in Statecharts [5] and BDI agents plans.
They are the core of Reaction RuleML [16].

Simple state transition systems have an operational semantics in which computa-
tion consists in generating a finite sequence act1, … , actn of actions to transform an
initial state S0 into a goal state Sn. In this paper, we investigate the logical semantics of
a state transition system, KELPS, which generates actions by using reactive rules.
Given an initial state S0 and a potentially non-terminating sequence of external events
ext1,…, exti,…, computation in KELPS consists in generating associated sequences

 A Logical Characterization of a Reactive System Language 23

act1, … , acti, ... of actions and states S1, … , Si,, with the purpose of making the
reactive rules true.

In previous papers [11, 12, 14], we presented a Logic-based agent and Production
System language LPS, which combines reactive rules with logic programs. KELPS
[13] is a simplified Kernel of LPS without logic programs. Its operational semantics is
similar to that of imperative reactive rule languages, which generate sequences of
actions and states, but maintain only a single current state, using destructive state
transformations. However, the reactive rules in KELPS are represented in first-order
logic (FOL), as sentences of the form ∀X [antecedent→ ∃Y [consequent]], where all
the time-stamps in consequent are constrained to be later than or equal to the latest
time-stamp in antecedent.

KELPS is not intended to be a practical computer language, but has been simpli-
fied to focus on the main issues concerning the logical semantics of reactive system
languages more generally. It can be regarded as a compiled form of LPS, in which
relations defined intensionally by logic programs are compiled into extensionally
defined predicates, defined by atomic sentences. The resulting kernel language is not
as expressive and well-structured as LPS, but is still very expressive compared with
many other reactive system languages. In particular, antecedents of rules in KELPS
can recognize a large class of complex events, and consequents of rules can generate
complex alternative, conditional plans of actions.

In [11, 12, 14] we showed that the operational semantics (OS) of LPS (and there-
fore of KELPS) is sound: Any sequence of states and events that the OS recognizes as
solving the computational task is indeed a model that makes the reactive rules true.
However, the OS is incomplete, because it generates only reactive models, in which
the consequents of reactive rules are made true after their antecedents become true. It
does not generate models that proactively make consequents true whether or not their
antecedents become true; that make antecedents false, to prevent making their conse-
quents true; or that unnecessarily make their antecedents true, and are then forced to
make their consequents true. Moreover, it does not generate models that contain ac-
tions that are irrelevant to the computational task.1

Fig. 1 presents an informal illustration of the different kinds of models. In addition
to a single reactive rule, the example also includes a causal theory, used to update
states destructively, and a definition of the temporal constraint predicates, defined
extensionally by means of atomic sentences. All of the models include both the set of
all external events and the set of all actions motivated by the reactive rule and trig-
gered by the external events. The non-reactive models also contain additional, unmo-
tivated or unnecessary actions.

In this paper, we characterize the reactive models I generated by the KELPS OS.
These models all have the property that every action in I is motivated by being an
instance of an action that occurs explicitly in the consequent of a reactive rule whose
earlier conditions are already true. For example, in the reactive model of Fig. 1, the
action dispatch(bob, book, tuesday), is an instance of dispatch(C, Item, T2) in the
consequent of the rule, and all earlier conditions, orders(bob, book, monday) and

1 In section 6.1, we discuss the relationship between these different kinds of models and the

models that are generated using abductive logic programming [7] and the frame axioms of the
event calculus [15]. We will see that reactive models need not be minimal.

24 R. Kowalski and F. Sadri

reliable(bob, monday), of the associated instance of the rule are true before the time
of the action. However, in the proactive model, although the action dispatch(mary,
book, tuesday) is also an instance of dispatch(C, Item, T2), the earlier instance relia-
ble(mary, monday) of the condition reliable(C, T1) is not true. Moreover, in the irrel-
evant model, the action send-voucher(mary, wednesday) has no relationship with any
of the actions in the rule at all.

In the remainder of the paper, we present the KELPS language (section 2), its model-
theoretic (section 3) and operational semantics (section 4), the relationship between the
two semantics (section 5), the relationship with Abductive Logic Programming [8],
MetateM [1] and Transaction Logic [2] (section 6), and future work (section 7).

If a customer orders an item and the customer is reliable,
then dispatch the item and send an invoice to the customer for the item.

Reactive rule: orders(C, Item, T1) ∧ reliable(C, T1)
 → dispatch(C, Item, T2) ∧ send-invoice(C, Item, T3) ∧
 T1 < T2 ≤ T3 ≤ T1 + 3

Auxiliary predicate definitions: monday < tuesday, tuesday < wednesday, etc.

Causal theory: initiates(send-invoice(C, Item), payment-due(C, Item))
 terminates(pays-invoice(C, Item), payment-due(C, Item))

Initial state at sunday: reliable(bob)

External events: orders(bob, book, monday), orders(mary, book, monday)

A reactive model: orders(bob, book, monday), orders(mary, book, monday)
 reliable(bob, sunday), reliable(bob, monday), reliable(bob, tuesday), etc.
 send-invoice(bob, book, tuesday), dispatch(bob, book, tuesday),
 payment-due(bob, book, tuesday), payment-due(bob, book, wednesday), etc.
 sunday < monday, monday < tuesday, tuesday < wednesday, etc.

A proactive model: The reactive model with the addition of:
send-invoice(mary, book, tuesday), dispatch(mary, book, tuesday),
payment-due(mary, book, tuesday), payment-due(mary, book, wednesday), etc.

An irrelevant model: The reactive model with the addition of:
send-voucher(mary, wednesday).

 Here the models are all Herbrand models, represented by the set of all atomic

 sentences that are true in the model. In particular, the models contain all the atomic
 sentences needed to define the temporal relations.

Fig. 1. Examples of Models of Reactive Rules in KELPS

 A Logical Characterization of a Reactive System Language 25

2 The KELPS Language

The operational semantics of KELPS maintains a single current state Si at time i. It
reasons with the reactive rules, to generate a set of actions actsi+1, which it combines
with external events exti+1, to produce a consistent set of concurrent events evi+1 =
exti+1 ∪ actsi+1. The events evi+1 are used to update the current state Si, generating the
successor state Si+1 = succ(Si, evi+1).

In KELPS, states are represented by sets of ground atoms2, also called facts or flu-
ents. Events are also represented by ground atoms. Such sets of ground atoms can be
understood in two ways: They can be understood literally as theories or as Herbrand
interpretations, which are model-theoretic structures. It is this second interpretation
that underpins the logical semantics of KELPS.

States and events can be represented with or without timestamps. The representa-
tion without timestamps facilitates destructive updates, because if a fact is not termi-
nated by a set of events, then the fact without timestamps simply persists from one
state to the next. However, the representation with timestamps makes it possible to
combine all the states and events into a single Herbrand interpretation.

2.1 Vocabulary

KELPS is a first-order, sorted language, including a special sort for time. In the ver-
sion of KELPS presented in this paper, we assume that time is linear and discrete, and
that the succession of time points is represented by the ticks of a logical clock, where
1, 2, ... stand for s(0), s(s(0)), …., t+1 stands for s(t) and t+n stands for sn(t). Thus Si
represents the state at time i, and evi+1 represents the set of events taking place in the
transition from state Si to Si+1. Other representations of time are also possible, as illus-
trated informally in Fig. 1.

Predicates: The predicate symbols of the language are partitioned into sets represent-
ing fluents, events, auxiliary predicates and meta-predicates:

Fluent predicates represent facts in the states Si. The last argument i of a
timestamped fluent atom p(t1, …, tn, i) is a time parameter, representing the time i of
the state Si to which the fluent belongs. The unstamped fluent atom p(t1, …, tn) is the
same atom without this timestamp. Fluents can also have other time parameters,
called reference times, for example friday in payment-due(friday, i), which expresses
that at time i payment is due on friday.

Event predicates represent events contributing to the transition from one state to the
next. The last argument of a timestamped event atom e(t1, …, tn, i) is a time parame-
ter, representing the time of the successor state Si. The unstamped event atom e(t1, …,
tn) is the same atom without this time parameter. Event predicates are partitioned into
external event predicates and action predicates.

Auxiliary predicates are of two kinds: time-independent predicates, such as
isa(book, product), and temporal constraint predicates, which express temporal con-
straints, including inequalities of the form i < j or i ≤ j between time points, other

2 By atom we mean an atomic formula possibly containing variables. By atomic sentence or

ground atom, we mean an atomic formula not containing variables.

26 R. Kowalski and F. Sadri

relationships between time points, such as max(T1, T2, T) and min(T1, T2, T), and
arithmetic relationships involving time points, such as plus(T1, 3, T2).

In LPS, auxiliary predicates are defined by logic programs. In KELPS, they are de-
fined more simply by a (possibly infinite) set Aux of atomic sentences. This assump-
tion that the temporal constraint predicates are defined by sets of ground atoms is the
same as the assumption made in the semantics of constraint predicates in constraint
logic programming (CLP) [6]. The KELPS OS exploits this relationship with CLP by
using a constraint solver to check temporal constraints for satisfiability. As is com-
mon in the theory of CLP, it is sufficient to ensure that constraints are satisfiable.
However, in practice, it is useful also to simplify the constraints.

The meta-predicates consist of the two predictates initiates(events, fluent) and ter-
minates(events, fluent), which are used to specify the postconditions of events and to
perform state transitions, as illustrated in Fig. 1. The first argument is a set of events,
to cater for the case where two events together have different effects from the indi-
vidual events on their own (such as buying two books and getting the cheaper one for
half price). In LPS, these meta-predicates are defined by a logic program. In KELPS,
they are defined by a set of atomic sentences3 in a causal theory C, which also con-
tains constraints on the preconditions and co-occurrence of events.4

2.2 KELPS Framework

Definition. A KELPS framework (or program) is a triple <R, Aux, C>, where R is a
set of reactive rules, Aux is a set of ground atoms defining auxiliary predicates, and C
is a causal theory.

Rules in R are constructed from formulas that represent complex events or plans,
expressed as conjunctions of state conditions, event atoms, and temporal constraints.
Operationally, state conditions are queries to the current state, treated as a database.
Like relational database queries, state conditions can be formulas of FOL. For exam-
ple, the state condition ∀It ∀D [manages(M, D, T) ∧ item(It, D) → instock(It, T)]
behaves as a query that returns managers M all of whose departments D have all of
their items It in stock at time T.

Definition. A state condition is an FOL formula whose atoms are either time-
independent predicates or fluent atoms having the same timestamp, which is unbound
in the condition.

Rules can have disjunctive consequents. For example:

 orders(C, Item, T1)
 → [dispatch(C, Item, T2) ∧ send-invoice(C, Item, T3) ∧ T1 < T2 ≤ T3 ≤ T1 + 3]
 ∨ [send-apology(C, Item, T4) ∧ T1 < T4 ≤ T1 + 5]]

3 In the examples, in Fig. 1 and elsewhere in the paper, we use universally quantified sentences

as a shorthand for the set of all their well-sorted ground instances.
4 In earlier papers, this causal theory was called a “domain theory”.

 A Logical Characterization of a Reactive System Language 27

Different alternatives in the consequent can have different deadlines. If the antecedent
becomes true, then the plan with the earliest deadline can be attempted first. If it fails
to be achieved within the deadline, then an alternative plan with a later deadline can
be attempted. However, any actions performed in the earlier, partially executed plan
cannot be directly undone. Any “backtracking” to try an alternative plan must be per-
formed in the context of the state updated by the successful actions in the failed plan.

Definition. A reactive rule is a sentence of the form:
 ∀X [antecedent→ ∃Y [consequent]] where:
• consequent is a disjunction consequent1 ∨ ...∨ consequentn.
• X is the set of all variables, including time variables, that occur in antecedent

and are not bound in state conditions. Y is the set of all variables, including time
variables, that occur only in consequent and are not bound in state conditions.

• antecedent and each consequenti is a conjunction of state conditions, event at-
oms and temporal constraints.

• The only variables occurring in temporal constraints are those that occur in state
conditions and event atoms of the rule, or ones that are functionally dependent
on such variables.

• All the timestamps in Y are constrained in the consequent to be later than or
equal to the timestamps in X.5

Because of the restrictions on the quantification of variables, and the logical equiva-
lence ∃Y[p∨ q] ⇔ ∃Y p∨ ∃Z q, we can omit the quantifiers ∀X and ∃Y, and simply
write antecedent → consequent or antecedent → consequent1 ∨...∨ consequentn.

Definition. A causal theory, C = Cpost ∪ Cpre, consists of two parts: Cpost is a set of
atomic sentences defining the predicates initiates and terminates. Cpre is a set of sen-
tences of the form∀X [antecedent→ false], where antecedent is a conjunction consist-
ing of a single state condition with timestamp T and event atoms with timestamp T+1,
where T is included in X.

For example, the preconditions for dispatch(C, Item, T) in Fig. 1 might include:

dispatch(C1, Item, T) ∧ dispatch(C2, Item, T) ∧ C1 ≠ C2 → false
dispatch(C, Item, T+1) ∧ ¬ instock(Item, T) → false

where instock(Item) is a fluent, initiated and terminated by the actions stock(Item) and
dispatch(C, Item), respectively.

The definitions of the predicates initiates and terminates by means of atomic sen-
tences is similar to the use of add-lists and delete-lists in STRIPS [19]. However, it is
more general, because the first argument is a set of events. Stating explicitly the flu-
ents initiated and terminated by every possible set of concurrent events is not very

5 More precisely, for every substitution σ that replaces the time variables in X and Y by ground

times and such that the temporal constraints in consequent σ are true in Aux, the all time-
stamps in consequent σ are later than or equal to the latest timestamp in antecedent σ.

28 R. Kowalski and F. Sadri

practical, but it clarifies the model-theoretic semantics and simplifies the operational
semantics. Moreover, it paves the way for the more practical representation in which
the initiates and terminates predicates are defined by logic programs in LPS.

Reactive rules R and preconditions Cpre have the same semantics. Moreover, they
both have a deontic (but non-modal) character. The reactive rules specify obligations
that must be fulfilled, typically by performing actions, whereas the preconditions
specify combinations of state conditions and events that are prohibited.

3 The KELPS Model-Theoretic Semantics

In the model-theoretic semantics of KELPS, the reactive rules R and preconditions
Cpre are interpreted according to the standard, non-modal semantics of classical first-
order logic. This contrasts with the semantics of modal logics, in which states are
represented by possible worlds, linked by accessibility relations. In KELPS, states and
events are timestamped and included in a single model-theoretic structure.

Definition. If <R, Aux, C> is a KELPS framework, S is a set of unstamped fluents,
representing a single state, and ev is a set of unstamped events, representing concur-
rent events, then the associated successor state is:
 succ(S, ev) = (S – {p | terminates(ev, p) ∈ Cpost }) ∪ {p | initiates(ev, p) ∈ Cpost}.

Notation. If Si is a set of fluents without timestamps, then Si* represents the same set
of fluents with the timestamp i. If eventsi is a set of concurrent events without time-
stamps, all taking place in the transition from state Si-1 to state Si, then eventsi* repre-
sents the same set of events with the timestamp i.

If S0 is an initial state, ext1, … , exti, …, is a sequence of sets of external events
and acts1, … , actsi, … is a sequence of sets of actions, then:

S* = S0* ∪ S1* ∪ … ∪ Si* ∪ … where Si+1 = succ(Si, evi+1)
ev* = ev1* ∪ ev2* ∪ … ∪ evi* ∪ … where evi = exti ∪ actsi, for i ≥ 1.

Computation in conventional reactive systems consists in generating a stream act1, …,
acti, … of actions in response to a stream of external events ext1, … exti, …. Compu-
tation in KELPS is similar, but it has a purpose, which conventional reactive systems
lack, namely to make rules and the preconditions of actions true:

Definition. Given a KELPS framework <R, Aux, C>, an initial state S0 and a se-
quence ext1,…, exti of sets of external events, the computational task is to generate
sets actsi+1 of actions for every i ≥ 0, such that R ∪ Cpre is true in the Herbrand in-
terpretation M = Aux ∪ S* ∪ ev*.

The definition of truth is the classical definition for FOL. It allows the generation of
actions that make the rules true by making their antecedents false, or by making their
consequents true whether their antecedents are true or false. It also allows actions that
are irrelevant to the task. In this paper, we identify the reactive models that can be
generated by the OS.

 A Logical Characterization of a Reactive System Language 29

Note that the generated actions actsi+1 in KELPS need not be a direct reaction to
the current situation Si* ∪ evi*, but can be a partial response to some subsequence of
earlier states and events. Nor need the choice of actions be deterministic. There can be
several different sets of actions actsi+1 that can be chosen for execution in the transi-
tion from a given state Si to the next state Si+1 and there can be many different models
M that satisfy a given computational task. However, once an action has been chosen
and successfully executed, it cannot be directly undone. At best, it may be possible
only to choose and execute other actions to reverse its effects.

3.1 Herbrand Interpretations

The semantics of Herbrand interpretations is a simplified version of the standard se-
mantics of first-order logic.

Definition. Given the vocabulary of a sorted first-order language, the Herbrand uni-
verse is the set of all well-sorted ground (i.e variable-free) terms that can be con-
structed from the constants and function symbols of the vocabulary. The Herbrand
base is the set of all well-sorted ground atoms that can be constructed from the predi-
cate symbols and the ground terms of the vocabulary. A Herbrand interpretation is a
subset of the Herbrand base. A Herbrand model M of a set S of sentences is a Her-
brand interpretation such that every sentence s in S is true in M.

The main difference from the standard definition of truth is the base case: If I is a
Herbrand interpretation, then a ground atom A is true in I if and only if A ∈ I. Thus, a
rule∀X [antecedent→ ∃Y [consequent1 ∨ ...∨ consequentn]] is true in I if and only if,
for every ground instance antecedent σ that is true in I, there exists a ground in-
stance consequenti σ θ that is also true in I. Here the substitutions σ and θ replace
the variables X and Y, respectively, by terms of the appropriate sort in the Herbrand
universe U of I. For simplicity, we assume that, except for time parameters, all flu-
ents have the same ground instances over U in all states.

3.2 The Temporal Structure of KELPS Interpretations

The timestamping of fluents and events, and the restrictions on the syntax of KELPS
provide KELPS interpretations with a rich structure of sub-interpretations. This struc-
ture is captured by the following theorem, which is an immediate consequence of the
definition of truth for sentences in Herbrand interpretations.

Theorem 1
1. If s is a conjunction of temporal constraints whose time parameters are all ground,
then s is true in Aux ∪ S* ∪ ev* if and only if s is true in Aux.
2. If s is an FOL sentence containing only state conditions, event atoms and temporal
constraints whose time parameters are all ground, then:
 a. If all the timestamps in s are the same time i,
 then s is true in Aux ∪ S* ∪ ev* if and only if s is true in Aux ∪ Si* ∪ evi*.

30 R. Kowalski and F. Sadri

 b. If i is the latest timestamp in s, then s is true in Aux ∪ S* ∪ ev*
 if and only if s is true in Aux ∪ S0* ∪ ... Si* ∪ ev1* ∪ ... evi*.

There is an obvious similarity with the possible world semantics of modal logic. Each
sub-interpretation Aux ∪ Si* ∪ evi* is analogous to a possible world, and the single
interpretation Aux ∪ S* ∪ ev* is analogous to a complete frame of possible worlds
and accessibility relations. However, in KELPS, timestamped fluents and events are
all contained in a single Herbrand interpretation; but in the possible world semantics,
fluents belong to possible worlds, and events belong to accessibility relations.

3.3 Sequential Notation

The antecedents and alternative consequents of reactive rules are both partially
ordered state conditions and event atoms. Antecedents represent complex (or compo-
site) events, and alternative consequents represent conditional plans of actions. Alt-
hough these state conditions and event atoms are partially ordered, they are used to
recognize or generate linearly ordered sequences of states and events.

It is useful to have a notation that distinguishes between the different sequences repre-
sented by the same conjunction of partially ordered state conditions and event atoms:

Notation. Let condition1∧ condition2 be a conjunction of state conditions and event
atoms, constraints a conjunction of temporal constraints, and C the conjunction
condition1 ∧ condition2 ∧ constraints. If there exists a substitution σ that grounds
all the time parameters of C, and if constraints σ is true in Aux, then:

1. condition1 < condition2 ∧ constraints denotes that for every timestamp t1 in
condition1 σ and every timestamp t2 in condition2 σ , t1 < t2.

2. condition1 ≤ condition2 ∧ constraints denotes that for every timestamp t1 in
condition1 σ and every timestamp t2 in condition2 σ , t1 ≤ t2.

We refer both to condition1 < condition2 ∧ constraints and to condition1 ≤ condition2
∧ constraints as sequencings of C. Note that condition1 < condition2 and condition1 ≤
condition2 hold when condition1 or condition2 are empty (equivalent to true).

3.4 Reactive Interpretations

Fig. 1 gives examples of different kinds of models of a KELPS program. The follow-
ing definition characterizes reactive interpretations, which include reactive models as
a special case. Loosely speaking, an action occurs in a reactive interpretation if and
only if it occurs in the consequent of an instance of a reactive rule, and all earlier state
conditions and event atoms in the instance are already true.

Definition. Given a KELPS framework <R, Aux, C>, initial state S0 and set ev* of
timestamped events, let Cpre be true in I = Aux ∪ S* ∪ ev*, and let ev* = ext* ∪
acts* be a partitioning of ev* into external events ext* and actions acts*. Then I is
reactive if and only if, for every action act in I, there exists a rule r ∈ R of the form:
 antecedent → [other ∨ [earlier ∧ action ∧ remainder ∧ temp]] where:

 A Logical Characterization of a Reactive System Language 31

1) temp consists of all the temporal constraints in earlier∧action∧remainder∧ temp
2) all the non-timestamp variables in action occur in antecedent or earlier6 and
3) there exists an instance r σ of r such that:

a) act is action σ
b) antecedent σ ∧ earlier σ ∧ action σ ∧ temp σ is true in I and
c) earlier σ < action σ ≤ remainder σ ∧ temp σ.

I is a reactive model of <R, Aux, C>, if and only if I is a reactive interpretation and R
is true in I.

4 The KELPS Operational Semantics

The operational semantics exploits the internal structure of KELPS interpretations
Aux ∪ S* ∪ ev* to generate them by progressively extending a partial interpretation
Aux ∪ S0* ∪ ... Si* ∪ ev1* ∪ ... evi* one step at a time. Moreover, it does so by main-
taining only the current state Si and the events evi that gave rise to Si, without remem-
bering earlier states and events. For this purpose, it maintains a current set of partially
evaluated rules Ri, which need to be monitored in the future, and a current goal state
Gi, which needs to be made true in the future.

To deal with complex events in the antecedents of rules without remembering past
states and events, the OS maintains a current set of rules Ri, starting with R0 = R.
Each rule in Ri is the instantiated remainder later σ ∧ temp σ → consequent σ of a
rule earlier ∧ later ∧ temp → consequent in R whose earlier part earlier σ is al-
ready true.

Logically, the goal state Gi is a conjunction of disjunctions. Each disjunct of a dis-
junction is the instantiated remainder later σ ∧ temp σ of a rule antecedent → [other
∨ [earlier ∧ later ∧ temp]] in R whose earlier part antecedent σ ∧ earlier σ is
already true. Because of their similarity to goal clauses in logic programming, such
disjuncts are also called goal clauses in KELPS.

Operationally, the goal state is a set (conjunction) of independent threads, and each
thread is a goal tree, whose non-root nodes are goal clauses. The goal tree representa-
tion helps to structure the search space of alternative plans, and to guide the search
strategy for trying different alternatives. If the goal trees are searched in a depth-first
fashion, then they can be implemented by stacks, as in Prolog. Backtracking is possi-
ble, but previously generated actions and states cannot be undone.

The following specification of the OS is very abstract and ignores many optimiza-
tions that can improve efficiency. These are described in earlier papers [12, 13, 14,
15]. Some of these optimizations restrict the models that can be generated, and hence
affect the relationship between the interpretations generated by the OS and the inter-
pretations sanctioned by the model-theoretic semantics.

In the following definition, the OS is presented as an agent cycle. At the end of the
cycle, external events are input and combined with selected actions. The resulting
combined set of events is used to update the current state. In other versions of the OS,
these updates were performed at the beginning of the cycle.

6 This is a form of range restriction, which ensures that when an action is selected for execu-

tion, all its non-timestamped variables are grounded.

32 R. Kowalski and F. Sadri

Definition. The OS Cycle. Initially S0 is given, R0 = R, G0 = {} and ev0 = {}.
For i ≥ 0, given Si, Ri, Gi , and evi, the i-th cycle consists of the following steps:

Step 1. Evaluate antecedents of rules. For every sequencing current θ < rest θ ∧
constraints θ of the antecedent of an instance rθ of a rule r

 current ∧ rest ∧ constraints → consequent

in Ri, where current θ is true in Aux ∪ Si* ∪ evi* and θ instantiates only the varia-
bles in current and any evaluable time variables in constraints that are functionally
dependent on the timestamp of current, add rest θ ∧ constraints θ → consequent θ
as a new reactive rule to Ri.

If rest θ is empty (equivalent to true) and constraints θ is true in Aux then transfer
consequent θ from Ri to Gi, starting a new thread, which is a goal tree with conse-
quent θ at the root. Add each disjunct of consequent θ whose constraints are satisfi-
able as a child of the root.

Step 2. Evaluate state conditions and simple event atoms in goal clauses. Choose a
set of sequencings:

 current θ < rest θ ∧ constraints θ

of instances Cθ of goal clauses C from one or more threads in Gi, where current θ
is true in Aux ∪ Si* ∪ evi* and θ instantiates only the variables in current and any
evaluable time variables in constraints that are functionally dependent on the
timestamp of current. For each such choice, add rest θ ∧ constraints θ to Gi, as a
child of C.

Step 3. Choose a conjunction of actions for attempted execution. Choose a set of
sequencings:

 actions τ ≤ rest τ ∧ constraints τ

of instances C τ of goal clauses C from one or more threads in Gi, where τ instanti-
ates only the timestamp variables in actions, and actions τ is the conjunction of all the
ground action atoms in C τ that have the same timestamp i+1. Let candidate-actsi+1
be the set of all the action atoms in all such actions τ.

Step 4. Update Si, Gi, Ri. Choose a subset actsi+1* ⊆ candidate-actsi+1 such that
Cpre is true in Aux ∪ Si* ∪ evi+1*, where evi+1* = exti+1* ∪ actsi+1* and the set of
external events exti+1* is given. Let Si+1 = succ(Si, evi+1). Let Gi+1 = Gi and Ri+1 = Ri.

Note that the OS allows attempting to make an instance of a consequent of a reactive
rule true even though the same instance of the consequent has already been made true.
This can be avoided easily in the OS, but would make the corresponding definition of
reactive interpretations substantially more complex. However, there are other optimi-
sations that can also be made easily in the OS, without affecting the definition of
reactive interpretation. These optimisations include removing from Ri rules whose

 A Logical Characterization of a Reactive System Language 33

antecedents are timed out, and removing from Gi leaf node goal clauses containing a
conjunct that is timed out.

5 Relationships between the Model-Theoretic Semantics and
the Operational Semantics

The proof of soundness for the OS of LPS [11, 12, 14] also applies to KELPS:

Theorem 2. Soundness. Given a KELPS framework <R, Aux, C>, initial state S0 and
sequence ext1,…, exti,… of sets of external events, suppose that the OS generates the
sequences acts1*,…, actsi*,… of actions and S1*,…, Si*,… of states. Then R ∪ Cpre is
true in I = Aux ∪ S* ∪ ev* if, for every goal tree that is added to a goal state Gi,
i ≥ 0, the goal clause true is added to the same goal tree in some goal state Gj, j ≥ i.

The following theorems characterise the interpretations generated by the OS.

Theorem 3. The OS generates only reactive interpretations. Given a KELPS
framework <R, Aux, C>, initial state S0 and set of external events ext*, let acts* be
the set of actions generated by the OS, and ev* = ext* ∪ acts*. Then I = Aux ∪ S*
∪ ev* is a reactive interpretation.

Theorem 4. The OS can generate any reactive interpretation. Given a KELPS
framework <R, Aux, C>, initial state S0 and set of external events ext*, let acts* be a
set of actions such that I = Aux ∪ S* ∪ ev* is a reactive interpretation. Then there
exist choices in steps 2, 3 and 4 such that the OS generates acts* (and therefore gen-
erates I).

6 Related Work

In terms of expressive power, KELPS is similar to Reaction RuleML [16], and much
of the comparison with other systems presented in [16] also holds for KELPS. More-
over, our earlier papers [11, 12, 13, 14] also include extensive discussions of the rela-
tionships between LPS and production systems, BDI agents, event-condition action
rules in active databases, action languages in AI and other models of computation. For
lack of space and to avoid repeating these comparisons, in this paper we will focus
instead on pointing out only the most important relationships, which are with
abductive logic programming, MetateM and Transaction Logic.

6.1 Abductive Logic Programming (ALP)

Despite the fact that logic programming plays only a supporting role in LPS, and no
role at all in KELPS, ALP played an important role in the development of LPS, and
therefore of KELPS. More importantly, the origin [9, 10] of LPS [11, 12, 14] in ALP

34 R. Kowalski and F. Sadri

[8] helps to explain the semantics of KELPS and the issues concerning completeness,
which are the focus of this paper.

An ALP framework is a triple <L, I, A>, where L is a logic program, I is a set of
integrity constraints, and A is a set of atomic sentences, which are candidate assump-
tions. KELPS is closely related to the special case of ALP in which L is a set of
atomic sentences including S0, ext* and Aux, I consists of reactive rules R and pre-
conditions Cpre, and A is the set of all possible actions. The biggest difference is the
way in which KELPS generates S*.

In applications of ALP to planning problems [3, 18], it has been common to in-
clude the event calculus [15] in the logic program L. Although this use of the event
calculus has been interpreted as a solution to the frame problem [17], we believe that
it cannot compete for efficiency with destructive change of state. However, destruc-
tive change of state does not have an obvious logical semantics. In particular, if states
are regarded as syntactic objects, defined by axioms, then it is not possible to change
the axioms during the course of trying to prove a theorem.

In KELPS, we solve this problem by regarding states and events as belonging to
model-theoretic structures. This corresponds to a semantics for ALP in which, given
an ALP framework <L, I, A>, an abductive solution is a subset Δ of A, such that I is
true in a canonical model of L ∪ Δ. This is very close to the semantics of KELPS.

The issues concerning the completeness of KELPS are of two different kinds. The
first is inherited from the semantics of abduction, namely that the semantics allows
models in which Δ contains irrelevant actions. The second results from replacing the
event calculus by destructive updates.

In the case of abduction, the first issue is dealt with by imposing further restrictions
on the solutions Δ - for example, requiring that Δ be minimal, in the sense that no
Δ’ ⊂ Δ (properly contained in Δ) is also a solution. But guaranteeing minimality is
computationally expensive, and in practice some weaker, often informally specified
requirement, such as relevance, is imposed. In the case of KELPS, the analogous rele-
vance requirement is that generated actions be instances of action atoms that occur
explicitly in the consequent of a reactive rule.

The second issue does not arise in ALP when the event calculus is included in the
program L, because then the event calculus can be used to make facts true by generat-
ing events that initiate them, and to make facts false by generating events that termi-
nate them. In the case of KELPS, the more restricted causal theory Cpost is used only
to update states with given sets of events.

6.2 MetateM

MetateM [1] is a temporal modal logic language in which a program consists of sen-
tences of the logical form:

‘past and present formula’ implies ‘present or future formula’

Computation consists in generating a model in which all such sentences are true.
These programs are similar in spirit to the reactive rules of KELP and have a
similar model-theoretic semantics. The main differences are that, in KELPS, time is

 A Logical Characterization of a Reactive System Language 35

represented explicitly, models are classical rather than modal, and models are con-
structed by means of destructive updates. Completeness has been shown [1] for prop-
ositional MetateM, without external events, maintaining the entire history of past
states, backtracking from the future into the past in the search for a model, and encod-
ing frame axioms in the reactive rules.

6.3 Transaction Logic

Transaction Logic [2] is a declarative, logic-based language for defining complex
transactions, which update states of a logic program or database. Transactions in
Transaction Logic have a logical, model-theoretic semantics defined in terms of paths
between states, generated by means of destructive updates. Although there is no direct
analogue of reactive rules, they can be simulated by means of transactions.

KELPS shares with Transaction Logic the view of computation as generating se-
quences of destructively updated states that can be viewed as databases, in contrast
with conventional programming languages, in which states are simply collections of
variable-value assignments. KELPS also shares with Transaction Logic the view that
transactions are sequences of sets of actions and database queries expressed in full
FOL.7 The main differences are that in KELPS, transactions are the consequents of
reactive rules that are triggered when the antecedents become true, time is represented
explicitly, and all states, actions and events are combined into one model-theoretic
structure.

7 Conclusions and Future Work

This paper does not exhaust all of the theoretical issues concerning the semantics of
KELPS and LPS. However, there are also important practical issues concerning
knowledge representation and implementation that need further work. In particular,
there are two extensions of KELPS and LPS that would significantly improve their
expressive power. One is to allow the consequents of reactive rules to contain condi-
tions that also have antecedent-consequent form. This can be implemented simply by
allowing the remainder generated in step 2 of the OS to have the form of a reactive
rule. The other extension is to allow reactive rules to contain more complex event
conditions. This extension also does not affect the semantics, and can be implement-
ed, for example, by storing a history of past events.

There are a number of implementations of LPS. Focusing on a single implementa-
tion and making it available for wider use are the main priority for future work.

Acknowledgements. Many thanks to Howard Boley for encouraging us with this
work, and to the referees for their helpful comments on the paper.

7 Transaction Logic also uses logic programs both to define intentional database predicates and

to define sequences of state conditions and events. This capability is also available in LPS,
but has been eliminated from KELPS for simplicity.

36 R. Kowalski and F. Sadri

References

1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M.: The imperative future:
Principles of executable temporal logic. John Wiley & Sons, Inc. (1996)

2. Bonner, A., Kifer, M.: Transaction logic programming. In: Warren, D.S. (ed.) Logic Pro-
gramming: Proc. of the 10th International Conf., pp. 257–279 (1993)

3. Eshghi, K.: Abductive Planning with Event Calculus. In: ICLP/SLP, pp. 562–579 (1988)
4. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and validation

Methods, pp. 9–36 (1995)
5. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Program-

ming 8, 231–274 (1987)
6. Jaffar, J., Lassez, J.L.: Constraint logic programming. In: Proceedings of the 14th ACM

SIGACT-SIGPLAN Symposium on Principles of programming languages, pp. 111–119.
ACM (1987)

7. Kakas, A.C., Kowalski, R., Toni, F.: The Role of Logic Programming in Abduction. In:
Handbook of Logic in Artificial Intelligence and Programming, vol. 5, pp. 235–324. Ox-
ford Univerpsity Press (1998)

8. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of agency. In:
Proc. ECAI 2004 (2004)

9. Kowalski, R., Sadri, F.: From Logic Programming Towards Multi-agent Systems. Annals
of Mathematics and Artificial Intelligence 25, 391–419 (1999)

10. Kowalski, R., Sadri, F.: Integrating Logic Programming and Production Systems in
Abductive Logic Programming Agents. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS,
vol. 5837, pp. 1–23. Springer, Heidelberg (2009)

11. Kowalski, R., Sadri, F.: An Agent Language with Destructive Assignment and Model-
Theoretic Semantics. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA XI.
LNCS (LNAI), vol. 6245, pp. 200–218. Springer, Heidelberg (2010)

12. Kowalski, R., Sadri, F.: Abductive Logic Programming Agents with Destructive Data-
bases. Annals of Mathematics and Artificial Intelligence 62(1), 129–158 (2011)

13. Kowalski, R., Sadri, F.: A Logic-Based Framework for Reactive Systems. In: Bikakis, A.,
Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp. 1–15. Springer, Heidelberg (2012)

14. Kowalski, R., Sadri, F.: Model-theoretic and operational semantics for Reactive Compu-
ting. To Appear in New Generation Computing (2014)

15. Kowalski, R., Sergot, M.: A Logic-based Calculus of Events. New Generation Compu-
ting 4(1), 67–95 (1986)

16. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0: stand-
ardized semantic reaction rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS,
vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

17. Shanahan, M.: Solving the frame problem: A mathematical investigation of the common
sense law of inertia. MIT press (1997)

18. Shanahan, M.: An abductive event calculus planner. The Journal of Logic Program-
ming 44(1), 207–240 (2000)

19. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2(3), 189–208 (1972)

On Using Semantically-Aware Rules

for Efficient Online Communication

Zaenal Akbar, José Maŕıa Garćıa, Ioan Toma, and Dieter Fensel

Semantic Technology Institute, University of Innsbruck, Austria
firstname.lastname@sti2.at

Abstract. The ever growing number of communication channels not
only enables a broader outreach for organizations, but also makes it
more difficult for them to manage a very large number of channels and
adapted content efficiently. Thus, finding the right channels to dissemi-
nate some content and adapting this content to specific channel require-
ments are real challenges for sharing information both efficiently and
effectively. In this work, we present a rule-based system that addresses
these challenges by decoupling the information to be shared from the
actual channels where it is published. We propose semantic models to
characterize and integrate various information sources and channels. A
set of independent rules then interrelates these models, specifying the
concrete publication workflow and content adaptation required. Further-
more, we evaluate our rule-based system using two different use cases,
discussing the added value that the defined rules provide to this sce-
nario and how they contribute to overcoming the identified challenges
effectively.

Keywords: online communication, rule-based systems, knowledge mod-
elling, social media.

1 Introduction

In order to be able to disseminate the information about their products or ser-
vices, each organization needs to reach the widest possible audience. During the
era of Internet, the number and kind of dissemination channels have been in-
creasing: websites, e-mails, and social media have become mainstream means of
communication.

For the organizations, being present on several channels is not enough, since
they also have to make sure that their content is suitable for each channel. In
this case, information dissemination is not only about finding suitable channels,
but also fitting the content to the available channels dynamically. These are
the main challenges for effective and efficient information dissemination, and for
online communication in general.

Our solution to overcoming these challenges is to decouple information from
channels, defining separate models for each of them, and then interlinking them
with an intermediary component [1]. Semantic technologies play four important

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 37–51, 2014.
c© Springer International Publishing Switzerland 2014

38 Z. Akbar et al.

roles in the solution [2]: semantic analysis, semantic channels as sharing data with
reusable vocabularies, semantic content modeling, and semantic matchmaking.

In this paper, we discuss in detail the intermediary component to interlink con-
tent and channel, whose main objective is to align both components. Although
this interlinking process is comprised of several elements, in this work we focus
on the processing rules called publication rules. We first show the formalization
of our solution, followed by rules construction accompanied by motivating exam-
ples. Furthermore, we discuss current implementation of this solution and two
different use cases that validate our proposal.

The remainder of this paper is organized as follows: Section 2 describes our
conceptual solution to overcoming the identified challenges of online communi-
cation. Section 3 introduces the publication rules as the main element of our
online communication platform. Section 4 describes the technologies to imple-
ment our publication rules. Section 5 shows the application of our proposal to
two different use cases. Finally, we discuss some related works in Section 6 and
our conclusions and future work in Section 7.

2 Conceptual Approach

In this section, we describe our proposed conceptual solution to enable effective
and efficient online communication. The proposed solution separates the content
and channel to enable various dimensions of reuse in transactional communica-
tion [1]. This solution requires the development of information models, channel
models and an intermediary component to align both models.

Our conceptual solution is shown in Fig. 1 where various information models
and channel models were devised in order to represent the available information
and targeted channels respectively. A component called Weaver corresponds to
the intermediary component. Each component is described as follows:

Information Model. An information model is an ontology that describes the
information items that are used in typical acts of communication in a certain
domain. As a formal, explicit specification of a shared conceptualisation [3],
an ontology represents the concepts, the relations between concepts, and their
constraints. In the information models, the relevant concepts for information
dissemination are determined and shared among the content sources (i.e. docu-
ments, databases) which might have different data formats/representations.

Channel Model. In online communication, a channel can be described as a
means of exchanging information through the online space, which can be referred
to (but not necessarily) with an Uniform Resource Identifier (URI) [4]. More than
just as a place to spread or access information, a channel is also considered as
a way to express or refer to the information. Each channel may have its own
particularities including which types of information items can be read from or
written to and access methods, among other particularities.

On Using Semantically-Aware Rules for Efficient Online Communication 39

Fig. 1. Our conceptual solution for effective and efficient Online Communication

Weaver. The Weaver is the component responsible for aligning the information
and channel models. Formally, it has nine elements [1]: a) an information item,
b) an editor, c) an editor interaction protocol, d) an information type, e) a
processing rule, f) a channel, g) an executor, h) an executor interaction protocol.
This paper is focused on the definition of processing rules called publication rules
that govern how the information and channel models fit together.

Rules. A rule is a form of representing knowledge specifying a certain conclu-
sion whenever a certain premise is satisfied, represented as IF Premise THEN

Conclusion. Generally, rules can be divided into three categories: deduction
(derivation) rules, normative (integrity) rules, and reactive (active) rules [5]. Re-
active rules are usually further divided into the form of Event-Condition-Action
(ECA) rules and Condition-Action (CA) rules also known as production rules.
We use production rules (in the form IF Conditions DO Actions) as the foun-
dations to define our publication rules, where the Actions part will be executed
whenever a change makes Conditions true.

3 Publication Rules

In this section, we describe the publication rules in detail, starting with the
essential definitions, followed by the rule constructors, and finishing with a few
examples of rule usage for complex online communication scenarios.

3.1 Definitions

Definition 1 (Information Item). An information item I is the basic element
of information in the domain of interest. Each element is identified by a name
and the expected type of its value.

40 Z. Akbar et al.

The basic elements of information differ from one domain to the next. An exam-
ple of these basic elements are name with the expected type Text, date with the
expected type Date, url with the expected type URL, and so on. An element
name might be divided further into firstName and lastName, depending on the
modeled domain.

Definition 2 (Content). A content C is described as a tuple of information
items I = (i1, · · · , in) where |I| > 0 is the number of items covered by C.

The cardinality of the contents shows the richness of the information items rep-
resented, and may vary for each implementation. For example, information items
(title, description, location) are used to describe a content Event.

Definition 3 (Content Transformator). A content transformator T is an
operator which transforms an input content C to produce a transformed content
CT .

A content transformator operates on the information items of an input content,
for example selecting a subset of the available items, shortening the value of an
item, and so on.

Definition 4 (Channel). A channel H is a place to publish contents C where
each channel supports at least one content transformator T .

Definition 5 (Transformation Specification). A transformation specifica-
tion S is a tuple of (H,T) where H is a channel and T is a content transformator
that specifies that T is supported by H.

Typically, an expert who is familiar with the channel specificities determines
whether a content transformator is supported by a channel.

Definition 6 (Mapping). A mapping M is a tuple of (C,H) where C is the
content to be published and H is the targeted channel.

The mapping is determined by experts who understand which content will be
published to which channel including which content transformation is required.
A content could be mapped to one or more channels and a channel could be
mapped with one or more contents.

Definition 7 (Publication). A publication P is a tuple of (CT , H) where CT

is the transformed content of C and H is the selected publication channel.

Based on the previously explained definitions, we define the publication rules as
follows:

Definition 8 (Publication Rules). A publication rule R for a content C to a
channel H is a mapping of C and H and a content transformator T supported by
the channel H to produce a publication P . Given a transformation specification
S(H,T), a publication rule can be represented as {M(C,H)∧T (C)→ P (CT , H)}

On Using Semantically-Aware Rules for Efficient Online Communication 41

With this definition, a publication rule is interlinking the information model
(content) and channel model trough a mapping and a content transformation.
The interlinking intention is to fit a content to a particular channel or to find
the proper channels for a content. Therefore, a publication rule serves as: a) a
mapping between a content and a channel, and b) a transformation of the content
according to the mapped channels’ specificities.

The publication rules are also controllable through a workflow or scheduling
specification. For this case, we introduce the following definitions:

Definition 9 (Publication Workflow). A publication workflow is a coordi-
nated publication where a publication P1 will be performed only after a publication
P0 has been successfully executed. Given a transformation specification S(H,T),
a publication rule with a workflow can be represented as {M(C,H)∧T (C)∧P0 →
P1(C

T , H)}.

A workflow is useful to specify the publication order for a certain channels, one
after another. For example, when we need a reference to a specific channel, the
workflow can be used to ensure that the content will be published in the right
order.

3.2 Rule Construction

Based on the definitions previously discussed, we define three different types of
actions that could be fired by the rules as follows:

1. Mapping – an action to align a content to a channel
2. Transform – an action to transform a content using a content transformation

operator associated with a channel
3. Publish – an action to publish a content to a channel

Each action will assert a new fact and together with predefined facts they
form a collection of facts to be used to identify if a specific condition is fulfilled.
We define four different types of facts as follows:

1. hasTransformation – a predefined fact to specify if a channel has a content
transformation operator

2. hasMapping – a fact, will be inserted by the action Mapping to specify if a
content is mapped to a channel

3. isTransformedBy – a fact, will be inserted by the action Transform to spec-
ify if a content has been transformed using a specific content transformation
operator

4. hasPublished – a fact, will be inserted by the action Publish to specify if
a content has been published to a channel

Based on those defined actions and facts, we constitute the publication rules
with one basic fact and three basic rules as follows:

1. Mapping(C,H)

This is a fact to mapping a content and a channel.

42 Z. Akbar et al.

Fig. 2. An example of fact and rules construction

2. IF hasMapping(C,H) THEN Transform(C)

This rule performs a content transformation operation using a transforma-
tion operator associated to a channel.

3. IF hasMapping(C,H) ∧ isTransformedBy(C,T) THEN Publish(C,H)

This rule performs a publishing action on a content to a channel whenever
a mapping and a transformation have applied successfully.

4. IF hasPublished(C,H1) THEN Mapping(C,H2)

This rule is to define a workflow, where a content will be published to the
second channel whenever it has been published to the first channel.

Fig. 2 shows an example of the fact and publication rules construction us-
ing Grailog representation [6]. The octagon shapes represent variables (C for
contents, H for channels, T for transformation operators), the rectangle shapes
represent instances of content or channel or transformation operator, the single-
line arrows represent the relationships, the double-lines arrows imply the rule
consequences. The rounded boxes with solid-lines imply conjunctions. Given two
transformation operators t1, t2 ∈ T , an information model Event ∈ C con-
tains information items (name, description, location, url, startDate,

endDate) ∈ I, two channel models Twitter, Pinterest ∈ H to represent
Twitter (https://twitter.com) and Pinterest (https://pinterest.com) re-
spectively. Two predefined content transformation specification are (Twitter,

t1), (Pinterest, t2) ∈ S.
Fact and rules in Fig. 2 are constructed to publish information about an event

to social media channels Twitter and Pinterest. Fact (1) is mapping an event to
Twitter,rule (2) defines a content transformation action whenever a content is
mapping to a channel using a transformation operator associated with the chan-
nel, rule (3) defines a publishing action whenever the content transformation
has successfully applied, rule (4) defines a mapping between some content to

https://twitter.com
https://pinterest.com

On Using Semantically-Aware Rules for Efficient Online Communication 43

Fig. 3. A rule to define an implicit content transformation

channel Pinterest whenever the content has been already published to channel
Twitter successfully. In this example, each instance of Event will be mapped to
Twitter, then transformed by a transformation operator associated with Twitter
and finally will be published to Twitter. After being successfully published, a
second mapping is triggered to channel Pinterest, consequently repeating the
content transformation and publish actions with this second mapping.

3.3 Rule Usage on Complex Online Communication

In addition to the typical publication rules (Mapping - Transform - Publish)
as shown in previous section, our publication rules are also capable of handling
various complex scenarios of online communication.

Implicit Content Transformation. A typical publication rule contains a
mapping and a content transformation. However, a publication rule can also
be constructed by defining the content transformation implicitly. As shown in
Fig. 3, a more flexible rule can be devised by defining a rule to match a transfor-
mation operator from previous publication activities. In this example, the rule
does not specify the content transformation explicitly. The rule will be matched
to a transformation (Transformer) from previously published similar content
(Event) to a similar channel (variable H).

Diverse Content Transformation. A channel may have more than one con-
tent transformation operator. Applying a different transformation to the same
content will produce a different output. In the rule shown in Fig. 4, to publish
a content C which has been published before (in this case to channel Twitter),
the rule will be matched to a different transformation operator from that previ-
ously used. The box with dashed-lines indicates a negation, such that only the
Transformer, which is not used by the previous publication, will be satisfied.

Rule Overwriting. A rule can also be used to overwrite another rule perma-
nently or temporarily (depending on certain conditions). As shown in Fig. 5,
we can overwrite a mapping fact by using rules. Fact (1) defines a mapping
between the content Event to channel Twitter, rule (2) will be to overwrite the

44 Z. Akbar et al.

Fig. 4. A rule to use a different transformation implicitly

Fig. 5. A fact and two rules to overwrite the mapping

mapping whenever the event is identified as a past event, rule (3) will overwrite
the mapping if the content has been published on Twitter. Each rule will retract
the old mapping fact and insert a new one.

4 Implementation

In this section we explain the implementation of the publication rules in our
online communication platform. Fig. 6 shows the platform which consists of var-
ious components that are grouped based on their functionality in the conceptual
solution explained in Section 2.

Documents. The online data sources hold the related information to be dis-
seminated. There are two types of data sources currently supported:

1. Annotated sources. An additional information (metadata) can be attached
to the existing piece of data with the intention to describe the data. More

On Using Semantically-Aware Rules for Efficient Online Communication 45

Fig. 6. The Online Communication platform architecture

annotated sources are available on the internet with a specific vocabulary to
enable machines to interpret and use the data.

2. Un-annotated sources. The information is available without a common for-
mat/representation, existing in various database systems.

Content Extractor. This component is responsible for obtaining the con-
tent from data sources and representing them into the common vocabular-
ies. The Linked Open Vocabularies (http://lov.okfn.org/dataset/lov/) are
used primarily to achieve a reusable and interoperable information model:
a) Dublin Core, a specification of all metadata terms to support of resource
description (http://dublincore.org/), b) Friend of a Friend, a vocabulary
to describe people, the links between them, the things they create and do
(http://www.foaf-project.org/), c) Good Relations, a vocabulary to de-
scribe e-commerce products and services (http://purl.org/goodrelations/),
d) Schema.org, a collection of tags to markup a page in ways recog-
nized by major search engines (http://schema.org/). We use Apache
Any23 (https://any23.apache.org/) to extract content (in the format of
triples/RDF) from the annotated sources, and for un-annotated sources a manual
mapping is required to relate the database items into the desired vocabularies.

Triplestore. A triplestore is a database repository to store
triples/RDF statements extracted from data sources. We use OWLIM
(http://www.ontotext.com/owlim) for a persistent storage and Apache Jena’s
(https://jena.apache.org/) In-Memory model for a non-persistent storage.

RDF to OO Mapper. This component maps the RDF models (instances
of classes including their properties) from the triplestore into object-oriented

http://lov.okfn.org/dataset/lov/
http://dublincore.org/
http://www.foaf-project.org/
http://purl.org/goodrelations/
http://schema.org/
https://any23.apache.org/
http://www.ontotext.com/owlim
https://jena.apache.org/

46 Z. Akbar et al.

models to be used by other components. In our current implementation we are
using RDFBeans (http://rdfbeans.sourceforge.net/).

Rule Engine and Editor. To matching the facts against the defined
rules, we use Drools (http://drools.jboss.org/) as rule engine, which im-
plements and extends the Rete Algorithm [7] as its matching algorithm.
To enable domain experts to maintain the rules, we use Drools Guvnor
(http://guvnor.jboss.org/) as rule editor, it has rich web-based interface as
well as a controllable access to the rules repository.

Dacodi. Dacodi is the component responsible for distributing the content to the
selected communication channels, as well as for collecting and analyzing feedback
from those channels [8]. In our current implementation, Dacodi offers various
functionalities such as: role management, publication, feedback collection, and
front-end.

After the information models are defined and targeted dissemination channels
are selected, the publication rules can be specified and constructed by an expert
through the rules editor. Then, the stored rules will be consumed by the rule
engine to construct a knowledge base to be employed by the Dacodi to make a
publication decision. For each new content successfully extracted by the content
extractor, a new fact is inserted into the knowledge base by the Dacodi, trig-
gering the rule engine to match the fact against the existing rules. Whenever
a match is found, the associated publication actions will be executed, followed
by a scheduling monitoring to all feedbacks for each published content on each
channel.

5 Use Cases

In order to validate our proposal, in this section, we show two use cases where the
publication rules have been applied. First we discuss how the rules are imple-
mented in PlanetData (http://www.planet-data.eu) and Tourismusverband
Innsbruck (http://www.innsbruck.info), followed by a discussion on the con-
tributions of the publication rules to both use cases.

PlanetData. PlanetData is an European project funded by the EU Seventh
Framework Programme between 2007 - 2013. For its dissemination activities,
various information models have been defined, such as Project, Activity, Part-
ners, WorkPackage, Event, Deliverable, FactSheet, Presentation, and others, as
well as numerous dissemination channels: such as News, HomepageNews, RSS,
PlanetData Mailing List, PlanetData Wiki, FacebookWall, and Semantics [9].

A subset of the publication rules for the PlanetData use case is shown in Fig. 7.
The rules are intended to publish information about events to relevant channels.
An object Event is used to represent all information items of event, including

http://rdfbeans.sourceforge.net/
http://drools.jboss.org/
http://guvnor.jboss.org/
http://www.planet-data.eu
http://www.innsbruck.info

On Using Semantically-Aware Rules for Efficient Online Communication 47

Fig. 7. A subset of the facts and publication rules for PlanetData

an item pastEvent as the representation of its dueness. The objects News, RSS,
Facebook, Archive and Twitter are used to represent channels: the news section
of the project website, the website RSS output, the project Facebook account,
the archive section of the website and the project Twitter account, respectively.

As shown in Fig. 7, there are three methods to perform a mapping between a
content to its selected dissemination channels. First, by using explicit mapping
through facts (1-3); second by using a conditional mapping where a mapping
will hold only if a certain condition is satisfied as shown in the rule (4) (the
mapping between event to a channel Archive will hold only if the event has
happened some time ago); third by using a publication workflow as shown in
rule (5) (the mapping to the channel Twitter will hold only after the event has
been published to the channel RSS). The rules for content transformation and
publication are identical to the rules shown in Fig. 2.

Tourismusverband Innsbruck. The relevant information for dissemination
found in Tourismusverband Innsbruck (TVb)’s website have been categorized
as Hotels, Food and Drink Establishment, Events, Trips, Place of Interest and
News. Those categories are then modeled as concepts in TVb’s ontology where
the main concepts are Place, Event, Organization, Trip (Action), Creative Work,
and Person [10].

As dissemination channels, TVb is using Facebook, Twitter, YouTube, and a
Blog, and has been planning to use other channels such as Google+, Pinterest,
tumblr [11]. A subset of the current publication rules for TVb is shown in Fig. 8.
The objects Hotel, Trip, Event, PoI, News are used to represent the informa-
tion concepts for hotel, trip, event, place of interest and news respectively. On
the other hand, the objects Facebook, YouTube, and Twitter are used to repre-
sent the TVb’s Facebook account, TVb’s YouTube account and TVb’s Twitter
account respectively.

48 Z. Akbar et al.

Fig. 8. A subset of the facts and publication rules for Tourismusverband Innsbruck

Fig. 8 shows a subset of facts and rules implementation where a box with a
solid-wavy-line implies a disjunction. There are two methods to do a mapping;
first by using explicit mapping through facts (1-2); second through a work-
flow definition as shown in rule (3) where a mapping to the channel Twitter
for a content (event or trip or place of interest or news) will hold only after
the content has been published to the channel Facebook. The rules for content
transformation and publication are identical to the rules shown in Fig. 2.

Discussion

From both use cases, once the content types and targeted channels have been
selected, the publication rules can be easily constructed. Given predefined con-
tent transformation operators for each channel, the mapping between content
and channel can be defined explicitly and implicitly through rules. A publica-
tion workflow can be specified by adding referenced publication to the condition
part of the relevant rules. In PlanetData, a content which needs to be published
to Twitter must have a reference link to RSS, therefore the publication to RSS
is included as criteria in condition of the Twitter’s publication rule. TVb intro-
duced a blog as a new input source where its contents are annotated with the
Schema.org vocabulary. Since this vocabulary is supported by our information
model, there is no need to modify the rule. A change is required only in the
Dacodi to add the blog’s URL as an input source to be included in the next
content extraction cycle.

On Using Semantically-Aware Rules for Efficient Online Communication 49

In both use cases, the publication rules have shown numerous ways of inter-
linking the information models and channel models in the context of content
dissemination. While the interlinking is determined by the experts, their repre-
sentations might be specified explicitly through facts or implicitly through rules.
These rich representations validate our solution to have various dimensions of
reusing the content and channel in transactional communication.

6 Related Work

As the web is becoming more dynamic, reactive capability becomes more im-
portant in a variety of web applications [12,13]. Reactive rules as a form to
represent knowledge can be used to realize this reactivity. The reaction rules
have been standarized to include reaction rules and rule-based event processing
in Reaction RuleML [14,15]. The publication rules presented in this paper are
reactive rules derived from production (Condition-Action) rules which are ca-
pable of reacting to any changes in the input models. As our main usage is for
online communication applications, the input models are ontologies (information
models) which are domain specific. Our work is related to at least three relevant
topics, described in the following paragraphs.

The first relevant topic is the channel to channel interlinking of online
publishing. In this case, there are two prominent existing services: IFTTT
(http://ifttt.com) and Zapier (http://zapier.com). Both services offer a
solution to connect a channel to other channels including publishing content be-
tween channels through an automatic tool which is represented in a simple form
IF Trigger THEN Action. Compared to these services, the main difference to
our approach is in the creation of Trigger. In our approach, a knowledge-model
is built, independent of any input channels. Instead of specifying a channel (i.e
Facebook, Twitter) directly in Trigger, we use an information concept (i.e Event)
instead, where the source of this concept could be a Facebook, a Twitter, or any
other channels. We argue that using an information model as Trigger is highly
suitable for integrating various input channels and offers high scalability. When-
ever a new input channel is introduced where its content type is already included
in the information model, then there is no need to create a new rule (“recipe”
in IFTTT or “Zap” in Zapier).

The second relevant topic is to schema/ontology matching. The aim of the
publication rules is to match two semantically represented models (informa-
tion and channel). In this sense, the rules can be seen a matching mechanism.
But in contrast to schema/ontology matching (such as [16,17]), the matching
is determined by the experts where each implementation has a different match-
ing mechanism, such as different information models and/or targeted channels.
Moreover, our rule framework enables the selection of content transformation
operator dynamically by using rules (as shown at Subsection 3.3) as a contrary
to a static selection by defining the operator explicitly in a fact. A publication
workflow can be defined by adding a reference to a publication as criteria to the
condition of the rule as shown in rule (5) in Fig. 7 and rule (3) in Fig. 8.

http://ifttt.com
http://zapier.com

50 Z. Akbar et al.

The third relevant topic refers to workflow control. Controlling a workflow
with a rule-based system has been investigated in a few works such as in [18,19].
From the three most commonly used workflow frameworks (control-flow graph,
triggers, and temporal constraints), our workflow representation is an implemen-
tation of the triggers framework, where a workflow defines which publication
activity needs to be executed first before the other activity.

7 Conclusions and Future Work

In this work we presented our rule-based solution for providing efficient and effec-
tive online communication, based on the separation of information and channel
models. The publication rules introduced in this paper are reactive rules that are
constructed to match the semantically represented domain specific information
models to the channel models. This matching determines which information has
to be disseminated to which channel, which content transformation and which
publication workflow (if any) is required.

We have applied this type of rule to an online communication platform, which
has been validated with two different use cases. In addition to reactiveness to
changes in the information models, our rule-based solution also introduces new
capabilities to dynamically adapt the content transformations and publication
workflows if necessary. In conclusion, in order to achieve an effective and effi-
cient online communication, publication rules devote a significant role to enable
various dimensions of interlinking the information and channel models.

As future work, considering that in online communication the information is
becoming more specific and targeted to a specific audience, we plan to extend
the publication rules and associated channel models to reflect those specificities,
such as enabling the definition of specific transformations for a certain channel.
Furthermore we are going to incorporate more contextual dimensions into the
publication rules, such as publication time, and location of target audience,
among others.

Acknowledgements. We would like to thank all the members of the Online
Communication working group (http://oc.sti2.at) for their valuable feed-
back and suggestions. This work was partly funded by the European Union’s Sev-
enth Framework Programme (FP7) under grant agreements no. 284860 (MSEE)
and 257641 (PlanetData).

References

1. Fensel, D., Leiter, B., Thaler, S., Thalhammer, A., Toma, I.: Effective and efficient
on-line communication. In: 23rd International Workshop on Database and Expert
Systems Applications (DEXA), pp. 294–298 (2012)

2. Toma, I., Fensel, D., Gagiu, A.E., Stavrakantonakis, I., Fensel, A., Leiter, B., Thal-
hammer, A., Larizgoitia, I., Garcia, J.M.: Enabling scalable multi-channel com-
munication through semantic technologies. In: International Conference on Web
Intelligence, vol. 1, pp. 591–596 (2013)

http://oc.sti2.at

On Using Semantically-Aware Rules for Efficient Online Communication 51

3. Studer, R., Benjamins, V., Fensel, D.: Knowledge engineering: Principles and meth-
ods. Data & Knowledge Engineering 25(1-2), 161–197 (1998)

4. Fensel, A., Fensel, D., Leiter, B., Thalhammer, A.: Effective and efficient online
communication: The channel model. In: International Conference on Data Tech-
nologies and Applications, pp. 209–215 (2012)

5. Boley, H., Kifer, M., Pătrânjan, P.-L., Polleres, A.: Rule interchange on the web.
In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-
L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 269–309. Springer,
Heidelberg (2007)

6. Boley, H.: Grailog 1.0: Graph-Logic Visualization of Ontologies and Rules. In:
Morgenstern, L., Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML
2013. LNCS, vol. 8035, pp. 52–67. Springer, Heidelberg (2013)

7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19(1), 17–37 (1982)

8. Toma, I., Fensel, D., Oberhauser, A., Fuchs, C., Stanciu, C., Larizgoitia, I.: Sesa:
A scalable multi-channel communication and booking solution for e-commerce in
the tourism domain. In: 2013 IEEE 10th International Conference on e-Business
Engineering (ICEBE), pp. 288–293 (September 2013)

9. Fensel, D., Leiter, B., Brenner, C.: Planetdata on-line communication handbook.
White paper, Semantic Technology Institute, University of Innsbruck (April 2012),
http://oc.sti2.at/results/white-papers/planetdata-line-communication-

handbook
10. Akbar, Z., Lasierra, N., Tymaniuk, S.: Tourismusverband ontology. Technical re-

port, Semantic Technology Institute, University of Innsbruck (January 2014),
http://oc.sti2.at/results/white-papers/tourismusverband-ontology

11. Akbar, Z., Garcia, J.M.: Tourismusverband publication rules. Technical report,
Semantic Technology Institute, University of Innsbruck (March 2014), http://

oc.sti2.at/results/white-papers/tourismusverband-publication-rules
12. Bry, F., Eckert, M.: Twelve theses on reactive rules for the web. In: Grust, T., et al.

(eds.) EDBT 2006 Workshops. LNCS, vol. 4254, pp. 842–854. Springer, Heidelberg
(2006)

13. Berstel, B., Bonnard, P., Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactive rules on the
web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan,
P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 183–239. Springer,
Heidelberg (2007)

14. Paschke, A., Kozlenkov, A.: Rule-based event processing and reaction rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

15. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction ruleml 1.0:
Standardized semantic reaction rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4), 334–350 (2001)

17. Saake, G., Sattler, K.U., Conrad, S.: Rule-based schema matching for ontology-
based mediators. Journal of Applied Logic 3(2), 253–270 (2005)

18. Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based
modeling and analysis of workflows. In: Proceedings of the 7th Symposium on
Principles of Database Systems, pp. 25–33 (1998)

19. Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic-based approaches
to workflow modeling and verification. In: Chomicki, J., Meyden, R., Saake, G.
(eds.) Logics for Emerging Applications of Databases, pp. 167–202. Springer (2004)

http://oc.sti2.at/results/white-papers/planetdata-line-communication-handbook
http://oc.sti2.at/results/white-papers/planetdata-line-communication-handbook
http://oc.sti2.at/results/white-papers/tourismusverband-ontology
http://oc.sti2.at/results/white-papers/tourismusverband-publication-rules
http://oc.sti2.at/results/white-papers/tourismusverband-publication-rules

Conceptual Model Interoperability:

A Metamodel-driven Approach

Pablo Rubén Fillottrani1,2 and C. Maria Keet3

1 Departamento de Ciencias e Ingenieŕıa de la Computación,
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina

prf@cs.uns.edu.ar
2 Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires, Argentina

3 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

Abstract. Linking, integrating, or converting conceptual data models
represented in different modelling languages is a common aspect in the
design and maintenance of complex information systems. While such
languages seem similar, they are known to be distinct and no unifying
framework exists that respects all of their language features in either
model transformations or inter-model assertions to relate them. We aim
to address this issue using an approach where the rules are enhanced
with a logic-based metamodel. We present the main approach and some
essential metamodel-driven rules for the static, structural, components
of ER, EER, UML v2.4.1, ORM, and ORM2. The transformations for
model elements and patterns are used with the metamodel to verify
correctness of inter-model assertions across models in different languages.

1 Introduction

The volume and the need to share existing data sources becomes increasingly
important, like in enterprise information integration [11], company mergers and
acquisitions [4], scientific collaborations in several fields [1,20,18], e-government
initiatives [14,19,21], and in general the broader adoption of the Semantic Web.
Interoperability at the level of conceptual models is a key in this goal, in order to
maximize the extent to which data can be exchanged while preserving its original
meaning. This involves linking, converting, and integrating conceptual models
represented in different modelling languages; e.g., when a database back-end is
designed with EER, the application layer that uses the database is specified in
UML, and the business rules were extracted from the experts using ORM.

Results have been obtained to address this issue. Besides one-off unidirectional
algorithms to transform a language, e.g., from ORM to UML [5], several multi-
language approaches exist, ranging from linking each model to a graph [7] or
description logic language [15] to transformations mediated by a dictionary of
common terms [3]. However, these solutions are only partial, for they, among
others, omit several constructs (e.g., weak entity types, roles) or modify the
language (e.g., by removing datatypes from UML), and therewith have imprecise

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 52–66, 2014.
c© Springer International Publishing Switzerland 2014

Conceptual Model Interoperability: A Metamodel-driven Approach 53

‘equivalence’ mappings or the algorithms are not available. Overall, there is very
limited interoperability of conceptual data models in praxis.

To address these issues we have developed an approach that uses a formalised
metamodel with a set of modular rules to mediate the linking and transformation
of elements in the conceptual models represented in different languages, which
simplifies the verification of inter-model assertions and model conversion. The
previously developed metamodel [16,17] with all static structural entities (in-
cluding constraints) of the main conceptual modelling languages—UML v2.4.1,
EER, and ORM2—has been formalised and has a table with mappings between
terms used in the different languages (e.g., UML association and EER relation-
ship). This is used with a newly specified set of rules from/to the metamodel and
within-metamodel conversions to convert model elements and check the validity
of inter-model assertions. A major advantage of using a formalised metamodel
is that it also can induce a series of transformations/link checks, thanks to the
constraints specified in the metamodel. For instance, relating a relationship in-
duces the checking of its roles, of the object types that participate in it, and
their identifiers, due to the chain of mandatory participations in the metamodel.

We discuss related works in Section 2 and introduce the metamodel-driven
approach in Section 3. Section 4 contains a selection of the rules for the main
elements, which is elaborated in Section 5 concerning mapping validations in a
broader context. We discuss and conclude in Section 6.

2 Related Works

Several papers mainly have proposed transformations from one conceptual mod-
elling language to another, without considering the case of validating inter-model
assertions. Nevertheless, it is useful to consider also their approaches, for trans-
formations could be used to check inter-model assertions (out of scope are trans-
formations other than between conceptual models, such as QVT for MOF and
ATL for the Eclipse platform).

Venable and Grundy’s work [22,10,23] uses a metamodel in the CoCoA graph-
ical language that covers a part of ER and a part of NIAM (a precursor to ORM),
and it was implemented in MView and Ponamu. Their metamodel omits, mainly,
value types, nested entity types, and composite attributes, and NIAM is forced
to have attributes as in ER in the ‘integrated’ metamodel. Their “dynamic” ad
hoc mappings are thus limited, and they have not been made public.

Boyd and McBrien [7] use the Hypergraph Data Model to relate ER, re-
lational, UML, and ORM schemas, and include transformation rules between
them through mapping each schema into the graph. The advantage is that it
provides a simple irreducible form for schemas that can be used to prove schema
equivalence, but it does not consider inter-model assertions and the specification
omits roles, aggregation, weak entity types, several constraints, and it removes
the data type specification from UML to match EER’s partial attribute.

Atzeni et al [2,3] devised a comprehensive approach with extensible automatic
schema translations, which has been implemented. Unlike [22], they have a term

54 P.R. Fillottrani and C.M. Keet

dictionary that aids with the transformation, and the translations are produced
in Datalog. However, it does not include ORM, the dictionary has only 9 con-
structs, it lacks metamodel relations and constraints between them, and the
system considers model transformations only.

Bowers and Delcambre’s framework [6] is a flat representation of schema and
data. Its representational language ULD covers only ordinal, set and union class
constructs, and cardinality constraints, and it operates at the implementation-
level, providing examples for the relational model, XML, RDF, and RDF Schema
only. The transformations are handled by Datalog.

Two principal works to relate ORM to UML or ER are [12,5]. Halpin pro-
vides diagram element to diagram element mappings and approximations [12]
and some conversions from ORM to ER are implemented with undisclosed algo-
rithms. Bollen does provide comprehensive rules for transforming ORM’s object
types, nested object types, fact types and some constraints into UML diagrams
[5]. Those rules are then combined in a sequence of algorithms to transform a
ORM conceptual schema into a UML class diagram. While the rules are sound,
some of the algorithms exhibit steps and iterations which are not clearly defined
leading to ambiguous results.

Fill and Burzynski [9] outline three metamodel-mediated approaches to inte-
grate conceptual models and ontologies, being integration on the level of meta
models, by using references in the meta model of the existing conceptual models,
and a hybrid of the two, but no details. The tool it is said to be implemented
in, ADONIS, now focuses entirely on BPMN.

A different strand of research on unification that does not use a metamodel,
is to use one logic formalism for several conceptual modelling languages, notably
a Description Logic language [8,13,15]. Different logics are used, however, and
they do not cover all features of the language due to the complexity trade-offs
made. For instance, in [8] identifiers are absent, and the DLRifd used in [15]
does not consider the ORM’s relationship constraints or UML’s aggregation.
Also, approximate transformations are not represented.

3 The Metamodel-driven Approaches

The focus is interoperability and integration of conceptual data models repre-
sented in different languages, but to be able to assert a link between two entities
in different models and evaluate automatically whether it is a valid assertion and
what it does entail, one has to know what type of entities they are, whether
they are the same, and if not, whether one can be transformed into the other
for that particular selection. That is, we first need an approach for transforming
a model (or a selection thereof) in one language into another. This is depicted
in Fig. 1 and illustrated with some sample data. There are three input items at
the top, the algorithms on the right, and the two output items at the bottom. In
this paper we focus on the rules and algorithms, but they avail of the formalised
metamodel and term mapping table to function well. For instance, it needs to
recognise that a UML class in the diagram can be mapped 1:1 to a ORM entity
type, and transform a UML attribute to an ORM value type.

Conceptual Model Interoperability: A Metamodel-driven Approach 55

- take an entity, follow the sequence of
mandatory constraints of the metamodel

to transform using the algorithms
containing the rules. repeat;

- process the remainder;
- ask user input for each approximation;

- record which are 1:1, remodelled,
approximated, lost;

input model in
language X

vocabulary containing
a terminology comparison

between terms used in
the languages

algorithms

output model
in language Y

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

log

Fig. 1. Approach for transforming a model in one language into another, with some
sample data

This knowledge is then used for the inter-model assertions, whose approach is
illustrated in Fig. 2. It uses both the formalised metamodel and the algorithms; a
structured version of this approach is included as Algorithm 1 in the Appendix.
In addition, compared to transformation, it can be run in both directions from
one fragment to the other, where one direction is chosen arbitrarily. The next two
subsections provide some detail on the formalised metamodel and transformation
lists, before we proceed to the rules in Section 4.

3.1 Formalised Metamodel and Term Mappings

The metamodel, described in [16,17] and represented as a set of UML v.2.4 dia-
grams with annotations, is a consistent conceptual model about the entities and
constraints in the selected modelling languages, covering almost all their native
features. It aims at representing in a unified way whatever is present in the lan-
guages, and several notions from Ontology (philosophy) and ontologies (Artificial
intelligence) were used in its development so as to increase understanding of the
language features, to reconcile or unify perceived differences, and to improve
the quality of the metamodel; e.g., on attributes and the positionalist nature of
relationships [17].

56 P.R. Fillottrani and C.M. Keet

- classify entities of M1 and M2 into MM entities;
- process mapping assertions using the

transformation algorithms and compare output
with element in M2;

input model M1
and M2 in language

X and Y, resp.

algorithms

output model M12
or NO

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

input inter-model
assertion

log

?

name:string
colour:string

Flower

Flower
(ID)

name

colour
has

has

formalised
metamodel

vocabulary with
lists which entities should
be mapped, transformed,

approximated, non-
mappable

Fig. 2. Approach for adding inter-model assertions, with some sample data. The “al-
gorithms” box is essentially the same as the algorithms in Fig. 1.

It is formalized in two versions, both available at http://www.meteck.org/

SAAR.html . The first is a set of function-free first order logic set of formula
with equality. Fig. 3 shows a fragment relating relationship, role, and object
type with identification constraints. The second is a subset of the first that is
representable and approximated in OWL 2 for easy computational use, repre-
sented in SHIQ(D), with some 100 classes, 70 object properties (partially due
to encodings of ternaries), and 663 axioms.

The metamodel is complemented with a vocabulary in the form of a list of
terminology comparison and conventions of the entities in UML Class Diagrams,
EER, and ORM, and their corresponding names in the metamodel (see [17]).

3.2 Categorisation of Rules

As the model features are more or less similar across the languages, we have
divided them into four groups: 1:1 mappings, transformations, approximations,
and those for which there are no alternatives. The four lists largely follow from
the metamodel of the static, structural components and constraints [17], al-
though in some cases there is a conceptual equivalence, but not exactly in the
representation; e.g., UML and EER both have attributes, but EER does not
record the datatype, so they are not 1:1 from an algorithmic viewpoint.

http://www.meteck.org/SAAR.html
http://www.meteck.org/SAAR.html

Conceptual Model Interoperability: A Metamodel-driven Approach 57

∀(x, y)(Contains(x, y) → Relationship(x) ∧ Role(y))

∀(x)∃≤2y(Contains(x, y))
∀(x)(Role(x) → ∃(y)(Contains(y, x)))
∀(x, y, z)(Contains(x, y) ∧ Contains(z, y) → (x = z))
∀(x, y, z)(RolePlaying(x, y, z) → Role(x) ∧ CardinalityConstraint(y) ∧ EntityType(z))
∀(x)(Role(x) → ∃(y, z)(RolePlaying(x, y, z)))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(x, v, w) → (y = v) ∧ (z = w))
∀(x, y, z, v, w)(RolePlaying(x, y, z) ∧ RolePlaying(v, y, w) → (x = v) ∧ (z = w))
∀(x)(CardinalityConstraint(x) → ∃(y)(MinimumCardinality(x, y) ∧ Integer(y)))
∀(x)(CardinalityConstraint(x) → ∃(y)(MaximumCardinality(x, y) ∧ Integer(y)))
∀(x, y)(ReifiedAs(x, y) → Relationship(x) ∧ NestedObjectType(y))
∀(x)(NestedObjectType(x) → ∃(y)(ReifiedAs(x, y)))
∀(x, y, z)(ReifiedAs(x, y) ∧ ReifiedAs(z, y) → (x = z))
∀(x, y, z)(ReifiedAs(x, y) ∧ ReifiedAs(x, z) → (y = z))
∀(x, y)(ReifiedAs(x, y) → ∀(z, w)(Contains(x, z) ↔ RolePlaying(z, w, y)))
∀(x, y)(Identifies(x, y) → (IdentificationConstraint(x) ∧ ObjectType(y)))
∀(x)(IdentificationConstraint(x) → ∃(y)(Identifies(x, y)))
∀(x, y, z)((Identifies(x, y) ∧ Identifies(x, z)) → (y = z))
∀(x)(ObjectType(x) → ∃(y)(Identifies(y, x)))
∀(x, y, z)((DeclaredOn(x, y) ∧ DeclaredOn(x, z) ∧ IdentificationConstraint(x) ∧ (¬(y = z))) →

(ValueProperty(y) ↔ ¬AttributiveProperty(z)))
∀(x)(IdentificationConstraint(x) → ∃(y)(DeclaredOn(x, y)))
∀(x, y)((DeclaredOn(x, y) ∧ SingleIdentification(x)) → (Attribute(y) ∨ ValueType(y)))
∀(x)(SingleIdentification(x) → ∃(y)(DeclaredOn(x, y))
∀(x, y, z)((SingleIdentification(x) ∧ DeclaredOn(x, y) ∧ DeclaredOn(x, z)) → (y = z))

Fig. 3. A fragment of the metamodel FOL formalization

1:1 Mappings. The mappings are those where the elements are the same, and
the conversion are straightforward single steps. They are: Relationships (n-ary,
with n ≥ 2), Role, Object type and Associative object type, Subsumption (class
and relationship), Disjoint roles, Disjoint entity types, Subset constraint, Object
type cardinality, Completeness (classes), Mandatory.

Transformations. Transformations are those where the elements are essen-
tially the same, but not from a syntax viewpoint and therefore require a set of
steps that should be treated as one atomic rule. They are: UML (dimensional)
Attribute from/to ORM (dimensional) Value Type, UML attribute/ORM value
type to and EER (dimensional) Attribute, EER Weak entity type to its ORM
version, EER Multivalued Attribute to separate object types in UML and ORM,
ORM Value Type to UML and ER attribute, Internal Identifier, Attributive
property cardinality, Single identification.

Approximations. The core distinction between transformations and approxi-
mations, is that the latter includes a choice point with input from the user or
some arbitrary (modifiable) default value may be used; hence, firing the same
rule in the same situation twice does not necessarily lead to the same outcome.
It is up to the modeller to accept approximations or not. They are: patterns
for UML qualified association, EER Weak entity (type with additional rela-
tionship), and ORM external identifier when it suits, as depicted in Fig. 4; Role
value constraints (with subclasses); UML’s composite and shared aggregate with
named relationship/fact type; composite attribute; EER (dimensional) Attribute
to UML attribute/ORM value type;

Entities for which there are no alternatives. The three families of languages do
not have the same expressiveness even at the ontological level, and some of those
features cannot be represented or approximated in the other language. They are:

58 P.R. Fillottrani and C.M. Keet

Fig. 4. Patterns for approximations between UML’s qualified association, EER weak
entity type, and ORM’s external identifier

UML to ORM: missing inclusive mandatory; EER to ORM: inclusive manda-
tory; UML to EER: disjunctive mandatory, qualified Identifier, value constraints;
ORM to UML: compound cardinality, value comparison, role equality, disjoint
relationships, relationship equality, join subset, join disjointness, join equality,
all relationship constraints; ORM to EER: disjunctive mandatory, compound
cardinality, value comparison, value type constraints, role equality, disjoint re-
lationships, relationship equality, join subset, join disjointness, join equality, all
relationship constraints. We do not consider them further in this paper.

4 Interoperability Rules

In principle, there are two choices for specifying the interoperability rules: cre-
ate a mesh between the languages, or do it via the metamodel. If we have n
conceptual data modeling languages and assuming there were only simple 1:1
mappings or when one glosses over some details, then the former option will
require n! rules while the later only 2n rules. We already know there are not
only simple mappings, so the lower bound of 2n will increase due to the intra-
metamodel rules to transform entities, such as an attribute into a value type and
vice versa. Overall, while the difference in rules might not be large when consid-
ering only three languages, one must note that they come in different flavours
and versions. The use of the intermediate metamodel helps to reuse rules while
focusing on the real changes. For example, a UML v2.0 attribute to an ORM
value type mapping can use the same intra-metamodel transformation, but with
mesh-transformations, a new one would have to be added. Therefore, we will use
the metamodel-mediated rules. This does require annotations to the entities in
the metamodel, to the effect that the algorithm checks the annotation what to
do: map straight to the entity in the other language, or perform a transformation
or approximation first within the metamodel.

1:1 Mapping Rules and the Metamodel. For the 1:1 mappings, this
amounts to straightforward rules, and only a few are shown; the rest follows
the same pattern. We abbreviate the metamodel as MM in the following rules.

Conceptual Model Interoperability: A Metamodel-driven Approach 59

(OT) Object Type

(O1) Class
UML to MM
========⇒ Object Type

in: Class
out: Class→ Object Type

(1O) Object Type
MM to UML
========⇒ Class

in: Object Type
out: Object Type → Class

(xOx) Likewise for the other 1:1 mappings between Class, Entity type

and Entity type, with (O2)
ORM to MM
========⇒; (2O)

MM to ORM
========⇒; (O3)

EER to MM
========⇒; (3O)

MM to EER
========⇒.

(Rol) Role

(Ro1) Association end
UML to MM
========⇒ Role

in: AssociationEnd
out: AssociationEnd→ Role

(1Ro) Role
MM to UML
========⇒ AssociationEnd

in: Role
out: Role → AssociationEnd

(xRox) Likewise for the other 1:1 mappings of Role and Relationship com-

ponent, with (Ro2)
ORM to MM
========⇒; (2Ro)

MM to ORM
========⇒; (Ro3)

EER to MM
========⇒;

(3Ro)
MM to EER
========⇒.

(Rel) Relationship

(R1) Association
UML to MM
========⇒ Relationship

in: Association(AssociationEnd : Class, AssociationEnd : Class)
out: AssociationEnd→ Role // i.e., using (Ro1)
out: Association→ Relationship
out: Class→ Object Type // i.e., using (O1)
out: Relationship(Role:Object type, Role:Object Type)

(1R) Relationship
MM to UML
========⇒ Association

in: Relationship(Role:Object type, Role:Object Type)
out: Role → AssociationEnd // i.e., using (1Ro)
out: Relationship → Association

out: Object Type → Class // i.e., using (1O)
out: Association(AssociationEnd : Class, AssociationEnd : Class)

(xRx) Likewise for the other 1:1 mappings of Fact type and Relation-

ship, with (1R)
MM o UML
========⇒; (R2)

ORM to MM
========⇒; (2R)

MM to ORM
========⇒; (R3)

EER to MM
========⇒; (3R)

MM to EER
========⇒.

A mapping
UML to ORM
=========⇒ for a class C in UML model M1 and generating an entity

type for model transformation to ORM model M2 then is simply composed of
the component-rules. For instance, for an inter-model assertion:

GenOT Class
UML to ORM
=========⇒ Entity type

in: C
out: (O1)

60 P.R. Fillottrani and C.M. Keet

out: (2O) // i.e., an ORM EntityType named C

For a relationship mapping
UML to EER
=========⇒, with A the association in the UML

model asserted to be equivalent to some relationship R in an EER model, the
following set of rules apply when verifying the mapping is correct:

(MapR) Association
UML to ER
========⇒ Relationship

in: A(ae1 : C1, ae2 : C2)
out: (R1)
out: (3R)
out: match pattern out(3R) with R(rc1 : E1, rc2 : E2)

To check the validity of the mapping, one also could have started with the EER
R(rc1 : E1, rc2 : E2) and work towards A(ae1 : C1, ae2 : C2) using (R3) and (1R).
The generation of a new model in another language and checking of an asserted
inter-model relation for the other 1:1 mappings listed in the previous section
follow a similar pattern and is omitted for brevity.

Transformations. We describe two transformations, which are arguably the
most important for they are used most widely. It follows the same approach as
with the 1:1 mappings, but the rules become increasingly more elaborate, and
for ease of comprehension, we have changed the type of arrow.

To handle a model generation or mapping for a UML attribute and ORM value
type, we first need to declare their respective mappings into the metamodel, and
then the transformation at the level of the metamodel. This is described in the
next set of rules, where the (xDx) rules for datatypes are specified alike those
for object types, with the same naming scheme.

(Att) Attributive property

(A1) Attribute
UML to MM�−−−−−−−−→ Attribute

in: Attribute(Class, DataType)
out: (O1)
out: (D1)
out: Attribute→ Attribute
out: Attribute(Object type, Data type)

(1A) Attribute
MM to UML�−−−−−−−−→ Attribute

.... // steps in (A1) in reverse order
(VT) Value type

(V1) Value type
ORM to MM�−−−−−−−−→ Value type

in: ValueType∧ mapped to(ValueType, DataType)
out: (D1)
out: mapped to→ mapped to
out: ValueType→ Value type
out: ValueType ∧ mapped to(Value type, Data type)

(1V) Value type
ORM to MM�−−−−−−−−→ Value type

.... // steps in (V1) in reverse order

Conceptual Model Interoperability: A Metamodel-driven Approach 61

(Att-VT) Attribute and Value type conversions
(Att-to-VT) Attribute

MM�−−−→ Value type
in: Attribute(Object type, Data type)

out: (D1)
out: Role
out: Relationship
out: mapped to
out: Attribute → Value type
out: Relationship(Role:Object type, Role:Value type)
out: mapped to(Value type, Data type)

(VT-to-Att) Value type
MM�−−−→ Attribute

in: Value type ∧ mapped to(Value type, Data type)
out: (D1)
out: Object type
out: ValueType → Attribute
out: Attribute(Object type, Data type)

It is now possible to generate an ORM value type from an attribute in a
UML diagram, and vv., and, in a similar fashion, to verify whether an inter-
model assertion between a particular UML attribute and ORM value type is
correct (at least structurally). This is specified in the following two rules.

GenVT Attribute
UML to ORM�−−−−−−−−−→ Value type

in: A(C, D)
out: (A1)
out: (Att-to-VT)
out: (2R)
out: (1V) // i.e., an ORM model with F(rc : C, rv : V),

V and mapped to(V, D)

MapVTAtt Value type
ORM to UML�−−−−−−−−−→ Attribute

in: V ∧ mapped to(V, D)
out: (V1)
out: (VT-to-Att)
out: (1A) // i.e., a UML Class Diagram with A(C, D)
out: match pattern out(1A) with attribute declaration in the UML diagram

These basic pieces can, in turn, be used for more complex transformations
and approximations (illustrated below).

Approximations. As mentioned above, approximates contain a ‘choice’ step
that requires input from the user to complete the transformation. Such choice
points in the rules are indicated in italics. We select the rules for identifiers
in EER and ORM, as they are important in a model, and illustrate it with
the case of simple (single attribute) identifier. To be able to do so, the attribute
mapping from EER is introduced first; the mandatory and cardinality constraint
(a 1:1) are straight-forward mappings into and from the metamodel and have the
same naming pattern, i.e., M1, 1M etc, and C1, 1C etc, with MinimumCardinality
abbreviated as mic and MaximumCardinality as mac.

62 P.R. Fillottrani and C.M. Keet

(Att) Attribute
(Ae1) Attribute �EER to MM Attribute
in: Attribute(Class,)

out: (O1)
out: → choose a DataType
out: Attribute→ Attribute
out: Attribute(Object type, Data type)

(1Ae) Attribute �MM to EER Attribute
in: Attribute(Object type, Data type)

out: (O1)
out: Attribute → Attribute

out: DataType →
out: Attribute(Class,)

With these rules, one can generate, e.g., an EER single attribute identifier from
an ORM reference scheme, and vv., and confirm a mapping between the two;
one of the four options are declared in the following rule set.

MapSID ORM reference scheme �ORM to EER EER single attribute identifier
in: FT(re : E1, rv : V) ∧ mapped to(V, D) ∧ M ∧ C(mic = 1, mac = 1)

out: (O2) // ORM entity type into MM object type
out: (V1) // ORM value type into MM value type
out: (M2) // ORM mandatory into MM mandatory
out: (C2) // ORM cardinality into MM cardinality
out: (VT-to-Att) // MM conversion value type to attribute
out: (3O) // MM object type into entity type E of EER
out: (1Ae) // generate EER Diagram attribute: A(E,)
out: (3M) // MM mandatory into mandatory of EER
out: (3C) // MM cardinality into cardinality of EER
out: match pattern out(1Ae,3M,3C) with single identifier declaration in the
EER diagram

Arguably, it looks like one might be able to do this more succinctly by defining
the notion of identifier-using-an-attribute and identifier-using-a-value-type and
to use that in the transformation and create different versions of (Atto-to-VT)
and (VT-to-Att) that include the mandatory 1:1 constraints. However, this also
requires duplications that cannot be isolated, and the above option is then the
more transparent one.

5 Validating Mappings with the Metamodel and Rules

The metamodel is useful for creating less, and more efficient, mapping and trans-
formation rules, but this is not its only advantage. It can drive the validation
of mappings and the generation of model transformations thanks to the con-
straints declared in the metamodel. Consider again the centre-part of Fig. 2
with its “process mapping assertions using the transformation algorithms”. The

Conceptual Model Interoperability: A Metamodel-driven Approach 63

approach takes as input two models (M1 and M2), an inter-model assertion (e.g.,
a UML binary association R1 and an ORM fact type R2, the look-up list with
the mappings, transformation, approximations, and the non-mappable elements
(see Section 3.2), and the formalised metamodel (see Fig. 3). Once the model
elements of M1 and M2 are classified in terms of the metamodel, the mapping
validation process start, which goes through several steps, depending on what is
asserted to be a mapping. This is illustrated for a R1 to R2 mapping.

Step 1. It can be seen from the vocabulary that association and fact type
correspond to Relationship in the metamodel, and thus enjoy a 1:1 mapping. The
ruleset that will be commenced with are R1 from UML to the metamodel and
2R to OMR’s fact type.

Step 2. R1 and 2R refer to Role and Object type of the metamodel. The meta-
model states that there must be at least 2 contains relations from Relationship to
Role (Fig. 3, line 2). There are 2, which each cause the role-rules to be evaluated,
with Ro1 of R1’s two association ends and 2Ro for ORM’s roles.

Step 3. The metamodel states that Role must participate in the relationship
rolePlaying (Fig. 3, lines 5 and 6), and it has a participating Object type (possibly
a subtype thereof) and optionally a Cardinality constraint. They also have 1:1
mappings, which is straight-forward for cardinality (1C and C2).

Step 4. The class participating in R1 causes its rules to be evaluated, being
an O1 to Object type and 2O to ORM’s entity type.

Step 5. Each Object typemust have at least one Identification constraint (Fig. 3,
last 9 lines), be this an internal one or an external one, and involving one or more
attributes or value types (which one it is has been determined by the original
classification). If it is a Single identification, then a rule similar to MapSID (see
previous section) is called and executed (which, in turn, calls the Att-to-VT rule
and the use of Data type).

There are no further mandatory constraints from the ‘chain’ from Relationship
to Role to Object type to Single identification (that, in turn, consults Attribute
and Data type for the ‘UML to ORM’ example here). The sequence readily
becomes longer if the participating object type is actually one of its subtypes:
e.g., Nested object type has a mandatory constraint such that it must be related
to the Relationship it objectifies, which causes the verification to go through a new
sequence of steps following the chain of mandatory constraints. If the relationship
would have been a subtype of Relationship, then the four stages above will have
been specified more precisely correspondingly (e.g., adding attributes). Because
an object type need not to have non-identifier attributes, a check for the presence
of this entity has to be added.

Consider again Fig. 2 and the possible mapping between the UML class
Flower and ORM’s entity type Flower, which can be validated from UML to
ORM or ORM to UML. If the former then, like Step 4, above, 1O and O2 is
called and, like in Step 5, the identifier. The mapping can work, provided one
admits to using the UML internal identifier as candidate for single identifier (ref-
erence scheme) in ORM. Executing it in the other direction from ORM to UML,

64 P.R. Fillottrani and C.M. Keet

one could include a choice point and add ORM’s reference scheme as a UML
user-defined identifier (indicated with a {id} after the name of the attribute).

6 Discussion and Conclusions

We have presented a metamodel-driven approach for model transformations and
inter-model assertions where the models are represented in different languages.
Besides the input model and a mapping table, it uses a formalised metamodel to
direct a sequence of the language transformations, and it uses a set of mapping,
transformation, and approximation rules to carry it out. We presented a selection
of the rules, in particular considering the static structural, components of ER,
EER, UML v2.4.1, ORM, and ORM2. The transformations for model elements
and patterns, in turn, are used with the metamodel to verify correctness of
inter-model assertions across models in different languages. An next step is to
implement them and evaluate them with actual conceptual models.

The metamodel-driven approach requires quite an investment upfront, first
and foremost in terms of designing the metamodel. Its formalization ironed out
some duplications and enabled the capturing also of the textual constraints.
While one could have chosen to remain at the term dictionary level for the
entities in the conceptual data modelling languages, alike [3], this extra work
pays off in increased coverage of features, higher precision of mappings, as well
as explicit approximations where asked for by the user. In addition, it makes the
whole procedure more transparent, and the rules are usable essentially for both
transformations and for validations of inter-model mapping assertions.

The overall fine-grained granular and modular approach with the rules for the
transformation and mappings also increase the reusability of the rules across the
various larger-sized mappings, and can be used to construct a set of transfor-
mation steps or larger ‘chunks’ of the model, alike for the qualified associations,
external uniqueness, and weak entity types in Fig. 4. It does not, however, read-
ily offer a single procedure for testing schema equivalence, which is not only out
of scope of the current work, but also extremely unlikely in the case of inter-
model assertions, for the simple reasons that that is typically not the aim, and
the intersection of entities that are truly the same across the three conceptual
modelling language families (UML, EER, and ORM) is small (see also figures 1
and 2 in [17]).

These sets of rules not only contributes to the comprehension of differences
between heterogenous conceptual models, they also serve as the formal frame-
work for a tool supporting the design, management and integration of conceptual
schemas and ontologies in different modelling languages. Even though it is not
always possible to find exact matches between entities in the different models,
the approximations rules will help users to find corresponding alternatives.

Acknowledgements. This work is based upon research supported by the Na-
tional Research Foundation of South Africa (Project UID: 90041) and the Ar-
gentinian Ministry of Science and Technology.

Conceptual Model Interoperability: A Metamodel-driven Approach 65

References

1. See the list of collaborations (2014), http://www.tipharma.com/

2. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
independent schema translation. VLDB Journal 17(6), 1347–1370 (2008)

3. Atzeni, P., Gianforme, G., Cappellari, P.: Data model descriptions and translation
signatures in a multi-model framework. AMAI Mathematics and Artificial Intelli-
gence 63, 1–29 (2012)

4. Banal-Estanol, A.: Information-sharing implications of horizontal mergers. Inter-
national Journal of Industrial Organization 25(1), 31–49 (2007)

5. Bollen, P.W.L.: A formal ORM-to-UML mapping algorithm research memo RM
02/016, Faculty of Economics and Business Administration. University of Maas-
tricht (2002), http://arno.unimaas.nl/show.cgi?fid=46

6. Bowers, S., Delcambre, L.M.L.: Using the uni-level description (ULD) to support
data-model interoperability. Data & Knowledge Engineering 59(3), 511–533 (2006)

7. Boyd, M., McBrien, P.: Comparing and transforming between data models via an
intermediate hypergraph data model. J. on Data Semantics IV, 69–109 (2005)

8. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation for-
malisms. Journal of Artificial Intelligence Research 11, 199–240 (1999)

9. Fill, H.G., Burzynski, P.: Integrating ontology models and conceptual models us-
ing a meta modeling approach. In: Proc. of 11th Int. Protégé Conference (2009);
amsterdam 2009

10. Grundy, J., Venable, J.: Towards an integrated environment for method engineer-
ing. In: Proceedings of the IFIP TC8, WG8.1/8.2 Method Engineering, ME 1996,
vol. 1, pp. 45–62 (1996)

11. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M.J., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: Özcan, F. (ed.) SIGMOD Conference, pp. 778–787. ACM (2005)

12. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann
Publishers, San Francisco (2001)

13. Hofstede, A.H.M.T., Proper, H.A.: How to formalize it? formalization principles
for information systems development methods. Information and Software Technol-
ogy 40(10), 519–540 (1998)

14. Hovy, E.: Data and knowledge integration for e-government. In: Digital Govern-
ment, pp. 219–231. Springer (2008)

15. Keet, C.M.: Ontology-driven formal conceptual data modeling for biological data
analysis. In: Elloumi, M., Zomaya, A.Y. (eds.) Biological Knowledge Discovery
Handbook: Preprocessing, Mining and Postprocessing of Biological Data, ch. 6,
pp. 129–154. Wiley (2013)

16. Keet, C.M., Fillottrani, P.R.: Structural entities of an ontology-driven unifying
metamodel for UML, EER, and ORM2. In: Cuzzocrea, A., Maabout, S. (eds.)
MEDI 2013. LNCS, vol. 8216, pp. 188–199. Springer, Heidelberg (2013)

17. Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for
UML class diagrams, EER, and ORM2. In: Ng, W., Storey, V.C., Trujillo, J.C.
(eds.) ER 2013. LNCS, vol. 8217, pp. 313–326. Springer, Heidelberg (2013)

18. Louie, B., Mork, P., Martin-Sanchez, F., Halevy, A., Tarczy-Hornoch, P.: Data
integration and genomic medicine. J. of Biomedical Informatics 40(1), 5–16 (2007)

19. Calo, K.M., Cenci, K.M., Fillottrani, P.R., Estevez, E.C.: Information sharing –
benefits. Journal of Computer Science & Technology 12(2), 49–55 (2012)

http://www.tipharma.com/
http://arno.unimaas.nl/show.cgi?fid=46

66 P.R. Fillottrani and C.M. Keet

20. Nelson, E.K., Piehler, B., Eckels, J., et al.: Labkey server: An open source plat-
form for scientific data integration, analysis and collaboration. BMC Bioinformat-
ics 12(1), 71 (2011)

21. United Nations Department of Economic and Social Affairs: United Nations E-
Government Survey 2010 – Leveraging e-government at a time of financial and
economic crisis. Tech. Rep. ST/ESA/PAD/SER.E/131, United Nations (2010),
http://unpan3.un.org/egovkb/global_reports/10report.htm

22. Venable, J., Grundy, J.: Integrating and supporting Entity Relationship and Ob-
ject Role Models. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995. LNCS,
vol. 1021, pp. 318–328. Springer, Heidelberg (1995)

23. Zhu, N., Grundy, J., Hosking, J.: Pounamu: A metatool for multi-view visual lan-
guage environment construction. IEEE Conf. on Visual Languages and Human-
Centric Computing (2004)

Appendix

Algorithm 1. Overview checking inter-model assertions.
input: model M1 and model M2, represented in languages L1 and L2; intermodel

equivalence assertions
1 for each entity e ∈ M1,M2 do
2 classify e according to metamodel entities in the vocabulary
3 end
4 for each equivalence assertion e1 ≡ e2, e1 ∈ M1, e2 ∈ M2 do

5 if type(e1)
L1 to MM to L2===========⇒ type(e2) ∈ 1:1Mappings then

6 // there is a corresponding 1:1 mapping
7 call relevant Algorithm (set of mapping rules);

8 else
9 // then lookup transformations

10 if type(e1)
L1 to MM to L2
−−−−−−−−−−−→ type(e2) ∈ Transformations then

11 call relevant Algorithm;
12 else
13 // offer user approximation
14 if type(e1) �L1 to L2 type(e2) ∈ Approximations then

Data: Ask whether the user would accept an approximation; a ← answer
15 if a == yes then
16 call relevant Algorithm;
17 else
18 output: “There is no accepted approximations from e1 to e2. Your

asserted link will be removed. ”
19 end

20 else
21 output: “There is no transformation nor approximation for e1 and e2.

Your asserted link is invalid, and will be removed.”
22 end

23 end

24 end

25 end
26 run reasoner on combined model;
27 if reasoner == ok then
28 return “The assertions are logically correct.”
29 else
30 return “The models together with the assertions resulted in an inconsistency. You must

revise and run the procedure again.”
31 end

http://unpan3.un.org/egovkb/global_reports/10report.htm

On Verifying Reactive Rules

Using Rewriting Logic

Katerina Ksystra, Nikos Triantafyllou, and Petros Stefaneas

National Technical University of Athens,
Iroon Polytexneiou 9, 15780 Zografou, Athens, Greece

{katksy,nitriant}@central.ntua.gr,
petros@math.ntua.gr

Abstract. Rule-based programming has been gaining a lot of interest
in the industry lately, through the growing use of rules to model the
behavior of software systems. A demand for verifying and analyzing rule
based systems has thus emerged. In this paper we propose a methodology,
based on rewriting logic specifications written in CafeOBJ, for reasoning
about structural errors of systems whose behavior is expressed in terms of
reactive rules and verifying safety properties within the same framework.
We present our approach through a simple but illustrative example of
an e-commerce web site.

Keywords: Reactive Rules, Verification, Rewrite Theory Specification,
Theorem Proving, Model Checking, Structure Errors, Safety properties.

1 Introduction

Reactive rule-based systems are an attractive paradigm to software engineering
since they enable systems to react to events, or combinations of events, occurring
in an arbitrary order. Additional characteristics supported by rules, like flexi-
bility and expressivity, are highly desired especially when modeling industrial
systems.

However, analyzing the behavior of reactive rule based systems presents many
difficulties because rules can interact with each other during execution. Thus,
changing, introducing or removing a single rule from a rule base can have un-
desirable side effects. For these reasons, their extensive and formal analysis is
required. This need becomes stronger when the rule based system is complex
and/or used in critical domains. Also, the existing tool support for reasoning
about rules is limited. To this end, in this paper we present a formal frame-
work that can support the specification of reactive rule based systems and the
verification of their behavior. More precisely:

– We express Production and Event Condition Action rules as rewrite the-
ory specifications of Observational Transition Systems written in CafeOBJ
(section 2).

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 67–81, 2014.
c© Springer International Publishing Switzerland 2014

68 K. Ksystra, N. Triantafyllou, and P. Stefaneas

– We propose a methodology to detect structural errors, like confluence and
termination, and to verify safety properties for reactive rule-based systems
(section 3).

– We illustrate the proposed approach through a running example (sections 2, 3).

1.1 Overview of Reactive Rules and Motivation

Reactivity on the Web, the ability to detect events and respond to them automat-
ically in a timely manner, is needed for bridging the gap between the existing,
passive Web, where data sources can only be accessed to obtain information,
and the dynamic Semantic Web, where data sources are enriched with reactive
behavior [1]. The two main categories of reactive rules are Production and Event
Condition Action (ECA) rules. The former have the syntax If condition do action
and are at the basis of Business Rules Management Systems. They specify the
execution of an action in case some conditions are satisfied, i.e. define reaction
to states changes. The latter have the syntax On event if condition do action,
specify a system’s response to events and are used to describe more complex
systems. More precisely, the ECA paradigm states that a rule autonomously re-
acts to actively or passively detected simple or complex events by evaluating a
condition or a set of conditions and by executing a reaction whenever the event
happens and the condition(s) is true [2].

The properties of interest to rule systems verification include both safety
properties and structure properties, such as confluence and termination of the
rules. These properties are briefly described below;

A safety property is an assertion that a desirable property holds in all reach-
able states (i.e. is an invariant) of the rule-based system and is specific to the
purpose of the specified application. Confluence concerns whether the result of
executing a set of triggered rules depends on the execution order of the rules
or not. A rule program is considered confluent in other words when from any
initial state, all program executions lead to the same final state. Termination
analysis aims to ensure that a set of rules will eventually terminate (i.e. reach a
final state) and will not continue to trigger each other infinitely. A system may
never terminate due to circular triggering of rules for example.

The behavior of rule based systems depends on their operational semantics.
These are determined through the semantics of a rule execution procedure, which
is usually called rule engine. A simple rule engine that executes production rules,
consists of the following steps [3]:

1. Set the working memory to the initial state.
2. Build the set of all applicable and eligible rules. This set is called the agenda

of the rule engine.
3. If the agenda is empty, the execution ends.
4. Otherwise, use a conflict set resolution strategy and choose a rule r in the

agenda.
5. Update the working memory by executing the action of r. If the rule action

contains several assignments, execute them in sequence.
6. Go to step 2.

On Verifying Reactive Rules Using Rewriting Logic 69

The purpose of the rule eligibility strategy (step 2) is to avoid trivial infinite
loops caused by applying again and again the same rule. It defines what a trivial
loop is, and avoids them by making some rules ineligible. The purpose of the
conflict set resolution strategy (step 3) is to pick the next rule to execute from
the agenda. Again, several such strategies exist. Assigning a priority to each rule
is a commonly used strategy.

Commercial engines employ such strategies to support logging execution
traces, to provide simulation capabilities, and finally test and debug a rule set.
For example, the problem of confluence can be solved by using priorities. It has
been argued however that using this approach can be iterative since after prior-
itizing rules, say r1 and r2, a new pair of rules causing non-confluence may be
identified [4]. The problem of termination can be solved by not allowing rules
to trigger each other. However, this can reduce the usefulness of the language
[4]. Even though most engines provide the support described above, they also
present the discussed downsides and in addition they do not permit reasoning
about the rule based system. We believe that formal methods can provide a
feasible solution to this problem complementing the existing tools.

2 Formal Specification of Reactive Rules

Some first steps to use algebraic specification techniques in this research area
were presented in [5] and [6], where we proposed the use of OTS/CafeOBJ
method to prove safety properties about reactive rule-based systems. In particu-
lar we gave an Observational Transition System (OTS) semantics to Production
and Event Condition Action rules so that verification of reactive rules can be sup-
ported. OTSs are state transition systems (or state machines) that have emerged
as a subclass of behavioral specifications [7] and are used to model the behav-
ior of distributed concurrent systems. OTSs are described as equational theory
specifications in CafeOBJ and the OTS/CafeOBJ method ([8], [9]) is then used
to theorem prove that systems (formalized as OTSs) have desired properties.
This approach has been effectively used for the specification of various complex
systems [10] and the verification of invariant and liveness [11] properties of them.

The framework proposed in [6] however cannot express naturally structure
properties about reactive rules, such as confluence and termination. To this end,
in this paper we extend the previous approach by adopting a different logical
formalism, so that the behavior of reactive rules can be formally analyzed in a
seamless manner. The extended framework and its theoretical foundations are
presented in the sections below;

2.1 CafeOBJ Rewriting Logic Specification

CafeOBJ [12] is an algebraic specification language which is a modern successor
of OBJ [13]. The basic building blocks of a CafeOBJ specification are modules. In
the body of a module we can declare sorts, operators, variables and equations. A
sort is a name given to a set of values. Sorts can be partially ordered, interpreted

70 K. Ksystra, N. Triantafyllou, and P. Stefaneas

as subset relations among the sets corresponding to the sorts [14]. Operators
are declared over sorts. Terms are inductively defined with operators and vari-
ables. Equations are used to define (standard) equivalence relations over terms.
Operators may be (data) constructors [14]. Examples of constructors are as fol-
lows; op true : -> Bool {constr}, op s : Nat -> Nat {constr}. Bool is
the sort given to the set of Boolean values. Operators with no arguments such as
true are called constants. Given a natural number n, s(n) denotes the successor
of n [14]. Finally, as with OBJ, CafeOBJ is executable by term rewriting [15]
and uses equations as left to right rewrite rules.

Rewriting logic in CafeOBJ is based on a simplified version of Meseguer’s
rewriting logic [16] for concurrent systems which gives an extension of tradi-
tional algebraic specification towards concurrency. RWL incorporates many dif-
ferent models of concurrency in a natural, simple, and elegant way, thus giving
CafeOBJ a wide range of applications. Unlike Maude [17], CafeOBJ design does
not fully support labeled RWL which permits full reasoning about multiple tran-
sitions between states, but supports reasoning about the existence of transitions
between states (or configurations) of concurrent systems via a built-in predicate
(denoted ==>) with dynamic definition encoding both the proof theory of RWL
and the user defined transitions [15]. This predicate evaluates to true whenever
there exists a transition from the left hand side argument to the right hand side
argument [15].

For a ground term t, a pattern p and an optional condition c, CafeOBJ can
traverse all the terms reachable from t wrt transitions in a breadth-first manner
and find terms (called solutions) such that they are matched with p and c holds
for them. This can be done using the command red t =(k,d)=>* p [suchThat

c], where k is the maximum number of solutions and d is the maximum depth
of search. Also, a natural number (id) is assigned to each term visited by a
search and then by using the command show path id a transition path to the
term identified by id is displayed. Typically, the command is used to display a
transition path to a solution found by a search from t [14].

CafeOBJ supports both equational theory and rewrite theory specification.
State transitions are described in equations in the former and in rewriting rules
in the latter. Equational theory specification is used for interactive theorem
proving whereas for rewrite theory specification CafeOBJ can conduct exhaustive
searches. In [14] an attempt to combine the above is presented. They describe a
way to theorem prove that rewrite theory specifications of OTSs have invariant
properties by proof score writing.

2.2 Reactive Rules and CafeOBJ

We present here how reactive rules can be formally defined as a set of rewrite
theory specifications in CafeOBJ. In a rewrite theory, states can be expressed
as tuples of values < a1, a2, b1, b2 > or as collections of observable values
(o1[p1]: a1) (o1[p2]: a2) (o2[p1]: b1) (o2[p2]: b2) (soups), where ob-
servable values are pairs of (parameterized) names and values. The main differ-
ence between the two expressions is the following; when the states are expressed

On Verifying Reactive Rules Using Rewriting Logic 71

as tuples, the state expressions must be explicitly described on both sides of
each transition. But when expressing states as soups, only the observable values
that are involved in the transitions need to be described on both sides of each
transition. By adapting the definition presented in [6], here we define a set of
reactive rules as rewrite theory specifications of OTSs expressed as collections
of observable values as follows;

Definition 1. A production rule is expressed as a term of the form Ri = On

Ci do Ai where Ai can either denote a variable assignment, or an assertion,
retraction, update of the knowledge base (add/remove/update facts from the KB
respectively) or some other generic action with side effects. In the case where Ai

denotes a variable assignment this is expressed by a transition rule of the form:
ctrans [Ri] (V: v0) D => (V: v1) D if Ci = true .

Ri is the label of the transition rule and v0, v1 are variables. Also, the keyword
ctrans is used because the rule is conditional. The above rule states that the
observable value V will become v1 if the condition of the rule is true. Also,
D denotes an arbitrary data type needed for the definition of the transition.
When the result of action Ai is the assertion of the fact ki to the knowledge
base, its definition is the following; ctrans [assert ki] (knowledge: K) D

=> (knowledge : (ki U K) D if Ci /in K .

In the above rewrite rule knowledge is the observable value corresponding to
the knowledge base and it is defined as a set of boolean elements. U is an op-
erator for adding elements in a set and /in is an operator that returns true
when an element belongs to a set, here the knowledge base. When the result of
action Ai is the retraction of the fact ki from the knowledge base, its defini-
tion is; ctrans [retract ki] (knowledge: K) D => (knowledge: K / ki)

D if Ci /in K .

Operator / denotes that an element is removed from a set. When action
Ai is an update action, its definition is the following; ctrans [retract ki]

(knowledge: K) => (knowledge: (K / ki) U kj) if Ci /in K .

Finally, if Ai is a generic action and extra observable values (oi) need to be
used for its definition, we have; ctrans [ai] (oi: vi) D => (oi: vj) D if

Ci = true .

In order to express ECA rules as rewrite rules we need an observable value
that will “remember” the occurred events. For this reason, in each event we
assign a natural number and when an event is detected its number is stored
the observable value event-memory. Using event-memory we can map events to
transitions/rewrite rules [6].

Definition 2. An Event Condition Action rule of the form Ri := On Ei if Ci

do Ai is defined in CafeOBJ terms as two transitions.
- The first one specifies the event Ei and in particular the fact that the system

after the detection of the event it stores its identification number in the observable
value event-memory . This is defined as; ctrans [Ei] (event-memory: null)

=> (event-memory: i) if c-ei = true .

72 K. Ksystra, N. Triantafyllou, and P. Stefaneas

In the above rewrite rule, the value null of event-memory, denotes that no
other event is detected at the pre state and c-ei is a boolean CafeOBJ term
denoting the detection conditions for Ei.

- The second transition rule specifies the action Ai. More precisely it defines
that the system must respond to the detected event by performing the correspond-
ing action, where Ai is again either a generic action or a predefined action of the
rule language. The triggering of the action as a response to the event is simply de-
fined by adding the condition that in the pre state the event memory will contain
the index of the occurred event, i.e. ctrans [ai] (event-memory: m) (oi:

vi) => (event-memory: null) (oi: vj) if Ci = true and (m = i) .

This ensures that only the guard of this transition rule will hold at the pre
state and thus this will be the only applicable transition for that state of the
system. Also after the occurrence of the action, event-memory will become null
again denoting that the system is ready to detect another event.

Let us note here that in cases where the action of the rule may activate an
internal event (say Ej), the observable value stores the id of the event, j, and
becomes null again when the corresponding to the internal event action is applied
(if it does not activate another internal event).

Running Example. To illustrate the definitions presented in this paper, we will
use as a running example, a company’s e-commerce web site [3]. This company
has customers with registered profiles on the site, which contain information
about the customers’ age and their category (Silver, Gold, or Platinum). When
a customer puts items in his/her shopping cart a discount is computed based on
the pricing policy of the company, i.e. on the customer’s profile and the value
of the cart. The behavior of this system is defined by the following three pro-
duction rules; (R1) The gold-discount rule implements a policy that increments
the discount granted to Gold customers by 10 points, if their shopping cart is
worth 2,000 or more. (R2) The platinum-discount rule implements a policy that
increments the discount granted to Platinum customers by 15 points, if their
shopping cart is worth 1,000 or more. (R3) The upgrade rule implements a pol-
icy that promotes Gold customers to the Platinum category, if they are aged
60 or more. These rules can be written as a set of rewrite transition rules in
CafeOBJ according to definition 1. First, the state of our system is formally
described in the module below;

mod! STATE { pr(TYPE + NAT)

[Obs < State]

-- configuration

op void : -> State {constr}

op _ _ : State State -> State {constr assoc comm id: void}

-- observable values

op category:_ : type -> Obs {constr}

op value:_ : Nat -> Obs {constr}

op age:_ : Nat -> Obs {constr}

op discount:_ : Nat -> Obs {constr} }

On Verifying Reactive Rules Using Rewriting Logic 73

As we can see a state is defined as a set of the following observable values
(category:) (value:) (age:) (discount:). The three last values are represented by
natural numbers and for this reason the module imports the predefined module
NAT. Also pr(TYPE) imports a previously defined CafeOBJ theory which spec-
ifies the various customer types, i.e. gold, platinum and silver. Next, the rules
R1-R3 are defined in the module RULES as a rewrite theory.

mod! RULES { pr(STATE + EQL)

var G : type

vars V N M : Nat

ctrans [gold] : (category: G) (value: V) (age: N) (discount: M)

=> (category: G) (value: V) (age: N) (discount: (M + 10)) if

((V >= 2000) and (G = gold)) .

ctrans [platinum] : (category: G) (value: V) (age: N) (discount: M)

=> (category: G) (value: V) (age: N) (discount: (M + 15)) if

((V >= 1000) and (G = platinum)) .

ctrans [upgrade] : (category: G) (value: V) (age: N) (discount: M)

=> (category: platinum) (value: V) (age: N) (discount: M) if

(G = gold) and (N >= 60) . }

The gold rewrite rule, states that if the observable value category is gold
and the value is equal or greater than 2000 then the value discount will be
increased by 10 points. The platinum rewrite rule, states that if the observable
value category is platinum and the value is equal or greater than 1000 then the
value discount will be increased by 15 points. The upgrade rewrite rule states
that if the observable value category is gold and the age is 60 or more then the
value category will become platinum.

3 Formal Verification of Reactive Rules

As discussed in [3], there is an ambiguity between the upgrade and discount rule.
If a gold customer is eligible to both being granted the gold discount and being
upgraded to the platinum category, then this customer may end up with either
a 15 or 25 per cent discount, depending on the execution order of the rules. This
can be a hazard for the business application implementing this set of rules. We
will present how such structural errors can be detected using our approach.

In particular, in this section we define some CafeOBJ operators which allow
us to reason about confluence and termination properties of reactive rule based
systems specified as rewrite logic theories. Also we demonstrate how existing
operators can be used together with the proposed formalization of reactive rules
to verify invariant properties about them.

3.1 Proving Termination Properties

Termination in a rule based system concerns with the existence of a state of that
system where no more rules are applicable. More precisely;

74 K. Ksystra, N. Triantafyllou, and P. Stefaneas

Theorem (Termination). A rule program’s state s is terminating if and only
if there is no infinite sequence s → s1 → s2 → ... In other words a state s is
terminating if it leads to a state where no rules can be applied. That is, there
exist two states such that; s → s′ and ¬(s = s′) where s′ is a final state. Based
on this, we can check if a state terminates by defining the following predicate in
CafeOBJ terms;

op terminates? : State -> Bool

terminates?(s) = s =(1,*)=>! (event-memory: M1) (value: V1) (o: N)

red notConfluent?(s) .

The expression t1=(1,*)=>! t2 indicates that the term matching to t2 should
be a different term from t1 to which no transition rules are applicable. Also, the
term (event-memory: M1) (value: V1) (o: N) represents an arbitrary state
and it depends on the observable values of the specified system. By reducing the
above predicate, we ask CafeOBJ to find a a final state reachable from the state
s. If true is returned (together with a final state) it means that the state s is
terminating; if false is returned it means that in the state s, no transition can
be applied. Finally, the CafeOBJ reduction may not terminate, indicating that
s is not terminating. Using the above predicate, we can check if the whole rule
based system terminates or not, by defining the search to be performed for the
initial state of the system; op init : -> State, red terminates?(init) .

When the number of reachable states reachable from init is small enough, the
whole reachable state space can be checked by, init =(1,*)=>, where ∗ denotes
infinity. Otherwise, the bounded reachable state space whose depth is d may be
checked by, init =(1,d)=> .

Running Example. Here we test the set of rules of the running example for
termination. We must mention that in most real life applications the initial state
of the system is explicitly defined during the design of the system. An e-shop site
for example before the implementation could have the following characteristics;
initially, no customer is registered at the site, when someone registers for the
first time his/her category is silver, the discount is zero and so on.

It is possible however, for a system to be defined without explicitly defining its
initial state. In such cases, we can still check the desired properties (confluence
and termination) by defining an arbitrary initial state and then discriminate the
cases based on the conditions of the transition rules. In our example these cases
are; (age < 60 or age >= 60), (discount = gold or platinum), (value < 1000 or
value >= 1000) and (value < 2000 or value >= 2000). For the last two only the
following (value < 1000 or 1000 <= value < 2000 or value >= 2000) need to be
checked. Here we present the most indicative cases;

(a) open RULES .

op s : -> State .

eq s = (category: gold) (value: 500) (age: 50) (discount: 0)

red terminates?(s) .

On Verifying Reactive Rules Using Rewriting Logic 75

In this case CafeOBJ returns false and the following message, which is rea-
sonable since no transition can be applied.

** No more possible transitions.

(false): Bool

(b) eq s = (category: gold) (value: 500) (age: 60) (discount: 0)

red terminates?(s) .

In this case where upgrade is the only applicable rule the CafeOBJ system
returns true and the final state (category: platinum) (value: 500) (age: 50) (dis-
count: 0) .

(c) eq s = (category: gold) (value: 2000) (age: 50) (discount: 0)

red terminates?(s) .

In this case the gold rule can be applied to s and to all reachable states from
s. Thus in CafeOBJ the above reduction does not halt indicating that this initial
state is not terminating. The same conclusion holds for the platinum rule as well.
Having detected this issue we can correct the rule base by adding constraints to
the application of these rules, for example (discount: (M1 + 10) <= 100) and
(discount: (M1 + 10) <= 100) respectively, since the discount cannot surpass
this value. In this way the rules will stop triggering when the discount reaches the
maximum value. When the same case is tested after adding the above constraints
CafeOBJ finds the final state; (category: gold) (value: 2000) (age: 50)

(discount: 100) .

3.2 Proving Confluence Properties

After checking that a rule based system is terminating, it is important to be able
to determine if it is confluent or not (if the rules do not terminate they will not
be confluent either).

Theorem (Non-Confluence). A rule program’s state s is non-confluent if
there exist two traces trace1 and trace2 from this state that lead to distinct

states. That is, there exist two traces and three states such that; s
trace1−→ s1 and

s
trace2−→ s2 and ¬(s1 = s2), where s1 and s2 are final states. Based on this, we can

check a state for non-confluence by defining the following predicate in CafeOBJ
terms;

op notConfulent? : State -> Bool

notConfluent?(s) =(2,*)=>! (event-memory: M1) (value: V1) (o: N) .

red notConfluent?(s) .

The above reduction i.e. asks CafeOBJ to search if it can find starting from an
arbitrary state s two different final states of the system. For this reason we use
again the predicate with the exclamation mark at the end (final state) but in the

76 K. Ksystra, N. Triantafyllou, and P. Stefaneas

number indicating the number of solutions we assign the value two (two different
states). If two such solutions are found it means that the state s is not confluent.
Otherwise if false is returned and one solution is found, the state is confluent.
To check a rule based system for confluence we perform the search for the initial
state of the system, as before, using the command red notConfluent?(init).

Running Example. Here we test the set of rules of the running example for
confluence. Again we can discriminate the cases for an arbitrary initial state.
For example:

(a) open RULES .

op s : -> State .

eq s = (category: gold) (value: 500) (age: 60) (discount: 0)

red notConfluent?(s) .

In this case where upgrade is the only applicable rule CafeOBJ returns false, as
it finds one final state meaning that the state s is confluent. Now let us consider
the state which is defined by the following observable values; the value of the
items of the cart is equal to 2000 dollars, the age of the customer is 60 years old
and her/his category is gold. This is the state we mentioned at the beginning
of the section, in which the customer is eligible to both being granted the gold
discount and being upgraded to the platinum category.

(b) eq s = (category: gold) (value: 2000) (age: 60) (discount: 0)

red notConfluent?(s) .

CafeOBJ returns true as it finds two solutions, denoting that s is not confluent
as we expected. In particular it returns;

** Found [state 25] (category: platinum) (value: 2000) (age: 60)

(discount: 90)

** Found [state 27] (category: platinum) (value: 2000) (age: 60)

(discount: 95)

Using the command show path id we can see the two transition paths that
cause the problem (and then we can add constraints in the conditions of the rules
as before to solve this issue by letting for example the upgrade rule to be applied
first). Even though the presented example is quite simple it demonstrates that
detecting such errors before the implementation of a rule based system can prove
really helpful especially when designing complex critical systems.

3.3 Proving Safety Properties

The built-in CafeOBJ search predicate can also be used to prove safety properties
for a system specified in rewriting logic (RWL). In this work, we are interested
in invariant properties.

On Verifying Reactive Rules Using Rewriting Logic 77

Definition (Invariant property). A desirable safety property p is an invariant
for a rule based system if it holds in each reachable state (Rs) of the system, i.e.
∀s ∈ Rs. p(s).

For the verification of such properties model checking and/or theorem proving
can be used; An invariant property can be model checked by searching if there
is a state reachable from the initial state such that the desirable property does
not hold [14]. This can be achieved using the following expression: red init

=(1,*)=>* p [suchThat c] .

In the above term c is a CafeOBJ term denoting the negation of the desired
safety property. Thus, CafeOBJ will return true for this reduction if it discovers
(within the given depth) a state which violates the safety property. This method-
ology is very effective for discovering (shallow) counterexamples. However, model
checking does not constitute a formal proof and is complementary to theorem
proving. Formal proofs are required when we are dealing with critical systems.
In [14] a methodology to (theorem) prove safety properties of OTS specifications
written in RWL is presented. This methodology can be used to reason about rule
based systems expressed in our framework as we will demonstrate throughout
the running example.

Running Example. For our rule based system an invariant safety property
could be the following; a customer cannot belong to the platinum category if
his/her age is less than 60 years. This is expressed in CafeOBJ terms as;

op isSafe : State -> Bool .

eq isSafe((category: G) (value: V) (age: N) (discount: M)) =

not ((G == platinum) and (N < 60)) .

The proof is done by induction on the number of transition rules of the system.
First, the following operator is used [14];

vars pre con : Bool

op check : Bool Bool -> Bool

eq check(pre, con) = if (pre implies con) == true then true

else false fi .

This operator takes as input a conjunction of lemmas and/or induction hy-
potheses and a formula to prove and returns true if the proof is successful and
false if pre implies con does not reduce to true (this is why the built in ==
CafeOBJ operation is used, which is reduced to false iff the left and right hand
side arguments are not reduced to the same term). Using this predicate the base
case of the proof is successfully discharged using the following CafeOBJ code:

eq init = (category: gold) (value: 2000) (age: 50) (discount: 0) .

red check(true, isSafe(init)) .

The inductive step consists of checking whether from an arbitrary state, say
s, we can reach in one step a state, say s’, where the desired property does not
hold. This can be verified using the following reduction [14]: red s =(*, 1)=>+

s’ suchThat (not check(isSafe(s),isSafe(s’))) .

78 K. Ksystra, N. Triantafyllou, and P. Stefaneas

When false is returned it means that CafeOBJ was unable to find a state s’
such that the safety property holds in s and it does not hold i s’1. If a solution
is found, i.e. the above term is reduced to true, then either the safety property
is not preserved by the inductive step or we must provide additional input to
the CafeOBJ machine. In the second case this input may be either in the form
of extra equations defining case analysis or by asserting a lemma (in which case
the new lemma has to be verified separately). Consider the inductive step where
the gold transition rule is applied to s.

eq s = (category: gold) (value: 2000) (age: N) (discount: 0) .

red s =(*, 1)=>+ s’ suchThat (not check(isSafe(s),isSafe(s’))) .

In the above equation (category: gold) (value: 2000) (age: N) (discount: 0) is
an arbitrary state of the rule based system to which gold rule can be applied.
CafeOBJ returns false, and thus the induction case is discharged. Consider the
case where the platinum rule is applied;

eq s = (category: platinum) (value: 2000) (age: N) (discount: 0) .

red s =(*, 1)=>+ s’ suchThat (not check(isSafe(s),isSafe(s’))) .

CafeOBJ returns false for this case, thus the induction case is discharged.
Following the same methodology the induction case for the upgrade rule was
discharged as well, and thus the proof concludes. The full specification of the
e-commerce site, the reasoning about the structure properties and proof of the
invariant can be found at [18].

4 Related Work and Discussion

In the area of active databases, a lot of research concerning analysis of rule-
based systems exists [19]. A survey on the different approaches of reaction rules
can be found in [20]. For example, ECA-LP [21] supports state based knowledge
updates including a test case/integrity constraint based verification and valida-
tion for transactional updates. Previous attempts, e.g. [22] and [23], propose the
visualization of the execution of rules to study their behavior where rules can be
shown in different levels of abstraction.

More recent approaches related to the application of formal methods for an-
alyzing rule based systems and relevant to ours, include the following; In [24]
authors propose a constraint-based approach to the verification of rule programs.
They present a simple rule language, describe how to express rule programs and
verification properties into constraint satisfiability problems and discuss some
challenges of verifying rule programs using a CP Solver that derive from the
fact that the domains of the input variables are commonly very large. Finally,
they present how to detect structure properties of a simple rule based system. In
[3] authors analyze the behavior of Event Condition Action rules by translating

1 To modularly verify each transition rule separately we usually, define for each such
transition a new module which only contains one transition rule at a time.

On Verifying Reactive Rules Using Rewriting Logic 79

them into an extended Petri net and verify termination and confluence properties
of a light control system expressed in terms of ECA rules. [4] presents an ap-
proach to verify the behavior of Event Condition Action rules where a tool that
transforms such rules to timed automata is developed. Then the Uppaal tool is
used to prove desired safety properties for an industrial rule-based application.

Our approach for the verification of rule programs is based on a different
formalism; in particular it uses the OTS/CafeOBJ method and rewriting logic.
To the best of our knowledge this is the first time it is used in the area of reactive
rules. One motivation for this work was a recent advancement in the field, and
in particular the methodology to theorem prove rewrite theories [14]. Compared
to existing similar approaches, it has the following contributions.

First, compared to [3] where structure errors are formally analyzed, our
methodology can be used for the verification of both structure (confluence and
termination) and safety properties for the specified rule system. This extends our
previous work [6] where only safety properties could be proved. Second, when
proving safety properties both model checking and theorem proving techniques
can be applied, in contrast to [4] and [24] where only model checking support is
provided. The combination of these two proving methods provides strong verifi-
cation power. Model checking can be used to search the system for a state when
the desired invariant property is violated (counter example) and next if no such
state is discovered, theorem proving techniques can be applied to ensure that
the system preserves the property in any reachable state. In this way infinite
state systems can be specified. Also, CafeOBJ and Maude allow inductive data
structures in state machines to be model checked and few model checkers exist
with this feature. Finally our approach can be used for the specification and
verification of complex systems due to the simplicity of the CafeOBJ language
and its natural affinity for abstraction [25].

However the proposed methodology does not come without limitations. When
a proof is constructed by humans, they might forget cases to consider or proofs of
some lemmas in the proof [10]. To solve this issue, some tools have been developed
such as Creme [26] and Gateau [27]. We are also working towards developing a
tool that will automate the OTS/CafeOBJ verification method using the Athena
proof system [28]. Another possible limitation could be the fact that researchers
should be familiar with the CafeOBJ formalism in order to use the proposed
approach. However, we believe that the mapping from reactive to rewrite rules
is natural enough and the verification method has a clear structure, thus allowing
non-expert users to adopt our methodology with minimum effort.

5 Conclusion

We have argued that even though most commercial rule engines provide some
support to rule testing, the use of formal methods can be beneficial, even re-
quired at some cases, for ensuring the proper behavior of complex and critical
rule based systems. For this reason we proposed a methodology for expressing a

80 K. Ksystra, N. Triantafyllou, and P. Stefaneas

set of reactive rules into rewrite theories in CafeOBJ that can be used to; (1)
formally specify reactive rules, (2) detect structure errors, like confluence and
termination, and (3) prove invariant safety properties of the specified reactive
rule based system, via theorem proving and model checking techniques. This
diversity of options to verification (techniques and properties) offered by the
resulted form of the reactive rules and the underlying logic, consists the main
contribution of our work.

To conclude, this methodology allows the verification of the knowledge base
against the specification of the reactive rule based system and thus formal proofs
about its consistency can be obtained. As a future work we intend to conduct
more case studies using the proposed methodology so that it can be extended
to support most rule-based systems and apply it to a real world application.
Another future direction is to develop a tool to automate (part of) the mapping
from reactive rules to a rewrite specification written in CafeOBJ. Finally, we
intend to use similar formal techniques in order to verify an open-source rule
engine implementation. Thus together with the proposed framework, end-to-end
validation will be enabled.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS.

References

1. Berstel, B., Bonnard, P., Bry, F., Eckert, M., Pătrânjan, P.-L.: Reactive rules on the
web. In: Antoniou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan,
P.-L., Tolksdorf, R. (eds.) Reasoning Web 2007. LNCS, vol. 4636, pp. 183–239.
Springer, Heidelberg (2007)

2. Paschke, A.: ECA-RuleML: An Approach combining ECA Rules with temporal
interval-based KR Event/Action Logics and Transactional Update Logics. ECA-
RuleML Proposal for RuleML Reaction Rules Technical Goup (2005)

3. Jin, X., Lembachar, Y., Ciardo, G.: Symbolic verication of ECA rules. In: In-
ternational Workshop on Petri Nets and Software Engineering (PNSE 2013) and
International Workshop on Modeling and Business Environments (ModBE 2013),
pp. 41–59 (2013)

4. Ericsson, A., Berndtsson, M., Pettersson, P.: Verification of an industrial rule-based
manufacturing system using REX. In: 1st International Workshop on Complex
Event Processing for Future Internet, iCEP-FIS (2008)

5. Ksystra, K., Triantafyllou, N., Stefaneas, P.: On the Algebraic Semantics of Reac-
tive Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML 2012. LNCS, vol. 7438, pp.
136–150. Springer, Heidelberg (2012)

6. Ksystra, K., Stefaneas, P., Frangos, P.: An Algebraic Framework for Modeling
of Reactive Rule-Based Intelligent Agents. In: Geffert, V., Preneel, B., Rovan,
B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 407–418.
Springer, Heidelberg (2014)

7. Goguen, J., Malcolm, G.: A hidden agenda. Theoretical Computer Science 245(1),
55–101 (2000)

On Verifying Reactive Rules Using Rewriting Logic 81

8. Ogata, K., Futatsugi, K.: Proof scores in the OTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

9. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ
method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Goguen
Festschrift. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

10. Ogata, K., Futatsugi, K.: Proof Score Approach to Analysis of Electronic Com-
merce Protocols. Int. J. Soft. Eng. Knowl. Eng. 20(253), 253–287 (2010)

11. Ogata, K., Futatsugi, K.: Proof score approach to verification of liveness properties.
IEICE Transactions E91-D, 2804–2817 (2008)

12. Diaconescu, R., Futatsugi, K.: CafeOBJ report: The language, proof techniques,
and methodologies for object-oriented algebraic specification. AMAST Series in
Computing. World Scientific, Singapore (1998)

13. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing
OBJ. In: Software Engineering with OBJ: Algebraic Specification in Action. Kluwer
(2000)

14. Ogata, K., Futatsugi, K.: Theorem Proving Based on Proof Scores for Rewrite
Theory Specifications of OTSs. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Futatsugi
Festschrift. LNCS, vol. 8373, pp. 630–656. Springer, Heidelberg (2014)

15. Diaconescu, R., Futatsugi, K., Iida, S.: CafeOBJ Jewels. In: Futatsugi, K., Nak-
agawa, A.T., Tamai, T. (eds.) CAFE: An Industiral-Strength Algebraic Formal
Method, pp. 33–60. Elsevier (2000)

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

17. http://maude.cs.uiuc.edu/

18. http://cafeobjntua.blogspot.com/

19. Vlahavas, I., Bassiliades, N.: Parallel, object-oriented, and active knowledge base
systems. Kluwer Academic Publishers, Norwell (1998)

20. Paschke, A., Kozlenkov, A.: Rule-Based Event Processing and Reaction Rules. In:
Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
53–66. Springer, Heidelberg (2009)

21. Paschke, A.: ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action
Logic Programming Language. In: Int. Conf. on Rules and Rule Markup Languages
for the Semantic Web, Athens, Georgia, USA (2006)

22. Fors, T.: Visualization of rule behaviour in active databases. In: VDB, pp. 215–231
(1995)

23. Benazet, E., Guehl, H., Bouzeghoub, M.: A visual tool for analysis of rules be-
haviour in active databases. In: Sellis, T. (ed.) RIDS 1995. LNCS, vol. 985, pp.
182–196. Springer, Heidelberg (1995)

24. Berstel, B., Leconte, M.: Using Constraints to Verify Properties of Rule Programs.
In: ICST Third International Conference on Software Testing, Verification and
Validation, Paris, France (2010)

25. Diaconescu, R., Futatsugi, K., Ogata, K.: CafeOBJ: Logical Foundations and
Methodologies. Computing and Informatics 22, 257–283 (2003)

26. Nakano, M., Ogata, K., Nakamura, M., Futatsugi, K.: Creme: An Automatic In-
variant Prover of Behavioral Specifications. Int. J. Soft. Eng. Knowl. Eng. 17(6),
783–804 (2007)

27. Seino, T., Ogata, K., Futatsugi, K.: A toolkit for generating and displaying proof
scores in the OTS/CafeOBJ method. ENTCS 147(1), 57–72 (2006)

28. http://www.proofcentral.org/athena/

http://maude.cs.uiuc.edu/
http://cafeobjntua.blogspot.com/
http://www.proofcentral.org/athena/

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 82–96, 2014.
© Springer International Publishing Switzerland 2014

Using Rules to Develop a Personalized and Social
Location Information System for the Semantic Web

Iosif Viktoratos1, Athanasios K. Tsadiras1, and Nick Bassiliades2

1 Department of Economics,
2 Department of Informatics,

Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
{viktorat,tsadiras,nbassili}@auth.gr

Abstract. In this work, the design and implementation of an innovative context-
aware location based social networking service is presented. The proposed sys-
tem, called “Geosocial SPLIS”, utilizes Semantic Web technologies to deliver
personalized information to the end user. It addresses some drawbacks of
knowledge-based personalization systems and aims to provide a collaborative
knowledge creation platform for other systems. To achieve this, it a) collects
data from external sources such as Google Places API and Google+ b) adopts
the schema.org ontology to represent people and places profiles, c) provides a
web editor for adding rules (modeling user preferences and group-targeted
place offers) at run time, d) uses RuleML and Jess rules to represent these rules,
e) combines at run-time the above to match user context with up to date infor-
mation, presented on Google Maps and f) matches user’s preferences with those
of his/her nearby friends to present POI’s that are suitable to all of them. All da-
ta and rules are stored in the Sesame RDF triple store in order to be shared
among various systems.

Keywords: Semantic Web, Ontologies, Rules, Context, Location Based
Services, Points of Interest, Preferences, Group-Targeted Offers.

1 Introduction

Nowadays, a sector of Location Based Services (LBS) [1, 2], used daily by millions
of people, is Location Based Social Networking Services (LBSNS) [3,4]. LBSNS are
applications that provide users with the capability to locate each other and interact
with one another depending on their physical distance. Two of the most popular ex-
amples are Facebook Places (https://www.facebook.com/about/location) and Four-
square (https://foursquare.com/).

Successful LBSNS should fulfill user requirements and provide them with rich and
personalized information according to their profile (e.g. preferences etc.) and their
environment (location, day, etc.), usually referred as context [5]. Consequently, re-
searchers focus on enhancing contextual knowledge collection and perception process
by developing a) hardware structures (e.g. GPS, sensors) and b) software technologies
such as ontologies and rules [6-8]. Concerning the second domain, ontologies

 Using Rules to Develop a Personalized and Social Location Information System 83

(e.g. RDF/S, OWL) enhanced contextual knowledge because they a) offer the ability
to represent physical entities and the associations between them, b) enable knowledge
sharing and interoperability among heterogeneous systems and c) they can be reused
and extended easily [6-8]. Ontologies are often combined with rules for increased
expressiveness because rule-based systems are more autonomous and proactive, being
able to conceive context changes and respond accordingly without user intervention
[7, 8].

In this work, an innovative location based social networking service called
“Geosocial SPLIS1” will be presented in order to demonstrate how semantic web
technologies can enhance LBSNS and offer high level personalized information.
Geosocial SPLIS is an extension of a system called “SPLIS” described in [9]. SPLIS
provided a web editor for POI owners to assert their own properties and group target-
ed offers, which were represented as rules (e.g. “If a person is a student and day is
Sunday then coffee price has discount 20%”). SPLIS evaluated such kind of rules on
the fly depending on regular user’s context and delivered personalized offers to them.
Geosocial SPLIS, apart from POI owners, provides regular users with the capability
to add their own contextualized rule based preferences through a web editor (e.g. “If
day is Sunday then I would like to visit a Coffee shop”) in order to match these pref-
erences with POI owners’ personalized offers. Data from editor are being transformed
into RuleML and then into Jess so as to be machine understandable. After that, all
data2 and rules are stored in the Sesame RDF triple store being fully compatible with
the popular schema.org (http://schema.org/) ontology (adopted by Google, Bing and
Yahoo). Using the above, the system evaluates data and rules on the fly and presents
contextualized information on Google Maps (https://maps.google.gr/).

1.1 Related Work on Knowledge-Based Personalization in LBS

To begin with, Ciaramella et al. [10] combined predefined rules in SWRL format in
order to determine the user’s respective situation and, after that, a set of available
services is proposed proactively to him/her. Another rule based LBS is Sem-Fit [11],
which uses fuzzy rules to recommend hotels to a user. A user is able to provide an
evaluation of the returning results. After that, Sem-Fit updates the rules so as to pro-
vide better results. Moreover, Niforatos et al. [12] proposed a service which informs
user about nearby offers while he/she is on the move. Additionally, Armenatzoglou et
al. [13] developed a flexible conference assistant that integrates Semantic Web tech-
nologies to support personalized, context-aware notifications to conference attendees.

Multiple services use social media data to achieve better personalization. An ex-
ample is PhotoMap [14], which exploits rules in SWRL format to attach physical and
social context to photo shots (for example where the photo was taken and who was
there). Serrano et al. [15] proposed a tourist information service which combines RDF

1 Can be accessed at http://tinyurl.com/GeoSPLIS
2 Server can be accessed at http://platon.econ.auth.gr:8080/

openrdf-sesame and data can be accessed at
http://platon.econ.auth.gr:8080/openrdf-workbench/
repositories/3

84 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

data taken from sources such as foaf profile with predefined rules in SWRL format to
recommend places of interest related to user profile. Last but not least, Li et al. [16]
proposed a semantic-based mobile ad hoc social network that uses a semantics-aware
discovery mechanism to locate users with similar interests.

1.2 Geosocial SPLIS Relation to Other Works and Overall Contribution

With respect to the related works that were described above, apart from the ad-
vantages they possess, they have some disadvantages such as [15-18]:

• They use a predefined set of rules. Rule based systems are useful when enough
amounts of web usage data are available and a limited set of rules cover a
narrow range of knowledge.

• Designing, implementing and maintaining new rules is a time consuming
process which requires a lot of effort and cost.

• Developers’ rules are not always efficient for every situation or for every user.

Geososial SPLIS deals with these problems by offering users the capability to add
rules dynamically at runtime through an intuitive user-oriented interface. Instead of
having problems and becoming obsolete the system becomes more and more intelli-
gent as soon as more rules are inserted into the system. By exploiting social intelli-
gence and letting users to take part in the knowledge construction process, the
system’s knowledge base becomes richer and richer. Moreover, user defined rules are
more consistent, qualitative and efficient than those of the developers and can provide
customized information of higher quality [10].

In the following section, the design and the implementation details of Geosocial
SPLIS are described, while in Section 3 the system’s processes are discussed. In Sec-
tion 4 some use case scenarios are demonstrated. Section 5 presents some evaluation
results and, finally, section 6 discusses the conclusions of our work and indicates
future directions.

2 Design and Implementation

Human mobility behavior in everyday life is not completely random and presents
strong daily patterns (e.g. a user visits a bar at night) [19]. People have preferences
such as “if it is morning and weather is sunny I would like to go for a coffee”, which
depend on his/her current situation. Geosocial SPLIS general idea is to model and
evaluate such kind of preferences and provide customized context-aware information,
attractive to each user. In detail, Geosocial SPLIS provides users the capability to
expose their preferences by authoring rules that represent them, through a user-
friendly web editor. After that, every time a user is logged into the system, it gets
his/her context, evaluates his/her rule-based preferences and POI owners’ rules
and delivers personalized information (figure 1). Geosocial SPLIS is able to handle
rules that involve a) every existing property of a POI, b) user’s location (e.g. I want a
coffee shop which is are less than 600 meters away), c) weather and d) time-day (e.g.
I would like restaurants which serve Chinese cuisine, if it is Sunday 13:00-16:00).

 Using Rules to Develop a Personalized and Social Location Information System 85

A variety of software technologies combined for system implementation. To begin
with, Sesame [20] is used for RDF data manipulation. Moreover, RuleML (and more
specific Reaction RuleML) was chosen as a rule representation language, because a) it
is a powerful markup language (XML with a predefined schema) which supports
various types of rules such as deductive, reactive and normative and b) it provides
interoperability among various systems by allowing rules to be represented in a for-
mal way [21]. It was selected instead of SWRL because of the fact that SWRL
employs open world reasoning without default negation, while our approach needs
close world reasoning (e.g. checking the context of a user, in order to decide whether
a preference is in effect). RIF-PRD (http://www.w3.org/TR/rif-prd/) could have been
used, but at this time is not supported by tools as much as RuleML. Furthermore, Jess
was chosen a machine executable language because it is a lightweight rule engine that
matches well with web technologies [22]. Also Drools [22] could have been used
instead of Jess, giving similar results. To transform RuleML rules to Jess, XSLT files
[23] are used. Furthermore, common web technologies such Java Server Pages (JSP),
html, JavaScript and AJAX are used for visualization [24].

Fig. 1. Geosocial SPLIS general design

3 Geosocial SPLIS Operation Process

In this section an overview about system processes is included.

3.1 Presentation of Information Process

Presentation of information process includes the following steps:

1. Data collection. A detailed reference concerning POI data collection from
Google Places API can be found in [9]. Concerning Geosocial SPLIS users, they
can either fill in a registration form or login via Google+
(https://plus.google.com/) and the relevant data are stored in RDF. If they chose
the second option, system collects profile data from their Google+
account (name, age etc.). A data mapping is directly done as Google+ property
names are compatible with schema.org. Every time a user logs in using Google+
account, the system updates existing data to keep track of changes.

86 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

2. Data retrieval. After a user’s login, data concerning user’s context (profile
properties, relationships, rules, time, day, weather3) and data concerning nearby
POIs (properties, owner, rules) are retrieved from the repository.

3. Rule evaluation. Data mentioned above are asserted to the Jess rule engine,
which evaluates both user’s rules (preferences) and POIs’ rules (POI owner’s
group targeted offers) using the asserted facts. Concerning user’s rules, Jess
checks the if-part of these rules (they involve user contextual properties and
place data) and concludes whether a POI is interesting or not for the user.

4. Presentation of personalized information. Finally, data are being transferred
to the client for visualization. Similarly to [9], different colour of markers on the
presented map assists users to find POI’s that possess valid for them offers
while a star over a marker on the map indicates that the current user is the owner
of the specific POI. Additionally, Geosocial SPLIS combines POI offers with
user preferences. According to this, if a user’s preference is satisfied for a POI,
that is a user’s rule is fired for that POI, then the POI is represented with a big-
ger marker. By clicking on a marker, apart from viewing place data, a user can
also write a review, rate them, make a “like” or a “check in”. The user can also
obtain additional information explaining which rules were fired and why, con-
cerning his/her rules and POI rules. In order to avoid confusion, a user
rule/preference is illustrated with a person icon in front of the message and a
POI rule is represented by a marker icon.

3.2 Processes Concerning Rules

A detailed description about POI owners and their processes concerning rules can be
found in [9]. A thorough discussion concerning user defined rules, follows.

Rule Insertion Process. A user-friendly web interface has been designed so that us-
ers can easily add their rules through completing specific forms. A demonstration of
rule creation in Geosocial SPLIS is given in figure 2, where a user asserts the rule “If
day is Sunday and weather is Sunny, then I would like an IceCreamShop”. The web
interface provides fields for entering the title and the priority of the rule. After that, by
clicking on the four buttons “Add...Condition” he/she is able to customize the contex-
tual condition. The condition customization consists of a) the property field (weather,
day, time, distance) b) the operator field (“is” for day or weather and “<”,”>” for time
or distance) and c) the value. Elements concerning properties and operators are repre-
sented by read-only texts and value elements by drop down menus. This approach is
adopted to resolve user data heterogeneity and avoid any mistakes. By clicking on the
relevant red button, users can delete a condition. By repeating this process, they can
add as many conditions as they like; a logical “AND” is implied among them.

After that, by clicking on a drop down menu they can choose the type of POI that
they prefer. It is worth mentioning that schema.org hierarchy is adopted. For example
if a user chose the place type “Store” all its subcategories are included (e.g. Grocer-
yStrore etc.). In addition by clicking on the “Add Where Condition” button they are

3 http://www.worldweatheronline.com/

 Using Rules to Develop a Personalized and Social Location Information System 87

able to make their rule more specific by customizing the POI properties. A property
drop down menu, an operator drop down menu (“is” and “contains” for text and
“<”,”>” for numbers and dates) and a value field are included.

A user is also able to add a textual explanation of the rule, so that the meaning of
the rule can become clear both to him/her and also to other users. Additionally the
editor provides a preview button to check the rule before submitting it and a clear
button to reset the process. User can also click on one of the most popular rules, or on
one of his/her friends’ rules in the left side of the screen and the forms concerning this
rule are automatically filled.

The rule that is authored in the forms, is transformed to RuleML syntax (for inter-
operability with other systems on the web) and afterward, via xslt, is transformed to
the Jess rule language, in order to become machine executable. For example, Table 1
illustrates the rule of Figure 2, in RuleML and Jess. Concerning Jess representation, a)
the JESS salience operator is used for resolving rule conflict issues (it is used only in
POI owners’ case if two rules concern the same slot e.g. “If it is Saturday Coffee costs
2 €”, “If a person is a student coffee costs 1,5 €”), b) “recommendation” is called the

template that stores relative places that match the rule in case it is fired and c)
“EXPLANATION” is a variable for storing the rule explanation that is afterwards
presented to the end user. Finally, rule data are stored in RDF triples format. Some of
them are illustrated in Table 1. An extension has been made to the RDF/S ontology,
by adding the corresponding class and its properties e.g. title, priority, explanation,
description, ruleml_link etc. Notice that “policy_description” property is a text that is
automatically created from the data the user entered into the rule forms and it is used
for helping other users to understand the rule in case the rule’s creator inputs either a
non-comprehensible explanation message or no explanation text at all.

Fig. 2. Rule editor usage example

88 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

Table 1. Rule representations in RuleML,Jess and RDF format

RuleML representation
<?xml version="1.0" encoding="UTF-8"?>

<RuleML …">

 <Assert> <Rule style="active"> <label>drzgjtgt </label>

<explanation> If day is Sunday and weather is Sunny, I would like to

visit an IceCreamShop </explanation>

 <if> <And>

<Atom> <Rel>place</Rel>

<slot> <Ind>type</Ind> <Ind> IceCreamShop </Ind> </slot>

<slot><Ind>uri</Ind><Var>id</Var></slot>

</Atom>

 <Atom> <Rel>person</Rel>

 <slot> <Ind>day</Ind> <Ind>sunday</Ind> </slot>

 <slot><Ind>weather</Ind> <Ind>sunny</Ind> </slot>

 </Atom>

 </And> </if>

 <then> <Assert>

 <Atom> <Rel>recommendation</Rel>

<slot><Ind>id</Ind><Var>id</Var></slot>

 </Atom>

 </Assert></then>

 </Rule></Assert></RuleML>

Jess representation
(defrule kctysfvn (declare (salience 1))

(place(type IceCreamShop) (uri ?id))

(person (weather sunny) (day sunday))

=>(assert (recommendation(id ?id)))

(store EXPLANATION "If day is Sunday and weather is Sunny, I would

like to visit an IceCreamShop"))

RDF triples representation
<http://schema.org/Person#16> <http://schema.org/policy>

<http://schema.org/policy9fc1d8e4-1c39-4e36-8a35-56223cb98811>.

<http://schema.org/policy9fc1d8e4-1c39-4e36-8a35-56223cb98811>

<http://schema.org/policy_description>

"IF person:weather is Sunny AND person:day is Sunday THEN I WOULD

LIKE TO GO TO A place:type IceCreamShop".

……

Rule Modification Process. A user can directly find all his/her rules and modify or
delete them by choosing the corresponding icon. The same form-based interface as in
rule insertion process is provided for updating existing rules.

 Using Rules to Develop a Personalized and Social Location Information System 89

“Get a Rule” Process. In order to simplify the overall process and engage users as
much as possible, except from creating their own rules they are encouraged to get
rules from other users. First of all, they are able to search among existing rules. Addi-
tionally, in Geosocial SPLIS starting page, a) the 3 most popular rules from all users
and b) the 3 most popular rules from user’s friends are displayed, in order the users to
acquire some of them if they are suitable. Furthermore, as soon as a user “check in”
into a POI or “like” it, a list of the 5 most popular rules concerning the POI category
is also displayed in a pop up window (e.g. if they “like” a cinema, the 5 most popular
rules concerning cinemas will be displayed). Moreover, by clicking on their friends
profile they are able to view and get their rules. In order to avoid confusion in rule
update process (for example in cases where user A gets a rule which was created by
user B and then modifies it), as soon as a user modifies a rule, a new rule is created. If
a user deletes a rule, the user is simply “unlinked” from the rule so as not to affect
other users that have this rule. The rule is deleted if no one else use it.

3.3 Processes Exploiting Social Ties

Common Social Interaction Processes. Geosocial SPLIS provides to the users the
capability to search for new people and become friends with each other as in other
location-based social networking services. After they select a person, they can view
his/her profile data (name, age etc.) and friends. They can also, as usual send a request
message to him/her, asking to become friend. After two users become friends, addi-
tionally, they are able to view each other rules.

Nearby Friends. A user is also able to spot his/her friends which are nearby and find
common places and offers. In this mode Geosocial SPLIS:

a) Collects i) user’s rules, ii) his nearby (logged in) friends’ rules and iii) con-
textual information.

b) Evaluates all the above rules and fetches the nearby POIs which are recom-
mended by the fired rules.

c) For these POIs, it gets their group targeted offers (POIs’ rules), and evalu-
ates them concerning all users contexts (the user and his/her friends).

d) Provides personalized information by displaying:
• With a red marker a POI that does not have any offer at all.
• With a yellow marker a POI that has at least one offer, but none of

them is valid for any of the friends or the user at that moment.
• With a half yellow-half green marker a POI which has a valid offer

for at least one of the friends or the user.
• With a green marker a POI which has an offer for all of the friends

and the user.
• With a bigger marker a POI that is recommended by a user rule and

at least one of his/her friends’ rules.

This process is illustrated with a use case scenario in the following section.

90 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

4 Use Case Scenarios

A use case scenario concerning two different user profiles is presented in this section,
to demonstrate Geosocial SPLIS capabilities. The scenario considers two different
users, being friends with each other, having the following profiles.

a) User A (“John”) is a 20-year old male student, his current profile snapshot is
taken on Saturday, at 13:45 in a location A where the weather is sunny”.

b) User B (“Mary”) is a 21-year old female student, which is logged in the sys-
tem at the same time with John in a location B, close to a location A”.

After that, we assume that John and Mary have used the web editor described in
Section 3 and possess the rules which are presented in Table 2.

Table 2. Users’ rules

John’s rules Mary’s rules

Rule
1

“If it is Saturday between
13:00 and 16:00, I would like
to go for coffee ”

“If it is Friday between 19:00 and
22:00, find me some Restaurants
which serve Italian cuisine”

Rule
2

“If it is Wednesday and time
is after 18:00, find me cine-
mas which are closer than
1000 m”

“I would like to go for coffee, if
weather is Sunny and time is before
18:00 o’clock”

Rule
3

“On Saturday afternoons
(12:00-15:00), recommend
me a Museum”

_

4.1 Scenario Concerning Individuals

As it was discussed above, after a user is inserted into Geosocial SPLIS, it evaluates
his/her rules/preferences and nearby POIs’ rules/group targeted offers. Considering
John, rules 1 and 3 are fired because it is Saturday and time is 13:45. Consequently,
available coffee shops and museums are represented with a bigger marker and are rec-
ommended to him (figure 3 below). In order to help user find easier a POI category, the
marker contains the first letter of the category it belongs (e.g. “M” if it is a Museum).
By clicking on the nearby POIs, John can get personalized info. As discussed above, a
big green marker represents a place he would like to go regarding his context, which has
also an offer for him. Taking for example the POI “Friends Cafe” which is represented
with a big green marker, he is able to view a) its data b) the POI owner’s message for
the group targeted offer that matches his profile and c) his rule which was fired and
recommended this place (figure 4a). John can also add a “like”, a review or a rating to
the POI. He can also view the reviews and ratings which have been submitted by other
users. On the other hand, concerning Mary, the second rule is fired for her. As a result,
coffee shops are represented with bigger marker and similarly, if she clicks on “Friends
Café” she can get the personalized info illustrated in figure 4b. Notice that in the left
side of the screen, by checking the corresponding explanations, they can directly get
some of the three most popular rules a) of all users or b) of their friends.

 Using Rules to Develop a Personalized and Social Location Information System 91

Fig. 3. Starting screen for John

a) Personalized info for John

regarding “Friends Café”
b) Personalized info for Mary regard-

ing Friends Café

Fig. 4. Personalized info concerning the two users and the place “Friends Cafe”

4.2 Scenario Concerning Nearby Friends

By choosing “Friends””Nearby friends” from the menu, John and Mary are able to
spot their nearby friends. Taking for example John, we assume that Mary is his only
nearby friend which is logged in at this time. When he visits this page the system:

a) Gets his and Mary’s context and rules.
b) Evaluates all the above rules, and then fetches the nearby POIs which are

recommended by the fired rules. In our scenario John’s rule 1 and 3 are fired
and as a result museums and coffee shops are recommended. Additionally,
Mary’s rule 2 is fired, which recommends coffee shops.

c) For the POIs that result by their rules, the system gets their offers (POIs’
rules), and evaluates them based on John and Mary’s contexts.

d) After that, it displays personalized information as discussed in 3.3.

According the above, John’s personalized info is illustrated in figure 5. All coffee
shops (markers containing the letter “C”) are displayed with a bigger marker because
of the fact that Mary would like to visit a coffee shop at this time too. Museums are

92 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

represented with a small marker for the opposite reason (they concern only John).
Also on the left side of the screen there is a description of the icon colours and, below
them, there is a table displaying the rules which are fired and their possessor.

By clicking on the related markers he can directly find common places with his
nearby friends (big markers), places with offers for all of them etc. For example, he
can directly find a POI where both of them would like to go, which has also an offer
for him and Mary (a big green marker). After clicking on a marker he is able to view
the POI rules (if any) and the user defined rules which are fired for this place, in order
to understand a) who has an offer and why, b) who would like to visit this POI at the
moment. Taking for example the POI “MOJO cafe bar” which is represented with a
half green-half yellow marker, he is able to view a) that the offer is valid only for
Mary (she is a female student) and b) that both of them would like to go there (figure
6a). Similarly concerning the POI “Friends Cafe”, John can directly understand that
both of them have an offer and both of them would like to go there now (figure 6b).

Fig. 5. “Nearby friends” mode for John

a) b)

Fig. 6. Personalized info for John regarding a) “MOJO cafe bar” and b) “Friends Cafe”

 Using Rules to Develop a Personalized and Social Location Information System 93

5 Evaluation

A survey was conducted to evaluate the implementation of Geosocial SPLIS. An elec-
tronic questionnaire was developed and 83 university students of a department of
economics were asked to use Geosocial SPLIS and answer the questions. The survey
consisted of three parts: a) processes concerning rules and the personalization of in-
formation, b) social processes and c) the system in general.

5.1 Operations Concerning Rules and Presentation of Information

After a short introductory presentation to the system’s general idea, participants made
an account and logged in. Initially, they added the rule “If day is Wednesday, then I
would like Restaurants” and then modified it. After that, they got a random rule from
another user and searched for nearby POIs concerning their rules. Finally, they
answered the following questions:

Q1. How easy was to add a rule?
Q2. How easy was to modify a rule?
Q3. Are you satisfied with the provided interface?
Q4. How easy was to find and get a rule from another user?
Q5. How easy was to understand why a place was recommended?
Q6. How easy was to find a place that resulted by your rules and had an offer for you?

The results of the questions above are presented in figure 7. For every question,
over 80% of the answers were “sufficiently satisfied” or “very much satisfied”. Addi-
tionally, Cronbach’s alpha indicator value was calculated to provide a measure of
reliability. This indicator gets values between 0 and 1 and the closer it is to 1, the
higher the reliability [25]. This indicator was calculated to 0.82 for our survey, show-
ing a high internal consistency.

7% 10% 11% 16%
6%

8%

37% 33%

53% 42%

31%
29%

51% 54%

33% 39%

60% 58%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q1 Q2 Q3 Q4 Q5 Q6

Very much

Sufficiently

Moderately

Barely

Not at all

Fig. 7. Survey results for questions Q1-Q6

94 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

5.2 Social Processes

Afterwards, the participants made groups of three persons, became friends with each
other and tested “nearby friends’ mode”. Finally, they answered the following questions:

Q7. How easy was to send a friend request?
Q8. How easy was to understand which of your friends recommend a place and why?
Q9. How easy was to find common places for you and your friends?
Q10. How easy was to find places that resulted by your friends’ rules and had an

offer for you?

The results of the questions above are presented in figure 8. Once again, in every ques-
tion, over 80% of the answers were “sufficiently satisfied” or “very much satisfied”.
Cronbach’s alpha indicator value was calculated to 0.84 which is very satisfactory.

5%
17%

10% 12%

25%

46%

40%
47%

66%

35%
48%

37%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q7 Q8 Q9 Q10

Very much

Sufficiently

Moderately

Barely

Not at all

Fig. 8. Survey results for questions Q7-Q10

5.3 System in General

After completing the above tasks, participants were asked to answer the following
questions related to the system in general:

Q11. Will you continue using the system?
Q12. Would you recommend the system to your friends?

As illustrated in Figure 9, 94% of the participants will continue using the system and
98% of the participant would recommend it to their friends.

94% 96%

6% 4%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q13 Q14

No

Yes

Fig. 9. Survey results for questions Q11-Q12

 Using Rules to Develop a Personalized and Social Location Information System 95

6 Conclusions and Future Work

In this work, an innovative knowledge-based LBSNS, called Geosocial SPLIS, was
designed and implemented to offer semantic based contextualized information. On the
one hand, regular users enjoy proactively POIs and offers depending on their prefer-
ences and their contextual situation, and on the other, POI owners (by being able to
specify their offering policy rules) can exhibit a highly targeted marketing strategy by
reaching their potential customers right on time. In order to achieve all the above,
Geosocial SPLIS a) collects data from sources such as Google Places API and
Google+ b) adopts an innovative, widely accepted ontology such as schema.org c)
offers users the capability to create rules at run time by providing a web based editor
d) transforms these rules into RuleML and Jess format and e) displays personalized
information on Google Maps.

Geosocial SPLIS experimental testing made clear that the capability of having a dy-
namic knowledge base (by enabling non technical run time users to add data and rules)
can provide qualitative contextualized information by addressing some of the disad-
vantages of rule based systems. As soon as more and more rules are being added to the
system, the more interesting and intelligent it becomes because of the fact that there are
rules (user preferences and group targeted offers in our case) for multiple contextual
situations. High level personalized information is also achieved, since users are able to
add or modify their rules according to their needs and they do not depend on the devel-
oper. Engaging non technical users to generate content is a great challenge but previous
Web 2.0 examples (e.g. Wikipedia) demonstrate that this is feasible.

Geosocial SPLIS implementation can evolve in the future in various ways. The
system could be enhanced by collecting data for multiple web sources (e.g. other so-
cial media such as Facebook, Twitter etc. or other available APIs) or expand the web
editor to provide contextualized preferences concerning movies, videos etc. Further-
more, we are currently working on the development of a mobile version of Geosocial
SPLIS for smartphones and tablets.

References

1. Baldauf, M., Frohlich, P., Masuch, K., Grechenig, T.: Comparing viewing and filtering
techniques for mobile urban exploration. Journal of LBS 5, 38–57 (2011)

2. Michael, K., Michael, M.G.: The social and behavioural implications of location based
services. Journal of Location Based Services 5(3-4), 121–137 (2011)

3. Roick, O., Heuser, S.: Location Based Social Networks – Definition, Current State of the
Art and Research Agenda. Transactions in GIS 17(5), 763–784 (2013)

4. Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: A Collaborative Social Networking Service
among User. IEEE Data Eng. Bull. 33(2), 32–39 (2010)

5. Hosseini-Pozveh, M., Nematbakhsh, M., Movahhedinia, N.: A multidimensional approach
for context-aware recommendation in mobile commerce. (IJCSIS) International Journal of
Computer Science and Information Security 3(1) (2009)

6. Ilarri, S., lllarramendi, A., Mena, E., Sheth, A.: Semantics in Location-Based Services.
IEEE Internet Computing 15(6), 10–14 (2011)

96 I. Viktoratos, A.K. Tsadiras, and N. Bassiliades

7. Patkos, T., Bikakis, A., Antoniou, G., Papadopouli, M., Plexousakis, D.: A semantics-
based framework for context-aware services: lessons learned and challenges. In: Indulska,
J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 839–
848. Springer, Heidelberg (2007)

8. Giurca, A., Tylkowski, M., Muller, M.: RuleTheWeb!: Rule-based Adaptive User Experi-
ence. In: Proceedings of the RuleML2012@ECAI Challenge, at the 6th International Sym-
posium on Rules, Montpellier, France, August 27-29. CEUR Workshop Proceedings,
vol. 874 (2012)

9. Viktoratos, I., Tsadiras, A., Bassiliades, N.: A Rule Based Personalized Location Infor-
mation System for the Semantic Web. In: Knuth, E., Neuhold, E.J. (eds.) Operating Sys-
tems 1982. LNCS, vol. 152, pp. 27–38. Springer, Heidelberg (1985)

10. Ciaramella, A., Cimino, M.G., Lazzerini, B., Marcelloni, F.: Situation-Aware Mobile Ser-
vice Recommendation with Fuzzy Logic and Semantic Web. In: Ninth Int. Conference on
Intelligent Systems Design and Applications. IEEE (2009)

11. García-Crespo, Á., López-Cuadrado, J.L., Colomo-Palacios, R., González Carrasco, I.,
Ruiz-Mezcua, B.: Sem-Fit: A semantic based expert system to provide recommendations
in the tourism domain. Expert Systems with Applications 38 (2011)

12. Niforatos, E., Karapanos, E., Sioutas, S.: PLBSD: A platform for proactive location-based
service discovery. Location Based Services Journal 6 (2012)

13. Armenatzoglou, N., et al.: FleXConf: A flexible conference assistant using context-aware
notification services. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Work-
shops. LNCS, vol. 5872, pp. 108–117. Springer, Heidelberg (2009)

14. Viana, W., Filho, J.B., Gensel, J., Villanova-Oliver, M., Martin, H.: PhotoMap: From loca-
tion and time to context-aware photo annotations. Journal of Location Based Services 2(3),
211–235 (2008)

15. Serrano, D., Hervás, R., Bravo, J.: Telemaco: Context-aware System for Tourism Guiding
based on Web 3.0 Technology. In: International Workshop on Contextual Computing and
Ambient Intelligence in Tourism (2011)

16. Li, J., Wang, H., Khan, S.U.: A Semantics-based Approach to Large-Scale Mobile Social
Networking. Mobile Networks and Applications 17(2), 192–205 (2012)

17. Dell’Aglio, D., Celino, I., Cerizza, D.: Anatomy of a Semantic Web-enabled Recommend-
er System. In: 9th Int. Semantic Web Conference on Proceedings of the 4th Int. Workshop
Semantic Matchmaking and Resource Retrieval in the Semantic Web, Shanghai (2010)

18. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: An Integrated Environment for the
Development of Knowledge-Based Recommender Applications. Int. J. Electron. Com-
merce 11(2), 11–34 (2006)

19. Ye, M., et al.: On the semantic annotation of places in location-based social networks. In:
Proc.17th Int.Conf. ACM SIGKDD Knowledge Discovery& Data Mining, pp. 520–528
(2011)

20. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and
querying RDF data and schema information. In: Lieberman, H., Fensel, D., Hendler, J.,
Wahlster, W. (eds.) Semantics for the WWW. MIT Press (2011)

21. Kontopoulos, E., Bassiliades, N., Antoniou, G.: Deploying Defeasible Logic Rule Bases
for the Semantic Web. Data and Knowledge, Engineering 66(1), 116–146 (2008)

22. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An Analysis of the Performance
of Rule Engines. In: WWW 2009(2009)

23. Sherman, G.: A Critical Analysis of XSLT Technology for XML Transformation. Senior
Technical Report (2009)

24. Fields, D.K., Kolb, M.A., Bayern, S.: Web Development with Java Server Pages. Manning
Publications (2001) ISBN:193011012X

25. Tavakol, M., Dennick, R.: Making sense of Cronbach’s alpha. International Journal of
Medical Education 2, 53–55 (2011)

Checking Termination of Logic Programs with

Function Symbols through Linear Constraints

Marco Calautti, Sergio Greco, Cristian Molinaro, and Irina Trubitsyna

DIMES, Università della Calabria, 87036 Rende (CS), Italy
{calautti,greco,molinaro,trubitsyna}@dimes.unical.it

Abstract. Enriching answer set programming with function symbols
makes modeling easier, increases the expressive power, and allows us
to deal with infinite domains. However, this comes at a cost: common
inference tasks become undecidable. To cope with this issue, recent re-
search has focused on finding trade-offs between expressivity and decid-
ability by identifying classes of logic programs that impose limitations
on the use of function symbols but guarantee decidability of common
inference tasks. Despite the significant body of work in this area, cur-
rent approaches do not include many simple practical programs whose
evaluation terminates. In this paper, we present the novel class of rule-
bounded programs. While current techniques perform a limited analysis of
how terms are propagated from an individual argument to another, our
technique is able to perform a more global analysis, thereby overcoming
several limitations of current approaches. We also present a further class
of cycle-bounded programs where groups of rules are analyzed together.
We show different results on the correctness and the expressivity of the
proposed techniques.

Keywords: Logic programming with function symbols, bottom-up eval-
uation, program evaluation termination, stable models.

1 Introduction

Enriching answer set programming with function symbols has recently seen a
surge in interest. Function symbols make modeling easier, increase the expressive
power, and allow us to deal with infinite domains. At the same time, this comes
at a cost: common inference tasks (e.g., cautious and brave reasoning) become
undecidable.

Recent research has focused on identifying classes of logic programs that im-
pose some limitations on the use of function symbols but guarantee decidability
of common inference tasks. Efforts in this direction are the class of finitely-ground
programs [7] and the more general class of bounded term-size programs [26].
Finitely-ground programs have a finite number of stable models, each of finite
size, whereas bounded term-size (normal) programs have a finite well-founded
model. Unfortunately, checking if a logic program is bounded term-size or even
finitely-ground is semi-decidable.

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 97–111, 2014.
c© Springer International Publishing Switzerland 2014

98 M. Calautti et al.

Considering the stable model semantics, decidable subclasses of finitely-ground
programs have been proposed. These include the classes of ω-restricted
programs [33], λ-restricted programs [14], finite domain programs [7], argument-
restricted programs [21], safe programs [19], Γ -acyclic programs [19], mapping-
restricted programs [6], and bounded programs [17]. The above techniques, that
we call termination criteria, provide (decidable) sufficient conditions for a pro-
gram to be finitely-ground.

Despite the significant body of work in this area, there are still many simple
practical programs which are finitely-ground but are not detected by any of the
current termination criteria. Below is an example.

Example 1. Consider the following program P1 implementing the bubble sort
algorithm:

r0 : bub(L, [], [])← input(L).
r1 : bub([Y|T], [X|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), X ≤ Y.
r2 : bub([X|T], [Y|Cur], Sol)← bub([X|[Y|T]], Cur, Sol), Y < X.
r3 : bub(Cur, [], [X|Sol])← bub([X|[]], Cur, Sol).

Here input is a base predicate symbol whose extension is a fact containing the
list we would like to sort. The bottom-up evaluation of this program always
terminates for any input list. The ordered list Sol can be obtained from the
atom bub([], [], Sol) in the program’s minimal model. �

None of the termination criteria in the literature is able to realize that P1 is
finitely-ground. One problem with them is that when they analyze how terms
are propagated from the body to the head of rules, they look at arguments
individually. For instance, in rule r1 above, the simple fact that the second
argument of bub has a size in the head greater than the one in the body prevents
several techniques from realizing termination of the bottom-up evaluation of P1.
More general classes such as mapping-restricted and bounded programs are able
to do a more complex (yet limited) analysis of how some groups of arguments
affect each other. Still, all current termination criteria are not able to realize that
in every rule of P1 the overall size of the terms in the head does not increase
w.r.t. the overall size of the terms in the body. One of the novelties of the
technique proposed in this paper is the capability of doing this kind of analysis,
thereby identifying finitely-ground programs that none of the current techniques
include.

The technique proposed in this paper easily realizes that the bottom-up eval-
uation of P1 always terminates for any input list. In fact, our technique can
understand that, in every rule, the overall size of the terms in the body does
not increase during their propagation to the head, as there is only a simple re-
distribution of terms. Many practical programs dealing with lists and tree-like
structures satisfy this property—below are two examples. However, our tech-
nique is not limited only to this kind of programs.

Checking Termination of Logic Programs with Function Symbols 99

Example 2. Consider the following program P2 performing a depth-first traver-
sal of an input tree:

r0 : visit(Tree, [], [])← input(Tree).
r1 : visit(Left, [Root|Visited], [Right|ToVisit])←

visit(tree(Root, Left, Right), Visited, ToVisit).
r2 : visit(Next, Visited, ToVisit)← visit(null, Visited, [Next|ToVisit]).

Here input is a base predicate symbol whose extension contains a tree-like struc-
ture represented by means of the ternary function symbol tree. The program
visits the nodes of the tree and puts them in a list following a depth-first search.
The list L of visited elements can be obtained from the atom visit(null, L, [])
in the program’s minimal model. For instance, if the input tree is

input(tree(a, tree(c, null, tree(d, null, null)), tree(b, null, null))).

the program produces the list [b, d, c, a] containing the nodes of the tree in
opposite order w.r.t. the traversal. �

Also in the case above, even if the program evaluation terminates for every
input tree, none of the currently known techniques is able to detect it, while the
technique proposed in this paper does.

Example 3. Consider the following program P3 computing the concatenation of
two lists:

r0 : reverse(L1, []) ← input1(L1).
r1 : reverse(L1, [X|L2])← reverse([X|L1], L2).
r2 : append(L1, L2) ← reverse([], L1), input2(L2).
r3 : append(L1, [X|L2]) ← append([X|L1], L2).

Here input1 and input2 are base predicate symbols whose extensions contain
two lists L1 and L2 to be concatenated. The result list L can be retrieved from
the atom append([], L) in the minimal model of P3. It is easy to see that the
bottom-up evaluation of the program always terminates. �

Contribution. We propose novel techniques for checking if a logic program
is finitely-ground. Our techniques overcome several limitations of current ap-
proaches being able to perform a more global analysis of how terms are propa-
gated from the body to the head of rules. To this end, we use linear constraints to
measure and relate the size of head and body atoms. We first introduce the class
of rule-bounded programs, which looks at individual rules, and then propose the
class of cycle-bounded programs, which relies on the analysis of groups of rules.
We study the relationship between the proposed classes and current termination
criteria.

Organization. Section 2 reports preliminaries on logic programs with function
symbols. Section 3 introduces the class of rule-bounded programs. Section 4
presents the class of cycle-bounded programs. Related work and conclusions are
reported in Sections 5 and 6, respectively.

100 M. Calautti et al.

2 Preliminaries

This section recalls syntax and the stable model semantics of logic programs
with function symbols [15,16,13].

Syntax. We assume to have (pairwise disjoint) infinite sets of constants, logical
variables1, predicate symbols, and function symbols. Each predicate and function
symbol g is associated with an arity, denoted arity(g), which is a non-negative
integer for predicate symbols and a positive integer for function symbols.

A term is either a constant, a logical variable, or an expression of the form
f(t1, ..., tm), where f is a function symbol of arity m and t1, ..., tm are terms.

An atom is of the form p(t1, ..., tn), where p is a predicate symbol of arity n
and t1, ..., tn are terms. A literal is an atom A (positive literal) or its negation
¬A (negative literal).

A rule r is of the form A1 ∨ ...∨Am ← B1, ..., Bk,¬C1, ...,¬Cn, where m > 0,
k ≥ 0, n ≥ 0, and A1, ..., Am, B1, ..., Bk, C1, ..., Cn are atoms. The disjunction
A1 ∨ ...∨Am is called the head of r and is denoted by head(r). The conjunction
B1, ..., Bk,¬C1, ...,¬Cn is called the body of r and is denoted by body(r). With a
slight abuse of notation, we sometimes use body(r) (resp. head(r)) to also denote
the set of literals appearing in the body (resp. head) of r. If m = 1, then r is
normal; in this case, head(r) denotes the head atom. If n = 0, then r is positive.

A program is a finite set of rules. A program is normal (resp. positive) if
every rule in it is normal (resp. positive). We assume that programs are range
restricted, i.e., for every rule, every logical variable appears in some positive body
literal. W.l.o.g., we also assume that different rules do not share logical variables.

A term (resp. atom, literal, rule, program) is ground if no logical variables
occur in it. A ground normal rule with an empty body is also called a fact.

A predicate symbol p is defined by a rule r if p appears in the head of r. Pred-
icate symbols are partitioned into two different classes: base predicate symbols,
which are defined by facts only, and derived predicate symbols, which can be
defined by any rule. Facts defining base predicate symbols are called database
facts.2

A substitution θ is of the form {X1/t1, ..., Xn/tn}, where X1, ..., Xn are dis-
tinct logical variables and t1, ..., tn are terms. The result of applying θ to an
atom (or term) A, denoted Aθ, is the atom (or term) obtained from A by simul-
taneously replacing each occurrence of a logical variable Xi in A with ti if Xi/ti
belongs to θ. Two atoms A1 and A2 unify if there exists a substitution θ, called
a unifier of A1 and A2, such that A1θ = A2θ. The composition of two substitu-
tions θ = {X1/t1, ..., Xn/tn} and ϑ = {Y1/u1, ..., Ym/um}, denoted θ ◦ ϑ, is the
substitution obtained from the set {X1/t1ϑ, ..., Xn/tnϑ, Y1/u1, ..., Ym/um} by

1 Variables appearing in logic programs are called “logical variables” and will be de-
noted by upper-case letters in order to distinguish them from variables appearing
in linear constraints, which are called “integer variables” and will be denoted by
lower-case letters.

2 Database facts are not shown in our examples as they are not relevant for the
proposed techniques.

Checking Termination of Logic Programs with Function Symbols 101

removing every Xi/tiϑ such that Xi = tiϑ and every Yj/uj such that Yj ∈
{X1, ..., Xn}. A substitution θ is more general than a substitution ϑ if there ex-
ists a substitution η such that ϑ = θ◦η. A unifier θ of A1 and A2 is called a most
general unifier (mgu) of A1 and A2 if it is more general than any other unifier
of A1 and A2 (indeed, the mgu is unique modulo renaming of logical variables).

Semantics. Consider a program P . The Herbrand universe HP of P is the
possibly infinite set of ground terms which can be built using constants and
function symbols appearing in P . The Herbrand base BP of P is the set of
ground atoms which can be built using predicate symbols appearing in P and
ground terms of HP .

A rule r′ is a ground instance of a rule r in P if r′ can be obtained from r
by substituting every logical variable in r with some ground term in HP . We
use ground(r) to denote the set of all ground instances of r and ground(P)
to denote the set of all ground instances of the rules in P , i.e., ground(P) =
∪r∈Pground(r).

An interpretation of P is any subset I of BP . The truth value of a ground
atom A w.r.t. I, denoted valueI(A), is true if A ∈ I, false otherwise. The truth
value of ¬A w.r.t. I, denoted valueI(¬A), is true if A �∈ I, false otherwise. A
ground rule r is satisfied by I, denoted I |= r, if there is a ground literal L
in body(r) s.t. valueI(L) = false or there is a ground atom A in head(r) s.t.
valueI(A) = true. Thus, if the body of r is empty, r is satisfied by I if there is
an atom A in head(r) s.t. valueI(A) = true. An interpretation of P is a model
of P if it satisfies every ground rule in ground(P). A model M of P is minimal
if no proper subset of M is a model of P . The set of minimal models of P is
denoted by MM(P).

Given an interpretation I of P , let PI denote the ground positive program
derived from ground(P) by (i) removing every rule containing a negative literal
¬A in the body with A ∈ I, and (ii) removing all negative literals from the
remaining rules. An interpretation I is a stable model of P if I ∈ MM(PI).
The set of stable models of P is denoted by SM(P). It is well known that stable
models are minimal models (i.e., SM(P) ⊆MM(P)), and SM(P) =MM(P)
for positive programs. A positive normal program has a unique minimal model.

3 Rule-Bounded Programs

In this section, we present rule-bounded programs, a class of finitely-ground pro-
grams for which checking membership in the class is decidable. Their definition
relies on a novel technique which uses linear inequalities to measure terms and
atoms’ sizes and checks if the size of the head of a rule is always bounded by the
size of a mutually recursive body atom (we will formally define what “mutually
recursive” means in Definition 2 below).

For ease of presentation, we restrict our attention to positive normal pro-
grams. However, our technique can be applied to an arbitrary program P with
disjunction in the head and negation in the body by considering a positive nor-
mal program st(P) derived from P as follows. Every rule A1∨ ...∨Am ← body in

102 M. Calautti et al.

Fig. 1. Firing graph of P1

P is replaced with m positive normal rules of the form Ai ← body+ (1 ≤ i ≤ m)
where body+ is obtained from body by deleting all negative literals. In fact, as
already stated in [19], the minimal model of st(P) contains every stable model of
P—whence, finiteness and computability of the minimal model of st(P) implies
that P has a finite number of stable models, each of finite size, which can be
computed. In the rest of the paper, a program is understood to be a positive
normal program. We start by introducing some preliminary notions.

Definition 1 (Firing graph). The firing graph of a program P, denoted Ω(P),
is a directed graph whose nodes are the rules in P and such that there is an edge
〈r, r′〉 if there exist two (not necessarily distinct) rules r, r′ ∈ P s.t. head(r) and
an atom in body(r′) unify. �

Intuitively, an edge 〈r, r′〉 of Ω(P) means that rule r may cause rule r′ to
“fire”. The firing graph of program P1 of Example 1 is depicted in Figure 1. In
the definition above, when r = r′ we assume that r and r′ are two “copies” that
do not share any logical variable.

A strongly connected component (SCC) of an arbitrary directed graph G is
a maximal set C of nodes of G s.t. every node of C can be reached from every
node of C (through the edges in G). We say that an SCC C is non-trivial if
there exists at least one edge in G between two not necessarily distinct nodes
of C. For instance, the firing graph in Figure 1 has two SCCs, C1 = {r0} and
C2 = {r1, r2, r3}, but only C2 is non-trivial.

Given a program P and an SCC C of Ω(P), pred(C) denotes the set of predi-
cate symbols defined by the rules in C. We now define when the head atom and
a body atom of a rule are mutually recursive.

Definition 2 (Mutually recursive atoms). Let P be a program and r a rule
in P. The head atom A = head(r) and an atom B ∈ body(r) are mutually
recursive if there is a non-trivial SSC C of Ω(P) s.t.:

1. C contains r, and
2. C contains a rule r′ (not necessarily distinct from r) s.t. 〈r′, r〉 is an edge of

Ω(P) and head(r′) unifies with B. �

In the previous definition, when r = r′ we assume that r and r′ are two
“copies” that do not share any logical variable. Intuitively, the head atom A of a
rule r and an atom B in the body of r are mutually recursive when there might

Checking Termination of Logic Programs with Function Symbols 103

be an actual propagation of terms from B to A (through the application of a
sequence of rules). As a very simple example, in the rule p(f(X))← p(X), p(g(X)),
the first body atom is mutually recursive with the head, while the second one is
not as it does not unify with the head atom.

Given a rule r, we use rbody(r) to denote the set of atoms in body(r) which
are mutually recursive with head(r). Moreover, we define srbody(r) as the set
consisting of every atom in rbody(r) that contains all logical variables appearing
in head(r). We say that r is linear if |rbody(r)| ≤ 1. A program P is linear if
every rule in P is linear.

We say that a rule r in an SCC C of the firing graph is relevant if the set
of atoms body(r) \ rbody(r) does not contain all logical variables in head(r).
Roughly speaking, a non-relevant rule will be ignored because its head size is
bounded by body atoms which are not mutually recursive with the head (i.e.,
atoms that do not unify with any rule head or atoms whose predicate symbols
are defined by rules in other SCCs). We illustrate the notions introduced so far
in the following example.

Example 4. Consider the following program P4:

r1 : s(f(X), Y)︸ ︷︷ ︸
A

← q(X, f(Y))︸ ︷︷ ︸
B

, s(Z, f(Y))︸ ︷︷ ︸
C

.

r2 : q(f(U), V)︸ ︷︷ ︸
D

← s(U, f(V))︸ ︷︷ ︸
E

.

The firing graph consists of the edges 〈r1, r1〉, 〈r1, r2〉, 〈r2, r1〉. Thus, there is only
one SCC C = {r1, r2}, which is non-trivial, and pred(C) = {q, s}. Atoms A and B
(resp. A and C, D and E) are mutually recursive. Moreover, rbody(r1) = {B,C},
srbody(r1) = {B}, rbody(r2) = srbody(r2) = {E}. Both r1 and r2 are relevant. �

We use N to denote the set of natural numbers {1, 2, 3, ...} and N0 to denote
the set of natural numbers including the zero. Moreover, Nk = {(v1, ..., vk) | vi ∈
N for 1 ≤ i ≤ k} and Nk

0 = {(v1, ..., vk) | vi ∈ N0 for 1 ≤ i ≤ k}. Given two
k-vectors v = (v1, ..., vk) and w = (w1, ..., wk) in Nk

0 , we use v · w to denote the

classical scalar product, i.e., v · w =
∑k

i=1 vi · wi.
As mentioned earlier, the basic idea of the proposed technique is to measure

the size of terms and atoms in order to check if the rules’ head sizes are bounded
when propagation occurs. Thus, we introduce the notions of term and atom size.

Definition 3. Given a rule r and a term t occurring in r, the size of t w.r.t. r
is recursively defined as follows:

size(t, r) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if t is either a logical variable not occurring in head(r) or a constant;

x if t is a logical variable X occurring in head(r);
∑

1≤i≤m∧ size(ti,r) �=0

(1 + size(ti, r)) if t = f(t1, ..., tm).

where x is an integer variable. Given an atom A = p(t1, ..., tn) in r, the size of
A w.r.t. r, denoted size(A, r), is the n-vector (size(t1, r), ..., size(tn, r)). �

104 M. Calautti et al.

In the definition above, every integer variable x intuitively represents the pos-
sible sizes that the logical variable X can have during the bottom-up evaluation.
Notice that if t is a constant or a logical variable X occurring only in the body,
then size(t, r) = 0 (in both cases, t does not contribute to the growth of the
head). The size of a term of the form f(t1, ..., tm) is defined by summing up the
size of each ti having non-zero size, plus 1 (to account for the number of terms
of non-zero size which are arguments of f).

Example 5. Consider rule r1 of program P1 (see Example 1). Using lc to denote
the list constructor operator “|”, the rule can be rewritten as follows:

bub(lc(Y, T), lc(X, Cur), Sol)← bub(lc(X, lc(Y, T)), Cur, Sol), X≤ Y.

Let A (resp. B) be the atom in the head (resp. the first atom in the body). Then,

size(A, r1) = ((1 + y) + (1 + t), (1 + x) + (1 + cur), sol)
size(B, r1) = ((1 + x) + [1 + (1 + y) + (1 + t)], cur, sol) �

We are now ready to define rule-bounded programs.

Definition 4 (Rule-bounded programs). Let P be a program, C a non-
trivial SCC of Ω(P), and pred(C) = {p1, ..., pk}. We say that C is rule-bounded if
there exist k vectors αh ∈ Narity(ph), 1 ≤ h ≤ k, such that for every relevant rule
r ∈ C with A = head(r) = pi(t1, ..., tn) there exists an atom B = pj(u1, ..., um)
in srbody(r) s.t. the following inequality is satisfied

αj · size(B, r)− αi · size(A, r) ≥ 0

for every non-negative value of the integer variables in size(B, r) and size(A, r).
We say that P is rule-bounded if every non-trivial SCC of Ω(P) is rule-

bounded. �

Intuitively, for every relevant rule of a non-trivial SCC of Ω(P), Definition 4
checks if the size of the head atom is bounded by the size of a mutually recursive
body atom for all possible sizes the terms can assume. Below is an example of
rule-bounded program.

Example 6. Consider again program P4 of Example 4. Recall that the only non-
trivial SCC of Ω(P4) is C = {r1, r2}, and both r1 and r2 are relevant. To
determine if the program is rule-bounded we need to check if C is rule-bounded.
Thus, we need to find αq, αs ∈ N2 such that there is an atom in srbody(r1) and
an atom in srbody(r2) which satisfy the two inequalities derived from r1 and r2
for all non-negative values of the integer variables therein. Since both srbody(r1)
and srbody(r2) contain only one element, we have only one choice, namely the
one where B is selected for r1 and E is selected for r2.

Thus, we need to check if there exist αq, αs ∈ N2 s.t. the following linear con-
straints are satisfied for all non-negative values of the integer variables appearing
in them{

αq · size(B, r1)− αs · size(A, r1) ≥ 0

αs · size(E, r2)− αq · size(D, r2) ≥ 0
⇒

{
αq · (x, 1 + y)− αs · (1 + x, y) ≥ 0

αs · (u, 1 + v)− αq · (1 + u, v) ≥ 0

Checking Termination of Logic Programs with Function Symbols 105

By expanding the scalar products and isolating every integer variable we obtain:
{
(αq1 − αs1) · x+ (αq2 − αs2) · y + (αq2 − αs1) ≥ 0

(αs1 − αq1) · u+ (αs2 − αq2) · v + (αs2 − αq1) ≥ 0

The previous inequalities must hold for all x, y, u, v ∈ N0; it is easy to see that
this is the case iff the following system admits a solution:

{
αq1 − αs1 ≥ 0, αq2 − αs2 ≥ 0, αq2 − αs1 ≥ 0,

αs1 − αq1 ≥ 0, αs2 − αq2 ≥ 0, αs2 − αq1 ≥ 0

Since a solution does exist, e.g. αs1 = αs2 = αq1 = αq2 = 1 (recall that every αi

must be greater than 0), the SCC C is rule-bounded, and thus the program is
rule-bounded. �

The method to find vectors αp for all p ∈ pred(C) shown in the previous ex-
ample can always be applied. That is, we can always isolate the integer variables
in the original inequalities and then derive one inequality for each expression
that multiplies an integer variable plus the one for the constant term, imposing
that all such expressions must be greater than or equal to 0.

It is worth noting that the proposed technique can easily recognize many
(finitely-ground) practical programs where terms are simply exchanged from the
body to the head of rules (e.g., see Examples 1, 2, and 3).

Example 7. Consider program P1 of Example 1. Recall that the only non-trivial
SCC of Ω(P1) is {r1, r2, r3} (see Figure 1) and all rules in it are relevant. Since
|srbody(ri)| = 1 for every ri in the SCC, we have only one set of inequalities,
which is the following one (after isolating integer variables):

⎧⎪⎨
⎪⎩
(αb1 − αb2) · x1 + (2αb1 − 2αb2) ≥ 0

(αb1 − αb2) · y2 + (2αb1 − 2αb2) ≥ 0

(αb1 − αb3) · x3 + (αb2 − αb1) · cur3 + (αb1 − 2αb3) ≥ 0

where subscript b stands for predicate symbol bub, whereas subscripts associated
with integer variables are used to refer to the occurrences of logical variables in
different rules (e.g., y2 is the integer variable associated to the logical variable Y
in rule r2). A possible solution is α

b
= (2, 2, 1) and thus P1 is rule-bounded.

Considering program P2 of Example 2, we obtain the following constraints:

{
(αv1 − αv2) · root1 + (αv1 − αv3) · right1 + (3αv1 − 2αv2 − 2αv3) ≥ 0

(αv3 − αv1) · next2 + 2αv3 ≥ 0

where subscript v stands for predicate symbol visit. By setting αv = (2, 1, 2), we
get positive integer values of αv1 , αv2 , αv3 s.t. the inequalities above are satisfied
for all root1, right1, next2 ∈ N0. Thus, P2 is rule-bounded.

The firing graph of program P3 of Example 3 has two non-trivial SCCs C1 =
{r1} and C2 = {r3}. The constraints for C1 are:

106 M. Calautti et al.

{
(αr1 − αr2) · x1 + (2αr1 − 2αr2) ≥ 0

where subscript r stands for predicate symbol reverse. It is easy to see that by
choosing any (positive integer) values of αr1 and αr2 such that αr1 ≥ αr2 , the
inequality above holds for all x1 ∈ N0. Likewise, the constraints for C2 are{

(αa1 − αa2) · x3 + (2αa1 − 2αa2) ≥ 0

where subscript a stands for predicate symbol append. By choosing any (positive
integer) values of αa1 and αa2 such that αa1 ≥ αa2 , the inequality above holds
for all x3 ∈ N0. Thus, P3 is rule-bounded. �

Notice that when checking if an SCC C is rule-bounded we need to check,
for every relevant rule r ∈ C, if there exists an atom in srbody(r) which sat-
isfies the condition stated in Definition 4. Thus, in the worst case, there are∏

r∈C |srbody(r)| sets of inequalities for which the condition must be verified. In
order to obtain a single set of inequalities for C, the definition might be modified
by requiring an inequality for every atom in srbody(r). While this variant of
Definition 4 would lead to a lower complexity of checking if a program is rule-
bounded, the obtained class of rule-bounded programs would be smaller. Clearly,
one may also look only at a subset of the

∏
r∈C |srbody(r)| sets of inequalities

(e.g., a fixed or polynomial number of them). It is worth noting that in practical
cases most of the rules are linear (and thus |srbody(r)| ≤ 1).

Two key properties of rule-bounded programs are: they are finitely-ground
and it is decidable to check whether a given program is rule-bounded.

Theorem 1. Every rule-bounded program is finitely-ground. �

Theorem 2. Checking whether a program is rule-bounded is in NP. �

It is worth noting that the analysis of the structure of programs is a compile-
time operation and the complexity depends on the size of the SCCs, which are
usually small.

Theorem 3. Rule-bounded programs are incomparable with mapping-restricted
and bounded programs. �

Observe that in the previous theorem we have considered only the most gen-
eral subclasses of finitely-ground programs proposed so far, which generalize
previous classes such as argument-restricted programs [21].

4 Cycle-Bounded Programs

As saw in the previous section, to determine if a program is rule-bounded we
check through linear constraints if the size of the head atom is bounded by the
size of a body atom for every relevant rule in a non-trivial SCC of the firing
graph (cf. Definition 4). Looking at each rule individually has its limitations, as
shown by the following example.

Checking Termination of Logic Programs with Function Symbols 107

Example 8. Consider the following simple program P8:

r1 : p(X, Y) ← q(f(X), Y).
r2 : q(W, f(Z))← p(W, Z).

It is easy to see that the bottom-up evaluation always terminates, but the pro-
gram is not rule-bounded. The linear inequalities for the program are (cf. Defi-
nition 4): {

(αq1 − αp1) · x+ (αq2 − αp2) · y + αq1 ≥ 0

(αp1 − αq1) · w + (αp2 − αq2) · z − αq2 ≥ 0

It can be easily verified that there are no positive integer values for αp1 , αp2 ,
αq1 , αq2 such that the inequalities hold for all x, y, w, z ∈ N0. The reason is
the presence of the expression −αq2 in the second inequality. Intuitively, this
is because the size of the head atom increases w.r.t. the size of the body atom
in r2. However, notice that the cycle involving r1 and r2 does not increase the
overall size of propagated terms. This suggests we can check if an entire cycle
(rather than each individual rule) propagates terms of bounded size. �

To deal with programs like the one shown in the previous example, we intro-
duce the class of cycle-bounded programs, which is able to perform an analysis
of how terms propagate through a group of rules, rather than looking at rules
individually as done by the rule-bounded criterion.

Given a program P , a cycle π = 〈r1, r2〉, 〈r2, r3〉, ..., 〈rn, r1〉 of Ω(P) is basic
if every edge does not occur more than once. We say that π is relevant if every
ri is relevant, for 1 ≤ i ≤ n.

In the following, we first present the cycle-bounded criterion for linear pro-
grams and then show how it can be applied to non-linear ones.

Dealing with linear programs. Notice that rbody(r) contains exactly one
atom B for every linear rule r in a non-trivial SCC of the firing graph; thus,
with a slight abuse of notation, we use rbody(r) to refer to B.

Definition 5 (Linear cycle-bounded programs). Let P be a linear program,
π = 〈r1, r2〉, ..., 〈rn, r1〉 a basic cycle of Ω(P), p the predicate symbol defined by
rn, and k the arity of p. Also, let θi be an mgu of head(ri) and rbody(ri+1), for
1 ≤ i ≤ n− 1.3 Given an mgu θi (1 ≤ i ≤ n− 1) and a pair X/t in θi, we define
the equality

eq(X/t) =

{
size(X, ri) = size(t, ri+1) if X appears in head(ri);

size(X, ri+1) = size(t, ri) if X appears in rbody(ri+1);

and define eq(θi) = {eq(X/t) | X/t ∈ θi}. We say that π is cycle-bounded if
there exists a vector α ∈ Nk such that the following constraints are satisfied

{α · size(rbody(r1), r1)− α · size(head(rn), rn) ≥ 0} ∪ eq(θ1) ∪ ... ∪ eq(θn−1)

3 Note that such θi’s always exist by definition of firing graph.

108 M. Calautti et al.

for every non-negative value of the integer variables occurring in the constraints.
We say that P is cycle-bounded if every relevant basic cycle of Ω(P) is cycle-
bounded. �

Example 9. Consider again program P8 of Example 8. The program is clearly
linear and Ω(P8) has two relevant basic cycles π1 = 〈r1, r2〉, 〈r2, r1〉 and π2 =
〈r2, r1〉, 〈r1, r2〉. To check if π1 is cycle-bounded we need to check if there exist
αq1 , αq2 ∈ N s.t. the following constraints are satisfied for all x, y, w, z ∈ N0:

⎧⎨
⎩

αq1 · (x+ 1) + αq2 · y − αq1 · w − αq2 · (z + 1) ≥ 0
x = w
y = z

Notice that the last two equalities above are derived from the mgu {X/W, Y/Z}
used to unify head(r1) and rbody(r2). To check the above condition, we can
replace x with w and y with z in the first constraint, thereby obtaining αq1 −
αq2 ≥ 0, which is satisfied for αq1 ≥ αq2 . Thus, π1 is cycle-bounded. Likewise, it
can be verified that π2 is cycle-bounded too and thus P8 is cycle-bounded.

ProgramP3 (cf. Example 3) is another linear program that is cycle-bounded.�

Dealing with Non-linear Programs. The application of the cycle-bounded
criterion to arbitrary programs consists in applying the technique to a set of
linear programs derived from the original one. Given a rule r, the set of linear
versions of r is defined as the set of rules �(r) = {head(r)← B | B ∈ rbody(r)}.
Given a program P = {r1, ..., rn}, the set of linear versions of P is defined as
the set of linear programs �(P) = {{r′1, ..., r′n} | r′i ∈ �(ri) for 1 ≤ i ≤ n}.

Definition 6 (Cycle-bounded programs). A (possibly non-linear) program
P is cycle-bounded if every (linear) program in �(P) is cycle-bounded. �

Like rule-bounded programs, cycle-bounded programs are finitely-ground.

Theorem 4. Every cycle-bounded program is finitely-ground. �

Theorem 5. Checking if a program is cycle-bounded is decidable. �

Theorem 6. Cycle-bounded programs are incomparable with rule-bounded,
mapping-restricted, and bounded programs. �

While Theorem 5 establishes decidability of checking if a program is cycle-
bounded, we conjecture that the problem is in Πp

2 . Moreover, we point out that
cycle-bounded programs are also incomparable with criteria less general than
the mapping-restricted and the bounded ones (e.g., argument-restrictedness).

5 Related Work

A significant body of work has been done on termination of logic programs under
top-down evaluation [9,36,22,25,8,30,24,28,29,23,5,4,3] and in the area of term

Checking Termination of Logic Programs with Function Symbols 109

rewriting [37,32,2,11,12]. Termination properties of query evaluation for normal
programs under tabling have been studied in [26,27,34].

In this paper, we consider logic programs with function symbols under the sta-
ble model semantics [15,16] (recall that, as discussed in Section 3, our approach
can be applied to programs with disjunction and negation by transforming them
into positive normal programs), and thus all the excellent works above can-
not be straightforwardly applied to our setting—for a discussion on this see,
e.g., [7,1]. In our context, [7] introduced the class of finitely-ground programs,
guaranteeing the existence of a finite set of stable models, each of finite size, for
programs in the class. Since membership in the class is not decidable, decidable
subclasses have been proposed: ω-restricted programs, λ-restricted programs, fi-
nite domain programs, argument-restricted programs, safe programs, Γ -acyclic
programs, mapping-restricted programs, and bounded programs. An adornment-
based approach that can be used in conjunction with the techniques above to
detect more programs as finitely-ground has been proposed in [18].

Compared with the aforementioned classes, rule- and cycle-bounded programs
allow us to perform a more global analysis and identify many practical pro-
grams as finitely-ground, such as those where terms in the body are rearranged
in the head, which are not included in any of the classes above. We observe
that there are also programs which are not rule- or cycle-bounded but are reco-
gnized as finitely-ground by some of the aforementioned techniques (see Theo-
rems 3 and 6).

Similar concepts of “term size” have been considered to check termination of
logic programs evaluated in a top-down fashion [31], in the context of partial eval-
uation to provide conditions for strong termination and quasi-termination [35,20],
and in the context of tabled resolution [26,27]. These approaches are geared to
work under top-down evaluation, looking at how terms are propagated from the
head to the body, while our approach is developed to work under bottom-up
evaluation, looking at how terms are propagated from the body to the head.
This gives rise to significant differences in how the program analysis is carried
out, making one approach not applicable in the setting of the other. As a simple
example, the rule p(X)← p(X) leads to a non-terminating top-down evaluation,
while it is completely harmless under bottom-up evaluation.

6 Conclusions

Recently, there has been a great deal of interest in enhancing answer set pro-
gramming with function symbols. Research has focused on identifying classes of
logic programs allowing only a limited use of function symbols but guaranteeing
decidability of common inference tasks. Despite many excellent techniques that
have been proposed in recent years, there are still many terminating practical
programs which are not captured by any of the approaches in the literature.

In this paper, we have introduced the novel class of rule-bounded programs,
which overcomes different limitations of current approaches by performing a
more global analysis of programs, thereby identifying many programs commonly

110 M. Calautti et al.

arising in practice as finitely-ground. We have also introduced the class of cycle-
bounded programs where groups of rules are analyzed.

As a direction for future work, we plan to investigate how our techniques can
be combined with current termination criteria. Since they look at programs from
different standpoints, an interesting issue is to study how they can be integrated
so that they can benefit from each other. To this end, an interesting approach
would be to plug termination criteria in the generic framework proposed in [10]
and study their combination in such a framework. Another intriguing issue would
be to analyze the relationships between the notions of safety of [10] and the
notions of boundedness used by termination criteria.

References

1. Alviano, M., Faber, W., Leone, N.: Disjunctive ASP with functions: Decidable
queries and effective computation. TPLP 10(4-6), 497–512 (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236(1-2), 133–178 (2000)

3. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs.
TPLP 9(2), 213–238 (2009)

4. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1),
75–111 (2004)

5. Bruynooghe, M., Codish, M., Gallagher, J.P., Genaim, S., Vanhoof, W.: Termina-
tion analysis of logic programs through combination of type-based norms. ACM
Trans. Program. Lang. Syst. 29(2) (2007)

6. Calautti, M., Greco, S., Trubitsyna, I.: Detecting decidable classes of finitely ground
logic programs with function symbols. In: PPDP, pp. 239–250 (2013)

7. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: Theory
and implementation. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 407–424. Springer, Heidelberg (2008)

8. Codish, M., Lagoon, V., Stuckey, P.J.: Testing for termination with monotonicity
constraints. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp.
326–340. Springer, Heidelberg (2005)

9. De Schreye, D., Decorte, S.: Termination of logic programs: The never-ending story.
Journal of Logic Programming 19/20, 199–260 (1994)

10. Eiter, T., Fink, M., Krennwallner, T., Redl, C.: Liberal safety for answer set pro-
grams with external sources. In: AAAI (2013)

11. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. J. Autom. Reas. 40(2-3), 195–220 (2008)

12. Ferreira, M.C.F., Zantema, H.: andH. Zantema. Total termination of term rewrit-
ing. Appl. Algebra Eng. Commun. Comput. 7(2), 133–162 (1996)

13. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers (2012)

14. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set program-
ming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI),
vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

Checking Termination of Logic Programs with Function Symbols 111

16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3/4), 365–386 (1991)

17. Greco, S., Molinaro, C., Trubitsyna, I.: Bounded programs: A new decidable class
of logic programs with function symbols. In: IJCAI, pp. 926–932 (2013)

18. Greco, S., Molinaro, C., Trubitsyna, I.: Logic programming with function symbols:
Checking Termination of bottom-up Evaluation Through Program Adornments.
TPLP 13(4-5), 737–752 (2013)

19. Greco, S., Spezzano, F., Trubitsyna, I.: On the termination of logic programs with
function symbols. In: ICLP (Technical Communications), pp. 323–333 (2012)

20. Leuschel, M., Vidal, G.: Fast offline partial evaluation of logic programs. Informa-
tion and Computation 235(0), 70–97 (2014)

21. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In:
Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 489–493. Springer,
Heidelberg (2009)

22. Marchiori, M.: Proving existential termination of normal logic programs. In: Nivat,
M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 375–390. Springer,
Heidelberg (1996)

23. Nguyen, M.T., Giesl, J., Schneider-Kamp, P., De Schreye, D.: Termination analysis
of logic programs based on dependency graphs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 8–22. Springer, Heidelberg (2008)

24. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting.
Appl. Algebra Eng. Commun. Comput 21(3), 177–225 (2010)

25. Ohlebusch, E.: Termination of logic programs: Transformational methods revisited.
Appl. Algebra Eng. Commun. Comput. 12(1/2), 73–116 (2001)

26. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic logic
programming under the distribution semantics. TPLP 13(2), 279–302 (2013)

27. Riguzzi, F., Swift, T.: Terminating evaluation of logic programs with finite three-
valued models. ACM Transactions on Computational Logic (2014)

28. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termina-
tion proofs for logic programs by term rewriting. ACM Trans. Comput. Log. 11(1)
(2009)

29. Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., Thiemann, R.: Auto-
mated termination analysis for logic programs with cut. TPLP 10(4-6), 365–381
(2010)

30. Serebrenik, A., De Schreye, D.: On termination of meta-programs. TPLP 5(3),
355–390 (2005)

31. Sohn, K., Van Gelder, A.: Termination detection in logic programs using argument
sizes. In: PODS, pp. 216–226 (1991)

32. Sternagel, C., Middeldorp, A.: Root-labeling. In: Voronkov, A. (ed.) RTA 2008.
LNCS, vol. 5117, pp. 336–350. Springer, Heidelberg (2008)

33. Syrjänen, T.: Omega-restricted logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 267–280.
Springer, Heidelberg (2001)

34. Verbaeten, S., De Schreye, D., Sagonas, K.F.: Termination proofs for logic programs
with tabling. ACM Trans. Comput. Log. 2(1), 57–92 (2001)

35. Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial
evaluation. In: PEPM, pp. 51–60 (2007)

36. Voets, D., De Schreye, D.: Non-termination analysis of logic programs with integer
arithmetics. TPLP 11(4-5), 521–536 (2011)

37. Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta
Informaticae 24(1/2), 89–105 (1995)

A Datalog+ RuleML 1.01 Architecture for
Rule-Based Data Access in Ecosystem Research

Harold Boley1, Rolf Grütter2, Gen Zou1, Tara Athan3, and Sophia Etzold2

1 Faculty of Computer Science, University of New Brunswick, Fredericton, Canada
{harold.boley,gen.zou}@unb.ca

2 Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
{rolf.gruetter,sophia.etzold}@wsl.ch

3 Athan Services (athant.com), West Lafayette, Indiana, USA
taraathan@gmail.com

Abstract. Rule-Based Data Access (RBDA) enables automated rea-
soning over a knowledge base (KB) as a generalized global schema for
the data in local (e.g., relational or graph) databases reachable through
mappings. RBDA can semantically validate, enrich, and integrate het-
erogeneous data sources. This paper proposes an RBDA architecture
layered on Datalog+ RuleML, and uses it for the ΔForest case study on
the susceptibility of forests to climate change. Deliberation RuleML 1.01
was mostly motivated by Datalog customization requirements for RBDA.
It includes Datalog+ RuleML 1.01 as a standard XML serialization of
Datalog+, a superlanguage of the decidable Datalog±. Datalog+ RuleML
is customized into the three Datalog extensions Datalog[∃], Datalog[=],
and Datalog[⊥] through MYNG, the RuleML Modular sYNtax confiG-
urator generating (Relax NG and XSD) schemas from language-feature
selections. The ΔForest case study on climate change employs data de-
rived from three main forest monitoring networks in Switzerland. The KB
includes background knowledge about the study sites and design, e.g.,
abundant tree species groups, pure tree stands, and statistical indepen-
dence among forest plots. The KB is used to rewrite queries about, e.g.,
the eligible plots for studying a particular species group. The mapping
rules unfold our newly designed global schema to the three given local
schemas, e.g. for the grade of forest management. The RBDA/ΔForest
case study has shown the usefulness of our approach to Ecosystem Re-
search for global schema design and demonstrated how automated rea-
soning can become key to knowledge modeling and consolidation for
complex statistical data analysis.

1 Introduction

Ontology-Based Data Access (OBDA) has emerged as a major application area
of Semantic Technologies for validating, enriching, and integrating heteroge-
neous databases (e.g., [1]). Complementary systems for Rule-Based Data Access

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 112–126, 2014.
© Springer International Publishing Switzerland 2014

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 113

(RBDA) have been developed as well (e.g., [2]). For ontology-rule synergy, OBDA
and RBDA have been generalized to Knowledge-Based Data Access (KBDA).1

While the earlier logic-database combinations, e.g. procedural Prolog-SQL in-
terfaces, interleaved knowledge-based reasoning with data access, KBDA keeps
these layers separate, using declarative mappings to bridge between the two. This
way, the (higher-level) ontology and rule technologies can be advanced indepen-
dently from, yet be combined with, the (lower-level) optimizations progressing
for DB engines. KBDA can thus provide the urgently needed knowledge level for
the growing number of data sources (e.g., about climate change) of big volume,
variety, and velocity in a cost-effective manner.

KBDA builds on earlier work in knowledge-based information/data/schema
integration (e.g., [3–5]). It integrates data complying to local (heterogeneous)
schemas into data complying to a global (homogeneous) schema, usually employ-
ing Global-As-View (GAV) mappings. It also validates and enriches local-schema
data with global-schema knowledge represented as ontologies or rulebases.

Some KBDA approaches use a mediator architecture for query rewriting [2,6,
7] – corresponding to top-down processing and backward reasoning – while others
use a warehouse architecture for database materialization [8] – corresponding
to bottom-up processing and forward reasoning. Given that both have their ad-
vantages, we will propose a unified mediator/warehouse architecture.

KBDA KBs usually encompass rule knowledge to enrich the factual data
mapped – again via rules – from the local (heterogeneous) schemas of one or
more databases to a global (homogeneous) schema. Given these and other roles
of rules, we will focus on RBDA in the following.

RuleML provides a family of rule (including fact) languages of customizable
expressivity, a family-uniform XML format, and a suite of tools for rule pro-
cessing, including the MYNG tool for generating serialization schemas in RNC
and XSD. Deliberation RuleML 1.01 introduces a standard XML serialization
of Datalog+, a superlanguage of the decidable Datalog±, which is being increas-
ingly used for RBDA. Section 2 will present a unified architecture for KBDA,
examine KBs and Mappings in Datalog+ RuleML, and discuss relational-graph
transformations for the global schema.

WSL creates knowledge and publishes data about Swiss forests, giving an
integrated federal perspective on heterogeneous databases of various (e.g., geo-
graphically and thematically) specialized sources. In particular, the WSL project
addressed in this work is about the susceptibility of forests to climate change [9].
Section 3 will show how this RuleML-WSL collaboration, termed ΔForest, is
bringing the RBDA technologies of Section 2 to bear on WSL knowledge and
databases.

2 RBDA Technology

We will now examine RBDA technology, starting with ‘the rules of OBDA’ from
a mediator perspective, continuing with a unification of mediator and warehouse
1 An overview is at http://www.cs.unb.ca/~boley/talks/RulesOBDA.pdf

http://www.cs.unb.ca/~boley/talks/RulesOBDA.pdf

114 H. Boley et al.

architectures for KBDA, and then expanding on Datalog+ RuleML and PSOA
RuleML for our focus area of RBDA.

2.1 Kinds of Rules in KBDA

Motivated by rule-ontology synergies, we will discuss key mediator concepts of
KBDA and their foundation in three kinds of (Datalog+) rules, to be exemplified
through the ΔForest case study in Section 3.

(1) A conjunctive query is a special Datalog rule whose conjunctive body can be
rewritten as in (2) and unfolded as in (3), and whose n-ary head predicate instan-
tiates the distinguished answer variables of the body predicates. OBDA ontologies
beyond RDF Schema (RDFS) expressivity usually permit negative constraints
for data validation, which are represented as Boolean conjunctive queries corre-
sponding toRBDAintegrity rules, e.g. in the extensionDatalog[⊥] ofDatalog+ [10].
(2) OBDA ontologies support query rewriting through global-schema-level rea-
soning. They usually include the expressivity of RDFS, whose class and prop-
erty subsumptions can be seen as single-premise Datalog rules with, respectively,
unary and binary predicates, and whose remaining axioms are also definable by
rules. Such ontologies often extend RDFS to the description logic DL-Lite [11]
(as in OWL 2 QL [12]), including subsumption axioms that correspond to
(head-)existential rules. RBDA rulebases are also being used for rewriting, e.g.
via Description Logic Programs [13] (as in OWL 2 RL [12], definable in RIF-
Core [14]), Datalog± [10], and Disjunctive Datalog [15]. We will refer to the store
containing ontologies or rulebases for rewriting as the KB.
(3) KBDA data integration is centered on GAV mappings, which are safe Datalog
rules for query unfolding of each global head predicate into a conjunction of
local body predicates. These (heterogeneous) conjunctive queries can be further
mapped to the database languages of the sources (e.g., to SQL or SPARQL).
The store containing mappings for unfolding always is a rulebase.

2.2 A Unified Architecture for KBDA

Mediator and warehouse architectures for KBDA have often been considered in
isolation. An architectural unification is achievable by using parts of the KB
disjointly for mediator-style Query Rewriting [16–18] and warehouse-style DB
Materialization [8], and using the Mappings reversely for mediator-style Query
Unfolding and warehouse-style DB Folding. The unified architecture can thus
be employed for a mediator, warehouse, and bidirectional strategy of KBDA (cf.
Fig. 1), allowing for ‘pluggable’ domain refinements (cf. Fig. 2).

The architecture shows queries (as decorated Qs) and databases (as decorated
DBs) explicitly while indicating answers (via solid triangular or diamond-shaped
arrow heads) implicitly. Each query Q′′

i targeting the local source DBi abstracts
from the relational/graph/. . . database level, but becomes grounded to, e.g.,
SQL/SPARQL2/. . . at the DBi interface (indicated by a diamond head).
2 Unlike the relational SQL for local data, the graph-oriented SPARQL plays an am-

biguous role as a query language for local-schema data and global-schema knowledge.

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 115

Fig. 1. From (a) mediator, (b) warehouse, and (c) bidirectional to (d) unified archi-
tecture

116 H. Boley et al.

In (a), the mediator strategy, an incoming query Q undergoes Query
Rewriting to Q′ using (part or all of) the KB store. This Q′ then undergoes
Query Unfolding through the Folding/Unfolding transformation using the Map-
pings store, with results Q′′

1 , Q′′
2 , . . ., Q′′

n. The Q′′
i are finally grounded to

(SQL/SPARQL/. . .) queries for the original databases DBi, whose answers –
ultimately for Q – are returned.

In (b), the warehouse strategy, databases DB1, DB2, . . ., DBn undergo
database Folding through the Folding/Unfolding transformation, resulting in
an integrated database DB. This DB then undergoes Database Materialization
using (part or all of) the KB store, with result DB′. The original query Q is
then sent to this DB′, whose answers are returned.

In (c), the bidirectional strategy, databases DB1, DB2, . . ., DBn are trans-
formed (in two steps) to a database DB′ as in the warehouse strategy except
that only part of the KB store is used. Independently, an incoming query Q
undergoes Query Rewriting to Q′ using a disjoint part of the KB store. This Q′

is then sent to that DB′, whose answers – ultimately for Q – are returned.3
The unified strategy (d) encompasses (a)-(c). This meets the needs of our

ΔForest case study, where, e.g., R scripts materializing parts of the source data
correspond to the warehouse strategy while the continuing extensions to the
sources and the possible addition of new sources call for the mediator strategy,
as focused in Section 3.

All strategies use the KB and the mapping store to perform (compositions of)
transformations. The boundary between these stores, hence their transforma-
tions, is adjustable, both between the mediator-style transformations of Query
Rewriting followed by Query Unfolding and between the warehouse-style trans-
formations of DB Folding followed by DB Materialization. Intermediate forms
can range between two normal forms. In the KB-directed normal form the KB
store performs all deductions except atom-level local/global renamings, reserved
to the mapping store. In the mapping-directed normal form the mapping store
performs all deductions having local premises, leaving only purely global deduc-
tions to the KB store.

2.3 KB and Mappings in Datalog+ RuleML

The RuleML language is based on a set of monotonic schema modules, each mod-
ule providing the grammar of a syntactic feature that can be mixed-in to the
language [19]. A language defined by a set of modules is always a superlanguage
of a language defined by a subset of those modules, and the resulting structure
is called the RuleML language lattice. Over fifty schema modules are available,
allowing for hundreds of thousands of highly customized languages tailored to
specific applications, including Datalog customizations for RBDA. RuleML pro-
vides the MYNG GUI4 as a tool for assembling an RNC schema by selecting

3 The two directions of the bidirectional strategy thus enable parallel processing with
DB′ acting as the synchronization point.

4 http://deliberation.ruleml.org/1.01/myng

http://deliberation.ruleml.org/1.01/myng

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 117

syntactic features, as well as determining the closest lenient XSD schema for the
desired sublanguage.

XML processing instructions of type “xml-model” refer to a schema that the
document should validate against. This processing instruction can be used to pro-
vide an indication of the smallest RuleML sublanguage containing a RuleML doc-
ument. Engines may take advantage of this information to optimize algorithms
such as for rulebase transformation, query answering, and query rewriting.

Deliberation RuleML 1.015 introduces several new options for obtaining a
more fine-grained customization of sublanguages. A small set of extensions of
Datalog yields a major payoff: a standard XML serialization of Datalog+, a
superlanguage of the decidable Datalog± [10]. The highlight of Deliberation
RuleML 1.01 is the ability to combine one or more of the following Datalog
extensions which together define Datalog+:

– Existential Rules, where the “then” part of a rule has existentially quantified
variables,

– Equality Rules, where the “then” part of a rule is the “Equal” predicate, (this
was already allowed in RuleML 1.0)

– Integrity Rules, where the “then” part of a rule is falsity, as a convenient way
to express negative integrity constraints.

2.4 Relations and Graphs in PSOA RuleML

The two modeling paradigms of relational and graph languages can be used
simultaneously in the global and local schemas of KBDA architectures.

Relational languages are used, e.g., for modeling knowledge in classical logic
and data from relational databases. In these languages, a relationship among
n entities becomes an n-ary predicate applied to n positional arguments. Some
KBDA engines, e.g. Nyaya [7], use Datalog± for global relational querying. Graph
languages are used, e.g., in frame logic and Semantic Web applications. In these
languages, an object consists of a globally unique Object IDentifier (OID) typed
by a class and described by an unordered collection of n attribute-value slots,
where the value can identify an object. Other KBDA engines, e.g. Ontop [20],
use SPARQL for global graph querying.

Mapping rules between the global and local schemas of the form
paradigm1 :- paradigm2 in KBDA can be within the same modeling paradigm
or across the two paradigms, yielding four combinations of transformations:
relational :- relational, relational :- graph, graph :- relational, and graph :- graph.
Similarly, KB rules, which describe transformations within the global schema,
can also be of the four forms. Hence, a language like PSOA RuleML [21], capable
of knowledge and data modeling in both paradigms, can support the specification
of these transformations. PSOA RuleML introduces positional-slotted, object-
applicative (psoa) terms, which permit a relation application to have an OID
– typed by the relation – and, orthogonally, its arguments to be positional or

5 http://deliberation.ruleml.org/1.01

http://deliberation.ruleml.org/1.01

118 H. Boley et al.

slotted. Psoa terms can be used as classical atoms without OIDs for relational
modeling, and as frame atoms for graph modeling. Thus, all four kinds of trans-
formations can be described in PSOA RuleML. In particular, graph :- relational
transformations, which permit graph querying over relational databases, can be
described by rules with frames in the conclusion and relations in the premise.
Here, the positional argument that acts as the simple key in the relation becomes
the OID of a frame, and the other positional arguments become slot values whose
slot names correspond to relational column headings.

3 ΔForest Case Study

The WSL project [9] aims for an assessment of the susceptibility of forest ecosys-
tems to the expected changing environmental conditions going along with climate
change, such as temperature or precipitation. The susceptibility of a forest stand
to climate change depends particularly on the change of the mortality rate. The
death of single trees without a distinguishable reason and mortality of suppressed
trees due to competition for nutrients or water are natural processes within the
forest stand development, since only a limited number of trees can survive at
one location depending on site properties, climate conditions, and tree species.

The higher the growth rate of a forest the higher is also the mortality. Ac-
cordingly, the absolute mortality is not a useful indicator to express the stand
vitality. For dense forests a log-log linear relationship, called self-thinning line,
exists for the density as number of trees per ha and the quadratic-mean tree
diameter with slope and intercept (corresponding to maximum stand density)
depending on tree species [22–24]. The relative mortality in a given period is
defined as a shift in the self-thinning line. A change in relative mortality can
then be attributed to changing environmental conditions.

The following working hypotheses are tested: (i) The relative mortality is a
useful indicator for the susceptibility of forest stands to changing climatic condi-
tions. (ii) At temperature-limited sites, increasing temperatures will increase the
maximum stand density and relative mortality will decrease. (iii) At moisture-
limited sites, increasing temperatures and frequency of drought events will reduce
maximum stand density and relative mortality will increase.

Analysis is conducted for 285 pure and mixed forest stands in Switzerland, cov-
ering the five tree species groups of interest: beech (Fagus sylvatica), oak (Quer-
cus petraea and Quercus robur), spruce (Picea abies), pine (Pinus sylvestris),
fir (Abies alba), and several climatic regions. Data are derived from three main
monitoring networks in Switzerland: yield plots (EKF) [25], monitoring of na-
ture reserves (NWR) [26], and the Swiss Long-Term Forest Ecosystem Research
(LWF) network [27]. Data cover a time period from 1933 to 2010.

During the WSL project [9], a number of conditions have to be controlled
which otherwise might impair the validity of the results. To achieve this, the fol-
lowing questions need to be answered, formalizations of which will be developed
as queries in our ΔForest case study:

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 119

1. Are there sufficiently many eligible plots in order to perform an analysis per
tree species group of interest?

2. Which eligible plots represent pure tree stands and which eligible plots rep-
resent mixed tree stands?

Re 1. To make a significant statement about how two or more variables are
related, the sample size (i.e., the number of plots) must exceed a certain lower
bound.

Re 2. The calculation of the self-thinning line assumes pure tree stands. Plots
that represent mixed tree stands require a more complex analysis than those
representing pure tree stands.

In what follows, the schema and rules for answering Questions 1 and 2 will
be formalized, by ultimately mapping them to the forestry data sources.

3.1 Global Schema and KB Rules

Based on local schemas for the three data sources, the ΔForest global schema
describes two kinds of predicates (cf. Fig. 2):

– External predicates of high arity (for knowledge consolidation): no dot prefix
– Internal predicates of low arity (for knowledge modeling): dot prefix

In order to construct relational global queries asking for eligible plots that rep-
resent tree stands, where a given tree species group is abundant (Question 1)
or dominant (Question 2), we require the global schema to include the following
external predicates (two tables of DB’ in Fig. 2):

PlotsStatic(plot source x y altitude class)
SGAbundance(plot species-group percentage)

The external predicate PlotsStatic, which has a simple key, plot, can be
directly transformed to frames using graph :- relation rules discussed in Sec-
tion 2.4, hence allowing also graph querying over the global schema.

In order to model the knowledge domain of the study, we require the global
schema to also contain the following internal predicates:

.EligiblePlot(plot) .TreeStandAbundance(component percentage)

.IndependentPlot(plot) .TreeStandKey(component plot species-group)

.PreEligiblePlot(plot) .TreeStandMerged(plot species-group percentage)

.PossiblyDependentPlot(plot) .TreeStandClass(stand class)

.LightlyManagedPlot(plot) .PlotDistance(plot1 plot2 distance)

.ForestManagement(plot grade) .Location(plot x y)

.PureTreeStand(component) .Source(plot source)

.MixedTreeStand(component) .Altitude(plot altitude)

.SpeciesGroupOfInterest(species-group)

The internal predicates are transformed to the external predicates with the
following consolidation (external :- internal) rules:6

6 In the study a number of lower bounds ranging around 15 percent are explored. Thus
the global view may be considered to be parameterized by this quantity.

120 H. Boley et al.

Fig. 2. Schemas of ΔForest, ‘plugging’ into DB′, DB1=EKF, DB2=NWR, and
DB3=LWF of Fig. 1 (with n=3), where the KB partitioning in (c) and (d) becomes
a split, e.g., between external :- internal vs. internal :- internal rules (the keys of the
global schema – three being composite – are shown in bold red)

PlotsStatic(?plot ?src ?x ?y ?alt ?class) :- .EligiblePlot(?plot)
.Source(?plot ?src)
.Location(?plot ?x ?y)
.Altitude(?plot ?alt)
.TreeStandClass(?plot ?class).

SGAbundance(?plot ?sg ?pct) :- .EligiblePlot(?plot)
.TreeStandKey(?id ?plot ?sg)
.TreeStandAbundance(?id ?pct)
?pct>=lower.

lower = 15.

The external predicates have the following equality-rule key constraints.

?src1=?src2 ?x1=?x2 ?y1=?y2 ?alt1=?alt2 ?class1=?class2 :-
PlotsStatic(?plot ?src1 ?x1 ?y1 ?alt1 ?class1)
PlotsStatic(?plot ?src2 ?x2 ?y2 ?alt2 ?class2).

?pct1=?pct2 :- SGAbundance(?plot ?sg ?pct1)
SGAbundance(?plot ?sg ?pct2).

Any violation of these key constraints indicates a key constraint violation in the
source data.

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 121

The eligibility criteria take into account the following factors:

– The study assumes that the impact of forest management on tree mortality
is negligible at the investigated sites. Nature reserves by definition prohibit
all grades of forest management. Accordingly, none of the NWR plots need to
be excluded from the study because of forest management. In the EKF data,
forest management is graded as A, B, C, D, H, and P, where A has the lowest
impact, D, H, and P the highest. In order for the study assumption to hold,
forest management must not be of grade C, D, H, or P. Forest management is
not recorded for LWF plots. This information must be obtained interactively
by asking the respective forestry experts.

– Plots in the study must be statistically independent of each other. Plots that
are located within a distance of 500 meters from each other are possibly
dependent, because there is a high probability that stand characteristics are
the same.

– Plots are ineligible for the study if they do not contain a time-averaged
abundance greater than a threshold value of at least one of the following
species groups of interest: oak, beech, spruce, pine, or fir.

The eligibility criteria are captured in the following concept-inclusion
(internal :- internal) rules:

.EligiblePlot(?plot) :- .IndependentPlot(?plot)
.PreEligiblePlot(?plot).

.PreEligiblePlot(?plot) :- .LightlyManagedPlot(?plot)
.TreeStandKey(?id ?plot ?sg)
.PureTreeStand(?id).

.PreEligiblePlot(?plot) :- .LightlyManagedPlot(?plot)
.TreeStandKey(?id ?plot ?sg)
.MixedTreeStand(?id).

Additional rules among internal predicates assist in determining if the eligi-
bility criteria are satisfied7, and are related to each other in the following way
(negative-constraint rules employ Or() conclusions to represent falsity – “⊥” of
Datalog[⊥] – in a queryable manner):

.IndependentPlot(?plot) :- .Source(?plot "nwr").

.IndependentPlot(?plot) :- .Source(?plot "lwf").

.PossiblyDependentPlot(?plot1) :- .PlotDistance(?plot1 ?plot2 ?d)
.PreEligiblePlot(?plot2)
?d < 500.

.IndependentPlot(?plot) :- .Source(?plot "ekf")
Naf(.PossiblyDependentPlot(?plot)).

7 In our study, a stand whose dominant species group is not a group of interest may
be treated as a mixed stand, while in the general ecological domain it would be
considered a pure stand. We distinguish between these general and study-specific
concepts of the same name through an implicit namespace.

122 H. Boley et al.

.PlotDistance(?plot1 ?plot2 ?d) :- .Source(?plot1 "ekf")
.Source(?plot2 "ekf")
.Location(?plot1 ?x1 ?y1)
.Location(?plot2 ?x2 ?y2)
?d = func:sqrt(func:pow(?x1-?x2,2) +

func:pow(?y1-?y2,2))
?d > 0.

Or() :- .PlotDistance(?plot ?plot ?distance).
.LightlyManagedPlot(?plot) :- .ForestManagement(?plot "B").
.LightlyManagedPlot(?plot) :- .ForestManagement(?plot "A").
.LightlyManagedPlot(?plot) :- .ForestManagement(?plot "0").
.ForestManagement(?plot "0") :- .Source(?plot "nwr").
.PureTreeStand(?id) :- .TreeStandAbundance(?id ?pct)

.TreeStandKey(?id ?plot ?sg)

.SpeciesGroupOfInterest(?sg)
?pct >= pure.

.pure = 70.

.MixedTreeStand(?id) :- .TreeStandAbundance(?id ?pct)
.TreeStandKey(?id ?plot ?sg)
.SpeciesGroupOfInterest(?sg)
Naf(.PureTreeStand(?id))
?pct >= lower.

.TreeStandClass(?plot "pure") :- .PureTreeStand(?id)
.TreeStandKey(?id ?plot ?sg).

.TreeStandClass(?plot "mixed") :- .MixedTreeStand(?id)
.TreeStandKey(?id ?plot ?sg).

.SpeciesGroupOfInterest("oak"). .SpeciesGroupOfInterest("beech").

.SpeciesGroupOfInterest("fir"). .SpeciesGroupOfInterest("spruce").

.SpeciesGroupOfInterest("pine").

The following existential rule is employed to introduce a simple key, ?id, for
the predicate .TreeStandMerged, which has a composite key, 〈?plot, ?sg〉. The
existential variable ?id is used in predicates .PureTreeStand and
.MixedTreeStand to uniquely identify a single-species-group vegetative com-
ponent on a plot. It can act as an object identifier in graph representations. In
the existential rule conclusion, the predicate .TreeStandKey associates the orig-
inal composite key 〈?plot, ?sg〉 with the introduced key ?id, and the predicate
.TreeStandAbundance replaces the composite key of .TreeStandMerged with
the new key ?id.

Exists ?id (.TreeStandKey(?id ?plot ?sg) .TreeStandAbundance(?id ?pct)) :-
.TreeStandMerged(?plot ?sg ?pct).

3.2 Query Processing and Mappings

Question 1. In order to answer the first question, the trees tables of EKF, NWR,
and LWF (not shown) are preprocessed using the statistical package R.8 Pre-
processing results in three instances of the table dom(?plot ?sg ?pct), where
8 http://www.r-project.org/

http://www.r-project.org/

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 123

?pct is the percentage, based on the basal area, of a tree species group (argu-
ment ?sg) on a plot (argument ?plot).

The following rules map the local schemas of EKF, NWR, and LWF to the
internal global predicates, employing the KB-directed normal form except for
merging oak species into a single species group and adding their percentages:

.TreeStandMerged(?plot "beech" ?pct) :- EKF.dom(?plot "Fagus sylvatica" ?pct).

.TreeStandMerged(?plot "beech" ?pct) :- NWR.dom(?plot "Fagus sylvatica" ?pct).

.TreeStandMerged(?plot "beech" ?pct) :- LWF.dom(?plot "Fagus sylvatica" ?pct).

.TreeStandMerged(?plot "oak" ?pct) :- EKF.dom(?plot "Quercus petraea" ?pct1)
EKF.dom(?plot "Quercus robur" ?pct2)
?pct = ?pct1 + ?pct2.

.TreeStandMerged(?plot "oak" ?pct) :- NWR.dom(?plot "Quercus petraea" ?pct1)
NWR.dom(?plot "Quercus robur" ?pct2)
?pct = ?pct1 + ?pct2.

.TreeStandMerged(?plot "oak" ?pct) :- LWF.dom(?plot "Quercus petraea" ?pct1)
LWF.dom(?plot "Quercus robur" ?pct2)
?pct = ?pct1+?pct2.

The rules for spruce, pine and fir, not shown, are similar to those for beech.
Additional plot characteristics are mapped as follows (.Location :- NWR map-
ping not shown):

.Location(?plot ?X ?Y) :- EKF.vfl(?plot ?BBG ?area ?Z ?X ?Y ?ORT ?GDE ?KT).

.Location(?plot ?X ?Y) :- LWF.Plots(?PLAC ?plot ?X ?Y ?Z ?LAT ?LON ?area).

.ForestManagement(?plot ?grade) :-
EKF.trees(?plot ?BNR ?BA ?AJ ?grade ?AHC ?D1 ?D2 ?V7 ?SOZ ?HGEM ?HBER).

Question 1 for oaks is rephrased in terms of eligible plots representing tree
stands where oaks are abundant, i.e., above the lower bound for the kinds of
tree stand considered. This is formalized as a query using the external predicate
SGAbundance:

q(?plot) :- SGAbundance(?plot "oak" ?pct).

In order to expand the query, the SGAbundance-headed KB rule and the fact
regarding the value of lower are used to rewrite q as follows:

q(?plot) :- .EligiblePlot(?plot)
.TreeStandKey(?id ?plot "oak")
.TreeStandAbundance(?id ?pct)
?pct >= 15.

and then, using the existential rule, we obtain:

q(?plot) :- .EligiblePlot(?plot)
.TreeStandMerged(?plot "oak" ?pct)
?pct >= 15.

This conjunctive query may be split as follows:

q(?plot) :- q1(?plot) q2(?plot).
q1(?plot) :- .EligiblePlot(?plot).
q2(?plot) :- .TreeStandMerged(?plot "oak" ?pct)

?pct >= 15.

124 H. Boley et al.

The query q2 is unfolded using the mapping rules introduced above.

q2(?plot) :- EKF.dom(?plot "Quercus petraea" ?pct1)
EKF.dom(?plot "Quercus robur" ?pct2)
?pct1+?pct2 >= 15.

q2(?plot) :- NWR.dom(?plot "Quercus petraea" ?pct1)
NWR.dom(?plot "Quercus robur" ?pct2)
?pct1+?pct2 >= 15.

q2(?plot) :- LWF.dom(?plot "Quercus petraea" ?pct1)
LWF.dom(?plot "Quercus robur" ?pct2)
?pct1+?pct2 >= 15.

The full rewriting of q1 is not detailed here for space reasons. Partial database
materialization, e.g. for .PlotDistance, would improve the efficiency of the
query processing. On the other hand, full materialization of .EligiblePlot is
not reasonable because the extension of this class is dependent on the value of
the lower parameter, so a different materialization would be needed for each
parameter value. Hence, the unified RBDA strategy explained in Section 2.2,
which combines rewriting and materialization, fits the needs of the study.

Question 2. The second question is formalized with two queries using the exter-
nal predicate PlotsStatic:

qPure(?plot) :- PlotsStatic(?plot ?src ?x1 ?y1 ?alt1 "pure").
qMixed(?plot) :- PlotsStatic(?plot ?src ?x2 ?y2 ?alt2 "mixed").

Query rewriting and unfolding work in a way similar to Question 1 except that
abundance is compared to a bound of 70 (percent) using constant .pure. Eligible
plots with abundance of a species group of interest above this value represent
pure tree stands; the remaining eligible plots represent mixed tree stands.

4 Conclusions

In this paper, OBDA is complemented by Rule-Based Data Access (RBDA)
and generalized to Knowledge-Based Data Access (KBDA). RBDA is founded
on three kinds of rules: Query rules (including integrity rules), KB rules (for
query rewriting and DB materialization), as well as mapping rules (for query
unfolding and DB folding). A unified KBDA architecture is presented with me-
diator, warehouse, and bidirectional data-access strategies. Datalog+ RuleML
1.01 is used for customizing rule expressivity, XML-based rule serialization, and
platform-independent rule processing.

The ΔForest study applies RuleML techniques to real-world RBDA by for-
malizing two questions of a WSL project on ecosystems facing climate change.
This case study has already shown the usefulness of our approach to Ecosystem
Research, e.g. for the project’s global schema design, and demonstrated how au-
tomated reasoning can become key to knowledge modeling and consolidation for
complex statistical data analysis.

In the context of the open RBDA/ΔForest collaboration between RuleML
and WSL, various avenues for future work are being explored, described as part

Datalog+ RuleML Architecture for RBDA in Ecosystem Research 125

of the RBDA wiki page.9 Implementations of the specified architecture can reuse
the (open source) KBDA technology referenced in this paper and the wiki page.
In particular, relevant KBDA efficiency techniques [28] could be adapted to
ΔForest. Moreover, our RBDA architecture could be applied to other areas of
Ecosystem Research such as oceanography (ΔOcean). Finally, while our current
RBDA focus is on Data Querying (RBDQ), Reaction RuleML 1.010 can also
express updates as needed for Data Management (RBDM).

The RuleML blog11 can contribute to bringing together the communities in
Datalog±, RuleML 1.x, RBDA, and Ecosystem Research.

References

1. Calvanese, D., et al.: Optique: OBDA solution for big data. In: Cimiano, P., Fernán-
dez, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955,
pp. 293–295. Springer, Heidelberg (2013)

2. Baget, J.-F., Croitoru, M., da Silva, B.P.L.: ALASKA for ontology based data
access. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.)
ESWC 2013. LNCS, vol. 7955, pp. 157–161. Springer, Heidelberg (2013)

3. Kühn, E., Puntigam, F., Elmagarmid, A.K.: Multidatabase transaction and query
processing in logic. In: Elmagarmid, A.K. (ed.) Database Transaction Models for
Advanced Applications. Morgan Kaufmann Publishers (1991)

4. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: On the logical foundations of
schema integration and evolution in heterogeneous database systems. In: Ceri, S.,
Tsur, S., Tanaka, K. (eds.) DOOD 1993. LNCS, vol. 760, pp. 81–100. Springer,
Heidelberg (1993)

5. Bassiliades, N., Vlahavas, L., Elmagarmid, A.K., Houstis, E.N.: InterBase-KB: Inte-
grating a knowledge base system with a multidatabase system for data warehousing.
IEEE Transactions on Knowledge and Data Engineering 15(5), 1188–1205 (2003)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web Journal 2(1), 43–53 (2011)

7. De Virgilio, R., Orsi, G., Tanca, L., Torlone, R.: NYAYA: A system supporting the
uniform management of large sets of semantic data. In: IEEE 28th International
Conference on Data Engineering, pp. 1309–1312 (April 2012)

8. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Parallel materialisation of Datalog
programs in centralised, main-memory RDF systems. To appear in AAAI (2014)

9. Rigling, A., Zingg, A.: Relative Mortalität als Indikator für die Sensitivität von
Waldbeständen. WSL Projekt, Bew-Pin 201104N0134

10. Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for
tractable query answering over ontologies. Journal of Web Semantics 14, 57–83
(2012)

11. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

9 http://wiki.ruleml.org/index.php/Rule-Based_Data_Access
10 http://wiki.ruleml.org/index.php/Specification_of_Reaction_RuleML_1.0
11 http://blog.ruleml.org/

http://wiki.ruleml.org/index.php/Rule-Based_Data_Access
http://wiki.ruleml.org/index.php/Specification_of_Reaction_RuleML_1.0
http://blog.ruleml.org/

126 H. Boley et al.

12. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 Web Ontology Language Profiles, W3C Recommendation, 2nd edn. (October
2009), http://www.w3.org/TR/owl2-profiles/

13. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proceedings of the 12th Interna-
tional Conference on World Wide Web, WWW 2003, pp. 48–57 (2003)

14. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D.: RIF
Core Dialect, W3C Recommendation, 2nd edn. (February 2013),
http://www.w3.org/TR/rif-core/

15. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Trans. Database
Syst. 22(3), 364–418 (1997)

16. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) Proceedings of the 27th
International Conference on Data Engineering, ICDE 2011, pp. 2–13. IEEE Com-
puter Society, Hannover (2011)

17. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y.: Query processing under
GLAV mappings for relational and graph databases. Proc. of the VLDB Endow-
ment 6(2), 61–72 (2012)

18. Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing Datalog rewrit-
ings beyond Horn ontologies. In: Proc. of the 23rd Int. Joint Conf. on Artificial
Intelligence, IJCAI 2013 (2013)

19. Athan, T., Boley, H.: Design and implementation of highly modular schemas for
XML: Customization of RuleML. In: Palmirani, M., Sottara, D., Olken, F. (eds.)
RuleML - America 2011. LNCS, vol. 7018, pp. 17–32. Springer, Heidelberg (2011)

20. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS,
vol. 8218, pp. 558–573. Springer, Heidelberg (2013)

21. Boley, H.: A RIF-Style Semantics for RuleML-Integrated Positional-Slotted,
Object-Applicative Rules. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.)
RuleML 2011 - Europe. LNCS, vol. 6826, pp. 194–211. Springer, Heidelberg (2011)

22. Pretzsch, H., Biber, P.: A Re-evaluation of Reineke’s rule and stand density index.
For. Sci. 51, 304–320 (2005)

23. Reineke, L.: Perfecting a stand density index for even-aged forests. J. Agric. Res. 46,
627–638 (1933)

24. Schütz, J.P., Zingg, A.: Improving estimations of maximal stand density by com-
bining Reineke’s size-density rule and yield level, using the example of spruce (Picea
abies (L.) Karst.) and European Beech (Fagus sylvatica L.). Ann. For. Sci. 67 (2010)

25. Zingg, A., Bachofen, H.: Wachstumsforschung an der WSL. Schweizer Wald 134(9),
15–23 (1998)

26. Brang, P., Commarmot, B., Rohrer, L., Bugmann, H.: Monitoringkonzept für
Naturwaldreservate in der Schweiz. Eidg. Forschungsanstalt für Wald, Schnee und
Landschaft WSL; ETH Zürich, Professur für Waldökologie, Birmensdorf, Zürich
(February 2008), http://www.wsl.ch/publikationen/pdf/8555.pdf

27. Dobbertin, M., Kindermann, G., Neumann, M.: Analysis of forest growth data on
intensive monitoring plots. In: Fischer, R., Lortenz, M. (eds.) Forest Condition in
Europe: Technical Report of ICP Forests and FutMon, pp. 115–127. Institute for
World Forestry, Hamburg (2011)

28. Bak, J., Brzykcy, G.z., Jedrzejek, C.: Extended rules in knowledge-based data
access. In: Palmirani, M., Sottara, D., Olken, F. (eds.) RuleML - America 2011.
LNCS, vol. 7018, pp. 112–127. Springer, Heidelberg (2011)

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/rif-core/
http://www.wsl.ch/publikationen/pdf/8555.pdf

A Hybrid Diagnosis Approach Combining Black-Box
and White-Box Reasoning

Mingmin Chen1, Shizhuo Yu1, Nico Franz2, Shawn Bowers3, and Bertram Ludäscher1

1 Dept. of Computer Science, University of California, Davis, CA, USA
{michen,szyu,ludaesch}@ucdavis.edu

2 School of Life Sciences, Arizona State University, AZ, USA
nico.franz@asu.edu

3 Dept. of Computer Science, Gonzaga University, WA, USA
bowers@gonzaga.edu

Abstract. We study model-based diagnosis and propose a new approach of hy-
brid diagnosis combining black-box and white-box reasoning. We implemented
and compared different diagnosis approaches including the standard hitting set
algorithm and new approaches using answer set programming engines (DLV,
Potassco) in the application of EULER/X toolkit, a logic-based toolkit for align-
ment of multiple biological taxonomies. Our benchmarks show that the new hy-
brid diagnosis approach runs about twice fast as the black-box diagnosis approach
of the hitting set algorithm.

1 Motivation and Related Work

Model-based diagnosis was studied extensively in many areas, such as type error debug-
ging, circuit diagnosis, OWL debugging, etc. Various approaches [17,7,3,15,2,14] have
been proposed to diagnose or debug errors. Most of these diagnosis approaches com-
pute minimal inconsistent subsets (a.k.a. diagnoses) and/or maximal consistent subsets.
A common element of all these approaches is that they use a routine isInconsistent as
a “black-box” to determine if a set of constraints is unsatisfiable. The best black-box
approach we know of is [14] which is a hybrid of the Logarithmic Extraction Algo-
rithm [2] and the Hitting Set (HST) Algorithm in [15].

The downside of these black-box approaches is that they do not look into the proof
itself that the reasoner may provide in the isInconsistent routine, which may potentially
lose some reusable information to reduce the number of invocations of reasoners. On
the other hand, various provenance approaches have been studied to provide deriva-
tions and proof trees, such as [13] which proposes an approach by adding annotations
to predicates to generate a provenance semiring of a derivation, Datalog debugging [16]
which proposes a provenance-enriched rewriting for debugging and profiling declara-
tive rules. Inspired by these provenance approaches, we introduce our own white-box
provenance approach to generate diagnosis proof trees for model-based diagnosis prob-
lem. Both approaches in [13] and [16] are not good at generating derivations of rules
with negations, whereas our white-box provenance approach works for rules with nega-
tions too. White-box and black-box approaches output different products. The idea of
inferring one from the other or combining both approaches is proposed in [18,4,10].

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 127–141, 2014.
c© Springer International Publishing Switzerland 2014

128 M. Chen et al.

We also propose a new hybrid approach which combines the black-box and white-box
approaches to obtain diagnoses.

Our white-box provenance approach and hybrid approach can be applied to general
model-based diagnosis problems which can be encoded in Datalog rules with negations
and aggregates. One interesting application of the new approaches is the inconsistency
analysis feature of EULER/X toolkit [6], a toolkit for logic-based taxonomy integration.
In EULER/X we use answer set programming (ASP) systems (DLV and Potassco) as
underlying reasoners. We implemented the existing black-box approach, our white-box
approach, and hybrid approach in EULER/X toolkit and compared them in the bench-
marks.

EULER/X. The problem of aligning multiple related biological taxonomies was stud-
ied and modeled in monadic first-order logic in the CLEANTAX project [20,19]. A
taxonomy is a containment (or isa) hierarchy with additional taxonomic constraints.
The EULER/X toolkit [6], a toolkit for logic-based taxonomy integration, builds on this
effort while utilizing additional and more time-efficient logic approaches such as an-
swer set programming [5]. EULER/X further more provides diversified and interactive
workflow features leading to the identification and visualization of consistent merged
taxonomies. Under this approach an expert initiates the process of aligning two related
but different taxonomies (T1, T2) by providing a set of articulations A and a set of
taxonomic constraints TC.

Jointly these input conditions – T1, T2, A, and TC – can generate various and poten-
tially inter-dependent instances of inconsistency; and thus a failure to yield consistent
alignments and visualizations. When asserting the initial articulations experts will fre-
quently make mistakes for various reasons; including (1) human error in information
entry or transcription, (2) a failure to understand transitive interdependencies among
input articulations, (3) incorrect accounting for low-level (child) concepts in relation to
parent concepts, (4) unwarranted violations of one or more taxonomy constraints, and
(5) other forms of logically inconsistent input. Each kind of error will yield a logically
inconsistent alignment, where one input condition is somehow in contradiction with
one or more additional conditions. Repair of such errors is needed, however the native
ASP reasoner output is virtually unreadable by humans, offering little comprehension
why the inputs are inconsistent and what cause the inconsistency. In order to identify
and remedy these problems, it is critical to “isolate” local sources of inconsistency that
are particularly relevant to facilitating the desired repair action from the global incon-
sistency phenomenon. To this end the EULER/X toolkit provides a novel Inconsistency
Analysis feature which motivates the investigation of different diagnosis approaches.

Contributions. This paper proposes a new hybrid diagnosis approach combining black-
box and white-box reasoning. Our white-box provenance approach records the prove-
nance of rules with or without aggregates. We have implemented different black-box,
white-box, and mixed approaches for generating diagnoses, and diagnosis proof trees
in the application of EULER/X toolkit using ASP systems for constraint solving and
reasoning. We also show in the benchmarks that our hybrid approach runs much faster
comparing to the existing best black-box approach of hitting set algorithm for generat-
ing all diagnoses.

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 129

2 Background

A system is a pair (SD,C) where the system description SD is a set of fixed sentences
(assumed to be true), and C is a set of constraints (which the user wants to be true,
but which might be inconsistent with SD). C0 ⊆ C is called a Minimal Inconsistent
Subset (MIS) of (SD,C) if (i) SD ∪ C0 is inconsistent and SD ∪ C′ is consistent
for any proper subset C′ � C0. Conversely, C0 ⊆ C is called a Maximal Consistent
Subset (MCS) of C if SD ∪ C0 is consistent and there is no other consistent C1 with
C0 � C1 ⊆ C. We denote by MIS and MCS the set of all MIS and all MCS ,
respectively.1

Given a set C with n constraints, one can use “brute force” and find all diagnoses
by checking the consistency of all 2n subsets and prune the non-minimal ones. Often it
is unnecessary to check all combinations. For example, if we know a combination S is
inconsistent, then any superset of S is inconsistent as well, so we don’t need to check
those supersets. One the other hand, any subset of a consistent set is also consistent:

Fact 1. If a set of constraints is unsatisfiable in the system, any of its superset is unsat-
isfiable.

Fact 2. If a set of constraints is satisfiable in the system, all its subsets are satisfiable.

Actually, most of the existing black-box diagnosis approaches use these two facts. In
the next section, we will recap the best black-box approach [14] we know of which is a
hybrid of Logarithmic Extraction Algorithm [2] and combined with Hitting Set (HST)
Algorithm in [15].

3 Black-Box Approaches

We will first look at a black-box approach for generating all diagnoses – Horridge’s
approach [14] which uses Logarithmic Extraction Algorithm [2] as a subroutine in the
HST algorithm. Logarithmic Extraction Algorithm is to compute one single MIS which
is shown in Algorithm 1.

In Algorithm 1, depending on how we split F in line 3 of Function-1R, the time
complexity of this algorithm is different. In general, we split F by half and half. As
the name of this algorithm suggests, it calls isInconsistent log n times on average. In
the worst case (we always go to line 8 and 9 in Function-1R), it invokes isInconsistent
O(n) times. We have Lemma 1 which originates from [17] and is crucial for the idea of
computing all MIS .

Lemma 1. Denote by MIS(SD,C) all the MIS , and assume S = {s1, s2, . . . , st} is
a MIS , we have MIS(SD,C) =

⋃
1≤i≤tMIS(SD,C\{si}).

By this lemma, we get an algorithm to compute all MIS . However, it is ineffi-
cient if we don’t remember what has been computed and what has not since we are

1 MIS are also known as diagnosis [17], justification [14], minimal conflict sets [8], and minimal
unsatisfiable set [3]; MCS are a.k.a. maximal satisfiable set [3].

130 M. Chen et al.

Algorithm 1. Logarithmic Extraction
Input: System description SD, a set of constraints C
Output: One single diagnosis (MIS)

Function-1 ComputeSingleMIS(SD, C)
1: return ComputeSingleMIS(SD, ∅, C)

Function-1R ComputeSingleMIS(SD, S, F)
1: if |F | = 1 then
2: return F
3: SL, SR ← split(F)
4: if isInconsistent(S ∪ SL) then
5: return ComputeSingleMIS(SD, S, SL)
6: if isInconsistent(S ∪ SR) then
7: return ComputeSingleMIS(SD, S, SR)
8: S′

L ← ComputeSingleMIS(SD, S ∪ SR, SL)
9: S′

R ← ComputeSingleMIS(SD, S ∪ S′
L, SR)

10: return S′
L ∪ S′

R

likely to recompute something. For instance, to get MIS(SD,C\{c1}), we may
compute MIS(SD,C\{c1, c2}) which may be already computed when getting
MIS(SD,C\{c2}). We definitely need some caching optimization to avoid such a
case. {c1, c2} is called path when we compute MIS(SD,C\{c1, c2}). HST algo-
rithm [15] which we show in Algorithm 2 records all the paths it has already visited
(i.e. argument allpaths in ComputeAllMISHST), and will not visit them again.

In the worst case, ComputeAllMIS calls ComputeSingleMIS for Θ(2n) times.
Horridge et al. [14] proposed a mixed algorithm of HST algorithm [17] and Logrithmic
extractraction algorithm [2] to generate MIS , i.e., Algorithm 1 is a subroutine used in
the Algorithm 2 to compute one single MIS . This gives us the worst case time complex-
ity of O(2n) ∗O(n) ∗R(n) = O(n ∗ 2n) ∗R(n) where R(n) is the time complexity of
isInconsistent. We implement isInconsistent using Answer Set Programming, so R(n)
is as hard as ΣP

2 by [9]. Eiter and Gottlob [8] have pointed out the time complexity of
computing all diagnoses (i.e. MIS) is TRANS-ENUM-complete, which means there is
no efficient (polynomial time) algorithm to get MIS unless TRANS-ENUM had (but is
believed not) a polynomial time algorithm.

4 White-Box Provenance Approach

As mentioned in the last section, the best black-box approach calls isInconsistent
a (large) number of times to generate MIS , which seems not quite efficient.
isInconsistent routine is usually implemented using the underlying reasoner. Can we
get from the reasoner not only the yes/no answer? Can we call the reasoner once to
obtain all desired diagnoses?

We consider the diagnosis problem whose isInconsistent is implemented using an-
swer set programming system, and either a system description sentence or a constraint
is encoded as Datalog rules (with/without negation/aggregate). Inspired by the ideas of

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 131

Algorithm 2. ComputeAllMIS (HST Algorithm)
Input: System description SD, a set of constraints C
Output: All diagnoses (MIS)

Function ComputeAllMIS(SD,C)
1: S, curpath, allpaths ← ∅
2: S ← ComputeAllMISHST(SD, C, S, curpath, allpaths)
3: return S

Function ComputeAllMISHST(SD,C,S,curpath,allpaths)
1: for path ∈ allpaths do
2: if curpath ⊇ path then
3: // Path termination without consistency check
4: return S
5: if not isInconsistent(SD, C) then
6: allpaths ← allpaths ∪ {curpath}
7: return S
8: J ← ∅
9: for s ∈ S do
10: if s ∩ curpath = ∅ then
11: // MIS reuse (saves recomputing a MIS)
12: J ← s
13: if J = ∅ then
14: J ← ComputeSingleMIS(SD, S)
15: S ← S ∪ {J}
16: for ax ∈ J do
17: curpath ← curpath ∪ {ax}
18: return ComputeAllMISHST(SD,C\{ax}, S, curpath, allpaths)

provenance semiring [13] and Datalog debugging [16], we propose a white-box prove-
nance approach which rewrites all the Datalog rules, records the derivation of inconsis-
tency which is a boolean expression, and generates an inconsistency proof tree using
the boolean expression. The basic idea of recording the derivation of inconsistency is to
first rewrite all the rules by adding annotations. For a rule without head (or false is the
head), NOK is added as the head which stands for “Not OK”, i.e., inconsistency. We
show the detailed Datalog rule rewritings as follows.

4.1 Non-aggregate Rule Rewriting

A rule r is safe if every variable in r must also occur positively in the body.

1. For any constraint rule with head predicate:

r1 : H1(Ȳ) :−B1(X̄1), B2(X̄2), . . . , Bn(X̄n).

132 M. Chen et al.

We rewrite it by adding annotations for each predicate (including head and body
predicates) where Pi is the provenance of Bi(X̄i) for 1 ≤ i ≤ n, and we use ⊗ to
represent logical and2:

H1(Ȳ , r1 ⊗ (P1 ⊗ . . .⊗ Pn)) :− B1(X̄1, P1), B2(X̄2, P2), . . . , Bn(X̄n, Pn).

2. For any constraint rule without head predicate (i.e., false is the head):

r2 : false :−B1(X̄1), B2(X̄2), . . . , Bn(X̄n).

We rewrite it to a constraint with head predicate NOK where Pi is the provenance
of Bi(X̄i) for 1 ≤ i ≤ n and NOK stands for “Not OK”, i.e. inconsistency:

NOK(r2 ⊗ (P1 ⊗ . . .⊗ Pn)) :− B1(X̄1, P1), B2(X̄2, P2), . . . , Bn(X̄n, Pn).

We use a trick to get rid of non-safe rules: For any predicate V that has negation in
some rules, we add a complement predicate Ṽ for V , and add choice rules of “V (X̄) :−
not Ṽ (X̄), domain(X̄)” and “Ṽ (X̄) :− not V (X̄), domain(X̄)”.

4.2 Aggregate Rule Rewriting

Datalog rules in answer set programming could also have aggregates. For example, in
DLV, we may have aggregates such as #count. We show the rewriting for constraints
with #count.

For a constraint:

r3 : false :−#count{X : V (X), B1(X, Ȳ2), . . . , Bn(X, Ȳn)} = 0.

First we have the complement rule Ṽ for V , and add choice rules of “V (X) :−
not Ṽ (X), domain(X)” and “Ṽ (X) :− not V (X), domain(X)”. Then we rewrite the
constraint to a soft constraint where Pi is the provenance of Bi(X,Yi) for 1 ≤ i ≤
n and add two predicates POK and OK which stand for Possibly OK and OK (i.e.
consistency), respectively:

POK(r3, PṼ ⊗ P1 ⊗ . . .⊗ Pn) :− Ṽ (X,PṼ),

B1(X, Ȳ1, P1), B2(X, Ȳ2, P2), . . . , Bn(X, Ȳn, Pn).

OK(r3) :− V (X),

B1(X, Ȳ1), B2(X, Ȳ2), . . . , Bn(X, Ȳn).

NOK(r3 ⊗ P) :− POK(r3, P), not OK(r3).

We only show the rewriting for rules with aggregates of such a format because in
this is the only format with aggregate we encounter in our real world application of
EULER/X toolkit. Rules of other format can also be rewritten similarly.

2 It is the same as times operator as in provenance semiring [13].

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 133

r1

NOK(r1 (r2 r3))

r2

r2 r3

r3 r1

r1 r4 r2

NOK(r2 (r1 r4))

r4

Fig. 1. Example diagnosis proof trees

4.3 Generation of Diagnosis Proof Tree

With the rewritten rules enriched with annotations, one can query answer set program-
ming system all the possible answers for NOK and obtain a boolean expression for each
possible answer. For instance, suppose the possible answers for NOK is

{NOK(r1 ⊗ (r2 ⊗ r3)),NOK(r2 ⊗ (r1 ⊗ r4))}

The boolean expressions for NOK are r1 ⊗ (r2 ⊗ r3) and r2 ⊗ (r1 ⊗ r4)). For each
boolean expression, we construct its boolean expression tree [1] which is a diagnosis
proof tree for the inconsistency. We have the two diagnosis proof trees shown in Fig. 1.

A diagnosis proof tree shows how different constraints together lead to the inconsis-
tency. The rule-rewritting based white-box approach is shown in Algorithm 3. We will
show an example of diagnosis proof tree in the Application section (Section 6).

Algorithm 3. White-Box Approach
Input: System description SD, a set of constraints C
Output: All diagnosis proof trees

ComputeAllProofTrees(SD, C):
1: Encode SD and C in Datalog rules
2: Rewrite Datalog rules to ones with provenance
3: Run ASP reasoner to get boolean expressions for NOK
4: Construct diagnosis proof trees using the boolean expressions

5 Mixed Black-Box / White-Box Approach

It is hard to compare black-box approaches and white-box provenance approach in the
sense that they generate different outputs for model-based diagnosis problem. Black-
box approaches generate MIS whereas white-box approach generates proof trees.
Note that the leaf nodes of a proof tree together forms a set of constraints which is
either a MIS or a superset of a MIS . Starting from these constraints, a MIS may be
obtained by running HST algorithm.

134 M. Chen et al.

We propose the hybrid approach, in which white-box approach serves as a filter
to shrink the universe (constraint candidates for MIS) when generating MIS. This
hybrid approach is shown in Algorithm 4.

Algorithm 4. Hybrid Approach
Input: System description SD, a set of constraints C
Output: All diagnoses (MIS)

ComputeAllMISHybrid(SD, C):
1: Ts ← ComputeAllProofTrees(SD, C)
2: C’ ← set of leaf nodes of the proof trees Ts
3: return ComputeAllMIS(SD,C’)

If the size of the input constraint set C is large, white-box approach could poten-
tially shrink the constraint set to a much smaller one C′ for HST Algorithm and thus
reduce the running time of the HST algorithm. In the following sections, we will show
the application of different diagnosis algorithms in EULER/Xtoolkit and compare the
performance between black-box approach and hybrid approach for generatingMIS in
the benchmarks.

Relation Between All These Approaches. We show the relation between different
approaches in Fig. 2. A system (SD,C) is the initial input for different diagnosis
approaches. We will also show how to compute MIS / MCS from each other in
Section 6.2.

6 Real World Application – EULER/X

EULER/X [6] is a logic-based toolkit for aligning multiple biological taxonomies. A
taxonomy is an isa hierarchy made up of taxonomic concepts. An articulation de-
fines a relation between taxonomic concepts using union (∪) and Region Connection
Calculus (RCC-5) relations. RCC-5 includes five basic relationships that compare the
extensions of taxonomic concepts: viz. (1) congruence (==), E1 == E2 meaning that
two taxonomic concepts E1 and E2 are equivalent; (2) proper inclusion (>), E1 > E2

meaning that E1 properly includes E2; (3) inverse proper inclusion (<), E1 < E2 mean-
ing that E1 is properly included in E2; (4) overlap (><), E1 >< E2 meaning that E1 is
overlapping with E2; (5) exclusion (!), E1 ! E2 meaning that E1 and E2 have an empty
intersection. Ambiguity can be asserted using the disjunction ‘or’. isa in the taxonomy
can be treated as < or ==. The toolkit ingests the taxonomies (T1, T2), a set of ar-
ticulations [12,11] (A), and takes into account three additional constraints (TC): (1)
nonemptiness - a given concept has minimally one representing instance; (2) sibling
disjointness - two given child concepts of a parent concept are exclusive of each other;
and (3) coverage - a given parent concept is completely circumscribed by the union of
its children concepts. The toolkit then generates merged taxonomies.

A taxonomy alignment can be treated as a system (SD,C) where two input tax-
onomies and taxonomic constraints together are the system description, i.e., SD =

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 135

SD+C

Logarithmic Extraction
(Algorithm 1)

HST (Algorithm 2)

White-box Approach
(Algorithm 3)

Hybrid Approach
(Algorithm 4)

1-MIS

All MIS

All MCS

 Proposition 4

Proof Tree

Fig. 2. Relations between different approaches (boxes: existing approaches; rounded boxes: new
approaches; bold edges: how our hybrid approach works from end to end)

T1 ∪ T2 ∪ TC, and input articulations are the constraints C. As mentioned in Sec-
tion 1, a taxonomy alignment may yield inconsistent results because articulations may
be wrongly asserted by domain experts due to various reasons. To analyze the incon-
sistency of a taxonomy alignment, EULER/X toolkit applies different diagnosis ap-
proaches including black-box approach, white-box approach, and hybrid approach.

6.1 Example

Example 1. Suppose we have two minimal taxonomies as shown on the left in Fig. 3.
Taxonomy 1 has three concepts 1.A, 1.B, and 1.C. The concept hierarchy is modeled
by the two “is-a” constraints: c0: “1.B isa 1.A”, and c1: “1.C isa 1.A”. We also have
a coverage constraint c2: “1.A = 1.B+ 1.C”; and a sibling disjointness constraint c3:
“1.B disjoint 1.C”. Taxonomy 2 has a single concept 2.D. There are three articulations
between the taxonomies: c4: “1.A > 2.D”, c5: “1.B ! 2.D”, and c6: “1.C ! 2.D”. By run-
ning EULER/X, we find that this alignment is inconsistent.

With HST algorithm, we find that there is only one diagnosis (MIS) which is
“c4 : 1.A> 2.D, c5 : 1.B ! 2.D, c6 : 1.C ! 2.D”. White-box provenance approach gener-
ates one proof tree, which is shown as Fig. 3. Domain expert may interpret the proof tree
though not that obvious that c2 ⊗ c5 ⊗ c6 means “1.A ! 2.D”, and NOK(c4) means that
c2, c5, c6 and c4 together introduce the inconsistency, i.e., “1.A ! 2.D” and “1.A> 2.D”
cannot both hold. The set of leaf nodes of the proof tree is {c2, c4, c5, c6}. Since c2 is a

136 M. Chen et al.

1.A

2.D

>

1.B

isa

!
1.C

isa

!

Fig. 3. Input alignment (left) and proof tree (right) for Example 1. From constraints c2, c5, and
c6 it follows that “1.A ! 2.D”, which is inconsistent with the articulation c4: “1.A> 2.D”

taxonomic constraint which is part of system description, we get a set of {c4, c5, c6} as
constraint candidates for MIS .

6.2 Diagnostic Lattice

With all diagnoses MIS (and MCS), it may be helpful to visualize all diagnoses.
EULER/X toolkit visualizes diagnoses as in a lattice. Consider the 2n combinations
of n articulations, we can build a lattice where an edge means there is a direct subset
relation between the two sets, i.e., there is an edge (A,B) iff A � B and |B −A| = 1.
We call it Diagnostic Lattice. For example, the lattices with articulation set size of 2, 3,
4 are shown in Fig. 4.

In the diagnostic lattice, we color a node red if the set of articulations it represents
is inconsistent; otherwise, color it green. Recall Fact 1 and 2, which we could call
Inconsistency Propagation (red edges) and Consistency Propagation (green edges), re-
spectively: Any ancestor (superset) of an inconsistent (red) node is also inconsistent;
similarly, any descendent (subset) of a consistent (green) node is also consistent. MIS
is essentially a red node whose parents are green; MCS is a green node whose children
are red. We color MIS , MCS solid red, solid green, respectively. We color an edge
as dashed red if it applies Red Propagation Rule; color it as dashed green if it applies
Green Propagation Rule; color it solid blue if it applies neither of the two rules. For
example, we have four articulations {a, b, c, d}, among which {a, b}, {a, c}, and {d}
are MIS , we have the colored lattice in Fig. 5.

Actually we can represent both MIS and MCS with boolean functions. Using the
solid red nodes, we get NOK({a, b, c, d}) = (a ∧ b) ∨ (a ∧ c) ∨ d. Using the solid
green nodes, we get OK({a, b, c, d}) = a∨ (b∧ c). We found that NOK({a, b, c, d}) =
¬OK({a, b, c, d}).

Example 2. Fig. 6 shows a more complex example with 12 articulations, so the number
of combinations of articulations (the number of the nodes in lattice) is 212, which is
4096. By using our lattice approach, we get 5 MIS and 7 MCS among all 4096 com-
binations, together with the clusters of other inconsistent or consistent nodes, shown in
Fig. 7.

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 137

Fig. 4. Lattices with articulation set size of 2, 3, and 4

{a,b,c,d}

{a,b,c} {a,b,d}

{a,b}

{a,c,d}

{a,c} {a,d}

{b,c,d}

{b,d} {c,d}

{d}{a}

{b,c}

{b} {c}

{}

Fig. 5. Diagnostic lattice. (solid red octagon: MIS , solid green rounded box: MCS)

138 M. Chen et al.

Fig. 6. Input for Example 2 (Green: Taxonomy1, Yellow: Taxonomy2, a1-a12: Articulations)

All Other
Consistent

Articulations

9,12

2

4.12

2

10,12

2

1,2,4,
7,8,9

6

1,2,7,
8,9,10

6

1,2,3,
5,6,7,

8,11,12

9

1,2,3,
5,6,7,
8,9,11

9

2,3,4,
5,6,7,
8,9,10,

11

10

1,3,4,
5,6,7,
8,9,10,

11

10

1,2,3,
4,5,6,
8,9,10,

11

10

1,2,3,
4,5,6,
7,9,10,

11

10

1,2,3,
4,5,6,
7,8,10,

11

10

All Other
Inconsistent
Articulations

101010

66

3 3

2 2 22 2

Fig. 7. MIS (Octagon) and MCS (Rounded Box) for Example 2. All other non-minimal incon-
sistent subsets and non-maximal consistent subsets are collapsed as “clouds”, the labels of edges
show the path length from MIS /MCS to the top/bottom of the lattice.

7 Implementation and Benchmarks

We implemented black-box, white-box, and hybrid approach combining black-box /
white-box approaches in EULER/X toolkit3. We use different answer set programming
engine in our implementation, such as DLV, Potassco. We do benchmarks using both

3 It is an open-source toolkit which can be downloaded in
http://bitbucket.org/eulerx/euler-project

http://bitbucket.org/eulerx/euler-project

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 139

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30 35 40 45 50

R
un

ni
ng

 ti
m

e
(s

)

of input articulations

Running Time using DLV

White Box Approach
Hybrid Approach

Black Box Approach

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50

R
un

ni
ng

 ti
m

e
(s

)

of input articulations

Running Time using Potassco

White Box Approach
Hybrid Approach

Black Box Approach

Fig. 8. Average running time using DLV (top) and Potassco (down) as underlying reasoners

real-world and artificial examples on all three approaches, of which white-box approach
generates proof trees, the other two generate all diagnoses (MIS). The two approaches
we benchmarked to generate MIS are the Horridge’s black-box approach [14] (HST
Algorithm with Logarithmic Extraction Algorithm as its subroutine) and the hybrid
approach.

We measure in our benchmarks average running time of different approaches using
increasingly larger input datasets generated by an artificial inconsistent dataset gener-
ator. An artificial dataset includes two isomorphic taxonomies T1 and T2 each with n
taxonomic concepts and a set of n articulations. Assuming ϕ is the isomorphism map-
ping4 from T1 to T2, such that for two taxonomic concepts T1.A and T1.B such that
T1.A isa T1.B, we have ϕ(T1.A) isa ϕ(T1.B). We say that T1.C and ϕ(T1.C) is a
pair, and these n articulations are between the n pairs. We keep the ratio of problematic
articulations to be 10% in the artificial examples. All tests run on an 8-core, 32GB-
memory Linux server. The average running time is shown as in Fig. 8.

4 There could be many of such isomorphism mappings, but we only consider one of them.

140 M. Chen et al.

Fig. 8 shows that using DLV and Potassco as underlying reasoners:

1. White-box approach runs much faster than either hybrid approach or black-box
approach;

2. Hybrid approach runs around twice fast compared to black-box approach;

The reason is simple, white-box approach invokes the reasoner only once whereas
the other two invokes reasoner multiple times. Also, hybrid approach runs faster than
black-box approach because white-box approach significantly shrinks the candidate
constraints for inconsistency, which results in the number invocations to reasoner de-
creases. However, notice that white-box approach generates proof trees and does not
generate all diagnoses. The new hybrid approach improves the diagnosis generation
significantly compared to the existing black-box approach.

8 Conclusion and Future Work

We discuss different approaches for general model-based diagnosis, including existing
black-box approach [14], and new approaches proposed in this paper, white-box prove-
nance approach, and hybrid approach combining black-box and white-box provenance.
white-box provenance is a new approach which rewrite answer set programming rules
(including safe, non-safe and with aggregates) to generate diagnosis proof trees. Hybrid
approach combines both black-box and white-box provenance and generates all diag-
noses. We implemented all these approaches in the application of EULER/X toolkit for
taxonomy alignment. Benchmarks show that our hybrid approach runs twice as fast as
the existing black-box approach of HST algorithm. Future work includes understanding
the relation between the white-box diagnosis proof trees and MIS and optimizing the
generation of MIS .

Acknowledgements. We would like to thank the anonymous reviewers for their helpful
comments on this paper. This work was supported in part by NSF awards IIS-1118088
and DBI-1147273.

References

1. Andersen, H.R., Hulgaard, H.: Boolean expression diagrams. In: Proceedings of the 12th An-
nual IEEE Symposium on Logic in Computer Science, LICS 1997, pp. 88–98. IEEE (1997)

2. Baader, F., Suntisrivaraporn, B.: Debugging snomed ct using axiom pinpointing in the de-
scription logic EL+. In: Proceedings of the International Conference on Representing and
Sharing Knowledge Using SNOMED (KR-MED 2008). Citeseer, Phoenix (2008)

3. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using
hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS,
vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

4. Beckert, B., Gladisch, C.: White-box testing by combining deduction-based specification ex-
traction and black-box testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454,
pp. 207–216. Springer, Heidelberg (2007)

A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning 141

5. Bonatti, P., Calimeri, F., Leone, N., Ricca, F.: Answer set programming. In: Dovier, A., Pon-
telli, E. (eds.) 25 Years of Logic Programming. LNCS, vol. 6125, pp. 159–182. Springer,
Heidelberg (2010)

6. Chen, M., Yu, S., Franz, N., Bowers, S., Ludäscher, B.: Euler/x: A toolkit for logic-based
taxonomy integration. In: 22nd Intl. Workshop on Functional and (Constraint) Logic Pro-
gramming (WFLP), Kiel, Germany (2013)

7. de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable subsets. In:
Proceedings of the 5th ACM SIGPLAN International Conference on Principles and Practice
of Declaritive Programming, pp. 32–43. ACM (2003)

8. Eiter, T., Gottlob, G.: Hypergraph transversal computation and related problems in logic
and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Tessaris, S.,
Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.)
Reasoning Web. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009)

10. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y., Meyer, B.
(eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg (2007)

11. Franz, N., Chen, M., Yu, S., Bowers, S., Ludäscher, B.: Names are not good enough: reason-
ing over taxonomic change in the andropogon complex. submitted for publication (2014)

12. Franz, N., Peet, R.: Perspectives: Towards a language for mapping relationships among tax-
onomic concepts. Systematics and Biodiversity 7(1), 5–20 (2009)

13. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the
Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, pp. 31–40. ACM (2007)

14. Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in owl ontologies. In: Godo,
L., Pugliese, A. (eds.) SUM 2009. LNCS (LNAI), vol. 5785, pp. 124–137. Springer, Heidel-
berg (2009)

15. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of owl dl en-
tailments. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

16. Köhler, S., Ludäscher, B., Smaragdakis, Y.: Declarative datalog debugging for mere mortals.
In: Barceló, P., Pichler, R. (eds.) Datalog 2.0 2012. LNCS, vol. 7494, pp. 111–122. Springer,
Heidelberg (2012)

17. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95
(1987)

18. Tan, J., Narasimhan, P.: Rams and blacksheep: Inferring white-box application behavior us-
ing black-box techniques. Technical report, Technical Report CMU-PDL-08-103. Carnegie
Mellon University Parallel Data Laboratory (2008)

19. Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under rcc-5 algebraic articulations.
In: 2nd International Workshop on Ontologies and Information Systems for the Semantic
Web, pp. 47–54. ACM (2008)

20. Thau, D., Ludäscher, B.: Reasoning about taxonomies in first-order logic. Ecological Infor-
matics 2(3), 195–209 (2007)

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 142–156, 2014.
© Springer International Publishing Switzerland 2014

Multi-valued Argumentation Frameworks

Pierpaolo Dondio

School of Computing, Dublin Institute of Technology,
Kevin Street 2, Dublin 8, Ireland
Pierpaolo.dondio@dit.ie

Abstract. In this paper we explore how the seminal Dung’s abstract argumenta-
tion framework can be extended to handle arguments containing gradual con-
cepts. We allow arguments to have a degree of truth associated with them and
we investigate the degree of truth to which each argument can be considered
accepted, rejected and undecided by an abstract argumentation semantics. We
propose a truth-compositional recursive computation, and we discuss examples
using the major multi-valued logics such as Godel’s, Zadeh’s and Łukasiewicz's
logic. The findings are a contribution in the field of non-monotonic approxi-
mate reasoning and they also represent a well-grounded proposal towards the
introduction of gradualism in argumentation systems.

Keywords: Abstract Argumentation, multi-valued Logic, Possibility Theory.

1 Introduction

The aim of this paper is to extend the well-studied abstract argumentation framework
by Dung [2] to handle arguments containing graded and vague concepts. An abstract
argumentation framework is a direct graph where nodes represent arguments and
arrows represent the attack relation. These frameworks were introduced to analyse
defeasible arguments and study conflict resolution strategies among them. To this
end, various semantics have been proposed to identify the set of acceptable argu-
ments. In this work we deal with grounded semantics and we follow the labelling
approach proposed in [6], where a semantics assigns to each argument a label in, out
or undec, meaning that the argument is considered consistently acceptable, non-
acceptable or undecided.

In Dung’s original work, arguments are either fully asserted or not asserted at all,
and as a consequence abstract argumentation results are often too strict and coarse to
support a decision making process.

In quest for an argumentation system able to handle numbers, few approaches have
been proposed to handle various degree of strengths (such as [7]), or gradualism [1].

Recent approaches [4,5] have tried to marry abstract argumentation and probability
calculus. Following a similar conceptual framework, here we investigate how to mar-
ry abstract argumentation and multi-valued logic to handle vague arguments. In our
framework each argument has a degree of truth associated with it, quantifying to
which degree it holds. Our last statement - arguments hold to a degree of truth - is at

 Multi-valued Argumentation Frameworks 143

least problematic. However, there are cases where the structure of arguments is de-
fined in a way that makes it reasonable. In general, an argument can be defined as a
construct used in discussions with a support and a claim that is derived from the sup-
port. An argument could be an inference rule from a premise (support) to a conclusion
(claim). Premises and conclusions could be multi-valued propositions containing
graded concepts or fuzzy terms that satisfy a certain state of affairs to a degree. For
instance, the rule “if the tomato is rotten, do not eat it” can be used as an argument to
avoid eating a specific tomato, it has a premise containing the fuzzy term rotten and
therefore different tomatoes can satisfy the premise of the rule to a different degree.

Arguments containing vague or graded concepts are involved in conflicts, even if
the nature of the conflict is not as well defined as in the case of Boolean propositions.
As an example of conflict, let us presume that during a legal trial witness ܣ said that
“the murderer was thin” and witness ܤ said that “the murderer was tall”. Suspect ଵܵ
is skinny and suspect ܵଶ is about 1.9 metres tall.

Two arguments can be put forward based on the available evidence. One, based on
witness ܣ’s testimony, is against ଵܵ and the other, based on ܤ’s testimony, is against ܵଶ. Each of them is satisfied to a degree. Since both are satisfied, there is an undecid-
ed situation to some degree ݔ. However, if ܵଶ is taller than ଵܵ is thinner, it could be
argued – to a different degree ݕ – that there is an undefeated argument against ܵଶ
only. However, since ܵଶ is not completely tall, we might argue – to another degree ݖ
probably less than ݕ and potentially null – that there is a consistent argument against ଵܵ only. How the degrees ݔ, ,ݕ .can be quantified is the aim of this work ݖ

The paper is organized as follows. The next section provides the background defi-
nitions for abstract argumentation and multi-valued logic. Sections 3 and 4 describe
our computational framework with the required examples, followed by a description
of related works in section 6. A conclusion summarises the paper and highlight future
works.

2 Abstract Argumentation

2.1 Background Definitions

Definition 1. An argumentation framework ܨܣ is a pair (ݎܣ, ܴ) , where ݎܣ is a non-
empty finite set whose elements are called arguments and ܴ ⊆ × ݎܣ a binary ݎܣ
relation, called the attack relation. If (ܽ, ܾ) ∈ ܴ we say that ܽ attacks ܾ in . Two
arguments a, ܾ are rebuttals iff (ܽ, ܾ) ∈ ܴ ∧ (ܾ, ܽ) ∈ ܴ.

Definition 2. (conflict-free). ݏ݃ݎܣ is conflict-free iff ∄ܽ, ܾ ∈ ,ܽ) | ݏ݃ݎܣ ܾ) ∈ ܴ.

Definition 3. (admissible set). ݏ݃ݎܣ defends an argument ܽ ⊆ ,ܾ) ݐℎܽݐ ℎܿݑݏ ݎܣ ߳ ܾ∀ iff ݎܣ ܽ) ∈ ,ܿ) ݐℎܽݐ ℎܿݑݏ ݏ݃ݎܣ ߳ ܿ ∃ , ܴ ܾ) ∈ ܴ.

The set of arguments defended by ݏ݃ݎܣ is denoted (ݏ݃ݎܣ)ܨ. A set ݏ݃ݎܣ is admis-
sible if ݏ݃ݎܣ ⊆ ݏ݃ݎܣ and it is complete if (ݏ݃ݎܣ)ܨ = (ݏ݃ݎܣ)ܨ

144 P. Dondio

An abstract argumentation semantics identifies a set of arguments that can survive
the conflicts encoded by the attack relation ܴ. We follow the labelling approach of
[6], where a semantics assigns to each argument a label in, out or undec.

Definition 4. (labelling). Let ܨܣ = , ݎܣ) ܴ). A labelling is a total function ܮ ∶ ,݊݅} → ݎܣ ,ݐݑ݋ (ܽ)ܮ|ݎܣ ߳ܽ} We write in(L) for .{ܿ݁݀݊ݑ = ݅݊}, out(L) for {ܽ߳ ܮ|ݎܣ(ܽ) (ܽ)ܮ|ݎܣ ߳ܽ} and undec(L) for ,{ݐݑ݋= = .{ܿ݁݀݊ݑ

Definition 5. (complete labelling, from definition 5 in [6]). Let (ݎܣ , ܴ) be an argu-
mentation framework. A complete labelling is a labelling that for every ܽ ߳ ݎܣ holds
that:1. if ܽ is labeled ݅݊ then all attackers of ܽ are labeled 2 ;ݐݑ݋. if all attackers of ܽ
are labeled ݐݑ݋ then ܽ is labeled ݅݊; 3. if ܽ is labeled ݐݑ݋ then ܽ has an attacker
labeled ݅݊; 4. if ܽ has an attacker labeled ݅݊ then ܽ is labeled ݐݑ݋

Theorem 1. (from [6]) Let L be a labelling of argumentation framework (ݎܣ , ܴ). It
holds that L is a complete labelling iff for each argument ܽ ߳ ݎܣ it holds that: 1. if ܽ
is labeled ݅݊ then all its attackers are labeled 2 ;ݐݑ݋. if ܽ is labeled ݐݑ݋ then it has at
least one attacker that is labeled ݅݊; 3. if ܽ is labeled ܿ݁݀݊ݑ then it has at least one
attacker that is labeled ܿ݁݀݊ݑ and it does not have an attacker that is labeled ݅݊.

Theorem 2. (from theorem 6 and 7 in [7]) Given ܨܣ = , ݎܣ) is the grounded ܮ ,(ܴ
labelling iff L is a complete labelling where undec(L) is maximal (w.r.t. set inclusion)
among all complete labellings of ܨܣ.

In figure 1 two argumentation graphs are depicted. Grounded semantics assigns the
status of undec to all the arguments of the argumentation framework on the left, since
it represents the complete labelling with the maximal set, while in the argumentation
framework on the right, according to theorem 1, there is only one complete labelling
(thus grounded), where argument ܽ is in (no attackers), ܾ is out and ܿ is in. Note how ܽ reinstates ܿ.

Fig. 1. Two Argumentation Graphs (A) and (B)

2.2 Subgraph Notation and Labelling of Subgraphs of an AF

As explained in section 3, when uncertainty or gradualism is added to arguments it is
important to study the behaviour of a semantics over the subgraphs of the starting
argumentation graph. Given an argumentation framework ܨܣ = ,ݎܣ) ܴ) with |ݎܣ| = ݊, and the graph ℊ identified by ݎܣ and ܴ, we consider the set ℋ of all the
subgraphs of ℊ. We focus on particular sets of subgraphs, i.e. elements of 2ℋ .

Given ܽ ∈ ܣ :r, we defineܣ = {ࣺ ∈ ℋ | ܽ is a node of ࣺ} ; ܣҧ = {ࣺ ∈ ℋ | ܽ is not a node of ࣺ} ܣ and ܣҧ are respectively the set of subgraphs where argument ܽ is present and the
complementary set of subgraphs where ܽ is not present. If ݎܣ = {ܽଵ, . . , ܽ௡}, a single

 Multi-valued Argumentation Frameworks 145

subgraph ℊ can be expressed by an intersection of ݊ sets ܣ௜ or ܣపഥ (݅ ≤ ݊) depending
on whether the ݅௧௛ argument ܽ௜ is or is not contained in ℊ. A set of subgraphs can be
expressed by combining some of the sets ܣଵ, . . , , ௡ܣ ,ଵതതതܣ . . , ܣ to denote ܤܣ ௡തതതത. with the connectives {∪,∩}. We writeܣ ∩ ܣ and ܤ + ܣ for ܤ ∪ For instance, in figure 1 .ܤ
left the single subgraph with only ܾ and ܿ present is denoted with ܣҧܥܤ, while the
expression ܤܣ denotes a set of two subgraphs (ܥܤܣ and ܥܤܣҧ) where arguments ܽ
and ܾ are present and the status of ܿ (not in the expression ܤܣ) is indifferent.

Given a subgraph ࣺ ∈ ℋ, the labelling of ࣺ follows the rules of the chosen seman-
tics. We therefore define a subgraph labelling ℒ as a total function over the Cartesian
product of arguments in ݎܣ and subgraphs in ℋ, therefore ℒ: ݎܣ × ℋ →{݅݊, ,ݐݑ݋ When labelling a subgraph, we follow this choice: an argument ܽ is .{ܿ݁݀݊ݑ
automatically labelled ݐݑ݋ in all the subgraphs where a is not present (since it does
not promote any claim) or when it is present but it is labelled ݐݑ݋ by the semantics,
representing the effect on ܽ of the other arguments. This is the only sensible choice: if
an argument ܽ is not present in a subgraph this means that ܽ does not hold even iso-
lated, since in that situation some of its premises are not satisfied. Note how, when an
argument is not in the subgraph, it is a situation of perfect knowledge (we know that
some of its premises are not satisfied), so it would be incorrect to assign the label
undec or an unknown status to the argument. In order to be labelled undec, an argu-
ment has to exist and promote a claim first!

In the case of grounded semantics there is only one labelling per subgraph ࣺ, that
we call ℒ(ࣺ) (we omit ݎܣ). We call ݅݊(ℒ(ࣺ)), ݐݑ݋(ℒ(ࣺ)), ܿ݁݀݊ݑ(ℒ(ࣺ)) the sets of
arguments labelled ݅݊, ܿ݁݀݊ݑ ,ݐݑ݋ in the labelling ℒ(ࣺ). In order to study how an
argument behaves across subgraphs in ܪ, we define these sets of subgraphs: ∀ܽ ∈ ூேܣ) ݎܣ = ൛ࣺ ∈ ℋ: ܽ ∈ ݅݊൫ℒ(ࣺ)൯ൟ , ை௎்ܣ = {ࣺ ∈ ℋ: ܽ ∈ ௎ܣ ,{((ࣺ)ℒ)ݐݑ݋ = {ࣺ ∈ ℋ: ܽ ∈ ({((ࣺ)ℒ)ܿ݁݀݊ݑ

i.e. the sets of subgraphs where ܽ is labelled in, out, undec.

Example 1. In the graph of figure 1 left, there are 3 arguments and 2ଷ subgraphs;
argument ܽ is labelled ݅݊ in all the subgraphs where ܽ is present and ܾ is not present
(and ܿ becomes irrelevant), i.e. ܣூே = തܤܣ . It is ܿ݁݀݊ݑ when all the arguments are
present (the single subgraph ܣ௎ = ை௎்ܣ .when it is not present or when ܾ is present and ܿ is not present, i.e ݐݑ݋ while ܽ is (ܥܤܣ = ҧܣ + .ҧܥܤܣ
2.3 Computing ࡺࡵ࡭

A brute force algorithm to find ܣூே (or ܣை௎்) simply computes the grounded seman-
tics in all the subgraphs of ݎܣ and select the subgraphs where the required label of ܽ
holds. In [18] we proposed a recursive algorithm to compute ܣூே under grounded
labelling that here we modify1 to make it suitable to our problem.

1 The original algorithm in [18] generates non-overlapping sets of subgraphs containing indif-

ferent arguments, as explained in section 3.

146 P. Dondio

Algorithm 1. A is a node, L a label, P is the list of parent nodes of A.

FindSet(A,L,P):
if A in P:
 return empty_set //cycle found
if L = IN:
 if A terminal:
 return a //terminal condition

 else:
 add A to P
 for each child C of A
 Cset = Cset AND FindSet(C,OUT,P)
return (a AND Cset) // condition 1
if L = OUT:
 if A terminal:
 return NOT(a) //terminal condition
 else
 add A to P
 for each child C of A
 Cset = Cset OR FindSet(C,IN,P)
 return (NOT(a) OR Cset) // condition 2

Given a starting argument ܽ and a label ݈ ∈ {݅݊, the algorithm traverses the ,{ݐݑ݋
transpose graph (a graph with reversed arrows) from ܽ down to its attackers, propa-
gating the constraints of the grounded labelling. The constraints needed are listed in
definition 5 and theorem 1. If argument ܽ – attacked by n arguments ݔ௡ – is required
to be labeled ݅݊, we impose the set ܣூே to be: ܣூே = ൫ ܣ ଵܺை௎் + ܺଶை௎் + ⋯ + ܺ௡ை௎்൯ (c. 1)

i.e. argument ܽ can be labeled in in the subgraphs where:

1. ܽ is present in the subgraph (i.e. the set ܣ) and
2. all the attacking arguments ݔ௜ are ݐݑ݋ (sets ௜ܺை௎்).

If ܽ is required to be labeled ݐݑ݋, the set of subgraphs is: ܣை௎் = ҧܣ + ଵܺூேܺଶூே … ܺ௡ூே (c. 2)
i.e. ܽ is labeled ݐݑ݋ in all the subgraphs where it is not present or at least one of
the attackers is labeled ݅݊. Thus we recursively traverse the graph, finding the sub-
graphs that are compatible with the starting label of ܽ. The sets ܺ௡ை௎், ܺ௡ூே are
found when terminal nodes are reached. When a terminal node ்ݔ is reached the
following conditions are applied:

1. if ்ݔ is required to be ݅݊ then ்ܺூே = ்ܺ
2. if node ்ݔ is required to be ݐݑ݋ then ்ܺை௎் = ்ܺതതതത

Fig. 2. An argumentation graph

 Multi-valued Argumentation Frameworks 147

The way algorithm 1 treats cycles guarantees that only grounded labellings are
identified. If a cycle is detected, the recursion path terminates, returning an empty set
that also has the effect of discarding all the sets of subgraphs linked by a logical ܦܰܣ
(in condition 1) to the cyclic path.

Example 2. Referring to figure 2, ܽ is labelled in when: ܣூே = ை௎்ܤܣ = തܤ)ܣ + ூேܦ + (ூேܥ = തܤ)ܣ + ܦ + (ை௎்ܣܥ = തܤ)ܣ + .(ܦ

Note how ܣܥை௎் identifies a cycle and returns the empty set.

2.4 Multi-valued Logic

In the setting of multi-valued logics, the convention prescribing that a proposition is
either true or false is changed. A sentence is now not true or false only, but may have
a truth degree taken from an ordered scale, called truth space S, such as [0,1]. Multi-
valued logic can model situations affected by vagueness, where a statement is satis-
fied to a certain extend and the concepts discussed are graded. This is usual in natural
language when words are modeled by fuzzy sets, such as tall, young, fast. We identify
a proposition with a fuzzy set and the degree of membership of a state of affairs to
this fuzzy set evaluates the degree of fit between the proposition and the state of facts
it refers to. This degree of fit is called degree of truth of a proposi-
tion ϕ. Semantically, a many-valued interpretation I maps each basic proposition ϕ, ψ
into [0,1] and is then extended inductively as follows: I(ϕ ∧ ψ) = I(ϕ) ⊗ I(ψ) ; I(ϕ ∨ ψ) = I(ϕ)⨁I(ψ) I(ϕ → ψ) = I(ϕ) ⊳ I(ψ) ; I(ϕഥ) =⊖ I(ψ)

where ⊗, ⨁, ⊳ and ⊖ are called triangular norms, triangular co-norms, implication
functions, and negation functions, which extend the classical Boolean conjunction,
disjunction, implication, and negation to the many-valued case. These functions have
all to satisfy the following properties: tautology, contradiction, commutativity, associ-
ativity and monotonicity, but not all of them satisfy excluded middle (ݔ⨂ ⊝ ݔ = 0)
or double negation (⊖⊖x=x). We usually distinguish two main logics: Łukasiewicz's
and Gödel's logic; the Zadeh's logic is a sublogic of Łukasiewicz's logic. Their opera-
tors are shown in table 1. For a comprehensive analysis see [16].

Table 1. Combination functions of various fuzzy logics

 Łukasiewicz's L. Gödel's logic Zadeh's logic
a⊗b max (a+b−1,0) min (a,b) min (a,b)

a⊕b min (a+b,1) max (a,b) max (a,b)
a▷b min (1−a+b,1) ቄ 1 ݂݅ ܽ ≤ ܾܾ max ݁ݏ݅ݓݎℎ݁ݐ݋ (1−a,b) ⊖a 1−a ቄ 1 ݂݅ ܽ = 00 a−1 ݁ݏ݅ݓݎℎ݁ݐ݋

148 P. Dondio

3 Gradualism, Vagueness and Abstract Argumentation

Let us presume our argumentation framework includes ݊ arguments and that each
argument is an inference rules between propositions of a language. If these proposi-
tions are affected by uncertainty or/and vagueness, we are not sure if the claim of the
argument can be used in the argumentation process. If the proposition ϕ representing
a claim is probabilistic, it can hold or not; if ϕ is vague, it partially holds (and partial-
ly not). The consequence is that multiple scenarios of the same argumentation process
are possible or should be taken into account, each scenario described by a subset of
the original argumentation framework.

The case of probabilistic uncertainty has been recently analyzed in [5] and [4]. In a
probabilistic argumentation framework arguments have a probability attached to
them, indicating the likelihood of the argument to hold (based on the probability to
which its premises are true, or are believed to be true). Since the premises are affected
by probabilistic uncertainty, the premises are satisfied (and the claim follows) in a
subset of situations with likelihood ݔ, and they are not satisfied in the complementary
set of situations (with likelihood 1 − -Given an argumentation graph with ݊ argu .(ݔ
ments, there are 2௡ possible situations, each of them identifying a subgraph of the
original argumentation graph. Li [4] calls these situations induced argumentation
frameworks. Each induced framework behaves as an abstract Dung-style framework
and it has a probability of existing attached to it, computed using the (joint) probabil-
ity distribution ܲ defined over the arguments. Given a semantics, the probability of an
argument ܽ to be labelled in (or out or undec) is the sum of the probabilities of all the
induced frameworks where the chosen semantics produces the required label for ܽ.
This computation is referred to in [5] as the constellation approach.

In a multi-valued argumentation setting, arguments have a degree of truth attached
to them, indicating to which extent their claims are compatible with a state of affair.
We therefore assume an underlying model of arguments as inference rules between
multi-valued propositions, each proposition with a degree of truth in [0,1]. A support
and/or claim of an argument might contain vague or graded terms, and they can there-
fore have a degree of truth when applied to a specific state of affairs. For instance, I
can argue that “if a tomato is rotten, do not eat it”. The support and therefore the
claim of the argument assumes different degrees of truth when applied to different
tomatoes.

If a claim has a degree of truth ߤ attached to it, this means that the current state of
affairs satisfies the claim to a certain degree ߤ but at the same time it also satisfies the
negation of the claim with a degree quantified by the negation operator ⊖. These
values are not referring to two distinct situations – as in the case of probabilistic un-
certainty - but they represent degrees of truth attached to two co-existing situations
both compatible with the same state of affairs. In a multi-valued setting, an argument
always holds partially, always because there is no probabilistic uncertainty involved
and partially because it can be experienced at different degrees. However, at the same
time this is also true for the negation of the claim. Going back to the tomato, the
tomato is rotten, but maybe not so rotten to avoid eating parts of it.

 Multi-valued Argumentation Frameworks 149

Given ݊ arguments with vague claims, there are again 2௡ ways to which the set of
arguments can partially satisfy the same state of affairs, each situation with a degree
of truth associated. In each situation we consider the degree to which some arguments
satisfy the state of affairs and the others do not satisfy it. We start by defining a multi-
valued argumentation framework as follows:

Definition 6. A multi-valued argumentation framework (MVAF) is a tuple ((ݎܣ, ܴ), (ߤ
where (ݎܣ, ܴ) is an abstract argumentation framework and ߤ: ݎܣ → [0,1] assigns a
degree of truth to each argument in ݎܣ.

We write ߤ஺ as a shortcut for ߤ(ܽ). Our aim is to find the degree to which an ar-
gument ܽ is labelled ݅݊ (or out or undec), called ߤ஺ூே (ߤ஺ை௎், ஺௎). We stress theߤ
crucial difference between ߤ஺ and ߤ஺ூே. ߤ஺ is the degree of truth to which the isolated
argument ܽ holds, before the argumentation process; ߤ஺ூே is the resulting degree of
truth of ܽ after having accounted for the effect of the other attacking arguments

3.1 Computing ૄۼ۷ۯ

A starting idea simply translates the approach of probabilistic argumentation (the
constellation approach) to the case of vagueness. This implies to first find all the
subgraphs where ܽ is labelled in, and then quantify the degree of truth of the resulting
disjunction of subgraphs. Each subgraph is a conjunction of vague claims (or their
negation) and its degree of truth is the degree to which this conjunction is satisfied by
the state of affairs. As an example, let’s consider a simple argumentation graph where
argument ܽ is attacked by ܾ, and ܾ is attacked by ܿ. The constellation approach finds
the following three subgraphs: ܣூே = ܥܤܣ + ܥതܤܣ + തതതത. The recursive algorithm 1ܥܤܣ
returns the following set: ܣூே = ை௎்ܤܣ = തܤ)ܣ + (ூேܥ = തܤ)ܣ + (ܥ = തܤܣ + .ܥܣ
Note how we could also express the set ܣூே as ܤܣത + using disjoint sets. In the ܥܤܣ
probabilistic case all the above expressions are equivalent, but this is not the case for
vague arguments and multi-valued logic. For instance, if ߤ஺ = 0.8, ஻ߤ = 0.3, ஼ߤ =0.9, using Zadeh’s max and min operators the constellation approach gives a value of
0.3, the recursive algorithm 0.7 and the disjoint set notation 0.8. Which computation
should be preferred? Our answer is two-fold.

First, we note how the above expressions of ܣூே are computed using classical sets
operators, that are adequate if a probabilistic measure is used over arguments. How-
ever, we are not allowed to further simplify the expression of ܣூே in case of vague
arguments. The claims of the arguments are now multi-valued propositions associated
to fuzzy sets, whose operators do not behave as the classical counterparts. Therefore,
while the constellation approach implicitly assumes the classical set theory and can-
not be extended to the multi-valued case, the recursive algorithm 1 could still generate
a correct expression for ܣூே if we do not simplify its output but we stop at ܣூே തܤ)ܣ= + For instance, Łukasiewicz strong operators do not satisfy the distributive .(ܥ
property and therefore the expression cannot be simplified further.

Second, it is the role of the arguments indifferent to the labelling of ܽ. We set this
reasonable principle: if an argument status is indifferent to the label of ܽ, why bother

150 P. Dondio

considering its degree of truth? If in the probabilistic case the above question is ir-
relevant (since ݌(ܽ) +)݌ തܽ) = 1), it is not when dealing with vague arguments. Let’s
consider the constellation approach first. Its expression is ܣூே = ܥܤܣ + ܥതܤܣ is not in the subgraphs, ܿ becomes ܾ ,(തതതതܥܤܣ and ܥതܤܣ) ,തതതത. In the last two termsܥܤܣ+
disconnected from ܽ and therefore irrelevant for the labelling of ܽ. Therefore, ܿ’s
degree of truth should not alter the degree of truth of ܽ. The same happens with the
recursive approach using disjoint sets. In the term ܥܤܣ, why should I consider ܾ? ܾ is
labelled out and therefore irrelevant for the labelling of ܽ.

We claim that, in order to assess the degree of truth of ܣூே, the correct expression
is the one generated by algorithm 1, i.e. ܣூே = ܥ)ܣ + ത), where all the argumentsܤ
indifferent to the labelling of ܽ are removed and multi-valued logic properties are not
violated. Algorithm 1 directly maps the definition of complete grounded labelling as
found in Caminada [6], its output is independent from the logic employed, and there-
fore it is correct both for the uncertain case (probabilistic or possibilistic) and the
vague one.

We now show that the output of algorithm 1 does not contain indifferent argu-
ments. The reasons for an argument ܾ to be indifferent to the grounded labelling of ܽ
are the following:

1. ܾ is disconnected from ܽ.
2. ܾ is in the subgraph but labeled out (Boella 2009).
3. If ݊ in-labeled nodes are attacking an ݐݑ݋ node, only one attacking argument at a

time is needed to label ܽ, while the others are indifferent.

Points 1 and 3 are respected by algorithm 1. Disconnected arguments are never
considered by algorithm 1 since they are simply not visited by the recursive algo-
rithm, while the disjunction in condition 2 of algorithm 1 guarantees that only one of
the attackers is considered in each term. This allows us to stress a key advantage of
algorithm 1 compared to the constellation approach. While the constellation approach
computation fragments the structure of the argumentation graphs in a collection of
subgraphs, Algorithm 1 is a path-based traversal of the graph and it preserves the
topology of the graph.

Point 2 is also verified by algorithm 1, since the last line of the algorithm (return
NOT(a) OR Cset) is not considering argument ܽ in its second term (since ܽ is always
labelled out in that case). Algorithm 1 guarantees to find a set of set subgraphs that is
complete [18], i.e. its union covers all the possible subgraphs where a certain labelling
of ܽ holds.

We then exploit the fully truth-compositional nature of multi-valued logic opera-
tors. Unlike probability or possibility calculus the three multi-valued logic proposed
have truth-functional operators, i.e. the degree of truth of an expression is fully de-
termined by the degree of truth of its components. As stressed by Dubois [20], we are
allowed to use truth-functional operators as long as we are dealing with gradual prop-
erties with no uncertainty involved, otherwise possibility theory has to be applied and
the truth-compositional property is lost.

Therefore degrees of truth can be computed during the recursive visit of algo-
rithm1. Degrees of truth of arguments are found when terminal conditions are reached

 Multi-valued Argumentation Frameworks 151

and the values are propagated back to the recursive step and combined with the truth-
functional multi-valued logic operators. We use as conjunction, disjunction and
negation the operators ⨁, ⨂,⊖ of the multi-valued logic employed, and replacing
arguments with their degrees of truth when terminal conditions are met. The truth-
compositional property of multi-valued operators makes computing degrees of truth
under grounded semantics having the same complexity class as a recursive tree tra-
versal, i.e. a linear complexity proportional to the number of nodes and links, while
the constellation approach is obviously of above-polynomial complexity.

Example 3. Let us continue example 2. μAIN is: μAIN = μ(A⨂BOUT⨂COUT) = μ(A⨂(Bഥ⨁EIN)⨂(Cത⨁EIN)) = μ(A⨂(Bഥ⨁E)⨂(Cത⨁E))

Degrees of truth are computed during the recursion exploiting the truth-
functionality as follows: μAIN = μ(A⨂BOUT⨂COUT) = max൫μA + μ൫(Bഥ⨁EIN)⨂(Cത⨁EIN)൯ − 1,0൯ = = max(μA + max(μ(Bഥ⨁EIN) + μ(Cത⨁EIN) − 1,0) − 1,0)) = = max൫μA + max൫min൫μ⊖B + μE, 1൯ + min൫μ⊖C + μE, 1൯ − 1,0൯ − 1,0൯ = = max(μA + max(min(1 − μB + μE, 1) + min(1 − μC + μE, 1) − 1,0) − 1,0)

Using the values of example 3 it is μAIN = 0.3. The computation seems to consis-
tently use both argumentation semantics and multi-valued logic.

4 Attack, Reinstatement, Accrual and Rebuttals

The following examples illustrate, for all the three logics considered, the behavior of
our frameworks w.r.t. fundamental situations that any argumentation framework has
to handle, namely attack, reinstatement, accrual of arguments and reinstatement.

Fig. 3. Argumentation graphs for the examples 4, 5, 6, 7, 8

Example 4 Attack. If argument ܽ is attacked by ܾ, how is the degree of ܽ modified?
It is ܣூே = തܤܣ . Using Zadeh’s operators, it is ߤ஺ூே = min (ߤ஺, 1 − ஻). In generalߤ
with Zadeh’s operators ߤ஺಺ಿ < ஺ (degree of truth is diminished), but it remains theߤ
same when ߤ஺ < 1 − ஻. Therefore, the degree of truth of ܽ could remain unchangedߤ
and the attack from ܾ neglected if ߤ஺ + ஻ߤ < 1. This imposes a minimum degree of
truth on the attacker to activate the attack. Note how this finding seems to justify the
notion of a threshold for attack activation present in [1]. Using Łukasiewicz's logic it
is: ߤ஺ூே = min(ߤ஺ + 1 − ஻ߤ − 1,0) = min (ߤ஺ − ,஻ߤ 0) = ൜ߤ஺ − ஺ߤ ݂݅ ஻ߤ > ஺ߤ ݂݅ ஺0ߤ ≤ ஻ߤ

152 P. Dondio

Therefore ܽ is always diminished, and totally defeated if the degree of the attacker
is greater than ߤ஺. Interestingly, this is the exact behaviour proposed by Pollock [7],
whose proposal was not grounded in any multi-valued logic system.

Note how, using Zadeh’s min operator, an argument can be totally defeated only if ߤ஻ = 1, while using Łukasiewicz's logic it is totally defeated every time ߤ஺ ≤ .஻ߤ
Finally, Godel’s logic negation operator always assigns a null degree of truth to ߤ⊖஺ if ߤ஺ > 0. In practical terms, this implies removing the negated terms from the

output of algorithm 1. This means that, using grounded semantic only one out of the
three quantities ߤ஺ூே, ,஺ை௎்ߤ ஺௎ has a not null value. In the case of ܾ attacking ܽ, itߤ
is obviously ߤ஺ூே = 0.

Regarding ߤ஺ை௎் , it is ܣை௎் = ҧܣ + For Godel’s logic the resulting degree is the .ܤ
degree of the attacker ܤ, for Zadeh's logic ߤ஺ை௎் remains equal to ߤ஺ iff 1 − ஺ߤ < ஻ߤ
and under Łukasiewicz's logic ߤ஺ை௎் = 1 (ܽ totally defeated) when ߤ஻ ≥ .஺ߤ

Example 5. Reinstatement Chain. A chain of 3 arguments helps to reason about
reinstatement. It is ܣூே = തܤ)ܣ + .(ܥ

Under Godel’s logic, only ܥܣ has a not null degree of truth and ߤ஺಺ಿ =min (ߤ஺, ஼ߤ ஼). Thus the argument is fully reinstated ifߤ > ஺ or it is reinstated toߤ
the degree equal to its defender ܿ.

Using Zadeh’s logic, ߤ஺಺ಿ is given by the expression min (ߤ஺, max(1 − ,஻ߤ .((஼ߤ
We note that, if 1 − ஻ߤ > ஼, nothing changes from example 4 and no reinsteitmentߤ
happens, while, when 1 − ஻ߤ < ஼ߤ ஺಺ಿ could be increased w.r.t. example 4. Bothߤ ,
Zadeh’s and Godel’s logic fully reinstates ܽ if ߤ஼ > ஼ߤ ஺. Arguably, whenߤ > ஺ theߤ
two logic systems neglect the degree of truth of the attacker ܾ.

Using Łukasiewicz's logic ܽ is fully reinstated if 1 − ஻ߤ + ஼ߤ > 1, i.e. ߤ஼ > ,஻ߤ
which seems a reasonable result and again it is the same behaviour as Pollock [7].

The reinstatement example provides evidence in favour of our recursive algorithm
and our choices of neglecting indifferent arguments and respecting the multi-valued
logic properties when simplifying the expression of ܣூே. In fact, if we had further
simplified the expression of ܣூே into ܣூே = തܤܣ + using Łukasiewicz's logic, it ,ܥܣ
could have been that ߤ஺ூே resulted more than ߤ஺! If ߤ஺ = 0.5, ஻ߤ = 0.1, ஼ߤ = 0.9, it
is ߤ஺ூே = min(max(0.5 + 0.9 − 1,0) + max(0.5 + 0.9 − 1,0), 1) = 0.8! We wonder
if the reason why ߤ஺ூே > ஺ is because we neglected the out-labelled argument ܾ inߤ
the expression ܣூே = തܤܣ + ூேܣ and the right expression should be ,ܥܣ = തܤܣ + ܥܤܣ
or the constellation approach expression ܣூே = ܥതܤܣ + ҧܥതܤܣ + Both these two .ܥܤܣ
expressions guarantee that ߤ஺ூே ≤ ஺, but their behaviour is still counter-intuitive dueߤ
to the fact that longer conjunctive expressions are harder to satisfy and the resulting
degree of truth decreases rapidly2. For instance, if ߤ஺ = 0.5, ஻ߤ = 0.5, ஼ߤ = 1 we
have ߤ஺ூே = 0 (even if ܽ is defended by an argument with the maximum degree of
truth, there is no reinstatement).

2 A similar remark was done by Pollock [7] against the use of the product rule of probability in

defeasible reasoning.

 Multi-valued Argumentation Frameworks 153

Example 6. Accrual of attacks. The example clarifies the accrual of attacks. It is ܣூே = ை௎்ܣ ҧ andܥതܤܣ = ҧܣ + ܥ + ை௎்ܣ Considering .ܤ , both Godel’s and Zadeh’s
operators do not accrue arguments, since it is the max of the two arguments that is
considered, as in Pollock [7]. Arguments accrue with Łukasiewicz's logic, since its
disjunction operator does.

Example 7. Rebuttal. In case of two rebuttal arguments, grounded semantics gives ܣ௎ = ௎ܤ = ,ܤܣ ூேܣ = ,തܤܣ ூேܤ = ҧ. Figure 4 shows the behaviour of the threeܣܤ
multi-valued logics discussed. Godel and Zadeh always assign a not null value to the
undec situation equal to ߤ஺ೆ = ஻ೆߤ = min (ߤ஺, -஻), while with Łukasiewicz's operaߤ
tors it is ߤ஺ೆ = max (ߤ஺ + ஻ߤ − 1,0), and therefore ߤ஺ೆ > 0 only when ߤ஺ + ஻ߤ >1. Intuitively, using Łukasiewicz, two conflicting arguments can coexist if their de-
grees of truth are small enough to avoid overlapping.

Regarding μAIN and μBIN, Godel’s system assigns a null degree of truth to both;
while Zadeh’s logic always assigns a not null degree, that has an upper bound in the
degree to which the other conflicting argument is negated. Łukasiewicz’s logic as-
signs a not null degree equal to |μA − μB| to the argument with the highest degree,
and a null degree to the other. Each of this behaviour seems to fit some but not all the
situations where gradual arguments conflict and the author seeks to systematically
investigate this issue in the next future work.

Fig. 4. Rebuttals with different multi-valued logic

Example 8. Multi-valued operators do not always verify the excluded middle princi-
ple. This could lead to controversial situations where multi-valued argumentation
strongly differs from the classical logic case. Let us consider the argumentation graph
in figure 3 (last on the left). If we are using Zadeh’s logic, the excluded middle prin-
ciple is not verified and an argument can be at the same time present and not present
in the argumentation process. It is ߤ஺಺ಿ = = (ை௎்ܥ⨂ை௎்ܤ⨂ܣ)ߤ = ((ܤ⨁ҧܥ)⨂തܤ⨂ܣ)ߤ ҧܥ⨂തܤ)⨂ܣ)ߤ + where we applied the distributive property (allowed with ((ܤ⨂തܤ
Zadeh’s logic) to show the presence of the not-null term ܤത⨂ܤ.

5 Related Works

Conceptually, our framework is closer to the work done in the context of probabilistic
argumentation frameworks. The idea of merging probabilities and abstract argumenta-
tion was first presented by Dung [2], and a more detailed formalization was provided

154 P. Dondio

by Li [4], along with the works by Hunter [5] and Thimm [12]. [4] introduces the
notion of constellation approach. [12] and [5] in his epistemic approach, start from a
complementary angle. Both authors assume that there is already an uncertainty meas-
ure – potentially not probabilistic – defined on the admissibility set of each argument
and they study which properties this uncertainty measure should satisfy in order to be
rational. Regarding works that explicitly define fuzzy argumentation systems, we
should mention the framework by Janssen [13] where fuzzy labels may be interpreted
as fuzzy membership to an extension. However, [13]’s approach differs significantly
from ours by the fact that the attack relation that defines the framework is taken to be
fuzzy and the conflict-free and admissibility definitions are changed accordingly. In
[14] a certitude factor is added to the labels in, out and undec as we do. The work
proposes an equational approach to abstract argumentation, where arguments degrees
have to satisfy a set of properties modelled as equations, properties that might not
have any link to a fuzzy logic system. On the contrary, our computation of degrees of
truth is a more consistent approach exploiting both argumentation semantics and
multi-valued logics.

Regarding other works investigating gradualism in argumentation, we first mention
Pollock’s work on degrees of justification [7]. Pollock considers the strengths of ar-
guments as cardinal quantities that can be subtracted. The accrual of arguments is
denied and it is the argument with the maximum strength that defines the attack. It is
interesting to notice how Pollock's computation is not grounded in any logic systems,
but his attack function behaves like our framework using Łukasiewicz's logic, while
his accrual behaves like Zadeh's and Godel's logics. The vs-defence model, by Cayrol
[1], is an extension of abstract argumentation where attacks have a strength associated
with them. Argument admissibility status is the result of the comparisons of attack
strengths, in a way similar to our frameworks with Łukasiewicz's logic (example 1).
However, there is no description about the nature and the computation of such
strength. We also mention [10] that first extended Dung’s framework introducing
different levels of attacks. [9] proposed weighted argument systems, where attacks
can have weights, and such weights might have different interpretations: an agent-
based priority voting, or a measure of how many premises of the attacked argument
are compromised.

6 Conclusions

In this paper we explored how Dung’s abstract argumentation framework can be ex-
tended to handle arguments affected by vagueness. We studied some basic properties
and provided examples using Godel’s, Łukasiewicz's and Zadeh’s multi-valued logic.
The findings are a contribution in the field of approximate reasoning and they also
represent a well-grounded proposal towards the introduction of gradualism in argu-
mentation systems. We believe to have provided a novel synthesis between argumen-
tation semantics and gradualism, providing the theoretical foundation of a framework
for reasoning under uncertainty that has both the soundness of argumentation seman-
tics w.r.t. the identification of a consistent set of arguments, and the ability to handle
gradual and vague properties proper of multi-valued logics.

 Multi-valued Argumentation Frameworks 155

The present work represents the first theoretical foundation of our framework and
it opens numerous opportunities and open issues for future studies.

First, we aim to extend our frameworks to other semantics, starting from complete
semantics such as stable and preferred.

Second, this paper presents a limited investigation and discussion on the meaning
of gradual arguments and it focuses on theoretical aspects of the frameworks. What
does the notion of attack with gradual arguments really mean?

A comprehensive answer requires a more structured definition of arguments and
types of attacks. Further studies have to be done in investigating the various multi-
value logics proposed here. In particular, the meaning of the degrees of truth com-
puted by each multi-valued logic and which kind of vagueness each logic system is
more suitable to model. It seems to the author that none of the systems studied here
could reasonably handle all the situations involving vague arguments, but rather each
of them captures specific situations.

Finally, work has to be done in investigating how to handle situations in which
probabilistic and vague arguments coexist in the same argumentative process.

References

1. Cayrol, C., Lagasquie-Schiex, C.D.: Acceptability semantics accounting for strength of at-
tacks in argumentation. In: 19th ECAI, Lisbon, Portugal, pp. 995–996 (2010)

2. Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games. Artificial Intelligence 77, 321–357 (1995)

3. Dung, P., Thang, P.: Towards (Probabilistic) Argumentation for Jury-based Dispute Reso-
lution. In: COMMA 2010, pp. 171–182. IOS Press (2010)

4. Li, H., Oren, N., Norman, T.J.: Probabilistic Argumentation Frameworks. In: Modgil, S.,
Oren, N., Toni, F. (eds.) TAFA 2011. LNCS (LNAI), vol. 7132, pp. 1–16. Springer, Hei-
delberg (2012)

5. Hunter, A.: A probabilistic approach to modelling uncertain logical arguments. Interna-
tional Journal of Approximate Reasoning (2012)

6. Caminada, M.W.A., Gabbay, D.M.: A logical account of formal argumentation. Studia
Logica 93(2-3), 109–145 (2009)

7. Pollock, J.: Defeasible reasoning with variable degrees of justification. Artificial Intelli-
gence 133, 233–282 (2001)

8. Gabbay, M.: Equational approach to argumentation networks. Argument & Computa-
tion 3(2-3), 87–142 (2012)

9. Dunne, P.E., Hunter, A., McBurney, P., Parsons, S.: Inconsistency tolerance in weighted
argument systems. In: Proc. of AAMAS 2009 (2009)

10. Martinez, D.C., Garcia, A.J.: An abstract argumentation framework with varied-strength
attacks. In: Proc. of KR 2008, pp. 135–143 (2008)

11. Vreeswijk, G.: Abstract argumentation systems. Artificial Intelligence 90, 225–279 (1997)
12. Thimm, M.: A Probabilistic Semantics for abstract Argumentation. In: ECAI (2012)
13. Janssen, J.: Fuzzy argumentation frameworks. Information. In: Processing and Manage-

ment of Uncertainty in Knowledge-based Systems (2008)
14. Gratie, C., Florea, A.M.: Fuzzy labelling for argumentation frameworks. In: McBurney, P.,

Parsons, S., Rahwan, I. (eds.) ArgMAS 2011. LNCS (LNAI), vol. 7543, pp. 1–8. Springer,
Heidelberg (2012)

156 P. Dondio

15. Baroni, P., Romano, M., Toni, F., Aurisicchio, M., Bertanza, G.: Argumentation-Based
Approach for Automatic Evaluation of Design Debates. In: Leite, J., Son, T.C., Torroni,
P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV 2013. LNCS (LNAI), vol. 8143, pp.
340–356. Springer, Heidelberg (2013)

16. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics
for the semantic web. In: Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 6(4), pp. 291–308 (2008)

17. Boella, G., Souhila, K., Van Der Torre, L.: Dynamics in argumentation with single exten-
sions: Attack refinement and the grounded extension. In: Proceedings of The 8th AAMAS
Conference (2009)

18. Dondio, P.: Computing the Grounded Semantics in all the Subgraphs of an Argumentation
Framework: An Empirical Evaluation. In: Leite, J., Son, T.C., Torroni, P., van der Torre,
L., Woltran, S. (eds.) CLIMA XIV 2013. LNCS (LNAI), vol. 8143, pp. 119–137. Springer,
Heidelberg (2013)

19. Prade, H., Dubois, D.: What are fuzzy rules and how to use them. Fuzzy Sets Syst. 84,
169–185 (1996)

20. Dubois, Prade, Smeths. Gradual properties vs. uncertainty: Fuzzy logic vs. possibilistic
logic, Technical report (2000), retrieved from
http://iridia.ulb.ac.be/~psmets/Gradual_vs_Uncert.pdf

Incomplete and Uncertain Data Handling
in Context-Aware Rule-Based Systems

with Modified Certainty Factors Algebra�

Szymon Bobek and Grzegorz J. Nalepa

AGH University of Science and Technology
al. Mickiewicza 30, 30-059 Krakow, Poland
{szymon.bobek,gjn}@agh.edu.pl

Abstract. Context-aware systems make use of contextual information to
adapt their functionality to current environment state, or user needs and habits.
One of the major problems concerning them is the fact, that there is no war-
ranty that the contextual information will be available, nor certain at the time
when the reasoning should be performed. This may be due to measurement er-
rors, sensor inaccuracy, or semantic ambiguities of modeled concepts. Several
approaches were developed to solve uncertainty in context knowledge bases, in-
cluding probabilistic reasoning, fuzzy logic, or certainty factors. However, han-
dling uncertainties in highly dynamic, mobile environments still requires more
consideration. In this paper we perform comparison of application of different
uncertainty modeling approaches to mobile context-aware environments. We also
present an exemplary solution based on modified certainty factors algebra and
logic-based knowledge representation for solving uncertainties caused by the im-
precision of context-providers.

Keywords: context-awareness, mobile devices, knowledge management,
uncertainty.

1 Introduction

Context-aware systems aim to make use of context information to allow devices or ap-
plications to behave in a context-aware, thus “intelligent” way. The variety of sensors
available on mobile devices, and almost unbounded access to the Internet, allows for
building more advanced reliable context-aware systems. However, many context-aware
systems are based on the assumption that the information they require is always avail-
able and certain. In mobile environments these assumption almost never hold.

Contextual data can be delivered to the mobile context-aware system in several dif-
ferent ways: directly from the device sensors [13], from other devices sensors, over
peer-to-peer communication channels [2,11], from external data sources like contextual
servers [6], from reasoning engines that based on the low-level context and a contextual-
model, provide higher-lever context [17]. In each of this cases, the system may experi-
ence problems caused by the uncertain contextual information.

� The paper is supported by the AGH UST Grant.

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 157–167, 2014.
c© Springer International Publishing Switzerland 2014

158 S. Bobek and G.J. Nalepa

Although there are many solutions for uncertainty handling in knowledge bases,
there is still little research in the field of mobile context-aware systems. The mobile
environment is highly dynamic which requires from the uncertainty handling mecha-
nism to adjust to rapidly changing condition. Probabilistic and machine learning ap-
proaches cope very well with most common uncertainties types, but they need time to
learn an re-learn. What is more, they use a model that is not understandable for the user,
and therefore it cannot be modified by him or her. Fuzzy logic approaches can be used
to model uncertainty in an understandable form, but they mainly cope with uncertainty
caused by the lack of human precision which is not the primary focus in mobile context-
aware system. The aforementioned facts were the main factors why we decided to use
rule-based solution for context-based modeling and reasoning. Therefore, the primary
objective of the research presented in this paper was to find the best uncertainty han-
dling mechanism that will support rule-based knowledge representation and solve most
common uncertainties that are present in mobile context-aware systems.

The rest of the paper is organized as follows. Section 2 presents current state of the
art and discusses main drawbacks of available solutions with respect to mobile context-
aware systems and presents the motivation for our work. Section 3 describes our ap-
proach of applying certainty factor algebra to ALSV(FD) logic. It also tackles the issue
of modeling dynamics of certainty factors. A simple use case scenario is presented in
Section 4 and summary and possible future work was included in Section 5.

2 Related Work and Motivation

Uncertainty of data may be defined in different ways and can be caused by various
different factors. However, we can distinguish three general types of uncertainties [19]:

1. Uncertainty due to lack of knowledge – that comes from incomplete information
both at the model level or if the information is not provided by the sensors,

2. Uncertainty due to lack of semantic precision – that may appear due to semantic
mismatch in the notion of the information,

3. Uncertainty due to or lack of machine precision – which covers machine sensors
imprecision and ambiguity. Although the lack of machine precision may also be
caused by erroneous sensors readings, this type of uncertainty is beyond the scope
of this classification.

Among many proposals of uncertainty handling mechanisms [21] like Hartley Theory,
Shannon Theory, Dempster-Shafer Theory, the following have been found the most
successful in the area of context-awareness:

– Probabilistic approaches, mostly based on Bayes theorem, that allows for describing
uncertainty caused by the lack of machine precision and lack of knowledge [12,5].

– Fuzzy logic, that provides mechanism for handling uncertainty caused by the lack
of human precision [8,22]. It ignores law of excluded middle allowing for impre-
cise, ambiguous and vague descriptions of knowledge.

– Certainty factors (CF), that describe both uncertainties due to lack of knowledge
and lack of precision [9,1]. They are mostly used in expert systems that rely on the
rule-based knowledge representation.

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems 159

– Machine learning approaches, that use data driven rather than model driven ap-
proach for reasoning [14]. They allow for handling both uncertainties due to lack
of knowledge and lack of precision.

Methods presented above provide different capabilities of representing and handling
diverse types of uncertainties listed at the begining of the section. They also require
different implementation effort. The comparison of uncertainty handling mechanisms
with respect to these criteria was presented in Table 1.

Machine learning approaches deal very well with uncertainties caused by the lack of
knowledge and imprecise measurements, as they provide high generalization features,
which allows them to make correct decisions on previously unseen data. Probabilistic
methods provide handling mechanisms that best fits uncertainties caused by the lack
of precision and ambiguity, as they can express vague information in terms of proba-
bility. It allows to project the uncertainty to the output and value it with respect to the
probability. However, implementation effort of both probabilistic and machine learning
approaches is rather high. What is more, the model cannot be directly modified by the
user, as it requires expert knowledge in probability theory and machine learning.

Fuzzy logic allows for imprecise, ambiguous and vague descriptions of knowledge.
This is very often source of uncertainties caused by the lack of human precision as hu-
man operates on concepts that semantic notion is vague as ”tall”, ”small”, etc. Although
this type of uncertainty is also present in context-aware systems, it is beyond the scope
of this paper.

Certainty factors are able to describe both uncertainties related to lack of knowledge,
and related to lack of machine precision, which are the most common uncertainties
in context-aware systems. One of the main advantages of certainty factors over other
uncertainty handling mechanisms is that they can be easily incorporated into existing
rule-based system without the necessity of redesigning or remodeling knowledge base.
They also require a very low implementation effort.

Table 1. Comparison of uncertainty handling mechanisms. Full circles represent full support,
whereas empty circles represent low or no support.

Uncertainty source
Lack of
knowledge

Semantic
imprecision

Machine
imprecision

Implementation
effort

Probabilistic ◗ ❍ ● High
Fuzzy Logic ❍ ◗ ◗ Medium
Certainty Factors ◗ ❍ ● Low
Machine learning ● ❍ ● High

From the comparison presented in the Table 1 we choose certainty factors as the best
method for modeling most common uncertainty in mobile context-aware systems that
are: uncertainty due to lack of knowledge and lack of precision. Certainty factors cope
well with these uncertainties and are easy to design and implement. What is more, to-
gether with rules they can be easily understood and modified by the user, which is one

160 S. Bobek and G.J. Nalepa

of the most important features in nowadays user-centric intelligible systems. Therefore
the primary motivation for this work was to incorporate modified certainty factor al-
gebra into a logic-based knowledge representation called XTT2 in a way that fits best
the mobile environment requirements. These are defined as: ability to adapt to dynam-
ically changing context and ability for handling uncertainties caused by the lack of
knowledge and lack of precision. We decided to use XTT2 rule-based knowledge rep-
resentation [15], as it is used by the HeaRTDroid – a prototype of a lightweight rule
inference engine dedicated for mobile devices [16]. These required us to 1) incorporate
certainty factors handling in ALSV(FD) logic which is the foundation of rule repre-
sentation used in XTT2, 2) provide dynamic adaptation of certainty factors, both at the
ALSV(FD) formulae level and on the rule representation level, 3) propose inference
strategy that will allow for making decisions under uncertainty. The following sections
describe in details the results of our research.

3 Applying Certainty Factors to ALSV(FD) Logic

Certainty factors (CF) are one of the most popular methods for handling uncertainty in
rule-based expert systems. However, for a long time they were under strong criticism
regarding lack of theoretical background and the assumption of independence of con-
ditions for rules of the same conclusion which not always hold [10]. As a response to
these, the Stanford Modified Certainty Factors Algebra was proposed [20]. It accommo-
dated two types of rules with the same conclusion: cumulative rules (with independent
list of conditions) and disjunctive rules (with dependent list of conditions). As it will be
shown in this section, this makes the certainty factors fit ALSV(FD) logic generalised
and simple attributes.

The basic elements of the language of Attribute Logic with Set Values over Finite
Domains (ALSV(FD) for short) are attribute names and attribute values. There are two
attributes types: simple which allows the attribute to take a single value at a time, and
generalized that allows the attribute to take set values. The values that every attribute
can take are limited by their domains. For the purpose of further discussion let’s assume
that: Ai represents some arbitrarily chosen attribute, Di is a domain of this attribute,
and Vi represents a subset of values from domain Di, where di ∈ Vi. Therefore we can
define a valid ALSV(FD) formula as Ai ∝ di for simple attributes, where ∝ is one of
the operators from set =, �=,∈, �∈ and Ai ∝ Vi for generalized attributes, where ∝ is
one of the operators from set =, �=,∼, �∼,⊂,⊃.

3.1 Certainty Factors Algebra

Rule in CF algebra is represented according to formula:

condition1 ∧ condition2 ∧ . . . ∧ conditionk → conclusion (1)

Each of the elements of the formulae from equation (1) can have assigned a certainty
factor cf(element) ∈ [−1; 1] where 1 means that the element is absolutely true; 0
denotes element about which nothing can be said with any degree of certainty; −1

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems 161

denotes an element, which is absolutely false. The CF of the conditional part of a rule
is determined by the formulae:

cf(condition1 ∧ . . . ∧ conditionk) = min
i∈1...k

cf(conditioni)

The CF of conclusion C of a single i-th rule is calculated according to a formula:

cfi(C) = cf(condition1 ∧ . . . ∧ conditionk) ∗ cf(rule) (2)

The cf(rule) defines a certainty of a rule which is a measure of the extent, to which
the rule is considered to be true. It is instantiated by the rule designer, or it comes from
a learning algorithm (like for instance an association rule mining algorithms). Major
departure from the traditional Stanford Certainty Factor Algebra [4] is an attempt to
remove the major objection raised against it concerning conditional dependency of rules
with the same conclusions. To address this issue, rules with the same conclusions were
divided into two groups: cumulative ans disjunctive. Cumulative rules have the same
conclusions and have independent conditions (i.e. value of any of the conditions does
not determine values of other rules conditions). The formula for calculating the certainty
factor of the combination of two cumulative rules is given in (3).

cf(C) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cfi(C) + cfj(C) − cfi(C) ∗ cfj(C) if cfi(C) ≥ 0, cfj(C) ≥ 0

cfi(C) + cfj(C) + cfi(C) ∗ cfj(C) if cfi(C) ≤ 0, cfj(C) ≤ 0

cfi(C)+cfj(C))
1−min {|cfi(C)|,|cfj(C)|} if cfi(C)cfj(C) �∈ {−1, 0}

(3)

Disjunctive rules have the same conclusions but are conditionally dependent (i.e. value
of any of the conditions determine values of other rules conditions).

The equation for calculating certainty factor of a disjunctive rule is presented in (4).

cf(C) = max
i∈1...k

{cfi(C)} (4)

The calculation of the CF for the rules are performed incrementally. This means that
for instance for a pair of rules i− th and i− th+ 1, there is calculated certainty factor
cfk(C) that later is taken into the equation (3) or (4) together with rule i − th + 2 to
calculate cfk+1(C).

3.2 Certainty Factors in ALSV(FD) Formulae

Every ALSV(FD) formula is a logical expression that can be either true or false ac-
cording to a value of an attribute in consideration. We can therefore translate every
ALSV(FD) formula as a conjunction or alternative of equality formulae. In particular
the formula Ai ∈ Vi can be translated into a form:

(Ai = V 0
i) ∨ (Ai = V 1

i) ∨ . . . ∨ (Ai = V k
i) (5)

162 S. Bobek and G.J. Nalepa

where the V k
i is a k-th element from a subset Vi of domain Di, and Ai is a simple

attribute. On the other hand, for the general attributes Ai, the formulae of a form Ai ∼
Vi can be translated into:

(A0
i ∈ Vi) ∨ (A1

i ∈ Vi) ∨ . . . ∨ (Ak
i ∈ Vi) (6)

where Ak
i is a k-th element of a set representing by the general attribute Ai. This formula

can be further recursively rewritten as a conjunction of formulaes from equation (5).
Similarly we can continue for every formula in the ALSV(FD) logic. Such a nota-

tion allows us to use certainty factors algebra for evaluating the formulae for uncertain
attributes values, treating these formulae as a set of cumulative or disjunctive rules. In
particular, we can represent the alternative of equality formulae from equation (5), as a
set of logical rules of a form:

(Ai = V 0
i)→ Satisfied

(Ai = V 1
i)→ Satisfied

. . .

(Ai = V k
i)→ Satisfied

(7)

Every rule CF is assigned a value 1 for simplicity, so the certainty of a formula is
determined by the certainty of conditional expressions on the left hand side. The rules
are disjunctive, as the value of Ai can be only one (as it is simple attribute), hence
the equation (4) applies to this. On the other hand, rule interpretation of formulae (6)
generates a set of cumulative rules, as the attribute Ai can take multiple values that
do not depend on each other, and hence the equation (3) applies to this case. Real-life
examples of these transformations were given in Section 4.

What is more, when dealing with logic that operates finite domains, the negative
certainty factors may be as valuable as the positive ones. Let us consider the example
from equation (7). Assuming that V

′
i = Di \ Vi, we can add additional rule to the

equation, that will cover the false cases of the ALSV(FD) fromula Ai ∈ Vi:

(Ai �= V
′0
i) ∧ (Ai �= V

′1
i) ∧ . . . ∧ (Ai �= V

′l
i)→ Satisfied (8)

Supposing that we have no positive certainty on the value of attribute Ai, but we
know which of the values the attribute does not take for sure, we can notice the depen-
dence below: (

cf(Ai = V
′l
i) = −1

)
⇒

(
cf(Ai �= V

′l
i) = 1

)

The formula above can now be applied together with rule from equation (8) to infer the
certainty factor of the ALSV(FD) formulae in consideration.

3.3 Modeling the Dynamics of Certainty Factors

In many context-aware systems that operate in highly dynamic environments, once ob-
served data cannot be treated as certain for unlimited period of time. For instance user
activity observed five minutes ago, may not be certain right now. Therefore, adding ex-
piration time to attributes values can improve uncertainty handling in case of lack of

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems 163

data. The expiration time may be assigned to the attribute in a form of a function over
time that decreases certainty factor of an attribute value. Let us consider the expiration
time for a value of attribute A to be defined as expiration(A). The simplest expiration
time function may be defined as a linear function, that decreases certainty factor of an
attribute value over time down to a zero:

cf(V,Δt) =

{
cf(V) ∗ expiration(A)−Δt

expiration(A) if Δt ≤ expiration(A)

0 otherwise

where Δt is a difference between the current time and the time when the value V of the
attribute A was observed. Different attribute types may have different expiration time
functions assigned. Expiration time may be assigned arbitrarily by the system designer
in cases when the attribute expiration time is not influenced by the environment dynam-
ics. In other cases, the expiration time function should be dynamically adjusted with
respect to the environment dynamics.

Fig. 1. Dynamics of a location sensor over time [3]

Such a functionality can be achieved with learning middleware approach [3]. Learn-
ing middleware is a system that uses linear regression to learn sensors usage patterns
from historical data. It automatically generates a model of sensor activity which can be
used to dynamically modify the expiration time for the attributes values.

Figure 1 shows the exemplary GPS sensor usage pattern obtained by the learning
middleware. The curve describes the probability of the sensor change its reading in
particular point of time. We can define this probability as a dynamics of the attribute. Let
us consider expiration time for a value of an attribute A to be defined as expiration(A),
and the dynamics of an attribute value over time obtained from the learning middleware
to be defined as dynamic(A, t), where dynamic(A, t) ∈ [0; 1]. We can now define the
dynamic expiration time of an attribute A as

expiration(A, t) = expiration(A) ∗ (1− dynamic(A, t))

This will allow to shorten the expiration time in cases where there is a high prob-
ability, that the value of the sensor will change, and leave the long expiration time in
cases where there is a very low probability that the value of the sensor will change (i.e.
location at night).

164 S. Bobek and G.J. Nalepa

One of the main disadvantages of the learning middleware is that it needs time and
data to learn sensor dynamics. The other approach that allows to discover sensor dy-
namics is based on the entropy of previous n readings. The entropy is a measure of
amount of uncertainty in the data. It can be calculated according to the equation below:

entropy(A, n) = −
∑
x∈X

x

n
log2

x

n

where X is a set of all different readings, and x
n is a proportion of the number of read-

ings such that A = x to total number of readings taken into consideration. Assuming
that n = 4 and we have following readings from GPS sensor: still, still, moving, mov-
ing, the entropy of this data equals 1, because we have equal number of still and moving
readings. This is equivalent for high dynamics of data. However, if the readings from the
sensor looks as follows still, still, still, still, the entropy equals 0, which is an equivalent
for low dynamics of data. The expiration dime can be therefore determined according
to the equation:

expiration(A, n) = expiration(A) ∗ (−log2
1

n
− entropy(A, n))

4 Applying Certainty Factors to XTT2 Tables

The certainty factor handling mechanism described in Section 3 operates on the level
of ALSV(FD) formulaes, which are foundation of the rule-based knowledge represen-
tation called eXtended Tabular Trees [18] version 2 (XTT2 for short). An XTT2 rule is
of the form:

(condition1) ∧ (condition2) ∧ . . . (conditionn) −→ RHS

where conditioni is one of the admissible ALSV(FD) logic formulaes, and RHS is
the right-hand side of the rule covering conclusions. In practice the conclusions are
restricted to assigning new attribute values, thus changing the system state. Similar
rules are grouped within separated tables, and the system is split into such tables linked
by arrows representing the control strategy. An example of XTT2 table is presented in
Figure 2. It describes a fragment of a context-aware recommendation system, that based
on the user activity, weather and user profile suggests nearby points of interests.

Fig. 2. Example of XTT2 table with uncertain data

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems 165

The system consists of three simple attributes: weather, activity and poi, and one
generalized attribute: user_profile. Let consider, that we know that there is going to be
sunny weather with certainty 0.3, cloudy with 0.1, and rainy with 0.6. The user selected
that he is interested in suggestions about places for eating in 60%, culture in 20%,
entertainment in 80% and sightseeing in 20%. User may be independently interested
in different recommendations, hence the values are trated as disjoint and the sum does
not have to be equal 100%. We also have an information from the activity recognition
sensor that the user have been recently walking with certainty 0.8, running with 0.1
certainty and driving with certainty 0.1. Having this information we can now calculate
certainty factors for every rule conditions. We use equation (4) (disjunctive rules) to
simple attributes, and equation (3) (cumulative rules) to generalized attributes.

After calculation we should get the results presented in Table 2. The last column
shows the certainty of a conclusion of a rule calculated according to the equation (2).
From the calculations we see that we should suggest user either indoor-eating places
or theaters and cinemas, because both have the highest certainty factors. We have no
knowledge on which of these two suggestions should have a greater priority, because
the certainty factors for all the rules were assigned 1 for simplicity. This however can
be changed in the future by taking into consideration user feedback. If the user decides
that a better suggestion would be the theaters and cinema, the certainty factor of rule
producing this conclusion should be increased (if possible) and the certainty factors of
remaining rules can be decreased. This will allow the to make better decisions in the
future, when the system faces the same or similar situation.

Table 2. The certainty factors for rules presented in figure 2

(?) weather (?) user_profile (?) activity cf(conditions) cf(rule) cf(conclusion)
0.3 0.6 0.8 0.3 1 0.3
0.6 0.6 0.8 0.6 1 0.6
0.6 0.6 0.1 0.1 1 0.1
0.6 0.84 0.8 0.6 1 0.6
0.6 0.36 0.8 0.36 1 0.36
0.3 0.36 0.8 0.3 1 0.3

5 Summary and Future Work

In this paper we presented an approach for the uncertainty handling in mobile context-
aware environments. We provided comparison of application of different uncertainty
modeling approaches to this class of systems and chose one that best fits requirements
of such environment. These requirements were defined as ability to adapt to dynam-
ically changing context and ability for handling uncertainties caused by the lack of
knowledge and lack of precision. Based on the comparison of capabilities of different
uncertainty handling mechanisms we decided to use certainty factors. We provided a
solution that allows to bind this formalism with ALSV(FD) logic and XTT2 rule-based
representation that are used by the HeaRTDroid inference engine dedicated for mobile

166 S. Bobek and G.J. Nalepa

platforms. We also described two approaches that allow for automatic adaptation of
certainty factors values with respect to dynamically changing context.

As a future work we plan to implement and evaluate the certainty factor based ap-
proach described in this paper in HeaRTDroid 1 inference engine. We also plan to use
mediation techniques [7] to collect feedback from users and modify certainty factors
of XTT2 rules, so they can better fit user preferences. What is more, we would like to
compare the approach presented in this paper with a solution that is based on Bayesian
networks. Although certainty factors algebra copes very well with uncertainties on the
ALSV(FD) level, we believe that it can be successfully replaced by the probabilistic
approach on he XTT2 tables level. The XTT2 tables can be interpreted as a tabular
conditional probability distributions (CPDs), where the CPDs are learned from statisti-
cal analysis of the system performance. The XTT tablesh can be connected to form a
graph, which also can be easily translated into Bayesian network without the necessity
of redesigning the knowledge base.

References

1. Almeida, A., Lopez-de Ipina, D.: Assessing ambiguity of context data in intelligent envi-
ronments: Towards a more reliable context managing systems. Sensors 12(4), 4934–4951
(2012)

2. Benerecetti, M., Bouquet, P., Bonifacio, M., Italia, A.A.: Distributed context-aware systems
(2001)

3. Bobek, S., Porzycki, K., Nalepa, G.J.: Learning sensors usage patterns in mobile context-
aware systems. In: Proceedings of the FedCSIS 2013 Conference, pp. 993–998. IEEE,
Krakow (2013)

4. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experiments of
the Stanford Heuristic Programming Project. The Addison-Wesley Series in Artificial Intel-
ligence. Addison-Wesley Longman Publishing Co., Inc, Boston (1984)

5. Bui, H.H., Venkatesh, S., West, G.: Tracking and surveillance in wide-area spatial environ-
ments using the abstract hidden markov model. Intl. J. of Pattern Rec. and AI 15 (2001)

6. Chen, H., Finin, T.W., Joshi, A.: Semantic web in the context broker architecture. In: Per-
Com, pp. 277–286. IEEE Computer Society (2004)

7. Dey, A.K., Mankoff, J.: Designing mediation for context-aware applications. ACM Trans.
Comput.-Hum. Interact. 12(1), 53–80 (2005)

8. Fenza, G., Furno, D., Loia, V.: Hybrid approach for context-aware service discovery in
healthcare domain. J. Comput. Syst. Sci. 78(4), 1232–1247 (2012)

9. Hao, Q., Lu, T.: Context modeling and reasoning based on certainty factor. In: Asia-Pacific
Conference on Computational Intelligence and Industrial Applications, PACIIA 2009, vol. 2,
pp. 38–41 (November 2009)

10. Heckerman, D.: Probabilistic interpretations for mycin’s certainty factors. In: Proceedings of
the First Conference Annual Conference on Uncertainty in Artificial Intelligence, UAI 1985,
pp. 9–20. AUAI Press, Corvallis (1985)

11. Hu, H.: ContextTorrent: A Context Provisioning Framewrok for Pervasive Applications. Uni-
versity of Hong Kong (2011)

12. van Kasteren, T., Kröse, B.: Bayesian activity recognition in residence for elders. In: 3rd IET
International Conference on Intelligent Environments, IE 2007, pp. 209–212 (2007)

1 See http://bitbucket.org/sbobek/heartdroid/overview

http://bitbucket.org/sbobek/heartdroid/overview

Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems 167

13. Kjaer, K.E.: A survey of context-aware middleware. In: Proceedings of the 25th Conference
on IASTED International Multi-Conference: Software Engineering, SE 2007, pp. 148–155.
ACTA Press (2007)

14. Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing: Learning
context-dependent personal preferences from a wearable sensor array. IEEE Transactions
on Mobile Computing 5(2), 113–127 (2006)

15. Ligęza, A., Nalepa, G.J.: A study of methodological issues in design and development of
rule-based systems: Proposal of a new approach. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery 1(2), 117–137 (2011)

16. Nalepa, G.J., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized
rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) RuleML 2011 - Europe.
LNCS, vol. 6826, pp. 305–312. Springer, Heidelberg (2011)

17. Nalepa, G.J., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices.
Computer Science and Information Systems 11(1), 171–193 (2014)

18. Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2
method. International Journal on Artificial Intelligence Tools 20(6), 1107–1125 (2011)

19. Niederliński, A.: rmes, Rule- and Model-Based Expert Systems. Jacek Skalmierski Com-
puter Studio (2008)

20. Parsaye, K., Chignell, M.: Expert systems for experts / Kamran Parsaye, Mark Chignell.
Wiley, New York (1988)

21. Parsons, S., Hunter, A.: A review of uncertainty handling formalisms. In: Hunter, A., Par-
sons, S. (eds.) Applications of Uncertainty Formalisms. LNCS (LNAI), vol. 1455, pp. 8–37.
Springer, Heidelberg (1998)

22. Yuan, B., Herbert, J.: Fuzzy cara - a fuzzy-based context reasoning system for pervasive
healthcare. Procedia CS 10, 357–365 (2012)

The Hardness of Revising Defeasible Preferences

Guido Governatori1,3,4, Francesco Olivieri1,2,3, Simone Scannapieco1,2,3,
and Matteo Cristani2

1 NICTA, Queensland Research Laboratory, Australia�
2 Department of Computer Science, University of Verona, Italy

3 Institute for Integrated and Intelligent Systems, Griffith University, Australia
4 Queensland University of Technology, Australia

Abstract. Non-monotonic reasoning typically deals with three kinds of knowl-
edge. Facts are meant to describe immutable statements of the environment. Rules
define relationships among elements. Lastly, an ordering among the rules, in the
form of a superiority relation, establishes the relative strength of rules. To revise
a non-monotonic theory, we can change either one of these three elements. We
prove that the problem of revising a non-monotonic theory by only changing the
superiority relation is a NP-complete problem.

1 Introduction

Preferences are a powerful tool agents use to make decisions. Given a knowledge base,
agents are able to set an (partial) ordering among the elements of such a base by stating
that they prefer an element better than another.

The number of possible applications of preferences is vast. Given a goal and a set
of actions, an agent can choose a particular course of action instead of another in order
to achieve the goal. Even in many legal contexts, where the agent typically has neither
the power to change the normative system, nor to decide what norms are effective, the
agent may argue that one norm applies instead of another. This case is peculiar: we have
two norms (rules) stating opposite conclusions, but the apparent conflict can be solved
through the preference mechanism.

Through the years, non-monotonic reasoning has been advanced for reasoning with
partial, and possibly conflicting information. Settled in the context of logics represent-
ing non-monotonic reasoning, we usually deal with three types of knowledge. First, we
have facts. Facts are meant to describe simple pieces of information which are consid-
ered to be always true in the environment the agent acts in. Then we have rules. A rule
describes how given elements interact with each other in order to obtain some conclu-
sions. Lastly, we have a mechanism to solve conflicts (we assume to work within a skep-
tical system). Typically, this is presented in the form of a binary relation among pairs of
rules. Such a superiority (or preference) relation states a (partial) ordering among the
rules: when two rules for opposite conclusions are “applicable” at the same time, the
superiority relation solves the conflict in favour of one conclusion upon the other. In
fact, the superiority relation expresses more than that; it actually reflects preferences of

� NICTA is funded by the Australian Government as represented by the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence program.

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 168–177, 2014.
c© Springer International Publishing Switzerland 2014

The Hardness of Revising Defeasible Preferences 169

the agent on the inner structure of the theory, becoming a fundamental mechanism in
many real life scenarios. In this paper we use Defeasible Logic, as presented in [4], to
formally encode facts, rules and the superiority relation.

Naturally, there is more. The information at hand may change and when this hap-
pens, we need to revise our knowledge base or theory. Much work has been done to
understand either how to properly change a theory, or which conditions the “new the-
ory” should meet. When updating the knowledge base of a defeasible theory, revising
operators may act on either one of the three constitutive elements, being that the facts,
the rules [1], the superiority relation, or a combination of those.

Revising facts can be seen as changing the operational environment, or just sim-
ply examining a different factual scenario on which rules and the superiority relation
are applied to. In a legal proceedings this corresponds to change the evidence of the
case. Changing rules expresses the ability in adding and/or removing the dependencies
among the atoms of the theory. In a legal setting this means to create, delete or modify
some norms. Finally, there are some contexts where the above two approaches are not
possible and the only solution left is to change the relative strength between pairs of
rules. Always referring to legal systems, this may be the case in situations like that of
an average citizen appealing to a court. He has no power to change the Law, and has
no power on what norms are effective in the jurisdiction he is situated in. These powers
instead are reserved to persons, entities and institutions specifically designated to do
so, for example the parliament and, under some given constraints, also by judges (in
Common Law juridical system, especially). However, a citizen can argue that one norm
takes precedence over another in a specific case. This amounts to saying that one norm
is to be preferred to the other in the case.

The main results of the present paper come from a thorough investigation on revising
a defeasible theory where only changing the superiority relation is allowed. [2,3] study
“patterns”, or conditions, on the elements of a defeasible theory that would distinguish
situations where a revision is possible, against situations where it is not. Scope of this
investigation is to make a step further. We prove that the problem of revising a theory
by only changing the superiority relation is NP-complete.

The structure of the paper is as follows. In Section 2 we recall the basics of Defeasi-
ble Logic and we introduce the notion of what means for a formula to be “tautological”
in the context of revision in Defeasible Logic, where revision operations are limited to
the superiority relation. In Section 3 we formally set up the decision problem related to
the type of revision we are interested in this paper. We conclude the paper in Section 4
with a summary and a discussion of some related work and possible future work.

2 Defeasible Logic

We shall describe the structure of a defeasible theory, and proceed by reporting defini-
tions of a theory based on a specific set of rules, of a theory being decisive (along with
two preliminary results), and of a literal being tautological. Admittedly, this section is
dense but such are the necessary means to prove the NP-completeness result of the next
section.

A defeasible theory consists of five different kinds of knowledge: facts, strict rules,
defeasible rules, defeaters, and a superiority relation [4].

170 G. Governatori et al.

Let PROP be a set of propositional atoms, Lbl be a set of arbitrary labels. The set
Lit = PROP∪{¬p|p ∈ PROP} denotes the set of literals. The complement of a literal q
is denoted by ∼q; if q is a positive literal p, then ∼q is ¬p, and if q is a negative literal
¬p then ∼q is p.

Definition 1. A defeasible theory D is a structure (F,R,>), where

1. F ⊆ Lit denote simple pieces of information that are considered always to be true.
For example, a fact is that “Sylvester is a cat”, formally cat(Sylvester);

2. R contains three types of rules: strict rules, defeasible rules, and defeaters.
3. >⊆ R×R is a binary relation whose transitive closure is acyclic.

A theory is finite if the set of facts and rules are finite.

A rule is an expression r : A(r) ↪→ C(r) and consists of: (i) A unique name r ∈
Lbl, (ii) the antecedent A(r) which is a finite subset of Lit, (iii) an arrow ↪→ ∈ {→
,⇒,�} denoting, respectively, a strict rule, a defeasible rule and a defeater, and (iv)
its consequent (or head) C(r) ∈ Lit, which is a single literal. A strict rule is a rule in
which whenever the premises are indisputable (e.g., facts), then so is the conclusion.
For example,

cat(X)→mammal(X)

means that “every cat is a mammal”. On the other hand, a defeasible rule is a rule that
can be defeated by contrary evidence; for example, “cats typically eat birds”:

cat(X)⇒ eatBirds(X).

The underlying idea is that if we know that something is a cat, then we may conclude
that it eats birds, unless there is evidence proving otherwise. Defeaters are rules that
cannot be used to draw any conclusion. Their only use is to prevent some conclusions,
i.e., to defeat defeasible rules by producing evidence to the contrary. An example is “if
a cat has just fed itself, then it might not eat birds”:

justFed(X)� ¬eatBirds(X).

The superiority relation > among rules is used to define where one rule may override
the (opposite) conclusion of another one, e.g., given the defeasible rules

r : cat(X)⇒ eatBirds(X)

r′ : domesticCat(X)⇒ ¬eatBirds(X)

which would contradict one another if Sylvester is both a cat and a domestic cat, they do
not in fact contradict if we state that r′ wins against r, leading to conclude that Sylvester
does not to eat birds.

Like in [4], we consider only a propositional version of this logic, and we do not take
into account function symbols. Every expression with variables represents the finite set
of its variable-free instances.

We use the infix notation r > s to mean that (r,s) ∈>. The set of strict rules in R is
denoted by Rs, and the set of strict and defeasible rules by Rsd. We name R[q] the set of
rules in R whose head is q. A conclusion of D is a tagged literal and can have one of the
following forms:

The Hardness of Revising Defeasible Preferences 171

– +Δq, which means that q is definitely provable in D, i.e., there is a definite proof
for q, that is a proof using facts, and strict rules only;

– −Δq, which means that q is definitely not provable, or refuted, in D (i.e., a definite
proof for q does not exist);

– +∂q, which means that q is defeasibly provable in D;
– −∂q, which means that q is not defeasibly provable, or refuted, in D.

Given a defeasible theory D, a proof P of length n in D is a finite sequence P(1), . . . ,P(n)
of tagged literals of the type +Δq, −Δq, +∂q and −∂q, where the proof conditions
defined in the rest of this section hold. P(1..n) denotes the first n steps of proof P.

Given # ∈ {Δ ,∂} and a proof P in D, a literal q is #-provable in D if there is a line
P(m) of P such that P(m) = +#q. A literal q is #-refuted in D if there is a line P(m) of
P such that P(m) =−#q.

The definition of Δ describes just forward chaining of strict rules.

+Δ : If P(n+ 1) = +Δq then
(1) q ∈ F or
(2) ∃r ∈ Rs[q]∀a ∈ A(r) : +Δa ∈ P(1..n).

Literal q is definitely provable if either (1) is a fact, or (2) there is a strict rule for q,
whose antecedents have all been definitely proved.

−Δ : If P(n+ 1) =−Δq then
(1) q /∈ F and
(2) ∀r ∈ Rs[q]∃a ∈ A(r) :−Δa ∈ P(1..n).

Literal q cannot be definitely proven (−Δq) if (1) is not a fact and (2) every strict rule
for q has at least one definitely refuted antecedent.

The following definition states notions of being applicable and discarded.

Definition 2. In the proof condition for±∂ , a rule r ∈ Rsd is (i) applicable iff ∀a∈ A(r),
+∂a ∈ P(1..n); (ii) discarded iff ∃a ∈ A(r) such that −∂a ∈ P(1..n).

We now introduce the proof conditions to show that a literal is defeasibly provable.

+∂ : If P(n+ 1) = +∂q then
(1) +Δq ∈ P(1..n) or
(2) (2.1) −Δ∼q ∈ P(1..n) and

(2.2) ∃r ∈ Rsd[q] s.t. r is applicable, and
(2.3) ∀s ∈ R[∼q]. either s is discarded, or

(2.3.1) ∃t ∈ R[q] s.t. t is applicable and t > s.

Literal q is defeasibly provable if (1) q is already definitely provable, or (2) we argue
using the defeasible part of the theory. For (2), ∼q is not definitely provable (2.1), and
there exists an applicable strict or defeasible rule for q (2.2). Every attack s is either
discarded (2.3), or defeated by a stronger rule t (2.3.1).

On the other hand, to prove the a literal is defeasibly refuted (−∂) we have to show
that all possible ways to prove it fail. This is encoded by the following proof conditions
that correspond to a constructive negation of the conditions for +∂ .

172 G. Governatori et al.

−∂ : If P(n+ 1) =−∂q then
(1) −Δq ∈ P(1..n) and either
(2) (2.1) +Δ∼q ∈ P(1..n) or

(2.2) ∀r ∈ Rsd[q]. either r is discarded, or
(2.3) ∃s ∈ R[∼q] s.t. s is applicable, and

(2.3.1) ∀t ∈ R[q]. either t is discarded, or t �> s.

As usual, given #∈ {Δ ,∂}, a literal p and a theory D, we use D �±#p to denote that
there is a proof P in D where for some line i, P(i) = ±#p. Alternatively, we say that
±#p holds in D, or simply ±#p holds when the theory is clear from the context. The
set of positive and negative conclusions is called extension. Formally,

Definition 3. Given a defeasible theory D, the (defeasible) extension of D is defined as
E(D) = (+Δ ,−Δ ,+∂ ,−∂), where±# = {l : l appears in D and D �±#l}, #∈ {Δ ,∂}.

The inference mechanism of DL does not allow to derive inconsistencies unless the
monotonic part of the logic is inconsistent, as clarified by the following definition.

Definition 4. A defeasible theory D is inconsistent iff there exists a literal p such that
((D �+∂ p and D �+∂∼p) iff (D �+Δ p and D �+Δ∼p)).

In the rest of the paper, we shall make use neither of strict rules, nor defeaters. The
restriction does not result in any loss of generality: (1) the superiority relation does not
play any role in proving definite conclusions, and (2) for defeasible conclusions [4]
proves that it is always possible to remove (a) strict rules from the superiority relation
and (b) defeaters from the theory to obtain an equivalent theory without defeaters and
where the strict rules are not involved in the superiority relation. A consequence of this
assumption is that the theories we work with in this paper are consistent.

Before reporting the transformation used in the proof of NP-completeness, we need
to introduce some additional terminology. Definition 5 constructs a defeasible theory
starting from a fixed set of rules and an empty set of facts. This formulation limits the
revision problem to preference changes, notwithstanding the particular instance of the
superiority relation.

Definition 5. Given a set of defeasible rules R, a defeasible theory D is based on R iff

D = (/0,R,>).

The aim of Definition 6 is to specify the possible relationships between a literal and
all theories based on a set of rules R.

Definition 6. Given a set of defeasible rules R, a literal p is

1. >-R-tautological iff for all theories D based on R, D �+∂ p.
2. >-R-non-tautological iff there exists a theory D based on R such that D ��+∂ p.
3. >-R-refutable iff there exists a theory D based on R such that D � −∂ p.
4. >-R-irrefutable iff for all theories D based on R, D �� −∂ p.

The notion of>-R-irrefutable represents the negative counterpart of>-R-tautological;
the same holds for >-R-refutable and >-R-non-tautological.

The Hardness of Revising Defeasible Preferences 173

If p is >-R-tautological, then, in every theory based on the set of rules R, an instance
of the superiority relation such that p is defeasibly refuted does not exist. Accordingly,
if a literal is >-R-tautological, then we cannot revise it.

On the contrary, if an instance of the superiority relation where p is no longer prov-
able exists, then p is >-R-refutable.

Definition 7. A defeasible theory D is decisive iff for every literal p in D either D �
+∂ p, or D � −∂ p.

Proposition 8 ([6]). Given a defeasible theory D, if the atom dependency graph of D
is acyclic, then D is decisive.

3 Computational Cost Analysis

The processes of revising a defeasible theory by modifying only the superiority relation
was first analysed in [2]. The focus of this section is to show that deciding whether such
a revision is possible is NP-complete. To this end, we provide a reduction from 3-SAT
to the following decision problem.

INSTANCE: A decisive defeasible theory D based on R, i.e., D = (/0,R,>), and
a literal p.
QUESTION: Is it possible to change > into >′ such that D′ = (/0,R,>′) and
either

1. If D �+∂ p, then D′ � −∂ p?
2. If D � −∂ p, then D′ �+∂ p?

Definition 9 below exhibits a transformation from a 3-SAT formula into a set of defea-
sible rules.

Definition 9. Given a 3-SAT formula Γ =
∧n

i=1 Ci such that Ci =
∨3

j=1 ai
j, we define

the Γ -transformation as the operation that maps Γ into the following set of defeasible
rules

RΓ = {ra
i j : ⇒ ai

j

ri j : ai
j ⇒ ci

r∼i : ⇒∼ci

ri :∼ci ⇒ p}.

The above definition clearly shows that the mapping is polynomial in the number of
literals appearing in the 3-SAT formula Γ .

The third step of the proof construction is to ensure that the proposed mapping allows
the revision problem to give a correct answer (either positive, or negative) for every 3-
SAT formula.

Lemma 10. Any defeasible theory D based on RΓ of Definition 9 (for any Γ) is
decisive.

174 G. Governatori et al.

Proof. It is easy to verify by case inspection that the atom dependency graph is acyclic.

Proposition 8 and Lemma 10 guarantee that any theory obtained by the Γ -transformation
provides an answer. These results are also intended to establish relationships between
the notions of tautological and refutable given in Definition 6.

We shall now propose the main result of NP-completeness. First, we shall prove
that the revision problem is in NP. Second, we shall demonstrate the NP-hardness by
exploiting the formulation of the 3-SAT problem and the transformation proposed in
Definition 9.

Theorem 11. The problem of determining the revision of a defeasible literal by chang-
ing the preference relation is NP-complete.

Proof. The proof that the problem is in NP is straightforward. Given a defeasible theory
D = (F,R,>) and a literal p to be revised, an oracle guesses a revision (in terms of a
new preference relation >′ applied to D) and checks if the state of p has changed based
on the extensions of D and D′ = (F,R,>′). The complexity of this check is bound to
the calculus of E(D) and E(D′), which [7] proves to be linear in the order of the theory.

To prove the NP-hardness, given a 3-SAT formula Γ =
∧n

i=1Ci such that Ci =
∨3

j=1 ai
j,

a defeasible theory D based on the set of defeasible rules RΓ obtained by Γ -transfor-
mation, and a literal p in D, we show that:

1. if p is >-RΓ -tautological, then Γ is not satisfiable;
2. if p is >-RΓ -non-tautological, then Γ is satisfiable.

1. Lemma 10 allows us to reformulate the contrapositive using >-RΓ -refutable. If Γ is
satisfiable, then there exists an interpretation I such that

I � Γ ⇐⇒ I �
n∧

i=1

Ci

⇐⇒ I �C1 and . . . and I �Cn

⇐⇒ I �
3∨

j=1

a1
j and . . . and I �

3∨
j=1

an
j .

Thus, for each i, there exists j such that I � ai
j.

We build a defeasible theory D′ = (/0,RΓ ,>′) as follows. If there exists a literal bl
k

such that bl
k = ∼ai

j, then (ra
i j,r

b
lk) is in >′. It follows that, by construction, D′ proves

+∂ai
j. This means that every rule ri j is applicable and it is not weaker than the corre-

sponding rule r∼i. Hence, we have −∂∼ci, for all i. Consequently, each rule ri for p is
discarded and we conclude−∂ p. Accordingly, p is >-RΓ -refutable.

2. Again, by Lemma 10, every theory based on RΓ is decisive. Thus, p is >-RΓ -refutable.
Accordingly, there exists a theory D′ = (/0,RΓ ,>′) such that D′ � −∂ p. Given that
RΓ [p] �= /0 and RΓ [∼p] = /0 by construction, every rule for p is discarded. Namely, we
have −∂∼ci, for all i.

Each rule r∼i is vacuously applicable. To have−∂∼ci, there must exist a rule ri j that
is applicable. Therefore, for each i there is at least one j such that +∂ai

j.
We build an interpretation I as follows:

The Hardness of Revising Defeasible Preferences 175

I(ai
j) = 1 iff D �+∂ai

j.

Since for each 1 ≤ i ≤ n, we have I(ai
j) = 1 for at least one j, then also I �Ci for all i,

and we conclude that I � Γ .

In addition, Theorem 11 specifies that there are situations where it is not possible to
revise a literal by only using the superiority relation. For example, if we take a 3-SAT
formula which is a tautology, the Γ -transformation generates a theory that cannot be
revised only using the superiority relation.

Corollary 12. There are theories and literals for which a revision by only modifying
the superiority relation is not possible.

The notion itself of “being a tautology in defeasible logic” may assume unexpected
features. [3] provides a thorough characterisation of the problem where this is out of
the scope of the present paper, and as such is not reported here. Nonetheless, we give
the examples used in [3] to illustrate that finding patterns to determine whether a literal
is tautological – in the sense of a literal that is always in the positive extension of theory
based on a set of rules – is hard.

We following example shows a theory wherein literal p cannot be contracted by only
modifying the superiority relation.

Example 1. Let D be a consistent, defeasible theory based on R where

R = {⇒r1 l ⇒r2 ¬a
⇒r3 a ⇒r4 p
⇒r5 b ⇒r6 p

⇒r7 ¬l ⇒r8 ¬b}.

The rules above are depicted in a graphical way, where the subscripts attached to the
arrows are the rule labels, and rules are chained. Thus, for example a is the consequent
of r3 as well as the antecedent of r4.

To contract p, we must block both the chains proving p, those being r3r4 and r5r6. In
order to do so, we should have that D �+∂ l as well as D �+∂¬l. This is not possible
being D consistent.

Unfortunately, recognising patterns as those shown in Example 1 does not guarantee
to identify literals that cannot be contracted. In fact, let us consider Example 2.

Example 2. Let D = (/0,R = {r1, . . . ,r18}, /0) be a defeasible theory where

R = { ⇒r1 a ⇒r2 p
⇒r3 b ⇒r4 p
⇒r5 c ⇒r6 p

⇒r7 l ⇒r8 ¬a
⇒r9 ¬l ⇒r10 ¬b
⇒r11 m ⇒r12 ¬b
⇒r13 ¬m⇒r14 ¬c
⇒r15 n ⇒r16 ¬c
⇒r17 ¬n ⇒r18 ¬a}.

176 G. Governatori et al.

To contract p, we must block derivations of +∂a, +∂b and +∂c. This can be ob-
tained by adding the following tuples to the superiority relation: (r7,r9), (r11,r13) and
(r15,r17).

This is a counter-example to the pattern proposed in Example 1 but, once again, there
are counter-examples to counter-examples (Example 3), and so on.

Example 3. Let D = (/0,R = {r1, . . . ,r25}, /0) be a defeasible theory where

⇒r19 e ⇒r20 p
⇒r21 f ⇒r22 p

n ⇒r23 ¬e
¬n ⇒r24 ¬ f
¬m⇒r25 ¬ f .

To contract p, we must now block derivations also of +∂e, and +∂ f . Derivation of e
can be blocked only if we prove the antecedent of r23, that is n (the derivation of c is
blocked as well). This implies that the derivation of f is blocked only if +∂¬m holds
(the only antecedent of rule r25). We can now operate only on the provability of either
l, or ¬l. In both cases, one between a or b cannot be refuted.

4 Summary and Related Works

We started this paper by setting the problem of preference revision within the non-
monotonic sceptical formalism of Defeasible Logic. After having introduced the logical
mechanism, we proved the main result of NP-completeness for the decisional version
of the problem. We have also proved that this type revision is not guaranteed to be
successful.

To the best of our knowledge, revision of non-monotonic theories based on modifica-
tions of the underlying superiority relation has been neglected so far. Even if preferences
have been widely studied in many different application areas (we cite, above others,
database management [8,9] and legal reasoning [10]), our analysis is the first formal
study to computationally characterise the problem of defeasible preference revision.

As far as we are aware of, the work most closely related to ours is that of [11], where
the authors study how to abduct preference relations to support the derivation of a spe-
cific conclusion in a given theory. Therefore, the problem they address is conceptually
different from what we presented in this paper, given that we focus on modifying an ex-
isting superiority relation instead of generating a new one that guarantees the derivation
of a specific conclusion.

In [8,9], authors present algorithms for computing minimal and preference-protecting
minimal contractions for finite as well as finitely representable preference relations.
Nevertheless, also this work has several dissimilarities with ours. First, they focus only
on contraction operators, and do not give a complexity analysis of preference revision in
general. Second, the analysis carried out is meant for applications where the preference
relation is required to be transitive and irreflexive (that is to say, a strict partial order).

As a matter of fact, our work comes full circle and show the computational limits of
revision in defeasible contexts. Revision based on change of factual knowledge, which

The Hardness of Revising Defeasible Preferences 177

essentially corresponds to an update operation, has been analysed in [12]. Other meth-
ods to revise, contract, or expand a defeasible theory were proposed in [1], studying
how to revise the belief set of a theory based on the introduction of new rules. It is easy
to verify that such revisions operates in polynomial time.

Preference handling in Defeasible Logic can gain much from typisation of prefer-
ences themselves. The notion of preference type and its algebraic structure has been
studied previously and can be applied directly here [13]. Analogously, one of the possi-
ble directions of generalisation for the notion of preference is the notion of partial order,
investigated at a combinatorial level by [14] and then studied from a computational
viewpoint in [15].

References

1. Billington, D., Antoniou, G., Governatori, G., Maher, M.: Revising nonmonotonic theories:
The case of defeasible logic. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI 1999.
LNCS (LNAI), vol. 1701, pp. 101–112. Springer, Heidelberg (1999)

2. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Superiority based revision of
defeasible theories. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 104–118. Springer, Heidelberg (2010)

3. Governatori, G., Olivieri, F., Scannapieco, S., Cristani, M.: Revision of defeasible logic pref-
erences. CoRR abs/1206.5833 (2012)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

5. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In: ECAI 2000, pp. 459–463 (2000)

6. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding defeasible logic into
logic programming. TPLP 6, 703–735 (2006)

7. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory and Practice of
Logic Programming 1, 691–711 (2001)

8. Mindolin, D., Chomicki, J.: Minimal contraction of preference relations. In: Fox, D., Gomes,
C.P. (eds.) AAAI, pp. 492–497. AAAI Press (2008)

9. Mindolin, D., Chomicki, J.: Contracting preference relations for database applications. Artif.
Intell. 175(7-8), 1092–1121 (2011)

10. Governatori, G., Rotolo, A., Olivieri, F., Scannapieco, S.: Legal contractions: a logical anal-
ysis. In: Francesconi, E., Verheij, B. (eds.) ICAIL, pp. 63–72. ACM (2013)

11. Inoue, K., Sakama, C.: Abducing priorities to derive intended conclusions. In: Dean, T. (ed.)
IJCAI, pp. 44–49. Morgan Kaufmann (1999)

12. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change.
Artificial Intelligence 52, 263–294 (1991)

13. Cristani, M.: Many-sorted preference relations. In: Fensel, D., Giunchiglia, F., McGuinness,
D.L., Williams, M.A. (eds.) KR, pp. 265–276. Morgan Kaufmann (2002)

14. Düntsch, I.: A microcomputer based system for small relation algebras. J. Symb. Comput. 18,
83–86 (1994)

15. Cristani, M., Hirsch, R.: The complexity of constraint satisfaction problems for small relation
algebras. Artif. Intell. 156, 177–196 (2004)

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 178–185, 2014.
© Springer International Publishing Switzerland 2014

From Guidelines to Practice: Improving Clinical Care
through Rule-Based Clinical Decision Support

at the Point of Care

Ayesha Aziz*, Salvador Rodriguez, and Chris Chatwin

School of Engineering and Informatics, University of Sussex, Brighton, UK
{a.aziz,salvador.rodriguez-loya,c.r.chatwin}@sussex.ac.uk

Abstract. Healthcare Information Technology (HIT) is a dynamically evolving
industry due to continuous advancements in healthcare technologies. This necessi-
tates the availability of highly dynamic applications that accommodate frequent
changes in business logic. The automation of Clinical Decision Support (CDS) in
particular is most liable to changes in health business logic or rules. In terms of sys-
tem’s architecture, there is a need to separate business logic and rules from the im-
plementation/functionality of the Electronic Health Record (EHR) application,
providing processes and rules as reusable components. We propose an architecture
utilizing rule-based technologies to facilitate Decision Support to promptly adapt
business logic changes, that are reflected immediately in application behavior. This
allows real-time and robust CDS for the physician at point of care. Our rule-based
implementation (Business Process Modelling Notation (BPMN)+Rules) was
successfully used to emulate Clinical workflows, using as an example, the NICE
Lung Cancer Clinical Guideline (CG121) as a test scenario.

Keywords: Rule Based Technology, Clinical Decision Support, Clinical Guide-
lines, Service Composite Architecture, BPMN.

1 Introduction

The implementation of Evidence based medical (EBM) practices at the point of care
confirms the best possible clinical care at low costs [1]. EBM encompasses best prac-
tice and standardization for clinical practice. These standards are based on scientific
evidence from the Medical literature, clinical trials and the latest research providing
the physician with adjudicated data to make informed decisions when formulating
patient-specific diagnosis and treatment strategies. A practical implementation of
EBM is Clinical Guidelines (CGs). Clinical practice guidelines (also called pathways)
assist a healthcare practitioner with managing individual patient conditions. CGs rep-
resent a health care procedure as a systematically developed process defining the
necessary information in a sequence guided by clinical rules that are appropriate for
specific patient needs. Guidelines promote interventions during clinical practice to
replace the use of inefficient medical practices with evidence-based practices to
improve clinical outcome.

* Corresponding author.

Improving Clinical Care through Rule-Based Clinical Decision Support at the Point of Care 179

Clinical Decision Support (CDS) has been described as one of the key enablers of
improved clinical outcomes. A decision support service (DSS) takes as an input the
patient data (problems, observations etc.) and yields patient-specific inferences as
output enabling a physician to make informed decisions at the point of care. [2] sug-
gest that a computerized CDS service can be beneficial if “decision support is pro-
vided automatically as part of clinician workflow”. Hence incorporating CDS
knowledge within a healthcare workflow can serve as a mechanism to assist a physi-
cian to make informed decisions. [3] identify challenges to implementing successful
CDS within the healthcare workflow. From an architectural point of view the follow-
ing two issues are critical, 1)Disseminate best practices in CDS design, development,
and implementation and 2) Create an architecture for sharing executable CDS mod-
ules and services. To disseminate best clinical practices integrated into a CDSs, clini-
cal guidelines have been incorporated into the CDS functionality of an application
used by a physician [4] [5] . Service Oriented Architecture provides a way to manage
CDS knowledge as reusable components that can be shared among disparate electron-
ic healthcare environments.

Rule-based systems are by far the most extensively utilized models for decision
making in CDSs. We have developed a framework for CDS knowledge representa-
tion, processing and execution following a rule-based approach. We propose an ar-
chitecture that maps clinical knowledge encapsulated in clinical guidelines to a work-
flow. Traditionally, a number of complex approaches have been adopted to express
clinical guidelines, for example, Arden Syntax1. The challenge using this approach is
that it is tightly coupled with underlying technologies and does not provide a graphi-
cal representation of CGs within a workflow. We have used BPMN to model a clini-
cal guideline. All the clinical knowledge embedded in the guideline has been
expressed as business processes (in this case, clinical processes and clinical rules).
The aim of this research is two-fold. Firstly, separate Clinical knowledge from EHRs.
We achieve this by expressing Clinical knowledge as rules. Secondly, enable shar-
able CDS knowledge. This is achieved by maintaining SCA Composite of the busi-
ness processes.

2 Methods and Tools

2.1 Methodology: Agile Business Rule Development Methodology

We have followed the Agile Business Rule Development Methodology (ABRD) for
this project [6]. This methodology consists of six iterative steps starting from Rule
Discovery to Rule Deployment as shown in Fig. 1. The iterative nature of this cycle
ensures that CDS knowledge encapsulated in the rules can be updated as needed.
Based on ABRD, we apply the following steps:

1. Harvesting: Identify the rules as reusable CDS knowledge components for a
clinical guideline.

1 http://www.hl7.org/Special/committees/arden/index.cfm

180 A. Aziz, S. Rodriguez, and C. Chatwin

2. Prototyping: Design a model to represents the rules as part of a clinical process
and validate the rules against the business logic they represent.
3. Building: Build executable rules, deploy the rules in a runtime environment, and
expose them as web services to be consumed by the requesting application.
4. Enhancing: Follow an iterative approach to modify existing rules and integrate
changes as they appear in a clinical scenario

Fig. 1. Agile Business Rules Development Methodology [6]

2.2 Architecture: Technologies and Standards

1. Service Component Architecture:
Service Component Architecture (SCA) is a “set of specifications which describe a
model for building applications and systems based upon SOA principles” [7]. In
our implementation, we define components representing a particular functionality
(in this case medical rules) . A component can either be independently exposed
through an external protocol or can be wired together by a process, (a clinical
guideline), in a way that is communication protocol neutral (Web Services, Java
Messaging Service, Enterprise Java Beans etc). The unit of deployment of SCA is
called an SCA Composite. An SCA composite can consist of components, services,
references, and wires that connect them together.

2. Tolven eCHR™:
To capture patient information and display CDS alerts, we used the EHR applica-
tion Tolven eCHR™ [8]. This EHR was selected given its user friendly interface to
record and display patient information . Secondly it is an open source platform that
allows interoperability with other applications.

3. Tolven Plugin:
In order to receive and send patient medical data, a Java EE based plugin was de-
veloped. This plugin interfaces with Tolven eCHR™, allowing it to receive patient
data, transform and validate it against vMR format and transfer the vMR as a web
service to be utilized for rules processing in the CDS Rules Service. After the rules
have been processed the plugin transfers the desired results (in this case, alerts)
back to the EHR.

Improving Clinical Care through Rule-Based Clinical Decision Support at the Point of Care 181

4. CDS Rules Service:
This framework is developed using open source tools and technologies as shown

in Fig.2. It includes JBoss jBPM2 workflow engine, JBoss Drools3 rules engine,
Apache Camel4 for message routing and Enterprise Service Bus Switchyard5.
SwitchYard pro-vides the SCA runtime and is the middleware that lies between
business applications and routes and transforms messages along the way [9] [10] .

Fig. 2. CDS Rules Processing Framework

5. Eclipse BPMN 2 Modeler:
We modelled the clinical guidelines as workflows using BPMN 2.0 [11], to graph-
ically represent the processes and rules in a medical workflow. The clinical work-
flow modelled using BPMN is shown in Fig. 3

6. HL7/OMG CDSs:
As a standard for CDS data communication and standard, we use the HL7/OMG
standard for clinical decision support. The HL7/OMG Clinical Decision Support
Service was designed to enable CDS services to be leveraged using a standard in-
terface [12]. It exposes the CDS functionality as a web service.

7. HL7 Virtual Medical Record (vMR):
The HL7 Virtual Medical Record (vMR)6 is specifically designed to enable map-
ping clinical data from EHR technologies for use in CDS. It is based on Health
Level Seven Inc. HL7 version 3. The version 3 classes encapsulate patient data in a
standardized manner. This data includes Patient demographics, problems, orders,
observations, medications and results [13].

2.3 Clinical Scenario for CDS

We have selected NICE UK’s Guideline “The diagnosis and treatment of Lung Can-
cer” (CG121) to test our CDS architecture solution [14]. The guideline provides a

2 http://jbpm.jboss.org/
3 http://drools.jboss.org/
4 http://camel.apache.org/
5 http://switchyard.jboss.org/
6 http://www.hl7.org/implement/standards/
product_brief.cfm?product_id=271

182 A. Aziz, S. Rodriguez, and C. Chatwin

sequence of actions that need to be performed by the physician in order to consider a
diagnosis for Lung Cancer. We test the initial symptoms of lung cancer by our CDS
service, and represent these symptoms as business rules in a workflow. After the rules
have been processed, we provide as a result, that is an alert to the physician for con-
sidering diagnosis of lung cancer as well as instructions for urgent Chest X-Ray im-
mediate referral. This result is displayed as an alert in the EHR. Fig. 3 shows a BPMN
representation of the guideline.

Fig. 3. BPMN Process for Diagnosis of Lung Cancer

2.4 The CDS Service Processing Steps

1. The process initiates as soon as new problems for a patient are entered in the
EHR by the physician, and the patient record is modified.

2. The Tolven plugin collects this patient data and transforms it into HL7 vMR
format.

3. The vMR is then sent as a CDS request to CDS Service . There is a verification
performed against the vMR standard conformance for the incoming request.

4. The problems list encapsulated in the vMR are converted into independent SCA
Components. The SCA Composite for Lung cancer guideline is shown in Fig.
4. There are two rules associated with this process. 1) Check Hemoptisis and 2)
Check Unexplained or Persistent Symptoms (this includes nine symptoms).
These components are wired together to a process called Lung Cancer Clinical
Guideline (NICE_Lung_Cancer_Clinical_Guideline). The CDS Rules Service
checks if either of these are represented as problems in the vMR. If either of
them is true, a message “Urgent Chest X-Ray and Immediate Referral” is gen-
erated and sent as a response to Tolven eCHR interface. This message is shown
as an alert to the Physician at the point of care. This message is displayed as an
alert to the Physician at the point of care as shown in Fig 5.

Improving Clinical Care throug

Fig. 4. S

Fig. 5. T

3 Results

3.1 Testing

According to the Clinical D
to be less than a second [1
LoadUI7, to measure the r
response times to test the s
and 60 simultaneous users
shown in Table 1.

Table 1. Ev

Time (min) No of Us
05.00 30
05.00 50
05.00 60

7 http://www.loadui.or

h Rule-Based Clinical Decision Support at the Point of Care

SCA Composite for Lung Cancer Guideline

Tolven eCHR user interface showing Alerts

Decision Support Consortium, an effective CDS service
15]. We have used the open source load testing softw
results of performance testing. We measured the serv
calability of the service. The service was tested for 30,
respectively for a period of five minutes. Our results

valuation testing results for CDS Rules Service

sers No of Requests Response Time (ms)
881 274
1504 567
1779 987

rg/

183

has
are,
vice
, 50
are

184 A. Aziz, S. Rodriguez, and C. Chatwin

3.2 Performance Evaluation

The average response time of our CDS service is less than a second with a maximum
of 60 users. If we increase the number of users and the number of simultaneous re-
quests, the response time is likely to increase. For managing a relatively small number
of requests, this service is suited for integration with an EHR for a small to medium
sized healthcare setting.

4 Discussion

We developed a standardized representation of the clinical rules by mapping the clini-
cal guideline as a healthcare workflow. Using BPMN to model clinical rules in a
guideline can specify the clinical knowledge that can serve as CDS capability within a
workflow as well as independently from the workflow model. Using standards such as
vMR, there is no need for separate EHRs to maintain proprietary structures for mes-
sages. Secondly, the java based interface plugin (Tolven Plugin) can validate any
incoming patient data against the vMR, hence promoting a standardized data format.
Our SCA composite for the Lung Cancer Diagnosis scenario can be exposed as a web
service for other clinical diagnosis scenarios. Every component in the composite can
act independently of one another and can be wired to other processes, thus allowing
reusability. Rule governance is to ensure efficient maintenance of all the processes
that are deployed as CDS services. This is achieved through assigning roles and re-
sponsibilities to members involved in the clinical scenario. These include rules author,
rule analyst, rule administrator, business policies owner. All of these members are
responsible for performing their tasks by following the agile business rules develop-
ment methodology. This ensures monitoring and management of the rules life cycle in
an iterative manner. Additionally, it allows updating rules as new evidence base be-
comes available, provides a scalable solution to CDS.

5 Conclusion

The aim of this research was to provide a mechanism for leveraging a rule-based ap-
proach for implementing clinical guidelines to provide robust and flexible clinical
decision support. We have demonstrated that BPMN and Rules, can together serve as
a CDS Service at the point of care. To address the features of an SOA based solution,
we leveraged Service Component Architecture (SCA) infrastructure, that provides
reusable CDS rules and processes in the form of an SCA Composite. We have shown
that this CDS service can be integrated with a commercial EHR to provide clinical
decision support integrated within a healthcare workflow. The proposed architecture
successfully automates the processing of symptoms presented by the patient in the
EHR application, hence initiating an alert in the Tolven eCHR™ user interface,
calling for an urgent chest X-ray and immediate referral to specialist services. Addi-
tionally, we demonstrate an important functionality of reusability, by retaining SCA
Composite, BPMN and DRL Files, as reusable services. Finally as rules in Clinical

Improving Clinical Care through Rule-Based Clinical Decision Support at the Point of Care 185

Guidelines are liable to changes over time, we use agile business rules development
methodology to monitor and track changes in all the processes that constitute the clin-
ical workflow, thus ensuring rules management and governance over a sustained peri-
od of time. The future work involves testing this system using a real-time scenario in
a healthcare setting.

References

1. Lewis, S.J., Orland, B.I.: The importance and impact of evidence-based medicine. J.
Manag. Care Pharm. 10(5. suppl A), S3–S5 (2004)

2. Sittig, D., Wright, A., Osheroff, J.A., Middletone, B., Jteich, J., Ash, J., et al.: Grand chal-
lenges in clinical decision support. J. Biomed. Inform. 41(2), 387–392 (2008)

3. Tierney, W.M., Overhage, J.M., Takesue, B.Y.: Computerizing guidelines to improve care
and patient outcomes: The example of heart failure. J. Am. Med. Inform. Assoc. 2, 316–
322 (1995)

4. Vissers, M.C., Hasman, A., van der Linden, C.J.: Impact of a protocol processing system
(ProtoVIEW) on clinical behaviour of residents and treatment. Int. J. Biomed. Comput. 42,
143–150 (1996)

5. Kawamoto, K., Houlihan, C.A., Balas, E.A., Lobach, D.F.: Improving clinical practice us-
ing clinical decision support systems: A systematic review of trials to identify features crit-
ical to success. BMJ (2005)

6. Boyer, J., Hafedh, M.: Agile Business Rule Development: Process, Architecture and JRule
Examples. Springer, Heidelberg (2011)

7. Service Component Architecture, OASIS Standard, https://www.oasis-open.
org/committees/tc_home.php?wg_abbrev=sca-j

8. Tolven eCHR. Tolven Inc. (2014), http://home.tolven.org/
9. JBoss Switchyard, http://www.jboss.org/switchyard

10. Davis, J.: Open Source SOA. Manning Publications Co., Greenwick (2009)
11. OMG, Business Process Model And Notation (BPMN) Version 2.0 (2011)
12. Clinical Decision Support Service (CDSS),

http://www.omg.org/spec/CDSS/1.0/
13. HL7 Virtual Medical Record for Clinical Decision Support,

http://www.hl7.org/implement/standards/product_brief.cfm?
product_id=271

14. National Institute for Health and Care Excellence (The diagnosis and treatment of Lung
Cancer) (CG121) NICE, London (2013), http://www.nice.org.uk/CG121

15. Paterno, M.D., Goldberg, H.S., Simonaitis, L., Dixon, B.E., Wright, A., et al.: Using a ser-
vice oriented architecture approach to clinical decision support: Performance results from
two CDS Consortium demonstrations. In: AMIA Annu. Symp. Proc. 2012, pp. 8–690
(2012)

Requirement Compound Mining and Analysis

Juyeon Kang1,2 and Patrick Saint-Dizier1

1 IRIT - CNRS, Toulouse, France
2 Prometil, Toulouse, France

j.kang@prometil.com, stdizier@irit.fr

Abstract. In this paper, we motivate and develop the linguistic char-
acteristics of requirement compounds which are major types of business
rules. The discourse structures that further refine or elaborate require-
ments are also analyzed. An implementation is then presented. It is car-
ried out in Dislog on the <TextCoop> platform. Dislog allows high level
specifications in logic that allow fast and easy prototyping at a high level
of linguistic adequacy. Elements of an indicative evaluation are provided.

1 Motivations

1.1 Requirement Compounds

Business rules in written texts or dialogues seldom come in isolation, as inde-
pendent statements. They are often embedded into a context that indicates e.g.
circumstances, elaborations or purposes. Relations between a business rule and
its context may be conceptually complex. Furthermore, such rules often appear
in small and closely related groups or clusters. These clusters contain a few rules
that often share similar aims, where the first one is complemented, supported, re-
formulated, contrasted or elaborated by the subsequent ones and by additional
statements. These small groups may also include statements in contrastive or
concessive configurations. The elements in these units share strong relations: it
is somewhat conceptually difficult to split them into isolated and autonomous
units.

It is therefore crucial to consider these clusters (group of related rules with
context) as a whole, since their different constituents state constraints on their
scope and validity or illustrate or reformulate some of their facets for a better
understanding.

In terms of language realization, clusters of rules and their related context may
be all included into a single sentence via coordination or subordination or may
appear as separate sentences. In both cases, the relations between the different
elements of a cluster are realized by means of conjunctions, connectors, various
forms of references and punctuation. We call such a cluster an rule compound.
The idea behind this term is that the elements in a compound form a single,
possibly complex, unit, which must be considered as a whole from a conceptual
point of view. Such a compound consists of a small number of sentences, so that
its contents can be easily assimilated.

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 186–200, 2014.
c© Springer International Publishing Switzerland 2014

Requirement Compound Mining and Analysis 187

Technical documents (e.g. procedures, product manuals, specifications) form
a linguistic genre with relatively strong linguistic constraints in terms of lexical
realizations, including business or domain dependent aspects, grammar, style
and overall organization. Technical documents cover a large variety of types of
documents: procedures, equipment and product manuals, various notices such
as security notices, regulations of various types (security, management), require-
ments and product or process specifications. These documents are designed to be
as efficient and unambiguous as possible. For that purpose, they tend to follow
precise and strict authoring principles concerning both their form and contents.
Technical documents abound in various types of rules and recommendations.

Regulations and requirements form a specific subgenre in technical documents,
a specific class of business rules (as specified in SBVR): they do not describe
how to realize a task but the constraints that hold on tasks or products, e.g.
the way they must be manufactured, used, stored and maintained (Hull et al.
2011). Requirements can also be process or product specifications describing the
properties and the expectations related to a product or a process.

We focus in this paper on requirement mining to identify requirement com-
pounds. It is crucial to clearly identify requirements and their contexts since
they play important roles in technical documents, e.g. stating constraints or pre-
venting risks. Traceability and coherence are properties that requirements must
meet. A typical example1 is the following requirement compound with two re-
quirements followed by a third sentence which is a concession that applies to the
second requirement:
Ex. 1. The component shall be tested at room temperature. The component shall
be mounted to the test stand in a manner equivalent to its engine orientation.
However, in agreement with X, the component could be tested following its own
definition axes .

1.2 Related Works

Identifying discourse structures in general is a real challenge since linguistic
cues are relatively limited (see e.g. http://www.sfu.ca/rst/). Several approaches,
based on corpus analysis with a strong linguistic basis, are of much interest for
our approach. Besides the Penn Discourse Treebank, relations have been inves-
tigated together with their linguistic markers in e.g. (Delin et al. 1994), (Marcu
1997) and (Miltasaki et al. 2004). (Rossner et al. 1992) and (Saito et al. 2006)
developed an extensive study on how markers can be quite systematically ac-
quired. Results are applied in e.g. (Kosseim et al. 2000) for language generation.
(Stede 2012) develops a useful typology of markers.

A few systems have been developed such as (Marcu 2000), Boxer (http:
//svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer), (Feng et al. 2012), or Hilda
(Hernault et al. 2010). The first two systems use a kind of logic and produce a
discourse graph or a formal representation (DRT for Boxer), the last two sys-
tems are based on support vector machines and a set of precise linguistic features.

1 To preserve confidentiality of data, crucial terms have been changed or replaced by
a variable such as X.

188 J. Kang and P. Saint-Dizier

The TextCoop platform and the Dislog language on which our implementation
is based (Saint-Dizier 2014) is an application of logic programming to discourse
analysis. It includes a rich language to describe discourse structure identification
rules together with reasoning capabilities to resolve ambiguities.

1.3 Overall Structure of Technical Documents

Specification documents are in general not a mere list of organized requirements.
They often start with general considerations such as purpose, scope, or context.
Then follow definitions, examples, scenarios or schemas. Then come a series of
sections that address, via sets of requirements, the different facets of the problem
at stake. Each section may include for its own purpose general elements followed
by relevant requirements with comments, notes, etc. Each requirement can be
associated with e.g. conditions and forms of explanation such as justifications or
reformulations. Requirements are often not easy to identify in specification texts,
unless a specific typography is developed. It is the reader’s conceptual and prag-
matic knowledge that allow this identification. Automatically identifying this
structure and producing a conceptual representation adequate for subsequent
treatments is the major concern of this paper.

The relatively well controlled way requirement documents are written makes
it possible to develop a computational model, based on a set of rules and lexical
marks, that identifies requirement compounds and their internal articulations
with a good accuracy.

Besides extracting or tagging requirements, this work has many applications
which are crucial for the industry, among which the creation of requirement repos-
itories, the management of traceability, and the analysis of requirement coherence.

2 Linguistic Analysis

2.1 Corpus Characteristics

In some documents, requirements are identified by typographic marks or by an
ID. This makes it possible to design a development corpus without the need of an
expert. The main features considered to validate our corpus are the following:

- specifications come form various industrial areas: telecoms, transportations,
aeronautics, energy, software, finance, staff management;
- documents are produced by various types of actors and related processes, sys-
tem, design, and software requirements;
- requirement documents follow various authoring guidelines (e.g. the IEEE ones
or imposed by companies);
- requirements correspond to different conceptual levels: functional, non-
functional, safety, security.

The diversity in style, structure and contents found in this corpus enables us to
capture the main linguistic characteristics of requirements, over domains, styles

Requirement Compound Mining and Analysis 189

and target audiences. This guarantees a certain generality to the analysis and
the resulting rules.

Our corpus of requirements comes from 3 organizations and 6 companies. Our
corpus contains 1,138 pages of text extracted from 22 documents. Our develop-
ment and test corpora are extracts of this corpus. The test corpus is composed
of 64 pages extracted from this corpus. the other 1074 pages have been used for
requirement analysis and the construction of rules. About 80 pages of this set of
1074 pages has been used to develop the requirement compound analysis from
a manual tagging.

2.2 Requirement Identification

It is first important to identify requirements, and then to identify the structures
around them. Requirements are the ’head’ of requirement compounds. The au-
tomatic identification of requirements taken in isolation has been developed in
(Kang et al. 2013). Since requirements follow relatively strict authoring guide-
lines and are relatively short sentences (between 10 and 30 words), (1) identifi-
cation rules are quite easy to develop and (2) results are really good. Our system
is implemented in Dislog via 12 rules and related lexical resources (about 500
lexical items of various categories). On out test corpus of 64 pages of text (22 058
words), where 215 requirements have been manually annotated, a precision of
97% and a recall of 96% have been reached. Errors result from a few problematic
situations of poorly written requirements.

One difficulty we have identified is the linguistic proximity of requirements
with warnings. Warnings abound in technical documents where security is cru-
cial. The structure of warnings has been investigated in depth in (Saint-Dizier
2012). It turns out that their structure, although quite close to requirements can
be distinguished on the basis of two criteria:

- most warnings (about 95%) are composed of a conclusion and at least one
support, whereas this ratio is of about 5% for requirements,
- warnings contain negatively oriented expressions or connectors that express
risks or problems (e.g. damage, injure, under the risk of), which is not usual in
requirements, even those in the negative voice.

To manage the risks of ambiguity, our system first identifies warnings (accuracy
of conclusion recognition: 91% and of support: 94%), and then identifies require-
ments. A constraint in Dislog states that a warning cannot also be identified as
a requirement.

In the framework of argumentation (requirements are arguments), the con-
clusion is the main clause while the support explains the importance of the
conclusion by, e.g. outlining potential risks. In requirements, supports are not
very frequently realized because they are relatively obvious to the reader.

Finally, in our approach, our aim is to identify requirements without any
need of domain knowledge, essentially on the basis of lexical criteria, so that the
system is re-usable in many contexts.

190 J. Kang and P. Saint-Dizier

2.3 Processing Requirement Compounds

Let us first develop the linguistic structure of requirement compounds. The dif-
ferent subtasks are: (1) delimitation of compounds, (2) identification of require-
ments taken in isolation, (3) identification of the relations between requirements
and (4) identification of the discourse relations that the sentences other than
requirements play in the compound. Our approach is to develop identification
methods, rules ad resources for each component separately, and then to investi-
gate how they can be bound.

The analysis starts from manually annotated structures by the authors of
this paper. A typical tagged example is the following:

Ex. 2. <ReqCompound> <definition> Inventory of qualifications refers to norm
YY. < /definition>
<mainReq> Periodically, an inventory of supplier’s qualifications shall be
produced. < /mainReq>
<secondaryReq>In addition, the supplier’s quality department shall periodically
conduct a monitoring audit program.< /secondaryReq>
<elaboration> At any time, the supplier should be able to provide evidences that
EC qualification is maintained. </elaboration> < /ReqCompound>

Identification and Delimitation of Requirement Compounds. The prin-
ciple is that all the statements in a compound must be related either by the
reference to the same theme or via phrasal connectors. These form a cohesion
link in the compound. The theme is a nominal construction (object or event,
e.g. inventory of qualifications in Ex. 2)).

In general, the development of relatedness criteria and measures between a
requirement and its support(s) or related discourse structures is complex and a
source of ambiguity. Requirement authoring guidelines recommend to produce
explicit links between utterances which are related. These links are linguistically
realized by the following categories of language constructs in our corpus:

1. the use of the theme in the sentences that follow or precede the main re-
quirement (e.g. inventory of qualifications in Ex. 2). This theme can possi-
bly undergo morphological variations, a different determination (e.g. safety
test, all safety tests) and simple syntactic variations. However, the variation
threshold for this latter point is not easy to evaluate. This situation occurs
in about 82% of the cases. the theme is the subject of the clause (about 65%
of the cases) when the subject is not a human actor or the direct object in
the other cases (35%).

2. the use of a more generic term than the theme or a generic part of the theme,
used as a simple form of reference, e.g. this process, this constraint, the plan,
in the utterances that follow the main requirement (about 17% of the cases).
We identified 42 such terms.

3. the reference to the parts (or the main ones) of the requirement theme e.g.
the identification system and the parts: the ID, the password, the encryption

Requirement Compound Mining and Analysis 191

key, or a generic form such as each individual parts, this is quite infrequent
(3%) and requires domain knowledge,

4. the use of discourse connectors to introduce a sentence, e.g. however, for that
purpose, if, if not, etc., found in about 27%

5. the use of sentence binders such as: for information, in this case, at any
time, in addition, also, etc. found in 19% of the cases.

Obviously these criteria may overlap, in particular in utterances other than re-
quirements where the theme and a connector can be found. Using pronouns is
not recommended and is unusual.

For example in:
Ex. 3. Endurance tests are defined in regulation H65. Endurance shall be demon-
strated by test or analysis. The endurance test or justification shall demonstrate
that the equipment meets the performance requirements. Cycle data for endurance
analysis are available in the individual equipment specification. A simplified en-
durance test may be acceptable, provided it is of an equivalent or greater severity.
However, in agreement with X, the endurance could be tested
The link is the nominal endurance test. The first sentence is a definition. The two
sentences that follow are requirements that complement each other. The three
last sentences stand in discourse relations with the requirements, respectively as
’localization’, and for the last two as ’concessions’. The cohesion between these
five sentences is realized via the repetition of the nominal endurance test with
variations, and the connector however.

Relations between Requirements in a Compound. Our observations
show that the first requirement is always the main requirement of the compound.
The requirements that follow develop some of its facets. In Ex. 3, the second
requirement (sentence 3) develops the purpose and the expected result of the
endurance test, it is not a support of the main requirement. The identification of
the precise functional relations between the main requirement and its associated
secondary ones is often based on domain expertise. Secondary requirements
essentially develop forms of:

– contrast, (Wolf and Gibson 2005) and (Spenader and Lobanova 2007),
which is a relation between two requirements that introduce one or more
equivalent but alternative solutions, but which refer to a unique situation.
Formally, the apparent contradiction that results motivates the use of a de-
feasible inference logic and semantics to preserve the coherence of the whole
structure. Contrast is introduced by however, although, but combined, in the
utterance, with e.g. adverbs such as also, modals or the expression of two
different situations.

– concession states a general requirement followed by an apparently contra-
dictory requirement that could be admitted as an exception (e.g. sentences
4 and 5 of Ex. 3.). The contradiction with the implicit conclusion which
can be drawn from the first requirement is partial (e.g. (Couper-Kuhlen et

192 J. Kang and P. Saint-Dizier

al. 2000)). Concessions are often categorized as denied phenomenal cause or
motivational cause. Typical marks are, e.g.: however, although, even though,
despite, or modal constructions such as may be, could be.

– specializations which are subtypes of elaboration relation, develop addi-
tional scenarios or constraints.

– purpose, result as described below, to express via a requirement the type
of expected result.

Contrasts, concessions and specializations are the most frequent relations. In
our approach, our aim is to identify them without any need of domain knowledge,
so that the system is re-usable in many contexts. The introduction of domain
knowledge would be too complex and costly and would probably introduce addi-
tional errors. We however observed a kind of continuum between contrasts and
concessions. To resolve the ambiguity when it occurs we introduce the polymor-
phic relation ’contrast-concession’. Ambiguities may then be resolved by experts
if necessary.

Linguistic Characterization of Discourse Structures in a Compound.
Sentences not identified as requirements must be bound to requirements via dis-
course relations and must be characterized by the function they play. In a large
diversity of types of texts, (Grosz et al. 1986) show that discourse markers or
equivalent terms are used by human subjects both as cohesive links between adja-
cent clauses and as connectors between larger textual units. The Penn Discourse
Treebank framework2 (Webber et al. 2012) develops this view in a very accu-
rate manner with tools to identify structures and marks. Our problem is much
more restricted and subject to less ambiguous situations since the language of
requirements is restricted by guidelines. The structure of the markers and con-
nectors typical of discourse relations found in technical texts are developed in
(Saint-Dizier 2014). These have been enhanced and adapted to the requirement
context via several sequences of tests on our corpus. The main relations are the
following:

– information and definitions which always occur before the main require-
ment. They anticipate and develop notions given in the main requirement
which may be complex or insufficiently clear to the reader,

– elaborations which always follow a requirement, they develop some facets
of the requirement to facilitate its understanding. Since this relation is very
large, we consider it as the by-default relation in the compound.

– result which specifies the outcome of an action. Its linguistic structure is
basically the active-inchoative alternation (i.e. action / result of action) that
describes the expected result. For example, it can be formed by the theme
of the main requirement combined with (1) the main requirement verb in
past participle form, or a quasi-synonym or (2) an aspectual verb denoting
completion or quasi-completion. (e.g. shall maintain a capability → capability
is reached).

2 Available at http://www.seas.upenn.edu/pdtb

http://www.seas.upenn.edu/pdtb

Requirement Compound Mining and Analysis 193

– circumstance which introduces a kind of local frame under which the re-
quirement compound is valid or relevant. Circumstances often appear before
the requirement(s) they apply to. Circumstances introduce temporal, spatial
or factual contexts or particular events or occasions, in our corpus they are
often realized as independent short sentences.

– purpose which expresses the underlying motivations of the requirements.
It must not be confused with supports. These are introduced by purpose
connectors, causal verbs, purpose verbs (e.g. demonstrate) or expressions
such as the objective is.

3 Implementation in Dislog

3.1 TextCoop: A Platform for Discourse Analysis

The TextCoop platform and the Dislog language (for Discourse in Logic) are
based on logic programming. They have been primarily designed for argument
analysis and discourse processing. The foundations, the methodological elements,
and the performances of TextCoop are published in (Saint-Dizier 2014). Very
briefly, TextCoop is a platform that includes:

(1) Dislog, which is a logic-based language designed to describe by means of
rules and in a declarative way discourse structures and the way they can be
bound via selective binding rules,
(2) an engine associated with a set of processing strategies, basically bottom-up,
which is preferable for processing discourse. Dislog rules are processed according
to a cascade that specifies their execution order. This engine also offers several
mechanisms to deal with ambiguity and concurrency when different discourse
structures can be recognized on a given text fragment,
(3) a set of active constraints, in the sense of Constraint Logic Program-
ming, that check at each step of the proof procedure for the well-formedness of
discourse structures (e.g. precedence, dominance, bounding nodes). These con-
straints can be parameterized by the grammar writer,
(4) simple input-output facilities (XML, MS Word, LaTeX), and interfaces
with other environments
(5) a set of lexical resources which are frequently used in discourse analysis
(e.g. connectors),
(6) a set of about 180 generic rules that describe 12 frequently encountered dis-
course structures such as reformulation, illustration, cause, contrast, concession,
etc.

3.2 Main Features of Dislog and TextCoop

In Dislog, rules and constraints are specified in an abstract and declarative way
which is well adapted to deal with the complexity of discourse processing. This
rule system extends the possibilities offered by regular expressions. The main
features of Dislog rules are:

194 J. Kang and P. Saint-Dizier

- Rules are composed of terminal, preterminal and non-terminal symbols (used
to encode grammars specific to a phenomenon: e.g. temporal expressions).
Symbols are associated with feature structures,
- Dislog allows ’gap’ symbols, which are symbols that stand for finite sequences
of words of no interest for the rule: these words must be skipped. Dislog offers
the possibility to specify in a gap a list of elements which must not be skipped.
When such an element is found before the termination of the gap, then the gap
fails.
- Rules may be associated with forms of reasoning e.g. to resolve analysis
ambiguities or to elaborate a semantic representation,
- Rules are associated with a pattern to construct a representation based on
XML tags or on dependencies.

As an illustration, consider the simple rules for the ’circumstance’ structure
(that form a rule cluster):

Ex. 4. circumstance →
conn(circ), gap(G), punctuation. / gap(G), verb(aspectual), eos.
Lexical resources are quite diverse:
conn(circ): when, once, as soon as, after, before, in case of,
verb(aspectual): start, resume, stop

In this simple rule, the circumstance ranges between the marker (conn(circ))
and a punctuation.

3.3 Architecture of the Rule System

In this section we illustrate the linguistic analysis developed above. An indicative
evaluation of the performances is provided. Such an evaluation is limited and
preliminary, it is designed to indicate improvement directions and difficulties.

Requirement Identification. The set of rules developed to identify require-
ments is developed in (Kang et al. 2014). Since requirement authoring guidelines
are relatively strict, developing a domain independent grammar that recognizes
requirements is relatively feasible. For example, requirements composed of a
modal, the auxiliary ’be’ and an action verb used as a past participle are en-
coded by the following Dislog rule:
requirement → bos, gap(G1), modal, aux(be), advP,

verb(action, past-participle), gap(G2), eos.

where bos stands for beginning of sentence, and eos for end of sentence, advP
is an adverb phrase that is optional, e.g.:
the system XD55 shall be always left active before...

The identification of the relations between the main and the secondary
requirements is treated as any discourse relation identification (Saint-Dizier
2014). For example, here are a few simple rules that recognize the contrast
relation:

Requirement Compound Mining and Analysis 195

Ex. 5. Contrast →
conn(opposition whe), gap(G), ponct(comma). /
conn(opposition whe), gap(G), eos. / conn(opposition how), gap(G), eos.
Resources are essentially: conn(oppositio whe): whereas, but whereas, however,
although, but, while,
Typical examples are (the contrast follows the requirement): The code shall be
optimized for a 8-core CPU. However in general it will not be used on such
machines.
A key of type RD shall be used to open the pipe. However, in case of emergency
any immediately available key must be used.

Higher-Order Programming for Compound Delimitation. A require-
ment compound is then identified by its theme and by its boundaries (where
it starts and ends) following the criteria given in 2.3.1. Let T0 be the theme as
identified in the main requirement. Let variant(T0) be the finite set of the n
variants which can be generated from T0 via functions producing morphological
variants, generalizations, etc.:

variant(T0) = {Ti, i ∈ [1, n]}.
Then all the sentences Sj , j ∈ [1, k], k < 6 (assuming that a compound has a
maximum of 5 sentences, this is a parameter) in the compound must meet the
following constraint, expressed by the following two Dislog rules:

∀Sj j ∈ [1, k] ∃ i, i ∈ [1, n]; sentence →
Ti, gap(G), eos /
gap(G1), verb, Ti, gap(G2), eos.

These rules introduce a kind of higher-order programming with a quantification
on the form of the theme. The rules state that the theme or its variants must
appear in the set of related sentences either in subject or object position.

In more concrete terms, given a theme T and Ti one of its expressions (word
or expression), identified from a main argument, related sentences are identified
by the following pattern, where P is a compound identifier:

compound identifier(P) → beginSentence, gap(G1), word(Ti), gap(G2), end-
Sentence.

In order to avoid grouping unrelated compounds, in addition to the number
of sentence limit, a constraint is that compounds cannot go over paragraphs.

Discourse Relation Identification. Discourse rules typical of technical
documents originate from (Saint-Dizier 2014). The adaptation carried out in
this work consists in considering independent sentences or propositions instead
of subordinate clauses and tuning the markers and structure w.r.t. guidelines.
These rules follow schemas which are relatively regular. Due to space limitations
we simply provide here a few simple samples. The whole set of rules is available
from the authors under a Creative Commons BY NC license.

196 J. Kang and P. Saint-Dizier

Illustration → exp(illus eg), gap(G), eos. /

[here], auxiliary(be), gap(G1), exp(illus exa), gap(G2), eos. /

[let,us,take], gap(G), exp(illus bwe), eos.

With, for example, the following resources:
exp(illus eg): e.g., including, such as

exp(illus exa): example, an example, examples etc.
20 rules have been developed to cover the various structures of illustration.

Purpose →
conn(purpose), verb(action, infinitive), gap(G), ponct(comma). /

conn(purpose), verb(action, infinitive), gap(G), eos.

conn(purpose): to, in order to, so as to.

A typical example is: To reschedule the process, the following elements shall....
These rules for processing discourse structures may seem simple, they in-

deed are to some extent. However, they turn out to be sufficient for technical
texts where the language complexity is strongly controlled. Furthermore, the
lexical resources needed for these rules are rather limited, which makes the sys-
tem re-usable in a large number of contexts. There are obviously ambiguities in
the recognition of discourse rules, in particular between the concession and the
contrast and between the circumstance and condition relations. However, these
ambiguities are also relatively marginal. Obviously, the situation would not be
the same for texts with little language control.

Selective Binding Rules. Binding rule allow, under constraints, to bind
requirements or to bind a requirement with one or more discourse structures,
possibly under constraints. Binding rules are abstract, higher-order schemas.
For example, binding the main requirement R1 with the structure G1 (e.g. G1
= definition) that precedes it is represented as follows:

<X>, gap(G1), </X> <req status="main"> gap(R) </req> →
<Reqcompound> <X>, G1, </X> <req status="main">, R, </req>

</Reqcompound>.

This rule inserts G1 and R into the <Reqcompound> tag. X is a variable that
stand for any structure provided that the precedence constraints (see next
subsection) are met. Only 5 such rules are necessary for requirement compound
analysis. Besides binding structures, these rules double-check that the two
sentences share the same cohesion link, as described in the previous subsection.

The above example is simple and binds two adjacent structures. Selective
binding rules can relate adjacent as well as non-adjacent structures. Binding is
realized in a bottom-up fashion, it can occur between groups of structures: a
set of structures (discourse and arguments) can be bound, and then bound to
another group of structures. This allows the construction of subtrees, which is a
frequent situation. This requires some form or priority among binding rules. This
is a relatively complex and generic investigation that is on-going. In our approach
we basically proceed by aggregating structures around the main argument.

Requirement Compound Mining and Analysis 197

Constraints. Constraints mainly encode in this investigation precedence con-
straints (noted via ”<”). In Dislog, they are specified in a very straightforward
manner. The TextCoop engine checks that constraints are met at each step of
the processing. The following constraints induce a partial ordering of discourse
structures in a requirement compound:
information, definition, circumstance < req.:
Information, circumstance and definition occur before any requirement.
reqMain, reqSecondary < result. :
result always follows a requirement.
reqMain < concession, contrast. :
Contrasts and Concessions always follow the main requirement.
reqMain < reqSecondary.
reqMain < elaboration.
contrast <> concession.: contrast and concessions cannot co-occur in a com-
pound.

Finally, a requirement compound must be fully realized within a paragraph,
therefore, the node paragraph is a bounding node:
bounding node([paragraph]).

Precedence constraints in TextCoop are so far checked in a strict manner.
However, corpus shows that in some cases precedence should also include overlap
since for example circumstances or results can be realized within requirements.
This is an evolution of constraints that must be managed with care.

Overall Architecture. TextCoop is used for requirement compound analysis.
It allows for a very declarative specification of rules and lexical data, it manages
constraints and concurrency. Rule clusters are activated one after the other with
an order specified in a cascade. This cascade allows, among others, to specify
priorities (a cluster must be fully processed before another one is activated) and
to avoid ambiguities. The cascade has the following structure, represented as an
ordered list with cluster IDs:
cascade([requirement, goal, contrast, concession, illustration,

circumstance, condition]).

Indicative Evaluation. Let us now present an indicative evaluation, which
is a preliminary evaluation designed to identify improvement directions. The
evaluation has been realized on our test corpus, extracted from our main corpus.
It is composed of 218 requirement compounds.

The first step, requirement identification, produces very good results since
their form is very regular: precision 97%, recall 96%.

The second step, compound identification, produces the following results:

precision recall
identification 93% 88%
opening boundary 96% 91%
closing boundary 92% 82%

198 J. Kang and P. Saint-Dizier

The identification deals with the identification of a compound from requirements.
Given this identification, the next stage is to delimit the compound, characterized
by its boundaries. This is evaluated in the next two lines. The closing boundary
is more difficult to identify because some terms out of the compound can be
interpreted as theme variants. The accuracy of a compound identification could
be improved by adding more theme variants, but there is a trade-off to elaborate
in order to avoid noise.

Secondary requirements are identified as following the main one which is the
first requirement in the compound. The identification of discourse structures in
a compound produces the following results. These results have been obtained
from the 64 pages of our test corpus. These pages cover several domains, and
therefore the results are general. It is clear that there are minor differences
between domains and authoring strategies. Discourse structures are however
more complex to recognize, even in technical texts. Accuracy is given instead of
precision and recall due to the small size of the samples:

relations nb of nb of precision recall
rules annotations

contrast 14 24 84 88

concession 11 44 89 88

specialization 5 37 72 71

information 6 23 86 80

definition 9 69 87 78

elaboration 13 107 84 82

result 14 97 86 80

circumstance 15 102 89 83

purpose 17 93 91 83

Some relations have more elaborated sets of rules because they have been
reused and improved from previous experiments. This explains the differences in
number of rules. Some sets of rules may need further expansion to produce more
accurate results, this is the case for ’specialization’ which remains somewhat
vague. Information and definition are not necessarily identified on the basis of
marks but on their position in the compound, which is also a vague criterion.
However, results are good for a discourse processing task.

4 Perspectives

In this paper, we have developed a linguistic model for requirement compounds
analysis. This can be considered as discourse grammar dedicated to re-
quirement compounds. An important aspect is an analysis of requirement
compounds that takes into account the discourse structures that constitute their
context. These specific discourse relations are conceptually characterized, with
the functions they play. The implementation is carried out in Dislog on the
<TextCoop> platform. Dislog allows high level specifications in logic that with
relatively fast and easy prototyping.

The role of natural language processing technology for requirement authoring,
control and analysis in requirement engineering processes has been developed

Requirement Compound Mining and Analysis 199

two decades ago, but the results obtained have not been as useful and important
as shown in e.g. the analysis of (Ryan 1993). Language processing has been
used more recently in conjunction with requirements for the development of
authoring tools (e.g. via boilerplates as developed by RAT-RQA, The Reuse
company) and Rubric, or for mining tools to extract attributes from isolated
requirements to develop efficient traceability (Dick 2012). Closely related work
on business rules is of much interest, e.g. (Guisse 2013), (Cisternino et al. 2009)
and from a conceptual analysis perspective, e.g. (Ceravolo et al. 2007). The focus
is mainly on the integration of ontological knowledge and controls on the way
rules are produced (via conceptual schemas) and maintained. Our contribution
could certainly be of much use for these approaches with these works since none
of them has the capability to mine arguments.

Another feature of much importance, consistency checking, is developed in
(Bagheri et al. 2011) and (Mirbel et al. 2012). These two works remain so far
rather theoretical, the need of identifying requirements and representing their
semantic contents is outlined via illustrations. This motivates our contribution,
which could be paired with these works. (Haley, 2007) develops a model for
a logical analysis of security requirements for a system that can validate the
satisfiability of security requirements in texts. In this work, the semantic repre-
sentation of requirements is limited to lists of attributes. In our case, we aim at
defining a more conceptual representation based on inference.

References

1. Bagheri, E., Ensan, F.: Consolidating Multiple Requirement Specifcations through
Argumentation. In: Proceedings of the 2011 ACM Symposium on Applied Com-
puting, SAC 2011 (2011)

2. Ceravolo, P., Fugazza, C., Leida, M.: Modeling semantics of business rules. In:
Digital EcoSystems and Technologies Conference, DEST 2007 (2007)

3. Cisternino, V., Corallo, A., Elia, G., Fugazza, C.: Business rules for semantics-aware
business modelling: Overview and open issues. Int. J. Web Eng. Technol. 5 (2009)

4. Couper-Kuhlen, E., Kortmann, B.: Cause, Condition, Concession, Contrast: Cog-
nitive and Discourse Perspectives. In: Topics in English Linguistics, vol. 33. de
Gryuter (2000)

5. Delin, J., Hartley, A., Paris, C., Scott, D.: Keith Vander Linden: Expressing Pro-
cedural Relationships in Multilingual Instructions. In: Proceedings of the Seventh
International Workshop on Natural Language Generation, USA, pp. 61–70 (1994)

6. van Eemeren, F., Grootendorst, R.: Argumentation, communication, and fallacies:
A pragma-dialectical perspective. Lawrence Erlbaum Associates (1992)

7. Dick, A.J.J.: Evidence-based development - Coupling structured argumentation
with requirements development, System Safety. In: 7th IET International Confer-
ence on Incorporating the Cyber Security Conference, UK (2012)

8. Feng, V., Hirst, G.: Text-level discourse parsing with rich linguistic features. In:
Proc. 50th ACL Meeting (2012)

9. Grosz, B., Sidner, C.: Attention, intention and the structure of discourse. Compu-
tational Linguistics 12(3) (1986)

10. Guissé, A.: Une plateforme d’ aide a l’ acquisition et á la maintenance des règles
metier, PhD dissertation, Paris Nord (2013)

200 J. Kang and P. Saint-Dizier

11. Haley, C.B., Mottet, J.D., Laney, R., Nuseibeh, B.: Arguing Security: Validating
Security Requirements Using Structured Argumentation. In: Proceedings of the
Third Symposium on Requirements Engineering for Information Security, SREIS
2005 (2005)

12. Hernault, H., Prendinger, H., Ishuzuka, M.: HILDA: A discourse parser using sup-
port vector machine classification. Diualogue and Discourse 1(3) (2010)

13. Hull, E., Jackson, K., Dick, J.: Requirements Engineering. Springer (2011)
14. Kang, J., Saint-Dizier, P.: Discourse Structure Analysis for RequirementMining. In-

ternational Journal of Knowledge Content Development andTechnology 3(2) (2013)
15. Kosseim, L., Lapalme, G.: Choosing Rhetorical Structures to Plan Instructional

Texts. Computational Intelligence, Blackwell, Boston (2000)
16. Mann, W., Thompson, S.: Rhetorical Structure Theory: Towards a Functional The-

ory of Text Organisation. TEXT 8(3), 243–281 (1988)
17. Marcu, D.: The Theory and Practice of Discourse Parsing and Summarization.

MIT Press (2000)
18. Mich, L.: NL-OOPS: From natural language to object oriented requirements using

the natural language processing system LOLITA. Natural Language Engineering 2,
161–187 (1996)

19. Miltasaki, E., Prasad, R., Joshi, A., Webber, B.: Annotating Discourse Connectives
and Their Arguments. In: New Frontiers in NLP (2004)

20. Mirbel, I., Villata, S.: Enhancing Goal-based Requirements Consistency: An
Argumentation-based Approach. In: Fisher, M., van der Torre, L., Dastani, M.,
Governatori, G. (eds.) CLIMA XIII 2012. LNCS (LNAI), vol. 7486, pp. 110–127.
Springer, Heidelberg (2012)

21. Rosner, D., Stede, M.: Customizing RST for the Automatic Production of Technical
Manuals. In: Dale, R., Rösner, D., Stock, O., Hovy, E. (eds.) IWNLG 1992. LNCS,
vol. 587, pp. 199–214. Springer, Heidelberg (1992)

22. Ryan, K.: The role of natural language understanding in requirement engineering.
In: IEEE Symposium on Requirements, San Diego (1993)

23. Saint-Dizier, P.: Processing natural language arguments with the TextCoop plat-
form. Journal of Argumentation and Computation 3(1) (2012)

24. Saint-Dizier, P.: Challenges of Discourse processing: The case of technical docu-
ments. Cambridge Scholars Publising (2014)

25. Saito, M.: Using Phrasal Patterns to Identify Discourse Relations. In: Proceedings
ACL 2006 (2006)

26. Spenader, J., Lobanova, A.: Reliable Discourse Markers for Contrast. Eighth In-
ternational Workshop on Computational Semantics, Tilburg (2007)

27. Stede, M.: Discourse Processing. Morgan and Claypool Publishers (2012)
28. Taboada, M., Mann, W.C.: Rhetorical Structure Theory: Looking back and moving

ahead. Discourse Studies 8(3), 423–459 (2006)
29. Villalba, M.G., Saint-Dizier, P.: Some Facets of Argument Mining for Opinion

Analysis. In: COMMA. IOS Publising, Vienna (2012)
30. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University

Press (2008)
31. Walton, D.: Argument Mining by Applying Argumentation Schemes. Studies in

Logic 4(1) (2011)
32. Webber, B., Joshi, A.: Discourse Structure: Past, Present and Future. In: Proceed-

ings of the ACL 2012 Workshop on Rediscovering 50 Years of Discoveries 2012, pp.
42–54. Republic of Korea, Jeju (2012)

33. Wolf, F., Gibson, E.: Representing Discourse Coherence: A Corpus-Based Study.
Computational Linguistics 31(2), 249–288 (2005)

Semi-automated Vocabulary Building

for Structured Legal English

Shashishekar Ramakrishna and Adrian Paschke

Department of Computer Science, Freie Universität Berlin,
Königin-Luise-Str. 24-26,
14195 Berlin, Germany

shashi792@gmail.com, paschke@inf.fu-berlin.de

Abstract. Structured English has been applied as computational inde-
pendent language for defining business vocabularies and business rules,
e.g., in the context of OMG’s Semantics and Business Vocabulary Rep-
resentation (SBVR). It allows non-technical domain experts to engineer
knowledge in natural language, but with an underlying semi-formal se-
mantics which eases the automation of machine transformation into for-
mal knowledge representations and logic-based machine interpretation.
We adapt this approach to the legal domain in order to support le-
gal domain experts in their task to build legal vocabularies and legal
rules in Structured English from legal texts. In this paper we contribute
with a semi-automated vocabulary and rule development process which
is supported by automated suggestions of legal concepts computed by
a semantic legal text analysis. We implement a proof-of-concept in the
KR4IPLaw tool, which enables legal domain experts to represent their
knowledge in Structured English. We evaluate the proposed approach on
the basis of use cases in the domain of IP and patent law.

Keywords: Controlled Natural Language, SBVR, Structured English,
Legal Norms, LegalRuleML.

1 Introduction

Typically there exists a gap concerning the understanding of the knowledge
from a particular domain between a domain expert and a knowledge engineer
who models such domain knowledge - often in a structured, formal language-
for its use in (semi-)automated reasoning. Such a problem can be easily seen
in the legal domain, wherein, the cost associated with not reducing such gap is
substantially high [1].

Structured English (SE) has be applied as Computational Independent Model
(CIM) language for defining business vocabularies and business rules. For in-
stance, in the context of OMG’s Semantics and Business Vocabulary Represen-
tation (SBVR), SE provides an efficient solution to the problem [2]. It allows
non-technical domain experts to engineer knowledge (vocabularies and rules) in
natural language, but with an underlying semi-formal semantics defined in the

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 201–215, 2014.
c© Springer International Publishing Switzerland 2014

202 S. Ramakrishna and A. Paschke

SBVR standard, which eases the automation of machine transformation into for-
mal knowledge representations (KRs)1 and logic-based machine interpretation.
However, the problem is still, that the manual modelling of the legal vocabularies
from legal text is one of the most time consuming parts of the legal knowledge
engineering [4]. Non-existence of a global public/privately shared vocabulary,
makes the task of building legal vocabulary more tedious and time consuming.
In this paper we contribute with a semi-automated vocabulary and rule devel-
opment process which is supported by automated suggestions of legal concepts
computed by a semantic legal text analysis.

The paper is structured as follows. Section 2, introduces and compares a sub-
set of existing controlled natural languages for their use in legal domain. Sections
3 and 4 deal with the the use of SBVR-SE and in Section 5 we illustrate with an
example how SBVR-SE could be used as a semi-formal KR format to represent
legal information. In Section 6 we compare a subset of existing knowledge ex-
traction tools for their use in legal domain and propose a recommender system
to semantically enrich the legal information represented in previous sections.
Section 7, deals with the transformation of legal knowledge from a Computa-
tional Independent Modelling (CIM) layer to a Platform Independent Modelling
(PIM) layer and finally to a Platform Specific Modelling (PIM) layer. Section 8,
concludes the paper and presents some future directions.

2 Controlled Natural Language, ‘CNL’

Controlled Natural Language (CNL) is a subset of natural language that can be
accurately and effectively processed by a computer, because it avoids semantic
ambiguity and supports natural language processing with its controlled gram-
mar. Although controlled CNLs are expressive enough to allow natural usage by
a non-specialist.

There exists a wide variety of CNL’s, amongst them we consider a subset of
CNLs to study their applicability to our problem domain of semi-formal knowl-
edge engineering:

– Attempto Controlled English (ACE): ACE is a CNL which includes restricted
syntax and a restricted semantics (of base (English) language) described by
a small set of construction and interpretation rules [5].

– SBVR Structured English: SBVR-SE is a CNL originally developed for rep-
resenting business rules. It is more reliable for automatic interpretation due
to its high syntax restrictions. It ignores the grammatical structure followed
by its peer base language when representing the same rule/statement.

– Drafters Language: Drafters Language is a CNL originally developed for
DRAFTER-II system. It works on a conceptual authoring approach which
provided a relatively simple pseudo-text to specify a complex configuration
of action and object entities and the relations between them [6].

1 E.g., in [3], we define a transformation process with a modal first-order semantics.

Semi-automated Vocabulary Building for Structured Legal English 203

– Massachusetts Legislative Drafting Language: Is a CNL developed for de-
scribing legal texts (originally for Massachusetts Senate). It provides a uni-
formity in drafting style by specifying a restricted syntax, restricted seman-
tics and restricted document structure [7].

To compare the efficiency of different CNL’s we use the evaluation methodol-
ogy as proposed by Kuhn [8]. The evaluation is done based on four parameters
described below:

– Precision: Shows the degree to which the meaning of text can be directly
retrieved from its textual form.

– Expressivity: Describes the range of propositions that a certain language is
able to express.

– Naturalness: Describes how close the language is to its base English (base
language of considered problem domain) language.

– Simplicity: Describes simplicity/complexity of exact and comprehensive lan-
guage description.

Fig 1, compares the four CNL’s based on the four parameters discussed above.
From the Figure we see that two out of four CNL’s, i.e. SBVR-SE and ACE
seem to fulfill the requirements required to represent our problem domain. Legal
practitioners being both the authors and end-users of CNL based systems, we
need to add another evaluation parameter ’learning curve’. From a legal practi-
tioners’ point of view, the learning curve involved in ACE seemed to be higher
than that involved in SBVR-SE.

Fig. 1. Comparision of CNL’s

3 SBVR Structured English

The OMGs Model Driven Architecture (MDA) [9] provides a basis for represent-
ing information on different layers of KR models (CIM, PIM and PSM). Seman-
tic Business Vocabulary and Business Rules, SBVR [2], is an ISO terminological
dictionary (vocabulary) for defining business concepts and rules. SBVR works
on the Computational Independent Model (CIM) layer of the OMGs MDA. It

204 S. Ramakrishna and A. Paschke

Fig. 2. SBVR position in MDA (adapted from [2])

suggests the use of Structured English (SE), a computational-independent En-
glish (natural) with a structured syntax for representing business vocabularies
and business rules. SBVR captures the structural and behavioral aspects of busi-
ness processes, as well as the policies that should guide the business behavior
in certain situations. A core idea of business rules formally supported by SBVR
is the following: Rules build on facts, and facts build on concepts as expressed
by terms. Terms express business concepts; facts make assertions about these
concepts; rules constrain and support these facts [2]. Fig 2 depicts the relation
of SBVR and OMGs MDA.

4 Semi-formal KR in Legal Domain

The power of SBVR is disclosed by the fact that the SBVR specification itself
was formally written in SBVR Structured English, ’SSE’ [2]. The use of SBVR
in legal domain was first proposed by Johnsen and Berre [10] [11]. In [4] we
showed how OMGs MDA could be viewed in the domain of patent law, wherein,
we provided the first ideas on using SBVR SE in patent law domain. We adapt
the approach of the OMG Semantic Business Vocabulary and Business Rules [2]
(OMG SBVR) standard to the patent law domain. Fig 3 gives an overview of it.

Fig. 3. Building legal vocabulary

SBVR defines the vocabulary and rules for describing the legal semantics
using SSE. Even though SSE does not provide all the expressivity required for
translating the procedural rules into a formal reasoning, the simple approach

Semi-automated Vocabulary Building for Structured Legal English 205

of SSE helps the end users (i.e. the domain experts and legal practitioners) to
define their legal vocabularies and rules in a more understandable manner, which
at the same time can be also interpretable by the computer. Like in SBVR, we
define the legal (procedural/substantive) rules in a structured natural language
(a Structured English syntax) using predefined legal vocabularies, consisting
of legal concepts (concepts which have a meaning in the legal tradition, e.g.
claim construction vocabulary) in template-based legal rules.

– Legal Noun concepts, which correspond to legal concepts.
– Legal Verb concepts, which correspond to relationships between legal

concepts.
– Legal rules, which constrain these relationships so that they can be used

to define consistent and complete arguments.

Legal concepts represented by noun concepts must be explicitly defined with
the intended semantics given in an authoritative source or otherwise acknowledge
by implicit pragmatic understanding (the ordinary natural language meaning of
the term used). Verb concepts can only use such recognized noun concepts as
their terms. The legal rules can then be constructed using the “if ... then ...”, “at
least”, “each” as well as definitional alethic and behavioral deontic legal norm
modalities (“obliged”, “permitted” ...), etc. The following example in the next
section illustrates its use.

5 Example

To illustrate the use of SSE in the legal domain, we consider legal (procedural)
rules followed by an examiner in evaluating the essential subject matter require-
ment as defined in Paragraph ¶ 7.33.01 of United States Patent Law [12] - which
states as follows

¶ 7.33.01 Rejection, 35 U.S.C. 112, 1st Paragraph, Essential
Subject Matter Missing From Claims (Enablement)

Claim [1] rejected under 35 U.S.C. 112, first paragraph, as based on a dis-
closure which is not enabling. [2] critical or essential to the practice of the
invention, but not included in the claim(s) is not enabled by the disclosure.

1. This rejection must be preceded by form paragraph 7.30.01 or 7.103.
2. In bracket 2, recite the subject matter omitted from the claims.

Using SBVR Structured English:

Legal Concepts: Noun concepts defined in green and individual noun concepts
are defined in dark-green starting with capital letters.

206 S. Ramakrishna and A. Paschke

claim

Definition
Define the invention and are what aspects are legally
enforceable

Dictionary basis patentlaw
Source USPTOGlossary
General Concept patent

building on the same lines, we obtain other legal concepts like:
examiner office action paragraph statement argument date drawing
applicant effective feature invention
essential subject matter requirement

Paragraph 7 33 01

Legal Facts: Verb concepts are defined in blue.
office action includes paragraph
claim is rejected under essential subject matter requirement
office action include statement
applicant conceals effective feature
effective feature is about the invention
examiner applies Paragraph 7 33 01
examiner rejects the claim
examiner rejects the claim

Legal (procedural) rules: for ¶ 7.33.01.

1. It is obligatory that examiner rejects the claim and office action includes
paragraphs Paragraph 7 33 01 if claim is rejected under
essential subject matter requirement.

2. It is obligatory that office action include statement and argument and date
and drawing if office action includes paragraph Paragraph 7 33 01.

3. It is obligatory that examiner applies Paragraph 7 33 01 if applicant
conceals effective feature and effective feature is about the invention.

6 Semi-automated Vocabulary Building

In [4], we introduced a proof-of-concept implementation of the tool KR4IPLaw
(Knowledge Representation for Intellectual property law). The long term goal
of this tool is to provide a user interface, which can be easily handled by legal
practitioners and be capable enough to provide all the necessary inputs for a
knowledge engineer to model legal rules for (semi-/)automated reasoning there-
after. In this paper, we contribute with an additional conceptual functionality
in the architecture of KR4IPLaw, which is provided by a terminology recom-
mender system. Such a system complementary to KR4IPLaw helps to fill the
gap between a legal vocabulary/rules built by legal practitioner and all possible
concepts/rules which can be identified by the automated system. We strongly

Semi-automated Vocabulary Building for Structured Legal English 207

believe, that in the legal domain, as an effect of the pragmatics involved, it
is rarely possible for a system to fully automate the entire process of building
legal rules/vocabularies accurately. Human intervention in confirming the sys-
tem’s automatically generated results is needed in an iterative process during
the whole knowledge engineering and formalization process. The recommender
system proposed here should provide the required additional context informa-
tion that can be derived out of the legal context in which a legal vocabulary is
built (e.g., case-law, definitions, synonyms etc. pertaining to the section/legal
text under consideration). We divide the terminology recommender system into
two parts, first one providing legal concepts, i.e., identification of new concepts
and semantic enrichment of existing legal concepts. The second one is working
on generating the legal facts and building legal rules based on legal facts. In this
paper, we mainly concentrate on the first part.

In [4], we already showed how legal practitioners/domain experts either
define case based legal vocabularies from scratch or use the preagreed legal
vocabulary stored in a central public/privately-shared repositories (such as On-
toMaven [13] [14]) and build legal rules based on it as shown before.

For the purpose of legal concept recommendation, we consider a small subset
of the available Semantic-Knowledge Extraction (S-KE) tools suitable for its
application to our considered legal domain:

– AlchemyAPI: AlchemyAPI [15], is a tool which employs the methods of
deep linguistic parsing, statistical natural language processing, and machine
learning for named entity extraction, keyword extraction, fact and relation
extraction, document categorization, concept tagging and language detec-
tion. It builds upon semantic web functionality, AlchemyAPI concepts and
entities are linked to DBpedia, Freebase, OpenCyc, GeoNames etc. It is
available as a Web application or as a REST service.

– DBpedia Spotlight: A tool for automatically annotating entities in text as
DBpedia resources, providing a solution for linking unstructured information
sources to the Linked Open Data cloud through DBpedia. It is available as
a Web application, as a REST service or as downloadable source [16]. Also
language specific versions exist, e.g. DBPedia German2.

– NERD: NERD [17] proposes aWeb framework which unifies numerous named
entity extractors using the NERD ontology which provides a rich set of ax-
ioms aligning the taxonomies of these tools. Extractors supported by NERD
are AlchemyAPI, DBpedia Spotlight, OpenCalais, etc..

– FRED: A tool for automatically producing RDF/OWL ontologies and linked
data from natural language sentences. It links the extracted knowledge to
both lexical linked data and datasets. It is available as a Web application or
as a REST service [18].

Based on [19], a feature based comparison of the considered S-KE tools is as
shown in Table 1. Where, NER refers to Named Entity Recognition, DIS refers

2 http://www.corporate-semantic-web.de/dbpedia-deutsch-spotlight.html

http://www.corporate-semantic-web.de/dbpedia-deutsch-spotlight.html

208 S. Ramakrishna and A. Paschke

Table 1. Feature based comparison of the semantic-knowledge extraction tools for
legal concept recommendation (adapted from [19])

Topic NER DIS TAX REL SemRole Events Frames

AlchemyAPI Yes Yes Yes No Yes No No No
DBpedia Spotlight No Yes Yes Yes No No No No
NERD No Yes Yes No No No No No
FRED No Yes Yes Yes Yes Yes Yes Yes

to the sense disambiguation feature, TAX refers to Taxonomy identification ca-
pability and SemRole refers to the identification of semantic roles against an
extracted concept.

From Table 1, we can see that FRED offers more features than its consid-
ered counterparts. Based on performance evaluation of the S-KE tools as shown
in [19], FRED at the time of review provides better results than DBpedia, Alche-
myAPI and NERD. For our proof of concept implementation and evaluation we
make use of FRED, and adapt it to the legal domain so that it can be used
as a legal concept recommender system, working in conjunction with the ex-
isting KR4IPLaw tool. FRED considers a legal sections/text given in its base
(English) language as an input to produce semantic data and ontologies with
a quality closer to what is expected at-least from average linked data-sets and
vocabularies by passing through DRS produced by Boxer. It includes Named
Entity Resolution (based on Apache Stanbol) and Word Sense Disambiguation

FRED offers several functionalities [20] as required by any legal recommender
system. Some functionalities supported by it are as stated below.

– Captures accurate semantic structures,
– Represents complex relations,
– Supports integration of sophisticated lexical reasoners (like OpenNLP, Verb-

Net, FrameNet)
– Supports open information extraction,
– Maps natural language to RDF/OWL and
– Links the extracted knowledge to both lexical linked data and datasets

(WordNet, DB-pedia and other foundational ontologies)

Fig 4, shows a snippet of the output for a legal text out of the paragraph ¶
7.30.01.

With the legal text provided as an input, the next step requires the extraction
of the required semantic information out of the obtained RDF/OWL ontology.
The extracted information is thereafter used to enrich the existing legal vocab-
ulary. The required information is extracted using SPARQL queries and then
mapped to legal vocabulary with the help of a mapping scheme as proposed in
Table 2.

As a part of the evaluation, we adapt the performance evaluation of NLP
tools, proposed by Hirschman and Thompson [21] and its derived methodology
proposed in [22]. We assume that a legal practitioner builds a legal vocabulary

Semi-automated Vocabulary Building for Structured Legal English 209

Fig. 4. FRED’s output for a legal text

Table 2. Mapping scheme: Parsed legal text to legal (SBVR) vocabulary

RDF class
−→ Legal (Noun) Concept
rdfs:subClassOf
−→ General Concept

owl:sameAs
−→ Synonyms
owl:equivalentClass
−→ Synonyms

wn:lang
−→ Language
wn:gloss
−→ Legal Concept Definition

〈 boxer〉: hasModality
−→ Necessity/Possibility
boxerpos/pennpos: ’v’/’VB’
−→ Legal (verb) concept

boxerpos/pennpos: ’n’/’NN’/’NNS’
−→ Legal (Noun) Concept
boxerpos/pennpos: ’np’/’NNP’/’NNPS’
−→ Legal (Individual Noun) Concept

from scratch to suit, e.g., case-law requirements as an alternative to use/build
the existing (pre-agreed) shared vocabulary.

Figure 5, shows a Venn diagram depicting different terms (and its relations)
used in this methodology. Building legal arguments (based on legal rules) being
the main concern in this evaluation study, a legal practitioner is only interested
in the concepts required to build legal rules and rule-based arguments (i.e.,
Nlegal(Noun) concepts, NLegal(verb) concept, and Nlegal(Indv)concepts). In this

Fig. 5. Venn diagram

210 S. Ramakrishna and A. Paschke

evaluation we study to which extent the system is capable of filling/enriching
the semantic information attached to each legal concept.

Nusr here denotes the inputs from the user in building the legal vocabulary,
(where N denotes the number of respective items added). Nsys denotes the sys-
tems effort in identifying the information/items related to this section of legal
text under consideration. Nrelevant refers to the items that are relevant/mean-
ingful out of the identified items by the system (i.e Nsys). The relevance of an
item is determined by a domain expert. Nmissing refers to the difference in num-
ber between the items that are relevant and the items that were used/identified
by the user/legal practitioner. Nadd′l refers to the additional relevant items iden-
tified by the system which are currently not used by the user. To evaluate the
efficiency of such systems, we consider two parameters, Effsys vs. relevant and
Effrelevant vs. add′l as shown below:

Effsys vs. relevant =
Nrelevant

Nsys
× 100%⇒ SystemReliability (1)

Effrelevant vs. add′l =
Nadd′l

Nrelevant
× 100%⇒ SystemIntelligence (2)

wherein;
Effsys vs. relevant denotes the efficiency of the system in identifying relevan-
t/meaningful items in a given legal passage/text and Effrelevant vs. add′l refers
to the efficiency of the system in providing additional information out of its
identified relevant items. We consider the example shown in the last section as
an input to the recommender system. Table 3 shows a chart comprising of both
inputs from the user as well as from the system. The efficiency of the system is
as shown in Figure 6 (i.e. Legal Text A).

Table 3. Recommender system outcome analysis

Nusr Nsys Nrelevant Nmissing Nadd′l
Language (Legal concepts) 0 1 1 0 1
Definitions identified 0 4 4 8 0
General concepts identified 0 14 2 NA 2
Synonyms identified 0 4 2 NA 2
NLegal(Noun)concepts identified 12 14 9 8 5
NLegal(V erb)concepts identified 6 5 3 5 2
NLegal(Indv)concepts identified 1 4 4 0 3

Figure 6 gives the results of the evaluation on two additional legal paragraphs
(denoted here as legal texts ’B’ and ’C’). Specifically, Fig 6a, shows the efficiency
Effsys vs. relevant and Fig 6b, shows the efficiency Effrelevant vs. add′l. The sec-
ond part of the recommender system involving (semi/-)automatized building of
legal rules is still an open research question. There have been several works in
automatic extraction of SBVR business rules [23] [22] [24] [25]. Adapting it to

Semi-automated Vocabulary Building for Structured Legal English 211

(a) Effsys v. relevant (b) Effrelevant v. add′l

Fig. 6. Efficiency evaluation

legal domain has shown high inconsistencies between the actual legal texts to
its constructed legal rules. The architecture of FRED is designed to allow the
use of domain specific legal lexical resources, which includes the knowledge base
(legal vocabulary) built during the semi-formal representation of the procedural
legal rules.

7 CIM to PIM to PSM

Moving from computational independent layer (i.e. SBVR-SE) to platform in-
dependent layer requires storing the semantically enriched legal vocabulary and
rules in a machine oriented format. Legal vocabularies (Legal Concepts and Legal
facts) are mapped into an OWL2 ontology. In [26] [27] [28], authors have pro-
posed a possible mapping scheme for such transformations. For interchanging the
legal rules in a platform independent way, we propose to translate them into XML
using the language family of ’RuleML’ [29] as expression language. In particular,
we make use of two complementary OASIS standards-OASIS Legal Document
Markup Language, ’LegalDocML’ [30] and OASIS Legal Rule Markup Language,
’LegalRuleML’ [31] [32] in combination with Reaction RuleML [33] [34] for the
said transformation. The details of this semantic transformation process are out
of scope of this paper. They can be found in [3].

For reasoning with such transformed legal rules using legal knowledge bases,
we use Prova [35] [36] [37] [38], as a rule engine. Prova is both a Semantic Web
rule language and a high expressive distributed rule engine. It, supports the
execution of declarative (legal) rules including scoped reasoning [37] [36] [38],
Rule-Based Data Access (RBDA) to external semantic web data via SPARQL,
and Ontology-Based Data Access (OBDA) with DL typed reasoning [39]. For the
purpose of ontology reasoning on-top of legal knowledge bases (domain ontolo-
gies), Prova integrates SPARQL-DL API [40], a subset of SPARQL tailored for
ontology-specific requests related to OWL and it is more expressive than existing
DL query languages by allowing a mix of TBox, RBox, and ABox queries. It can
be regarded as an OBDA interface to any ontology reasoner supporting OWL-
API. Reasoning with legal rules in Prova is also out of the scope of this paper.

212 S. Ramakrishna and A. Paschke

For examples on representing LegalRuleML in Prova we refer to the patent law
use case3 [41] and the copyright use case4 of the LegalRuleML tutorials.

8 Conclusion and Future Directions

The paper in its first part explored the use of controlled natural languages as a
bridge between a domain expert and a knowledge modeler in legal domain. We
then showed with the help of an example on how SBVR Structured English, a
controlled natural language, can be used in the legal domain (specifically for IP
law representation). In the second part of the paper, we presented an extension of
our KR4IPLaw system with a legal concept recommender system which supports
the manual vocabulary building process by making automated suggestions. We
implemented a proof-of-concept and studied the feasibility of the automation
approach of semantically enriching legal vocabularies by means of case study
examples. During the course of this studies, we identified some new and re-
iterated some known research problems existing in the process of automation in
legal domain. The long term goal of this KR4IPLaw project is to build a system
which acts as a platform to model, represent, recommend, and reason about legal
patent law knowledge.

Acknowledgements. The authors would like to thank the entire Corporate
Semantic Web team at the Free University of Berlin for their constructive com-
ments and suggestions. The authors would also like to thank Mr Spurthishekar
for assisting in sentence structure and grammatical error corrections.

References

1. Palmirani, M., Contissa, G., Rubino, R.: Fill the gap in the legal knowledge
modelling. In: Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS,
vol. 5858, pp. 305–314. Springer, Heidelberg (2009)

2. OMG: Semantics of Business Vocabulary and Business Rules (SBVR)- Version 1.2.
Technical Report November, Object Management Group (2013)

3. Ramakrishna, S., Paschke, A.: A Process for Knowledge Transformation and
Knowledge Representation of Patent Law. In: RuleML 2014. LNCS, vol. 8620,
pp. 308–325. Springer, Heidelberg (2014)

4. Ramakrishna, S., Paschke, A.: Bridging the gap between Legal Practitioners and
Knowledge Engineers using semi-formal KR. In: The 8th International Workshop
on Value Modeling and Business Ontology, VMBO, Berlin (2014)

3 http://2013.ruleml.org/presentations/

RuleML2013Tutorial PaschkePatentLaw.pdf
4 https://lists.oasis-open.org/archives/legalruleml/201208/msg00040/

LegalRuleML-palmirani2012 -RuleML2012v3.pdf, slide 39-54.

http://2013.ruleml.org/presentations/RuleML2013Tutorial_PaschkePatentLaw.pdf
http://2013.ruleml.org/presentations/RuleML2013Tutorial_PaschkePatentLaw.pdf
https://lists.oasis-open.org/archives/legalruleml/201208/msg00040/LegalRuleML-palmirani2012_-RuleML2012v3.pdf
https://lists.oasis-open.org/archives/legalruleml/201208/msg00040/LegalRuleML-palmirani2012_-RuleML2012v3.pdf

Semi-automated Vocabulary Building for Structured Legal English 213

5. Fuchs, N.E., Schwitter, R.: Attempto controlled english (ace). arXiv preprint cmp-
lg/9603003 (1996)

6. Paris, C., Linden, K.V.: DRAFTER: An Interactive Support Tool for Writing Mul-
tilingual Instructions. IEEE Computer, Special Issue on Interactive NLP (July
1996)

7. Sullivan, D.E.: Legislative drafting and legal manual (2003)
8. Kuhn, T.: Controlled Natural Language and Opportunities for Standardization. In:

International Workshop on Terminology, Languages, and Content Resources (June
2013)

9. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: Proceedings of the 16th Annual International Conference on Automated Soft-
ware Engineering, ASE 2001, pp. 273–280. IEEE (2001)

10. Johnsen, A.S.: Semantisk modellering av juridisk regelverk med bruk av SBVR -
en brobygger mellom jus og IT. Master thesis, University of Oslo (2011)

11. Johnsen, A.S., Berre, A.J.R.: A bridge between legislator and technologist - For-
malization in SBVR for improved quality and understanding of legal rules. In:
International Workshop on Business Models, Business Rules and Ontologies, Bres-
sanone, Brixen, Italy (2010)

12. USC: Title 35 of the United States Code (1952)
13. Paschke, A.: OntoMaven API4KB - A Maven-based API for Knowledge Bases.

In: 6th International Semantic Web Applications and Tools for the Life Science
(SWAT4LS 2013), Edinburgh, UK, December 10-12 (2013)

14. Paschke, A.: OntoMaven. In: 9th International Workshop on Semantic Web En-
abled Software Engineering (SWESE 2013), Berlin, Germany, December 2-5 (2013)

15. Turian, J.: Using AlchemyAPI for Enterprise-Grade Text Analysis. Technical re-
port, AlchemyAPI (August 2013)

16. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: Shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems. I-Semantics 2011, pp. 1–8. ACM, New York (2011)

17. Van Erp, M., Rizzo, G., Troncy, R.: Learning with the web: Spotting named en-
tities on the intersection of nerd and machine learning. In: Proceedings of the 3rd
Workshop on Making Sense of Microposts (# MSM 2013) (2013)

18. Draicchio, F., Gangemi, A., Presutti, V., Nuzzolese, A.G.: FRED: From Natural
Language Text to RDF and OWL in One Click. In: Cimiano, P., Fernández, M.,
Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 263–
267. Springer, Heidelberg (2013)

19. Gangemi, A.: A comparison of knowledge extraction tools for the semantic web.
In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC
2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013)

20. Gangemi, A., Draicchio, F., Presutti, V., Nuzzolese, A.G., Recupero, D.R.: A ma-
chine reader for the semantic web. In: International Semantic Web Conference
(Posters & Demos), pp. 149–152 (2013)

21. Hirschman, L., Thompson, H.S.: Chapter 13: Overview of Evaluation in Speech
and Natural Language Processing. In: Survey of the State of the Art in Human
Language Technology, pp. 385–420 (1995)

22. Afreen, H., Bajwa, I.S.: Generating UML Class Models from SBVR Software Re-
quirements Specifications. In: 23rd Benelux Conference on Artificial Intelligence
(BNAIC 2011), Gent, Belgium, pp. 23–32 (2011)

214 S. Ramakrishna and A. Paschke

23. Bajwa, I., Lee, M., Bordbar, B.: SBVR Business Rules Generation from Natural
Language Specification. In: AAAI 2011 Spring Symposium AI for Business Agility,
San Francisco, USA, pp. 2–8 (2011)

24. Mart́ınez-Fernández, J.L., González, J.C., Villena, J., Mart́ınez, P.: A preliminary
approach to the automatic extraction of business rules from unrestricted text in
the banking industry. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.)
NLDB 2008. LNCS, vol. 5039, pp. 299–310. Springer, Heidelberg (2008)

25. Chaparro, O., Aponte, J., Ortega, F., Marcus, A.: Towards the Automatic Extrac-
tion of Structural Business Rules from Legacy Databases. In: 2012 19th Working
Conference on Reverse Engineering (WCRE), pp. 479–488 (October 2012)

26. Elisa, K., Mark, H.L.: Mapping SBVR to OWL2. Technical report, IBM Research
Division, New York, NY (2013)

27. Reynares, E., Caliusco, M.A., Galli, M.R.: Automatable Approach for SBVR to
OWL2 Mappings. In: XVI Ibero-American Conference on Software Engineering
(CIbSE 2013), Montevideo, Uruguay (2013)

28. Karpovic, J., Nemuraite, L.: Transforming SBVR Business Semantics into Web
Ontology Language OWL2: Main Concepts. In: In Proc. 17th International Con-
ference on Information and Software Technologies, IT 2011, pp. 231–254 (2011)

29. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: The Overarching Specification of
Web Rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

30. Gordon, T.F.: The Legal Knowledge Interchange Format (LKIF). Technical report,
European project for Standardized Transparent Representations in order to Extend
LegaL Accessibility Specific Targeted Research or Innovation Project (2008)

31. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-Based Rules and Norms. In: Palmirani, M. (ed.) RuleML 2011
- America. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011)

32. Athan, T., Boley, H., Governatori, G., Palmirani, M., Paschke, A., Wyner, A.:
OASIS LegalRuleML. In: Proceedings of 14th International Conference on Artificial
Intelligence and Law (ICAIL 2013). ACM (2013)

33. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:
Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

34. Paschke, A.: Reaction RuleML 1.0 for Rules, Events and Actions in Semantic
Complex Event Processing. In: RuleML 2014. LNCS, vol. 8620, pp. 1–18. Springer,
Heidelberg (2014)

35. Kozlenkov, A., Paschke, A.: Prova Rule Language Version 3.0 User’s Guide (2010),
http://prova.ws/index.html

36. Paschke, A.: Rules and logic programming for the web. In: Polleres, A., d’Amato,
C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.)
Reasoning Web 2011. LNCS, vol. 6848, pp. 326–381. Springer, Heidelberg (2011)

37. Paschke, A., Boley, H.: Rule Responder: Rule-Based Agents for the Semantic-
Pragmatic Web. International Journal on Artificial Intelligence Tools 20(6), 1043–
1081 (2011)

38. Paschke, A.: Rule based service level agreements: RBSLA; knowledge representa-
tion for automated e-contract, SLA and policy management. Idea Verlag GmbH
(2007)

http://prova.ws/index.html

Semi-automated Vocabulary Building for Structured Legal English 215

39. Paschke, A.: A Typed Hybrid Description Logic Programming Language with Poly-
morphic Order-Sorted DL-Typed Unification for Semantic Web Type Systems. In:
Proceedings of the OWLED 2006 Workshop on OWL: Experiences and Directions,
Athens, Georgia, USA, November 10-11. CEUR Workshop Proceedings, vol. 216,
CEUR-WS.org (2006)

40. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL
Experiences and Directions Workshop, OWLED 2007 (2007)

41. Paschke, A., Ramakrishna, S.: Legal RuleML Tutorial Use Case - LegalRuleML for
Legal Reasoning in Patent Law (2013)

Basics for a Grammar Engine to Verbalize

Logical Theories in isiZulu

C. Maria Keet1 and Langa Khumalo2

1 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

2 Linguistics Program, School of Arts, University of KwaZulu-Natal, South Africa
Khumalol@ukzn.ac.za

Abstract. The language isiZulu is the largest in South Africa by num-
bers of first language speakers, yet, it is still an underresourced language.
In this paper, we approach the grammar piecemeal from a natural lan-
guage generation approach, and viewed from a potential utility for ver-
balizing OWL ontologies as a tangible use case. The elaborate rules of
the grammar show that a grammar engine and dictionary is essential
even for basic verbalizations in OWL 2 EL. This is due to, mainly, the
17 noun classes with embedded semantics and the agglutinative nature
of isiZulu. The verbalization of basic constructs requires merging a pre-
fix with a noun and distinguishing an ‘and’ between a list and linking
clauses.

1 Introduction

South Africa has hitherto seen limited investment in human language technolo-
gies and computational linguistics, especially for its 9 official African languages.
Large companies, such as Google and Microsoft, do pick the low-hanging fruit
with localizations of the user interfaces of their software. The South African De-
partment of Science and Technology demands for its potential outputs, notably
with its “National Recordal System” (NRS) project by its National Indigenous
Knowledge Systems Office. NRS software infrastructure was launched in 2013
and requires not just a standard document system [7] but for full usage, it re-
quires an ‘intelligent’ one [1] that can handle multilingualism in, among others,
document search and annotation, and in model development of the knowledge
that is to be stored in the NRS. Systems with relevant functionalities for the
NRS exist elsewhere for multiple languages in Europe, e.g., the multilingual
and collaborative systems by [2,10], or a CNL-mediated query interface (e.g.,
[6]). This is to quite an extent thanks to large FP7 projects, such as Monnet
[http://www.monnet-project.eu] for foundational aspects and applied projects
such as Organic.Lingua [http://www.organic-lingua.eu]. No such resources ex-
ist for promoting the 9 official African languages in South Africa, yet such system
requirements for, among others, the NRS, demand for both NLP and NLG tech-
nologies for those languages. Here, we focus on NLG for isiZulu, which is the
first (“home”) language for about 23% of the population (±10 million), about

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 216–225, 2014.
c© Springer International Publishing Switzerland 2014

http://www.monnet-project.eu
http://www.organic-lingua.eu

Basics for a Grammar Engine to Verbalize Logical Theories in isiZulu 217

half of the population in South Africa can speak it, and it has several closely
related languages, such as isiXhosa.

Unlike for NLP and corpus building [16,18], no NLG results exist for any
of the languages in the Nguni language group, of which isiZulu is a member.
One could consider Google Translate, which has English–isiZulu since October
2013, but it cannot handle articles and quantification (among other things), and
its technology is proprietary and inaccessible. There are mainly old and out-
dated grammar books and Doke’s seminal work on the general description of
the isiZulu morphology [4,5] has remained an important reference for linguistic
work not only in isiZulu but in Southern Bantu languages; this makes it chal-
lenging to commence defining grammars similar to Kuhn [12]. It will take many
years and resources to fill this gap. Here, we start with some basics that should
aid both linguists and information systems development. To this end, we take
language constructs of a practical logic language with low expressiveness, such
as the OWL 2 EL profile [14], as a starting point and extant approaches for
other languages and systems. Concerning such practical verbalizations of logical
theories, there are verbalization options within English [17], implementations in
different systems, such as for the Semantic Web (ACE [8]) and for conceptual
data models (e.g., monolingual [3] and multilingual ORM [9]), and we assume
that a multilingual ontology is in place, perhaps managed through the Lemon
model [13]. For isiZulu, it appears that the grammar rules are quite complex,
and we summarise those for subsumption, disjointness, existential and universal
quantification, and conjunction. There are two particular features of isiZulu that
have a major effect on verbalizations, which are that the semantics of the noun
(more precisely: the category of the entity it refers to) and the quantifiers in an
axiom influence the verbalization patterns.

The remainder of this paper is organised as follows. Section 2 describes some
basic aspects of isiZulu, and Section 3 presents the main results on verbalization
patterns for simple taxonomic subsumption, disjointness (negation), conjunction,
and quantification. We reflect in Section 4 and conclude in Section 5.

2 Some Very Basic Aspects of isiZulu

IsiZulu is a highly agglutinating language with a complex morphology. As is
emblematic of Bantu languages, isiZulu has a system of noun classes. Every
noun belongs to a noun class. The class is often identifiable from the noun prefix
that is attached to the noun, and it governs the agreement of all words that
modify the noun, as well as of predicates of which the noun is a subject. Object
agreement may also be marked on the predicate.

There is more than one convention for labeling and referring to these classes,
most of which are essentially numbering systems. We will use Meinhof’s (1948)
classification system, which is used in most scholarly works and permits compar-
ison of corresponding classes across Bantu languages, all of which lack at least
some of the classes posited for proto-Bantu. Most noun classes are set off into
pairs in isiZulu such that most nouns have a singular form in one class and a

218 C.M. Keet and L. Khumalo

Table 1. Zulu noun classes, with examples. The noun class prefix of classes 1 and
3 is conditioned by the morphology of the stem to which it attaches: -mu- before
monosyllabic stems and -m- for other stems. The n of the noun prefixes of noun class 9
and 10 fuses with the following consonant forming prenasalized consonants; NC: Noun
class, AU: augment, PRE: prefix.

NC AU PRE Stem (example) Meaning Example

1 u- m(u)- -fana humans and other umfana boy
2 a- ba- -fana animates abafana boys

1a u- - -baba kinship terms and proper ubaba father
2a o- - -baba names obaba fathers

3a u- - -shizi nonhuman ushizi cheese
(2a) o- - -shizi oshizi cheeses

3 u- m(u)- -fula trees, plants, non-paired umfula river
4 i- mi- -fula body parts imifula rivers

5 i- (li)- -gama fruits, paired body parts, igama name
6 a- ma- -gama and natural phenomena amagama names

7 i- si- -hlalo inanimates and manner/ isihlalo chair
8 i- zi- -hlalo style izihlalo chairs

9a i- - -rabha nonhuman irabha rubber
(6) a- ma- -rabha amarabha rubbers

9 i(n)- - -ja animals inja dog
10 i- zi(n)- -ja izinja dogs

11 u- (lu)- -thi inanimates and long thin uthi stick
(10) i- zi(n)- -thi objects izinthi sticks

14 u- bu- -hle abstract nouns ubuhle beauty
15 u- ku- -cula infinitives ukucula to sing

17 ku- locatives, remote/ general locative

plural form in another; the classes are summarised in Table 1. The morphological
structure of a noun in isiZulu typically takes the shape of the tree structure.

For the most part, the semantics of a noun plays a role in determining what
noun class a word falls in; their deeper meanings as well as shift and colloquial
use are being investigated (e.g., [15]), and is summarised in column 5 of Table 1.
Most noun stems belong to only one noun class pair, but exceptions exist (e.g.,
-ntu). Noun class prefixes can also be used to form new nouns from other noun
stems and other stems, like noun class 15 that creates infinitives out of verbal
stems. The vast majority of the nouns in noun class 14 is derived as well: the
prefix -bu- forms abstract nouns from other noun stems and adjective stems.
Class 17 is a non-productive locative class with the noun prefix ku-. IsiZulu
lacks classes 12 and 13, which are found in other Bantu languages.

The complexity of the morphology of isiZulu is compounded by the fact that
a number of prefixes have allomorphic forms. This is a consequence of the fact
that isiZulu proscribes vowel sequencing, so that a prefix whose canonical form
is nga- will have an allomorph ng- before roots that begin with vowels. Further-
more, many morphemes are homographs, so that the prefix nga- could represent

Basics for a Grammar Engine to Verbalize Logical Theories in isiZulu 219

either the potential mood morpheme or a form of the negative that occurs in
subordinate clauses; and the sequence ng- could be the allomorph of either of
these, or of a number of homographic morphemes ngi-, which represent the first
person singular in various moods. Besides these phonologically conditioned allo-
morphs, there are also morphologically conditioned ones; e.g., the locative prefix
e- has an allomorph o- that occurs in certain morphological circumstances [18]
(p1023). Nominal morphology triggers agreement, as is shown in the example:

Abafana abancane bazozithenga izincwadi ezinkulu
aba-fana aba-ncane ba- zo- zi- thenga izi-ncwadi e-zi-nkulu
2.boy 2.small 2.SUBJ-FUT-10.OBJ-buy 10.book REL-10.big
‘The little boys will buy the big books’

The fact that the subject abafana (‘boys’) is of noun class 2 is reflected both
in the agreement prefix on the adjective abancane (‘small’) and in the subject
agreement on the verb. The noun class 10 feature of the object izincwadi (‘books’)
is reflected in the class 10 agreement on the adjective ezinkulu (‘big’) and in the
object marker on the verb. A selection of such agreements, called concords, is
included in Table 2. The normal word order is Subject Verb Object (SVO) but
there is attested variation since post verbal subjects are also common.

It is imperative to further state that isiZulu also has a very complex verbal
morphology. The verbs can be conjugated in five different tenses (remote past,
recent past, present, immediate future and remote future) as well as for various
aspects and moods. The verb usually agrees with the subject and sometimes
with the object in person and number (as shown in the example above) and in
3rd person for noun class as well. To account for this, a verb form can consist
of many morphemes. Such complex morphology characteristic of most Bantu
languages presents a lot of challenges in the attempts to develop computational
technologies in isiZulu.

3 Verbalization Patterns and Algorithms

We obviously cannot cover all the grammar rules, and will focus only on the—
from a logic viewpoint—seemingly ‘simple’ constructs, being subsumption, con-
junction, negation, and quantification. This fits roughly with the OWL 2 EL pro-
file (plus negation), that has a nice use-case scenario: upon localizing SNOMED
CT, the axioms can then be verbalised in isiZulu and be used in healthcare
applications. We will take examples from the general domain, however, so as
not to complicate matters with medicine, and we assume a suitable multilingual
encoding of the ontology, and use the Description Logics notation for conciseness.

Universal Quantification. We consider here only the universal quantification
at the start of the concept inclusion axiom, such as for verbalizing taxonomic
subsumption for atomic classes and the typical ‘forall-some’ construction, or, in
linguistic terms, the nominal head. In isiZulu, the ‘all’/‘each’ uses -onke, which
is prefixed with the oral prefix (see AU and PRE in Table 1) of the noun class

220 C.M. Keet and L. Khumalo

Table 2. Zulu noun classes with a selection of ‘concords’. NC: Noun class; QC: quan-
titative concord; NEG SC: negative subject concord, PRON: pronominal; RC: relative
concord; EC: enumerative concord; oral: oral prefix (see also AU and PRE in Table 1).

NC QC (all) NEG SC PRON RC QCdwa EC
QCoral+onke QCnke

1 u-onke → wonke wo- aka- yena o- ye- mu-
2 ba-onke → bonke bo- aba- bona aba- bo- ba-

1a u-onke → wonke wo- aka- yena o- ye- mu-
2a ba-onke → bonke bo- aba- bona aba- bo- ba-

3a u-onke → wonke wo- aka- wona o- ye- mu-
(2a) ba-onke → bonke bo- aba- bona aba- bo- ba-

3 u-onke → wonke wo- awu- wona o- wo- mu-
4 i-onke → yonke yo- ayi- yona e- yo- mi-

5 li-onke → lonke lo- ali- lona eli- lo- li-
6 a-onke → onke o- awa- wona a- wo- ma-

7 si-onke → sonke so- asi- sona esi- so- si-
8 zi-onke → zonke zo- azi- zona ezi zo- zi-

9a i-onke → yonke yo- ayi- yona e- yo- yi-
(6) a-onke → onke o- awa- wona a- wo- ma-

9 i-onke → yonke yo- ayi- yona e- yo- yi-
10 zi-onke → zonke zo- azi- zona ezi- zo- zi-

11 lu-onke → lonke lo- alu- lona olu- lo- lu-
(10) zi-onke → zonke zo- azi- zona ezi- zo- zi-

14 ba-onke → bonke bo- abu- bona obu- bo- bu-
15 ku-onke → konke zo- aku- khona oku- zo- ku-

of that first noun—i.e., a named OWL class/DL concept on the left-hand side
of � in the ontology—and modified based on what the prefix was; e.g.:

(U1) Girl � ...
wonke umfana ... (‘each girl...’; u- + -onke)
bonke abafana ... (‘all girls...’; ba- + -onke)

This looks laborious, but it can be simplified computationally. The oral prefixes
are stable for each noun class, so one can pre-compute the complete list of
nominal heads (column 2 in Table 2) and carry out a simple look-up of the term
when generating the verbalization. Whether singular or plural should be used
depends on the context, and will be addressed below and in Algorithms 1 and 3.

Subsumption. There are different ways of carving up the nouns to determine
which rules apply for verbalizing subsumption. One can use either the living/non-
living thing distinction into which nouns are grouped, but we postulate that a
purely syntactic approach may be feasible, which is easier to implement compu-
tationally. The latter requires one to select the right copulative (‘is a’), which
is based on the first letter of the noun of the superclass, being ng for nouns

Basics for a Grammar Engine to Verbalize Logical Theories in isiZulu 221

starting with a-, o-, or u-, or else y. In addition, among generic and determinate
verbalization, the generic is chosen. For instance:

(S1) Giraffes � Animals

izindlulamithi yizilwane (‘giraffes are animals’; animals: izilwane)
(S2) MedicinalHerb� Plant

ikhambi ngumuthi (umuthi: (medicinal) plant)

The general pattern that emerges is as follows: <noun1> <ng/y depending on
first letter of noun2><noun2>. This holds for when the subsumption is not
followed by negation. If it is followed by negation, then the verbalization for
subsumption and negation are combined into one term and the copulative is
omitted. This can be with or without including the quantifiers in the verbaliza-
tion. For instance:

(SN1) Cup � ¬Glass
zonke izindebe aziyona ingilazi (‘all cups are not a glass’)

Here, we address only the negation in the context of the subsumption symbol.
The azi- is the negative subject concord (NEG SC) for the noun class of the noun
(name of the OWL class) on the left-hand side of the subsumption (noun class
10 for izindebe), and the -yona is the part indicating the pronomial (PRON)
for the noun of the class on the right-hand side of the subsumption (ingilazi
is in noun class 9a), which is then adjusted for each class; see Table 2. Thus,
the pattern for simple disjointness is: <QC-all of NCx> <plural of noun1 with
NCx> <NEG SC of NCx><PRON of NCy> <noun2 with NCy>. The high-level
algorithm for simple class subsumption and disjointness for isiZulu is included
as Algorithm 1, which is more elaborate compared to the ‘is a’ and ‘is not a’
in English verbalization templates. We leave the more complicated cases, like
∀R.C � ∃S.(D E), for future work, as well as negation in other contexts.

Conjunction. The ‘and’ in the sense of a list of things uses na, but this changes
into (a + i =) ne or (a + u =) no, depending on the first letter of the noun that
follows it, and this no or ne is then a prefix to the second noun that drops its
first letter (always a vowel); e.g. (C1). Conjunction as connective of clauses uses
a different term for ‘and’, being kanye or futhi; e.g., (C2).

(C1) Milk Butter

Ubisi nebhotela (Ubisi + na + Ibhotela)
(C2) . . . ∃has filling.Cream ∃has Icing.Lemon flavour . . .
...kune zigcwalisa ukhilimu kanye nezinye uqweqwe olunambitheka ulamula...

That is, the pattern for the enumerative-and is <noun1> <na/ne/no depending
on noun2><noun2 minus first character>, and for the connective-and it is <first
clause> <kanye> <second clause>. Algorithm 2 first recognises whether it is a
listing of atomic classes or several axioms—check the first element after the :
if it is an OWL object or data property (relationship or attribute), then use the
connective-and, else an enumeration-and—and if the former, then it checks the
first letter of the second word to choose the na/ne/no.

222 C.M. Keet and L. Khumalo

Algorithm 1. Determine the verbalization of simple taxonomic subsumption

1: C set of classes, language L with � for subsumption and ¬ for negation; variables: A
axiom, NCi nounclass, c1, c2 ∈ C, a1 term, a2 letter; functions: getF irstClass(A),
getSecondClass(A), getNC(C), pluralizeNoun(C,NCi), checkNegation(A),
getF irstChar(C), getNSC(NCi), getPNC(NCi).

Require: axiom A with a � has been retrieved
2: c1 ← getF irstClass(A) {get subclass}
3: c2 ← getSecondClass(A) {get superclass}
4: NC1 ← getNC(c1) {determine noun class by augment and prefix or dictionary}
5: NC2 ← getNC(c2) {determine noun class by augment and prefix or dictionary}
6: if checkNegation(A) = true then
7: NC′

1 ← lookup plural nounclass of NC1 {from known list}
8: c′1 ← pluralizeNoun(c1, NC′

1)
9: a1 ← lookup quantitative concord for NC′

1 {from quantitative concord (QC(all)) list}
10: n ← getNSC(NC′

1) {get negative subject concord for c′1}
11: p ← getPNC(NC2) {get pronomial for c2}
12: Result ← ‘ a1 c′1 np c2. ’ {verbalise the disjointness}
13: else
14: a2 ← getF irstChar(c2) {retrieve first letter of c2}
15: select case
16: a2 = ‘i’ then
17: Result ← ‘ c1 yc2 ’ {verbalise as taxonomic subsumption with y}
18: a2 = {‘a’, ‘o’, ‘u’} then
19: Result ← ‘ c1 ngc2 ’ {verbalise as taxonomic subsumption with ng}
20: a2 �∈ {‘a’, ‘i’, ‘o’, ‘u’,} then
21: Result ← ‘this is not a well-formed isiZulu noun’
22: end select case
23: end if
24: return result

Existential Quantification. There are multiple aspects to the verbalization,
and we focus here only on the existential quantification, not the verb, due to
additioanl complexities of verb tenses and the prepositions that are typically put
in the name of the object property in the ontology or conceptual data model.
Choices are discussed in [11], and we show here only the final outcome, using
the -dwa option. For instance:

(E1) Professor � ∃teaches.Module (‘all professors teach at least one module’)

bonke oSolwazi bafundisa isifundo esisodwa

The esisodwa in (E1) is composed of the relative concord (RC), which is
determined by the noun class system, that is attached to the quantitative concord
(QC) and then suffixed with the quantitative suffix -dwa; e.g.: esi (RC7) + so
(QC7) + dwa. The RC and QC for each noun class is fixed, and is included
in Table 2. Overall, the following pattern is obtained: <QC-all of NCx> <pl.
noun1 of NCx> [conjugated verb] <noun2 of NCy> <RC for NCy><QC for
NCy>dwa; This is presented in Algorithm 3.

Basics for a Grammar Engine to Verbalize Logical Theories in isiZulu 223

Algorithm 2. Determine the verbalization of conjunction in an axiom

1: R is the set of relationships, A of attributes, C of classes, and language L
uses � to denote conjunction; variables: e2, c1 a letter, A axiom; functions:
getNextV ocabularyElement(A), getF irstChar(e2).

Require: axiom with a � has been retrieved and position in string is known
2: e2 ← getNextV ocabularyElement(A) {retrieve element after the �}
3: if e2 ∈ R ∪A then
4: Result ← ‘ kanye ’ {verbalise � as kanye}
5: else
6: if e2 ∈ C then
7: c1 ← getF irstChar(e2) {retrieve first letter of e2}
8: select case
9: c1 = ‘i’ then
10: e−2 ← drop c1 from e2
11: Result ← ‘ nee−2 ’ {verbalise � with ne- prefix}
12: c1 = ‘u’ then
13: e−2 ← drop c1 from e2
14: Result ← ‘ noe−2 ’ {verbalise � with no- prefix}
15: c1 = ‘a’ then
16: e−2 ← drop c1 from e2
17: Result ← ‘ nae−2 ’ {verbalise � with na- prefix}
18: c1 �∈ {‘i’, ‘u’, ‘a’} then
19: Result ← ‘this is not a well-formed isiZulu noun’
20: end select case
21: else
22: Result ← ‘this is not a well-formed axiom’
23: end if
24: end if
25: return result

4 Discussion

For grammatically less complicated languages that have an isolating morphol-
ogy, such as English, verbalization templates are known to be an effective way
to tackle the problem, and may even suffice. This approach breaks down for
grammatically richer languages [9], and for isiZulu, we have, so far, not found a
single case where a plain template suffices. The insufficiently structured gram-
mar rules in the outdated documentation made it also clear that committing
to a comprehensive specification of the isiZulu grammar in such a way as to be
computationally useful and correct (e.g., by using the Grammatical Framework
[http://www.grammaticalframework.org/]), will take a substantial amount of re-
sources. Such resources are not available at present, yet something has to be done
for multilingual knowledge repositories that are adequate in the multilingual so-
ciety in South Africa. Despite that no software has been presented in this paper,
we hope to have provided some motivational use cases for investigation, which is
benefiting both isiZulu linguistics and ICT in general, and introduced some inter-
esting new challenges for the verbalization of logical theories in grammatically rich

http://www.grammaticalframework.org/

224 C.M. Keet and L. Khumalo

Algorithm 3. Determine the verbalization of existential quantification with
object property (first, basic, version)

1: C set of classes, language L with � for subsumption and ∃ for existential quan-
tification; variables: A axiom, NCi noun class, c1, c2 ∈ C, o ∈ R, a1 a term;
r2, q2 concords; functions: getF irstClass(A), getSecondClass(A), getNC(C),
pluralizeNoun(C,NCi), getRC(NCi) getQC(NCi).

Require: axiom A with a � and a ∃ on the rhs of the inclusion has been retrieved
2: c1 ← getF irstClass(A) {get subclass}
3: c2 ← getSecondClass(A) {get superclass}
4: o ← getObjProp(A) {get object property}
5: NC1 ← getNC(c1) {determine noun class by augment and prefix or dictionary}
6: NC2 ← getNC(c2) {determine noun class by augment and prefix or dictionary}
7: NC′

1 ← lookup plural nounclass of NC1 {from known list}
8: c′1 ← pluralizeNoun(c1, NC′

1)
9: a1 ← lookup quantitative concord for NC′

1 {from quantitative concord (QC(all)) list}
10: o′ ← AlgoConjugate(o, NC1) {call algorithm AlgoConjugate to conjugate o}
11: r2 ← getRC(NC2) {get relative concord for c2}
12: q2 ← getQC(NC2) {get quantitative concord for c2 from the QCdwa-list}
13: Result ← ‘ a1 c′1 o′ c2 r2q2dwa. ’ {verbalise the simple axiom}
14: return result

languages. We will continue to extend the algorithms, add more, and implement
them.

The algorithms may also be of use for machine translation. For instance,
Google Translate English-isiZulu translates, e.g., “mix the sugar and milk and
butter” as “hlanganisa ushukela nobisi ibhotela” (translation d.d. 14-1-2014),
which misses the second conjunction in the enumeration, whereas a ushukela
ubisi ibhotela with Algorithm 2 obtains the correct verbalisation/translation
(ushukela nobisi nebhotela). Similarly, “all giraffes eat twigs” is translated as
“yonke izindlulamithi udle amahlumela” (translation d.d. 14-1-2014), but izind-
lulamithi is in noun class 10, not 9, so it goes with zonke instead, not Google
Translate’s yonke. This can be correctly verbalised following Algorithm 1, line 9.

An aspect of further investigation is the implementability of subsumption with
the living/non-living thing distinction compared to the syntax-based shortcut,
as it is not clear yet whether a syntax-based criteria holds for other cases when a
distinction is made between living and non-living things. Such annotations will
be less than assigning noun classes to each term. Also, this means there has to
be some way to encode such multilingual information, which may be possible by
extending the Lemon model [13] or putting it in a designated annotation field.

5 Conclusions

Verbalizing ontologies in isiZulu requires more than a template-based approach
for each construct investigated. We provided novel verbalization patterns for
simple subsumption, disjoint classes, conjunction, and basic options with quan-
tification. The main features complicating verbalization in isiZulu were the 17

Basics for a Grammar Engine to Verbalize Logical Theories in isiZulu 225

noun classes with embedded semantics in the term, the agglutinative nature of
isiZulu, and contextual knowledge about the position of the symbol in the axiom.

There are many avenues for further works on the verbalization rules, with
more variations on the basic axioms, more construct, and conjugation. There
are also questions concerning how to make the ontology multilingual so that it
covers the aspects that need to be recorded to facilitate verbalization.

References

1. Alberts, R., Fogwill, T., Keet, C.M.: Several required OWL features for indigenous
knowledge management systems. In: Proc. of OWLED 2012, vol. 849, pp. 27–28.
CEUR-WS, Crete (2012)

2. Bosca, A., Dragoni, M., Francescomarino, C.D., Ghidini, C.: Collaborative man-
agement of multilingual ontologies. In: Buitelaar, P., Cimiano, P. (eds.) Towards
the Multilingual Semantic Web. Springer (in press, 2014)

3. Curland, M., Halpin, T.: Model driven development with NORMA. In: Proc. of
HICSS-40, pp. 286a–286a. IEEE Computer Society, Los Alamitos (2007)

4. Doke, C.: Text Book of Zulu Grammar. Witwatersrand University Press (1927)
5. Doke, C.: Bantu Linguistic Terminology. Longman, Green and Co., London (1935)
6. Dongilli, P., Franconi, E.: An Intelligent Query Interface with Natural Language

Support. In: Proc. of FLAIRS 2006, Melbourne Beach, Florida, USA (May 2006)
7. Fogwill, T., Viviers, I., Engelbrecht, L., Krause, C., Alberts, R.: A software archi-

tecture for an indigenous knowledge management system. In: Indigenous Knowl-
edge Technology Conference 2011, Windhoek, Namibia, November 2-4 (2011)

8. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Discourse Representation Structures for
ACE 6.6. Tech. Rep. ifi-2010.0010, Dept of Informatics, University of Zurich,
Switzerland (2010)

9. Jarrar, M., Keet, C.M., Dongilli, P.: Multilingual verbalization of ORM concep-
tual models and axiomatized ontologies. Starlab technical report, Vrije Universiteit
Brussel, Belgium (February 2006)

10. Kaljurand, K., Kuhn, T., Canedo, L.: Collaborative multilingual knowledge man-
agement based on controlled natural language. Semantic Web J. (2013) (submitted)

11. Keet, C., Khumalo, L.: Toward verbalizing logical theories in isizulu. In: Proc.
of CNL 2014, Galway, Ireland, August 20-22. LNCS (LNAI). Springer (accepted,
2014)

12. Kuhn, T.: A principled approach to grammars for controlled natural languages and
predictive editors. Journal of Logic, Language and Information 22(1), 33–70 (2013)

13. McCrae, J., et al.: The Lemon cookbook. Tech. rep., Monnet Project (2012)
14. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web

Ontology Language Profiles (October 27, 2009)
15. Ngcobo, M.N.: Zulu noun classes revisited: A spoken corpus-based approach. South

African Journal of African Languages 1, 11–21 (2010)
16. Pretorius, L., Bosch, S.E.: Enabling computer interaction in the indigenous lan-

guages of South Africa: The central role of computational morphology. ACM In-
teractions 56 (March + April 2003)

17. Schwitter, R., et al.: A comparison of three controlled natural languages for OWL
1.1. In: Proc. of OWLED 2008DC, Washington, DC, USA, April 1-2 (2008)

18. Spiegler, S., van der Spuy, A., Flach, P.A.: Ukwabelana – an open-source morpho-
logical Zulu corpus. In: Proc. of COLING 2010, pp. 1020–1028. ACL (2010)

Formal Rule Representation and Verification
from Natural Language Requirements

Using an Ontology

Driss Sadoun1,2, Catherine Dubois3,4, Yacine Ghamri-Doudane5,
and Brigitte Grau1,3

1 LIMSI/CNRS, France
2 University Paris-Sud, France

3 ENSIIE, France
4 CEDRIC/CNAM, France

5 University of La Rochelle/L3i Lab, France

Abstract. The development of a system is usually based on shared and
accepted requirements. Hence, to be largely understood by the stakehold-
ers, requirements are often written in natural language (NL). However,
checking requirements completeness and consistency requires having them
in a formal form. In this article, we focus on user requirements describ-
ing a system behaviour, i.e. its behavioural rules. We show how to trans-
form behavioural rules identified from NL requirements and represented
within an OWL ontology into the formal specification language Maude.
The OWL ontology represents the generic behaviour of a system and al-
low us to bridge the gap between informal and formal languages and to
automate the transformation of NL rules into a Maude specification.

Keywords: Knowledge representation, OWL ontology, NL requirements,
formal verification.

1 Introduction

Requirements correspond to a specification of what should be implemented.
Among other, they describe how a system should behave. Stakeholders of a
system development often use natural language (NL) for a broader understand-
ing, which may lead to various interpretations, as NL texts can contain semantic
ambiguities or implicit information and be incoherent. Thus, requirements have
to be checked and this requires them to be represented in a formal language. A
transformation of NL requirements into formal specifications is usually costly in
human and material resources and would benefit of an automatic method. A di-
rect transformation is difficult, if not impossible [5], which leads to the need of an
intermediate representation to reduce the gap between the two formalisms. Both
works of [5] and [9] propose a first step in the formalization process by trans-
forming NL specifications into SBVR. Similarly, in [7], the authors use SBVR as
an intermediate representation to transform NL business rules into semi-formal

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 226–235, 2014.
c© Springer International Publishing Switzerland 2014

Formal Rule Representation and Verification from NL Requirements 227

models such as UML. The tool NL2Alloy [1] also uses SBVR as a pivot rep-
resentation to generate Alloy1 code from NL constraints. To our knowledge,
only NL2Alloy proposes a complete chain of transformation from NL to formal
specifications, but it does not perform formal verifications on the intermediate
representations to validate it. Indeed, verifying extracted information needs for-
mal knowledge representation and inference mechanisms. However, controlled
natural languages as SBVR or semi-formal representation models as UML often
lack validation mechanisms and inference engines. These shortcomings have led
many researchers to explore the transformation of SBVR or UML into languages
such as OWL and SWRL [6,10] or as Maude [3].

We propose an OWL-DL ontology based on description logics as an intermedi-
ate representation. We use this ontology to guide the automatic identification of
behavioural rules from NL requirements analysis and to represent them formally
[8]. Behavioural rules are represented in the ontology in order to be transformed
into a formal specification language. Indeed, OWL allows us to check the consis-
tency and the completeness of the modelled rules. However, it cannot represent
state evolution or sequential rules application. Hence, to simulate and validate
the whole system behaviour, we propose to transform the ontology model into a
formal specification Maude. In this article, we focus on the ontology conception
choices and the transformation process that enable us to automate the produc-
tion of formal specifications and to maintain the link between NL requirements
and their formal representation.

This work has been done in the framework of the project ENVIE VERTE2

which aims to allow a user to configure her own smart space by describing
her requirements in natural language. A smart space is a set of communicating
objects (sensors, actuators and control processes) that may influence, under well
defined conditions, the behaviour of the smart space devices (physical processes).
The behavioural rules determine desired component interactions.

2 Ontology of a System Behaviour

2.1 Conceptualisation Choices

An ontology defines concepts (C), properties (P) and individuals (I) of a domain.
Concepts and properties of an ontology are defined by terminological axioms (A).
We represent an ontology O as a tuple < C,P,A, I, IC, IP > where:
- C is a set of concepts;
- P is a set of binary properties;
- A is a set of terminological axioms;
- I is a set of individuals;
- IC is a function that associates to each concept a set of individuals;
- IP is a function that associates to each property a set of couples of individuals
or of couples individual/value.
1 A language and tool for relational model verification.
http://alloy.mit.edu/alloy/

2 Funded by DIGITEO, projet DIM LSC 2010.

http://alloy.mit.edu/alloy/

228 D. Sadoun et al.

The ontology of a system behaviour has to define the components of the
system, their characteristics and the way they behave. In this framework, it is
important to highlight a distinction between two kinds of individuals within on-
tologies: 1) individuals representing entities; 2) individuals representing a type
characterizing entities, which lead us to distinguish two sorts of concepts: in-
dividual concepts and generic concepts. This distinction is pertinent for both
NL requirement analysis and the automatic ontology translation into the formal
language Maude. Based on that, we define two high level concepts to represent
a system behaviour: Component (CC ⊆ C) and Type (CT ⊆ C) (cf. figure 1).

1. each sub-concept of Component is an individual concept defining sets of in-
dividuals representing entities of the domain (physical components, software
components, phenomena, ...);

2. each sub-concept of Type is a generic concept defining specific types (color,
model, brand, ...) of the domain. It extends predefined data types (integer,
real, boolean, string, ...), used to characterize the components of the system.

Representing the system behaviour requires taking into account the dynamic
aspects of its operation. Thus, we modelled two super-properties in the ontology:
1) Relation for describing an interaction between two components of the system;
2) Attribute for describing a characteristic of a component, defined as follows:

1. sub-properties of Relation are defined exclusively between two sub-concepts
of Component. Within OWL, each property is defined as an ObjectProperty.
Formally PR is the set of properties P of type Relation such that D�P �R3

with D ⊆ CC and R ⊆ CC et IP(P) ⊆ IC[CC] ×IC[CC]
4.

2. sub-properties of Attribute are defined between a sub-concept of Compo-
nent or Type and an OWL type. Within OWL, each property is defined
as ObjectProperty between sub-concepts of Component and sub-concepts of
Component or Type, or as a DataProperty between Component or Type and
an OWL type. Formally PA is the set of properties P of type Attribute
such that D � P � R3 with D ⊆ CC ∪ CT and R ⊆ CC ∪ CT ∪ T and
IP(P) ⊆ (IC[CC]∪IC[CT])× (IC[CC]∪IC[CT]∪V). We also distinguish two
types of attributes:
– dynamic attribute whose value may evolve over the time, as the balance

of a bank account;
– static attribute whose value is not set to change, such as a bank account

ID. This last kind of attribute corresponds to definitional properties of
a concept that can be used to identify and distinguish its individuals.

The result of our conceptualisation choices is the ontology illustrated in Fig-
ure 1. The ontology is divided in two parts: the upper level ontology models a
generic system behaviour and the domain specific ontology models a smart space
behaviour. This specific part contains fourteen concepts : seven sub-concepts of
3 We note D � P � R to define for each property P its domain D and its range R.
4 IC[CC] represents the ranges of all the elements of CC by IC (IC[CC] =

⋃

c∈C

IC(C)).

Formal Rule Representation and Verification from NL Requirements 229

Sensor

Thing

Component

Location

Actuator
SensorPhysical

process

Detecting

Measuring

Event

Measurable

Predicate

User
Requirement

Sensor

Actuate-on

Locate-in

Measure

Detect

Detected-in

Zone-of-
sensing

Consequent
Antecedent

Type
PhenomenonManaged-type

Perceived-type

Type
Pattern

Measured-in

StateHas-state
Physical
process

Type

PP-type

Control

Value

Location
Type

Loc-type

lessThan
Has-
value

greaterThan

Controled-in

Status-on

Status-off

Status-increase

Status-decrease

Phenomenon

Has-type

Occured-in

Status

Fixed-

Turn-on

Turn-off

Increase

Decrease

Located-in

Actuate

in

Managed
-zone

Requirement

Upper level ontology Rule-pattern

Fig. 1. The ontology of smart space behaviour

Component, and seven sub-concepts of Type. The properties are represented
by oriented arrows linking concepts of their domain and range. We only figure
properties corresponding to ObjectProperty, they are thirty one. Dotted Arrows
represents subsumption relations.

2.2 Behavioural Rules

As concepts and properties, Behavioural rules participate to the domain def-
inition, by modelling its dynamic aspects. They are formed as antecedent →
consequent. The antecedent defines conditions under which the rule applies.
The consequent defines the result of its application. Each of them corresponds
to a conjunction of predicates denoting instances of a property P (ix, iy) with
(ix, iy) ∈ IP(P), since, in our approach, rule identification is guided by property
instance identification [8]. Within the ontology, we model a behavioural rule as
two sets of predicates Pk(ix, iy) with Pk a binary predicate referring to a property
instance and ix an individual, a literal (value of a basic data type) or a variable.
We defined a concept Predicate as a sub-concept of the concept Type (cf. figure
1), associated to the two properties Antecedent & Consquent (cf. figure 1) on
which the behavioural rules are constituted.

We distinguish two types of behavioural rules: 1) rules describing the general
behaviour of the system that is independent of the user needs; 2) rules specific
to the user requirements. We propose to model within the ontology the two
concepts Requirement-Pattern and User-Requirement. Requirement-Pattern is a
set of different generic patterns of rules. Its individuals are defined by an expert
of the domain to guide the NL requirement analysis. User-Requirement is a set

230 D. Sadoun et al.

of behavioural rules specified by a user. Its individuals are created automatically
from NL requirements analysis and linked to their model pattern by the property
Rule-pattern (cf. figure 1). Within the ontology five requirement patterns have
been defined for guiding the identification of behavioural rules of a smart space.

2.3 Population of the Ontology

In [8], we proposed an approach for ontology population based on the identi-
fication of property instances in sentences which leads to recognize triples of
individuals. Instance property recognition enables to resolve some ambiguities
and to infer implicit individuals. The creation of User-Requirement individuals
exploits these property instances and depends on two verifications based on the
use of OWL reasoning and SQWRL queries. First, for each requirement pat-
tern represented in the ontology, we check that all the predicates (i.e. property
instances) specializing it have been recognized and do not introduce any in-
consistency in the ontology, then, that the resulting rule, i.e. the individual of
User-Requirement is correctly formed. If this two verifications hold, an instance
of the concept User-Requirement is created. During the ontology population pro-
cess, several instances of User-Requirement can be associated to an instance of
Requirement-Pattern via the property Rule-Pattern (cf. Figure 1). Each of them
is associated with the sentence number it is extracted from. It enables to keep
the link between textual requirements and formal rules.

We collected user requirements of a smart space behaviour configuration via
a platform available on the web5. We collected about hundred sentences6 (2171
words). Figure 2 presents an example of an individual of User-Requirement that
specializes an instance of Requirement-Pattern. It was created automatically
from the NL requirement analysis and was identified from the sentence num-
ber 1 "When I enter a room the door opens automatically." of the analysed
user requirements. Right elements in bold are instances identified from user re-
quirements analysis. Elements preceded by a question mark ’?’ correspond to
variables. The left property in bold is a super-property7 that determines the
type of property to identify from user requirements analysis.

Within the hundred sentences, 62 were manually annotated as containing
a behavioural rule. From user requirements analysis, a total of 28 rules were
completely identified and created in the ontology and 34 rules were partially
recognized. During the ontology reasoning, two rules among the 28 were rejected,
being inconsistent with two existing rules and 3 were identified as containing an
additional (incorrect) predicate. As within the ontology, identified individuals are
linked to the sentence they were extracted, a precise feedback is returned to the
user, highlighting missing and incorrect information in order to let her correct
or complete the concerned requirement. Once all the necessary checks have been
performed successfully, the validated rules are transformed into Maude.

5 http://perso.limsi.fr/sadoun/Application/en/SmartHome.php
6 A rule is extracted from a sentence.
7 Actuate is the super-property of Turn-on.

http://perso.limsi.fr/sadoun/Application/en/SmartHome.php

Formal Rule Representation and Verification from NL Requirements 231

An individual of Requirement-Pattern
(a generic rule).
Detected-in(t,l)
Controlled-in(p,l)
Has-type(?ph,t)
Occurred-in(?ph,?loc)
Perceived-type(?s,t)
Zone-of-sensing(?s,?loc)
Managed-type(?a,t)
Managed-zone(?a,?loc)
Loc-type(?loc,l)
⇒ Actuate(?a,p)

R-1 : When I enter a room the door opens
automatically.
Detected-in(movement-in,room)
Controlled-in(door,room)
Has-type(?s,movement-in)
Occurred-in(?s,?I1-445)
Perceived-type(?I1-280,movement-in)
Zone-of-sensing(?I1-280,?I1-445)
Managed-type(?I1-8,movement-in)
Managed-zone(?I1-8,?I1-445)
Loc-type(?I1-445,room)
⇒ Turn-on(?I1-8,door)

Fig. 2. A user requirement created from NL requirement analysis

3 From the Ontology to the Maude Formal Specifications

3.1 The Formal Specification Language Maude

Maude8 enables to describe the dynamic of a system, i.e. its state changes, and
provides different tools for checking it. The state space of a system is represented
by a signature Σ that defines sorts (i.e. types) of constants and variables ma-
nipulated by Maude and operators that will act upon the manipulated data and
by a set of equations E built between terms using the signature. Within Maude,
the evolution of the system state is described by rewriting rules of the form R : t
→ t

′
, where t and t

′
are terms formed on the signature. Rewriting rules rewrite

each term of the left hand side of the rule into a term of the right hand side.
The rewriting mechanism allows for specification animation and verification of
certain properties as the reachability or the non-reachability of particular states.

Maude defines an object-oriented module that offers an object-oriented syn-
tax which is well adapted for concurrent systems, using sets of objects, and a
communication mechanism based on message transmission between objects. We
use it as a target module for the transformation of the ontology model.

In an object-oriented module, objects are of the form <O : C|a1 : v1, ..., an :
vn> with O the object identifier, C the object class, ai (i ∈ 1..n) its at-
tribute names and vi (i ∈ 1..n) the corresponding attribute values. Messages
represent the dynamic interaction between objects. They have the form msg
Mes : Oid, T1, ..., Tk → Msg . with msg a keyword, Mes the message name,
Oid the type of the recipient object and Ti (i ∈ 1..k) the types of the message
arguments. The state of a system, called configuration, corresponds to a multi-
set of objects and messages. It is defined using a Maude equation of the form: eq
Conf = Ob1 ... Obm Mes1 ... Mesn . with eq a keyword, Conf the configuration
name, Obi and Mesi the objects and messages of the state system.

We represent a Maude object oriented model as a tuple <C,M,Σ,E ,R> with:

– C is the set of class names with, for each class, its set of pairs (attribute,
type);

– M denotes the set of message names;

8 http://maude.cs.uiuc.edu/

http://maude.cs.uiuc.edu/

232 D. Sadoun et al.

– Σ corresponds to the typing environment. Each element (constant or vari-
able) is associated to its type;

– E corresponds to the set of equations representing the state of the system
(its configuration) with E = EO ∪ EM such that:
• EO : the set of configurations-objects pairs;
• EM : the set of configurations-messages pairs.
• R contains the rewriting rules.

3.2 Transformation Approach

In this section, we propose a mapping between the ontological elements and
the object-oriented Maude elements for an automatic translation. Ontological
elements to translate are those contributing to the representation of the sys-
tem state evolution. They correspond to User-Requirement instances and the
elements necessary for their definition: concepts Component and Type, proper-
ties (attributes and relations), individuals and their property values. Figure 3
illustrates this mapping. The set of relations PR is represented in Maude by a
set of messages M between two objects as they represent evolving relations.
The set of attributes PA is translated as object attributes. Finally, instances
of User-requirement are translated as rewriting rules with an antecedent and
a consequent built on objects, messages, attributes, literals (i.e. values of basic
types) and variables.

The dynamic evolution of a rewriting rule depends on messages and dynamic
attributes (cf. section 2.1). When a rule applies, messages of the antecedent
are not rewritten and some new messages may appear in the consequent, also
dynamic attributes values may change and new attributes may appear in the
consequent as in Figure 4, which illustrates a rewriting rule created from the
user requirement R-1 (cf. Figure 2) and extracted from the sentence number
1 "When I enter a room the door opens automatically." the dynamic attribute
Turn-on of the object Actuator is created in the consequent part.

3.3 Automatic Translation of the Ontology into Maude
Specifications

Following the mapping of Figure 3, we implemented the translation function
TradO which exploits getter-functions (prefixed by get-) issued from the Java

OWL Ontology object oriented model Maude
Individual of the concept Component (∈ IC) Object (∈ E)
Individual of the concept Type (∈ IT) Attribute value (∈ E)
Sub-concept of the concept Component (∈ CC) Class (∈ C)
Sub-concept of the concept Type (∈ CT) Sort Oid (∈ Σ)
Relation (∈ PR) Message (∈ M)
Attribute (static & dynamic) (∈ PA) Attribute (∈ Σ)
Instance of User-Requirement (∈ IRU) Rewriting rule (∈ R)

Fig. 3. Correspondence between our ontology model and Maude model

Formal Rule Representation and Verification from NL Requirements 233

rl [R-1] : < door : Physical-process-Type | Controlled-in : room >
< I1-445-8 : Location | Loc-type : room >
< I1-326-6 : Phenomenon | Has-type : movement-in, Occurred-in : I1-445-8 >
< I1-280-7 : Sensor | Perceived-type : movement-in, Zone-of-sensing : I1-445-8 >
< room : Location-Type | >
< smoke : Event | Detected-in : room >
< I1-8-2 : Actuator | Managed-type : movement-in, Managed-zone : I1-445-8 >
−→
< door : Physical-process-Type | Controlled-in : room >
< I1-445-8 : Location | Loc-type : room >
< I1-326-6 : Phenomenon | Has-type : movement-in, Occurred-in : I1-445-8 >
< I1-280-7 : Sensor | Perceived-type : movement-in, Zone-of-sensing : I1-445-8 >
< room : Location-Type | >
< smoke : Event | Detected-in : room >
< I1-8-2 : Actuator | Managed-type : movement-in, Managed-zone : I1-445-8, Turn-on : door > .

Fig. 4. A Maude rewriting rule translated from the behavioural rule R-1

APIs OWL and Jess or implemented by us to query the ontological elements.
TradO takes the ontology model (C,P,A, I, IC, IP) as input and calls four trans-
lation functions (cf. Algorithm TradO): TradC , TradM , TradE and TradR. Each
of these functions takes as input a subset of the ontology model and translates
it into a sub-set of the Maude model. In order to generate Maude specifications
from the resulting Maude model, we implemented pretty-printing functions (pre-
fixed by pp-) that generate portions of Maude code. Their application results in
the creation of a Maude specification file. The main function pp-generation-of-
code-Maude takes as input the output result of TradO (<C,M,Σ,E ,R>) and
produces a Maude specification file. It calls eight pretty-printing functions (cf.
Algorithm pp-generation-of-code-Maude) that writes each a sub-set of Maude
specifications. The operator � denotes the automatic Maude code generation
into the specification document Spec-Maude.
Input:C,P,A, I,IC,IP;
Output:< C,M,Σ,E,R >;
CC ← get-ConceptSubClasses(A,Composant);
CT ← get-ConceptSubClasses(A,Type);
CRU ← get-SubConcepts(A,User-requirement);
IRU ← get-ConceptIndividuals(CRU , IC);
PR ← get-OntologyRelations(A);
C ← TradC(CC ,CT,A);
M ← TradM(PR) ;
<E,Σ0> ← TradE(CC , PR,A, I,IC,IP) ;
<R,Σ> ← TradR(IRU ,IP, PR, A, Σ0) ;

Algorithm TradO

Input:< C,M,Σ,E,R >,Spec-Maude;
Output:Spec-Maude;
Spec-Maude � pp-declareClass(C);
Spec-Maude � pp-declareMessage(M);
Spec-Maude � pp-declareObject(Σ);
Spec-Maude � pp-declareVariables(Σ);
Spec-Maude � pp-declareObjectConfiguration(Σ);
Spec-Maude � pp-createObjectConfiguration(E);
Spec-Maude � pp-createMsgConfiguration(E);
Spec-Maude � pp-createRules(R);

Algorithm pp-generation-of-code-Maude

The algorithm 1 details the function TradR (cf. Algorithm TradO) that trans-
lates the user requirements (IRU) modelled in the ontology into rewriting rules
describing the system behaviour within Maude. These rules are formed by bi-
nary predicates representing ontology properties. Each predicate may have as
argument individuals, literals or variables. Existing objects have been declared
in Σ0 and created in E within the function TradE (cf. Algorithm TradO). Vari-
ables and literals still need to be declared. For each predicate of the properties
Antecedent and Consequent, getter-functions are called to get its name (the prop-
erty to which it refers) and its domain and range values. These values are inputs
of the function updateObjects that creates objects or updates their values if they

234 D. Sadoun et al.

already exist. For example, during the creation of the rewriting rule R-1 (cf. Fig-
ure 4) the object Actuator has been created from the predicate Managed-type,
then updated by the predicate Managed-zone and finally updated in the conse-
quent of the rule by the predicate Turn-on that represents a dynamic attribute.

3.4 User Requirements Verification in Maude

Maude incorporates a variety of validation and verification tools [2] including
a model checker [4]. A model-checker enables the model exploration. From an
initial configuration, it explores the possible states of the represented system
based on rewriting rules application. The model-checking allows us to check un-
desirable state reachability as states resulting from the simultaneous application
of rules in contradiction i.e. that can be triggered at the same time and con-
tains in their consequents predicates in opposition (as Turn-on and Turn-off)
on the same object. Then we say that the rules are inconsistent. Hence, the rule
created from the sentence 88 "When a sensor detects a hot temperature in any
room combined with smoke in this room, close all the doors and windows." was
identified as inconsistent with the rule number 1. Model checking also allows us
to check the completeness of the specified system by checking the reachability of
desirable states. For example, in the framework of a smart space, it is necessary
to check if all physical processes can reach the states on and off at least once.

Input: IRU ,IP, PR, A, Σ0

Output: R,Σ
R ← ∅; Σ ← Σ0; Objs-Antecedent ← ∅; Objs-Consequent ← ∅;
Msg-Antecedent ← ∅; Msg-Consequent ← ∅; Class-Attributes-Values ← ∅;
for each iRU in IRU do
A-predicates ← get-RangeValue(iRU ,Antecedent,IP) ;
C-predicates ← get-RangeValue(iRU , Consequent,IP) ;
for each a-predicate in A-predicates do //predicates of the antecedent
p ← get-PredicateName(a-predicate) ;
vD ← get-PredicateDomainValue(a-predicate) ;
vR ← get-PredicateRangeValue(a-predicate) ;
tD ← get-Domain(p,A); tR ← get-Range(p,A) ;
if isV ariableOrLitteral(vD) then
Σ ← Σ ∪ {(vD ,tD)};

if isV ariableOrLitteral(vR) then
Σ ← Σ ∪ {(vR,tR)};

if p ∈ PR then //p is a relation
Msg-Antecedent ← Msg-Antecedent ∪ {(p, vD , vR)};
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vD,tD,∅,∅)});
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vR,tR,∅,∅)});
else //p is an attribute
Objs-Antecedent ← updateObjects(Objs-Antecedent,{(vD,tD,p,vR)});
Objs-Consequent ← Objs-Antecedent;
for each c-predicate in C-predicates do //predicates of the consequent
p ← get-PredicateName(c-predicate) ;
vD ← get-PredicateDomainValue(c-predicate) ;
vR ← get-PredicateRangeValue(c-predicate) ;
tD ← get-Domain(p,A); tR ← get-Range(p,A) ;
if isDynamic(p,A) then //p is an dynamic attribute
Objs-Consequent ← updateObjects(Objs-Consequent,{(vD,tD ,p,vR)}) else
if p ∈ PR then //p is a relation
Msg-Consequent ← Msg-Consequent ∪ {(p, vD , vR)};

R ← R ∪ {(Objs-Antecedent,Objs- Consequent,Msg-Antecedent,Msg- Consequent)};
Algorithm 1: Type declaration and rewriting rules creation

Formal Rule Representation and Verification from NL Requirements 235

Thus, a message can be returned to the user. As it was the case for the lack of
a rule that turns off the physical process light-bathroom.

4 Conclusion

We proposed an approach for behavioural rules representation and formalization
from user requirements written in natural language. The core of this approach is
an OWL-DL ontology that encompasses the general behaviour of a system. The
ontology is used as a pivot representation as it defines a framework for guiding
the identification of behavioural rules and allows us to implement an automated
transformation of them into a formal specification in Maude. We described an
application of our approach on the domain of smart spaces and showed how
representing the behaviour of smart space by a Maude specification enabled us
to check its consistency and completeness.

References

1. Bajwa, I.S., Bordbar, B., Lee, M., Anastasakis, K.: Nl2alloy: A tool to generate
alloy from nl constraints. JDIM 10(6) (2012)

2. Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky, P.C.: The
maude formal tool environment. In: Mossakowski, T., Montanari, U., Haveraaen,
M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 173–178. Springer, Heidelberg (2007)

3. Durán, F., Gogolla, M., Roldán, M.: Tracing properties of uml and ocl models with
maude. In: AMMSE (2011)

4. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude {LTL} model checker.
ENTCS 71, 162–187 (2004)

5. Guissé, A., Lévy, F., Nazarenko, A.: From regulatory texts to brms: how to guide
the acquisition of business rules? In: Bikakis, A., Giurca, A. (eds.) RuleML 2012.
LNCS, vol. 7438, pp. 77–91. Springer, Heidelberg (2012)

6. Karpovic, J., Nemuraite, L., Stankeviciene, M.: Requirements for semantic business
vocabularies and rules for transforming them into consistent owl2 ontologies. In:
Skersys, T., Butleris, R., Butkiene, R. (eds.) ICIST 2012. CCIS, vol. 319, pp. 420–
435. Springer, Heidelberg (2012)

7. Njonko, P., El Abed, W.: From natural language business requirements to exe-
cutable models via sbvr. In: ICSAI (2012)

8. Sadoun, D., Dubois, C., Ghamri-Doudane, Y., Grau, B.: From natural language
requirements to formal specification using an ontology. In: ICTAI (2013)

9. Selway, M., Grossmann, G., Mayer, W., Stumptner, M.: Formalising natural lan-
guage specifications using a cognitive linguistics/configuration based approach. In:
EDOC, pp. 59–68 (2013)

10. Sukys, A., Nemuraite, L., Paradauskas, B., Sinkevicius, E.: Transformation frame-
work for sbvr based semantic queries in business information systems. In:
BUSTECH, pp. 19–24 (2012)

Learning Business Rules

with Association Rule Classifiers

Tomáš Kliegr1,4, Jaroslav Kuchař1,2, Davide Sottara3, and Stanislav Voj́ı̌r1

1 Department of Information and Knowledge Engineering,
Faculty of Informatics and Statistics,

University of Economics, Prague, Czech Republic
first.last@vse.cz

2 Web Engineering Group, Faculty of Information Technology,
Czech Technical University in Prague, Czech Republic

3 Biomedical Informatics Department,
Arizona State University, Phoenix, AZ, USA

dsottara@asu.edu
4 Multimedia and Vision Research Group,
Queen Mary, University of London, UK

Abstract. The main obstacles for a straightforward use of association
rules as candidate business rules are the excessive number of rules dis-
covered even on small datasets, and the fact that contradicting rules are
generated. This paper shows that Association Rule Classification algo-
rithms, such as CBA, solve both these problems, and provides a practical
guide on using discovered rules in the Drools BRMS and on setting the
ARC parameters. Experiments performed with modified CBA on several
UCI datasets indicate that data coverage rule pruning keeps the number
of rules manageable, while not adversely impacting the accuracy. The
best results in terms of overall accuracy are obtained using minimum
support and confidence thresholds. Disjunction between attribute values
seem to provide a desirable balance between accuracy and rule count,
while negated literals have not been found beneficial.

Keywords: association rules, rule pruning, business rules, Drools.

1 Introduction

Association rule learning cannot be directly used for learning business rules, due
to the excessive number of rules generated even for small datasets, and the lack
of a rule conflict resolution strategy. However, if several techniques originally de-
veloped for association rule classification (ARC) are adopted, association rules
can be used as classification business rules. ARC algorithms contain a rule prun-
ing step, which significantly reduces the number of rules, and define a conflict
resolution strategy for cases when one object is matched by multiple rules.

This paper has two focus areas. Due to the limited amount of prior work, in
the first part of the paper we evaluate to what degree ARC algorithms meet
the requirements of the business rule learning task and demonstrates how the

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 236–250, 2014.
c© Springer International Publishing Switzerland 2014

Learning Business Rules with Association Rule Classifiers 237

discovered rules can be used in a Drools Business Rule Management System
(BRMS) system. The second part of the paper describes our implementation
and experimental evaluation of a business rule learning system. In contrast to
mainstream ARC algorithms, the system allows to learn disjunctive and negative
rules. We hypothesize that the additional expressiveness could result in a rule
set which is smaller, and thus more intelligible for the business user. Another
modification is a simplification of the rule pruning phase.

This paper is organized as follows. Section 2 reviews related research. Section 3
presents a set of requirements on business rule learning algorithm and contrasts
it with what ARC algorithms provide. Section 4 describes how rules learnt from
data can be used in the Drools. Section 5 presents our experimental business rule
learning system brCBA. Section 6 presents experimental evaluation on several
datasets. Finally, Section 7 summarizes our findings, gives limitations of the
presented work and outlines viable directions of future research.

2 Related Work

There is a very limited amount of prior work on learning business rules from
data. This paper is restricted to what we call classification business rules i.e.
rules that assign a class (a type) to an object whenever its description matches
the conditions contained in the rule’s body. This corresponds to what is known
in the rule learning literature as classification rule or predictive rule.

Association rule learning algorithms such as apriori [1] or FP-growth [3] can
be used to learn conjunctive classification rules from data if the mining setup is
constrained so that only the target class values can occur in the consequent of
the rules. The GUHA method [7] is an alternative approach to mine association
rules, which allows to learn also rules featuring negation and disjunction between
attribute values.

The main obstacles for a straightforward use of association rules as candidate
business rules are the excessive number of rules discovered even on small datasets,
and the fact that contradicting rules are generated. Association Rule Classifier
(ARC) algorithms provide an extension over association rule learning algorithms
which address exactly these issues. These algorithms contain a rule pruning step,
which significantly reduces the number of rules, and define a conflict resolution
strategy for cases when one object is matched by multiple rules.

The first ARC algorithm dubbed CBA (Classification based on Associations)
was introduced in 1998 by Liu et al. [5]. While there were multiple follow-up al-
gorithms providing incremental improvements in classification performance (e.g.
CPAR [15], CMAR [4] and MMAC [10]), the structure of most ARC algorithms
follows that of CBA [13]: 1) learn association rules, 2) prune the set of classifica-
tion rules, 3) classify new objects. Our proposed brCBA algorithm also follows
this structure. It differs from CBA and other algorithms by using a GUHA-based
algorithm in the “learn association rules” phase, which allows us to explore the
effects of disjunction and negation on classification performance. To the best
of our knowledge, the impact of the increased expressiveness added by these
connectives on ARC performance has not yet been reported.

238 T. Kliegr et al.

The output of association rule learning algorithms is determined typically by
two parameters: minimum confidence and support thresholds on the training
data. The confidence of a rule is defined as a/(a + b), where a is the number
of correctly classified objects, i.e. those matching rule antecedent as well rule
consequent, and b is the number of misclassified objects, i.e. those matching the
antecedent, but not the consequent. The support of a rule is defined as a/n,
where n is the number of all objects (relative support), or simply as a (absolute
support). The confidence threshold can be used to control the quality of the
resulting classifier. While the authors of ARC classifiers report the confidence
threshold used in their experimental setups (0.3 [10], 0.4 [9], 0.5 [5]), the impact
of varying the value of this threshold on classifier performance has not yet been
studied (to the best of our knowledge). To help guide the setting of ARC al-
gorithms, we provide a detailed study of the effect of confidence threshold and
support thresholds on the classification accuracy and rule count.

There is also a very limited work on effects of rule pruning. A qualitative
review of rule pruning algorithms used in ARC are given e.g. in [13,8]. The
effect of pruning on the size of the rule set is reported in [5], which presents
evaluation on 26 UCI datasets. The average number of rules per dataset without
pruning was 35,140, with pruning the average number of rules was reduced to
69. However, this paper focuses on the evaluation of less commonly employed
pessimistic pruning. We focus on evaluation of data coverage pruning, which is
the most commonly used pruning algorithm (present, with some modifications,
in CBA, CMAR and MMAC).

3 Business Rule Learning Requirements

The business rule learning workflow imposes some specific demands on the selec-
tion of a suitable rule learning algorithm. In this section, we discuss the compli-
ance of ARC algorithms with some of the requirements that we have identified.

BRMS Supported Rule Expressiveness. The rules learnt are composed
of a conjunction of constraints on attribute values in the antecedent, and a single
value for the class attribute in the consequent. The operations performed by later
steps in ARC execution, such as pruning or ranking, do not change the internal
structure of the rules.

Example 1. Rule learnt on the Iris dataset.

�petalLength=〈3.95; 4.54) ∧ petalWidth=〈1.3; 1.54) →1,0.14 Class=Iris-
versicolor�, where 1 is rule confidence and 0.14 (relative) rule support.

Rules, such as the one depicted in Example 1, can be translated into technical
rule languages for execution inside a rule engine. In our earlier work [14] we
presented the mapping to DRL, the format used by the open source BRMS
system Drools.

Learning Business Rules with Association Rule Classifiers 239

Small number of output rules. Perhaps the biggest challenge in converting
association rules to business rules is the fact that the number of discovered rules
is often too large to be presented to a user. The two common strategies to solve
this problem are rule grouping and rule pruning.

Rule grouping algorithms cluster the rules according to a predefined distance
measure [12]. Most ARC algorithms use rule pruning. The details of the individ-
ual types of pruning algorithms is given e.g. in [13,11,8]. The most commonly
used method according to these survey papers is Data Coverage Pruning (see
Subs. 5.2).

Exhaustive set of rules.Most ARC algorithms use an exact association rule
learning algorithm, either based on apriori or FP-Growth. These algorithms learn
exhaustive set of rules matching predefined minimum confidence and minimum
support thresholds [13].

However, some rules are removed in the pruning phase. Since pruning1 removes
only rules which cover objects which are already covered by another higher
priority rule, the pruning typically affects only rules that would be viewed by
the user as redundant.

Rule conflict resolution. Once association rules are generated and pruned,
ARC algorithms use them to classify new objects. There are two fundamental
approaches: single rule and multiple rule classification [13], depending on the
number of rules that are involved in assigning a class to an object. The single rule
classification used in CBA is described in Section 5.3 and subject to experimental
evaluation as part of our implementation in Section 6. An overview of possible
implementation in the Drools Rule Engine is present in Section 4.

Ability to control rule quality. The rule quality can be controlled by
setting the minimum confidence (and support) thresholds. It should be noted
that ARC algorithms try to cover every training object with at least one rule,
for example, CBA ensures this by adding a default rule to the rule set. The
default rule insertion needs to be omitted (ref. to Subs. 5.2) in order to allow
the user to control the overall quality of the rule set.

4 Drools-Based Rule Engine

The learning algorithm generates association rules which establish an implication
between the antecedent and the consequent. In the case of classification rules,
the consequent is the type of an individual object whose features have been
matched by the antecedent. So, they can naturally be reinterpreted as business
rules with the semantics of production rules. This allows to decouple recognition
from decision making, resulting in more robust knowledge bases. Moreover, (pro-
duction) rule engines can be considered commodity components: in particular,
we have used the popular open source business logic platform Drools2. Drools
is written in Java and relies on an object-oriented rule engine inspired from the
RETE algorithm.

1 Referring to the “database coverage” algorithm.
2 http://drools.jboss.org

http://drools.jboss.org

240 T. Kliegr et al.

Listing 1.2. A Conflict Resolution Meta-Rule in Drools
rule ’Block by confidence ’ @Direct

when
$m1 : Match(associationRole == ’premise ’, $t : tuple)
$m2 : Match(this != $m1 , associationRole == ’premise ’, tuple == $t ,

confidence > $m1.confidence ||
confidence == $m1.confidence && support > $m1.support ||
antecedent < $m1.antecedent)

then
kcontext .cancelMatch($m1);

end

In our implementation, we have created a simple, generic data model with
two classes to model attributes and inferred types: DrlObject and DrlAR re-
spectively. This allows to write rules such as the one in Listing 1.1.

Listing 1.1. A Sample Classification Rule in Drools

rule "rule_1" @associationRole(premise)
@antecedent(4) @confidence(1) @support (0.06)

when
DrlObj(name == "petalLength", numVal >= 1 && < 1.59)
DrlObj(name == "petalWidth", numVal >= 0.1 && < 0.34)
DrlObj(name == "sepalLength",

numVal >= (4.3 && < 4.66) || (>= 4.66 && < 5.02))
DrlObj(name == "sepalWidth", numVal >= 2.96 && < 3.2))

then
DrlAR $type = new DrlAR("rule_1 ", "Iris_Setosa", 4, 1, 0.06);
insertLogical($type);

end

The rules are generated automatically from the output of the rule learner.
Since the learner produces XML, we have applied an XSLT transformation to
generate DRL, the Drools technical rule language. Notice that information such
as confidence and support is retained as metadata and modelled using Java-like
@annotations.

In order to implement the conflict resolution strategies mentioned in Sec-
tion 5.2, we have exploited the “declarative agenda” feature of the rule engine.
In a production rule engine, whenever one or more facts match the left-hand side
of a rule, a rule activation is created and queued into an agenda. Activations
are then consumed and the actions in the right-hand side are executed by the
engine. Drools’ declarative agenda allows to define rules that match and process
the activations queued in the agenda itself. Such “meta-rules” are deployed into
the same rule base as the standard rules. More specifically, entries in the agenda
are instance of the class Match, which holds references to the rule that was ac-
tivated as well as the tuple that caused the activation. Any metadata that is
attached to the original rule is exposed by the engine as a virtual property of
the activation, so that the meta-rule can constrain their value. Thanks to these
capabilities, any conflict resolution strategy can be implemented with a single
meta-rule, as shown in Listing 1.2. In our case, the activation of a rule with
higher priority will cancel the activation of a rule with a lower priority for the
same tuple.

Learning Business Rules with Association Rule Classifiers 241

5 brCBA - CBA for Business Rule Learning

In this section, we describe the setup used to perform the experimental evalu-
ation. The implementation comes out of the seminal CBA algorithm. However,
there are minor differences in individual steps, which are summarized in Table 1
and explained in the remainder of this section. Most importantly, brCBA uses for
rule learning the LISp-Miner system3, an implementation of the GUHA method,
instead of the apriori algorithm.

Table 1. Comparison of CBA and brCBA

stage CBA [5] brCBA

learning conjunctive rules (apriori) conj. rules, disjunctions between at-
tribute values, negations (GUHA
method)

pruning pessimistic pruning (optional), data
coverage, default rule replacement

no pruning, data coverage pruning

classification complete partial

5.1 Rule Expressiveness

The mainstream systems for mining association rules employed in ARC, includ-
ing CBA, output conjunctive association rules. The basic building block of an
association rule is a literal.4

Definition 1. (literal) A literal p is an attribute-value pair, taking the form of
(Ai, v) in which Ai is an attribute and v a value. An object o satisfies a literal
p = (Ai, v) if and only if oi = v, where oi is the value of the ith attribute of o.

Definition 2. (rule) A rule r, which takes the form of ”l1∧ l2,∧ . . .∧ lm → c”,
consists of a conjunction of literals l1, l2, . . . , lm, associated with a class label
c. An object satisfies rule r’s body if and only if it satisfies every literal in the
rule. If object satisfies r’s body, r predicts that the object is of class c. If a rule
contains zero literal, its body is satisfied by any object.

In brCBA we extend the original notion of literal present in Def. 1 to allow for
disjunction between attribute values (dynamic binning) and negated literals.

Dynamic Binning (disjunctions between attribute values). Typically
value binning is performed during the preprocessing step, creating a modified
data table which contains a smaller number of merged values. This approach
may negatively impact the quality of the rule learning if the bins created are
too narrow or too broad. In brCBA we extend the definition of literal to allow
for dynamic binning, which merges multiple values during rule learning into a
value range (an enumeration of values or an interval).

3 http://lispminer.vse.cz
4 We introduce the definition of literal and an association rule from [15] substituting
the machine learning term “tuple” by term “object” common in the BRMS field.

http://lispminer.vse.cz

242 T. Kliegr et al.

Definition 3. (positive literal) A positive literal p is an association of an
attribute with a value range, taking the form of (Ai, V) in which Ai is an attribute
and V is a value range. An object o satisfies a positive literal p = (Ai, V) if and
only if oi ∈ V , where oi is a value of the ith attribute of object o.

From the options offered by the LISp-Miner system, we consider two types
of dynamic binning: Subset binning merges up to a prespecified number of
values, while Sequence (Interval) binning merges up to a prespecified number of
adjacent values [7]. Subset binning is typically applied on on nominal attributes,
while adjacent value binning on numerical or ordinal attributes.

The maximum number of values to be merged is set by parameter λ (for both
methods). The result of dynamic binning on an attribute is a set of literals.
Unlike some greedy algorithms (such as the algorithm for grouping values in
C4.5 [6]), the dynamic binning operator is exhaustive. For an attribute Ai with

n distinct values, assuming that n ≥ λ, sequence binning creates
∑λ

j=1 n− j+1

literals, while subset binning
∑λ

j=1

(
n
j

)
literals.

Example 2. Binning
The discretization on the petalLength attribute from the Iris dataset was
performed by creating equidistant bins during preprocessinga: [1; 1.59),
[1.59; 3.95), [3.95; 4.54), [4.54; 5.13), [5.13; 5.72). Interval binning set to max-
imum length λ=2 will create 9 literals: five literals corresponding the original
values plus the following four: [1; 1.59)∨ [1.59; 3.95), [1.59; 3.95)∨ [3.95; 4.54],
[3.95; 4.54)∨ [4.54; 5.13), [4.54; 5.13)∨ [5.13; 5.72).
An example rule featuring dynamically binned intervals: �petalLength =
[4.54; 5.13)∨ 〈5.13; 5.72) →0.77,0.33 Class=Iris-versicolor�,
a Merging bins with too small support count into one bin.

Negation. Considering negative literals in addition to the positive ones dur-
ing rule mining produces a richer set of rules. It was previously conjectured that
this could benefit the performance of ARC [2].

Definition 4. (negative literal) A negative literal n is an association of an
attribute with a value range, taking the form of (Ai, V) in which Ai is an attribute
and V is a value range. An object o satisfies a negative literal n = (Ai, V) if and
only if oi /∈ V , where oi is a value of the ith attribute of o.

Example 3. Rule with a negative literal

�¬petalLength=[1; 1.59) ∧ petalWidth [0.1; 0.34) →1,0.05 Class=Iris-setosa�

5.2 Rule Pruning

CBA and brCBA use the data coverage rule pruning algorithm. This algorithm
applies to a sorted list of ranked rules. Each rule is matched against the training

Learning Business Rules with Association Rule Classifiers 243

Algorithm 1. Data Coverage

Require: rules – sorted list of rules, T – set of objects in the training dataset
Ensure: rules – pruned list of rules

rules := sort rules according to criteria on Fig. 1
for all rule ∈ rules do

matches:= set of objects from T that match both rule ant. and conseq.
if matches==∅ then

remove rule from rules
else

remove matches from T
end if

end for
return rules

data. If a rule does not correctly classify any object, it is discarded. Otherwise,
the rule is kept, and the objects correctly classified are removed (ref. to Alg. 1).

The output of rule pruning is a reduced set of rules, where the redundant
rules have been removed. If there are two rules matching one training object,
the weaker rule (acc. to Fig. 1) will be removed.

1. ra is ranked higher if confidence of ra is greater than that of rb,
2. ra is ranked higher if confidence of ra is the same as confidence of rb, but support

of ra is greater than that of rb,
3. ra is ranked higher if ra has shorter antecedent (fewer conditions) than rb.

Fig. 1. Rule ranking criteria. Tie-breaking conditions applied if antecedents of two
rules ra and rb match the same object.

It should be noted that the original CBA classifier contains two additional
pruning steps: a) pessimistic pruning and b) replacement of rules performing
worse than the majority class baseline with the default rule predicting the ma-
jority class. Pessimistic pruning is not featured in our setup, since it was not
found to improve performance [5]. The omission of the default rule pruning in
brCBA gives the user the control over the quality of the rule set, which can be
influenced by the minimum confidence parameter, obtaining a partial classifier
(not all objects may be labeled).

5.3 Classification and Rule Conflict Handling

If an input object matches exactly one rule, the classification step is very simple
– the class contained in the consequent of the rule is assigned to the object. How-
ever, the output of association rule learning contains all too often an excessive
number of redundant and conflicting rules. Employing rule pruning alleviates the

244 T. Kliegr et al.

number of conflicts since the number of redundant rules is reduced. Nevertheless
pruning does not ensure that rule conflict will not emerge.

Rule conflict occurs if for a given object, there are at least two rules ra and rb,
whose antecedents match the object. In practical terms, handling rule conflict
is of importance if the consequents of these two rules are different, i.e. the rules
assign a different class.

Association rules readily come with several scores that could be used to de-
fine a priority. These are primarily confidence and support, however additional
measures such as chi-square or lift can be computed. The problem is thus to
select, or combine these metrics into a total order, which would allow to solve
ties between individual rules. brCBA uses the same method as CBA. In the first
step, rules are sorted according to confidence, support and rule length – in the
same way as in the data coverage pruning (see Fig. 1). The conflict is resolved
by selecting the consequent of the top-ranked rule matching the object.

6 Experiments

The purpose of the experimental evaluation was to assess the impact of the
following settings of association rule classifiers in the context of partial clas-
sification: data coverage rule pruning, dynamic binning, negated literals, and
confidence/support thresholds.

6.1 Setup

Datasets. Experiments were performed on Iris, Balance Scale and Glass datasets
from the UCI repository5, which are frequently used for benchmarking classifi-
cation systems. The use of a smaller number of datasets than in most related
work allows us to present a detailed qualitative analysis of the results.
Preprocessing.Numerical attributes were discretized using equidistant binning
with custom merging of bins with small support.
Rule Learning. To perform the experiments, we used the LISp-Miner system6

for learning association rules. LISp-Miner allows to perform learning of negative
and disjunctive rules. Disjunctive rules (dynamic binning) are learnt through
the setting of the LISp-Miner coefficient feature on individual input attributes
to subset or, respectively, sequence type. The maximum length parameter λ was
set to 2.7

Rule Pruning. To perform rule pruning we used our Java implementation of
the data coverage algorithm. This algorithm does not have any parameters.
Conflict Resolution. We used the conflict resolution according to Fig. 1.

5 http://archive.ics.uci.edu/ml/
6 http://lispminer.vse.cz
7 The system allows to enter also the minimum length parameter, which was left
set to 1. For experiments involving negative rules, the system was set to consider
both positive and negative version for each literal. The remaining parameters of the
LISp-Miner system were left at their default values.

http://archive.ics.uci.edu/ml/
http://lispminer.vse.cz

Learning Business Rules with Association Rule Classifiers 245

6.2 Results

The experimental results achieved on individual datasets are depicted on Table 2-
5 in terms of accuracy and rule count. Accuracy is computed as correct/N , where
correct is the number of correct predictions and N the total number of objects.

Since brCBA is a partial classifier, it may not assign a label to all objects.
For this reason, we also provide complementary results using precision, which
we compute as correct/Ncov, where Ncov is the number of covered (classified)
objects. The plots depicted on Figure 2-5 provide accuracy and precision at
minimum confidence levels 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 along with the average
number of unclassified objects (N −Ncov).

All results are reported using ten fold cross validation with macro averaging.

Table 2. Dataset: Iris, minimum support threshold: 7 objects (5.18%)

not pruned pruned
without binning sequence 1-2 without binning sequence 1-2

confidence rules accuracy rules accuracy rules accuracy rules accuracy

0.5 96 0.940 972.2 0.940 20 0.920 17 0.953
0.6 87 0.940 903.6 0.940 19 0.920 17 0.953
0.7 83 0.940 839.6 0.940 17 0.920 17 0.953
0.8 76 0.940 734.7 0.940 17 0.920 15 0.947
0.9 68 0.900 603.2 0.940 15 0.880 14 0.940

Table 3. Dataset: Balance Scale, minimum support threshold: 10 objects (1.78%)

not pruned pruned
without binning subset 1-2 without binning subset 1-2

confidence rules accuracy rules accuracy rules accuracy rules accuracy

0.6 124 0.891 11947 0.758 78 0.870 153 0.779
0.7 86 0.875 8462 0.826 70 0.864 153 0.779
0.8 50 0.790 4881 0.838 50 0.782 153 0.779
0.9 24 0.547 2193 0.838 24 0.547 153 0.779
1.0 1 0.047 1001 0.811 1 0.047 99 0.758

Minimum Support and Confidence Thresholds. Experimental results show
that the lower minimum support threshold is generally associated with improved
accuracy. This is demonstrated on Table 5.

For Iris and Balance Scale datasets the precision and accuracy do not react to
an increase of minimum confidence within a certain interval (Figure 2-4). This
phenomenon is encountered without respect to whether the pruning is turned
on or off. This can be explained by the fact that the mining output for a given
minimum confidence threshold contains also the higher confidence rules. If these
higher confidence rules cover all test objects that are covered by the lower con-
fidence rules, due to the conflict resolution strategy used the lower confidence

246 T. Kliegr et al.

Table 4. Dataset: Glass, minimum support threshold: 10 objects (5.18%)

not pruned pruned
positive only with negations positive only with negations

confidence rules accuracy rules accuracy rules accuracy rules accuracy

0.5 58.3 0.529 1418.8 0.492 25.8 0.534 44.3 0.519
0.6 31.8 0.464 838.5 0.492 21.1 0.464 42.4 0.492
0.7 10.3 0.290 416.7 0.449 8.4 0.286 29.3 0.444
0.8 2.4 0.117 195.6 0.225 1.8 0.117 11.9 0.225
0.9 0.4 0.010 63.8 0.071 0.2 0.010 1.8 0.071

Table 5. Impact of miminum support treshold. minimum confidence 0.6.

not pruned pruned
Dataset, task support rules accuracy rules accuracy

iris 7 (4.7%) 87 0.940 19 0.920
” 2 (1.3%) 168 0.947 21 0.913
” 1 (0.7%) 291 0.967 23 0.927

iris, sequence 1-2 7 (4.7%) 904 0.940 17 0.953
” 2 (1.3%) 1661 0.953 19 0.960
” 1 (0.7%) 2653 0.960 19 0.960

glass 10 (4.7%) 32 0.464 21 0.464
” 2 (0.9%) 2374 0.622 68 0.608

balance scale 10 (1.7%) 124 0.891 78 0.870
” 2 (0.4%) 558 0.841 216 0.714

balance scale, subset 1-2 10 (1.7%) 11947 0.758 153 0.779

rules are never applied. The minimum confidence threshold thus starts to have
effect once it removes rules which cover objects uncovered by any other higher
confidence rule.

A Similar effect can be observed for the minimum support threshold. An op-
timal support threshold of 1% is reported in [5], [9] gives 2%, while [10] suggests
2% or 3%. Our results indicate that the best results are obtained with support
threshold set to 1 object.8

Pruning. Experimental results show that pruning is an effective tool for reduc-
ing the number of rules without significantly affecting classification accuracy and
precision. Without pruning, confidence and support thresholds need to be care-
fully chosen in order to balance number of rules and performance (Table 2-5).
Pruning ensures a manageable number of rules even for low threshold values. For
example, the best performing setup on iris dataset achieves accuracy of 0.967
with 291 rules, no test object is left unclassified. Pruning reduces the number of
rules to only 23 with a slight drop in accuracy due to an increase in the number
of unclassified objects (Fig. 2).
Negation and Dynamic Binning. Experiments performed on the Glass and
Iris datasets explore the effect of negation (ref. to Table 4 and Fig. 4). The results

8 This setup is referred to in the literature as “no support” mining.

Learning Business Rules with Association Rule Classifiers 247

Fig. 2. Effect of pruning. Setting: Iris dataset, minimum support threshold 1.

Fig. 3. Effect of dynamic binning on numerical attributes (sequence of length 2). Set-
ting: Iris dataset, minimum support 1, dynamic binning on.

Fig. 4. Effect of including negative literals. Setting: Iris dataset, minimum support
threshold 1.

Fig. 5. Effect of dynamic binning on nominal attributes (subset of length 2). Setting:
minimum support threshold 10, pruning on, Balance Scale dataset.

248 T. Kliegr et al.

show that involving negation in rule learning phase significantly increases the
computational demands of the rule learner used, while the results are generally
unaffected in terms of accuracy, and inflated in terms of rule count.

Sequence binning was performed on the Iris dataset, which contains only nu-
merical attributes. The results for a higher minimum support thresholds indicate
that sequence binning slightly improves performance (Table 2) while simultane-
ously decreasing rule count. While overall the best accuracy of 0.967 is achieved
without binning (Table 5), the result obtained with a pruned set of rules fea-
turing dynamically created bins (0.960) is only slightly worse, but is composed
of a much smaller set of rules (19 vs 291). For the Balance Scale dataset, which
contains nominal attributes, subset binning was performed. This highly compu-
tationally intensive operation did not provide accuracy improvement (Table 3).
Comparison with Other Algorithms. To compare with earlier reported re-
sults for CBA, the first two brCBA columns report results from runs, which
were generated with similar rule learning settings of 50% min. confidence and
1% min. support thresholds, no dynamic binning and no negation. There is,
however, some difference in data preprocessing of numerical attributes – with
brCBA we used equidistant binning (see Example 2).

The results depicted on Table 6 indicate that the in terms of accuracy, brCBA
with no pruning gives the best performance by thin margin on the iris dataset,
but lags behind significantly on the glass dataset. Comparing runs with pruning,
the additional pruning steps in the “full” CBA provide better accuracy. And,
according to the comparison with the rule count reported in [5], even smaller
rule count.

It should be emphasized that the conclusions drawn above are only indicative
due to a small number of datasets involved in the benchmark.

Table 6. Comparison with other systems – accuracy

previous results [4,15] brCBA
dataset c4.5 ripper cmar cpar cba not pr. pruned

iris 0.953 0.940 0.940 0.94.7 0.947 0.967 0.927
glass 0.687 0.691 0.701 0.744 0.739 0.622 0.612

7 Conclusion

This paper investigated the possibility of learning classification business rules
from data using association rule learning algorithms.

We introduced brCBA, a modification of the CBA algorithm, which omits the
default rule classification. This enabled us to demonstrate the sensitivity of rule
count and accuracy on the minimum confidence and support thresholds. Also,
our modified implementation used a more expressive rule learning system, which
allowed to study the effect of involving rules with disjunction and negations.

Our experimental evaluation on several UCI datasets lead to the following
recommendations for business rule learning with ARC algorithms:

Learning Business Rules with Association Rule Classifiers 249

– The lowest confidence and support thresholds produce the best results. Since
low threshold values have adverse effect on computational tractability, the
setting of these thresholds is constrained by the available computational
resources.

– Omission of important rules by pruning is a marginal, if any, issue, since
pruned rule set maintains the accuracy of the original rule set on test data.
Since pruning was at the same time found to significantly reduce the rule
count, it is suitable for a business rule pruning setup.

– Involving higher expressiveness rules is not recommended given the substan-
tial increase in computational demands and a negligible positive effect on
accuracy and rule count (as opposed to default run with pruning).

It should be noted that the applicability of these recommendation is limited
by the small number of the datasets involved in the experimental evaluation.
Additionally, we have shown that the rule ranking algorithm used in CBA can
be easily implemented as a rule conflict handling method in the Drools BRMS
system, providing a complete workflow from data to actionable business rules.

As a future work, we plan to create an experimental web-based system that
would allow to perform business rule learning with ARC algorithms. Also, we
would like to further explore the topic of dynamic binning (disjunctions between
values of one attribute), which provided promising results. It would be also
interesting to perform additional experiments on a larger number of datasets.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their insightful comments. This work is supported by the European Union
under grant no. FP7-ICT-2011-7 LinkedTV (Television Linked To The Web)
and by the University of Economics in Prague by grants no. IGA 20/2013 and
institutional support (IP 400040).

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: SIGMOD, pp. 207–216. ACM Press (1993)

2. Antonie, M.-L., Zäıane, O.R.: Mining positive and negative association rules: An
approach for confined rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pe-
dreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Hei-
delberg (2004)

3. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–
87 (2004)

4. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on mul-
tiple class-association rules. In: ICDM 2001, pp. 369–376 (2001)

5. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: KDD 1998, pp. 80–86 (1998)

6. Ross Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
7. Rauch, J., Šimůnek, M.: An alternative approach to mining association rules. Foun-

dation of Data Mining and Knowl. Discovery 6, 211–231 (2005)

250 T. Kliegr et al.

8. Thabtah, F.: Pruning techniques in associative classification: Survey and compar-
ison. Journal of Digital Information Management 4(3) (2006)

9. Thabtah, F., Cowling, P., Peng, Y.: The impact of rule ranking on the quality of
associative classifiers. In: Bramer, M., Coenen, F., Allen, T. (eds.) Research and
Development in Intelligent Systems XXII, pp. 277–287. Springer, London (2006)

10. Thabtah, F., Cowling, P., Peng, Y.: Multiple labels associative classification.
Knowledge and Information Systems 9(1), 109–129 (2006)

11. Thabtah, F.A.: A review of associative classification mining. Knowledge Eng. Re-
view 22(1), 37–65 (2007)

12. Toivonen, H., Klemettinen, M., Ronkainen, P., Htnen, K., Mannila, H.: Pruning
and grouping discovered association rules. In: ECML 1995 Workshop on Statistics,
Machine Learning and Knowledge Discovery in Databases, pp. 47–52 (1995)

13. Vanhoof, K., Depaire, B.: Structure of association rule classifiers: a review. In:
2010 International Conference on Intelligent Systems and Knowledge Engineering
(ISKE), pp. 9–12 (November 2010)

14. Voj́ı̌r, S., Kliegr, T., Hazucha, A., Skrabal, R., Šimunek, M.: Transforming asso-
ciation rules to business rules: Easyminer meets drools. In: Fodor, P., Roman, D.,
Anicic, D., Wyner, A., Palmirani, M., Sottara, D., Lévy, F. (eds.) RuleML (2).
CEUR Workshop Proceedings, vol. 1004. CEUR-WS.org (2013)

15. Yin, X., Han, J.: CPAR: Classification based on predictive association rules. In:
Proceedings of the SIAM International Conference on Data Mining, pp. 369–376.
SIAM, San Franciso (2003)

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 251–265, 2014.
© Springer International Publishing Switzerland 2014

Interpreting Web Shop User’s Behavioral Patterns
as Fictitious Explicit Rating for Preference Learning

Ladislav Peska and Peter Vojtas

Faculty of Mathematics and Physics,
Charles University in Prague,

Malostranske namesti 25, Prague, Czech Republic
{Peska,vojtas}@ksi.mff.cuni.cz

Abstract. We consider applications of user preference rule learning in market-
ing. We chose rules because of human-understandability. We chose fuzzy logic
because it enables to order items for recommendation. In this paper we intro-
duce a rule based system equivalent to the Fagin-Lotem-Naor preference
system. We show a multi-user version, introduce induction and compare it to
several methods for learning user preference. The methods are based, first, on
interpreting e-shop user’s behavioral patterns collected by scripts as fictitious
explicit rating. After this we use this (fictitious) explicit rating for content based
preference learning.

Our main motivation is on recommending for small or medium-sized
e-commerce portals. Due to high competition, users of these portals are not too
loyal and e.g. refuse to register or provide any/enough explicit feedback. Fur-
thermore, products such as tours, cars or furniture have very low average
consumption rate preventing us from tracking unregistered user between two
consecutive purchases. Recommending on such domains proves to be very chal-
lenging, yet interesting research task. As a test bed, we have conducted several
off-line experiments with real user data from travel agency website confirming
competitiveness of our method.

Keywords: Recommender Systems, Implicit Feedback, User Preference Rules,
E-Commerce.

1 Introduction and Related Work

We face the growth of information on the web with an increasing offer of products,
information and services. Automation of web content processing is necessary. Several
solutions are available, ranging from search engines to e-shops, aggregation shops and
recommender systems. The main problem we are interested in is the personalization
of web information processing by user preference mining. Hence, ordering re-
sources/items by user preference. Rules are a type of the most human-understandable
knowledge. This is important in e-commerce and marketing. Our main starting point
is using fuzzy (many valued) logic rules and interpreting each fuzzy value as a degree

252 L. Peska and P. Vojtas

of user preference - higher the fuzzy value, higher the preference (analogically to e.g.
one star vs. five stars user rating). So practically, fuzzy sets – facts - induce ordering
depending on user preferences on an attribute. Fuzzy rules can describe combination
of such preferences.

The e-commerce area can be divided over several axes, laying different constraints
for a recommendation task. We focus on the recommendation for rather small
e-commerce sites. Moreover we are interested in domains, where an average customer
do not purchases an item very often (e.g. once a year). The competition of such sites
is usually very high, so the users tend not to be very loyal, visit more sites comparing
offers and do not provide any data about themselves (register or rate products). When
a new user comes to such a website, he/she usually spends few minutes going through
the objects and comparing them. There might be some historical data from his/her
previous visits, but usually not too much. Mostly, there are neither registrations in-
formation available, nor previous purchases. So it is necessary to deal with personali-
zation and recommendation for a non-registered user based on very little information.
Note here, we cannot use NPS – Net Promoter Score - traditional rating used in busi-
ness industry, because user can not be identified repeatedly. Hence we cannot use
action-rules as introduced in [22].

In this paper we combine learning user preference rules with e- commerce area.
We have described a quite general model of fuzzy logic programming in [17]. Never-
theless this model is not well suited for induction. Main reason is that we have to
learn various connectives of fuzzy logic (and for each user these connectives can be
different). In [13] we have shown that FLP+, a certain generalization of our model is
equivalent with GAP-, a certain restriction of Generalized Annotated Programs [11].
Our GAP- is much better suited for inductive procedures. In [10] we have studied
IGAP (induction of GAP- programs from ordinal data) and results were promising.
One problem of implementation of our method was that we could use only a small
finite set of truth values. Induced ordering had usually a large set of items in the best
class and hence could not be used for practical recommendation for user.

In [8] authors described data structure and a fuzzy system which aggregates global
preference on items from local preferences on attributes. A main result of this paper is
an optimal algorithm for find top-k answer without necessity of checking whole data-
base.

Our solution starts from describing the [8] system by a set of fuzzy GAP- rules.
Special database index described in [6] enables to use our rule version of the FLN-
algorithm for different users simultaneously. Finally, in [7] we have introduced a
hybrid learning system, where learning of local preferences uses regression tech-
niques. Basic assumption of [7] (see also [2]) is that we have user explicit ratings of a
small sample of items. Main practical problem with this approach is that users usually
do not like to rate items.

Contrary to the explicit feedback, usage of implicit feedback requires no additional
effort from the user of the system. Monitoring implicit feedback varies from simple
user visit or play counts to more sophisticated ones like scrolling or mouse movement
tracking. Due to its effortlessness, data are obtained in much larger quantities for each
user. On the other hand, data are inherently noisy, messy and hard to interpret. During

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 253

early research on implicit feedback, several papers comparing implicit and explicit
feedback occurred. We chose to mention Claypool et al. [1] work on implicit interest
indicators as it is one of very few studies involving multiple types of implicit feed-
back and containing idea to combine them in order to achieve better results. We
extend this approach. A different approach to implicit user behavior is elaborated in
[23] and [24].

In our early work [14-16], we have continued on with this subject and conducted
online experiment with real users corroborating that using multiple implicit feedback
improves recommendation according to the click-through rate.

The vast majority of e-shops do not force users to register at all, which makes it
difficult to track them. Combination of unregistered user and low consumption rate on
particular product domains (tours, cars, furniture, specialized sport goods etc.) pre-
vents us in many cases from effectively tracking consecutive purchases of the user.
Given the described preconditions, the vast majority of users appear to be new users
exacerbating the cold start problem. We cannot hope for tens of ratings as in multi-
media portals, but rather need to cope with a few visited pages.

In [4,5,9] we have studied several practical aspects of our systems.
For aggregation several parameterized families of T-conorms were introduced,

where level of compensation is determined with a parameter λ. All S-norms used
during our experiments are described in detail in [12]. The formula of Sugeno-Weber
parametric S-norm is following (parameter λ will be tuned in our inductive methods) ܵ௦௪(ݔ, (ݕ = min (1, ݔ + ݕ + λxy)

We did not find any reference using methods of inducing fuzzy rule system for
recommendation.
Main Contribution
The main contributions of this paper are:

• Designing and using fuzzy rule system for content based recommendation
for multiple users with optimal top-k evaluation (based on TA from [8])

• A new method for learning user preference rules from multiple implicit
feedbacks.

• Off-line experiments on travel agency dataset.
The rest of the paper is organized as follows: In section 2 we describe our GAP-

rule version of the FLN-system and database index enabling efficient rule evaluation
algorithm. In section 3 the travel agency dataset and observed user feedback will be
described and section 4 presents our model of learning user’s preference rules. Sec-
tion 5 describes conducted experiments and finally section 6 concludes our paper and
points to our future work.

2 Rule Systems Describing User Preferences

Main challenge of this paper is to improve recommendation for users of a web shop.
We chose rule systems, because rules are a type of the most human-understandable
knowledge. Recommendation is per se connected with ordering – best (top-k) rec-
ommendations. We represent user preference rules with ordering.

254 L. Peska and P. Vojtas

2.1 Preferential Interpretation of Fuzzy Logic

To connect rules and ordering we chose fuzzy (many valued) logic. On a set of items I
(we freely switch between using object and item), for a user u, the preference is de-
fined by a fuzzy function fu:I[0,1]. An item i1 is preferred (or bigger in ordering <fu
induced by fu) wrt item i2 iff fu(i1) > fu(i2). Note, that our system is comparative, the
numeric value of the fuzzy set is not important, what does matter is that i2 <fu i1).
Moreover, we will freely switch between f(u, i): UxI  [0,1], f:U(I[0,1]) and
fu:I[0,1].

It is a generally accepted assumption that user’s preference can be described by
ideal value (interval) concept (of course ceteris paribus is also an option, see [7]).

Assume we have items with attribute A with a linearly ordered domain (DA, <A), a
user u with ideal interval a2

u < a3
u (and intervals of rejection min<ADA < a1

u (< a2
u)

and (a3
u <) a4

u < max<ADA). The preference of such a user is described by fuzzy func-
tion fA

u:DA  [0,1] defined as follows
fA

u(x) = 0 if x ∈ [min<ADA , a1
u],

fA
u(x) = (x- a1

u)/(a2
u - a1

u) if x ∈ [a1
u, a2

u],
fA

u(x) = 1 if x ∈ [a2
u, a3

u],
fA

u(x) = (a4
u -x)/(a4

u - a3
u) if x ∈ [a3

u, a4
u],

fA
u(x) = 0 if x ∈ [a4

u, max<ADA],
with natural extensions for possible equalities and extremes. We do not consider non-
linear behavior of fA

u , it can be tuned by aggregations. We illustrate examples of such
fuzzy sets in Figure 1.

Fig. 1. User’s preference represented by fuzzy sets generated be ideal intervals, users u1 and u2;
attributes Mpix (domain [0, 100]) and Price (domain [0, 2000]); ideal intervals(of rejection)
with a1

u1=5, a2
u1=15 and a3

u1= max<DMpix (a2
u2= min<DPrice, a3

u2=200 and a4
u2= 500).

2.2 Induction of Generalized Annotated Programs

Using fuzzy logic program FLP - rules ([17]) is not very suitable for our purpose,
because we have to specify which logic (connectives) we use (and maybe each user
has different fuzzy connectives and hence fuzzy logic). In [13] we have shown that (a
certain extension of FLP) is equivalent to certain restriction/extension of GAP –
Generalized Annotated Programs [11], which are more suitable for learning (GAP
rules use classical – two valued conjunction and implication). Our GAP rules have
following form:

Annotation range through (generally a lattice L of truth values, here) unit interval
L=[0,1] (note that these are degrees of preference and depending on application we

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 255

can use a finite subset; e.g. for ratings with 0*, …, 5* we consider L = {0, ¼, ½, ¾,
1}. Note that our system is comparative; numerical value of rating is not important,
important is ordering defined by it).

An annotation is either an annotation variable or a complex annotation term (built
up from both annotation variables and domain variables). In our case, complex anno-
tations are (left continuous) aggregations (see e.g. [12]) or function of type fA

u (also
left continuous constant annotations are allowed). Here we differ from [11], which
does not have continuous semantics – in [13] we have shown that our semantics is
continuous (in the sense of Scott-topology on possible worlds).

If H is an usual atomic formula and α is an annotation, then H:α is an annotated
atom (by the nature of α it can be variable (v) or term (t) - annotated).

If H: ρ is an annotated atom and B1: μ1 & … & Bk: μk are c- or v-annotated atoms
and Ck+1(_, μk+1) & … & Ck+m(_, μk+m) are usual predicate calculus atom and μk+1,
… μk+m are domain variables (here our approach also differs from [11]), then

H: ρ  B1: μ1 & … & Bk: μk & Ck+1(_, μk+1) & … & Ck+m(_, μk+m)
is an annotated clause. A GAP- (- means that this is a GAP program in our sense) pro-
gram is a set of annotated clauses.

Note, that this is a predicate calculus version (which was implemented). We can
switch to propositional calculus with all atoms considered ground (nevertheless this
approach has complexity problems).

Using our camera example, preference rules can be described by following GAP-
program (for each user u there is a possibly different set of rules):

GoodCameraFor(u,o):@u(x1; x2; x3)  GoodPriceFor(u,o):x1 &
 & GoodDisplayFor(u,o):x2 & GoodMPixFor(u,o):x3.
 and e.g.
GoodPriceFor(u,o):fu

Price(y1)  Price(o, y1).

The meaning of these rules is: when price of the item o is y1 then for user u degree
of preference of o is at least fu

Price(y1). When degrees of preferences on price, display
and MPix are at least x1; x2; x3 respectively, then the overall preference of o is at least
@u(x1; x2; x3). We developed the theory and methods of IGAP – induction of GA
programs in [3-5, 9,10] (implemented only for a small number of preference degrees).

We will deal with preference learning in Chapter 4. Here we mention only induc-
tion for GAP briefly. Background knowledge C consists of items data and description
of our truth value structure L (L is a small set of truth values); Example set E is a (par-
tial) fuzzy set on the user-item matrix UxI, or with attribute values of items
UxA1x…xAn. Hypothesis H = ∪Hα set are rules learned by classical ILP method sep-
arately for each degree α ∈ L of preference (after certain discretization of domains of
attributes). As we will see in evaluation of experiments, this method has a disad-
vantage, that truth value set has to be limited (because we have to embed it into our
knowledge base) and then there are too many items with highest degree of recom-
mendation and we cannot distinguish between item placed on position e.g. 200-400
(or rating 9*).

256 L. Peska and P. Vojtas

2.3 The Preference Model of Fagin-Lotem-Naor

In [8] R. Fagin, A. Lotem, and M. Naor presented a preference model which is practi-
cally equivalent with the GAP model for a single user.

The model in [8] is described as follows: We assume that each database consists of
a finite set of N many objects. Associated with each object R are m fields x1

R, …, xm
R;

where xi
R ∈ [0, 1] for each i: We may refer to xi

R as the ith field of R: The database can
be thought of as consisting of a single relation, where one column corresponds to the
object id, and the other columns correspond to m attributes of the object (but we do
not go this way). Alternatively, the way we shall think of a database is as consisting
of m sorted lists L1;…;Lm; each of length N (there is one entry in each list for each of
the N objects). We may refer to Li as list i. Each entry of Li is of the form (R; xi

R);
where xi

R is the ith field of R. These are in fact RDF data. Each list Li is sorted in de-
scending order by the xi

R value (this ordering is very important feature of this model).
We assume, there is an aggregation t:[0,1]m  [0,1] and rank of the object R is

t(R) = t(x1
R, …, xm

R)
In [8] authors take this take this view of a database, since this view enables optimal

algorithm for finding top-k object according to t(R). Fagin, Lotem and Naor consider
two modes of access to data. The first mode of access is sorted (or sequential) access.
Here the system obtains the grade of an object in one of the sorted lists by proceeding
through the list sequentially from the top. Thus, if object R has the lth highest grade in
the ith list, then l sorted accesses to the ith list are required to see this grade under sort-
ed access. The second mode of access is random access. Here, the system requests the
grade of object R in the ith list, and obtains it in one random access. If there are s sort-
ed accesses and r random accesses, then the sorted access cost is scS; the random ac-
cess cost is rcR; and the system cost is scS + rcR (the sum of the sorted access cost and
the random access cost), for some positive constants cS and rcR.

A significant contribution of [8] is the threshold algorithm TA for evaluation of
top-k results which has optimal cost with respect to all algorithms correctly evaluating
top-k without guessing.

Let us assume that list Li orders object according to rating of ith attribute. This pref-
erence model is then semantically equivalent to GAP program with rules

Ai(R, yi)  A(R,_ ,yi, _). for each i = 1, …, m
rank(R): t(x1

R, …, xm
R)  C1(R): x1

R & … & Cm(R): xm
R. (no annotations in body)

Ci(R): fi(R, yi)  Ai(R, yi) putting fi(R, yi) = xi
R for each i = 1, …, m

To make it computationally equivalent, we have to assume that evaluation of this
GAP program has all atoms of type Ci(R): fi(R, yi) ordered descending by fi(R, yi) and
random access is enabled. Note that classical evaluation can be also used, but we have
to add rules for finding lth entry (or random access). Nevertheless this would enor-
mously increase costs cS and cR.

In [8] only a single user model is presented, authors do not consider multiple user
challenge or its induction. To transform semantically the above GAP to a multiuser
version is easy, we just add an additional attribute for the user rank(u, R), Ci(u, R), …

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 257

To transform this preference model computationally to an optimal multiuser model
is not so straightforward (although using classical GAP evaluation can be again used
with increased costs cS and rcR.). Basic assumptions of optimality of the TA algorithm
are monotonicity of the aggregation operator t and ordered access to the ordered lists
of items. But different users can have different ideal points (ideal intervals) and hence
different ordering of lists. Many users lead to idea of having for each user u another
list Lu

i. Nevertheless, this idea (of having so many ordered lists as users) is not viable.
In [6] we have presented an index structure (an extension of the B+ tree where fAi

u
can guide navigation) giving us monotone access for different users. This corresponds
to a new evaluation of GAP rule base (with rules for each user u) using this index.
This lead us to computational model TAGAP, where classical parts of GAP evaluation
(binding variables, substitution, …) are empowered by our index on attributes Ai and
a navigation guided by fu

Ai(R, yi).
How to learn such rule base will be dealt in Chapter 4. Note that our GAP- pro-

grams do not use negation; hence the computational model is monotone. Sometimes,
we will our GAP- programs call “monotone user preference rules”.

3 Data - Users’ Behavior and Item Properties

We have collected usage data from one of the major Czech travel agencies. Data were
collected from December 2012 to January 2014. Travel agency is typical e-commerce
enterprise, where customers buy products only once in a while (most typically once a
year). The site does not force users to register and so we can track unique users only
with cookies stored in the browser. User typically either land straight on intended
object via search engine (less interesting case), or browses or searches through several
categories, compares few objects (possibly on more websites) and eventually buys a
single object. Buying more than one object at the time when the cookie is still valid is
very rare.

We have access to the source data, so we could (after approval) collect user
behavior. The captured user behavior is based on implicit indicators introduced by
Claypool [1], however some additional indicators were added.

The dataset has a form of:

ImplicitFeedback(UID, OID, PageView, Mouse, Scroll, Open, Time, Purchase),

where UID and OID are unique user and object(item) identifiers, the rest will be
denoted as F1 = PageView, … F5 = Time, F6 = Purchase and Table 1 contains full
description of feedback types. Note that UID is based on cookie stored by browser, so
we cannot e.g. distinguish between two persons using the same computer. Table con-
tains approx. 350 000 records with 0.0007% density of UID× OID matrix and in
average 1.6 visited objects per user. For learning the dataset was then restricted to
only users with at least one purchased and 4 visited objects leaving over 3500 records
from 364 users.

258 L. Peska and P. Vojtas

Table 1. Description of the collected implicit feedbacks for user visiting an object

Factor Description

F1 PageView Count(OnLoad() event on object page)
F2 Mouse Count(OnMouseOver() events on object page)
F3 Scroll Count(OnScroll() events on object page)
F4 Open Count(Item was opened from the list of recommended objects)
F5 Time Sum(time spent on object page)
F6 Purchase 1 IFF user bought the item, 0 else

3.1 Content Based Attributes

As our previous work corroborated [14-16], using purely collaborative filtering meth-
ods on such a sparse dataset comes up with poor results, so some content-based algo-
rithms were used in the experiments.

Table 2. Description of content-based attributes of a tour

Attribute Description
A1 TourType Type of the tour (e.g. sightseeing, beach holidays, spa etc.)
A2 Country Destination country of the tour (e.g. Spain)
A3 Destination More specific destination (e.g. Costa Brava)
A4 AccomodatType Quality of the accommodation (e.g. 3*)
A5 Accommodation ID of accommodation (hotel) assigned for the tour
A6 Board Type of board (e.g. breakfast, half-board)
A7 Transport Type of transport (coach, plane…)
A8 Price Price per person; integer

The success of content-based or hybrid algorithms are highly dependent on the

quality content-based attributes, which varies over domains. The travel agency dataset
can be classified somewhere in the middle as there are some informative attributes
(Tour type, Country, Price…), but a lot of important information is accessible only
through textual description. Table 2 contains description of attributes used in the ex-
periments. In what follows we will denote them A1 = TourType, …, A8 = Price (note,
most of them are nominal).

4 Learning User Preference Rules from Behavioral Patterns

In Chapter 2 we have described our user preference rule model. As mentioned earlier,
we can solve it by classical tools for ILP, just adding to background knowledge in-
formation about truth values L,< (hence L has to be small) and split it to several tasks
(example set is split to positive and negative by α ∈ L and background knowledge is
used always all, see [10]). Nevertheless, this has some disadvantages. Using small L
does not help to order items (e.g. to compute top-10). Here we decided to use regres-
sion to learn real valued preferences. To learn the model in practice the main

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 259

challenge is sparsity of data in the user-item matrix. Even methods of matrix factori-
zation do not work on our data and moreover we are going beyond RMSE evaluation
(see [15]). Second challenge is the choice of preference indicator. In our data, we
have only one direct preference indicator – namely purchase. But purchases are even
sparsely than collected behavior data. We tested classical recommendation techniques
– collaborative, item based – filtering – these did not work. As a base-line we used
standard machine learning methods. Nevertheless, these do not provide monotone
(with ideal point assumption) user preference rules. Only rule induction method
which gave improvement was content based recommendation.

Our strategy is to divide the task into two steps
1. Interpret user behavior patterns (of all users glued together) as fictitious ex-

plicit rating (methods will be denoted by subscript 1, e.g. m1,n1).
2. Use this fictitious explicit rating in a content based learning we developed e.g.

in [7] (see also [2]), (methods will be denoted by subscript 2, e.g. m2,n2.
Steps are somewhat similar, in both we have several attributes and an aggregation,

in both we tried to optimize through several learning methods. All these methods
were implemented, with optimization and necessary cross validation in [21] and [14].

4.1 Interpreting User’s Behavioral Patterns as Fictitious Explicit Rating

We adopt business-like point of view and state that user positively prefers the
object(s) which he/she has purchased.

Gluing Data from All Users Together. For each implicit factor F1, … F5 we sum
up number of all purchases for all users with given value of this factor as in Figure 2

gi(j) = Σ{F6(u,o): Fi(u,o)=j, u∈UID, o∈OID, }
(relativized to [0,1]). Note, gi(j) is not good to use for prediction, we have to use a

Fig. 2. Relative purchases per F1 page view – all users together

statistical data mining method m1 to learn a generalization
gi

m1:DFi  [0,1]
In the experiment section we will report only on best combination of these methods

(e.g. m1 = linear regression).

260 L. Peska and P. Vojtas

Using these, we have transformed ∏ ி௜ே௜ୀଵܦ into cube [0,1]ହ. Second parameter to
optimize is aggregation @1 used to map [0,1]ହ into [0,1] is learned by method n1.

Note, that composition bn1
m1=@n1

1(g1
m1,…g5

m1): ∏ ி௜ହ௜ୀଵܦ  [0,1] is not depend-
ent on the user. We consider this bn1

m1 as an interpretation of user behavior patterns
and will use to generate user fictitious rating on visited objects as follows:

For an user u and an object (item) o and user behavior on this object described by
vector

[F1(u,o), …, F5(u,o)]
We generate fictitious explicit rating of this object

rn1
m1(u,o) = bn1

m1(F1(u,o), …, F5(u,o)) ∈ [0,1]
Only we have to remember is, that this is depending on the choice of method m1

and n1 (and not on any user u). Varying over all possible choices we can find best.

4.2 Using Fictitious Explicit Rating for Content Based Preference Learning

We have now Fictitious Explicit Rating from interpretation of (a new) user behavior
on a set of visited objects (items). Formally, from the point of view of data representa-
tion, we are now in a situation which is same as we would have a true explicit rating
of a sample of objects (items) visited by user u. The only difference is that explicit
rating would come from a user explicit activity and in our case it comes from interpre-
tation of user’s behavior.

Let us assume we have a user u, a set of objects Su visited by u and rating ru: Su ⊆ I
⊆ Π DAi  [0,1] (ru was obtained as some rn1

m1(u,o); m1, n1 are no more important
and we fix u).

Now we would like to induce the GAP rule system equivalent to Fagin-Lotem-
Naor preference model for content based learning. Recall, it consist of local
preferences fAi

u:DAi  [0,1], i=1,…,8 and an aggregation @2u:[0,1]8  [0,1].
First step is, for each i, to project ratings to product DAi x [0,1] (see circles in

Figure 3) Proj(ru, i) = {(a, ru(o)): o∈Su, o.i = a}. Then use a regression method m2 to

Fig. 3. Projection of ratings and Peak regression method

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 261

generalize those points. In this paper we have used Linear, Quadratic and Peak re-
gressions in the experiments. The idea of Peak regression comes from previous work
of our research group [7] using the fact, that users prefer the most a value (ideal point)
somewhere in the attribute domain and the preference decreases with distance from
this ideal point. More formally the Peak method traverses the values of the domain
present in the training set. Each value a∈DAi is tested as a candidate for the most pre-
ferred value - "the peak". The method constructs two linear functions for each candi-
date a: one is defined on the numbers lower than ܽ and the other is defined on the
higher numbers. Then the error on the training set is measured using MAE.

Hence for each i and method m2 we get fu
i,m2:DAi  [0,1] (mostly we omit m2).

Learning / optimizing Global Preferences. We have tested here several methods
n2 for learning aggregation @2u(recall that this applies to choice of aggregation @1 in
the first step when interpreting behavior of users). Combination of @2u with all local
preference methods fAi

u gives a total preference on all objects
pu: I ⊆ Π DAi  [0,1]

Note, pu is defined on whole I, and hence it makes sense to calculate the position of
purchased object in ordering of all objects considered. This is a preference model in
the sense of [8] and gives a monotone rule preference system for each user.

For n2, first is to consider several parametric families of S-norms ([12]). In this
case we have to tune parameter, which gives best results (in combination with all
other choices we try to optimize together). Best results were achieved with Sugeno-
Weber conorm (formula is in the Chapter1).

Fig. 4. The geometry method, works on Pareto cube of unit intervals [0,1], point are projections
of data point by local preferences, value 1.1 is set heuristically

Second method is the geometric method (see Figure 4). The basic idea is, that
when we are in the preference cube [0,1]8 , and when local preferences optimally
monotonized data (more on this see in Chapter 5), then working with Pareto ordering
from the geometrical point of view, we can get a clue for aggregation. Geometric
aggregation method is based on a line that connects item o and the ideal point S0. In
Figure 4 - the gray point S0 is the ideal point (probably not in the domain), and it is
assumed to have a rating 1.1. This method evaluates a new object (black) using the
objects with known ratings (white) and an ideal object (gray). We examine the inter-
section of the line and the boundaries of the subspaces dominating the training points

262 L. Peska and P. Vojtas

Si (they have rating from ru). There are at most two intersections that are closest to o,
represented by small white circles. Then the average of objects rating dominated by
these two subspaces and weighted by the inverse of the distance, is computed. In our
case o gets 0.68. This gives an ordering induced by interval [0, 1.1].

5 Experiments

So far we have described our preference models, data from an e-shop and a variety of
models of learning our preference model. In our implementation [21] we have possi-
bility to choose method m1 for interpretation of user behavior, n1 for aggregation @1,
method m2 for content based learning of local preferences and n2 for aggregation @2u.
See Figure 4 for evaluation of m1 wrt all combinations with n1, m1 and n2. As base-
line, we considered some statistical data mining method in place of combination of m1
with n1 and/or of m2 with n2. Comparison with our classical IGAP was tested too.
Several other methods from [18-19] were tested too.

The challenge now is the metric we will optimize choice of combination of our
methods. In this paper we have chosen the average position of purchased object.

5.1 Evaluating Local Preference Methods for Behavioral Data

Given user behavior, local preference methods transforms data cube ΠFi into the pref-
erence cube [0,1]5 with Pareto ordering. We can test quality of this local preference
learning independently on optimization of other methods. We can simple compare
whether purchases and Pareto ordering agree or not.

Hence, for a given user u, objects o1 and o2 and known F6(o1) < F6(o2) we distin-
guish three situations (and in our data and best methods frequency was promising):

• Correctly ordered preferences i.e. for all i, gi
m1(u,o1)< gi

m1(u,o2) , it was
observed in 59% of cases.

• Incorrectly ordered i.e. for all i, gi
m1(u,o1)≥ gi

m1(u,o2) and ∃݅: the inequality is
strict , it was observed in 4% of cases, this is quite surprising for us.

• Incomparable if nothing from the above applies, it was observed in 37% of
cases.

Methods seem to be well designed as majority of evaluated pairs are correctly
ordered and only less than 5% are ordered incorrectly (this is an unrepairable mistake,
as aggregation preserves ordering). Possible disagreement can be even smaller if
aggregation correctly orders group of incomparable pairs. Remember that this is
checked only on rated objects from Su and average position metric will evaluate posi-
tion of purchased object in ordering of all objects.

5.2 Evaluating Global Preference Methods

Now we can move to the evaluation of resulting pu preferences. In this phase we have
also included results of SVM and M5P (we used WEKA implementation of SVM for
regression and M5P decision tree) decision tree methods to be compared with our

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 263

two-step preference model. More than 50 methods varying in local preference meth-
od, parametric S-norms, IGAP and geometry methods were evaluated. Table 4 shows
results of some representatives.

Table 4. Results of our experiments (average after cross validation)

Experiment results
From behavioral patterns to
fictitious explicit rating

From fictitious explicit rating
to recommendation

Average
position

n1=tuned Sugeno-Weber +
m1=linear

n2=tuned Sugeno-Weber +
m2=quadratic

163.2

m1+ n1=M5P n2=Geometry + m2=peak 181.4
n1=tuned Sugeno-Weber +
m1=linear

m2+ n2=IGAP 200-400 or 9*

m1+ n1=M5P m2+ n2=IGAP 200-400 or 9*

Results show that two-step model of user preferences is comparable with standard
machine learning methods or even slightly better.

Fig. 5. Quality of local behavioral methods m1 optimized over all combination of remaining
methods (computing @1, @2u, local preferences fi

u)

Last Figure 4 shows quality of learning local preferences with methods m1 from
behavioral data and optimized over all combination of remaining methods (computing
@1, @2u, local preferences fAi

u). This is possible because combination of all methods
gives ordering on all items and hence it makes sense to ask which methods from m1
contributed most. Note, that in 5.1 we evaluated m1 alone because we could not com-
pute position. We could compute only agreement of Pareto ordering of images
ordering with purchases.

264 L. Peska and P. Vojtas

6 Conclusions and Future Work

In this paper, we have discussed the problem of learning user preference rules using
implicit feedback as possible indicators of user preference. The only direct preference
indicator we used are purchases. We can confirm this hypothesis. Our system can
learn (at least in average position of purchased object) user’s preference better than
best statistical data mining method.

We have introduced a multiuser rule based system equivalent to the Fagin-Lotem-
Naor preference system. Our new methods are based, first, on interpreting e-shop
user’s behavioral patterns collected by scripts as fictitious explicit rating. After this
we use this (fictitious) explicit rating for content based preference learning.

Our main motivation is on recommending for small or medium-sized e-commerce
portals. As a test bed, we have conducted several off-line experiments with real user
data from travel agency website confirming competitiveness of our methods. So far
we are not fully satisfied with our results (AP=163 is probably not practically busi-
ness relevant). As a future work we plan to collect more detailed data on user
behavior and browsing inside the e-shop, improve our methods and then to convince
the owner that online testing is worth to test.

Our activity can be understood as an attempt to continue along use-cases designed
in W3C Uncertainty Reasoning for the World Wide Web Incubator Group [20], see
also [3].

Acknowledgments. This work was supported by Czech grants SVV-2013-267312,
P46 and GAUK-126313.

References

1. Claypool, M., Le, P., Wased, M., Brown, D.: Implicit interest indicators. In: IUI 2001, pp.
33–40. ACM, New York (2001)

2. Eckhardt, A.: Similarity of users’ (content-based) preference models for Collaborative fil-
tering in few ratings scenario. Expert Syst. Appl. 39(14), 11511–11516 (2012)

3. Eckhardt, A., Horváth, T., Maruščák, D., Novotný, R., Vojtáš, P.: Uncertainty Issues and
Algorithms in Automating Process Connecting Web and User. In: da Costa, P.C.G.,
d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool,
M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 207–223. Springer, Heidel-
berg (2008)

4. Eckhardt, A., Horváth, T., Vojtáš, P.: Learning Different User Profile Annotated Rules for
Fuzzy Preference Top-k Querying. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007.
LNCS (LNAI), vol. 4772, pp. 116–130. Springer, Heidelberg (2007)

5. Eckhardt, A., Horváth, T., Vojtás, P.: PHASES: A User Profile Learning Approach for
Web Search. Web Intelligence, 780–783 (2007)

6. Eckhardt, A., Pokorný, J., Vojtás, P.: A System Recommending Top-k Objects for Multi-
ple Users Preferences. In: FUZZ-IEEE, pp. 1–6 (2007)

7. Eckhardt, A., Vojtáš, P.: Learning user preferences for 2cp-regression for a recommender
system. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.)
SOFSEM 2010. LNCS, vol. 5901, pp. 346–357. Springer, Heidelberg (2010)

 Interpreting Web Shop User’s Behavioral Patterns as Fictitious Explicit Rating 265

8. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Com-
puter System Sciences 66, 614–656 (2003)

9. Horváth, T., Sudzina, F., Vojtás, P.: Mining Rules from Monotone Classification Measur-
ing Impact of Information Systems on Business Competitiveness. In: Camarinha-Matos,
L.M. (ed.) Emerging Solutions for Future Manufacturing Systems. IFIP, vol. 159, pp. 451–
458. Springer, Boston (2004)

10. Horváth, T., Vojtáš, P.: Induction of Fuzzy and Annotated Logic Programs. In: Muggleton,
S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp.
260–274. Springer, Heidelberg (2007)

11. Kifer, M., Subrahmanian, V.S.: Theory of Generalized Annotated Logic Programming and
its Applications. J. Log. Program. 12(3&4), 335–367 (1992)

12. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Netherlands (2000)
13. Krajci, S., Lencses, R., Vojtás, P.: A comparison of fuzzy and annotated logic program-

ming. Fuzzy Sets and Systems 144(1), 173–192 (2004)
14. Peska, L., Eckhardt, A., Vojtás, P.: UPComp - A PHP Component for Recommendation

Based on User Behaviour. In: Web Intelligence/IAT Workshops, pp. 306–309 (2011)
15. Peska, L., Vojtas, P.: Evaluating Various Implicit Factors in E-commerce. In: RUE

(RecSys) 2012 ACM RecSys Workshop on Recommendation Utility Evaluation: Beyond
RMSE, CEUR, vol. 910, pp. 51–55 (2012)

16. Peska, L., Vojtas, P.: Recommending for Disloyal Customers with Low Consumption
Rate. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014.
LNCS, vol. 8327, pp. 455–465. Springer, Heidelberg (2014)

17. Vojtás, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124(3), 361–370 (2001)
18. Vojtáš, P., Vomlelová, M.: On models of comparison of multiple monotone classifications.

In: IPMU 2006 - Information Processing and management under Uncertainty, pp. 1236–
1243. Éditions EDK, Paris (2006) ISBN: 2-84254-112-X

19. Vojtás, P., Vomlelová, M.: Trasformation of deductive and inductive tasks between mod-
els of logic programming with imperfect information. In: Bouchon-Meunier, B., et al.
(eds.) Proc. IPMU 2004, pp. 839–846. Editrice Universita La Sapienza, Roma (2004)

20. W3C Uncertainty Reasoning for the World Wide Web Incubator Group,
http://www.w3.org/2005/Incubator/urw3/XGR-urw3/

21. Eckhardt, A.: Prefwork - A framework for testing of methods for user preference learning,
https://code.google.com/p/prefwork/

22. Raś, Z.W., Wieczorkowska, A.A.: Action-rules: how to increase profit of a company. In:
Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 587–592. Springer, Heidelberg (2000)

23. Hu, Y., Koren, Y., Volinsky, C.: Collaborative Filtering for Implicit Feedback Datasets.
In: ICDM 2008, pp. 263–272. IEEE Computer Society, Washington, DC (2008)

24. Lee, D.H., Brusilovsky, P.: Reinforcing Recommendation Using Implicit Negative Feed-
back. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009.
LNCS, vol. 5535, pp. 422–427. Springer, Heidelberg (2009)

Learning Association Rules from Data

through Domain Knowledge and Automation

Jan Rauch and Milan Šimůnek

Faculty of Informatics and Statistics, University of Economics
nám W. Churchilla 4, 130 67 Prague 3, Czech Republic

{rauch,simunek}@vse.cz

Abstract. An approach to automated data mining with association
rules based on domain knowledge is introduced. Association rules are
understood as interesting pairs of general Boolean attributes. Items of
domain knowledge corresponding to various relations of non-Boolean at-
tributes are used to formulate reasonable analytical questions. Particular
items of knowledge are mapped to sets of association rules which can be
considered their consequences. The sets of consequences are then used to
interpret sets of association rules resulting from a data mining procedure.

1 Introduction

Association rules were introduced in [1] together with apriori algorithm produc-
ing them from a given database. The association rule is an expression X → Y
where X ,Y are disjoint subsets of a large set I of items. The analysed database
is a set of baskets b1, . . . , bn where bi ⊂ I for i = 1, . . . , n. Meaning of the rule
X → Y is that market baskets containing set X tend to contain set Y of items.
The idea of association rules was generalized to data in the tabular, attribute-
value form. The association rule is understood as a relation between conjunctions
of attribute-value pairs called antecedent and consequent (i.e. succedent).

However, the concept of association rules was introduced and studied much
earlier in the framework of development of the GUHA method of mechanized
hypothesis formation [5]. A milestone in the GUHA development was the mono-
graph [6], which introduces the general theory of mechanized hypothesis forma-
tion based on mathematical logic and statistics. Association rules defined and
studied in [6] are relations between two general Boolean attributes derived from
the columns of an analysed data matrix. These relations between Boolean at-
tributes were not called association rules even if the procedure mining for them
is called ASSOC [7]. The term association rules has been used for patterns mined
by the ASSOC procedure since the association rules were introduced in [1].

The 4ft-Miner procedure [21] dealing with the association rules – interesting
couples of Boolean attributes has been developed as an implementation of the
ASSOC procedure. New theoretical results has been achieved, they can be seen as
a logic of association rules [19]. An original approach to use of domain knowledge
in mining association rules has been introduced [17] and tested [22]. A formal

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 266–280, 2014.
c© Springer International Publishing Switzerland 2014

Learning Association Rules from Data 267

framework FOFRADAR making possible to describe formally the process of
data mining with domain knowledge and association rules has been developed
[19, 20].

The idea is to deal with formalized items of domain knowledge corresponding
to more complex patterns than single association rules. The following principles
are used:

– Each given item of domain knowledge is mapped to a set of simple association
rules in co-operation with a domain expert.

– This set is further expanded using logical deduction to a set of all association
rules which can be considered as consequences of the given item of knowledge.

– Resulting sets of rules – consequences of given items of domain knowledge –
are then used to interpret results of a data mining procedure.

All necessary steps of dealing with such items of domain knowledge are for-
mally described by FOFRADAR and are supported by the LISp-Miner system,
part of which is also the procedure 4ft-Miner [21, 22]. However, theirs applica-
tions involves elaborate operations in several modules of the LISp-Miner system.
Thus a scripting language LMCL (LISp-Miner Control Language) has been de-
veloped [25, 27]. The LMCL makes possible to describe necessary operations and
run them automatically by programmable means.

The goal of this paper is to describe first experience with utilization of the
LMCL to automate dealing with domain knowledge in the data mining with
association rules. We use a medical data set STULONG, however, the goal of
the paper is not to get new medical knowledge.

The structure of the paper is as follows. The medical data set STULONG
is shortly described in Section 2 together with related domain knowledge. The
association rules – relations of general Boolean attributes are introduced in Sec-
tion 3 as well as relevant results on logic of association rules. Mapping an item
of domain knowledge to a set of association rules which can be considered as its
consequences is described in Section 4. An example of formulation of an ana-
lytical question based on an item of domain knowledge is in Section 5 together
with a description of a solution of this question by the LISp-Miner system. An
attempt to utilize FOFRADAR and LMCL to automate the process of formulat-
ing and solution of such analytical questions is introduced in Section 6. Remarks
to related research are in Section 7.1.

2 STULONG Data Set

2.1 Data Matrix Entry

We use data set STULONG concerning Longitudinal Study of Atherosclerosis
Risk Factors 1. Data set consists of four data matrices, we deal with data matrix
Entry only. It concerns 1417 patients – men that have been examined at the
beginning of the study. Each row of the data matrix describes one patient. The

1 See http://euromise.vse.cz/challenge2004/, cited March 1, 2014.

http://euromise.vse.cz/challenge2004/

268 J. Rauch and M. Šimůnek

data matrix has 64 columns corresponding to particular attributes – characteris-
tics of patients. The attributes can be divided into various groups, We use three
groups defined for this paper - Measures, Personal, and Blood pressure.

Group Measures has three attributes - BMI i.e. Body Mass Index, Subsc i.e.
a skinfold above the musculus subscapularis (in mm), and Tric i.e. a skinfold
above the musculus triceps (in mm). The original values were transformed such
that these attributes have the following possible values (i.e. categories):
BMI : ≤ 21, (21; 22〉, (22; 23〉, . . . , (31; 32〉, > 32 (13 categories)
Subsc : < 10, 〈10; 12), 〈12; 14), . . . , 〈30; 32), 〈32; 36), > 36 (14 categories)
Tric : ≤ 4, 5, 6, . . . , 12, 13− 14, 15− 17,≥ 18 (12 categories).

Group Personal has two attributes with 4 categories each, frequencies of par-
ticular categories ar e in brackets (there are some missing values, too):
Status: married (1210), divorced (104), single (95), widower (10)
Education: basic (151), apprentice (405), secondary (444), university (397).

Group Blood pressure has two attributes - Diastolic i.e. Diastolic blood pres-
sure and Systolic i.e. Systolic blood pressure The original values were transformed
such that these attributes have the following categories:
Diastolic : < 65, 〈65; 75), 〈75; 85), . . . , 〈105; 115),≥ 115 (7 categories)
Systolic : < 105, 〈105; 115), 〈115; 125), . . . , 〈165; 175),≥ 175 (9 categories).

2.2 Domain Knowledge

There are various types of domain knowledge related to STULONG data. Three
of them are managed by the LISp-Miner system [22]: groups of attributes, infor-
mation on particular attributes and mutual influence of attributes. Examples of
groups of attributes are introduced above. Information on particular attributes
include information on types of attributes (nominal/ordinal/cardinal). Attribute
Status is an example of nominal attribute, attributes Education and Diastolic
are examples of ordinal attributes.

There are several types of influences among attributes, most of them are
relevant to specified types of attributes. The expression BMI ↑↑ Diastolic is
an example of an item of domain knowledge of the type mutual influence of
attributes. This expression says that if body mass index of a patient increases
then his/here diastolic blood pressure increases too.

3 Association Rules and Logic of Association Rules

3.1 Association Rules

The association rule is understood as an expression ϕ ≈ ψ where ϕ and ψ are
Boolean attributes. The rule means that the Boolean attributes ϕ and ψ are
associated in a way given by the symbol ≈ which is called the 4ft-quantifier.
It corresponds to a condition concerning a contingency table of ϕ and ψ. The
association rule ϕ ≈ ψ can be true or false in analysed data matrix M. An
example of data matrix is data matrix Entry a fragment of which is in Fig. 1.

Learning Association Rules from Data 269

attributes examples of basic Boolean attributes
patient Status BMI . . . Status(single) BMI((21; 22〉, (22; 23〉)

o1 single (16; 21〉 . . . 1 0
...

...
...

. . .
...

...
o1417 married (22; 23〉 . . . 0 1

Fig. 1. Data matrix Entry and examples of Boolean attributes

The Boolean attributes are derived from columns of analysed data matrix
M. We assume there is a finite number of possible values (i.e. categories) for
each column ofM. Basic Boolean attributes are created first. The basic Boolean
attribute is each expression A(α) where α ⊂ {a1, . . . ak} and {a1, . . . ak} is the
set of all categories of the column A. The basic Boolean attribute A(α) is true
in row o of M if it is a ∈ α where a is the value of the column A in row o. Set α
is called a coefficient of A(α). Boolean attributes are derived from basic Boolean
attributes using propositional connectives ∨, ∧ and ¬ in a usual way.

There are two examples of basic Boolean attributes in Fig. 1 - Status(single)
and BMI((21; 22〉, (22; 23〉). Attribute Status(single) is true for patient o1 and
false for patient o1417, we write ”1” or ”0” respectively in corresponding rows
and columns. Attribute BMI((21; 22〉, (22; 23〉) is false for patient o1 because
(16; 21〉 �∈ {(21; 22〉, (22; 23〉)} and attribute BMI((21; 22〉, (22; 23〉) is true for
o1417 because (22; 23〉 ∈ {(21; 22〉, (22; 23〉)}. Please note that we should write
Status({single}) etc. but we will use a more simple form Status(single). We will
also usually write BMI(21; 23〉 instead of BMI ((21; 22〉, (22; 23〉) etc.

Let us emphasize that the procedure 4ft-Miner dealing with rules built from
general Boolean attributes A(α) has tools to focus only to really relevant subsets
α, see Section 5.2. This way the search space can be substantially limited.

The rule ϕ ≈ ψ is true in data matrixM if the condition corresponding to the
4ft-quantifier is satisfied in the contingency table of ϕ and ψ in M, otherwise
ϕ ≈ ψ is false in data matrix M. The contingency table 4ft(ϕ, ψ,M) of ϕ and
ψ in data matrix M is a quadruple 〈a, b, c, d〉 where a is the number of rows of
M satisfying both ϕ and ψ, b is the number of rows of M satisfying ϕ and not
satisfying ψ etc., see Table 1.

Table 1. 4ft table 4ft(ϕ, ψ,M) of ϕ and ψ in M

M ψ ¬ψ
ϕ a b

¬ϕ c d

There are tens various 4ft-quantifiers, some of them are based on statistical
hypothesis tests [6, 19]. We use here 4ft-quantifier ⇒p,B of founded implication
[6]. It is defined for 0 < p ≤ 1 and B > 0 by the condition a

a+b ≥ p ∧ a ≥ B.
The association rule ϕ ⇒p,B ψ means that at least 100p per cent of rows of M

270 J. Rauch and M. Šimůnek

satisfying ϕ satisfy also ψ and that there are at least B rows of M satisfying
both ϕ and ψ. Let us note that 4ft-quantifier →p,s is defined for 0 < p ≤ 1 and
0 < s ≤ 1 by the condition a

a+b ≥ p ∧ a
a+b+c+d ≥ s and thus the rule ϕ →p,s ψ

is true if its confidence is at least p and its support is at least s.

3.2 Logic of Association Rules

Logical calculi of association rules are introduced and studied in [19]. Formulas
of them correspond to association rules informally introduced above. There are
various theoretical results related to these calculi. We use here results concerning
correctness of deduction rules

ϕ⇒p,Bψ
ϕ′⇒p,Bψ′ where both ϕ⇒p,B ψ and ϕ′ ⇒p,B ψ′

are association rules. Deduction rule
ϕ⇒p,Bψ
ϕ′⇒p,Bψ′ is correct if it holds for each data

matrix M:

If ϕ⇒p,B ψ is true in M then also ϕ′ ⇒p,B ψ′ is true in M .

Deduction rule
BMI(21;22〉⇒0.9,30Diastolic〈65;75)
BMI(21;22〉⇒0.9,30Diastolic〈65;85) is a very simple example of

correct deduction rule, an additional example of a correct deduction rule is

BMI(21; 22〉 ∧ Status(married)⇒0.9,30 Diastolic〈65; 75)
BMI(21; 22〉 ⇒0.9,30 Diastolic〈65; 75) ∨ ¬Status(married)

·

However, the deduction rule
BMI(21;22〉⇒0.9,30Diastolic〈65;75)

BMI(21;22〉∧Status(married)⇒0.9,30Diastolic〈65;75) is

not correct.
If deduction rule

ϕ⇒p,Baseψ
ϕ′⇒p,Baseψ′ is correct then we say that ϕ′ ⇒p,Base ψ′ logically

follows from ϕ ⇒p,Base ψ. There are reasonable criteria making possible to

decide if a given deduction rule
ϕ⇒p,Baseψ
ϕ′⇒p,Baseψ′ is correct, there analogous results

for additional important 4ft-quantifiers [19].

4 Consequences of Item of Domain Knowledge

4.1 Principles

The core of our approach is to map a given item of domain knowledge of the
type mutual influence of attributes to a set of simple association rules. This set
is further expanded using logical deduction to a set of all association rules which
can be considered as consequences of the given item of domain knowledge. A
resulting set of rules - consequences of items of domain knowledge is then used
to interpret results of data mining for association rules. An example of item of
domain knowledge is the expression BMI ↑↑ Diastolic saying that if body mass
index of a patient increases then his/here diastolic blood pressure increases too,
see Section 2.2.

We define a set Cons(Ω,⇒0.9,30) of all association rules ϕ ⇒0.9,30 ψ which
can be considered as consequences of a given item of domain knowledge Ω of

Learning Association Rules from Data 271

the type mutual influence of attributes for 4ft-quantifier⇒0.9,30 used in Sections
5 and 6. The set Cons(Ω,⇒0.9,30) is defined in cooperation with a domain

expert, deduction rules
ϕ⇒0.9,30ψ
ϕ′⇒0.9,30ψ′ introduced in Section 3.2 are used. The set

Cons(Ω,⇒0.9,30) is defined in four steps:

1. A set AC(Ω,⇒0.9,30) of atomic consequences of Ω for ⇒0.9,30 is defined as
a set of very simple rules κ ⇒p,B λ which can be, according to the domain
expert, considered as direct consequences of Ω. An example is in Section 4.2.

2. A set AgC(Ω,⇒0.9,30) of agreed consequences of Ω for ⇒0.9,30 is defined.
A rule ρ ⇒p,B σ belongs to AgC(Ω,⇒0.9,30) if the following conditions are
satisfied:
– ρ ⇒p,B σ �∈ AC(Ω,⇒0.9,30)
– there is no κ ⇒p,B λ ∈ AC(Ω,⇒0.9,30) such that ρ ⇒p,B σ logically

follows from κ ⇒p,B λ
– there is κ ⇒p,B λ ∈ AC(Ω,⇒0.9,30) such that, according to the domain

expert, it is possible to agree that ρ ⇒p,B σ says nothing new in addition
to κ ⇒p,B λ.

Examples are provided in Section 4.3.
3. A set LgC(Ω,⇒0.9,30) of logical consequences of Ω for ⇒0.9,30 is defined.

A rule ϕ ⇒p,B ψ belongs to LgC(Ω,⇒0.9,30) if the following conditions are
satisfied:
– ϕ ⇒p,B ψ �∈ (AC(Ω,⇒0.9,30) ∪ AgC(Ω,⇒0.9,30))
– there is τ ⇒p,B ω ∈ (AC(Ω,⇒0.9,30) ∪ AgC(Ω,⇒0.9,30)) such that

ϕ ⇒p,B ψ logically follows from τ ⇒p,B ω.
4. Cons(Ω,⇒0.9,30) = AC(Ω,⇒0.9,30) ∪ AgC(Ω,⇒0.9,30) ∪ LgC(Ω,⇒0.9,30),

see Section 4.4.

In Sections 4.2 – 4.4, there are examples concerning definition of the set
Cons(BMI ↑↑ Diastolic,⇒0.9,30) where BMI ↑↑ Diastolic is the item of domain
knowledge used in examples in Sections 5 and 6.

4.2 Atomic Consequences

We are going to define a set AC(BMI ↑↑ Diastolic,⇒0.9,30) of atomic conse-
quences of BMI ↑↑ Diastolic for ⇒0.9,30. This will be a set of very simple rules
κ ⇒p,B λ which can be, according to the domain expert, considered as direct
consequences of BMI ↑↑ Diastolic.

The idea is to define AC(BMI ↑↑ Diastolic,⇒0.9,30) as a set of all rules
BMI(α) ⇒p,B Diastolic(β) where p ≥ 0.9, B ≥ 30 and α and β are, accord-
ing to the domain expert, suitable coefficients for attributes BMI and Diastolic.
We show a way in which coefficients α and β can be defined. Informally speak-
ing, if BMI(α) and Diastolic(β) can be considered as saying ”BMI is low” and
”Diastolic is low” respectively, then the rule BMI(α)⇒0.9,30 Diastolic(β) can be
considered as a simple consequence of BMI ↑↑ Diastolic.

Attribute BMI has 13 categories ≤ 21, (21; 22〉, (22; 23〉, . . . , (31; 32〉, > 32 and
attribute Diastolic has 7 categories < 65, 〈65; 75), . . . , 〈105; 115),≥ 115. We can

272 J. Rauch and M. Šimůnek

decide in cooperation with a domain expert that each basic Boolean attribute
BMI(α) satisfying condition α ⊂ LowBMI will be considered as saying ”BMI is
low” if LowBMI = {≤ 21, (21; 22〉, . . . , (24; 25〉}. We can similarly decide that
basic Boolean attribute Diastolic(β) will be considered as saying ”Diastolic is
low” if β ⊂ LowDiastolic where LowDiastolic = {< 65, 〈65; 75), 〈75; 85)}. Thus,
we can say that the set of all rules BMI(”is low”) ⇒0.9,30 Diastolic(”is low”) is
defined by the rectangle

LowBMI × LowDiastolic = {< 21, (21; 22〉, . . . , (24; 25〉} × {< 65, 〈65; 75), 〈75; 85)} .

The LISp-Miner makes possible to define set AC(BMI ↑↑ Diastolic,⇒0.9,30)
by a union A1×S1 ∪ . . . ∪ AR×SR of R similar, possibly overlapping, rectangles.
The set AC(BMI ↑↑ Diastolic,⇒0.9,30) is then considered as a set of all rules
BMI(α) ⇒p,B Diastolic(β) satisfying p ≥ 0.9 and B ≥ 30 for which there is
i ∈ {1, . . . , R} such that α ⊂ Ai and β ⊂ Si. An example of such a definition is in
Fig. 2, three rectangles are used. We can say that AC(BMI ↑↑ Diastolic,⇒0.9,30)
is given by a union

LowBMI × LowDiastolic ∪ MediumBMI × MediumDiastolic ∪ HighBMI × HighDiastolic

defined in Fig. 2.

Fig. 2. An example of a definition of detail of AC(BMI ↑↑ Diastolic,⇒0.9,30)

4.3 Agreed Consequences

It is easy to prove that an association rule A1(α) ∧ χ ⇒p,B A2(β) does not logi-
cally follow from the association rule A1(α)⇒p,B A2(β). The core of the proof
is the fact that if there are at least B rows of a data matrix M satisfying
A1(α) ∧ A2(β) then there still can be no row of M satisfying A1(α)∧χ∧A2(β).
However, in some cases it can be reasonable from the point of view of a domain

Learning Association Rules from Data 273

expert to agree that A1(α) ∧ χ ⇒p,B A2(β) is a consequence of A(α)⇒p,B B(β).
In such a case we call the rule A1(α) ∧ χ ⇒p,B A2(β) an agreed consequence
of A1(α)⇒p,B A2(β).

The rule BMI((22; 23〉, (23; 24〉) ⇒0.9,30 Diastolic(< 65, 〈65; 75)) i.e. shortly
BMI(22; 24〉 ⇒0.9,30 Diastolic(< 75) belongs to AC(BMI ↑↑ Diastolic, ⇒0.9,30),
see Fig. 2. The rule BMI(22; 24〉∧Education(university)⇒0.9,30 Diastolic(< 75)
does not logically follow from the rule BMI(21; 24〉 ⇒0.9,30 Diastolic(< 75). How-
ever, this rule says nothing new because the truthfulness of Boolean attribute
Education(university) has no influence on the relation of BMI and Diastolic.
Thus we can add BMI(22; 24〉 ∧ Education(university)⇒0.9,30 Diastolic(< 75)
to the set AgC(BMI ↑↑ Diastolic, ⇒0.9,30) of agreed consequences of
BMI ↑↑ Diastolic for ⇒0.9,30.

This way, the set AgC(BMI ↑↑ Diastolic, ⇒0.9,30) can be defined. However,
cooperation with a domain expert is necessary. Below, we assume that if a rule
BMI(α)⇒p,B Diastolic(β) belongs to AC(BMI ↑↑ Diastolic, ⇒0.9,30) then rules
BMI(α) ∧ Status(γ)⇒p,B Diastolic(β), BMI(α)∧Education(δ) ⇒p,B Diastolic(β),
and BMI(α) ∧ Status(γ) ∧ Education(δ)⇒p,B Diastolic(β) belong to the set
AgC(BMI ↑↑ Diastolic, ⇒0.9,30).

4.4 Set Cons(BMI ↑↑ Diastolic,⇒0.9,30)

The set Cons(BMI ↑↑ Diastolic,⇒0.9,30) of consequences of BMI ↑↑ Diastolic
for 4ft-quantifier ⇒0.9,30) is defined as

AC(BMI ↑↑ Diastolic,⇒0.9,30) ∪ AgC(BMI ↑↑ Diastolic,⇒0.9,30) ∪

∪ LG(BMI ↑↑ Diastolic,⇒0.9,30)

where LG(BMI ↑↑ Diastolic,⇒0.9,30) is a set of all rules ϕ ⇒p,B ψ satisfying the
following conditions:

– ϕ ⇒p,B ψ �∈ (AC(BMI ↑↑ Diastolic,⇒0.9,30) ∪ AgC(BMI ↑↑ Diastolic,⇒0.9,30))

– there is
τ ⇒p,B ω ∈ (AC(BMI ↑↑ Diastolic,⇒0.9,30) ∪ AgC(BMI ↑↑ Diastolic,⇒0.9,30))

such that ϕ ⇒p,B ψ logically follows from τ ⇒p,B ω,

see point 3 at the beginning of Section 4.
The rule BMI(≤ 22) ∧ Status(married)⇒0.96,65 Diastolic(≤ 95) is an exam-

ple of a rule belonging to LG(BMI ↑↑ Diastolic,⇒0.9,30). This is because of:

– rule BMI(≤ 22)⇒0.96,65 Diastolic(≤ 85) belongs to
AC(BMI ↑↑ Diastolic,⇒0.9,30), see Section 4.2

– thus the rule BMI(≤ 22)∧Status(married)⇒0.96,65 Diastolic(≤ 85) belongs
to AgC(BMI ↑↑ Diastolic,⇒0.9,30), see Section 4.3

– the rule BMI(≤ 22) ∧ Status(married) ⇒0.96,65 Diastolic(≤ 95) logically
follows from the rule BMI(≤ 22)∧Status(married)⇒0.96,65 Diastolic(≤ 85),
see below.

274 J. Rauch and M. Šimůnek

Let us denote ϕ = BMI(≤ 22) ∧ Status(married). We have to show that the
rule ϕ ⇒0.96,65 Diastolic(≤ 95) logically follows from ϕ⇒0.96,65 Diastolic(≤ 85).
Let M be a data matrix, let us denote 4ft(ϕ,Diastolic(≤ 85),M) = 〈a, b, c, d〉
and 4ft(ϕ,Diastolic(≤ 95),M) = 〈a′, b′, c′, d′〉, see Fig. 3.

M Diastolic(≤ 85) ¬Diastolic(≤ 85)

ϕ a b

¬ϕ c d

M Diastolic(≤ 95) ¬Diastolic(≤ 95)

ϕ a′ b′

¬ϕ c′ d′

4ft(ϕ,Diastolic(≤ 85), M) 4ft(ϕ,Diastolic(≤ 95), M)

Fig. 3. 4ft(ϕ,Diastolic(≤ 85), M) and 4ft(ϕ,Diastolic(≤ 95), M)

It must be a+ b = a′ + b′ since both a+ b and a′ + b′ are equal to the number
of rows of M satisfying ϕ. In addition, it must be a′ ≥ a since each row of
M satisfying Diastolic(≤ 85) satisfies also Diastolic(≤ 95) and a + b = a′ + b′

together with a′ ≥ a means b′ ≤ b. We can conclude that if a
a+b ≥ 0.9 then also

a′
a′+b′ ≥

a′
a′+b ≥

a
a+b ≥ 0.9 and if a ≥ 30 then also a′ ≥ 30.

This way we can show that also additional rules belong to the set
Cons(BMI ↑↑ Diastolic,⇒0.9,30).

5 Formulating and Solving Analytical Question

5.1 From Domain Knowledge to Analytical Questions

Items of domain knowledge introduced in Section 2.2 makes possible to formulate
various analytical questions. An example is the question Are there any interest-
ing relations between attributes from group Measures and attributes from group
Blood pressure in data matrix Entry? Attributes from group Measures can be
combined with attributes from group Personal. Interesting relation is a relation
which is strong enough and which is not a consequence of the known dependency
BMI ↑↑ Diastolic.

We deal with association rules, thus we convert our question to a question
concerning association rules. This can be symbolically expressed as

[Entry : (BMI ↑↑ Diastolic) �→ B(Measures),B(Personal) ≈? B(Blood pressure)].

Here B(Measures) means a set of all Boolean attributes derived from attributes
of the group Measures we consider relevant to our analytical question, similarly
for B(Personal) and B(Blood pressure). We search for rules ϕM ∧ ϕP ≈ ψB

which are true in data matrix Entry, cannot be understood as conse-
quences of BMI ↑↑ Diastolic and ϕM ∈ B(Measures), ϕP ∈ B(Personal), and
ψB ∈ B(Blood pressure).

Learning Association Rules from Data 275

5.2 Applying 4ft-Miner

The procedure 4ft-Miner does not use the well known a-priori algorithm. It uses
representation of analyzed data by suitable strings of bits [21]. This way 4ft-
Miner has fine tools to define sets of relevant association rules. In Fig. 4, there is
an example of a definition of a set of association rules relevant to the analytical
question introduced in Section 5.1.

Fig. 4. Input parameters of the 4ft-Miner procedure

Set B(Measures) is defined in row Measures Conj, 1-3 and in three consec-
utive rows in column ANTECEDENT. Each ϕM is a conjunction of 1 - 3 Boolean
attributes derived from particular attributes of the group Measures. Set of all
Boolean attributes derived from attribute BMI is defined by the row
BMI(seq), 1-3 B, pos. It means that all Boolean attributes BMI(α) where
α is a sequence of 1 - 3 consecutive categories are generated. Examples of such
Boolean attributes are BMI(16; 21〉, BMI((21; 22〉, (22; 23〉) i.e. BMI(21; 23〉, and
BMI((21; 22〉, (22; 23〉, (23; 24〉) i.e. BMI(21; 24〉. Sets of Boolean attributes de-
rived from attributes Subsc and Tric are defined similarly. An example of
ϕM ∈ B(Measures) is the conjunction ϕM = BMI(21; 24〉∧ Subsc〈4; 14). Strings
”B,pos” in all rows of Fig. 4 are additional parameters, they have no influence
in our example, for details see [21].

Each ϕP is a disjunction of 0 - 2 Boolean attributes derived from partic-
ular attributes of the group Personal. There are four Boolean attributes de-
rived from attribute Status – Status(married), Status(divorced), Status(single),
Status(widower) i.e. subsets of 1 - 1 categories of attribute Status defined by
the row Status(subset), 1-1 B, pos. Set of Boolean attributes derived from
attribute Education is defined similarly as for attribute BMI.

Set B(Blood pressure) is defined in row Blood pressure Conj, 1-2 and in
two consecutive rows of column SUCCEDENT in a way similar to that in which set
B(Measures) is defined. The quantifier⇒0.9,30 of founded implication is specified
in column QUANTIFIERS.

A task of generating all relevant rules ϕM ∧ ϕP ⇒0.9,30 ψB and testing
them in data matrix Entry was solved in 126 seconds (PC with 4GB RAM and
Intel Core processor at 2.6 GHz). 12.47 ∗ 106 association rules were generated
and tested, 363 rules true were found. The rule

BMI(≤ 22)∧Subsc(< 14)∧Education(secondary, university) ⇒1.0,31 Systolic〈105; 145)

276 J. Rauch and M. Šimůnek

is the strongest one (i.e. with the highest confidence). It means that 31 patients
satisfy BMI(≤ 22) ∧ Subsc(< 14) ∧ Education(secondary, university) and all
of them satisfy also Syst〈105; 145).

5.3 Interpreting Results

Let us remember that we are solving the analytical question: Are there any
interesting relations between attributes from group Measures and attributes from
group Blood pressure in data matrix Entry? Attributes from group Measures can
be combined with attributes from group Personal. Interesting relation is a relation
which is strong enough and which is not a consequence of the known dependency
BMI ↑↑ Diastolic, see Section 5.1.

We have applied the 4ft-Miner data mining procedure with input parameters
defining a set of potentially interesting association rules in a way described in
Fig. 4 in Section 5.2. The procedure 4ft-Miner has tools to filter out all rules
which can be considered as consequences of BMI ↑↑ Diastolic. Definition of the
set of these consequences is given in Section 4. Among 363 output rules, there
are 194 rules which can be considered as consequences of BMI ↑↑ Diastolic.

The remaining 169 rules can be understood as answers to the above intro-
duced question. But this is only a small fraction of a possible comprehensive
answer we can get by applications of the 4ft-Miner procedure and additional an-
alytical procedures and tools implemented in the LISp-Miner system. However,
it requires a long chain of applications of particular procedures and modules with
various feedbacks. The only way to do such analysis effectively is to automate
the analytical process.

6 Applying LISp-Miner Control Language

The goal of automation of the data mining process with the 4ft-Miner procedure
and domain knowledge is to make possible to solve complex tasks which are too
hard to be solved manually in an effective way. An example of such a task is
outlined in Section 6.1. Principles of automation of its solution are introduced
in Section 6.2. Examples of results are in Section 6.3.

6.1 Example of Complex Task

Remember the question

[Entry : (BMI ↑↑ Diastolic) �→ B(Measures),B(Personal) ≈? B(Blood pressure)]

introduced in Section 5.1. This means that we are interested in association rules
ϕM ∧ ϕP ≈ ψB which are true in data matrix Entry, cannot be understood as
consequences of BMI ↑↑ Diastolic, ϕM ∈ B(Measures), ϕP ∈ B(Personal), and
ψB ∈ B(Blood pressure).

This question can be extended such that we are interested in relations of a
set T (Measures,Personal ⇒0.9,30 Blood pressure;Entry) of all association rules

Learning Association Rules from Data 277

ϕM ∧ϕP ≈ ψB true in data matrix Entry to sets of rules which can be considered
as consequences of various additional relations of mutual influence between at-
tributes BMI, Subsc and Tric from the group Measures and attributes Diastolic
and Systolic from the group Blood pressure. We do not consider additional re-
lations as items of domain knowledge, we are only interested if there are true
association rules – indicators of such relations of mutual influence.

We found that the set T (Measures,Personal ⇒0.9,30 Blood pressure;Entry)
contains 363 rules and that 194 from these rules belong also to the set
Cons(BMI ↑↑ Diastolic,⇒0.9,30), see Section 5. There is a challenge to check the
remaining 169 rules for really interesting ones. Examples of really interesting
rules are rules which can be considered as exceptions to BMI ↑↑ Diastolic or as
indications of new, unknown relations of mutual influence between attributes.

This can be understood as an example of the above introduced extended
question. We deal with sets T (Measures,Personal ⇒0.9,30 Blood pressure,Entry)
and Cons(BMI ↑↑ Systolic,⇒0.9,30), Cons(Subsc ↑↑ Diastolic,⇒0.9,30), . . . ,
Cons(Tric ↑↑ Systolic,⇒0.9,30). We can use also additional relations of mutual
influence. An example is the relation Tric ↑↓ Diastolic meaning if the skinfold
above the musculus triceps increases then diastolic blood pressure decreases. Of
course, we can use also additional 4ft-quantifiers.

6.2 Principles of Solution

The above introduced complex task can be solved in two main steps. In the
first step we define sets Cons(Ω,⇒0.9,30) of all association rules ϕ ⇒0.9,30 ψ
which can be considered as consequences of all relations Ω of mutual inference
in question (i.e. BMI ↑↑ Systolic, . . . ,Tric ↑↓ Diastolic). Using the FOFRADAR
formal framework, we can exactly describe the whole process of formulation and
solution of the task introduced in Section 6.1, the principles outlined in Section 4
are applied, see also [20]. However, this description is not an executable program.

In the second step we describe the solution in the LMCL language as an
executable program and we execute it. It takes just five seconds to pre-create
all the possible pairs of mutual influences, to compare them to already mined
association rules and to prepare a comparison summary. More details on LMCL
language are available in [25, 27].

6.3 Examples of Results

Structured analytical reports are results of solutions of complex tasks. The re-
ports describe resulting sets of association rules together with their relevant
characteristics and summarizing explanations. In Fig. 5, there is an example
of a part of an analytical report describing solution of the task introduced in
Section 6.1.

This part gives an overview of found association rules. For each item of mutual
influence mentioned in Section 6.1, there is the number of rules which can be
considered as consequences of this item, as well as the number of rules which are
interesting from the point of view of further investigation. A rule is interesting

278 J. Rauch and M. Šimůnek

Fig. 5. Found association rules to mutual influences relationships summary

from the point of view of further investigation if it can be considered as an
exception to the relation of the mutual influence in question. A rule is also
interesting if it can be considered as an indication of an additional relation of
mutual relation. List of such rules are available through the provided link.

There are 109 rules which can be considered as consequences of the relation
Tric ↑↓ Diastolic and 42 rules which are interesting from the point of view of
further investigation. The rule

BMI(≤ 22) ∧ Tric(≤ 5)⇒0.92,36 Diastolic〈65; 95)

is an example of a rule interesting from the point of view of further investi-
gation. This is because this rule can be seen as an agreed consequence of
the rule Tric(≤ 5) ⇒0.92,36 Diastolic〈65; 95) which says that if Tric is small
then Diastolic is not high and this is in a conflict with the mutual influence
Tric ↑↓ Diastolic, see also possible values of Tric and Diastolic in Section 2.1,
for more details see [20]. Let us note that this approach to exceptions differs
from that introduced in [23].

7 Conclusions

7.1 Related Research

There is no similar approach to dealing with domain knowledge in association
rules known to the authors. There are various related papers, e.g. [2–4, 12–
16, 28, 30]. Their detailed comparison with the presented approach is out of the
scope of this paper and it is left as a further work. However, let us note that
these approaches do not use the formalization of data mining process based on
observational calculi.

Let us also mention the project GUHA80 [8, 10] of automated data analysis.
The project was based on applications of the GUHA procedures, however, it was
never realised. The principles of the project differ from the approach used here.

Learning Association Rules from Data 279

7.2 Summary and Further Research

We have introduced an approach to learning association rules from data through
domain knowledge and automation. It was shown that it is possible to formalize
the process of formulating of reasonable analytical questions using formulas ex-
pressing mutual influence of non-Boolean attributes and to use logical deduction
in calculus of association rule to deal with consequences of such formulas. The
formulas expressing mutual influence of non-Boolean attributes can be used as
items of domain knowledge. The whole process of learning rules can be formally
described by tools of the FOFRADAR formal frame for data mining. The for-
mal description can be converted to an executable program in LMCL. We have
shown an experiment to solve a complex analytical question.

In the next steps we assume to use FOFRADAR and LMCL to solve additional
complex analytical questions and to automate the whole data mining process
with association rules, see also [27].

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Associations between Sets of Items
in Large Databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, pp. 207–216.
ACM Press, Fort Collins (1993)

2. Atzmüller, M., Puppe, F., Buscher, H.P.: Exploiting Background Knowledge for
Knowledge-Intensive Subgroup Discovery. In: Kaelbling, L.P., Saffiotti, A. (eds.)
Proceedings of the Nineteenth International Joint Conference on Artificial Intelli-
gence, IJCAI 2005, Edinburgh, Scotland, UK, pp. 647–652 (2005)

3. Atzmüller, M., Puppe, F., Buscher, H.P.: A Semi-Automatic Approach for
Confounding-Aware Subgroup Discovery. International Journal on Artificial In-
telligence Tools 18, 81–98 (2009)

4. Aumann, Y., Lindell, Y.: A Statistical Theory for Quantitative Association Rules.
J. Intell. Inf. Syst. 20, 255–283 (2003)

5. Hájek, P., Havel, I., Chytil, M.: The GUHA method of automatic hypothesis de-
terminantion. Computing 1, 293–308 (1966)

6. Hájek, P., Havránek, T.: Mechanising Hypothesis Formation - Mathematical Foun-
dations for a General Theory. Springer, Heidelberg (1978)

7. Hájek, P.: The new version of the GUHA procedure ASSOC. In: Proceedings of
COMPSTAT 1984, pp. 360–365 (1984)

8. Hájek, P., Havránek, T.: GUHA 80: An Application of Artificial Intelligence to
Data Analysis. Computers and Artificial Intelligence 1, 107–134 (1982)

9. Hájek, P., Holeňa, M., Rauch, J.: The GUHA method and its meaning for data
mining. J. Comput. Syst. Sci. 76, 34–48 (2010)

10. Hájek, P., Ivánek, J.: Artificial Intelligence and Data Analysis. In: Caussinus, H.,
Ettinger, P., Tomassone, R. (eds.) Proceedings COMPSTAT 1982, pp. 54–60. Phys-
ica Verlag, Wien (1982)

11. Ierusalimschy, R., Figueiredo, L.H., de Celes, W.: Lua – an extensible extension
language. Software: Practice & Experience 26, 635–652 (1996)

12. Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using Bayesian
networks as background knowledge. In: Kim, W., et al. (eds.) Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Seattle, Washington, USA, pp. 178–186 (2004)

280 J. Rauch and M. Šimůnek

13. Jaroszewicz, S., Scheffer, T., Simovici, D.A.: Scalable pattern mining with Bayesian
networks as background knowledge. Data Min. Knowl. Discov. 18, 56–100 (2009)

14. Lavrac, N., et al.: The utility of background knowledge in learning medical diag-
nostic rules. Applied Artificial Intelligence 7, 273–293 (1993)

15. Mansingh, G., Osei-Bryson, K.-M., Reichgelt, H.: Using ontologies to facilitate
post-processing of association rules by domain experts. Information Sciences 181,
419–434 (2011)

16. Phillips, J., Buchanan, B.G.: Ontology guided knowledge discovery in databases.
In: Proc. First International Conference on Knowledge Capture, pp. 123–130.
ACM, Victoria (2001)

17. Rauch, J.: Considerations on Logical Calculi for Dealing with Knowledge in Data
Mining. In: Ras, Z.W., Dardzinska, A. (eds.) Advances in Data Management. SCI,
vol. 223, pp. 177–199. Springer, Heidelberg (2009)

18. Rauch, J.: Formalizing Data Mining with Association Rules. In: Proceedings of
2012 IEEE International Conference on Granular Computing (GRC 2012), pp.
406–411. IEEE Computer Society, Los Alamitos (2012)

19. Rauch, J.: Observational Calculi and Association Rules, p. 296. Springer, Berlin
(2013)

20. Rauch, J.: Formal Framework for Data Mining with Association Rules and Do-
main Knowledge – Overview of an Approach Observational Calculi and Association
Rules. To appear in Fundamenta Informaticae

21. Rauch, J., Šimůnek, M.: An Alternative Approach to Mining Association Rules.
In: Lin, T.Y., et al. (eds.) Data Mining: Foundations, Methods, and Applications.
SCI, vol. 6, pp. 211–231. Springer (2005)

22. Rauch, J., Šimůnek, M.: Applying Domain Knowledge in Association Rules Mining
Process - First Experience. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Raś,
Z.W., et al. (eds.) ISMIS 2011. LNCS (LNAI), vol. 6804, pp. 113–122. Springer,
Heidelberg (2011)

23. Suzuki, E.: Undirected Discovery of Interesting Exception Rules. International
Journal of Pattern Recognition and Artificial Intelligence 16(8), 1065–1086 (2002)

24. Šimůnek, M.: Academic KDD Project LISp-Miner. In: Abraham, A., Franke, K.,
Köppen, M. (eds.) Intelligent Systems Design and Applications. AISC, vol. 23, pp.
263–272. Springer, Heidelberg (2003)

25. Šimůnek, M.: LISp-Miner Control Language – description of scripting language
implementation. Journal of System Integration 5(2) (2014),
http://www.si-journal.org/index.php/JSI/article/view/193

26. Šimůnek, M., Rauch, J.: EverMiner – Towards Fully Automated KDD Process. In:
Funatsu, K., Hasegava, K. (eds.) New Fundamental Technologies in Data Mining,
pp. 221–240. InTech, Rijeka (2011)

27. Šimůnek,M., Rauch, J.: EverMiner Prototype using LISp-Miner Control Language.
In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014.
LNCS (LNAI), vol. 8502, pp. 113–122. Springer, Heidelberg (2014),
http://isl.ruc.dk/ismis2014/

28. Sharma, S., Osei-Bryson, K.-M.: Toward an integrated knowledge discovery and
data mining process model. The Knowledge Engineering Review 25, 49–67 (2010)

29. Tan, P.-N., Kumar, V., Srivastava, J.: Selecting the right objective measure for
association analysis. Information Systems 29, 293–313 (2004)

30. Vavpetic, A., Podpecan, V., Lavrac, N.: Semantic subgroup explanations. J. Intell.
Inf. Syst. 42, 233–254 (2014)

http://www.si-journal.org/index.php/JSI/article/view/193
http://isl.ruc.dk/ismis2014/

Using Discriminative Rule Mining to Discover
Declarative Process Models with Non-atomic Activities

Mario Luca Bernardi1, Marta Cimitile2,
Chiara Di Francescomarino3, and Fabrizio Maria Maggi4

1 University of Sannio, Benevento, Italy
mlbernar@unisannio.it

2 Unitelma Sapienza University, Rome, Italy
marta.cimitile@unitelma.it

3 FBK-IRST, Trento, Italy
dfmchiara@fbk.eu

4 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

Abstract. Process discovery techniques try to generate process models from
execution logs. Declarative process modeling languages are more suitable than
procedural notations for representing the discovery results deriving from logs of
processes working in dynamic and low-predictable environments. However, ex-
isting declarative discovery approaches aim at mining declarative specifications
considering each activity in a business process as an atomic/instantaneous event.
In spite of this, often, in realistic environments, process activities are not instan-
taneous; rather, their execution spans across a time interval and is characterized
by a sequence of states of a transactional lifecycle. In this paper, we investigate
how to use discriminative rule mining in the discovery task, to characterize life-
cycles that determine constraint violations and lifecycles that ensure constraint
fulfillments. The approach has been implemented as a plug-in of the process min-
ing tool ProM and validated on synthetic logs and on a real-life log recorded by
an incident and problem management system called VINST in use at Volvo IT
Belgium.

Keywords: Process Discovery, Rule Mining, Discriminative Mining, Non-Atomic
Activities, Activity lifecycle, Linear Temporal Logic.

1 Introduction

Process discovery techniques are widely considered as critical for successful business
process management and monitoring. In particular, the discovery of declarative models
can be used in complex environments where process executions involve multiple alter-
natives and high flexibility is needed [2] [9]. Consider, for example, a business process
for handling natural disasters. This type of process is totally unpredictable and should be
adapted every time to specific conditions characteristic of specific cases. Using declar-
ative models for describing processes like this, allows analysts to define generic con-
straints to be followed during the process execution instead of explicitly representing
the flows of events allowed. At runtime, anything that does not violate these constraints

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 281–295, 2014.
c© Springer International Publishing Switzerland 2014

282 M.L. Bernardi et al.

is possible. In this way, process participants are free to adapt their tasks to the envi-
ronment characteristics as long as these general rules are respected. At the same time,
models remain under-specified and easy to understand for humans.

Existing process discovery techniques for generating declarative specifications, do
not take activity lifecycles and their characteristics into consideration, even if, in many
practical cases, activities are non-atomic. In the reality, activities have a duration span-
ning over time intervals in which transactional states (a.k.a. event types) of the activity
can occur. The sequences of event types that occur when an activity is executed, char-
acterize the lifecycle of that activity. For example, when an activity a is executed, the
lifecycle 〈aassign, astart, acomplete〉 can take place, including event types assign, start,
and complete. If available, this information is very relevant to be considered when min-
ing an event log, since it allows analysts to understand not only the constraints between
activities but also the ones that relate event types appearing inside the lifecycle of one
single activity.

In 2010, the IEEE Task Force on Process Mining has adopted XES (eXtensible Event
Stream) [19] as the standard for storing data in event logs. XES supports a specific
extension (Lifecycle Extension) to keep track of information related to the lifecycle of
an activity in a log. In addition, XES defines a standard transactional model for activity
lifecycles in a log through a state machine describing the allowed sequences of event
types for an activity.

Starting from this definition, in this paper, we present a novel approach to discover
declarative specifications from logs with a strong focus on the activity lifecycles. For de-
scribing declarative models, we use Declare, a declarative process modeling language,
first introduced in [15], that combines a formal semantics grounded in Linear Temporal
Logic (LTL) on finite traces1 with a graphical representation. Here, we slightly mod-
ify the original semantics of Declare constraints to adapt it to the non-atomic case. In
addition, the proposed approach relies on the notion of constraint activation [5]. For
the constraint “every request is eventually acknowledged” each request is an activation.
This activation becomes a fulfillment or a violation depending on whether the request
is followed by an acknowledgement or not.

In our approach, in a first phase, starting from a log, we try to group together events
belonging to the same lifecycle of the same activity (discharging the “malformed” life-
cycles according to an input transactional model for activity lifecycles like, e.g., XES).
The lifecycle identification can be done using (i) a FIFO-based approach [6], or (ii)
event correlations [3]. The FIFO -based approach is a typical “conservative approach”
first in-first out, in which if a new upcoming event can be connected to two events oc-
curred in the past and belonging to two different lifecycles, the priority is given to the
one that occurred before. With event correlations, events are connected as part of the
same lifecycle whenever they share common values for some data attributes. This ap-
proach can only be applied if events in the log carry data. In our implemented prototype,
we have used the FIFO-based approach, but the tool can be easily extended to support
lifecycle identification through event correlations.

In a second phase of our approach, we generate a set of candidate Declare con-
straints (over non-atomic activities) considering the constraints that are most frequently

1 For compactness, we will use the LTL acronym to denote LTL on finite traces.

Using Discriminative Rule Mining to Discover Declarative Process Models 283

activated in the log. In this way, we discover information about the inter-relations be-
tween lifecycles of different activities.

In a third phase, we use discriminative rule mining to retrieve characteristics of the
lifecycle of an activation of a constraint that discriminate between cases in which that
activation is a fulfillment and the cases in which the activation leads to a violation for
that constraint. For example, we want to find rules like “if a registration ends with
an abortion the user cannot be notified via e-mail”, or “if an analysis is suspended
more than twice then eventually a check should be executed”. Using discriminative rule
mining we can discover intra-relations between transactional states inside the lifecycle
of a constraint activation that discriminate between cases in which the activation is
a fulfillment and cases in which the activation is a violation. In particular, we use a
decision tree to learn from contrasting training data discriminative rules related to the
lifecycle control flow. Lifecycles are encoded, in the form of Declare constraints, as
features of the tree and the resulting decision rules are used to express the lifecycle
characteristics able to discriminate between fulfillments and violations.

The approach presented in this paper has been implemented as a plug-in of the ProM2

process mining toolset. This prototype has been used to validate our technique on both
synthetic logs and a real life log recorded by an incident and problem management
system called VINST in use at Volvo IT Belgium.

The paper is structured as follows. Section 2 provides a preliminary background
about the Declare language, introduces the concepts of non-atomic activities and activ-
ity lifecycles and provides an overview on discriminative rule mining. Next, Section 3
illustrates the approach, based on the combination of declarative process mining al-
gorithms (extended to the non-atomic logs) and discriminative mining approaches. In
Section 4, the experimentation is discussed. Section 5 reports some conclusion and
future work.

2 Background

In this section, we introduce some preliminary knowledge needed to understand the
techniques presented in this paper. In particular, in Section 2.1, we give an overview of
the Declare language. In Section 2.2, we describe the transactional model for activity
lifecycles defined in the XES standard. Finally, in Section 2.3, we give some background
about discriminative rule mining.

2.1 Declare: The Language

Declare is a language for describing declarative process models first introduced in [15].
A Declare model consists of a set of constraints applied to (atomic) activities. Con-
straints, in turn, are based on templates. Templates are abstract parameterized patterns
and constraints are their concrete instantiations on real activities. Templates have a user-
friendly graphical representation understandable to the user and their semantics can
be formalized using different logics [14], the main one being Linear Temporal Logic

2 www.processmining.org

www.processmining.org

284 M.L. Bernardi et al.

Table 1. Graphical notation and LTL formalization of some Declare templates

TEMPLATE FORMALIZATION NOTATION

responded existence(A,B) ♦A → ♦B A •−−−− B

response(A,B) 	(A → ♦B) A •−−−
 B

precedence(A,B) ¬BW A A −−−
• B

alternate response(A,B) 	(A →◦(¬AU B)) A •===
 B

alternate precedence(A,B) (¬BW A) ∧	(B →◦(¬BW A)) A ===
• B

chain response(A,B) 	(A →◦B) A •=−=−=−
 B

chain precedence(A,B) 	(◦B → A) A =−=−=−
• B

not resp. existence(A,B) ♦A → ¬♦B A •−−−−‖ B

not response(A,B) 	(A → ¬♦B) A •−−−
‖ B

not precedence(A,B) 	(A → ¬♦B) A −−−
•‖ B

not chain response(A,B) 	(A → ¬◦B) A •=−=−=−
‖ B

not chain precedence(A,B) 	(A → ¬◦B) A =−=−=−
•‖ B

over finite traces, making them verifiable and executable. Each constraint inherits the
graphical representation and semantics from its templates. The major benefit of using
templates is that analysts do not have to be aware of the underlying logic-based for-
malization to understand the models. They work with the graphical representation of
templates, while the underlying formulas remain hidden. Table 1 summarizes some De-
clare templates. The reader can refer to [1] for a full description of the language. Here,
we indicate template parameters with capital letters (see Table 1) and real activities in
their instantiations with lower case letters (e.g., constraint 	(a → ♦b)).

Consider, for example, the response constraint 	(a → ♦b). This constraint indicates
that if a occurs, b must eventually follow. Therefore, this constraint is satisfied for traces
such as 〈a, a, b, c〉, 〈b, b, c, d〉, and 〈a, b, c, b〉, but not for 〈a, b, a, c〉 because, in this case,
the second instance of a is not followed by a b. Note that, in trace 〈b, b, c, d〉, the con-
sidered response constraint is satisfied in a trivial way because a never occurs. In this
case, we say that the constraint is vacuously satisfied [11]. An activation of a constraint
in a trace is an event whose occurrence imposes, because of that constraint, some obliga-
tions on other events in the same trace. For example, a is an activation for the response
constraint 	(a → ♦b), because the execution of a forces b to be executed eventually.

An activation of a constraint can be a fulfillment or a violation for that constraint.
When a trace is perfectly compliant with respect to a constraint, every activation of the
constraint in the trace leads to a fulfillment. Consider, again, the response constraint
	(a → ♦b). In trace 〈a, a, b, c〉, the constraint is activated and fulfilled twice, whereas,
in trace 〈a, b, c, b〉, the same constraint is activated and fulfilled only once. On the other
hand, when a trace is not compliant with respect to a constraint, an activation of the
constraint in the trace can lead to a fulfillment but also to a violation (at least one
activation leads to a violation). In trace 〈a, b, a, c〉, for example, the response constraint
	(a → ♦b) is activated twice, but the first activation leads to a fulfillment (eventually
b occurs) and the second activation leads to a violation (b does not occur subsequently).

Using Discriminative Rule Mining to Discover Declarative Process Models 285

XES Lifecycle

autoskip

schedule assign

reassign

manualskip

withdraw

pi abort

ate abort

start

suspend

resume

complete

BPI Challenge 2013 Lifecycle

In Progress

Resolved Closed

Awaiting Assignment

Wait for User

Assigned

In Call

Wait

Wait Implementation

Wait for Vendor

Wait for Customer

Unmatched

Cancelled

Fig. 1. XES Standard and BPI Challenge 2013 transactional models for activity lifecycles

2.2 Activity Lifecycle

In real business applications, activities cannot be considered as atomic/instantaneous
events, but they traverse different states in their lifecycle. Consider, for example, activ-
ity Check. This activity, during its execution can traverse different transactional states
like, e.g., (i) schedule (Checkschedule), meaning that a check has been scheduled, (ii)
start (Checkstart), indicating that the check activity has started its execution, and (iii)
complete (Checkcomplete), meaning that the check has been completed.

A transactional model for activity lifecycles represents the set of the admissible se-
quences of states that an activity can assume during its lifecycle. Figure 1 depicts the
XES standard transactional model [10], which allows keeping track in the log of in-
formation related to activity lifecycles. In particular, the model is provided as a state
machine describing the admissible flows of the different states an activity can assume.
In addition, using the Lifecycle Extension provided in XES, users can customize the
transactional model allowed in an event log.

Figure 2 reports an example that we will use as running example throughout the pa-
per. In the figure, t0 represents an execution trace containing only atomic activities (a,
b, and c). t1 includes non-atomic activities and different event types assumed by activi-
ties a, b and c (based on the XES standard transactional model). Activity a appears with
three event types (once with assign, and twice with start and complete) b occurs with
two event types (twice with start and complete), and activity c appears only with event
type start. From this example, it is clear that we need a mechanism to connect events
belonging to the same activity lifecycle together. In this paper, we use a conservative,
FIFO-based approach. Using this approach, events at positions 1, 3 and 6 for activity a
are grouped together, and, also, events at positions 5 and 7. Events at positions 2 and 4,
and events at positions 8 and 10 for activity b are grouped together. Notice that, execu-
tions of activities can overlap. For example, the first lifecycle of activity a in the figure
completes after that the first lifecycle of activity b has started. Also notice that some
lifecycles are malformed, like the one of activity c that does not have a completion.

286 M.L. Bernardi et al.

t0

a b a b c

t1 1

astart

2

bstart

3

astart

4

bcomplete

5

astart

6

acomplete

7

acomplete

8

bstart

9

cstart

10

bcomplete

t2 1

astart

2

asuspend

3

aresume

4

acomplete

5

aassign

6

astart

7

asuspend

8

aresume

9

acomplete

10

aassign

11

cstart

12

areassign

13

astart

14

acomplete

15

ccomplete

Fig. 2. An example of a trace including atomic activities (t0) and traces composed of non-atomic
activities (t1 and t2)

2.3 Discriminative Mining

Discriminative mining aims at extracting, from an existing set of data, patterns that are
discriminative with respect to a given criterion. In the literature, several branches of
works, differing with each other based on the type of mined patterns (e.g., sequences
or rules), fall under this umbrella, like, for example, discriminative pattern mining [8],
discriminative sequence mining [12] or classification rule approaches [18]. All these
approaches are usually based on supervised or non-supervised learning techniques. In
this work, we exploit decision tree supervised learning [7] in order to mine a set of
declarative rules that discriminate between fulfillments and violations of a given con-
straint. Decision trees have been applied in the context of discriminative rule mining
(also on top of other techniques) for their capability to construct readable rules [18].
Decision tree learning uses a decision tree as a model to predict the value of a tar-
get variable based on input variables (features). Decision trees are built from a set of
training dataset. Each internal node of the tree is labeled with an input feature. Arcs
stemming from a node labeled with a feature are labeled with possible values or value
ranges of the feature. Each leaf of the decision tree is labeled with a class, i.e., a value
of the target variable given the values of the input variables represented by the path
from the root to the leaf. Moreover, each leaf of the decision tree is associated with a
support (support) and a probability distribution (class probability). Support represents
the number of examples in the training dataset that follow the path from the root to
the leaf and that are correctly classified; class probability is the percentage of examples
correctly classified with respect to all examples following that specific path.

In this work we rely on the Weka J48 implementation of one of the most known
decision tree algorithms, the C4.5 algorithm [16], which exploits the normalized infor-
mation gain to choose, for each node of the tree, the feature to be used for splitting the
set of examples.

3 Approach

Figure 3 illustrates our proposed approach. Given a log containing non-atomic activities
and a transactional model for activity lifecycles as a reference, it returns as output (i) a
set of Declare constraints with non-atomic activities, and (ii) for each constraint, a set
of characteristics of the involved activity lifecycles, which are possibly related to the

Using Discriminative Rule Mining to Discover Declarative Process Models 287

Fig. 3. An overview of the proposed approach

fulfillment or to the violation of the constraint. Roughly speaking, the approach takes
into consideration a list of candidate Declare constraints (involving non-atomic activ-
ities), and it uses standard discovery techniques [13] for identifying fulfillments and
violations for each of them. Then, a discriminative rule mining approach is used to find
the characteristics of the lifecycle of an activation of a candidate constraint that allows
us to discriminate between cases in which that activation was a fulfillment, and cases
in which the activation was a violation for the considered constraint. In the following
sections, we describe the main steps of the approach in detail.

3.1 Lifecycle Consistency Checking

The first step of our proposed technique aims at processing the input log to (i) connect
together activity states belonging to the same lifecycle, and (ii) remove all the “mal-
formed” lifecycles that are not consistent with the input transactional model. As already
mentioned in Section 2, there are two possibilities for grouping event types of an activ-
ity belonging to the same lifecycle. One way to do it is by using event correlations as
explained in [3]. If the event log contains (event) data attributes, it is possible to con-
nect activity states that share some data values, e.g., an event id. However, this approach
is applicable only if attributes that can be used to connect events exist. Therefore, for
our experimentation, we decided to implement a conservative approach that is less pre-
cise, but applicable also in cases of logs with no data attributes or with data attributes
that cannot be used for event correlation. In particular, we use a FIFO-based algorithm.
We explain this approach using our running example in Fig. 2, and using the XES stan-
dard transactional model for activity lifecycles as reference. Based on this transactional
model, events in trace t1 of the example can be grouped in separate lifecycles in different
ways. For example, acomplete at position 6 can be connected with astart at position 3,
or with astart at position 5. Applying our FIFO-based algorithm, we can disambiguate
the correlation using a conservative approach. This means that acomplete at position 6 is
connected with the astart event that occurred first, i.e., the one at position 3. Following
this approach, we can identify, in trace t1, the following lifecycles:

– a1 = 〈aassign(1), astart(3), acomplete(6)〉,
– a2 = 〈astart(5), acomplete(7)〉,
– b1 = 〈bstart(2), bcomplete(4)〉,
– b2 = 〈bstart(8), bcomplete(10)〉,

– c1 = 〈cstart(9)),

where numbers between brackets indicate the position of the event in the trace.
As already mentioned, when we have all the lifecycles grouped together we can fil-

ter out the ones that are inconsistent with respect to the input transactional model. For

288 M.L. Bernardi et al.

Table 2. LTL formalization of some Declare templates with non-atomic activities

TEMPLATE FORMALIZATION

responded existence(A,B) ♦Ai → ♦Bi

response(A,B) 	(Af → ♦Bi)

precedence(A,B) ¬Bi W Af

alternate response(A,B) 	(Af →◦(¬Af U Bi))

alternate precedence(A,B) (¬Bi W Af) ∧	(Bi →◦(¬Bi W Af))

chain response(A,B) 	(Af →◦Bi)

chain precedence(A,B) 	(◦Bi → Af)

not responded existence(A,B) ♦Ai → ¬♦Bi

not response(A,B) 	(Af → ¬♦Bi)

not precedence(A,B) 	(Af → ¬♦Bi)

not chain response(A,B) 	(Af → ¬◦Bi)

not chain precedence(A,B) 	(Af → ¬◦Bi)

example, in our case, lifecycle c1 is not allowed in the XES standard model, since a com-
pletion is missing. For this reason, this lifecycle will be filtered out and not considered
for further analysis. The outputs of this step of our proposed approach are, respectively,
the filtered log and the list of all the activities lifecycles (described by sequences of
event types) that are contained in the log.

3.2 Boundary State Detection

The aim of this step is to abstract the activity lifecycles in the log by replacing them
with placeholders marking the start and the end of each lifecycle in the log. This trans-
formation is needed to discover Declare constraints with semantics for non-atomic ac-
tivities described in Table 2. The formulas are straightforward and directly follow by the
corresponding formulas in standard Declare. The idea is that, for verifying constraints
involving non-atomic activities, it is sufficient to take into account the boundary states
of lifecycles (in the table the initial state is indicated with “i” and the final one with “f ”),
abstracting away from the lifecycle details. For example, for the response template, it
is enough to verify that the final state of activity A (Af) is followed by the initial state
B (Bi). In general, we consider most of the constraints valid for non-overlapping life-
cycles. The only exceptions are the semantics of templates responded existence and not
responded existence that we consider valid also for overlapping lifecycles of parallel
activities.

In this step of the approach, we take as input the filtered log obtained by the previous
step and produce a new log in which internal states of each lifecycle (i.e., states that
are neither initial nor final) are filtered out. Trace t1 of our running example would be
transformed into trace 〈aassign, bstart, bcomplete, astart, acomplete, acomplete, bstart,
bcomplete〉. Event astart(3) is filtered out because it is not a boundary event in lifecycle
a1 = (aassign(1), astart(3), acomplete(6)). Events in the log are further transformed
by abstracting away from the specific event type that corresponds to the first or the last

Using Discriminative Rule Mining to Discover Declarative Process Models 289

event of each lifecycle: each starting state will be indicated with “i” and each final state
with “f ”. For instance, t1 would become 〈ai, bi, bf , ai, af , af , bi, bf〉.

3.3 Discovering Inter-Lifecycle Relations

In this step, the boundary state log derived from the previous step is mined using the
approach presented in [3] to discover Declare constraints with semantics for non-atomic
activities described in Table 2. As shown in the table, this semantics take into consider-
ation only the boundary events of the activity lifecycles. The outcome of this step of the
approach is a set of candidate Declare constraints connecting elements of different life-
cycles (inter-lifecycle relations). For each candidate, we extract the set of fulfillments
and the set of violations in the log. These sets will be input of the supervised learning
problem defined in the next step of our proposed technique needed to find intra-lifecycle
relations discriminating between lifecycles of constraint activations that eventually lead
to a fulfillment and lifecycles of activations that lead to a constraint violation.

3.4 Discovering Intra-Lifecycle Relations

In the previous step of our proposed approach, we extract fulfillments and violations
for a list of candidate constraints describing inter-lifecycle relations between activities
in the log. For example, in trace t1 of our running example, bcomplete(4) is a fulfillment
for constraint 	(bf → ♦ai) (in this case bf is eventually followed by ai), whereas
bcomplete(10) is a violation for the same constraint. Note that, at this point of our ap-
proach, we take again into consideration the entire lifecycles connected to the bound-
ary events in the log and we analyze their control flow characteristics to discriminate
between lifecycles of activations that are fulfillments and the ones that are violations
for each candidate constraint. These characteristics will be expressed, in turn, using
Declare. In this case, the Declare constraints express intra-lifecycle relations between
event types of the same activity.

This problem can be reformulated in terms of a supervised learning problem. For
each candidate constraint constr, defined over a pair (a, b), with a activation of constr,
the features of the lifecycle of a discriminating with respect to fullfillments/violations
of constr, are learned from a set L of sequences representing all the lifecycles of a in
the log. These sequences are classified in two sets Lful and Lviol according to whether
the lifecycle corresponds to a fulfillment or to a violation of constr.

For example, consider traces t1 and t2 in our running example and constraint	(af →
♦bi). Lifecycles a1 = 〈astart, acomplete〉 and a2 = 〈aassign, astart, acomplete〉 in trace
t1 correspond to fulfillments for the considered constraint since they are followed by
an occurrence of bi. Lifecycles a3 = {〈astart, asuspend, aresume, acomplete〉, a4 =
〈aassign, astart, asuspend, aresume, acomplete〉, and a5 = 〈aassign, areassign, astart,
acomplete〉 in trace t2 correspond to violations. Therefore, in this case, we have Lful =
{〈astart, acomplete〉,〈aassign, astart, acomplete〉} and Lviol = {〈astart, asuspend,
aresume, acomplete〉, 〈aassign, astart, asuspend, aresume, acomplete〉, 〈aassign, areassign,
astart, acomplete〉}.

From these sets, we could learn, for example, that it is likely that 	(af → ♦bi)
is verified when astart is immediately followed by acomplete but is not immediately

290 M.L. Bernardi et al.

preceded by areassign in the lifecycle of a. In particular, we exploit decision tree learn-
ing in order to identify the conditions (decision rules) on the lifecycle of an activation
given the training sets Lful and Lviol.

Each lifecycle of an activation a is encoded in terms of a set of Declare constraints
(over the states of the lifecycle). In particular, each lifecycle is encoded as a vector of
(boolean) values representing whether all these (intra-lifecycle) constraints are satisfied
or not on that lifecycle. The decision tree is trained using the intra-lifecycle conditions
as features and the classification of the lifecycle as part of Lful or Lviol. The analysis of
the tree allows us to retrieve the set of conditions on the features which possibly make
the constraint under consideration fulfilled or violated. Figure 4 shows a possible deci-
sion tree generated over the lifecycle of the running example described above. In order
to have the inter-lifecycle constraint 	(af → ♦bi) fulfilled, the intra-lifecycle con-
ditions 	(astart → ◦acomplete) (chain response between astart and acomplete) and
¬	(◦areassign → astart) (chain precedence between areassign and astart) should
hold. In summary, the result of the decision tree learning will be a set of Declare con-
straints over the states of the lifecycles of a which would bring to fulfillments or to
violations for 	(af → ♦bi).

	(areassign →◦astart)

	(◦areassign → astart) Violated

Violated Fullfilled

yes
no

yes
no

Fig. 4. A decision tree generated over the lifecycle of the running example

4 Experiments

In order to evaluate the proposed approach, we have implemented it as a plug-in of
the process mining tool ProM. Then, the implemented plug-in has been applied to (i) a
set of execution logs synthetically generated (to verify its capability to capture known
discriminating behaviors); (ii) a real-life log (to check the scalability and the applica-
bility of the approach to real-life settings). All the experiments have been conducted on
a machine with an Intel i7 processor (limiting the execution to just one core), 8 GB of
RAM and the Oracle Java virtual machine installed on a GNU/Linux Ubuntu operating
system and are discussed in this section.

4.1 Synthetic Log Analysis

The purpose of the synthetic log analysis is to verify whether the discriminative rules
discovered reflect the actual discriminating behaviors (with respect to constraint fulfill-
ments/violations) of the execution logs under examination. To this aim, four synthetic
logs have been generated, taking inspiration from the insurance claim process presented
in [4]. The process describes the handling of health insurance claims in a travel agency,

Using Discriminative Rule Mining to Discover Declarative Process Models 291

starting from the registration up to the claim archiving. The approach has been applied
to each synthetic log and discriminative rules have been extracted. In the following
subsections, we illustrate how we have generated the logs and the results obtained.

Synthetic Log 1. Synthetic Log 1 contains 1000 traces in which Register occurs with
one of the following possible lifecycles:

– 〈Registerstart , Registercomplete 〉
– 〈Registerabort 〉
– 〈Registerassign , Registerstart , Registercomplete 〉
– 〈Registerstart , Registerabort 〉
– 〈Registerstart , Registersuspend , Registerabort 〉

Whenever Register is aborted (see second, fourth and fifth lifecycle in the list),
the claimer is notified via phone; on the other hand, if the registration completes nor-
mally (see first and third lifecycle in the list), the e-mail notification is required. There-
fore, in the log, whenever Register is aborted, the response constraint 	(Register →
♦Notify by phone) is verified, otherwise this constraint does not hold.

Synthetic Log 2. Synthetic Log 2 contains 1000 traces in which the non-atomic activity
Send questionnaire occurs with one of the following possible lifecycles:

– 〈 Send questionnairestart , Send questionnairecomplete〉
– 〈 Send questionnairewithdraw 〉
– 〈 Send questionnaireassign , Send questionnairewithdraw 〉
– 〈 Send questionnairestart , Send questionnairesuspend , Send questionnaireabort 〉
– 〈 Send questionnairecomplete 〉

When Send questionnaire is withdrawn or aborted (see second, third and fourth life-
cycle in the list), Skip response for skipping the response is executed. On the other
hand, whenever Send questionnaire completes normally (see first and fifth lifecycle in
the list), Skip response is not executed. Therefore, in the log, the response constraint
	(Send questionnaire→ ♦(Skip response)) is verified only if Send questionnaire
does not complete normally (i.e., with withdraw or abort).

Synthetic Log 3. Synthetic Log 3 contains 1000 traces in which the non-atomic activity
High medical history check occurs with one of the following possible lifecycles:

– 〈High medical history checkwithdraw 〉
– 〈High medical history checkstart , High medical history checkcomplete〉
– 〈High medical history checkstart , High medical history checkabort〉
– 〈High medical history checkassign , High medical history checkautoskip〉
– 〈High medical history checkassign , High medical history checkstart ,

High medical history checkcomplete 〉

When High medical history check does not complete normally (see first, third and
fourth in the list), Contact hospital is executed eventually. On the other hand, in cases in
which the verification procedure completes normally (see second and fifth lifecycle in
the list), there is no need to contact the hospital. Therefore, in the log, the response con-
straint 	(High medical history check → ♦Contact hospital) holds if and only if
High medical history check fails.

292 M.L. Bernardi et al.

Table 3. Synthetic Log Results
LOG INTER-LIFECYCLE RELATION INTRA-LIFECYCLE RELATION

1 response(Register,Notify by phone) exactly (1,Registerabort)

2
response (Send questionnaire, Skip response)

exclusive choice
(Send questionnaireabort ,
Send questionnairewithdraw)

3 response (High medical history check, Contact hospital)
¬ alternate response
(High medical history checkstart ,
High medical history checkcomplete)

4 response(Register, Notify by email)
alternate succession
(Registerresume ,Registercomplete)

Synthetic Log 4. Synthetic Log 4 contains 1000 traces in which the non-atomic activity
Register occurs with one of the following possible lifecycles:

– 〈Registerstart , Registersuspend , Registerresume , Registercomplete 〉
– 〈Registerstart , Registersuspend , Registerabort 〉
– 〈Registerstart , Registersuspend , Registerresume , Registersuspend , Registerresume ,

Registercomplete〉
– 〈Registerstart , Registersuspend , Registerresume , Registersuspend , Registerwithdraw 〉

When Register is suspended and ends with an abort or a withdraw (see second and
fourth lifecycle in the list), or Register is suspended (and resumed) more than once
(see third lifecycle in the list), the claimer has to be notified via phone; if there is only
one suspension correctly resumed, i.e., a single cycle suspend/resume and, eventually, a
normal completion (see first lifecycle in the list), the claimer can be notified via e-mail.
Therefore, in the log, whenever Register is suspended and not resumed, or suspended
more than once, the response constraint 	(Register → ♦Notify by phone) is veri-
fied, otherwise this constraint does not hold.

Discussion of the Results. Table 3 shows some of the constraints discovered. For
Synthetic Log 1 and the response constraint between Register and Notify by phone the
discriminative rule discovered is exactly(1, Registerabort). Whenever Registerabort oc-
curs (exactly once, since it cannot occur more than once based on the XES transactional
model), the claimer has to be notified via phone. This result confirms the rationale be-
hind the construction of Synthetic Log 1: whenever a registration is aborted, the claimer
has to be notified via phone, otherwise Notify by phone is not executed.

Concerning Synthetic Log 2 and the response constraint between Send questionnaire
and Skip response, the exclusive choice between Send questionnaireabort and
Send questionnairewithdraw is discovered as discriminative rule. If and only if the life-
cycle of Send questionnaire contains either Send questionnaireabort or
Send questionnairewithdraw, the questionnaire response is skipped. This perfectly fits
with the behavior characterizing the log: whenever Send questionnaire cannot complete
normally, the questionnaire response is skipped.

The response constraint between High medical history check and Contact hospital
in Synthetic Log 3 is valid when the intra-lifecycle relation ¬ alternate response be-
tween High medical history checkstart and High medical history checkcomplete

holds. If and only if High medical history checkstart is not followed by

Using Discriminative Rule Mining to Discover Declarative Process Models 293

Table 4. BPI 2013 Results
INTER-LIFECYCLE RELATION INTRA-LIFECYCLE RELATION CLASS PROB. SUPPORT

(1) precedence (Accepted,Completed)
not responded existence

0.65 3711
(CompletedCancelled,CompletedClosed)

(2) precedence (Queued,Accepted)
init(AcceptedAssigned) ∨ 0.75 92
init (AcceptedWait implementation)

(3) precedence (Queued, Completed)
co-existence

0.8 4551
(CompletedIn call,CompletedCancelled)

(4) response (Completed, Queued)
¬ responded existence

0.98 7570
(CompletedResolved ,CompletedClosed)

(5) responded existence (Completed, Accepted)
not responded existence

0.66 3771
(CompletedCancelled,CompletedClosed)

(6) responded existence (Completed, Queued)
co-existence

0.8 4595
(CompletedIn call,CompletedCancelled)

High medical history checkcomplete, the hospital has to be contacted. The result is in
line with what described in Synthetic Log 3: whenever, in the lifecycle of
High medical history check, there is a High medical history checkstart that is not fol-
lowed by High medical history checkcomplete, the hospital has to be contacted.

Finally, for Synthetic Log 4 and the response constraint between Register and
Notify by email, the discriminative rule discovered for the verification of this con-
straint is the alternate succession between Registerresume and Registercomplete. If
and only if Registerresume is followed by Registercomplete and not more than one
Registerresume is executed before Registercomplete (at most one suspend/resume cy-
cle occurs), then the response constraint between Register and Notify by email is ver-
ified. This result is in line with the behavior injected into Synthetic Log 4: whenever
Register is suspended and and correctly resumed at most once, the customer is notified
via e-mail.

4.2 BPI Challenge 2013

The proposed approach has also been applied to a real-life log. The log, which was pro-
vided for the BPI Challenge 2013 [17], has been taken from an incident and problem
management system called VINST. The VINST system includes the activities required
to diagnose the root causes of incidents and to secure the resolution of those problems
ensuring high levels of service quality and availability of services operated by Volvo
IT. The log contains 7,554 cases and 65,533 events and is characterized by four differ-
ent activities (Accepted, Completed, Queued and Unmatched) and 14 event types like
In Call, Assigned, Cancelled, Resolved and Closed. The transactional model for activity
lifecycles followed in the log is reported in Figure 1 on the right hand side.

Table 4 shows a list of discovered constraints and, for each of them, the (intra-
lifecycle) rules to discriminate between fulfillments and violations. The last two columns
of the table also report class probability and support associated to each discovered dis-
criminative rule.

The first row of the table (1) suggests that a possible discriminating behavior for
which Completed is preceded by Accepted is that either CompletedCancelled or Com-
pletedClosed occurs in the lifecycle of Completed. The same rule is also discriminating

294 M.L. Bernardi et al.

for fulfillments/violations of the responded existence between Completed and Accepted
(i.e., the constraint assessing that whenever Completed occurs, then, Accepted has to
occur in the future or has already occurred before). In the second row of Table 4 (2), we
can see that whenever the lifecycle of Accepted starts with AcceptedAssigned or with
AcceptedWait Implementation, Accepted is preceded by Queued. These results are the
ones with the lowest class probability and support. For example, the class probability of
the rule in (1) (0.65) indicates that only in 65% of the cases in which the constraint is ac-
tually verified, the corresponding discriminative rule also holds. Similarly, the support
of (2) indicates that the cases in which the constraint and the corresponding discovered
discriminative rule are both verified are 92.

On the other hand, the remaining rules present both a reasonable class probabil-
ity (> 0.8) and a good support (> 4500). In particular, the co-occurrence of Com-
pletedIn Call and CompletedCancelled discriminates both on the precedence (3) and
on the responded existence (6) between Queued and Completed, i.e., whenever both
In Call and Cancelled occur in the lifecycle of Completed, it means that Completed is
preceded by Queued or, more in general (with a slightly higher support), that Queued
occurs at least once before or after Completed.

Finally, the discovered discriminating behavior with the highest class probability (al-
most 1) and support (more than 7000) is the one related to the response constraint be-
tween Completed and Queued (6): Queued eventually follows Completed if and only
if only one among CompletedResolved and CompletedClosed occurs in the lifecycle of
Completed.

5 Conclusion and Future Work

This paper presents a novel approach for the discovery of declarative process models
from logs containing non-atomic activities. Discriminative rule mining is used to char-
acterize the lifecycle of each constraint activation and discriminate between lifecycles
that ensure that the activation is a fulfillment and lifecycles that correspond to violations
of the constraint under examination.

In order to assess the applicability of the proposed approach, we applied it to four
synthetic logs and a real-life log recorded by an incident and problem management
system in use at Volvo IT Belgium. Our experiments show the effectiveness of the
approach and its applicability in real-life scenarios. As future work, we will conduct a
wider experimentation of the proposed framework on several case studies in real-life
scenarios and different transactional models for activity lifecycles. In addition, we will
implement the identifications of lifecycles through event correlations and compare this
approach with the FIFO-based approach presented in this paper.

Acknowledgment. This research has been carried out with the valuable comments and
support of Andrea Burattin from University of Padua.

References

1. Van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative Workflows: Balancing Between
Flexibility and Support. Computer Science - R&D, 99–113 (2009)

Using Discriminative Rule Mining to Discover Declarative Process Models 295

2. Bernardi, M.L., Cimitile, M., Lucca, G.A.D., Maggi, F.M.: Using declarative workflow lan-
guages to develop process-centric web applications. In: 16th IEEE International Enterprise
Distributed Object Computing Conference Workshops, EDOC Workshops, Beijing, China,
September 10-14, pp. 56–65 (2012)

3. Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing declare maps based on event
correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 97–
112. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-40176-3_9

4. Bose, R.J.C.: Process Mining in the Large: Preprocessing, Discovery, and Diagnostics. Ph.D.
thesis, Eindhoven University of Technology (2012)

5. Burattin, A., Maggi, F., van der Aalst, W., Sperduti, A.: Techniques for a Posteriori Analysis
of Declarative Processes. In: EDOC, pp. 41–50 (2012)

6. Burattin, A., Sperduti, A.: Heuristics Miner for Time Intervals. In: European Symposium on
Artificial Neural Networks (ESANN), Bruges, Belgium (2010)

7. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algo-
rithms. In: Proceedings of the 23rd International Conference on Machine Learning, ICML
2006, pp. 161–168. ACM, New York (2006),
http://doi.acm.org/10.1145/1143844.1143865

8. Cheng, H., Yan, X., Han, J., Yu, P.S.: Direct discriminative pattern mining for effective clas-
sification. In: Proceedings of the 2008 IEEE 24th International Conference on Data Engi-
neering, ICDE 2008, pp. 169–178. IEEE Computer Society, Washington, DC (2008),
http://dx.doi.org/10.1109/ICDE.2008.4497425

9. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive
logic programming techniques for declarative process mining. Transactions on Petri Nets and
Other Models of Concurrency II, Special Issue on Concurrency in Process-Aware Informa-
tion Systems 2, 278–295 (2009)

10. Günther, C.W.: XES Standard Definition (2009), www.xes-standard.org, http://
www.xes-standard.org/ media/xes/xes standard proposal.pdf

11. Kupferman, O., Vardi, M.: Vacuity Detection in Temporal Model Checking. Int. Journal on
Software Tools for Technology Transfer, 224–233 (2003)

12. Lo, D., Cheng, H.: Lucia: Mining closed discriminative dyadic sequential patterns. In: Proc.
of the International Conference on Extending Database Technology (EDBT), pp. 21–32.
Springer (2011)

13. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S.
(eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)

14. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declar-
ative Specification and Verification of Service Choreographies. ACM Transactions on the
Web 4(1) (2010)

15. Pesic, M., Schonenberg, M.H., van der Aalst, W.M.P.: Declare: Full support for loosely-
structured processes. In: EDOC, pp. 287–300 (2007)

16. Quinlan, J.R.: C4.5: Programs for Machine Learning. M. Kaufmann Publishers Inc. (1993)
17. Steeman, W.: Bpi challenge 2013, incidents (2013), http://dx.doi.org/10.4121/

uuid:500573e6-accc-4b0c-9576-aa5468b10cee
18. Sun, C., Du, J., Chen, N., Khoo, S.C., Yang, Y.: Mining explicit rules for software process

evaluation. In: Proceedings of the 2013 International Conference on Software and System
Process, ICSSP 2013, pp. 118–125. ACM, New York (2013),
http://doi.acm.org/10.1145/2486046.2486067

19. Verbeek, E.H.M.W., Buijs, J., van Dongen, B., van der Aalst, W.M.P.: ProM 6: The Process
Mining Toolkit. In: BPM 2010 Demo, pp. 34–39 (2010)

http://dx.doi.org/10.1007/978-3-642-40176-3_9
http://doi.acm.org/10.1145/1143844.1143865
http://dx.doi.org/10.1109/ICDE.2008.4497425
www.xes-standard.org
http://www.xes-standard.org/_media/xes/xes_standard_proposal.pdf
http://www.xes-standard.org/_media/xes/xes_standard_proposal.pdf
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
http://doi.acm.org/10.1145/2486046.2486067

Modeling Obligations with Event-Calculus�

Mustafa Hashmi1,2, Guido Governatori1,2, and Moe Thandar Wynn2,1

1 NICTA, Queensland Research Laboratory, 2 George St. Brisbane Australia
{mustafa.hashmi,guido.governatori}@nicta.com.au

2 Queensland University of Technology (QUT) Brisbane, Australia
m.wynn@qut.edu.au

Abstract. Time plays an important role in norms. In this paper we start from our
previously proposed classification of obligations, and point out some shortcom-
ings of Event Calculus (EC) to represent obligations. We propose an extension of
EC that avoids such shortcomings and we show how to use it to model the various
types of obligations.

Keywords: Legal norms, Event Calculus, Temporal aspect, Compliance.

1 Introduction

Time plays an essential role in norms, legal reasoning and in areas governed by norms.
For example many of the normative requirements in the area of business process com-
pliance concern the temporal aspects of norms. Suppose you have a contract specifying
that one party has thirty days to pay for an invoice, and that goods cannot be deliv-
ered without payment. Thus you have an obligation to pay after receiving an invoice,
which, in turn, requires that the payment must be made before the time of delivery. Re-
ceiving the invoice triggers (enforces) the obligation to make a payment to complete
the transaction. Accordingly we have conditions that must be fulfilled in a determined
time interval or within a given deadline, and other conditions that must happen before
or after specific events. Moreover, some obligations may include conditions that must
persist over an interval of time e.g., continuous monitoring of the patient’s blood pres-
sure and ECG during a surgical operation. Regardless of the type, validity and nature
of the legal effect(s) that an obligation represents, the temporal aspect of an obligation
revolves around the following generic aspects [17]: (i) the time when an obligation is
in force, (ii) the time when an obligation is fulfilled, and (iii) the time of application.
Accordingly, when a business process is subject to norms, it is particularly important
that the process complies with the obligations imposed by the norms for the whole du-
ration of its validity and meets the deadlines, and follows constraints for maintaining
and delaying actions.

Capturing the real meaning of norms is paramount for modelling and reasoning about
compliance checking of business processes, and, in general, for legal reasoning. It is
also important that the chosen language supports the highest degree of abstraction to
model the real meaning of the norms and the obligations they define: this means it

� NICTA is funded by the Australian Government through the Department of Communication
and the Australian Research Council through the ICT Center of Excellence Program.

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 296–310, 2014.
© Springer International Publishing Switzerland 2014

Modeling Obligations with Event-Calculus 297

should be able to model states of affairs, actions as well as (temporal) relationships be-
tween activities. Many studies have been conducted for modelling obligations, and var-
ious classifications of obligations have been identified in these studies, in particular in
the context of business process compliance where time is the key concept of such classi-
fications, see among others [13,10,8]. For example, [19] classifies obligations from the
legal viewpoint while [13] classifies obligations along the temporal structure and the
temporal distribution of the obligations. [8] characterises the types of obligations based
on deadlines, and [3] classifies obligations types as existence, choice, relation, and neg-
ative constraints. These classifications do not encompass various types of obligations
based on the time, effects of an obligation on other obligations and obligations arising
from the violations. In [7,12] we provided a classification of obligations along temporal
dimensions. The key aspects of the classification are: what constitutes the violation in
terms of the temporal validity of an obligation, and whether violated obligations can be
compensated for or not. In the classification, along the temporal dimension, for each
type of obligations we specified when an obligation comes into force and until when it
remains in force or it is violated at a particular time point. Unlike other classifications,
our proposed classification encompasses the generic temporal model about the validity
and persistence effects of obligations after violations. Given our new classification, the
natural question is how to model each element of the classification of obligations for
business process compliance checking.

The families of Deontic Logics (DL), Temporal Logics (TL), and EventCalculus
(EC) are widely used formalisms for modeling norms. Each of these formalisms has
a reasonable degree of expressiveness to model different types of obligations yet they
have limitations. Our starting point to model norms, in particular the new classes of
obligations, is the classical EC [14] because it provides a logical framework for repre-
senting and modeling the effects of events and the current state of affairs in terms of
fluents. Also, it has the ability to model the time when fluents come to existence and
cease to hold dynamically [5]. One may argue that modeling the deontic notions with
EC is rather well developed as several variants of EC already exist (see, [16,18] for
further listing of EC variants), and widely used for reasoning and representing the legal
knowledge (see, Section 6 for a detailed discussion on some such approaches), but we
believe that the EC has some major issues for reasoning about legal norms. One of such
issues is related to the basic predicate of EC Initiates(E,X ,T). Its meaning is that event
E at time T initiates the fluent X , and the fluent holds from the next instant of time (see
Section 3 and Axiom A1 below for the details). This effectively means that the norm
enters into force at the next instant. However, for legal norms, this might not be the case.
There are cases where the norm enters into force at the same instant as the triggering
event happens e.g., the obligation to remove shoes when one enters in a mosque or the
norms is in force after a delay e.g., a complaint cannot be acknowledged until all details
pertaining is issue have been received.1

In the context of business process compliance checking, the aim of this paper is
to explore whether or not the different obligation classes defined in our classification
model can be faithfully represented using the discrete event driven formalism the EC.

1 In addition it is possible to have that a norm enters in force retroactively. Thus the fluent holds
before the event that initiates it. We blatantly ignore this aspect in this paper.

298 M. Hashmi, G. Governatori, and M.T. Wynn

The paper is structured as follows: in Section 2 we revisit the classification of nor-
mative requirements proposed elsewhere ([7,12]) and provide formal definitions of the
concepts. Section 3 provides a terse background of the EC and introduces new predi-
cates for modeling the legal norms followed by the modeling of various obligation types
using the new predicates in Section 4. The proof sketch of the provided axioms is given
in Section 5 followed by a short discussion on related studies in the problem domain in
Section 6. Section 7 concludes the paper with some final remarks.

2 Normative Requirements Revisited

The purpose of this section is to provide a summary of the notions and the classes
of obligations defined in our classificatory model. For more detailed discussions and
concrete examples of the various types of obligations taken from real legal acts, see
[7,12]. The definitions below also provide precise semantics of these notions and they
will be used to evaluate our proposed extension to EC.

Norms regulate the behaviour of their subjects and produce normative effects when
applied. From a business process compliance perspective the normative effects of inter-
est are the deontic effects. The three basic deontic effects –from which other deontic
effects can be derived (see, [19])– are: obligation, prohibition, and permission.

An Obligation2 is a situation, act or a course of actions one is legally bound to and if
it is not achieved or performed results in a violation; whereas for prohibition, one should
avoid a certain course of actions to avoid a violation. Obligations and prohibitions are
constraints that limit the behaviour of a business process; and both types can be violated.
Notice that a prohibition is a negative obligation (i.e., obligation not), thus, when we
speak of obligations we include prohibitions as well. Permissions, on the other hand,
are constraints that cannot be violated thus they do not play a direct role in compliance.
Instead, they can be used to determine that there are no obligations or prohibitions to
the contrary.

Compliance means to identify whether a business process violated a set of obliga-
tions. Thus the first step is to determine whether and when an obligation is in force.
Essentially, a norm can specify when an obligation is in force at a particular time point
only (non-persistent obligations), or more often, a norm indicates when an obligation
enters into force. An obligation remains in force until it is terminated or removed (per-
sistent obligations).

Non-Persistent obligations are also called punctual obligations: the obligation con-
tents are immediately achieved otherwise a violation is triggered. In contrast, a persis-
tent obligation which is to be obeyed for all time instances within the interval it is in
force is a maintenance obligation. If achieving the contents of an obligation at least
once is enough, then it is an achievement obligation. For an achievement obligation,
if the obligation could be fulfilled even before it is actually in force, we speak of a
preemptive obligation; otherwise it is a non-preemptive obligation.

An important aspect of obligations that differentiates them from other types of con-
straints is that an obligation can be violated. However, the violation of an obligation

2 The definition is taken from the glossary created by the OASIS LegalRuleML workgroup
http://www.oasis-open.org/apps/org/workgroup/legalruleml

 http://www.oasis-open.org/apps/org/workgroup/legalruleml

Modeling Obligations with Event-Calculus 299

does not necessarily mean the termination of interaction of a business process because
some violations can be compensated for while keeping the underlying process still com-
pliant [9,11]. However, not all violations are compensable, and an uncompensated vi-
olation would mean the process is non-complaint. If an obligation persists after being
violated, it is a perdurant obligation if not then we have a non-perdurant obligation.

Next we formally define the meanings of the obligations, all we need is the concept
of timeline, i.e., a (possibly infinite3) totally ordered discrete set of time points. Also,
we assume that the timeline has a minimum. In what follows, we assume the existence
of a logical language L (can be a set of atomic propositions) on which the formulas are
written to model obligations and the representation of the environment.

Definition 1 (State). Given a timeline, we define a function State : N �→ 2L.

The meaning of the function State is to identify what formulas are evaluated as true at
the n-th time instant of a timeline.

Definition 2 (Obligation in Force). Given a timeline, we define a function Force : N �→
2L.

The meaning of the function Force is to identify the obligations in force at the n-th
instant of time in a given timeline.

Definition 3 (Punctual Obligation). Given a timeline, an obligation o is a punctual
obligation if and only if:

∃n ∈N : o /∈ Force(n− 1),o /∈ Force(n+ 1),o∈ Force(n)

A punctual obligation is violated at n if and only if o /∈ State(n).

The conditions of a punctual obligation must be fulfilled immediately otherwise we
have a violation i.e., o is violated at time n if o is not true at n (or at the n-th instant of
time in the timeline).

Definition 4 (Persistent Obligation). Given a timeline, an obligation o is a persistent
obligation if and only if:

∃n,m ∈N : n < m,o /∈ Force(n− 1),o /∈ Force(m+ 1),
∀k : n≤ k ≤ m,o ∈ Force(k)

The obligation o is in force between n and m.

A persistent obligation is an obligation in force in an interval time, and can be further
classified as: (a) achievement, and (b) maintenance obligation. The violation conditions
for a persistent obligation can be derived from the violation conditions of these sub-
classes.

Definition 5 (Achievement Obligation). Given a timeline, an obligation o is an
achievement obligation if and only if ∃n,m ∈ N, n < m such that o is a persistent obli-
gation in force between n and m.

An achievement obligation o in force between n and m is violated if and only if:

3 Notice an infinite timeline is isomorphic to the set of natural numbers (and we can restrict to a
finite set of natural numbers in case of a finite timeline).

300 M. Hashmi, G. Governatori, and M.T. Wynn

– o is preemptive and ∀k : k ≤ m,o /∈ State(k);
– o is non-preemptive and ∀k : n≤ k ≤ m,o /∈ State(k).

An achievement obligation is in force in an interval in the timeline, and can be further
classified as: preemptive and non-preemptive. A preemptive achievement obligation o
is an obligation that can be fulfilled even before the obligation is actually in force. In
contrast, a non-preemptive achievement obligation can be discharged only after it enters
in force. The violation of an achievement obligation depends on whether we have a
preemptive or non-preemptive obligation. Notice that the violation of an achievement
obligation can only be asserted after the deadline.

Definition 6 (Maintenance Obligation). Given a timeline, an obligation o is a main-
tenance obligation if and only if ∃n,m ∈N,n < m such that o is a persistent obligation
in force between n and m.

A maintenance obligation o in force between n and m is violated if and only if

∃k : n≤ k ≤m,o /∈ State(k).

Unlike achievement obligations, a maintenance obligation must be complied with for
all the instances between the interval otherwise we have a violation. Also, no deadline is
required for a maintenance obligation insofar we do not need it to detect a violation. The
deadline signal that after that instant the obligation is no longer in force. Furthermore
it is possible to define maintenance obligation without a deadline, meaning the that the
obligation remains in force forever after its activation; for this case, one has to drop the
reference to instant m in the above definition.

The next three definitions capture the notion of compensation of a violation. A com-
pensation is a set of obligations that are in force after a violation of an obligation, and
fulfilling them makes amend for the violation.

Definition 7 (Compensation). A compensation is a function Comp : L �→ 2L.

The intuition behind the function Comp is that it associates to each formula a set of
formulas, meaning that if a formula corresponds to an obligation, and the obligation is
violated, then the violation is compensated (or excused) by the formulas associated to
the obligation. This is formalised by the next definition.

Definition 8 (Compensable). Given a timeline, an obligation o is compensable if and
only if Comp(o) �= /0 and ∀o′ ∈ Comp(o),∃n ∈ N : o′ ∈ Force(n).

Notice that we have two requirements for an obligation to be compensable: the first
is that there are ways to make amend i.e., that Comp �= /0, and the second is that the
actions that compensate are recognised as such (they are obligations in force) or they
are not forbidden. Finally, in the most general form, there are no temporal requirements
on when the compensation happens.4

Since the compensations are obligations themselves they can be further violated, ac-
cordingly they can be compensated for the violations as well, thus a recursive definition
of a compensated obligation is required.

4 In vast majority of cases, it is expected that the compensatory obligations are in force after the
violation. However, the definition above does not exclude retroactive compensations.

Modeling Obligations with Event-Calculus 301

Definition 9 (Compensated Obligation). Given a timeline, an obligation o is compen-
sated if and only if it is violated and for every o′ ∈Comp(o) either: 1. o′ is not violated;
2. o′ is compensated.

For a stricter notion, i.e., a compensated compensation does not amend the violation the
compensation was meant to compensate, we can simply remove the recursive call, thus
removing 2 from the above condition.

The last type of obligation is that of perdurant obligation. The idea is that when
an obligation is violated, the violated obligation is not terminated yet remains in force.
Given the conditions of primary obligation an obligation may perdure no matter how
many times the obligation has been violated. The violation of a perdurant obligation re-
sults in penalty for which one has to consider the original obligation as well as penalties
associated with the violation.

Definition 10 (Perdurant). Given a timeline, an obligation o is a perdurant obligation
with a deadline d if and only if o is in force between n and m, and n < d < m.

A perdurant obligation o with a deadline d in force between n and m is violated if
and only if

∀ j, j ≤ d,o /∈ State(j)

3 Event Calculus

The Event Calculus [14] is a well known event based formalism for reasoning about
‘events and change’ and the ‘effects of change’ resulting from the occurrence of events
over time. EC provides a set of rich axioms for capturing the behaviour of dynamic
occurrences of both domain dependent and domain independent events. Hence the for-
malism is particularly suitable to model the behaviour of a variety of dynamic systems.
It is based on the idea of the state that time-varying properties of the world, called
fluents hold at particular time-points initiated by some event at an earlier time, and not
terminated by some other event between that time period. Accordingly, a fluent does not
hold at some time if it was previously terminated and not resumed during that time [15].
In contrast, domain dependent axioms illustrate the situations under which an event ini-
tiates and terminates. In this paper, we make use of the predicates and axioms depicted
in Table 1 from [16]. The language provides predicates expressing the various states of
an event occurrence, e.g., Happens (occurrence of an event at a time point), Initiates (an
event triggers the property of the system), Terminates (an event terminates the property
of the system), and HoldsAt (that the property of the system holds at a point of time). In
addition, some auxiliary predicates to express premature termination (Clipped) and re-
sumption (Declipped) of a fluent at a particular point of time between the time interval
are given. The InitiallyTrue and InitiallyFalse allow for the modeling of system’s state
where only partial information about the domain is available. In contrast, the domain in-
dependent axioms describe the states when a fluent holds or does not hold at particular
point of time.

For example, consider the following axioms [16]:

HoldsAt(P,T2)← Happens(P,T1)∧ Initiates(X ,P,T1)∧
¬Clipped(T1,P,T2)∧ (T1 < T2)

(A1)

302 M. Hashmi, G. Governatori, and M.T. Wynn

Table 1. Predicates and Axioms of the EC and meanings
Basic Predicates
InitiallyTrue(P) The fluent P is true from the beginning of time.
InitiallyFalse(P) The fluent P is false from the beginning of time.
Happens(X ,T) Event X occurs at time T .
Initiates(X ,P,T) Event X initiates the variable (fluent) P at time T .
HoldsAt(P,T) The variable (fluent) P holds at time T .
Terminates(X ,P,T) Event X terminates the variable (fluent) P at time T
Auxiliary Predicates
Clipped(T1,P,T2) The variable (fluent) P is interrupted sometime

between T1 and T2.
Declipped(T1,P,T2) The variable (fluent) P is resumed/initiated

sometime between T1 and T2.
Domain Independent Axioms
HoldsAt(P,T2)← HoldsAt(P,T1)∧ (T1 < T2)∧¬Clipped(T1,P,T2)
HoldsAt(P,T2)← Happens(P,T1)∧ Initiates(X ,P,T1)∧

¬Clipped(T1,P,T2)∧ (T1 < T2)
¬HoldsAt(P,T2)← Happens(X ,T1)∧Terminates(X ,P,T1)∧

(T1 < T2)∧¬Declipped(T1,P,T2)
¬HoldsAt(P,T2)← ¬HoldsAt(P,T1)∧ (T1 < T2)∧¬Declipped(T1,P,T2)
Clipped(T1,P,T2)≡ ∃X ,T : Happens(X ,T)∧ (T1 ≤ T < T2)∧

Terminates(X ,P,T)
Declipped(T1,P,T2)≡ ∃X ,T : Happens(X ,T)∧ (T1 ≤ T < T2)∧

Initiates(X ,P,T)

The (Axiom A1) states that the fluent P continues to hold until an event that terminates
it occurs, provided that there was an event that happened at some previous time which
was a trigger for the fluent.

¬HoldsAt(P,T2)←Happens(X ,T1)∧Terminates(X ,P,T1)∧
(T1 < T2)∧¬Declipped(T1,P,T2)

(A2)

Whereas (Axiom A2) states that fluent P that has been terminated by the event X con-
tinues not to hold until it is resumed by some other event occurrence.

The above axiomatisation can be used to model the non-deterministic behaviour of
a system thus EC is suitable for modeling obligations that can be effected by unpre-
dictable situations. However, as was noted earlier in Section 1, an obligation might not
enter into force immediately after the occurrence of an event rather after some time
delay. A second problem is that the base predicate Initiates does not gurantee that the
fluent in its arguments is actually initiated by the event. Suppose that the domain depen-
dent axioms specify that both the events E1 and E2 individually initiate the fluent P, and
event E1 happens at time 10 and event E2 at time 20, P does not holds initially and no
other event initiates or terminates fluent P between 0 and 30. This means that P starts to
hold from 11 and continues to hold up to 30, and event E2 is irrelevant to determine the
status of P. Also, there are cases where an obligation enters in force at the same time of
initiating an event (and not the next time instant).

Modeling Obligations with Event-Calculus 303

4 Modeling Obligations with Event Calculus

In this section we propose a set of axioms to extend the EC to model the various obliga-
tion classes of the classification model described in Section 2.

As we have seen at the end of the previous section, the standard Initiates and HoldsAt
predicates of EC present some shortcomings for modelling obligations. To obviate these
problems, we introduce a new ‘deontically holds at’ predicate DHoldsAt(P,T) meaning
that the ‘deontic fluent’, i.e., a particular type of obligation, P holds at time T . The
main difference with the standard EC HoldsAt predicate is on the conditions of initia-
tion. Each obligation has its own specific triggering events, and the happening of one of
those triggering events initiates the obligation. In addition, there could be a delay (which
could be null) between the time the triggering event happens and the time obligation en-
ters in to force. A triggering event for an obligation is represented by trigger(Ox,T X ,N),
where Ox,T X is a deontic fluent, and N the delay. Ox,T 5 represents the type of the obliga-
tion (see Section 2) and the time when the obligation enters in force T , X is a variable
attached to the obligation representing the contents of the obligation, which can be
either an event or a fluent, and N is the delay. As we said above the purpose of the
triggering event is to initiate the obligation. For a trigger to be effective, one has to
specify the conditions defining the trigger for an obligation. Also, the delay must be
specified because the delay determines the difference in time from when the triggering
event occurs and when the obligation enters into force.

For the termination of deontic fluents we introduce the new predicate
DTerminates(E,P,N,Tter) meaning that an event E deontically terminates the fluent P,
with some delay N, at time Tter. The delay N define the time distance from when the
terminating event happens and the actual termination of the deontic fluent. After a de-
ontic termination an obligation has no legal effects on the execution of the process from
the time it is terminated. Also for specifying the deadlines for obligations, in the same
say, we define a special deadline-triggering event deadline(Ox,T X ,Td), where Ox,T and
X are the arguments for deadline event and serve as triggering events and Td represents
the time of the deadline event occurrence. The purpose of the deadline event is to signal
the time (deadline) until when the obligation conditions must be fulfilled, a violation of
the obligation conditions is triggered otherwise.

We provide generic axioms that we need to model the obligations. These axioms pro-
vide the conditions for no legal effects (not deontically Holds) after the termination of an
obligation (Axiom A3) and the conditions when no fluent deontically holds (Axiom A4).

¬DHoldsAt(X ,T + 1)←∃E : DTerminates(E,X ,N,T) (A3)

¬DHoldsAt(X ,Tk)←¬DHoldsAt(X ,T)∧¬Happens(trigger(X ,N),Tj)∧
(T ≤ Tk)∧ (T ≤ Tj +N ≤ Tk)

(A4)

In what follows we will have several cases where the trigger for an obligation does not
only trigger the initiation for the obligation but also the termination. This means that
we have to write expression with the following form

DTerminates(trigger(P,N),P,N,T) (1)

5 Notice Ox,T has only one time stamp because one can be certain that an obligation holds after
deontically initiated but one cannot be certain when it is going to be terminated.

304 M. Hashmi, G. Governatori, and M.T. Wynn

where we have to repeat twice the parameters P and N. To ease readability we will use
the convention of dropping the P and N from the arguments DTerminates, using thus

DTerminates(trigger(P,N),T) (2)

The reader should keep in mind that (2) is a shorthand for (1).

4.1 Punctual Obligation

The axioms describing when a punctual obligation holds are the following:

DHoldsAt(Op,Ts X ,Ts)←
∃Tt ,N : Happens(trigger(Op,Ts X ,N),Tt)∧
(Ts = Tt +N)∧N ≥ 0

(A5)

DTerminates(trigger(Op,TsX ,N),Ts)←
∃Tt ,N : Happens(trigger(Op,Ts X ,N),Tt)∧
(Ts = Tt +N)∧N ≥ 0

(A6)

Let us examine in details the above axioms. An obligation is represented as a fluent;
specifically the (punctual) obligation of X is represented by the fluent Op,Ts X where
Op,Ts is an obligation modality (a specific type of the obligation) and time when the
obligation enters into force (Ts), and X is a variable referring the contents of obligation.
In addition, we create a special event trigger(OxY,N) whose meaning is to initiate the
obligation. In this way, all one has to do is to specify when an obligation enters in force
by defining the conditions for the trigger. Axiom (A6) specifies that the same event that
triggers the obligation, terminates the obligation, and obligation terminates in the same
time instant when it is initiated. Thus in combination with (Axiom (A3)) we have a
punctual obligation is in force for only one time instant. The axiom specifying when a
punctual obligation is violated is:

Happens(violation(Op,TsX),Tv)←
DHoldsAt(Op,TsX ,Ts)∧
¬Happens(X ,Ts)∧¬HoldsAt(X ,Ts)∧ (Tv = Ts)

(A7)

The violation of a punctual obligation happens when we do not have the content of the
obligation at the right time. This can happen in two cases: (a) the content is a fluent and
it does not hold at the time; or (b) it is an event and it does not happens at the time.6

Notice that we introduce a violation event (violation(Op,Tv X)).

Example 1. Australian Telecommunications Consumers Protection Code 2012 (TCPC
2012). Article 8.2.1.
A Supplier must take the following actions to enable this outcome:
(a) Demonstrate fairness, courtesy, objectivity and efficiency: Suppliers must

demonstrate, fairness and courtesy, objectivity, and efficiency by:
(i) Acknowledging a Complaint:

6 To capture that nothing is both and event and a fluent we add the axiom ⊥←Happens(X ,T)∧
HoldsAt(X ,T ′).

Modeling Obligations with Event-Calculus 305

A. immediately where the Complaint is made in person or by telephone;
B. within 2 Working Days of receipt where the Complaint is made by email;

. . . .

Consider the clause (A) of the Article 8.2.1 where the obligation must be fulfilled im-
mediately. This can be modeled as:

Happens(trigger(Op,T Acknowledge,0),T)←
Happens(Complaint,T)∧
(HoldsAt(inPerson,T)∨HoldsAt(byPhone,T))

(3)

Suppose there is an event Complaint at time T and the fluent byPhone holds at the same
time. Then from the domain Axiom (3), we derive trigger(Op,T Acknowledge,0),T),
and then from Axioms: (A5), (A6) and (A3) we obtain DHoldsAt(Op,T Acknowledge,T)
and¬DHoldsAt(Op,T Acknowledge,T +1). Meaning that the obligation to acknowledge
the complaint on reception of it. Moreover, suppose that we model the acknowledge-
ment as an event, and we have Happens(Acknowledge,T), then the conditions for hav-
ing a violation do not hold. Suppose now that Happens(Acknowledge,T) is not true,
i.e., the complaint is not acknolwedged, thus ¬Happens(Acknowledge,T) is true. In ad-
dition, given that Acknowledge is an event, if we have ¬HoldsAt(Acknowledge,T), then,
we can use Axiom (A7) to conclude that the obligation to acknowledge a complaint by
phone on the spot has been violated.

4.2 Persistent Obligation

The following axiom describes a persistent obligation with a natural deadline when the
fluent holds in interval:7

DHoldsAt(Oper,Ts X ,Tk)←
∃Tt ,N : Happens(trigger(Oper,TsX ,N),Tt)∧
¬DClipped(Ts,Oper,Ts X ,Tk)∧
DTerminates(trigger(Oper,TsX ,N),Te)∧
(Ts = Tt +N)∧ (Te > Ts)∧ (Ts ≤ Tk ≤ Te)∧N ≥ 0

(A8)

By ‘natural deadline’ we mean that if no other (relevant) event happens the obligation
is in force from the Ts and Te, and that Te is determined by the same event that triggers
the (persistent) obligation.

Achievement Obligation. An achievement obligation is a special case of a persistent
obligation where there might not be a natural deadline for the obligation. Hence there
are two cases for achievement obligations:
(i) when the obligation has no termination point, i.e., initiation of achievement obliga-

tion.

DHoldsAt(Oa,Ts X ,Ts)←
∃Tt ,N : Happens(trigger(Oa,Ts X ,N),Tt)∧ (Ts = Tt +N)∧N ≥ 0

(A9)

7 The defintion of DClipped is the same as that for Clipped where Terminates is replaced by
DTerminates.

306 M. Hashmi, G. Governatori, and M.T. Wynn

(ii) The obligation Holds at a particular time point deontically initiated and not clipped
between the interval, i.e., start time and the point until it holds.

DHoldsAt(Oa,Ts X ,Tk)←
DHoldsAt(Oa,Ts X ,Ts)∧¬DClipped(Ts,Oa,Ts X ,Tk)∧ (Ts ≤ Tk)

(A10)

There are two cases of the termination of an achievement obligation:

1. An arbitrary event terminates the obligation when the obligation conditions are
fulfilled before the deadline of obligation.

DTerminates(,Oa,Ts X ,N,Tk)←
Happens(,Tk)∧DHoldsAt(Oa,Ts X ,Tk)∧
(Happens(X ,Tk)∨HoldsAt(X ,Tk))∧
FulfillTerminable(Oa,Ts X)∧ (Ts ≤ Tk)

(A11)

The symbol ‘ ’ represents an arbitrary event, which can be anything, e.g., a new
obligation, an activity or even a deadline etc., that terminates the obligation.

2. Where the deadline itself terminates the obligation.

DTerminates(deadline(Oa,Ts X ,Td),Td)←
Happens(deadline(Oa,Ts X),Td)∧ (Ts ≤ Td)

(A12)

The axiom for the termination of a preemptive obligation is:

DTerminates(,Oa,Ts X ,N,Te)←
Happens(,Te)∧DHoldsAt(Oa,Ts X ,Ts)∧
∃T ′ : (Happens(X ,T ′)∨HoldsAt(X ,T ′))∧
FulfillTerminable(Oa,Ts X)∧
(Te = Ts + 1)∧ (T ′ < Ts)

(A13)

The predicate ‘FulfillTerminable’ is a boolean switch that allows for checking whether
or not the obligation can be terminated upon fulfillment. This leave us to determine the
conditions under which we have a violation of an achievement obligation. To this end
we need a special event deadline(Oa,Ts X) signaling the deadline after which a violation
occurs if the achievement is not fulfilled by that time/event.

Happens(violation(Oa,Ts X),Tv)←
DHoldsAt(Oa,Ts X ,Te)∧
Happens(deadline(Oa,Ts X),Te)∧
(¬Happens(X ,Te)∧¬HoldsAt(X ,Te))∧
FulfillTerminable(Oa,Ts X)∧ (Tv = Te)

(A14)

Maintenance Obligation. Maintenance is another case of persistent obligation where it
is different from achievement in the sense that the obligation conditions must be fulfilled
for every instance of the interval the obligation is in force. The (Axiom A8) can rep-
resent the maintenance obligation. Contrary to achievement obligation, a maintenance
obligation is violated if the obligation contents are not fulfilled for all the instances.

Modeling Obligations with Event-Calculus 307

Happens(violation(Om,Ts X),Tk)←
DHoldsAt(Om,Ts X ,Tk)∧
¬Happens(X ,Tk)∧¬HoldsAt(X ,Tk)∧ (Ts ≤ Tk)

(A15)

The violation of a maintenance obligation may terminate the obligation if the obligation
is ‘ViolationTerminable’ which is again a boolean switch for checking whether a main-
tenance obligation can be terminated upon violation. The conditions for termination
after the violation are:

DTerminates(Om,Ts X ,Tv)←
Happens(violation(Om,Ts X),Tv)∧
ViolationTerminable(Om,Ts X)

(A16)

For a non-perdurant maintenance obligation the violation of the obligation itself termi-
nates the obligation.

DTerminates(violation(Om,Tv X),Tv)←
DHoldsAt(Om,Tv X , tv)∧ViolationTerminable(Om,Ts X)∧
Happens(violation(Om,Ts X),Tv)∧ (Ts ≤ Tv)

(A17)

4.3 Compensation Obligation

A compensation is an obligation itself. The event triggering a compensation is the vio-
lation of a norm compensation compensates. Thus, we have domain specific axioms for
the two case of compensation:

– Compensation of the violation by a single obligation:

Happens(compensation(Ox,Ts P),Tsc)←
∃Oy,Tsc Q : (Compensates(Oy,Tsc Q,Ox,Ts P),Tsc)∧
Happens(violation(Ox,Ts P),Tv)∧
DHoldsAt(Oy,Tsc Q,Tsc)∧
(Happens(Q,Tsc)∨HoldsAt(Q,Tsc))∧ (Ts ≤ Tv ≤ Tsc)

(A18)

– Recursive compensation when a compensation obligation itself is violated:

Happens(compensation(Ox,Ts P),Tsc)←
Compensates(Oy,Tsc Q,Ox,Ts P)∧
Happens(violation(Oy,Tsc Q),Tv)∧
Happens(compensation(Oy,Tsc Q),Tz)∧
RecursivelyCompensable(Ox,Ts P)∧ (Ts ≤ Tsc ≤ Tz)∧ (Tv ≤ Tz)

(A19)

For the two axioms above we have to introduce the special event compensation, indi-
cating that a (violated) deontic fluent has been compensated for, and the binary pred-
icate Compensates where the two arguments are two deontic fluents. The meaning of
Compensates is that fulfilling the first deontic fluent make amend to the violation of
the second deontic fluents and implements the Comp function introduced in Section 2,
Definition 7. Again the predicate RecursivelyCompensable is a boolean switch meant
to capture the intuition given by condition 2 of Definition 9.

308 M. Hashmi, G. Governatori, and M.T. Wynn

5 Proof Sketches of Correctness

The aim of this section is to show how to prove the correctness of our formalisation
of norms in EC and the classificatory conditions of Section 2. For space reasons we
provide only the proof sketch of the axioms for punctual obligation. The proofs for the
remaining axioms are essentially similar.

First we introduce some base conditions relating to the basic predicates of EC and the
functions Force and State providing thus the basic bridge between the axiomatisation in
Section 4 and the conditions in Section 2.

C1. HoldsAt(X ,T) if and only if X ∈ State(T),
C2. Happens(X ,T) if and only if X ∈ State(T),
C3. DHoldsAt(X ,T) if and only if X ∈ Force(T).

Lemma 1 (Punctual Obligation). If DHoldsAt(Op,Ts X ,Ts) is true, then X is a punctual
obligation in Force at time Ts, X ∈ Force(Ts)

Proof (Sketch). By Definition 3 the semantics of a punctual obligation is given by
(A) o ∈ Force(n), (B) o /∈ Force(n− 1), (C) o /∈ Force(n+ 1). Suppose, we have the
right hand side of Axiom A5, from this we obtain DHoldsAt(Op,Ts X ,Ts), then from
condition C3 we have DHoldsAt(X ,T) if and only if X ∈ Force(T) which is equivalent
to X ∈ Force(Ts), and then ∃n such that X ∈ Force(n). This satisfies (A).

For (B), we assume that ¬DHoldsAt(Op,Ts X ,0), where 0 is the initial time instant.
By Axiom A4 this guarantees that the fluent Op,Ts X is not in Force function before the
time, i.e., Ts. This means that X /∈ Force(t), for 0 ≤ t < Ts; hence X /∈ Force(Ts − 1).
This satisfies condition (B).

Given that the right hand side of Axiom A6 is the same as that of Axiom
A5, we have DTerminates(trigger(Op,Ts X ,N),Ts). From Axiom A3 we conclude
¬DHoldsAt(Op,TsX ,Ts+1). From condition C3 above we get X /∈ Force(Ts+1), which
satisfies conditions (C).

Lemma 2 (Violation of Punctual Obligation). If Happens(violation(Op,Ts X),Ts) is
true, then X is a punctual obligation in force at time Ts, and X /∈ State(Ts).

Proof (Sketch). To have a violation of a punctual obligation o, conditions (A), (B), (C)
of Lemma 1 have to be satisfied and the additional condition (D) o /∈ State(n). That
Happens(violation(Op,Ts X),Ts) is true means that also the right hand side of Axiom A7
is true. Thus we have DHoldsAt(Op,Ts X ,Ts), from which we conclude the X ∈Force(Ts)
by Lemma 1 above. In addition we have ¬HoldsAt(X ,Ts) and ¬Happens(X ,Ts) from
which by conditions C1 and C2 above we conclude X /∈ State(Ts). This satisfies condi-
tion (D).

6 Related Work

In [6], EC is used to express temporal rules about the obligations and permissions in a
business process interaction. Rich axioms that translate the temporal properties of de-
ontic assignments and capture the effects of activities of obligations and permissions

Modeling Obligations with Event-Calculus 309

on the agents have been proposed. The study is limited in scope because it only cov-
ers obligations and permissions while other obligations types have been left out. Also,
the temporal validity of an obligation and its effects on the violation, as presented in
our work, has not been considered. Such parameters and ability to faithfully model
obligations, and capture the effects of violations is imperative from a business process
compliance checking perspective. [4] provides formal specifications of commitments
and precommitments, instutionalised power and context using EC. The formal repre-
sentation of norms is limited to obligations and permissions only as in [6]. No explicit
distinction between the different types of obligations and effects of the violation on
obligations has been made, as made in this work, although the notion of sanctions has
been formally presented in the study.

[2] translates both the policies and system behaviour specifications into formal spec-
ifications using EC. The proposed formal specifications are expressive enough to ef-
ficiently model the systems using various types of policies representing obligations.
These formal specifications can be used, together with abductive reasoning, for detect-
ing and representing the conflicts between the policy specifications (particularly those
related to the authorisation and permissions). These specifications are useful in the sense
that a priori knowledge about the event and/or fluent’s state can be used to simplify the
representation of preemptive obligations but we do not consider the a priori knowledge
of events/fluents instead we use the notion of preemptiveness to distinguish different
cases of the violation of an achievement obligation and model it in EC. [1] proposes
a norms representation approach using EC enabling the agents to use norms in their
practical reasoning. The work considers only two classes of norms: obligations and
prohibitions for which authors introduced three fluents i.e., f Pun and oPun referring
obligation norm violation and prohibition norm violation respectively, and oRew for
obligation fulfillment. The scope of this work is limited because it only considers obli-
gations and ignores the obligations modalities as we do. Also, the Anderson’s reduction
view of norm which suggests that every violation of a norm is followed by a sanction
[20] has been used. We argue that initially not in every case sanctions are/can be di-
rectly imposed as under a sub-ideal situation processes can still be compliant [11]. The
notions of compensation and obligations perduring after the violation as defined in our
work are the norms types that strengthen this argument.

7 Final Remarks

In this paper we formally modeled the various types of obligations using classical EC.
We used these obligations types from our previously proposed classification model, and
introduced a triggering event (trigger) with some time delay replacing the Initiates, base
predicate of the EC. The aim of the triggering event is to capture the deontic effects of
obligations from when they enter into force not from when the event is triggered, which
in our view is not possible with the existing variants of EC. The new predicates extend
the expressive power of the EC and make it possible to model all types of legal norms.
We are currently working on an implementation to validate the computational efficiency
of the proposed extension to EC. Accordingly, we plan to continue this work and check
the expressive power of various formalisms e.g., temporal logic, first-order-logic and

310 M. Hashmi, G. Governatori, and M.T. Wynn

defeasible and deontic logic. Also, we will look at the state of affairs in the formal
modeling of the legal knowledge and what is lacking in this direction.

References

1. Alrawagfeh, W.: Norm Representation and Reasoning: A Formalization in Event Calculus.
In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA
2013. LNCS (LNAI), vol. 8291, pp. 5–20. Springer, Heidelberg (2013)

2. Bandara, A., Lupu, E., Russo, A.: Using Event Calculus to Formalise Policy Specification
and Analysis. In: POLICY 2003, pp. 26–39 (2003)

3. DECLARE. Declarative Process Models, http://www.win.tue.nl/declare/
4. Fornara, N., Colombetti, M.: Specifying artificial institutions in the event calculus. In: Hand-

book of Research on Multi-Agent Systems: Sematnics and Dynamics of Organisational Mod-
els, pp. 335–366. IGI Global (2009)

5. Goedertier, S., Vanthienen, J.: Business Rules for Compliant Business Process Models. In:
BIS 2006. LNI, vol. P-85, pp. 558–579. Gesellschaft für Informatik (2006)

6. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes with Obligations
and Permissions. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp.
5–14. Springer, Heidelberg (2006)

7. Governatori, G.: Business Process Compliance: An Abstract Normative Framework. It-
Information Technoloby 55(6), 231–238 (2013)

8. Governatori, G., Hulstijn, J., Riveret, R., Rotolo, A.: Characterising Deadlines in Tempo-
ral Modal Defeasible Logic. In: Orgun, M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI),
vol. 4830, pp. 486–496. Springer, Heidelberg (2007)

9. Governatori, G., Milosevic, Z.: Dealing with Contract Violations: Formalism and Domain
Specific Language. In: EDOC 2005, pp. 46–57. IEEE Computer Society (2005)

10. Governatori, G., Rotolo, A., Sartor, G.: Temporalised Normative Positions in Defeasible
Logic. In: ICAIL 2005, pp. 25–34. ACM (2005)

11. Governatori, G., Sadiq, S.: The Journey to Business Process Compliance. In: Handbook of
Research on Business Process Management, pp. 426–454. IGI Global (2009)

12. Hashmi, M., Governatori, G., Wynn, M.T.: Normative Requirements for Business Process
Compliance. In: Davis, J.G., Demirkan, H., Motahari-Nezhad, H.R. (eds.) ASSRI 2013.
LNBIP, vol. 177, pp. 100–116. Springer, Heidelberg (2013)

13. Hilty, M., Basin, D., Pretschner, A.: On Obligations. In: de Capitani di Vimercati, S.,
Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 98–117. Springer,
Heidelberg (2005)

14. Kowalski, R., Sergot, M.: A Logic-Based Calculus of Events. In: Schmidt, J., Thanos, C.
(eds.) Foundations of Knowledge Base Management. Topics in Information Systems, pp. 23–
55. Springer (1989)

15. Miller, R., Shanahan, M.: The Event Calculus in Classical Logic - Alternative Axiomatisa-
tions. Electron. Trans. Artif. Intell. 3(A), 77–105 (1999)

16. Miller, R., Shanahan, M.: Some Alternative Formulations of the Event-Calculus. In: Kakas,
A.C., Sadri, F. (eds.) Computat. Logic (Kowalski Festschrift). LNCS (LNAI), vol. 2408, pp.
452–490. Springer, Heidelberg (2002)

17. Palmirani, M., Governatori, G., Contissa, G.: Modelling Temporal Legal Rules. In: ICAIL,
pp. 131–135 (2011)

18. Sadri, F., Kowalski, R.: Variants of the Event Calculus. In: Sterling, L. (ed.) Proceedings of
the Twelth International Conference on Logic Programming. MIT, Cambridge (1995)

19. Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer (2005)
20. Soeteman, A.: Pluralism and Law. In: Proceedings of the 20th IVR World Congress of the

Int’l Association of Philosophy of Law and Social Philosophy, vol. 4, p. 104 (2001)

http://www.win.tue.nl/declare/

A Process for Knowledge Transformation

and Knowledge Representation of Patent Law

Shashishekar Ramakrishna and Adrian Paschke

Department of Computer Science Freie Universität Berlin,
Königin-Luise-Str. 24-26, 14195 Berlin, Germany

shashi792@gmail.com, paschke@inf.fu-berlin.de

Abstract. Automated support to model and reason based on such mod-
eled legal norms using expert systems, for its use scenarios such as court-
fillings or argumentation has increasingly become a subject of interest in
last few decades. The core problem in all such automation is removing
the vagueness embedded within legal texts/sections and this vagueness is
due to the pragmatics involved. As of today, we believe, it is impossible
for a system to handle any such problems dealing with legal pragmat-
ics. This work proposes a process which acts a bridge between a legal
practitioner can and a knowledge modeler wherein, a legal practitioner
provides the legal information pertaining to a section in a simpler form
as required by the modeler. We also propose several knowledge represen-
tation formats to represent the information at each layer of the proposed
process. Additionally during the course of the paper, we propose a map-
ping scheme from legal norms in natural language format to Controlled
Natural Language (CNL) format and finally to a platform independent
rule representation format.

Keywords: Elementary Pragmatics, LegalDocML, SBVR, Structured
English, Legal Norms, LegalRuleML.

1 Introduction

In general, laws are designed to be vague. Their vagueness is to accommodate
different possible scenarios under which a law can be applied. Pragmatics is an
important aspect in the legal domain. It explains the context in which such laws
are being applied. Pragmatics within law/legal texts is both boon and bane.
The use of pragmatics in applying the laws to different scenarios is good, when
viewed from a legal practitioner perspective and the same pragmatics is hard
to deal with for a legal knowledge engineer who needs to model it in a precise
Knowledge Representation (KR) for (semi/-)automated legal reasoning systems.

The negative aspects of pragmatics is due to the difficulty involved in sep-
arating their concerns. In this paper, we propose a process which deals with
the disaggregation of a law and their legal sections into elementary norms with
Elementary Pragmatics (EP). The process provides the required degree of sep-
aration (i.e. separation into elementary concern) sufficient enough to minimize

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 311–328, 2014.
c© Springer International Publishing Switzerland 2014

312 S. Ramakrishna and A. Paschke

the vagueness and thereby making the legal language simple. The different steps
of this process require adequate knowledge representation formats which we con-
tribute in this paper.

As a direct contribution this process minimizes the vagueness, which results
in a legal language which is simpler than before. Thereby, providing enough
information in an elementary form which can be easier represented using rule
representation formats, enabling further automated processing down the line
(e.g., automated legal argumentation).

The paper is structured as follows: Section 2, discusses the related work. We
introduce a running example in Section 4. Sections 5, 6 and 7, deal with annota-
tion, disaggregation and representation of the legal section/example introduced
in Section 4 in a computational independent language. We then map such semi-
formally represented legal norms to a platform independent legal norm repre-
sentation format in Section 8. Section 11, provides the conclusion and future
directions to this work.

2 Related Work

In [1], we introduced the concept of Elementary Pragmatics (EP) in the patent
law domain. For the purpose of understanding, we re-iterate only the definitional
part of an EP. EPs are considered as disclosures about an ’object’ (e.g. patents-
norms/precedents/guidelines) of law, with its pragmatics referring to the context
in which such an ’object’ is understood and applied by a ’reasonable man’1 [3].

Several methods have been proposed for annotating law/legal documents.
Amongst them are EnAct [4], EUR-Lex FORMEX [5], MetaLex [6], Akoma
Ntoso [7] etc. We make use of the OASIS LegalDocML standard (which is based
on Akomo Ntoso) due to its expressiveness in terms of metadata annotations and
its direct compatibility with our further layers of legal knowledge representations
using OASIS LegalRuleML. LegalDocML is an standardization under OASIS.
It supports the long-term preservation of legal documents (i.e. evolution of laws
over time) with their intended meanings, by creating common data and metadata
models.

The OMG’s Model Driven Architecture (MDA) [8] provides a basis for rep-
resenting information on different layers of (knowledge) representation models,
namely Computation Independent Models (CIM), Platform-Independent Mod-
els (PIM) and Platform-Specific Model (PSM). Semantic Business Vocabulary
and Business Rules, ’SBVR’ [9], is an ISO terminological dictionary (vocabulary)
based representation standard for defining business concepts and business rules.
SBVR suggests the use of Structured English (SE), a computational-independent
English (natural) language having the syntax of a structured declarative pro-
gramming language for representing business vocabularies and business rules.
The adaption of SBVR to the legal domain was proposed by Johnsen and Berre
in [10]. In [11] we showed how OMG’s MDA layering could be applied in the
domain of Intellectual Property (IP) law (with focus in patent law), with a

1 A ‘reasonable man’ is also a Person Having Ordinary Skill In The Art, ‘PHOSITA’ [2].

A Process for Knowledge Transformation and Knowledge Representation 313

layered knowledge representation using SBVR-SE on its CIM layer. As a proof-
of-concept implementation we presented our KR4IPLaw tool, which enables le-
gal domain experts to represent their knowledge in Structured English. In [12],
we further extended KPI4Law with a semi-automated vocabulary recommender
functionality which gives automated suggestions for legal concepts computed by
a semantic legal text analysis.

LegalRuleML [13], is a standardization under OASIS of a XML-based rule
language representation format for legal norm representation on the PIM layer.
It integrates into the overarching RuleML language family2[14] and supports
Deliberation RuleML and Reaction RuleML 1.03[15,16]. It supports multiple
semantic annotations, wherein each legal annotation can represent a different
pragmatic context involved with it such as a particular jurisdiction context,
temporal context etc. LegalRuleML enables temporal life cycle management of
rules. As a part of provenance context, LegalRuleML provides the necessary
information for identifying (N:M) relationships between the formalized legal rules
to its original sources (textual provisions) and between the original authors and
the engineers of the legal KR.

3 Generalized Process

Figure 1 shows the abstract generalized process which we propose for the dis-
aggregation of patent norms and their pragmatics and for the legal knowledge
annotation, representation and transformation leading to a formal representa-
tion as required for automated reasoning and argumentation. In this section we
give an overview on the layers, tools and technologies. The process is general,
such that, the input to the process may be any legal text, e.g., a legal section
from any National Patent System (NPS), and the output from the process is a
formal KR reasoning step, producing conclusions (+ justification proofs), which
can be input to existing formal legal argumentation systems.

For our purpose, a legal section from any NPS, e.g., § 112 of US patent law or
§ 69 of EPC etc., is an input to the process model. Such legal sections are then
annotated (manually or with semi-automated annotation support) in step 1 using
a legal document markup standards. In addition to the annotation, additional
information pertaining to the considered legal section in the form of judgments,
opinions, amicus briefs, etc., are annotated. Such additional information provide
the necessary additional pragmatic/context information needed to understand
the considered legal section. They do not change the legal section itself. Legal
sections are changed only through regulations or acts. The core and additional
annotations form the metadata of the legal KR. Identification of all associated
metadata through an annotation step helps in the structuring and life-cycle
management of legal information.

The next step in the process is to deal with the disaggregation of a law/le-
gal sections. For the purpose of this disaggregation, legal sections are converted

2 http://www.ruleml.org
3 http://reaction.ruleml.org

http://www.ruleml.org
http://reaction.ruleml.org

314 S. Ramakrishna and A. Paschke

Fig. 1. Generalized process for obtaining elementary norms with EP’s

form their substantive form (Substantive Patent Law (SPL)) into a procedural
form (Procedural Patent Law (PPL)) using legal decision models, which are pro-
cedural decision structures based on the elementary concerns derived from the
statutory. These decision models can be represented, e.g., as decision trees or
flow-chart-based process models. This provides the required degree of separation
(i.e., separation of elementary concerns from complex statutory legal norms) suf-
ficient enough to minimize the vagueness and thereby making the legal language
clearer and easier (to enforce).

The next step is to transform such elementary legal norms into a semi-
formal knowledge representation format. For this step, we propose a semantic
vocabulary-based Controlled Natural Language (CNL), approach for the semi-
formal representation on the ’CIM’ layer, which acts as a ”bridge” between the
legal domain experts and the legal knowledge engineers. Continuing the process,
the CNL based patent norms are then further transformed and formalized in a
rule representation format using the additional metadata from the annotation
step. On this PIM layer, we propose using established XML-based knowledge
representation standards for the legal data, metadata and legal rules, in order to
provide the necessary semi-structuring for machine processing, modularization
(e.g., modular publication on the Web), and standardized platform-independent
interchange of legal knowledge for re-use in other contexts. Parallel to this trans-
formation steps, a Knowledge Base (KB) with the semantic legal vocabulary and

A Process for Knowledge Transformation and Knowledge Representation 315

elementary pragmatic knowledge is built and maintained based on the elemen-
tary pragmatics obtained during each step of annotation and transformation.
Finally for the purpose of reasoning, the formalized elementary patent norms
(XML-based) are transformed into a PSM format to allow (semi-)automatic rea-
soning in the context of the elementary patent pragmatics using the legal knowl-
edge base. The conclusions and proof-justifications derived from the reasoning
step can be further used as an input to other existing formal legal reasoning
systems, e.g., legal argumentation systems.

In the following sections we will instantiate the proposed process of obtaining
and formally representing elementary norms in the context of elementary prag-
matics by means of a running example, which is Paragraph 1 of Section 112, of
the United States patent law, dealing with the patent enablement.

4 Example

35 U.S. Code § 112 - Specification

(a) In General –The specification shall contain a written description of the invention,

and of the manner and process of making and using it, in such full, clear, concise,

and exact terms as to enable any person skilled in the art to which it pertains, or

with which it is most nearly connected, to make and use the same, and shall set

forth the best mode contemplated by the inventor or joint inventor of carrying out

the invention.

5 Annotation

Legal Document Markup Language (LegalDocML) is an standardization under
OASIS for managing legal documents. We use LegalDocML, to annotate the legal
section described above. We split the annotation into two parts, the context
and the content. The context comprises meta-data dealing with the context
information of the legal section and the content deals with the actually legal
paragraph itself.

The XML listing 1.1 and 1.2, shows the annotation of Section 112 1st Para-
graph4.

<akomaNtoso xmlns:xsi="http:// www.w3.org /2001/XMLSchema -instance">

<act contains="singleVersion ">... </act >

<meta>

<!-- Metadata describing the source , author , country etc .. of the legal section -->

<identification source="#LII">

<FRBRWork>

<FRBRthis value="/us/codes;us/main"/>

<FRBRdate date="1946" name="creation"/>

<FRBRcountry value="us"/>

</FRBRWork >

<FRBRExpression >

<FRBRdate value="2014 -03 -26 " name="Generation "/>

<FRBRauthor href="#LII" as="editor"/>

</FRBRExpression >

4 Due to space restrictions, some XML data has been curtailed.

316 S. Ramakrishna and A. Paschke

<FRBRManifestation > </ FRBRManifestation >

</identification >

<!-- Metadata describing the lifecycle (generation , amendment etc ..) of the legal section -->

<lifecycle source="#FUB">

<eventRef source="#ref1" id="e1" type="generation " date="1946"/>

<eventRef source="#ref7" id="e7" type="ammendment " date="2011 -09 -16 "/>

</lifecycle >

<temporalData source="#FUB">

<temporalGroup is="#t8">

<temporalInterval refersto="#inforce" start="e8"/>

<temporalInterval refersto="#efficacy" start="e8"/>

</temporalGroup >

</temporalData >

<!-- Metadata describing the references used (Role , Organization etc ..) of the legal section -->

<references source="#FUB ">

<original href="/us/codes;us/patentlaw /#title35" showAs="�Title�35,�US�Code"id="ref1"/>

<TLCOrganization id="LII" href="/ontology/ organizations /LII /"showAs="Cornell�University "/>

<TLCPerson id="FUB " href="/ ontology/ person/editors/FUB"showAs="Free� University�of�Berlin"/>

</references >

<!-- Metadata describing the addtional information in the form of notes for the legal section -->

<notes source="#FUB">

<note id="#n1"><p> Leahy -Smith America Invents Act: First to file policy.</p></note>

</notes>

</meta>

Listing 1.1. Context annotation of first paragraph of § 112

<preface>

<block name="preface"><docTitle id="title">United States Code </docTitle ></block>

</preface>

<body>

<title id="tit35">

<num >Title 35</num >

<heading>PATENTS </heading >

<section id="tit35 -112" period="#t4">

<num > § 112 </num >

<heading >Specification </heading>

</section>

<clause id="112-a">

<num >(a)</num >

<noteRef href="#n1"/>

<heading >In General.</heading >

<list id="tit35 -sec112 -par1">

<content>

<p> -The specification shall contain a written description of the invention , ..., and shall

set forth the best mode contemplated by the inventor ... of carrying out the

invention. - </p>

</content >

</list>

</clause>

</title>

</body>

</akomaNtoso >

Listing 1.2. Content annotation of first paragraph of § 112

Wherein, <documenttype> defines the type of document under considera-
tion. The <preface>, <preamble>, <body> and <conclusion> defines
the content of the legal section under consideration. The context information
concerning the legal section/document under consideration is described through
the <meta>. The meta information is further subdivided into several classes
(Only those relevant to our example are considered here):

– <identification>: In our case it is the source of the document #LII
– <lifecycle>: Defines the lifecycle of the legal section under consideration.

In our example, the legal section was first written in 1946 and the latest
ammendment was done in the year 2011.

– <temporaldata>: Defines a temporal information. In our considered ex-
ample, the temporal block t8, defines the #inforce (i.e. 2011-09-16) and
#efficacy (i.e. 2012-09-16) of the legal section.

– <FRBRWork>, <FRBRExpression> and <FRBRManifestation>:
Defines the work/legal section, the specific form of that work and physical
embodiments of an expression of work respectively.

A Process for Knowledge Transformation and Knowledge Representation 317

– <notes>: Additional information relating to a legal document. In our exam-
ple, the latest amendment to this act is also known as ’First to File Policy’.

We also annotate the landmark decisions such as, In re Ruschig Fed Cir and
Pfizer Inc. v. Teva Pharmaceuticals Inc pertaining to this legal section. These
additionally annotations capture the pragmatic context in which such a law sec-
tion has to be applied. I.o.w, it defines new pragmatics, in terms of understanding
and commitment, encompassing the legal section.

6 Disaggregation

The disaggregation extracts elementary concerns from the compound concerns
of the statutory and transforms them from their vague SPL semantics into a
concrete PPL semantics, i.e., a legal norm representation (syntax) which has a
concrete meaning (semantics) in PPL is understood and evaluated (pragmatics)
within the context of case law. In the US patent law, the United States Patent
and Trademark Office, ’USPTO’, uses a standard patent evaluation procedure
provided in the Manual for Patent Examination Procedure, ’MPEP’. We trans-
form such procedures into legal decision models, wherein, each decision point is
a single procedure or a set of procedures to be carried out.

The landmark decisions (In re Ruschig Fed Cir and Pfizer Inc. v. Teva Phar-
maceuticals Inc) are also represented as procedural decision models and are
integrated into the decision model generated for the specific legal section. Thus
forming a generic decision model for a specific legal section. This allows captur-
ing the different interpretations of the same section in different case laws. The
context information for the legal section and its related judgments, which have
been annotated before, are added as meta information to the decision model.
Figure 25, depicts a generalized decision model for the considered legal section.

Further, we use the easy to understand decision models as basis for writing the
legal norms and their elementary concerns in terms of constitutive vocabulary def-
initions and prescriptive behavioural legal rules in SBVR’s Structured English.We
can classify the mapping relationships as 1:1- wherein each decision is mapped into
a single SBVR rule, 1:M- where, a single decision is mapped into many SBVR rules
or anM:M relationship. Legal domain experts and trained formal knowledge engi-
neers can work together in this formalization process using Structured English as
common computational independent knowledge representation language.

7 Semi-formal Representation

In [11] and [12], we showed in detail, the use of SBVR Structured English (SSE),
as a semi-formal representation format for representing legal (procedural) norms.
The core idea of SBVR adapted to the legal domain is: legal rules build on legal

5 The textual content inside the decision model is left out on purpose to handle the
space restrictions.

318 S. Ramakrishna and A. Paschke

Fig. 2. Decision model with the <meta> information about legal section as over-
head(adapted from [1])

facts, and legal facts build on legal concepts which are expressed by legal
terms. Terms express legal concepts; facts make assertions about these concepts;
rules constrain and support these facts. Using the resulting semi-formal legal
vocabulary and rules the decision models can be semantically enriched, giving
them an underlying formal semantics.

To illustrate the use of SSE as a semi-formal representation format, A decision
point ’D’ is chosen from the decision model (i.e. from Figure 2). Decision ’D’
comprises of a procedural rule as stated below:

Essential Subject Matter Missing From Claims

“A claim rejected under 35 U.S.C. 112, first paragraph, as based on a disclosure

which is not enabling, critical or essential to the practice of the invention, but not

included in the claim(s) is not enabled by the disclosure”

SBVR Structured English, SSE:

Legal Concepts: Noun concepts defined in green and individual noun concepts
are defined in dark-green starting with capital letters.

A Process for Knowledge Transformation and Knowledge Representation 319

claim

Definition
Define the invention and are what aspects are legally
enforceable

Dictionary basis patentlaw
Source based on USPTOGlossary
General Concept patent

building on the same lines, we obtain other legal concepts like:
examiner office action paragraph argument applicant patent application
invention essential subject matter requirement Paragraph 7 33 01 US

Legal Facts: Verb concepts are defined in blue.
office action includes Paragraph 7 33 01
claim is rejected under essential subject matter requirement
patent application is filed in US
patent application includes at least 1 claim
examiner rejects the claim

Legal (procedural) rules: for ¶7.33.01.
1. It is obligatory that examiner rejects the claim and

office action includes Paragraph 7 33 01,
if claim is rejected under essential subject matter requirement.

2. It is necessary that a patent application includes at least 1 claim,
if patent application is filed in US

8 Formal Representation

Legal norms in their elementary form as represented in semi-formal SSE are trans-
lated into a formal representation language. Although a direct translation into a
platform-specific language of a logic reasoner is possible, for the purpose of ma-
chine processing, reusability, interchange and structuredWeb publication, we pro-
pose to useOASIS LegalRuleMLas a standardizeXML-based expression language
on the PIM layer first. LegalRuleML, supports the modeling of both constitutive
(legal concept definitions) and prescriptive (behavioural) rules. Among other ex-
pressiveness, it supports the representation of legal meta-data, penalty, reparation
and specific deontic operators. Like LegalDocML, LegalRuleML also provides the
capability to manage multiple semantic annotations through annotation blocks
as internal or external metadata. By that it manages the temporal issues such as,
provisions, provenance references, application of rules and their histories in a un-
ambiguous manner. Furthermore, with its flexibility to separate the logical layer
and the context layer, it seamlessly integrates into the the overarching RuleML
language family6[14] and supports reuse of Deliberation RuleML and Reaction
RuleML 1.07[15,16], in particular for the inner rule’s norm representation.

6 http://www.ruleml.org
7 http://reaction.ruleml.org

http://www.ruleml.org
http://reaction.ruleml.org

320 S. Ramakrishna and A. Paschke

Continuing our example, the representation is split into two parts. Firstly,
defining the context information in terms of its LegalRuleML meta-data and
secondly, describing the rules content, i.e., the inner legal norms on the logical
layer in terms of reaction rules [15].

<!-- Defines the source of the legal text-->

<lrml:LegalSources >

<lrml:LegalSource key="ref1" sameAS="http://mpep.patentbargroup .com /html/0700 _706_03_c.htm"/>

</ lrml:LegalSources >

<lrml:References >

<lrml:Reference refersTo="ref2" refID="us/codes;us/patentlaw/main#title35/"

refIDSystemName ="AkomaNtoso3 .0"/>

</lrml:References >

<lrml:Authorities >

<lrml:Authority key="USPTO" sameAS="/ontology/ organizations /PatentOffice /USPTO"/>

<lrml:type iri="&lrmlv;PatentOffice "/>

</lrml:Authorities >

<lrml:Agents >

<lrml:Agent key=" examiner"

sameAS="/ontology/ organizations /PatentOffice /USPTO/Person#Examiner"/>

</lrml:Agents >

<lrml:TimeInstants >

<ruleml:Time Key="#t7"><ruleml:Data Type=" xs:Date">2011 -09 -16 </ ruleml:Data ></ruleml:Time >

<ruleml:Time key="#t8"><ruleml:Data Type=" xs:Date">2012 -09 -16 </ ruleml:Data ></ruleml:Time >

</ lrml:TimeInstants >

<!-- Temporal characterstics of the rule -->

<lrml:TemporalCharacterstic key=" tblock1">

<lrml:forRuleStatus iri="&lrmlv;# Efficacious "/>

<lrml:hasStatusDevelopment iri="&lrmlv;#End"/>

<lrml:atTimeInstant keyref="#t8"/>

</ lrml:TemporalCharacterstic >

<!-- Rule Qualification / Override Principle -->

<lrml:hasQualification ><lrml:Overrides over="#ps1" under="#ps2"/></ lrml:hasQualification >

<!-- Jurisdictions of the rule -->

<lrml:hasJurisdcition ><lrml:Jurisdictions key="# jurisdiction1 "/></lrml:hasJurisdcition >

<!-- Context Information -->

<lrml:hasContext >

<lrml:appliesSelection keyref="#r1"/>

<lrml:toStatement keyref="#ps1"/>

<lrml:appliesjurisdiction keyref="# jurisdiction1 " iri="&jurisdictions ;us"/>

</lrml:hasContext >

Wherein, <LegalSource> is used for describing the source of a legal
norm under consideration i.e. MPEP, as in our case. <Authority> and
<Jurisdiction>, defines the authority responsible for drafting a given le-
gal norm and the jurisdiction where such a legal norm is applicable re-
spectively. The authority responsible for making changes to MPEP is the
USPTO and the jurisdiction defined in our example is limited to US. The
<TemporalCharacterstic> and <TimeInstants> defines temporal aspects
and captures the changes to a considered norm respectively. <Qualification>
defined the importance/priority of a rule to another rule. In our example, Rule
2 overrides Rule 1.

Figure 3, shows the representation of the logical part of the norm in Legal-
RuleML and Reaction RuleML format. Wherein, the SBVR constraints are
translated into prescriptive constraint statements. Figure 3(a) and 3(b) exem-
plifies the representation of deontic obligations and alethic necessity. The SBVR
legal vocabulary is translated into an OWL2 ontology with the help of mapping
schemas provided in [17] [18]. The IRI’s obtained from the OWL2 ontologies
of the SBVR legal vocabulary are used to type the logical parts of the norm
represented using RuleML’s typing approach (@type attribute)[14]. While we
illustrated the transformation and syntactic representation of SBVR Structured
English in LegalRuleML and Reaction RuleML in this section, we will define a
semantic-preserving translation from SSE to RuleML in the next section.

A Process for Knowledge Transformation and Knowledge Representation 321

Fig. 3. Legal norms on PIM layer. (a) Representation of deontic legal using the exist-
ing LegalRuleML deontic operators. (b) Representation of alethic legal by extending
LegalRuleML to accommodate alethic operators.

9 Semantic Transformation and Reasoning

To map from SBVR Structured English into LegalRuleML (which includes Re-
action RuleML) we define a semantics preserving translation of both into a
First-Order Deontic-Alethic Logic (FODAL) [19]. FODAL is a multi-modal first
order extension combining quantified Standard Deontic Logic and the quantified
Alethic Modal Logic S4. It is used as the underlying formal semantics for both
of our patent law representation languages, i.e. SBVR and LegalRuleML. This
semantics also forms the basis for further transformations from restricted subsets
of FODAL into logics for practical reasoning, namely description logics (the DL
ALCQI) and logic programming (quantified extended horn logic). This enables

322 S. Ramakrishna and A. Paschke

us to map the legal vocabularies, represented in SBVR, into OWL2 ontologies,
and the SBVR respectively LegalRuleML rules into Prova rule bases, on which
efficient reasoning can be done.

In the following subsections, we first give a compact description of the FO-
DAL language, its semantics and combined axiomatic system, and then define a
translation function for the mapping between SBVR and LegalRuleML via the
FODAL semantics. The complete definition can be found in the corresponding
FODAL Semantic Profile8, which has been defined for Reaction RuleML.

<evaluation >

<Profile type="FirstOrderDeonticAlethicLogicProfile "/>

</evaluation >

Using Reaction RuleML’s Semantic Profile mechanism[16], the FODAL seman-
tics can be specified as intended semantics for the interpretation of Legal Reac-
tion RuleML representations and for further transformations.

9.1 Syntax

Definition 1. (Alphabet) The alphabet Σ consists of the following class of
symbols:

– A signature S = 〈P , F , arity, c〉, with
• P an infinite set of predicate symbols 〈P1, .., Pn〉.
• F a infinite set of function symbols 〈F1, .., Fm〉
• For each Pi respectively each Fj , arity(Pi) resp. arity(Fj) is a non-zero
natural number denoting the arity of Pi resp. Fi.

• c = 〈c1, .., co〉 is a finite or infinite sequence of constant symbols.

– A collection of variables V which will be denoted by identifiers starting with
a capital letter like U ,V ,X

– Logical connectives / operators: ¬ (negation), ∧ (conjunction), ∨ (disjunc-
tion), → (implication), ↔ (iff) and ≡ (equivalent).

– Modal connectives / operators: � (alethic necessity), % (alethic possibility),
O (deontic obligation), P (deontic permission), F (deontic forbidden).

– Quantifier: ∀ (forall), ∃ (exists).

– Parentheses symbols: ”(”, ”)”.

A formula φ is defined as in FOL with the extension of a set of modal formu-
las φMod (�φ, %φ, Oφ, Pφ, Fφ) with the additional modal operators (%, P, F)
definable in terms of the others:

– %φ (possibly φ) ≡ ¬�¬φ (not necessarily not φ”)
– Pφ (permitted φ) ≡ ¬O¬φ (not obligatory that not φ)
– Fφ (forbidden φ) ≡ O¬φ (obligatory that not φ)

8 FODAL Semantic Profile http://reaction.ruleml.org/

1.0/profiles/FirstOrderDeonticAlethicLogicProfile.pdf

http://reaction.ruleml.org/1.0/profiles/FirstOrderDeonticAlethicLogicProfile.pdf
http://reaction.ruleml.org/1.0/profiles/FirstOrderDeonticAlethicLogicProfile.pdf

A Process for Knowledge Transformation and Knowledge Representation 323

9.2 Semantics

The semantics is defined by a two layered Kripke semantics with augmented
bimodal frames consisting of two accessibility relations, RO and R� between
possible worlds.

Definition 2. (Augmented frame) A varying domain augmented bimodal
frame A = 〈W,RO, R�, d〉 consists of a non-empty set, W , whose members are
possible worlds, two binary accessibility relations, RO and R�, that hold (or not)
between the possible worlds of W , a domain function d mapping possible worlds
w to a non-empty set P such that if d(w,P), then P is true at w.

As in S4 the alethic accessibility relation is reflexive and transitive [20] and
the deontic accessibility relation is serial as in KD [21]. The FODAL semantics
additionally defines the bi-modal FODAL frame with the modal formula for the
interaction between alethic and deontic logic.

– �φ → Oφ (Everything which is necessary is also obligatory)

Definition 3. (Interpretation and model) An interpretation I in an aug-
mented frame A is an interpretation function which assigns to each possible
world w and each predicate symbol p some n-ary relation to the domain D(w) of
that world. A model M is an interpretation of an augmented FODAL frame A,
if A is true wrt to I.

The satisfiability relation between FODAL models and formulae is then de-
fined in the usual way: φ is a FODAL formula and σ is an assignment to the
interpretation I, then the relation I |= φ[σ] means that φ is true in I when
there is a substitute for each free variable V of φ with the value of σ(V). We
omit the definition of the inductive requirements of ”|=” here and refer to [19].
Accordingly, a formula φ is satisfied by an interpretation I (I |= φ) iff I |=σ φ
for all variable assignments σ.

9.3 Axiomatization

Following [22] the formalization is given as an axiomatic system in the typical
way for a normal modal logic. The FODAL axiomatization is obtained by com-
bining the axiom systems of S4 and KD and extending it with the additional
axioms defining the relations between alethic and deontic modalities.

Definition 4. (Axioms)

– All S4 and KD tautologies and axioms
– All instances of the Kripke schema: �(A → B)→ (�A → �B) and O(A →

B)→ (OA → OB)
– (Vacuous ∀) ∀xφ ≡ φ with x not being free in φ
– (∀ Distributivity) ∀x(φ → ψ)→ (∀xφ → ∀xψ)
– (∀ Permutation) ∀x∀yφ→ ∀y∀xφ

324 S. Ramakrishna and A. Paschke

– (∀ Elimination) ∀y(∀xφ(x) → φ(y))
– (Necessary O) �φ → Oφ

and additionally inference rules

– (Detachment) φ→ψ
ψ

– (Necessiation) φ
�φ and φ

(O)φ

– (∀ Generalization) φ
∀xφ

For proof of soundness and completeness see [19]. It also gives a consistency
proof based on satisfiability reduction in the case of only atomic mono-modal
sentences.

9.4 Translation from SBVR to LegalRuleML

For the translation from SBVR into FODAL, the following translation τSBV R(·)
from elements of SBV R to closed formulas in first-order deontic-alethic logic is
used:

– for each noun concept N from SBV R, τSBVR(N) is an unary predicate in
FODAL.

– fore each n-ary verb concept V from SBV R, τSBV R(V) is a n-ary predicate
in FODAL.

– for each rule R from SBV R, τSBV R(R) is defined inductively as follows:
• τSBV R(R̂) = φR̂, where R̂ is a non-modal SBVR expression and φR̂ is
its non-modal first-order logic translation,

• τSBV R(¬R) = ¬τSBV R(R),
• τSBV R(R1 ◦R2) = τSBV R(R1)◦τSBVR(R2), where R1 and R2 are SBVR
rules and ◦ ∈ {∧,∨,→,↔}.

• τSBV R(�R̂) = �τSBV R(R̂) and τSBV R(OR̂) = OτSBV R(R̂)

For the translation into LegalRuleML we normalize the FODAL sentences
to atomic modal sentences using the typical axioms of normal modal logic, as
defined in the previous subsection. Furthermore, we restrict the expressiveness
to only mono-modal closed formula, i.e., the original SBVR rules are allowed to
contain only one modality9. We define the translation as the inverse translation
function τLRML(·)−1 from normalized mono-modal FODAL formulas to LRML
as follows:

– for each constant c (i.e.m an individual object/thing in SBVR), τ−1
LRML(c)

maps it
• to a data term < Data > in LRML if the constant has an interpretation
as a data type in the the XML Schema data types.

9 Since our patent law constraints in SBVR only have one modality as well as Legal-
RuleML statements are mono-modal, mono-modal FODAL provides enough expres-
siveness.

A Process for Knowledge Transformation and Knowledge Representation 325

• to an individual term < Ind > in LRML otherwise.
– for each variable v, τ−1

LRML(v) maps it to a variable < V ar > in LRML.
– for each unary predicate p in FODAL, τ−1

LRML(p) maps its only argument
term (a constant or a variable) into a term in LRML and assigns the pred-
icate relation pr as type attribute to the LRML term @type = ”pr”

10.
– for each n-ary predicate p in FODAL, τ−1

LRML(p) maps it into an n-ary atom
< Atom > in LRML using the predicate relation as relation < Rel >11 for
the atom and each argument term in the FODAL predicate p is mapped
into a typed term in the LRML atom, where the type is coming from the
previous mapping of a unary predicate which gives the type of the term.

– for each formula R in FODAL, τ−1
LRML(R) is defined inductively as follows:

• τ−1
LRML(R̂) maps into a corresponding LRML formula < formula >,

where R̂ is a non-modal first-order logic formula and the LRML formula
is its non-modal LRML translation. In particular:
∗ if R̂ is a conjunction it is mapped into < And >.
∗ if R̂ is a disjunction it is mapped into < Or >.
∗ if R̂ is an implication (or a formula which logically corresponds to
an implication) it is mapped into < Rule >.

∗ if R̂ is a universal quantifier or existential quantifier it is mapped
into a quantifier < Forall > (might be left implicit if no further
constraints are defined on the quantifier) or < Exists >, with the
declared variables being typed @type with their type (see unary pred-
icate mapping) and additional quantifier constraints defined in the
LRML quantifier (”such that” < formula > and guard constraints
< guard >).

• τ−1
LRML(¬R) maps into a LRML negation < Neg > with τ−1

LRML(R)
being the corresponding LRML formula which is negated.

• τ−1
LRML(R1◦R2), whereR1 and R2 are FODAL formulas and ◦ ∈ {∧,∨,→
,↔} maps into τ−1

LRML(R1)τ
−1
LRML(◦)τ

−1
LRML(R2), with τ−1

LRML(◦) =
{∧ =< And >,∨ =< Or >,→< Rule >,↔=< Equivalent >} .

• τ−1
LRML(�R̂) maps into a (definition) constitutive statement
< ConstitutiveStatement > in LRML with the alethic necessary
operator � mapped into < rrml : Operatortype = ”rrml :
AlethicOperator”iri = ”rrml : Necessary” > and τ−1

LRML(R̂) mapped

into its corresponding LRML formula and τ−1
LRML(OR̂) maps into

a (behavioural) prescriptive statement < PrescriptiveStatement >
with the deontic obligation operator O mapped into the obligation
< Obligation > in LRML and τ−1

LRML(R̂) mapped into its corresponding
LRML formula.12 For the other alethic and deontic operators τ−1

LRML

gives a similar mapping.

10 We use webized types coming from the SBVR Web vocabulary respectively trans-
lated OWL2 ontology, i.e., we use the IRIs of the vocabulary/ontology as sort symbol
names.

11 We use the IRI from the SBVR vocabulary or its translated OWL2 ontology.
12 The transformation might additionally denormalize the formulas and map into a

LRML templates hasTemplate using the original SBVR expressions.

326 S. Ramakrishna and A. Paschke

An SSE expression R =”It is necessary that a patent application in-
cludes at least 1 claim” becomes translated by τSBVR(R) into a FODAL
sentence F = ∀X∃Y (Patent Application(X) ∧ Claim(Y) ∧ includes(X,Y))
and by τ−1

LRML(F) into an LRML formula which corresponds to the alethic
necessity conclusion of the ”ConstitutiveStatement” rule shown in Fig-
ure 3b. The SSE expression ”It is obligatory that examiner rejects the claim
and office action includes Paragraph 7 33 01” becomes the FODAL formula
O(∀X,Y, Z(Examiner(X) ∧ Claim(Y) ∧ rejects(X,Y) ∧ Office Action(Z) ∧
includes(Z, ”Paragraph 7 33 01”))), which corresponds to the deontic obliga-
tion conclusion of the ”PrescriptiveStatement” rule shown in Figure 3(a).

10 KR4IPLaw

Figure 4, shows the overview of our proof-of-concept system, called ’KR4IPLaw’
(Knowledge Representation for Intellectual Property Law) [11]. KR4IPLaw is a
system built to support the process described in this paper. The system comprises
of aLanguage IndependentMarkupEditor, ’LIME’ [23] for thepurpose of legal doc-
ument annotation,AnUnifiedMarkupLanguage (UML)s’ activity diagramtool to
graphical represent the procedural norms into decision models and SBeaVeR [24]
based KR4IPLaw tool, for semi-formal representation of a decision point or set of
decisionpoints usingSBVR-SE.The systemalso integrates a recommender system,
which (semi-)automatically translates the procedural legal texts from the decision
models into semantically enriched legal concepts, which thereafter is used to build
semi-formal legal norms. Semantically enriched legal vocabularies are mapped
onto an OWL2 ontology as a part of the KB (as described in section 3).

For reasoning, the platform independent legal rules (represented by Legal-
RuleML) are transformed into platform specific elementary legal rules. We use
Prova [25], a rule language and rule engine for legal rule representation (platform
specific) and for reasoning such rules on top of legal knowledge bases. Prova is
both a Semantic Web rule language and a high expressive distributed rule engine.

Fig. 4. KR4IPLaw - proof-of-concept implementation

A Process for Knowledge Transformation and Knowledge Representation 327

It supports, the execution of declarative (decision) legal rules [26], access to ex-
ternal semantic web data via SPARQL, ontology reasoners and supports scoped
reasoning. The EP’s represented as meta-data acts for a considered legal rule act
as explicit scope for constructive queries on the knowledge base. In addition to
scopes, we make use of the guards functionality provided by Prova.Guards, act as
additional pre-condition constraints (e.g. reasoning only those rules from trusted
authors). The long term goal of this system is to act as an interface, which can be
easily handled by legal practitioners and at the same time still be capable enough
to provide all the necessary tools for a knowledge engineer.

11 Conclusion and Future Directions

In this paper we presented a process which enables a legal practitioner to move
from a natural language legal norm/section to a machine readable rule represen-
tation format. We presented several knowledge representation formats involved
in each step of this process.We then showed, how piggybacking the meta informa-
tion during the disaggregation process helps in retaining the original pragmatics
in a mode modular form resulting in a elementary norm with elementary prag-
matics. This paper also argued on the use of semi-formal approach like SBVR-SE
as an intermediate step in transforming the legal norms in natural text to a for-
mat sufficient enough for reasoning using existing reasoners. We proposed several
mapping schemes useful for transforming a SBVR-rule (in its modal form) to a
PIM layer rule representation format like LegalRuleML using ReactionRuleML.
The future research of this work aims to study this approach on an interface
level and how to manage the interdependency factor that arises with a rich in-
formation flow between systems/layers. Another future work includes the study
of paradoxes that are attached with the modal logics under consideration.

References

1. Ramakrishna, S.: First Approaches on Knowledge Representation of Elementary
(Patent) Pragmatics. In: Proceedings of the 7th International Rule Challenge, the
Special Track on Human Language Technology and the 3rd RuleML Doctoral Con-
sortium (2013)

2. KSR Intl Co. v. Teleflex Inc: U.S. 550 U.S. 398 (2007)

3. Balkin, J.M.: Understanding legal understanding: The legal subject and the prob-
lem of legal coherence. Yale Law Journal, 105–176 (1993)

4. Arnold-Moore, T., Clemes, J.: Connected to the Law: Tasmanian Legislation Using
EnAct. Journal of Information, Law and Technology (1) (2000)

5. Dell, P.: Eur-lex :the access to european union law, Slides of a talk given on De-
cember 3 2010. Zagreb University (2010)

6. Boer, A., Hoekstra, R., Winkels, R.: MetaLex: Legislation in XML (2002)

7. Palmirani, M., Vitali, F.: Akoma-Ntoso for Legal Documents. In: Legislative XML
for the Semantic Web. Law, Governance and Technology Series, vol. 4, pp. 75–100.
Springer, Netherlands (2011)

328 S. Ramakrishna and A. Paschke

8. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: Proceedings of the 16th Annual International Conference on Automated Soft-
ware Engineering, ASE 2001, pp. 273–280. IEEE (2001)

9. OMG: Semantics of Business Vocabulary and Business Rules (SBVR). Technical
Report November, O M G Document (2013)

10. Johnsen, A.S., Berre, A.J.R.: A bridge between legislator and technologist - For-
malization in SBVR for improved quality and understanding of legal rules. In:
International Workshop on Business Models, Business Rules and Ontologies, Bres-
sanone, Brixen, Italy (2010)

11. Ramakrishna, S., Paschke, A.: Bridging the gap between Legal Practitioners and
Knowledge Engineers using semi-formal KR. In: The 8th International Workshop
on Value Modeling and Business Ontology, VMBO, Berlin (2014)

12. Ramakrishna, S., Paschke, A.: Semi-Automated Vocabulary Building for Struc-
tured Legal English. In: RuleML 2014. LNCS, vol. 8620, Springer, Heidelberg
(2014)

13. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.:
LegalRuleML: XML-Based Rules and Norms. In: Olken, F., Palmirani, M., Sottara,
D. (eds.) RuleML 2011 - America 2011. LNCS, vol. 7018, pp. 298–312. Springer,
Heidelberg (2011)

14. Boley, H., Paschke, A., Shafiq, O.: Ruleml 1.0: The overarching specification of
web rules. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS,
vol. 6403, pp. 162–178. Springer, Heidelberg (2010)

15. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., Athan, T.: Reaction RuleML 1.0:
Standardized Semantic Reaction Rules. In: Bikakis, A., Giurca, A. (eds.) RuleML
2012. LNCS, vol. 7438, pp. 100–119. Springer, Heidelberg (2012)

16. Paschke, A.: Reaction RuleML 1.0 for Rules, Events and Actions in Semantic
Complex Event Processing. In: RuleML 2014. LNCS, vol. 8620, pp. 1–18. Springer,
Heidelberg (2014)

17. Elisa, K., Mark, H.L.: Mapping SBVR to OWL2. Technical report, IBM Research
Division, New York, NY (2013)

18. Karpovic, J., Nemuraite, L.: Transforming SBVR Business Semantics into Web On-
tology Language OWL2: Main Concepts. In: Proc. 17th International Conference
on Information and Software Technologies, IT 2011, pp. 231–254 (2011)

19. Solomakhin, D., Franconi, E., Mosca, A.: Logic-based reasoning support for SBVR.
In: Proceedings of the 26th Italian Conference on Computational Logic (CILC
2011), Pescara, Italy, August 31-September 2, pp. 311–325 (2011)

20. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science, vol. 53. Cambridge University Press (2001)

21. McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy, Fall 2010 edn. Stanford University (September 2010)

22. Fitting, M., Mendelsohn, R.L.: First-order Modal Logic. Kluwer Academic Pub-
lishers, Norwell (1999)

23. Palmirani, M., Vitali, F., Cervone, L.: LIME: The Language Independent Markup
Editor. University of Bologna

24. De Tommasi, M., Corallo, A.: SBEAVER: A Tool for Modeling Business Vocabular-
ies and Business Rules. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006,
Part III. LNCS (LNAI), vol. 4253, pp. 1083–1091. Springer, Heidelberg (2006)

25. Kozlenkov, A.: Prova Rule Language Version 3.0 User’s Guide (2010),
http://prova.ws/index.html

26. Paschke, A., Ramakrishna, S.: Legal RuleML Tutorial Use Case - LegalRuleML for
Legal Reasoning in Patent Law (2013)

http://prova.ws/index.html

A. Bikakis et al. (Eds.): RuleML 2014, LNCS 8620, pp. 329–338, 2014.
© Springer International Publishing Switzerland 2014

Legal Responsibility for the Acts of Others:
A Logical Analysis

Clara Smith1, Erica Calardo2, Antonino Rotolo2, and Giovanni Sartor3

1 Faculty of Informatics and Faculty of Law, University of La Plata, Argentina
2 CIRSFID, University of Bologna, Italy

3 European University Institute, Florence, Italy / CIRSFID, University of Bologna, Italy

Abstract. This paper offers a logical analysis of two cases where legal respon-
sibility may emerge for the acts of others: (a) reflex responsibility, and (b)
responsibility in the negotiorum gestio doctrine. The current contribution works
within a fresh multi-modal system where the new operators are introduced for
denoting intentions and actions in the interest of other agents, and the objective-
ly ideal sets of actions for agents.

Keywords: Legal Responsibility, Vicarious Liability, Multi-modal logics.

1 Introduction

An adequate analysis of the idea of legal responsibility is essential for developing a
comprehensive model for reasoning about legal rules. A crucial question concerns
what effects the cooperation between agents may have with regard to third parties. In
this paper we study legal scenarios where responsibility emerges between a principal
agent and a helper agent. The idea of responsibility we are going to formalize seems
closely aligned with various legal concepts: consider, for instance, the provisions
settled by Italian and Argentinean provisions for persons (e.g. art. 1113 of the Argen-
tinean Civil Code and art. 1228 of the Italian Civil Code). In particular, we examine
two cases: (a) responsibility having its origin in occasional, non-contractual courtesy
relations—also called reflex responsibility [25]—and (b) responsibility in the
negotiorum gestio doctrine (see, e.g., art. 2288 of the Argentinean Civil Code and art.
2028 of the Italian Civil Code). So far, no logical reconstruction of these cases has
been offered, except [25]: the current paper extends the research started in [25] by (i)
working out a more general definition of reflex responsibility, (ii) integrating the logi-
cal framework with two modal operators for agent’s ability and for expressing objec-
tively ideal states of affairs, and (iii) handling negotiorum gestio.

We work on a wide range of situations where normally an agent h, the helper, ac-
complishes a task in order to satisfy the interests of another agent p, the principal,
with the explicit or implicit agreement of the principal itself. This form of agent-based
coordination has an impact also with regard to third parties: in the case of reflex
responsibility a damaged third party often has the right to obtain a compensation
also—or only—from the principal agent; in the case of negotiorum gestio the princi-
pal becomes bond to the third party through the obligation taken by the helper.

330 C. Smith et al.

Notice that we do not consider here contractual situations, neat employer/employee
relationships, mandates, and any conferral of a power of representation accompanied
by an obligation of representation in certain ways (e.g., a cheque is a mandate from
the customer to her bank to pay the sum in question). In contractual scenarios, usually
responsibilities and sanctions are clearly pre-settled. We will neither address cases
where one is legally responsible for another agent’s behaviour which is totally inde-
pendent from one’s goals and intentions (i.e., parents are legally responsible for dam-
ages caused to third parties by their underage children). We are rather interested in
situations where trust, altruism, friendship and courtesy are at the basis of the cooper-
ation between the agents. Our plan is thus to model occasional cooperative links that
may occur between two agents, and from which the attribution of responsibility can
come. The business may be initially of any kind and of course may have legal effects
such as paying the debts of another, or when a shop manager asks a friend to take
temporarily her place since she has an urgent business to do, or when a person asks a
colleague to manage her blog for some time, or when one participates in an auction
and buys an object for another. In these cases, the entrusted helper is expected to be-
have according to some standards: when the helper damages a third party, while act-
ing in the interest of the principal, the obligation to compensate should fall primarily
upon the principal, as long as the damage pertains to the helper’s performance on the
principal’s interest. And when a helper enters into a contract on behalf of the princi-
pal, the principal must respond for the obligations in that contract.

The paper is organized as follows. Section 2 presents the definition of dependence
we use for defining reflex responsibility, and the legal concept of negotiorum gestio.
Section 3 introduces the proposed logical framework and introduces the notions of
intention in the interest of another agent, action in the interest of another agent, the
objectively ideal set of actions for an agent, dependence, negotiorum gestio. A for-
malization of related forms of responsibility is given in Section 4. Section 5 offers a
conceptual discussion of the proposed formalization of reflex responsibility.

2 The Legal Background

The Notion of Dependence. The common-law doctrine focuses on the idea of vicari-
ous responsibility, which acknowledges that one agent be liable for the torts commit-
ted by another agent [26]. Vicarious liability comes to break the notion of one agent
responding only for the harm she made and extends the original principle that says
that one is liable in tort law for her own acts. Although the employer/employee rela-
tionship is assumed in [26] to be the basis of vicarious liability, we can relax this as-
sumption and identify these components in responsibility in cooperative relations:

i) a harmful act carried out by a helper agent, upon the condition that
ii) an occasional dependence relation between principal and helper

occurs.
The harmful act is at the core of any responsibility model, it is its trigger. If there is
no harmful act, no one is to be liable.

We next unpack the black-boxed idea of occasional dependence and make some of
its internal structure explicit. For dependence to exist, the following two constitutive
elements are required:

 Legal Responsibility for the Acts of Others: A Logical Analysis 331

i) the principal meant that the helper carries out a function in the princi-
pal’s interest, and

ii) the helper counts as a subordinate of the principal only w.r.t. the per-
formance of such function, i.e. she acts in the interest of the principal
and she believes that this is what the principal wants.

The principal must have the intention that the helper performs that sole task, while
the helper is aware of this intention. The helper will somehow be “activated” not only
by the belief that the principal intends that she (the helper) does the task but also with
her (the helper’s) own intention (in the interest of p) to carry out the task. The task is
meant to be understood as a unity (e.g. ‘purchase’) and not as a continuity of small
tasks (e.g. the robbery of a pearls’ necklace by robbing one pearl a day).

Agency and Negotiorum Gestio. The concept of ‘agency’ is similar in common-law
systems to vicarious liability: it also renders one person liable for the torts of another
within the scope of his authority, be it real or apparent [26, p. 109]. There is a tenden-
cy of courts to use ‘agency’ to mean ‘the fiduciary relationship which exists between
two persons, one of whom expressly or impliedly manifests assent that the other
should act on his behalf so as to affect his relations with third parties and the other of
whom manifests assent so to act or so acts pursuant to that manifestation’.

Two categories of claims merge vicarious liability with agency: motor vehicles and
un-delegable duties. Regarding motor vehicles, one of the earlier 19th century princi-
ples seems to keep the master liable concerning horse accidents. Nowadays, this ar-
gument is kept: the principal remains liable (as she is the one who keeps control be-
cause she is the owner of the vehicle); but a second element is added: the insurance
issue. The car owner is usually understood to be more able to pay for damages, ac-
cording to the principles of loss distribution and victim compensation. Regarding non-
delegable duties, the arguments appear to be straightforward: if such a duty is cast
personally to an agent (e.g. to an artisan), she could not get rid of the task by delegat-
ing the performance to a third person.

In civil law the intervention in other’s affairs, without mandate, falls under the
doctrine of negotiorium gestio, this last being a type of spontaneous agency or inter-
ference of one person in the business of another person; the underlying principle is
intended as an act of generosity and friendship and not to allow the gestor to profit
from her agency [27]. It is clear that this agency cannot properly be said to originate
in a contract, one agent has come forward and managed the business of another with-
out mandate for doing so, and the latter is laid under obligations even though she
knows nothing of what has taken place.

The gestor is only entitled to reimbursement for expenses and not to remuneration.
For the recovery of expenses it is not necessary that the agent should have had in
mind the particular principal in whose interest the business is being carried out (e.g
the gestor thought A was the principal, but it was indeed B.) Whether there is a need
of a subsequent ratification of the gestor’s acts, so as to preclude the negotiorum
gestio, the positions are contradictory. This seems not necessary, as the principal may
die and, the negotiorum gestio is not to be extinct, differently from what conceptually

332 C. Smith et al.

happens with a mandate1. The act must have been advantageous to the principal. The
mere fact that it failed to result in ultimate benefit to the principal would not deprive
the gestor of her right to reimbursement, provided she has been diligent. The business
must have been beneficial to the principal from an objective point of view.

Modern civil codes such as the Argentinean and the Italian have a form of reflex
responsibility of the principal in the sense that the principal remains committed by
those obligations that the gestor entered on his behalf (Argentinean Civil Code art.
2289, Italian Civil Code art. 2031). Nonetheless, the responsibility w.r.t. third parties
remains on the gestor (Argentinean Civil Code arts. 2291 and 2292.)

Example 1 (Letellier vs Derode [Cassation, France, 1872] [27]). Letellier, a mer-
chant in Paris, bought from Derode, a merchant from Havre, 25,000 bags of American
wheat. Derode left Havre with the wheat, without receiving further instructions from
Letellier. Letellier had many debts in Paris, and had no place available where to store
the wheat. When in Paris, Derode stored the wheat at Letellier’s expense. The Court
said Derode acted as a negotiorum gestor in the interest of Letellier. Letellier had to
pay for the contract of storage Derode entered for the custody of Letellier’s wheat.

3 The Logical Framework

Our logical framework is a combination of normal and non-normal modal logics
[3,25]. We have a finite set of agents A = {x, y, z...} and a countable set of atomic
propositions P = {p, q, r, ...}. In the language of [3] complex expressions (denoted by
A, B, C…) are formed from the above elements, plus the following unary modalities:

• Goalx A, where Goal is a Kn operator, means that “agent x has the goal that
A”, where A is a proposition [4,20].

• Intx A, where Int is KDn operator, stands for “agent x has the intention to
make A true”.

• Belx A, where Bel is a KD45n operator, represents that “agent x has the
belief that A”.

• O and Ox are KD and KDn operators representing, respectively, generic
obligations, meaning “it is obligatory that” and directed obligations,
meaning “it is obligatory in the interest of x that” [5,11,13].

• Doesx A represents successful agency in the sense given by [6], i.e. agent x
indeed brings about A. We assume that in expressions like Doesx A, A
denotes behavioral actions concerning only single conducts of agents. For
the sake of simplicity, we assume that no other modal operator can occur
within the scope of Does.

We adopt for Does the axiomatization of [7]. Since Does captures successful
actions, we validate the schema Doesx A →A. The language is enriched with the
following new operators:

• Intp
h A which stands for “agent h intends A to become true in the interest

of agent p” [8]. This expression is to be interpreted subjectively, i.e. h in-
tends A as being in the interest of p.

1 Though, some codes, such as the Argentinean and the Italian ones, collapse negotiorum gestio

to mandate.

 Legal Responsibility for the Acts of Others: A Logical Analysis 333

• Doesp
h A, which stands for “agent h brings it about that A in the interest of

agent p”, and is meant to capture directed material performance by h, but
on account and in the interest of p.

• Ablex A represents ability in the sense given by [6,7], i.e. agent x has the
capacity to do A. Considering agency as the exercise of the agent’s ability
to act, ability is implied by agency. For the sake of simplicity, we assume
that no other modal operator can occur within the scope of Able.

• Ip A, which stands for “A is objectively ideal (or ‘good’) for agent p”.

By Intp
h A we mean a directed and coordinated relation triangulating p, h, and A. We

aim to use Intp
h A for capturing courtesy behavior i.e. h may be an altruistic agent not

expecting any reward, merely intending to fulfill p’s expectations, even occasionally.
It captures an intention reflecting the interest of another w.r.t. A (nonetheless we later
impose a precondition for altruistic intention to hold, namely ¬Op

h A, to assure that h
is not obliged to do A in the interest of p through, e.g., a contract) Directed agency is a
basic type of event and reflects a similar intuition behind directed intentions.

The semantics for IpA is the one for KDn: I
pA at a world w means A holds in all of

w’s ideal versions. The Able operator has a classical semantics [6,7]. We also assume
the bridge schema Doesx A → Ablex A. Axiomatics and semantics for Intp

h and Doesp
h

A are essentially the same as those for Inth and Doesh. However, three new schemata
are provided:

Doesp
h A → Doesh A (DDirDInd)

 Intp
h A → Inth A (IDirIInd)

Intp
h Doesh A ↔ Inth Doesp

h A (IntDoesEq)

While if an agent h does or intends something in the interest of another agent p, this
implies that the agent h does or intends this something, the converse does not hold,
because generic actions and intentions can also be not in the interest of anyone.

We also include the following schemata:

Intp
h A → Belh(I

p A) (Intp
h Introspection)

Doesp
h A → Belh(I

p A) (Doesp
h Introspection)

Doesp
h A → Intp

h A (IntentionalAgency)
Op

 A → Ip A (OI)

The first two capture a form of introspection, meaning that if one intends/carries out
something in the interest of another is because one believes that such something is
ideal (i.e. objectively good) for that other. The third one captures a specific notion of
intentional action meaning that if one carries out a task in the interest of other agent is
because one intends to do the task in the interest of this other agent. The fourth one
reflects the idea that obligations in the interest of p are a subset of what it is objective-
ly ideal for p.2

2 Space reasons prevent us from presenting here a suitable semantics, which, in fact, only re-

quires a simple extension of the one in [25].

334 C. Smith et al.

4 A Formal Analysis of Responsibility in Cooperative Relations

Reflex responsibility is at the core of the common law’s concept of vicarious liability
and agency, of the Romanic concept of liability in the interest of others, and of
negotiorum gestio. From a representational point of view our approach is thus differ-
ent from e.g. the notion of functional responsibility given by [17]. There, the opera-
tional aspect of an obligation is modeled: the fact that the obligated agent is actually
expected to perform a task herself is expressed by FR(a;P;b;x) meaning that a has the
functional responsibility, for which it is accountable to b, to ensure P, and that this
responsibility comes from normative source x. This is why, in that framework, func-
tional responsibility is formally equivalent to an obligation.

We must consider as a precondition, given p principal, h helper and action A, that
¬Οp

h A holds, i.e. that there exists no obligation that h carries out A in the interest of
p. This because, if Οp

h A holds, then this fact induces the existence of a mandate or a
contract, which weakens the idea of intention in the interest of another.

We model dependence as a coordination relation, as follows:

Depp
h A ≡ Goalp A ∧ Intp(Doesp

h A) ∧ (Belh(Intp(Doesp
h A)) ∧ Intp

h A (1)

meaning that h is dependent from p with regard to the performance of A if A is one
of p’s goals, p intends that h carries out A in his (p’s) interest, h is aware of that, and
intends to achieve A in the interest of p. Note that for the employer/employee rela-
tionship we would use Οp

h A, which is to be used to refer to a lawful bond.
Let us focus on the concepts of agency, insurances and non-delegable duties:

i) Cases of agency where helpers act in the scope of an authority are to
collapse under vicarious liability and are somehow covered by (1).

ii) Cases of agency where principals ratify the helper’s wrongful perfor-
mance are vicarious: this fact will be represented the propositional con-
stant Ratify.

iii) In the case of insurances (typically car insurances) we may not have that
the act is intended by the principal nor that the helper intends to drive
the car in the interest of the principal, e.g. that Intp A nor Intp

h A hold; we
may nor even have that driving the car is one of the principal’s goal
(Goalp A) nor he intends his car driven by his helper (Intp(Doesp

h A)) nor
even that his helper believes so ((Belh(Intp(Doesp

h A))). Indeed, we must
have that ¬Op

h A, and Doesh A, and DoeshDamage hold. And we must
have that the principal has an insurance regarding A (let us represent it
by the propositional constant Insurance).

Cases of non-delegable duties are identifiable with a previous specific contract in-
volving principal and helper; therefore liability arises under ordinary principles.

Now for the formalization of reflex responsibility, conditioned to the fact that

i) the helper h is not obliged to do A in the interest of p, and
ii) by doing A, h causes a damage (if this does not hold, h’s action that

brings A about is irrelevant to the allocation of responsibility).

 Legal Responsibility for the Acts of Others: A Logical Analysis 335

A principal p is reflexively responsible for h who does A iff there is the dependence
described in (1), or p is insured w.r.t. A, or p ratifies h’s wrongful performance:

[¬Op
h A ∧ (Doesh A → DoeshDamage)] →

[(¬Doesp A ∧ (Depp
h A ∧ Doesp

h A) ∨ Insurance ∨ Ratify) ↔ Reflexp
h A] (2)

Recall that the dependence relation is insufficient to create any contractual relation or
an employer/employee relationship.

Typically, being reflexively responsible for the principal for an action performed
by the helper generates either an obligation compensate it:

Reflexp
h A → ODoesp Compensate (3)

or a directed obligation to compensate in the interest of the damaged third party t:

Reflexp
h A → OtDoesp Compensate (3’)

Example 2. Let us assume the next sentences:

Goalp Mb (4)
Intp(Doesp

h Mb) (5)
Belh(Intp(Doesp

h Mb) (6)
Doesp

h Mb (7)
¬Doesp Mb (8)
Doesh A → DoeshDamage (9)

where Mb means “the helper h managed the principal p’s blog”. We can infer from 4,
5, and 6 that there is a relation of dependence between h and p with regard to Mb:
Depp

h Mb. According to rule 2 above and premises 7, 8 and 9, this entails the follow-
ing: Reflexp

h Mb. According to schema 3, we can infer: ODoesp Compensate. Notice
that premise 7 implies, through schema (DDirDInt), that Doesh A holds, thus leading
to DoeshDamage. In other words, reflex responsibility occurs when the action of h
causes a damage, which in fact justifies the obligation to compensate derived via
schema 3.

In turn, one possible definition for negotiorum gestio is the following:

Gesp
h A ≡ Intp

h A ∧ Intp A ∧ ¬Ablep A ∧ Doesp
h A (10)

which means that the helper agent h has the intention of carrying out A by herself but
in the interest of p, p intends to obtain A but she not able to do so, and h carries out A
in the interest of p. Then we get a form of reflex responsibility in the next setting:

Gesp
h A → (Ot

h A → Ot
p A) (10’)

meaning that if h is a gestor of p, if h becomes obliged to a third party t w.r.t. action
A, then p is obliged to t w.r.t. A. (A.C.C. art. 2289), where t is the third party.

Example 3 (Negotiorum Gestio). First scenario (general rule of responsibility
applicable to the gestor’s acts). John left home unexpectedly for some time, leaving
the house unattended. Frank thinks keeping John’s garden tidy will help John, so he
cuts the garden’s grass. John is unaware of this. One day, on cutting the grass, Frank

336 C. Smith et al.

hurts Jane’s Chihuahua. The general rule of liability is applicable, independently of
the negotiorum gestio relationship between John and Frank. Frank is liable.

Example 4 (Negotiorum Gestio). Second Scenario (principal attached to con-
tracts entered by the gestor). John left home unexpectedly for some time, leaving his
Chihuahua outside. Frank passes by and sees the dog sad, hungry and unattended in
John’s garden. Frank agrees with Jane, John’s neighbour, that she will take care of
John’s Chihuahua while he is away. Although unaware of the agreement between
Frank and Jane, John should return Jane the dog’s expenses when he is back.

5 Discussion

The core at the notion of responsibility for the acts of others is reflex responsibility,
which refers to complex relations between actions and intentions, and their results. In
the versions presented here however, this notion does not remain abstract because the
individual actions are not hidden. Reflex responsibility is not modeled as a primitive
operator and its occurrence can be established by detecting more elementary
components. A different approach is offered in [17], where a similar type of
responsibility is represented by a suitable operator.

In some legal systems (e.g. Argentina), reflex responsibility of the principal with
regard to the helper’s performance may be inexcusable (i.e. iuris et de iure), that is, it
cannot be avoided because of the principal’s absence of guilt. To get rid of reflex
responsibility, the principal must prove the lack of one of its requisites. Reflex
responsibility, as in (3), belongs to the category of accountability responsibility [17]
since the principal has a particular connection to the harm so that she may have to
give an explanation (an account) of why the harm happened, and, of course, she may
possibly be sued. According to [2], p is legally liable for the harmful event because all
conditions for connecting the harm to p are realized: there is dependence, and the
directed action connects p through d to the harmful act Doesp

h A.
Clearly, (3) does not include cases of responsibility for the principal’s own

wrongdoing. However, notice that reflex responsibility as defined in (3) does not
necessarily cover the category of blameworthiness responsibility [21,17], which refers
to principals who failed to comply with moral or legal demands. In fact, and regarding
occasional dependence, the principal intended that the action of the helper was
performed, but she may not have anticipated the damaging effects of that action, or
the anticipation of the possibility of such effect may have been an acceptable risk.

Reflex responsibility implies that A is the case. In the ‘occasional dependence’ part
of (3) the principal p has contributed, in some way, to the fact that A is true, because
there is a link between h’s performance and h’s intention and p’s intention. (It is
likely that h would not have brought about A is in case she had not been aware that p
intended that: agent p made another agent or organization h do something—by no
means of an obligation—which made p responsible for the fact.)

We cannot conceive a case where the principal is responsible but the dependent is
not3. In particular we can obtain that, when the action of the helper does not cause any
damage there is no reflex liability. Indeed, whenever DoeshA is true but DoeshDamage

3 This simplifies the analysis of agentive responsibility of h, i.e., the causal link between A and the

action of this agent. Interesting discussions on this issue can be found, e.g., in [14,15,16,17].

 Legal Responsibility for the Acts of Others: A Logical Analysis 337

is false, then the antecedent of (2), too, is false, thus the antecedent of (3) cannot be
realized. In other words, we get that ¬(Doesh Damage) → ¬Reflexp

h A.
A consequence of reflex responsibility in some legal systems is the helper’s

obligation to reimburse the principal of what she has given as a compensation to the
third (damaged) agent: (Reflexp

h A ∧ Doesp Compensate) → Op(Doesh Reimburse).
The interesting basis of this reimbursement is the type of relation between principal

and helper. Recall that if their relation is contractual the dependent’s wrongdoing im-
plies she has not fulfilled his obligations with regard to the principal, and the reim-
bursement is possibly pre-settled (for contractual electronic bindings, see e.g. [23,24]).

If the relationship is factual, then the basis of this reimbursement lays on the cir-
cumstance that the principal is an indirect victim of the helper’s wrongdoing. This
distinction between types of dependence relations is crucial for determining, e.g., the
amount of the compensations. An interesting and high level of sophistication in the
outline of the lawful support of a system can be achieved with the aid of the notion of
reflex responsibility.

Example 5 (Reflex responsibility and trust deception). Paul lends to me his user
name and password, so as I can use the wireless connection at his university, which I
am visiting. I made wrong use of some contents, got a database damaged, and I—
under Paul’s user name—got blacklisted. He is reflexively responsible for my misuse.
As a consequence of this, and given that I have violated the trust he put on me, Paul
may radically change any intention regarding myself doing anything on his behalf:
Reflexp

h A → ¬Intp
h B .

6 Summary

This paper offered a logical analysis of two cases where legal responsibility emerges
between a principal agent and a helper agent: (a) responsibility having its origin in
occasional, non-contractual courtesy relations—also called reflex responsibility—and
(b) responsibility in the negotiorum gestio doctrine. The current paper extends the
research in [25] by (i) working out a more general definition of reflex responsibility,
(ii) integrating the logical framework with two modal operators for agent’s ability and
for expressing objectively ideal states of affairs, and (iii) handling the case
negotiorum gestio. Legal systems make persons responsible for damages caused by
others also in different cases (e.g, when damages result from unintentional activities):
how to generalize the current analysis to that is left to future research.

References

[1] Chopra, S., White, L.: Artificial Agents – Personhood in Law and Philosophy. In: Proc.
ECAI (2004)

[2] Sartor, G., et al.: Framework for addressing the introduction of automated technologies
in socio-technical systems, in particular with regard to legal liability. E.02.13-ALIAS-
D1.1. EUI (2011)

[3] Smith, C., Rotolo, A.: Collective trust and normative agents. Logic Journal of IGPL 18,
195–213 (2010)

338 C. Smith et al.

[4] Dunin-Keplicz, B., Verbrugge, R.: Collective intentions. Fundamenta Informaticae,
271–295 (2002)

[5] Jones, A., Sergot, M.: A logical framework. In: Open Agent Societies (2007)
[6] Elgesem, D.: The modal logic of agency. Nordic Journal of Philosophical Logic 2, 1–46

(1997)
[7] Governatori, G., Rotolo, A.: On the Axiomatization of Elgesem’s Logic of Agency and

Ability. Journal of Philosophical Logic 34, 403–431 (2005)
[8] Smith, C.: Principal and Helper: Notes on Reflex Responsibility in MAS. In: Proc.

RDA2 (2012)
[9] Broersen, J., Dignum, F.P.M., Dignum, V., Meyer, J.-J.C.: Designing a Deontic Logic of

Deadlines. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, pp.
43–56. Springer, Heidelberg (2004)

[10] Smith, C., Rotolo, A., Sartor, G.: Representations of time within normative MAS. In:
Proc. JURIX (2010)

[11] Herrestad, H., Krogh, C.: Obligations Directed from Bearers and Counterparties. In:
Proc. ICAIL (1995)

[12] Smith, C., Ambrossio, A., Mendoza, L., Rotolo, A.: Combinations of normal and non-
normal modal logics for modeling collective trust in normative MAS. In: Palmirani, M.,
Pagallo, U., Casanovas, P., Sartor, G. (eds.) AICOL WorkshopS 2011. LNCS (LNAI),
vol. 7639, pp. 189–203. Springer, Heidelberg (2012)

[13] Sartor, G.: Legal Reasoning: A Cognitive Approach to the Law. Springer, Dordrecht
(2005)

[14] Cholvy, L., Cuppens, F., Saurel, C.: Towards a Logical Formalization of Responsibility.
In: Proc. ICAIL (1997)

[15] Sergot, M.J.: Action and Agency in Norm-Governed Multi-agent Systems. In: Artikis,
A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS (LNAI),
vol. 4995, pp. 1–54. Springer, Heidelberg (2008)

[16] Sergot, M.: Norms, action and agency in multi-agent systems. In: Governatori, G., Sar-
tor, G. (eds.) DEON 2010. LNCS (LNAI), vol. 6181, p. 2. Springer, Heidelberg (2010)

[17] Ben Ghorbel-Talbi, M., Cuppens, F., Cuppens-Boulahia, N., Le Métayer, D., Piolle, G.:
Delegation of Obligations and Responsibility. In: Camenisch, J., Fischer-Hübner, S.,
Murayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp.
197–209. Springer, Heidelberg (2011)

[18] Grossi, D., Jones, A.: Constitutive Norms and Counts-as Conditionals. In: Handbook of
Deontic Logic and Normative Systems. College Publications (2013)

[19] Fajardo, R., Finger, M.: Non-normal modalisation. In: Proc. AiML (2002)
[20] Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT

Press (1995)
[21] Hart, H.L.A.: Punishment and Responsibility. Oxford University Press (1968)
[22] Gabbay, D.: Fibring Logics. Oxford University Press (1999)
[23] Weitzenböck, E.M.: Good faith and fair dealing in contracts formed and performed by

electronic agents. Artificial Intelligence and Law 12, 83–110 (2004)
[24] Sartor, G.: Cognitive automata and the law: electronic contracting and the intentionality

of software agents. Artificial Intelligence and Law 17, 253–290 (2009)
[25] Smith, C., Rotolo, A., Sartor, G.: Reflex Responsibility of Agents. In: Proc. JURIX

(2013)
[26] Giliker, P.: Liability in Tort Law. A Comparative Perspective. In: CUP (2010)
[27] Lorenzen, E.G.: Negotiorum Gestio. In: Roman and Modern Civil Law. Faculty Schol-

arship Series. Paper 4576 (1928),
http://digitalcommons.law.yale.edu/fss_papers/4576

Author Index

Akbar, Zaenal 37
Athan, Tara 112
Aziz, Ayesha 178

Bassiliades, Nick 82
Bernardi, Mario Luca 281
Bobek, Szymon 157
Boley, Harold 112
Bowers, Shawn 127

Calardo, Erica 329
Calautti, Marco 97
Chatwin, Chris 178
Chen, Mingmin 127
Cimitile, Marta 281
Cristani, Matteo 168

Di Francescomarino, Chiara 281
Dondio, Pierpaolo 142
Dubois, Catherine 226

Etzold, Sophia 112

Fensel, Dieter 37
Fillottrani, Pablo Rubén 52
Franz, Nico 127

Garćıa, José Maŕıa 37
Ghamri-Doudane, Yacine 226
Governatori, Guido 168, 296
Grau, Brigitte 226
Greco, Sergio 97
Grütter, Rolf 112

Hashmi, Mustafa 296

Kang, Juyeon 186
Keet, C. Maria 52, 216
Khumalo, Langa 216
Kliegr, Tomáš 236
Kowalski, Robert 22
Ksystra, Katerina 67
Kuchař, Jaroslav 236

Ludäscher, Bertram 127

Maggi, Fabrizio Maria 281
Molinaro, Cristian 97

Nalepa, Grzegorz J. 157

Olivieri, Francesco 168

Paschke, Adrian 1, 201, 311
Peska, Ladislav 251

Ramakrishna, Shashishekar 201, 311
Rauch, Jan 266
Rodriguez, Salvador 178
Rotolo, Antonino 329

Sadoun, Driss 226
Sadri, Fariba 22
Saint-Dizier, Patrick 186
Sartor, Giovanni 329
Scannapieco, Simone 168
Šimůnek, Milan 266
Smith, Clara 329
Sottara, Davide 236
Stefaneas, Petros 67

Toma, Ioan 37
Triantafyllou, Nikos 67
Trubitsyna, Irina 97
Tsadiras, Athanasios K. 82

Viktoratos, Iosif 82
Voj́ı̌r, Stanislav 236
Vojtas, Peter 251

Wynn, Moe Thandar 296

Yu, Shizhuo 127

Zou, Gen 112

	Preface
	Organization
	On Probability, Rules and Learning
	Reaction RuleML 1.0 for Rules, Events and
Actions in Semantic Complex Event Processing

	Efficient Mapping Rules in OBDA
	Table of Contents
	Keynote Talks
	Reaction RuleML 1.0 for Rules, Events and
Actions in Semantic Complex Event Processing

	1 Reaction RuleML for Reaction Rules
	2 Introduction to the Reaction RuleML Language
	3 Signature Definitions
	4 Multi-sorted Semantic Interpretation
	5 Metamodel and External Type Systems
	6 Dialects and Semantic Profiles
	7 Modularization and Scoped Reasoning
	8 Conclusion - Reaction RuleML for Reaction Rules
	References

	Regular Track
	A Logical Characterization
of a Reactive System Language
	1 Introduction
	2 The KELPS Language
	2.1 Vocabulary
	2.2 KELPS Framework

	3 The KELPS Model-Theoretic Semantics
	3.1 Herbrand Interpretations
	3.2 The Temporal Structure of KELPS Interpretations
	3.3 Sequential Notation
	3.4 Reactive Interpretations

	4 The KELPS Operational Semantics
	5 Relationships between the Model-Theoretic Semantics and
the Operational Semantics
	6 Related Work
	6.1 Abductive Logic Programming (ALP)
	6.2 MetateM
	6.3 Transaction Logic

	7 Conclusions and Future Work
	References

	On Using Semantically-Aware Rules
for Efficient Online Communication

	1 Introduction
	2 Conceptual Approach
	3 Publication Rules
	3.1 Definitions
	3.2 Rule Construction
	3.3 Rule Usage on Complex Online Communication

	4 Implementation
	5 Use Cases
	6 Related Work
	7 Conclusions and Future Work
	References

	Conceptual Model Interoperability:
A Metamodel-driven Approach

	1 Introduction
	2 Related Works
	3 The Metamodel-driven Approaches
	3.1 Formalised Metamodel and Term Mappings
	3.2 Categorisation of Rules

	4 Interoperability Rules
	5 Validating Mappings with the Metamodel and Rules
	6 Discussion and Conclusions
	References
	Appendix

	On Verifying Reactive Rules
Using Rewriting Logic

	1 Introduction
	1.1 Overview of Reactive Rules and Motivation

	2 Formal Specification of Reactive Rules
	2.1 CafeOBJ Rewriting Logic Specification
	2.2 Reactive Rules and CafeOBJ

	3 Formal Verification of Reactive Rules
	3.1 Proving Termination Properties
	3.2 Proving Confluence Properties
	3.3 Proving Safety Properties

	4 Related Work and Discussion
	5 Conclusion
	References

	Using Rules to Develop a Personalized and Social
Location Information System for the Semantic Web
	1 Introduction
	1.1 Related Work on Knowledge-Based Personalization in LBS
	1.2 Geosocial SPLIS Relation to Other Works and Overall Contribution

	2 Design and Implementation
	3 Geosocial SPLIS Operation Process
	3.1 Presentation of Information Process
	3.2 Processes Concerning Rules
	3.3 Processes Exploiting Social Ties

	4 Use Case Scenarios
	4.1 Scenario Concerning Individuals
	4.2 Scenario Concerning Nearby Friends

	5 Evaluation
	5.1 Operations Concerning Rules and Presentation of Information
	5.2 Social Processes
	5.3 System in General

	6 Conclusions and Future Work
	References

	Checking Termination of Logic Programs with
Function Symbols through Linear Constraints

	1 Introduction
	2 Preliminaries
	3 Rule-Bounded Programs
	4 Cycle-Bounded Programs
	5 Related Work
	6 Conclusions
	References

	A Datalog+ RuleML 1.01 Architecture for Rule-Based Data Access in Ecosystem Research
	1 Introduction
	2 RBDA Technology
	2.1 Kinds of Rules in KBDA
	2.2 A Unified Architecture for KBDA
	2.3 KB and Mappings in Datalog+ RuleML
	2.4 Relations and Graphs in PSOA RuleML

	3 ΔForest Case Study

	3.1 Global Schema and KB Rules
	3.2 Query Processing and Mappings

	4 Conclusions
	References

	A Hybrid Diagnosis Approach Combining Black-Box and White-Box Reasoning
	1 Motivation and Related Work
	2 Background
	3 Black-Box Approaches
	4 White-Box Provenance Approach
	4.1 Non-aggregate Rule Rewriting
	4.2 Aggregate Rule Rewriting
	4.3 Generation of Diagnosis Proof Tree

	5 Mixed Black-Box / White-Box Approach
	6 Real World Application – EULER/X
	6.1 Example
	6.2 Diagnostic Lattice

	7 Implementation and Benchmarks
	8 Conclusion and Future Work
	References

	Multi-valued Argumentation Frameworks
	1 Introduction
	2 Abstract Argumentation
	2.1 Background Definitions
	2.2 Subgraph Notation and Labelling of Subgraphs of an AF
	2.3 Computing AIN

	2.4 Multi-valued Logic

	3 Gradualism, Vagueness and Abstract Argumentation
	3.1 Computing uAIN

	4 Attack, Reinstatement, Accrual and Rebuttals
	5 Related Works
	6 Conclusions
	References

	Incomplete and Uncertain Data Handling in Context-Aware Rule-Based Systems with Modified Certainty Factors Algebra
	1 Introduction
	2 Related Work and Motivation
	3 Applying Certainty Factors to ALSV(FD) Logic
	3.1 Certainty Factors Algebra
	3.2 Certainty Factors in ALSV(FD) Formulae
	3.3 Modeling the Dynamics of Certainty Factors

	4 Applying Certainty Factors to XTT2 Tables
	5 Summary and Future Work
	References

	The Hardness of Revising Defeasible Preferences
	1 Introduction
	2 Defeasible Logic
	3 Computational Cost Analysis
	4 Summary and Related Works
	References

	From Guidelines to Practice: Improving Clinical Care through Rule-Based Clinical Decision Support
at the Point of Care
	1 Introduction
	2 Methods and Tools
	2.1 Methodology: Agile Business Rule Development Methodology
	2.2 Architecture: Technologies and Standards
	2.3 Clinical Scenario for CDS
	2.4 The CDS Service Processing Steps

	3 Results
	3.1 Testing
	3.2 Performance Evaluation

	4 Discussion
	5 Conclusion
	References

	Rules and Human Language Technology
	Requirement Compound Mining and Analysis
	1 Motivations
	1.1 Requirement Compounds
	1.2 Related Works
	1.3 Overall Structure of Technical Documents

	2 Linguistic Analysis
	2.1 Corpus Characteristics
	2.2 Requirement Identification
	2.3 Processing Requirement Compounds

	3 Implementation in Dislog
	3.1 TextCoop: A Platform for Discourse Analysis
	3.2 Main Features of Dislog and TextCoop
	3.3 Architecture of the Rule System

	4 Perspectives
	References

	Semi-automated Vocabulary Building
for Structured Legal English

	1 Introduction
	2 Controlled Natural Language, ‘CNL’
	3 SBVR Structured English
	4 Semi-formal KR in Legal Domain
	5 Example
	6 Semi-automated Vocabulary Building
	7 CIM to PIM to
PSM
	8 Conclusion and Future Directions
	References

	Basics for a Grammar Engine to Verbalize
Logical Theories in isiZulu

	1 Introduction
	2 Some Very Basic Aspects of isiZulu
	3 Verbalization Patterns and Algorithms
	4 Discussion
	5 Conclusions
	References

	Formal Rule Representation and Verification from Natural Language Requirements Using an Ontology
	1 Introduction
	2 Ontology of a System Behaviour
	2.1 Conceptualisation Choices
	2.2 Behavioural Rules
	2.3 Population of the Ontology

	3 From the Ontology to the Maude Formal Specifications
	3.1 The Formal Specification Language Maude
	3.2 Transformation Approach
	3.3 Automatic Translation of the Ontology into Maude Specifications
	3.4 User Requirements Verification in Maude

	4 Conclusion
	References

	Learning (Business) Rules from Data
	Learning Business Rules
with Association Rule Classifiers

	1 Introduction
	2 Related Work
	3 Business Rule Learning Requirements
	4 Drools-Based Rule Engine
	5 brCBA - CBA for Business Rule Learning
	5.1 Rule Expressiveness
	5.2 Rule Pruning
	5.3 Classification and Rule Conflict Handling

	6 Experiments
	6.1 Setup
	6.2 Results

	7 Conclusion
	References

	Interpreting Web Shop User’s Behavioral Patterns
as Fictitious Explicit Rating for Preference Learning
	1 Introduction and Related Work
	2 Rule Systems Describing User Preferences
	2.1 Preferential Interpretation of Fuzzy Logic
	2.2 Induction of Generalized Annotated Programs
	2.3 The Preference Model of Fagin-Lotem-Naor

	3 Data - Users’ Behavior and Item Properties
	3.1 Content Based Attributes

	4 Learning User Preference Rules from Behavioral Patterns
	4.1 Interpreting User’s Behavioral Patterns as Fictitious Explicit Rating
	4.2 Using Fictitious Explicit Rating for Content Based Preference Learning

	5 Experiments
	5.1 Evaluating Local Preference Methods for Behavioral Data
	5.2 Evaluating Global Preference Methods

	6 Conclusions and Future Work
	References

	Learning Association Rules from Data
through Domain Knowledge and Automation

	1 Introduction
	2 STULONG Data
Set
	2.1 Data Matrix Entry
	2.2 Domain Knowledge

	3 Association Rules and Logic of Association Rules
	3.1 Association Rules
	3.2 Logic of Association Rules

	4 Consequences of Item of Domain Knowledge
	4.1 Principles
	4.2 Atomic Consequences
	4.3 Agreed Consequences
	4.4 Set Cons(BMI ↑↑ Diastolic,⇒0.9,30)

	5 Formulating and Solving Analytical Question
	5.1 From Domain Knowledge to Analytical Questions
	5.2 Applying 4ft-Miner
	5.3 Interpreting Results

	6 Applying LISp-Miner Control Language
	6.1 Example of Complex Task
	6.2 Principles of Solution
	6.3 Examples of Results

	7 Conclusions
	7.1 Related Research
	7.2 Summary and Further Research

	References

	Using Discriminative Rule Mining to Discover Declarative Process Models with Non-atomic Activities
	1 Introduction
	2 Background
	2.1 Declare: The Language
	2.2 Activity Lifecycle
	2.3 Discriminative Mining

	3 Approach
	3.1 Lifecycle Consistency Checking
	3.2 Boundary State Detection
	3.3 Discovering Inter-Lifecycle Relations
	3.4 Discovering Intra-Lifecycle Relations

	4 Experiments
	4.1 Synthetic Log Analysis
	4.2 BPI Challenge 2013

	5 Conclusion and Future Work
	References

	Legal Rules and Norms
	Modeling Obligations with Event-Calculus
	1 Introduction
	2 Normative Requirements Revisited
	3 Event Calculus
	4 Modeling Obligations with Event Calculus
	4.1 Punctual Obligation
	4.2 Persistent Obligation
	4.3 Compensation Obligation

	5 Proof Sketches of Correctness
	6 Related Work
	7 Final
Remarks
	References

	A Process for Knowledge Transformation
and Knowledge Representation of Patent Law

	1 Introduction
	2 Related Work
	3 Generalized Process
	4 Example
	5 Annotation
	6 Disaggregation
	7 Semi-formal Representation
	8 Formal
Representation
	9 Semantic Transformation and Reasoning
	9.1 Syntax
	9.2 Semantics
	9.3 Axiomatization
	9.4 Translation from SBVR to LegalRuleML

	10 KR4IPLaw
	11 Conclusion and Future Directions
	References

	Legal Responsibility for the Acts of Others:A Logical Analysis
	1 Introduction
	2 The Legal Background
	3 The Logical Framework
	4 A Formal Analysis of Responsibility in Cooperative Relations
	5 Discussion
	6 Summary
	References

	Author Index

