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Abstract We study dynamical properties of a setΛ of trajectories from a small neigh-
bourhood of a non-transversal Poincaré homoclinic orbit. We show that this problem
has no univalent solution, as it takes place in the case of a transversal homoclinic orbit.
Here different situations are possible, depending on the character of the homoclinic
tangency, when Λ is trivial or contains topological (hyperbolic) horseshoes. In this
chapter we find certain conditions for existence of both types of dynamics and give
a description (in term of the symbolic dynamics) of the corresponding non-trivial
hyperbolic subsets from Λ.

1 Introduction

Homoclinic orbit or Poincaré homoclinic orbit is an orbit that is bi-asymptotic to
a saddle periodic trajectory. Thus, any such orbit belongs to the intersection of the
invariant stable Ws and unstable W u manifolds of the corresponding periodic orbit.
Depending on transversality or non-transversality of the intersection, the homoclinic
orbit is called transversal or non-transversal. In the latter case, one says also about
homoclinic tangency.

The existence of transversal Poincaré homoclinic orbits is considered as the uni-
versal criterium of chaos. The point is that even the set Λ1 of orbits entirely lying in
a small neighbourhood of a transversal homoclinic orbit has a non-trivial structure:
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Fig. 1 a The graph of the Markov chain Bk̄+q
2 related to the symbolic description of Λ1. b A

neighbourhood of a transversal homoclinic orbit: k̄ can be interpreted as a minimal number of
iterations of the diffeomorphism under which orbits of Λ1 can stay in U0; and q is a number
of neighbourhoods (small squares) surrounding those points of Γ1 which do not belong to U0. c

Suspensions over Bk̄+q
2 and B2 are equivalent [3]

it contains infinitely (countable) many periodic and homoclinic orbits, continuum of
Poisson stable orbits, etc. Nevertheless, the set Λ1 can be described completely in
terms of the symbolic dynamics, [33]. Namely, let f be a diffeomorphism having
a transversal homoclinic orbit Γ1 to a saddle fixed point O (see Fig. 1). Then the
following result, Shilnikov theorem [33], takes place:

• The set Λ1 is a locally maximal uniformly hyperbolic invariant set on which a

diffeomorphism is topologically conjugate to a subsystem Bk̄+q
2 of the Bernoulli

shift B2 with two symbols, where Bk̄+q
2 is given by the Markov chain of Fig. 1a

and k̄, q are integers indicated in Fig. 1b.

Evidently, this result covers also the flow case: then one can consider the set Λ1 as
an invariant set for the Poincaré map of a local section to the corresponding saddle
periodic trajectory. However, if we consider Λ1 as the set of flow orbits, then the
result sounds simpler:

• Λ1 is topologically equivalent to a suspension over B2.

Note that the notion of suspension over a topological Markov chain was introduced
in [3]. It generalizes the standard notation of suspension over a map and is convenient
for description of flow dynamics (in particular, for classification of critical sets of
Morse–Smale systems [2, 3]).

In the case of homoclinic tangency, the corresponding problem (of a description
of the orbit structure near a non-transversal homoclinic orbit) becomes much more
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complicated. Moreover, it cannot be principally solved namely as the problem of
“complete description”, especially when nearby systems are considered. The point
is that arbitrarily small smooth perturbations of any system with a (quadratic) homo-
clinic tangency can lead to the appearance of homoclinic and periodic orbits of any
orders of degeneracy, see [17, 18, 20, 22].

One of the problems of such a type, namely, the study of topological and hyper-
bolic properties of systems with homoclinic tangencies, is the subject of the present
chapter. Hyperbolic properties of systems with quadratic homoclinic tangencies were
studied first in the paper [5] of N.K. Gavrilov and L.P. Shilnikov and, afterwards, in a
series of papers, e.g. [7, 8, 11]. See also the special issue [16] devoted to homoclinic
tangencies. Homoclinic tangencies of arbitrary finite orders were studied in papers
[6, 11] in which the main attention was given to detecting non-trivial hyperbolic sub-
sets. Note also that certain conditions for the existence of topological horseshoes near
homoclinic tangencies were established in [26, 29] for two-dimensional dissipative
diffeomorphisms.

In this chapter, see also [24], we extend these results to multidimensional dif-
feomorphisms (not necessarily dissipative) having homoclinic tangencies to saddle
periodic orbits with one-dimensional unstable invariant manifolds.

We assume throughout the paper the following set-up. Let f be an (m + 1)-
dimensional Cr -diffeomorphism, r ≥ 2, having a hyperbolic fixed point O with
multipliers λ1, . . . , λm, γ such that

0 < |λm| ≤ · · · ≤ |λ2| ≤ |λ1| < 1 < |γ |. (1)

We consider the quantity σ ≡ |λ1||γ | which is called the saddle value. Our main
assumption is σ �= 1 and we consider two different general cases:1

(1) the sectionally dissipative case when σ < 1 and
(2) the sectionally saddle case when σ > 1.

We assume also that f has a homoclinic orbit Γ0 to O for which m-dimensional
stable Ws and one-dimensional unstable W u invariant manifolds of O are tangent
and this tangency can be arbitrary.

Let U be a small neighbourhood of the contour O ∪ Γ0. It can be represented
as a union of a small neighbourhood U0 of the point O with a number of small
neighbourhood of those points of Γ0 which do not belong to U0, as in Fig. 1b. Let Λ
be the set of orbits (of f ) entirely lying in U .

Our main problem is the study of both topological and hyperbolic properties of
Λ. We will keep the following standard terminology.

Definition 1 We say that

(i) f possesses a trivial dynamics near Γ0 if Λ = O ∪ {Γ }, where {Γ } is a set of
homoclinic orbits to O;

1 Note that the case σ = 1 (i.e. O is a neutral saddle) is very specific and we do not consider it here.
We only refer the reader to papers [9, 12, 21] in which various cases of neutral saddles (σ = 1)
with homoclinic tangencies were analysed; see also papers [10, 14, 15] in which area-preserving
maps were considered.
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Fig. 2 Homoclinic tangencies. a One-sided “from above”. b One-sided “from below”. c Topological
crossing

(ii) f has a topological horseshoe if Λ contains an f -invariant subset Λ̃ such
that f |Λ̃ is topologically semi-conjugate to a subshift of finite type with positive
topological entropy;

(iii) f has a hyperbolic horseshoe if Λ̃ from (ii) is uniformly hyperbolic and a
topological conjugacy (instead the semi-conjugacy) takes place.

LetM+ andM− be a pair of points ofΓ0 such thatM+ ∈ Ws
loc∩U0, M− ∈ W u

loc∩U0.
Let Π+ and Π− be sufficiently small neighbourhoods of the points M+ and M−,
respectively, and let M+ = f q(M−) for some integer positive q. Denote the map
f |U0 as T0 and the map f q |Π− as T1 (thus, T1(M−) = M+). The map T0 is called
the local map, because it is defined in a small neighbourhood of O; while, the map
T1 is called the global map, because it acts along a global piece of the orbit Γ0.

Definition 2 The homoclinic tangency is isolated if, for some Π+, the point M+
is the unique intersection point of lu = T1(W u

loc ∩ Π−) ∩ Π+ and Ws
loc. We say

that the (isolated) homoclinic tangency is one-sided if Ws
loc divides Π+ onto two

half-parts and the curve lu belongs as whole to the closure of exactly the one half of
Π+, otherwise, the tangency is called topological crossing. We say that a one-sided
tangency is from below, if the point M− is not an accumulation point of the curves
T i

0 (lu), i = 0, 1, . . . , i.e.

M− /∈
⋃

i≥0
{T i

0 (lu)}; (2)

and is from above otherwise. See Fig. 2 for an illustration.2

We need to say that the problem under consideration (on a structure of the setΛ of
orbits near a non-transversal homoclinic orbit) is sharply different in many aspects

2 Note that if γ < 0, then condition (2) can hold only when Ws
loc contains lu. Thus, in this case,

any isolated one-sided tangency is, in fact, a tangency “from above”. On the other hand, if γ > 0,
condition (2) allows a big variety of non-isolated tangencies.
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from the corresponding problem (the so-called Poincaré–Birkhoff problem) for the
case of transversal homoclinic orbit.

First, it does not allow a single (univalent) answer (like the Shilnikov theorem):
we select two very different situations when the set Λ has a trivial structure and
when Λ contains infinitely many horseshoes, in a sense of Definition 1.

Second, under the weakest assumptions, related only to geometrical properties
of the homoclinic tangency, see Definition 2, we can establish the corresponding
classification results for the sectionally dissipative case σ < 1 (see Theorem 1)
or for the two-dimensional case σ > 1 (which is reduced to the case σ < 1 for
f −1), see Proposition 2. Furthermore, we render concrete the problem by means of
additional general assumptions under conditionsA, B, C and D in Sect. 3). Conditions
A–C define the so-called simple homoclinic tangency and D defines an order of
this tangency. Importantly, for simple homoclinic tangencies with σ > 1, we can
establish quite readable classification results, see Theorems 2 and 3. However, for
non-simple homoclinic tangencies with σ > 1, even for quadratic ones, we have
no hope for a similar classification; see Sect. 4.1. Instead, it was shown in [6, 24]
that, in the case of simple homoclinic tangencies of finite orders, a quite detailed
description of non-trivial hyperbolic invariant subsets from Λ can be achieved. We
collect the corresponding (hyperbolic) results in Sect. 5, see Theorems 4 and 5 and
their specifications: Proposition 5 for the case σ < 1 and Proposition 6 for the case
σ > 1. By “a quite detailed description”, we mean that for some dense subset of
systems with homoclinic tangency this description (given by Theorem 5) becomes
complete; we prove this fact in Sect. 5.1, see also Proposition 7.

2 Topological Horseshoes in the Sectionally Dissipative Case

Note, at first, that condition (2) in the sectionally dissipative case (σ < 1) can be
regarded to a certain criterion of trivial dynamics that the following result shows.

Theorem 1 Let f have a homoclinic tangency to O and σ < 1. Then

1. If the tangency satisfies condition (2) (in particular, when the tangency is “from
below”), then f possesses the trivial dynamics near Γ0.

2. Otherwise, i.e. when condition (2) is not fulfilled (but, again, σ < 1), f has
infinitely many topological horseshoes near Γ0.

The proof is given in Sect. 6, see also [24]. Note that the two-dimensional case was
analysed in [29, 26]. Nevertheless, it is necessary to note that the main geometric idea
of the proof is quite simple that Fig. 3 reflects where the corresponding illustrations
(in dimension 2) are shown.

Indeed, the problem under consideration allows a geometric interpretations as
follows. In Π+ and Π− there exist infinitely many (m + 1-dimensional) disjoint
strips σ 0

k ⊂ Π+ and σ 1
k ⊂ Π−, k = k1, k1 + 1, . . . , such that σ 0

k = T −k
0 (Π−) ∩Π+

and σ 1
k = T k

0 (Π+) ∩Π− = T k
0 σ

0
k . Thus, only iterations under f of points from Π+
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a b

Fig. 3 The strips σ 0
k and σ 1

k are posed on the distances of order γ−k from Ws
loc and λk1 from

W u
loc, respectively. By a geometry of the tangency, the image of σ 1

k under the global map T1 is a
horseshoe T1(σ 1

k ) whose top is posed on a distance ∼ λk1 from Ws
loc. Since λk1 � γ−k , we have:

a T1(σ 1
k )∩σ 0

k = ∅ in the case of tangency “from below”. b The return map Tk ≡ T1T
k

0 : σ 0
k → Π+

is similar to a Smale horseshoe map in the case of tangency “from above”

which belong to the strips σ 0
k can reach Π−. In turn, the image of the strip σ 1

k under
the global map T1 is a horseshoe-shaped figure T1(σ 1

k ) ⊂ Π+ (below we will use
term “horseshoe T1(σ 1

k )” namely in this, geometrical, sense). Therefore, infinitely
many first return maps Tk = T1T

k
0 : σ 0

k → Π+, k = k̄, k̄ + 1, are defined here. If
the tangency is “from below” all these maps possess a trivial dynamics, see Fig. 3a.
However, in the case of tangency “from above” (or topological crossing), all these
maps act, topologically, as Smale horseshoe maps, see Fig. 3b. Therefore, we can say,
in the latter case, about existence of infinitely many geometrical Smale horseshoes.

Although within the hypothesis of Theorem 1 we can not say directly on hyperbolic
properties of these topological horseshoes, one can apply some indirect facts, like
the Katok theorem [30], in order to deduce the following.

Proposition 1 In the case 2 of Theorem 1 the set Λ contains infinitely many
hyperbolic horseshoes in sense of Definition 1.3

Indeed, by Theorem 1, we get that the restriction to each topological horseshoe
has positive topological entropy. The latter means that there are some orbits with
positive first Lyapunov exponent. These orbits have other Lyapunov exponents to

3 For example in the case of tangency “from above”, the topological (geometrical) horseshoe of
map Tk (for every value of k from an infinite sequence of integers) contains an Tk-invariant subset
Δk such that the system Tk |Δk is uniformly hyperbolic and topologically conjugate to a subshift of
finite type with positive topological entropy.
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a b

Fig. 4 Geometry of strips and horseshoes in the case σ > 1

be negative, due to the sectional dissipation that implies the absence of such orbits
having zero second Lyapunov exponent.4

Thus, in the sectionally dissipative case, relation (2) provides the necessary con-
dition for the existence of trivial dynamics near a homoclinic tangency. It is not
the case when σ > 1. In particular, we can see principal differences in geometry
between the cases σ < 1 and σ > 1 even in dimension two (compare Figs. 3 and 4).
However, Theorem 1 can be directly applied to this 2dim case for σ > 1, since we
can here consider f −1 instead f . Then the following condition

M+ /∈
⋃

i≥0
{T −i

0 (ls)}, (3)

where the curve ls ⊂ Π− is defined as ls = T −1
1 (Ws

loc ∩ Π+) ∩ Π−, plays role of
the condition(2). Thus, we obtain

Proposition 2 Let f be two-dimensional and σ > 1. Then

1) If condition (3) holds, then f possesses a trivial dynamics near Γ0.
2) Otherwise, i.e. when (3) is not valid (but, again, σ > 1), thenf has infinitely many

topological horseshoes near Γ0 every of which contains a hyperbolic horseshoe
in sense of Definition 1.

Unfortunately, this approach is not suitable for multidimensional case with σ > 1
since dim W u(O) > 1 for f −1 and it is not the case under consideration. Moreover,
as we will see below, in this case we need, by necessity, an additional specification
of the homoclinic tangency, since only geometrical properties are not sufficient even
for deriving certain classification results like Theorem 1. However, an analogous
specification is required especially (even for the case σ < 1), if we want to know

4 We thank D. Turaev who attracted our attention to the interesting fact that the Katok theorem can
be directly applied to the sectionally dissipative case. See also [35].
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more. question relates to hyperbolic properties. Indeed, the hyperbolic horseshoes
from Corollary 1 are not specified. We do not know whether the first return maps
T1T

i
0 : σ 0

i → σ 0
i are hyperbolic. In order to get more information, we need to make

more assumptions (see conditions A–D below).

3 The Definition of a Simple Homoclinic Tangency

Let the multipliers λ1, . . . , λm, γ of O are ordered as in (1). We call leading (or
weak) those multipliers that are equal to |λ1| by the absolute value. Accordingly, the
other stable multipliers (less than |λ1| by modulus) are called non-leading (or strong
stable). We consider the following general condition:

A) the leading stable multipliers of O are simple.
Accordingly, two different types of saddle fixed (periodic) points are defined.
Namely,

A1) the point O is a saddle, i.e. the multiplier λ1 is real and |λ1| > |λj | for j =
2, . . . ,m;

A2) the point O is a saddle-focus, i.e. λ1 and λ2 are complex conjugate, λ1 =
λeiψ , λ2 = λe−iψ , 0 < λ < 1, 0 < ψ < π and λ > |λj | for j = 3, . . . ,m.

When the pointO has also non-leading stable multipliers we need more assumptions
related to the homoclinic tangency. Recall some necessary facts.

First, if Condition A holds, the manifold Ws
loc(O) contains a Cr -smooth strong

stable manifold Wss
loc which touches at O the eigenspace of Df corresponding to the

non-leading multipliers λi (thus, the Wss
loc has dimension (m − 1) or (m − 2) when,

respectively, A1 or A2 holds). Moreover, it is well-known (see e.g. [25, 34]) that
Ws

loc is foliated by the Cr strong stable foliation F ss containing Wss
loc as the leaf.

Note also that the manifold W u(O) is a part of the so-called extended unstable
manifold W ue(O) (see, for example, [25, 34]). It is a smooth (at leastC1+ε) invariant
manifold which is tangent, at O, to the eigenspace of Df corresponding to the
unstable and the leading stable multipliers, thus, W ue is two- or three-dimensional
if O is a saddle or a saddle focus, respectively. Although, the manifold W ue is not
defined uniquely, any two such manifolds contain W u

loc and are tangent to each other
at the points of W u

loc. Thus, at the homoclinic point M− ∈ W u
loc the tangent space

to W ue, denoted as TM−W ue is defined uniquely. Since M+ = T1(M−), we can
extend W ue up to the homoclinic point M+. Denote the tangent space to W ue at
M+ as TM+W ue. Evidently, TM+W ue = DT1 (TM−W ue)), where DT1 denotes the
differential of the global map T1 ≡ f q : Π− → Π+ at the point M−.

We introduce the following general conditions: the off strong stable manifold
condition

B) M+ /∈ Wss
loc

and subtransversality condition
C) TM+W ue is transversal to F ss(M+) at M+, where F ss(M+) is the leaf of the

foliation F ss containing the point M+.
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b
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Fig. 5 Examples of three-dimensional diffeomorphisms with simple (a), and non-simple (b)–(c)
homoclinic tangencies

An example of three-dimensional diffeomorphism satisfying the conditions A1,
B and C is shown in Fig. 5a. Main cases where C is violated (while A1 and B are
kept) are illustrated in Fig. 5b and c. Here, either TM+W ue is transversal to Ws

loc but
touches F ss(M+) atM+, as in case (b), or TM+W ue belongs toWs

loc (i.e., any surface
T1(W ue) touches Ws

loc at M+), as in case (c).

Definition 3 A homoclinic tangency satisfying conditions A–C is called simple.
We can also adapt this definition to homoclinic tangencies of finite orders as

follows.

Definition 4 Let f be aCr -diffeomorphism under consideration and n be an integer
such that 2 ≤ n ≤ r . Then we say that the homoclinic tangency at M+ is of order n
if there exists local (near M+) Cr -coordinates (ξ1, . . . , ξm, η) in which Ws

loc has the
equation η = 0 and a piece of W u containing M+ can be written (in the parameter
form) as follows

ξi = biα +O(α2), (i = 1, . . . ,m), η = g(α), (4)
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where g(α) is Cr and

g(0) = dg(0)

dα
= · · · = dn−1g(0)

dαn−1
= 0,

dng(0)

dαn
= n!, d �= 0, (5)

where α is a parameter varying near zero, bi and d are constants and
∑ |bi | �= 0. If

all derivatives dig(0)/dαi vanish for i = 0, . . . , s, where s ≥ r , then we say that the
tangency is of indefinite order.

By definition, tangencies of even orders are one-sided, while, tangencies of odd
orders correspond to the topological crossings. Tangencies of some small orders have
special notations: quadratic for n = 2, cubic for n = 3, quadric for n = 4. Note
that a type of the tangency can depend on coordinate changes. For instance, even
a quadratic tangency can be transformed into a tangency of indefinite order under
C1-change of coordinates.5

We introduce the following condition:
D) the manifolds Ws(O) and W u(O) have the tangency of a finite order n ≥ 2 at the
homoclinic point M+.

Since f is diffeomorphism, condition D implies that Ws(O) and W u(O) have
tangency of order n at any point of Γ0. Note that, in the real analytical case, the
condition D holds always in that sense that any possible homoclinic tangency can
be only of finite order here (except for infinitely degenerate cases when Ws(O) and
W u(O) coincide).

By Definition 3, a homoclinic tangency satisfying conditions A–D should be
labeled as simple homoclinic tangency of order n. Note that notation of simple
quadratic homoclinic tangency was introduced in [19] which is, in fact, a certain
variant of the so-called quasi-transversal homoclinic intersection, [31].

Note that conditions A–C have very important dynamical sense. Namely, when
these conditions hold the corresponding diffeomorphism f has, see [34, 36],

• A global smooth invariant center manifold Wc which contains the orbits O and
Γ0 as well as all orbits entirely lying in U .

This manifold is normally-hyperbolic (in sense of [25]), since f is exponentially
contracting along transversal to Wc directions which correspond, at O, to the u-
directions. Therefore, dimWc = 2 or dimWc = 3 depending on A1 or A2 holds and,
thus, the problem under consideration allows the so-called dimension reduction to
dim = 2 or dim = 3, respectively. Therefore, it has a certain sense to single out this
type of homoclinic tangencies, i.e. the simple homoclinic tangencies.

However, an insufficient smoothness ofWc (onlyC1+ε , the same as forW ue) “de-
stroys” the condition D in the restricted system f |Wc. Therefore, when this condition
is principally important (see Sect. 5) we should work with the initial multidimen-
sional system (even in the sectionally dissipative case σ < 1). On the other hand,

5 Therefore, in problems of such type, it is not reasonable to use a C1-linearization (which, by the
way, does not always exist in the multidimensional case). This can lead to non-repairable mistakes
in the proofs or to absurd results, and, in the best case, only very rough topological properties can
be established [32, 4].



On Topological and Hyperbolic Properties of Systems with Homoclinic Tangencies 39

the condition D is hardly controlled one (for specific systems) and, therefore, it is
reasonable to assume that only its topological variant takes place, i.e. the homoclinic
tangency is simple one-sided or simple topological crossing (here, “simple” means
again that conditions A–C are fulfilled). In this case one can obtain certain meaning-
ful results related to the existence of horseshoes (topological or even hyperbolic) in
the case σ > 1. See Sect. 4.

3.1 On a Coordinate Expression of the Simple Homoclinic
Tangency

We will use in U0 local coordinates in which the saddle map T0 takes the so-called
main normal form or normal form of the first order. This form is very convenient for
calculations and, in contrast to the linear form, exists always. Thus, the following
result holds.

Lemma 1 [13, 8, 34]. Let f be Cr (r ≥ 2) and O have multipliers λ1, . . . , λm, γ
satisfying (1). Then the map T0 = f |U0 can be written, in some Cr -coordinates
(x, u, y) on U , as follows:

(x̄, ū, ȳ) =
(
Âx + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
, (6)

where eigenvalues of the matrix Â are equal to |λ1| by absolute values, whereas,
eigenvalues of B̂ are all smaller. Besides, the functions h1,h2,h3 satisfy conditions

h1(0, 0, y) ≡ 0, h2(0, 0, y) ≡ 0, h3(x, y, 0) ≡ 0,

h1(x, u, 0) ≡ 0, h3(0, 0, y) ≡ 0,
∂h1

∂x
|x=0,u=0≡ 0,

∂h2

∂x
|x=0,u=0≡ 0

∂h3

∂y
|y=0≡ 0.

(7)

Remark 1 The proof of Lemma 1 is based on the so-called “Afraimovich changes of
variables” [1]. In turn, these changes generalize the method by E.A. Leontovich for
construction of finitely-smooth normal forms of two-dimensional flows near saddle
equilibria [27, 28]. See also [21, 34] for a modern treatment of this theory.

If condition A holds, we have in Lemma 1 that either x ∈ R
1 and Â = λ1 in case

A1; or x ∈ R
2 and Â2 = λ

⎛

⎝
cosψ − sinψ

sinψ cosψ

⎞

⎠ in case A2.

Using the main normal form one can easily calculate any iterations T k
0 , especially,

when k is large that the following result shows.
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Lemma 2 [13, 8, 34] Let (xk , uk , yk) = T k
0 (x0, u0, y0). When the local mapT0 is writ-

ten in form (6) and identities (7) hold, the following relations take place for all large k:

xk − Âkx0 = λ̂kξk(x0, u0, yk),

uk = λ̂k ξ̂k(x0, u0, yk),

y0 − γ−kyk = γ̂−kηk(x0, u0, yk)

(8)

where λ̂ and γ̂ are some constants such that 0 < λ̂ < |λ1| , γ̂ > |γ | and functions
ξk , ηk , ξ̂k , η̂k are uniformly bounded for all k, along with the derivatives up to order
(r−2). The derivatives of orders (r−1) and r are estimated as follows ‖xk , uk‖

Cr−1 =
o(|λ1|k), ‖y0‖

Cr−1 = o(|γ |−k) and ‖xk , uk , y0‖Cr
= o(1)k→∞.

In the coordinates of Lemma 1, the manifolds Ws
loc(O), W u

loc(O) as well as Wss
loc

are straightened, i.e. they have the following equations:

Ws
loc(O) − {y = 0}, W u

loc(O) − {(x, u) = 0}, Wss
loc − {x = 0, y = 0}.

Hence, we can write that M+ = (x+, u+, 0) and M−(0, 0, y−), where y− > 0. If
condition B holds, then ‖x+‖ �= 0. In case A1, since x ∈ R

1 (and u ∈ R
m−1), it

means that x+ �= 0 and we assume that x+ > 0 here.
Define the neighbourhoods Π+ and Π− of M+ and M−, respectively, as follows

Π+ = {‖(x − x+, u − u+)‖ ≤ ε0, |y| ≤ ε0}, Π− = {‖(x, u)‖ ≤ ε1, |y − y−| ≤ ε1},
(9)

where ε0 > 0, ε1 > 0 are sufficiently small and T0Π
+∩Π+ = ∅, T −1

0 Π−∩Π− = ∅.
The global map T1 ≡ f q : Π− → Π+ can be written as follows

(x̄ − x+, ū − u+) = F (x1, u1, y1 − y−), ȳ = G(x1, u1, y1 − y−), (10)

where Cr -functions F and G are defined on Π− and F (0) = 0,G(0) = 0 as well as
Gy(0) = 0. Then we can write the map T1 in the following form

(x̄ − x+, ū − u+) = ax + âu + b(y − y−) +O
(‖(x, u)‖2 + (y − y−)2

)
,

ȳ = cx + ĉu + ϕ(y − y−) +O
(‖(x, u)‖2 + ‖(x, u)‖|y − y−|),

(11)

where ϕ(0) = 0 and ϕ′(0) = 0, since the curve T1(W u
loc) touches Ws

loc at the point
M+, and

det

(

a â b

c ĉ 0

)

�= 0. (12)

If condition D holds, then

ϕ(y − y−) ≡ d(y − y−)n + o
(
(y − y−)n

)
and d �= 0. (13)
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Note also that, in the coordinates of Lemma 1, the foliation F ss has a form
{x = const , y = 0} and the tangent space TMW ue to W ue at any point M ∈ W u

loc

is the plane u = 0. Then condition C means, by (11), that the planes TM+W ue :
{(x̄ − x+, ū − u+) = ax + b(y − y−), ȳ = cx} and F ss(M+) :

{
x̄ = x+, ȳ = 0

}

are transversal (here, TM+W ue is given in a parameter form where x and (y − y−)
are parameters). It means that the system (0, u − u+) = ax + b(y − y−), 0 = cx has
a unique solution. Thus, condition C reads as

b1 �= 0, c �= 0 in case A1 (14)

or as

b2
1 + b2

2 �= 0, c2
1 + c2

2 �= 0 in case A2. (15)

Note that Fig. 5b and c correspond to the caseA1 with b1 = 0 and c = 0, respectively.

4 On Simple Homoclinic Tangencies in the Sectionally
Saddle Case

In this section we consider, essentially, the multidimensional sectionally saddle case
σ > 1. Concerning a type of the homoclinic tangencies, we assume in this section
that they are isolated and one-sided.

Then f can possess both trivial and non-trivial dynamics near Γ0 depending on
type of the tangency.

Remark 2 In the case of topological intersection, infinitely many topological horse-
shoes near the homoclinic tangency always exist. It follows from the fact that the

system f |Λ is semi-conjugate to Bk̄+q
2 (compare with the Shilnikov theorem from

Introduction). However, even in this case, if conditions A1, B and C hold (i.e. O is
a saddle and the tangency is simple), infinitely many hyperbolic horseshoes (in the
sense of Definition 1) exist. This fact follows directly from the Katok theory, since
the problem allows reduction to dim = 2 in this situation. Note that in [11] certain
classes of systems with simple homoclinic tangencies of odd order are described for
which f |Λ is topologically conjugate to B2

k̄+q and all orbits of Λ, except Γ0, are of
saddle type.

We introduce the so-called “index of one-sided tangency” ν0 that can take values
+1 or −1 and is defined as follows. Consider the piece T1(W u

loc) ∩ Π+ of W u(O)
which, by (11), has the equation

(x̄ − x+, ū − u+) = bα +O
(
α2

)
, ȳ = ϕ(α), (16)

written in the parametric form, where α = y − y− is a parameter. Since ϕ(0) =
0,ϕ′(0) = 0, the curve (16) touches the plane ȳ = 0 at α = 0. Let this tangency be
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a b c

Fig. 6 Examples of simple homoclinic tangencies with trivial dynamics for λ1 > 0, γ > 0

one-sided, then we define

ν0 = sign ϕ(ξ ) at ξ �= 0.

Thus, if γ > 0 the homoclinic tangency (one-sided and isolated) is “from below” if
ν0 = −1 and it is “from above” ifν0 = +1. Ifγ < 0 the value of indexν0 depends on a
choice of homoclinic points in such a way that, for example, ν0(M+) = −ν0(f (M+));
it means that we can always take such pairs of the homoclinic points that ν0 = +1.
Note that if the tangency is of even order, then ν0 = sign d that follows directly
from (13).

Theorem 2 [Simple homoclinic tangencies with trivial dynamics]
Let f have a one-sided homoclinic tangency satisfying A1, B and C and one of the
following conditions: (1) σ < 1 and γ > 0, ν0 < 0; (2) σ > 1 and λ1 > 0, cν0 > 0
or 3) λ1 > 0, γ > 0, c < 0, ν0 < 0 (independently on σ ).

Then f possesses trivial dynamics near Γ0, i.e. Λ = O ∪ Γ0.

Proof Item 1 of the theorem is a partial case of Theorem 1, see Fig. 6a.
Consider item 2 of the theorem.
Since A1 holds, the map T0, by Lemma 1, takes the form

(x̄, ū, ȳ) =
(
λ1x + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
, (17)

where x, y ∈ R
1, u ∈ R

m−1 and the matrix B̂ has eigenvalues λ2, . . . , λm. Then, by
Lemma 2, map T k

0 can be written in the following cross-form (compare with (8))

xk = λk1x0

(
1 +O([λ̂/λ1]k)

)
, uk = O

(
λ̂k

)
, y0 = γ−kyk(1 +O

(
[γ̂ /γ ]−k)

)
.

(18)

Using (11) we can write the first return map Tk = T1T
k

0 : σ 0
k �→ Π+ as follows

(x̄0 − x+, ū0 − u+) = b(y1 − y−) +O
(|λ1|k‖(x0, u0)‖ + (y1 − y−)2

)
,

ȳ0 = c1λ
k
1x0 + ϕ(y1 − y−) +O

(
λ̃k‖(x0, u0)‖ + |λk1|‖(x0, u0)‖|y1 − y−|

)
,

(19)
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where x0, y0, y1 ∈ R
1, u0 ∈ R

m−1. Let ȳ0 be the y-coordinate of a point inside some
strip σ 0

j ⊂ Π+. Then we can write, by (18), that ȳ0 = γ−j ȳ1 + O(γ̃−j ). Introduce

the coordinates ξ = x0 − x+, ξ̂ = u0 − u+ and η = y1 − y−. Then we can write the
second equation of (19) in the form

γ−j (
y− + η̄ +O([γ̂ /γ ]−j

) = c1λ
k
1

(
x+ +O(|ξ | + |η|) +O([λ̂/λ]j )

)
+ ϕ(η).

(20)

Since ξ , ξ̂ , η are small, x+ > 0, y− > 0 as well as λ1 > 0 and c1ν0 > 0, Eq. (20)
can have solutions only in the case |γ |−j ≥ λk1. Since |λ1γ | > 1, this inequality can
be fulfilled if only k � j . Thus, any horseshoe T1(σ 1

k ) can intersect only those strips
σ 0
j whose numbers are strictly less than k, see Fig. 6b. It implies that some forward

iteration of any point from Π+ must leave U . Thus, only two orbits, O and Γ0, will
always stay in U which implies that the dynamics is trivial.

In the case λ1 > 0, γ > 0, c1 < 0, ν0 < 0, Eq. (20) has no solutions at all,
independently on σ . It means that the horseshoes T1(σ 1

k ) do not intersect any strip
σ 0
i , see Fig. 6c, i.e. the dynamics is trivial. This completes item (3) of the theorem.

Theorem 3 [Simple one-sided tangencies with non-trivial dynamics at σ > 1]
Let f have a one-sided homoclinic tangency satisfying conditions A–C and let σ > 1.
Then the set Λ(f ) contains infinitely many topological horseshoes in the following
cases:

(1) the point O is a saddle-focus, i.e. conditions A2 holds; (2) the point O is a
saddle, i.e. A1 holds, and the combination λ1 > 0, ν0 > 0 of the signs takes no place.

Proof In the case of item 1 of the theorem, we have, by Lemma 1, that the local
map T0 has the form

(x̄, ū, ȳ) =
(
λRψx + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
,

where x = (x1, x2) andRψ is the rotation matrix (on the angleψ). The global map T1

has now form (11), where c = (c1, c2) and c2
1 + c2

2 �= 0 by the condition C and ϕ(s)
is a function of fixed sign at s �= 0 because the homoclinic tangency is one-sided.

Consider the first return map Tk = T1T
k

0 : σ 0
k �→ Π+ which can be written now

as

(x̄ − x+, ū − u+) = (b1, b2)ᵀ(y − y−) +O
(
λk‖(x, u)‖ + (y − y−)2

)
,

ȳ = λk ((c1 cos kψ + c2 sin kψ)x1 + (c2 cos kψ − c1 sin kψ)x2)

+ ϕ(y − y−) + +O
(
λ̃k‖(x, u)‖ + λk‖(x, u)‖|y − y−|

)
.

(21)

Let us show that, for infinitely many values of k, these maps Tk are, geometrically,
Smale horseshoe maps. Introduce new x-coordinates as ξ1 = x1 −x+

1 , ξ2 = x2 −x+
2 .

Then the second equation from (21) can be written as

ȳ = λk
(
Ĉ cos (kψ + θ ) +O(‖ξ‖)

)
+ ϕ(y − y−)

+O
(
λ̃k‖(ξ , u)‖ + λk‖(ξ , u)‖|y − y−|

)
,

(22)
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where Ĉ =
√

(c2
1 + c2

2)((x+
1 )2 + (x+

2 )2) and θ ∈ [0, 2π ) is an angle such that

cos θ = (c1x
+
1 + c2x

+
2 )Ĉ−1, cos θ = (c2x

+
1 − c1x

+
2 )Ĉ−1.

Note that Ĉ > 0, since the conditions B and C imply, respectively, that (x+
1 )2 +

(x+
2 )2 �= 0 and c2

1 + c2
2 �= 0.

Let ϕ(s) ≥ 0 and γ > 0, for the sake of definiteness. Then ȳ from (22) can run
values from ȳmin = λk(Ĉ cos (kψ+θ )+O(‖ξ‖)) till ȳmax = maxϕ(s)|s|≤ε1 +O(λk).
However, values of the coordinate y on the strip σ 0

k satisfy the inequality

γ−k(y− − ε1) < y < γ−k(y− + ε1).

Evidently, there are such δ0 > 0 and δ1 > 0 that (i) ȳmax > δ0 for all sufficiently
large k and (ii) for any ψ , since Ĉ > 0 and ‖ξ‖ is small, there are infinitely many
such k that (Ĉ cos (kψ + θ ) + O(‖ξ‖)) < −δ1. Thus, the first return map T1T

k for
such values of k transforms the strip σ 0

k into the horseshoe Tk(σ 0
k ) such that its top is

posed below σ 0
k (and even below Ws

loc) and the horseshoe intersects σ 0
k forming (at

least) two connected components. Thus, f possesses, in this case, infinitely many
geometrical Smale horseshoes. Other cases are considered analogously.

Consider item 2 of the theorem. Since A1 holds, the map Tk = T1T
k

0 : σ 0
k �→ Π+

can be written now as

(x̄ − x+, ū − u+) = (b1, b2)ᵀ(y − y−) +O
(|λ1|k‖(x, u)‖ + (y − y−)2

)
,

ȳ = cλk1x + ϕ(y − y−) +O
(
λ̃k‖(x, u)‖ + |λ1|k‖(x, u)‖|y − y−|

)
.

(23)

Denote ξ = x − x+. Then the second equation from (23) is rewritten as

ȳ = cλk1

(
x+ +O(|ξ |) +O([λ̃/λ1]k)

)
+ ϕ(y − y−). (24)

Consider the model equation γ−ky− = cλk1x
+ + ϕ(s) where s ∈ [ − ε1, ε1] and for

some δ̂ > 0, ϕ(s) ∈ [0, δ̂] or ϕ(s) ∈ [− δ̂, 0] and ν0 = signϕ(s)s �=0. Since |λ1γ | > 1,
this equation has no solution (with respect to s) only in the case where λ1 > 0 and
cν0 > 0. In other cases, at least two solutions exist.

It gives us the desired result.

4.1 On the Necessity of Conditions A and C for the
Existence/Absence of Topological Horseshoes

Note that, in the sectionally dissipative case σ < 1, as we can see from Theorem 1,
conditions A, B and C play only a role of auxiliary conditions which help to establish
certain hyperbolic properties. However, in the sectionally saddle case σ > 1, these
conditions become necessary even for the topological horseshoe property. If they
are violated, then the corresponding system can possess either trivial dynamics or
horseshoes depending on new characteristics of the corresponding (non-simple) ho-
moclinic tangency. We illustrate this fact by means of considering a three-dimensional
model below.



On Topological and Hyperbolic Properties of Systems with Homoclinic Tangencies 45

Let g0 be a three-dimensional diffeomorphism having a saddle fixed point Ô with
multipliers λ1, λ2, γ , where 0<λ2 <λ1 <1<γ and λ1γ>1, and a homoclinic orbit
Γ̂0 at whose points the manifolds W u(Ô) and Ws(Ô) have a quadratic tangency. We
assume also that this homoclinic tangency is not simple, the local map T0 is linear
and the global map T1 is of model form. We take T0 in the linear form (x̄, ū, ȳ) =
(λ1x, λ2u, γy) and T1 in the following form

(x̄0 − x+, ū0 − u+, ȳ0) = (
b1(y − y−), a21x, ĉu + d(y − y−)2

)
, (25)

where b1a21ĉ �= 0, since the map T1 should be diffeomorphism. We see that condition
C is violated in this case: the model map T1 corresponds to the case where c = 0 in
(11), i.e. (14) is not valid here. We assume, for more definiteness, that d < 0, i.e. the
quadratic homoclinic tangency is “from below”. We assume also that u+ > 0 in the
given example.

Proposition 3 The following dynamical properties of g0 hold.

(i) If ĉ < 0, then Λ(g0) is trivial, i.e. Λ(g0) = Ô ∪ Γ̂0.
(ii) If ĉ > 0 and λ2γ < 1, then Λ(g0) is trivial, i.e. Λ(g0) = Ô ∪ Ĝ0.
(iii) If ĉ > 0 and λ2γ > 1, then Λ(g0) contains infinitely many geometrical Smale

horseshoes.

Proof Since the corresponding results have an independent interest and the proof
consists mainly in direct calculations, we analyse the problem under consideration
in more detail than before. Since T0 is linear, the equations of Ws

loc(O) and W u
loc(O)

are y = 0 and (x = 0, u = 0), respectively. We choose a pair of homoclinic points:
M+(x+, u+, 0) ∈ Ws

loc and M−(0, 0, y−) ∈ W u
loc assuming that u+ > 0, y− > 0. We

consider sufficiently small rectangle neighbourhoodsΠ+ = {|x−x+| ≤ ε0, |u−u+| ≤
ε0, |y| ≤ ε0)} and Π− = {|x| ≤ ε1, |u| ≤ ε1, |y − y−| ≤ ε1)} of the points M+ and
M−, respectively, such that T0(Π+) ∩Π+ = ∅ and T −1

0 (Π−) ∩Π− = ∅. Note that
(for any ε0,1 > 0) there exist points on Π+ whose iterations under T0 reach Π−. The
set of such initial points on Π+ consists from countable many disjoint strips σ 0

k , k =
k̄, k̄+1, . . . Accordingly, a countable many disjoint strips σ 1

k , k = k̄, k̄+1, . . . exists
on Π− such that σ 1

k = T k
0 (σ 0

k ). Note also that the strips σ 0
k and σ 1

k are defined as
σ 0
k = Π+ ∩ T −k

0 (Π−) and σ 1
k = Π− ∩ T k

0 (Π+). In the case under consideration,
since the map T k

0 can be written in the form

xk = λk1x0, uk = λk2u0, y0 = γ−kyk , (26)

we can write exact formulas for the strips:

σ 0
k = {(x, u, y)||x − x+| ≤ ε0, |u − u+| ≤ ε0, |y − γ−ky−| ≤ γ−kε1}, (27)

σ 1
k = {(x, u, y)||x − λk1x

+| ≤ λk1ε0, |u − λk2u+| ≤ λk2ε0, |y − y−| ≤ ε1}. (28)

For the sake of definiteness, we will denote coordinates x, u, y of points in Π+ as
x0, u0, y0 and in Π− as x1, u1, y1. Now we take the strip σ 1

k and consider its image,
horseshoe T1(σ 1

k ), under the global map T1.
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a b

Fig. 7 Examples of homoclinic tangencies with c = 0 in the sectionally saddle case σ > 1 : a The
dynamics is trivial; b Smale horseshoes exist

By (25), we obtain that T1(σ 1
k ) is a 3D-figure in Π+ which can be given in the

coordinate form as follows

(x0 − x+, u0 − u+, y0) = (
b1(y1 − y−), a21x1, ĉu1 + d(y − y−)2

)
, (29)

where the coordinates (x1, u1, y1) run values along σ 1
k , see formula (28).

Consider now item (i), ĉ < 0, of Proposition 3 and show that here T1(σ 1
k )∩σ 0

j = ∅
for all sufficiently large k and j . Suppose, however, that T1(σ 1

k ) ∩ σ 0
j �= ∅ for some

k and j . Then, evidently, by virtue of (27), (28) and (29), the equation

γ−j η = ĉλk2ξ + dz2 (30)

has solutions with respect to η ∈ [y− − ε1, y− + ε1] when (ξ , z) run values from the
domain (|ξ − u+| ≤ ε0, |z| ≤ ε1). Note that since u+ > 0, y− > 0 such η and ξ take
only positive values for sufficiently small ε0,1. Then, since d < 0, λ2 > 0, γ > 0,
Eq. (30) can have solutions only in that case where

γ−j η − ĉλk2ξ ≤ 0. (31)

However, since ĉ < 0, the latter inequality is not valid for any j , k ≥ k̄. It implies
that the horseshoes T1(σ 1

k ) and strips σ 0
j do not intersect each other in this case.

Geometrically, it follows from the fact that in the case ĉ < 0 the strips σ 0
j and the

horseshoes T1(σ 1
k ) are posed in Π+ on different sides from a plane Ws

loc : y = 0, see
Fig. 7a. Hence, the diffeomorphism g0 has a trivial dynamics here: Λ(g0) = Ô ∪ Γ̂0.
Consider now <col1>item (ii), ĉ > 0 and λ2γ < 1, of Proposition 3. Again we obtain
that if T1(σ 1

k )∩σ 0
j �= ∅, then the inequality (31) has solutions. Since γ−1 > λ2 in this

case, the Eq. (30) can have solutions only if j > k. It follows that T1(σ 1
k ) ∩ σ 0

k = ∅,
i.e. g0 has no (topological) horseshoes in U , and, moreover, Λ(g0) = Ô ∪ Γ̂0 here.
Consider now item (iii), ĉ > 0 and λ2γ > 1, of Proposition 3. We obtain from
(29) and (28) that the horseshoe T1(σ 1

k ) has a top with coordinate ytop0 ∼ ĉλk2u+
and its bottom (i.e. T1-image of the top and bottom of the strip σ 1

k ) has coordinate
ybot0 ∼ dε2

1 + ĉλk2u+. Since λ2γ > 1 we have that ytop0 > γ−k(y− + ε1), i.e. the
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top of the horseshoe T1(σ 1
k ) is posed above the strip σ 0

k . Since d < 0 we have that
ybot0 < 0 for sufficiently large k, i.e. the bottom of T1(σ 1

k ) is posed below the strip
σ 0
k . Thus, the first return maps Tk = T1T

k
0 for all sufficiently large k are in this case,

topologically, Smale horseshoe maps. This completes the proof.

5 Hyperbolic Properties of Diffeomorphisms with Simple
Homoclinic Tangencies of Finite Order

We assume now that f satisfies conditions A)–D). Then reformulating Theorem 2
we select class of simple homoclinic tangencies of finite order. Namely, Theorem 2
implies the following result

Proposition 4 Let a diffeomorphism f satisfying conditions A–D with even n be
such that 1) either γ > 0, d < 0 in the case σ < 1; 2) or λ1 > 0, cd > 0 in the case
σ > 1; 3) or λ1 > 0, γ > 0, c < 0, d < 0 independently on σ . Then f possesses
trivial dynamics near Γ0, i.e. Λ = O ∪ Γ0.

Other diffeomorphisms under consideration will contain non-trivial hyperbolic
subsets inside Λ. The corresponding results were proved in [5, 6, 11] and [24].
Therefore, we give here only some review of results.

Among the diffeomorphisms with hyperbolic subsets we select first those which
admits a complete description of Λ. Namely, let f satisfy conditions A1, B, C and
D with γ > 0, λ1 > 0, c < 0 and also d > 0 when n is even. We bring such
diffeomorphisms to the complete class.

In this case the geometry of the strips σ 0
k and horseshoes T1(σ 1

i ) for all possible
i, k ≥ k̄ is of such type as in Fig. 8: all strips and horseshoes intersect “regularly”.
As it was shown still in [5, 6], such a geometry implies a non-uniform hyperbolicity:
all orbits of Λ, except for Γ0, are of saddle type and the set Λ can be described
completely in terms of the symbolic dynamics.

If n is odd (the tangency if like cubic), then Λ can be identified with Bk̄+q
2 as in

the case of transversal homoclinic orbit. If n is even, the set Λ is described now by
means of the topological Bernoulli scheme (shift) B3 with three symbols. Namely,

let Bk̄+q
3 be a subsystem of B3 which contains all bi-infinite sequences of form

( . . . , 0,αi ,

ji+q
︷ ︸︸ ︷
0, 0, . . .0, 1,

ji+1+q
︷ ︸︸ ︷
0, 0, . . ., 0,αi+1, , 0, . . . ), (32)

where αi ∈ {1, 2} and ji ≥ k̄ for all i.6 We identify in Bk̄+q
3 two homoclinic orbits

ω1 = ( . . . , 0, . . . , 0, 1, 0, . . . , 0, . . . ) and ω2 = ( . . . , 0, . . . , 0, 2, 0, . . . , 0, . . . ) and

let ω̂ be the glued orbit. We denote the resulting factor-system as B̂k̄+q
3 .

6 We include also sequences with ji = ∞ or ji+1 = ∞. Then such sequences contain infinite strings
from zeros either on the left or, respectively, right end and correspond either α- or ω-asymptotic
orbit to the fixed point ( . . . , 0, . . . , 0, . . . ).
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a b

Fig. 8 Homoclinic tangencies for diffeomorphisms from the complete class. a The order of tangency
n is even and the corresponding homoclinic tangency is “from above”, i.e. d > 0 and γ > 0, and
the horseshoes T1σ

1
k are posed under T1(W u

loc), i.e. c < 0 and λ1 > 0. b n is odd and γ > 0, λ1 > 0
and c < 0

Theorem 4 Let f belong to the complete class. Then there exists such k̄ that
all orbits from the set Λ, except for Γ0, are of saddle type and the system f |Λ is

topologically conjugate either to Bk̄+q
2 for odd n or B̂k̄+q

3 for even n.
Note that we do not require here that the saddle value σ is less or greater than 1.

Therefore, the structure of the set Λ(f ) for systems from the complete class is the
same for all cases of the sectionally dissipative, saddle or neutral (σ = 1) ones.

In the remaining cases (except for diffeomorphisms of trivial and complete
classes), the set Λ does not allow, in general, the complete description. Moreover, as
it is shown in [17–20], Λ can contain periodic and homoclinic orbits of any orders of
degeneracy (including homoclinic and heteroclinic tangencies of indefinite orders).
Nevertheless, we can observe here certain elements of hyperbolicity and, moreover,
we are able to give a description of hyperbolic subsets by means of methods of the
symbolic dynamics like it was done for diffeomorphisms of complete class.

However, while for diffeomorphisms of the complete class, all strips σ 0
i and

horseshoes T1(σ 1
j ) have regular intersections, in other cases we have both to detect

regular intersections and remove, from a description, all irregular and empty ones.
As result, we obtain some sufficient conditions (in form of inequalities, see below)
which provide the existence of certain (non-uniformly) hyperbolic subsets.

Formally speaking, we consider in this section such diffeomorphisms which
satisfy conditions A–D but are not diffeomorphisms with trivial and complete
description. We will call them as diffeomorphisms with partial description.7

7 Thus, the diffeomorphisms with partial description in the main case σ �= 1 are such that conditions
A–D are valid and the following combinations of signs of the parameters λ1, γ , c and d are excluded:
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Let Ωk̄+q
2 be such a subsystem of Bk̄+q

2 which contains the fixed point Ô, the
homoclinic orbit ω̂ = ( . . . , 0, . . . , 0, 1, 0, . . . , 0, . . . ) and all such orbits of form
(32), where αi = 1 for any i and the following estimates hold for any successive
integers k̄ ≤ ji ≤ ∞ and k̄ ≤ ji+1 ≤ ∞
(H1) |γ−ji+1y− − cλ

ji
1 x

+
1 | > Sk̄(ji , ji+1) in the case A1;

(H2) |γ−ji+1y− −Q cos (jiψ + ω) · λji | > Sk̄(ji , ji+1) in the case A2;

where

Sk̄(ji , ji+1) = ν
(|λ1|ji + |γ |−ji+1

) · (|λ1|k̄/n + |γ |−k̄/n),

Q = [
(c1x

+
1 + c2x

+
2 )2 + (c1x

+
2 − c2x

+
1 )2

]1/2
, ω = arccos

c1x
+
1 + c2x

+
2

Q

(33)

and ν is some positive constant independent of k̄, ji and ji+1.

Let Ω̂k̄+q
3 be such a subsystem of B̂k̄+q

3 which contains the fixed point Ô the
homoclinic orbit ω̂ and all such orbits of form (32) for which the following estimates
hold

(H3) d
[
γ−ji+1y− − c1λ

ji
1 x

+
1

]
> Sk̄(ji , ji+1) in the case A1;

(H4) d
[
γ−ji+1y− −Q cos (jiψ + ω) · λji ] > Sk̄(ji , ji+1) in the case A2;

Theorem 5 [6, 24] Let f be a diffeomorphism with partial description. Then there
is a closed invariant subset Λ̃k̄+q ⊂ Λ such that (i) Λ̃k̄+q contains the orbits O and

Γ0; (ii) all orbits of Λ̃k̄+q , except for Γ0, are of saddle type; (iii) the system f |Λ̃k̄+q
is conjugate either to Ωk̄+q

2 for odd n or to Ω̃k̄+q
3 for even n.

One can deduce certain simple consequences from this theorem on the existence
of Smale horseshoes in the first return maps. For the sake of definiteness, we consider
case of even order n (like quadratic) of the tangency. Then it follows directly from
Theorem 5 that

• If the estimates H3 or H4 hold for ji = ji+1 = k, then the first return map
Tk ≡ T1T

k
0 : σ 0

k → σ 0
k has in σ 0

k a Smale horseshoe, i.e. a closed invariant
hyperbolic set Ωk+q such that the system T k|Ωk+q is topologically conjugate to
B2.

In the sectionally dissipative case σ < 1, we have that |λ1|k � |γ |−k . Then both the
inequalities (H3) and (H4) with sufficiently large ji = ji+1 = k can be rewritten as
follows dγ−ky− > 0. Since y− > 0, it implies the following result.

(1) those ones which correspond to the trivial class, i.e. n is even and (i) γ > 0, d < 0 if σ < 1,
(ii) λ1 > 0, dc > 0 if σ > 1; and (2) those ones which correspond to the complete class, i.e (iii)
γ > 0, λ1 > 0, c < 0, d > 0 with even n and (iv) γ > 0, λ1 > 0, c < 0 with odd n.
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Proposition 5 Let f satisfy conditions A–D with even n and σ < 1, and let the
case γ > 0, d < 0 be excluded. Then, f has infinitely many Smale horseshoesΩk+q ,
where k ≥ k̄ and k run all integers if γ > 0 or all odd (even) integers if γ < 0, d < 0
(γ < 0, d > 0).

In the sectionally saddle case σ > 1, we have, conversely, that |γ |−k � |λ1|k .
Then, for sufficiently large k̄, the inequalities (H3) and (H4), for ji = ji+1 = k ≥ k̄,
take, respectively, the following forms

dc1x
+
1 λ

k
1 < 0 (34)

and

−dQ cos (kψ + ω) > ν(k̄) > 0, (35)

where ν(k̄) → 0 as k̄ → ∞. (Note that we can not write in (35) simply “> 0” since
values of cos (kψ+ω) are not uniformly bounded from zero whenψ/π is irrational).

The inequality (34) has no solutions only in the case λ1 > 0, dc1 > 0, i.e. for
diffeomorphisms with trivial dynamics. Since Q > 0 and ψ �= 0,π , the inequality
(35) has always infinitely many integer solutions. Thus, we obtain the following.

Proposition 6 Let f satisfy conditions A–D with even n and σ > 1, and let the
case λ1 > 0, dc1 > 0 be excluded. Then, f has infinitely many Smale horseshoes
Ωk+q , where k ≥ k̄ and k run all integers such that the inequalities (34) in case A1
or (35) in case A2 hold.

5.1 Invariants θ and τ and a Complete Description of Λ̃k̄

Note that the inequalities H1–H4 generally define an “infinite net” of the strips and
horseshoes which have regular (hyperbolic) intersections. Naturally, conditions H1–
H4 are only sufficient. However, using them we describe quite large (non-uniformly)
hyperbolic subsets Λ̃k̄+q ⊂ Λ. Moreover, for some dense subset of systems with

homoclinic tangency, Λ̃k̄+q can provide a complete description forΛ, i.e.Λ = Λ̃k̄+q .
In this section we will prove the corresponding result for the case where O is a

saddle, i.e. condition A1 holds.
Consider the following inequality

|d|
∣
∣
∣γ

−ji+1y− − c1λ
ji
1 x

+
1

∣
∣
∣ ≤ Sk̄(ji , ji+1). (36)

By geometric constructions (see [6, 24]), integer solutions (ji , ji+1) of this in-
equality include all numbers of those strips and horseshoes which can intersect
non-hyperbolically. By (33), the inequality (36) is equivalent to the following system
of inequalities

γ−ji+1 (y− − ρk̄) ≤ λ
ji
1 (cx+ + ρk̄), γ−ji+1 (y− + ρk̄) ≥ λ

ji
1 (cx+ − ρk̄), (37)
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where
ρk̄ = ν

|d|
(
|λ1|k̄/n + |γ |−k̄/n

)
.

If both sides of the inequalities (37) are of the same sign (that can be always fulfilled
for diffeomorphisms with partial description), we take the logarithm of them.

As result, we obtain the following double inequalities

ε2
k̄

≤ ji+1 − jiθ + τ ≤ ε1
k̄
, (38)

where

θ = − ln |λ1|
ln |γ | , τ = 1

ln |γ | ln
|cx+|
y−

and

ε1
k̄

= 1

ln |γ | ln

(
1 + ρk̄|cx+|−1

1 − ρk̄(y−)−1

)

, ε2
k̄

= 1

ln |γ | ln

(
1 − ρk̄|cx+|−1

1 + ρk̄(y−)−1

)

,

Now we assume that the following condition holds:

S1) θ is rational, i.e. θ = r/s for some relatively prime natural
r and s, and the number sτ is not integer.

Then the straight line j − iθ + τ = 0 is posed, in the (i, j )-plane, on a finite
distance (depending on θ and τ ) from points of the integer lattice. This means that
the inequality (38) has no integer solutions for sufficiently large k̄. In turn, it implies
that all orbits of Λk̄+q , except for Γ0, are of saddle type.

In the case of odd n we have that if there is some non-saddle orbit in Λk̄+q , then
the inequality opposite to H1, i.e. again inequality (36), has to be fulfilled for at least
one pair ji , ji+1.

Thus, the following result takes place.8

Proposition 7 Let f be a diffeomorphism with partial description satisfying con-
ditions A1, B, C, D, σ �= 1 and S1. Then there is such k̄1 = k̄1(θ , τ ), where k̄1 → ∞
as s → ∞ or sτ tends to an integer, that all orbits of Λk̄1+q , except for Γ0, are of

saddle type and f |Λk̄1+q is conjugate either toΩk̄+q
2 for odd n or to Ω̃k̄+q

3 for even n.

6 Proof of Theorem 1

Here we assume only that a diffeomorphism f has a homoclinic tangency of the
invariant manifolds of a saddle fixed point O with multipliers λ1, . . . , λm, γ ordered
by the rule (1) and such that σ ≡ |λ1||γ | < 1. In the case under consideration, by

8 This result was proved also in [6] for the sectionally dissipative case σ < 1.
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Lemma 1, we can write the local map T0 in the following form

x̄ = A, x + ĥ1(x, y), ȳ = γy + h3(x, y),

where x ∈ R
m, y ∈ R

1, A–(m×m)-matrix with eigenvalues λ1, . . . , λm. This form
of T0 can be considered as form (6) with identities (7), where A = diag (Â, B̂),
ĥ1 = (h1,h2) and xnew = (x, u). Then, by (10), the global map T1 takes the form

x̄ − x+ = F (x, y − y−),

ȳ = G(x, y − y−) ≡ cx + ϕ(y − y−) +O(‖x‖2 + ‖x‖|y − y−|) (39)

where (x, y) ∈ Π−, (x̄, ȳ) ∈ Π+, F (0, 0) = 0,G(0, 0) = 0 and ϕ(0) = ϕ′(0) = 0. If
the homoclinic tangency is isolated, then ϕ �= 0 at y �= y−. Besides, in the case of
one-sided tangency, we have that either ϕ ≥ 0 (the tangency “from above”) or ϕ ≤ 0
(the tangency “from below” if also γ > 0); in the case of topological intersection, we
have that either sϕ(s) ≥ 0 (the tangency like “y = x3”) or sϕ(s) ≤ 0 (the tangency
like “y = −x3”), where s = (y − y−).

Again, by Lemma 2, the map T k
0 can be written in the following cross-form

(compare with (8))

xk − Akx0 = λ̂k ξ̃k(x0, yk), y0 − γ−kyk = γ̂−kη̃k(x0, yk) (40)

Proof [of item 1 of Theorem 1] Take some strip σ 1
k ⊂ Π−. Suppose that the cor-

responding horseshoe T1(σ 1
k ) has non-empty intersection with a strip σ 0

i . Then, by
(40) and (39), the equation

γ−i ȳ
(
1 +O([γ̂ /γ ]−i)

) = αk(x, y) + ϕ(y − y−), (41)

has a solution with respect to ȳ (for some (x, y)). Note that the following estimate
‖αk‖ < λ̃k holds for sufficiently large k, where λ̃ = |λ1|+δ and δ ≥ 0 is a sufficiently
small constant such that, in any case, |λ̃γ | < 1.

Let the homoclinic tangency satisfy the condition (2). If γ > 0 (the main case),
it means that ϕ(y1 − y−) ≤ 0. Then the Eq. (41) can have a solution if only

γ−i ȳ
(
1 +O([γ̂ /γ ]−i)

) − αk(x, y) ≤ 0.

Since γ > 0, ‖αk‖ < λ̃k and |λ̃γ | < 1, the inequality above can hold only in the
case where i � k. Thus, any horseshoe T1(σ 1

k ) can intersect only those strips σ 0
i

whose numbers are much bigger than k, see Fig. 9a. In turn, the horseshoe T1(σ 1
i ),

again, can intersect only some strip σ 0
j with j > i, etc. It implies that some backward

iteration of any point from Π+ must leave U . Thus, only two orbits, O and Γ0, will
stay always in U .

If γ < 0, the condition (2) imply the identity ϕ(y1 −y−) ≡ 0. Evidently, Eq. (41)
can have a solution in this case again only for i � k.

Proof [of item 2 of Theorem 1] Consider first the case of one-sided tangency “from
above”. If γ < 0 we can always choose such homoclinic points M− and M+ that
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a b

Fig. 9 A horseshoe geometry in the case σ < 1 for homoclinic tangencies a from below and b
from above

T1(W u) touches W u
loc from above (if it not the case for a given point M+, we take the

point T0(M+)). Then, by condition ϕ ≥ 0 and ϕ > 0 if y1 �= y−, we have that the
curve T1(W u) : x0 −x+ = F (0, y1 −y−), y0 = ϕ(y1 −y−) will intersect all the strips
σ 0
k with sufficiently large k (even k if γ < 0) at least two connected components.

(Note that the vector l̂ = Fy(0, 0) is non-zero, since T1 is diffeomorphism). The strips
σ 0
k are posed on distance ρk ≥ |γ |−k(y− − ε1) from the plane y0 = 0. While, the

strips σ 0
k are posed from the line x = 0 on the distance of order λ̃k . The latter means

that the horseshoes T1(σ 1
k ) will be posed from T1W

u
loc on the distance of order λ̃k .

Since λ̃k � |γ |−k , it follows that the strips σ 0
k with sufficiently large k will intersect

own horseshoes T1(σ 1
k ) along at least two connected components (the same as they

intersect the curve T1W
u
loc). See Fig. 9b.

Concerning the case of topological intersection, we note that the curve T1W
u
loc

intersect infinitely many strips σ 0
k . In turn, strips σ 1

j accumulate to W u
loc. It implies

that infinitely many strips σ 0
k and horseshoes T1(σ 1

j ) for all sufficiently large k and j
are mutually intersect.
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