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Preface

The idea of this book arose during the meeting held in honor of Professor Valentin
Afraimovich in Guanajuato, Mexico, in May 2010. The meeting took place in the
“Centro de Investigación en Matemáticas,” one of the finest places to do mathematics.
During the meeting, we had the opportunity not only to share our passion for nonlinear
dynamics but also to discuss its foundations and the emerging applications mainly
in biology. It was also the occasion to share and celebrate the life experiences of the
magnificent person, Valentin Afraimovich. The book covers all scientific aspects of
the meeting. For an account of its human aspects, we have Lev Tsrimling’s photo
gallery. We are awaiting a convincing translation of Micha Ravinovich’s poetic work.

This two-volume book covers part of the vast spectrum of interests of Professor
Afraimovich, which ranges from fractal analysis to very specific applications of the
theory of dynamical systems to biology. The first volume of this book is devoted
to fundamental aspects and includes a number of important and new contributions
as well as some review articles which emphasize new development prospects. The
second volume contains mostly new applications of the theory of dynamical systems
to both engineering and biology.

The authors contributing to these two volumes, all of them academically related
to Professor Afraimovich, are among the most prominent specialists in nonlinear
dynamics. The topics addressed in these two volumes include a rigorous treatment
of fluctuation in dynamical systems, topics in fractal analysis, studies of the transient
dynamics in biological networks, synchronization in lasers, and control of chaotic
systems, among others.

We are very happy to have finally completed this compilation and we thank all
the contributors from the bottom of our hearts. We also thank all the agencies which
contributed to finance the 2010 meeting, in particular, FENOMEC-UNAM, CONA-
CyT, CIMAT, and UASLP. If despite of our effort, some mistakes remained, we are
accountable for it.

San Luis Potosí Edgardo Ugalde
Hernán González-Aguilar
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Patterns of Synchrony in Neuronal Networks:
The Role of Synaptic Inputs

Igor Belykh and Martin Hasler

Dedicated to Valentin S. Afraimovich on the occasion of his
65th birthday

Abstract We study the role of network architecture and synaptic inputs in the forma-
tion of synchronous clusters in synaptically coupled networks of bursting neurons.
Through analysis and numerics, we show that the stability of the completely syn-
chronous state, representing the largest cluster, only depends on the number of
synaptic inputs each neuron receives, independent from all other details of the net-
work topology. We also give a simple combinatorial algorithm that finds synchronous
clusters from the network topology. We demonstrate that networks with a certain de-
gree of internal symmetries are likely to have cluster decompositions with relatively
large clusters, leading potentially to cluster synchronization at the mesoscale network
level. We address the asymptotic stability of cluster synchronization in excitatory net-
works of bursting neurons and derive explicit thresholds for the coupling strength
that guarantees stable cluster synchronization.

1 Introduction

Brain networks have an hierarchy of different levels, ranging from the microscale
via the mesoscale to the macroscale. The microscale is represented by individ-
ual neurons and their local synaptic connections. The mesoscale level involves a
network of columns and minicolumns, connecting populations of neurons. At the
macroscale, large numbers of neuronal populations are arranged into large-scale
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2 I. Belykh and M. Hasler

patterns of anatomical connectivity [1]. The three scale levels determine the func-
tional properties of individual neurons and neuronal networks. As a result, patterns
of cooperative neuronal activity also possess multilevel microscopic, mesoscopic,
and macroscopic properties. Individual neurons and their dynamics represent the mi-
croscale level; cooperative rhythms of neuronal subpopulations define the mesoscale
level, and large-scale patterns of activity, such as an average mean-field dynamics or
synchronization, correspond to the macroscale.

Recently, a great deal of attention has been paid to algebraic, statistical, and graph
theoretical properties of networks and their relationship to the dynamical properties
of the underlying network (see, for example, [2–16] and the references therein).
The most important questions about dynamical networks are those of the interplay
between network topology and dynamics: How does network structure affect dynam-
ical properties and information capabilities of networks? Can a dynamical partition
of a biological network be inferred from purely topological criteria? Until recently,
most studies were concerned with the patterns defined by a local microscale network
structure or with the macroscopic large-scale patterns of activity such as the mean-
field dynamics and synchronization. However, the interest has now shifted toward
the analysis of cooperative rhythms in subpopulations defined by the mesoscopic
modular structure of the network [10]. Different approaches to extracting dynamical
properties from topological and modular structures in complex networks of different
nature were recently proposed [11–13].

The simplest macroscopic rhythm in neuronal networks is synchronization; when
all neurons fire in unison. Synchronized neuronal firing has been suggested as partic-
ularly relevant for neuronal signal transmission and coding. While its involvement in
cortical processing is somewhat controversial, the presence of synchronization has
been shown in special areas such as the olfactory system or the hippocampal region
[17]. Model studies of neuronal synchronization can be separated in those where spik-
ing, relaxation oscillator-type models are used, and bursting models are employed
[18–30]. Bursting occurs when neuron activity alternates, on a slow-time scale, be-
tween a quiescent state and fast repetitive spiking. There has been much work on
mechanisms that produce such bursting [31–38]. In contrast to coupled spiking neu-
rons, whose synchronous dynamics is relatively simple, interacting bursting neurons
may exhibit different forms of synchrony; including synchronization of individual
spikes, burst synchronization when only the envelopes of the spikes synchronize,
and complete synchrony [23, 25, 27]. Typically, burst synchronization arises at a
low-coupling strength whereas complete synchrony, which involves both burst and
spike synchronization regimes, requires a stronger coupling. Models of interacting
bursting neurons often use one of the two different forms of coupling, depending on
whether the synapse is electrical or chemical. In the first case, the coupling through
gap junctions is linear and directly dependent on the difference of the membrane
potentials. In the second case, the coupling is pulsatile and often modeled as a static
sigmoidal nonlinear input-output function with a threshold and saturation [53]. The
emergence of neuronal synchronization heavily depends on the intrinsic properties
of the individual neurons and the type of synaptic coupling and its network topology
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[20–30]. This problem was intensively studied for linearly coupled networks of burst-
ing neurons [20, 25], and more generally, of limit-cycle and chaotic oscillators [4–9].
In particular, it has been shown that synchrony in such networks strongly depends on
the structure and size of the network. In contrast with linearly (electrically) coupled
bursting neurons, the stability of synchronization in pulse- (synaptically) coupled
networks only depends on the number of signals each neuron receives, independent
from all other details of the network topology [27]. In this chapter, we review this
result [27] and give additional details of the proof.

Other important examples of cooperative rhythms are clusters of synchrony [39–
41, 43–45], when the neuronal network splits into subpopulations, called clusters,
such that all neurons within one cluster fire in perfect synchrony. The existence of
clusters of perfect synchrony is strictly defined by the symmetries of the neuronal
network [42–45], and therefore by a symmetric modular structure of the network.
A symmetry of a coupled cell network is defined as a permutation of the cells that
preserves all internal dynamics and all couplings. The stability of synchronous clus-
ters in networks of bursting neurons is defined by different factors such as the type
of bursting in the individual neuron model and the neuronal connections among and
within the clusters.

In this chapter, we also study the emergence of stable synchronous clusters in
synaptically coupled networks as a mesoscale phenomenon. We use our recent re-
sults [46] to show how to effectively find clusters defined by subnetworks’mesoscopic
architecture and symmetries, and derive the conditions on their stability using the
Lyapunov function method. We also demonstrate that the same cluster synchro-
nization regimes may have distinct mesoscopic and macroscopic properties. More
precisely, we study the existence and stability of synchronous clusters in excitatory
networks of Hindmarsh–Rose (HR) neurons. We implement the concept of minimal
balanced coloring [43–45] into a combinatorial algorithm for finding synchronous
clusters. The core of the minimal balanced coloring concept is that every cluster of
synchrony corresponds to a coloring of the network cells in which two cells have the
same color if and only if their dynamical variables are equal (completely synchro-
nized). It is important to emphasize that the vertex coloring [43–45] used in this is
different from the one defined in graph theory. Graph theory introduces a coloring
of a graph as an assignment of colors to the vertices, one color to each vertex, so
that adjacent vertices are assigned different colors [47]. However, two adjacent cells
from our cluster partition may have the same color as long as their dynamics are
described by the same differential equations, up to a permutation of the variables
[43].

We use progressive refinement of the coloring map [43–45] to identify clusters in
regular and random networks and come to a natural conclusion that random networks
rarely exhibit clusters due to the lack of symmetrical network substructures. We also
prove the stability of specific clusters in regular lattices of HR neurons, starting
with the proof of complete synchronization in globally and densely synaptically
coupled excitatory HR neurons that exhibit square-wave bursters. To the best of our
knowledge, synchronization of synaptically coupled square-wave bursters has not
previously been proven, and this chapter, following our recent work [46], presents the



4 I. Belykh and M. Hasler

first proof of this kind. In fact, the well developed theory of weakly coupled oscillators
had previously been applied to prove synchronization of elliptic bursters [23] that
synchronize at very weak coupling strengths, comparable to a small parameter in
the individual neuron system. At the same time, square-wave bursters are notorious
for their resistance to synchronization [27] and require a strong synaptic coupling,
therefore the reduction to phase models cannot be applied. These two types of bursting
were first identified by Rinzel [31, 35]. Square-wave bursting was named after the
shape of the voltage trace during a burst which resembles a square wave due to fast
transitions between the quiescent state and fast repetitive spiking. Similarly, elliptic
bursting received its name due to the shape of the voltage trace that looks like a
half-ellipse [35].

The layout of this chapter is as follows. First, in Sect. 2, we introduce the HR
neuron model as an individual unit of the network. We analyze its dynamics to find the
regions of parameters corresponding to square-wave bursting. Then, we present and
discuss the network model. In Sect. 3, we prove that the onset of complete synchrony
in a network with any coupling topology admitting complete synchronization is
ensured by one single condition, defined by the number of synaptic inputs. To prove
the stability of synchronization, we construct a Lyapunov function for the difference
variables that allows us to analyze the synchronization properties of the networks
without resorting to computer simulation. In Sect. 4, we present the algorithm for
finding possible synchronous clusters and apply it to specific networks. We also prove
the stability of clusters in regular networks where each cluster of cells is driven by
the same driving neurons. Finally, in Sect. 5, a brief discussion of the obtained results
is given.

2 The Model and Problem Statement

2.1 Single Cell: HR Model and Its Dynamics

We start off with the HR neuron model [48] which represents a class of phenomeno-
logical models of spiking and bursting neurons. Without direct relation to concrete
physiological mechanisms, these models aim at reproducing the characteristic fea-
tures of the bursting behavior. To the extent that the assumptions underlying the
phenomenological models are sufficiently general, these models may be used to ex-
plain generic bifurcation scenarios that can also be observed in the more realistic
models.

The HR model is well-known for its chaotic behavior and different types of
bursting [22, 27, 49–51]. The model takes the form

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = y + ax2 − x3 − z + I

ẏ = 1 − dx2 − y

ż = μ(b(x − x0) − z),

(1)
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where x represents the membrane potential, and variables y and z take into account
the transport of ions across the membrane through fast and slow ion channels, respec-
tively. Fast variable y describes the rate of change of the fast (e.g., sodium) current.
Slow variable z controls the speed of variation of the slow (e.g., potassium) current.
This speed is in turn controlled by a small parameterμ. Parameter I describes an ex-
ternal current that enters the neuron. Parameters a and d (b and x0) describe activation
and inactivation of the fast (slow) ion channel. The presence of the small parameter
μ in the z-equation makes the system (1) slow-fast, where the (x, y)-equations and
z-equation represent fast “spiking” and slow “bursting” subsystems, respectively.

For the sake of simplicity, the original HR model (1) with the redundant set of
parameters can be transformed, using the substitution (y, z) → (1−y, 1+I+z), d =
a + α, c = −1 − I − bx0, into the form

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax2 − x3 − y − z,

ẏ = (a + α)x2 − y,

ż = μ(bx + c − z).

(2)

The model (2) can exhibit different types of bursting that have different impacts on
the stability of the synchronous solution. Therefore, we shall first study the dynamics
of the individual model (2) and determine the regions of parameters where square-
wave bursting exists. A detailed numerical analysis of bifurcations in the original
HR model (1) was recently performed [50, 51].

Readers who are willing to accept the results of this subsection without proof can
proceed without loss of continuity to the description of the network model in the
next subsection.

We use the standard decomposition of the system (2) into fast and slow subsystems.
The fast (x, y)-system has the nullcline z = f (x) ≡ −αx2 − x3, obtained from
solving the system of equations 0 = ax2 − x3 − y − z and 0 = (a + α)x2 − y. The
nullcline z = f (x) has two critical points xC1 = −2α/3 and xC2 = 0 that correspond
to two knees of the graph (see Fig. 1). For simplicity, we shall limit our attention to
positive values of parameter α. The generalization to α < 0 is straightforward. For
b > α2/3 the nullcline of the slow z-equation z = g(x) ≡ bx + c crosses the graph
of f (x) at a single point xe such that the system (2) displays a unique equilibrium
point E(xe, ye, ze).

The types of bursting that can exist in the system (2) are defined by the z-parameter
sequences of phase portraits of the fast system:

⎧
⎨

⎩

ẋ = ax2 − x3 − y − z,

ẏ = (a + α)x2 − y, z = const
(3)

derived from (2) for μ = 0. This represents the usual adiabatic approach in which
the fast system accounts for the fast dynamics (3), and variations of z describe the
slow dynamics. Here, the parameters of the fast system a and α determine the types
of possible bursting behavior in the full system (2).
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Fig. 1 Square-wave burster
of the HR model (2).
Parameters a = 2.8, α = 1.6,
c = 5, b = 9, μ = 0.001. The
right stable branch of the fast
nullcline z = f (x) contains
two points AH1 and AH2
corresponding to supercritical
Andronov–Hopf bifurcations.
The second point AH2 with
xAH2 ≈ 1.666 lies on a much
lower part of the nullcline and
is not shown

z=f(x)

z=g(x)z

y

x

AH1

C1

C2

I. Fast System The x-nullcline of the fast system (3) is the curve

nx : y = ax2 − x3 − z (4)

and the y-nullcline is

ny : y = (a + α)x2. (5)

Coinciding with the points of intersection between the graphs of (4) and (5), equilibria
of the system (3) are determined by the solutions of the equation

z = f (x) ≡ −αx2 − x3. (6)

Hence, for − 4
27α

3 ≡ zc < z < 0, α > 0 the system (3) has three equilibrium points
N1(x1, y1), O(x0, y0), and N2(x2, y2), where x0 and x1,2 are the roots of Eq. (6),
ordered such that x1 < − 2

3α < x0 < 0 < x2, and yi = (a + α)x2
i , i = 0, 1, 2. Their

stability is defined by the characteristic equation:

s2 − σ (xi)s − f ′(xi) = 0, i = 0, 1, 2, (7)

where the divergence σ = −(1 − 2ax + 3x2) and the slope f ′ = −2αx − 3x2.
Thus, O is a saddle and N1 and N2 are stable nodes or foci. The divergence of the
two-dimensional vector field of the fast system (3) changes sign so that

σ (x) > 0 for xAH1 < x < xAH2

σ (x) < 0 for x < xAH1, x > xAH2,

where the values xAH1,AH2 = (a
√
a2 − 3)/3 correspond to a pair of Andronov–Hopf

bifurcations of the equilibrium point N2 where σ (x2 = xAH1,AH2) = 0.
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Fig. 2 Nullclines nx and ny
of the fast system (3).
Increasing (decreasing) z
shifts the cubic nullcine nx
down (up). For
− 4

27α
3 ≡ zc < z < 0, there

are three equilibrium points
N1, O, and N2. While z
changes, the three points trace
out the left, middle, and right
branches of the nullcline
z = f (x) of the full system
(2), respectively (cf. Fig. 1).
Further increase (decrease) of
z makes the saddle O and the
equilibrium point N2 (N1)
disappear x2

N2

N1

O

x

y

nx

ny

x0x1

Using explicit formulas given by Bautin [52], we calculate the first Lyapunov
coefficient for the Andronov–Hopf bifurcation of the equilibrium N2(x2, y2) as
follows

L1 = −π

4
|f ′(x2)|−3/2(3 + 2αa). (8)

This value is negative for α > −3a/2 which is true for any positive values of a
and α. Hence, as z decreases for xAH1 (or increases for xAH2), the equilibrium N2

undergoes a supercritical Andronov–Hopf bifurcation such that a unique stable cycle
appears softly from N2.

Using the nullclines nx and ny together with the flows shown in Fig. 2, we can
deduce the following general properties of the vector field.

Property 2.1 All trajectories of the system (3) leave the region {y < 0}.
Property 2.2 The system has the absorbing domain Ab = {|x| < |xp|, 0 ≤ y ≤
yp}, where yp = (a+α)x2

p and xp is either the largest root of equation x3 −ax2 +z =
0, or the coordinate of the equilibrium point N1.

Property 2.3 For x0 < xAH1 the limit cycles of the system (3) can only encircle the
equilibrium point N2, i.e., the fast HR model can not produce cycles encircling only
equilibrium point N1, nor can it have cycles enclosing all three equilibrium points.
This property follows from the orientation of the vector field as cycles encircling
either the equilibrium N1, or all three equilibria would have to wind against the
vector field (cf. the vector field around N1).

Property 2.4 A homoclinic orbit of O may exist only in the region x > x0 as it is
constrained by the vector field, similar to Property 2.3.

II. Square-Wave Bursting According to the above analysis, the behavior of the
fast system is essentially different for a ≤ √

3 and a >
√

3.
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Region 1: a ≤ √
3. As the divergence σ (x) ≤ 0 everywhere, the fast system has

no cycles. The equilibrium points N1 and N2 are stable, and the stable manifold of
the saddle O (when it exists) divides the (x, y) plane into the basins of attraction of
N1 and N2. As a result, the dynamics of the full system (2) is qualitatively similar
to that of the FitzHugh–Nagumo system. That is, with a proper location of the slow
nullcline z = g(x), intersecting the middle branch of the fast nullcline z = f (x), the
system has an unstable equilibrium encircled by a stable relaxation oscillator-type
cycle defining the simplest form of bursting.

Region 2 a >
√

3. The equilibrium point N2 of the fast system undergoes a super-
critical Andronov–Hopf bifurcation for x2 = xAH1, and the homoclinic orbit of the
saddle O is always stable (the corresponding saddle value is negative). In this case,
the dynamics of the fast system is as follows. For z < zAH2 the equilibrium point
N2 is globally stable. For zAH2 < z < zc there exists a stable cycle encircling the
unstable equilibrium point N2. For zc < z < zh the unstable manifold W u of the
saddleO consists of two separatrices so that one of them approaches the stable cycle
and the other is attracted by the stable equilibrium point N1. At z = zh the stable
cycle turns into a homoclinic loop, and for z > zh the separatrices of O change their
arrangement so that all trajectories of the system (3), except the stable manifold ofO
and the unstable equilibrium pointN2, approach the stable equilibriumN1. The result
is a spiking manifold that is composed of the limit cycles of the fast system. Its upper
edge is defined by the homoclinic bifurcation at z = zh. Depending on the location
of the slow nullcline z = g(x), intersecting the middle branch of the fast nullcline
f (x), the full system can generate either square-wave bursting (see. Fig. 1) or tonic
spiking. In the Izhikevich classification, [35] this scenario describes the mechanism
of formation of the fold/homoclinic burster which is referred to as being square-wave
bursting due to the voltage amplitude profile [35]. Bifurcations and complicated sets
associated with the transition from tonic spiking into square-wave bursting in various
neuronal models have been extensively studied [32, 34, 36–38].

In the following, we will concentrate on the parameters from region 2 where the in-
dividual HR model (2) can generate square-wave bursting. Hereafter, the parameters
are chosen and fixed as follows: a = 2.8, α = 1.6, c = 5, b = 9, μ = 0.001.

2.2 Network of Synaptically Coupled Neurons

Consider now a network of n synaptically coupled HR models (2). The equations of
motion read:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = ax2
i − x3

i − yi − zi + gs(Vs − xi)
n∑

j=1
cijΓ (xj ),

ẏi = (a + α)x2
i − yi ,

żi = μ(bxi + c − zi), i, j = 1, n.

(9)
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Fig. 3 The function Ω(x) and the corresponding synchronous bursting. Globally coupled HR
neurons (k = n− 1, λ = 10) (left). Ring of locally coupled HR neurons (k = 2, λ = 10) (right)

Here, each neuron is represented by the HR model (2), and the neurons are
identical. The synapses are fast and instantaneous, i.e., time delays and internal
synaptic variables are ignored. The parameter gs is the synaptic coupling strength.
The reversal potential Vs > xi(t) for all xi and all times t , i.e., the synapse is
excitatory. The synaptic coupling function is modeled by the sigmoidal nonlinear
input-output function Γ (xj ) = 1/[1 + exp{−λ(xj − Θs)}]. This oft-used coupling
form was called fast threshold modulation by Somers and Kopell [53]. The threshold
Θs is chosen such that every spike in the single neuron burst can reach the threshold
(see Fig. 3). Hereafter, Θs = −0.25 and Vs = 2.

In (9), C = (cij ) is the n × n connectivity matrix: cij = 1 if neuron i receives
synaptic input from neuron j , cij = 0 otherwise, and cii = 0. Matrix C can be
asymmetric such that both mutual and unidirectional couplings are allowed. We re-
quire the connectivity matrix C to have at least some rows with equal row-sums

ki =
n∑

j=1
cij , i = 1, . . ., n. This requirement is a necessary condition for the existence

of synchronous clusters of neurons whose states are equal. The existence of clusters
yields a decomposition of the network (9) into the disjoint subsets of vertices (neu-
rons) V = V1 ∪ . . .∪Vd , Vγ ∩Vν = ∅ given by the equalities of the neuron states. If
the decomposition is flow-invariant with respect to the vector field of the system (9),
then the corresponding linear subspace M(d) is invariant and defines d synchronous
clusters.
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3 Complete Synchronization in the Network

The section reports a surprising find regarding the synchronization of pulse-coupled
networks of bursting neurons [27]. We study the stability of full complete synchro-
nization in networks of HR neurons (9) where each neuron receives signals from k

others, where k is uniform for all neurons. In the following, we demonstrate that all
that matters for the onset of complete synchrony is the number of signals, k, received
by each neuron. This is independent of all other details of the network structure. More
precisely, the synchronization threshold is inversely proportional to the number of
incoming signals k. This criterion applies to a neuronal network with any coupling
topology admitting complete synchrony.

For this property to be true, we require matrix C to have equal row-sums k =
n∑

j=1
cij , i = 1, . . ., n. This requirement is a necessary condition for the existence of the

synchronous solution, namely the invariance of hyperplaneM(1) = {ξ1(t) = ξ2(t) =
. . . = ξn(t)}, ξi = (xi , yi , zi), i = 1, n. In fact, the equal row-sum property implies a
network where each cell has the same number k of inputs from other neurons. Note
that this k-row sum matrix C can be asymmetric such that directed networks with
the same node in-degree k are also allowed.

Synchronous behavior on the manifold M(1) is generated by the self-coupled
system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax2 − x3 − y − z + kgs(Vs − x)Γ (x),

ẏ = (a + α)x2 − y,

ż = μ(bx + c − z).

(10)

Consequently, the synchronous behavior differs from the behavior of the uncoupled
neuron and depends on the coupling strength gs. The analysis of the slow-fast in-
dividual HR system, performed in Sect. 2, carries over to the self-coupled system.
The main difference is that the fast subsystem of the self-coupled system undergoes
Andronov–Hopf bifurcations at new points xself

AH1,AH2 = (a
√
a2 − 3(kgs + 1))/3.

Hence, increasing the coupling gs makes the points xAH1 and xAH2 move toward
each other along the fast nullcline f (x) of the self-coupled system (cf. Figs. 1 and 3).
Hence, for kgs = a2/3−1 the two points merge together such that for kgs > a2/3−1
there is no oscillatory (spiking) dynamics on the right branch of the fast nullcline as
the Andronov–Hopf points have disappeared. Thus, there is no square bursting for
kgs > a2/3 − 1, and the synchronous dynamics defined by the self-coupled system
(10) is of relaxation oscillator-type.

We begin by deriving the variational equations for the transverse stability of the
synchronization manifold M(1).
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Adding and subtracting an additional term gs(Vs −xi)
n∑

j=1
cijΓ (xi) = kgs(Vs −xi)

Γ (xi) from the x-equation of system (9), yields
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋi = ax2
i − x3

i − yi − zi + kgs(Vs − xi)Γ (xi) + gs(Vs − xi)
n∑

j=1
cij

(
Γ (xj ) −Γ (xi)

)
,

ẏi = (a + α)x2
i − yi ,

żi =μ(bxi + c− zi), i, j = 1, n.

(11)

Introducing the differences between the neural oscillator coordinatesX12 = x2 −x1,
Y12 = y2 −y1,Z12 = z2 − z1 in the limit when these differences are infinitesimal, we
derive the stability equations for the transverse perturbations to the synchronization
manifold M(1) [27]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ẋij = (2ax − 3x2)Xij − Yij − Zij − kgsΓ (x)Xij+
+gs(Vs − x)Γ ′

x(x)

(

kXij +
n∑

h=1

{
cjhXjh − cihXih

}
)

,

Ẏij = 2(a + α)xXij − Yij ,

Żij = μ(bXij − Zij ).

(12)

The derivatives are calculated at the point Xij = 0,Yij = 0,Zij = 0, and {x(t), y(t),
z(t)} corresponds to the synchronous bursting solution defined via system (10). The
first coupling term S1 = −kgsΓ (x)Xij accounts for the number of inputs k. At the
same time, the contribution of the second coupling term S2 = gs(Vs − x)Γ ′

x(x) (·)
depends on the coupling configuration. Note that the term

n∑

h=1

{
cjhξjh − cihξih

}
is the

same as for linear coupling [6]. In terms of the original variables xi , the corresponding
coupling matrix G = C − kI is the Laplacian of the connected graph, except for
a sign change. It is well-known that G has one zero eigenvalue γ1 and all other
eigenvalues have nonpositive real parts. If the coupling is mutual, G is symmetric
and all eigenvalues are real. For simplicity, suppose that the eigenvalue γ2 with the
largest real part is simple. Then, applying the linear transformation that diagonalizes
G to Eq. (12), we obtain the stability equation for the most unstable transverse mode:

Ẋ = (2ax − 3x2)X − Y − Z −Ω(x)Z,

Ẏ = 2(a + α)xX − Y ,

ζ̇ = μ(bX − Z),

(13)

where Ω(x) = kgsΓ (x) − gs(Vs − x)Γ ′
x(x)(k + γ2). System (13) is an analog of

the Master Stability function [6] for synaptically coupled networks (9). If γ2 is not
simple, then we can write similar equations to system (13) for the vectors spanning
the corresponding blocks in the Jordan normal form of G. The stability discussion,
however, is essentially the same. Consider now its application to basic network
configurations.
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3.1 Globally Coupled Networks

In this case, the second largest eigenvalue γ2 = −n and k = n − 1. Consequently,
the function Ω(x) becomes

Ω(x) = kgsΓ (x) + gs(Vs − x)Γ ′
x(x)

= kgs

1 + exp{−λ(x −Θs)} + gs(Vs − x)
λ exp{−λ(x −Θs)}

(1 + exp{−λ(x −Θs)})2
(14)

The function Γ (x) together with its derivative Γ ′
x(x) is nonnegative, and (Vs − x) is

always positive (the synapses are excitatory). Therefore,Ω(x) is always nonnegative
and the coupling term −Ω(x)X aims at stabilizing the zero equilibrium of system
(13); corresponding to the synchronous solution. The functionΩ(x) strongly depends
on whether the membrane potential x(t) exceeds the threshold Θs or not (see Fig. 3).
In fact, for a sufficiently large λ ensuring a bell-shape graphΩ(x) [46], kgs is a lower
bound ofΩ(x) in the region x(t) > Θs and strongly contributes to the stability. At the
same time, when x(t) is below Θs, the first term in Ω(x) rapidly decreases to zero,
and the second coupling term becomes decisive in a small region close to x = Θs.

This region is defined by the parameter λ. For our results concerning the stability
of synchronization, it is also necessary to assume that λ is only moderately large.
Our stability approach does not carry over to the case where the function Γ (x) is
approaching the Heaviside function when λ approaches infinity. In fact, the bounds
of Theorem 1 on the sufficient coupling strength become too conservative when λ

approaches infinity. At the same time, to prove synchronization of bursters, we do not
require μ to be a singular perturbation parameter. Applying the Lyapunov function
method to the stability of system (13) with the function (14), we prove the following
theorem that synchronization in the globally coupled network can be made stable,
provided that the coupling gs is sufficiently strong.

Theorem 1 Complete synchronization in the globally coupled network (9) with the
number of synaptic inputs k = n− 1 is locally stable if the coupling gs exceeds the
critical value

g∗
s = max{D1,D2,D3}, where (15)

D1 = a2

3k , D2 = (a−α)2

4k(3−β(a+α)2) + 1
4kβ , β < 3/(a + α)2,

D3 = p(1+e−λ(b−Θs))2

β[k(1+e−λ(b−Θs))+(Vs−b)λe−λ(b−Θs)] , b = (a−α)−
√

(a−α)2+(3/β−(a+α)2)
2(3−β(a+α)2)

for a ≥ α : p = 1
4 and for a < α : p = 1

4 + β(a−α)2

4(3−β(a+α)2) .

(16)

Proof Consider the Lyapunov function

Φ = X2/2 + βY 2/2 + 1

2μb
Z2, (17)
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where β is a positive auxiliary parameter to be defined.
The derivative of the Lyapunov function (17) with respect to the variational

Eqs. (13) and (14) is calculated as follows

Φ̇ = − {
AX2 − BXY + βY 2 + Z2/b

}
, (18)

where A = [3x2 − 2ax +Ω(x)] and B = (2β(a + α)x − 1).
Our goal is to prove the negative definiteness of the quadratic form Φ̇ and to obtain

conditions under which solutions of the variational Eq. (13) and (14) converge to 0 as
t → ∞, and its trivial equilibrium, corresponding to the synchronization manifold
of system (9), is locally asymptotically stable.

The quadratic form Φ̇ is negative definite as long as the quadratic form

W = − {
AX2 − BXY + βY 2

}

is negative.
Applying Sylvester’s criterion for the negative definiteness of the quadratic form

W , we obtain the following two conditions.

Condition I: A > 0.

Part 1 If x ≥ Θs then the condition A > 0 is true if 3x2 − 2ax + kgs > 0. Here,
we have taken the lowest bound (kgs) of the function Ω(x) in the region x ≥ Θs

(cf. Fig. 3). The roots of the quadratic equation are xr1,2 =
(
a ± √

a2 − 3kgs

)
/3.

Therefore, this equation has no solutions for

gs >
a2

3k
. (19)

Part 2 For x ≤ Θs and for the given Θs = −0.25, A is always positive.
Condition II. The second condition of Sylvester’s criterion is βA − B2/4 > 0.

This leads to the inequality

Q(x) ≡ ϕ(x) +Ω(x) > 0, where (20)

ϕ(x) = β(3 − β(a + α)2)x2 − β(a − α)x − 1/4.
The function Ω(x) is nonnegative for any x(t) while the parabola ϕ(x) can be

negative in some interval of x(t). To satisfy the condition (20), we should increase
the values of the functionΩ by increasing the coupling gs such that the superposition
of the two functions becomes positive.

First of all, we require (3−β(a+α)2) > 0 to keep the parabola ϕ(x) concave up.
This constrains the choice of the auxiliary parameter β.As the region of parameters
where square-wave bursters can exist in the individual HR model (2) is defined by
the condition {a ≥ √

3} (Region 2), we have to choose β < 1 for synchronization
of square-wave bursters.



14 I. Belykh and M. Hasler

The roots of the parabola ϕ(x) are

xr1,2 = (a − α) ± √
(a − α)2 + (3/β − (a + α)2)

2(3 − β(a + α)2)

such that the function ϕ(x) is positive outside the region [xr1, xr2].
We derive the conditions for Eq. (20) in two steps, considering two parts of the

bursting solution (10): x ≥ Θs and x < Θs.

Part 1. x ≥ Θs.

As before, we take the lowest bound (kgs) of Ω(x) in the region x ≥ Θs such that
the condition (20) becomes

(3 − β(a + α)2)x2 − (a − α)x − 1

4β
+ kgs > 0.

This is true under the conditions

gs > g∗
s =

[
(a−α)2

4k(3−β(a+α)2) + 1
4kβ

]
, β < 3/(a + α)2 (21)

Part 2 x < Θs.

The minimum of the parabola ϕ(x) is reached at x∗ = a−α
2(3−β(a+α)2) . If a < α

then x∗ lies in the region x < Θs < 0 and the minimum of the function ϕ is
ϕ(x∗) ≡ −m = −1/4 − β(a−α)2

4(3−β(a+α)2) . If a > α then the minimum value of ϕ(x) in
the region x < Θs < 0 becomes

ϕ(Θs) = β(3 − β(a + α)2)Θ2
s + β(a − α)|Θs| − 1/4.

Therefore, we take ϕ(Θs) = −1/4 as the ultimate bound for the case a > α.
To compensate these negative mimimum values of ϕ(x), we should make the

coupling strength gs sufficiently strong such that the minimum value of the positive
function βΩ(x) in the interval [xr2,Θs] is greater than −m and −1/4 for a < α and
a > α, respectively.

The functionΩ(x) reaches its minimum at the left endpoint of the interval [xr2,Θs]

b = xr2 = (a − α) − √
(a − α)2 + (3/β − (a + α)2)

2(3 − β(a + α)2)
.

Hence, the stability condition (20) for the region x < Θs becomes

gs > g∗
s = p(1+e−λ(b−Θs))2

β[k(1+e−λ(b−Θs))+(Vs−b)λe−λ(b−Θs)] ,

p = m for a < α; p = 1/4 for a > α; β < 3/(a + α)2.
(22)

Combining the conditions (19), (21), and (22), we obtain an upper bound for
the negative definiteness of the quadratic form Φ̇ and come to the conditions of the
Theorem. �
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Remark 1 Condition for D3 in Theorem 1 gives a large overestimate. This is due
to the simplifications made in estimating the positiveness of the function Q(x). To
obtain a tighter bound for the coupling threshold g∗

s that would replace the constant
D3, we should resolve the transcendental Eq. (20) with respect to gs

Q(x) = β(3 − β(a + α)2)x2 − β(a − α)x − 1/4 + β
g∗

s
1+e−λ(U−Θs) +

+βkg∗
s (Vs − U ) λe−λ(U−Θs)

(1+e−λ(U−Θs))2 = 0,
(23)

taking into account the condition β < 3/(a + α)2. We shall find the solution of
Eq. (23) only in the region x < Θs. In fact, the bound D2 (cf. Theorem 1) for the
region x > Θs is close to an optimum.

One can see that the Eq. (23) has a unique solution with respect to g∗
s in the region

x < Θs that can be found numerically. Therefore, we can formally substitute D3

in Theorem 4.1 by Dnew
3 = gcr

s , where gcr
s is the solution of Eq. (23) in the region

x < Θs. Note that for a relatively sharp saturating coupling function (λ is relatively
large), the constant D3 (or the corresponding Dnew

3 ) often dominates over D1 and
D2.

Remark 2 The analysis shows that the major part of the quiescent (slow) mode
of the synchronous solution, where the contribution of Ω(x) is negligible, lies in
a stable zone x < xr1, where function ϕ(x) is positive. Here, the derivative of the
Lyapunov function is always negative, i.e., where the solutions of the individual
systems converge to each other. On the other hand, the part of the bursting solution
that is the most difficult to synchronize, favorably lies in the region x(t) ≥ Θs,
where the contribution of Ω(x) = kgs is strong and depends on k. This property will
reappear for the densely and sparsely networks later in the text.

Theorem 1 guarantees the stability of the synchronized solution, where the solu-
tion could be an equilibrium, a limit cycle-defining periodic bursting, or a chaotic
attractor-corresponding to a chaotic bursting rhythm. The type of the synchronous
dynamics is determined by the self-coupled system (10), possessing the additional
coupling-dependent term. Let us calculate the synchronization threshold g∗

s (15)
with Dnew

3 for the simplest two-neuron globally coupled network (9) with k = 1 and
parameters of the individual HR model (2) given in Fig. 1. The auxiliary parameter
β is chosen from the condition β < 3/(a+ α)2 and set equal to 0.14. Therefore, the
upper synchronization bounds D1 and D2 calculated from (15), become D1 = 2.61
and D2 = 2.7. The bound Dnew

3 that we calculate from the transcendental equation
(Q(x) = 0) (23) becomes gs = Dnew

3 = 2.94. Therefore, the final upper bound is
g∗

s = max{D1,D2,Dnew
3 } = 2.94. Numerical simulation shows that complete syn-

chronization arises in the system (9) at a relatively strong coupling g∗
s = 1.28. Our

bound g∗
s = 2.94 clearly gives an overestimate as it comes from sufficient conditions

of stability, however it is consistent with nontrivial synchronous behavior.
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3.2 Densely Coupled Networks

We define a densely coupled network (9) as a network (9) for which the eigenvalue
γ2 of G is close to −k. For example, for a ring of 2 K-nearest neighbor mutually-

coupled neurons, γ2 = −4
K∑

l=1
sin2 lπ

n
[54] with n = 10, K = 4, and k = 2 K = 8,

we obtain γ2 ≈ −7.976.Consequently, the functionΩ(x) becomes close to kgsΓ (x).
Therefore, if k is sufficiently large, the bound for the synchronization threshold is
close to that for globally coupled networks. In particular, the following theorem
holds.

Theorem 2 An upper bound for the coupling threshold that guarantees local stabil-
ity of synchronization in the (dense) network (9) with the eigenvalue γ2 of G smaller
than or equal to −k is

g∗
s = max{D1,D2,Ddense

3 }, where (24)

constants D1 and D2 are given in the condition (15) of Theorem 1. Here, the new

constant Ddense
3 = p(1+e−λ(b−Θs))2

β[k(1+e−λ(b−Θs))−(k+γ2)(Vs−b)λe−λ(b−Θs)] , and parameters p, b, and β

are given in (15).

Proof The proof is identical to that of Theorem 1 except for the change of function
Ωdense(x) = kgsΓ (x) − (k + γ2)gs(Vs − x)Γ ′

x(x)(k + γ2). �
Remark 3 Note that the second term −(k+ γ2)gs(Vs − x)Γ ′

x(x) in the denominator
of Ddense

3 is positive as long as −γ2 > k and therefore contributes to lowering the
coupling threshold g∗

s . This term, however, is small compared to the first term in
the denominator that is decisive for the stability and directly proportional to the
number of synaptic inputs k. Consequently, the coupling threshold g∗

s is inversely
proportional to k, as in the globally coupled networks.

3.3 Intermediately and Sparsely Coupled Networks

When the number of links between the neurons in a network is small, the eigenvalue
γ2 is also small such that the second term in Ω(x), −gs(k + γ2)(Vs − x)Γ ′

x(x) no
longer favors the stability. Consequently, the function Ω(x) takes negative values
in the region close to the threshold Θs and defines the instability zone, where the
coupling desynchronizes the neurons. At the same time, the stability zone is defined
by the first term in Ω , kgsΓ (x), which is bounded from below by kgs in the region
x(t) ≥ Θs (cf. Fig. 3 (right)). Strictly speaking, while we are no longer able to prove
that the systems synchronize within the framework of the Lyapunov function method,
the slow-fast structure of the self-coupled system (10), defining the synchronous
solution, yields the following. The excitatory coupling raises the x-nullcline f (x) =
−αx2 − x3 − kgs(x − Vs)Γ (x) of system (10) such that the right-branch attractor
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corresponding to spiking gradually moves to the right from the threshold x = Θs.

Finally, it leaves the zone where Ω(x) is negative (cf. Fig. 3 (right)), provided gs

is large enough. Note that the raising of the nullcline and the shift of the attractor
are also governed by kgs (cf. Eq. (10)). In the singular perturbation limit (μ → 0),
the synchronous trajectory traverses the instability region via fast jumps from the
quiescent mode to repetitive spiking, and spends almost all its time in the stability
regions. As in the case of the global coupling, the first stability zone corresponding to
a major part of the slow motion along the left branch of f (x) is always stable, whereas
the stability of the second zone corresponding to spiking is defined by kgs. Hence,
once again we see that the synchronization threshold in sparsely and intermediately
connected networks is also inversely proportional to k.

3.4 Arbitrary Network Topology: What Matters
for Synchronization

Collecting all the considered coupling topologies and the conditions of Theorems 1
and 2, we come to the following assertion [27].
Statement 1 The synchronization threshold estimate

g∗
s = g(n=2)

s /k, (25)

is valid for the networks (9) with any coupling configuration (whether global or
local, regular or random, mutual or unidirectional) under the constraint that each
neuron has the same number of inputs k. In (25), g(n=2)

s is a constant corresponding
to the synchronization coupling threshold between two mutually coupled HR neurons
(k = 1).

Remark 4 The constant g(n=2)
s comes from sufficient conditions and therefore gives

an overestimate for the real coupling strength that leads to complete synchronization
of two HR neurons: 2.94 predicted versus 1.285 actual for the above mentioned
parameters and λ = 10. However, using the numerically obtained g(n=2)

s , we can
predict the threshold g∗

s , for any k, from (25), as shown in the numerical examples
below.

Remark 5 The synchronization threshold in locally synaptically coupled networks
is constant; g∗

s = g(n=2)
s /2 for mutually nearest-neighbor coupled neurons, and does

not depend on the number of neurons n.This is in sharp contrast with linearly coupled
networks where the coupling required for stable synchronization has a quadratic
dependence on n [9].

In support of this claim, we determine numerically the threshold for complete
synchronization as a function of k for various coupling configurations (local, inter-
mediate and global), and compare it to the value predicted by Eq. (25). For g(n=2)

s ,
the value from simulation of two mutually coupled HR neurons was used. This value
is g(n=2)

s = 1.285 for λ = 10 and g(n=2)
s = 1.139 for λ = 50. It can be seen from
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Fig. 4 Synchronization thresholds g∗
s in a ring of 2 K-nearest neighbor coupled HR neurons as

functions of n for various coupling configurations (different K). Markers: Simulation results. Solid
line: Prediction of Eq. (25)

Fig. 5 Ten networks of each type, (left): n = 9, k = 3; (middle): n = 9, k = 4; (right): n = 16,
k = 4 were generated randomly. The synchronization threshold for networks of type (a): g∗

s = 0.429
for λ = 10, and g∗

s = 0.380 for λ = 50; and of types (b) and (c): g∗
s = 0.322 for λ = 10, and

gs = 0.285 for λ = 50. All the calculated thresholds coincide perfectly with g(n=2)
s /k

Fig. 4 that the deviation of the data from the fitted curve is very small indeed. Note
that even for large λ, when the synaptic function Γ (xi) approaches the Heaviside
function, the estimate (25) gives an excellent numerical prediction (cf. Fig. 4 (right)).

To illustrate the power of condition (25) even further we have simulated—in
addition to the regular, mutually coupled networks from Fig. 4—a series of randomly
generated unidirectionally coupled networks of HR neurons with uniform number
of synapses as those shown in Fig. 5. For all simulated networks, numerical results
are nearly identical to the analytical predictions of Eq. (25).

Finally, we have tested robustness of the synchronization with respect to a mis-
match in the synaptic strengths. We have simulated networks of 20 neurons for the
local, intermediate and global cases, introducing a mismatch in the synaptic strengths
around the average gs . Perfect synchronization is no longer possible in these cases,
due to the absence of the synchronization manifold, and there is always an error in
the synchronization. However, for a given value of gs this error falls rapidly and
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then remains constant when gs is further increased. This point can be seen as the
coupling threshold for the approximate synchronization. In all simulated cases this
value is nearly identical to the synchronization threshold without mismatch as shown
in Fig. 4. The synchronization has been verified to be robust for mismatches in gs of
up to 5%.

The derivation of condition (25) mainly relies on two properties of the coupled
system: (i) the spiking state, which is most resistant to synchronization, encircles the
right branch of the fast nullcline f (x), where the contribution of coupling is strong;
(ii) the quiescent state, which is easy to synchronize, belongs to the left branch of
f (x). These properties are typical for square-wave and parabolic bursters, whose
formation involves the two branches of f (x). Consequently, the synchronization
condition (25) is not restricted to the HR neuron, but is applicable to other Hodgkin-
Huxley-type neurons, exhibiting square-wave and parabolic bursters. For example,
two Sherman models displaying square-wave bursting for the standard parameters
[20], synchronize at g(n=2)

s = 0.25 when synaptically coupled with Θs = −40,
Vs = −10, and λ = 50. The synchronization thresholds in a larger network (9) of
the Sherman models correspond to the values predicted by g(n=2)

s /k.

This completes our study of stable complete synchronization in the network (9)
with any coupling configuration admitting synchronization. In the next section, we
consider the existence and stability of synchronous clusters in the network (9).

4 Clusters of Synchrony

4.1 Existence of Synchronous Clusters

Synchronous clusters exist if the graph vertices have a corresponding balanced col-
oring [43–45]. Every cluster of synchrony corresponds to a coloring of the graph
vertices in which two vertices have the same color if and only if their states are equal
(completely synchronized). Vertices colored in this way create a coloring map.

Definition 1 A coloring of the vertices is balanced, if each vertex of color i gets
the same number of inputs from the vertices of color j , for all i and j .

That is, we color the vertices from the cluster decomposition V according to the
following rule. We assign the same color to vertices (neurons) if their coordinates in
the corresponding linear subspace M(d) are equal. Coloring is balanced if all cells
with the same color receive equal number of inputs from cells of a given color. The
linear subspace M(d) is flow-invariant if and only if the chosen coloring is balanced
[43].

Definition 2 A minimal balanced coloring is a balanced coloring with the minimal
number of colors.

Note that the above coloring differs from the classical definition used in graph
theory. Indeed, graph theory defines a coloring of a graph as an assignment of
colors to the vertices, one color to each vertex, so that adjacent vertices are assigned
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different colors. The minimum integer k for which a graph is k-colorable is called the
chromatic number [47]. However, our cluster partition and the associated balanced
coloring allow two adjacent cells (vertices) to have the same color, provided that the
two cells are input isomorphic [42], i.e., their dynamics are described by the same
differential equations, up to a permutation of the variables [43].

In the following we use this concept to identify partitions with minimum number
of clusters in networks (9) with regular and random structures. Finding a minimal
balanced coloring in a given complex network is a nontrivial task. In this subsection,
we propose a simple combinatorial algorithm that finds the minimal balanced color-
ing, and therefore identifies the largest synchronous clusters in the given (complex)
network. In the next subsection, we address the stability of the clusters.

We shall first establish a few properties of balanced colorings before introducing
an algorithm that allows finding a minimal balanced coloring.

Definition 3 A coloringC2 is a refinement of a coloringC1 if two vertices that have
the same color in C2 have the same color also in C1.

Remark 6

a) We do not distinguish colorings where the subsets of vertices with the same color
are the same, but the colors are different.

b) Any coloring is a refinement of the coloring where all vertices have the same
color.

c) The coloring where all vertices have a different color is balanced and it is a
refinement of any other coloring.

d) The set V1m of vertices with color c1m in C1 is a union of sets V2p, where V2p is
the set of all vertices with the same color c2p in C2.

e) If C2 is a refinement of C1, and C1 is a refinement of C2, the two colorings are
the same (modulo the colors, cf. Remark 6a)).

We now introduce a special refinement in view of balancing.

Definition 4 The input driven refinementC2 of a coloringC1 is obtained as follows.
Consider all vertices that have color cm in C1. Color them with the same color cmj
if they have the same number of inputs from all vertices of the same color cm′ in C1,
for every color cm′ .

Property 4.1

a) Either the input driven refinementC2 ofC1 has more colors thanC1 orC2 is equal
to C1 (modulo the colors) and balanced.

b) Suppose that a balanced coloringC2 is a refinement of a (not necessarily balanced)
coloring C1. Let C3 be the input driven refinement of C1. Then C2 is also a
refinement of C3.

Proof Property 4.1a) follows immediately from Definition 4. For the proof of Prop-
erty 4.1b) suppose that two vertices v and w have the same color in C2. We have to
show that they also have the same color in C3. Since C2 is a refinement of C1, v and
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w also have the same color in C1. Now consider the set V2p that have the color c2p

in C2. Again, they must also have the same color in C1. Furthermore, since C2 is
a balanced coloring, the number of inputs from V2p to v is the same as the number
of inputs from V2p to w. This is true for any color c2p of C2. Now consider the set
V1m of vertices that have color c1m. Then according to the above remark, V1m is a
union of sets V2p. From each of the sets V2p there is the same number of inputs to
the vertices v and w and therefore there is also the same number of inputs from V1m

to v and w.As this holds for any color c1m, by the construction of C3, v and w must
have the same color in C3. �

Property 4.1 and Remark 6a suggest the following algorithm to obtain a minimal
balanced coloring:

Algorithm for Finding Synchronous Clusters Initialization: Start with the color-
ing where all vertices are colored with the same color.
Repeat: Replace the current coloring with the input driven refinement of the current
coloring until no new refinement is obtained.

The following property follows immediately from Property 4.1.

Property 4.2

a) The algorithm stops in a finite number of steps. The maximum number of steps
is the number of vertices in the graph.

b) The coloring, obtained when the algorithm stops, is balanced.

Corollary 4.1 Given a directed graph, the minimal balanced coloring is unique and
it is obtained by the above algorithm.

Proof According to Property 4.1b) any balanced coloring Cb is a refinement of all
colorings obtained during the execution of the algorithm. It is in particular a refine-
ment of the balanced coloring Cmin obtained when the algorithm stops. Therefore,
Cmin is minimal. Furthermore, if there was another minimal balanced coloring Cm,
it would also have to be a refinement of Cmin. But since Cm is minimal, it must be
equal to Cmin (modulo the colors). �

We have applied our combinatorial algorithm to a number of regular and random
networks. Three of them are shown in Figs. 6 and 7. The application of our algo-
rithm has shown that random networks generated with uniform probability per link
appearance rarely have clusters of synchrony, whereas pseudorandom networks (cf.
Fig. 6 (right)) may have a hidden subnetwork modular structure that yields clusters
of synchrony.

The stability of clusters in networks of bursting neurons (9) depends on various
factors, including the individual neuron dynamics and network topology. In the next
section, we prove the stability of specific clusters of synchrony in networks (9). The
stability conditions for irregular cluster configurations are often tedious and will be
reported elsewhere.
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Fig. 6 Clusters of synchrony in random networks of 30 neurons. (Left): Network generated by ran-
domly choosing a link between any two nodes with probabilityp = 0.045.There are 30 independent
clusters, each represented by one distinct neuron. Neurons do not form clusters of synchrony due to
the lack of symmetry. (Right): Random network with 23 clusters. Links are generated with uneven
probabilities. Note clusters formed by vertices with the same index

4.2 Stability of Clusters in Multi-Layer Networks

We use the pyramidal-shape network of Fig. 7 as a representative example of multi-
layer networks where the cells from each layer receive a common input from the same
driving neurons. The network of Fig. 7 with uniform symmetrical connections has
a four-color partition, corresponding to four clusters of synchrony that are defined
by M(4) = {ξ2(t) = ξ3(t), ξ4(t) = ξ5(t) = ξ6, ξ7(t) = ξ8(t) = ξ9(t) = ξ10(t)},
ξi = (xi , yi , zi).

In the following, we derive stability conditions for the four clusters in the network
(2) with the above four-layer structure. The stability Eqs. (2) for the transverse
perturbations to the linear invariant manifold M(4) take the form

Ẋc2 = (2axc2 − 3x2
c2)Xc2 − Yc2 − Zc2 − gs [Γ (xc1) + 3Γ (xc3)]Xc2

Ẏc2 = 2(a + α)xc2Xc2 − Yc2

Żc2 = μ(bXc2 − Zc2)

Ẋc3 = (2axc3 − 3x2
c3)Xc3 − Yc3 − Zc3 − gs [2Γ (xc2) + 4Γ (xc4)]Xc3

Ẏc3 = 2(a + α)xc3Xc3 − Yc3

Żc3 = μ(bXc3 − Zc3)

Ẋc4 = (2axc4 − 3x2
c4)Xc4 − Yc4 − Zc4 − 3gsΓ (xc3)Xc4

Ẏc4 = 2(a + α)xc4Xc4 − Yc4

Żc4 = μ(bXc4 − Zc4)

(26)

Here, {Xc2,Yc2,Zc2}, {Xc3,Yc3,Zc3} and {Xc4,Yc4,Zc4} are infinitesimal differences
between the coordinates of the neurons from clusters {C2 : ξ2 = ξ3}, {C3 : ξ4 =
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Fig. 7 Multi-layer network
with symmetrical connections
(top). Cells with the same
color belong to the same
cluster. Time-series of four
synchronous clusters. Note
that the time-series are
synchronized at the level of
bursts but there is spike
asynchrony between the
clusters. Neurons within the
clusters are synchronized
completely
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ξ5 = ξ6}, and {C4 : ξ7 = ξ8 = ξ9 = ξ10}, respectively. The first cluster C1 is
represented by one, unsynchronized neuron from layer 1. Technically, we should
have considered the difference stability equations for any pair of neurons from the
same cluster. However, due to the layer-structure of the network in which each neuron
from a given cluster receives inputs from the same neurons, these stability equations
are identical and can be replaced by a system of only three stability equations for
each cluster. In (26), the variables (xci), i = 1, .., 4 are governed by the system (10)
with the number of inputs ki = 2, 4, 6, 3, respectively.

System (26) is an analog of the Master Stability (MS) function [6] for the stability
of the cluster synchronization. MS functions of this kind are usually analyzed numer-
ically. Completely rigorous derivation of an upper bound for the coupling threshold
sufficient for cluster synchronization is complicated as the X stability equation of
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each cluster is also driven by neurons from other clusters. To get around this diffi-
culty, we make the following simplification. Numerical simulations show that when
cluster synchronization takes place and neurons split into clusters of perfect syn-
chrony, all neurons of the network also become synchronized at the level of bursts
but there is no spike synchrony among the clusters (see Fig. 7). As a result, the
network behavior possesses two distinct mesoscopic and macroscopic properties:
synchronization within the clusters representing the mesoscale and burst synchro-
nization of the entire network at the macroscale. Burst synchronization implies that
all the neurons start and cease bursting at the same time instant. Consequently, the
variables defining the four clusters of perfect synchrony: xc1, xc2, xc3, and xc4 cannot
be equal. However, the corresponding synaptic functions Γ (xc1), Γ (xc2), Γ (xc3),
and Γ (xc4) become approximatively equal as the neurons states cross the synaptic
threshold Θs and therefore activate the synaptic functions Γ (xci) at approximatively
same times. Using this approximation that Γ (xc1) = Γ (xc2) = Γ (xc3) = Γ (xc4),
we can transform the stability Eq. (26) as follows:

Ẋc2 = (2axc2 − 3x2
c2)Xc2 − Yc2 − Zc2 − 4gsΓ (xc2)Xc2

Ẏc2 = 2(a + α)xc2Xc2 − Yc2

Żc2 = μ(bXc2 − Zc2)

Ẋc3 = (2axc3 − 3x2
c3)Xc3 − Yc3 − Zc3 − 6gsΓ (xc3)Xc3

Ẏc3 = 2(a + α)xc3Xc3 − Yc3

Żc3 = μ(bXc3 − Zc3)

Ẋc4 = (2axc4 − 3x2
c4)Xc4 − Yc4 − Zc4 − 3gsΓ (xc4)Xc4

Ẏc4 = 2(a + α)xc4Xc4 − Yc4

Żc4 = μ(bXc4 − Zc4)

(27)

Note that three subsystems for the stability of clusters C2, C3, and C4 are indepen-
dent. The new stability system (27) is stabilized as long as its weakest subsystem,
corresponding to the cluster C4 that receives the fewest number of inputs, becomes
stable. This statement can be verified by constructing a Lyapunov function similar
to the function (17), written for all nine coordinates of the system (27) and showing
that its derivative splits into three independent quadratic forms. Each quadratic form
corresponds to the stability of each cluster, and the negativeness of the form corre-
sponding to the clusterC4 with the fewest number of inputs ensures the negativeness
of the other two quadratic forms. For the sake of brevity, we have omitted this proof.
In short, the linear invariant manifold M(4) defining the cluster partition is locally
stable as long as the origin of the following system is stable

Ẋc4 = (2axc4 − 3x2
c4)Xc4 − Yc4 − Zc4 − 3gsΓ (xc4)Xc4

Ẏc4 = 2(a + α)xc4Xc4 − Yc4

Żc4 = μ(bXc4 − Zc4).

(28)
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Statement 2 Under the numerically validated approximation that Γ (xc1) =
Γ (xc2) = Γ (xc3) = Γ (xc4) in the regime of cluster synchronization, an upper bound
for the coupling threshold that guarantees local stability of cluster synchronization
in the network (2) with the structure of Fig. 7 becomes

g∗
s = max{2D1/3, 2D2/3,Dcl

3 }, where (29)

constants D1 and D2 are given in the condition (15) of Theorem 1 with k = 1. Here,
the new constant Dcl

3 = p

3β (1 + e−λ(b−Θs)), and parameters p, b, and β are given in
(15).
Proof. The stability system (28) is similar to the variational Eqs. (13)–(14) for the
stability of complete synchronization in the simplest globally coupled two-neuron
network (2) with k = 1. Use the Lyapunov function (17) and follow the steps of the
proof of Theorem 1, replacing the function Ω(x) with 3gsΓ (x). Note that the lowest
bound of 3gsΓ (x) in the region x ≥ Θs is 3/2. Therefore, Conditions I and II (Part
I) of the above proof yield the bounds 2D1/3 and 2D2/3. The stability condition
(20) for the part of the synchronous trajectory xc4 < Θs turns into gs = Dcl

3 =
p

3β (1 + e−λ(b−Θs)). �
Note that the obtained bound (29) is not completely rigorous as opposed to the rig-

orous bounds for complete synchronization derived in Theorems 1 and 2. The above
approximation only holds to a certain degree of precision and comes from numerical
simulations. However, it clearly shows that the stability of cluster synchronization
in the multi-layer network (2) is determined by the stability of the cluster with the
smallest number of inputs. In our case, this is cluster C4, representing layer 4 of the
network in which the neurons receive three inputs.

5 Conclusions

Networks of synaptically coupled neurons have very different synchronization prop-
erties from linearly (gap-junction) coupled neurons. In the case of identical neurons
with identical excitatory coupling functions and coupling constants, complete syn-
chronization is only possible when each neuron receives the same number of inputs
from other neurons [27]. In this case, we have shown that the single condition (25)
ensures the onset of complete synchronization in networks of synaptically coupled
bursting neurons (9) with any coupling topology in which each neuron receives
signals from k others. The synchronization condition depends on the number of
inputs k and not on the connectivity matrix. This condition carries over to burst
synchronization when the neurons are nonidentical and the synaptic connections are
heterogeneous, provided that the total input, each neuron receives, is roughly the
same. Burst synchronization occurs when the envelopes of the spikes synchronize,
but there is no synchrony among the spikes.

The equal k constraint is often invalid for biologically relevant networks with a
complex structure where the number of inputs is not necessarily constant, but if k is
uniform for a group of neurons, synchronization within this cluster of neurons can



26 I. Belykh and M. Hasler

occur. The possible cluster decompositions of the network can be identified from the
network topology alone through a so-called balanced coloring of the vertices [43–
45]. Among the balanced colorings there is a unique coloring that uses the minimal
number of colors, corresponding to a cluster decomposition with the smallest number
of clusters, and therefore to the largest clusters. With sufficiently strong coupling,
the neurons within these clusters synchronize. We have given a simple algorithm
that finds this cluster decomposition from the network topology. Networks with a
certain degree of internal symmetries are likely to have cluster decompositions with
relatively large clusters, leading potentially to synchronization at mesoscale, whereas
random graphs rarely admit clusters composed of more than two or three neurons.
We have also addressed the important question of the (local) asymptotic stability of
cluster synchronization. This property depends not only on the network topology,
but also on the neuron models themselves. We have concentrated on the HR model in
the range of parameters where square-wave bursting takes place. We have given an
explicit rigorous threshold for the coupling strength that guarantees the asymptotic
stability of local synchronization in globally and densely coupled neurons. We have
then used a similar stability argument to establish thresholds for the stability of cluster
synchronization in well-structured networks where each cluster receives the same
inputs from other neurons. Our analysis demonstrates that the stability of the cluster
synchronization in the entire network is determined by the stability of the cluster
composed of two or more neurons with the smallest number of inputs.

The synaptic strengths in biologically relevant networks with a complex structure
can change as a result of pre- and postsynaptic neuron activity. This may result in
temporally approximate cluster synchronization when the total input to groups of
neurons becomes color balanced only for a specific interval of time. The proposed
algorithm promises to allow finding temporal clusters of synchrony in networks with
time-varying synapses. Its extension to adaptive networks with the ability to privilege
clusters of synchrony is a subject of separate study.
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On Topological and Hyperbolic Properties
of Systems with Homoclinic Tangencies

Sergey Gonchenko, Alexander Gonchenko and Ming-Chia Li

Abstract We study dynamical properties of a setΛ of trajectories from a small neigh-
bourhood of a non-transversal Poincaré homoclinic orbit. We show that this problem
has no univalent solution, as it takes place in the case of a transversal homoclinic orbit.
Here different situations are possible, depending on the character of the homoclinic
tangency, when Λ is trivial or contains topological (hyperbolic) horseshoes. In this
chapter we find certain conditions for existence of both types of dynamics and give
a description (in term of the symbolic dynamics) of the corresponding non-trivial
hyperbolic subsets from Λ.

1 Introduction

Homoclinic orbit or Poincaré homoclinic orbit is an orbit that is bi-asymptotic to
a saddle periodic trajectory. Thus, any such orbit belongs to the intersection of the
invariant stable Ws and unstable W u manifolds of the corresponding periodic orbit.
Depending on transversality or non-transversality of the intersection, the homoclinic
orbit is called transversal or non-transversal. In the latter case, one says also about
homoclinic tangency.

The existence of transversal Poincaré homoclinic orbits is considered as the uni-
versal criterium of chaos. The point is that even the set Λ1 of orbits entirely lying in
a small neighbourhood of a transversal homoclinic orbit has a non-trivial structure:
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a

c

b

Fig. 1 a The graph of the Markov chain Bk̄+q
2 related to the symbolic description of Λ1. b A

neighbourhood of a transversal homoclinic orbit: k̄ can be interpreted as a minimal number of
iterations of the diffeomorphism under which orbits of Λ1 can stay in U0; and q is a number
of neighbourhoods (small squares) surrounding those points of Γ1 which do not belong to U0. c

Suspensions over Bk̄+q
2 and B2 are equivalent [3]

it contains infinitely (countable) many periodic and homoclinic orbits, continuum of
Poisson stable orbits, etc. Nevertheless, the set Λ1 can be described completely in
terms of the symbolic dynamics, [33]. Namely, let f be a diffeomorphism having
a transversal homoclinic orbit Γ1 to a saddle fixed point O (see Fig. 1). Then the
following result, Shilnikov theorem [33], takes place:

• The set Λ1 is a locally maximal uniformly hyperbolic invariant set on which a

diffeomorphism is topologically conjugate to a subsystem Bk̄+q
2 of the Bernoulli

shift B2 with two symbols, where Bk̄+q
2 is given by the Markov chain of Fig. 1a

and k̄, q are integers indicated in Fig. 1b.

Evidently, this result covers also the flow case: then one can consider the set Λ1 as
an invariant set for the Poincaré map of a local section to the corresponding saddle
periodic trajectory. However, if we consider Λ1 as the set of flow orbits, then the
result sounds simpler:

• Λ1 is topologically equivalent to a suspension over B2.

Note that the notion of suspension over a topological Markov chain was introduced
in [3]. It generalizes the standard notation of suspension over a map and is convenient
for description of flow dynamics (in particular, for classification of critical sets of
Morse–Smale systems [2, 3]).

In the case of homoclinic tangency, the corresponding problem (of a description
of the orbit structure near a non-transversal homoclinic orbit) becomes much more
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complicated. Moreover, it cannot be principally solved namely as the problem of
“complete description”, especially when nearby systems are considered. The point
is that arbitrarily small smooth perturbations of any system with a (quadratic) homo-
clinic tangency can lead to the appearance of homoclinic and periodic orbits of any
orders of degeneracy, see [17, 18, 20, 22].

One of the problems of such a type, namely, the study of topological and hyper-
bolic properties of systems with homoclinic tangencies, is the subject of the present
chapter. Hyperbolic properties of systems with quadratic homoclinic tangencies were
studied first in the paper [5] of N.K. Gavrilov and L.P. Shilnikov and, afterwards, in a
series of papers, e.g. [7, 8, 11]. See also the special issue [16] devoted to homoclinic
tangencies. Homoclinic tangencies of arbitrary finite orders were studied in papers
[6, 11] in which the main attention was given to detecting non-trivial hyperbolic sub-
sets. Note also that certain conditions for the existence of topological horseshoes near
homoclinic tangencies were established in [26, 29] for two-dimensional dissipative
diffeomorphisms.

In this chapter, see also [24], we extend these results to multidimensional dif-
feomorphisms (not necessarily dissipative) having homoclinic tangencies to saddle
periodic orbits with one-dimensional unstable invariant manifolds.

We assume throughout the paper the following set-up. Let f be an (m + 1)-
dimensional Cr -diffeomorphism, r ≥ 2, having a hyperbolic fixed point O with
multipliers λ1, . . . , λm, γ such that

0 < |λm| ≤ · · · ≤ |λ2| ≤ |λ1| < 1 < |γ |. (1)

We consider the quantity σ ≡ |λ1||γ | which is called the saddle value. Our main
assumption is σ �= 1 and we consider two different general cases:1

(1) the sectionally dissipative case when σ < 1 and
(2) the sectionally saddle case when σ > 1.

We assume also that f has a homoclinic orbit Γ0 to O for which m-dimensional
stable Ws and one-dimensional unstable W u invariant manifolds of O are tangent
and this tangency can be arbitrary.

Let U be a small neighbourhood of the contour O ∪ Γ0. It can be represented
as a union of a small neighbourhood U0 of the point O with a number of small
neighbourhood of those points of Γ0 which do not belong to U0, as in Fig. 1b. Let Λ
be the set of orbits (of f ) entirely lying in U .

Our main problem is the study of both topological and hyperbolic properties of
Λ. We will keep the following standard terminology.

Definition 1 We say that

(i) f possesses a trivial dynamics near Γ0 if Λ = O ∪ {Γ }, where {Γ } is a set of
homoclinic orbits to O;

1 Note that the case σ = 1 (i.e. O is a neutral saddle) is very specific and we do not consider it here.
We only refer the reader to papers [9, 12, 21] in which various cases of neutral saddles (σ = 1)
with homoclinic tangencies were analysed; see also papers [10, 14, 15] in which area-preserving
maps were considered.
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a b c

Fig. 2 Homoclinic tangencies. a One-sided “from above”. b One-sided “from below”. c Topological
crossing

(ii) f has a topological horseshoe if Λ contains an f -invariant subset Λ̃ such
that f |Λ̃ is topologically semi-conjugate to a subshift of finite type with positive
topological entropy;

(iii) f has a hyperbolic horseshoe if Λ̃ from (ii) is uniformly hyperbolic and a
topological conjugacy (instead the semi-conjugacy) takes place.

LetM+ andM− be a pair of points ofΓ0 such thatM+ ∈ Ws
loc∩U0, M− ∈ W u

loc∩U0.
Let Π+ and Π− be sufficiently small neighbourhoods of the points M+ and M−,
respectively, and let M+ = f q(M−) for some integer positive q. Denote the map
f |U0 as T0 and the map f q |Π− as T1 (thus, T1(M−) = M+). The map T0 is called
the local map, because it is defined in a small neighbourhood of O; while, the map
T1 is called the global map, because it acts along a global piece of the orbit Γ0.

Definition 2 The homoclinic tangency is isolated if, for some Π+, the point M+
is the unique intersection point of lu = T1(W u

loc ∩ Π−) ∩ Π+ and Ws
loc. We say

that the (isolated) homoclinic tangency is one-sided if Ws
loc divides Π+ onto two

half-parts and the curve lu belongs as whole to the closure of exactly the one half of
Π+, otherwise, the tangency is called topological crossing. We say that a one-sided
tangency is from below, if the point M− is not an accumulation point of the curves
T i

0 (lu), i = 0, 1, . . . , i.e.

M− /∈
⋃

i≥0
{T i

0 (lu)}; (2)

and is from above otherwise. See Fig. 2 for an illustration.2

We need to say that the problem under consideration (on a structure of the setΛ of
orbits near a non-transversal homoclinic orbit) is sharply different in many aspects

2 Note that if γ < 0, then condition (2) can hold only when Ws
loc contains lu. Thus, in this case,

any isolated one-sided tangency is, in fact, a tangency “from above”. On the other hand, if γ > 0,
condition (2) allows a big variety of non-isolated tangencies.
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from the corresponding problem (the so-called Poincaré–Birkhoff problem) for the
case of transversal homoclinic orbit.

First, it does not allow a single (univalent) answer (like the Shilnikov theorem):
we select two very different situations when the set Λ has a trivial structure and
when Λ contains infinitely many horseshoes, in a sense of Definition 1.

Second, under the weakest assumptions, related only to geometrical properties
of the homoclinic tangency, see Definition 2, we can establish the corresponding
classification results for the sectionally dissipative case σ < 1 (see Theorem 1)
or for the two-dimensional case σ > 1 (which is reduced to the case σ < 1 for
f −1), see Proposition 2. Furthermore, we render concrete the problem by means of
additional general assumptions under conditionsA, B, C and D in Sect. 3). Conditions
A–C define the so-called simple homoclinic tangency and D defines an order of
this tangency. Importantly, for simple homoclinic tangencies with σ > 1, we can
establish quite readable classification results, see Theorems 2 and 3. However, for
non-simple homoclinic tangencies with σ > 1, even for quadratic ones, we have
no hope for a similar classification; see Sect. 4.1. Instead, it was shown in [6, 24]
that, in the case of simple homoclinic tangencies of finite orders, a quite detailed
description of non-trivial hyperbolic invariant subsets from Λ can be achieved. We
collect the corresponding (hyperbolic) results in Sect. 5, see Theorems 4 and 5 and
their specifications: Proposition 5 for the case σ < 1 and Proposition 6 for the case
σ > 1. By “a quite detailed description”, we mean that for some dense subset of
systems with homoclinic tangency this description (given by Theorem 5) becomes
complete; we prove this fact in Sect. 5.1, see also Proposition 7.

2 Topological Horseshoes in the Sectionally Dissipative Case

Note, at first, that condition (2) in the sectionally dissipative case (σ < 1) can be
regarded to a certain criterion of trivial dynamics that the following result shows.

Theorem 1 Let f have a homoclinic tangency to O and σ < 1. Then

1. If the tangency satisfies condition (2) (in particular, when the tangency is “from
below”), then f possesses the trivial dynamics near Γ0.

2. Otherwise, i.e. when condition (2) is not fulfilled (but, again, σ < 1), f has
infinitely many topological horseshoes near Γ0.

The proof is given in Sect. 6, see also [24]. Note that the two-dimensional case was
analysed in [29, 26]. Nevertheless, it is necessary to note that the main geometric idea
of the proof is quite simple that Fig. 3 reflects where the corresponding illustrations
(in dimension 2) are shown.

Indeed, the problem under consideration allows a geometric interpretations as
follows. In Π+ and Π− there exist infinitely many (m + 1-dimensional) disjoint
strips σ 0

k ⊂ Π+ and σ 1
k ⊂ Π−, k = k1, k1 + 1, . . . , such that σ 0

k = T −k
0 (Π−) ∩Π+

and σ 1
k = T k

0 (Π+) ∩Π− = T k
0 σ

0
k . Thus, only iterations under f of points from Π+
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a b

Fig. 3 The strips σ 0
k and σ 1

k are posed on the distances of order γ−k from Ws
loc and λk1 from

W u
loc, respectively. By a geometry of the tangency, the image of σ 1

k under the global map T1 is a
horseshoe T1(σ 1

k ) whose top is posed on a distance ∼ λk1 from Ws
loc. Since λk1 � γ−k , we have:

a T1(σ 1
k )∩σ 0

k = ∅ in the case of tangency “from below”. b The return map Tk ≡ T1T
k

0 : σ 0
k → Π+

is similar to a Smale horseshoe map in the case of tangency “from above”

which belong to the strips σ 0
k can reach Π−. In turn, the image of the strip σ 1

k under
the global map T1 is a horseshoe-shaped figure T1(σ 1

k ) ⊂ Π+ (below we will use
term “horseshoe T1(σ 1

k )” namely in this, geometrical, sense). Therefore, infinitely
many first return maps Tk = T1T

k
0 : σ 0

k → Π+, k = k̄, k̄ + 1, are defined here. If
the tangency is “from below” all these maps possess a trivial dynamics, see Fig. 3a.
However, in the case of tangency “from above” (or topological crossing), all these
maps act, topologically, as Smale horseshoe maps, see Fig. 3b. Therefore, we can say,
in the latter case, about existence of infinitely many geometrical Smale horseshoes.

Although within the hypothesis of Theorem 1 we can not say directly on hyperbolic
properties of these topological horseshoes, one can apply some indirect facts, like
the Katok theorem [30], in order to deduce the following.

Proposition 1 In the case 2 of Theorem 1 the set Λ contains infinitely many
hyperbolic horseshoes in sense of Definition 1.3

Indeed, by Theorem 1, we get that the restriction to each topological horseshoe
has positive topological entropy. The latter means that there are some orbits with
positive first Lyapunov exponent. These orbits have other Lyapunov exponents to

3 For example in the case of tangency “from above”, the topological (geometrical) horseshoe of
map Tk (for every value of k from an infinite sequence of integers) contains an Tk-invariant subset
Δk such that the system Tk |Δk is uniformly hyperbolic and topologically conjugate to a subshift of
finite type with positive topological entropy.
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a b

Fig. 4 Geometry of strips and horseshoes in the case σ > 1

be negative, due to the sectional dissipation that implies the absence of such orbits
having zero second Lyapunov exponent.4

Thus, in the sectionally dissipative case, relation (2) provides the necessary con-
dition for the existence of trivial dynamics near a homoclinic tangency. It is not
the case when σ > 1. In particular, we can see principal differences in geometry
between the cases σ < 1 and σ > 1 even in dimension two (compare Figs. 3 and 4).
However, Theorem 1 can be directly applied to this 2dim case for σ > 1, since we
can here consider f −1 instead f . Then the following condition

M+ /∈
⋃

i≥0
{T −i

0 (ls)}, (3)

where the curve ls ⊂ Π− is defined as ls = T −1
1 (Ws

loc ∩ Π+) ∩ Π−, plays role of
the condition(2). Thus, we obtain

Proposition 2 Let f be two-dimensional and σ > 1. Then

1) If condition (3) holds, then f possesses a trivial dynamics near Γ0.
2) Otherwise, i.e. when (3) is not valid (but, again, σ > 1), thenf has infinitely many

topological horseshoes near Γ0 every of which contains a hyperbolic horseshoe
in sense of Definition 1.

Unfortunately, this approach is not suitable for multidimensional case with σ > 1
since dim W u(O) > 1 for f −1 and it is not the case under consideration. Moreover,
as we will see below, in this case we need, by necessity, an additional specification
of the homoclinic tangency, since only geometrical properties are not sufficient even
for deriving certain classification results like Theorem 1. However, an analogous
specification is required especially (even for the case σ < 1), if we want to know

4 We thank D. Turaev who attracted our attention to the interesting fact that the Katok theorem can
be directly applied to the sectionally dissipative case. See also [35].
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more. question relates to hyperbolic properties. Indeed, the hyperbolic horseshoes
from Corollary 1 are not specified. We do not know whether the first return maps
T1T

i
0 : σ 0

i → σ 0
i are hyperbolic. In order to get more information, we need to make

more assumptions (see conditions A–D below).

3 The Definition of a Simple Homoclinic Tangency

Let the multipliers λ1, . . . , λm, γ of O are ordered as in (1). We call leading (or
weak) those multipliers that are equal to |λ1| by the absolute value. Accordingly, the
other stable multipliers (less than |λ1| by modulus) are called non-leading (or strong
stable). We consider the following general condition:

A) the leading stable multipliers of O are simple.
Accordingly, two different types of saddle fixed (periodic) points are defined.
Namely,

A1) the point O is a saddle, i.e. the multiplier λ1 is real and |λ1| > |λj | for j =
2, . . . ,m;

A2) the point O is a saddle-focus, i.e. λ1 and λ2 are complex conjugate, λ1 =
λeiψ , λ2 = λe−iψ , 0 < λ < 1, 0 < ψ < π and λ > |λj | for j = 3, . . . ,m.

When the pointO has also non-leading stable multipliers we need more assumptions
related to the homoclinic tangency. Recall some necessary facts.

First, if Condition A holds, the manifold Ws
loc(O) contains a Cr -smooth strong

stable manifold Wss
loc which touches at O the eigenspace of Df corresponding to the

non-leading multipliers λi (thus, the Wss
loc has dimension (m − 1) or (m − 2) when,

respectively, A1 or A2 holds). Moreover, it is well-known (see e.g. [25, 34]) that
Ws

loc is foliated by the Cr strong stable foliation F ss containing Wss
loc as the leaf.

Note also that the manifold W u(O) is a part of the so-called extended unstable
manifold W ue(O) (see, for example, [25, 34]). It is a smooth (at leastC1+ε) invariant
manifold which is tangent, at O, to the eigenspace of Df corresponding to the
unstable and the leading stable multipliers, thus, W ue is two- or three-dimensional
if O is a saddle or a saddle focus, respectively. Although, the manifold W ue is not
defined uniquely, any two such manifolds contain W u

loc and are tangent to each other
at the points of W u

loc. Thus, at the homoclinic point M− ∈ W u
loc the tangent space

to W ue, denoted as TM−W ue is defined uniquely. Since M+ = T1(M−), we can
extend W ue up to the homoclinic point M+. Denote the tangent space to W ue at
M+ as TM+W ue. Evidently, TM+W ue = DT1 (TM−W ue)), where DT1 denotes the
differential of the global map T1 ≡ f q : Π− → Π+ at the point M−.

We introduce the following general conditions: the off strong stable manifold
condition

B) M+ /∈ Wss
loc

and subtransversality condition
C) TM+W ue is transversal to F ss(M+) at M+, where F ss(M+) is the leaf of the

foliation F ss containing the point M+.
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a

b

c

Fig. 5 Examples of three-dimensional diffeomorphisms with simple (a), and non-simple (b)–(c)
homoclinic tangencies

An example of three-dimensional diffeomorphism satisfying the conditions A1,
B and C is shown in Fig. 5a. Main cases where C is violated (while A1 and B are
kept) are illustrated in Fig. 5b and c. Here, either TM+W ue is transversal to Ws

loc but
touches F ss(M+) atM+, as in case (b), or TM+W ue belongs toWs

loc (i.e., any surface
T1(W ue) touches Ws

loc at M+), as in case (c).

Definition 3 A homoclinic tangency satisfying conditions A–C is called simple.
We can also adapt this definition to homoclinic tangencies of finite orders as

follows.

Definition 4 Let f be aCr -diffeomorphism under consideration and n be an integer
such that 2 ≤ n ≤ r . Then we say that the homoclinic tangency at M+ is of order n
if there exists local (near M+) Cr -coordinates (ξ1, . . . , ξm, η) in which Ws

loc has the
equation η = 0 and a piece of W u containing M+ can be written (in the parameter
form) as follows

ξi = biα +O(α2), (i = 1, . . . ,m), η = g(α), (4)
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where g(α) is Cr and

g(0) = dg(0)

dα
= · · · = dn−1g(0)

dαn−1
= 0,

dng(0)

dαn
= n!, d �= 0, (5)

where α is a parameter varying near zero, bi and d are constants and
∑ |bi | �= 0. If

all derivatives dig(0)/dαi vanish for i = 0, . . . , s, where s ≥ r , then we say that the
tangency is of indefinite order.

By definition, tangencies of even orders are one-sided, while, tangencies of odd
orders correspond to the topological crossings. Tangencies of some small orders have
special notations: quadratic for n = 2, cubic for n = 3, quadric for n = 4. Note
that a type of the tangency can depend on coordinate changes. For instance, even
a quadratic tangency can be transformed into a tangency of indefinite order under
C1-change of coordinates.5

We introduce the following condition:
D) the manifolds Ws(O) and W u(O) have the tangency of a finite order n ≥ 2 at the
homoclinic point M+.

Since f is diffeomorphism, condition D implies that Ws(O) and W u(O) have
tangency of order n at any point of Γ0. Note that, in the real analytical case, the
condition D holds always in that sense that any possible homoclinic tangency can
be only of finite order here (except for infinitely degenerate cases when Ws(O) and
W u(O) coincide).

By Definition 3, a homoclinic tangency satisfying conditions A–D should be
labeled as simple homoclinic tangency of order n. Note that notation of simple
quadratic homoclinic tangency was introduced in [19] which is, in fact, a certain
variant of the so-called quasi-transversal homoclinic intersection, [31].

Note that conditions A–C have very important dynamical sense. Namely, when
these conditions hold the corresponding diffeomorphism f has, see [34, 36],

• A global smooth invariant center manifold Wc which contains the orbits O and
Γ0 as well as all orbits entirely lying in U .

This manifold is normally-hyperbolic (in sense of [25]), since f is exponentially
contracting along transversal to Wc directions which correspond, at O, to the u-
directions. Therefore, dimWc = 2 or dimWc = 3 depending on A1 or A2 holds and,
thus, the problem under consideration allows the so-called dimension reduction to
dim = 2 or dim = 3, respectively. Therefore, it has a certain sense to single out this
type of homoclinic tangencies, i.e. the simple homoclinic tangencies.

However, an insufficient smoothness ofWc (onlyC1+ε , the same as forW ue) “de-
stroys” the condition D in the restricted system f |Wc. Therefore, when this condition
is principally important (see Sect. 5) we should work with the initial multidimen-
sional system (even in the sectionally dissipative case σ < 1). On the other hand,

5 Therefore, in problems of such type, it is not reasonable to use a C1-linearization (which, by the
way, does not always exist in the multidimensional case). This can lead to non-repairable mistakes
in the proofs or to absurd results, and, in the best case, only very rough topological properties can
be established [32, 4].
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the condition D is hardly controlled one (for specific systems) and, therefore, it is
reasonable to assume that only its topological variant takes place, i.e. the homoclinic
tangency is simple one-sided or simple topological crossing (here, “simple” means
again that conditions A–C are fulfilled). In this case one can obtain certain meaning-
ful results related to the existence of horseshoes (topological or even hyperbolic) in
the case σ > 1. See Sect. 4.

3.1 On a Coordinate Expression of the Simple Homoclinic
Tangency

We will use in U0 local coordinates in which the saddle map T0 takes the so-called
main normal form or normal form of the first order. This form is very convenient for
calculations and, in contrast to the linear form, exists always. Thus, the following
result holds.

Lemma 1 [13, 8, 34]. Let f be Cr (r ≥ 2) and O have multipliers λ1, . . . , λm, γ
satisfying (1). Then the map T0 = f |U0 can be written, in some Cr -coordinates
(x, u, y) on U , as follows:

(x̄, ū, ȳ) =
(
Âx + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
, (6)

where eigenvalues of the matrix Â are equal to |λ1| by absolute values, whereas,
eigenvalues of B̂ are all smaller. Besides, the functions h1,h2,h3 satisfy conditions

h1(0, 0, y) ≡ 0, h2(0, 0, y) ≡ 0, h3(x, y, 0) ≡ 0,

h1(x, u, 0) ≡ 0, h3(0, 0, y) ≡ 0,
∂h1

∂x
|x=0,u=0≡ 0,

∂h2

∂x
|x=0,u=0≡ 0

∂h3

∂y
|y=0≡ 0.

(7)

Remark 1 The proof of Lemma 1 is based on the so-called “Afraimovich changes of
variables” [1]. In turn, these changes generalize the method by E.A. Leontovich for
construction of finitely-smooth normal forms of two-dimensional flows near saddle
equilibria [27, 28]. See also [21, 34] for a modern treatment of this theory.

If condition A holds, we have in Lemma 1 that either x ∈ R
1 and Â = λ1 in case

A1; or x ∈ R
2 and Â2 = λ

⎛

⎝
cosψ − sinψ

sinψ cosψ

⎞

⎠ in case A2.

Using the main normal form one can easily calculate any iterations T k
0 , especially,

when k is large that the following result shows.
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Lemma 2 [13, 8, 34] Let (xk , uk , yk) = T k
0 (x0, u0, y0). When the local mapT0 is writ-

ten in form (6) and identities (7) hold, the following relations take place for all large k:

xk − Âkx0 = λ̂kξk(x0, u0, yk),

uk = λ̂k ξ̂k(x0, u0, yk),

y0 − γ−kyk = γ̂−kηk(x0, u0, yk)

(8)

where λ̂ and γ̂ are some constants such that 0 < λ̂ < |λ1| , γ̂ > |γ | and functions
ξk , ηk , ξ̂k , η̂k are uniformly bounded for all k, along with the derivatives up to order
(r−2). The derivatives of orders (r−1) and r are estimated as follows ‖xk , uk‖

Cr−1 =
o(|λ1|k), ‖y0‖

Cr−1 = o(|γ |−k) and ‖xk , uk , y0‖Cr
= o(1)k→∞.

In the coordinates of Lemma 1, the manifolds Ws
loc(O), W u

loc(O) as well as Wss
loc

are straightened, i.e. they have the following equations:

Ws
loc(O) − {y = 0}, W u

loc(O) − {(x, u) = 0}, Wss
loc − {x = 0, y = 0}.

Hence, we can write that M+ = (x+, u+, 0) and M−(0, 0, y−), where y− > 0. If
condition B holds, then ‖x+‖ �= 0. In case A1, since x ∈ R

1 (and u ∈ R
m−1), it

means that x+ �= 0 and we assume that x+ > 0 here.
Define the neighbourhoods Π+ and Π− of M+ and M−, respectively, as follows

Π+ = {‖(x − x+, u − u+)‖ ≤ ε0, |y| ≤ ε0}, Π− = {‖(x, u)‖ ≤ ε1, |y − y−| ≤ ε1},
(9)

where ε0 > 0, ε1 > 0 are sufficiently small and T0Π
+∩Π+ = ∅, T −1

0 Π−∩Π− = ∅.
The global map T1 ≡ f q : Π− → Π+ can be written as follows

(x̄ − x+, ū − u+) = F (x1, u1, y1 − y−), ȳ = G(x1, u1, y1 − y−), (10)

where Cr -functions F and G are defined on Π− and F (0) = 0,G(0) = 0 as well as
Gy(0) = 0. Then we can write the map T1 in the following form

(x̄ − x+, ū − u+) = ax + âu + b(y − y−) +O
(‖(x, u)‖2 + (y − y−)2

)
,

ȳ = cx + ĉu + ϕ(y − y−) +O
(‖(x, u)‖2 + ‖(x, u)‖|y − y−|),

(11)

where ϕ(0) = 0 and ϕ′(0) = 0, since the curve T1(W u
loc) touches Ws

loc at the point
M+, and

det

(

a â b

c ĉ 0

)

�= 0. (12)

If condition D holds, then

ϕ(y − y−) ≡ d(y − y−)n + o
(
(y − y−)n

)
and d �= 0. (13)
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Note also that, in the coordinates of Lemma 1, the foliation F ss has a form
{x = const , y = 0} and the tangent space TMW ue to W ue at any point M ∈ W u

loc

is the plane u = 0. Then condition C means, by (11), that the planes TM+W ue :
{(x̄ − x+, ū − u+) = ax + b(y − y−), ȳ = cx} and F ss(M+) :

{
x̄ = x+, ȳ = 0

}

are transversal (here, TM+W ue is given in a parameter form where x and (y − y−)
are parameters). It means that the system (0, u − u+) = ax + b(y − y−), 0 = cx has
a unique solution. Thus, condition C reads as

b1 �= 0, c �= 0 in case A1 (14)

or as

b2
1 + b2

2 �= 0, c2
1 + c2

2 �= 0 in case A2. (15)

Note that Fig. 5b and c correspond to the caseA1 with b1 = 0 and c = 0, respectively.

4 On Simple Homoclinic Tangencies in the Sectionally
Saddle Case

In this section we consider, essentially, the multidimensional sectionally saddle case
σ > 1. Concerning a type of the homoclinic tangencies, we assume in this section
that they are isolated and one-sided.

Then f can possess both trivial and non-trivial dynamics near Γ0 depending on
type of the tangency.

Remark 2 In the case of topological intersection, infinitely many topological horse-
shoes near the homoclinic tangency always exist. It follows from the fact that the

system f |Λ is semi-conjugate to Bk̄+q
2 (compare with the Shilnikov theorem from

Introduction). However, even in this case, if conditions A1, B and C hold (i.e. O is
a saddle and the tangency is simple), infinitely many hyperbolic horseshoes (in the
sense of Definition 1) exist. This fact follows directly from the Katok theory, since
the problem allows reduction to dim = 2 in this situation. Note that in [11] certain
classes of systems with simple homoclinic tangencies of odd order are described for
which f |Λ is topologically conjugate to B2

k̄+q and all orbits of Λ, except Γ0, are of
saddle type.

We introduce the so-called “index of one-sided tangency” ν0 that can take values
+1 or −1 and is defined as follows. Consider the piece T1(W u

loc) ∩ Π+ of W u(O)
which, by (11), has the equation

(x̄ − x+, ū − u+) = bα +O
(
α2

)
, ȳ = ϕ(α), (16)

written in the parametric form, where α = y − y− is a parameter. Since ϕ(0) =
0,ϕ′(0) = 0, the curve (16) touches the plane ȳ = 0 at α = 0. Let this tangency be
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a b c

Fig. 6 Examples of simple homoclinic tangencies with trivial dynamics for λ1 > 0, γ > 0

one-sided, then we define

ν0 = sign ϕ(ξ ) at ξ �= 0.

Thus, if γ > 0 the homoclinic tangency (one-sided and isolated) is “from below” if
ν0 = −1 and it is “from above” ifν0 = +1. Ifγ < 0 the value of indexν0 depends on a
choice of homoclinic points in such a way that, for example, ν0(M+) = −ν0(f (M+));
it means that we can always take such pairs of the homoclinic points that ν0 = +1.
Note that if the tangency is of even order, then ν0 = sign d that follows directly
from (13).

Theorem 2 [Simple homoclinic tangencies with trivial dynamics]
Let f have a one-sided homoclinic tangency satisfying A1, B and C and one of the
following conditions: (1) σ < 1 and γ > 0, ν0 < 0; (2) σ > 1 and λ1 > 0, cν0 > 0
or 3) λ1 > 0, γ > 0, c < 0, ν0 < 0 (independently on σ ).

Then f possesses trivial dynamics near Γ0, i.e. Λ = O ∪ Γ0.

Proof Item 1 of the theorem is a partial case of Theorem 1, see Fig. 6a.
Consider item 2 of the theorem.
Since A1 holds, the map T0, by Lemma 1, takes the form

(x̄, ū, ȳ) =
(
λ1x + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
, (17)

where x, y ∈ R
1, u ∈ R

m−1 and the matrix B̂ has eigenvalues λ2, . . . , λm. Then, by
Lemma 2, map T k

0 can be written in the following cross-form (compare with (8))

xk = λk1x0

(
1 +O([λ̂/λ1]k)

)
, uk = O

(
λ̂k

)
, y0 = γ−kyk(1 +O

(
[γ̂ /γ ]−k)

)
.

(18)

Using (11) we can write the first return map Tk = T1T
k

0 : σ 0
k �→ Π+ as follows

(x̄0 − x+, ū0 − u+) = b(y1 − y−) +O
(|λ1|k‖(x0, u0)‖ + (y1 − y−)2

)
,

ȳ0 = c1λ
k
1x0 + ϕ(y1 − y−) +O

(
λ̃k‖(x0, u0)‖ + |λk1|‖(x0, u0)‖|y1 − y−|

)
,

(19)
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where x0, y0, y1 ∈ R
1, u0 ∈ R

m−1. Let ȳ0 be the y-coordinate of a point inside some
strip σ 0

j ⊂ Π+. Then we can write, by (18), that ȳ0 = γ−j ȳ1 + O(γ̃−j ). Introduce

the coordinates ξ = x0 − x+, ξ̂ = u0 − u+ and η = y1 − y−. Then we can write the
second equation of (19) in the form

γ−j (
y− + η̄ +O([γ̂ /γ ]−j

) = c1λ
k
1

(
x+ +O(|ξ | + |η|) +O([λ̂/λ]j )

)
+ ϕ(η).

(20)

Since ξ , ξ̂ , η are small, x+ > 0, y− > 0 as well as λ1 > 0 and c1ν0 > 0, Eq. (20)
can have solutions only in the case |γ |−j ≥ λk1. Since |λ1γ | > 1, this inequality can
be fulfilled if only k � j . Thus, any horseshoe T1(σ 1

k ) can intersect only those strips
σ 0
j whose numbers are strictly less than k, see Fig. 6b. It implies that some forward

iteration of any point from Π+ must leave U . Thus, only two orbits, O and Γ0, will
always stay in U which implies that the dynamics is trivial.

In the case λ1 > 0, γ > 0, c1 < 0, ν0 < 0, Eq. (20) has no solutions at all,
independently on σ . It means that the horseshoes T1(σ 1

k ) do not intersect any strip
σ 0
i , see Fig. 6c, i.e. the dynamics is trivial. This completes item (3) of the theorem.

Theorem 3 [Simple one-sided tangencies with non-trivial dynamics at σ > 1]
Let f have a one-sided homoclinic tangency satisfying conditions A–C and let σ > 1.
Then the set Λ(f ) contains infinitely many topological horseshoes in the following
cases:

(1) the point O is a saddle-focus, i.e. conditions A2 holds; (2) the point O is a
saddle, i.e. A1 holds, and the combination λ1 > 0, ν0 > 0 of the signs takes no place.

Proof In the case of item 1 of the theorem, we have, by Lemma 1, that the local
map T0 has the form

(x̄, ū, ȳ) =
(
λRψx + h1(x, u, y), B̂u + h2(x, u, y), γy + h3(x, u, y)

)
,

where x = (x1, x2) andRψ is the rotation matrix (on the angleψ). The global map T1

has now form (11), where c = (c1, c2) and c2
1 + c2

2 �= 0 by the condition C and ϕ(s)
is a function of fixed sign at s �= 0 because the homoclinic tangency is one-sided.

Consider the first return map Tk = T1T
k

0 : σ 0
k �→ Π+ which can be written now

as

(x̄ − x+, ū − u+) = (b1, b2)ᵀ(y − y−) +O
(
λk‖(x, u)‖ + (y − y−)2

)
,

ȳ = λk ((c1 cos kψ + c2 sin kψ)x1 + (c2 cos kψ − c1 sin kψ)x2)

+ ϕ(y − y−) + +O
(
λ̃k‖(x, u)‖ + λk‖(x, u)‖|y − y−|

)
.

(21)

Let us show that, for infinitely many values of k, these maps Tk are, geometrically,
Smale horseshoe maps. Introduce new x-coordinates as ξ1 = x1 −x+

1 , ξ2 = x2 −x+
2 .

Then the second equation from (21) can be written as

ȳ = λk
(
Ĉ cos (kψ + θ ) +O(‖ξ‖)

)
+ ϕ(y − y−)

+O
(
λ̃k‖(ξ , u)‖ + λk‖(ξ , u)‖|y − y−|

)
,

(22)
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where Ĉ =
√

(c2
1 + c2

2)((x+
1 )2 + (x+

2 )2) and θ ∈ [0, 2π ) is an angle such that

cos θ = (c1x
+
1 + c2x

+
2 )Ĉ−1, cos θ = (c2x

+
1 − c1x

+
2 )Ĉ−1.

Note that Ĉ > 0, since the conditions B and C imply, respectively, that (x+
1 )2 +

(x+
2 )2 �= 0 and c2

1 + c2
2 �= 0.

Let ϕ(s) ≥ 0 and γ > 0, for the sake of definiteness. Then ȳ from (22) can run
values from ȳmin = λk(Ĉ cos (kψ+θ )+O(‖ξ‖)) till ȳmax = maxϕ(s)|s|≤ε1 +O(λk).
However, values of the coordinate y on the strip σ 0

k satisfy the inequality

γ−k(y− − ε1) < y < γ−k(y− + ε1).

Evidently, there are such δ0 > 0 and δ1 > 0 that (i) ȳmax > δ0 for all sufficiently
large k and (ii) for any ψ , since Ĉ > 0 and ‖ξ‖ is small, there are infinitely many
such k that (Ĉ cos (kψ + θ ) + O(‖ξ‖)) < −δ1. Thus, the first return map T1T

k for
such values of k transforms the strip σ 0

k into the horseshoe Tk(σ 0
k ) such that its top is

posed below σ 0
k (and even below Ws

loc) and the horseshoe intersects σ 0
k forming (at

least) two connected components. Thus, f possesses, in this case, infinitely many
geometrical Smale horseshoes. Other cases are considered analogously.

Consider item 2 of the theorem. Since A1 holds, the map Tk = T1T
k

0 : σ 0
k �→ Π+

can be written now as

(x̄ − x+, ū − u+) = (b1, b2)ᵀ(y − y−) +O
(|λ1|k‖(x, u)‖ + (y − y−)2

)
,

ȳ = cλk1x + ϕ(y − y−) +O
(
λ̃k‖(x, u)‖ + |λ1|k‖(x, u)‖|y − y−|

)
.

(23)

Denote ξ = x − x+. Then the second equation from (23) is rewritten as

ȳ = cλk1

(
x+ +O(|ξ |) +O([λ̃/λ1]k)

)
+ ϕ(y − y−). (24)

Consider the model equation γ−ky− = cλk1x
+ + ϕ(s) where s ∈ [ − ε1, ε1] and for

some δ̂ > 0, ϕ(s) ∈ [0, δ̂] or ϕ(s) ∈ [− δ̂, 0] and ν0 = signϕ(s)s �=0. Since |λ1γ | > 1,
this equation has no solution (with respect to s) only in the case where λ1 > 0 and
cν0 > 0. In other cases, at least two solutions exist.

It gives us the desired result.

4.1 On the Necessity of Conditions A and C for the
Existence/Absence of Topological Horseshoes

Note that, in the sectionally dissipative case σ < 1, as we can see from Theorem 1,
conditions A, B and C play only a role of auxiliary conditions which help to establish
certain hyperbolic properties. However, in the sectionally saddle case σ > 1, these
conditions become necessary even for the topological horseshoe property. If they
are violated, then the corresponding system can possess either trivial dynamics or
horseshoes depending on new characteristics of the corresponding (non-simple) ho-
moclinic tangency. We illustrate this fact by means of considering a three-dimensional
model below.
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Let g0 be a three-dimensional diffeomorphism having a saddle fixed point Ô with
multipliers λ1, λ2, γ , where 0<λ2 <λ1 <1<γ and λ1γ>1, and a homoclinic orbit
Γ̂0 at whose points the manifolds W u(Ô) and Ws(Ô) have a quadratic tangency. We
assume also that this homoclinic tangency is not simple, the local map T0 is linear
and the global map T1 is of model form. We take T0 in the linear form (x̄, ū, ȳ) =
(λ1x, λ2u, γy) and T1 in the following form

(x̄0 − x+, ū0 − u+, ȳ0) = (
b1(y − y−), a21x, ĉu + d(y − y−)2

)
, (25)

where b1a21ĉ �= 0, since the map T1 should be diffeomorphism. We see that condition
C is violated in this case: the model map T1 corresponds to the case where c = 0 in
(11), i.e. (14) is not valid here. We assume, for more definiteness, that d < 0, i.e. the
quadratic homoclinic tangency is “from below”. We assume also that u+ > 0 in the
given example.

Proposition 3 The following dynamical properties of g0 hold.

(i) If ĉ < 0, then Λ(g0) is trivial, i.e. Λ(g0) = Ô ∪ Γ̂0.
(ii) If ĉ > 0 and λ2γ < 1, then Λ(g0) is trivial, i.e. Λ(g0) = Ô ∪ Ĝ0.
(iii) If ĉ > 0 and λ2γ > 1, then Λ(g0) contains infinitely many geometrical Smale

horseshoes.

Proof Since the corresponding results have an independent interest and the proof
consists mainly in direct calculations, we analyse the problem under consideration
in more detail than before. Since T0 is linear, the equations of Ws

loc(O) and W u
loc(O)

are y = 0 and (x = 0, u = 0), respectively. We choose a pair of homoclinic points:
M+(x+, u+, 0) ∈ Ws

loc and M−(0, 0, y−) ∈ W u
loc assuming that u+ > 0, y− > 0. We

consider sufficiently small rectangle neighbourhoodsΠ+ = {|x−x+| ≤ ε0, |u−u+| ≤
ε0, |y| ≤ ε0)} and Π− = {|x| ≤ ε1, |u| ≤ ε1, |y − y−| ≤ ε1)} of the points M+ and
M−, respectively, such that T0(Π+) ∩Π+ = ∅ and T −1

0 (Π−) ∩Π− = ∅. Note that
(for any ε0,1 > 0) there exist points on Π+ whose iterations under T0 reach Π−. The
set of such initial points on Π+ consists from countable many disjoint strips σ 0

k , k =
k̄, k̄+1, . . . Accordingly, a countable many disjoint strips σ 1

k , k = k̄, k̄+1, . . . exists
on Π− such that σ 1

k = T k
0 (σ 0

k ). Note also that the strips σ 0
k and σ 1

k are defined as
σ 0
k = Π+ ∩ T −k

0 (Π−) and σ 1
k = Π− ∩ T k

0 (Π+). In the case under consideration,
since the map T k

0 can be written in the form

xk = λk1x0, uk = λk2u0, y0 = γ−kyk , (26)

we can write exact formulas for the strips:

σ 0
k = {(x, u, y)||x − x+| ≤ ε0, |u − u+| ≤ ε0, |y − γ−ky−| ≤ γ−kε1}, (27)

σ 1
k = {(x, u, y)||x − λk1x

+| ≤ λk1ε0, |u − λk2u+| ≤ λk2ε0, |y − y−| ≤ ε1}. (28)

For the sake of definiteness, we will denote coordinates x, u, y of points in Π+ as
x0, u0, y0 and in Π− as x1, u1, y1. Now we take the strip σ 1

k and consider its image,
horseshoe T1(σ 1

k ), under the global map T1.
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a b

Fig. 7 Examples of homoclinic tangencies with c = 0 in the sectionally saddle case σ > 1 : a The
dynamics is trivial; b Smale horseshoes exist

By (25), we obtain that T1(σ 1
k ) is a 3D-figure in Π+ which can be given in the

coordinate form as follows

(x0 − x+, u0 − u+, y0) = (
b1(y1 − y−), a21x1, ĉu1 + d(y − y−)2

)
, (29)

where the coordinates (x1, u1, y1) run values along σ 1
k , see formula (28).

Consider now item (i), ĉ < 0, of Proposition 3 and show that here T1(σ 1
k )∩σ 0

j = ∅
for all sufficiently large k and j . Suppose, however, that T1(σ 1

k ) ∩ σ 0
j �= ∅ for some

k and j . Then, evidently, by virtue of (27), (28) and (29), the equation

γ−j η = ĉλk2ξ + dz2 (30)

has solutions with respect to η ∈ [y− − ε1, y− + ε1] when (ξ , z) run values from the
domain (|ξ − u+| ≤ ε0, |z| ≤ ε1). Note that since u+ > 0, y− > 0 such η and ξ take
only positive values for sufficiently small ε0,1. Then, since d < 0, λ2 > 0, γ > 0,
Eq. (30) can have solutions only in that case where

γ−j η − ĉλk2ξ ≤ 0. (31)

However, since ĉ < 0, the latter inequality is not valid for any j , k ≥ k̄. It implies
that the horseshoes T1(σ 1

k ) and strips σ 0
j do not intersect each other in this case.

Geometrically, it follows from the fact that in the case ĉ < 0 the strips σ 0
j and the

horseshoes T1(σ 1
k ) are posed in Π+ on different sides from a plane Ws

loc : y = 0, see
Fig. 7a. Hence, the diffeomorphism g0 has a trivial dynamics here: Λ(g0) = Ô ∪ Γ̂0.
Consider now <col1>item (ii), ĉ > 0 and λ2γ < 1, of Proposition 3. Again we obtain
that if T1(σ 1

k )∩σ 0
j �= ∅, then the inequality (31) has solutions. Since γ−1 > λ2 in this

case, the Eq. (30) can have solutions only if j > k. It follows that T1(σ 1
k ) ∩ σ 0

k = ∅,
i.e. g0 has no (topological) horseshoes in U , and, moreover, Λ(g0) = Ô ∪ Γ̂0 here.
Consider now item (iii), ĉ > 0 and λ2γ > 1, of Proposition 3. We obtain from
(29) and (28) that the horseshoe T1(σ 1

k ) has a top with coordinate ytop0 ∼ ĉλk2u+
and its bottom (i.e. T1-image of the top and bottom of the strip σ 1

k ) has coordinate
ybot0 ∼ dε2

1 + ĉλk2u+. Since λ2γ > 1 we have that ytop0 > γ−k(y− + ε1), i.e. the
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top of the horseshoe T1(σ 1
k ) is posed above the strip σ 0

k . Since d < 0 we have that
ybot0 < 0 for sufficiently large k, i.e. the bottom of T1(σ 1

k ) is posed below the strip
σ 0
k . Thus, the first return maps Tk = T1T

k
0 for all sufficiently large k are in this case,

topologically, Smale horseshoe maps. This completes the proof.

5 Hyperbolic Properties of Diffeomorphisms with Simple
Homoclinic Tangencies of Finite Order

We assume now that f satisfies conditions A)–D). Then reformulating Theorem 2
we select class of simple homoclinic tangencies of finite order. Namely, Theorem 2
implies the following result

Proposition 4 Let a diffeomorphism f satisfying conditions A–D with even n be
such that 1) either γ > 0, d < 0 in the case σ < 1; 2) or λ1 > 0, cd > 0 in the case
σ > 1; 3) or λ1 > 0, γ > 0, c < 0, d < 0 independently on σ . Then f possesses
trivial dynamics near Γ0, i.e. Λ = O ∪ Γ0.

Other diffeomorphisms under consideration will contain non-trivial hyperbolic
subsets inside Λ. The corresponding results were proved in [5, 6, 11] and [24].
Therefore, we give here only some review of results.

Among the diffeomorphisms with hyperbolic subsets we select first those which
admits a complete description of Λ. Namely, let f satisfy conditions A1, B, C and
D with γ > 0, λ1 > 0, c < 0 and also d > 0 when n is even. We bring such
diffeomorphisms to the complete class.

In this case the geometry of the strips σ 0
k and horseshoes T1(σ 1

i ) for all possible
i, k ≥ k̄ is of such type as in Fig. 8: all strips and horseshoes intersect “regularly”.
As it was shown still in [5, 6], such a geometry implies a non-uniform hyperbolicity:
all orbits of Λ, except for Γ0, are of saddle type and the set Λ can be described
completely in terms of the symbolic dynamics.

If n is odd (the tangency if like cubic), then Λ can be identified with Bk̄+q
2 as in

the case of transversal homoclinic orbit. If n is even, the set Λ is described now by
means of the topological Bernoulli scheme (shift) B3 with three symbols. Namely,

let Bk̄+q
3 be a subsystem of B3 which contains all bi-infinite sequences of form

( . . . , 0,αi ,

ji+q
︷ ︸︸ ︷
0, 0, . . .0, 1,

ji+1+q
︷ ︸︸ ︷
0, 0, . . ., 0,αi+1, , 0, . . . ), (32)

where αi ∈ {1, 2} and ji ≥ k̄ for all i.6 We identify in Bk̄+q
3 two homoclinic orbits

ω1 = ( . . . , 0, . . . , 0, 1, 0, . . . , 0, . . . ) and ω2 = ( . . . , 0, . . . , 0, 2, 0, . . . , 0, . . . ) and

let ω̂ be the glued orbit. We denote the resulting factor-system as B̂k̄+q
3 .

6 We include also sequences with ji = ∞ or ji+1 = ∞. Then such sequences contain infinite strings
from zeros either on the left or, respectively, right end and correspond either α- or ω-asymptotic
orbit to the fixed point ( . . . , 0, . . . , 0, . . . ).
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a b

Fig. 8 Homoclinic tangencies for diffeomorphisms from the complete class. a The order of tangency
n is even and the corresponding homoclinic tangency is “from above”, i.e. d > 0 and γ > 0, and
the horseshoes T1σ

1
k are posed under T1(W u

loc), i.e. c < 0 and λ1 > 0. b n is odd and γ > 0, λ1 > 0
and c < 0

Theorem 4 Let f belong to the complete class. Then there exists such k̄ that
all orbits from the set Λ, except for Γ0, are of saddle type and the system f |Λ is

topologically conjugate either to Bk̄+q
2 for odd n or B̂k̄+q

3 for even n.
Note that we do not require here that the saddle value σ is less or greater than 1.

Therefore, the structure of the set Λ(f ) for systems from the complete class is the
same for all cases of the sectionally dissipative, saddle or neutral (σ = 1) ones.

In the remaining cases (except for diffeomorphisms of trivial and complete
classes), the set Λ does not allow, in general, the complete description. Moreover, as
it is shown in [17–20], Λ can contain periodic and homoclinic orbits of any orders of
degeneracy (including homoclinic and heteroclinic tangencies of indefinite orders).
Nevertheless, we can observe here certain elements of hyperbolicity and, moreover,
we are able to give a description of hyperbolic subsets by means of methods of the
symbolic dynamics like it was done for diffeomorphisms of complete class.

However, while for diffeomorphisms of the complete class, all strips σ 0
i and

horseshoes T1(σ 1
j ) have regular intersections, in other cases we have both to detect

regular intersections and remove, from a description, all irregular and empty ones.
As result, we obtain some sufficient conditions (in form of inequalities, see below)
which provide the existence of certain (non-uniformly) hyperbolic subsets.

Formally speaking, we consider in this section such diffeomorphisms which
satisfy conditions A–D but are not diffeomorphisms with trivial and complete
description. We will call them as diffeomorphisms with partial description.7

7 Thus, the diffeomorphisms with partial description in the main case σ �= 1 are such that conditions
A–D are valid and the following combinations of signs of the parameters λ1, γ , c and d are excluded:
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Let Ωk̄+q
2 be such a subsystem of Bk̄+q

2 which contains the fixed point Ô, the
homoclinic orbit ω̂ = ( . . . , 0, . . . , 0, 1, 0, . . . , 0, . . . ) and all such orbits of form
(32), where αi = 1 for any i and the following estimates hold for any successive
integers k̄ ≤ ji ≤ ∞ and k̄ ≤ ji+1 ≤ ∞
(H1) |γ−ji+1y− − cλ

ji
1 x

+
1 | > Sk̄(ji , ji+1) in the case A1;

(H2) |γ−ji+1y− −Q cos (jiψ + ω) · λji | > Sk̄(ji , ji+1) in the case A2;

where

Sk̄(ji , ji+1) = ν
(|λ1|ji + |γ |−ji+1

) · (|λ1|k̄/n + |γ |−k̄/n),

Q = [
(c1x

+
1 + c2x

+
2 )2 + (c1x

+
2 − c2x

+
1 )2

]1/2
, ω = arccos

c1x
+
1 + c2x

+
2

Q

(33)

and ν is some positive constant independent of k̄, ji and ji+1.

Let Ω̂k̄+q
3 be such a subsystem of B̂k̄+q

3 which contains the fixed point Ô the
homoclinic orbit ω̂ and all such orbits of form (32) for which the following estimates
hold

(H3) d
[
γ−ji+1y− − c1λ

ji
1 x

+
1

]
> Sk̄(ji , ji+1) in the case A1;

(H4) d
[
γ−ji+1y− −Q cos (jiψ + ω) · λji ] > Sk̄(ji , ji+1) in the case A2;

Theorem 5 [6, 24] Let f be a diffeomorphism with partial description. Then there
is a closed invariant subset Λ̃k̄+q ⊂ Λ such that (i) Λ̃k̄+q contains the orbits O and

Γ0; (ii) all orbits of Λ̃k̄+q , except for Γ0, are of saddle type; (iii) the system f |Λ̃k̄+q
is conjugate either to Ωk̄+q

2 for odd n or to Ω̃k̄+q
3 for even n.

One can deduce certain simple consequences from this theorem on the existence
of Smale horseshoes in the first return maps. For the sake of definiteness, we consider
case of even order n (like quadratic) of the tangency. Then it follows directly from
Theorem 5 that

• If the estimates H3 or H4 hold for ji = ji+1 = k, then the first return map
Tk ≡ T1T

k
0 : σ 0

k → σ 0
k has in σ 0

k a Smale horseshoe, i.e. a closed invariant
hyperbolic set Ωk+q such that the system T k|Ωk+q is topologically conjugate to
B2.

In the sectionally dissipative case σ < 1, we have that |λ1|k � |γ |−k . Then both the
inequalities (H3) and (H4) with sufficiently large ji = ji+1 = k can be rewritten as
follows dγ−ky− > 0. Since y− > 0, it implies the following result.

(1) those ones which correspond to the trivial class, i.e. n is even and (i) γ > 0, d < 0 if σ < 1,
(ii) λ1 > 0, dc > 0 if σ > 1; and (2) those ones which correspond to the complete class, i.e (iii)
γ > 0, λ1 > 0, c < 0, d > 0 with even n and (iv) γ > 0, λ1 > 0, c < 0 with odd n.
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Proposition 5 Let f satisfy conditions A–D with even n and σ < 1, and let the
case γ > 0, d < 0 be excluded. Then, f has infinitely many Smale horseshoesΩk+q ,
where k ≥ k̄ and k run all integers if γ > 0 or all odd (even) integers if γ < 0, d < 0
(γ < 0, d > 0).

In the sectionally saddle case σ > 1, we have, conversely, that |γ |−k � |λ1|k .
Then, for sufficiently large k̄, the inequalities (H3) and (H4), for ji = ji+1 = k ≥ k̄,
take, respectively, the following forms

dc1x
+
1 λ

k
1 < 0 (34)

and

−dQ cos (kψ + ω) > ν(k̄) > 0, (35)

where ν(k̄) → 0 as k̄ → ∞. (Note that we can not write in (35) simply “> 0” since
values of cos (kψ+ω) are not uniformly bounded from zero whenψ/π is irrational).

The inequality (34) has no solutions only in the case λ1 > 0, dc1 > 0, i.e. for
diffeomorphisms with trivial dynamics. Since Q > 0 and ψ �= 0,π , the inequality
(35) has always infinitely many integer solutions. Thus, we obtain the following.

Proposition 6 Let f satisfy conditions A–D with even n and σ > 1, and let the
case λ1 > 0, dc1 > 0 be excluded. Then, f has infinitely many Smale horseshoes
Ωk+q , where k ≥ k̄ and k run all integers such that the inequalities (34) in case A1
or (35) in case A2 hold.

5.1 Invariants θ and τ and a Complete Description of Λ̃k̄

Note that the inequalities H1–H4 generally define an “infinite net” of the strips and
horseshoes which have regular (hyperbolic) intersections. Naturally, conditions H1–
H4 are only sufficient. However, using them we describe quite large (non-uniformly)
hyperbolic subsets Λ̃k̄+q ⊂ Λ. Moreover, for some dense subset of systems with

homoclinic tangency, Λ̃k̄+q can provide a complete description forΛ, i.e.Λ = Λ̃k̄+q .
In this section we will prove the corresponding result for the case where O is a

saddle, i.e. condition A1 holds.
Consider the following inequality

|d|
∣
∣
∣γ

−ji+1y− − c1λ
ji
1 x

+
1

∣
∣
∣ ≤ Sk̄(ji , ji+1). (36)

By geometric constructions (see [6, 24]), integer solutions (ji , ji+1) of this in-
equality include all numbers of those strips and horseshoes which can intersect
non-hyperbolically. By (33), the inequality (36) is equivalent to the following system
of inequalities

γ−ji+1 (y− − ρk̄) ≤ λ
ji
1 (cx+ + ρk̄), γ−ji+1 (y− + ρk̄) ≥ λ

ji
1 (cx+ − ρk̄), (37)
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where
ρk̄ = ν

|d|
(
|λ1|k̄/n + |γ |−k̄/n

)
.

If both sides of the inequalities (37) are of the same sign (that can be always fulfilled
for diffeomorphisms with partial description), we take the logarithm of them.

As result, we obtain the following double inequalities

ε2
k̄

≤ ji+1 − jiθ + τ ≤ ε1
k̄
, (38)

where

θ = − ln |λ1|
ln |γ | , τ = 1

ln |γ | ln
|cx+|
y−

and

ε1
k̄

= 1

ln |γ | ln

(
1 + ρk̄|cx+|−1

1 − ρk̄(y−)−1

)

, ε2
k̄

= 1

ln |γ | ln

(
1 − ρk̄|cx+|−1

1 + ρk̄(y−)−1

)

,

Now we assume that the following condition holds:

S1) θ is rational, i.e. θ = r/s for some relatively prime natural
r and s, and the number sτ is not integer.

Then the straight line j − iθ + τ = 0 is posed, in the (i, j )-plane, on a finite
distance (depending on θ and τ ) from points of the integer lattice. This means that
the inequality (38) has no integer solutions for sufficiently large k̄. In turn, it implies
that all orbits of Λk̄+q , except for Γ0, are of saddle type.

In the case of odd n we have that if there is some non-saddle orbit in Λk̄+q , then
the inequality opposite to H1, i.e. again inequality (36), has to be fulfilled for at least
one pair ji , ji+1.

Thus, the following result takes place.8

Proposition 7 Let f be a diffeomorphism with partial description satisfying con-
ditions A1, B, C, D, σ �= 1 and S1. Then there is such k̄1 = k̄1(θ , τ ), where k̄1 → ∞
as s → ∞ or sτ tends to an integer, that all orbits of Λk̄1+q , except for Γ0, are of

saddle type and f |Λk̄1+q is conjugate either toΩk̄+q
2 for odd n or to Ω̃k̄+q

3 for even n.

6 Proof of Theorem 1

Here we assume only that a diffeomorphism f has a homoclinic tangency of the
invariant manifolds of a saddle fixed point O with multipliers λ1, . . . , λm, γ ordered
by the rule (1) and such that σ ≡ |λ1||γ | < 1. In the case under consideration, by

8 This result was proved also in [6] for the sectionally dissipative case σ < 1.
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Lemma 1, we can write the local map T0 in the following form

x̄ = A, x + ĥ1(x, y), ȳ = γy + h3(x, y),

where x ∈ R
m, y ∈ R

1, A–(m×m)-matrix with eigenvalues λ1, . . . , λm. This form
of T0 can be considered as form (6) with identities (7), where A = diag (Â, B̂),
ĥ1 = (h1,h2) and xnew = (x, u). Then, by (10), the global map T1 takes the form

x̄ − x+ = F (x, y − y−),

ȳ = G(x, y − y−) ≡ cx + ϕ(y − y−) +O(‖x‖2 + ‖x‖|y − y−|) (39)

where (x, y) ∈ Π−, (x̄, ȳ) ∈ Π+, F (0, 0) = 0,G(0, 0) = 0 and ϕ(0) = ϕ′(0) = 0. If
the homoclinic tangency is isolated, then ϕ �= 0 at y �= y−. Besides, in the case of
one-sided tangency, we have that either ϕ ≥ 0 (the tangency “from above”) or ϕ ≤ 0
(the tangency “from below” if also γ > 0); in the case of topological intersection, we
have that either sϕ(s) ≥ 0 (the tangency like “y = x3”) or sϕ(s) ≤ 0 (the tangency
like “y = −x3”), where s = (y − y−).

Again, by Lemma 2, the map T k
0 can be written in the following cross-form

(compare with (8))

xk − Akx0 = λ̂k ξ̃k(x0, yk), y0 − γ−kyk = γ̂−kη̃k(x0, yk) (40)

Proof [of item 1 of Theorem 1] Take some strip σ 1
k ⊂ Π−. Suppose that the cor-

responding horseshoe T1(σ 1
k ) has non-empty intersection with a strip σ 0

i . Then, by
(40) and (39), the equation

γ−i ȳ
(
1 +O([γ̂ /γ ]−i)

) = αk(x, y) + ϕ(y − y−), (41)

has a solution with respect to ȳ (for some (x, y)). Note that the following estimate
‖αk‖ < λ̃k holds for sufficiently large k, where λ̃ = |λ1|+δ and δ ≥ 0 is a sufficiently
small constant such that, in any case, |λ̃γ | < 1.

Let the homoclinic tangency satisfy the condition (2). If γ > 0 (the main case),
it means that ϕ(y1 − y−) ≤ 0. Then the Eq. (41) can have a solution if only

γ−i ȳ
(
1 +O([γ̂ /γ ]−i)

) − αk(x, y) ≤ 0.

Since γ > 0, ‖αk‖ < λ̃k and |λ̃γ | < 1, the inequality above can hold only in the
case where i � k. Thus, any horseshoe T1(σ 1

k ) can intersect only those strips σ 0
i

whose numbers are much bigger than k, see Fig. 9a. In turn, the horseshoe T1(σ 1
i ),

again, can intersect only some strip σ 0
j with j > i, etc. It implies that some backward

iteration of any point from Π+ must leave U . Thus, only two orbits, O and Γ0, will
stay always in U .

If γ < 0, the condition (2) imply the identity ϕ(y1 −y−) ≡ 0. Evidently, Eq. (41)
can have a solution in this case again only for i � k.

Proof [of item 2 of Theorem 1] Consider first the case of one-sided tangency “from
above”. If γ < 0 we can always choose such homoclinic points M− and M+ that



On Topological and Hyperbolic Properties of Systems with Homoclinic Tangencies 53

a b

Fig. 9 A horseshoe geometry in the case σ < 1 for homoclinic tangencies a from below and b
from above

T1(W u) touches W u
loc from above (if it not the case for a given point M+, we take the

point T0(M+)). Then, by condition ϕ ≥ 0 and ϕ > 0 if y1 �= y−, we have that the
curve T1(W u) : x0 −x+ = F (0, y1 −y−), y0 = ϕ(y1 −y−) will intersect all the strips
σ 0
k with sufficiently large k (even k if γ < 0) at least two connected components.

(Note that the vector l̂ = Fy(0, 0) is non-zero, since T1 is diffeomorphism). The strips
σ 0
k are posed on distance ρk ≥ |γ |−k(y− − ε1) from the plane y0 = 0. While, the

strips σ 0
k are posed from the line x = 0 on the distance of order λ̃k . The latter means

that the horseshoes T1(σ 1
k ) will be posed from T1W

u
loc on the distance of order λ̃k .

Since λ̃k � |γ |−k , it follows that the strips σ 0
k with sufficiently large k will intersect

own horseshoes T1(σ 1
k ) along at least two connected components (the same as they

intersect the curve T1W
u
loc). See Fig. 9b.

Concerning the case of topological intersection, we note that the curve T1W
u
loc

intersect infinitely many strips σ 0
k . In turn, strips σ 1

j accumulate to W u
loc. It implies

that infinitely many strips σ 0
k and horseshoes T1(σ 1

j ) for all sufficiently large k and j
are mutually intersect.
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Homoclinic Ω-Explosion: Hyperbolicity
Intervals and Their Bifurcation Boundaries

Sergey Gonchenko and Oleg Stenkin

Abstract It has been established by Gavrilov and Shilnikov (Math USSR Sb 17:467–
485, 1972) that at the bifurcation boundary, separating Morse–Smale systems from
systems with complicated dynamics, there are systems with homoclinic tangencies.
Moreover, when crossing this boundary, infinitely many periodic orbits appear im-
mediately, just by “explosion.” Newhouse and Palis (Asterisque 31:44–140, 1976)
have shown that in this case, there are infinitely many intervals of values of the
splitting parameter corresponding to hyperbolic systems. In the present chapter, we
show that such hyperbolicity intervals have natural bifurcation boundaries, so that
the phenomenon of homoclinic Ω-explosion gains, in a sense, complete description
in the case of 2D diffeomorphisms.

1 Introduction

“HomoclinicΩ-explosion” is, undoubtedly, one of those dynamical phenomena that
causes always a great interest for specialists on nonlinear dynamics. The essence
of it is based on the fact that the system under consideration possesses a simple
dynamics up to some (bifurcation) moment, and the dynamics becomes immediately
complicated, just after. In other words, at the homoclinic Ω-explosion, the system
itself belongs to a boundary of Morse–Smale systems and the transition through this
boundary has the nature of an “explosion”—infinitely many periodic orbits appear
immediately. We notice that such a scenario of chaos development is typical for many
specific systems.

It should be noted that, for the first time, global bifurcations like homoclinic Ω-
explosion were discovered and studied by L. P. Shilnikov. So, in his paper [1], see also
[2], a global bifurcation was studied for a system having a saddle–saddle equilibrium
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a b

Fig. 1 Examples of 2D diffeomorphisms with heteroclinic (a) and homoclinic (b) tangencies be-
longing to a boundary between Morse–Smale systems and systems with (infinitely) many periodic
orbits

with several homoclinic loops. Recall that for dimension 3, nonhyperbolic points with
eigenvalues λ2 < λ1 < 0, γ = 0 and λ2 < 0, λ1 = 0, γ > 0 are called, respectively,
saddle-node and saddle–saddle. Note that a saddle–saddle can have, in contrast
to a saddle-node, several homoclinic loops and, in general, it is a codimension
one phenomenon. However, if only one homoclinic loop of a saddle–saddle exists,
dynamics is trivial and not more than one (saddle) limit cycle can be born here
[3]. It not the case when several homoclinic loops exist: then, if the equilibrium
disappears, a closed invariant hyperbolic set (a horseshoe bouquet) appears whose
orbits are coded by means of p symbols, where p is the number of loops [1, 2].

Strictly speaking, the term “Ω-explosion” was introduced by J. Palis in the pa-
per [4] in which he, in fact, has justified necessity of the “no cycles” condition for
Ω-stability of dynamical systems, i.e., structural stability on the set of nonwander-
ing orbits. In Fig. 1a, an example of 2D diffeomorphism is shown that has such a
“cycle”—containing saddle fixed points O1 and O2 and two heteroclinic orbits, one
of which is nontransversal (at whose points W u(O2) and Ws(O1) have a quadratic
tangency). Moreover, the nonwandering set of this map is hyperbolic and consists
only of a finite number of periodic points (saddle, sinks, and sources). However, if the
tangency splits, the nonwandering set becomes immediately infinite: in particular,
infinitely many periodic and homoclinic orbits appear.

In Fig. 1b, another situation is shown when a 2D diffeomorphism has a quadratic
homoclinic tangency “from below.” It belongs also to the boundary of Morse–Smale
systems. However, the exit to this boundary means that the nonwandering set becomes
nonhyperbolic, since the homoclinic orbit itself is nonwandering. When crossing this
boundary, a “rich collection” of global bifurcations can be observed and, as a whole,
the corresponding bifurcation phenomenon is called the homoclinic Ω-explosion. In
comparison, in the case of the cycle from Fig. 1a, one can say about heteroclinic Ω-
explosion. We can see a certain difference between these two cases (which, if desire,
can be considered as a definition): in the first, heteroclinic case, the nonwandering
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set is not changed when entering the boundary; whereas, in the homoclinic case, a
(finite) number of new nonhyperbolic nonwandering orbits appears. Evidently, the
Shilnikov’s bifurcations of homoclinic bouquet of saddle–saddle are related to the
second (homoclinic) case.

In the present chapter, we study dynamical phenomena appearing namely at the
homoclinic Ω-explosion in the case of 2D diffeomorphisms. The first results with
respect to this topic were obtained by N. K. Gavrilov and L. P. Shilnikov in the
paper [5]: here, the existence of Ω-accessibility from the Morse–Smale systems to
systems with homoclinic tangencies was proved; a description in terms of symbolic
dynamics for nontrivial hyperbolic subsets was given (including those born by Ω-
explosion), etc. Analogous results were obtained in the paper of N. K. Gavrilov [6]
for 2D diffeomorphisms with nontransversal heteroclinic cycles, see also [7, 8]. We
note that in the paper [9] by S. Newhouse and J. Palis, one quite interesting and most
popular result from the theory of homoclinic Ω-explosion, the so-called Theorem
on Hyperbolicity Intervals, was established (see Theorem 1 below). Also known are
ceratin extensions, see e.g., [10–13], and the most complete (and multidimensional)
variant of this theorem was proved in the paper [14] by O. V. Sten’kin and L. P.
Shilnikov.

In the present chapter, we give some review of the mentioned results, see Sects. 2
and 3, and prove new ones. In particular, we prove Theorem 3 in Sect. 4 about
exact bifurcation boundaries of the hyperbolicity intervals in the case of the “global
homoclinic Ω-explosion.”

2 Three Classes of Quadratic Homoclinic Tangencies

Let f be a Cr -smooth (r ≥ 3) 2D diffeomorphism satisfying the following
conditions:

(A) f has a saddle fixed pointO with multipliers λ and γ where 0 < |λ| < 1 < |γ |;
(B) the saddle value σ ≡ |λγ | is less than 1; 1

(C) f has a nontransversal homoclinic orbit Γ at points of which the invariant
stable Ws(O) and unstable W u(O) manifolds of O have a quadratic tangency
(see Fig. 2a).

Diffeomorphisms that are Cr -close to f and have close to Γ a nontransversal homo-
clinic orbit compose a locally connected codimension one surface H in the space of
Cr -smooth 2D diffeomorphisms.

LetU be a small neighborhood ofO∪Γ0. It consists of a small diskU0 containing
O and a number of small disks surrounding those points of Γ0 that do not lie in U0

(see Fig. 2b). Denote as N ≡ N (f ), the set of orbits of f entirely lying in U .

1 Evidently, the case σ > 1 is reduced to the case under consideration for f −1. Thus, only the case
σ = 1 is not in our competence; however, it is very specific and requires a special consideration
(see, for example, [15, 16]).
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ba

Fig. 2

a b c d

Fig. 3 Various types of planar diffeomorphisms with quadratic homoclinic tangencies

According to [5], homoclinic tangencies satisfying conditions (A)–(C) are divided
into three classes depending on the structure of N . For homoclinic tangencies of the
first class, the set N is trivial: N = O ∪Γ . For homoclinic tangencies of the second
and third classes, the set N contains nontrivial hyperbolic subsets. However in the
case of tangencies of the second class, the setN allows always a complete description
in terms of symbolic dynamics, and N (f ) is not changed at varying f inside H (i.e.,
when the homoclinic tangency does not split). Unlike this, diffeomorphisms with
homoclinic tangencies of the third class are Ω-unstable in H.2

In Fig. 3, four main types of homoclinic tangencies for planar diffeomorphisms
withλ > 0, γ > 0 are shown. The cases (a) and (b) correspond to so-called tangencies
“from below” which are, in fact, tangencies of the first class. Third and fourth figures
correspond to tangencies “from above” which are homoclinic tangencies either of
the second class—Fig. 3c, or of the third class—Fig. 3d.

2 Moreover, they possess Ω-moduli, i.e., continuous invariants of topological conjugacy on the set
of nonwandering orbits. It means that any change of value of anΩ-modulus leads to a bifurcation of
an orbit (periodic, homoclinic, etc) from the set N (f ). As it was established in [19], the Gavrilov–
Shilnikov invariant, θ = − ln |λ|/ ln |γ | introduced in [5], is the principal Ω-modulus here.
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In this chapter, we consider mainly homoclinic tangencies of the first class. How-
ever, in order to describe more precisely qualitative (geometric) properties of such
systems, we need a certain information about their analytical properties. Below we
give necessary facts, including also recent results, from [17]; see also the book [18].

Consider the map T0 ≡ f |U0 which is called the local map. We can use such
Cr -coordinates (x, y) in U0 in which the map T0 has the following form [17, 19]:3

x̄ = λx + f (x, y)x2y, ȳ = γy + g(x, y)xy2. (1)

In these local coordinates in U0, the point O is in the origin, O(0, 0), and the local
stable and unstable manifolds Ws

loc(O) and W u
loc(O) have equations y = 0 and

x = 0, respectively. Choose in U0, a pair of homoclinic points M+(x+, 0) ∈ Ws
loc

and M−(0, y−) ∈ W u
loc of the orbit Γ . We assume, without loss of generality, that

x+ > 0 and y− > 0. Let Π+ and Π− be sufficiently small neighborhoods of the
points M+ and M− such that T0(Π+) ∩ Π+ = ∅ and T −1

0 (Π−) ∩ Π− = ∅. Since
M+ and M− are points of the same orbit Γ , a positive integer q exists such that
f q(M−) = M+. Consider the so-called global map T1 ≡ f q |Π− : Π− → Π+ which
can be written in the local coordinates (1) in the following form:

x̄ − x+ = ax + b(y − y−) +O(x2 + (y − y−)2),

ȳ = cx + d(y − y−)2 +O(x2 + |y − y−|3 + |x||y − y−|). (2)

Here, bc �= 0 since T1 is a diffeomorphism and d �= 0 since by condition C, the
curves T1(W u

loc) and Ws
loc are tangent at the point M+ and this tangency is quadratic.

Now we can characterize homoclinic tangencies of Fig. 3 (at λ > 0 and γ > 0)
in terms of coefficients of the global map T1. Figure 3a corresponds to the case
c < 0, d < 0, Fig. 3b-c > 0, d < 0, Fig. 3c-c < 0, d > 0, and Fig. 3d-c > 0, d > 0.

One of the main advantages of the normal form (1) consists of the fact that in
these coordinates, the map T k

0 for any sufficiently large k, can be represented in a
form which is asymptotically close to the corresponding form for the linear map T̃0 :
x̄ = λx, ȳ = γy. In the latter case, the relation (xk , yk) = T̃ k

0 (x0, y0) can be written
either as xk = λkx0, yk = γ ky0 or in the cross-form xk = λ−kx0, y0 = γ−kyk .
If T0 is written in normal form (1), then the corresponding cross-form for the map
T k

0 : (x0, y0) �→ (xk , yk) is as follows, [17, 20]:

xk = λkx0 + |λ|k|γ |−kφk1(x0, yk), y0 = γ−kyk + |γ |−2kφk2(x0, yk). (3)

Here, the functions φk1 and φk2 are uniformly bounded in k along with all derivatives
up to order (r − 2); the derivatives of xk and y0 of order (r − 1) have orders O(λk)
and O(γ−k), respectively; the derivatives of order r tend to 0 as k → ∞.

Evidently, any orbit of N (except for O) has to intersect Π+ and Π−. However,
the set of points in Π+ iterations which (by T0) reach Π− consist of infinitely many

3 The existence of such coordinates was proved in [17]. Note that analogous Cr−1-coordinates was
found in [19]. The form (1) of a saddle map is called the main normal form or normal form of the
first order: such a form exists for any multidimensional saddle map, [17].
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Fig. 4 Strips and horseshoes

strips σ 0
k ≡ Π+∩T −k

0 Π− accumulating atWs
loc∩Π+ as k → ∞. Their images under

maps T k
0 and the strips σ 1

k ≡ T k
0 (σ 0

k ), belong to Π− and accumulate to W u
loc ∩ Π−

as k → ∞. In turn, it means, by (2), that images T1σ
1
k of the strips σ 1

k have a
horseshoe-shaped form and accumulate to the “parabola” T1W

u
loc as k → ∞. See

Fig. 4 for reference.
It is clear from above geometry constructions that orbits of N must have points in

Π+ belonging to intersections of the horseshoes T1σ
1
i and strips σ 0

j for all possible

i, j ≥ k, where k̄ is some sufficiently large integer.4 Therefore, the structure of the
set N should essentially depend on geometrical properties of these intersections.

Various types of such intersections are shown in Fig. 5a: the horseshoe T1σ
1
i has

a regular intersection with the strip σ 0
j , irregular one with σ 0

k , and empty intersection
with σ 0

l . Figure 5b illustrates a definition of the so-called regular intersection of the
horseshoe and strip. In this case (see [21]),

4 The number k̄ is chosen, in principle, depending on sizes of Π+ and Πi and it equals the minimal
index “i” of the strips σ 0

i and σ 1
i from these neighborhoods. That is, the strips with index k̄ are

“border”: they form the boundary, the so-called “special neighborhood” from U , [8, 24] (so that,
for example, Π+ does not contain points which reach Π− for a number of iterations (by T0) less
than k̄), see Fig. 4.
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a b

Fig. 5

1. the set T1σ
1
i ∩ σ 0

j consists of two connected components: σ 01
ji and σ 02

ji and
2. the maps T1T

i
0 defined onto the corresponding preimages in σ 0

i , i.e., σ 01
i and σ 02

i

are saddle in sense of [22, 23] (roughly speaking, they exponentially expand in
the y-direction and contract in the x-direction).

We note that certain conditions for intersections of the horseshoes and strips were
established in [5, 24]. So, if the inequality,

d
[
γ−j y− − cλix+]

> Sk̄(i, j ) (4)

holds, where Sk̄(i, j ) = S1(|λ|i+|γ |−j )|γ |−k̄/2, i, j ≥ k̄ and S1 is a positive constant
independent of i, j , and k̄, then the intersection of the horseshoe T1σ

1
i with the strip

σ 0
j is regular.

On the other hand, the inequality

d[γ−j y− − cλix+] < −Sk̄(i, j ) (5)

implies that T1σ
1
i ∩ σ 0

j = ∅.
Then, using only the inequalities (4) and (5), one can easily understand a principal

structure of the set N (f ) for diffeomorphisms of Fig. 3: here λ > 0, γ > 0.
In the cases (a) and (b), related to d < 0, the set N (f ) has a trivial structure.

Indeed, if c < 0, d < 0, then the inequality (5) holds always: here all horseshoes are
posed from below the axis x (see Fig. 6a), i.e., their points leave U under forward
iterations of f . If c > 0 and d < 0, since |λγ | < 1, it follows from (5) that if
T1σ

1
i ∩ σ 0

j �= ∅, then j � i, see Fig. 6b. This evidently implies that N = O ∪ Γ .
However, in the cases (c) and (d) of Fig. 3 (corresponding to d > 0), the set

N (f ) has a nontrivial structure. In particular, the inequality (4) holds here for all
sufficiently large i = j . This means that f has infinitely many Smale horseshoes
Ωi , i = k̄, k̄+1, . . . . Unlike other hyperbolic subsets, we selectΩj as such invariant
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a

c

b

d

Fig. 6

set that its points in σ 0
j are invariant under the first return map Tj = T1T

j

0 and
the system Tj |Ωj is conjugate to the topological Bernoulli scheme (shift) from two
symbols. Thus, Ωj is the usual Smale horseshoe for the map Tj .

We note also that in the case of homoclinic tangency of the second class (i.e.,
λ > 0, γ > 0, c < 0, d > 0), the inequality (4) is fulfilled for all sufficiently large
i and j . It means that all the strips and horseshoes intersect regularly and, hence,
all orbits of N (f ), except for Γ , are saddle and the set N (f ) allows a complete
description in terms of symbolic dynamics [5].

3 Homoclinic Ω-Explosion—A Review of Results

We assume here that f satisfies conditions (A)–(C) as well as the condition (D) which
is described as follows:

(D) Γ is a homoclinic orbit of the first class.

Thus, relations γ > 0 and d < 0 form here. Then, depending on the signs of the
coefficients λ and c, we can select three different types of homoclinic tangencies:
(i) λ > 0, c > 0, (ii) λ > 0, c < 0, and (iii) λ < 0 (here the sign of c is not
important). Examples of the corresponding homoclinic tangencies in the case of
planar diffeomorphisms are shown in Fig. 7a, b and d. Note that diffeomorphisms
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a b

dc

Fig. 7 A global picture for homoclinic tangencies of the first class

(of the plane) in the cases (a) λ > 0, c > 0 and (b) λ < 0 can belong to a boundary
of the Morse–Smale systems. However, the case (d) λ > 0, c < 0 of the homoclinic
tangency without other homoclinic points is impossible for planar diffeomorphisms,
although it is realized for diffeomorphisms of nonorientable manifolds—see Fig. 7c
where an example of the corresponding diffeomorphism of the Möbius band is shown.

Now we embed f into a one-parameter family fμ such that

(E) f0 = f and the family fμ is transversal at μ = 0 to a bifurcation surface (of
codimension one) H1 of the diffeomorphisms of the first class.

Note that the corresponding local and global maps for the diffeomorphisms fμ will
depend (smoothly) on μ. However, for the local map T0 = T0μ, formulae (1) and (3)
will take place again where we have to assume that all functions depend (implicitly)
on μ, e.g., λ = λ(μ), γ = γ (μ). The global map T1 = T1μ, by condition (E), can be
written now as follows:

x̄ − x+ = ax + b(y − y−) +O(x2 + (y − y−)2),

ȳ = μ+ cx + d(y − y−)2 +O(x2 + |y − y−|3 + |x||y − y−|). (6)

Here in general, all coefficients a, b, c, d as well as x+ and y− depend (smoothly) on
μ. The equations of the local stable and unstable invariant manifolds of the pointOμ
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have, as before, a form y = 0 and x = 0, respectively. However, the global piece
T1μ(W u

loc) ∩Π+ of the unstable manifold of Oμ has, by (6):

y = μ+ d

b2
(x − x+)2 +O

(
(x − x+)3

)
. (7)

It is seen that μ is the parameter which splits generally the invariant manifolds of
Oμ with respect to the homoclinic point M+.

Now, the same as at the homoclinic tangency (for μ = 0), we are able to deduce
certain conditions for intersections of the strips and horseshoes (as it was done in [5],
for example). For the case where f0 is a diffeomorphism of the first class, following
conditions were found in [14]:

(i) let μ > 0, i, j ≥ k(μ) and the following inequality holds

γ−j y− − cλix+ − μ < δk
(|λ|i + γ−j ) , (8)

where δk = S2γ
−k/2, S2 > 0 is a constant and k(μ) ∼ − lnμ/ ln γ (i.e.,

μ ∼ γ−k), then the intersection of the horseshoe T1μσ
1
i with the strip σ 0

j is
regular;5

(ii) the inequality

γ−j y− − cλix+ − μ > −δk
(|λ|i + γ−j ) (9)

implies that T1μσ
1
i ∩ σ 0

j = ∅.

Let Nμ be the set of orbits of fμ which belong entirely to U . Evidently, the structure
of the set Nμ is sharply changed at transition of values of μ through μ = 0. Indeed,
Nμ is trivial, if μ ≤ 0:

Nμ =
⎧
⎨

⎩

Nμ = O if μ < 0,

Nμ = O ∪ Γ if μ = 0.

Since d < 0, the curves T1μ(W u
loc) and Ws

loc do not intersect at μ < 0, quadratically
touch each other at μ = 0, and intersect transversally at two points

M+
α =

(

x+ + (−1)αb

√

−μ

d
+O(μ), 0

)

, α = 1, 2

at μ > 0 (see formula (7)). Thus, Γ splits into two transversal homoclinic orbits
Γ1μ and Γ2μ at μ > 0. Accordingly, the set Nμ has at μ > 0, a nontrivial structure.

5 Note that the minimal number k(μ) of the strips is chosen here to be depending onμ (in particular,
k(μ) → +∞ asμ → 0). It follows from the fact that if i < k(μ), then the condition T1μσ

1
i ∩σ 0

j �= ∅
means that j > i. Therefore,N (fμ) does not contain those orbits which intersect the strips σ 0,1

i with
numbers i < k(μ); it means that all such strips can be “eliminated from” the initial neighborhoods
Π+ and Π− and, thus, one can consider smaller neighborhoods of O ∪ Γ , the so-called “special
neighbourhoods,” see [14] for more detail.
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Moreover, as it was discovered already in [5], at transition of values of μ through
μ = 0 (from negative to positive values), a countable set of Smale horseshoes
Ωi appear immediately, “by explosion,” that is, for all integers i ≥ k0(μ) where
k0(μ) → ∞ as μ → +0, the horseshoes T1μ(σ 1

i ) and strips σ 0
i intersect regularly.

However, we have to note that the corresponding global bifurcation6 can take
place either in the cases where c > 0 for planar diffeomorphisms f0 such as in
Fig. 7a and b or in the cases where c < 0 for diffeomorphisms of nonorientable
manifolds such as in Fig. 7c.

3.1 Hyperbolicity Intervals

Consider a subsystem Bn
3 of the topological Bernoulli shift with three symbols

{0, 1, 2} which satisfy the following conditions: (1) Bn
3 has no orbits containing

at least two neighboring nonzero symbols; and (2) for any orbit of Bn
3 , the length of

any complete segment of zeros is not less than n.

Theorem 1 [9, 14] [Theorem on Hyperbolicity Intervals]
Let fμ be a one-parameter family of 2D diffeomorphisms satisfying conditions (A)–
(E). Then for anyμ0 > 0, there is a countable sequence of open (and nonintersecting)
intervals Δk ⊂ (0,μ0) such that at μ ∈ Δk , all orbits from Nμ are saddle and the
system fμ|Nμ is topologically conjugate to Bk+q

3 .
This theorem goes back to what was established in [14]. Below we recall principal

moments of the proof.

A Scheme of Proving Theorem 1 Let Nk(μ) be such a subset of Nμ = N (fμ) that
contains the saddle Oμ and all those orbits which intersect Π+ at points belonging
to Ws

loc or the strips σ 0
i with i ≥ k.

For more definiteness, let Π+ and Π− be the rectangles

Π+ = {(x0, y0) | |x0 − x+| ≤ ε0, |y0| ≤ ε0},
Π− = {(x1, y1) | |x1| ≤ ε1, |y1 − y−| ≤ ε1}

with sufficiently small positive ε0 and ε1. Then, by (3), the strips σ 0
k ⊂ Π+ and

σ 1
k ⊂ Π−, k = k̄, k̄ + 1, . . . , are given as follows

σ 0
k = {

(x0, y0) | |x0 − x+| ≤ ε0, |y0 − γ−ky−| ≤ |γ−k| (ε1 +O(γ−k)
)}

,

σ 1
k = {

(x1, y1) | |x1 − λkx+| ≤ |λk| (ε0 +O(γ−k)
)

, |y1 − y−| ≤ ε1
}
.

6 It can easily be seen from Fig. 7d that if a planar diffeomorphism has a homoclinic tangency with
c < 0, then other homoclinic orbits necessarily exist. Therefore, here takes place the so-called local
Ω-explosion, i.e., the sharp change in the structure of nonwandering orbits from some subdomain
of the phase space. Although this case can be described in the same way as the global Ω-explosion,
it is not so interesting and, therefore, we do not consider it especially.
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a b

Fig. 8 Toward a geometry of the strips and horseshoes for μ ∈ Δk+1 for the cases a c > 0, λ > 0
and b c < 0, λ > 0

We consider, for more definiteness, the case λ > 0, γ > 0, c > 0, d < 0 and assume
first that μ > 0, such that the following inequality holds:

μ+ cλk(x+ + ε0) < γ−k(y− − ε1). (10)

In this case, the horseshoe T1μσ
1
k lies from below the own strip σ 0

k and, accordingly, it
can intersect only the strips σ 0

j with numbers j > k. By the geometry, the horseshoes
T1μσ

1
j with j > k are not also intersected with the strip σ 0

k (see Fig. 8a).
Next we take μ satisfying the following inequality:

μ > γ−(k+1)(y− + ε1). (11)

In this case, the parabola T1μ(W u
loc) intersects all the strips σ 0

i with numbers i ≥ k+1.
Besides, all the horseshoes T1σ

1
j and strips σ 0

i with numbers i, j ≥ k + 1 are also
intersected, see see Fig. 8a. Moreover, as it was shown in [14], all these intersections
are regular. It implies that for all μ satisfying (11), the set Nk+1(μ) is a uniformly
hyperbolic set topologically conjugated with Bk+q+1

3 .
On the other hand, the set Nμ will coincide with Nk+1(μ) for μ satisfying

inequality (10). Thus, we obtain that for μ belonging to the interval hk+1,

γ−(k+1)(y− + ε1) < μ < γ−k(y− − ε1) − cλk(x+ + ε0)

the set Nμ is hyperbolic and conjugate to Bk+q+1
3 (by construction, hk+1 ⊂ Δk+1).

Note that the interval hk+1 is not empty for sufficiently large k. Indeed, its length
�(hk+1) = γ−k [

(y− − ε1)(1 − γ−1) − cλkγ k(x+ + ε0)
]

is a value of order γ−k for
large k, since γ > 1, λγ < 1, and ε0, ε1 are sufficiently small.

In principle, the case c < 0 is analyzed analogously. However, the upper boundary
of the interval hk+1 is defined now from the condition T1μ(W u

loc)∩σ 0
k = ∅; the lower

boundary of hk+1 is found from the fact that a hyperbolic dynamics “is organized”
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on the strips σ 0
i with i ≥ k + 1 (see Fig. 8b). The corresponding conditions (similar

to the inequalities (10) and (11)) are written as:

γ−(k+1)(y− + ε1) + |c|λk+1(x+ + ε0) < μ < γ−k(y− − ε1), (12)

that gives the estimate �(hk+1) = γ−k (
y−(1 − γ−1) − ε1(1 + γ−1) + . . .

)
. �

3.1.1 Prevalence of Hyperbolicity

In the paper [14], the following refined formulae for boundaries of the intervals
hk+1 = (μ1

k+1,μ2
k+1) were obtained: in the case c > 0,

μ1
k+1 = γ−(k+1)y−(1 + . . .), μ2

k+1 = γ−ky−(1 − cx+

y− (λγ )k + . . .), (13)

and in the case c < 0,

μ1
k+1 = γ−(k+1)y−(1 + γ

|c|x+

y− (λγ )k + . . .), μ2
k+1 = γ−ky−(1 + . . .), (14)

where the dots stand for terms of order o(|λγ |k). In these formulae, in contrast to
(10–12), there is no explicit dependence of boundary values on ε0 and ε1. It allows to
establish certain invariant results on measure of hyperbolicity that we explain below.

We call as the relative measure of hyperbolicity the following value

ν = lim
μ→0

m(Hyp)

μ
,

where Hyp = {
μ̂ : μ̂ ∈ (0,μ), fμ̂ is hyperbolic

}
andm is the Lebesgue measure.

It follows from (13) and (14) that

�(Δk+1) = γ−k (
1 − γ−1

)
y− (

1 +O(|λγ |k)).
We take the interval Ik+1 = (0,μ) with μ1

k+1 < μ < μ2
k+1 which contains all

hyperbolicity intervals Δi for i ≥ k + 1. We find from (13) and (14) that

m(Hyp) ∩ Ik+1 ≥
∞∑

i=k+1

�(Δi) = γ−ky−(1 + εk),

where εk → 0 as k → ∞. Then we obtain that

ν = lim
k→∞

m(Hyp) ∩ Ik+1

�(Ik+1)
= 1.

This result from [11, 14], known as prevalence of hyperbolicity, goes back, in fact,
to the papers of Newhouse and others [9, 10] in which, however, the measure of
bifurcation sets was estimated.
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4 On Boundaries of Hyperbolicity Intervals by the Global
Ω-Explosion

Formulae (13) and (14) give a useful information on a structure and position of the
hyperbolicity intervals. However, they do not answer questions on exact boundaries
of the intervalsΔk . In particular, a question on a bifurcation character of the boundary
points has the definite interest, since it relates to the study of global bifurcations which
lead to the creation/destruction of uniformly hyperbolic sets.

In this section, we consider one-parameter families fμ of 2D Cr -smooth (r ≥ 3)
diffeomorphisms satisfying conditions (A)–(E) and such that

(F) the diffeomorphism f0 belongs to a boundary of the Morse–Smale systems.

Thus, we will study transitions through μ = 0 corresponding to the so-called global
Ω-explosion. Requiring the condition (F) (along with (A)–(E)), we select essentially,
the following three main cases (here always γ > 0, d < 0):

(1) f0 is a planar diffeomorphism with λ > 0, c > 0 (here also, bc < 0, since the
global map T1 is orientable); see an example in Fig. 7a;

(2) f0 is a diffeomorphism of a nonorientable manifold with λ > 0, c < 0 (here
bc > 0, since T1 is a nonorientable map); see an example in Fig. 7c;

(3) f0 is a planar diffeomorphism with λ < 0, c > 0; see an example
in Fig. 7b.7

By Theorem 1, all diffeomorphisms of the first class atμ ∈ Δk areΩ-conjugate, i.e.,
they are conjugate in the restriction onto Nμ which is here a uniformly hyperbolic
closed invariant set. However, if one considers not only orbits from Nμ but also all
close ones, i.e., one studies hyperbolic sets from point of view of local topological
conjugacy, then one can see that the sets Nμ are different. Moreover, we can distinct
these hyperbolic sets by their border points.

Recall some definitions.

Definition 1 Let Λ be an invariant closed hyperbolic set for a 2D map. A saddle
periodic point P ∈ Λ is said to be s-border (resp., u-border) if any sufficiently
small neighborhood of P is divided by Ws

loc(P ) (resp., W u
loc(P )) into two disks, one

of which does not contain points of Λ, while the other does contain. If P is both
s-border and u-border, the point P is said to be (s, u)-border.

7 Here we assume that c is positive only for the sake of definiteness: it can be always realized for the
appropriate choosing of a pair of homoclinic points. Indeed, take a pair of points M+′ = T0(M+)
and M−(0, y−) instead M+(x+, 0) and M−(0, y−). Then it is easy to check that x+′ = −λx+, b′ =
bλ, c′ = cγ for the new global map T ′

1 = T0T1 : Π− → T0(Π+). Making the coordinate change
x �→ −x, y �→ y, we obtain that x+′ = |λ|x+, b′ = −bλ, c′ = −cγ , that is, the “new c” will have
the opposite sign than the “old” one (making the change x �→ −x, we arrive to our agreement that
the coordinates x+ and y− of choosing homoclinic points must be positive).
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a b

c d

Fig. 9 We mark by a hatching that side of the corresponding invariant manifold of a border point
where nonwandering points are absent

The notation of border periodic points was introduced in the paper by Grines [25],
where it was shown that the border points are topological invariants of transitive
hyperbolic sets.

Concerning our hyperbolic set Nμ for μ ∈ Δk , we note that it contains infinitely
many Smale horseshoes Ωj . Let O+

j and O−
j be fixed points in Ωj , i.e., the fixed

points of the first return map Tj , such that O+
j (resp., O−

j ) has the positive (resp.,
negative) unstable multiplier. Then the following result holds:

Theorem 2 (Border Points for Hyperbolic Sets at Ω-Explosion)
Let μ ∈ Δk . Then Nμ has border periodic orbits as follows:

(1) in the case λ > 0, c > 0, the point O is (s, u)-border and O+
k is u-border;

(2) in the case λ > 0, c < 0, the point O is (s, u)-border;
(3) in the case λ < 0, c > 0, the point O is s-border and (i) the point O+

2 m is
u-border if μ ∈ Δ2 m or (ii) the point O+

2 m+2 is u-border, if μ ∈ Δ2 m+1.

The statement of this theorem should be clear from Fig. 9 in which basic geometrical
constructions for the hyperbolic sets Hμ are shown.

Evidently, the corresponding invariant manifolds of border points play an im-
portant role in bifurcations of birth and crisis of hyperbolic invariant sets. In any
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case, the first and last bifurcations at creation/destruction of hyperbolicity should be
connected with the appearance homoclinic or heteroclinic tangencies between stable
and unstable manifolds of s-border and u-border points. The following result can be
considered as a concrete realization of this observation for the global Ω-explosion.

Theorem 3 (On Exact Boundaries of Hyperbolicity Intervals)
Let fμ be a one-parameter family of Cr -smooth, (r ≥ 3), 2D diffeomorphisms
satisfying conditions (A)–(F) and Δk = (μ∗

k ,μ
∗∗
k ) be the hyperbolicity interval for

sufficiently large k. Then μ = μ∗
k and μ = μ∗∗

k correspond to codimension 1 global
bifurcations of the following types:

Case (1) At μ = μ∗
k , a quadratic homoclinic tangency of the second class ap-

pears that is “the last” one for the curves T1(W u
loc(O)) andWs(O)∩σ 0

k , see Fig. 10a.
If λ2γ 3 < 1, a quadratic heteroclinic tangency, which is “the first” one for the
curves W u(O+

k ) and Ws(O) ∩ σ 0
k−1, appears at μ = μ∗∗

k , see Fig. 10b. If λ2γ 3 > 1,

at μ = μ∗∗
k , a fixed saddle-node point Õk−1 is born for the first return map Tk−1.

Case (2) Values μ = μ∗
k and μ = μ∗∗

k correspond to the appearance in fμ
quadratic homoclinic tangencies of the saddle Oμ: at μ = μ∗

k , the corresponding
tangency is of the second class (“the last tangency” on the strip σ 0

k ), see Fig. 11a;
at μ = μ∗∗

k , the corresponding tangency is of the first class (“the first” one on the
strip σ 0

k−1), see Fig. 11b.
Case (3) (i) Let k = 2 m. At μ = μ∗

2 m, the invariant manifolds Ws(O) and
W u(O+

2 m) have a quadratic tangency which is “the last” one on the strip σ 0
2 m,

see Fig. 12a; at μ = μ∗∗
2 m, the manifolds Ws(O) and W u(O+

2 m) have a quadratic
tangency which is “the first” one on the strip σ 0

2 m−1 at μ = μ∗∗
2 m, see Fig. 12b.

(ii) Let k = 2 m + 1. At μ = μ∗
2 m+1, the invariant manifolds Ws(O) and

W u(O+
2 m+2) have a quadratic tangency which is “the last” one on the strip σ 0

2 m+1,
see Fig. 13a. Ifλ2γ 3 < 1, then atμ = μ∗∗

2 m+1, the manifoldsWs(O) andW u(O+
2 m+2)

have a quadratic tangency which is the “first” on the strip σ 0
2 m, see Fig. 13b. If

λ2γ 3 > 1, then at μ = μ∗∗
2 m+1, the map T2m has a saddle-node Õ2 m.

Remark 1 One can say that the moment μ = μ∗
k corresponds to the last bifurcation

at the formation of the hyperbolic set Nk = N (fμ).8 In the cases (2) and 3(i) as
well as in the cases (1) and 3(ii) with λ2γ 3 < 1, the moment μ = μ∗∗

k corresponds
to the first bifurcation leading to a breakdown of hyperbolicity (in other words, μ∗

k

is the crisis bifurcation value for the hyperbolic set N (fμ)). However, the situation
is certainly different for the cases (1) and 3(ii) with λ2γ 3 > 1. Here, at μ = μ∗∗

k ,
a periodic saddle-node orbit is born to be far from the pointed-out hyperbolic set
Nk . That is, nothing has happened with this set (now it is a subset Nk ⊂ N (fμ)):
it exists yet certain time as a basic hyperbolic set till the same moment, denote it
as μ = μhet

k , when the first heteroclinic tangency appears between the manifolds
W u(O+

k ) and Ws(O) ∩ σ 0
k−1, see Fig. 10a. Evidently, namely this value μ = μhet

k

must be considered as the crisis one for Nk .

8 An analog is the well-known “last bifurcation” in the Hénon family after which the nonwandering
set becomes hyperbolic.
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Remark 2 If λ2γ 3 > 1 (for the cases (1) and (3)), then μhet
k − μ∗∗

k = νk , where
νk > 0 is a value of order λk (for example, it follows from formulae (18) and (19)
below that νk = cx+(λ−1−1)λk+o(λk)). On the other hand, as well-known (see e.g.,
[18, 21]), the length of the bifurcation interval Bk = [μsn

k ,μsh
k ] for the first return

map Tk−1(μ) is a value of order γ−2(k−1). Here, at μ = μsn
k−1 = μ∗∗

k , a saddle-node
fixed point appears at Tk−1(μ) and μ = μsh

k−1 corresponding to the last (homoclinic)
bifurcations after which Tk−1(μ) becomes hyperbolic (its nonwandering set is the
Smale horseshoeΩk−1). Since γ−2k � λk here (the inequalityλγ 3/2 > 1 implies that
λγ 2 > 1), we obtain thatμhet

k > μsh
k . Then, forμ = μhet

k , the diffeomorphism fμ has
simultaneously two hyperbolic basic sets, Nk andΩk−1 and “cycle”, sinceW u(Nk)∩
Ws(Ωk) �= ∅ forμ ≥ μhet

k andW u(Ωk)∩Ws(Nk) �= ∅ forμ ≥ μ∗∗
k . Will correspond

in this case to the bifurcation moment of the heteroclinic Ω-explosion (in the Palis
sense [4]). That is, at μ = μhet

k , the diffeomorphism fμ has two hyperbolic basic
sets, Nk and Ωk−1 and “Palis-cycle,” since W u(O+

k ) touches Ws(O) ∩ σ 0
k−1. Thus,

the bifurcation at μ = μhet
k has always the important meaning. If λ2γ 3 < 1, then

the set N (fμ) “softly bifurcates” at μhet
k = μ∗∗

k —small fragments of nonwandering
orbits having points in the strip σ 0

k−1 appear gradually. If λ2γ 3 > 1, the moment
μ = μhet

k corresponds to the “hard collision” of two hyperbolic basic sets, Nk and
Ωk−1.

Remark 3 The boundary μ = μ∗
k is “exact.” However, we do not prove (in this

chapter) that the set Nk at μ = μ∗
k is nonuniformly hyperbolic, i.e., all its orbits

are saddle, except for exactly one orbit (homoclinic in the cases (1) and (2) or
heteroclinic in the case (3)). This fact can be proved by using new “cone technique”
for nonuniformly hyperbolic systems, see e.g., [26, 27].

4.1 The Proof of Theorem 3

Case (1): λ > 0, γ > 0, d < 0, c > 0. By Theorem 2, the first and last bifurcations
at creation/destruction of the hyperbolic set Nμ have to be connected, respectively,
with the appearance of the first and last tangencies between the manifoldsWs(O) and
W u(O) or W u(O+

k ). Therefore, the appearance at μ = μ∗
k , a homoclinic tangency of

the second class betweenWs(O) andW u(O), looks to be quite evident, see Fig. 10a.
Indeed, the piece T1(W u

loc) ∩ σ 0
k of W u(O) is the lower one in Π+ from all unstable

manifolds (of points of Nμ). On the other hand, one of two connected components
T −k

0 (T −1
1 Ws

loc(O)) ∩ σ 0
k is the upper invariant curve from all stable manifolds (of

points from Nμ). Accordingly, the homoclinic tangency of these curves is the “last
one” at the creation of the hyperbolicity of the setNμ. This tangency can be evidently
interpreted as the homoclinic tangency of the second class for the manifoldsWs

loc(O)
and T1T

k
0 T1(W u

loc).
At increasing μ, the top of W u(O) (and hence, the top of the horseshoe T1(σ 1

i )) is
moved up. In this case, one can see a priori two different variants reaching the bound-
ary μ = μ∗∗

k of the interval Δk(μ). The first one is connected with the appearance in
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a b

Fig. 10 Case (1). a Atμ = μ∗
k the curvesWs

loc(O) and T1T
k

0 T1(W u
loc) touch each other. b A moment

μ = μhet
k (the same, μ = μ∗∗

k at λγ 3/2 < 1) is shown when a heteroclinic tangency (first one in
σ 0
k−1) betweenW u(O+

k ) andWs (O)∩σ 0
k−1 appears (the corresponding heteroclinic cycle has a type

of a cycle from Fig. 1a

σ 0
k−1, a quadratic heteroclinic tangency of the manifoldsW u(O+

k ) andWs(O). More-
over, in this case, a nontransversal heteroclinic cycle is created to be the same type
as the cycle from Fig. 1a and hence, a transition through such a tangency is accom-
panied by the heteroclinic Ω-explosion leading to the appearance of infinitely many
nonwandering orbits intersecting the strip σ 0

k−1. In the second variant, at μ = μ∗∗
k , a

saddle-node fixed point is born at the first return map Tk−1 = T1T
k−1

0 . In Fig. 10b,
a moment of creation of a heteroclinic tangency between W u(O+

k ) and Ws(O) is
shown. However, it is not clear even here—does the first return map Tk−1 = T1T

k−1
0

have periodic orbits or not? In any case, we see in Fig. 10b that T1(σ 1
k−1)∩σ 0

k−1 �= ∅.
Thus, we need to clarify what possibility (and when) is realized here. For this

goal, we estimate both values ofμ at which a tangency betweenW u(Ok) andWs(O)
appears and a saddle-node fixed point is born in Tk−1.

Let y1 = ϕ1(x1) and y0 = ϕ0(x0) be the lower traces of the stable manifoldWs(O)
on the strips σ 1

k−1 and σ 0
k−1, respectively. We find from (6) that the curve T −1

1 Ws(O)
has in Π− the following equation:

x1 = −d

c
(y1 − y−)2 − μ

c
+ . . . (15)

Since γ−ky−(1 + . . .) < μ < γ−k−1y−(1 + . . .) at μ ∈ Δk and x1 = O(λk) for
points on σ 1

k−1, we obtain from (15) that the curve y1 = ϕ1(x1) has the equation

y1 = y− −
√

μ

|d| (1 + . . .).

Then we deduce from (3) that the curve y0 = ϕ0(x0) on σ 0
k−1 has such equation

y0 = γ−k+1y− − γ−k+1
√

μ

|d| (1 + . . .). (16)
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We obtain from (3) and (6) the following formula for the coordinate y of the top of
the manifold W u(O+

k ):

ymax = μ+ cx+λk(1 + . . .). (17)

Denote as μtan, that value of μ at which fμ has a nontransversal heteroclinic cycle
such as in Fig. 10b. We obtain from (16)–(17) that

μtan = γ−(k−1)y− − cx+λk − γ−3(k−1)/2

√
y−

|d| (1 + . . .). (18)

On the other hand, the saddle-node appears in σ 0
k−1 at μ = μ+1

k−1, where

μ+1
k−1 = γ−(k−1)y− − cx+λk−1 + 1

4d
γ−2(k−1)(1 + . . .), (19)

(see e.g., [18, 21, 28]). Since λ < γ−1, it follows from (18)–(19) that μtan > μ+1
k−1

only in the case where λkγ 3k/2 > 1, that is at λ2γ 3 > 1.
Case (2): λ > 0, γ > 0, c < 0, d < 0. If μ = 0, the curve T −1

1 (Ws
loc(O)) does not

intersect with the strips σ 1
i ⊂ Π−. However, at μ ∈ Δk , this curve will intersect the

strips σ 1
i with numbers i = m(k),m(k)+1, . . . , wherem(k) ∼ k ·(−ln γ / ln λ) � k,

along two curves of the form

|x1 − λix+| ≤ λiε1, y1 − y− = ±
√

− μ

|d| (1 + . . .). (20)

Indeed, the curve T −1
1 Ws(O) ∩Π− has the Eq. (15). Since μ is a value of order γ−k

at μ ∈ Δk (see (13) and (14)), formula (20) takes place for such i that λi < γ−k ,
i.e., for i ≥ m(k).

By Theorem 2, the hyperbolic set Nμ at μ ∈ Δk has only one border point O
which is (s, u)-border here. Therefore, the valuesμ = μ∗

k andμ = μ∗∗
k correspond to

homoclinic tangencies (of the first and second class, respectively) to the point O. In
Fig. 11, the corresponding bifurcation moments are shown. In Fig.11a, the lower in
Π+ piece ofW u(O) (one of the two curves T1T

k
0 T1(W u

loc)) touches the upper piece of
Ws(O)∩σ 0

k . This tangency is of the second class, evidently (the same as in Fig. 10a).
In Fig. 11b otherwise, the upper in Π+ piece of W u(O) (it is T1(W u

loc)) touches the
lower piece of Ws(O) ∩ σ 0

k−1. This tangency (of the first class) has, evidently, the
same type as the initial one at μ = 0.

Case (3) λ < 0, γ > 0, c > 0, d < 0. Since λ is negative here, the point O is not
more u-border but it is s-border as for all other cases under consideration.

(i) Let μ ∈ Δ2 m. By Theorem 2, the point O+
2 m is u-border here. It means that a

connected piece W u(O+
2 m) ∩T1(σ 1

2 m) containing the point O+
2 m is the upper trace in

Π+ of unstable manifolds (for points of Nμ). Accordingly, the lower trace is one of
the curves T1T

2 m+1
0 (W u(O+

2 m)) in the horseshoe T1(σ 1
2 m+1). Note that the horseshoe

T1(σ 1
2 m−1) is posed from below the own strip σ 0

2 m−1, see Fig. 12b. Therefore, the
values μ = μ∗

k and μ = μ∗∗
k should correspond to heteroclinic tangencies of the
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a b

Fig. 11 Case (2). a The momentμ = μ∗
k is shown when a homoclinic tangency occurs (between the

curvesWs (O)∩σ 0
k and T1T

k
0 T1(W u

loc)). This is a tangency of the second class and, after its splitting,
the set Nμ becomes hyperbolic. b The moment μ = μ∗∗

k is shown when the curves T1(W u
loc) and

Ws (O) ∩ σ 0
k−1 touch each other at the first time

a b

Fig. 12 Case 3(i). a At μ = μ∗
k , a heteroclinic tangency (between the curves Ws (O) ∩ σ 0

2 m and
T1T

2 m−1
0 T1(W u(O+

2 m))) appears to be “last” in σ 0
2 m. b At μ = μ∗∗

k , the curves T1(W u(O+
2 m)) and

Ws (O) ∩ σ 0
2 m−1 touch (at the first time)

manifolds W u(O+
2 m) and Ws(O), respectively, “the last” one on σ 0

2 m (Fig. 12a) and
“the first” one on σ 0

2 m−1 (Fig. 12b).
(ii) Let μ ∈ Δ2 m+1. By Theorem 2, the point O+

2 m+2 is u-border here. Thus, the
manifold W u(O+

2 m+2) forms in the horseshoes T1(σ 1
2 m+2) and T1(σ 1

2 m+1)—both the
upper and the lower inΠ+ traces of unstable manifolds of orbits fromNμ. The value
μ = μ∗

2 m+1 corresponds to the heteroclinic tangencies of the manifoldsW u(O+
2 m+2)

and Ws(O) which is “the last” one in σ 0
2 m+1, see Fig. 13a. Note that the horseshoe

T1(σ 1
2 m) can also intersect the own strip σ 0

2 m. Therefore (the same as in the case
λ > 0, c > 0), the value μ = μ∗∗

2 m+1 at λ2γ 3 > 1 corresponds to the saddle-node
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a b

Fig. 13 Case 3(ii). a At μ = μ∗
2 m+1, a heteroclinic tangency (between the curves Ws (O) ∩

σ 0
2 m+1 and T1T

2 m+2
0 T1(W u(O+

2 m+2))) appears to be “last” in σ 0
2 m+1. b At μ = μ∗∗

2 m+1, the curves
T1(W u(O+

2 m+2)) and Ws (O) ∩ σ 0
2 m touch (at the first time)

bifurcation in the first return map T2 m : σ 0
2 m → σ 0

2 m. If λ2γ 3 < 1, then the value
μ = μ∗∗

2 m+1 ≡ μhet
2 m+1 corresponds to the heteroclinic tangency of the manifolds

W u(O+
2 m+2) and Ws(O) which is “the first” one in σ 0

2 m, see Fig. 13b.
It completes the proof. �
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Self-Organized Regularity in Long-Range
Systems

Xavier Leoncini

Abstract Dynamics of many-body long-range interacting systems are investigated.
Using the XY-Hamiltonian mean-field model as a case study, we show that regular
trajectories, associated with invariant tori of the single-particle dynamics emerge
as the number of particles is increased. Moreover, the construction of stationary
solutions as well as studies of the maximal Lyapunov exponent of the systems show
the same trend towards integrability. This feature provides a dynamical interpretation
of the emergence of long-lasting out-of-equilibrium regimes observed generically in
long-range systems. Extensions beyond the mean-field system are considered and
display similar features.

1 Introduction

Dynamics of many body systems interacting through two-body long-range interac-
tions defines a long-standing problem, with many potential domains of applications.
In such systems, each constituent is under the influence of all other microscopic
actors, resulting in a complex dynamical picture. These systems cover a broad spec-
trum of physical interactions most notably because of the long-range nature of the
gravitational and coulomb interaction, but not restricting to these we find long-range
interactions in fluid mechanics for instance in Stokes flows (see for instance [1]
for some of its consequences) or in two-dimensional Eulerian flows between vor-
tices [2, 3], we find them also in systems dealing with wave-particle interactions
in plasma physics [4] or the free-electron-lasers [5] and the list is not exhaustive.
These studies also extend to cross-disciplinary fields, most notably in biological and
social sciences, where an intricate network of mutual interactions between agents
has to be accommodated for [6]. A system is considered long-range when the two-
body interaction potential V (r) decays as V (r) ∼ r−α with α ≤ d, where d is the
embedded dimension. We may have also instances where we do not see any decay
such as V (r) ∼ log (r) for point vortices on a plane or cases where we have α = 0,
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as for instance, for mean field situations. The study of these systems with a large
number of constituents within the statistical physics framework still is problematic.
Indeed, the energy is generally nonextensive and even if the coupling constant is
renormalized to restore extensiveness, additivity is not. This leads to the possibility
of ensemble nonequivalence, such as negative specific heat in the microcanonical
one, as well as other problems [7, 8]. From the dynamical perspective, long-range
interacting Hamiltonian systems display as well some ubiquitous features. Through
an initial violent relaxation, the system relaxes toward a quasi-stationary state (QSS)
whose lifetime diverges with system size, implying a very slow relaxation toward
equilibrium. A paradigmatic representative of long-range interactions, sharing the
mean field viewpoint, is the so called Hamiltonian mean field (HMF) model, which
describes the mean field evolution of N XY−spins (rotators). In the limit of infinite
system size the discrete HMF model becomes a Vlasov equation for the evolution of
the single particle distribution function [9]. This leads to a statistical based treatment
within the Lynden-Bell formalism displaying some fermion properties [9, 10]. More
recently, the HMF stationary states have been constructed by using a formal analogy
with a set of uncoupled pendula [11].

This formal analogy represented an important step in understanding of the dy-
namical properties of the QSS in the HMF model, beyond the statistical and kinetic
(Vlasov) approaches. Indeed, it has been shown that the actual microscopic dynamics
in the magnetized stationary state is regular and explicitly known and thus explained
the abundance of emerging regular orbits observed in [12].

In this chapter, we shall review different results obtained in this framework of long-
range interacting systems displaying microscopic low dimensional dynamics and the
rise of regularity. In the first part, we shall discuss the construction of stationary
states in the HMF model and its consequence on regularity and dynamics. A special
emphasis will be made on the so-called statistical equilibrium distribution and for
which we shall display some Poincaré sections, monitor the fluctuations, and compute
some finite time Lyapunov exponents. We shall then move on to other systems beyond
the mean field approach displaying similar feature.

2 Regular Motion

In this section, we recall the mechanisms giving rise of microscopic regular motion
in these long-range systems. As a starting point, we consider the now paradigmatic
HMF model which corresponds to an XY−model with mean field interactions. We
first start with reminding some of the thermodynamical properties of the system and
display some numerical investigations.
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2.1 The Hamiltonian Mean Field (HMF) Model

This model was introduced in [13–15] as a one-dimensional model comprising the
first Fourier term of interacting gravitational sheets. It is formally equivalent to
a mean-field XY−model, yet it also bears many similarities with the problem of
self-consistent wave–particle interactions discussed in [16], and the possibility to
describe the phenomenon of collective atomic recoil laser has been discussed in
[17]. Its N -body Hamiltonian form, which corresponds to the mean field XY model
with ferromagnetic interactions, writes

H =
N∑

i=1

⎡

⎣
p2
i

2
+ 1

2N

N∑

j=1

1 − cos
(
qi − qj

)

⎤

⎦, (1)

where pi and qi are respectively the (canonically conjugate) momentum and posi-
tion of particle (rotor) i. The Hamiltonian (1) displays a peculiar feature, namely
a renormalization of the coupling constant inversely proportional to the size of the
system. This feature known as the Kac prescription, is necessary in order to recover
an extensive system (at least in the regime of low energies). For a discussion on
extensiveness and additivity in these type of system, we refer the reader to the very
detailed review [8] and references therein. To get a grasp of the model we first start
with its thermodynamical properties.

2.1.1 Equilibrium Statistical Properties

To monitor the equilibrium properties it is convenient to define an order parameter,
the “magnetization” as the norm of the vector

M = 1

N

(∑
cos qi ,

∑
sin qi

)
= M (cosϕ, sin ϕ). (2)

Note that, due to the translation symmetry displayed in (1), the phase ϕ has no
special value and M is the order parameter. It has been shown (see for instance
[8]) that for the HMF model, we had equivalence between ensembles, meaning the
microcanonical one and the canonical one were giving rise to the same properties,
and no negative specific heat could be expected. It is then easier to deal with the
canonical one. In this setting we can extract from the partition function (see [15])
that the one-particle distribution function at thermal equilibrium writes

ρ(p, q) =
√

2π

β

1

I0(βM)
exp

(

−β
(
p2

2
−M cos q

))

, (3)

with M1 solution of the implicit equation

M = I1(βM)

I0(βM)
, (4)

1 We do not differentiate between the observable M and its statistical average 〈M〉, for simplicity
in notations, except when needed
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Fig. 1 Left: Equilibrium magnetization versus density of energy of the HMF model: A second-order
phase transition is observed at εc = 0.75 (Tc = 0.5). Right: Phase portrait of a pendulum with
m = 1

where I0 and I1 are the modified Bessel function of the first kind of orders 0 and 1
and β is the inverse of the temperature T . Given the form of the Hamiltonian we can
develop the cosine and rewrite it as

H = N

(
1

N

∑

i

p2
i

2
+ 1

2
− M2

2

)

. (5)

Thus, we can then easily compute the average density of energy per particle as

ε = T

2
+ 1

2
(1 −M2). (6)

The implicit Eq. (4) can easily be solved, the results are displayed in Fig. 1. One
observes a second-order phase transition occurring at εc = 0.75.

2.1.2 Microscopic Dynamics

Studying the dynamics of Hamiltonian systems with a large number of degree of
freedom and its connection to equilibrium statistical mechanics has been a long-
standing problem. The relaxation to statistical equilibrium has been under scrutiny
ever since the pioneering work of Fermi and the FPU problem [18]. Moreover,
since the advent of powerful computers and for specific systems within a class of
initial conditions, integrating numerically Hamiltonian dynamics has proven to be
competitive in regards to Monte Carlo schemes for the study of statistical properties
(see for instance [19]). The main assumption made in these studies was that, since
the system admitted only a few conserved quantities for generic initial conditions,
once the dimensions of phase space were large enough, microscopic Hamiltonian
chaos should be at play and be sufficiently strong to provide the foundation for the
statistical approach within the microcanonical ensemble.
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Following the same strategy, we may wonder what occurs when dealing with
long-range systems. As a first requirement, let us write the equation of motion:

ṗi = − 1

N

∑

j

sin (qi − qj ),

q̇i = pi ,

where the dot denotes the time derivative. Developing the sine term, the equations
of motion for the particles are then rewritten in the form

⎧
⎨

⎩

ṗi = −M sin (qi − ϕ)

q̇i = pi
(7)

The form (7) is somehow reminiscent of the dynamics of a pendulum. We though
have to remember that the magnetization M and its phase ϕ are actually global
collective quantities depending on all the particles positions (2).

2.1.3 Regular Stationary States

Now let us imagine that starting from a given initial condition, the system of coupled
rotators has eventually settled down to an intermediate quasi-equilibrium and assume
that in the N → ∞ limit the magnetization M of the XY -HMF model is converging
to a constant. Then the equations of motion (7) would imply that the system formally
reduces to an infinite set of uncoupled pendula. Let us see if we can start from there
and let us consider the Hamiltonian of N independent pendula

H =
N∑

i=1

p2
i

2
+m(1 − cos qi) . (8)

We shall use the fact that system (8) is integrable and construct a subset of solutions
which are stationary for (1) in the thermodynamic limit [11, 20]. Note that a similar
approach was used in [21] for other purposes.

Given the Hamiltonian (8), we know that each pendulum i is confined on a specific
torus of the pendulum phase portrait depicted in Fig 1. To build a stationary state
we naturally consider the ergodic measure on the torus which originate from the
pendulum motion and time averages. The dynamics is though nonlinear making this
measure quite impractical. Since the dynamics is integrable and periodic on a torus, it
is easier to change coordinates and perform a canonical transformation to the action-
angle variables (I , θ ) of the system (see for instance [22]). Then for one pendulum,
we obtain Hm = Hm(I ), with

İ = 0 (9)

θ̇ = ∂Hm/∂I = ω(I ), (10)
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where I and θ stand for the constant action and the angle. The action is a constant
of the motion, which is fixed by the initial state the pendulum i. And thus we have

θ (t) = ω(I )t + θ (0). (11)

For any selected initial condition, as time evolves, θ covers uniformly the circle
[ −π , π [, while the action I keeps its constant value which we note Ai . The natural
ergodic measure is then simple to obtain and reduces hence to

ρi(I , θ ) = 1

2π
δ(I − Ai). (12)

From this measure (12) we can immediately obtain an ergodic measure for the system
of N pendula

ρE =
N∏

i=1

ρi = 1

(2π )N

N∏

i=1

δ(Ii − Ai). (13)

Going back to a more statistical approach and since particles are identical and
noninteracting one can straightforwardly deduce the following expression for the
one particle density function (or equivalently an invariant measure of the pendulum
system):

f (I , θ ) = g(I )

2π
, (14)

where g(·) is for instance a discrete valued function determined by selected N initial
conditions. Since we actually have N = ∞, it is also possible to consider that g(·)
changes smoothly with the action variable.

Should we prefer to work in the original phase space we can then use the f (I , θ )
according to (14) and then perform an “inverse” canonical transformation to obtain
an explicit expression for the one particle density function f̃ (p, q) as defined in
the original phase space Γpq . Since it corresponds to an invariant measure, this
distribution corresponds to a stationary state of an infinite ensemble of uncoupled
pendula.

Now using this distribution we can compute global macroscopic variables as
for instance the global magnetization M as specified by Eq. (2)). Since we have
a stationary state corresponding to an invariant measure, the time average of the
magnetization coincides with the ergodic-spatial average, we thus have

M̄ = 〈M〉 =
(∫

f̃ (p, q) cos q dpdq, 0

)

, (15)

where the observation that f̃ is even in p and q has been used and x̄ denotes a time
average while 〈x〉 a spatial one (statistical one). Note that due to the symmetry of
the distribution function (see the tori in Fig. 1) the average of the sine part is zero.
We can also express the Eq. (15) using action-angle variables and thus write

M̄ = 〈M〉 =
(

1

2π

∫

g(I ) cos q(I , θ ) dIdθ, 0

)

. (16)
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In order to perform the integration over the angle we need the specific details of the
coordinate. Regarding the motion of a pendulum we have two type of orbits trapped
and nontrapped ones (see Fig. 1). The separatrix separating the two regions has an
energy E = m. Given these, it is convenient to define κ = κ(I ) = (E +m)/2 m to
characterize the orbit: trapped for κ < 1 and nontrapped for κ > 1. This parameter κ
is also used to parameter the Jacobi elliptic function, as well as the complete elliptic
function of first and second kind. Given these we obtain that trapped orbits (libration)
are characterized by:

q = 2 sin−1

[

κsn

(
2K(κ)θ

π
, κ

)]

,

I = 8

π

√
m

[
E(κ) − κ ′2K(κ)

]
,

which yields

〈cos q〉 = 2
E(κ)

K(κ)
− 1. (17)

While for the nontrapped ones (rotation) we get

q = 2am

(
2K(1/κ)θ

π
, κ−1

)

,

I = 8κ

π

√
mE(1/κ),

leading to

〈cos q〉 = 1 + 2

κ2

(
E(κ−1)

K(κ−1)
− 1

)

, (18)

where < · >= ∫ 2π
0 ·dθ/(2π ) stands for averaging over the angles. In order to con-

tinue our original computation, we have to split our integral in two parts, depending
whether the action is lower or higher than the value Ic = 8

√
m/π corresponding to

the separatrix. We finally obtain as a final form

M =
∫ 8

π

√
m

0
g(I )

(

2
E(κ)

K(κ)
− 1

)

dI

+
∫ ∞

8
π

√
m

g(I )

(

1 + 2

κ2

(
E(κ−1)

K(κ−1)
− 1

))

dI. (19)

We recall given an initial distribution f̃ , then the magnetization (19) stays constant
since, by construction f̃ corresponds to an invariant measure.
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Fig. 2 Stationary distribution f̃ (p, q) obtained with m = M = 0.5 and a continuous g(.)

We now shall reconnect the model of uncoupled pendula parameterized by the real
numberm to theXY -HMF interacting rotator imposing a self-consistency constraint:

〈M〉 = m. (20)

Indeed, let us recall that the equations of motion for the system of pendula are
⎧
⎨

⎩

ṗi = −m sin qi

q̇i = pi
, (21)

hence, if there exists an f̃ for which the constraint given by Eq. (20) is satisfied (with
m �= 0 else things are rather trivial), then we have obtained a stationary solution
of the system of pendula, which is in turn also stationary solution of the XY -HMF
model in the N → ∞ limit (QSS).

As we shall be able to replace m by M in Eq. (21) and recover equations which
are formally identical to (7), noting that our choice for the pendulum Hamiltonian
implied a constant ϕ = 0. It is not so difficult to find a function g(.) and a parameter
mwhich satisfies the constraint Eq. (20) (see [11] for details). A solution which does
not correspond to the equilibrium distribution is given by Eq. (3) and corresponding
to a value of magnetization M = 0.5 and a continuous g(I ) is displayed in Fig. 2.
One typically recognizes the underlying pendulum phase portrait, with each tori
being differently populated according to the function g(I ). The nonuniformity of
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f̃ (p, q) on each torus arises from the nonlinearity of the transformation q = q(I , θ ),
p = p(I , θ ).

As consequence of our analysis, we know that any stationary state of the HMF
model will be of the type discussed above, meaning that the microscopic dynamics
of its constituent will have an integrable regular motion like a system of uncoupled
pendula. Particles of the HMF model have self-created the magnetization which
then traps them and dictates their regular motion, in that sense we have some self
organized regularity in this model. We shall return on this feature in the following
sections. But let us discuss how the magnetization is created and which particle are
“confining” (creating magnetization) and which one are “deconfining” the system.
Looking back at Eq. (19), we notice that the second part (rotating particles) always has
a negative contribution. For the librating particles, the contribution of each particle
< cos q > near the separatrix is close to −1 as they spend most of there time around
q = ±π . Hence given Eq. (17), only particules with a κ < κc ≈ 0.90891 contribute
constructively (positively) to the magnetization, κc being the value for which the
equality 2E(κ) = K(κ) holds. We may then consider as a distribution a single torus
(for κ < κc), for instance for M = 0.5 the torus with κ ≈ 0.68118, corresponds to a
stationary state of the HMF model. We can go on and add more tori and put different
weights on them to construct stationary states and so consider also deconfining tori.
Note that we shall not discuss here the stability of these stationary states2, but these
features may certainly prove to be fruitful and give some explanations on possible
stabilizing/destabilizing mechanisms. In fact, it has been demonstrated in [23–25]
that a necessary (and sufficient) condition for these stationary states to give rise
to quasi-stationarity in the finite-N dynamics is that they are linearly stable. More
precisely, the stationary state described before corresponds to Vlasov equilibria. The
analysis of linear stability of this Vlasov equation may reveal which stationary states
will generate quasi-stationarity, and action-angle approaches has proved particularly
useful in this context [26, 27].

We shall now move on to what happens when considering only a finite number of
particles.

2.1.4 Dynamics of the HMF with a Finite Number of Particles

We have shown before that for any stationary state (including equilibrium), the mi-
croscopic dynamics of the particles becomes regular. This behavior is somewhat
counterintuitive regarding statistical equilibrium. Indeed, in the microcanonical en-
semble statistical equilibrium corresponds to a maximal entropy state and in this
sense to a maximal disordered state, and it is difficult to imagine such a state being
created by regular motion (nonlinear shear may help though). In order to see effec-
tively we shall first consider the dynamics of a finite number of particles which are
close to the equilibrium state given by Eq. (3).

2 Note that even if one accounts for the linear stability criteria, there are still large sets of distributions
which shall generate quasi-stationary dynamics.
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Fig. 3 Equilibrium distribution of q (top) and p (bottom) obtained from the construction. His-
tograms are built using 4 × 106 particles and 1000 bins. The different lines from highest maximum
to smallest correspond respectively to T = 0.1, T = 0.3, T = 0.49

To build a finite particle number distribution as close as possible to equilibrium
we proceed as follows. We consider the equilibrium stationary one particle distri-
bution function and fix the temperature T . We solve the implicit Eq. (4) to get the
magnetization M . Then we consider the action-angle coordinates of the pendulum
as new variables.

We have

ρ̃(I , θ ) = ρ̃(I ) = 1

2π

exp (− βH (I ))
∫

exp (− βH (I ′))dI ′ . (22)

We then renormalize the distribution function ρ̃ to N3 and compute progressively its
definite integral

Z(I ) = N

∫ I

0
ρ̃(J )dJ, (23)

and place a particle (Ik , θk) for each Z(Ik) = k, where k ∈ {1, . . . ,N} and θk =
θk−1 + α, with α incommensurate with π to insure proper uniform sampling (we
chose α = 0.3 and θ0 = 0). We then get back in the (p, q) space. The resulting
integrated distribution ρ(q) = ∫

ρ(p, q)dp and ρ(p) = ∫
ρ(p, q)dq, computed

using N = 4 × 106 and 1000 bins, are displayed in Fig. 3. In fact since we know
analytically ρ(q) and ρ(p), we check the accuracy of our computation by measuring
the error as

∫ |ρ − ρanalytic|, and for the cases portrayed in Fig. 3, we find that the
error oscillate between 0.13 % and 0.3 %, in good agreement with the estimated
1/

√
N error.

We now check the fact that finite size dynamics are “stationary” and we have
indeed fluctuations of the magnetization which decrease as 1/

√
N with system size,

3 Actually due to numerical error we renormalize to (N+√
N/4)ρ̃, which is in range with expected

typical fluctuations.
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Fig. 4 Standard deviation δM
of magnetization fluctuation
versus system size for close to
equilibrium initial conditions
with temperature T = 0.3.
Simulations are performed up
to time t = 250, with time
step δt = 10−2 using
fifth-order symplectic scheme
[28]. Algebraic decay is
observed over four decades
with a characteristic exponent
measured as ∼ 1/2 -4.5
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giving rise to the integrable dynamics. For this purpose we monitored the evolution
of the magnetization for an initial distribution computed with T = 0.3 and follows
the magnetization of finite N samples versus time by computing the individual tra-
jectories using a fifth order symplectic scheme [28] starting from the equilibrium
initial condition obtained for different system sizes. Regarding the initial conditions
chosen, we actually computed an initial condition as described earlier with a number
of particlesN1 � N , and we randomly pickedN particles from this sample. Results
are presented in Fig. 4 and show that the amplitude of fluctuations of M decrease
with system size as 1/

√
N as expected. The equation of motions (8) become the

equation of an integrable pendulum. This is confirmed by looking at finite samples
of trajectories of the system, where the increase of regularity with N appears (see
Figs. 5 and 6).

Due to these last results, we decided to investigate the behavior of the Lyapunov
exponent for finite N and for initial conditions which are as close as possible as
the canonical statistical equilibrium one. Indeed, since the N → ∞ results in an
integrable description, this limit may be singular, since earlier studies have suggested
that the Lyapunov may actually not vanish in the thermodynamic limit [29, 30].
However, this N → ∞ limit may be singular regarding regularity, and from the
dynamical perspective one can imagine the increase of dimensionality of the phase
space d ∼ N , may overcome the decrease of fluctuations observed in M and ϕ,
leaving some space to Hamiltonian chaos and/orArnold diffusion to develop. In order
to check the previous assumptions we decided to compute numerically the Lyapunov
exponent arising from finite N dynamics in the HMF-model. Initial conditions are
tailored as described previously, meaning that the initial distribution is close to the
canonical one-particle equilibrium distribution. A range of temperatures below the
critical one (Tc = 1/2) is explored, as well as the number of particles is varied from
N = 103 to for some cases N = 107.

The Lyapunov exponent is computed using the standard method (see [31]), and
dynamics are integrated using the leap-frog symplectic scheme4. The first scan of

4 A comparison with higher scheme has been made and gave identical results.
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Fig. 5 Samples individual trajectories for different system sizes. Trajectories are computed up to
time t = 1000 and points are recorded every δt = 2.5. The initial condition is chosen to be a close
to equilibrium configuration with T = 0.1 and corresponds to a magnetization M ≈ 0.9. We notice
that contrary to the data displayed in Fig. 5, we have both librating and rotating trajectories. We
can notice as well that the trajectories are a little more noisy (note that M is smaller). A clear trend
toward regularity is observed. The numerical integration uses the fifth-order optimal symplectic
integrator [28] and a time step δt = 0.05. The width (fluctuations) of a given torus action gives and
confirms this trend as a power-law decay close to 1/2 is observed
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Fig. 6 Same as Fig. 5 but with with T = 0.49 and M ≈ 0.19866. We notice that contrary to the
data displayed in Fig. 5, we have both librating and rotating trajectories. We can notice as well that
the trajectories are a little more noisy (note that M is smaller)

results is shown in Table 1, where the exponents have been computed using a time
step δt = 0.05 and a total time t = 2.5 × 104. Typically one can notice two types
of behavior, a decreasing Lyapunov exponent for temperatures below T < 0.1 and
above T > 0.4 and a stable nonzero exponent for 0.1 < T < 0.4. Scaling laws
versus system size are displayed in Fig. 7 for both the decaying regimes. Typically
one finds an algebraic decay of the Lyapunov exponent versus system size, indicating
a zero Lyapunov exponent in the N → ∞ limit, like what was observed in the
nonmagnetized phase above the critical temperature. Moreover, the scaling exponent
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Table 1 Lyapunov exponent
versus system size for
different temperatures. A
decay is observed for T ≤ 0.1
and T ≥ 0.4 (see Fig. 7)

N\T 0.1 0.2 0.3 0.4 0.49

103 5.4 × 10−3 2.2 × 10−2 0.09 0.17 0.178

104 3 × 10−3 2.4 × 10−2 0.11 0.15 0.145

105 1.5 × 10−3 2.4 × 10−2 0.11 0.135 0.126

106 8.3 × 10−4 4.4 × 10−2 0.10 0.125 0.111

107 3.32 × 10−4 7.1 × 10−2 0.10

in the regime of low temperatures displays an exponent close to 1/3, which was as
well observed and explained in the high temperature phase.

Regarding the intermediate regime of 0.1 < T < 0.4, results displaying a stable
or growing Lyapunov are somewhat surprising as nothing special happens in this
range of temperature regarding thermodynamic properties, and one thus does not
expect a different behavior of the Lyapunov exponent. A possible explanation can
be inferred when one looks at the distributions displayed in Fig. 3. Indeed, it ap-
pears that for this range of temperature few particles are located near the pendulum
separatrix. Since equilibrium solutions correspond to a collection of pendulum tori,
each being populated according to its ergodic measure [11] we may expect that the
finite N sampling is not accurate in this region, leading to hyperbolic dynamics and
a nonvanishing Lyapunov exponent. However, if this phenomenon is true, it means
that the ∼ N−1/3 decay observed at small temperature is an artifact of finite N sam-
pling as well, since for the range of N considered no particles are located nearby the
separatrix.

In order to check this scenario, we considered as initial conditions a truncated
distribution; meaning that we considered initial conditions whose action Ik was less
than 99 % of the separatrix value Is = 8

√
M/π . Results for an initial distribution

computed at T = 0.3 are displayed in Table 2. A drastic reduction of the Lyapunov
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Fig. 7 Maximum Lyapunov exponent σN versus system size for initial conditions computed using
(22) for temperatures T = 0.1 (upper plot) and T = 0.49 (lower plot) . Algebraic decay is observed
with a characteristic exponent measured respectively as α = 0.28 and α = 0.06. Simulations are
performed using a leap-frog integration scheme with δt = 0.05 and are computed up to t = 2.5×104
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Table 2 Lyapunov exponent vs. system size for T = 0.3 and a truncated distribution I < 0.99∗ Is .
A drastic decrease of value of the exponent is observed when comparing to Table 1, first a decay
of the exponent versus system size is observed than a stabilization, fluctuations of δM stabilize as
well, indicating global oscillations due to the truncation

N 103 104 105

σ 0.0125 7 × 10−3 7 × 10−3

δM 5.1 × 10−3 4.0 × 10−3 3.9 × 10−3

exponent is observed, giving a strong indication that it is indeed the particles lo-
cated near the separatrix which contribute to the Lyapunov exponent. However after
a decrease with size, one observes a stabilization of the exponent. Analysis of the
behavior of magnetic fluctuations (Table 2) reveals the fact that the truncated distri-
bution is not a stationary solution and a stabilization of the magnetic fluctuations is
observed as well, explaining thus the stabilization of the Lyapunov exponent. Note
that this stabilization was not observed for initial conditions computed with T = 0.2
and a ∼ N−1/3 was recovered, however we may expect as well a stabilization of the
Lyapunov exponent and magnetic fluctuations for larger values of N .

Given the way the initial condition is constructed we can estimate the minimal
number of particles Nc needed for at least one to be above the separatrix, as Nc ≈
(

1
4

∫ ∞
IS

ρ(I )dI

)2
. In the light of the results presented in Table 1, the important role

of particles located near the separatrix is confirmed. Indeed one can see that for
T = 0.2 there is a jump in the Lyapunov exponent between N = 105 and 106 which
is confirmed by the estimated value of Nc ≈ 9 × 105. Moreover, for the initial
conditions used for the computation of Lyapunov exponents have been prepared
using 106 particles, from which N particles have been randomly picked. This can
also explain why the Lyapunov is more or less stable even for smaller values of N
for T = 0.2.

From the presented results a scenario emerges from which we speculate (conjec-
ture) that, for all the range of temperature below the critical one and for those which
are considered close to initial equilibrium conditions the Lyapunov exponent decays
to zero as the number of particles N goes to infinity. We base this speculation on
the fact that numerical evidence is found for temperatures above T = 0.4, and that
from a dynamical point of view the equilibrium solutions are more or less identical
besides a change of the values of M and T , that moreover from a statistical physics
perspective nothing is really different for T < 0.4, and 0.4 < T < Tc, and finally
it is consistent with the fact that stationary solutions in the N → ∞ limit can be
mapped to an integrable system of uncoupled pendulum.

For small temperatures T < 0.2, we have observed an algebraic decay with
an exponent close to 1/3. However, the calculations of the minimal number of
particlesNc for one to be near the separatrix reveals that in this range of temperature,
the number of particles needed is beyond our computing power. Finally, in the
intermediate range 0.2 < T < 0.4, we observe a stabilization of the Lyapunov
exponent. Looking at the distribution displayed in Fig. 3, we conclude that for this
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range of temperatures, we also have a problem of N being too small and not being
able to correctly sample the local ergodic measure and anticipate that we should
have access to larger values of N and also we will observe a decay of the Lyapunov
exponent like forT > 0.4. In the same spirit in the low temperature regime, we expect
that as N increases, we shall reach the Nc range eventually, which will lead to some
stabilization of the Lyapunov exponent like in the intermediate regime, but should
we continue to increase N , we will also eventually observe again a decay like for
T > 0.4. Note though thatNc diverges as T → 0. Last, a Fourier analysis of the time
series of the magnetization shows a main peak centered around the natural frequency
of the pendulum ω0 =

√
M̄ , where M̄ denotes the time average (equilibrium value)

of the magnetization, given the equations of motion (7), we can reasonablly expect
that particles trajectories should be similar to those governed by a one and a half
degree of freedom Hamiltonian of the perturbed pendulum

H = p2

2
− M̄ cos q + ε(N ) cos (q − ω0t + ϕ), (24)

with ε(N ) ∼ N−1/2 and ϕ some constant phase. The behavior of Lyapunov exponent
λ(ε) of particles residing in the stochastic layer as well as the width δ(ε) of the layer,
with constant ω0 and ε → 0 had been analyzed in [32]. They found a scaling of the
type λ(ε) ∼ ε1/6 and δ(ε) ∼ ε3/4, which translates into λ ∼ N−1/12 and δ ∼ N−3/8.
Since for the HMF we are computing the global Lyapunov exponent, we can assume
that only the particles trapped in the stochastic layer contribute to the exponent, which
represents a number of particles scaling as some power law of N since the width
scales as well as a power law. Now expecting that all trapped particles have a similar
contribution to the global Lyapunov exponent we expect a scaling σ (N ) ∼ 1

N1/12 , in
relative good agreement with the results depicted in Fig. 7 as 1/12 ≈ 0.08.5

Finally, in order to explain the contradiction with earlier result we question the
role of the initial condition, and consider what happens when we consider an initial
condition with Gaussian distribution in p and q’s.

Results for an initial condition with zero mean is displayed in Fig. 8. In the
low energy regions, one recovers the same values of the Lyapunov exponent and the
algebraic decay with exponent ∼ 1/3. However, for temperatures closer to the critical
region, we can measure different values of the finite time Lyapunov exponent which
are orders of magnitude higher and do not display a decay with time. We may explain
this by the fact that actually, no decay of fluctuation is observed (Table 3). When
looking at the behavior of the magnetization versus time in Fig. 8, one can notice
for a short time a similar behavior although on a different scale as the one observed
when starting without the initial equilibrium conditions such as a waterbag, namely
the “violent relaxation” described in [10], while no particular behavior is observed
for the close-to-equilibrium one. Hence, it is likely that the system relaxes to a QSS,

5 Note that 1/ log (N ) scalings are also good, and can be explained by the fact that the typical
time scale in the separatrix can be estimated from the period of regular motion of the last regular
trajectory T ∼ log (δE) ∼ log (δM) ∼ log (N ).
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Fig. 8 Magnetization as a function of time for two different initial conditions and a density of
energy ε = 0.44 corresponding to a temperature T = 0.353. The red line corresponds to Gaussian
initial conditions in p and q’s, while the blue one corresponds to a close to canonical equilibrium
one. Simulations are run using N = 106 particles with a time step δt = 0.05

Table 3 Fluctuations of the magnetization versus system size for Gaussian initial conditions and
close to equilibrium ones with density of energy corresponding to a temperature of T = 0.353. The
behavior vs. N is totally different and the values are of higher magnitude orders. Comparison for
fluctuations can be made looking at the results displayed in Fig. 8. The simulations are run with the
same parameters and total time t = 2000, fluctuations are computed using the second half of the
total trajectory

N 103 104 105 106

δMgauss 9.8 × 10−3 4.3 × 10−3 7.0 × 10−3 8.3 × 10−3

δM 8.5 × 10−3 2.6 × 10−3 7.7 × 10−4 8.5 × 10−5

explaining thus the difference in numerically computed Lyapunov exponents. By
tailoring an initial condition very close to the canonical equilibrium distribution, we
“fast-forward” in time and circumvent the slow relaxation of the QSS to equilibrium,
and obtain different scaling results for the finite time Lyapunov exponent. Since the
presented Lyapunov results are numerical, and due to the fact that in theN = ∞ limit
the dynamics displays multiple ergodic measures, it is difficult to conclude whether
the scaling is universal for any initial condition and remains as it is, or should we
have performed longer more accurate simulations and/or considered larger sizes.

2.2 Beyond the HMF Model

The results discussed up to now have been obtained in the framework of a mean field
system. Discussion regarding the decrease of the interaction with distance as well as
the underlying topology is then unclear. The actual distance between particles does
not explicitly appear in the HMF potential and since it is a mean field, it is possible
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to claim that the observed phase transition is just a trace of a higher embedded
dimension; it can be considered very large and a Kosterlitz phase transition for the
XY−model is already observed on a lattice with close neighbors and a second-order
one when we move to three dimensions. It is then important to alleviate the previous
potential objections in our findings and consider a more realistic one-dimensional
model with long-range couplings.

2.2.1 The α−HMF Model

For this purpose, we now focus on the α−HMF model [33]. In its long-range version
(α < 1 as discussed below), this model behaves at equilibrium as the HMF, see for
instance [8, 34–36]. We may then ask if the same correspondence applies to the out of
equilibrium dynamics. QSSs exist as depicted in [37], but is there still an asymptotic
trend toward regularity? How does the spatial organization impact on these features?
It was also shown recently that fractional calculus may be a crucial ingredient when
dealing with long-range systems [38, 39], and we shall see how this point enters the
picture in the considered case.

Let us start by introducing the governing Hamiltonian which can be cast in the
form:

H =
N∑

i=1

⎡

⎣
p2
i

2
+ 1

2Ñ

N∑

j �=i

1 − cos
(
qi − qj

)

‖i − j‖α

⎤

⎦, (25)

where qi stands for the orientation of the rotor occupying the lattice position i, while
pi labels the conjugate momentum. The quantity ‖i−j‖ denotes the shortest distance
on the circle of perimeterN−1, where we have placed our rotators in order to have an
isolated system with periodic boundary conditions. The coupling constant between
classical rotators decays as a power law of the sites distance. The HMF limit is
recovered for α = 0. In this context we have also to rescale the potential according
to Kac’s prescription, it is easy to note that for N even, we have

Ñ =
(

2

N

)α

+ 2
N/2−1∑

i=1

1

iα
(26)

which guarantees extensiveness of the system (it is mostly useful in the long-range
case for α ≤ 1, but allows as well for comparison when α > 1). The equation of
motions of element i are derived from the above Hamiltonian and can be written as
follows

ṗi = − sin (qi)Ci + cos (qi)Si = Mi sin (qi − ϕi) (27)

q̇i = pi (28)

where use has been made of the following global quantities:

Ci = 1

Ñ

∑

j �=i

cos qj
‖i − j‖α (29)
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Si = 1

Ñ

∑

j �=i

sin qj
‖i − j‖α. (30)

These identify the two components of what we shall refer to as a local magnetization,

whose norm is Mi =
√

C2
i + S2

i , and define a phase ϕi = arctan (Si/Ci). When
doing so, Eq. (27) brings a formal analogy with the HMF setting (Eq. 7). And
thus, we notice that each individual α−HMF particle obeys a dynamical equation
which closely resembles that of a pendulum. This observation represented the starting
point of our previous discussions, where stationary states were constructed from
the first principles. However, in the present α−HMF, due to site localization of the
magnetization, this approach is not as straightforward. Anyway, let us first make some
preliminary rearrangements in order to overcome this difficulty. First, let us introduce
a continuous limit. We can notice that, for large N , and assuming 0 < α < 1, we
have

Ñ ≈ 2

1 − α
(N/2)1−α. (31)

We can then use expression (31) in Eq. (29) and, asN → ∞, introduce the continuous
variables x = i/N and y = j/N defined now on a circle of perimeter 1, and after
some simple algebra obtain the following Riemann integral

C(x) = 1 − α

2α

∮
cos (q(y))

‖x − y‖α dy, (32)

where ‖x−y‖ represents the minimal distance on a circle of perimeter one. A similar
expression can be found for S(x).

In the expression (32) we recognize one of the definitions of a fractional integral
I 1−αand consequently write

C(x) = 1 − α

2α
Γ (1 − α)I 1−α (cos q(x)). (33)

As mentioned, we notice that fractional calculus is indeed a pertinent tool when
investigating the dynamics of long-range systems [38, 39].

In this setting of N = ∞, the study of the α−HMF dynamics corresponds to
understanding the evolution of the scalar fields q(x, t) and p(x, t) defined on a circle
and which are ruled by the fractional (nonlocal) partial differential equations

∂q

∂t
= p(x, t) (34)

∂p

∂t
= μ

2α
Γ (μ) (− sin (q)Iμ (cos q)+ cos (q)Iμ (sin q)) (35)

where μ = 1 − α.
In contrast to the HMF (α = 0) model, the spatial organization q(x) matters

within the general setting α > 0. In order to recover the previous setting, a simple
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requirement is to have C(x) = 〈C〉 = M , while imposing as well Iμ (sin q) = 0.
This observation is also compatible with the translation invariance along the original
lattice, which from the statistical perspective is also likely to lead to such a state [35].

In the infinite N limit, and given Eq. (33), the requirement writes:

dC(x)

dx
= Dα cos q = dα cos q

dxα
= 0 (36)

where the operator Dα stands for the fractional derivative. Trivial states (qi = Cte)
are solutions of this equation as well as for finite N . However, this infinite size
limit enables us to compute different solutions. Indeed since α < 1, the integral∫

1/‖x‖αdx is defined near 0 and since the function 1/‖x − y‖α is smooth, we may
cut the integral in Eq. (32) into L pieces

C(x) = 1 − α

2α

L−1∑

k=0

∫ (k+1)/L

k/L

cos q(y)

‖x − y‖α dy.

Now using the regularity of 1/‖x − y‖α , we formally assume we can extract it from
the integral:

C(x) ≈ 1 − α

2α

L−1∑

k=0

1

‖x − yk‖α
∫ (k+1)/L

k/L

cos q(y) dy,

with yk ∈ [k/L,(k + 1)/L]6.
Once this is done the procedure is quite straightforward, meaning that if values of

likely a completely discontinuous function q(x) are such so that in any small interval
the average of cos q(x) is constant and equal to the magnetization of the system,
meaning a function such that for any k and L

∫ (k+1)/L

k/L

cos q(y)

‖x − y‖α dy = Cte = M ,

we shall have a solution of Eq. (33) and a configuration q(x) which givesC(x) = M ,
a constant function on the circle. In some way, this procedure implies a peculiar
spatial organization which returns a constant coarse grained image of the function
cos q, equal in turn to M a process reminiscent of homogenization techniques.

The last condition to fully recover the results of the HMF is stationarity, but in
some way the work has already been done, indeed we have access to the available
stationary distributions of the HMF. Thus, given one of these distributions we can
pick up q and p values that have to be placed on the circle as originating from this
distribution. If this is the case, the time evolution (Eqs. 34 and 35), can only consist
of a local reshuffling on the circle of the actual phase space coordinates. And, since
the values are corresponding to a stationary distribution, the reshuffling does not

6 This approximation can be rigorously justified via a detailed expansion see [36] for details.
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change the averaged coarse grained value. We hence obtain a family of stationary
solutions of the α-HMF model.

Let us remark that actually, many distinct stationary distributions of the HMF
model give identical values ofM . It should then be possible to place or mix different
distributions in distinct regions of space. In this sense a stationary distribution of the
α-HMF model can correspond to either a single stationary distribution of the HMF
model which would be set in some spatially scale free form on the circle, or to a
collection of such distributions all with the same magnetization and placed in a scale
free form in different regions of the circle.

These stationary states for the α−HMF model because of their construction, dis-
play as well some self-organized regularity and individual dynamics of the particles
correspond to pendulum motion. This phenomenon is conditioned by a locally scale
free spatial organization. The functions q(x, t) and p(x, t) are thus “very compli-
cated” along the spatial direction, while displaying a regular time evolution and no
chaos. In this sense, the systems prefers to have a regular evolution at the price of
spatial disorder. This phenomenon should prove to be very interesting to study using
the tools of space-time complexity such as the one mentioned in [40] and references
therein.

In order to validate this result we consider a finite size sample on the original
lattice and see how the regularity emerges. For this purpose we consider the sta-
tionary state of the HMF consisting of just one torus with associated magnetization
M = 0.5 already mentioned earlier. In pendulum action-angle variable we refer
hence to a one-particle distribution of the type f (I , θ ) = δ(I − I0)/2π . In order
to mimic the spatial disorder that are specific to the stationary state of the α-HMF
model, we randomly place on the lattice values of (pi , qi) picked from the analyti-
cally accessible, distribution: in action-angle coordinates, we assign one action and
uniformly distribute the angles. The analysis for different values system size N for
α = 0.25 is by monitoring the distribution actions after a fixed amount of time.
Results are displayed in Fig. 9 and show as expected a trend toward the stabilization
of such a state as N increases.

It is shown that increasing the value of α, which weakens the coupling strength,
implies a more pronounced destabilization of the state, which can be effectively
opposed by increasing N . The solutions here constructed are hence stable versus the
α-HMF dynamics, provided the continuum limit is being performed and so represent
an analytical verification of the existence of stationary states, beyond the original
HMF setting.

We have up to now focused our attention on stationary state. Let us now in turn
look at the dynamics starting from a given initial condition.

3 Self-Organized Regularity

As mentioned in the introduction and illustrated previously, systems with long-range
interactions display peculiar features regarding their dynamics. One of its strik-
ing feature, is that starting from a given initial condition the systems undergoes a
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Fig. 9 QSS for the α-HMF model built using a stationary solution of the HMF model corresponding
to a one particle PDF of the type f (I , θ ) = δ(I − I0)/2π (one torus M = 0.5). Top: The system
is evolved via the α-HMF dynamics with α = 0.25. The figure displays the resulting distribution
of actions I at t = 200, for different sizes. Bottom: A simple superposition of snapshots relative to
different values of $\alpha$ and at final time t = 200, withN = 219. α = 0.75, α = 0.5, α = 0.25,
α = 0, correspond respectively to the colors red, blue green and black. Clearly the thickness of
the rings get reduced as α → 0, i.e., when the α-HMF model tends toward its corresponding HMF
limit. The integration for both figures uses the fifth order optimal symplectic integrator [28] and a
time step δt = 0.05

so-called violent relaxation toward a QSS, and then displays a slow relaxation toward
equilibrium, which actually diverge with the number of constituents (reminiscent of
what has been observed in the dynamics of finite samples of steady states). In the
previous section, we devoted our study to the dynamics of stationary states, but actu-
ally the notion of QSS encompass a wider notion, and time-dependent steady states
or quasi-periodic ones are possible [8, 9, 12]. In what follows we shall give some
evidence of regularity in all these states at least in certain regions of phase space.

3.1 The HMF Model

We start with the HMF model. In order to study out-of-equilibrium states (stable
QSSs in some sense), it is convenient to start with waterbag initial conditions.
A waterbag consists of a two-level (0 and some constant) one particle density
function f (p, q). Since the violent relaxation has been shown is some cases to
be “collisionless,” the evolution of f is governed with good approximation by the
Vlasov equation, which translates the “advection” in the reduced phase space of
the values of f . Choosing a two-level function insures that whatever the initial
distribution, the values of f will remain constant and just move in the (p, q) plane. It
is this remark that led Lynden-Bell to its classical fermion-like statistical formalism
[10] which was used with success for the HMF in predicting out of equilibrium
phase transitions when initial conditions are waterbags in [9, 41].
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Fig. 10 Visualization of a
waterbag initial condition

q

p

q0−q0

−p0

p0

Fig. 11 Possible outcomes starting from a waterbag. Left: a magnetized mono-cluster. Right: a
bi-cluster displaying some weak time average magnetization. Initial conditions are sampled from
an initial waterbag (Fig. 10) with N = 105 particles. Simulations are run up to t = 1000 with a
time step δt = 0.05

We shall take the same initial conditions, namely a waterbag which corresponds
to a rectangular region in phase space: f (p, q) = Cte if |p| ≤ p0 and |q| ≤ q0 and
zero elsewhere.

This waterbag is convenient as it allows to consider two parameters, namely the
initial magnetization

M0 = sin q0/q0 (37)

and the density of energy energy

ε = p2
0/6 + (1 −M2

0 )/2 (38)

to characterize it uniquely, keeping in mind that the waterbag is defined on [−q0, q0]×
[− p0, p0].

As mentioned after a short transient, a QSS sets in. This phenomenon is depicted
in Fig. 11 giving rise to two different QSS’s with drastically different time averaged
magnetizations, and it illustrates an out of equilibrium phase transitions. These states
have been analyzed and studied in [9] and have been shown to correspond to specific
solutions of the associated Vlasov equation using the Lynden-Bell formalism. In
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Fig. 12 Poincaré section of the HMF model for configurations below transition ((M0,U ) =
(0.6, 0.54)) and above transition (M0,U ) = (0.6, 0.88). Simulations realized for N = 2 × 105

particles

order to go beyond the description of the one-particle density distribution function,
we decided to investigate the phase space of the N−body system by computing
adapted Poincaré sections. Indeed, when looking at the behavior of the magnetization
versus time, (see for instance Fig. 8) we see that long lasting oscillating fluctuations
remain (Fig. 12).

Thus, given the equation of motion (7), and the fact that QSS are long lived,
we computed the following sections. We consider the time average M̄ , and record
particle positions (pi , qi − ϕ) in phase space for M(t) = M̄ and dM/dt > 0.
Results for the HMF model for N = 2 105 are displayed in Fig. 11. As one could
have expected from the equation of motions (7), in the magnetized QSS phase with
M �= 0 the Poincaré section shows a pendulum like phase portrait. The so-called
mono-cluster QSS appears to map itself to a collection of pendula. Tori are however
like for the equilibrium situations, no thin line and display some dispersion. What is
more peculiar is that in the M ≈ 0+ regime corresponding to a bi-cluster state in the
QSS terminology, the Poincaré section displays as well a phase portrait reminiscent
of an integrable one-dimensional Hamiltonian. One possible way to understand the
phenomena is to recall that Hamiltonian (1) is invariant by translation. Hence, one
can foresee a system with two contra-propagating magnetized phases, which if the
resonances are far enough should not interact much.

Finally, we shall discuss the phenomenon of selforganized regularity. In this
perspective let us recall the Poincaré section of the bi-cluster state, which displays
a system with two resonances. According to the empirical Chirikov criterion, one
may expect chaos if these resonance overlap. Let us now suppose that the resonance
overlap, the resulting Poincaré section should then display a chaotic sea and islands
of regular motion centered on each resonance but with a smaller width. One then
recalls the definition of the magnetization, one can expect that only the trapped par-
ticles7 shall contribute to each magnetized cluster. Since chaos reduced the regular
region, the magnetization is necessarily smaller and given the equation of motion

7 Actually only the ones with κ < κc.
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Fig. 13 Magnetization versus
energy per particle E/N for
different α, for a system made
of N = 4096 particles. The
magnetization values here
reported follow from a time
average over the window
400 < T < 800

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

‌ ‌ M
 ‌ ‌‌‌‌‌‌‌‌‌‌

E/N

α = 0.25
α = 0.50
α = 0.75

theory

N=4096

(7), this implies that the width of the resonance is actually smaller, hence resonances
are further apart and the system becomes more regular thus the self-organized into
regular microscopic motion at least in some regions of phase space.

3.2 Beyond the Mean Field

In order to discriminate whether or not similar studies can be performed in nonmean
field models, we turn back to the α−HMF model.

To make this analysis we turn to direct simulations. We initialize the system in
q = 0 and a Gaussian distribution for the conjugate momenta p [34]. The system
state is monitored by estimating the average magnetization amount as a function of
the energy, see Fig. 13.

For energies larger than 0.75 one would expect the homogeneous solution to
prevail, as dictated by the statistical mechanics calculation. However, the system
gets confined into a inhomogeneous state, the residual time averaged, magnetization
being large and persistent in time. It is therefore tempting to interpret those states
as QSS, and so analyze their associated dynamical features in light of the above
conclusions. In particular, we expect the microscopic dynamics to resemble that of
a pendulum, bearing some degree of intrinsic regularity. To unravel the phase space
characteristics we compute the Poincaré sections, following the recipe in [12, 42] and
so visualizing the single particle stroboscopic dynamics, with a rate of acquisition
imposed by the self-consistent mean field evolution.

The averages of Ci and Si refer to the two components of the magnetization per
site. The Poincaré sections are drawn by recording the positions pi and qi − ϕi in
phase space each time the equality Mi = M is verified. Results for a specific initial
conditions are depicted in Fig. 14, where one hundred trajectories are retained. The
phase portrait shares many similarities with that obtained for a simple one and a half
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Fig. 14 “Poincaré section” of a QSS for E/N = 1.2, N = 65536. Initial conditions are Gaussian
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can see the magnetic fluctuations
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Fig. 15 Left: M(x) = √
C(x)2 + S(x)2 as a function of time. Right: individual particle’s action

as a function of time. The system is initialized to get a QSS with E/N = 1.2 and α = 0.25 (see
Fig. 14). Total number of particle is N = 8192, x = i/N , with 1 ≤ i ≤ N . The actions are those
of a pendulum corresponding to Eq. (27). M(x) is almost uniform in space, while the individual
spatial organization is complex. The time evolution of the actions appears quite regular

degree of freedom Hamiltonian (see for instance [22]), with many resonances and
invariant tori. Clearly, and in agreement with the above scenario, a large number of
particles exhibit regular dynamics. However as the nature of phase space reveals,
these QSSs are steady state of the discrete dynamics, not stationary solutions.

Nevertheless, we set to analyze the spatial organization of the identified steady
state to test whether stationary state features are present in this configuration.
To this end, we computed the values of the local magnetization M(x, t) =√
C(x, t)2 + S(x, t)2 versus time and estimated an individual action, stemming from

a Hamiltonian pendulum, which would give rise to an equation of motion formally
identical to the Eq. (27). Results of the analysis are depicted in Fig. 15. One clearly
sees that the function M(x, t) is homogeneous and presents a modest dependence on
t , thus suggesting that the distribution of q(x, t) is a solution of Eq. (36). The plot
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Fig. 16 Left: Intensity of the wave versus time. Right: Poincaré maps of the particles, once the
steady-state oscillating regime has been reached. The system was initiated with random positions
for the particles, and a mono-kinetic beam pi = p = 0

of action versus time as depicted in Fig. 15, clearly indicates a degree of enhanced
spatial complexity, nearby particles not belonging to the same tori. We find in these
simulations and in this (N- finite) steady state the same distinctive features of the
stationary solutions as depicted earlier. Moreover, we confirm the presence of regions
of regular motion in phase space for a QSS arising in this nonmean field situation.

3.2.1 Wave–Particle Interactions

The wave–particle interaction is a very interesting system regarding long-range in-
teractions, since it provides a simple mean field model. Indeed, in its simplest form,
one can consider a monochromatic wave interacting with N particles in one dimen-
sion. Although it may look like a rough approximation, this approximation is very
common to model the dynamics of free electron lasers [43, 44] or of collective atomic
recoil lasers [45, 46].

Extensively studied in [16], this wave–particle interaction can be cast in the
following Hamiltonian form

HN ({qj ,pj },φ, I ) =
N∑

j=1

p2
j

2
+ 2

√
I

N

N∑

j=1

cos (qj − φ), (39)

where qj is the (normalized) position of the particle, pj its (normalized) conjugate
momentum, I the intensity of the wave, and φ its phase. If the dynamics is initiated
with I = 0, a mono-kinetic beam of particles (pj = p) and the particles’ position
randomly distributed, the wave will typically grow exponentially until it saturates,
where it will start oscillating in a quite regular manner (see Fig. 16). As for the
particles, the wave amplification relies on their aggregation into a large cluster—the
process of “bunching” of the particles (which is actually a trapping by the wave) and
of amplification of the wave will develop in a self-consistent way.
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Regarding the particles’ dynamics, most of them will be trapped by the wave.
To confirm this point, we performed Poincaré-like sections, recording the particles’
positions in phase space when the wave intensity meets its average value, and this
revealed that many particles are actually confined to “tori,” although these tori are
spoiled by finite-N effects (Fig. 16). However, because of the oscillating behavior
of the wave, a chaotic layer has been created around the pendulum separatrix. This
behavior is typical of pendula perturbed with a oscillating term, although here this
oscillation appeared naturally from the self-consistent interaction.

Thus, if one increases the number of particles coupled to the wave, the particles’
trajectories gets more and more regular (not shown here), yet the width of the chaotic
sea remains the same. This means that there now exist a set of particles with a strong
chaotic behavior, whatever N .

Hence, compared to the HMF andα-HMF model, we observe that the introduction
of a new macroscopic degree of freedom (the wave) introduced a strong chaotic
component to the dynamics. Yet, the oscillations of the wave actually do not destroy
all the “tori,” in a way similar to the KAM approach which suggests that tori may
resist to perturbation of an integrable system.

Let us conclude by mentioning that the infinite-N dynamics of this interaction
could be investigated numerically, e.g., using Vlasov codes. This would in particular
allow to discriminate the role of finite-N effects and of the wave fluctuations regarding
the chaotic nature of this dynamics. Yet, Vlasov codes are themselves limited by the
finite grid on which they can be implemented, and one must carefully monitor the
possible chaotic effects this grid may induce.

4 Conclusion

To conclude, in this chapter we have studied dynamical properties of Hamiltonian
systems with a large number of constituents and interacting through a long-range
potential. Conversely, with the more traditional statistical approaches which often
assume ergodicity and mixing, we have shown from first principle that stationary
states among which thermodynamical equilibrium of paradigm systems implied
similar properties as those of a perfect gas, namely regular microscopic trajecto-
ries. Beyond mean field approaches the price to pay for this microscopic regularity
in time is a complex, self-similar, spatial organization corresponding to the solution
of a fractional equation. Hence in this last setting, a possible success of statistical
approach lies actually in spatial disorder and not so much on speculated “molec-
ular chaos.” When turning to direct numerical investigations, we have identified a
series of QSS, which corresponds to steady states, with macroscopic oscillations.
Still, such states share many of the features of their stationary counterparts. The
importance of these findings are manifold: First, we confirm that QSS do exist in
a generalized nonmean field setting [37]. Also, we validate a theoretical method
to construct, from first principle, (out of) equilibrium stationary solutions. Finally,
and we believe more interestingly and prone to debate, the fact that in long-range
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systems stationary states (among which we may of course count the equilibrium)
display regular microscopic dynamics allows us to dispose of an enormous amount
of information regarding the intimate dynamics of a system frozen in such state.
Indeed in contrast to molecular chaos, we recover predictability of the microscopic
dynamics, at least for much larger times then originally expected in the context of a
finite system. Looking forward, we speculate that the knowledge of the microscopic
dynamics can somehow enables one to challenge the second law of thermodynamics
by setting up appropriate Maxwell daemons. Note also, that the regularity of the
dynamics in the large N limit, induces from a statistical stand point a freezing of
the system in a zero dynamical entropy production state, in this frame of mind, we
may wonder if minimal entropy production settings could predict final states of these
classical long-range interacting systems. As perspectives, work in different settings
have to be performed in order to confirm/infirm the proposed trends. In the consid-
ered systems, we either had in the mean-field case no space dependent interaction,
and in the α-HMF model, the spatial interaction was set up on a one-dimensional
lattice with a power-law decreasing coupling constant. The simplest generalizations
that come to mind are twofold, what happens when the interaction actually depends
on the distance and in a phase space that allows “collisions” [47], the other way is to
keep the lattice and focus on its topology and the way the constant of motion is set
up, for instance studying the case of diluted complex networks and see how and in
which settings the aforementioned features arise [48]. Work is in progress for these
two proposed directions, if the results display as well self-organized regularity, one
may then tackle systems with higher embedded dimensions, before considering more
realistic physical models and potential applications in for instance hot noncollisional
plasmas or self-gravitating systems. Another potential perspective is to leave the
realm of conservative Hamiltonian systems and see how some of the self-organized
regularity translates in setting such as for instance neural networks, and if for instance
this phenomenon would imply reaching some kind of global “synchronicity.”
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Reducing the Sequential Dynamics of Excitatory
Neural Networks to Synaptic Cellular Automata

V. I. Nekorkin, A. S. Dmitrichev and D. V. Kasatkin

Abstract We present a new approach for the description and analysis of sequential
dynamics of excitatory neural networks. It is based on the reduction of dynamics of
networks to the dynamics of cellular automata (CA) on the graph of connections.
The attractors of the CA determine the different regimes of sequential dynamics of
the original neural network. We illustrate our approach through Morris–Lecar and
Hodgkin–Huxley neural networks.

1 Introduction

The neural systems comprised of neurons and glial cells [11] are known to exhibit
a large variety of electrical activity. To study mechanisms of formation of different
neural activities the approaches based on the dynamical systems paradigm are widely
used [4, 5, 7, 8, 18, 21].

Neurophysiological experiments [9, 16, 23] have indicated that some neural
processes (e.g., processes related to different cognitive tasks—memory, attention,
psychomotor coordination, etc.) are accompanied by transient short-time activity of
individual neurons or small groups of neurons. In such a process, a sequence of ac-
tivity phases of different neurons emerges successively in time. It was shown within
the dynamical systems framework [1, 3, 12, 20, 21] that this behavior is related
to the existence of a collection of metastable invariant sets joined by heteroclinic
trajectories in the phase space (the heteroclinic network) and so, can be thought of
as a process of successive switchings among these metastable sets. There are some
models in which the whole collection of metastable sets represented by either saddle
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equilibrium points [1, 20, 21] or saddle limit cycles [3] and the network of possible
transitions between them can be rigorously established. However, sequential activity
is not always directly related to the existence of a heteroclinic network. In [19] it was
established that networks of class 2 excitable neurons coupled by excitatory synapses
can demonstrate a variety of sequential activity regimes which are characterized by
successive firing of neurons in the form of bursts (bunches of spikes) and formed by
means of dynamical bifurcations. In such cases, in order to answer the main question
of sequential dynamics—in which order neurons become activated—one needs to
use a mathematical apparatus different from the heteroclinic channels technique.

Recently in [24] an approach for the study of neural networks has been proposed.
It consists in reducing a given network to a discrete model. In this model [10],
each neuron is represented by a finite number of states and there are rules which
determine how a neuron goes from one state to another. However, the approach
has some limitations. It is based essentially on a specific character of dynamics of
neurons. Indeed, the neurons are assumed to be relaxational. In this case, each neuron
can be in one of the three consecutive phases: active phase, when a neuron can excite
other ones, a refractory phase, when a neuron is non-responsive to an action of the
other ones, and rest phase, when a neuron can be excited (activated) by the other ones.
The duration of the refractory phase is assumed to be a multiple of the duration of the
active phase. Thus the duration of the active phase is considered as a discretization
time step. The interaction between neurons is taken into account in the following
way. If a neuron receives an excitatory input, the excitation occurs instantaneously.
On the other hand, if a neuron receives inhibitory input, then it becomes excited due
to the post-inhibitory rebound only when the inhibition ends. Moreover, the approach
can be rigorously applied only to excitatory–inhibitory networks. In [2] the examples
of application of the approach to specific biophysical models are presented.

Unlike [2, 24] here we offer an approach for analyzing the sequential dynam-
ics of excitatory neural networks. It consists in reducing continuous dynamics of
neural networks to a discrete dynamical systems in the form of a cellular automa-
ton (CA) on the graph of connections. In the reduction, the main role is played by
the dynamics of synapses but not by the specific features of neurons. In fact, the
CA represents a network of synapses with a finite number of states which alternate
each other according to some fixed rules. To determine the rules one needs to study
only the responses of an individual synapse onto actions of neighboring (in graph
of connections) synapses through corresponding neurons. As a result, the numeri-
cal integration of the whole system of ordinary differential equations (ODEs) is not
needed. Moreover, since the form of the neuron responses is not important, the ap-
proach is applicable to a broad set of networks including those consisting of neurons,
which possess the neural excitability property (neurons of the class 2 excitability in
the terminology of Izhikevich[8]). We demonstrate our approach on the examples of
Morris–Lecar and Hodgkin–Huxley neurons coupled by excitatory synapses with a
short-term plasticity property.

The chapter is organized as follows. In Sect. 2 based on some general properties
of synaptic and neuron dynamics we explicitly derive a cellular automaton for an
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Fig. 1 Qualitative waveforms of synaptic conductance s(t) corresponding to fast (a) and slow (b)
synaptic responses (T2 � 2T1). Symbols P0, P11, P21, P22 signify the discrete states of a synapse
(see below, for details)

arbitrary excitatory network neural network. In Sect. 3 we consider two concrete ex-
amples of excitatory neural networks, show how to build cellular automata for them,
and then analyze their sequential dynamics. In Sect. 4 we formulate the main scheme
of application of the approach. Section 5 is devoted to the concluding remarks.

2 Derivation of a Cellular Automata

Here we derive a cellular automaton for an arbitrary neural network consisting of
N neurons with class excitability 2 coupled by excitatory synapses. First of all let
us make some remarks and assumptions about the architecture of the network and
dynamical properties of neurons and synapses.

Remark (r1). In [19] it was shown that a class 2 neuron under the application
of excitatory synaptic current has the following dynamical behavior. It is at rest
state when synaptic current is absent (the conductance is zero). On the other hand,
when the synaptic conductance overcomes some threshold value which is close to
its maximum, a neuron starts firing of spikes. The firing of spikes continues until
the synaptic conductance is above the threshold. Then a neuron returns back to its
rest state. Thus the time course of synaptic conductance completely determines the
dynamics of postsynaptic neuron. Note that the firing of spikes triggers the processes
of activation of next synaptic couplings.

Remark (r2). From neurophysiologic experiments it follows that a synapse possess
refractory property, i.e., a synapse is nonsensitive to the presynaptic stimulation when
it is active.

For our purposes we also assume that:
Assumption (a1). A synapse possesses short-term plasticity property [27], i.e.,

it has two types of responses (waveforms of synaptic conductance s(t), see Fig. 1)
depending on the presynaptic neurons activity—fast (Fig. 1a) and slow (Fig. 1b) ones
which are distinguished by the characteristic rise times (T2 and T1) of the synaptic
conductance. Such behavior may be caused, for instance, by the competition of
presynaptic facilitation and postsynaptic desensitization processes [14, 25, 26].
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Assumption (a2). There is a “resonance” relation between the value T2 for the
slow response and T1 for the fast one such that T2 = 2T1.

Assumption (a3). The temporal intervals of generation of spikes are relatively short
with respect to the characteristic timescales of evolution of the synaptic conductance.

Next we show that these properties allow one to reduce continuous dynamics
of the network to a discrete one in the form of cellular automaton on the graph of
synaptic connections.

Graph of connections. Let us first define directed graph G =< QG,KG >. It has
N vertices QG={Q1,Q2, . . .,QN } which signify the synapses of the network. The
setKG={K1,K2, . . .,KN } reflects the architecture of the connections in the network.
EachKi is a collection of indices such that j ∈ Ki if and only if there is a connection
from the j -th synapse of the network to the i-th synapse through the j -th neuron.
In the graph collection Ki defines a set of arrows started at the vertices j ∈ Ki and
ended at i. This possibility follows from the property (r1).

Discrete states of a synapse. We will define discrete states of a synapse according
to the behavior of the s-variable describing its dynamics. Here we use the assumptions
(a1) and (a2). We say that the i-th synapse is in the state ψi(si) that is equal to:

• P11 if si(t) undergoes the fast response and s ′
i(t) > 0 (see Fig. 1a);

• P21 if si(t) undergoes the response of the slow type, s ′
i(t) > 0 and tin ≤ t ≤

T1 + tin, where si(tin) = 0, s ′
i(tin) > 0, i.e., si(t) starts growing at the instant of

time tin (see Fig. 1b);
• P22 if si(t) again undergoes the response of the slow type and s ′

i(t) > 0, but
T1 + tin ≤ t ≤ 2T1 + tin;

• P0 if it is not in one of the previous states, i.e., either it is in the equilibrium state
si(t) = 0 or s ′

i(t) < 0 in both the slow and fast cases (see Fig. 1).

Thus, we have replaced the continuous description of the behavior of the i-th synapse
in terms of si(t) by a discrete description in terms of ψi = ψi(si). The set of values
of ψi , i = 1, . . .,N , is the collection of the symbols P = {P0,P11,P21,P22}. For the
sake of convenience we identify P0 with 0, P11 with 1, P21 with 2, and P22 with 3,
so P = {0, 1, 2, 3}. We will use both notations below.

The rules of CA. Now we define the rules of evolution in time of ψi , i.e., the rules
of a CA. They can be formulated on the basis of properties (r1), (r2), and (a3).

(i) If i-th synapse at the instant of time t is in the state P0 (ψi(si(t)) = P0), and
there is j ∈ Ki such that ψj (sj (t)) = P11 or ψj (sj (t)) = P22 then it will be
excited at the instant t + T1, i.e., ψi(si(t + T1)) = P11 or ψi(si(t + T1)) = P21

depending on the values of threshold constants θji .
(ii) If i-th synapse at the instant of time t is in the state P21, i.e., ψi(si(t)) = P21,

then ψi(si(t + T1)) = P22, independently of other synapses. Moreover, the
P21-synapse cannot excite another synapse.

(iii) If ψi(si(t)) = P11 or ψi(si(t)) = P22, then ψi(si(t + T1)) = P0, independently
of the states of other synapses.

(iv) Because of the existence of the refractory period, the synapses in the states P11,
P21, P22 do not feel the action of other synapses.
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Table 1 Synaptic dynamics
rules. (Rules Fi of CA) ψi P0 P11 P21 P22

ψj , j ∈ Ki

∀j ∈ Ki , ψj = P0

or ψj = P21

P0 P0 P22 P0

∃j ∈ Ki , such
that ψj = P11

or ψj = P22

P11 or P21

depending
on θji

P0 P22 P0

These statements imply that for the fixed i the stateψi(si(t+T1)) at the instant t+T1

is uniquely determined by: the state ψi(si(t)) at the previous instant of time t ; the
states of the j -th synapse, j ∈ Ki , at the instant of time t ; the values of the threshold
constants θji , j ∈ Ki . Hence,

ψi(si(t + T1)) = Fi(ψi(si(t)), {ψj (sj (t))}, {θji}, j ∈ Ki), (1)

where Fi is a function determined by the statements (i)–(iv). The relation (1) is a
synaptic CA determined on the graph of connections G. In Table 1 we summarize
the rules of the CA. In what follows we identify ψi(si(t)) with the symbol ψi and
ψi(si(t + T1)) with the symbol ψi .

Let us clarify how to use the table. If, for example, ψi=P11 and ψj=P0, j ∈ Ki ,
then ψi = P0; but if ψi = P21, ψj = P21, j ∈ Ki , then ψi = P22.

Finally, if we fix the values of thresholds θji the rules of the CA take the following
form:

ψi = Fi(ψi , {ψj }, j ∈ Ki), (2)

where ψi ,ψi ∈ P .

3 Building the Cellular Automaton by Examples

Here we illustrate building of cellular automata for two specific excitatory neural
networks.

3.1 A Network of Synaptically Coupled Morris–Lecar Neurons

Let us start with the network of Morris–Lecar neurons [17] coupled by excitatory
synapses with short-term plasticity property which has the architecture shown on
Fig. 2. The dynamics of such a network is described by the following system of
ODEs:

C
dvi
dt

= −gL(vi − vL) − gCaM∞(vi)(vi − vCa) − (3)

gKni(vi − vK ) + I exti − gsynsi(vi − vrev),
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Fig. 2 The architecture of
Morris–Lecar neural network.
Here ni and si signify the
neurons and synapses
respectively

dni

dt
= n∞(vi) − ni

τn(vi)
, (4)

dri

dt
= f1(ri) − si − k1, (5)

dsi

dt
= ε(f2i − si − k2). (6)

The variables vi , ni characterize the membrane potential and the activation of the
potassium ion channels of the i-th neuron (i = 1, . . ., 4), C is the membrane capac-
itance. The terms at the RHS of Eq. (3) describe the currents flowing through the
cell membrane of a neuron. The first three terms determine the leakage, the calcium,
and the potassium ionic currents, respectively, gL, gCa , gK are the maximal con-
ductances, vL, vCa , vK are the equilibrium (reverse) potentials for the corresponding
ion channels, and M∞(v), n∞(v), τn(v) are the stationary states of the activation lev-
els and the characteristic relaxation time respectively depending on the membrane
potential by the sigmoid law:

M∞(v) = 0.5

[

1 + tanh

(
v − v(1)

v(2)

)]

,

n∞(v) = 0.5

[

1 + tanh

(
v − v(3)

v(4)

)]

,

τn(v) =
[

φ cosh

(
v − v(3)

2v(4)

)]−1

,

where v(1) = −0.01, v(2) = 0.15, v(3) = 0, v(4) = 0.3, φ = 1. The term I exti

is an external current. The last term at the RHS of Eq. (3) determines the synaptic
current emerging as a result of action of other neurons on the i-th neuron by chemical
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synapse, where gsyn is the maximum synaptic conductance, vrev is synaptic reversal
potential, and variable si corresponds to the fraction of open synaptic channels. To
describe a short-term plasticity property, we introduced a phenomenological model
of synapse in the form of a system of Eqs. (5) and (6). In Eq. (5), f1(r) is piecewise
linear (PWL) continuous function which resembles the shape of a polynomial of fifth
degree:

f1(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γ1r − A(1 + σ1), r � −x0

γ2r , −x0 < r � x0

−γ3r + A(1 + σ3), x0 < r � x1

γ4r − A(1 + σ4), x1 < r � x2

−γ5r + A(1 + σ5), r > x2

(7)

where

σ1 = γ1

γ2
, σ3 = γ3

γ2
, σ4 = γ4

γ2
+ 2

γ4

γ3
, σ5 = γ5

γ2
+ 2γ5

(
1

γ4
+ 1

γ3

)

,

x0 = A

γ2
, x1 = A

(
1

γ2
+ 2

γ3

)

, x2 = A

(
1

γ2
+ 2

γ3
+ 2

γ4

)

with A = 2/3, γ1 = 0.1, γ2 = 1.136, γ3 = 5, γ4 = 41.113, γ5 = 20.
In Eq. (6), f2i is monotonically increasing continuous PWL function:

f2i =
⎧
⎨

⎩

[α + μζiχi]ri , ri < 0

βri , ri � 0
(8)

whereχi =
N∑

j=1,
j �=i

H (vj−θji), ζi = H (θref−si) andH (x) = 1/(1+exp (−x/1000)) is a

smooth approximation of the Heaviside step function. The termχi describes an action
of presynaptic neurons on the synapse of i-th neuron. Parameters θji characterize
the initial instants of activation of synaptic processes caused by input signals, i.e.,
the synaptic activation thresholds. The thresholds θ12, θ14, θ21, θ24, θ31, θ42, θ43 are
set to 2 to conform to the architecture, while other ones, for definiteness, are chosen
as follows: θ13 = θ23 = θ32 = −0.03, θ34 = 0.0, θ41 = −0.02. The term ζi accounts
for the refractory property of a synapse. It is equal to 1 only while the synapse is not
activated (si < θref ).

Note that special design of nonlinear functions (7) and (8) as well as relaxational
behavior of Eqs. (5) and (6) provide fulfillment of conditions (a1) and (a2). Indeed
forμ = 0, i.e., in absence of external influence, any trajectory of the system consists
of slow (in a vicinity of stable manifold of slow motions corresponding to falling
parts of the curve s = f1(r) − k1) and fast (s ≈ const). There are three branches
of stable manifolds of slow motions. One of them lies in the half plane r < 0.
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a b

Fig. 3 Elementary clusters of the network (a) and corresponding graph of connection G =< {Qi},
{Ki}, i = 1, 4 > (with K1 = {4}, K2 = {3}, K3 = {1, 2}, K4 = {3}) (b)

The evolution of the system along this branch corresponds to inactivation phase of
synaptic coupling. Two other branches lie in the half plane r > 0. The evolution of the
system along each of these branches corresponds to a certain scenario of activation
(response) of synaptic coupling. The choice of one of the two branches depends
on the strength of presynaptic stimulation (waveform of χi(t)). Note also that PWL
form of functions (7) and (8) is chosen only for the simplicity of analysis. These
functions can be replaced by their smooth analogs without any major influences on
the dynamics of a synaptic model.

In numerical simulations we use the following values of parameters for Morris–
Lecar neuron:

C = 1.4, gL = 0.1, gCa = 1.1, gK = 2, vL = −0.5, vCa = 1, (9)

vK = −0.7, I exti = 0.13, gsyn = 0.0409, vrev = 0.5,

and for synapse:

α = 0.2,β = 2, k1 = −0.616, k2 = −0.216, ε = 0.005,μ = 2.3, θref = 0.01.
(10)

The parameters of the neuron are chosen so that it is at rest in the absence of synaptic
current. The choice of the vrev-value corresponds to the case of excitatory synaptic
coupling.

To build the cellular automaton the graph of connections must be constructed.
For this purpose we single out the elementary clusters of the neural network. Each
cluster Ci is defined as part of the network including the i-th and j -th synapses
coupled with the i-th one through j -th neurons. It is easy to see from the architecture
of the network (see Fig. 2) that it contains only four elementary clusters: C1–C4,
which are shown on Fig. 3a. Based on the structure of each elementary cluster one
can construct the graph of connections G shown in Fig. 3b.

Next one needs to specify the rules Fi for the CA. For this purpose we determine
the responses of the clusters, i.e., for each clusterCi , we find the responses of the i-th
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Table 2 The rules
ψ1 = F1(ψ1,ψ4) ψ1 P0 P11 P21 P22

ψ4

P0 P0 P0 P22 P0

P11 P11 P0 P22 P0

P21 P0 P0 P22 P0

P22 P11 P0 P22 P0

Table 3 The rules
ψ2 = F2(ψ2,ψ3) ψ2 P0 P11 P21 P22

ψ3

P0 P0 P0 P22 P0

P11 P11 P0 P22 P0

P21 P0 P0 P22 P0

P22 P11 P0 P22 P0

synapse caused by the different (fast and slow) actions of the j -th synapse through
the j -th neuron, j ∈ Ki . It is implied that a collective action of groups of several
j -th synapses also has to be studied if Ki consists of more than one element.

Elementary cluster C1. From the structure of the elementary cluster C1 it follows
that the state of the synapse s1 depends only on the state of the synapse s4 (K1 = {4}).
Numerical study shows that the response of the synapse s1 (while it is in the state P0)
to the action of the synapse s4 is always of minimal time scale T1, independently of
the state (P11 or P22) of s4, i.e., F1(P0,P11|P22) = P11. In Table 2 full description of
the rules F1 defining transitions of synapse s1 from one state to another is presented.

Elementary cluster C2. The state of the synapse s2 depends only on the state of
the synapse s3 (i.e., K2 = {3}). The response of the synapse s2 (while it is in the state
P0) to the action of the synapse s3 is always of minimal time scale T1, independently
of the state of s3. The corresponding rules are shown in Table 3.

Elementary cluster C3. From the structure of the elementary cluster C3 it is easy
to see that the state of the synapse s3 depends on the states of the synapses s1 and s2

(i.e., K1 = {1, 2}). Numerical study shows that the response of s3 (while it is in the
state P0) is always of the minimal time scale T1, independently of the states of s1 and
s2, i.e., F3(P0,P11|P22,P11|P22) = P11. From here we obtain the rules presented in
Table 4.

Elementary clusterC4. The state of the synapse s4 depends only on the state of the
synapse s3 (i.e., K4 = {3}). The response of the synapse s4 (while it is in the state P0)
to the action of the synapse s3 is always of the double time scale T2, independently
of the state of s3, i.e., F4(P0,P11|P22) = P21. The corresponding rules are shown in
Table 5.

Thus, Tables 2, 3, 4, and 5 give us the full description of the rulesFi , i = 1, . . . , 4,
of the CA. Using these rules one may study its dynamics. We remind that we denote
the states of synapses by numbers: P0 → 0, P11 → 1, P21 → 2, P22 → 3. The CA
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Table 4 The rules
ψ3 = F3(ψ3,ψ1,ψ2) ψ3 P0 P11 P21 P22

ψ1/ψ2

P0/P0 P0 P0 P22 P0

P11/P0 P11 P0 P22 P0

P21/P0 P0 P0 P22 P0

P22/P0 P11 P0 P22 P0

P0/P11 P11 P0 P22 P0

P11/P11 P11 P0 P22 P0

P21/P11 P11 P0 P22 P0

P22/P11 P11 P0 P22 P0

P0/P21 P0 P0 P22 P0

P11/P21 P11 P0 P22 P0

P21/P21 P0 P0 P22 P0

P22/P21 P11 P0 P22 P0

P0/P22 P11 P0 P22 P0

P11/P22 P11 P0 P22 P0

P21/P22 P11 P0 P22 P0

P22/P22 P11 P0 P22 P0

Table 5 The rules
ψ4 = F4(ψ4,ψ3) ψ4 P0 P11 P21 P22

ψ3

P0 P0 P0 P22 P0

P11 P21 P0 P22 P0

P21 P0 P0 P22 P0

P22 P21 P0 P22 P0

has two attractors: A0 and A1. The attractor A0 is the fixed point (0000). A fragment
of the basin of A0 is shown in Fig. 4a. Such a form of the illustration is convenient
and has been used before (see, for instance [3, 24]). We see that if all elements of the
network is activated then all of them come to the rest state P0. The attractor A1 is
the periodic trajectory (0010) → (0102) → (0013) → (1100) → (0010). A part of
the basin of A1 is shown on Fig. 4b. The periodic points in the attractor are marked
by the grey color.

According to the main property of cellular automata on finite graphs, every tra-
jectory is eventually periodic and the attractors are periodic orbits. It is important
to know the order in which elements become excited. For that, it is convenient to
describe the motion on an attractor in the form of a spatio-temporal diagram or an
unfolding, i.e., in the following way. We construct a figure in the plane with the hor-
izontal axis corresponding to the discrete time (episodes) and with the vertical axis
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a b

Fig. 4 Parts of the basins of (a) the fixed point A0 and (b) the periodic attractor A1

corresponding to the synapse number. Then, if i-th synapse in k-th temporal episode
is active, i.e., it is in one of the states P11, P21, or P22 (ψi(k) �= 0), corresponding
rectangle is marked by the black color. On the other hand, if i-th synapse in k-th
episode is silent, i.e., it is in the state P0 (ψi(k) = 0), corresponding rectangle is
marked by the white color. We note that spatio-temporal diagrams (unfoldings) for
a CA were used before (see, for instance [2, 3, 24]).

The unfolding for A0 is trivial—no elements are excited. The unfolding for A1 is
shown on Fig. 5. The unfoldings of CA describe, in fact, the regimes of sequential ac-
tivation of synapses of a neural network. However, they allow to ascertain the regimes
of sequential activation of neurons of the network as well. Indeed, it is well known
that a neuron fires the spikes when corresponding synaptic conductance overcomes
some threshold value close to maximal conductance. In our case, it corresponds to
narrow time windows in the vicinity of transitions of synapses from the state P11

(or P22) to P0 (or similarly to the narrow regions in the vicinity of transitions from
black to white rectangles on unfoldings). From the unfolding corresponding to A1

it is easy to obtain the following order of firings of neurons: 1, 2 → 3 → 2 → 3, 4
and so on.

For the confirmation of the validity of these results we have performed the direct
numerical study of the original system (3)–(6) with architecture shown in Fig. 2.
Results of numerics are presented in Fig. 6. The unfoldings of synaptic dynamics
were constructed in the following way. There were considered the rectanglesDi(a, b),
i = 1, 2, 3, 4 on the plane with the horizontal axis corresponding to the time and
vertical axis corresponding to the synapse number. The height of Di(a, b) is 1, the
width is (b − a), the lower-left corner has coordinates (a, i), and it is black if the
synapse i is active at the instant t (s ′

i(t) > 0), a < t < b—see Fig. 6a. Comparing
the unfoldings of the CA and of the network, one may verify that the CA describes
adequately sequential dynamics of the network.

One can see that while the process of the activation of synapses (Fig. 6a, b) is
in the good correspondence with the unfolding for the CA (Fig. 5) it is not fully
periodic. This is related to the fact that the resonance condition T2 = 2T1 is satisfied
only with some (nonzero) accuracy. Nevertheless, first of all, the spacial order of
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Fig. 5 Unfolding for the
periodic attractor A1 of CA

a

b

c

Fig. 6 Unfolding and realizations for established regime in the Morris–Lecar network: a unfolding;
b realizations for synapses; c realizations for neurons. The parameters are defined by (9) and (10).
The values of threshold constants are: θ13 = θ23 = θ32 = −0.03, θ34 = 0.0, θ41 = −0.02. All other
thresholds are set to 2

activation of synapses is exactly the same as for the CA, and, secondly, temporal
intervals of activation are approximately the same as for the CA up to the scaling
factor T1.

In Fig. 6c the change of membrane potentials for different neurons is presented.
The temporal intervals of oscillatory activity and the rest of neurons occur in the order
prescribed by the unfolding for synapses. The number of spikes might be different
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for different neurons and different times of observation, since it depends on the state
of full network. Nevertheless, on an average the activation of the neuron network
also occurs at the instants which are multiples of the same time scale T1 (see Fig. 6c).

3.2 A Network of Synaptically Coupled Hodgkin–Huxley (HH)
Neurons

Now we consider the network of Hodgkin–Huxley neurons [6] coupled by excitatory
synapses with short-term plasticity property (the system (5), (6)) which has the
architecture shown in Fig. 7a. The network is given by following system of ODE:

C
dvi
dt

= I exti − gL(vi − vL) − gNam
3
i hi(vi − vNa) − (11)

− gKn
4
i (vi + vK ) − gsynsi(vi − vrev),

dxi

dt
= x∞(vi) − xi

τx(vi)
, (12)

dri

dt
= f1(ri) − si − k1, (13)

dsi

dt
= ε(f2i − si − k2). (14)

Eqs. (11) and (12) describe dynamics of membrane potential vi and gating variable
xi = mi ,hi , ni , respectively (i = 1, . . ., 4). The terms at the RHS of Eq. (11)
describe correspondingly the external, the leakage, the sodium, the potassium, and
the synaptic currents flowing through the cell membrane of the i-th neuron. We
borrow the equilibrium function x∞(vi) and the characteristic relaxation time τx(vi)
for each ionic current from [5]. The thresholds θ12, θ14, θ21, θ23, θ24, θ31, θ42, θ43

are set to 200 to conform to the architecture, while other ones, for definiteness, are
chosen as follows: θ13 = 20, θ32 = 10, θ34 = 20, and θ41 = 50.

In numerical simulations for Hodgkin–Huxley neuron we use the following values
of parameters:

C = 1, gL = 0.3, gNa = 120, gK = 36, vL = 10.613, vNa = 115, (15)

vK = −12, I exti = 6, gsyn = 0.066, vrev = 150.

The parameters for synapse are defined by (10).
From the architecture of the network one can establish that it has four elementary

clusters: C1 = {4 → 1}, C2 = {3 → 2}, C3 = {1 → 3}, C4 = {3 → 4}. Numerical
study of the responses related to all clusters allow us to specify the rules Fi for
the CA: F1(P0,P11|P22) = P21, F2(P0,P11|P22) = P11, F3(P0,P11|P22) = P21,
and F4(P0,P11|P22) = P21. By using these rules one can see that the CA has the
only nontrivial attractor A3 that is the periodic trajectory (2000) → (3000) →
(0020) → (0030) → (0102) → (0003) → (2000). In Fig. 7b a part of the basin of
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a b

Fig. 7 a The architecture of Hodgkin–Huxley neural network. b A part of the basin of the periodic
attractor A3

A3 is shown (the periodic points in the attractor are marked by the grey color). The
unfolding of the attractorA3 is depicted in Fig. 8a which predicts the following order
of firings of neurons: 1 → 3 → 2 → 4 and so on. For comparison the waveforms
of synaptic conductances and membrane potentials corresponding to established
sequential regime in the Hodgkin–Huxley network are shown in Figs. 8b, c.

4 The Main Scheme of Application of the Approach

On the basis of aforementioned results an approach to study the sequential dynamics
of excitatory neural networks can be formulated as follows:

1. Single out the elementary clusters of the neural network and construct the graph
of connections G =< QG,KG > (see Sect. 2). The cluster Ci (i = 1, . . .,N ) is
defined as part of the network including the i-th and j -th synapses coupled with
the i−th one through j -th neurons.

2. Determine the responses of each cluster. In other words, for each i = 1, . . .,N ,
find the responses of the i-th synapse caused by the different (fast and slow)
actions of the j -th synapse through the j -th neuron, j ∈ Ki . It is implied that a
collective action of groups of several j -th synapses also has to be studied (if Ki

consists of more than one element).
3. Using the responses, define the rules of the CA according to Table 1.
4. Study dynamics of CA, find its attractors and unfoldings (or spatio-temporal

diagrams, see below) related to them.
5. Describe regimes of sequential dynamics of the original neural network.

Note that in the case of identical thresholds the clusters of the same architecture
produce the same responses. Thus, for networks with identical thresholds the number
of the studied cases on step 2 (and complexity of CA rules) coincides with the number
of different clusters, independently of the size of a network. For example, in a network
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a

b

c

Fig. 8 a Unfolding for the periodic attractor A3 of CA. The realizations for b synapses and c
neurons corresponding to established regime in the Hodgkin–Huxley network. The parameters are
defined by (15) and (10). The values of threshold constants are: θ13 = 20, θ32 = 10, θ34 = 20, and
θ41 = 50. All other thresholds are set to 200

with maximum M synaptic connections per neuron taking into account the synaptic
dynamics (two different synaptical responses) the number of studied cases is equal
to M(M + 3)/2.

5 Conclusion

We have shown that under some conditions the continuous sequential dynamics of
excitatory neural network can be reduced to the dynamics of a synaptic CA. Note
that it adequately describes “turn on/turn off” behavior of the synapses as well as
neurons of the network. The reduction is based on the dynamics of synapses but not
on the specific features of neurons. Indeed, the internal dynamics of the neurons may
be very complex and even chaotic. Thus, the approach is applicable to a broad set of
excitatory neural networks. We have presented examples of its application to analysis
of two different excitatory neural networks. Another advantage of our approach is
that the numerical integration of the whole system of ODEs is not needed. In fact, the
approach requires to study only the responses of an individual synapse onto actions
of neighboring (in graph of connections) synapses through corresponding neurons.
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It is worth to mention also that the description of network behavior on the base
synaptic dynamics is, in fact, caused by the character of neural coupling by itself. In
the recently published works [13, 15, 22], it was experimentally shown that relatively
small number of so-called strong synaptic connections brings the main contribution
in the dynamics of large neural networks. In many neural networks [22], there exists
a “skeleton of stronger connections in a sea of weaker ones”.
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Synchronization of Delayed-Feedback
Semiconductor Lasers and Its Application
in Optical Communication

Alexander N. Pisarchik and Flavio R. Ruiz-Oliveras

Abstract Semiconductor lasers with optical injection or delayed feedback have
been widely studied because of their potential applications in optical communica-
tion using chaos synchronization. The delayed feedback through an external cavity
or mirror enriches the laser dynamics so that different bifurcations (saddle-node,
Hopf, period-doubling, torus, and crisis) arise when the coupling strength and/or
delay time are varied. Recent research works on coupled semiconductor lasers have
examined various mechanisms for their synchronization that may be useful to de-
sign optical communication networks. When the coupled lasers behave in a chaotic
manner, different synchronization types can be achieved ranging from lag and phase
synchronization to a completely synchronized motion. The route to synchronization
of these lasers in a bistability domain displays a series of bifurcations with respect to
the coupling strength. Complete chaos synchronization between the master and the
slave lasers has been used to send information using the chaotic carrier. The message
is encrypted in the chaotic output of the laser in the transmitter and then recovered by
comparing with the chaotic output of the laser in the receiver. In the current chapter,
a novel method of optical communication based on the combination of complete and
generalized synchronization of chaotic semiconductor lasers is described.

1 Introduction

We currently live in the era of information, when societies, commerce, government,
and private institutions require secure and fast communication. With the growing de-
mand of electronic commerce, society in general has the need to keep its information
safe while traveling through the network at high speeds. With the actual existence
of the fiber optics network, semiconductor lasers are ideal candidates to build such
communication systems.

In communication systems based on chaos synchronization [3, 26], information
is are embedded within a chaotic carrier in a transmitter and recovered in a receiver
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upon synchronization with the former. Due to their high relaxation oscillation
frequencies (around tens of gigahertz) and direct comparability with existing optical
fiber communication technology, semiconductor lasers have attracted much attention
[22], especially after successive experiments with the Athens’ fiber networks [2].
Delayed feedback or coupling in these lasers [12, 18] results in chaotic oscillations
with a large information entropy. The performance of these communication systems
largely depends on the quality of chaos synchronization, i.e., the synchronization
error should be minimized. Depending on a particular application of chaotic
communication, different encoding and decoding schemes, such as chaos masking,
chaos shift keying, and chaos modulation have been developed [26].

In this chapter, we review different encryption schemes used in communication
systems based on synchronization of chaotic semiconductor lasers. First, we describe
a simple model which simulates dynamics of a solitary semiconductor laser with
delayed feedback, and then we extend this model to a dual-cavity semiconductor
laser. Finally, we analyze synchronization of two semiconductor lasers coupled in
a master–slave configuration and characterize the system performance for optical
communication.

2 Semiconductor Laser Model

The active media of an ordinary semiconductor laser is in the junction of the n- and
p-type semiconductor materials. Since these lasers belong to class-B lasers [1] in
which the polarization decay rate is much faster than the decay rates of the electric
field and population inversion, their dynamics is an asymptotically stable fixed point
resulting in a continuous wave (cw) laser emission. Usually, the dynamics of ordinary
semiconductor lasers is regulated by two differential equations, one for the electric
field and another one for nonequilibrium carriers.

2.1 Semiconductor Laser with Optical Feedback

Technically, optical feedback can be easily realized by injecting the laser radiation
back into the laser cavity after its reflection from an external mirror, as shown in
Fig. 1. The delayed optical feedback in a semiconductor laser induces an additional
degree of freedom that enriches its dynamics so that intensity oscillations can be
possible [28].

By varying the parameters of the external cavity, i.e., the reflectivity of the external
mirror and the distance between the mirror and the laser facet, different dynamical
regimes (cw, periodic, quasiperiodic, chaotic, and low frequency fluctuations) can
be obtained [4]. The adequate model for a semiconductor laser with delayed optical
feedback was developed by Lang and Kobayashi [6, 12]:
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r1 r2 rext

External cavity Laser 

Fig. 1 Semiconductor laser with an external cavity. r1, r2 are the laser facet reflectivities and rext
is the reflectivity of an external mirror that causes delayed optical feedback

Ė(t) = (1 + jα)

(
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where E(t) is the amplitude of the slow varying complex electric field, |E(t)|2 = P

is the optical power or intensity in terms of the number of photons, N (t) is the carrier
number, α is the linewidth enhancement factor, g is the gain parameter, N0 is the
carrier number at transparency, s is the gain saturation coefficient, τp is the photon
lifetime, κ is the feedback parameter, τ is the external cavity round trip time, ϕ = ωτ

is the phase due to the external cavity, ω is the free running laser frequency, I is the
bias current (at the first laser threshold Ith = 14.7 mA), e is the elementary charge,
τn is the carrier lifetime, and τd is the semiconductor laser cavity round trip time.
Typical parameter values [15, 27] are present in Table 1.

Since the laser dynamics is regulated by the parameters of the external cavity, τ ,
φ, and κ are varied to obtain different dynamical regimes. The feedback parameter κ
is given in per nanosecond (for reference, κ = 10 ns−1 corresponds to a 0.3 % reflec-
tivity of the external mirror and τ = 1 ns in a 15-cm external cavity filled with air).

The bifurcation diagram of the laser peak intensity shown in Fig. 2 demonstrates
a period-doubling route to chaos in the external cavity semiconductor laser when the
cavity length (feedback time) is increased. Both the phase φ = 0 and the feedback
strength κ = 10 ns−1 are kept constant. One can see that depending on the length of
the external cavity, one can obtain either fix point (FP), period 1 (P1), period 2 (P2),
period 3 (P3), period 4 (P4), quasiperiodicity (QP), or chaos (CH). If the external
cavity length is small enough, the laser works in a cw regime marked as FP on the
bifurcation diagram. When τ = 0.071 ns, a Hopf bifurcation (HP) appears and the
laser begins to oscillate in a P1 regime. For larger τ , two period-doubling bifurcations
are observed, the first one at τ ≈ 0.09 ns, where P1 is transformed to P2; and the
second one at τ ≈ 0.095 ns, where P2 changes to P4. A torus bifurcation (T) results in
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Table 1 Typical parameter
values used in the
Lang–Kobayashi model

Parameter Value

α 3

g 1.5×10−8 ps−1

N0 1.5×108

s 10−8

τp 2 ps

τn 2 ns

e 1.6×10−19 C

τd 6.6 ps

r2
2 0.3

I 29 mA

quasiperiodicity and then chaos arises as τ is further increased. At τ = 0.111 ns, the
chaotic attractor undergoes crisis, that gives rise to a P3 attractor born in a saddle-node
bifurcation. Finally, the P3 undergoes a new cascade of period-doubling bifurcations
terminated in chaos.

The power spectra in Fig. 3 illustrate how the laser dynamics changes with τ .
Figure 3a shows the power spectrum for the P1 regime at τ = 0.08. The oscillation
frequency is around fm = 6 GHz, that corresponds to the relaxation oscillation
frequency of the semiconductor laser without an external cavity. Figure 3b shows
the power spectrum of the P2 regime when τ = 0.092. The relaxation oscillation
frequency appears again together with its subharmonic frequency fm/2 = 3 GHz.
The power spectrum of the P3 window at τ = 0.112 ns is shown in Fig. 3c. One can
also see fm and its subharmonic frequencies fm/3 = 2 GHz and 2fm/3 = 4 GHz. At
τ = 0.096 ns, when P4 appears, the corresponding subharmonic frequencies fm/4,
fm/2, and 3fm/4 emerge in the spectrum, as seen in Fig. 3d. The power spectrum of
the QP regime at τ = 0.097 ns is shown in Fig. 3e. In this regime, three frequencies

Fig. 2 Bifurcation diagram of laser peak intensity with respect to external cavity round trip time
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Fig. 3 Power spectra of a period-1, b period-2, c period-3, d period-4, e quasiperiodic, and f
chaotic regimes. fm is the relaxation oscillation frequency of the solitary laser

exist and the ratios between fm and these frequencies are irrational numbers. The
frequencies marked by the arrows in Fig. 3e are 2.47 and 3.654 GHz, and the ratios are
fm/2.47 = 2.42914 . . . and fm/3.654 = 1.64203 . . . . Figure 3f shows the broad band
spectrum of the chaotic regime at τ = 0.105 ns with the dominant frequency at fm.

A semiconductor laser with an external cavity, similar to many other complex
dynamical systems, such as electronic circuits, turbulent flows, etc. [10, 14], exhibits
the coexistence of attractors [19]. In a multistability range, a particular attractor
can be searched by changing initial conditions. Figure 4 shows two examples of
the bifurcation diagrams of the laser peak intensity constructed by varying initial
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Fig. 4 Bifurcation diagrams of laser peak intensity with feedback strength κ as a control parameter
for a φ = 0 and τ = 0.2 ns and b φ = π and τ = 0.4 ns. The diagrams are obtained by varying
initial conditions. The coexistence of different periodic regimes with CW and chaos is seen

conditions and using the continuation (branch tracing) method [21]. The regions
of the coexistence of FP (CW) with P2, P4, QP, and chaos, and the regions of the
coexistence of P1 with P2 and chaos can be clearly distinguished in these diagrams.

For better visualization, the dynamical states of the semiconductor laser with
delayed optical feedback are plotted in the space of the control parameters κ , τ , and
φ [19]. Figure 5a shows the state diagram in the parameter space of the feedback
strength κ and the external round trip time τ , with φ = mπ and m = 0, 2, 4, . . ..
Figure 5b shows the dynamical regimes in the parameter space of φ and τ for κ =
25 ns−1 and Fig. 5c in the parameter space of κ and φ for τ = 0.25 ns. The black,
yellow, blue, red, and white regions correspond, respectively, to FP, P1, P2, P3,
QP, and chaos. One can see that the dynamics of the external-cavity semiconductor
laser repeats every 2π . For small feedback strengths (κ < 7.5), the dynamics has a
regular behavior (FP and periodic orbits) and for larger feedback strengths (κ > 7.5),
it is QP or chaotic. The boundaries between black and yellow regions are Hopf
bifurcations, between yellow and blue regions are period-doubling bifurcations, and
the boundaries between the white regions and any color regions are either crisis or
torus bifurcations.

2.2 Semiconductor Laser with Two Optical Feedbacks

A second external cavity can be added to the semiconductor laser to stabilize its
output [16–18]. The advantage of this technique is that the position and reflectivity
of the second mirror do not have to be very accurate. Figure 6 shows the optical
scheme for the semiconductor laser with two external cavities, where r1 and r2 are
the laser facet reflectivities, and r3 and r4 are the reflectivities of the external mirrors
in the external cavities. The Lang–Kobayashi model is now given as
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Fig. 5 State diagrams in parameter spaces of a κ and τ for φ = 0, b φ and τ for κ = 10 ns−1, and
c κ and φ for τ = 0.25 ns. The black, yellow, blue, red, and white regions indicate, respectively,
FP, P1, P2, P3, QP, and chaotic regimes

Ė(t) = (1 + jα)

(
gN (t) −N0

1 + s|E(t)|2 − 1

τp

)

E(t) + κ1E(t − τ1) exp (− iφ1)

+ κ2E(t − τ2) exp (− iφ2),

Ṅ (t) = I

e
− N (t)
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Fig. 6 Optical scheme of a
semiconductor laser with two
external cavities

where κ1,2, τ1,2, and φ1,2 are the feedback parameter, cavity round trip time, and the
phases of the first and second external cavities.

For this particular case, the phases of each cavity given as φ1,2 = ωτ1,2 are
not kept independent and are related to the lengths of their corresponding external
cavity. The bifurcation diagram of the laser peak intensity with respect to the ratio
τ2/τ1 is shown in Fig. 7a. The round trip time of the first external cavity is kept
constant at τ1 = 0.22 ns. The feedback strengths for both cavities are the same,
κ1,2 = 25 ns−1. In the region where τ2/τ1 < 0.4, the dynamics is very sensitive to
the ratio between the external round trip times. The enlarged part of the bifurcation
diagram for τ2/τ1 < 0.4 is shown in Fig. 7b. A number of bifurcations, such as torus,
inverse torus, crisis, Hopf, and inverse Hopf bifurcations are present. In the region
near τ2/τ1 = 1, a chaotic window exists.

As in the case of the laser with a single external cavity, the state diagram in the
two-dimensional parameter space of the external cavity round trip times τ2/τ1, and
the ratio of feedback strengths κ2/κ1 yields much better representation of the overall
dynamics of the laser with two external cavities. This diagram is shown in Fig. 8. The
parameters of the first external cavity are fixed to τ1 = 0.22 ns and κ1 = 25 ns−1.
The color nomenclature is the same as used before.

In Fig. 8, one can distinguish the phase-locking regions, where the frequencies of
two coupled oscillators are of some rational multiples of each other. The combined
locked motion then becomes periodic, and the locking regions called Arnold tongues
are observed. When the frequencies are not rational multiples of each other, the
behavior is either quasiperiodic or chaotic. The Arnold tongues correspond to either
the steady state (black regions) or periodic regimes (yellow, blue, and red). Within
these regions, the phases of the two external cavities are locked, so that the laser
evolves into the stable steady state or periodic regimes. The minima of the tongues
occur when τ2/τ1 = 1/4, 1/2, 3/4, . . . . It is remarkable that the diagram is almost
symmetric around τ2/τ1 = 1. The asymmetry that may appear is due to multistability
in the phase-locked regions. The addition of the second cavity can stabilize the laser
dynamics [7]. It is clearly seen in Fig. 8 that the area corresponding to the stabilized
dynamics (black region) is greater than any other region.
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Fig. 7 Bifurcation diagram of peak laser intensity with respect to τ2/τ1. τ1 = 0.22 ns, κ1,2 = 25 ns−1

3 Coupled Semiconductor Lasers

One of the simplest ways to synchronize two semiconductor lasers is to inject the
output radiation of one laser into another. The laser whose signal is being injected
is called master laser (ML), while the laser which receives the external radiation
from ML is called slave laser (SL). Figure 9 represents a general optical scheme of
two semiconductor lasers, each with external feedback, coupled in a master–slave
configuration.

The dynamics of ML is described by Eq. (1). The optical injection from ML
has to be added to the equation for the electric field of SL. When the laser optical
frequencies are matched, the equation for a slow varying complex field of SL is
written as

Ės(t) = (1 + jα)

(
gNs(t) −N0

1 + s|Es(t)|2 − 1

τp

)

Es(t) + κEs(t − τ ) exp (− iφ) + γEm(t),

γ = η

√
1 − r2

τdr
, (3)
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Fig. 8 State diagram in parameter space of τ2/τ1 and κ2/κ1 for τ1 = 0.22 ns and κ1 = 25 ns−1

Fig. 9 Master-slave laser configuration to obtain synchronization

where the subscripts m and s stand for ML and SL, γ is the coupling parameter, η
is the loss different than that introduced by the laser facet, and r is the laser facet
reflectivity. The other parameters are the same as in Eq. (1). The coupling parameter η
is given in per nanosecond. γ = 50 ns−1 corresponds to the case when approximately
22 % of the ML power is injected into SL.
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3.1 Synchronization of Unidirectionally Coupled Lasers

During the last two decades, synchronization of different lasers, e.g., CO2 [11, 25],
fiber [29], and semiconductor [12], has been extensively studied. Semiconductor
lasers have caught a special attention for communication because their relaxation
oscillation frequencies are very high (around several gigahertz), which is approx-
imately four orders of magnitude higher than relaxation oscillation frequencies of
gas, solid-state, and fiber lasers. Several papers were devoted to synchronization of
two coupled chaotic semiconductor lasers with external cavities (see, for instance,
[8, 9, 13, 23]).

To measure synchronization between two lasers, one can use the cross-correlation
function defined as [24]:

C(t) = 〈Pm(t)Ps(t − t ′) − PmPs〉
σmσs

, (4)

where 〈· · ·〉 stands for the time average and Pm,Ps , σm, and σs are the means and
standard deviations of the ML and SL powers, respectively. The cross-correlation
takes a value between 0 (no synchronization) and 1 (complete synchronization).

When ML and SL are in a chaotic regime and the coupling is low, the phase
trajectories evolve independently. Figure 10a shows the ML vs. SL intensities for
γ = 5 ns−1. For this case, the cross-correlation is close to zero. When the coupling
between the lasers is strong enough (γ = 70 ns−1), complete synchronization takes
place, as shown in Fig. 10b. Figure 10c shows the cross-correlation as a function of
the coupling γ . To obtain complete synchronization, the lasers should be identical.

3.2 Synchronization of Multistable Lasers

As was already mentioned in Sect. 2, a semiconductor laser with delayed optical
feedback exhibits the coexistence of attractors at certain parameters. Therefore, syn-
chronization of two coupled lasers is not only dependent on the coupling strength
but also on the initial conditions.

Here, we will show how two coupled semiconductor lasers with coexisting at-
tractors are synchronized. First, we consider the lasers in which a stable steady state
and chaotic attractor coexist. The parameters are the same as the ones used above
for Fig. 4b. When the feedback strength is set to κ = 12.7 ns−1, the coexistence of
FP with P1, P2, P4, and chaos, and the coexistence of P1 with P2 attractors are
observed. Figure 11 shows the bifurcation diagram of the SL peak intensity (black
squares) when ML is in a cw regime. One can see that the cw injection from ML
stabilizes either a fixed point or a periodic orbit in the chaotic SL. As the coupling is
increased, a series of Hopf bifurcations (at γ = 4.5 ns−1 and γ = 19.75 ns−1) appears
giving rise to a periodic orbit, whose frequency (red and blue squares) depends on
the coupling. One of the frequencies (red squares) is close to the laser relaxation
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Fig. 10 Phase space plots of a master vs. slave laser for γ = 5 ns−1, b master vs. slave laser for
γ = 70 ns−1, and c cross-correlation vs. coupling γ

oscillation frequency (fm = 6 GHz), while another frequency (blue squares) is much
higher (about 4 GHz more) than the first one. The coexistence of two attractors (pe-
riodic orbit and fixed point) in SL is observed between two vertical lines in Fig. 11.
At γ = 44 ns−1, an inverse Hopf bifurcation (IHP) arises, and for larger γ , only the
cw regime remains. In a certain way, for a strong coupling, we can say that ML and
SL are “synchronized,” since both end up having the same dynamics.

Now, let ML be in a chaotic regime while SL initially is in a stable steady state
(cw). For this case, already for a very small coupling, SL behaves chaotic and
the cross-correlation between the laser intensities increases as γ is increased. The
behavior is the same as for the monostable lasers shown in Fig. 10c, when both lasers
are chaotic.

Next, we turn to the bistability region, where a cw regime coexists with a periodic
orbit. When the feedback is set to κ = 15.1 ns−1 and other parameters are the same
as for Fig. 4a, we observe the coexistence of cw and P2. First, we consider the case
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Fig. 11 Bifurcation diagram
of SL peak intensity (black
squares) and oscillation
frequency (red and blue
squares) as functions of
coupling parameter γ , when
ML is in a cw regime

when ML is in the P2 regime, while SL being uncoupled is in a cw regime. For this
case, the SL dynamics is very rich. Figure 12a, b show respectively the bifurcation
diagram of the SL peak intensity and the cross-correlation between ML and SL. The
chaotic regime switches to a quasiperiodic one at γ ≈ 13 ns−1. At γ ≈ 47 ns−1,
an inverse torus bifurcation appears leading to P2 and complete synchronization
between the lasers. From Fig. 12b, one can see that the cross-correlation resembles
the dynamics. The lowest correlation is observed when SL is chaotic. Then, as
the coupling is increased, the correlation grows up when the laser switches to a
quasiperiodic regime. After that, the correlation decreases, but it remains higher
than in the chaotic regime. Finally, for a very strong coupling, SL is synchronized
with ML to the period 2.

Finally, we consider the case when ML is in a cw regime and SL initially in a
period 2. Figure 13 shows the bifurcation diagram of the SL peak intensity (black
squares) and the oscillation frequency (red squares) as functions of the coupling
parameter γ . The injection of the cw radiation into the periodically oscillating SL
induces a fixed point already at a very low coupling. As γ is increased, a periodic orbit
is born in a Hopf bifurcation at γ ≈ 7 ns−1 and dead in an inverse Hopf bifurcation
at γ ≈ 43 ns−1. One can see that this case resembles the previous case, when ML

Fig. 12 a Bifurcation diagram of SL peak intensity. b Cross-correlation between ML and SL as
functions of coupling parameter γ , when ML is in period 2 and SL initially in cw
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Fig. 13 Bifurcation diagram
of SL peak intensity (black
squares) and frequency of
induced periodic orbit (red
squares) as functions of γ ,
when ML is in cw and SL
initially in period 2

was in cw and SL in a chaotic regime. In general, when there is a coupling between
the lasers, the ML dynamics will dictate the SL’s overall behavior. When a periodic
orbit and chaos coexist and ML initially is in the periodic state, the SL dynamics
is very similar to that shown in Fig. 12. On the other hand, when ML is chaotic,
SL becomes also chaotic and at a strong enough coupling, the lasers are completely
synchronized. It should be noted that when the lasers are monostable and both stay
in a cw regime being uncoupled, the dynamical behavior of the coupled system is
similar to that shown in Figs. 11 and 13.

4 Communication with Chaotic Semiconductor Lasers

A general communication system contains a transmitter and a receiver. The transmit-
ter is in charge of modulating a signal into a series of bits, which can be sent to the
receiver. The important application of chaotic synchronization to communication is
that information may be sent using a chaotic carrier that allows signal encryption in
a wide frequency range. In this case, both the transmitter and the receiver generate
chaotic waveforms. A message is added to the chaotic output of the transmitter to
be recovered after the filtering in the receiver, which must be synchronized with the
transmitter. Figure 14 illustrates how this scheme works.

4.1 Encryption Schemes

Among many encoding and decoding schemes, here we consider only three most
popular schemes commonly used in communication systems based on chaotic
synchronization. These are chaotic modulation, chaotic masking, and shift keying.

4.1.1 Chaotic Modulation

Chaotic modulation resembles the typical amplitude modulation (AM). The mes-
sage is added by modulating the emitter’s chaotic carrier according to the following
expression:
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Fig. 14 Encoding and decoding a message using chaotic carrier

M(t) = (1 − εm(t))Pt (t). (5)

Here, ε is the amplitude of the encoded message, m(t) is the message itself, and
Pt (t) is the transmitter laser intensity. In this scheme, the message m(t) and the
intensity Pt (t) have the same phase. Since the transmitter laser is synchronized with
the receiver laser, the message is recovered as follows:
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mr (t) = 1

ε

(

1 − M(t)

Pr (t)

)

. (6)

Here, Pr (t) is the receiver laser intensity and mr (t) is the recovered message.

4.1.2 Chaotic Masking

For chaotic masking, the message is just added to the intensity of the transmitter
laser as

M(t) = Pt + εm(t). (7)

To recover the message, one needs to subtract the intensity of the receiver laser
from the incoming signal from the transmitter as follows:

mr (t) = M(t) − Pr (t)

ε
. (8)

4.1.3 Chaotic Shift Keying

Chaotic shift keying refers to the scheme when the signal is added to the transmitter
itself, but not to the outcoming signal from it. This can be done by adding the message
to the pump current of the transmitter laser as

I (t) = I + εm(t), (9)

where I is the constant pump current. To recover the message, one just needs to
subtract the intensity of the transmitter laser from that of the receiver laser as follows:

mr (t) = Pt (t) − Pr (t). (10)

4.2 One-Channel Communication Scheme

4.2.1 Scheme Description

A one-channel communication scheme consists of ML or a transmitter and SL or
a receiver, both operating in a chaotic regime. The message is encrypted into the
chaotic output of ML. To recover the message, SL needs to be synchronized with
ML. Figure 15a shows the scheme used for both chaotic modulation and chaotic
masking while Fig. 15b displays the scheme for shift keying.
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Fig. 15 Schemes for a chaotic modulation and chaotic masking, and b shift keying

4.2.2 Communication Quality

There are several methods to analyze the quality of a recovered signal. One of them
is the eye diagram [20] which consists of splitting up the message into a series of
fixed intervals, which then are shifted and overlapped, as shown in Fig. 16. This is
the easy way to concentrate all message bits in a small time interval.

Another measure for quantitative estimation of communication quality is the Q-
factor given as [5]

Q = S1 − S0

σ1 + σ0
, (11)

where S1 and S0 are the average optical intensities of bits “1” and “ 0,” and σ1 and
σ0 are the corresponding standard deviations.

Figure 17 shows the Q-factor of a transmitted message of 1 Gbs−1 as a function
of the coupling between the transmitter and the receiver using chaotic modulation.
The blue and green curves correspond to the message amplitudes which lead to 2 and
4 % modulation of the chaotic carrier, respectively. For good transmission, the eye
diagram of the recovered message should be clean. This requires Q ≥ 10. Figure 18
shows the eye diagrams corresponding to different Q-factors.

4.2.3 Synchronization

The quantitative measure of synchronization is the synchronization error 〈e〉

e =
〈√

(Pm(t) − Ps(t))2
〉

, (12)
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Fig. 16 Forming eye diagram
from a message by splitting it
into a series of 5 bits

Fig. 17 Q-factor as a
function of coupling γ using
chaotic modulation

where Pm and Ps are the ML and SL intensities and 〈· · ·〉 stands for the time average.
One of the reasons why a message cannot be recovered with a good quality is the
fact that the synchronization error between the transmitter and the receiver increases
when the message is added. This is because the message itself acts as an external
perturbation to the system.

Figure 19 shows how the mean synchronization error increases for different
encryption schemes when the message is added to the transmitter. The mean syn-
chronization error is normalized to 1 (1 indicates that there is no synchronization).
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Fig. 18 Eye diagrams and
corresponding Q-factors. The
diagrams are clean when
Q ≥ 10

Fig. 19 Mean
synchronization error
between transmitter and
receiver lasers

The black curve with squares in Fig. 19 indicates the mean synchronization error
when no message is added. It is seen that when γ ≈ 60 ns−1, 〈e〉 is very close to
zero, which means complete synchronization. When the message is added, the mean
synchronization error increases for all encryption methods. For chaotic modulation
(brown curve and circles), the increment is not so strong, as for chaotic shift keying
(blue curve and triangles) and chaotic masking (green diamonds).

4.3 Two-Channel Communication Scheme

4.3.1 Scheme Description

To avoid an increasing synchronization error when the message is added, a two-
channel communication system is used. This system consists of a transmitter and
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Fig. 20 Scheme of a
two-channel communication
system for a chaotic masking
and modulation and b shift
keying.

a receiver, each one containing a master–slave pair. Figure 20a shows a scheme of
this system for both chaotic masking and modulation and Fig. 20b for shift keying.
The master laser (ML1) in the transmitter has the same characteristics as the master
laser (ML2) in the receiver and ε is the coupling strength between these two lasers.
Since these two lasers are identical, complete synchronization can be achieved with
an appropriate coupling. The slave laser (SL1) in the transmitter has the same char-
acteristics as the slave laser (SL2) in the receiver, i.e., they are identical. However,
the master laser (ML1) and the slave laser (SL1) in the transmitter have different
characteristics, that means that complete synchronization is not possible and only
generalized synchronization can be obtained. The same is for the receiver, where
ML2 and SL2 have different characteristics and only generalized synchronization
can be obtained. Therefore, the signals transmitted through channels 1 and 2 are
different. γ 1 is the coupling strength between ML1 and SL1 in the receiver and γ 2
is the coupling between ML2 and SL2 in the receiver.

4.3.2 Cross-Correlation and Synchronization

Since ML1 and ML2 are completely synchronized, SL1 and SL2 are also completely
synchronized because of the existence of generalized synchronization between ML1
(ML2) and SL1 (SL2) lasers in the transmitter and in the receiver. Because SL1 and
SL2 are completely synchronized, a message added to SL1 can be recovered in the
receiver by comparing SL1 and SL2. In the scheme in Fig. 20, the lasers’ outputs are
detected by a detector D. Once the optical signal is digitalized, the message is added
to the electric signal (for the cases of chaotic masking and modulation) and then



Synchronization of Delayed-Feedback Semiconductor Lasers and Its Application . . . 149

Fig. 21 Cross-correlation and
mean synchronization error
between ML1 and ML2 as
functions of coupling ε. The
black circles and green
diamonds correspond to
unidirectional coupling and
the brown triangles and blue
squares squares to
bidirectional coupling

transmitted through an antenna in the transmitter. Then, the message is received by
an antenna in the receiver and the electric signals from SL1 and SL2 are compared.
The communication can be completely optical if the message is added directly to the
SL1 output, and sent to the receiver via an optical fiber. Then, the waveform of SL2
is compared with that of SL1.

The parameters of the external cavities of ML1 (ML2) and SL1 (SL2) are set
different to achieve generalized synchronization between them. For both ML1 and
ML2, the feedback strength is κm = 25 ns−1 and the external round trip time is τm =
1 ns. For both SL1 and SL2, the feedback strength is κm = 20 ns−1 and the external
round trip time is τm = 0.5 ns. Another advantage of the two-channel scheme is that
bidirectional coupling between ML1 and ML2 is possible without loss of security.
Bidirectional coupling between the MLs will lead to a lower mean synchronization
error, and therefore, synchronization between SL1 and SL2 will be better.

The cross-correlation and the mean synchronization error between ML1 and ML2
as functions of their coupling ε, for the cases of unidirectional and bidirectional cou-
pling, are shown in Fig. 21. The black circles and the green diamonds correspond to
the cross-correlation and the mean synchronization error for unidirectional coupling,
while the brown triangles and the blue squares for bidirectional coupling. When the
coupling is bidirectional, a smaller coupling strength ε between ML1 and ML2
is required to obtain complete synchronization. Even though the cross-correlation
C(0) ≈ 1, when ε > 16 ns−1 for bidirectional and ε > 60 ns−1 for unidirectional
coupling, the mean synchronization error for bidirectional coupling is 〈e〉 < 0.005
and for unidirectional coupling is 〈e〉 < 0.025.

Figure 22 shows the cross-correlation and the mean synchronization error between
ML1 and SL1 as functions of the coupling (γ 1) between them. Similar behavior is
observed for the lasers in the receiver, ML2, and SL2. One can see that complete syn-
chronization can never be achieved for γ 1 = 100 ns−1, where the cross-correlation
(green squares) C(0) ≈ 0.84, and the mean synchronization error (blue triangles)
〈e〉 ≈ 0.39. The same results are found for unidirectional and bidirectional coupling.

Figure 23 shows the cross-correlation and the mean synchronization error be-
tween SL1 and SL2 as functions of the coupling strength between ML1 and SL1 and
between ML2 and SL2. These coupling strengths, γ 1 and γ 2, are varied equally. For
the case of unidirectional coupling, the coupling strength between ML1 and ML2 is
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Fig. 22 Cross-correlation
(green squares) and mean
synchronization error (blue
triangles) as functions of
coupling γ 1 between ML1
and SL1

Fig. 23 Cross-correlation and
mean synchronization error
between SL1 and SL2 as
functions of coupling γ 1 and
γ 2. The black circles and
green diamonds correspond to
unidirectional coupling and
the brown triangles and blue
squares to bidirectional
coupling

set to ε = 80 ns−1 and for bidirectional coupling, it is set to ε = 16 ns−1. The brown
curve with triangles and the blue curve with squares correspond, respectively, to the
cross-correlation and the mean synchronization error for the case of bidirectional
coupling between ML1 and ML2. The black curve with circles and the green curve
with diamonds correspond, respectively, to the cross-correlation and the mean syn-
chronization error for the case of unidirectional coupling between ML1 and ML2.
For the case of bidirectional coupling, the synchronization error between SL1 and
SL2 is 〈e〉 < 0.01.

4.3.3 Communication Quality

Now, we analyze the quality of message transmission using the two-channel scheme.
Figure 24 shows how theQ-factor depends on the coupling parameter between ML1
(ML2) and SL1 (SL2) when the coupling strengths γ 1 and γ 2 are equally varied. For
the case of unidirectional coupling, the coupling strength between ML1 and ML2
is set to ε = 80 ns−1 and for bidirectional coupling to ε = 16 ns−1. Figure 24a
corresponds to chaotic masking, i.e., the message is added to the output signal of
SL1 in the transmitter. The green curve with diamonds (unidirectional coupling)
and brown curve with squares (bidirectional coupling) correspond to a 1 Gbs−1

transmission rate, while the black curve with circles (unidirectional coupling) and
blues curve with triangles (bidirectional coupling) to a 5 Gbs−1 transmission rate.
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Fig. 24 Q-factors. a Chaotic
masking. The brown curve
with squares (bidirectional
coupling) and the green curve
with diamonds (unidirectional
coupling) correspond to a
1 Gbs−1 transmission rate.
The blue curve with triangles
(bidirectional coupling) and
the black curve with circles
(unidirectional coupling)
correspond to a 5 Gbs−1

transmission rate. b Shift
keying. The brown curve with
squares (bidirectional
coupling) and the green curve
with diamonds (unidirectional
coupling) correspond to a
1 Gbs−1 transmission rate

One can see that for bidirectional coupling, a 5 Gbs−1 transmission rate is possible,
since Q ≈ 10 when γ 1 = γ 2 > 80 ns−1.

The Q-factor for shift keying is shown in Fig. 24b. In this case, the message is
added to the pump current of SL1 in the transmitter. The brown curve with squares
corresponds to a 1 Gbs−1 transmission using bidirectional coupling between ML1
and ML2 and the green curve with squares to the case of unidirectional coupling.
One can see that a good quality of transmission is only possible using bidirectional
coupling. For this case, a 5 Gbs−1 transmission is not possible, since Q < 2 for
both unidirectional and bidirectional coupling. For the two-channel scheme, chaotic
modulation is not possible because of very low Q-factors.

4.3.4 Robustness to Parameter Mismatch

To check the robustness of this system to a parameter mismatch between the trans-
mitter and the receiver, we keep the coupling between ML1 and SL1 constant
(γ 1 = 80 ns−1) and vary the coupling between ML2 and SL2 (60 ≤ γ 2 ≤ 100 ns−1).
This mismatch in the coupling parameters causes a difference between the cross-
correlation of the lasers in the transmitter and in the receiver. This difference affects
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Fig. 25 Mean
synchronization error (blue
squares) and Q-factor (green
triangles) as functions of δC
for unidirectional coupling
using chaotic masking at a
1 Gbs−1 transmission rate

Fig. 26 Mean
synchronization error (blue
squares) and Q-factor at
1 Gbs−1 (green triangles) and
5 Gbs−1 (brown circles) as
functions of δC for
bidirectional coupling using
chaotic masking

synchronization between SL1 and SL2, thus changing the quality of the transmitted
message. In the following equation, we will show how the mean synchronization
error and the Q-factor depend on the difference between the cross-correlations of
the lasers in the transmitter and the receiver:

δC = CT − CR. (13)

Here, CT and CR are the cross-correlations between ML1 and SL1 and between
ML2 and SL2. For γ 1 = 80 ns−1, the cross-correlation between ML1 and SL1 is
CT = 0.7781. Figure 25 shows the mean synchronization error (blue squares) and
Q-factor (green triangles) at a 1 Gbs−1 transmission rate for unidirectional coupling
between ML1 and ML2 (ε = 80 ns−1) when chaotic masking is used. As was
mentioned above, a good transmission is obtained when Q ≥ 10, that corresponds
to a mismatch of |γ 1 − γ 2| ≤ 2 ns−1.

Figure 26 shows the mean synchronization error (blue squares) and Q-factor at a
1 (green triangles) and 5 Gbs−1 (brown circles) transmission rates for bidirectional
coupling between ML1 and ML2 (ε = 16 ns−1) using chaotic masking. While at the
1 Gbs−1 transmission rate, a mismatch of |γ 1 − γ 2| ≤ 12 ns−1 is possible to ensure
a good transmission, at the 5 Gbs−1 transmission rate, no parameter mismatch is
allowed. From this figure, it is also clear why the 5 Gbs−1 transmission rate is only
possible for bidirectional coupling, but not for unidirectional coupling. In the case
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Fig. 27 Mean
synchronization error (blue
squares) and Q-factor (green
triangles) as functions of δC
for bidirectional coupling
using shift keying

of bidirectional coupling, the mean synchronization error is 〈e〉 < 0.01 when there
is no parameter mismatch (δC = 0), and for unidirectional coupling, 〈e〉 > 0.15.

Next, consider the case when shift keying is used. Figure 27 shows the mean
synchronization error (blue squares) and Q-factor (green triangles) at a 1 Gbs−1

transmission rate for bidirectional coupling between ML1 and ML2 (ε = 16 ns−1).
One can see that a good transmission is possible when 0 < γ 1 − γ 2 < 9 ns−1. The
curves are not symmetric around δC = 0, as in the previous cases, because when
the message is added to the pump current of SL1, there already exists a parameter
mismatch when the bits “1” are being added to the system. This mismatch in the
pump currents is then compensated by the mismatch between the couplings γ 1 and
γ 2, so that the curves of the mean synchronization error and Q-factor are shifted
with respect to δC. Similar results are obtained when a mismatch exists between
other parameters.

5 Conclusion

In this short review, we have described the behavior of coupled semiconductor lasers
with delayed feedback. Their rich dynamics implies important advantages for ap-
plication in optical communication. This still remains a hot research topic—tens of
articles and several patents appear every year. We believe that future trends in this
direction will be focused on the development of new optical communication systems
based on different types of synchronization, the implementation of laser networks,
and the prominent use of exciting dynamical behaviors of complex systems, such as
chaos and multistability.
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Transient Dynamics on the Edge of Stability

Irma Tristan and Mikhail Rabinovich

Abstract Here we propose, on the basis of the winnerless competition (WLC) princi-
ple, which induces robust transient dynamics in open complex networks, and whose
geometrical image in phase space is a heteroclinic sequence, to study the behav-
ior of complex multiagent systems such as brain or ecological food networks that
present transient dynamics in a network with active elements whose equilibria are in
multidimensional unstable manifolds. In particular, we introduce and study numer-
ically a characteristic of sequential transient dynamics, an uncertainty function that
measures the level of nonreproducibility of generalized heteroclinic channels. For a
Lotka–Volterra-type model, we describe the behavior of uncertainty functions and
its dependence on parameters of the system. We analyze the probability to get a het-
eroclinic chain with fixed uncertainty and its dependence on the number of saddles
of the chain and the number of elements in the network.

1 Introduction

A dynamical complex system consists of many coupled (interacting) dynamical units
forming global modes in their collective behavior. The connectivity and the type of
interaction among units are very important for the cooperative dynamics. When
we consider multiagent, open, nonlinear complex systems that are influenced by
inward (source), and outward (sink) information fluxes along with an external driving
source, the standard approach in the analysis of such systems are based on the
asymptotic behavior, when all transient modes vanish. The transient behavior is
merely treated as an irregularity during which the system is presumed to be immature
for accurate computation. Despite the advantages of this traditional treatment, like
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a rich variety of methods available for locating and manipulating the attractors,
this view overlooks the possibility that a balance encountered along the dynamics
might not be the terminal state. Transitions among multiple metastable states are
common in complex systems of nature. Then, even when the traditional paradigm
for understanding the processing of neural sequences is computation with attractors
[7, 8, 10, 21], a sequential behavior is transient, and thus new approaches are needed
to describe this kind of neural activity. For example, in the field of neuroscience,
the execution of many cognitive functions such as sequential learning, short-term
memory, and decision making involves a transient dynamical process as well as
any dynamical mechanism underlying cognitive processes have to be reproducible
in all experiments in similar environmental conditions and, at the same time, they
must be sensitive to changing internal and external information [17]. With a similar
discussion, in the field of ecology, dynamical principles have been used to design their
models and experiments since the days of Lotka, Volterra, and Gause. Nowadays,
the methods of nonlinear dynamics have become the main tool for the analysis of
evolution of ecological systems. Traditionally, ecological theory is mostly interested
in the asymptotic states of limit sets of the food web and their stability (see, for
example, [4, 19]); however, in complex ecological models, competition often does
not lead to simple attractors, instead it demonstrates sequential activity.

The generation and control of informational sequences and their reorganization or
reshaping is one of the most intriguing subjects for disciplines such as neuroscience
and the theory of autonomous intelligent systems, among others. In spite of the
diversity of sequential activities of sensory, odor, and cognitive neural systems,
they have many similarities from the dynamical point of view [17]. A complex
system operates in a sequence of transient phases, each leading to a metastable
equilibrium, which can be viewed as a temporary leader (or winner) that maintains the
balance until the beginning of the next transition. Therefore, the modeling problem
of such systems has two facets: (i) organization of the phase space that characterizes
the chain of metastable states and the transients regimes connecting them; and (ii)
the amount of time that the system spends in the vicinity of a metastable state.
The former determines the setup for the sequential activity, the direction, and the
strength of information exchange. Thus, one necessary condition on the predictability
of complex network dynamics is to learn how tight or loose the interactions are.
The latter depends on environmental conditions or intrinsic dynamics embedded
in the temporary winner. This assigns a critical role for noise in processes and in
subprocesses operating at different scales in the complex system hierarchy.

Prototype dynamical models that are widely accepted in computational neu-
roscience [13, 22] and ecology [11, 20] have been shown to exhibit a transient
winnerless competition (WLC) [1, 3, 15, 16] for a fairly broad range of parameters.
These experimental results allow us to suppose that it is precisely the competition
between different agents or cognitive states that results in typical sequential behav-
ior. A new biologically inspired concept of sequence processing based on the WLC
principle and on transient but stable heteroclinic sequences (SHSs) was introduced
in 2004; see for instance [1, 17, 18]. As far as transient behaviour is concerned, there
were no adequate mathematical models for it, in particular, of sequential activity that
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occurs in many neural circuits until a few years ago, when the concepts of SHS and
stable heteroclinic channel (SHC) were presented [1, 18]. These are not attractors,
but behave like them in a considerable period of time during the evolution of the
dynamical system. This new mathematical object, as studied in [1, 18], opens the
possibility of the modeling of transient sequential activity in neural circuits and other
networks of active elements as a more accurate mathematical image of this behavior.

In this chapter we investigate the generalized Lottka–Volterra model (GLVM)
for the case of a generalized heteroclinic channel (GHC) containing saddles with
multidimensional unstable manifolds with one leading direction. This is the case
that corresponds to the edge of heteroclinic channel stability.

2 The Model

We consider a system of ordinary differential equations

ẋ = X(x), x ∈ R
d , (1)

where the vector fieldX isC2-smooth. We assume that the system (1) hasN equilibria
Q1, Q2, . . . , QN , such that each Qi is a hyperbolic point of saddle type with one-
dimensional unstable manifoldW u

Qi
, which consists ofQi and two “separatrices,” the

connected components of W u
Qi

\Qi which we denote by Γ +
i and Γ −

i . This manifold
corresponds to the positive eigenvalue of the linearization of system (1) at Qi , i.e.,
that of DX|Qi

. We assume also that

Γ +
i ⊂ Ws

Qi+1
, (2)

where Ws
Qi+1

is the stable manifold of Qi+1.

Definition 1 The set Γ := ∪N
i=1Qi∪N−1

i=1 Γ
+
i is called the heteroclinic sequence

(HS). Denote by λ(i)
1 , . . . , λ(i)

d the eigenvalues of the matrix DX|Qi
.

By the assumption above, one of the eigenvalues is positive. Without loss of
generality one can assume that they are ordered in such a way that

λ
(i)
1 > 0 > Re λ

(i)
2 ≥ · · · ≥ Re λ

(i)
d . (3)

The number

νi = −Re λ(i)
2

λ
(i)
1

is called the saddle value.
If νi > 1, then the compression along the stable manifolds dominates the stretch-

ing along the one-dimensional unstable manifold, this is referred to as a dissipative
saddle. If all saddles in the heteroclinic chain are dissipative, then the trajectories in
their vicinity cannot escape from the chain, providing stability.
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Definition 2 The heteroclinic sequence Γ is called an SHS if

νi > 1, i = 1, . . . ,N. (4)

The conditions (4) are the frame that determine the inequalities for the stability
of the SHS for the specific dynamical model, for example, the Lotka–Volterra (LV)
type models [1, 2].

Recent results of work with the LV model have shown that the requirements for
the system parameters to accomplish SHS stability became harder and harder to
be effective with the increasing number of saddles in the heteroclinic chain [6]. In
particular, a long enough heteroclinic chain became unstable for any finite parameter
values while information transduction and processing became unpredictable.

In this chapter we introduce and study a quantitative characteristic of such an
unpredictability, i.e., an uncertainty function. The dynamical mechanism of unpre-
dictability is caused by a non-one-dimensionality of unstable separatrices that can
destroy the reproducibility of the sequence. According to this we introduce a new
dynamical object for complex systems with WLC dynamics, i.e., heteroclinic tree, a
sequence with many branches.

2.1 SHS for Saddles with Multidimensional Unstable Manifolds

We consider the system (1) and assume that it has N equilibria Q1, Q2, . . . , QN ,
such that each Qi is a hyperbolic, saddle-type point as described in the Introduction,
with possibly multidimensional unstable manifold but with one-dimensional strongly
unstable manifoldW u

Qi
, which consists ofQi and two “separatrices,” denoted by Γ +

i

and Γ −
i as described previously. This manifold corresponds to the maximal positive

eigenvalue of the linearization of system (1) at Qi , i.e., that of DX|Qi
. We make the

analogous assumption (2) where Ws
Qi+1

is the stable manifold of Qi+1.

Definition 3 The set Γ := ∪N
i=1Qi∪N−1

i=1 Γ
+
i is called the heteroclinic sequence

(HS). Denote by λ(i)
1 , . . . , λ(i)

d the eigenvalues of the matrix DX|Qi
.

By the assumption above, at least one of the eigenvalues is positive. Without loss
of generality one can assume that they are ordered in such a way that

λ
(i)
1 > · · · ≥ Re λ(i)

mi
> 0 > Re λ

(i)
mi+1 ≥ · · · ≥ Re λ

(i)
d . (5)

The saddle value is

νi = −Re λ(i)
mi+1

λ
(i)
1

.

The one-dimensional strongly stable manifold corresponds to the eigendirection
related to λ(i)

1 . Such manifold exists and is at least C1-smooth [9].
The heteroclinic sequence, Γ , is called a generalized heteroclinic sequence (GHS)

if νi > 1, i = 1, . . . ,N .
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For mi = 1 this definition coincides with the definition of SHS in [1]. If mi = 1
the conditions imply stability of Γ , in the sense that every trajectory started at a
point in the vicinity of Q1 remains in a neighborhood of Γ until it comes into the
neighborhood of QN . In fact, the motion along this trajectory can be treated as a
sequence of switchings between the equilibria Qi , i = 1, 2, . . . ,N . If mi > 1 then
some amount of stability remains feasible even if we subject the system (1) to the
action of a small noise as we see below.

Of course, the condition Γ +
i ⊂ Ws

Qi+1
indicates the fact that the system (1) is not

structurally stable and can only be realized either for exceptional values of parameters
or for systems of a special form. As an example of such a system one may consider
the LV model that under some conditions on its parameters will possess GHS.

2.2 Uncertainty Functions

We introduce now the quantitative characteristics of such a behavior that measures
the level of nonreproducibility of dynamics in a neighborhood of a GHS.

Let us consider a system (1) having a GHS consisting of the saddles Qi , i =
1, . . . ,N , and heteroclinic orbits joining their vicinities. It is useful to introduce a
characteristic that measures the level of unpredictability for orbits in a neighborhood
of a GHS. One can do it as follows.

Let V (ε, δ) be a neighborhood of the GHS consisting of balls of radius ε around
the saddles united with tunnels of size ε around separatrices joining these saddles.
Let us fix the value of ε. Given a randomly chosen initial point x0 in a δ neighborhood
ofQ1 let pk(δ) denote the probability to stay in V (ε, δ) until the neighborhood of the
last saddle QN for the trajectory starting at x0. In other words pk(δ) measures the
possibility of the occurrence of k successive saddles in the collection Q1 . . .QN .

Definition 4 The quantity

uk(δ) = 1 − pk(δ)

is said to be an uncertainty function for the given GHS.

2.3 LV-Type Model

We will study a transient multiagent competition in the framework of the following
form of a Lotka–Volterra model (LVM):

dai

dt
= ai

⎡

⎣σi(E) + ηi(t) −
n∑

j

ρij aj

⎤

⎦ . (6)

An SHS arises due to strict conditions on the system (1). In the case of the LVM,
one such constraint is that the average activity of the elements in the network is
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positive definite (ai ≥ 0), since the trajectories can never go through the invariant
hyperplanes aj = 0 and the inequalities that frame the relationship between σi and
ρj in order to satisfy the conditions νi > 1.

Here each ai(t) represents the average level of activity of the ith element; ρij ≥ 0
is the interaction strength between elements i and j ; σi(E) is the growth rate for the
average level of activity of element i that depends on the environmental parameter
E (σi/ρii is the overall carrying capacity of element i in the absence of the other
elements); ηi is the level of environmental noise. The product ai

[
σi(E) + ηi(t)

]

determines the interaction of the element i with the environment. We will consider a
nonsymmetrical interaction between the elements in the network, ρij �= ρji . The role
of nonsymmetry in the inhibition as a result of the interaction between the elements
in the network has been discussed previously in [15].

The phase space of the system (6) is bounded by the manifolds {ai = 0}, which
are included in the phase space.

Let us focus on the region in the control parameter space, where, in the absence of
noise, all nontrivial equilibria (fixed points) a0

i = σi/ρii > 0, a0
j = 0, j �= i, on the

ai-axis are saddles. Without loss of generality we may assume that ρii = 1. In this
region long multiactivity transients may exist. The necessary conditions for these are
the following: for each increment i, i.e., among the eigenvalues of the matrix of the
linearized system at the equilibrium (0 · · · 0 σi 0 · · · 0), there is at least one positive:
σj − ρjiσi > 0.

Each saddle has one- or mi-dimensional unstable separatrix (manifold), mi <

N − 2, where N is the number of saddles in the chain, as opposed to n, the number
of element in the network. The unstable separatrix connects the previous saddle
with the next one (or the saddle with a stable equilibrium). For multiagent system
competition, the existence of heteroclinic sequences (that consist of saddles and
heteroclinic trajectories connecting them) in the phase space is structurally stable in
the class of LVM and a very general phenomenon.

2.4 GHS in the LVM in the Absence of Noise

We are dealing now with the system (6) in the case of ηi(t) = 0, i = 1, . . . ,N and
look for the conditions under which the system has a GHS consisting of saddles
Qk = (0, . . . , 0, σik , 0, . . . , 0) linked by heteroclinic trajectories, k = 1, . . . ,N ≤ n.

Selection of Saddles The saddles Qk have the following increments (eigenvalues
of the linearized system at Qk): σj − ρjikσik , j �= ik , and −σik [1].

The saddles Qk = (0, . . . , 0, σik , 0, . . . , 0), k = 2, . . . ,N are selected in such a
way that: there are mik − 1 positive eigenvalues, mik > 1, one of them is maximal,
and the rest, are negative. Then the following inequalities hold

σik+1 − ρik+1ik σik > σ
i
(2)
k+1

− ρ
i
(2)
k+1ik

σik >> · · · > σβk+1 − ρβk+1ik σik > 0, (7)

where βk+1 = i
mik

−1
k+1 , and the other eigenvalues are negative.
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We recall now the conditions [12] under which the system (6) has GHS.

Heteroclinic Connections To assure that there is a heteroclinic orbit Γik−1ik joining
Qk−1 and Qk , the following condition has to be satisfied

1 − ρik−1ik ρikik−1 �= 0. (8)

This orbit belongs to the plane Pik−1ik = ∩n
j �=ik−1,ik

{aj = 0}, where the point Qk

has a one-dimensional strongly unstable direction (indicated by ik+1). This fact can
be shown in the same way as for one-dimensional unstable direction [1]. Indeed, the
restriction of (6) on the planePik−1ik has the form that is independent of the dimension
of the unstable manifold.

Leading Directions Under the following conditions

−σik < σik−1 − ρik−1ik σik < 0, (9)

and

σi − ρikσik < σik−1 − ρik−1ik σik , (10)

the separatrix Γik−1ik comes to Qk following a leading direction, transversal to the
aik -axis on the plane Pik−1ik . To prove it, we use the same arguments as in [1].

Dissipativity of Saddles The saddle value

νik = ρik−1ik σik − σik−1

σik+1 − ρik+1ik σik
, (11)

is defined for every saddle Qk . We assume that

νik > 1, k = 1, . . . ,N. (12)

It means that every saddle Qk is “dissipative.”
Under the conditions (7)–(12) the system (6) in the absence of noise has a GHS

[12], containing the collection {Qk} of the saddles.
Given a randomly chosen initial point in a small δ-neighborhood of Qi0

let pk(δ) be the probability to perform a successive switching among saddles
Qim ,Qim+1 , . . . ,Qim+k−1 , m ≥ 0, m + k − 1 ≤ N , by the orbit going through
this initial point. Then

uk(δ) = 1 − pk(δ)

will be the uncertainty function for the given GHS.
In other words, pk(δ) shows us the level of reproducibility of k successive saddles

in the ordered collection Qi0 , . . . ,QiN . As we mentioned, for SHS, pk(δ) = 1,
k = 0, . . . ,N − 1. So, provided that δ, a set of initial points and the size ε of the
heteroclinic channel, i.e., the distance from the point on a trajectory performing the
switching between saddle to the corresponding heteroclinic trajectory belonging to
the GHS, are chosen in a right way, there is no uncertainty, uk(δ) = 0. But for GHS,
the situation is nontrivial as one can see from the computer modeling.
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3 Numerical Results

To perform calculations according to the definition of uk(δ), one must fix δ, and a
set of initial points. Also it is important to check how uk(δ) depends on parameters
of the system.

3.1 Prescribed Sequence

We first consider values of parameters for which a heteroclinic sequence is pre-
scribed as in [2]. When choosing the nonmaximal positive eigenvalues, we impose
the additional restriction i

(2)
k+2 �= i

(2)
k+1; see [2] for details. We analyze first the case

of GHS containing saddles with one-dimensional unstable manifolds in the system
(6), which is the case of SHS, with n = 25, N = 8, and multiplicative noise of level
1 × 10−4. The expected sequence is ik = 2, 4, 6, 8, 10, 12, 14, 16.

As the first step, let us choose the following values of δ: 1e − 5, 1e − 4, 1e − 3,
1e − 2, 1e − 1, 1, 10 and ε = 1.0, the radius of the heteroclinic channel, so when
the system evolves within this distance of an equilibrium we account it as part of
the sequence. For each value of δ we have performed one experiment consisting
of 100 sets of 100 simulations each studying the dynamics of the LVM, where the
integration was performed by using the Milstein integration scheme [14]. For each
set of 100 simulations: we have chosen the parameters in the following way: (i)
the connectivity matrix (ρij ) is assumed to have diagonal entries all equal to 1; and
since we have a prescribed sequence, the rest of the values will be generated as
described in Sect. 2.4; (ii) the growth rates σi were set to be random numbers taken
uniformly from the interval (5, 10), with a variation smaller than ±5e− 4. For every
simulation (among 100 in a given set) initial conditions for ai(t) were set randomly
but uniformly from (0, δ√

n
), except for a0(0), which was set to equal σ0 + δs where

s is a random number taken uniformly from the interval (− 0.5,0.5).
We defined xk as the number of cases for which it was possible to find a segment of

length k, k = 0, . . . ,N , of the prescribed sequence within each set of 100 simulations.
The uncertainty function is defined as follows: given a value of δ let uk(δ) = s−xk

s
,

for k = 0, . . . ,N where s is the number of simulations in each trial. We will average
this number for all sets of simulations and denote it by uk(δ).

In Fig. 1, for each value of δ, we present the average reproducibility in a form of
a column. Each color is related to the occurrence of the corresponding number of
elements in the sequence: the blue one corresponds to the full reproducibility (eight
elements); the red one, to seven elements; the green one, to six elements; the purple
one, to five elements, the turquoise one, to four elements; the orange one, to three
elements; the light blue one, to two elements; the pink one, to one element; and
the light green one to no appearance of elements. We observe that when the system
starts evolving with initial conditions within the ball of radius δ and δ ≤ ε around
the first saddle in the expected GHS, the average reproducibility for a segment of the
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Fig. 1 Reproducibility for the case of GHS containing saddles with one-dimensional unstable
manifolds, corresponding to n = 25, N = 8, η = 1e− 4, ε = 1.0, δ = 1e− 5, 1e− 4, 1e− 3, 1e−
2, 1e − 1, 1, 10 and σ ∈ [5, 10]

sequence with length 6 or larger is at least 75.81 %. For the case when starting at the
ball of radius δ and ε < δ we observe that we have a reproducibility of 53.2 % for a
segment of the sequence with length 6 or larger even when the complete sequence
is not followed since the first saddle is skipped, but then retaking the sequence from
the following steps (saddles). Still, we get 78.11 % of reproducibility for at least the
last five elements of the sequence.

Figure 2 shows the uncertainty function corresponding to δ values ranging from
1e−5 to 10. In this graph we represent the function of uncertainty in series cor-
responding to different values of δ. We find that when δ ≤ ε, u6(δ) � 0.238 and
u8(δ) � 0.683. Additionally, when ε < δ, u6(δ) � 0.468 and u8(δ) = 1.000. As δ de-
creases, ui(δ), i = 0, . . . ,N decreases as well, and for δ � 1e−3, u8(δ) � 0.335. It is
interesting that for the sequence with length smaller than 6, the uncertainty increases
approximately linearly but jumps up when the sequence length is 7 saddles.

We repeated the same experiment for the case of GHS with two-dimensional
unstable manifolds in the system (6), with the same exact parameters. The results
follow.

In Fig. 3, for each value of δ, we present the average reproducibility in a form
of a column. Each color is related to the occurrence of the corresponding number
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Fig. 2 Uncertainty functions for the case of GHS containing saddles with one-dimensional unstable
manifolds, corresponding to n = 25, N = 8, η = 1e − 4, ε = 1.0, δ = 1e − 5, 1e − 4, 1e −
3, 1e − 2, 1e − 1, 1, 10 and σ ∈ [5, 10]. One sees that the average uncertainty function grows, in
fact, approximately linearly and slowly with an approximate slope of 0.043 from N = 1 to N = 6
and then undergoes an abrupt increasing (compare with [5])

of elements in the sequence as in Fig. 1. This time, when the system starts evolving
with initial conditions within the ball of radius δ and δ ≤ ε, the reproducibility for a
segment of the sequence with length 6 or larger is at least 63.02 %, which is 12.79 %
less than in the first experiment. But when the system starts its evolution within
the ball of radius δ and ε < δ we observe that its reproducibility is 45.45 % for a
segment of the sequence with length 6 or larger even when the complete sequence
does not follow because it skips the first saddle, but then retakes the sequence from
the following steps. Here, the reproducibility is 70.86 % for at least the last five
elements of the sequence, which is only 7.25 % less than in the first experiment.

In Fig. 4, as in Fig. 2, we represent the function of uncertainty in series corre-
sponding to a different value of δ and we find out that when δ ≤ ε, u6(δ) � 0.370
and u8(δ) � 0.821. Meanwhile, when ε < δ, u6(δ) � 0.546 and u8(δ) = 0.994.

As δ decreases, ui(δ), i = 0, . . . ,N decreases as well, and for δ � 1e − 3,
u8(δ) � 0.362, which has increased only 0.017 from the case of a SHC for the same
values of δ.

It is important to note, with respect to the experiments described here, that even
though the average reproducibility for the complete set of realizations is not so close
to 100 %, there are many individual trials in which we observe full reproducibility.
As we use the median of the frequency of reproducibility within trials, we understand
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Fig. 3 Reproducibility for the case of GHS containing saddles with two-dimensional unstable
manifolds, corresponding to n = 25, N = 8, η = 1e− 4, ε = 1.0, δ = 1e− 5, 1e− 4, 1e− 3, 1e−
2, 1e − 1, 1, 10 and σ ∈ [5, 10]

that the average reproducibility could be misleading into think that the GHS is not
as reproducible as it actually is.

In Fig. 5, we present the median of the frequency of the reproducibility against
different values of δ for each of the 100 trials. Here we juxtapose series corresponding
in the case of SHS (blue series) and a series corresponding in the case of GHS (red
series). We observe that if δ is significantly smaller than ε, then for the case of
SHS the sequence is reproduced completely most of the times in most of the trials,
meanwhile for the case of GHS containing saddles with two-dimensional unstable
manifolds, even though the sequence is reproduced completely most of the times, it
is not usual to get 100 % reproducibility within trials. So the GHS reproducibility
shows a stronger dependence on δ, unlike the SHS case, unless ε < δ, where GHS
and SHS reproducibility yields a similar behavior.

In summary:

(i) When the system starts its evolution in a δ-vicinity around the first saddle of
the sequence for δ small enough, there is a very low rate of unpredictability,
even compared with the case of a SHS, since the difference between them is
significantly low. Nevertheless, the difference increases with δ, until it exceeds
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Fig. 4 Uncertainty functions for the case of GHS containing saddles with two-dimensional unstable
manifolds, corresponding to n = 25, N = 8, η = 1e− 4, ε = 1.0, δ = 1e− 5, 1e− 4, 1e− 3, 1e−
2, 1e − 1, 1, 10 and σ ∈ [5, 10]. Here one sees, similarly to Fig. 2, that the average uncertainty
function grows approximately linearly and slowly with an approximate slope of 0.049 from N = 2
to N = 6 and then undergoes an abrupt increasing (see [5])

the predetermined size of the heteroclinic channel ε. The behavior of the uncer-
tainty functions for the both cases becomes similar again. The occurrence of at
least five of eight saddles in sequence is preserved with an uncertainty below
0.220 for the case of SHS and below 0.292 for the case of GHS.

(ii) The main qualitative observation we obtained here is that the longer the sequence
of saddles, the greater the uncertainty function is. This is in agreement with the
following: it is well known that the length of the sequence of the informational
items that a human is able to keep is about 7 or less [5, 6].

(iii) It is interesting to remark that the multidimensionality factor is precisely the
cause of a stronger dependence on the initial conditions when it comes to the
full reproducibility of the sequence when δ < ε as seen in Fig. 5, but as δ
increases and gets greater than ε the behavior becomes similar and retakes the
heteroclinic sequence later on (in spite of the size of δ).
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Fig. 5 Experiment corresponding to n = 25, N = 8, η = 1e−4, ε = 1.0, δ = 1e−5, 1e−4, 1e−
3, 1e − 2, 1e − 1, 1, 10 and σ ∈ [5, 10]

3.2 Uncertainty Functions for the Case of GHS Containing
Saddles with Arbitrary Multidimensional Unstable Manifolds

Complementary to the study we made in Sect. 3.1, we consider now the case of
GHS also containing saddles with multidimensional unstable manifolds. Here, we
do not prescribe the sequence as we did for Sect. 3.1. The dimension of the unstable
manifolds of the saddles is not fixed.

To perform calculations according to the definition of uk(δ), we must choose
δ, and a set of initial points. Differing from the previous performance, we do not
have a prescribed sequence, the system is free to evolve according to the set of
parameters and there is no expected order in the GHS. The GHS contains saddles
with multidimensional unstable manifolds and we are interested in studying the
behavior of the system as the number of elements in the network increases.

Our experiment considers the following values for the number of elements of
the network n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, as well as the following
parameters: η = 1e − 4, δ = 1e − 3, and ε = 0.5. The time for the evolution
of the system was fixed: T = 100. As before, for each value of n we performed
100 sets of 100 simulations each of the dynamics of the LVM, where the integration
was performed by using the Milstein integration scheme [14]. For each set of 100
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Fig. 6 Uncertainty functions for the case of GHS containing saddles with multidimensional unstable
manifolds, corresponding to n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, η = 1e − 4, ε = 0.5,
δ = 1e − 3 and σ ∈ [5, 10]

simulations: (i) the connectivity matrix (ρij ) is assumed to have diagonal entries all
equal to 1, and since we do not have a prescribed sequence, the rest of the values are
set to be random numbers taken uniformly from the interval (1 × 10−10, 20) with a
variation smaller than ±10−4, (ii) the growth rates σi were set to be random numbers
taken uniformly from the interval (5, 10), with a variation smaller than ±5e − 4.
For every simulation (among 100 in a given set) initial conditions for ai(t) were set
randomly but uniformly from (0, δ√

n
), with the exception of a0(0), which was set

to equal σ0 + δs (where s is a random number taken uniformly from the interval
(− 0.5,0.5)).

The system is expected to evolve in a direction corresponding to the maximal
positive increment at each saddle as we described in the Sect. 3.1. If it did not evolve
in this manner the simulation was terminated.

Unlike Sect. 3.1, xk is defined as the number of times that the GHS had length
k, k = 0, . . . ,N within each set of 100 simulations. The uncertainty function is
defined as follows: given a value of δ let uk(δ) = s−xk

s
, for k = 0, . . . ,N where s is

the number of simulations in each trial. We will average this number for all sets of
simulations and denote it by uk(δ). Seldom were there sets for which the length was
atypically large. Those sets were removed when calculating uk(δ).
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In Fig. 6, the graph of the uncertainty function is shown. In this graph we present
the function of uncertainty in series corresponding to different values of n. We find
out that except for n = 10, 20, u3(δ) � 0.558; and except for n = 10, u2(δ) � 0.364.
Also, we would like to point out that the behavior for n > 20 is not essentially
different for each value of n. We have the qualitative observation that the larger the
number of elements in the network the greater the function of uncertainty is. The
difference comes to be less remarkable as n increases.

The average number of nodes involved in GHS for our experiment as well as the
median of this number is illustrated in Fig. 7. For both quantities we find that there
is an accelerated growing rate of the quantities when n � 30 compared to the rate
of growing for n > 30, going from a growing rate of 0.0830 to one of 0.0178 for
the average number of nodes, and from 0.0948 to 0.0172 for the median number of
nodes. Again, we presume that this behavior is influenced by the time available for
the system to evolve.

Based on the previous observation, we presume a similar behavior for the average
length of the GHS (taking into account that some saddles may be visited more than
once during heteroclinic switching); for the set of simulations of the dynamics of the
LVM increasing in a rate of 0.0524 from n = 10 to n = 60 and becoming less than
0.006 for n > 60 because of our decision to fix the time available for the evolution
of the system, see Fig. 8.

The average dimension of the unstable manifold W u at each saddle in the GHS
for every simulation of the LVM is shown in Fig. 9. It is evident that this quantity
is approximately linearly dependent on the number of elements in the network in a
rate of 0.0389. The greater the number of elements, then the greater the probability
to meet in the sequence with a saddle with multidimensional unstable manifold.

Its evolution in a δ-vicinity around the first saddle of the sequence for δ small
enough, we had a very low rate of predictability for our model with a GHS compared
with the case of prescribed order. It is also interesting to remark that this rate of
uncertainty for u3(δ) is unchanged even when n increases.

4 Conclusions

There are two different ways for a heteroclinic channel to lose its stability: (i) the
stretching of a phase volume along the sequence became larger than compressing,
or (ii) the unstable separatrix of a saddle became multidimensional. In this chapter
we have considered the second scenario, which in our opinion is the most typical
for complex multiagent networks like the brain or an ecological food web. We have
shown that in complex networks, in spite of the multidimensionality of saddles
unstable manifold, some amount of order along transients remains to be feasible:
many trajectories follow a strongly unstable direction and the probability to indicate
a generalized heteroclinic sequence is high enough.
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Fig. 7 Average number of nodes involved in GHS for the experiment described for n =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, η = 1e − 4, ε = 0.5, δ = 1e − 3, T = 100

Fig. 8 Average length of the GHS for the experiment described for n =
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, η = 1e − 4, ε = 0.5, δ = 1e − 3, T = 100
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Fig. 9 Average dimension of the unstable manifold W u at each saddle in the GHS described for
n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, η = 1e − 4, ε = 0.5, δ = 1e − 3, T = 100
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Phase Control of Chaotic Maps

Sijo K. Joseph and Miguel A. F. Sanjuán

Abstract The phase control is a well-known control method that has been typically
applied to periodically driven dynamical systems. Its application allows controlling
them through the phase difference between the forcing term and another harmonic
perturbation. In the current chapter, we focus on the application of this control method
to maps. In particular, we analyze two paradigmatic maps: the bouncing ball map
and the Hénon map. As a result, we observe that the application of the phase control
can suppress or enhance the chaotic behavior on them. We also analyze the crisis
induced intermittency in the bouncing ball map when the phase of the control signal
is varied. Finally, the scaling behavior of the average Lyapunov exponents near the
phase induced crisis is studied. Future applications of the phase control method are
also discussed.

1 Introduction

The important characteristic of a chaotic dynamical system is the exponential sensi-
tivity to the initial conditions. Even arbitrary close trajectories diverge with time at a
finite distance, thus the long term predictions are impossible. This is what is known
as the butterfly effect as concocted by Philip Merilees “Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?” If that is true, our natural counter question
is, what happens when another butterfly flaps its wings, will the effect get canceled?
Our answer is yes.

One of the pioneering methods of chaos control, the OGY controlling chaos
method [19], is based on the fact that a very small variation of a system parameter,
by means of a feedback, can transform a chaotic trajectory into a periodic one and
vice versa.
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The idea that chaos could be controlled, instead of chaos could not be forecasted,
gave rise to an explosive interest to researchers. Despite numerous publications in
this field, only a few strict facts were established, while many issues remained open.
In view of the wide scope of possible applications, this area is of interest both to the
dynamical systems theorists and control engineers [1, 7, 27].

1.1 Phase Control Method

Chaos control methods are usually classified within two main categories depending
on how they interact with the chaotic system. The first category corresponds to
feedback methods, which are aimed to stabilize one of the stable orbits that lie in the
chaotic attractor by applying small perturbations that depend on the time-varying state
of the system. The experimental implementation of the feedback methods is hard to
achieve since it demands a fast response to the time variation of the system state. For
this reason, nonfeedback methods have appeared more useful in many practical cases.
The nonfeedback methods allow to switch between different dynamical behaviors
by applying either parameter perturbations or external forcing signals that do not
depend on the current state of the system [3, 14, 21].

Here, we focus on a nonfeedback control technique called phase control method
[27]. This technique has been used to control the chaotic behavior of a Duffing
oscillator [25], to control intermittencies [26], and to avoid escapes in a nonlinear
oscillator [22], among others. Similar ideas have been also applied in the context of
Josephson junctions [4, 5] and population dynamics in theoretical ecology [10].

Nonfeedback methods have been mainly used to suppress chaos in periodically
driven dynamical systems:

ẋ = f(x,p) + F cos (ωt), (1)

where x, f, and F are vectors of them-dimensional phase space, andp is the parameter
vector of the system. The main idea of these nonfeedback methods is to apply a
harmonic perturbation either to some of the parameters of the system

ẋ = f(x,pi(1 + ε cos (rωt + φ)),pj ) + F cos (ωt) (2)

for j = 1 . . . n being j �= i, or as an external additional forcing to the system,

ẋ = f(x, p) + F cos (ωt) + εu cos (rωt + φ). (3)

Here, u is conveniently chosen as a unitary vector, r determines the ratio between
the frequency of the forcing and the natural frequency of the system, and φ is the
phase difference between the natural oscillation and the forcing signal.

In resonant parametric perturbation methods, the numerical and experimental
explorations have been essentially focused on the role played by the perturbation
amplitude ε and the resonance condition r , but the role of the phase difference φ has
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hardly been explored. However, it is observed that the phase differenceφ between the
periodic forcing and the perturbation has certain influence on the dynamical behavior
of the system. The type of control based on varying the phase difference φ in search
of a desired dynamical behavior is known as the phase control technique.

2 Dissipative Maps

In dissipative maps the phase space volume is not conserved. The phase space volume
shrinks as time proceeds. Hence the value of the Jacobian is less than one. In area-
preserving maps, the value of the Jacobian is unity, and we cannot observe a definite
chaotic attractor. However in a dissipative map, we can observe a definite chaotic
attractor. We are going to study two different dissipative chaotic maps called the
dissipative bouncing ball map and the Hénon map which are two simple paradigmatic
models of dissipative maps.

2.1 Bouncing Ball Map

An acceleration mechanism of cosmic ray particles interacting with the time-
dependent magnetic field was proposed by Enrico Fermi in 1949 [6]. This phe-
nomenon was explained later in terms of a simple classical model by Stanislaw
Ulam [24]. Afterward, this model became popular as the Fermi–Ulam model [17]
and several modified versions were proposed over the years because of its interesting
dynamical properties [2, 16]. Among the different models, the simplest one that dis-
plays chaotic behavior is the system with one ball bouncing on a vibrating table under
the action of gravity. This is widely known as the bouncing ball system [11, 13].

In the simple bouncing ball model, a ball bounces on a sinusoidally vibrating
table under the action of gravity. The evolution of the bouncing ball system is a
mix of continuous and discrete evolution. In between the collisions, the evolution
of the system is continuous but it is discontinuous at the time of collision. Using
this property, we can easily make a discrete map of the system by analyzing the
impact time series. Let X(t) be the position of the ball with respect to the ground
reference frame, then the series X(t0),X(t1),X(t2), . . .,X(tn) represents the impact
time position series of the ball.

Next, we follow the derivation of the bouncing ball map as it was introduced in
Ref. [11]. Let V̄k be the velocity of the ball with respect to the fixed reference frame,
just after the impact time tk and V̄

′
k be the velocity just before the impact time tk . The

nature of the impact is relevant, so that if the impact between table and the ball is
inelastic, we have

V̄k = −αV̄ ′
k , (4)

where α is the coefficient of restitution 0 < α ≤ 1. When α = 1, the collision is
completely elastic. We are interested in the quantities which are in the ground frame
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of reference. Considering the k + 1 collision, consequently we will get

V̄k+1 = −αV̄ ′
k+1, (5)

V̄k+1 = Vk+1 − Uk+1, (6)

V̄
′
k+1 = V

′
k+1 − Uk+1, (7)

whereUk+1 is the velocity of the vibrating table at the (k+1)th collision. Substituting
Eqs. (6) and (7) in Eq. (5), we get

Vk+1 − Uk+1 = −α(V
′
k+1 − Uk+1),

Vk+1 = (1 + α)Uk+1 − αV
′
k+1. (8)

The variable t represents the instantaneous time between two adjacent collisions
(tk ≤ t ≤ tk+1), where tk is the time of the kth impact on the table and tk+1 is the time
of the (k + 1)th impact. Let X(t) be the vertical position of the ball in the ground
frame of reference, then according to Newton’s law, the instantaneous position of
the ball is given by

X(t) = Xk + Vk(t − tk) − g

2
(t − tk)

2 (9)

and the velocity of the table is given by

Vk+1 = dX

dt
|t=tk+1 . (10)

Now we can compute the impact velocity equation. The table position is given by
s(t) = A sin (ωt + θ0), so that our table velocity is given by

Uk+1 = ds

dt
|t=tk+1 . (11)

The instantaneous distance between the table and the ball is given by d(t) = x(t) −
s(t). We can find the impact time by solving d(tk+1) = 0 since an impact occurs
when the distance between the table and the ball goes to zero. Therefore

Xk + Vk(tk+1 − tk) − 1

2
g(tk+1 − tk)

2 − A sin (ωtk+1 + θ0) = 0. (12)

The above equation is called the time recurrence equation. If we substitute Uk =
Aω cos (ωtk + θ0) and V

′
k+1 = Vk − g(tk+1 − tk) in Eq. (8), we can obtain Eq. (13),

which is the recurrence velocity equation

Vk+1 = (1 + α)Aω cos (ωtk+1 + θ0) − α[Vk − g(tk+1 − tk)]. (13)
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The complete recurrence equations are given by

Xk + Vk(tk+1 − tk) − 1

2
g(tk+1 − tk)

2 − A sin (ωtk+1 + θ0) = 0, (14)

Vk+1 = (1 + α)Aω cos (ωtk+1 + θ0) − α[Vk − g(tk+1 − tk)]. (15)

These are the exact time and velocity recurrence equations, respectively. But one of
them is explicit and another one is implicit. Since we want to construct a nonlinear
map out of these equations, we need both equations to be explicit. To solve this
problem, we make use of an approximation called the high bounce approximation.

2.1.1 High Bounce Approximation

In this approximation, we assume that the bouncing height of the ball is large com-
pared with the vibration of the table. Thus, we say that the velocity of the ball simply
change its sign for the (k + 1)th collision, therefore

V
′
k+1 = −Vk. (16)

Using the equation of motion we have,

V
′
k+1 = Vk − g(tk+1 − tk). (17)

Substituting Eq. (16) in Eq. (17) we have,

tk+1 = tk + 2Vk
g
. (18)

Thus the approximated explicit recurrence equations are given by

tk+1 = tk + 2Vk
g

, (19)

Vk+1 = (1 + α)Aω cos (ωt + θ0) − α[Vk − g(tk+1 − tk)].

If we transform Eqs. (18) and (19) to make them dimensionless by changing variables
as xk = ωtk + θ0, yk = (2ω/g)Vk , and β = (2ω2 A/g)(1 + α) we get,

xk+1 = xk + yk

yk+1 = β cos xk+1 − α[yk − 2(xk+1 − xk)].
(20)

If we substitute the phase equation xk+1 = xk + yk in Eq. (20), we get the complete
approximated explicit recurrence equations, which are given by,

xn+1 = xn + yn

yn+1 = αyn + β cos (xn + yn).
(21)
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Here x is associated with the time interval between collisions and y is associated with
the velocity of the ball just after the impact. Here α is the coefficient of restitution
and β is related to the frequency and amplitude of the table. The Jacobian matrix of
a two-dimensional map is defined by

J = ∂(xi+1, yi+1)

∂(xi , yi)
, (22)

so that the Jacobian matrix of the bouncing ball map is given by,

J =
⎡

⎣
1 1

βS α + βS

⎤

⎦ ,

where S = sin (xk + yk). In order to calculate the dissipation effect, let us take the
determinant of the Jacobian matrix, which is given by,

|J | =
∣
∣
∣
∣
∣
∣

1 1

β sin (xk + yk) α + β sin (xk + yk)

∣
∣
∣
∣
∣
∣

So that,

|J | = α. (23)

Here in the dissipative bouncing ball model, we are considering the inelastic col-
lisions of the ball with the table. Hence the energy is not conserved. The energy
loss is determined by the dissipation coefficient α. Hence, it is evident that α is the
dissipation coefficient, so here, α gives the measure of the contraction of phase space.

The eigenvalues of the Jacobian matrix are given by,

Λ2 −Λ T r(J ) + |J | = 0, (24)

where T r(J ) means the trace of the matrix J . Thus, by solving this equation, we get

Λ = 1

2

[
(1 + α + βS) ±

√
(1 + α + βS)2 − 4α

]
, (25)

where S = sin (xk + yk) and Λ are the local Lyapunov exponents. The global
Lyapunov exponents are defined as,

λj = lim
n→∞

1

n
ln |Λj |, j = 1, 2, (26)

whereΛj are the eigenvalues ofM =
n∏

i=1

Ji(xi , yi). If the value of λj is positive, then

the phase space trajectories diverge exponentially, which in turn gives the chaotic
behavior in the system.
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Fig. 1 The figure shows the chaotic attractor of the dissipative bouncing ball map. Here we have
taken the parameter values α = 0.1 and β = 6.56

Since the bouncing ball system is dissipative, there exists a chaotic attractor,
which is shown in Fig. 1. Here the width of the attractor depends on the dissipation
coefficient α. If the value of α is close to zero, the width of the attractor is minimum
and the width is maximum when the value of the alpha is close to unity. If the value of
the dissipation coefficient α reaches unity, then the specific chaotic attractor vanishes
and the system shows a sort of Hamiltonian chaos.

2.1.2 Standard Map

If the coefficient of restitution is unity, then the dissipative bouncing ball map reduces
to the standard map,

xn+1 = xn + yn

yn+1 = yn + β cos (xn + yn).
(27)

This is an area-preserving map since the determinant of the Jacobian matrix is unity.
This is one of the important chaotic maps also studied in connection with the kicked
rotor.
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2.2 Hénon Map

The Lorenz system consists of a system of three first-order ordinary differential
equations whose solutions for an appropriate choice of parameters tend toward a
strange attractor called the Lorenz attractor. Hénon’s original idea was to replace
these first-order ordinary differential equations by a simple two-dimensional map
which shows the same properties of the Lorenz system.

We are going to consider Hénon’s original derivation of the map [12]. Consider a
region elongated along the x axis. We begin the folding by

T
′

: x
′ = x, y

′ = y + 1 − ax2. (28)

We complete the folding by a contraction along the x axis,

T
′′

: x
′′ = bx

′
, y

′′ = y
′
. (29)

Finally we come back to the orientation along the x axis by,

T
′′′

: x
′′′ = y

′′
, y

′′′ = x
′′
. (30)

The final map will be defined as the product T = T
′′′
T

′′
T

′
. If we write (xn, yn)

for (x, y) and (xn+1, yn+1) for (x
′′′

, y
′′′

), then we have,

xn+1 = yn + 1 − ax2
n

yn+1 = bxn.
(31)

The above map is called the Hénon map, but we use a slightly different version
of the Hénon map, which is given by,

xn+1 = A+ Byn − x2
n

yn+1 = xn.
(32)

This is one of the paradigmatic examples of discrete dynamical systems that exhibit
chaotic behavior, where A and B are the parameters of the map. The Jacobian of the
map is given by

|J | =
∣
∣
∣
∣
∣
∣

−2xn B

1 0

∣
∣
∣
∣
∣
∣

so that,

|J | = −B. (33)

This makes that −B is a measure of the contraction of the phase space.
The chaotic attractor for the Hénon map is shown in Fig. 2.
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Fig. 2 The figure shows the
chaotic attractor for the
Hénon map. Here we take the
parameter values A = 1.3 and
B = 0.285
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3 Phase Control of Chaos

Now we are going to apply the phase control method on nonlinear chaotic maps such
as the dissipative bouncing ball map and the Hénon map. The key idea of the phase
control method is to apply a harmonic external perturbation to one of the variables
of the map. It is possible to control chaos in the system by simply tuning the phase
of the external perturbation.

3.1 Control of Chaos in the Bouncing Ball Map

We apply the phase control method on the bouncing ball map Eq. (21), by adding an
external harmonic perturbation to the parameter β. Finally, the equation used for the
numerical exploration of our technique reads

xn+1 = xn + yn

yn+1 = αyn + β(1 + ε sin (2πrn+ φ))

× cos (xn + yn),

. (34)

where ε, φ, and r are used as free parameters and α = 0.1 is fixed. When the forcing
amplitude ε is zero, this map reduces to the simple bouncing ball map.

One of the key ideas of this control technique consists of assuming that the external
perturbation is of small amplitude, so that once we may fix r and for a considerably
small value of parameter ε, we may use only φ as a free parameter to control the sys-
tem. Physically it means that we are adding an external small sinusoidal perturbation
to the table frequency and changing only the phase of the applied control signal.

In order to analyze the effect of the phase control on the bouncing ball system,
first we have to observe the dynamics of the system without the control.
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Fig. 3 The figure shows the
bifurcation diagram of the
bouncing ball system by
varying the parameter β. Here
we can observe two wide
periodic windows at β = 6
and at β = 10.3

We have analyzed the bifurcation diagram of the unperturbed bouncing ball system
by changing the value of parameter β. This is shown in the Fig. 3, where we can see
some regions of chaotic behavior and some periodic windows. For example, the one
centered at β = 6 and other at β = 10.3. By applying our phase control method, it
is possible to change the behavior of the system from chaotic to periodic and vice
versa. Thus, we simply start with parameter values which give chaotic dynamics in
the unperturbed bouncing ball system. In order to evaluate in a detailed way the role
of ε andφ, we calculate the largest Lyapunov exponent over every point in a 200×200
grid in the rectangle of the parameter plane 0.02 ≤ ε ≤ 0.07, 0 ≤ φ ≤ 2π , fixing
r for each computation, which is shown in Fig. 4. We consider that the perturbation
acting on the system is small, and consequently this requires small values of ε. As we
are searching for areas in the parameter plane where the transition between chaotic
and regular motion takes place, we take care of transient states by waiting for a
sufficiently long time to fix the corresponding stable regime. We plot the results of
several integer and half integer r values. The black and white color associated with
each point in the (ε,φ) plane indicates the sign of the largest Lyapunov exponent.
If it is greater than zero (white region), then the dynamics is chaotic and if it is less
than zero (black region), then the system shows a regular periodic behavior.

Figure 4 shows that there exist wide regions of the (ε,φ) plane where λ is smaller
than zero, and therefore, chaos is suppressed. We note that the controlled regions, far
from having a trivial or irregular shape, present a symmetry that depends on the parity
of the r parameter. The system has π symmetry when r is an odd multiple of 0.5 and
2π symmetry when r takes even multiples of 0.5. The most interesting feature is the
role of the phase φ in selecting the final state of the system. From Fig. 4a, we can see
that we have a periodic behavior for the parameter values at φ = π/2 and ε = 0.03,
so that we fix these values and search for the system behavior. Thus, we have plotted
the bifurcation diagram in Fig. 5 by fixing φ = π/2, ε = 0.03, and α = 0.1. It
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Fig. 4 The figure shows the sign of the largest Lyapunov exponent λ computed at every point of
a 200 × 200 grid of (ε,φ) values. The range of variation is 0 ≤ φ ≤ 2π , 0.02 ≤ ε ≤ 0.07 for
different values of the resonant condition. a r = 0.5. b r = 1.0. c r = 1.5. d r = 2.0. The Lyapunov
exponent is negative in the black regions. These regions have a structure that follows the expected
symmetry around φ = π when r is an odd multiple of 0.5 and the trivial symmetry around φ = 2π
for an even multiple of 0.5. We set the parameters β = 6.56, α = 0.1

is observed that by a proper choice of the frequency of the controlling signal and a
suitable phase difference φ, it is possible to avoid chaos in the bouncing ball system.

We can observe other interesting phenomena like the appearance as well as the
disappearance of periodic windows in the bifurcation diagram. Next, we compare the
bifurcation diagram without the perturbation (Fig. 3) with the bifurcation diagram
when the perturbation is applied (Fig. 5). Thus we can observe that in Fig. 5, a new
periodic window arises around β = 4, and at the same time, we can observe that
the periodic window centered at β = 10.3 vanishes. This interesting phenomenon is
particularly useful to generate as well as suppress chaos in a dynamical system. If
we operate our system near the parameter range, where new periodic windows arise
when a periodic perturbation is applied, we can easily control chaos. If the system
is operating in a periodic window which vanishes under the action of the periodic
perturbation, then we can generate chaos in the system. In this way, we can switch
the system behavior from chaotic to periodic and vice versa.
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Fig. 5 The figure shows the
bifurcation diagram of the
bouncing ball system when
the phase control is applied.
On the y axis we have the
velocity of the bouncing ball.
We see that a new periodic
window arises under
perturbation when β = 4, and
at the same time, the periodic
window centered at β = 10.3
disappears. Here the
perturbation parameters are
taken as α = 0.1, r = 0.5,
ε = 0.03, and φ = π/2

3.2 Control of Chaos in the Hénon Map

In order to apply our phase control technique in the Hénon map Eq. (21), we add
a harmonic perturbation ε sin (2πrn + φ) to the parameter B. Finally the equation
used for the numerical exploration of the technique reads

xn+1 = A+ B(1 + ε sin (2πrn+ φ))yn − x2
n

yn+1 = xn.
(35)

In order to suppress chaos, we have to search for the suitable ε, φ values in the
Eq. (35). To analyze the effect of phase control on the Hénon map, we simply start
with parameter values for which there is chaotic dynamics in the unperturbed Hénon
map (Fig. 6).

Afterward, to evaluate in a detailed way the role of ε and φ, we calculate the
largest Lyapunov exponent over every point in a 200 × 200 grid in the rectangle of
the parameter plane 0.003 ≤ ε ≤ 0.006, 0 ≤ φ ≤ 2π , fixing r for each computation,
which is shown in Fig. 7. Note that as we explained before, we consider that the
perturbation acting on the system is small, and consequently, this requires small
values of ε.

As we are searching for areas in the parameter plane where the transition between
chaotic and regular motion takes place, we take care of transient states by waiting for
a sufficiently long time to fix the corresponding stable regime. We plot the results of
several integer and half integer r values. The black and white color associated with
each point in the (ε,φ) plane indicates the sign of the largest Lyapunov exponent.
If it is greater than zero (white region), then the dynamics is chaotic and if it is less
than zero (black region), then the system shows a regular periodic behavior.
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Fig. 6 The figure shows the
period two attractor in the
phase space of the bouncing
ball system when the periodic
perturbation is applied. When
the periodic perturbation is
absent, the bouncing ball map
shows a chaotic attractor
which is shown in Fig. 1. Here
we take the parameter values
α = 0.1,β = 6.56, ε =
0.03, r = 0.5, and φ = 1.57

Figure 7 shows that there exist wide regions of the (ε,φ) plane where λ is smaller
than zero, and therefore chaos is suppressed. The control regions, far from having
a trivial or irregular shape, present a symmetry that depends on the parity of the r
parameter. The most interesting feature is the role of the phase φ in selecting the
final state of the system. From Fig. 7a, we can see that we have a periodic behavior
for the parameter values at φ = π/2 and ε = 0.00475, so that we fix these values
and search for the system behavior. Thus, we have plotted the phase space diagram
in Fig. 8 by fixing A = 1.3,B = 0.285,φ = π/2, and ε = 0.00475. Here we can
see that the chaotic Hénon attractor (shown in Fig. 2) turned into an orbit of period
14 (shown in Fig. 8). As a result, it is possible to avoid chaos in the Hénon map by
a proper choice of the phase difference φ.

4 Phase-Dependent Intermittency and Crisis

When the control parameter is modified, a chaotic attractor can touch an unstable
periodic orbit inside its basin of attraction, and a sudden expansion of the chaotic
attractor is observed. This phenomenon is called an interior crisis [8]. Beyond the cri-
sis, the system preserves a memory of the former situation, thus a fraction of the time
is spent in the region corresponding to the precrisis attractor, and during the rest of the
time, excursions around the formerly unstable periodic orbit take place. This behavior
is known as crisis-induced intermittency. Before the crisis, such excursions cannot
take place unless noise or an external perturbation induces them. We show that the
intermittency at an interior crisis can be controlled by our phase control method. We
give a numerical evidence that if we choose a proper parameter value, it can be used
to enhance the crisis. An experimental and theoretical study of phase control of inter-
mittency was already tested successfully in a laser system by Zambrano et al. [26].
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Fig. 7 The figure shows the sign of the largest Lyapunov exponent λ computed at every point of
a 200 × 200 grid of (ε,φ) values. The range of variation is 0 ≤ φ ≤ 2π , 0.003 ≤ ε ≤ 0.006
for different values of the resonant condition: a r = 0.5. b r = 1.0. c r = 1.5. d r = 2.0. The
Lyapunov exponent is negative in the black regions. These regions have a structure that follows the
expected symmetry around φ = π when r is an odd multiple of 0.5 and the trivial symmetry around
φ = 2π for an even multiple of 0.5. Here we take A = 1.3 and B = 0.285

Fig. 8 The figure shows the
period 14 attractor when the
external periodic perturbation
is applied. When the external
perturbation is absent, the
system shows a chaotic
attractor which is shown in
Fig. 2. Here we take the
parameter values
A = 1.3, B = 0.285, ε =
0.00475, φ = π/2, and
r = 0.5
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Fig. 9 The figure shows the
average value of the relative
maxima of the velocity,
< H >, computed at every
point of a 200 × 200 grid of
(ε,φ) values in the region
0 ≤φ≤ 2π , 0.02 ≤ ε≤ 0.07
for the perturbed bouncing
ball map. The white region
shows the sudden expansion
in the attractor. Here we set
the parameters α = 0.1,
β = 4.05, and r = 0.5.

4.1 Intermittency in the Bouncing Ball Map

In order to analyze the effect of the phase φ and the forcing amplitude ε on the crisis,
we scan over the possible φ and ε values to determine the region where the crisis is
induced. A good indicator to discriminate between the different dynamical states of
the system for different values of the parameter is

< H >=< max(yn) >|yn>y0 , (36)

where < H > gives the average value of the maximum of the time series of yn.
In other words, < H > is the average value of the relative maximum velocity of
the bouncing ball just after the impact. The value of y0 is chosen in such a way that
< H > enables us to distinguish between the chaos and the intermittent regime. In the
numerical simulations, we have observed that taking y0 = 10−6, that is, neglecting
only extremely small peaks of the signal, is sufficient for this discrimination.

In Fig. 9, the wide symmetrical white regions show that there is an expansion in
the attractor. But that exists only for some specific values of the parameters. We can
see that there is a range of phase values (white regions) that give a sudden expansion
in the attractor, which in turn, leads to intermittency. There exists a symmetry in
the phase value of the applied signal which induces the internal crisis in the system.
This can be explained in terms of the symmetry of the map under the transformation
φ → φ + π/2. This symmetry depends on the frequency ratio r . In order to gain a
deeper insight into the role of φ in nonlinear systems, we study the effect of phase
on the perturbed map close to an interior crisis. From Fig. 10a and b, we can observe
the sudden expansion of the attractor. Actually, the dense points in the enlarged
attractor give the attractor in the precrisis regime and the enlarged dotted region
gives the intermittency, as can be observed in Fig. 10. The dotted region gives the
leaking trajectories from one piece of the attractor to another, and the phase change
enhances the crisis in the system which in turn induces intermittency.
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Fig. 10 a The chaotic
three-piece attractor just
before (φ = 0.27650) the
interior crisis. b The enlarged
attractor just after interior
crisis (φ = 0.27660). Thus
the system has an interior
crisis at φc ≈ 0.27655. The
dense points in the enlarged
attractor give the attractor in
the precrisis regime and the
enlarged dotted region gives
the intermittency. Here we fix
α = 0.1, β = 10.4, and
ε = 0.03

One of the interesting aspects to study is the scaling property of the phase close
to the critical point after the occurrence of the crisis. In this postcrisis regime, the
dynamics describing the evolution of the system is intermittent. A scaling law for the
mean time that a chaotic orbit spends in the region of the precrisis attractor (< τ >),
as the control parameter (φ), is varied and has been proposed by Grebogi et al. [9]. It
is found that< τ > decreases according to the scaling relation< τ > ∼ | φ−φc |−γ
where γ is the scaling exponent describing the scaling of < τ > with a parameter
φ. The behavior of the Lyapunov exponents near the crisis point for the dissipative
standard map had been studied by B. Pompe and R. W. Leven [20]. According to
them, the increase of the largest Lyapunov exponent near the crisis is a consequence
of the rapid growth of the transition probability. Thus, we can say that the mean
time that a chaotic orbit spends in the region < τ > is inversely proportional to
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Fig. 11 The figure shows the
graph of the log (λ− λc) vs.
log (φ − φc). The slope of the
linear best fit yields the value
of the scaling exponent
γ = 0.15 with a norm of
residuals 0.07. Here the phase
of the control signal gives the
same scaling behavior like a
normal parameter. We vary φ
from 0.276615 to 0.276800
with an increment of 5 × 10−6
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the Lyapunov exponents. In other words, the size of the attractor is related to the
Lyapunov exponent via the Kaplan–Yorke dimension. Thus the new scaling equation
reads,

λ(φ) − λ(φc) ∼ | φ − φc |γ . (37)

In our case as we know, the phase can enhance the crisis. Thus we analyze the validity
of the scaling law of averaged Lyapunov exponent vs. the phase of the applied signal
near the crisis regime. Behavior of the Lyapunov exponents near the crisis regime has
been studied by several authors [18, 23]. Here, we calculate the average Lyapunov
exponents using 102 initial conditions calculated over an orbit length of 104 iterations.
The slope of the linear best fit gives the value of the scaling exponent γ = 0.15 with
the norm of residuals 0.07 (Fig. 11).

5 Concluding Remarks and Future Applications

The phase control method is a chaos control technique which has been successfully
applied to periodically driven dynamical systems. The method has been successful
in controlling diverse phenomena, including chaotic behavior, escaping dynamics,
intermittent behavior, among others, through the phase difference between the forc-
ing term and another harmonic perturbation. We have focused our attention here into
the application of this control method to maps. And in particular, we have analyzed
two paradigmatic maps: the bouncing ball map and the Hénon map. As a result, we
observe with the help of extensive numerical simulations that the application of the
phase control can suppress or enhance the chaotic behavior on them. In essence,
an appropriate choice of the phase φ can lead the system from a chaotic state to a
periodic state. Through an extensive exploration of the parameter space, we have
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explored zones of chaos suppression for different values of ε and φ, detecting some
interesting patterns. This pattern preserves certain kind of symmetry in the bouncing
ball map as well as the Hénon map. We have observed a strong effect of the phase
of the control signal in suppressing and generating chaotic behavior in the bouncing
ball map and the Hénon map. Another aspect that we have also analyzed is the effect
of the phase in inducing the intermittent behavior near a crisis in the bouncing ball
map. Our analysis shows that the phase actually may help to enhance the size of the
attractor and to contribute to the crisis-induced phenomenon in the bouncing ball
map. Finally, we have analyzed the scaling behavior of the crisis in the bouncing ball
map by varying the phase. In summary, we have shown that the phase control method
is a useful and interesting method for dissipative maps, through which we are able
to suppress and generate chaos and control the intermittency in chaotic system close
to a crisis, among other effects.

The results we have shown are of a general nature since we have used as models,
some paradigmatic maps. Obviously, the same ideas are useful to any other map of
similar characteristics. Modeling with maps is very common in nonlinear dynamics
and applications. Seasonal effects in theoretical ecology can be modeled through a
periodic environmental forcing. These kind of problems are widely used in model-
ing, and by simply tuning the phase difference between two periodic forcings, the
dynamics of the system can be controlled [10]. By changing the phase difference in
the driving fields of the Josephson junction, the chaotic dynamics of the system can
be controlled as shown in Ref. [4]. A recent review on map-based neuron models
[15] has been published where neuron models are described with maps. These ideas
of chaos control on maps can be certainly applied to these kind of map-based neu-
ron models. Since the phase control method is already been successfully applied on
diverse models describing several fields, it can be easily extended to other fields as
well. We believe that the application and implementation of this control method can
be helpful and useful in many different situations where a map is used to describe
the system dynamics.

Acknowledgements This work was supported by the Spanish Ministry of Science and Innovation
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Voltage Interval Mappings for an Elliptic
Bursting Model

Jeremy Wojcik and Andrey Shilnikov

Abstract We employed Poincaré return mappings for a parameter interval to an
exemplary elliptic bursting model, the FitzHugh–Nagumo–Rinzel model. Using the
interval mappings, we were able to examine in detail the bifurcations that underlie
the complex activity transitions between: tonic spiking and bursting, bursting and
mixed-mode oscillations, and finally, mixed-mode oscillations and quiescence in the
FitzHugh–Nagumo–Rinzel model. We illustrate the wealth of information, qualita-
tive and quantitative, that was derived from the Poincaré mappings, for the neuronal
models and for similar (electro) chemical systems.

1 Introduction

The class of elliptic bursting models is rich and can be found in diverse scientific
studies, ranging from biological systems [37] to chemical processes such as the
Belousov–Zhabotinky reaction [2]. Transitions between activity states for elliptic
bursting models is not common knowledge. Often in the sciences, specialization
leads to discoveries that remain unknown in other branches of science; the recent
reincarnation of mixed-mode oscillations (MMO) in neuroscience, for example. In
neuroscience, transitions in activity revolve around a changing membrane potential
and specific changes in potential may instigate the onset of a seizure in the case of
epilepsy or determine muscle reactions in response to stimulus. The class of elliptic
bursting models needs a more general treatment that can span multiple disciplines.
We propose a case study of the phenomenological FitzHugh–Nagumo–Rinzel model
in order to investigate the mechanisms for state transitions in dynamic behavior.
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Bursting represents direct evidence of multiple time scale dynamics of a model.
Deterministic modeling of bursting models was originally proposed and done within
a framework of three-dimensional, slow–fast dynamical systems. Geometric con-
figurations of models of bursting neurons were pioneered by Rinzel [29, 30] and
enhanced in [5, 16]. The proposed configurations are all based on the geometrically
comprehensive dissection approach or the time scale separation, which has become
the primary tool in mathematical neuroscience. The topology of the slow-motion
manifolds is essential to the geometric understanding of dynamics. Through the use
of geometric methods of the slow–fast dissection, where the slowest variable of the
model is treated as a control parameter, it is possible to detect and follow the mani-
folds made of branches of equilibria and limit cycles in the fast subsystem. Dynamics
of a slow–fast system are determined by, and centered around, the attracting sections
of the slow-motion manifolds [3, 26, 28, 36].

The slow–fast dissection approach works exceptionally well for a multiple time
scale model, provided the model is far from a bifurcation in the singular limit. On the
other hand, a bifurcation describing a transition between activities may occur from
reciprocal interactions involving the slow and fast dynamics of the model. Such
slow–fast interactions may lead to the emergence of distinct dynamical phenomena
and bifurcations that can occur only in the full model, but not in either subsystem of
the model. As such, the slow–fast dissection fails at the transition where the solution
is no longer constrained to stay near the slow-motion manifold, or when the time
scale of the dynamics of the fast subsystem slows to that of the slow system, near
the homoclinic and saddle node bifurcations, for example.

Transformative bifurcations of repetitive oscillations, such as bursting, are most
adequately described by Poincaré mappings [34], which allow for global bifurcation
analysis. Time series-based Poincaré mappings have been heavily employed for
examinations of voltage oscillatory activities in a multitude of applied sciences [1, 12,
18], despite their limitation due to sparseness. Often, feasible reductions to mappings
of the slowest variable can be achieved through the aforementioned dissection tool
in the singular limit [15, 24, 32, 34]. However, this method often fails for elliptic
bursters since no single valued mapping for the slow variable can be derived for the
particular slow motion manifold.

In this chapter, we refine and expound on the technique of creating a family of
one-dimensional mappings, proposed in [6–8], for the leech heart interneuron, into
the class of elliptic models of endogenously bursting neurons. We will show that
a plethora of information, both qualitative and quantitative, can be derived from
the mappings to thoroughly describe the bifurcations as such a model undergoes
transformations. We also demonstrate the power of deriving not only individual
mappings, but the additional benefits of having the entire family of mappings created
from an elliptic bursting model.
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Fig. 1 a Topology of the tonic spiking, Mlc, and quiescent, Meq manifolds. Solid and dashed
branches of Meq are made of stable and unstable equilibria of the model, respectively. The space
curve, labeled by V ∗

max (in green), corresponds to the v-maximal coordinates of the periodic orbits
composing Mlc. An intersection point of y ′ = 0 with Meq is an equilibrium state of (1). Shown in
gray is the bursting trajectory traced by the phase point: the number of spikes per burst is the same
as the number of turns the phase point makes around Mlc. Spikes are interrupted by the periods of
quiescence when the phase point follows Meq after it falls from Mlc near the fold. b A voltage trace
for c = −0.67 displaying the voltage evolution in time as the phase point travels around the slow
motion manifolds

2 FitzHugh–Nagumo–Rinzel Model

We introduce the exemplary phenomenological elliptic bursting model, the
FitzHugh–Nagumo–Rinzel model. The model exhibits all necessary traits for the
class of elliptic bursters: the time series form elliptic shaped bursts and oscillations
begin through an Andronov–Hopf bifurcation and end in a saddle-node bifurcation.
The model exhibits several types of oscillations, including: constant high-amplitude
oscillatory behavior (tonic spiking), bursting, low-amplitude oscillations, and MMO.
The mathematical FitzHugh–Nagumo–Rinzel model of the elliptic burster is given
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by the following system of equations with a single cubic nonlinear term:

v′ = v − v3/3 − w + y + I , (1)

w′ = δ(0.7 + v − 0.8 w),

y ′ = μ(c − y − v);

here we fix δ = 0.08, I = 0.3125 is an applied external current, and μ = 0.002 is a
small parameter determining the pace of the slow y-variable. The slow variable, y,
becomes frozen in the singular limit, μ = 0. We employ c as the primary bifurcation
parameter of the model, variations of which elevate/lower the slow nullcline given
by y ′ = 0. The last equation is held geometrically in a plane given by v = y − c in
the three-dimensional phase space of the model, see Fig. 1. The two fast equations
in (1) describe a relaxation oscillator in a plane, provided δ is small. The fast sub-
system exhibits either tonic spiking oscillations or quiescence for different values of
y corresponding to a stable limit cycle and a stable equilibrium state, respectively.
The periodic oscillations in the fast subsystem are caused by a hysteresis induced by
the cubic nonlinearity in the first “voltage” equation of the model.

Figure 1a presents a three-dimensional view of the slow-motion manifolds in the
phase space of the FitzHugh–Nagumo–Rinzel model. The tonic spiking manifold Mlc

is composed of the limit cycles for the model (1), both stable (outer) and unstable
(inner) sections. The fold on Mlc corresponds to a saddle-node bifurcation, where
the stable and unstable branches merge. The vertex, where the unstable branch of
Mlc collapses at Meq, corresponds to a subcritical Andronov–Hopf bifurcation. The
manifold Meq is the space curve made from equilibria of the model. The intersection
of the plane, y ′ = 0 with the manifold, determines the location of the existing
equilibrium state for a given value of the bifurcation parameter c: stable (saddle-
focus) if located before (after) the Andronov–Hopf bifurcation point on the solid
(dashed) segment of Meq. The plane, y ′ = 0, called the slow nullcline, above (below)
which the y-component of a solution of the model increases (decreases). The plane
moves in the three-dimensional phase space as the control parameter c is varied.
When the slow nullcline cuts through the solid segment of Meq, the model enters
a quiescent phase corresponding to a stable equilibrium state. Raising the plane to
intersect the unstable (inner) cone-shaped portion of Mlc makes the equilibrium state
unstable through the Andronov–Hopf bifurcation, which is subcritical in the singular
limit, but becomes supercritical at a given value of the small parameter ε = 0.002,
see Fig. 1a. Continuing to raise the slow nullcline by increasing c gives rise to
bursting represented by solutions following and repeatedly switching between Meq

and Mlc. Bursting occurs in the model (1) whenever the quiescent Meq and spiking
Mlc manifolds contain no attractors, i.e., neither a stable equilibrium state nor a
stable periodic orbit exist. The number of complete revolutions, or “windings,” of
the phase point around Mlc corresponds to the number of spikes per burst. The larger
the number of revolutions the longer the active phase of the neuron lasts. Spike trains
are interrupted by periods of quiescence while the phase point follows the branch
Meq, onto which the phase point falls from Mlc near the fold; see Fig. 1. The length of
the quiescent period, as well as the delay of the stability loss (determined mainly, but
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Fig. 2 Three sample orbits
demonstrating the
construction of the return
mapping T : Mn → Mn+1

defined for the points of the
cross-section Vmax on the
manifold Mlc. Singling out
the v-coordinates of the points
gives pairs (Vn, Vn+1)
constituting the voltage
interval mapping at a given
parameter, c

not entirely, by the small parameter μ) begins after the phase point passes through
the subcritical Andronov–Hopf bifurcation onto the unstable section of Meq. Further
increase of the bifurcation parameter, c, moves the slow nullcline up so that it cuts
through the stable cylinder-shaped section of the manifold Mlc far from the fold. This
gives rise to a stable periodic orbit corresponding to tonic spiking oscillations in the
model.

3 Voltage Interval Mappings

Methods of the global bifurcation theory are organically suited for examinations of
recurrent dynamics such as tonic spiking, bursting, and subthreshold oscillations
[10, 20], as well as their transformations. The core of the method is a reduction
to, and derivation of, a low dimensional Poincaré return mapping with an accom-
panying analysis of the limit solutions: fixed, periodic, and homoclinic orbits each
representing various oscillations in the original model and referenced therein. It is
customary that such a mapping is sampled from time series, such as identification of
voltage maxima, minima, or interspike intervals [11]; see Fig. 1b. A drawback of a
mapping generated by time series is sparseness as the construction algorithm reveals
only a single periodic attractor of a model, unless the latter demonstrates chaotic or
mixing dynamics producing a large set of densely wandering points. Chaos may also
be evoked by small noise whenever the dynamics of the model are sensitively vul-
nerable to small perturbations that do not substantially reshape intrinsic properties
of the autonomous model [8, 35]. Small noise, however, can make the solutions of
the model wander thus revealing the mapping graph.

A computer-assisted method for constructing a complete family of Poincaré map-
pings for an interval of membrane potentials was proposed in [6] following [31].
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Fig. 3 Coarse sampling of the c-parameter family of the Poincaré return mappings T : Vn → Vn+1

for the FitzHugh–Nagumo–Rinzel model at μ = 0.002 as c decreases from c = −0.55 through
c = −1. The gray mappings correspond to the dominating tonic spiking activity in the model. The
green mappings show the model transitioning from tonic spiking to bursting. The blue mappings
correspond to the bursting behavior in the model. The red mappings show the transition from bursting
into quiescence. The orange mappings correspond to the quiescence in the model. An intersection
point of a mapping graph with the bisectrix is a fixed point, v!, of the mapping. The stability of the
fixed point is determined by the slope of the mapping graph, i.e., it is stable if |T ′(v!)| < 1. Nearly
vertical slopes of graph sections are due to an exponentially fast rate of instability of solutions (limit
cycles) of the fast subsystem compared to the slow component of the dynamics of the model

Having a family of such mappings we are able to elaborate on various bifurcations of
periodic orbits, examine bistability of coexisting tonic spiking and bursting, and de-
tect the separating unstable sets that are the organizing centers of complex dynamics
in any model. Examination of the mappings will help us make qualitative predictions
about transitions before the transitions occur in models.

By construction, the mapping T takes the space curve V∗
max into itself after a single

revolution around the manifold Mlc (Fig. 2), i.e., T : Vn → Vn+1. This technique
allows for the creation of a Poincaré return mapping; taking an interval of the voltage
values into itself. The found set of matching pairs (Vn, Vn+1) constitutes the graph of
the Poincaré mapping for a selected parameter value c. Provided the number of paired
coordinates is sufficiently large and by applying a standard spline interpolation we
are able to iterate trajectories of the mapping, compute Lyapunov exponents, evaluate
the Schwarzian derivative, extract kneading invariants for the topological entropy,
and determine many other quantities.

Varying the parameter, c, we are able to obtain a dense family that covers all
behaviors, bifurcations, and transitions of the model (1). A family of the mappings
for the parameter c varied within the range [ − 1, −0.55] is shown in Fig. 3. Indeed,
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for the sake of visibility, this figure depicts a sampling of mappings that indicate
evolutionary tendencies of the model. A thorough examination of the family allows
us to foresee changes in model dynamics. A family of mappings allows us to analyze
all the bifurcations whether stable or unstable fixed and periodic orbits including
homoclinic and heteroclinic orbits and bifurcations. By following the mapping graph
we can predict a value of the parameter at which the corresponding periodic orbit
will lose stability or vanish, for example, giving rise to bursting from tonic spiking.

A fixed point, v!, is discerned from the mapping as an intersection of the graph
with the bisectrix. Visually we determine the stability of the fixed point by the slope
of the graph at the fixed point. If the slope of the graph is less than 1 in absolute
value, the point is stable. When the absolute value of the slope of the graph at the
fixed point is greater than 1, the fixed point is unstable. Alternatively, stability may
be determined from forward iterates of an initial point in the neighborhood of the
fixed point which converges to the fixed point.

4 Qualitative Analysis of Mappings

The family of mappings given in Fig. 3 allows for global evolutionary tendencies of
the model (1) to be qualitatively analyzed. One can first see that the flat mappings
in gray have a single fixed point corresponding to the tonic spiking state. The green
mappings show the actual transition and saddle-node bifurcation after which we
have regular bursting patterns, seen in the blue mappings. We also see the other
unstable fixed point clearly moving to the lower corner. The red mappings indicate
the transition from bursting to quiescence, as the fixed point changes stability.

A major benefit of using the voltage interval mapping is that we are able to
understand transitions between the activity states of the model by analyzing and
comparing the bifurcations between the states. Activity transitions commonly occur
in a slow–fast model near the bifurcations of the fast subsystem where the description
of dynamics in the singular limit is no longer accurate because of the failure of (or
interpretation of) the slow–fast dissection paradigm. This happens, for example,
when the two-dimensional fast subsystem of the model (1) is close to a saddle-node
bifurcation (near the fold on the tonic spiking manifold Mlc) where the fast dynamics
slow to the time scale of the slow subsystem. Such an interaction may cause new
and peculiar phenomena such as torus formation and subsequent breakdown near the
fold on the spiking manifold [21, 33]. We now turn our attention to a more thorough
analysis of the individual mappings.

4.1 Transition from Tonic Spiking to Bursting

We begin where the model is firmly in the tonic spiking regime at c = −0.594355.
Tonic spiking is caused by the presence of a stable periodic orbit located far from
the fold on the manifold Mlc (Fig. 1). The only v-maximum of this orbit corresponds
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Fig. 4 a Poincaré return mapping for the parameter, c = −0.594255. We see a single fixed point,
TS, corresponding to continuous large amplitude oscillations. We also see a cusp which insinuates
a possible change in the mapping shape. b A maximal “time” series obtained from iterating the
mapping, n times. c Return mapping for c = −0.595. We see the cusp has enlarged and intersected
the identity line creating two additional fixed points, UP1 andUP2. The two fixed points are clearly
unstable. d There is no indication in the maximal trace, or model dynamics, that would indicate the
formation of these fixed points

to a stable fixed point, labeled TS in Fig. 4a. The flat section of the mapping graph
adjoining the stable fixed point clearly indicates a rapid convergence to the point in
the v-direction, as shown by the trace in inset, Fig. 4b. Here the slope of the mapping
reflects the exponential instability (stability) of the quiescent (tonic spiking) branch,
made of unstable equilibria and stable limit cycles of the fast subsystem of the model.

The formation of the cusp is an indication of a change in dynamics for the mapping.
Thus the mapping insinuates a transition in dynamics of the model (1) prior to
occupance. Note that the maximal voltage trace provides no indication of any eminent
transition in the model’s behavior. The mapping in Fig. 4a, b, taken for the parameter
c = −0.595, clearly illustrates that after the cusp has dropped below the bisectrix,
two additional fixed points, UP1 and UP2, are created. UP1 and UP2 have emerged
through a preceding fold or saddle-node bifurcation taking place at some intermediate
parameter value between c = −0.594255 and c = −0.595. Again, let us stress that
the singular limit of the model atμ = 0 gives a single saddle-node bifurcation through
which the tonic spiking periodic orbit looses stability after it reaches the fold on the
tonic spiking manifold. We point out that, for an instant, the model becomes bistable
right after the saddle-node bifurcation in Fig. 4 leading to the emergence of another
stable fixed point with an extremely narrow basin of attraction. Here, as before the
hyperbolic tonic spiking fixed point, TS, dominates the dynamics of the model.
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Fig. 5 a Varying the
parameter further to
c = −0.615 we find the
unstable fixed point UP2 has
moved closer to the stable
fixed point, TS. The other
unstable fixed point UP1

remains in approximately the
same location. b Again the
maximal trace shows no
indication of any change in
dynamics
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Figure 5a demonstrates that, as the parameter is decreased further to c = −0.615,
the gap between the new fixed points widens as the point UP2 moves toward the sta-
ble tonic spiking point, TS, indicating a possible saddle-node bifurcation is eminent.
Through this saddle-node bifurcation, these fixed points merge and annihilate each
other; thereby terminate the tonic spiking activity in the FitzHugh–Nagumo–Rinzel
model. Before that happens however, several bifurcations involving the fixed
point, TS, drastically reshape the dynamics of the model. First, the multiplier
becomes negative around c = −0.619, which is the first indication of an impending
period-doubling cascade. This is confirmed by the mapping at c = −0.6193
in Fig. 6a, b, and c showing that the fixed point has become unstable through
the supercritical period-doubling bifurcation. Furthermore, the dynamics of the
mapping is directly mimicked in the full model behavior; see Fig 6d.

The newly born period-2 orbit becomes the new tonic spiking attractor of the
mapping. Observe from the voltage trace in Fig. 6b the long transient bursting be-
havior thus indicating that boundaries of the attraction basin of the period-2 orbit
become fractal. Next, the model approaches bursting onset. Correspondingly, the
FitzHugh–Nagumo–Rinzel model starts generating chaotic trains of bursts with ran-
domly alternating numbers of spikes per burst. The number of spikes depends on
how close the trajectory of the mapping comes to the unstable (spiraling out) fixed
point, TS, that is used to represent the tonic spiking activity. Each spike train is
interrupted by a single quiescent period. The unstable point, UP1, corresponds to a
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Fig. 6 a Poincaré mapping at c = −0.6193 and the voltage trace in b both demonstrate chaotic
bursting transients. c Enlargement of the right top corner of the mapping shows that the tonic
spiking fixed point has lost the stability through a supercritical period-doubling bifurcation. The
new born period-2 orbit is a new attractor of the mapping, as confirmed by the zigzagging voltage
trace represented in b. d The same dynamics found directly from integrating the model. We find
after a short transient (blue) the model dynamics converge to a period-2 orbit (green) as indicated
from the mapping a

saddle periodic orbit of the model that is located on the unstable, cone-shaped section
of the tonic spiking manifold Mlc in Fig. 1. Recall that this saddle periodic orbit is
repelling in the fast variables and stable in the slow variable.

By comparing Figs. 4, 5, 6, and 7 one could not foresee that the secondary saddle-
node bifurcation eliminating the tonic spiking fixed point TS, or corresponding round
stable periodic orbit on the manifold Mlc would be preceded by a dramatic concavity
change in the mapping shape, causing a forward and inverse cascade of period dou-
bling bifurcations right before the tonic spiking orbit TS. The corresponding fixed
point, TS, becomes stable again through a reverse sequence of period doubling bifur-
cations before annihilating through the secondary saddle-node bifurcation. However,
the basin of attraction becomes so thin that bursting begins to dominate the bi-stable
dynamics of the model. Note that the bursting behavior becomes regular as the phase
points pass through the upper section of the mapping tangent to the bisectrix. The
number of iterates that the orbit makes here determine the duration of the tonic spiking
phase of bursting and is followed by a quiescence period initially comprising a single
iterate of the phase point to the right of the threshold UP1. The evolution of bursting
into MMO and on to subthreshold oscillations will be discussed in the next section.
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Fig. 7 a Periodic bursting with five spikes in the Poincaré interval mapping for the FitzHugh–
Nagumo–Rinzel model at c = −0.6215. The single unstable fixed point UP1 separates the tonic
spiking section of the mapping from the quiescent or subthreshold section (left). The number of
iterates of the phase point adequately defines the ordinal type of bursting b. Note a presence of a
small hump around (V0 = 1.6, V1 = −0.5) which is an echo of the saddle-node bifurcation. c
Poincaré return mapping at c = −0.75. Here we find a burst pattern of three spikes followed by two
small amplitude oscillations. The mappings are able to capture all the bursting patterns exhibited
by the model

4.2 From Bursting to Mixed-Mode Oscillations and Quiescence

The disappearance of the tonic spiking orbit, TS, accords with the onset of regular
bursting in the mapping and in the model (1). In the mapping, a bursting orbit is
comprised of iterates on the tonic spiking and quiescent sections separated by the
unstable threshold fixed point, UP1, of the mapping in Fig. 7. The shape of the graph
undergoes a significant change reflecting the change in dynamics. The fixed points in
the upper right section of the mapping disappear through a saddle-node bifurcation.
One of the features of the saddle-node is the bifurcation memory: the phase point
continues to linger near a phantom of the disappeared saddle-node. The mapping near
the bisectrix can generate a large number of iterates before the phase points diverge
toward the quiescent phase. The larger the number of iterates near the bisectrix
corresponds to a longer tonic spiking phase of bursting. Figure 7 demonstrates how
the durations of the phases change along with a change in the mapping shape: from
a single quiescent iterate to the left of the threshold, UP1, to a single tonic-spiking
iterate corresponding to a bursting orbit with a single large spike in the model.

The transition from bursting to quiescence in the model is not monotone because
the regular dynamics may be sparked by episodes of chaos. Such subthreshold chaos
in the corresponding mapping at c = −0.9041 is demonstrated in Fig. 8a. This
phenomena is labeled MMO because the small amplitude subthreshold oscillations
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Fig. 8 a Chaotic MMO and bursting in the mapping at c = −0.904 caused by the complex recurrent
behavior around the unstable fixed pointUP1. b Subthreshold oscillations are disrupted sporadically
by large and intermediate magnitude spikes thereby destroying the rhythmic bursting in the model.
c Poincaré return mapping for the FitzHugh–Nagumo–Rinzel model shows no bursting but complex
subthreshold period-2 oscillations at c = −0.908. d After the peak in the mapping decreases in
amplitude, high amplitude spikes become impossible. Here, chaos is caused by homoclinic orbits
to the unstable fixed point UP1, just prior to this figure

are sporadically interrupted by larger spikes (inset b). Use of the mapping makes
the explanation of the phenomena in elliptic bursters particularly clear. In Fig. 8a,
after the mapping (or the model) fires a spike, the phase point is reinjected close
to the threshold point, UP1, from where it spirals away to make another cycle of
bursting. Note that the number of iterates of the phase point around UP1 may vary
after each spiking episode. This gives rise to solutions that are called bi-asymptotic
or homoclinic orbits to the unstable fixed point UP1. The occupancy of such a ho-
moclinic orbit to a repelling fixed point is the generic property of a one-dimensional
non-invertible mapping [25], since the point of a homoclinic orbit might have two
pre-images. Note that the number of forward iterates of a homoclinic point may
be finite in a non-invertible mapping, because the phase point might not converge,
but merely jump onto the unstable fixed point after being reinjected. However, the
number of backward iterates of the homoclinic point is infinite, because the repelling
fixed point becomes an attractor for an inverse mapping in restriction to the local
section of the unimodal mapping; see Fig. 8a, b. The presence of a single homoclinic
orbit leads to the abundance of other emergent homoclinics [13] via a homoclinic
explosion [34].

A small decrease of the bifurcation parameter causes a rapid change in the shape
of the mapping, as depicted in Fig. 8c, d. The sharp peak near the threshold becomes
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Fig. 9 a and c Show stable period-4 and period-2 orbits (green) of the interval mapping at c =
−0.906 and c = −0.9075. Shown in light-blue are the corresponding mappings T 4 and T 2 of
degrees four and two with four and two stable fixed points correspondingly. The traces of the orbits
are shown in insets b and d

lower so that the mapping can no longer generate large amplitude spikes. As the
parameter is decreased further, the unstable fixed point, UP1, becomes stable through
a reverse period-doubling cascade. The last two stages of the cascade are depicted in
Fig. 9. Insets a and c of the figure show stable period-4 and period-2 orbits, and their
traces in insets b and d, as the parameter c is decreased from −0.906 to −0.9075.
Here we demonstrate another ability of the interval mappings derived directly from
the flow. In addition to the original mapping, T, in Fig. 9 we see two superimposed
mappings, T 2 and T 4, (shown in light blue) of degrees two and four respectively. The
four points of periodic orbit in inset a corresponds to the four fixed points of the fourth
degree mapping T 4 at c = −0.9075, whereas the period-2 orbit in c correspond to
two new fixed points of the mapping T 2 in c at c = −0.9075. We see clearly that both
periodic orbits are indeed stable because of the slopes of the mappings at the fixed
points on the bisectrix. Using the mappings of higher degrees we can evaluate the
critical moments at which the period-2 and period-4 orbits are about to bifurcate. We
point out that a period-doubling cascade, beginning with a limit cycle near the Hopf-
initiated canard toward subthreshold chaos has been recently reported in slow–fast
systems [38, 39].

Decreasing c further, the period-2 orbit collapses into the fixed point, UP1, which
becomes stable. The multiplier, first negative becomes positive but is still less than
one in the absolute value. In terms of the model, this means that the periodic orbit
collapses into a saddle-focus through the subcritical Andronov–Hopf bifurcation.
After that, the equilibrium state, located at the intersection of the manifold Meq

with the slow-nullcline (plane) in Fig. 1, becomes stable and the model goes into
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quiescence for parameter values smaller then c = −0.97. The stable equilibrium
state corresponds to the fixed point, Q, which is the global attractor in the mapping.

5 Quantitative Features of Mappings: Kneadings

In this section we discuss a quantitative property of the interval mappings for the
dynamics of the model (1). In particular, we carry out the examination of complex
dynamics with the use of calculus-based and calculus-free tools such as Lyapunov
exponents and kneading invariants for the symbolic description of MMOs.

Chaos may be quantitatively measured by a Lyapunov exponent. The Lyapunov
exponent is evaluated for the one-dimensional mappings as follows:

λ = lim
N→+∞

1

N

N∑

i=1

log |T ′(vi)|, (2)

where T ′(vi) is the slope (derivative) of the mapping at the current iterate vi corre-
sponding to the ith step for i = 0, . . . ,N . Note that, by construction, the mapping
graph is a polygonal and to accurately evaluate the derivatives in (5) we used a cubic
spline. The Lyapunov exponent, λ, yields a lower bound for the topological en-
tropy h(T ) [19]; serving as a measure of chaos in a model. The Lyapunov exponent
values λ � 0.24 and λ � 0.58, found for the interval mappings at c = −0.9041
and c = −0.90476, respectively, show that chaos is developed more in the case of
subthreshold oscillations than for MMOs.

The topological entropy may also be evaluated though a symbolic description
of the dynamics of the mapping that require no calculus-based tools. The curious
reader is referred to [14, 23] for the in-depth and practical overviews of the kneading
invariants, while below we will merely touch the relevant aspects of the theory. For
unimodal mappings of an interval into itself with a single critical point, vc, like for the
case c = −0.90476, we need only to follow the forward iterates of the critical point
to generate the unsigned kneading sequence κ(vc) = {κn(vc)} defined on {−1, +1}
by the following rule:

κn(vq) =
⎧
⎨

⎩

+1, if T n(vc) < vc

−1, if T n(vc) > vc;
(3)

here T n(vc) is the nth iterate of the critical point vc.
The kneading invariant of the unimodal mapping is a series of the signed kneadings

{κ̃n} of the critical point, which are defined through the unsigned kneadings, κi , as
follows:

κ̃n =
n∏

i=1

κi , (4)
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Fig. 10 a Graphs of the three polynomials, P10(t), P60(t), and P110(t) defined on the unit interval,
and generated through the series of the signed kneadings at c = −0.90476. Inset b shows the
corresponding interval mapping. The iterates of the critical point, vc, determine the symbolic
dynamics for the unsigned kneading symbols: −1 if the phase point lands on the decreasing section
of the mapping graph to the right of the critical point, and +1 if it lands to the increasing section of
the mapping, which is to the left of the critical point

or, recursively:

κ̃i = κi κ̃i−1, i = 2, 3, . . . . (5)

Next we construct a formal power series;

P (t) =
∞∑

i=0

κ̃i t
i . (6)

The smallest zero, t∗ (if any), of the series within an interval t ∈ (0, 1) defines
the topological entropy, h(T ) = ln (1/t∗). The sequence of the signed kneadings,
truncated to the first ten terms, {− + + + − + + + −+} for the mapping in Fig. 10b,
generates the polynomial P10(t) = −1 + t + t2 + t3 − t4 + t5 + t6 + t7 − t8 + t9.
The single zero of P10(t) at t∗ ≈ 0.544779 yields a close estimate for the topological
entropy h(T ) ≈ 0.6073745, see Fig. 10a.

The advantage of an approach based on the kneading invariant to quantify chaos is
that evaluation of the topological entropy does not involve numerical calculus for such
equationless interval mappings, but relies on the mixing properties of the dynamics
instead. Moreover, it requires relatively few forward iterates of the critical point to
compute the entropy accurately, as the polynomial graphs in Fig. 10 suggest. Besides
yielding the quantitative information such as the topological entropy, the symbolic
description based on the kneading invariants provide qualitative information for
identifying the corresponding Farey sequences describing the MMOs in terms of
the numbers of subthreshold and tonic spiking oscillations.
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6 Discussion

We present a case study for an in-depth examination of the bifurcations that take place
at activity transitions between tonic spiking, bursting, and MMOs in the FitzHugh–
Nagumo–Rinzel model. The analysis is accomplished through the reduction to a
single-parameter family of equationless Poincaré return mappings for an interval of
the “voltage” variable. We stress that these mappings are models themselves for eval-
uating the complex dynamics of the full three-dimensional model. Nevertheless, the
dynamics of the single accumulative variable, v, reflects the cooperative dynamics of
other variables in the model. The reduction is feasible since the model is a slow–fast
system and, hence, possesses a two-dimensional, slow-motion tonic-spiking mani-
fold around which the oscillatory solutions of the models linger. We have specifically
concentrated on the dynamics of the voltage [7, 8], as it is typically the only mea-
surable, and thus comparable, variable in experimental studies in neuroscience and
physical chemistry.

It is evident that no one-dimensional return mapping of the interval is intended
to detect a torus in the phase plane, whereas the pointwise mappings generated
by a forward time series of the voltage can identify the torus formation in the
phase space. Note that the torus has a canard-like nature, that is the torus exists
within a narrow parameter window. A torus formation in a three-dimensional model
with two slow variables near the fold was reported also in [17]. Another parallel of
the FitzHugh–Nagumo–Rinzel model with electrochemical systems, including the
Belousov–Zhabotinky reaction, is that the latter also demonstrates a quasiperiodic
regime [2]. The emergence of the torus near the fold of the tonic spiking manifold
first described in [9, 33] has turned out to be a generic phenomenon observed recently
in several plausible models [22], including a model for the Purkinje cells [4, 21], and
in a hair cell model [27].

A minor drawback of the approach is a small detuning offset in parameter values
at which the model and the mapping have nearly the same dynamics, matching orbits,
or undergo the same bifurcations. This is caused by the fact that a one-dimensional
mapping for a single voltage variable does not fully encompass the dynamics of other,
major and minor, variables of the corresponding model. In general, most features
of a dissipative model with a negative divergence of the vector field that results
in a strong contraction of the phase volumes, are adequately modeled by a one-
dimensional Poincaré mapping. However, this is not true when such a contraction
is no longer in place, for example, when the divergence becomes sign-alternating.
There are two such places near the manifold Mlc in the model (1): one is near the
fold, the second is close to the cone-shaped tip. The sign alternating near the tip of
the cone is where the model has an equilibrium state of the saddle-focus type with
a pair of complex conjugate eigenvalues with a small positive real part and a real
negative eigenvalue due to the Andronov–Hopf bifurcation and the smallness of ε.

The algorithm for interval mapping construction has two stages. First, one needs to
identify the tonic spiking manifold in the phase space of the slow–fast neuron model
in question. This is accomplished by either using the geometric dissection method, or
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the parameter continuation technique. The more accurately and completely the first
stage is performed the more natural and smooth these numerically derived mappings
will be. The second stage is to build the mappings for a range of parameter values. The
analysis of such mappings lets one identify not only attractors, but more importantly,
the unstable sets including fixed, periodic, and homoclinic orbits, which are known to
be the globally organizing centers governing the dynamics of any model. In addition,
having computationally smooth mappings allows one to create symbolic descriptions
for dynamics, compute kneading invariants, evaluate Schwarzian derivatives, etc., as
well as estimate other quantities measuring the degree of complexity for the trajectory
behavior like Lyapunov exponents and topological entropy.

Our computational method allows us to thoroughly describe the bifurcations that
the model (1) undergoes while transitioning between states: from tonic spiking to
bursting and then to quiescence. Taken individually, each mapping offers only a
glimpse into the system behavior. However, with an entire family of mappings we
obtain deep insight into the evolution of the model’s dynamics though the interplay
and bifurcations of the fixed points and periodic orbits. This allows for not only the
description of bifurcations post factum, but to predict the changes in the dynamics
of the model under consideration before they actually occur. For additional analysis
on elliptic bursters including torus formation, we refer the reader to [37].
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Levenshtein’s Distance for Measuring Lexical
Evolution Rates

Filippo Petroni, Maurizio Serva and Dimitri Volchenkov

Abstract The relationships between languages molded by extremely complex so-
cial, cultural and political factors are assessed by an automated method, in which
the distance between languages is estimated by the average normalized Levenshtein
distance between words from the list of 200 meanings maximally resistant to change.
A sequential process of language classification described by random walks on the
matrix of lexical distances allows to represent complex relationships between lan-
guages geometrically, in terms of distances and angles. We have tested the method
on a sample of 50 Indo-European and 50 Austronesian languages. The geometric
representations of language taxonomy allow for making accurate interfaces on the
most significant events of human history by tracing changes in language families
through time. The Anatolian and Kurgan hypothesis of the Indo-European origin
and the “express train” model of the Polynesian origin are thoroughly discussed.

1 Introduction

The evolution of languages goes on like to haploid evolution for asexual organisms,
as evolving reproduction, mutation and extinction. Hypotheses concerning their re-
lationships can be verified provided a distance between languages is evaluated from
the lexical differences, in analogy with the genetic distance between species.
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The idea to assess the dissimilarity between languages using vocabulary, has its
roots in the work of the French explorer Dumont D’Urville, who collected compar-
ative lists of 115 basic terms from various languages during his voyages aboard the
Astrolabe from 1826 to 1829 and introduced the idea of measuring the similarity
between words with the same meaning in his work about the geographical divi-
sion of the Pacific [1]. The method used by modern glottochronology developed by
Swadesh [2] estimates the distance between languages from the percentage of shared
cognates (words inferred to have a common historical origin) assuming that vocab-
ularies change at a constant average rate. However, the identification of cognates is
often a matter of sensibility and personal knowledge, as they do not necessarily look
similar, so that the task of counting the number of cognate words shared by the two
languages is difficult. For instance, the Spanish word leche and the Greek word gala
are cognates. In fact, leche comes from the Latin lac with genitive form lactis, while
the genitive form of gala is galactos. This identification became possible because of
our historical records that are hardly available for languages of Central Africa, Aus-
tralia or Polynesia. Moreover, the comparison of languages over a large vocabulary
is only apparently more accurate, as many similar words rather carry information
about complex social, cultural and political factors molding the extreme historical
contacts, than about the actual language similarity. It is also worth a mention that lan-
guages belonging to the same family may not share many words in common, while
languages of two distinct families may share many. For instance, Brahui spoken in
Pakistan, Afghanistan and Iran is a Dravidian language accordingly to its syntactic
structure, despite of 85 % of its vocabulary being Indo-European (IE). Eventually,
the rates of lexical changes in words are all different, being probably related to the
frequency of use of the associated meanings [3]; those words with a high rate of
changes might be worthless for inferring the language relatedness.

Summarizing, the successful application of phylogenetic methods to language
evolution requires:

1. A distance accumulating the differences in systematic sound correspondences
between the realizations of individual meanings;

2. A well-adjusted input vocabulary exhibiting uniformly high stability of items,
with respect to the defined distance;

3. A suitable agglomerative clustering technique that maps the matrix of lexical
distances calculated over the optimized vocabulary into low-dimensional space
of language groups;

4. A plausible hypothesis on the dynamical process of language evolution that
evolves the obtained geometric representation of language taxonomy in time.

In our work, we consequently fulfill the outlined program and apply it to the study
of the language evolution in the IE and Austronesian (AU) language families that
allows us for making accurate inferences on the most significant events of human
history by tracking changes in language families through time.
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2 The Relations Among Languages Encoded in the Matrix
of Lexical Distances

Complex relations between languages may be expressed in a numerical form with
respect to many different features [4]. The standard Levenshtein (edit) distance ac-
counting for the minimal number of insertions, deletions or substitutions of single
letters needed to transform one word into the other has been introduced in informa-
tion theory [5]. In our work, being guided by [6, 7], while comparing two words, w1

and w2, we use the edit distance divided by the number of characters of the longer
of the two,

D (w1, w2) = ‖w1, w2‖L
max (|w1| , |w2|) (1)

where ‖w1, w2‖L is the standard Levenshtein distance between the words w1 and w2,
and |w| is the number of characters in the word w. For instance, according to (1)
the normalized Levenshtein distance between the orthographic realizations of the
meaning milk in English and in German (Milch) equals 2/5. Such a normalization
seems natural since the deleted symbols from the longer word and the empty spaces
added to the shorter word, then stand on an equal footing: the shorter word is supplied
by a number of spaces to match the length of the longer one. The distance (1) is
symmetric, D (w1, w2) = D (w2, w1) , and takes values between 0 and 1 for any two
words, w1 and w2, so that D (w, w) = 0, and D (w1, w2) = 1 when all characters
in these words are different. The normalized edit distance between the orthographic
realizations of two words can be interpreted as the probability of mismatch between
two characters picked from the words at random.

Given the short list L containing |L| = M meanings, we define the lexical distance
between the two languages, l1 and l2, as the average of the normalized Levenshtein
distance (1)—the smaller the result is, the more affine are the languages,

d (l1, l2) = 1

M
·
∑

α∈L
D

(
w(l1)
α , w(l2)

α

)
, (2)

where α is a meaning from the list L, and w(l)
α is its orthographic realization in

the language l. The distance (2) is symmetric, d(l1, l2) = d(l2, l1), d(l, l) = 0, and
d(l1, l2) = 1 if and only if none of words of the L meanings in the language l1 has any
common character with those words in the language l2. that is already improbable
even over the short list of 200 meanings. The lexical distance (2) between two
languages, l1 and l2, can be interpreted as the average probability to distinguish
them by a mismatch between two characters randomly chosen from the orthographic
realizations of L. As a result, for the two samples of 50 languages selected from the
IE and AU language families, we obtained the two symmetric 50×50 matrices; each
matrix therefore contains 1225 independent entries. The phylogenetic trees from the
lexical distance matrices (2) were constructed and discussed in [6, 7].
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3 The Short List of Meanings and Its Stability

Following [8], we define the stability of the meaning α over a sample ofN languages
by

S(α) = 1 − 2

N (N − 1)

∑

li>lj

D
(

w(li )
α , w

(lj )
α

)
(3)

where the sum goes over all ordered pairs (li , lj ) of languages in the sample. With this
definition, S(α) takes a value between 0 and 1. The sum in the RHS. of (3) is smaller
for those words corresponding to meanings with a lower rate of lexical evolution,
since they tend to remain more similar in two languages. Therefore, to a larger S(α)
there corresponds a greater stability.

We computed the stability values for the 200 meanings according to the original
choice of Swadesh [2] for the 50 language samples of both language families. The
main source for the database for the IE group was the file prepared by Dyen et al.
[9]. This database contains Swadesh’s vocabulary with basic 200 meanings which
seem maximally resistant to change, including borrowing [10], for 96 languages.
The words are given there without diacritical symbols and adopted for using classic
linguistic comparative methods to extract sets of cognates—words that can be related
by consistent sound changes. Some words are missing in [9] but for our choice of 50
languages we have filled most of the gaps and corrected some errors by finding the
words from Swadesh lists and from dictionaries freely available on the web. For the
AU group, the huge database [11] has been used under the author’s permission that
we acknowledge. The AU database is adopted to reconstruct systematic sound cor-
respondences between the languages in order to uncover historically related cognate
forms and is under the permanent cleaning and development, with the assistance of
linguistic experts correcting mistakes and improving the cognacy judgments. The
lists in [11] contain more than 200 meanings that do not completely coincide with
those in the original Swadesh list. For our choice of 50 AU languages, we have
retained only those words which are included in the both data sets of [9] and of
the original vocabulary [2, 9]. The resulting list has still many gaps due to missing
words in the data set [11] and incomplete overlap between the list of [11] and the
original Swadesh list [2, 9]. We have filled some of the gaps by finding the words
from Swadesh’s lists available on the web and by direct knowledge of the Malagasy
language (by M.S.). We used the English alphabet (26 characters plus space) in our
work to make the language data suitable for numerical processing. Those languages
written in the different alphabets (i.e. Greek etc.) were already transliterated into
English in [9]. In [11], many letter–diacritic combinations are used which we have
replaced by the underlying letters, reducing again the set of characters to the standard
English alphabet. Interestingly, the abolition of all diacritical symbols favouring a
“simple” alphabet allowed us to obtain a reasonable result. The database modified
by the authors is available [12]. Readers are welcome to modify, correct and add
words to the database.
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Fig. 1 Stability in a decreasing ranking for the 200 meanings over the 50 languages samples from
the IE (a) and AU (b) language languages. The straight line between position 51 and position 180
underlines the initial and final deviations from the linear behaviour

In Fig. 1, we have shown the plot of ranked stability values S(α) calculated for
the 200 meanings in the short lists, for the IE and AU language groups in [13]. At the
beginning the stability values drop rapidly; then, between the 50th position and the
180th, it decreases slowly and almost linearly with rank; finally at the end the stability
drops again. This behaviour is not Gaussian, since high and low stability parts of
the curve are not symmetric. The curve is fitted by a straight line to highlight the
initial and final deviations from linearity. Clearly, one should keep all the meanings
with higher information, take at least some of the most stable meanings in the linear
part of the curve and exclude completely those meanings with lower information.
The correlation coefficient between the stability index computed for the two groups
is roughly 0.21 [13] suggesting that the stability of items in the short list depends
strongly on the studied family. In order to understand whether the most stable terms
in the two short lists show a large coincidence, we considered the first n items in the
ranking list for both families, and we computed the number m(n) of common items
in the two lists. To underline the non-causal behaviour, m(n) has to be compared
with n2/N , which is the average number of common items if one randomly chooses
n items from any of the two lists. Then, it is natural to define p(n) as m(n) divided
by n2/N . If there is no relation between stability in the two families, p(n) must be
close to 1 for every n. The behaviour of p(n) as a function of n can be seen in Fig. 2
indicating that indeed there is a non-trivial overlapping of the two lists of most stable
n items since p(n) is always larger than 1. This fact confirms the correlation between
the two rankings, and also shows that this effect is strong only for small n (n < 50).
For larger n, the overlapping is much closer to 1 and random coincidences prevail.
This means that the most stable terms in the two lists are those that show a larger
coincidence.

To give an example of the lists found with our approach, we show here a table of
the 20 most stable items for the IE and AU language groups. Together with any of
the items we report its stability record within the family.
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Fig. 2 The number of
common items in the two lists
of most stable n items
obtained for the Austronesian
and Indo-European families.
The number is normalized by
the random coincidence
n2/200

Table 1 The 20 most stable
words for the Indo-European
and Austronesian language
families, with their stability
values within the family

Indo-European Stability Austronesian Stability

YOU 0.45395 EYE 0.70646

THREE 0.44102 FIVE 0.70089

MOTHER 0.36627 FATHER 0.51095

NOT 0.35033 DIE 0.48157

NEW 0.31961 STONE 0.48157

NOSE 0.3169 THREE 0.46087

FOUR 0.30226 TWO 0.44411

NIGHT 0.29403 LOUSE 0.43958

TWO 0.28214 ROAD 0.41217

NAME 0.27962 FOUR 0.39798

TOOTH 0.27677 HAND 0.38997

STAR 0.27269 NAME 0.38493

SALT 0.26792 LIVER 0.38375

DAY 0.26695 PUSH 0.37444

GRASS 0.26231 MOTHER 0.35821

SEA 0.25906 WE 0.35749

DIE 0.25602 EAT 0.3529

SUN 0.25535 STICK 0.34242

ONE 0.23093 I 0.34208

FEATHER 0.23055 VOMIT 0.33861
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4 The Structural Component Analysis of Linguistic Data

Component analysis is a standard tool in diverse fields from neuroscience to com-
puter graphics. It helps to reduce a complex data set to a lower dimension suitable for
visual apprehension and to reveal its simplified structures. Independent component
analysis (ICA) [14] and principal component analysis (PCA) [15] are widely used for
separating a multivariate signal into additive subcomponents. However, it is clear that
these standard techniques of component analysis have to be dramatically improved
for any meaningful application on language data, as there is no reason to suggest nei-
ther that the directions of maximum variance recovered by the standard PCA method
are good enough for identification of principal components in the linguistic data, nor
that the language traits are statistically independent. Since all languages within a lan-
guage family interact with each other and with the languages of other families in real
time, it is obvious that any historical development in language cannot be described
only in terms of pairwise interactions, but it reflects a genuine higher order influence
among the different language groups. Generally speaking, the number of parameters
describing all possible parallels we may observe between the linguistic data from the
different languages would increase exponentially with the data sample size. The only
hope to perform any useful data analysis in such a case relies upon a proper choice of
features that re-expresses the data set to make all contributions from an asymptotically
infinite number of parameters convergent to some non-parametric kernel.

It is important to mention that any symmetric matrix of lexical distances (2)
uniquely determines a weighted undirected fully connected graph, in which vertices
represent languages, and edges connecting them have weights equal to the relevant
lexical distances between languages (2). Since the graph encoded by the matrix (2)
is relatively small (of 50 vertices) and essentially not random, it is obviously out of
the usual context of complex network theory. A suitable method for the structural
component analysis (SCA) of networks (weighted graphs) by means of random
walks (or Markov chains, in a more general context) has been formulated in [16–18].
Being a version of the kernel PCA method [19], it generalizes PCA to the case,
where we are interested in principal components obtained by taking all higher-order
correlations between data instances. The SCA method has been successfully applied
to the analysis of language taxonomies in [20].

Let us note that there are infinitely many matrices that match all the structure of
d(li , lj ) and contain all the information about the relationships between languages
estimated by means of the lexical distances (2). It is remarkable that all these matrices
are related to each other by means of a linear transformation, which can be interpreted
as a random walk,

T
(
li , lj

) = Δ−1 d
(
li , lj

)
, (4)

defined on the weighted undirected graph determined by the matrix of lexical dis-
tances d(li , lj ), The diagonal matrix in (4) Δ = diag(δl1 , δl2 , . . . δlN ) contains the
cumulative lexical distances δli = ∑N

j=1 d(li , lj ), for each language li . Diagonal
elements of the matrix T are equal to zero, since d (li , li) = 0, for any language li .
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The matrix (4) is a stochastic matrix,
∑N

j=1 T (li , lj ) = 1, being nothing else, but the
normalized matrix of lexical distances (2). Random walks defined by the transition
matrix (4) describe the statistics of a sequential process of language classification.
Namely, while the elements of the matrix T (li , lj ) evaluate the probability of suc-
cessful differentiation of the language li provided the language lj has been identified
certainly, the elements of the squared matrix T 2, ascertain the successful differentia-
tion of the language li from lj through an intermediate language, the elements of the
matrix T 3 give the probabilities to differentiate the language through two intermedi-
ate steps, and so on. The whole host of complex and indirect relationships between
orthographic representations of the vocabulary meanings encoded in the matrix of
lexical distances (2) is uncovered by the von Neumann series estimating the charac-
teristic time of successful classification for any two languages in the database over a
language family,

J
(
li , lj

) = lim
n→∞

n∑

k=0

T n
(
li , lj

) = 1

1 − T
. (5)

The last equality in (5) is understood as the group generalized inverse [20], being a
symmetric, positive semi-definite matrix which plays essentially the same role for
the SCA, as the covariance matrix does for the usual PCA analysis. The standard
goal of a component analysis (minimization of the data redundancy quantified by
the off-diagonal elements of the kernel matrix) is readily achieved by solving an
eigenvalue problem for the matrix J (li , lj ). Each column vector qk , which deter-
mines a direction where J acts as a simple rescaling, Jqk = λkqk , with some real
eigenvalue λk = 0, is associated to the virtually independent trait in the matrix of
lexical distances d(li , lj ). Independent components {qk}, k = 1, . . . N , define an or-
thonormal basis in R

N which specifies each language li byN numerical coordinates,
li → (q1,i , q2,i , . . . qN ,i). Languages that cast in the same mould in accordance with
the N individual data features are revealed by geometric proximity in Euclidean
space spanned by the eigenvectors {qk} that might be either exploited visually, or
accounted analytically. The rank-ordering of data traits {qk}, in accordance to their
eigenvalues, λ0 = λ1 < λ2 = . . . = λN , provides us with the natural geometric
framework for dimensionality reduction. At variance with the standard PCA analysis
[15], where the largest eigenvalues of the covariance matrix are used in order to iden-
tify the principal components, while building language taxonomy, we are interested
in detecting the groups of the most similar languages, with respect to the selected
group of features. The components of maximal similarity are identified with the
eigenvectors belonging to the smallest non-trivial eigenvalues. Since the minimal
eigenvalue λ1 = 0 corresponds to the vector of stationary distribution of random
walks and thus contains no information about components, we have used the three
consecutive components (q2,i , q3,i , q4,i) as the three Cartesian coordinates of a lan-
guage point li(x, y, z) in order to build a three-dimensional geometric representation
of language taxonomy. Points symbolizing different languages in space of the three
major data traits are contiguous if the orthographic representations of the vocabulary
meanings in these languages are similar.
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5 Geometric Representation of the IE Family

Many language groups in the IE family had originated after the decline and fragmen-
tation of territorially-extreme polities and in the course of migrations when dialects
diverged within each local area and eventually evolved into individual languages.
In Fig. 3, we have shown the three-dimensional geometric representation of 50 lan-
guages of the IE language family in space of its three major data traits detected in the
matrix of lexical distances calculated over the Swadesh list of meanings. Due to the
striking central symmetry of the representation, it is natural to describe the positions
of language points li with the use of spherical coordinates,

ri =
√

q2
2,i + q2

3,i + q2
4,i , θi = arccos

(
q4,i

ri

)

, φi = arctan

(
q3,i

q2,i

)

, (6)

rather than the Cartesian system.
The principal components of the IE family reveal themselves in Fig. 3 by four

well-separated spines representing the four biggest traditional IE language groups:
Romance and Celtic, Germanic, Balto-Slavic, and Indo-Iranian. These groups are
monophyletic and supported by the sharply localized distributions of the azimuth
(ϕ) and inclination (zenith) angles (θ) over the languages shown in Fig. 4a and b,
respectively.

The Greek, Romance, Celtic and Germanic languages form a class characterized
by approximately the same azimuthal angle (Fig. 4a), thus belonging to one plane
in the three-dimensional geometric representation shown in Fig. 3, while the Indo-
Iranian, Balto-Slavic, Armenian and Albanian languages form another class, with
respect to the inclination (zenith) angle (Fig. 4b).

It is remarkable that the division of IE languages with respect to the azimuthal
and zenith angles evident from the geometric representation in Fig. 3 perfectly co-
incides with the well-known centum-satem isogloss of the IE language family (the
terms are the reflexes of the IE numeral “100”), related to the evolution in the pho-
netically unstable palatovelar order [21]. The palatovelars merge with the velars in
centum languages sharing the azimuth angle, while in satem languages observed at
the same zenith angle the palatovelars shift to affricates and spirants. Although the
satem–centum distinction was historically the first original dialect division of the
IE languages [22], it is not accorded much significance by modern linguists as be-
ing just one of many other isoglosses crisscrossing all IE languages [23]. The basic
phonetic distinction of the two language classes does not justify in itself the areal
groupings of historical dialects, each characterized by some phonetic peculiarities
indicating their independent developments. The appearance of the division similar to
the centum–satem isogloss (based on phonetic changes only) may happen because
of the systematic sound correspondences between the Swadesh words across the
different languages of the same language family.

The projections of Albanian, Greek and Armenian languages onto the axes of the
principal components of the IE family are rather small, as they occupy the centre of
the diagram in Fig. 3. Being eloquently different from others, these languages can be
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Fig. 3 The three-dimensional geometric representation of the Indo-European language family in
space of the major data traits (q2, q3, q4) colour coded. The origin of the graph indicates the centre
of mass, q1 = π , of the matrix of lexical distances d(li , lj ), not the Proto-Indo-European language.
Due to the central symmetry of representation, it is convenient to use the spherical coordinates to
identify the positions of languages: the radius from the centre of the graph, the inclination angle θ
and the azimuth angle ϕ

resolved with the use of some minor components qk , k > 3. Remarkably, the Greek
and Armenian languages always remain proximate confirming the Greeks’belief that
their ancestors had come from Western Asia [24].

6 In Search of Lost Time

Geometric representations of language families can be conceived within the frame-
work of various physical models that infer on the evolution of linguistic data traits. In
traditional glottochronology [2], the time at which languages diverged is estimated
on the assumption that the core lexicon of a language changes at a constant aver-
age rate. This assumption based on an analogy with the use of carbon dating for
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Fig. 4 a The kernel density estimates of the distributions of azimuthal angles in the three-
dimensional geometric representation of 50 languages of the Indo-European language family,
together with the absolute data frequencies. Romance (RO), Germanic (GE) and the satem lan-
guages (SATEM) are easily differentiated with respect to the azimuthal angles. b The kernel density
estimates of the distributions of inclination (zenith) angles in the three-dimensional geometric rep-
resentation of 50 languages of the Indo-European language family, together with the absolute data
frequencies. Indo-Iranian (II), Balto-Slavic (BS), and the centum languages (CENTUM) are attested
by the inclination (zenith) angles

measuring the age of organic materials was rejected by mainstream linguists, con-
sidering a language as a social phenomenon driven by unforeseeable sociohistorical
events not stable over time. Indeed, mechanisms underlying evolution of dialects of
a proto-language evolving into individual languages are very complex and hardly
formalizable.

In our method based on the statistical evaluation of differences in the orthographic
realizations of Swadesh’s vocabulary, a complex nexus of processes behind the emer-
gence and differentiation of dialects within each language group is described by the
single degree of freedom, along the radial direction (see (6)) from the origin of the
graph shown in Fig. 3, while the azimuthal (ϕ) and zenith (θ ) angles are specified by
a language group.

It is worth a mention that the distributions of languages along the radial direction
are remarkably heterogeneous indicating that the rate of changes in the orthographic
realizations of Swadesh’s vocabulary was varying over time. Being ranked within
the own language group and then plotted against their expected values under the
normal probability distribution, the radial coordinates of languages in the geometrical
representation, Fig. 3, show very good agreement with univariate normality, as seen
from the normal probability plots in Fig. 5a–d.

The hypothesis of normality of these distributions can be justified by taking on that
for a long time the divergence of orthographic representations of the core vocabulary
was a gradual change accumulation process into which many small, independent in-
novations had emerged and contributed additively to the outgrowth of new languages.
Perhaps, the orthographic changes arose due to the fixation of phonetic innovations
developed in the course of long-lasting interactions with non-IE languages in areas
of their intensive historical contacts.
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Fig. 5 The panels A–D show the normal probability plots fitting the distances r of language points
from the centre of mass to univariate normality. The data points were ranked and then plotted
against their expected values under normality, so that departures from linearity signify departures
from normality. The values of variance are given for each language group. The expected locations
of the proto-languages, together with the end points of the 95 % confidence intervals, are displayed
on the normal plots by circles

In physics, the univariate normal distribution is closely related to the time
evolution of a mass-density function ρ(r , t) under homogeneous diffusion in one
dimension,

ρ(r , t) = 1

2πσ 2
· exp

(

− (r − μ)2

2σ 2

)

,

in which the mean value μ is interpreted as the coordinate of a point where all mass
was initially concentrated, and variance σ 2 ∝ t grows linearly with time. If the dis-
tributions of languages along the radial coordinate of the geometric representation
do fit to univariate normality for all language groups, then in the long run the value
of variance in these distributions grew with time at some approximately constant
rate. The constant increment rates of variance of radial positions of languages in
the geometrical representation, Fig. 3, has nothing to do with the traditional glot-
tochronological assumption about the steady borrowing rates of cognates [25]. It is
also important to mention that the values of variance σ 2 calculated for the languages
over the individual language groups (see Fig. 5a–d) do not correspond to physical
time rather give a statistically consistent estimate of age for each language group.
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In order to assess the pace of variance changes with physical time and calibrate our
dating method, we have to use the historically attested events.

Although historical compendiums report us on grace, growth and glory succeeded
by the decline and disintegration of polities in days of old, they do not tell us much
about the simultaneous evolution in language. It is beyond doubt that massive pop-
ulation migrations and disintegrations of organized societies, both destabilizing the
social norms governing behaviour, thoughts and social relationships can be taken
on as the chronological anchors for the onset of language differentiation. However,
the idealized assumption of a punctual split of a proto-language into a number of
successor languages shared implicitly by virtually all phylogenetic models is prob-
lematic for a linguist well aware of the long-lasting and devious process by which a
real language diverges [26]. We do not aspire to put dates on such a fuzzy process,
rather consider language as a natural appliance for dating of those migrations and
fragmentation happened during poorly documented periods in history.

While calibrating the dating mechanism in our model, we have used the four
anchor events [27]:

1. The last Celtic migration (to the Balkans and Asia Minor) (by 300 BC)
2. The division of the Roman Empire (by 500 AD)
3. The migration of German tribes to the Danube River (by 100 AD)
4. The establishment of the Avars Khaganate (by 590 AD) overspreading Slavic

people who did the bulk of the fighting across Europe

It is remarkable that a very slow variance pace of a millionth per year

t

σ 2
= (1.367 ± 0.002) × 106 (7)

is evaluated uniformly, with respect to all of the anchoring historical events mentioned
above.

The time–variance ratio (7) deduced from the well attested events allows us to
retrieve the probable dates for

1. The break-up of the Proto-Indo-Iranian continuum preceding 2400 BC, in a good
agreement with the migration dates from the early Andronovo archaeological
horizon [28]

2. The end of common Balto-Slavic history as early as by 1400 BC, in support of
the recent glottochronological estimates [29] well agreed with the archaeological
dating of Trziniec–Komarov culture, localized from Silesia to Central Ukraine

3. The separation of Indo-Aryans from Indo-Iranians by 400 BC, probably as a result
of Aryan migration across India to Ceylon, as early as in 483 BC [30]

4. The division of Persian polity into a number of Iranian tribes migrated and settled
in vast areas of Southeastern Europe, the Iranian plateau and Central Asia by 400
BC, shortly after the end of Greco–Persian wars [31].
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7 Evidence for Proto-Indo-Europeans

The basic information about the Proto-Indo-Europeans arises out of the comparative
linguistics of the IE languages. There were a number of proposals about early Indo-
European origins so far. For instance, the Kurgan scenario postulating that the people
of an archaeological “Kurgan culture” (early fourth millennium BC) in the Pontic
steppe were the most likely speakers of the proto- IE language, is widely accepted
[32]. The Anatolian hypothesis suggests a significantly older age of the IE proto-
language as spoken in Neolithic Anatolia and associates the distribution of historical
IE languages with the expansion of agriculture during the Neolithic revolution in the
eighth and sixth millennia BC [22].

It is a subtle problem to trace back the diverging pathways of language evolution
to a convergence in the IE proto-language since symmetry of the modern languages
assessed by the statistical analysis of orthographic realizations of the core vocab-
ulary mismatches that in ancient time. The major IE language groups have to be
re-examined in order to ascertain the locations of the individual proto-languages as
if they were extant. In our approach, we associate the mean μ of the normal distribu-
tion of languages belonging to the same language group along the radial coordinate
r with the expected location of the group proto-language. Although we do not know
what the exact values of means were, the sample means calculated over the several
extant languages from each language group give us the appropriate estimators. There
is a whole interval around each observed sample mean within which, the true mean
of the whole group actually can take the value.

In order to target the locations of the five proto-languages (the Proto-Germanic,
Latin, Proto-Celtic, Proto-Slavic, and Proto-Indo-Iranian) with the 95 % confidence
level, we have supposed that variances of the radial coordinate calculated over the
studied samples of languages are the appropriate estimators for the true variance
values of the entire groups. The expected locations of the proto-languages, together
with the end points of the 95 % confidence intervals, are displayed on the normal
plots, in Fig. 5a–d. Let us note that we did not include the Baltic languages into
the Slavic group when computing the Proto-Slavic centre point because these two
groups exhibit different statistics, so that such an inclusion would dramatically reduce
the confidence level for the expected locations of the proto-languages. Although
the statistical behaviour of the proto-languages in the geometric representation of
the IE family is not known, we assume that it can be formally described by the
“diffusion scenario”, as for the historical IE languages. Namely, we assume that the
locations of the five proto-languages from a statistically determined central point fit
to multivariate normality. Such a null hypothesis is subjected to further statistical
testing, in which the chi-square distribution is used to test for goodness of fit of the
observed distribution of the locations of the proto-languages to a theoretical one.
The chi-square distribution with k degrees of freedom describes the distribution of a
random variable Q = ∑k

i=1 X
2
i , where Xi are k independent, normally distributed

random variables with mean 0 and variance 1.
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Fig. 6 The graphical test to check three-variate normality of the distribution of the distances δi of
the five proto-languages from a statistically determined central point is presented by extending the
notion of the normal probability plot. The integer parameter i specifies the number of degrees of
freedom. The chi-square distribution is used to test for goodness of fit of the observed distribution:
the departures from three-variant normality are indicated by departures from linearity

In Fig. 6, we have used a simple graphical test to check three-variate normality by
extending the notion of the normal probability plot. The locations of proto-languages
have been tested by comparing the goodness of fit of the scaled distances from the
proto-languages to the central point (the mean over the sample of the five proto-
languages) to their expected values under the chi-square distribution with three
degrees of freedom. In the graphical test shown in Fig. 6, departures from three-
variant normality are indicated by departures from linearity. Supposing that the
underlying population of parent languages fits to multivariate normality, we con-
clude that the determinant of the sample variance–covariance matrix has to grow
linearly with time. The use of the previously determined time–variance ratio (7) then
dates the initial break-up of the Proto-Indo-Europeans back to 7000 BC pointing
at the early Neolithic date, to say nothing about geography, in agreement with the
Anatolian hypothesis of the early Indo-European origin [7, 21, 22, 24, 33].

The linguistic community estimates of dating for the proto-IE language lie be-
tween 4500 and 2500 BC, a later date than the Anatolian theory predicts. These
estimations are primarily based on the reconstructed vocabulary (see [34] and refer-
ences therein) suggesting a culture spanning the Early Bronze Age, with knowledge
of the wheel, metalworking and the domestication of the horse and thus favouring the
Kurgan hypothesis. It is worth a mention that none of these words are found in the
Swadesh list encompassing the basic vocabulary related to agriculture that emerged
perhaps with the spread of farming, during the Neolithic era. Furthermore, the de-
tailed analysis of the terms uncovered a great incongruity between the terms found
in the reconstructed proto-IE language and the cultural level met with in the Kurgans
lack of agriculture [35]. Let us note that our dating (2400 BC) for the migration from
the Andronovo archaeological horizon (see Sect. 6) and the early break-up of the
proto-Indo-Iranian continuum estimated by means of the variance (see Fig. 5c) is
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compatible with the Kurgan time frame. However, despite the Indo-Iranian group of
languages being apparently the oldest among all other groups of the IE family, we
cannot support the general claim of the Kurgan hypothesis, at least on the base of
Swadesh’s lexicon.

8 In Search of Polynesian Origins

The colonization of the Pacific Islands is still the recalcitrant problem in the history
of human migrations, despite many explanatory models based on linguistic, genetic
and archaeological evidences have been proposed in so far. The origins, relationships
and migration chronology of Austronesian settlers have constituted the sustainable
interest and continuing controversy for decades. The components probe for a sample
of 50 AU languages immediately uncovers the both Formosan (F) and Malayo-
Polynesian (MP) branches of the entire language family (see Fig. 7).

The distribution of azimuth angles shown in Fig. 8a identifies them as two mono-
phyletic jets of languages that cast along either axis spanning the entire family plane.
The clear geographic patterning is perhaps the most remarkable aspect of the ge-
ometric representation. It is also worth mentioning that the language groupings as
recovered by the component analysis of lexical data reflect profound historical rela-
tionships between the different groups of AU population. For instance, the Malagasy
language spoken in Madagascar casts in the same mould as the Maanyan language
spoken by the Dayak tribe dwelling in forests of Southern Borneo and the Batak
Toba language of North Sumatra spoken mostly west of Lake Toba.

Despite Malagasy sharing much of its basic vocabulary with the Maanyan lan-
guage [36], many manifestations of Malagasy culture cannot be linked up with the
culture of Dayak people: the Malagasy migration to East Africa presupposes highly
developed construction and navigation skills with the use of out-rigger canoes typical
of many Indonesian tribes which the Dayak people, however, do not have, also some
of the Malagasy cultivations and crop species (such as wet rice) cannot be found
among forest inhabitants. In contrast, some funeral rites (such as the second burial,
famadihana) typical of the leading entities of the Madagascar highlands are essen-
tially similar to those of Dayak people. A possible explanation is that population of
the Dayak origin was brought to Madagascar as slaves by Malay seafarers [6]. As the
Dayak speakers formed the majority in the initial settler group, in agreement with
the genetic parental lineages found in Madagascar [37], their language could have
constituted the core element of what later became Malagasy, while the language of
the Malay dominators was almost suppressed, albeit its contribution is still recovered
by the exploration of the leading traits on language data.

The AU language family forks at the northernmost tip of the Philippines, the
Batanes Islands located about 190 km south of Taiwan (see Fig. 8b). On the distribu-
tion of azimuth angles shown in Fig. 8a, the Itbayaten language representing them in
the studied sample is pretty close to the azimuth, ϕ = 0, bridging over the separating
language family branches (Fig. 8b). By the way, the MP-offset descends from the
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Fig. 7 The geometric representation of the 50 AU languages in space of the major data traits
(q2, q3) shows the remarkable geographic patterning. It is convenient to use the polar coordinates:

the radius from the centre of the graph, ri =
√
q2

2,i + q2
3,i , and the azimuth angle ϕ = arctan ( q3,i

q2,i
),

to identify the positions of languages. For languages in the “normal sector”, the distribution of
radial coordinates conforms to univariate normality. At variance with them, languages located
at the distant margins of the AU family apparently follow the “express train” evolution model
(see Sect. 9) The “normal sector” consists of the following languages: from Philippines, Bontoc,
Kankanay, Ilokano, Hanunoo, Cebuano, Tagalog, Pangasinan, Mansaka, Maranao; from Great
Sunda and Malay, Malagasy, Maanyan, Ngaiu dayak, Toba batak, Bali, Malay, Iban, Sasak, Sunda,
Javanese; from Lesser Sunda and Sulawesi, Sika, Kambera, Wolio, Baree, Buginese, Manggarai,
Sangir, Makassar; from Near Oceania, Manam, Motu, Nggela, Mota; of Paiwan group (Taiwan)
Pazeh, Thao, Puyuma, Paiwan, Bunun, Amis, Rukai, Siraya, Kavalan

northern Philippines (the northern Luzon Island) and springs forth eastward through
the Malay Archipelago across Melanesia culminating in Polynesia (Fig. 9); in accor-
dance with the famous “express train” model of migrations peopled the Pacific [38].
In its turn, the F-branch embarks on the southwest coast of Taiwan and finds its way
to the northern Syueshan Mountains inhabited by Atayal people that compose many
ethnic groups with different languages, diverse customs and multiple identities. Evi-
dently, both the offshoots derived their ancestry in Southeast Asia as strengthened by
multiple archaeological records [38], but then evolved mostly independently from
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Fig. 8 a The distribution of azimuth angles in the geometric representation of the 50 AU languages
shown in Fig. 7. b The Itbayaten language is pretty close to the azimuth, ϕ = 0, bridging over the
language family branches lexically and geographically

Fig. 9 The geometric representation of the 50 AU languages (Fig. 7) projected onto the geographic
map uncovers the possible route of Austronesian migrations
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Fig. 10 The normal probability plot fitting the distances r of language points from the “centre of
mass” of the geometrical representation of the AU language family to univariate normality. The
data points for languages belonging to the “normal sector” shown in Fig. 7 were ranked and then
plotted against their expected values under normality, so that departures from linearity signify
departures from normality. The value of variance over all languages belonging to the “normal
sector” is σ 2 = 1.5 × 10−3

each other, on evidence of the Y-chromosome haplotype spread over Taiwanese and
Polynesian populations [39].

The distribution of languages spoken within Maritime Southeast Asia, Melanesia,
Western Polynesia and of the Paiwan language group in Taiwan over the distances
from the centre of the diagram representing theAU language family in Fig. 7 conforms
to univariate normality (see Fig. 10) suggesting that an interaction sphere had existed
encompassing the whole region, from the Philippines and Southern Indonesia through
the Solomon Islands to Western Polynesia, where ideas and cultural traits were shared
and spread as attested by trade [40, 41] and translocation of farm animals [42, 43]
among shoreline communities.

Although the lack of documented historical events makes the use of the developed
dating method difficult, we may suggest that variance evaluated over Swadesh’s
vocabulary forges ahead approximately at the same pace uniformly for all human
societies involved in trading and exchange forming a singular cultural continuum.
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Then, the time–age ratio (7) deduced from the previous chronological estimates for
the IE family returns 550 AD if applied to the Austronesians as the likely break-up
date of their cultural continuum, pretty well before 600–1200 AD while descendants
from Melanesia settled in the distant apices of the Polynesian triangle as evidenced
by archaeological records [44–46].

9 Austronesian Languages Riding an Express Train

The distributions of languages spoken in the islands of East Polynesia and of the
Atayal language groups in Taiwan over the radial coordinate from the centre of the
geometric representation shown in Fig. 7 break from normality, so that the general
“diffusive scenario” of language evolution used previously for either of the chrono-
logical estimates is obviously inapplicable to them. For all purposes, the evolution of
these extreme language subgroups cannot be viewed as driven by independent, petty
events. Although the languages spoken in Remote Oceania clearly fit the general
trait of the entire MP-branch, they seem to evolve without extensive contacts with
Melanesian populations, perhaps because of a rapid movement of the ancestors of
the Polynesians from South-East Asia as suggested by the “express train” model [38]
consistent with the multiple evidences on comparatively reduced genetic variations
among human groups in Remote Oceania [47–49].

In order to obtain reasonable chronological estimates, an alternative mechanism
on evolutionary dynamics of the extreme language subgroups in space of traits of the
AU language family should be reckoned with. The simplest “adiabatic” model entails
that no words had been transferred to or from the languages riding the express train to
Polynesia, so that the lexical distance among words of the most distanced languages
tends to increase primarily due to random permutations, deletions or substitutions
of phonemes in the words of their ancestor language. Under such circumstances the
radial coordinate of a remote language riding an “express train” in the geometric
representation (see Fig. 7) effectively quantifies the duration of its relative isola-
tion from the Austronesian cultural continuum. Both of the early colonization of a
secluded island by Melanesian seafarers and of the ahead of time migration of the
indigenous people of Taiwan to highlands can be discerned by the excessively large
values of the radial coordinates r of their languages. In Fig. 11, we have presented the
log-linear plot, in which the radial coordinates of remote languages were ranked and
then plotted against their expected values under the exponential distribution (shown
by the dash-dotted line in Fig. 11).

The radial coordinates of the languages at the distant margins of the AU family
diagram shown in Fig. 11 may be deduced as evolving in accordance with the simple
differential equation

ṙ = ar (8)

where ṙ means the derivative of r with respect to isolation time, and a > 0 is
some constant quantifying the rate of radial motion of a language riding the express
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Fig. 11 The log-linear plot fitting the distances r to remote languages riding an “express train”
in the geometric representation (see Fig. 7) to an exponential distribution. The radial coordinates
of the languages were ranked and then plotted against their expected values under the exponential
distribution. As usual, the departures from linearity signify departures from the tested distribution
(given by the dash-dotted line)

train in space of the major traits of the AU family. In the proposed model of language
evolution, it is suggested that in absence of contact borrowings the orthographic real-
izations of Swadesh’s meanings would accumulate emergent variations in spellings,
so that the radial coordinate indicating the divergence of a remote language from the
rest of the group can grow unboundedly with isolation time.

A simple equation mathematically similar to (8) has been proposed by Swadesh
[2] in order to describe the change of cognates in time, in the framework of the
glottochronological approach. In our previous work [6], another similar equation
has been suggested for the purpose of modeling the time evolution of normalized
edit distances between languages. However, we have to emphasize that the statisti-
cal model (8) has a direct relation to neither the percentage of cognates (as in the
traditional glottochronological approach), nor the edit distance itself.

Then the relative dates estimating the duration of relative isolation of the distant
languages from the extensive contacts with other Austronesian languages can be
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derived basing on the assumption (8) as

t1 − t2 = 1

a
· ln

r1

r2
(9)

where r2 > r1 are the radial coordinates of the languages from the centre of the
sample diagram shown in Fig. 7.

Tahiti located in the archipelago of Society Islands is the farmost point in the
geometric representation of the Austronesian family and the foremost Austronesian
settlement in the Remote Oceania attested as early as 300 BC [44], the date we placed
the incipience of the Tahitian society. According to many archaeological reconstruc-
tions [44–46], descendants from West Polynesia had spread through East Polynesian
archipelagos and settled in Hawaii by 600 AD and in New Zealand by 1000 AD
testifying the earliest outset dates for the related languages. It is worth mentioning
that all stride times between the offsets of these three Polynesian languages hold
consistently the same rate

a = (4.27 ± 0.01) × 10−4 (10)

affirming the validity of the “adiabatic” conjecture described above and allowing us to
assign the estimated dates to the marks of the horizontal axis of the timing diagram
presented in Fig. 11. The language divergence among Atayal people distributed
throughout an area of rich topographical complexity is neatly organized by the myths
of origin place, consanguine clans and geographical barriers that have lead to the
formation of a unique concept of ethnicity remarkable for such a geographically small
region as Taiwan. The complexity of the Atayal ethnic system and the difficulty of
defining the ethnic borders hindered the classification of the Atayal regional groups
and their dialects which has been continuously modified throughout the last century.

In our work, we follow the traditional classification [50] of the Atayal group into
three branches based on their places of origin: Sediq (Sedek), Ciuli (Tseole) Atayal,
and Squiliq (Sekilek) Atayal. In account with the standard lexicostatistic arguments
[51], the Sediq dialect subgroup could have split off from the rest of theAtayal groups
about 1600 years ago, as both the branches share up to a half of the cognates in the
200 words of basic vocabulary. This estimated date is very tentative in nature and
calls for a thorough crosschecking. The Atayal people had been recognized as they
had started to disperse to the northern part of Taiwan around 1750 AD [52]. Being
formed as the isolated dialect subgroups in island interiors, they showed the greatest
diversity in race, culture and social relations and sometimes considered each other
as enemies and prime head hunting targets.

Given the same rate of random phonetic changes as derived for the Polynesian
languages, the “adiabatic” model of language evolution returns the stride times of
1000 years between the Sediq dialect subgroup and Squiliq Atayal and of 860 years
between the Ciuli and Squiliq Atayal languages. Consistently, Sediq is estimated
to have branched off from the other Atayal languages 140 years before the main
Atayal group split into two. The Squiliq subgroup had been attested during the latest
migration of Atayal people, as late as 1820 AD [52]. Perhaps, a comprehensive study
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of the Atayal dialects by their symmetry can shed light on the origins of the Atayal
ethnic system and its history.

10 Conclusion

We have presented the new paradigm for the analysis of language phylogeny. The
proposed method is fully automated; it avoids subjectivity since all results can be
replicated by other scholars assuming that the database is the same. Furthermore, it
allows for rapid comparison of items of a very large number of languages.

We applied here our method to the IE and AU families of languages considering
200 items lists of words according to the original choice of Swadesh. The output
was a stability measure for all items computed separately for the two families. The
ranking plots show that the two families behave in the same way, with the higher
stability items deviating from the linear interpolation because of their very large
values. We are convinced that this phenomenology we observe, both for IE and AU
languages, should be a universal characteristic of stability distributions, common to
all families. On the contrary, it turns out that the most stable items are not the same
even if there is a positive correlation between the stability computed for IE and AU
groups.

We evaluated the lexical distances between languages by means of the mean
normalized edit distances between the orthographic realizations of Swadesh’s mean-
ings. Then, we considered an infinite sequential process of language classification
described by random walks on the matrix of lexical distances. As a result, the re-
lationships between languages belonging to one and the same language family are
translated into distances and angles, in multi-dimensional Euclidean space. The de-
rived geometric representations of language taxonomy are used in order to test the
various statistical hypotheses about the evolution of languages.

Our method allows for making accurate inferences on the most significant events
of human history by tracking changes in language families through time. Com-
putational simplicity of the proposed method based primarily on linear algebra is
its crucial advantage over previous approaches to the computational linguistic phy-
logeny that makes it an invaluable tool for the automatic analysis of both the languages
and the large document data sets that helps to infer on relations between them in the
context of human history. Recently, we have applied the developed method in order
to investigate the detailed historical configuration of Malagasy dialects spoken on
Madagascar [53].
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