
Chapter 5
Image-Based Positioning of Mobile Devices
in Indoor Environments

Jason Zhi Liang, Nicholas Corso, Eric Turner and Avideh Zakhor

5.1 Introduction

Indoor positioning allows for many commercially viable applications, such as
navigation, behavior and movement tracking, and augmented reality (AR). These
applications all require the user’s location and orientation to be reliably estimated.
Positioning is noticeably more challenging indoors than outdoors since GPS is typ-
ically unavailable in interior environments due to the shielding effect of structures.
As a result, much research has been focused on relying on other types of signals, or
in our case, images as a basis for positioning.

Avariety of sensors are capable of performing indoor positioning, including image
[1], optical [2], radio [3–7], magnetic [8], RFID [9], and acoustic [10]. WiFi-based
indoor positioning takes advantage of the proliferation of wireless access points (AP)
and WiFi capable smartphones and uses the signal strength of nearby WiFi beacons
to estimate the user’s location. A few drawbacks are that APs cannot be moved or
modified after the initial calibration, and that a large of number of APs are required to
achieve reasonable accuracy. For instance, 10 or more wireless hotspots are typically
required to achieve submeter accuracy [4]. The most debilitating drawback of WiFi
positioning is its inability to estimate the user’s orientation, which is necessary for
AR applications. Other forms of indoor positioning that rely on measuring radio
signal strength such as bluetooth, GSM, and RFID, also share the same strengths and
weaknesses of WiFi-based indoor positioning.

There have also been previous attempts at indoor image-based positioning [1]. An
image-based positioning system involves retrieving the best image from a database
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that matches to the user’s query image, then performing pose estimation on the
query/database image pair in order to estimate the location and orientation of the
query image. The authors in [1] take advantage of off the shelf image matching algo-
rithms, namely color histograms, wavelet decomposition, and shape matching and
achieve room level accuracy with more than 90% success probability, and meter-
level accuracy with more than 80% success probability for one floor of the computer
science building at Rutgers University. This approach however, cannot be used to
determine the absolute metric position of the camera, nor its orientation. Thus, it can-
not be used in augmented reality applications where precise position and orientation
is needed.

In this chapter, we demonstrate an image-based positioning system for mobile
devices capable of achieving submeter position accuracy as well as orientation recov-
ery. The three stages of that pipeline are: (1) preparing a 2.5D locally referenced
image database, (2) image retrieval, and (3) pose recovery from the retrieved data-
base image. We also present a method to estimate confidence values for both image
retrieval and pose estimation of our proposed image-based positioning system. These
two confidence values can be combined to form an overall confidence indicator. Fur-
thermore, the confidence values for our pipeline can be combined with that of other
sensors such as WiFi in order to yield a more accurate result than each method by
itself.

Our pipeline can be summarized as follows:

1. Database Preparation, shown in Fig. 5.1a: We use a human operated ambulatory
backpack outfitted with laser scanners, cameras, and an orientation sensor (OS),
as seen in Fig. 5.2, to map the interior of a building in order to generate a locally
referenced 2.5D image database complete with SIFT features [11–13]. By locally
referenced image database, wemean that the absolute six degrees of freedom pose
of all images, i.e., x, y, z, yaw, pitch, and row, are known with respect to a given
coordinate system. By 2.5D, we mean that for each database image, there is a
sparse depthmap that associates depth values with image SIFT keypoints only.

2. Image Retrieval, shown in Fig. 5.1b: We load all of the image database SIFT
features into a k-d tree and perform fast approximate nearest neighbor search to
find a database image with most number of matching features to the query image
[14–16].

3. Pose Estimation, shown in Fig. 5.1c: We use the depth of SIFT feature matches
along with cell phone pitch and roll to recover the relative pose between the
retrieved database image in step (2) and the query image. This results in complete
six degree of freedom pose for the query image in the given coordinate system
[17].

In Sect. 5.2, we describe our approach for generating sparse depthmaps during
database preparation. InSect. 5.3,wewill goover image retrieval andpose estimation.
Section5.4 includes estimation of confidence values for both image retrieval and pose
estimation are estimated. In Sect. 5.5, we show experimental results, characterizing
the accuracy of our pipeline. Section5.6 includes conclusions and future work.
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Fig. 5.1 Overview of our indoor positioning pipeline. The pipeline is composed of a database
preparation, b image retrieval, and c pose estimation steps

5.2 Database Preparation

In order to prepare the image database, an ambulatory human operator first scans
the interior of the building of interest using a backpack fitted with two 2D laser
scanners, two fish-eye cameras, and one OS as shown in Fig. 5.2. The database
acquisition system requires two laser scanners, namely the pitch and yaw scanners
in Fig. 5.2. Measurements from the backpack’s yaw and pitch laser range scanners
are processed by a scan matching algorithm to localize the backpack at each time
step and recover its six degrees of freedom pose [18]. Specifically, the yaw scanner
is used in conjunction with a 2D positioning algorithm in [11–13] to recover x, y
and yaw, the OS is used to recover pitch and roll, and the pitch scanner is used to
recover z [11]. Since the cameras are rigidly mounted on the backpack, recovering
the backpack pose essentially implies recovering camera pose. Figure5.3a shows
the recovered path of the backpack within a shopping center, while Fig. 5.3b shows
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Fig. 5.2 Diagram of the data acquisition backpack

the surrounding wall points recovered by the backpack by projecting the yaw scans
onto the ground plane [19]. These wall points can be connected interactively via
commercially available CAD software to produce an approximate 2D floorplan of
the mall as seen in Fig. 5.3c. The recovered pose of the rigidly mounted cameras on
the backpack are then used to generate a locally referenced image database in which
the location, i.e., x, y, and z, as well as orientation, i.e., yaw, pitch, and roll, of each
image is known within one coordinate system.

To create a sparse depthmap for the database images, we first temporally sub-
sample successive captured images on the backpack while maintaining their overlap.
We then extract SIFT features from each pair of images and determine matching
feature correspondence pairs through nearest neighbor search. In order to ensure the
geometric consistency of the SIFT features, we compute the fundamental matrix that
relates the two sets of SIFT features and removes any feature pairs which do not
satisfy epipolar constraints.

We then triangulatematching SIFT keypoint pairs in 3D space. As seen in Fig. 5.4,
for each pair of SIFT correspondences, we calculate the 3D vectors that connects the
camera centers of the images to the respective pixel locations of their SIFT features.
In doing so, we make use of the database images’ poses and intrinsic parameters to
ensure both vectors are correctly positioned within the same world coordinate frame.
Next, we determine the depth of the SIFT features by finding the intersection of these
rays and computing the distance from camera center to the intersection point. We
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Fig. 5.3 a Recovered path of backpack traversal. b Wall points generated by backpack. c 2D
floorplan recovered from wall points

use the following to determine the intersection point or the point mutually closest to
the two vectors:
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Fig. 5.4 Triangulation of two matching SIFT features. v1 and v2 are the resulting vectors when
the camera centers c1 and c2 are connected to the SIFT features p1 and p2 on the image planes.
The two vectors intersect at x

where x is the intersection point, vi is the normalized direction of the i th vector,
and pi is a point located on the i th vector. The availability of highly optimized
library functions for determining fundamentalmatrices and performing linear algebra
operations means that sparse depthmap generation can be done in amatter of seconds
per image. For debugging and visualization purposes, we combine the intersection
points of SIFT features from every database image into a single sparse 3D point
cloud, shown in Fig. 5.5a, b.

Fig. 5.5 a Top-down and b side views of sparse 3D point cloud generated from triangulation of
SIFT feature correspondence of the database images
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5.3 Image Retrieval and Pose Estimation

The next step of our image-based positioning pipeline shown in Fig. 5.1c is image
retrieval, which involves selecting the best matching image from the image database
for a particular query image. Our indoor image retrieval system loads the SIFT
features of every database image into a single k-d tree [16]. Next, we extract SIFT
features from the query image and for each SIFT vector extracted, we lookup its top
N neighbors in the kd-tree. For each closest neighbor found, we assign a vote to the
database image that the closest neighbor feature vector belongs to. Having repeated
this for all the SIFT features in the query image, the database images are ranked by
the number of matching SIFT features they share with the query image.

After tallying the votes, we check geometric consistency and rerank the scores
to filter out mismatched SIFT features. We then solve for the fundamental matrix
between the database and query images and eliminate feature matches that do not
satisfy epipolar constraints [14]. We also remove SIFT feature matches where the
angle of SIFT features differ by more than 0.2 rad. Since these geometric consistency
checks only eliminate feature matches and decrease the scores of database images,
we only need to partially rerank the database images. The database image with the
highest score after reranking is exported as the best match to the query image. The
image retrieval step takes roughly 2–4s depending on the processing power of the
processor used.

As shown in Fig. 5.1c, the last step of our indoor positioning pipeline is pose
recovery of the query image. Pitch and roll estimates from cell phone sensors are used
in vanishing point analysis to compute yawof the query image [17]. Oncewe estimate
orientation, SIFT matches are used to solve a constrained homography problem
within Random Sample Consensus (RANSAC) to recover translation between query
and database images. The method for scale recovery of the translation vector only
requires depth values at the SIFT features which are considered inliers from the
RANSAC homography. These depth values are present in the sparse depthmaps
generated during the database preparation step of Sect. 5.2. We have also found that
reducing the size of the query images significantly reduces the number of iterations
required for RANSAC homography. This is because the resolution of our database
images is significantly lower than that of the query image camera. If the RANSAC
homography fails to find inliers, we use the pose of the matched database image as
the solution. Depending on the image and speed of the processor, pose estimation
requires 2–10s.

5.4 Confidence Estimation

Our confidence estimation system consists of several classifiers that output confi-
dence values for both the image retrieval and pose recovery steps in our pipeline.
These classifiers are trained using positive and negative examples from both image
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Fig. 5.6 Comparison of a
number of SIFT matches after
geometric consistency check
and b vote ranking
distribution before geometric
consistency check for
correctly and incorrectly
retrieved images

retrieval and pose recovery stages of our proposed pipeline in Sect. 5.3. We have
empirically found a logistic regression classifier to perform reasonably well even
though other classifiers can also be used for confidence estimation. In order to evalu-
ate the performance of our confidence estimation system, we create a dataset of over
270 groundtruth images where roughly 25 % are used for validation and the rest for
training. To boost classifier performance, 50 out of the 270 images in the validation
set are chosen to be “negative” images that do not match to any image database.

To generate confidence values for image retrieval, we train a logistic regression
classifier based on features obtained during the image retrieval process. We assign
groundtruth binary labels to the images in the training set that indicate whether the
retrieved images matches the query images. For a given query image, the retrieval
classifier generates both a predicted binary label and a retrieval confidence value
between 0 and 1. We have found the following features to be well correlated with
image retrieval accuracy [14]: (a) number of SIFT featurematches between query and
database image before geometric consistency checks; (b) number of SIFT matches
after geometric consistency checks; (c) the distribution of the vote ranking before
geometric consistency checks; (d) the distribution of the vote ranking after geometric
consistency checks; (e) physical proximity of the top ranking database images in the
vote ranking. For example, as shown inFig. 5.6a, the average number of SIFTmatches
after geometric consistency checks for correctly matched query images is over three
times that of incorrectly matched query images. Likewise, as shown in Fig. 5.6b, the
number of database images with at least half the number of votes of the top ranked
image before the geometric consistency check is much lower for correctly retrieved
images than the incorrectly retrieved ones.

Similarly for pose estimation, we train a separate logistic regression classifier
on another set of features that correlate well with the pose recovery accuracy. We
assign a groundtruth “True” label if the location error of a training image is below
a pre-specified threshold of 4m, and a “False” label otherwise. As with the image
retrieval classifier, our pose estimation classifier generates a predicted binary label



5 Image-Based Positioning of Mobile Devices in Indoor Environments 93

Fig. 5.7 Scatterplot of a confidence metric used in [17] and b number of inliers after RANSAC
homography versus location error. Red (blue) dots correspond to images with less (more) than 4m
of location error

and a confidence value between 0 and 1. The features use to train the classifier are:
(a) number of inliers after RANSAC homography; (b) reprojection error; (c) number
of SIFT feature matches before RANSAC homography; (d) number of RANSAC
iterations; (e) a confidence metric in [17] that is used to choose the optimal inlier
set. In Fig. 5.7, we use scatterplots to visualize the correlation between some of these
features and pose recovery accuracy. Specifically, Fig. 5.7a plots the relationship
between the confidence metric used to choose the optimal inlier set and location
error of the pose estimation while Fig. 5.7b does the same for the number of inliers
remaining after RANSAC homography and location error. The red (blue) dots in
the scatterplots correspond to images with less (more) than 4m of location error. As
seen, query images with larger location error tend to have less inliers and a smaller
inlier set confidence metric.

We also perform support vector regression (SVR) on the training set and use the
resulting regression model to predict location error of the testing set for our proposed
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Fig. 5.8 Plot of actual (blue) versus predicted (red) location error for images in validation set using
SVR regression. For the negative examples in the validation set, we set the actual error to be an
arbitrary high value of 100m

pose recovery method. In doing so, we assign an arbitrarily large location error of
100m to the negative examples in the validation set. As seen in Fig. 5.8, there is a
reasonable correlation between our predicted and actual location error.

We find the predicted binary label of the image retrieval and pose estimation
confidence system to be in agreementwith the actual groundtruth label 86 and 89%of
the query images in the validation set respectively. Figure5.9a, b show the distribution
of confidence values for image retrieval and pose estimation respectively on the
validation set. Green (red) bars represent the confidence distribution of imageswhose
predicted label (do not) match the groundtruth label. To create an overall system
confidence score between0 and1 andprediction label,weuse the following algorithm
below:

overall confidence = 0.5 * (retrieval confidence + pose confidence);
if overall confidence >0.5 then

prediction label = true;
else

prediction label = false;
end

By comparing the groundtruth and the overall confidence prediction labels for the
query images in the validation set, the accuracy of the overall confidence estimation
is determined to be 86%. Figure5.9c shows the distribution of overall confidence
scores for the validation set.

To determine the optimal location error threshold, we set it to values ranging from
1 to 12m and test the accuracy of the pose estimation confidence system. As shown
in Fig. 5.10, the optimal value for the threshold is around 3–5m.
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Fig. 5.9 Confidence
distribution for a image
retrieval, b pose recovery, c
overall system on the
validation set; Red (green)
bars correspond to incorrectly
(correctly) predicted images

5.5 Experimental Results

For our experimental setup, we use the ambulatory human operated backpack of
Fig. 5.2 to scan the interior of a two story shopping center located in Fremont, Cal-
ifornia. To generate the image database, we collect thousands of images with two
5 megapixel fish-eye cameras mounted on the backpack. These heavily distorted
fish-eye images are then rectified into 20,000 lower resolution rectilinear images.
Since the images overlap heavily with each other, it is sufficient to include every
sixth image for use in the database. By reducing the number of images, we are able
to speed up image retrieval by several factors with virtually no loss in accuracy.

Our query image data set consists of 83 images taken with a Samsung Galaxy
S3 smartphone. The images are approximately 5 megapixels in size and are taken
using the default settings of theAndroid camera application. Furthermore, the images
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Fig. 5.10 Scatterplot showing relationship between pose recovery confidence estimation accuracy
and the threshold ts used for location error

consist of landscape photos either taken head-on in front of a store or at a slanted
angle of approximately 30◦. After downsampling the query images to the same
resolution as the database images, i.e., 1.25 megapixels, we successfully match 78
out of 83 images to achieve a retrieval rate of 94%. Detailed analysis of the failure
cases reveal that two of the incorrectly matched query images correspond to a store
that does not exist in the image database. Therefore, the effective failure rate of
our image retrieval system is 3 out of 80 or less than 4%. As shown in Fig. 5.11a,
successful retrieval usually involves matching of store signs present in both the query
and database images. In cases such as Fig. 5.11b where retrieval fails, there are few
matched features on the query image’s store sign.

Next, we run the remaining query images with successful retrieved database
images through the pose estimation part of the pipeline. In order to characterize pose
estimation accuracy, we first manually groundtruth the pose of each query image
taken. Groundtruth is estimated by using the 3D model representation of the mall,
and distance and yaw measurements recorded during the query dataset collection.
We first locate store signs and other distinctive scenery of the query image within the

Fig. 5.11 a Successful and b unsuccessful examples of image retrieval.Red lines showSIFT feature
matches
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Fig. 5.12 Cumulative density function of a location,b yaw error of and probability density function
of c location, d yaw error of our indoor positioning pipeline

3D model to obtain a rough estimate of the query image pose, which is then refined
using the measurements. The resulting groundtruth values are in the same coordinate
frame as the output of the pose recovery step.

Figure5.12 summarizes the performance of the pose estimation stage of our
pipeline. Figure5.12a, b show the cumulative distribution functions of location and
yaw error respectively while Fig. 5.12c, d show the probability distribution functions
of location and yaw error. As we can see, over 80% of the images have their yaw
correctly estimated to within 10◦ of the groundtruth values. Furthermore, over 55%
of all the images have a location error of less than 1m. As seen in the example in
Fig. 5.13a,when the location error is less than 1m, the SIFT features of corresponding
store signs present in both query and database images are matched by the RANSAC
homography [17]. Conversely, in less accurate cases of pose estimation where the
location error exceeds 4m, the RANSAChomography finds “falsematches” between
unrelated elements of the query and database images. For instance in Fig. 5.13b, dif-
ferent letters in the signs of the two images are matched. In general, we find that
images with visually unique signs perform better during pose estimation than those
lacking such features.

On a 2.3GHz i5 laptop, our complete pipeline from image retrieval to pose recov-
ery takes on average 10–12s to run. On an Amazon EC2 extra-large computing
instance, the runtime is reduced further to an average of 4.5 s per image. The indi-
vidual runtimes for each image is highly variable, with some images taking twice as
long as the average time.
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Fig. 5.13 a Example of accurate pose estimation on query image. b Example of inaccurate pose
estimation. Notice how different letters in the same sign are matched

5.6 Conclusion

In this chapter, we have presented a data acquisition system and processing pipeline
for image-based positioning in indoor environments. Several possible improvements
to our image-based positioning pipeline include tracking the position of the user and
reducing the amount of noise in the depthmaps by utilizingmore images for the sparse
depthmap generation process. For future research, we are planning to examine ways
to further increase the accuracy of indoor positioning. One method we are exploring
is to combine our image-based indoor positioning pipeline with aWiFi-based indoor
positioning system. The final position is determined by a particle filter that receives
measurement updates from both positioning systems.
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