Joint Trajectory Optimization Using All
Solutions of Inverse Kinematics of General
6-R Robots

U. Kuenzer and M.L. Husty

Abstract Based on a paper [1] that introduced an algorithm which allows to
transform all solutions of the inverse kinematics of a general 6-R robot into con-
tinuous joint trajectories we present in this paper methods to use the continuous
joint trajectories for path optimization. For this purpose the motion is discretized
and at each instant the inverse kinematic is computed using a fast algorithm
developed in [2, 3]. In the set of resulting joint angles continuous paths are
determined and the resulting sets of points are interpolated with quintic splines.
Different possibilities for trajectory optimization are discussed.
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1 Introduction

The inverse kinematics (IK) of general serial 6-R robots was in the 1980s of the
20th century considered to be one of the most challenging problems in robot
kinematics. The first solution to this problem was given by Lee and Liang [4].
Many papers followed, the most popular being [5], a solution that is mostly cited in
textbooks when the inverse problem is discussed. An overview of the existing
literature can be found in the thesis [2, 3], where a new approach to the inverse
problem was presented. This solution algorithm uses the Study parametrization of
the Euclidean displacement group SE(3) and needs much less equations than
Raghavan’s algorithm (eight compared to fourteen). Furthermore, the starting
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equations are so simple that they can be formulated completely general, i.e. without
specifying the Denavit-Hartenberg parameters, making the algorithm applicable to
any thinkable robot architecture without reformulation. Study parametrization is an
algebraic parametrization of SE(3), using eight parameters, that can be interpreted
as homogeneous coordinates in a seven dimensional projective space P’. To meet
the dimensions of the Euclidean displacement group the coordinates have to fulfill a
quadratic equation, corresponding to a quadric in P’, the so called Study quadric.
Detailed information on this parametrization and its use in kinematics can be found
e.g. in [6].

Within a software developing project called Kinsoft this algorithm was imple-
mented in C# and this package allows to compute all inverse kinematics solutions
fast along a given motion trajectory at as many instances of the trajectory as
specified. With motion trajectory (or equivalently motion curve) a curve on the
Study quadric is meant. Note that a curve on the Study quadric corresponds to a one
parameter motion in the Euclidean space. Mathematically the curve is represented
by an eight dimensional vector function encoding position end orientation of the
end effector (EE). At any instant the IK algorithm returns all solutions of the inverse
kinematics. Having all solutions of the inverse kinematics at many instances the
following problems arise:

1. How can the solutions for different joint angles be separated such that a con-
tinuous path for each joint angle and each of its different solutions can be
generated?

2. How can the discrete solution set be transformed into curves that have some
desired properties, like stable behaviour at the end points for at least three orders
of differentiability?

3. How can the data be used to distinguish the different solutions in order to find
out which joint trajectory path is optimal according to some optimizing criteria.

The first two items are discussed in [1]. The results of this paper are recalled
briefly in Sect. 2. In Sect. 3 the optimization strategies are presented. Section 4
shows some examples where one can clearly see that the presented optimization
algorithm allows to choose between different solutions of the inverse kinematics to
optimize the desired behaviour of the manipulator.

2 Separating the Joint Paths

In this section results from [1] are recalled to make the optimization strategies of
Sect. 3 understandable.

When the Denavit-Hartenberg parameters of a 6-R robot are specified and a
desired trajectory of the EE in position and orientation is given then the Kinsoft
program [7] will return a text file that graphically processed yields an output as
shown in Fig. 1. On the axis of abscissae of this plot one can see that 1,000 points
on the EE trajectory have been used to compute the inverse kinematics. On the axis
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Fig. 1 Joint angle values resulting form inverse kinematics along an EE trajectory

of ordinates the corresponding joint angles are displayed in different colours in the
range of — 180°..180°. Although it seems that there are continuous curves, the
program can only return discrete sets of joint angles at every instant.

Remark The trajectory in the example of Fig. 1 had been chosen such that the
manipulator hits its boundary which can be seen clearly because of the gap in all
joint trajectories. The path generation algorithm follows the following steps:

1. Data import from the Kinsoft output and data storing in special arrays.
2. Separating the paths using the distance function.

Definition 1 Leta, b € [— 180, 180]6 be two vectors. Then the difference between
the two sets of angles is defined as

min(|a; — by],360 — (la; — by]))
in(|az — b2|,360 — (|az — b2|))
min(|a3 — b3|, 360 — (|a3 — b3|))
( ( )
( ( )
( ( )

3

la = bl =
P min |a4 — [94|7 360 |a4 — b4|

min(|as — bs|, 360 — (Jas — bs|
min(|as — bs|, 360 — (|as — bs| »

where on the right side any p-Norm from R® can be used.

An upper bound of solutions is given by the number of solutions 7, in the first
point of the motion curve. In order to find a continuation of the first solution of the
first point 6}, the differences |0} — 0?||Y,i =1,...,n, are computed. If the mini-
mum of these differences is smaller than an error bound ¢, then the solution is added
to the path.
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The error bound must depend on the number of points on the motion trajectory
m, because with the number of points in which the inverse kinematics is computed
the distance between the data points diminishes. Furthermore the error bound must
be adapted to the used norm. In the algorithm different values of the error bound are
tested to find out in which range the error bound has to be chosen such that all paths
are found.

3. After path separation the joint paths are interpolated using quintic splines.
Boundary conditions are given by the first two derivatives on the interval
boundaries. The system of equations used is classical and can be found in any
textbook on spline interpolation (see. e.g. [8] and in the thesis [9]). The
derivatives at the boundary of the interval are not given explicitly, they have to
be estimated. Discrete estimation using the first two points of the data did not
yield satisfying results, the resulting splines showed unwanted oscillations in the
derivatives of the curves near the boundaries. To obtain better results smooth-
ness of the curves was used. The data which have to be interpolated result from
the solution of a polynomial system of equations. If the solutions are not
complex then they have to describe a smooth C* curve in RS. Using this fact the
derivatives in the boundary point were approximated. To do this the first six and
the last six points of the data were used to construct a quintic polynomial. The
derivatives of those two polynomials were used as boundary conditions for the
interpolation of the path splines.

Figure 2 shows the result of the three steps explained above for a classical
example from the literature (example nr.7 from Wampler-Morgan [10], abbreviated
CWT7 in the following). The Denavit-Hartenberg parameters of the manipulator are
given in Table 1.
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Table 1 DH-parameter of example CW7
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The motion which has been performed is given by the Euclidean motion matrix
Bcl

1 0 0 0
B — —1.140175 —¢ —0.760117 —0.641689 0.102262
€7 10133333 ¢  0.133333 0.991071 0 ' (1)
5 —0.635959 0.766965 0.085558

Note that European notation is used in B¢, writing the translation part of the
motion in the first column and the homogenizing coordinate at first place. In Fig. 2
the upper boundary and the lower boundary have to be identified, and some angles
(e.g. 85) seem to have four paths and others only two (e.g. ;). This is due to the fact
that in these angles two solutions coincide. Figure 3 shows a typical result of this
procedure where one of the possible continuous solutions of the joint trajectories of
a robot motion has been plotted after performing the quintic spline interpolation.

3 Joint Trajectory Optimization

After the first three steps of the algorithm quintic splines of the joint trajectories are
given. Because of the fact that the inverse kinematics yields more than one solution
more than one continuous solution in the joint trajectories will exist. Therefore one
has the possibility to choose among the solutions according to some optimization
criteria. As joint angles are computed in the inverse kinematics, the chosen criteria
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should be linked to the joint angles along a given motion trajectory. In a first choice
(type 1 optimization) we will minimize the overall change in the joint angles and in
a second choice (type 2 optimization) we will ask for the solution which has a
minimum change in joint angular velocities for all joints.

To perform this task a function f : [f1, %] — R is considered, which determines
the joint angles and which is at least twice continuously differentiable. Then f'(7) =
% determines the change of joint angles or the joint velocity. The change of the
velocity /() = % yields the joint acceleration. The overall joint angle changes are
given by the integral fff f'(2)dt. This integral has the disadvantage that positive and
negative velocities cancel therefore we have taken the absolute values of the
functions f: If'(t)|dt and j:z |f”(z)|dz. Integration of the absolute value of the
velocity function yields information about the total length of the joint trajectory.
The shorter the trajectory the less movement in the joint will be. Analogous con-
sideration gives information that a smaller value for the integral f: |f"(¢)|dr yields a
smaller change of joint velocities in the interval [#, #,].

The interpolation curves are polynomials of degree five. Therefore it is possible
to determine the integral exactly with help of quadrature rules. Because the curves
are continuous and are piecewise polynomial, integration can be done separately for
each piece of the curve. For computation of the integrals Gauss quadrature rule was
used

n

Z,:= Zakf()bk)forf € [1,1], (2)
k=1
with the nodes 41, ..., 4, € R and the weights o, ..., g,,.

4 Examples
4.1 Example 1

In a first example the Denavit-Hartenberg parameters of the CW7 example in
Table 1 were slightly modified as in (Table 2). The motion performed is the motion

of Eq. (1) in the interval [—1,1].

Table 2 DH-parameter of Example 1

a 3 1 0 3 0 0
10 2
d 0 0 2 0 0 0
10
o k4 (m+0.5) T x (n—0.5) K2
2 18 2 18 2 18
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Table 3 Result of the optimization

Optimization type Path Nr.1 Path Nr.2 path Nr.3
L. Type 39.9009 50.5817 30.0131
2. Type 0.2598 0.3153 0.0824

This example has three continuous paths (Fig. 4). The results of the optimization
are shown in Table 3. The average of the six joint trajectory lengths is the smallest in
the green path 3. Therefore this path is optimal when smallest overall change of joint
parameters is desired. It can also be seen that the same joint trajectories are optimum
when smallest overall change of joint velocities is desired. Once this result is obtained
itis of course enough to put the manipulator in the starting values of path 3 and then it
will stay on this path, because there is no singularity on this path. A boundary
singularity would be seen in such a plot when a path ends, i.e. when two solutions
meet in a point having a vertical tangent. This behaviour can be seen in Fig. 1 where
the motion trajectory was chosen such that the manipulator hits its boundary and
therefore no continuous path is possible. There is a gap in all joint trajectories.

4.2 Example 2

In this example the DH-parameters of CW7 are changed according to Table 4. The
motion performed is the same as in Eq. (1) in the interval ¢t € [— i , %] This example
is especially interesting, because 14 continuous joint paths exist. The given task can
be performed with 14 different configurations of the manipulator. It should be
obvious that these 14 paths are not equivalent The 14 continuous joint trajectories

are shown in Figs. 5 and 6.
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Table 4 DH-parameter of Example 2
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Fig. 5 Interpolated joint trajectories 1-9 of Example 2
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Fig. 6 Interpolated joint trajectories 10—14 of Example 2
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Table 5 Results of the optimization Example 2

Optimization Path Path Path Path Path Path Path

type Nr.1 Nr.2 Nr.3 Nr.4 Nr.5 Nr.6 Nr.7

1. Type 31.7504 |24.1101 |19.4176 |21.5736 |32.5666 |20.5959 |28.8555

2. Type 0.1897 0.0846 0.0213 0.1273 0.1165 0.0542 0.0954
Path Path Path Path Path Path Path
Nr.8 Nr.9 Nr.10 Nr.11 Nr.12 Nr.13 Nr.14

1. Type 17.2200 |25.4676 [26.2039 |20.1783 |39.7655 |13.5023 |14.7125

2. Type 0.0157 0.1321 0.0984 0.0251 0.2140 0.0163 0.0280

In the result of the optimization one can see big differences in the different
trajectories (Table 5). Concerning the average joint motion change trajectory 13 is
optimal whereas the path 12 is the worst path. One can see this also in the plot of
Fig. 6 on the right side. Trajectories of path 13 (black) have almost horizontal
curves, whereas the trajectories of path 12 have much more vertical deviation.
Concerning the overall velocity change averaged over all joints (type 2) one can see
that path 8 does slightly better than path 13.

Remark In a real robot joint limits would have to be taken into account. This has not
been done in this example because the joint limits of the Wampler example are not
specified. But it would be no additional effort to plot these limits and make a
decision if the given motion can be performed without hitting a joint limit.

Summarizing the results of both optimization algorithms one can state clearly
that it matters which starting configuration is chosen from the different possibilities
offered by the different solutions of the inverse kinematics. The better choice of a
starting can reduce the cycle time of a desired task considerably.

5 Conclusion

The inverse kinematics of a general 6-R manipulator yields up to 16 solutions for
the joint angles when the end effector pose is given. Using the fast algorithm
developed in [2, 3] the inverse kinematics can be computed along a given end
effector motion efficiently. The algorithm presented in this paper detects in the set of
joint angles continuous paths and the joint trajectories of these paths are interpo-
lated with quintic splines. Having polynomial curves for joint trajectories, velocities
and acceleration a optimization procedures were discussed to decide which of the
possible solutions is optimal according to a given optimization criterion like e.g.
minimum overall change of joint motion or minimum average overall change of
joint velocities. This work can help to decide in which starting pose the manipulator
should be brought to perform a given task in a shorter time or with overall smaller
change of joint velocities.
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