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Abstract In this work, a methodology for dynamic analysis of rigid-flexible
multibody systems with elastohydrodynamic (EHD) lubricated joints is presented.
The EHD lubricated cylindrical joint is formulated by the Natural Coordinate
Formulation (NCF) and the twenty-node hexahedral element of Absolute Nodal
Coordinate Formulation (ANCF), being the lubricant pressure determined through
the resolution of the Reynolds’ equation employing the finite difference method.
The outcomes are validated with those obtained by using the commercial software
ADINA. It is demonstrated that the bearing flexibility plays a significant role in the
system responses, extends the lubricant distribution space and reduces the lubricant
pressure.
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1 Introduction

A mechanical system usually consists of two major kinds of components, bodies
and joints [6]. The bodies can be modeled as rigid or flexible elements, while the
joints are represented by a set of kinematic constraints. The functionality of a
mechanical joint relies upon the relative motion allowed between the connected
components. This fact implies the existence of a clearance between the mating
parts, and thus joint surfaces can contact each other or may be separated with a
lubricant. It is of paramount importance to quantify the effects of both clearance
joints and bodies flexibility on the global system response in order to define the
minimum level of suitable tolerances that allow systems to achieve required
performances.
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In practice, lubricant is often utilized in mechanical joints to avoid the body-to-
body (typically metal-to-metal) contact. This measure can reduce the level of
impact and vibrations, and extends the joints lifetime. It is quite important to
develop appropriate computational models that can account for the lubricant action
in mechanical joints in the context of multibody system dynamics. For this purpose,
two kinds of approaches can be found in the scientific domain of tribology, namely
the hydrodynamic (HD) theory and the elastohydrodynamic (EHD) formulation.
According to the HD theory, in the presence of dynamics of journal bearings, the
hydrodynamic forces, which include both squeeze and wedge effects, generated by
the lubricant fluid, oppose the journal motion. The hydrodynamic forces can be
obtained by integrating the pressure distribution evaluated with the aid of Reynolds’
equation established for the dynamic regime. Liu et al. [5] and Attia et al. [1] are
among the very few authors who performed the EHD analysis for lubricated high-
speed rotor-bearing systems by using the Fluid-Structure Interaction (FSI) analysis.
These studies clearly demonstrated that the bearing deformations affect the pressure
field in the clearance and increase the minimal film thickness. However, these
works were performed only for isolated journal bearing systems.

2 Rigid-Flexible Multibody Formulation

In the present study, the flexible parts such as the flexible bearing and beams are
modeled by using the finite elements of Absolute Nodal Coordinate Formulation
(ANCF). In the ANCF, the location and deformation of a material point in a finite
element are defined in a global coordinate system, such that no coordinate trans-
formation is required and the mass matrix remains constant while the centrifugal
and Coriolis forces in the finally derived dynamic equations vanish. The rigid
bodies such as the journal in the cylindrical joint are described by NCF proposed by
Jalón and Bayo [3]. It is known that NCF can also lead to a constant mass matrix for
the rigid multibody system. The method that combines NCF describing the rigid
bodies and ANCF describing the flexible bodies was named as the Absolute
Coordinate Based (ACB) by Tian et al. [10], and has been widely adopted so that
the mass matrix for the whole rigid-flexible system keeps constant and the system
constraint conditions can be easily simplified. This approach is quite convenient
from the computational point of view.

For a spatial rigid cylinder shown in Fig. 1, its motion can be defined, according
to NCF, through two basic points and two unit vectors. Thus, the 12 global gen-
eralized coordinates of the rigid cylinder can be expressed as

q ¼ ½rTi ; rTj ; uT ; vT �T ð1Þ
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where ri and rj are the position vectors of the basic points i and j, respectively. The
vectors u and v are assumed to be unit and perpendicular vectors. The global
position of an arbitrary point in the body can be written in the following form

r ¼ Cq ð2Þ

where matrix C is determined by the local position (�r) of point P defined in the
body coordinate frame n-g-f, as Fig. 1 illustrates.

Different types of finite elements of ANCF have been proposed for modeling
flexible parts undergoing both large overall motion and large deformation. In
present study, the original two-node 3D beam element of ANCF developed by
Shabana and Yakoub [8] is used to model flexible beams. There are a total of 24
nodal coordinates for each element, as depicted in Fig. 2.

3 EHD Model of Lubricated Cylindrical

In a broad sense, a suitable lubrication system can prevent body-to-body contact,
reduce wear and, consequently, extend the service life of mechanical joints. With the
intent to develop the EHD model of lubricated cylindrical joint with flexible bearing,
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the Reynolds’ equations must be established. Figure 3a shows a generic configu-
ration of a typical lubricated cylindrical joint, in which the journal misalignment is
also represented. In the present study, the lubricated cylindrical joint is described by
the ACB method. The center of mass of the bearing is denoted by point Ob and the
journal bearing length by L. The local coordinate system is denoted by n� g� f. In
Fig. 3a, Ab and Wb are the bearing centers at end faces, while Aj(ξ1, η1, −L/2) and
Wj(ξ 2, η2, L/2) denote the journal centers at end faces. Figure 3b shows an arbitrary
journal bearing cross section along the joint local axis f.

From Fig. 3a, when the journal misalignment is taken into account, the coor-
dinates of an arbitrary journal cross section center Oj can be determined by the
points Aj(ξ1, η1, −L/2) and Wj(ξ2, η2, L/2) from the following interpolation relations

nj ¼ n2 þ
ðn2 � n1Þðf� L=2Þ

L

gj ¼ g2 þ
ðg2 � g1Þðf� L=2Þ

L

ð3Þ

With regard to Fig. 3b, the general form of the isothermal Reynolds’ equation
can be expressed as [7]

o
ou

h3
op
ou
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¼ 6lR2x

oh
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þ 12R2l
oh
ot

ð4Þ

where p denotes the lubricant pressure, µ is the dynamic lubricant viscosity and R is
the journal radius. The lubricant film thickness can be calculated by

h ¼ cþ dcosu ¼ cþ dcosðh� bÞ ¼ c� njcosh� gjsinh ð5Þ
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Fig. 3 a Generic configuration. b Arbitrary cross section along local axis ζ
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in which c is the radial clearance, d represents the journal bearing eccentricity, h is
the angular coordinate and the variable β yields

b ¼ tan�1 gj
nj

� �
ð6Þ

When the elastic deformation of bearing is considered, the lubricant film
thickness can be expressed in the following form

h ¼ c� njcosh� gjsinhþ d ð7Þ

where δ denotes the elastic deformation of bearing.
As it is shown in Fig. 4, a lubricated cylindrical joint can be unfolded along with

circumferential direction (/). Then, the lubricant pressure field can be evaluated by
imposing Eq. (8) to each calculation grid point of a finite-difference method [4].
The equal interval grid is adopted at both circumferential and axial directions. In
Fig. 4, m and n represent the total number of finite difference points along cir-
cumferential direction (/) and axial direction (f), respectively.

In order to evaluate the lubricant pressure, the Reynolds’ equation (4) can be
rewritten in the following form

h3
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ou2 þ 3h2
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ð8Þ

According to the finite-difference method [7], the finite difference equation of the
pressure can be expressed by
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Fig. 4 EHD model of a
lubricated cylindrical joint
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where pi,j is the pressure at the finite difference point (i, j), i = 1, 2, …, m and j = 1, 2,
…, n. Here, the pressure boundary conditions are p(φ,0) = p(φ, L) = 0, p(φ1, 0) = p
(φ2, L) and p(φ1, ζ) = p(φ2, ζ), with φ1 and φ2 being the angles of the start and end
point of a hydrodynamic film. In this work, the finite difference Eq. (9) is solved by
using Successive Over Relaxation (SOR) method, that is

pi;j ¼ pi;j þ k a0 � a1pi�1;j � a2pi;j�1 � a3pi;jþ1 � a4piþ1;j
� ��

a5 ð10Þ

where the six coefficients yield
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Du
þ 12R2l

ohi;j
ot

� �

a1 ¼
�3h2i;j
4 Duð Þ2 hiþ1;j � hi�1;j

� �þ h3i;j
Duð Þ2

a2 ¼
�3R2h2i;j
4 Dfð Þ2 hi;jþ1 � hi;j�1

� �þ R2h3i;j
Dfð Þ2

a3 ¼
3R2h2i;j
4 Dfð Þ2 hi;jþ1 � hi;j�1

� �þ R2h3i;j
Dfð Þ2

a4 ¼
�3h2i;j
4 Duð Þ2 hiþ1;j � hi�1;j

� �þ h3i;j
Duð Þ2

a5 ¼
�2h3i;j
Duð Þ2 �

2R2h3i;j
Dfð Þ2

This procedure is performed until the pressure convergent criterion for the
(k + 1) step is reached, that is
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where tol is a specified convergence tolerance. It must be stated that in the present
work the tolerance considered was equal to 10−5. The pressure field is calculated
only over the positive part by setting the pressure in the remaining portion equal to
zero. This boundary condition, associated with the pressure field, corresponds to
Gümbel’s boundary conditions or half Sommerfeld’s conditions [7]. Once the
lubricant pressures at the finite difference points are obtained, they are transformed
into the corresponding generalized nodal forces for analyzing the elastic defor-
mation of flexible bearing. Finally, the elastic deformation δ of flexible bearing
described by Eq. (7) can be evaluated according to the classic finite element
method.

4 Results and Discussion

The purpose of this section is to demonstrate that the twenty-node hexahedral
element of ANCF can be applicable to a flexible hollow cylinder subjected to
distributed forces as shown in Fig. 5. The distributed forces acting on the cylinder
are assumed to be a linear function in time, defined as F = 1000t N/m. The inner
radius, length and thickness of the cylinder are equal to 0.225, 0.2, and 0.05 m,
respectively. The Young’s modulus of the bearing material is equal to 1 × 106 Pa.

Figure 6 shows the influence of mesh size on the displacement of point B in Z-
direction and indicates that 4(axial direction) × 2(radial direction) × 40(circum-
ferential direction) elements are enough to obtain the converged results.

In order to validate the obtained numerical results, the same model is also
analyzed by using the commercial software ADINA [2]. The 3D 20-node brick
solid element is used to mesh the model. From Fig. 7, the von Mises stresses at
points A and B obtained by the numerical method are well agreement with those
obtained by ADINA. Figure 8 shows the dynamic configurations and the von Mises
stress contours of the hollow cylinder at different instants. Figure 9 shows the von
Mises stress contour of the hollow cylinder obtained by using ADINA at the instant
time t = 1.00 s. Also, after a careful analysis of the results represented in Figs. 8 and
9 leads to the assertion that the twenty-node hexahedral finite element of ANCF
exhibits a very close response to the case of ADINA simulations. For this example
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Fig. 5 A flexible hollow
cylinder under uniform
distribution forces
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the integration step is set to be 1e-3s, the cost computation time for the ADINA
software and the proposed method are 616 and 878 s, respectively.

Finally, the EHD analysis of a lubricated cylindrical joint with rotating journal is
presented. The length of the cylindrical joint is equal to 66 mm. The journal rotates
around its axis AjWj at a constant angular speed of 3000 rpm. The dynamic lubricant
viscosity is equal to 9 mPa s. The rigid journal is modeled by using the NCF, while
the flexible bearing is modeled by the twenty-node hexahedral element of ANCF.
The nodes on the outer bearing surface are assumed to be fixed in the space. The
material density and the thickness of the bearing are set to be 7,800 kg/m3 and
20 mm, respectively. As a comparison, the systems with and without journal
misalignment are studied.

At first, the journal axis AjWj is assumed to be parallel with the bearing axis
AbWb, that is, the rigid rotating journal is not misaligned being e1 = e2 = 0.024 mm.
The clearance is equal to 0.03 mm. The Young’s modulus of the bearing material is
set to be 2.1 × 1012 Pa so that the results can be compared to those obtained by Sun
and Gui [9], who considered a case of rigid bearing. Figure 10 shows the lubricant
pressure distributions for this journal bearing system. As expected, Fig. 10b shows
that if the journal is not misaligned, the lubricant pressure exhibits a symmetrical

Fig. 6 Influence of the model
mesh size on the displacement
of point B in Z-direction

Fig. 7 Comparison of the
von Mises stresses at points A
and P numerical results versus
ADINA results
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distribution about the plane ξ-Cj-η. Here, Cj is the mass center of the rigid journal.
Figure 11 shows a scaled view of the deformation of the inner bearing surface. The
figure indicates that for the system with a rotating journal without misalignment, the
distribution of the deformation of the inner bearing surface also exhibits a sym-
metrical distribution about the plane ξ-Cj-η, which is consistent with the lubricant
pressure distribution shown in Fig. 10b.

Fig. 8 von Mises stress contour of a hollow cylinder obtained using FEM of ANCF

Fig. 9 The von Mises stress contour of a hollow cylinder obtained using ADINA (t = 1.00 s)
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5 Conclusion

In the present study, a general and comprehensive methodology is proposed to
integrate the EHD model of lubricated cylindrical joints into the flexible multibody
system formulation. The EHD behavior of the lubricated cylindrical joints in flexible
multibody system is studied by using the ACB method such that the flexible bearing
is modeled via the twenty-node hexahedral elements of ANCF, while the rigid journal
in the cylindrical joint is described via NCF. The lubricant pressure is evaluated by
solving the Reynolds’ equation via the finite difference method. The elastic forces and
their Jacobian of ANCF finite elements are deducted through the definition of the
Piola-Kirchhoff stress tensor of the first type in continuum mechanics. The numerical
examples show that the bearing flexibility affects the system responses in a significant
manner, since the flexible bearing will extend the lubricant distribution space, and
then reduce the lubricant pressure. The methodology proposed in this study can be
easily extended to studying the coupling dynamics of the lubricated rotor system with
the bearing flexibility taken into account.

Cj

(a) (b)

Fig. 10 Lubricant pressure distributions of a journal without misalignment (E = 2.1 × 1012 Pa).
a pressure vs journal directions, b a 3D view

Cj

Fig. 11 Zoom view of the
elastic deformation of inner
bearing surface
(E = 2.1 × 1012 Pa)
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