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Abstract. In this paper, we present k-out-of-n threshold secret sharing
scheme which can detect share forgery by at most k−1 cheaters. Though,
efficient schemes with such a property are presented so far, some schemes
cannot be applied when a secret is an element of F2N and some schemes
require a secret to be an element of a multiplicative group. The schemes
proposed in the paper possess such a merit that a secret can be an
element of arbitrary finite field. Let |S| and ε be the size of secret and
successful cheating probability of cheaters, respectively. Then the sizes of
share |Vi| of two proposed schemes respectively satisfy |Vi| = (2 · |S|)/ε
and |Vi| = (4 · |S|)/ε which are only 2 and 3 bits longer than the existing
lower bound.
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1 Introduction

Secret sharing scheme is a fundamental primitive in designing various crypto-
graphic protocols in distributed environment. It enables us to securely manage
a secret in a way that only a qualified set of users can recover the secret and no
information about the secret is revealed to non-qualified set of users. Because of
its importance, secret sharing have been studied actively so far since the seminal
paper by Shamir [23] and Blakley [4].

Tompa and Woll have pointed out that in Shamir’s k-out-of-n threshold secret
sharing scheme is vulnerable to share forgery [24]. More precisely, they pointed
out that even a single user can cheat other users with probability 1 by submitting
forged shares in Shamir’s threshold scheme. They also presented a scheme which
can detect the fact of cheating when invalid shares are submitted. Since the paper
by Tompa and Wall, cheating prevention has been one of the hottest issues in
the study of secret sharing scheme, and various models (e.g., cheating detection
[1–3, 5, 7, 8, 12, 16, 18, 19, 24], cheater identification [10, 11, 13–15, 20, 21, 25],
robust secret sharing [9, 22], etc.) have been presented so far.

In this paper, we study secret sharing schemes capable of detecting cheating.
More precisely, we study k-out-of-n threshold secret sharing scheme which can
detect share forgery by at most k−1 cheaters. There are two different models for

� This work was supported by JSPS KAKENHI Grant Number 24800064.

M. Yoshida and K. Mouri (Eds.): IWSEC 2014, LNCS 8639, pp. 88–97, 2014.
c© Springer International Publishing Switzerland 2014



Cheating Detectable Secret Sharing Schemes 89

secret sharing schemes capable of detecting such cheating. Carpentieri, De Santis
and Vaccaro [7] first considered a model in which cheaters who know the secret
try to make another user reconstruct an invalid secret. We call this model the
“CDV model.” In [19], Ogata, Kurosawa and Stinson introduced another model
assuming weaker cheaters who do not know the secret in forging their shares.
We call this model the “OKS model.” As noted in [16], the merit of schemes
secure in CDV model is that schemes are guaranteed to be secure regardless of
the probability distribution of a secret to be shared. On the other hand, schemes
secure in OKS model cannot guarantee security when the probability distribution
of a secret is very much biased. However, once we can assume the probability
distribution of a secret is not so much biased, schemes secure in OKS model
possess a particular merit in that the size of share can be made smaller than
schemes secure in CDV model. In fact, it is shown in [19] that when a secret is
uniformly distributed, the lower bound of the size of share |Vi| is (|S|− 1)/ε2+1
in CDV model, whereas the lower bounds of the size of share in the OKS model
is (|S| − 1)/ε+ 1 where |S| and ε denote the size of the secret to be shared and
the successful cheating probability of cheaters. Therefore, when we want to share
a small size of secret, and we require a security level of ε ≈ 1/|S| (which is often
the case when sharing a small size of secret), the lower bound of bit length of
share in OKS model is about 33% shorter than the bound in CDV model.

The contribution of the paper is to present cheating detectable k-out-of-n
threshold secret sharing schemes which are suitable for sharing a small size of
secret (i.e., ε ≈ 1/|S|) and are proven to be secure against k − 1 cheaters in
OKS model. The proposed schemes possess an extra merit in that they support
an arbitrary finite field, that is, the proposed schemes guarantee security no
matter what finite field a secret belongs to. We note that the proposed schemes
are the first schemes which possesses such a property. Though efficient schemes
suitable for sharing a small size of secret are presented so far [3, 8, 17, 19], some
schemes cannot be applied when a secret is an element of F2N and some schemes
require a secret to be an element of a multiplicative group or an element of a
special type of a finite field or an additive group. Therefore, to show the existence
of schemes supporting an arbitrary finite field is interesting from a theoretical
point of view. Furthermore, when we employ secret sharing scheme as a building
block of cryptographic protocols, supporting an arbitrary finite field will become
a highly desired property. For example, consider a case in which we want to
execute computation over an elliptic curve over F3N in a distributed manner
using secure multi-party computation (MPC for short). In such the case, we must
employ a secret sharing scheme supporting F3N since the algebraic structure
must be preserved to enable MPC. Since today’s cryptographic protocol often
uses multiple algebraic structures (e.g., F2N ,F3N , and Fp) in a single protocol, a
secret sharing scheme employed as a building block of such a protocol is desired to
support as many mathematical structures as possible for easy implementation of
the protocol, which motivate us to consider a cheating detectable secret sharing
schemes supporting an arbitrary finite field.
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The proposed schemes are not only capable of supporting an arbitrary finite
field but also efficient with respect to sizes of shares. Let |S| and ε be the size
of secret and successful cheating probability of cheaters, respectively. Then the
sizes of share |Vi| of two proposed schemes respectively satisfy |Vi| = (2 · |S|)/ε
and |Vi| = (4 · |S|)/ε which are only 2 and 3 bits longer than the lower bound.

It should be noted that here we focus on the problem of detecting cheating by
cheaters with unlimited computational power, and therefore, schemes based on
computational assumptions (e.g., [20]) are not within the scope of this paper.

2 Preliminaries

2.1 Secret Sharing Schemes

In secret sharing schemes, there are n users P = {P1, . . . , Pn} and a dealer D.
The set of users who are allowed to reconstruct the secret is characterized by
an access structure Γ ⊆ 2P ; that is, users Pi1 , . . . , Pik are allowed to reconstruct
the secret if and only if {Pi1 , . . . , Pik} ∈ Γ (for instance, the access structure
of a k-out-of-n threshold secret sharing scheme is defined by Γ = {A | A ∈
2P , |A| ≥ k}.) A model consists of two algorithms: ShareGen and Reconst. Share
generation algorithm ShareGen takes a secret s ∈ S as input and outputs a list
(v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a user Pi. In a
usual setting, ShareGen is invoked by the dealer. Secret reconstruction algorithm
Reconst takes a list of shares and outputs a secret s ∈ S.

A secret sharing scheme is called perfect if the following two conditions are
satisfied for the output (v1, . . . , vn) of ShareGen(ŝ) where the probabilities are
taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik} ∈ Γ then Pr[Reconst(vi1 , . . . , vik) = ŝ] = 1,
2. if {Pi1 , . . . , Pik} �∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik = vik ] = Pr[S = s]

for any s ∈ S.

2.2 Secret Sharing Schemes Secure against Cheating

A secret sharing schemes capable of detecting cheating was first presented by
Tompa and Woll [24]. They considered the scenario in which cheaters who do not
belong to the access structure submit forged shares in the secret reconstruction
phase. Such cheaters will succeed if another users in the reconstruction accepts
an incorrect secret.

As in ordinary secret sharing schemes, this model consists of two algorithms.
A share generation algorithm ShareGen is the same as that in the ordinary secret
sharing schemes. A secret reconstruction algorithm Reconst is slightly changed: it
takes a list of shares as input and outputs either a secret or the special symbol ⊥
(⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has been detected. To formal-
ize the models, we define the following simple game for any (k, n) threshold secret
sharing scheme SS = (ShareGen,Reconst) and for any (not necessarily polyno-
mially bounded) Turing machine A = (A1,A2), where A represents cheaters
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Pi1 , . . . , Pik−1
who try to cheat Pik . Please note that we will focus on the (k, n)

threshold type access structure throughout the paper.

Game(SS,A)
s← S; // according to the probability distribution over S.
(v1, . . . , vn)← ShareGen(s);
(i1, . . . , ik−1)← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′i1 , . . . , v

′
ik−1

, ik)← A2(vi1 , . . . , vik−1
, X);

The advantage of cheaters is expressed as Adv(SS,A) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ = Reconst(v′i1 , v

′
i2
, . . . , v′ik−1

, vik) and the probability is taken over the
distribution of S, and over the random tapes of ShareGen and A.
Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS,A) ≤ ε for any cheater A.

2.3 Previous Work

In this subsection, we briefly review the known bounds and constructions of
(k, n, ε)-secure secret sharing schemes. A lower bound for the size of shares in
the CDV model is described as follows:

Proposition 1. [7] In the CDV model, the size of shares for (k, n, εCDV)-secure

secret sharing schemes is lower bounded by |Vi| ≥ |S|
εCDV

.

Ogata et al. improved this bound when the secret is uniformly distributed:

Proposition 2. [19] In the CDV model, if the secret is uniformly distributed,
then the size of shares |Vi| for (k, n, εCDV)-secure secret sharing schemes is lower

bounded by |Vi| ≥ |S|−1
ε2CDV

+ 1 .

Ogata et al. also presented the lower bound for the size of shares for (k, n, εOKS)-
secure secret sharing scheme in the OKS model as follows.

Proposition 3. [19] In the OKS model, the size of shares for (k, n, εOKS)-secure

secret sharing schemes is lower bounded by |Vi| ≥ |S|−1
εOKS

+ 1 .

Ogata et al. presented an optimum (k, n, εOKS)-secure secret sharing schemes
that satisfies the bound of Proposition 3 with equality [19].

Proposition 4. [19] There exists a (k, n, εOKS)-secure secret sharing scheme in

the OKS model such that |Vi| = |S|−1
εOKS

+1. The scheme is (k, n, εOKS)-secure if the
secret is uniformly distributed.

Though the scheme is optimum with respect to size of share, the scheme possesses
such a drawback that the parameter of the size of secret is very much limited.
Namely, if we require ε ≈ 1/|S| the size of the secret |S| must satisfy |S| = q+1
where q2 + q + 1 is a prime power.

Cabello, Padró and Sáez presented nearly optimum (k, n, εOKS)-secure secret
sharing scheme in the OKS model [8].
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Proposition 5. [8] There exists a (k, n, εOKS)-secure secret sharing scheme in
the OKS model such that |S| = p, |Vi| = |S|/εOKS and εOKS = 1/p.

In the scheme presented in [8], a secret can be almost an arbitrary element of
finite field. Though, unfortunately, the scheme does not guarantee security when
a secret is an element of F2N . More precisely, εOKS = 1 holds when we apply the
scheme to a secret s such that s ∈ F2N .

Araki and Ogata presented a (k, n, εOKS) schemes in the OKS model which are
also nearly optimum with respect to the size of secret [3].

Proposition 6. [3] There exists a (k, n, εOKS)-secure secret sharing scheme in
the OKS model such that |S| = (p− 1)N , |Vi| ≈ |S|/εOKS and εOKS = 1/(p− 1).

Though the scheme possesses many desired properties, a secret s must be an
element of Z∗

p and, therefore, does not support F2N which is suited for dealing
with digital data in current computers.

Araki and Ogata also presented a (k, n, εOKS) scheme in which a secret can be
an element of an arbitrary finite field.

Proposition 7. [3] There exists a (k, n, εOKS)-secure secret sharing scheme in
the OKS model such that |S| = pN , |Vi| = pN+2 and εOKS = (N + 1)/p.

Though the scheme supports an arbitrary finite field, the successful cheating
probability εOKS must satisfy ε ≥ 1/

√|S|, which is suitable for sharing a large
secret, but not necessarily suitable for sharing a small size of secret.

To summarize the previous work on secret sharing schemes capable of detect-
ing cheating, we realize that there is no existing scheme which satisfy all the
following requirements:

– The secret can be an element of an arbitrary finite field, that is, the scheme
is secure no matter what finite field the secret belongs to.

– The scheme provide adequate level of security even if the size of secret is
relatively small. More precisely, the scheme supports ε such that ε ≈ 1/|S|.

– The size of share is small. It is desired that |Vi| ≈ |S|/ε (i.e., nearly optimum
with respect to the bound presented in Proposition 3.)

3 Proposed Schemes

In this section, we propose two efficient (k, n, εOKS)-secure secret sharing schemes
in the OKS model which are proven to be secure when a secret is uniformly
distributed. The proposed schemes possess such a merit that a secret to be
shared can be an element of an arbitrary finite field, which is not the case in
most existing schemes.

The basic idea behind both constructions is to share a secret s and its check
digit A(s) using Shamir’s k-out-of-n secret sharing scheme where both s and
A(s) are elements of the same finite field F. In the proposed schemes, verifica-
tion functions A : F → F are carefully chosen so that the successful cheating
probability is small for any finite field F. The sizes of share |Vi| in the proposed
schemes satisfy |Vi| = (2 · |S|)/εOKS and |Vi| = (4 · |S|)/εOKS, which are only two
and three bits longer than the lower bound given in Proposition 3, respectively.
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3.1 Scheme with a Check Digit Based on Polynomial

In the first scheme, the verification function A : F → F is defined by A(s) =
s2 + s3. We should note that a verification function A′(s) = s2 used in [8] does
not guarantee security when a secret is an element of F2N , and a verification
function A′′(s) = s3 does not guarantee security when a secret is an element of
F3N . Nevertheless, when we use A(s) = A′(s) +A′′(s) as a verification function,
the security of the scheme is proven for any finite field F. The share generation
algorithm ShareGen and the share reconstruction algorithm Reconst of the first
scheme is described as follows where p is an arbitrary prime power.

Share Generation: On input a secret s ∈ Fp, the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomials fs(x) ∈ Fp[X ] and fa(x) ∈ Fp[X ] of degree
at most k − 1 such that fs(0) = s and fa(0) = s2 + s3.

2. Compute vi = (fs(i), fa(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of m shares (vi1 , . . . ,
vim) (wherem ≥ k), the secret reconstruction algorithm Reconst outputs a secret
s or ⊥ as follows:

1. Reconstruct f̂s(x) and f̂a(x) from vi1 , . . . , vim using Lagrange interpolation.
2. If deg(f̂s) > k − 1 or deg(f̂a) > k − 1 holds, output ⊥.
3. Compute ŝ = f̂s(0) and â = f̂a(0).
4. Output ŝ if â = ŝ2 + ŝ3 holds. Otherwise Reconst outputs ⊥.
The properties of the first scheme is summarized by the following theorem.

Theorem 1. The above scheme is (k, n, ε)-secure secret sharing schemes in the
OKS model with parameters |S| = p and |Vi| = p2 (= (2 · |S|)/ε). When the
secret is uniformly distributed over Fp, the successful cheating probability ε =
Adv(SS,A) of any cheater A satisfies ε = 1/p if p = 3N , or ε = 2/p otherwise.

The size of shares in the first scheme is only two bits longer than the lower bound

of Proposition 3 since 2|S|
ε < 4( |S|−1

ε + 1) holds when |S| > 2.

Proof. We consider the worst case where just k users take part in secret re-
construction. This case is the worst since deg(f̂s) < k and deg(f̂a) < k hold
with probability 1 in this case. Without loss of generality, we can assume users
P1, . . . , Pk−1 are cheaters who try to cheat user Pk. Now, consider such a sit-
uation that cheater Pi (1 ≤ i ≤ k − 1) submits a (possibly forged) share
v′i = (vs,i + δs,i, va,i + δa,i) and P1 submits a unforged share vk = (vs,k, va,k) to
Reconst. Since ŝ and â is computed using Lagrange interpolation, the value of ŝ
is described as follows where s is an original secret:

ŝ =

⎛

⎝
k−1∑

i=1

k∏

j=1,j �=i

−j
i− j

(vs,i + δs,i)

⎞

⎠+

k−1∏

j=1

−j
k − j

vs,k

=

⎛

⎝
k∑

i=1

k∏

j=1,j �=i

−j
i− j

vs,i

⎞

⎠+

⎛

⎝
k−1∑

i=1

k∏

j=1,j �=i

−j
i− j

δs,i

⎞

⎠ = s+ δs
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Here, δs =
∑k−1

i=1 (
∏k

j=1,j �=i
−j
i−j δs,i) is not only known to cheaters but also arbi-

trarily controlled by cheaters by choosing δs,i (1 ≤ i ≤ k−1) appropriately. With
the same discussion, â is also denoted as â = s2 + s3 + δa where δa is known
to and arbitrarily controlled by cheaters. Now we will evaluate the successful
cheating probability ε of cheaters P1, . . . , Pk−1. From the definition of Reconst,
it is clear that cheaters succeed in cheating if â = ŝ2 + ŝ3 holds. Since ŝ = s+ δs
and â = s2 + s3 + δa hold, this equation is equivalent to the following equation
where δs �= 0:

3δss
2 + (3δ2s + 2δs)s+ δ2s + δ3s − δa = 0 . (1)

Therefore, cheaters succeeds in cheating if the original secret s is a root of eq.
(1). Since δs �= 0, it is easy to see that the coefficient of s2 of eq. (1) (i.e., 3δs)
cannot be zero if the order p of the finite field satisfy p �= 3N . Therefore, there
are at most two roots for eq. (1) and the successful cheating probability ε satisfies
ε = 2/p when the secret is uniformly distributed over Fp. Now we consider the
case where p = 3N holds. In this case, eq. (1) is equivalent to 2δss+δ2s+δ3s−δa = 0
since 3 = 0 holds in F3N . It is obvious that the number of roots of the above
equation becomes one. Therefore ε = 1/p holds when p = 3N . 
�

3.2 A Scheme with a Check Digit Based on Multiplicative Inverse

The first scheme can be viewed as a patch to the scheme presented in [8] so
that the resulting scheme can be secure even when the secret is an element
of F2N . In this subsection, we show how to construct a scheme supporting an
arbitrary finite field in more direct manner. Namely, in the second scheme, we
use multiplicative inverse as a verification function. We choose A(s) = s−1 as
a verification function because a verification function A must be a non-linear
function, and multiplicative inverse is one of the most fundamental non-linear
functions in finite field. Moreover, unlike s2 and s3, s−1 does not reflects a
characteristics of underlying finite field when s is manipulated to s+δs. However,
multiplicative inverse s−1 cannot be directly used as a check digit for s ∈ F since
multiplicative inverse cannot be defined when s = 0 holds. Therefore, we define
A(0) = 1 (multiplicative identity of F) as an exception so that A : F → F is
defined for any finite field F and for any input s ∈ F. The complete description
of the second scheme is described as follows where p is an arbitrary prime power.

Share Generation: On input a secret s ∈ Fp, the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Generate a random polynomials fs(x) ∈ Fp[X ] and fa(x) ∈ Fp[X ] of degree
at most k − 1 such that fs(0) = s fa(0) = A(s) where A(s) is defined as
follows:

A(s) =

{
s−1 (if s �= 0)

1 (if s = 0)

2. Compute vi = (fs(i), fa(i)) and output (v1, . . . , vn).
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Secret Reconstruction and Validity Check: On input a list of m shares (vi1 , . . . ,
vim), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct f̂s(x) and f̂a(x) from vi1 , . . . , vim using Lagrange interpolation.

2. If deg(f̂s) > k − 1 or deg(f̂a) > k − 1 holds, output ⊥.
3. Output ŝ if â = A(ŝ) holds, or Reconst outputs ⊥ otherwise.

The properties of the first scheme is summarized by the following theorem.

Theorem 2. The above scheme is (k, n, ε)-secure secret sharing schemes in the
OKS model with parameters |S| = p and |Vi| = p2 (= (4 · |S|)/ε). When the
secret is uniformly distributed over Fp, the successful cheating probability ε =
Adv(SS,A) of any cheater A satisfies ε = 4/p if p = 2N , or ε = 3/p otherwise.

The size of shares in the second scheme is only three bits longer than the lower

bound of Proposition 3 since 4|S|
ε < 8( |S|−1

ε + 1) holds when |S| > 2.

Proof. As in the proof of Theorem 1, we consider the worst case where just
k users take part in secret reconstruction and assume users P1, . . . , Pk−1 are
cheaters who try to cheat user Pk. Now, consider such a situation that cheater
Pi (1 ≤ i ≤ k−1) submits a (possibly forged) share v′i = (vs,i+δs,i, va,i+δa,i) and
P1 submits a unforged share vk = (vs,k, va,k) to Reconst. As the same discussion
done in proving Theorem 1, ŝ and â reconstructed from submitted shares can
be written by ŝ = s+ δs and â = A(s) + δa, respectively, where s is an original
secret, and δs �= 0 and δa are known to and arbitrarily controlled by cheaters.

Now we will evaluate the successful cheating probability ε of cheaters P1, . . . ,
Pk−1. From the definition of Reconst, it is clear that cheaters succeed in cheating
if A(s) + δa = A(s + δs) holds. There are the following three cases to consider,
and we will clarify a condition on s, δs and δa such that cheaters succeed in
cheating cheating if the condition is satisfied for each case.

Case 1 (s = 0 and s+ δs �= 0): In this case, A(s) = 1, ŝ = δs and â = A(s) +
δa = 1+ δa hold. Therefore, cheaters succeeds in cheating if 1+ δa = δ−1

s (or
equivalently, δa = δ−1

s − 1) holds.
Case 2 (s �= 0 and s+ δs = 0): In this case, A(s) = s−1, ŝ = s + δs = 0 and

â = A(s) + δa = s−1 + δa hold. Therefore, cheaters succeeds in cheating if
s−1 + δa = 1 (or equivalently, δa = δ−1

s + 1) holds.
Case 3 (s �= 0 and s+ δs �= 0): In this case, A(s) = s−1, ŝ = s + δs and â =

A(s) + δa = s−1 + δa hold. Therefore, cheaters succeeds in cheating if s−1 +
δa = (s+ δs)

−1 (or equivalently, (s−1 + δa)(s+ δs) = 1) holds.

Therefore, the best strategy for cheaters is to choose δs and δa such that δa =
δ−1
s −1 or δa = δ−1

s +1 holds. We will evaluate the successful cheating probability
ε in such cases. Now suppose p �= 2N , and cheaters control ŝ = s + δs and
â = A(s) + δa so that they satisfy δa = δ−1

s +1. In this case, cheaters succeed in
cheating if s = 0 holds or the secret s is a root of equation (s−1+δa)(s+δs) = 1,
which is equivalent to the following equation:

δas
2 + δaδss+ δs = 0 (2)
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It is obvious that there are at most two roots which satisfy above equation.
Therefore, the successful cheating probability ε satisfies ε = 3/p since there are
at most three values of s with which cheaters succeeds in cheating. It is easy to
see that ε = 3/p holds when cheaters control ŝ = s + δs and â = A(s) + δa so
that they satisfy δa = δ−1

s − 1.
Now suppose p = 2N . In this case δ−1

s +1 = δ−1
s − 1 holds since 1 = −1 holds

in F2N . Therefore, cheaters who control ŝ = s + δs and â = A(s) + δa so that
they satisfy δa = δ−1

s +1 succeeds in cheating with probability 4/p since cheater
succeeds in cheating if s = 0 or s+ δs = 0 holds or s is a root of eq. (2). 
�

4 Concluding Remarks

In this paper, we present k-out-of-n threshold secret sharing schemes which can
detect share forgery by at most k−1 cheaters. The schemes proposed in the paper
possess such a merit that a secret can be an element of arbitrary finite field. Let
|S| and ε be the size of secret and successful cheating probability of cheaters,
respectively. Then the sizes of share |Vi| of two proposed schemes respectively
satisfy |Vi| = (2 · |S|)/ε and |Vi| = (4 · |S|)/ε which are only 2 and 3 bits longer
than the lower bound. It is easy to see that the verification function used in the
proposed schemes can be apply to any linear secret sharing schemes to make
them secure against share forgery by non-qualified set of users.

To construct a scheme supporting an arbitrary finite field and the size of share
is smaller than the proposed schemes is our future challenge.
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