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Abstract. We introduce two publicly cheater identifiable secret sharing
(CISS) schemes with efficient reconstruction, tolerating t < k/2 cheaters.
Our constructions are based on (k, n) threshold Shamir scheme, and
they feature a novel application of multi-receiver authentication codes to
ensure integrity of shares.

The first scheme, which tolerates rushing cheaters, has the share size
|S|(n−t)n+t+2/εn+t+2 in the general case, that can be ultimately reduced
to |S|(k−t)k+t+2/εk+t+2 assuming that all the t cheaters are among the k
reconstructing players. The second scheme, which tolerates non-rushing
cheaters, has the share size |S|(n− t)2t+2/ε2t+2. These two constructions
have the smallest share size among the existing CISS schemes of the same
category, when the secret is a single field element.

In addition, we point out that an improvement in the share size to
|S|/εn−�(k−1)/3�+1 can be achieved for a CISS tolerating t < k/3 rushing
cheaters presented by Xu et al. at IWSEC 2013.

Keywords: Cheater identifiable secret sharing, multi-receiver authenti-
cation code, Shamir secret sharing, rushing adversary.

1 Introduction

We consider cheater identifiable secret sharing (CISS) which is an upgrade of
(k, n)-threshold secret sharing schemes [1, 13] that can tolerate up to t actively
corrupt participants. The dealer in CISS is assumed to be honest. The goal in
this scenario is to identify cheaters from the threshold k number of players, and
to recover a correct secret whenever possible. In this work, we focus on public
cheater identification, where reconstruction of the secret and cheater identifica-
tion can be performed by a third party who collects shares from a threshold of
players. Note that an honest majority, i.e. t < k/2, is necessary in this case,
otherwise the dishonest majority of cheaters might simply generate a new con-
sistent set of (authenticated) shares and submit it at the reconstruction. We will
consider, in particular, rushing cheaters who are allowed to decide their messages
(in every round) upon seeing the messages of honest parties.
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1.1 Related Works

The observation of McEliece and Sarwate [8] on a connection between the Shamir
scheme [13] and the Reed-Solomon codes [11] allowed for identification of cheaters,
however redundant shares (i.e., more than k of them) were required. The first
CISS scheme came from a related area of robust secret sharing (where the se-
cret is always reconstructed from n shares, while no cheater identification is
required) when Rabin and Ben-Or [10] proposed to use unconditional authenti-
cation codes for enforcing the integrity of shares. Then, a number of proposals for
CISS schemes followed where the efforts were directed at achieving efficient re-
construction against maximal number of cheaters, while reducing the share size.
We refer the reader to the survey of Martin [7] for the history of this subject.

Recently, Obana [9] proposed a CISS scheme that is secure against t < k/2
non-rushing cheaters but has inefficient reconstruction algorithm (the computa-
tion complexity is exponential in the number of cheaters). Choudhury [2] pre-
sented a CISS scheme secure against t < k/2 rushing cheaters with efficient
reconstruction. The share size of his scheme is optimal O(|S|/ε) provided that
the size of the secret is Ω(n), where |S| denotes the size of the secret and ε is
the cheater success probability. In this work, we focus on the scenario where
the secret is “short”, i.e., it is represented by a single field element – the same
scenario as in [9]. In this case, the share size of Choudhury’s scheme is far from
optimal.

Under assumption of having t < k/3 non-rushing cheaters, Obana [9] pre-
sented a CISS scheme with nearly optimal share size |S|/ε. Xu et al. [15] up-
graded the above scheme to security against rushing cheaters for the price of
increasing the share size to |S|/εn−t+1.

1.2 Our Contribution

We present two new CISS schemes tolerating up to t < k/2 cheaters, which are
based on multi-receiver authentication codes [4, 12]. These schemes are intro-
duced below as Proposals 1 and 2.

Proposal 1: Our scheme tolerating rushing cheaters has the share size |S|(n−
t)n+t+2/εn+t+2 in the general case. However, if the number of shares presented
at the reconstruction is restricted to k, then the share size can be made equal
to |S|(k − t)k+2t+1/εk+2t+1. In other words, when restricting the number of
reconstructing players, the share size can be reduced. This is an interesting point
in the sense that generally, redundant information is used to identify cheaters.
However, in this particular case, we observe that some redundant information
can be beneficial to the cheaters. In fact, the share size can be reduced even
further to |S|(k− t)k+t+2/εk+t+2, under assumption that all the corrupt players
always participate in the reconstruction.

Proposal 2: Our scheme tolerating non-rushing cheaters has the share size
|S|(n− t)2t+2/ε2t+2. Our proposal has smaller share size as compared to |Vi| =
|S|(t + 1)3n/ε3n in Choudhury scheme [2]. We emphasize that the work [2]
presents a scheme tolerating non-rushing adversaries, but it is trivial to extend
it to the rushing case, such that the share size is the same in both cases.
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Table 1. Comparison of Our Proposals to Existing CISS schemes

Scheme Assumption Share Size Adversary

Choudhury [2]∗ t < k/2 |Vi| = |S|(t+ 1)3n/ε3n Rushing

Our Proposal 1∗∗ t < k/2 |Vi| = |S|(k − t)k+t+2/εk+t+2 Rushing

Obana [9]∗∗∗ t < k/2 |Vi| ≈ |S|(nt · 23t)2/ε2 Non-Rushing

Our Proposal 2 t < k/2 |Vi| = |S|(n− t)2t+2/ε2t+2 Non-Rushing

Obana [9] t < k/3 |Vi| = |S|/ε Non-Rushing

Xu et al. [15] t < k/3 |Vi| = |S|/εn−t+1 Rushing

Our Proposal 3 t < k/3 |Vi| = |S|/εn−�(k−1)/3�+1 Rushing

∗ When the secret is a single field element.
∗∗ The smallest share size, when restricting to k reconstructing parties such that

only these ones can be actively corrupt.
∗∗∗ The reconstruction needs

(
3t
t+2

)
Lagrange interpolations. For comparison, each

of our Proposals 1 and 2 needs one Lagrange interpolation and k polynomial
evaluations.

Proposal 3: Under assumption that t < k/3, we improve the share size of the
scheme [15] from |S|/εn−t+1 to |S|/εn−�(k−1)/3�+1 by eliminating some encryp-
tion keys in their construction.

Our contributions and the related works are summarized in Table 1.

Remark 1. We emphasize that the main contribution to the share size typically
comes from the factor 1/ε, since one expects the cheating probability ε to be made
negligible, while the parameters n, k, and t are some constants. Consequently,
the major efforts in reducing the share size are made towards reducing the degree
of the factor 1/ε.

2 Preliminaries

Set [n] = {1, 2, . . . , n}. The cardinality of the set X is denoted by |X |. Let Fp be
a Galois field of a prime order p satisfying p > n. Let φ(·, ·) : Fp × [n] → Fq be
a injective function (q > np is a prime power). All computation is done in the
specified Galois fields.

2.1 Shamir Secret Sharing

We describe the k-out-of-n threshold secret sharing scheme by Shamir [13]. Such
the secret sharing scheme involves a dealer D and n participants {R1, . . . , Rn},
and consists of two algorithms: ShareGen and Reconst. The ShareGen algo-
rithm takes a secret s ∈ Fp as input and then outputs a list (σ1, . . . , σn). Each σi
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is respectively distributed to participant Ri and called her share. The algorithm
Reconst takes a list (σ1, . . . , σm) as input and outputs the secret s if m ≥ k.
Otherwise, the Reconst outputs ⊥. Formally, the properties of correctness and
perfect secrecy hold:

1. Correctness: If m ≥ k, then Pr[Reconst(σ1, . . . , σm) = s] = 1;
2. Perfect secrecy: Ifm < k, then Pr[S = s|(V1 = σ1, . . . , Vm = σm)] = Pr[S =

s] for any s ∈ S.
In the Shamir scheme, the above mentioned algorithms proceed as follows:

ShareGen
1. For a given secret s ∈ Fp, the dealer D chooses a random polynomial

f(x) ∈ Fp[X ] with degree at most k − 1 and f(0) = s.
2. For i ∈ [n], compute σi = f(xi) for fixed, public and distinct xi ∈ Fp (where

xi can be seen as a unique identifier for Ri) and send σi privately to participant
Ri.

Reconst
If m ≥ k then output the secret s using the Lagrange interpolation formula,

otherwise output ⊥.

2.2 Cheater Identifiable Secret Sharing

We will focus on cheater identifiable secret sharing that is based on the Shamir
scheme. In CISS, we require that the reconstruction algorithm Reconst both
computes the secret and identifies incorrect shares, which point at cheaters
among the involved participants. The output of Reconst algorithm is a tu-
ple (s′, L), where s′ is the reconstructed secret and L is the set of cheaters. If the
secret cannot be reconstructed because there are not enough of honest players,
it is set to be ⊥. When s′ �= ⊥, s′ = s except with negligible probability.

The following definitions are developed using those by Choudhury [2] and Xu
et al. [15].

Communication Model: We assume that the participants R = {R1, . . . , Rn}
are connected with the dealer D by private and authenticated channels, and in
addition, a broadcast channel is available to every entity. The communication
network is assumed to be synchronous and the adversary can be rushing or
not [5]. In synchronous network the protocols proceed in rounds: the current
round is known to all parties, and messages sent in some round are delivered
by the beginning of the next round. The term “rushing” refers to allowing the
corrupted parties to learn the messages sent by the uncorrupted parties in each
round, before sending their own messages for this round.

Adversary Model: There exist two adaptive, computationally unbounded ad-
versariesAlisten and Acheat. The listening adversaryAlisten can passively control
any k − 1 parties in R. The cheating adversary Acheat can adaptively choose to
control any t parties in R in the malicious manner. Additionally, we assume
that Alisten and Acheat do not collude. This implies that Acheat will not get any
information about the computation and communication of the parties, which are
under the control of Alisten (but not Acheat) and vice-versa. Intuitively, security
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against Alisten implies the standard (perfect) secrecy of (k, n)-threshold secret
sharing, while security against Acheat implies protection against active cheaters
intending to disrupt the reconstruction of a correct secret. As usual in CISS
schemes, we assume that adversaries cannot corrupt the dealer D.

Definition 1 ( [15]). A cheater identifiable secret sharing scheme Σ is a tuple
(n, k, S, V,ShareGen,Reconst) consisting of:

– A positive integer n called the number of players;
– A positive integer k denoting the number of honest shares from which the

original secret can be reconstructed;
– A finite set S with |S| ≥ 2, whose elements are called secrets;
– A finite set V = {V1, . . . , Vn}, where Vi is the set of player Ri’s shares;
– An algorithm ShareGen, that takes as input a secret s ∈ S, and outputs a

vector of n shares (σ1, . . . , σn) ∈ V1 × · · · × Vn; and
– An algorithm Reconst, that takes as input a vector (σ′

i1
, . . . , σ′

im
) ∈ Vi1 ×

· · · × Vim , and outputs a tuple (s′, L), where s′ is the reconstructed secret
and L is the set of identified cheaters.

Recall that the cheating adversary can corrupt at most t players. Denote by
(Ri1 , . . . , Rit) the t cheaters under the control of Acheat and by σ′

i1 , . . . , σ
′
it their

possibly corrupt shares. We define the successful cheating probability to be the
probability that the cheater is not identified when she provided a forged share
(thus resulting in a corrupt secret) at the reconstruction.

Definition 2. For some s′ �= s, the successful cheating probability of player Rij

under the control of Acheat against the cheater identifiable secret sharing scheme
Σ = (n, k, S, V,ShareGen,Reconst) is defined as

ε(Σ,Rij ,Acheat)

= max
σ′
ij
�=σij

Pr[(s′, L)← Reconst(σ′
i1 , . . . , σ

′
it , σit+1 , . . . , σik) ∧Rij /∈ L], (1)

where the probability is taken over the distribution of S, and the random coins
of ShareGen and Acheat.

Henceforth, we will write the above probability as ε(Σ,Rij ), for short.

Remark 2. For simplicity of our analysis – and similarly to the previous works
– we estimate the success probability for a single cheater. The overall success
probability for the cheating adversary can be estimated using the union bound.

Definition 3. A CISS scheme Σ = (n, k, S, V,ShareGen,Reconst) is called
(t, ε)-CISS scheme if the following properties hold:

1. Perfect secrecy: At the end of the algorithm ShareGen, Alisten has no
information about the secret s.

2. (1 − ε)-correctness: ε(Σ,Ri) ≤ ε for any cheater Ri under the control of
Acheat.
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2.3 Unconditional Multi-Receiver Authentication Codes

In the traditional setting of unconditional authentication codes [3], there are
three participants: a transmitter, a receiver and an opponent. The task of au-
thentication codes is to prevent the opponent from deceiving the receiver by
impersonation attacks and substitution attacks. Desmedt, Frankel and Yung [4]
proposed a generalized notion of authentication called unconditional multi-
receiver authentication (MRA). An MRA code involves one transmitter, one
opponent and n receivers. When authenticating a source, the transmitter broad-
casts a message to n receivers and each receiver verifies the authenticity of the
message based on their own keys. If an MRA code ensures that neither the out-
side opponent nor the coalition of t receivers can deceive any other honest player,
it is called a (t, n) MRA code.

Desmedt et al. constructed a (t, n) MRA code capable of authenticating a
single message. Safavi-Naini and Wang [12] generalized Desmedt et al.’s con-
struction to allow multiple messages to be authenticated with the same key.
We will call it a (t, n) MRA code with multiple messages. We briefly describe
Safavi-Naini and Wang’s construction in Algorithm 1.

Let Polyt be the set of all polynomials of degree at most t over the finite
filed Fq. Define a map f : Fq × Polyw+1

t → Polyt with f(s, P0(x), . . . , Pw(x)) =
P0(x) + sP1(x) + · · · + swPw(x), where Pi(x) ∈ Polyt for i = 0, . . . , w. For the
ease of presentation, set e = (P0(x), . . . , Pw(x)) and express f as fe(s) = As(x).
We also denote by ei = (P0(xi), . . . , Pw(xi)) the verification key for Player Ri.

Algorithm 1 ((t, n) MRA with w messages)

Assume that q ≥ w, where w is the number of possible messages, and that q ≥ n.
The system consists of the following steps:

1. Key distribution: The key distribution center (KDC) randomly generates
w + 1 polynomials e = (P0(x), P1(x), . . . , Pw(x)), each of degree at most t
and chooses n distinct elements x1, x2, . . . , xn of Fq. KDC makes all xi public
and sends privately (P0(x), . . . , Pw(x)) to the sender T as her authentication
key, and ei = (P0(xi), . . . , Pw(xi)) to the receiver Ri as her verification key.

2. Broadcast: For a message s, T computes As(x) = fe(s) = P0(x)+sP1(x)+
· · ·+ swPw(x) and broadcasts (s, As(x)).

3. Verification: Ri accepts (s, As(x)) as authentic if As(xi) = P0(xi) +
sP1(xi) + · · ·+ swPw(xi).

It is proven by Safavi-Naini and Wang that Algorithm 1 is a (t, n) MRA code
in which each key can be used to authenticate up to w messages with both
impersonation and substitution probability 1/q.

Formally, we have the following property:

Property 1. The probability that t corrupt receivers and/or the outside opponent
succeed in deceiving any receiver Ri is at most

Pr[Ri accepts (sw+1, Asw+1(x))|fe(s1) = As1 (x), . . . , fe(sw) = Asw (x);

ei1 , . . . , eit ] = 1/q.
(2)
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for any choice of (sw+1, Asw+1(x)) with sw+1 �= si for i = 1, . . . , w; for any choice

of (P0(x), . . . , Pw(x)) ∈ Polyw+1
t , and for any [i1, . . . , it] ⊆ [n] \ {i}.

3 CISS Against Rushing Adversary

In this section, we propose two CISS schemes against a rushing active adversary,
Acheat, who can corrupt at most t players provided t < k/2. The first one
restricts the number of reconstructing players to be exactly k which allows us
to achieve a smaller share size compared to the case of allowing more than k
players to join the reconstruction. The second one extends to general situation
where the number of reconstructing players can be any value m with k ≤ m ≤ n.
Since in both schemes Acheat can corrupt at most t players, the fact that the
second scheme requires larger share size implies that the higher ratio of honest
players benefits the adversary. This may seem counter-intuitive, but the reason
for this is that the adversary is rushing so that more honest players provide more
information to her. We will emphasize this point in the proof of security.

3.1 Overview

The basic idea of our proposal is to follow the paradigm of Rabin and Ben-Or [10]
that is to use unconditional authentication codes for pairwise authentication and
to use the majority voting to identify cheaters. The twist of our scheme is to
employmulti-receiver authentication codes [4,12], instead of ordinary ones. More
specifically, the dealerD generates Shamir shares, denoted vs,i, for player Ri and
authenticates it using MRA codes. Then the dealer sends vs,i, its authentication
tag vc,i(x) (note that it is a polynomial), and the verification key to player Ri

privately. Reconstruction of the secret is performed in two rounds. In the first
round, each player broadcasts her share and authentication tag (vs,i, vc,i(x)).
In the second round, each player broadcasts her verification key (we emphasize
that in MRA each player holds different verification key). After receiving all the
above information, the players vote for correctly authenticated shares, and then
identify cheaters as the players who did not get enough approvals.

3.2 CISS with Restriction on Reconstructing Players

The following scheme restricts the number of reconstructing players to be exactly
the threshold k.

Protocol 1 (ShareGen)

Public parameters: xi ∈ Fp as player Ri’s identifier for i = 1, . . . , n.

Input: Secret s ∈ Fp.
Output: A list of n shares σ1, σ2, . . . , σn.

A dealer D performs the following:

1. Generate a random degree-(k−1) polynomial fs(x) over Fp, such that fs(0) =
s. Compute vs,i = fs(xi), for i ∈ [n].
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2. Uniformly at random, generate e = (P0(x), . . . , Pk+tmax (x)) that is an au-
thentication key for a (t, n) MRA code with k + tmax messages, where
tmax = min{t − 1, n − k}, and Pi(x) ∈ Polyt is a polynomial of degree
at most t over Fq.

3. For i ∈ [n], compute vc,i(x) = fe(φ(vs,i, i)) as the authentication tag for vs,i.
Note that vc,i(x) ∈ Polyt is a polynomial of degree at most t over Fq.

4. For i ∈ [n], set σi = {vs,i, vc,i(x), P0(xi), . . . , Pk+tmax(xi)} and distribute it
privately to player Ri.

Remark 3. Note that in Step 3, we combine player’s share vs,i with her identifier
i before authentication. This is because Shamir scheme does not guarantee that
each player gets distinct shares. Therefore, a cheater may simply re-use the share
and authentication information submitted by any honest player – naturally it
would be accepted as authentic. In order to prevent that from happening, we use
the injective function φ(·, ·) to make sure that the entities to be authenticated
will be distinct for every player even if they received the same share.

Without loss of generality, assume that the first k players want to recover the
secret. Moreover, let σ′

i = {v′s,i, v′c,i(x), P ′
0(xi), . . . , P

′
k+tmax

(xi)} be the (possibly
corrupt) share for player Ri.

Protocol 2 (Reconst)

Input: A list of k shares (σ′
1, . . . , σ

′
k).

Output: Either (⊥, L) or (s′, L), where L is the list of cheaters.

Communication rounds performed by each player i ∈ [k]:
Round 1: Announce (v′s,i, v

′
c,i(x)).

Round 2: Announce (P ′
0(xi), . . . , P

′
k+tmax

(xi)).

Computation by players in [k]:

1. For i ∈ [k], do:

a) Use the verification key (P ′
0(xj), . . . , P

′
k+tmax

(xj)) to verify the authentic-
ity of (v′s,i, v

′
c,i(x)), for j ∈ [k].

b) If less than t+ 1 keys verify (v′s,i, v
′
c,i(x)) as authentic, then player Ri is

put into the cheater list L.

2. If L = ∅, reconstruct f ′
s(x) from k shares v′s,i using Lagrange interpolation

and output (f ′
s(0), L). Otherwise output (⊥, L).

Remark 4. It is easy to check that in Round 2, the players can broadcast their
votes regarding each player’s share, instead of their verification keys. Precisely,
the player Ri can use her verification key (P0(xi), . . . , Pk+tmax (xi)) to verify
the share (v′s,j , v

′
c,j(x)) announced by player Rj . After verifying all the shares,

Ri broadcasts a binary vector of length k indicating her votes against all the
k players. Broadcasting every player’s votes instead of her verification key can
reduce the communication cost of Reconst protocol. However, this does not
affect the share size.
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Theorem 1. If t < k/2 then the scheme described above is a (t,ε)-CISS against
rushing adversary such that

|S| = p, ε =
k − t

q
, q ≥ n · p, |Vi| = p · qk+2t+1 =

|S|(k − t)k+2t+1

εk+2t+1
. (3)

For proving Theorem 1, we will use the following two lemmas.

Lemma 1. The above (k, n)-CISS has perfect secrecy, i.e. Alisten has no infor-
mation about the secret s at the end of ShareGen.

Proof. We can assume w.l.o.g. that the passive adversary Alisten corrupts the
first k − 1 players after ShareGen. Alisten will know k − 1 Shamir shares
(vs,1, . . . , vs,k−1) from which she can get no information about the secret s due to
perfect secrecy of Shamir scheme. Besides the Shamir shares, Alisten also knows
the verification keys for k− 1 players and the k− 1 authentication tags. But the
authentication key e = (P0(x), . . . , Pk+tmax(x)) is randomly generated indepen-
dently of the secret s, and it decides the verification key for each player. So the
verification keys leak no information about s. Moreover, the authentication tags
are decided by the Shamir shares and the authentication key, they also do not
give any information on the secret s. Thus we have proven that after ShareGen,
Alisten gets no information about the secret s. �

Lemma 2. In the above CISS, ε(Σ,Ri) ≤ k−t

q for any player Ri under control
of Acheat.

Proof. We divide all the n players into the following two groups: The active
group (R1, . . . , Rk) who take part in the reconstruction phase; and the inactive
group (Rk+1, . . . , Rn) who just hold their shares. Recall that Acheat can corrupt
at most t players. Assume Acheat corrupts t′ players in the active group and
t′′ players in the inactive group such that t′ + t′′ = t. Note that t′ ≥ 1 (which
implies t′′ ≤ t− 1), since Acheat has to corrupt at least one player in the active
group in order to cheat the honest players. Combining this observation with
t′′ ≤ n− k, we get t′′ ≤ tmax = min{t− 1, n− k}. Suppose w.l.o.g. that Acheat

corrupts R1, . . . , Rt′ in the active group and Rk+1, . . . , Rk+t′′ in the inactive
group. Remember that since the adversary Acheat is rushing, she can see all the
communication of honest players during each round, prior to deciding her own
messages. Denote the verification key for Ri by ei = (P0(xi), . . . , Pk+tmax(xi)).
We summarize the view of the adversary in Table 2.

Suppose w.l.o.g. that player R1 under control of Acheat submits a forged
share σ′

1 = {v′s,1, v′c,1(x), e′1}. If R1 is not identified as a cheater, then at least
one honest player will accept (v′s,1, v′c,1(x)) as authentic. At the end of the first
round R1 has to submit (v′s,1, v

′
c,1(x)) with v′s,1 �= vs,1. At that time, she can see

(vs,1, . . . , vs,k+t′′ ), (vc,1(x), . . . , vc,k+t′′(x)), and (e1, . . . , et′), (ek+1, . . . , ek+t′′).
From the t′+t′′ = t verification keys and the k+t′′ authentication tags R1 cannot
generate a new authentication tag for φ(v′s,1, x1). This is because t′′ ≤ tmax, so
k+ t′′ ≤ k+ tmax. Recall that we use (t, n) MRA with k+ tmax messages in the
ShareGen Protocol. At the end of round 1, Acheat has seen at most k + tmax
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Table 2. View of Acheat in Reconst

First round Second round

(vs,1, vc,1(x), e1) (vs,1, vc,1(x), e1)
· · · · · ·
(vs,t′ , vc,t′(x), et′) (vs,t′ , vc,t′(x), et′)
(vs,t′+1, vc,t′+1(x)) (vs,t′+1, vc,t′+1(x), et′+1)
· · · · · ·
(vs,k, vc,k(x)) (vs,k, vc,k(x), ek)
(vs,k+1, vc,k+1(x), ek+1) (vs,k+1, vc,k+1(x), ek+1)
· · · · · ·
(vs,k+t′′ , vc,k+t′′(x), ek+t′′) (vs,k+t′′ , vc,k+t′′(x), ek+t′′)

authentication tags and knows t verification keys. By Equation (2) in Property 1
we have for any honest player Rj where j ∈ [k] \ [t′],

Pr[Rj accepts (v′s,1, v
′
c,1(x))| the view of Acheat] = 1/q.

The probability that one honest player accepts R1’s fake share is 1/q. Now we
consider the optimal strategy for the adversaryAcheat. Given the construction of
the CISS scheme, especially the use of (t, n) MRA code with k+ tmax messages,
no matter how the adversary distributes his corruption between the active group
and inactive group, he can not get advantage over the MRA code. Thus the
optimal choice for Acheat is to corrupt t players in the active group so that any
cheater under her control only needs to get one vote of support from the honest
players (since the cheaters will surely support each other). Then, there are k− t
honest players whom R1 can cheat. By the union bound, the probability that
R1 will not be identified as a cheater is at most (k − t)/q, which concludes the
proof. �


Proof of Theorem 1: Combining Lemmas 1 and 2, it is easy to see that the
above scheme is a (t,ε)-CISS with t < k/2 and ε = k−t

q . Let us now calculate

the share size. Each player gets her share σi = (vsi , vci(x), ei), where vsi ∈ Fp,
vci(x) ∈ Polyt and ei ∈ F

k+tmax+1
q . So the share size is |Vi| = p·qt+1+k+tmax+1 =

pqk+t+tmax+2. Taking p = |S|, q = k−t
ε and tmax = min{t− 1, n− k}, one gets

the desired results in Theorem 1. Note that for the ease of presentation, we take
tmax = t− 1. �


Remark 5. The restriction on the number of shares present at the reconstruction
can be achieved even if more than k players are present. Trivially, the players
can decide that only some (e.g., k randomly chosen) shares should be input into
the reconstruction algorithm, while the rest of the players never disclose their
shares. A problem of this solution is that even a single cheater will be able to
disrupt the reconstruction.
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If we assume that the active adversary Acheat can only corrupt the players in
the active group (i.e., the players who participate in the reconstruction phase),
then we can use a (t, n) MRA code with k messages and get a scheme with even
smaller share size. We summarize this observation in Theorem 2.

Theorem 2. Under the assumption that Acheat can only corrupt the players in
the active group and t < k/2, we get a (t,ε)-CISS against rushing adversary such
that

|S| = p, ε =
k − t

q
, q ≥ n · p, |Vi| = p · qk+t+2 =

|S|(k − t)k+t+2

εk+t+2
. (4)

We note that the later CISS scheme has the smallest known share size among
existing CISS schemes in the same category.

3.3 (k, n)-CISS without Restriction on Reconstructing Players

In the general case, we may not be able to restrict the number of shares appearing
at the reconstruction. Moreover, we may encounter a problem mentioned in
Remark 5. Therefore, we extend the construction of the previous subsection to
fit a general setting where the number of reconstructing players m can be any
value between (and including) k and n.

The general scheme is almost identical to the restricted version in the last
subsection except that we use the MRA code capable of authenticating n mes-
sages, thus increases the share size slightly. For completeness, we provide the
scheme below.

As before, all the players are divided into active group (R1, . . . , Rm) and
inactive group (Rm+1, . . . , Rn).

CISS scheme with k ≤ m ≤ n reconstructing players.

Protocol 3 (ShareGen-General)

Public parameter: xi ∈ Fp as player Ri’s identifier for i = 1, . . . , n.

Input: Secret s ∈ Fp.
Output: A list of n shares σ1, σ2, . . . , σn.

A dealer D performs the following:

1. Generate a random degree-(k−1) polynomial fs(x) over Fp, such that fs(0) =
s. Compute vs,i = fs(xi), for i ∈ [n].

2. Uniformly at random, generate authentication key e = (P0(x), . . . , Pn(x))
for a (t, n) MRA code with n messages, where Pi(x) ∈ Polyt is a polynomial
of degree at most t over Fq.

3. For i ∈ [n], compute vc,i(x) = fe(φ(vs,i, i)) as the authentication tag for vs,i,
where vc,i(x) ∈ Polyt is a polynomial of degree at most t over Fq.

4. For i ∈ [n], set σi = (vs,i, vc,i(x), ei) and distribute it privately to player Ri,
where ei = (P0(xi), . . . , Pn(xi)) is the verification key of Ri.
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Protocol 4 (Reconst-General)

Input: A list of m shares (σ′
1, . . . , σ

′
m).

Output: Either (⊥, L) or (s′, L), where L is the list of cheaters.

Communication rounds performed by each player i ∈ [m]:
Round 1: Announce (v′s,i, v

′
c,i(x)).

Round 2: Announce e′i.

Computation by players in [m]:

1. For i ∈ [m], do:
a) Use the verification key ej to verify the authenticity of (v′s,i, v

′
c,i(x)), for

j ∈ [m].
b) If less than t+ 1 verification keys accept (v′s,i, v

′
c,i(x)) as authentic, then

player Ri is put into the cheater list L.
2. If m−|L| ≥ k, reconstruct f ′

s(x) from m−|L| shares v′s,i using the Lagrange
interpolation
a) If degree of f ′

s(x) is at most k, output (f ′
s(0), L).

b) Otherwise output (⊥, L).
3. If m− |L| < k, output (⊥, L).

Theorem 3. If t < k/2 then the scheme described above is a (t,ε)-CISS against
rushing adversary (with no restriction on the number of reconstructing players)
such that

|S| = p, ε =
n− t

q
, q ≥ n · p, |Vi| = p · qn+t+2 =

|S|(n− t)n+t+2

εn+t+2
. (5)

Proof (sketch). Perfect secrecy is shown by the same argument as in the proof
of Lemma 1.

For (1− ε)-correctness, note that the rushing adversary Acheat can observe at
most n authentication tags after Round 1 of Reconst-General. Since Acheat

can corrupt at most t players, clearly she can get the verification keys of at most
t players. Since ShareGen-General uses (t, n) MRA code with n messages to
authenticate the shares, the argument for (1 − ε)-correctness follows from that
of Lemma 2. An important difference is that this time, there are at most m− t
honest players whom Acheat can cheat. So that the upper bound of cheating
probability is ε = n−t

q which is computed for the case when all the players
appear at the reconstruction phase.

The remaining task is just to evaluate the share size. Again, we have got
σi = (vs,i, vc,i(x), ei), where vs,i ∈ Fp, vc,i(x) ∈ Polyt and ei ∈ F

n+1
q . Therefore,

the share size is |Vi| = p · qt+1+n+1 = pqn+t+2. Taking p = |S| and q = (n− t)/ε,
we get the results claimed in Theorem 3. �

Remark 6. From the above proof, we can see that the higher ratio of honest
players leaks more information to the rushing adversary and provides more tar-
gets for the adversary to attack. Thus, it is not surprising that our general
scheme requires larger share size than its restricted version. We also note that
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the proof of Choundury [2] did not pay attention to this phenomenon and the
failure probability and share size in their proposal is written incorrectly. The
correct share size should be |Vi| = |S|(n − t)3n/ε3n for a single secret rather
than |Vi| = |S|(t + 1)3n/ε3n. However, this does not affect the performance of
his scheme in the asymptotic case, since one usually takes n << 1/ε.

4 CISS against Non-Rushing Adversary

Our proposal follows the same pattern as the two previous schemes, but now
we can perform reconstruction in a single round. Also, we only need to take
care of t shares available to the adversary Acheat. This allows us to reduce the
share size, as compared to the previous schemes. For completeness, we provide
a description of our protocol below.

Protocol 5 (ShareGen-NR)

Public parameter: xi ∈ Fp as player Ri’s identifier for i = 1, . . . , n.

Input: Secret s ∈ Fp.
Output: A list of n shares σ1, σ2, . . . , σn.

A dealer D performs the following:

1. Generate a random degree-(k−1) polynomial fs(x) over Fp, such that fs(0) =
s. Compute vs,i = fs(xi), for i ∈ [n].

2. Randomly and uniformly generate authentication key e = (P0(x), . . . , Pt(x))
for a (t, n) MRA code with t messages, where Pi(x) ∈ Polyt is a polynomial
of degree at most t over Fq.

3. For i ∈ [n], compute vc,i(x) = fe(φ(vs,i, i)) as the authentication tag for vs,i,
where vc,i(x) ∈ Polyt is a polynomial of degree at most t over Fq.

4. For i ∈ [n], set σi = {vs,i, vc,i(x), P0(xi), . . . , Pt(xi)} and distribute it pri-
vately to player Ri.

Without loss of generality, assume that the first m ≥ k players want to recover
the secret.

Protocol 6 (Reconst-NR)

Input: A list of m shares (σ′
1, . . . , σ

′
m).

Output: Either (⊥, L) or (s′, L), where L is the list of cheaters.

Communication rounds performed by each player i ∈ [m]:
Round 1: Announce (v′s,i, v

′
c,i(x), P

′
0(xi), . . . , P

′
t (xi)).

Computation by players in [m]:

1. For i ∈ [m], do:
a) Use the verification key (P ′

0(xj), . . . , P
′
t (xj)) to verify the authenticity of

(v′s,i, v
′
c,i(x)), for j ∈ [m].

b) If less than t+ 1 verification keys accept (v′s,i, v
′
c,i(x)) as authentic, then

player Ri is put into the cheater list L.
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2. If m − |L| ≥ k, reconstruct f ′
s(x) from m − |L| shares v′s,i using Lagrange

interpolation
a) If degree of f ′

s(x) is at most k, output (f ′
s(0), L).

b) Otherwise output (⊥, L).
3. If m− |L| < k, output (⊥, L).

Theorem 4. If t < k/2 then the scheme described above is a (t,ε)-CISS against
non-rushing adversary such that

|S| = p, ε =
n− t

q
, q ≥ n · p, |Vi| = p · q2t+2 =

|S|(n− t)2t+2

ε2t+2
. (6)

Proof (sketch). Perfect secrecy is easy to show similarly to the proof of Lemma 1.
Note that now the active adversary Acheat is non-rushing. So that she can

get the view of at most t players. Since the above scheme uses (t, n) MRA codes
with t messages, the adversary can successfully generate a fake share and its
authentication tag with probability 1/q. When all players get involved in the
reconstruction phase, there are at most n− t honest players for Acheat to cheat.
Thus, the cheating probability for a cheater is ε = (n− t)/q, and the share size
follows easily. �


Remark 7. Assume that a trusted third party (usually called a reconstructor)
collects the shares from the players, and then runs the reconstruction algorithm
on them. If we assume in addition that the parties submit their shares to the
reconstructor over point-to-point private channels, then the rushing adversary
has exactly the same power as the non-rushing one.

5 Improvement of IWSEC 2013 Scheme

Xu et al. [15] presented a (t, ε)-CISS scheme capable of identifying t < k/3

rushing cheaters with share size |Vi| = |S|
εn−t+1 . We make a proposal to improve

the share size of their scheme to |Vi| = |S|
εn−�(k−1)/3�+1 . The intuition for the

improvement comes from a somewhat counter-intuitive property that the larger
number of cheaters t require the smaller share size. Therefore, replacing it with
a maximum possible value will lead to improving the share size for any t.

Next, we briefly describe the ShareGen protocol by Xu et al.
1. For a secret s ∈ Fp, the dealer D generates Shamir share vs,i for each player

Ri.
2. The dealer D generates a random polynomial g(x) ∈ Polyt over Fq as the

authentication key.
3. The dealer authenticates each share vs,i using g(x) and the corresponding

tag is vc,i = g(φ(vs,i, i)), where xi is the public identifier for player Ri and φ(·, ·)
is an injective function.

4. For i ∈ [t], set vc,i = vc,i; for i ∈ [n] \ [t], set vc,i = vc,i + ki where ki is the
one-time pad key.
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5. For i ∈ [n] \ [t] share the key ki among the n players using a (t + 1, n)
Shamir secret sharing scheme. Each player Rj ’s share for ki is denoted kj,i.

6. The share for player Ri is σ = (vs,i, vc,i, ki,t+1, . . . , ki,n).
Player Ri’s share consists of vs,i ∈ Fp, vc,i ∈ Fq and n− t shares for the one-

time pad keys. So the share size is |Vi| = p · qn−t+1. As we mentioned above, the
share size increases while the number of cheaters decreases. For example, when
there is only one cheater, the share size will get to its maximum |Vi| = p · qn.

Therefore, instead of generating a polynomial of degree at most t, the dealer
must always generate a polynomial g(x) of degree at most �k−1/3� to authenti-
cate the Shamir shares in the above step 2. Then, the �k−1/3� of the authentica-
tion tags do not need to be encrypted since the polynomial g(x) serves as strongly
universal�k−1/3�+1 hash function (see the detailed explanation in [15]). Therefore,
the number of encryption keys will be reduced to n−�k−1/3�. Correspondingly,
the share size in Xu et al.’s scheme can be reduced to |Vi| = |S|/εn−�(k−1)/3�+1

that does not depend on the number of cheaters.

6 Conclusion

We presented CISS schemes tolerating t < k/2 cheaters, which utilize the proper-
ties of multi-receiver authentication codes to reduce the share size, as compared
to the existing constructions based on traditional message authentication codes.
From our CISS against rushing adversary, we get a somewhat counter-intuitive
observation that higher ratio of honest players benefits the rushing adversary.
On the one hand, this is true because the rushing adversary gets more infor-
mation and more targets to attack. On the other hand, this problem might
be circumvented by more sophisticated constructions. For example, when more
than k players participate in the reconstruction phase, we can incorporate Reed-
Solomon error correction into our CISS scheme in order to reduce the success
probability of cheaters. This will be a direction for our future work.
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