

M. Yoshida and K. Mouri (Eds.): IWSEC 2014, LNCS 8639, pp. 48–61, 2014.
© Springer International Publishing Switzerland 2014

Kernel Memory Protection by an Insertable Hypervisor
Which Has VM Introspection and Stealth Breakpoints

Kuniyasu Suzaki1, Toshiki Yagi1, Kazukuni Kobara1, and Toshiaki Ishiyama2

1 National Institute of Advanced Industrial Science and Technology, Japan
{k.suzaki,yagi-toshiki,k-kobara}@aist.go.jp

2 FFRI, Inc., Japan
ishiyama@ffri.jp

Abstract. Recent device drivers are under threat of targeted attack called
Advanced Persistent Threat (APT) since some device drivers handle industrial
infrastructure systems and/or contain sensitive data e.g., secret keys for disk
encryption and passwords for authentication. Even if attacks are found in these
systems, it is not easy to update device drivers since these systems are required
to be non-stop operation and these attacks are based on zero-day attacks.
DriverGuard is developed to mitigate such problems. It is a light weight
hypervisor and can be inserted into pre-installed OS (Windows) from USB
memory at boot time. The memory regions for sensitive data in a Windows
kernel are protected by VM introspection and stealth breakpoints in the
hypervisor. The hypervisor recognizes memory structure of guest OS by VM
introspection and manipulates a page table entry (PTE) using stealth
breakpoints technique. DriverGuard prevents malicious write-access to code
region that causes Blue Screen of Death of Windows, and malicious read and
write access to data region which causes information leakage. Current
implementation is applied on pre-installed Windows7 and increases security of
device drivers from outside of OS.

Keywords: Computer Security, Information Leakage, Virtual Machine
Introspection, Stealth Breakpoints.

1 Introduction

Device drivers are key components on current operating systems since they bridge
between logical space of the operating system and physical space of devices. As
current device drivers are flexible and intelligent, most of them are loaded after
booting and plugged-in to a kernel. They are stackable to an existing device driver
and add intelligent functions. The feature enables to add access control, encryption,
and compression on an existing device driver. The intelligent functions include
sensitive data in a device driver (e.g., secret keys for disk encryption, passwords for
authentication, tables of access control, etc).

Device drivers were thought to be safe since they run in privilege mode. However,
device drivers become a target of attacks as the importance is increased, and the

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 49

vulnerability is revealed. For example, Stuxnet[5] and Duqu[3] are famous attacks for
device drivers. These attacks use vulnerabilities of device drivers in a commodity
operating system as a steppingstone of attacks on a real device (e.g., nuclear reactor,
chemical plant, etc). They are targeted attacks and called Advanced Persistent Threat
(APT). Most of them are zero-day attacks and signature based security tools cannot
detect these attacks. Furthermore if the target is a critical infrastructure or an
industrial control system, the availability is important. The countermeasures must be
taken without stopping the operating system.

In order to mitigate the problems, we propose DriverGuard which is a light weight
and insertable hypervisor to a pre-installed OS (Windows). DriverGuard has a
function of VM introspection[6,7,9], and recognizes the data structure of Windows7.
It also has stealth breakpoints technique[14] which manipulates page table entries
(PTE) on a shadow page table of hypervisor. The combination of VM introspection
and stealth breakpoints in an insertable hypervisor prevents malicious write-access to
code region which causes Blue Screen of Death of Windows, and malicious read and
write access to data region which causes information leakage.

This paper is organized as follows. Section 2 briefs related works and Section 3
introduces threat model for DriverGuard. Section 4 reviews countermeasures for the
threats. Section 5 describes the design of DriverGuard. Section 6 reports the current
implementation. Section 7 discusses some issues for DriverGuard, and Section 8
summarizes our conclusions.

2 Relates Work

Device drivers are recognized as a weak point in kernel space, and many protecting
methods have been proposed.

Nooks[13] is a famous research for protecting device drivers. Nooks offers reliable
subsystem that isolates a kernel from device drivers. It uses special memory
management system to limit access to the device driver. The limitation of access
resembles DriverGuard, but the aim of Nooks is to enhance OS reliability from
failures. The limitation of accesses on Nooks is also used for security, but Nooks does
not prevent information leakage from device drivers.

OS2, which is developed by IBM and Microsoft in 90s, uses protection rings
architecture of IA-32 that offers one more privilege level for device drivers. It can
increase the security level, but it requires operating system to recognize the ring levels
and makes difficult to develop a device driver.

Instead of protection ring architecture, virtualization architecture (e.g., Intel VT or
AMD SVM) is developed and used widely. It offers a mode for virtualization that is
independent of OS and makes easy to make a hypervisor. Some hypervisors have a
function to recognize behavior of OS, called to VM introspection[6,7,9]. It also makes
possible to manipulate device drivers and prevent attacks on them.

HUKO[15] is a hypervisor-based integrity protection system designed to protect
commodity OS kernel from untrusted device drivers. HUKO manipulates CR3
register of IA-32 architecture which manages page table entry (PTE), and separates

50 K. Suzaki et al.

virtual memory space between the kernel and device drivers. The device drivers use
isolated virtual memory space from the kernel. On the other hand, DriverGurad
manipulates PTE contents, and the access to the memory for sensitive data is
protected by Stealth Breakpoints technique [14]. DriverGurad does not require
additional virtual memory space for device drivers.

SecVisor [10] is a hypervisor that ensures code integrity for OS kernels. It protects
the kernel against code injection attacks, which works as same to DriverGuard.
Furthermore, SecVisor uses the IO Memory Management Unit (IOMMU) to protect
kernel code from Direct Memory Access (DMA) access, which is more progressive
than DriverGuard. However, SecVisor requires to add 2 hypercalls in a target OS
kernel. The feature is not accepted our target because DriverGuard treats Window7
which does not allow to customize the kernel. DriverGuard detects the code and data
region using VM Introspection. It requires small customization to allocate sensitive
data, but the customization is trivial because it only changes memory allocation
method with normal Windows’ function. In addition, SecVisor requires customization
on bootstrap code in Linux because SecVisor has to be loaded as a part of Linux
kernel. On the other hand, DriverGuard is insertable hypervisor which uses chain-
loader of GRUB and does not require the change of the existing boot procedure.

Taint tracking technique is useful to prevent information leakage. The technique
tracks data flow and finds illegal usage of data. Some hypervisors integrate taint
tracking mechanism and are used to find information leakage dynamically. For
examples, TTAnalyze [1], TEMU[12], V2E[16] and Ether[4] are developed on open
source hypervisor Xen or QEMU. They are used to analyze malware behavior
because they can avoid anti-debugger mechanism in a malware. Unfortunately, they
take much time to track data flows because they have to monitor data flows aside
from the original processing. Heavy overhead is not accepted to prevent sensitive data
at normal operation. Fortunately, DriverGuard does not need to track data flow
because DriverGuad knows the region of sensitive data and only have to prevent
malicious access to there. It does not cause extra overhead to track data flow.

3 Threat Model

We assume two types of threat model for DriverGuard. One of the threats is code
injection attack to a device driver’s code, and the other is information leakage from
the device driver’s data. Most of them are zero-day attacks, and security patch and
security signature are not available.

The aim of code injection attack is to take control and run malware. The attack re-
writes an existing code on memory and passes control to the malware. Even if the
attack cannot get the full control, failure is enough for attackers on an infrastructure
system because the aim is to stop or runaway the system. Therefore, security systems
for infrastructure have to prevent Blue Screen of Death (BSoD) on Windows, even if
the system is shrunk.

The other threat is stealing or re-writing sensitive data of device driver’s data
region memory. Current device drivers are intelligent and have some sensitive data.

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 51

Attackers try to read or write the sensitive data with some techniques (e.g., buffer
overflow). The access to the sensitive data should be limited to the legitimate device
driver’s code only.

4 Requirement for Countermeasures

DriverGuard is used for protecting device drivers in industrial infrastructure systems.
These systems have already established and security features must be added on the
systems. Furthermore, some attacks to device drivers exploit a previously unknown
vulnerability in the operating system and cannot be protected by the operating system
itself. As a countermeasure of zero-day attack, anomaly behavior detection is one
approach, but it cannot avoid false-negative.

DriverGuard offers a white-list approach. The user must notify the hypervisor
identifications of device drivers. The identifications are used to find the region of
legitimate code when the drivers are loaded. The device drivers also must notify the
hypervisor the memory region for sensitive data. After the setup of DriverGuard, the
code region of device driver is not re-written, and sensitive data region is accessed by
legitimate code of device driver only. The accesses to protected regions are monitored
by the hypervisor of DriverGuard, which works as a small Trusted Computing Base
(TCB).

In order to satisfy the requests, DriverGuard uses insertable hypervisor which has
VM introspection and stealth breakpoints.

4.1 Hypervisor for an Existing OS

The hypervisor has to offer full virtualization in order to boot pre-installed OS as a
guest OS. The hypervisor should be as light as possible to make a small impact on
pre-installed OS. Current popular hypervisors (e.g., KVM, Xen, VMware) require a
control OS (host OS), even if the hypervisor is type I (Bare-metal hypervisor. The
example is Xen.) or type II (Hypervisor hosted by an OS. The example is KVM). A
control OS requires much memory and storage. It is not suitable for our purpose. In
order to solve the problem, we build DriverGuard on the hypervisor called
BitVisor[11] which does not require a control OS.

Furthermore, most hypervisor has a fixed device model (QEMU-Device model on
KVM and Xen). The device model requires remapping from pseudo devices on a VM
to real devices. Even if these hypervisors allows to boot a pre-installed OS, they
require to install device drivers for pseudo devices on a pre-installed OS, which is not
acceptable for our purpose. BitVisor has a para-passthrough mechanism which offers
bare-metal devices to a guest OS and does not require any change of pre-installed OS.

A pre-installed OS is stored on a real hard disk and users do not want to change the
contents. It means hypervisor is requested to be inserted from other devices at boot
time.

52 K. Suzaki et al.

4.2 VM Introspection

The hypervisor for DriverGuard has to recognize the memory map and behavior of
the guest OS since it needs to know the memory region for code and sensitive data.
The function is called VM introspection [6,7,9]. Unfortunately, most hypervisors do
not have the function because they have to solve semantic gaps between guest OS and
hypervisor.

BitVisor also has no function for VM introspection. Fortunately we can use
GreenKiller [8] which offers VM introspection on top of BitVisor. GreenKiller
recognizes the memory map of Windows and hooks some system calls. We build
DriverGuard on GreenKiller.

4.3 Stealth Breakpoints

Debugger is a fundamental tool to analyze a malware. It places a breakpoint on an
instruction, where the control goes to a debugger from the targeted code. The targeted
instruction is replaced with an instruction of software interrupt. On IA-32
architecture, INT 3H (0xCC) instruction is used.

Breakpoints are useful for debugging, but they are detected by some type of
malware. If the malware finds break points (INT 3H instructions) on its code region,
it recognizes that it is analyzed. The function is called Anti-Debugger. The malware
with Anti-Debugger changes its behavior in order to prevent the analysis.

Stealth breakpoints technique[14] is used to solve this drawback. The technique
manipulates page table entry (PTE) which indicates the address of the page. The PTE
content is changed in order to cause a page fault, when an access is issued to the page.
The page fault is carried to stealth breakpoints as a break point. Stealth breakpoints
changes the status of PTE and allows the access to the page. After that, stealth
breakpoints sets single step mode and returns control to the original code. The
original code causes an exception of the single step, which is carried to stealth
breakpoints again. At the exception handler of the single step, stealth breakpoints
disables the page in order to work as breakpoint again, and releases single step mode.
Then, the control is returned the original code.

Stealth breakpoints works as normal break point and countermeasure for Anti-
Debugger of malware. However, the cost is heavy because page fault is slower than
software interrupt. Furthermore, stealth breakpoints hooks accesses to the region
which is outside of the region for sensitive data in the protected page. It will make
performance degradation when it applied on code region, which accessed frequently.
DriverGuard avoids this problem by applying stealth breakpoints on heap region
which includes sensitive data only.

5 Driverguard

DriverGuard is build on top of GreenKiller[8] which has VM introspection.
GreenKiller is based on BitVisor[11] which is a thin hypervisor with para-
passthrough. BitVisor offers bare-metal devices to guest OS and does not require any

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 53

changes on a pre-install OS. Current target OS is pre-installed Windows7. This
section describes key features of DriverGuard.

5.1 Inserting DriverGuard in an Pre-installed Windows

In order to load DriverGuard before booting Windows, we used USB boot and chain-
loader. It does not require any change on the hard disk. Figure 1 show the steps.

Most current BIOS can select USB storage as a boot device. DriverGuard is loaded
from the GRUB bootloader on the MBR of USB storage. DriverGuard occupies the
VMX root mode of Intel VT and remains on the memory. After that, DriverGuard
returns the control to the MBR of the booted device (USB memory). The GRUB has a
function called chain-loader which sends the control to another bootloader. The
control goes to the MBR of hard disk which includes bootloader of pre-installed
Windows. The bootloader boots Windows besides DriverGuard hypervisor.

The kernel of Windows7 has a security function of ASLR (Address Space Layout
Randomization) It allocates the starting address of the kernel at random and prevents
buffer overflow attacks. DriverGuard must find the starting address for VM
introspection. Current implementation detects the starting address by linear search
technique. A MD5 hash of beginning contents of the kernel is used as an identifier,
which is passed to the DriverGuard as a parameter of bootloader GRUB. The
DriverGuard searches the starting address with the MD5 when the kernel is loaded.
MD5 hash is used instead of SHA-1 because GRUB has a size limitation of
arguments and must pass some other identifiers mentioned in the next section.

BIOS (USB is the first bootable device)

USB(GRUB) DriverGuard
(resides in memory)

HardDisk(NTLDR) Windows

chain loader

Go back to MBR

Fig. 1. Method to insert DriverGuard before booting Windows

5.2 Set Up DriverGuard

DriverGuard has to recognize which device drivers are protected and where are the
protected memory regions. The setting up of DriverGuard has three steps, which are
illustrated in Figure 2.

The first step is identification of device driver protected by DriverGuard.
Identification is based on MD5 hash value of a binary of device driver. The
identification is passed as parameters of bootloader GRUB.

54 K. Suzaki et al.

The second step is to recognize the code region of the protected device drivers.
DriverGuard still knows the identifications, but does not know when and where the
codes of device drivers are loaded. DriverGuard uses a mechanism of VM
introspection which comes from GreenKiller.

Fig. 2. Setup procedure of DriverGuard

DriverGuard hooks “IopLoadDriver” system call to recognize the protected device
drivers. IopLoadDriver is an internal function of ntkrnlpa.exe, which inserts a device
driver to the kernel space. DriverGuard recognizes the memory map of Windows7
and replaces an instruction of IopLoadDriver with INT 3H (0xCC) instruction as a
break point of debugger. When IopLoadDriver is called, the break point causes an
exception and switches to DriverGuard. The DriverGuard analyzes the data structure
of the created process using identification (MD5 hash value), which allows to detect a
protected device driver and know the code region. After the analysis, DriverGuard
returns the control to the break point with the replaced original instruction.

The third step is to recognize protected region for sensitive data. Current
implementation requires to customize the device driver to tell the region of sensitive
data. The region must be allocated dynamically with a “tag” caused by
“ExAllocatePoolWithTag” function. The VM introspection of DriverGuard detects
memory region using the tag caused by ExAllocatePoolWithTag. The pages which
used by tagged memory are protected by DriverGuard.

DriverGuard recognizes that the request comes from the code of legitimate device
driver and registers the memory region to be prohibited from read and write accesses
of other code. The code region is detected by VM Introspection when the driver is
installed by IopLoadDriver. After the setting up DriverGuard, the code and sensitive
data region are protected from malicious accesses.

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 55

5.3 Protecting Code Region

DriverGuard protects the code of device drivers from write-access, but the code
region is mapped as read-only by Windows7 already. Therefore, DriverGuard does
not need to change the permission in general. However, when a write-access is issued
to the read-only memory, the exception handler is called as a Bug Check Code (0xBE:
ATTEMPTED_WRITE_TO_READONLY_MEMORY), which causes Blue Screen
of Death (BSoD) of Windows. If an attacker wants to stop the Windows, the attack
means a success.

In order to prevent an attack, DriverGuard hooks the exception handler and causes
an infinite loop. The infinite loop runs as low Interrupt ReQuest Level (IRQL) and
causes high CPU load on Windows7. However, it is interrupted by other higher
IRQL, the user can cope with the situation.

5.4 Protecting Data Region

DriverGuard allows memory accesses on the protected region from processes that
officially use the registered device drivers. The processes loads registered .sys files
only. The other processes which loads registered .sys files with others are recognized
as malicious processes by DriverGuard.

The region of sensitive data is informed by a protected device driver as mentioned
in Section 5.2. DriverGuard protects the memory region using stealth breakpoints
technique on shadow page table. Shadow page table is pseudo page table that offers a
virtual memory on a virtual machine. The management unit is 4KB page, and the
protected region is rounded to the 4KB unit.

Figure 3 shows the data protection that uses stealth breakpoints. Each process has
its own page directory and a set of page table entries (PTE), which are virtualized as
shadow page table by DriverGuard. A PTE has two addresses for virtual memory and
physical memory in order to map them. The address of page directory is in CR3 (page
directory register) when the process is running. The PTEs are set by the operating
system.

DriverGuard manages page table entries and changes the P-bit (persistent bit). P-bit
is used for swapping and indicates that the page exists in the memory or swaps out.
The P-bit for a page table entry for a protected page is set to 0 by DriverGuard. It
means all access to the page causes a page fault. The page fault is hooked by
DriverGuard and analyze whether the access comes from legitimate code or not. If an
access comes from non-legitimate code (process B in Figure3), the access is failed.
The DriverGuard decides it as malicious access and brings to an infinite loop with
low IRQL. Even if an access comes from legitimate code and is allowed, a page fault
occurs.

56 K. Suzaki et al.

Fig. 3. Data protection mechanism of DriverGuard. P-bit (persistent bit) of page table entry on
shadow page table is set to 0 to cause page fault for any accesses. DriverGuard investigates all
page faults at the page, and malicious access to the sensitive data is denied.

Figure 4 shows the procedure of stealth breakpoints in DriverGuard. A protected
driver runs on VMX non-root mode and DriverGuard runs on VMX root mode. When
an access is issued to the sensitive data, the access causes a page fault because the P-
bit for the page table entry is set to 0. It causes VMEnter to change the VMX root
mode and invokes DriverGuard. DriverGuard investigates the address of instruction
that cased the page fault. If the address does not come from the legitimate code,
DriverGuard decides it as malicious access and bring to an infinite loop with low
IRQL.

When the access comes from the legitimate code, DriverGuard goes to the
procedure of stealth breakpoints. It sets a hardware break point to the next instruction.
DriverGuard sets P-bit 1 and allows the access. After that DriverGuard cause VMExit
to bring the control back to the driver. The driver can access to the sensitive data.
After the access, the next instruction is trapped immediately by hardware breakpoint
and causes VMEnter to invoke DriverGuard. DriverGuard clear the hardware
breakpoint and sets the P-bit set 0 again. After that DriverGuard causes VMExit and
returns the control to the driver.

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 57

Fig. 4. Procedure of stealth breakpoints in DrvierGuard

The implantation of stealth breakpoints in DriverGuard is different from the
Original. Original stealth breakpoints uses single step mode to hook the next
instruction, but stealth breakpoints in DriverGuard uses hardware break point.
Original stealth breakpoints is designed to hide hardware break point from a malware,
but DriverGuard does not need to care about detection from a malware. Furthermore,
the implementation is easy, because DriverGuard can use the information which is
recorded at VMEner. VMEnter uses VMCS (Virtual Machine Control Structure) to
record the status information of VMX mode. The information includes the instruction
which causes VMEnter, and DriverGurad know the address of the next instruction.
DriverGuard easily sets a hardware break point to the next instruction. It makes easy
to implement.

Page fault occurred by stealth breakpoints does not cause access to a disk, which is
quicker than normal page fault. Normal page fault takes milli-second to get data from
the disk, but page fault of stealth breakpoints takes micro-second order. The real
performance is showed in the next section.

6 Implementation

This section reports current implementation issues on hardware, guest OS, and the
performance.

58 K. Suzaki et al.

6.1 Limitation

DriverGuard requires a CPU which has Intel VT since DriverGuard depends on
hardware virtualization assists. The VMX root mode on the CPU is occupied by
DriverGuard and another hypervisor cannot use the mode.

The guest OS cannot use page size extension (PSE) since a unit of page size
becomes 4MB. It is too large to protect sensitive data. 4KB page is common page size
for many operating systems and good for DriverGuard.

The guest OS is limited to Windows7 ServicePack1 since the VM introspection of
DriverGuard is design for the OS. Other Windows may be applied by DriverGuard,
but we have not tested yet.

Swapping page mechanism must be disabled since current DriverGuard cannot
follow the swapped-out pages. Hibernation is also unsupported.

Some device drivers are loaded at the boot time, but DriverGuard cannot recognize
them since they do not use IopLoadDriver system call. Some of device drivers are
necessary to boot Windows (e.g., storage driver for root file system and video card
driver), and they are recognized as parts of Windows kernel. Therefore, current
DriverGuard does not care them.

6.2 Performance

We measured the performance of DriverGuard on Lenovo ThinkCentre (Intel Core2
Duo E6850 3.0GHz, 2 GB memory). The size of current DriverGuard is 16.2 MB. It
is not significant because it includes VM introspection for Windows7.

The DriverGuard is inserted at boot time. The insertion of DriverGuard took about
6 seconds, which excludes the loading time of the GRUB. The boot time of
Windows7 on DriverGuard took 40 seconds while the boot time of original
Windows7 took 17 seconds. The overhead was caused by setup OS, which was
pressure on a hypervisor. However, we did not feel any stress to use the Windows 7
on DriverGuard after the booting.

The Windows7 on DriverGuard recognized 1.83GB memory while the normal
Windows7 recognized 2.00GB memory. The difference size of memory (about
170MB) was used by DriverGuard. The size is not big as a hypervisor which has VM
introspection. When another hypervisor requires host OS for VM introspection, much
more memory will be used.

We made a pseudo malware to attack a device driver and confirmed that the
malicious write-access to sensitive data was detected and went to an infinite loop at
low IRQL. The CPU load on Windows 7 went to 100%, but the keyboard and mouse
were active and we could control the windows7.

Figure 5 shows the procedure for stealth breakpoints in DriverGuard, and the
elapsed time which took on Core2 Duo E6850. The time is measured by the function
equipped in BitVisor and the resolution is 1 micro-second. There were no time
difference for read and write accesses.

The elapsed time between page fault and enabling PTE took 5 micro-seconds. The
elapsed time by trapping hardware breakpoint took 18 micro-seconds. It took 22

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 59

micro-seconds by the end of stealth breakpoints in DriverGuard. The measurement
was achieved in DrvierGurad and did not include the time for the first VMEnter and
the last VMExit.

The time is heavy for one access to normal memory, but the region includes
sensitive data. The overhead is acceptable for sensitive data which are used a few
times, for example, sensitive data for authentication.

Fig. 5. Performance in DriverGuard

The most part of the elapsed time was spent between enabling PTE and trapping
hardware breakpoints, which includes 2 switches between VMX root mode and VMX
non-root mode. It causes VMEnter and VMExit which spend thousands of CPU
cycles on Core2 Duo. Furthermore, DriverGuard uses shadow page table and takes
time to manage it. If the time for the switches becomes short, DriverGurad can
improve the performance. This issue is discussed in Section 7.

7 Discussions

Current implementation assumes that DriverGuard is inserted at boot time securely.
There is, however, no method to verify the procedure. We have a plan to include
trusted boot which records the procedure in a secure chip; Trusted Platform Module
(TPM). The recorded data in the TPM is tamper-proof, and can be sent to a trusted
third party so that the receiver can verify the boot procedure. When the data is
exported from a TPM, the data is digitally signed with a secret key in the TPM and is
verified with the public key of the TPM. If DriverGuard utilizes this mechanism, the
integrity is confirmed.

Return oriented programming (ROP) is not prevented by DriverGuard since it
reads loaded code only and does not require write-access to the code. In order to
prevent such attacks, we have a plan to improve DriverGuard to protect read access
from malicious processes.

60 K. Suzaki et al.

DriverGuard employs white-list approach. The granularity of it can be categorized
as middle since the unit of white-list is application software. The smallest granularity
is a system call offered by Korset[2]. Korset analyzes the source code of an
application and makes control flow graphs (CGF) of system calls in order to trace the
behavior. If the behavior of the process does not follow the CFG, Korset alerts that
the process is intruded by malware. It offers very strict white-list and can detect any
intrusions. We are studying how to introduce the same idea to DriverGuard.

Current implementation uses shadow page table that is virtual memory emulated
by software, and does not utilize hardware assist for memory virtualization called
nested page table. Current X86 architecture CPUs have the function, for examples,
Intel’s EPT (Extended Page Table) or AMD’s NPT (Nested Page Table). Some
reports show the performance improvement caused by Intel EPT and AMD NPT. In
order to receive the benefit, DriverGuared have to change the code. Fortunately,
SecVisor[10], which modifies page table entry as DriverGuared does, shows two
implementations on shadow page table and AMD’s NPT. We will refer the
implementation of SecVisor and revise DriverGuard. It will improve the performance
of DriverGuard and make more useful for yours.

8 Conclusions

Current device drivers are under threat of targeted attack since they include sensitive
data and control industrial control systems. The operations must be non-stop and
protected from attacks without change after booting. We proposed DriverGuard to
prevent malicious access to the device driver’s memory. It is a light weight hypervisor
based on GreenKiller and BitVisor. DriverGuard inherits para-passthrough and can be
inserted from USB to a pre-installed OS at boot time. DriverGuard recognizes the
memory structure of Guest OS (Windows7) and hooks some system calls by VM
introspection of GreenKiller.

DriverGuard prevents malicious write-access to code region, and read and write-
access to data region of protected device drivers. The code region is set as read-only
by Windows, and it causes Blue Screen of Death when a write access is issued on the
region, which is a kind of death attack. DriverGuard hooks the exception handler and
prevents to go to Blue Screen of Death. The control hooked by DriverGuard is
brought to an infinite loop of Low Interrupt ReQuest Level (IRQL). It caused an
overhead on the guest OS, but the user still control the OS. This feature is useful for
infrastructure systems and industrial control systems.

The protection on data region is based on stealth breakpoints technique and
manipulates page table entries of shadow page table. Read and write accesses to the
protected data region is also hooked and investigated the address of the instruction
which cause the page fault. If the instruction is not a part of the legitimate device
driver’s code, the access is brought to an infinite loop of IRQL. When the instruction
is in the legitimate code, the access is allowed by the treatment of stealth breakpoints.
The implementation uses hardware breaking point.

The implementation was applied on pre-installed Windows7 and the performance
was measured. Most part of the overhead of stealth breakpoints is estimated to the
operation of VMExit and VMEnter. The result shows that DriverGuard is acceptable

 Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection 61

for operation which accesses sensitive data a few times, such as authentication. It
increases security of device drivers from outside of OS.

Acknowledgement. This work was in part supported by the Strategic Information and
Communications R&D Promotion Programme (SCOPE) of the Ministry of Internal
Affairs and Communications, Japan.

References

[1] Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A Tool for Analyzing Malware. In: 15th
European Institute for Computer Antivirus Research, EICAR (2006)

[2] Ben-Cohen, O., Wool, A.: Korset: Automated, Zero False-Alarm Intrusion Detection for
Linux. In: Linux Symposium (2008)

[3] Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: Duqu: Analysis, Detection, and
Lessons Learned. In: European Workshop on System Security, EuroSec (2012)

[4] Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hardware
Virtualization Extensions. In: ACM Conference on Computer and Communications
Security, CCS (2008)

[5] Falliere, N., Murchu, L.O., Chien, E.: W32.Stuxnet Dossier, Symantec Security Response
(2011)

[6] Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for
Intrusion Detection. In: 10th Annual Network & Distributed System Security
Symposium, NDSS (2003)

[7] King, S.T., Dunlap, G.W., Chen, P.M.: Operating System Support for Virtual Machines.
USENIX Annual Tech. (2003)

[8] Murakami, J.: FFR GreenKiller - Automatic kernel-mode malware analysis system. In:
12th Associates of Anti-Virus Asia Reserachers International Conference (2009)
http://www.fourteenforty.jp/research/research_papers/
avar-2009-murakami.pdf

[9] Nance, K., Bishop, M., Hay, B.: Virtual Machine Introspection: Observation or
Interference? IEEE Security and Privacy 6(5) (2008)

[10] Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In: The 21st ACM Symposium on
Operating Systems Principles, SOSP (2007)

[11] Shinagawa, T., et al.: BitVisor: A Thin Hypervisor for Enforcing I/O Device Security,
Virtual Execution Environments, VEE (2009)

[12] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z., Newsome, J.,
Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer Security via Binary
Analysis. In: International Conference on Information Systems Security, ICISS (2008)

[13] Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the Reliability of Commodity Operating
Systems. In: 19th ACM Symposium on Operating Systems Principles, SOSP (2003)

[14] Vasudevan, A., Yerraballi, R.: Stealth Breakpoints. In: 21st Annual Computer Security
Applications Conference, ACSAC (2005)

[15] Xiong, X., Tian, D., Liu, P.: Practical Protection of Kernel Integrity for Commodity OS
from Untrusted Extension. In: 18th Annual Network & Distributed System Security
Symposium, NDSS (2011)

[16] Yan, L., Jayachandra, M., Zhang, M., Yin, H.: V2E: combining hardware virtualization
and softwareemulation for transparent and extensible malware analysis, Virtual Execution
Environments, VEE (2012)

	Kernel Memory Protection by an Insertable Hypervisor Which Has VM Introspection and Stealth Breakpoints
	1 Introduction
	2 Relates Work
	3 Threat Model
	4 Requirement for Countermeasures
	4.1 Hypervisor for an Existing OS
	4.2 VM Introspection
	4.3 Stealth Breakpoints

	5 Driverguard
	5.1 Inserting DriverGuard in an Pre-installed Windows
	5.2 Set Up DriverGuard
	5.3 Protecting Code Region
	5.4 Protecting Data Region

	6 Implementation
	6.1 Limitation
	6.2 Performance

	7 Discussions
	8 Conclusions
	References

