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Abstract. Recent device drivers are under threat of targeted attack called 
Advanced Persistent Threat (APT) since some device drivers handle industrial 
infrastructure systems and/or contain sensitive data e.g., secret keys for disk 
encryption and passwords for authentication. Even if attacks are found in these 
systems, it is not easy to update device drivers since these systems are required 
to be non-stop operation and these attacks are based on zero-day attacks. 
DriverGuard is developed to mitigate such problems. It is a light weight 
hypervisor and can be inserted into pre-installed OS (Windows) from USB 
memory at boot time. The memory regions for sensitive data in a Windows 
kernel are protected by VM introspection and stealth breakpoints in the 
hypervisor. The hypervisor recognizes memory structure of guest OS by VM 
introspection and manipulates a page table entry (PTE) using stealth 
breakpoints technique. DriverGuard prevents malicious write-access to code 
region that causes Blue Screen of Death of Windows, and malicious read and 
write access to data region which causes information leakage. Current 
implementation is applied on pre-installed Windows7 and increases security of 
device drivers from outside of OS. 

Keywords: Computer Security, Information Leakage, Virtual Machine 
Introspection, Stealth Breakpoints. 

1 Introduction 

Device drivers are key components on current operating systems since they bridge 
between logical space of the operating system and physical space of devices. As 
current device drivers are flexible and intelligent, most of them are loaded after 
booting and plugged-in to a kernel. They are stackable to an existing device driver 
and add intelligent functions. The feature enables to add access control, encryption, 
and compression on an existing device driver. The intelligent functions include 
sensitive data in a device driver (e.g., secret keys for disk encryption, passwords for 
authentication, tables of access control, etc). 

Device drivers were thought to be safe since they run in privilege mode. However, 
device drivers become a target of attacks as the importance is increased, and the 
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vulnerability is revealed. For example, Stuxnet[5] and Duqu[3] are famous attacks for 
device drivers. These attacks use vulnerabilities of device drivers in a commodity 
operating system as a steppingstone of attacks on a real device (e.g., nuclear reactor, 
chemical plant, etc). They are targeted attacks and called Advanced Persistent Threat 
(APT). Most of them are zero-day attacks and signature based security tools cannot 
detect these attacks. Furthermore if the target is a critical infrastructure or an 
industrial control system, the availability is important. The countermeasures must be 
taken without stopping the operating system. 

In order to mitigate the problems, we propose DriverGuard which is a light weight 
and insertable hypervisor to a pre-installed OS (Windows). DriverGuard has a 
function of VM introspection[6,7,9], and recognizes the data structure of Windows7. 
It also has stealth breakpoints technique[14] which manipulates page table entries 
(PTE) on a shadow page table of hypervisor. The combination of VM introspection 
and stealth breakpoints in an insertable hypervisor prevents malicious write-access to 
code region which causes Blue Screen of Death of Windows, and malicious read and 
write access to data region which causes information leakage. 

This paper is organized as follows. Section 2 briefs related works and Section 3 
introduces threat model for DriverGuard. Section 4 reviews countermeasures for the 
threats. Section 5 describes the design of DriverGuard. Section 6 reports the current 
implementation. Section 7 discusses some issues for DriverGuard, and Section 8 
summarizes our conclusions. 

2 Relates Work 

Device drivers are recognized as a weak point in kernel space, and many protecting 
methods have been proposed.  

Nooks[13] is a famous research for protecting device drivers. Nooks offers reliable 
subsystem that isolates a kernel from device drivers. It uses special memory 
management system to limit access to the device driver. The limitation of access 
resembles DriverGuard, but the aim of Nooks is to enhance OS reliability from 
failures. The limitation of accesses on Nooks is also used for security, but Nooks does 
not prevent information leakage from device drivers. 

OS2, which is developed by IBM and Microsoft in 90s, uses protection rings 
architecture of IA-32 that offers one more privilege level for device drivers. It can 
increase the security level, but it requires operating system to recognize the ring levels 
and makes difficult to develop a device driver. 

Instead of protection ring architecture, virtualization architecture (e.g., Intel VT or 
AMD SVM) is developed and used widely. It offers a mode for virtualization that is 
independent of OS and makes easy to make a hypervisor. Some hypervisors have a 
function to recognize behavior of OS, called to VM introspection[6,7,9]. It also makes 
possible to manipulate device drivers and prevent attacks on them. 

HUKO[15] is a hypervisor-based integrity protection system designed to protect 
commodity OS kernel from untrusted device drivers. HUKO manipulates CR3 
register of IA-32 architecture which manages page table entry (PTE), and separates 
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virtual memory space between the kernel and device drivers. The device drivers use 
isolated virtual memory space from the kernel. On the other hand, DriverGurad 
manipulates PTE contents, and the access to the memory for sensitive data is 
protected by Stealth Breakpoints technique [14]. DriverGurad does not require 
additional virtual memory space for device drivers. 

SecVisor [10] is a hypervisor that ensures code integrity for OS kernels.  It protects 
the kernel against code injection attacks, which works as same to DriverGuard. 
Furthermore, SecVisor uses the IO Memory Management Unit (IOMMU) to protect 
kernel code from Direct Memory Access (DMA) access, which is more progressive 
than DriverGuard. However, SecVisor requires to add 2 hypercalls in a target OS 
kernel. The feature is not accepted our target because DriverGuard treats Window7 
which does not allow to customize the kernel. DriverGuard detects the code and data 
region using VM Introspection. It requires small customization to allocate sensitive 
data, but the customization is trivial because it only changes memory allocation 
method with normal Windows’ function. In addition, SecVisor requires customization 
on bootstrap code in Linux because SecVisor has to be loaded as a part of Linux 
kernel. On the other hand, DriverGuard is insertable hypervisor which uses chain-
loader of GRUB and does not require the change of the existing boot procedure. 

Taint tracking technique is useful to prevent information leakage. The technique 
tracks data flow and finds illegal usage of data. Some hypervisors integrate taint 
tracking mechanism and are used to find information leakage dynamically. For 
examples, TTAnalyze [1], TEMU[12], V2E[16] and Ether[4] are developed on open 
source hypervisor Xen or QEMU. They are used to analyze malware behavior 
because they can avoid anti-debugger mechanism in a malware. Unfortunately, they 
take much time to track data flows because they have to monitor data flows aside 
from the original processing. Heavy overhead is not accepted to prevent sensitive data 
at normal operation. Fortunately, DriverGuard does not need to track data flow 
because DriverGuad knows the region of sensitive data and only have to prevent 
malicious access to there. It does not cause extra overhead to track data flow. 

3 Threat Model 

We assume two types of threat model for DriverGuard. One of the threats is code 
injection attack to a device driver’s code, and the other is information leakage from 
the device driver’s data. Most of them are zero-day attacks, and security patch and 
security signature are not available.  

The aim of code injection attack is to take control and run malware. The attack re-
writes an existing code on memory and passes control to the malware. Even if the 
attack cannot get the full control, failure is enough for attackers on an infrastructure 
system because the aim is to stop or runaway the system. Therefore, security systems 
for infrastructure have to prevent Blue Screen of Death (BSoD) on Windows, even if 
the system is shrunk. 

The other threat is stealing or re-writing sensitive data of device driver’s data 
region memory. Current device drivers are intelligent and have some sensitive data. 
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Attackers try to read or write the sensitive data with some techniques (e.g., buffer 
overflow). The access to the sensitive data should be limited to the legitimate device 
driver’s code only. 

4 Requirement for Countermeasures  

DriverGuard is used for protecting device drivers in industrial infrastructure systems. 
These systems have already established and security features must be added on the 
systems. Furthermore, some attacks to device drivers exploit a previously unknown 
vulnerability in the operating system and cannot be protected by the operating system 
itself. As a countermeasure of zero-day attack, anomaly behavior detection is one 
approach, but it cannot avoid false-negative. 

DriverGuard offers a white-list approach. The user must notify the hypervisor 
identifications of device drivers. The identifications are used to find the region of 
legitimate code when the drivers are loaded. The device drivers also must notify the 
hypervisor the memory region for sensitive data. After the setup of DriverGuard, the 
code region of device driver is not re-written, and sensitive data region is accessed by 
legitimate code of device driver only. The accesses to protected regions are monitored 
by the hypervisor of DriverGuard, which works as a small Trusted Computing Base 
(TCB). 

In order to satisfy the requests, DriverGuard uses insertable hypervisor which has 
VM introspection and stealth breakpoints. 

4.1 Hypervisor for an Existing OS 

The hypervisor has to offer full virtualization in order to boot pre-installed OS as a 
guest OS. The hypervisor should be as light as possible to make a small impact on 
pre-installed OS. Current popular hypervisors (e.g., KVM, Xen, VMware) require a 
control OS (host OS), even if the hypervisor is type I (Bare-metal hypervisor. The 
example is Xen.) or type II (Hypervisor hosted by an OS. The example is KVM). A 
control OS requires much memory and storage. It is not suitable for our purpose. In 
order to solve the problem, we build DriverGuard on the hypervisor called 
BitVisor[11] which does not require a control OS. 

Furthermore, most hypervisor has a fixed device model (QEMU-Device model on 
KVM and Xen). The device model requires remapping from pseudo devices on a VM 
to real devices. Even if these hypervisors allows to boot a pre-installed OS, they 
require to install device drivers for pseudo devices on a pre-installed OS, which is not 
acceptable for our purpose. BitVisor has a para-passthrough mechanism which offers 
bare-metal devices to a guest OS and does not require any change of pre-installed OS. 

A pre-installed OS is stored on a real hard disk and users do not want to change the 
contents. It means hypervisor is requested to be inserted from other devices at boot 
time. 
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4.2 VM Introspection 

The hypervisor for DriverGuard has to recognize the memory map and behavior of 
the guest OS since it needs to know the memory region for code and sensitive data. 
The function is called VM introspection [6,7,9]. Unfortunately, most hypervisors do 
not have the function because they have to solve semantic gaps between guest OS and 
hypervisor. 

BitVisor also has no function for VM introspection. Fortunately we can use 
GreenKiller [8] which offers VM introspection on top of BitVisor. GreenKiller 
recognizes the memory map of Windows and hooks some system calls. We build 
DriverGuard on GreenKiller. 

4.3 Stealth Breakpoints 

Debugger is a fundamental tool to analyze a malware. It places a breakpoint on an 
instruction, where the control goes to a debugger from the targeted code. The targeted 
instruction is replaced with an instruction of software interrupt. On IA-32 
architecture, INT 3H (0xCC) instruction is used. 

Breakpoints are useful for debugging, but they are detected by some type of 
malware. If the malware finds break points (INT 3H instructions) on its code region, 
it recognizes that it is analyzed. The function is called Anti-Debugger. The malware 
with Anti-Debugger changes its behavior in order to prevent the analysis. 

Stealth breakpoints technique[14] is used to solve this drawback. The technique 
manipulates page table entry (PTE) which indicates the address of the page. The PTE 
content is changed in order to cause a page fault, when an access is issued to the page. 
The page fault is carried to stealth breakpoints as a break point. Stealth breakpoints 
changes the status of PTE and allows the access to the page. After that, stealth 
breakpoints sets single step mode and returns control to the original code. The 
original code causes an exception of the single step, which is carried to stealth 
breakpoints again. At the exception handler of the single step, stealth breakpoints 
disables the page in order to work as breakpoint again, and releases single step mode.  
Then, the control is returned the original code. 

Stealth breakpoints works as normal break point and countermeasure for Anti-
Debugger of malware. However, the cost is heavy because page fault is slower than 
software interrupt. Furthermore, stealth breakpoints hooks accesses to the region 
which is outside of the region for sensitive data in the protected page. It will make 
performance degradation when it applied on code region, which accessed frequently. 
DriverGuard avoids this problem by applying stealth breakpoints on heap region 
which includes sensitive data only. 

5 Driverguard 

DriverGuard is build on top of GreenKiller[8] which has VM introspection. 
GreenKiller is based on BitVisor[11] which is a thin hypervisor with para- 
passthrough. BitVisor offers bare-metal devices to guest OS and does not require any 
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changes on a pre-install OS. Current target OS is pre-installed Windows7. This 
section describes key features of DriverGuard. 

5.1 Inserting DriverGuard in an Pre-installed Windows 

In order to load DriverGuard before booting Windows, we used USB boot and chain-
loader. It does not require any change on the hard disk. Figure 1 show the steps. 

Most current BIOS can select USB storage as a boot device. DriverGuard is loaded 
from the GRUB bootloader on the MBR of USB storage. DriverGuard occupies the 
VMX root mode of Intel VT and remains on the memory. After that, DriverGuard 
returns the control to the MBR of the booted device (USB memory). The GRUB has a 
function called chain-loader which sends the control to another bootloader. The 
control goes to the MBR of hard disk which includes bootloader of pre-installed 
Windows. The bootloader boots Windows besides DriverGuard hypervisor. 

The kernel of Windows7 has a security function of ASLR (Address Space Layout 
Randomization) It allocates the starting address of the kernel at random and prevents 
buffer overflow attacks. DriverGuard must find the starting address for VM 
introspection. Current implementation detects the starting address by linear search 
technique. A MD5 hash of beginning contents of the kernel is used as an identifier, 
which is passed to the DriverGuard as a parameter of bootloader GRUB. The 
DriverGuard searches the starting address with the MD5 when the kernel is loaded. 
MD5 hash is used instead of SHA-1 because GRUB has a size limitation of 
arguments and must pass some other identifiers mentioned in the next section.  

BIOS (USB is the first bootable device)

USB(GRUB)                        DriverGuard
(resides in memory)

HardDisk(NTLDR)                 Windows

chain loader

Go back to MBR

 

Fig. 1. Method to insert DriverGuard before booting Windows 

5.2 Set Up DriverGuard 

DriverGuard has to recognize which device drivers are protected and where are the 
protected memory regions. The setting up of DriverGuard has three steps, which are 
illustrated in Figure 2. 

The first step is identification of device driver protected by DriverGuard. 
Identification is based on MD5 hash value of a binary of device driver. The 
identification is passed as parameters of bootloader GRUB.  
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The second step is to recognize the code region of the protected device drivers. 
DriverGuard still knows the identifications, but does not know when and where the 
codes of device drivers are loaded. DriverGuard uses a mechanism of VM 
introspection which comes from GreenKiller. 

 

 

Fig. 2. Setup procedure of DriverGuard 

DriverGuard hooks “IopLoadDriver” system call to recognize the protected device 
drivers. IopLoadDriver is an internal function of ntkrnlpa.exe, which inserts a device 
driver to the kernel space. DriverGuard recognizes the memory map of Windows7 
and replaces an instruction of IopLoadDriver with INT 3H (0xCC) instruction as a 
break point of debugger. When IopLoadDriver is called, the break point causes an 
exception and switches to DriverGuard. The DriverGuard analyzes the data structure 
of the created process using identification (MD5 hash value), which allows to detect a 
protected device driver and know the code region. After the analysis, DriverGuard 
returns the control to the break point with the replaced original instruction. 

The third step is to recognize protected region for sensitive data. Current 
implementation requires to customize the device driver to tell the region of sensitive 
data. The region must be allocated dynamically with a “tag” caused by 
“ExAllocatePoolWithTag” function. The VM introspection of DriverGuard detects 
memory region using the tag caused by ExAllocatePoolWithTag. The pages which 
used by tagged memory are protected by DriverGuard. 

DriverGuard recognizes that the request comes from the code of legitimate device 
driver and registers the memory region to be prohibited from read and write accesses 
of other code. The code region is detected by VM Introspection when the driver is 
installed by IopLoadDriver. After the setting up DriverGuard, the code and sensitive 
data region are protected from malicious accesses. 
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5.3 Protecting Code Region 

DriverGuard protects the code of device drivers from write-access, but the code 
region is mapped as read-only by Windows7 already. Therefore, DriverGuard does 
not need to change the permission in general. However, when a write-access is issued 
to the read-only memory, the exception handler is called as a Bug Check Code (0xBE: 
ATTEMPTED_WRITE_TO_READONLY_MEMORY), which causes Blue Screen 
of Death (BSoD) of Windows. If an attacker wants to stop the Windows, the attack 
means a success. 

In order to prevent an attack, DriverGuard hooks the exception handler and causes 
an infinite loop. The infinite loop runs as low Interrupt ReQuest Level (IRQL) and 
causes high CPU load on Windows7. However, it is interrupted by other higher 
IRQL, the user can cope with the situation. 

5.4 Protecting Data Region 

DriverGuard allows memory accesses on the protected region from processes that 
officially use the registered device drivers. The processes loads registered .sys files 
only. The other processes which loads registered .sys files with others are recognized 
as malicious processes by DriverGuard. 

The region of sensitive data is informed by a protected device driver as mentioned 
in Section 5.2. DriverGuard protects the memory region using stealth breakpoints 
technique on shadow page table. Shadow page table is pseudo page table that offers a 
virtual memory on a virtual machine. The management unit is 4KB page, and the 
protected region is rounded to the 4KB unit. 

Figure 3 shows the data protection that uses stealth breakpoints. Each process has 
its own page directory and a set of page table entries (PTE), which are virtualized as 
shadow page table by DriverGuard. A PTE has two addresses for virtual memory and 
physical memory in order to map them. The address of page directory is in CR3 (page 
directory register) when the process is running. The PTEs are set by the operating 
system.  

DriverGuard manages page table entries and changes the P-bit (persistent bit). P-bit 
is used for swapping and indicates that the page exists in the memory or swaps out. 
The P-bit for a page table entry for a protected page is set to 0 by DriverGuard. It 
means all access to the page causes a page fault. The page fault is hooked by 
DriverGuard and analyze whether the access comes from legitimate code or not. If an 
access comes from non-legitimate code (process B in Figure3), the access is failed. 
The DriverGuard decides it as malicious access and brings to an infinite loop with 
low IRQL. Even if an access comes from legitimate code and is allowed, a page fault 
occurs. 
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Fig. 3. Data protection mechanism of DriverGuard. P-bit (persistent bit) of page table entry on 
shadow page table is set to 0 to cause page fault for any accesses. DriverGuard investigates all 
page faults at the page, and malicious access to the sensitive data is denied. 

Figure 4 shows the procedure of stealth breakpoints in DriverGuard. A protected 
driver runs on VMX non-root mode and DriverGuard runs on VMX root mode. When 
an access is issued to the sensitive data, the access causes a page fault because the P-
bit for the page table entry is set to 0. It causes VMEnter to change the VMX root 
mode and invokes DriverGuard. DriverGuard investigates the address of instruction 
that cased the page fault. If the address does not come from the legitimate code, 
DriverGuard decides it as malicious access and bring to an infinite loop with low 
IRQL.  

When the access comes from the legitimate code, DriverGuard goes to the 
procedure of stealth breakpoints. It sets a hardware break point to the next instruction. 
DriverGuard sets P-bit 1 and allows the access. After that DriverGuard cause VMExit 
to bring the control back to the driver. The driver can access to the sensitive data. 
After the access, the next instruction is trapped immediately by hardware breakpoint 
and causes VMEnter to invoke DriverGuard.  DriverGuard clear the hardware 
breakpoint and sets the P-bit set 0 again. After that DriverGuard causes VMExit and 
returns the control to the driver. 
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Fig. 4. Procedure of stealth breakpoints in DrvierGuard 

The implantation of stealth breakpoints in DriverGuard is different from the 
Original. Original stealth breakpoints uses single step mode to hook the next 
instruction, but stealth breakpoints in DriverGuard uses hardware break point. 
Original stealth breakpoints is designed to hide hardware break point from a malware, 
but DriverGuard does not need to care about detection from a malware. Furthermore, 
the implementation is easy, because DriverGuard can use the information which is 
recorded at VMEner. VMEnter uses VMCS (Virtual Machine Control Structure) to 
record the status information of VMX mode. The information includes the instruction 
which causes VMEnter, and DriverGurad know the address of the next instruction. 
DriverGuard easily sets a hardware break point to the next instruction. It makes easy 
to implement. 

Page fault occurred by stealth breakpoints does not cause access to a disk, which is 
quicker than normal page fault. Normal page fault takes milli-second to get data from 
the disk, but page fault of stealth breakpoints takes micro-second order. The real 
performance is showed in the next section. 

6 Implementation 

This section reports current implementation issues on hardware, guest OS, and the 
performance. 
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6.1 Limitation 

DriverGuard requires a CPU which has Intel VT since DriverGuard depends on 
hardware virtualization assists.  The VMX root mode on the CPU is occupied by 
DriverGuard and another hypervisor cannot use the mode. 

The guest OS cannot use page size extension (PSE) since a unit of page size 
becomes 4MB. It is too large to protect sensitive data. 4KB page is common page size 
for many operating systems and good for DriverGuard. 

The guest OS is limited to Windows7 ServicePack1 since the VM introspection of 
DriverGuard is design for the OS. Other Windows may be applied by DriverGuard, 
but we have not tested yet.  

Swapping page mechanism must be disabled since current DriverGuard cannot 
follow the swapped-out pages. Hibernation is also unsupported.  

Some device drivers are loaded at the boot time, but DriverGuard cannot recognize 
them since they do not use IopLoadDriver system call. Some of device drivers are 
necessary to boot Windows (e.g., storage driver for root file system and video card 
driver), and they are recognized as parts of Windows kernel. Therefore, current 
DriverGuard does not care them. 

6.2 Performance 

We measured the performance of DriverGuard on Lenovo ThinkCentre (Intel Core2 
Duo E6850 3.0GHz, 2 GB memory). The size of current DriverGuard is 16.2 MB. It 
is not significant because it includes VM introspection for Windows7.  

The DriverGuard is inserted at boot time. The insertion of DriverGuard took about 
6 seconds, which excludes the loading time of the GRUB. The boot time of 
Windows7 on DriverGuard took 40 seconds while the boot time of original 
Windows7 took 17 seconds. The overhead was caused by setup OS, which was 
pressure on a hypervisor. However, we did not feel any stress to use the Windows 7 
on DriverGuard after the booting. 

The Windows7 on DriverGuard recognized 1.83GB memory while the normal 
Windows7 recognized 2.00GB memory. The difference size of memory (about 
170MB) was used by DriverGuard. The size is not big as a hypervisor which has VM 
introspection. When another hypervisor requires host OS for VM introspection, much 
more memory will be used. 

We made a pseudo malware to attack a device driver and confirmed that the 
malicious write-access to sensitive data was detected and went to an infinite loop at 
low IRQL. The CPU load on Windows 7 went to 100%, but the keyboard and mouse 
were active and we could control the windows7.  

Figure 5 shows the procedure for stealth breakpoints in DriverGuard, and the 
elapsed time which took on Core2 Duo E6850. The time is measured by the function 
equipped in BitVisor and the resolution is 1 micro-second. There were no time 
difference for read and write accesses. 

The elapsed time between page fault and enabling PTE took 5 micro-seconds. The 
elapsed time by trapping hardware breakpoint took 18 micro-seconds. It took 22 
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micro-seconds by the end of stealth breakpoints in DriverGuard. The measurement 
was achieved in DrvierGurad and did not include the time for the first VMEnter and 
the last VMExit.  

The time is heavy for one access to normal memory, but the region includes 
sensitive data. The overhead is acceptable for sensitive data which are used a few 
times, for example, sensitive data for authentication.  

 

Fig. 5. Performance in DriverGuard 

The most part of the elapsed time was spent between enabling PTE and trapping 
hardware breakpoints, which includes 2 switches between VMX root mode and VMX 
non-root mode. It causes VMEnter and VMExit which spend thousands of CPU 
cycles on Core2 Duo. Furthermore, DriverGuard uses shadow page table and takes 
time to manage it. If the time for the switches becomes short, DriverGurad can 
improve the performance. This issue is discussed in Section 7. 

7 Discussions  

Current implementation assumes that DriverGuard is inserted at boot time securely. 
There is, however, no method to verify the procedure. We have a plan to include 
trusted boot which records the procedure in a secure chip; Trusted Platform Module 
(TPM). The recorded data in the TPM is tamper-proof, and can be sent to a trusted 
third party so that the receiver can verify the boot procedure. When the data is 
exported from a TPM, the data is digitally signed with a secret key in the TPM and is 
verified with the public key of the TPM. If DriverGuard utilizes this mechanism, the 
integrity is confirmed.  

Return oriented programming (ROP) is not prevented by DriverGuard since it 
reads loaded code only and does not require write-access to the code. In order to 
prevent such attacks, we have a plan to improve DriverGuard to protect read access 
from malicious processes. 
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DriverGuard employs white-list approach. The granularity of it can be categorized 
as middle since the unit of white-list is application software. The smallest granularity 
is a system call offered by Korset[2]. Korset analyzes the source code of an 
application and makes control flow graphs (CGF) of system calls in order to trace the 
behavior. If the behavior of the process does not follow the CFG, Korset alerts that 
the process is intruded by malware. It offers very strict white-list and can detect any 
intrusions. We are studying how to introduce the same idea to DriverGuard. 

Current implementation uses shadow page table that is virtual memory emulated 
by software, and does not utilize hardware assist for memory virtualization called 
nested page table. Current X86 architecture CPUs have the function, for examples, 
Intel’s EPT (Extended Page Table) or AMD’s NPT (Nested Page Table). Some 
reports show the performance improvement caused by Intel EPT and AMD NPT. In 
order to receive the benefit, DriverGuared have to change the code. Fortunately, 
SecVisor[10], which modifies page table entry as DriverGuared does, shows two 
implementations on shadow page table and AMD’s NPT. We will refer the 
implementation of SecVisor and revise DriverGuard. It will improve the performance 
of DriverGuard and make more useful for yours. 

8 Conclusions 

Current device drivers are under threat of targeted attack since they include sensitive 
data and control industrial control systems. The operations must be non-stop and 
protected from attacks without change after booting. We proposed DriverGuard to 
prevent malicious access to the device driver’s memory. It is a light weight hypervisor 
based on GreenKiller and BitVisor. DriverGuard inherits para-passthrough and can be 
inserted from USB to a pre-installed OS at boot time. DriverGuard recognizes the 
memory structure of Guest OS (Windows7) and hooks some system calls by VM 
introspection of GreenKiller. 

DriverGuard prevents malicious write-access to code region, and read and write-
access to data region of protected device drivers. The code region is set as read-only 
by Windows, and it causes Blue Screen of Death when a write access is issued on the 
region, which is a kind of death attack. DriverGuard hooks the exception handler and 
prevents to go to Blue Screen of Death. The control hooked by DriverGuard is 
brought to an infinite loop of Low Interrupt ReQuest Level (IRQL). It caused an 
overhead on the guest OS, but the user still control the OS. This feature is useful for 
infrastructure systems and industrial control systems. 

The protection on data region is based on stealth breakpoints technique and 
manipulates page table entries of shadow page table. Read and write accesses to the 
protected data region is also hooked and investigated the address of the instruction 
which cause the page fault. If the instruction is not a part of the legitimate device 
driver’s code, the access is brought to an infinite loop of IRQL. When the instruction 
is in the legitimate code, the access is allowed by the treatment of stealth breakpoints. 
The implementation uses hardware breaking point.  

The implementation was applied on pre-installed Windows7 and the performance 
was measured. Most part of the overhead of stealth breakpoints is estimated to the 
operation of VMExit and VMEnter. The result shows that DriverGuard is acceptable 
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for operation which accesses sensitive data a few times, such as authentication. It 
increases security of device drivers from outside of OS. 
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