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Abstract We consider exceptional vertex operator algebras and vertex operator
superalgebras with the property that particular Casimir vectors constructed from
the primary vectors of lowest conformal weight are Virasoro descendents of the
vacuum. We show that the genus one partition function and characters for simple
ordinary modules must satisfy modular linear differential equations. We show the
rationality of the central charge and lowest weights of modules, modularity of
solutions, the dimension of each graded space is a rational function of the central
charge and that the lowest weight primaries generate the algebra. We also discuss
conditions on the reducibility of the lowest weight primary vectors as a module
for the automorphism group. Finally we analyse solutions for exceptional vertex
operator algebras with primary vectors of lowest weight up to 9 and for vertex
operator superalgebras with primary vectors of lowest weight up to 17/2. Most
solutions can be identified with simple ordinary modules for known algebras but
there are also four conjectured algebras generated by weight two primaries and three
conjectured extremal vertex operator algebras generated by primaries of weight 3, 4
and 6, respectively.
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1 Introduction

Vertex Operator Algebras (VOAs) and Super Algebras (VOSAs) have deep con-
nections to Lie algebras, number theory, group theory, combinatorics and Riemann
surfaces (e.g., [FHL, FLM, Kac1, MN, MT]) and, of course, conformal field theory
e.g., [DMS]. The classification of VOAs and VOSAs still seems to be a very difficult
task, for example, there is no proof of the uniqueness of the Moonshine module
[FLM]. Nevertheless, it would be very useful to be able to characterize VOA/VOSAs
with interesting properties such as large automorphism groups (e.g., the Monster
group for the Moonshine module), rational characters, generating vectors, etc. In
[Mat], Matsuo introduced VOAs of class Sn with the defining property that the
Virasoro vacuum descendents are the only Aut(V )-invariant vectors of weight
k ≤ n. Thus the Moonshine module [FLM] is of class S11, the Baby Monster
VOA [Ho1] of class S6 and the level one Kac–Moody VOAs generated by Deligne’s
Exceptional Lie algebras A1, A2,G2,D4, F4, E6, E7, E8 [D] are of class S4.1

In this paper we consider a refinement and generalization of previous results
in [T1, T2] concerning such exceptional VOAs. Assuming the VOA is simple and
of strong CFT-type (e.g., [MT]) we consider quadratic Casimir vectors λ(k) of
conformal weight k = 0, 1, 2, . . . constructed from the primary vectors of lowest
conformal weight l ∈ N. We say that a VOA is exceptional of lowest primary weight
l if λ(2l+2) is a Virasoro vacuum descendent. Every VOA of class S2l+2 with lowest
primary weight l is exceptional, but the converse is not known to be true. We show,
using Zhu’s theory for genus one correlation functions [Z], that for an Exceptional
VOA of lowest primary weight l, the partition function and the characters for simple
ordinary VOA modules satisfy a Modular Linear Differential Equation (MLDE) of
order at most l + 1. Given that order of the MLDE is exactly l + 1 (which is verified
for all l ≤ 9) we show that the central charge c and module lowest weights h

are rational, the MLDE solution space is modular invariant and the dimension of
each VOA graded space is a rational function of c. Subject to a further indicial
root condition (again verified for all l ≤ 9) we show that an Exceptional VOA is
generated by its primary vectors of lowest weight l.

We also consider other properties that arise from genus zero correlation functions
for all l. Assuming the VOA is of class S2l+2 this leads to conditions on the
reducibility of the lowest weight l primary space as a module for the VOA
automorphism group.

A similar analysis is carried out for Exceptional VOSAs of lowest primary weight
l ∈ N + 1

2 for which λ(2l+1) is a Virasoro vacuum descendent. Using a twisted
version of Zhu theory [MTZ] we obtain a twisted MLDE of order at most l+ 1

2 which
is satisfied by the partition function and simple ordinary VOA module characters.
This differential equation leads to a similar set of general results to those for VOAs.
Likewise, we can consider genus zero correlation functions for all l ∈ N+ 1

2 leading

1In fact, the A1 theory is of class S∞ and the E8 theory is of class S6.
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to conditions on the reducibility of the space of the space of weight l primaries as a
module for the VOSA automorphism group.

The paper also summarizes rational c, h solutions to the MLDE for all l ≤ 9 and
the twisted MLDE for all l ≤ 17

2 . In most cases we can identify a VOA/VOSA
with the requisite properties. These include a number of special VOA/VOSAs,
some VOSAs obtained by commutant constructions, some simple current extensions
of Virasoro minimal models and W-algebras. We also present evidence for four
candidate/conjectured VOAs with simple Griess algebras for l = 2 and three
extremal VOAs for l = 3, 4, 6. All the VOSA solutions found can be identified
with known theories.

2 Vertex Operator (Super) Algebras

We review some aspects of vertex operator super algebra theory (e.g., [FHL,
FLM, Kac1, MN, MT]). A Vertex Operator Superalgebra (VOSA) is a quadruple
(V , Y (·, ·), 1, ω) with a Z2-graded vector space V = V0̄ ⊕ V1̄ with parity p(u) = 0
or 1 for u ∈ V0̄ or V1̄ respectively. (V , Y (·, ·), 1, ω) is called a Vertex Operator
Algebra (VOA) when V1̄ = 0.

V also has a 1
2Z-grading with V = ⊕

r∈ 1
2Z

Vr with dim Vr < ∞. 1 ∈ V0 is
the vacuum vector and ω ∈ V2 is called the conformal vector. Y is a linear map
Y : V → End(V )[[z, z−1]] for formal variable z giving a vertex operator

Y (u, z) =
∑

n∈Z
u(n)z−n−1, (1)

for every u ∈ V . The linear operators (modes) u(n) : V → V satisfy creativity

Y (u, z) 1 = u + O(z), (2)

and lower truncation

u(n)v = 0, (3)

for each u, v ∈ V and n � 0. For the conformal vector ω

Y(ω, z) =
∑

n∈Z
L(n)z−n−2, (4)

where L(n) satisfies the Virasoro algebra for some central charge c

[L(m),L(n)] = (m − n)L(m + n) + c

12
(m3 − m)δm,−n idV . (5)
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Each vertex operator satisfies the translation property

Y (L(−1)u, z) = ∂zY (u, z). (6)

The Virasoro operator L(0) provides the 1
2Z-grading with L(0)u = wt(u)u for

u ∈ Vr and with weight wt(u) = r ∈ Z + 1
2p(u). Finally, the vertex operators

satisfy the Jacobi identity

z−1
0 δ

(
z1−z2

z0

)
Y (u, z1)Y (v, z2) − (−1)p(u)p(v)z−1

0 δ
(

z2−z1−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1−z0

z2

)
Y (Y (u, z0)v, z2) ,

with δ
(

x
y

)
= ∑

r∈Z xry−r .

These axioms imply u(n)Vr ⊂ Vr−n+wt(u)−1 for u of weight wt(u). They also
imply locality, skew-symmetry, associativity and commutativity:

(z1 − z2)
NY (u, z1)Y (v, z2) = (−1)p(u)p(v)(z1 − z2)

NY (v, z2)Y (u, z1),

(7)

Y (u, z)v = (−1)p(u)p(v)ezL(−1)Y (v,−z)u, (8)

(z0 + z2)
NY (u, z0 + z2)Y (v, z2)w = (z0 + z2)

NY (Y (u, z0)v, z2)w, (9)

u(k)Y (v, z) − (−1)p(u)p(v)Y (v, z)u(k) =
∑

j≥0

(
k

j

)

Y (u(j)v, z)zk−j , (10)

for u, v,w ∈ V and integers N � 0 [FHL, Kac1, MT].
We define an invariant symmetric bilinear form 〈 , 〉 on V by

〈

Y

(

ezL(1)
(
−z−2

)L(0)

w, z−1
)

u, v

〉

= (−1)p(u)p(w)〈v, Y (w, z)v〉, (11)

for all u, v,w ∈ V [FHL]. V is said to be of CFT-type if V0 = C 1 and of strong
CFT-type if additionally L(1)V1 = 0 in which case 〈 , 〉, with normalization 〈1, 1〉 =
1, is unique [Li]. Furthermore, 〈 , 〉 is invertible if V is simple. All VOSAs in this
paper are assumed to be of this type.

Every VOSA contains a subVOA,2 which we denote by V〈ω〉, generated by the
Virasoro vector ω with Fock basis of vacuum descendents of the form

L(−n1)L(−n2) . . . L(−nk) 1, (12)

2This subVOA is often denoted by Mc e.g., [FZ].
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for ni ≥ 2. 〈 , 〉 is singular on
(
V〈ω〉

)
n

iff the central charge is

cp,q = 1 − 6
(p − q)2

pq
, (13)

for coprime integers p, q ≥ 2 and n ≥ (p − 1)(q − 1) [Wa]. The Virasoro minimal
model VOA L(cp,q, 0) is the quotient of V〈ω〉 by the radical of 〈 , 〉. L(cp,q, 0) has
a finite number of simple ordinary V -modules L(cp,q, hr,s ) ∼= L(cp,q, hq−r,p−s )

(e.g., [DMS]) with lowest weight

hr,s = (pr − qs)2 − (p − q)2

4pq
, (14)

for r = 1, . . . , q − 1 and s = 1, . . . , p − 1.

3 Quadratic Casimirs and Genus One Zhu Theory

3.1 Quadratic Casimirs

Let (V , Y (·, ·), 1, ω) be a simple VOA of strong CFT-type with unique invertible
bilinear form 〈 , 〉. Let Πl denote the space of primary vectors of lowest weight
l ≥ 1, i.e., L(n)u = 0 for all n > 0 for u ∈ Πl . Choose a Πl-basis {ui} for
i = 1, . . . , pl = dim Πl with dual basis {ui}, i.e., 〈ui, uj 〉 = δij . Define quadratic
Casimir vectors λ(n) for n ≥ 0 by [Mat, T1, T2]

λ(n) =
pl∑

i=1

ui(2l − n − 1)ui ∈ Vn. (15)

In particular we find

λ(0) =
pl∑

i=1

ui(2l − 1)ui = (−1)l
pl∑

i=1

〈ui, ui〉 1 = (−1)l pl 1 .

Furthermore, if l > 1, then dim V1 = 0 and hence λ(1) = 0, whereas for l = 1 the
Jacobi identity implies λ(1) = ∑pl

i=1 ui(0)ui = − ∑pl

i=1 ui(0)ui = 0 [T1]. Thus we
find

Lemma 1. λ(0) = (−1)l pl 1 and λ(1) = 0.

Since the Πl elements are primary then for all m > 0

L(m)λ(n) = (n − m + l(m − 1)) λ(n−m). (16)



356 M.P. Tuite and H.D. Van

Suppose that λ(n) ∈ V〈ω〉, then (16) implies that λ(m) ∈ V〈ω〉 for all m ≤ n.
Furthermore, since 〈 , 〉 is invertible we have the following lemma

Lemma 2 (Matsuo [Mat]). If λ(n) ∈ V〈ω〉, then λ(n) is uniquely determined.

Thus if λ(2) ∈ V〈ω〉, then λ(2) = κL(−2) 1 for some κ so that 〈L(−2) 1, λ(2)〉 = κ c
2 .

But (11) and (16) imply 〈L(−2) 1, λ(2)〉 = 〈1, L(2)λ(2)〉 = (−1)l pl , so that for
c �= c2,3 = 0 (cf. (13))

λ(2) = pl

2 (−1)l l

c
L(−2) 1 . (17)

Similarly, if λ(4) ∈ V〈ω〉 and c �= 0 or c �= c2,5 = −22/5, then [Mat, T1, T2]

λ(4) = pl
2 (−1)l l (5l + 1)

c (5c + 22)
L(−2)2 1 +pl

3 (−1)l l (c − 2l + 4)

c (5c + 22)
L(−4) 1 .

(18)

These examples illustrate a general observation:

Lemma 3. Each coefficient in the expansion of λ(n) ∈ V〈ω〉 in a basis of Virasoro
Fock vectors is of the form pl r(c) for some rational function r(c) of c.

3.2 Genus One Constraints from Quadratic Casimirs

Define genus one partition and 1-point correlation functions for u ∈ V by

ZV (q) = TrV
(
qL(0)−c/24

)
= q−c/24

∑

n≥0

dim Vn qn, (19)

ZV (u, q) = TrV
(
o(u)qL(0)−c/24

)
, (20)

where q is a formal parameter and o(u) = u(wt (u) − 1) : Vn → Vn is the ‘zero
mode’ for homogeneous u. By replacing V by a simple ordinary V -module N (on
which L(0) acts semisimply e.g., [FHL, MT]) these definitions may be extended to
graded characters ZN(q) and 1-point functions ZN(u, q), e.g.,

ZN(q) = TrN
(
qL(0)−c/24

)
= qh−c/24

∑

n≥0

dim Nn qn, (21)

where h denotes the lowest weight of N . Zhu also introduced an isomorphic VOA
(V , Y [·, ·], 1, ω̃) with ‘square bracket’ vertex operators

Y [u, z] ≡ Y
(
ezL(0)u, ez − 1

)
=

∑

n∈Z
u[n]z−n−1, (22)
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for Virasoro vector ω̃ = ω−c/24 1 with modes {L[n]}. L[0] defines an alternativeZ
grading with V = ⊕

k≥0 V[k] where L[0]v = wt[v]v for wt[v] = k for v ∈ V[k]. Zhu
obtained a reduction formula for the 2-point correlation function ZN (Y [u, z]v, q)

for u, v ∈ V in terms of the elliptic Weierstrass function

Pm(z) = 1

zm
+ (−1)m

∑

n≥m

(
n − 1

m − 1

)

En(q) zn−m, (23)

for m ≥ 1 and with Eisenstein series En(q) = 0 for odd n and

En(q) = −Bn

n! + 2

(n − 1)!
∑

k≥1

kn−1qk

1 − qk
, (24)

for even n with Bn the nth Bernoulli number. Pm(z) converges absolutely and
uniformly on compact subsets of the domain |q| < |ez| < 1. En(q) is a modular
form of weight n for n ≥ 4 and E2(q) is a quasi-modular form of weight 2, i.e.,
letting q = exp(2π iτ ) for τ ∈ H1

En

(
ατ + β

γ τ + δ

)

= (γ τ + δ)n En(τ ) − γ (γ τ + δ)

2π i
δn2, (25)

for
( α β

γ δ

) ∈ SL(2,Z) [Se]. We then have

Proposition 1 (Zhu [Z]). Let N be a simple ordinary V -module.

ZN (Y [u, z]v, q) = TrN
(
o(u)o(v)qL(0)−c/24

)
+

∑

m≥0

Pm+1(z)ZN (u[m]v, q) .

Taking u = ω̃ and noting that o(ω̃) = L(0) − c/24 we obtain:

Corollary 1. The 1-point function of a Virasoro descendent L[−k]v is

ZN (L[−k]v, q) = (−1)k
∑

r≥0

(
k + r − 1

k − 2

)

Ek+r (q)ZN (L[r]v, q) ,

for all k ≥ 3, whereas for k = 2 we have

ZN (L[−2]v, q) =
(

q
∂

∂q
+ wt[v]E2(q)

)

ZN (v, q) +
∑

s≥1

E2s+2(q)ZN (L[2s]v, q) .

Let us now consider a simple VOA V of strong CFT-type with lowest weight
l ≥ 1 Virasoro primary vectors Πl so that

ZV (q) = ZV〈ω〉(q) + O
(
ql+c/24

)
. (26)
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Let {ui} and {ui} be a basis and dual basis for Πl . Apply Proposition 1 to

ZN

(
pl∑

i=1

Y [ui, z]ui, q

)

=
∑

n≥0

ZN

(
λ[n], q

)
zn−2l , (27)

(for Casimir vector λ[n] ∈ V[n] in square bracket modes) to find

∑

n≥0

ZN

(
λ[n], q

)
zn−2l = TrN

(
pl∑

i=1

o(ui)o(ui)q
L(0)−c/24

)

+
2l−1∑

m=0

Pm+1(z)ZN

(
λ[2l−m−1], q

)
. (28)

Comparing the coefficients of zn−2l for n ≥ 2l on both sides of this equality leads
to a recursive identity between ZN

(
λ[n], q

)
and ZN

(
λ[m], q

)
for m ≤ n − 2. In

particular, comparing the coefficients of z2 we find

Proposition 2. ZN

(
λ[2l+2], q

)
satisfies the recursive identity

ZN

(
λ[2l+2], q

)
=

l−1∑

r=0

(
2l − 2k + 1

2

)

E2l−2k+2(q)ZN

(
λ[2k], q

)
. (29)

4 Exceptional VOAs

Consider a simple VOA of strong CFT-type with primary vectors of lowest weight
l ≥ 1 for which λ(2l+2) ∈ V〈ω〉 (or equivalently, λ[2l+2] ∈ V〈ω̃〉). We also assume that(
V〈ω〉

)
2l+2 contains no Virasoro singular vector, i.e., c �= cp,q for (p − 1)(q − 1) ≤

2l + 2. We call such a VOA an Exceptional VOA of lowest primary weight l. (16)
implies λ(2k) ∈ V〈ω〉 and λ[2k] ∈ V〈ω̃〉 for all k ≤ l.

Proposition 3. Let λ[2k] ∈ V〈ω̃〉. Then for a simple ordinary V -module N

ZN

(
λ[2k], q

)
=

k∑

m=0

fk−m(q, c)DmZN(q); (30)

where D is the Serre modular derivative defined for m ≥ 0 by

Dm+1ZN(q) =
(

q
∂

∂q
+ 2mE2(q)

)

DmZN(q); (31)
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fm(q, c) is a modular form of weight 2m whose coefficients over the ring of
Eisenstein series are of the form pl r(c) for a rational function r(c).

Proof. Equation (30) follows from Corollary 1 by induction in the number of
Virasoro modes where the DkZN(q) term arises from a L[−2]k 1 component in
λ[2k]. The coefficients of fm(q, c) over the ring of Eisenstein series are of the form
pl r(c) for a rational function r(c) from Lemma 3. ��
Applying Proposition 3 to the recursive identity (29) implies ZN(q) satisfies a
Modular Linear Differential Equation (MLDE) [Mas1].

Proposition 4. Let V be an Exceptional VOA of lowest primary weight l. ZN(q)

for each simple ordinary V –module N satisfies a MLDE of order ≤ l + 1

l+1∑

m=0

gl+1−m(q, c)DmZ(q) = 0, (32)

where gm(q, c) is a modular form of weight 2m whose coefficients over the ring of
Eisenstein series are rational functions of c.

Remark 1. Proposition 4 states that each simple ordinary V -module N character
ZN(q) satisfies the same MLDE (32). However, the MLDE may also have further
solutions unrelated to module characters.

g0(q, c) = g0(c) is independent of q since it is a modular form of weight 0. For
g0(c) �= 0, the MLDE (32) is of order l + 1 with a regular singular point at q = 0
so that Frobenius–Fuchs theory concerning the l + 1-dimensional solution space F
applies, e.g., [Hi, I]. Any solution Z(q) ∈ F is holomorphic in q for 0 < |q| < 1
since the MLDE coefficients gm(q, c) are holomorphic for |q| < 1. We may thus
view each solution as a function of τ ∈ H1 for q = e2π iτ .

Using the quasi-modularity of E2(τ ) and (31) with q ∂
∂q

= 1
2π i

∂
∂τ

, it follows

that for all
( α β

γ δ

) ∈ SL(2,Z), Z
(

ατ+β
γ τ+δ

)
is also a solution of the MLDE since

gl+1−m(q, c) is a modular form of weight 2l + 2 − 2m. Thus T : τ → τ + 1 has a
natural action on F = F1 ⊕ . . .⊕Fr for distinct eigenspaces Fi with T monodromy
eigenvalue e2π ixi where xi is a root of the indicial polynomial

l+1∑

m=0

gl+1−m(0, c)

m−1∏

s=0

(

x − 1

6
s

)

= 0. (33)

If x1 = x2 mod Z, for roots x1, x2, they determine the same monodromy
eigenvalue. Let x̂i denote an indicial root with least real part for a given monodromy
eigenvalue e2π ixi . Then Fi has a basis of the form [17, Hi]

f n
i (τ ) = φ1

i (q) + τφ2
i (q) + . . . + τn−1φn

i (q), (34)
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for n = 1, . . . , dimFi and where each φn
i (q) is a q-series

φn
i (q) = qx̂i

∑

k≥0

an
ikq

k,

which is holomorphic on 0 < |q| < 1. The solutions f n
i (τ ) for n ≥ 2, which are

referred to as logarithmic solutions (since they contain nonnegative integer powers
of log q = 2π iτ ), occur if the same indicial root occurs multiple times or, possibly, if
two roots differ by an integer. However, every graded character ZN(q) for a simple
ordinary module with lowest weight h has a pure q-series with indicial root x =
h − c/24 from (21).

We now sketch a proof that the central charge c is rational following [AM] (which
is extended to logarithmic solutions (34) in [Miy]). Suppose c /∈ Q and consider
φ ∈ Aut(C) such that c̃ = φ(c) �= c. Then ZV (τ, c̃) is a solution to the MLDE,
found by replacing c by c̃ in (32). But since the coefficients in the q-expansion of
ZV (τ, c) are integral we have

ZV (τ, c̃) = q(c̃−c)/24ZV (τ, c).

Applying the modular transformation S : τ → −1/τ we find

ZV

(

− 1

τ
, c̃

)

= exp

(

−π i(c̃ − c)

12τ

)

ZV

(

− 1

τ
, c

)

. (35)

But ZV (−1/τ, c) satisfies (32) and ZV (−1/τ, c̃) satisfies (32) with c replaced by
c̃ and thus both are expressed in terms of the basis (34). Analysing (35) along rays
τ = reiθ in the limit r → ∞ with 0 < θ < π , a contradiction results unless c̃ = c.
Hence c ∈ Q [AM, Miy]. Similarly, the lowest conformal weight h of a simple
ordinary module N is rational. Altogether we have

Proposition 5. Let V be an Exceptional VOA of lowest primary weight l ≥ 1 and
central charge c and let N be a simple ordinary V -module of lowest weight h.
Assuming g0(c) �= 0 in the MLDE (32), then

(i) ZN(q) is holomorphic for 0 < |q| < 1.

(ii) ZN

(
ατ+β
γ τ+δ

)
is a solution of the MLDE for all

( α β
γ δ

) ∈ SL(2,Z) viewed as a

function of τ ∈ H1 for q = e2π iτ .
(iii) The central charge c and the lowest conformal weight h are rational.

Consider the general solution with indicial root x = c/24 of the form Z(q) =
q−c/24 ∑

n≥0 anq
n. Substituting into the MLDE, we obtain a linear equation in

a0, . . . , an for each n. This can be iteratively solved for an provided the coefficient
of an is nonzero. This coefficient may vanish if x = m − c/24 is an indicial root for
some integer m > 0. Hence we have
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Proposition 6. Let V be an Exceptional VOA of lowest primary weight l ≥ 1 and
central charge c. Suppose g0(c) �= 0 and that m < l for any indicial root of the
form x = m − c/24. Then

(i) ZV (q) is the unique q-series solution of the MLDE satisfying (26).
(ii) dim Vn is a rational function of c for each n ≥ 0.

(iii) V is generated by the space of lowest weight primary vectors Πl .

Proof. (i) The x = −c/24 solution Z(q) = q−c/24 ∑
n≥0 anq

n is determined by
a0 and am for any indicial root(s) of the form x = m − c/24 for m > 0. Thus
the partition function is uniquely determined by the l Virasoro leading terms
(26) under the assumption that m < l.

(ii) The modular forms gm(q, c) of the MLDE of Proposition 4 have q-expansions
whose coefficients are rational functions of c. Hence solving iteratively it
follows that an = dim Vn is a rational function of c.

(iii) Let V〈Πl〉 ⊆ V be the subalgebra generated by the lowest weight primary
vectors Πl . But ω ∈ V〈Πl〉 from (17) so that V〈Πl〉 is a VOA of central charge
c. Furthermore, since λ(2l+2) ∈ V〈Πl〉, the subVOA is an Exceptional VOA of
lowest primary weight l. Hence ZV〈Πl 〉(q) satisfies the same MLDE as ZV (q).
From (i) it follows that ZV〈Πl 〉(q) = ZV (q) implying V〈Πl〉 = V . ��

Remark 2. Note that g0(c) �= 0 provided λ(2l+2) contains an L(−2)l+1 1 compo-
nent. We conjecture that such a component exists for all l. We further conjecture
that m < l for any indicial root of the form x = m − c/24 for all l. These properties
are verified for all l ≤ 9 in Sect. 6.

4.1 Exceptional VOAs with pl = 1

Let V be a simple VOA of strong CFT-type generated by one primary vector u of
lowest weight l with dual u = u/〈u, u〉. Consider the commutator (10)

[u(m), Y (u, z)] =
∑

j≥0

(
m

j

)

Y (u(j)u, z) zm−j

= 〈u, u〉
2l−1∑

k=0

(
m

2l − k − 1

)

Y
(
λ(k), z

)
zm+k+1−2l , (36)

using (15). Suppose that λ(2l−1) ∈ V〈ω〉 so that λ(k) ∈ V〈ω〉 for 0 ≤ k ≤ 2l −1 which
implies the RHS of (36) is expressed in terms of Virasoro modes. Thus (36) defines
a W(l) algebra VOA with one primary vector u of weight l, e.g., [BFKNRV,F]. The
further condition λ(2l+2) ∈ V〈ω〉 constrains c to specific rational values.
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We consider two infinite families of Exceptional W(l)-VOAs. One is of AD-
type, from the ADE series of [CIZ], given by the simple current extension of a
minimal model L

(
cp,q, 0

)
by an irreducible module L

(
cp,q, l

)
with

l = h1,p−1 = 1

4
(p − 2)(q − 2) ∈ N, (37)

for hr,s , of (14), i.e., for any coprime pair p, q such that p or q = 2 mod 4. Then
(36) is consistent with respect to the Virasoro fusion rule (e.g., [DMS])

L
(
cp,q, h1,p−1

) × L
(
cp,q, h1,p−1

) = L
(
cp,q, 0

)
.

Furthermore, since

2l + 2 = (p − 1)(q − 1) − 1

2
(pq − 6) < (p − 1)(q − 1),

it follows that
(
V〈ω〉

)
2l+2 contains no Virasoro singular vectors. Hence

Proposition 7. For a minimal model with h1,p−1 ∈ N there exists an Exceptional
VOA with one primary vector of lowest weight l = h1,p−1 of AD-type

V = L
(
cp,q, 0

) ⊕ L
(
cp,q, h1,p−1

)
. (38)

A second infinite family of W(l)-VOAs for l = 3k for k ≥ 1 is given in
[BFKNRV, F]. A more complete VOA description of this construction will appear
elsewhere [T3]. W(3k) is of central charge ck = 1 − 24k and contains a unique
Virasoro primary vector of weight hn = (n2−1)k for each n ≥ 1. The corresponding
Virasoro Verma module contains a unique singular vector of weight hn + n2 so that
the partition function is [F]:

ZW(3k)(q) =
∑

n≥1

q−ck/24
∏

m≥0(1 − qm)

(
qhn − qhn+n2

)

= 1

2η(q)

∑

n∈Z

(
qn2k − qn2(k+1)

)
. (39)

This VOA is generated by the lowest weight primary of weight l = h2 = 3k

λ(2l+2) ∈ (
V〈ω〉

)
2l+2 and requires that h3 = 8k > 2l + 2 i.e., k > 1. Thus we

find

Proposition 8. For each k ≥ 2 there exists an Exceptional VOA W(3k) with one
primary vector of lowest weight 3k and central charge ck = 1 − 24k.

Remark 3. We conjecture that the two VOA series of Propositions 7 and 8 are the
only Exceptional VOAs for which pl = 1.
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5 Genus Zero Constraints from Quadratic Casimirs

We next consider how an Exceptional VOA is also subject to local genus zero
constraints following an approach originally described for l = 1, 2 in [T1, T2].
Let V be a simple VOA of strong CFT-type of central charge c with lowest primary
weight l ≥ 1. Let Πl be the vector space of pl primary vectors of weight l with
basis {ui} and dual basis {ui}. Define the genus zero correlation function

F(a, b; x, y) =
〈

a,

pl∑

i=1

Y (ui, x)Y (ui, y)b

〉

, (40)

for a, b ∈ Πl . F(a, b; x, y) is linearly dependent on a and b and is constructed
locally from Πl alone.

Locality (7), associativity (9) and lower truncation (3) give

Proposition 9. F(a, b; x, y) is determined by a rational function

F(a, b; x, y) = G(a, b; x, y)

x2ly2l(x − y)2l
, (41)

for G(a, b; x, y), a symmetric homogeneous polynomial in x, y of degree 4l.

F(a, b; x, y) can be considered as a rational function on the genus zero Riemann
sphere and expanded in various domains to obtain the 2l+1 independent parameters
determining G(a, b; x, y) = ∑4l

r=0 Arx
4l−ryr where Ar = A4l−r . In particular, we

expand in ξ = −y/(x − y) using skew-symmetry (8), translation (6) and invariance
of 〈 , 〉 to find that

y2lF (a, b; x, y) = y2l

pl∑

i=1

〈
a, Y (ui, x)eyL−1Y (b,−y)ui

〉

= y2l

pl∑

i=1

〈
a, eyL−1Y (ui, x − y)Y (b,−y)ui

〉

= y2l

pl∑

i=1

〈a, Y (ui, x − y)Y (b,−y)ui〉

=
∑

m≥0

Cmξm, (42)

for Cm = ∑pl

i=1 〈a, ui(m − 1)b(2l − m − 1)ui〉. Since l is the lowest primary
weight, we have b(2l − m − 1)ui ∈ Vm = (

V〈ω〉
)
m

for 0 ≤ m < l which
determines the coefficients C0, . . . , Cl−1. This follows by writing b(2l − m − 1)ui
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in a Virasoro basis with coefficients computed in a similar way as for the Casimir
vectors in Lemma 2. On the other hand, from (41) we find using y = −ξx/(1 − ξ)

that

y2lF (a, b; x, y) = g

(

− ξ

1 − ξ

)

(1 − ξ)2l

= A0 − (2lA0 + A1) ξ + O(ξ2),

for g(y) = G(a, b; 1, y) = ∑4l
r=0 Ary

r . Hence the coefficients C0, . . . , Cl−1
determine A0, . . . , Al−1. For example, using b(2l − 1)ui = (−1)l〈b, ui〉 1, we have

A0 = C0 =
pl∑

i=1

〈a, ui(−1)b(2l − 1)ui〉 = (−1)l
pl∑

i=1

〈a, ui〉〈b, ui〉 = (−1)l〈a, b〉.

In general, Ak = 〈a, b〉ak(c) for k = 0, . . . , l − 1 where ak(c) is a rational function
of c.

The other l + 1 coefficients of g(y) (recalling Ar = A4l−r ) are determined by
using associativity (9) and expanding in ζ = (x − y)/y as follows:

(x − y)2l F (a, b; x, y) =
∑

m∈Z

pl∑

i=1

〈a, Y (ui(m)ui, y) b〉(x − y)2l−m−1

=
∑

n≥0

Bnζ
n, (43)

for Bn = 〈a, o(λ(n))b〉 for n ≥ 0 and recalling o(λ(n)) = λ(n)(n − 1).

Lemma 4. The leading coefficients of (43) are B0 = (−1)lpl〈a, b〉 and B1 = 0.
For k ≥ 1, the odd labelled coefficients B2k+1 satisfy

B2k+1 = 1

2

2k∑

r=2

( −r

2k + 1 − r

)

(−1)rBr , (44)

i.e., B2k+1 is determined by the lower even labelled coefficients B2, . . . , B2k . The
even labelled coefficients for k ≥ 0 are given by

B2k = A2lδk,0 +
2l∑

m=1

[(
m

2k

)

+
(−m

2k

)]

A2l−m. (45)

Proof. From Lemma 1 we have λ(0) = (−1)lpl 1 and λ(1) = 0 so that B0 =
(−1)lpl〈a, b〉 and B1 = 0. Comparing (43) to (41) we find that

∑

n≥0

Bnζ
n = g

(
1

1 + ζ

)

(1 + ζ )2l = g (1 + ζ ) (1 + ζ )−2l ,
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since G(a, b; x, y) is symmetric and homogeneous. Thus

∑

n≥0

Bnζ
n =

∑

n≥0

Bn

( −ζ

1 + ζ

)n

.

This implies Bn = ∑n
r=0

( −r
n−r

)
(−1)rBr . Taking n = 2k + 1 leads to (44). (45)

follows from the identity

∑

n≥0

Bnζ
n = A2l +

2l∑

m=1

A2l−m

[
(1 + ζ )m + (1 + ζ )−m

]
.

��
We next assume that λ(n) ∈ V〈ω〉 for even n ≤ 2l giving B2k = 〈a, o(λ(2k))b〉 =

pl〈a, b〉b2k(c) for k = 1, . . . , l for some rational functions b2k(c) via Lemma 3.
Note that we are not (yet) assuming λ(2l+2) ∈ V〈ω〉. G(a, b; x, y) is uniquely
determined provided we can invert (45) to solve for Al, . . . , A2l . Define the l × l

matrix

Mmk =
(

m

2k

)

+
(−m

2k

)

, (46)

of coefficients for A2l−m of B2k in (45), where m, k = 1, . . . , l.

Lemma 5. M is invertible with det M = 1.

Proof. Define unit diagonal lower and upper triangular matrices L and U by

Lij =
{(2i−j−1

j−1

)
for i ≤ j,

0 for i > j,
Ujk =

{
k
j

(
j+k−1
2j−1

)
for j ≤ k,

0 for j > k.

By induction in k, one can show that Mik = (LU)ik and so det M = 1. ��
Thus it follows that A2l−m = ∑l

k=1 B2k(M
−1)km for m = 1, . . . , l. Altogether, we

have therefore shown the following.

Proposition 10. Let V be a simple VOA of strong CFT–type of central charge c

with lowest primary weight l ≥ 1. Suppose that λ(n) ∈ V〈ω〉 for all even n ≤ 2l.
Then the genus zero correlation function is uniquely determined with

F(a, b; x, y) = 1

x2ly2l(x − y)2l

2l∑

r=0

Ar

(
x4l−ryr + xry4l−r

)
,
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where

Ak =
{ 〈a, b〉ak(c), k = 0, . . . , l − 1,

pl〈a, b〉ak(c), k = l, . . . , 2l,

for 2l + 1 specific rational functions a0(c), . . . , a2l(c).

Next we assume λ(2l+2) ∈ V〈ω〉 so that V is an Exceptional VOA. This
implies B2l+2 = 〈a, o(λ(2l+2))b〉 = pl〈a, b〉b2l+2(c) for some rational function
b2l+2(c). But B2l+2 is already determined from (45) in terms of A1, . . . , A2l from
Proposition 10. Hence we have

Proposition 11. Let V be an Exceptional VOA with lowest primary weight l. Then
the genus zero correlation function F(a, b; x, y) is uniquely determined and pl =
pl(c), a specific rational function of c.

For l = 1, 2 we may use F(a, b; x, y) to understand many properties of the
corresponding VOA (as briefly reviewed below) [T1, T2]. We already know from
Proposition 6(ii) that pl = dim Vl − dim

(
V〈ω〉

)
l

is a rational function of c. In
principle, the specific rational expressions for pl may differ but, in practice, the
same expression is observed to arise for all l ≤ 9. A more significant point is
that the argument leading to Proposition 11 may be adopted to understanding some
automorphism group properties of V .

5.1 Exceptional VOAs of Class S2l+2

Let G = Aut(V ) denote the automorphism group of a VOA V and let V G denote
the sub-VOA fixed by G. Since the Virasoro vector is G invariant it follows that
V〈ω〉 ⊆ V G. V is said to be of Class Sn if V G

k = (
V〈ω〉

)
k

for all k ≤ n [Mat].
(The related notion of conformal t-designs is described in [Ho2].) In particular, the
quadratic Casimir (15) is G-invariant so it follows that a VOA V with lowest primary
weight l of class S2l+2 is an Exceptional VOA. It is not known if every Exceptional
VOA is of class S2l+2.

The primary vector space Πl is a finite-dimensional G-module. Assuming Πl is
a completely reducible G-module (e.g., for G linearly reductive [Sp]) we have

Proposition 12. Let V be an Exceptional VOA of class S2l+2 with primaries Πl

of lowest weight l. If Πl is a completely reducible G-module, then it is either an
irreducible G-module or the direct sum of two isomorphic irreducible G-modules.

Remark 4. For odd pl it follows that Πl must be an irreducible G-module.

Proof. Let ρ be a G-irreducible component of Πl and let ρ denote the 〈 , 〉 dual
vector space. ρ and ρ are isomorphic as G-modules. Define

R =
{

ρ if ρ = ρ,

ρ ⊕ ρ if ρ �= ρ.
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Clearly R ⊆ Πl is a self-dual vector space. We next repeat the Casimir construction
and analysis that lead up to Proposition 11. Choose an R-basis {vi : i =
1, . . . , dim R} and dual basis {vi} and define Casimir vectors

λ
(n)
R =

dimR∑

i=1

vi(2l − n − 1)vi ∈ Vn, n ≥ 0. (47)

But λ
(n)
R is G-invariant and since V is of class S2l+2, it follows that λ

(n)
R ∈ V〈ω〉 for

all n ≤ 2l + 2. We define a genus zero correlation function constructed from the
vector space R

FR(a, b; x, y) =
dimR∑

i=1

〈a, Y (vi , x)Y (vi, y)b〉, (48)

for all a, b ∈ R. We then repeat the earlier arguments to conclude that Proposition 11
also holds for FR(a, b; x, y) where, in particular, dim R = pl(c), for the same
rational function. Thus dim R = pl and the result follows. ��

6 Exceptional VOAs of Lowest Primary Weight l ≤ 9

We now consider Exceptional VOAs of lowest primary weight l ≤ 9. We denote
by En = En(q) the Eisenstein series of weight n appearing in the MLDE (32). For
l ≤ 4 we describe all the rational values for c, h, whereas for 5 ≤ l ≤ 9 we give all
rational values for c, h for which pl = dim Πl ≤ 500,000, found by computer
algebra techniques. We also consider conjectured extremal self-dual VOAs with
c = 24(l − 1) [Ho1, Wi]. Any MLDE solution for rational h for which there is
no graded character ZN(q) is marked with an asterisk. We obtain many examples
of known Exceptional VOAs such as Deligne’s exceptional series of Lie algebras,
the Moonshine and Baby Monster modules. There are also a number of candidate
solutions for which no construction yet exists indicated by question marks.

[l = 1]. This is discussed in much greater detail in [T1,T2]. Propositions 4–6 imply
that ZN(q) satisfies the following 2nd order MLDE [T2]:

D2Z − 5

4
c (c + 4) E4Z = 0.

This MLDE has also appeared in [MatMS,KZ,Mas2,KKS,Kaw]. The indicial roots
x1 = −c/24, x2 = (c + 4)/24 are exchanged under the MLDE symmetry c ↔
−c − 24. Solving iteratively for the partition function
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ZV (q) = q−c/24
(

1 + p1q + (1 + p1 + p2)q
2 + (1 + 2p1 + p2 + p3)q

3 + . . .
)

,

where pn = dim Πn, for weight n primary vector space Πn, we have

p1 = c(5c + 22)

10 − c
, p2 = 5(5c + 22)(c − 1)(c + 2)2

2(c − 10)(c − 22)
,

p3 = −5c(5c + 22)(c − 1)(c + 5)(5c2 + 268)

6(c − 10)(c − 22)(c − 34)
, . . . .

For c = 10 mod 12, the indicial roots differ by an integer leading to denominator
zeros for all pn.

By Proposition 6, V is generated by V1 which defines a Lie algebra g.
F(a, b; x, y) from Proposition 11 determines the Killing form which can be used to
show that g is simple with dual Coxeter number [T1, MT]

h∨ = 6k
2 + c

10 − c
,

for some real level k. Thus V = Vg(k), a level k Kac–Moody VOA.
The indicial root x2 of the MLDE gives the lowest weight h = (c + 2)/12 of

any independent irreducible V -module(s) N . Therefore Vg(k) has at most two inde-
pendent irreducible characters so that the level k must be a positive integer [Kac2].
Comparing p1 and h∨ to Cartan’s list of simple Lie algebras shows that in fact
k = 1 with c = 1, 2, 14

5 , 4, 26
5 , 6, 7, 8 with g = A1, A2,G2,D4, F4, E6, E7, E8,

respectively, known as Deligne Exceptional Series [D, DdeM, MarMS, T2]. In
summary, we have

c > 0 p1 p2 p3 VOA h ∈ Q

1 3 0 0 VA1(1) 0, 1
4

2 8 8 21 VA2(1) 0, 1
3

14
5 14 27 84 VG2(1) 0, 2

5

4 28 105 406 VD4(1) 0, 1
2

26
5 52 324 1,547 VF4(1) 0, 3

5

6 78 650 3,575 VE6(1) 0, 2
3

7 133 1,539 10,108 VE7(1) 0, 3
4

8 248 3,875 30,380 VE8(1) 0, 5
6∗

The table also shows h for a possible irreducible V -module(s). For c = 2 and 4 there
are 2 independent irreducible modules but which share the same character (due to g
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outer automorphisms). VE8(1) is self-dual so that the MLDE solution with h = 5
6

does not correspond to a graded character ZN(q).

[l = 2]. This case is also discussed in detail in [Mat,T1,T2]. Propositions 4–6 imply
that ZN(q) satisfies the following 3rd order MLDE [T2]

D3Z − 5

124

(
704 + 240c + 21c2

)
E4 DZ − 35

248
c
(

144 + 66c + 5c2
)

E6 Z = 0,

with indicial equation (33)

(x − x1)

(

x2 −
(

1

2
+ x1

)

x + 20x2
1 − 11x1 + 1

62

)

= 0,

for x1 = −c/24. Solving iteratively for the partition function (x = x1)

ZV (q) = q−c/24(1 + (1 + p2)q
2 + (1 + p2 + p3)q

3 + . . .),

where pn = dim Πn, for weight n primary vector space Πn, we find that

p2 = (7c + 68)(2c − 1)(5c + 22)

2(c2 − 55c + 748)
, p3 = 31c(7c + 68)(2c − 1)(5c + 44)(5c + 22)

6(c2 − 55c + 748)(c2 − 86c + 1,864)
.

From Proposition 6, the Griess algebra generates V and from Proposition 11 the
Griess algebra is simple [T1]. The solutions for c, h ∈ Q with positive p3 and
possible Exceptional VOAs are listed as follows:

c p2 p3 VOA h ∈ Q

− 44
5 1 0 L

(
c3,10, 0

) ⊕ L
(
c3,10, 2

)
0, − 1

5 ,− 2
5

8 155 868 V +√
2E8

0, 1
2 , 1

16 2,295 63,240 V +
BW16

0, 1, 3
2

47
2 96,255 9,550,635 VB�

Z
0, 3

2 , 31
16

24 196,883 21,296,876 V � 0

32 3.72.13.73 24.3.72.13.31.73 ?? V +
L

⊕ (VL)+
T

; L extremal S-D 0

164
5 32.17.19.31 2.5.13.17.19.31.41 ?? 0, 11

5 , 12
5

236
7 5.19.23.29 2.19.23.29.31.59 ?? 0, 16

7 , 17
7

40 32.29.79 22.5.29.31.61.79 ?? V +
L ⊕ (VL)+T ; L extremal S-D 0

The list includes the famous Moonshine Module V � [FLM], the Baby Monster VOA
VB�

Z
[Ho1], V +

L for L = √
2E8 [G] and the rank 16 Barnes–Wall lattice L = BW16

[Sh], and a minimal model simple current extension AD-type as in Proposition 7.
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The value(s) of h = xi + c/24 for the lowest weight(s) agree with those for the
irreducible V -modules as do the corresponding MLDE solutions for the characters
in each case. There are also four other possible candidates. For c = 32 and 40 one
can construct a self-dual VOA from an extremal even self-dual lattice L (with no
vectors of squared length 2). However, such lattices are not unique and it is not
known which, if any, gives rise to a VOA satisfying the exceptional conditions.
There are no known candidate constructions for c = 164

5 and 236
7 .

Note that p2 = dim Π2 is odd in every case and Proposition 12 implies that if
Π2 is completely Aut V -reducible, then it is irreducible. This is indeed the case
in the first five known cases for c ≤ 24 [Atlas]. Π3 is also an Aut V -module
whose dimension p3 is given. The MLDE solutions (with positive coprime integer
coefficients) for c = 164/5 with h = 11/5, 12/5 and for c = 236/7 with
h = 16/7, 17/7 have respective leading q-expansions:

Z11/5(q) = q5/6
(

23.31.41 + 5.11.31.41.53 q + O(q2)
)

,

Z12/5(q) = q31/30
(

22.112.31.41 + 25.112.312.41 q + O(q2)
)

,

Z16/7(q) = q37/42
(

17.23.31 + 25.7.17.31.37 q + O(q2)
)

,

Z17/7(q) = q43/42
(

24.29.31.59 + 2.3.17.29.31.43.59 q + O(q2)
)

.

These coefficients constrain the possible structure of Aut V further.

[l = 3]. ZN(q) satisfies the 4th order MLDE:

(578c − 7) D4Z − 5

2

(
168c3 + 2,979c2 + 15,884c − 4,936

)
E4 D2Z

−35

2

(
25c4 + 661c3 + 4,368c2 + 10,852c + 1,144

)
E6 DZ

−75

16
c
(

14c4 + 425c3 + 3,672c2 + 5,568c + 9,216
)

E2
4 Z = 0.

Solving iteratively for the partition function we find [T2]:

ZV = q−c/24(1 + q2 + (1 + p3)q
3 + (2 + p3 + p4)q

3 + . . .),

p3 = − (5c + 22)(3c + 46)(2c − 1)(5c + 3)(7c + 68)

5c4 − 703c3 + 32,992c2 − 517,172c + 3,984
,

and p4 = r(c)
s(c)

for

r(c) = −1

2
(2c − 1) (3c + 46) (5c − 4) (7c + 68) (5c + 3) (7c + 114)
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.
(

55c3 − 5,148c2 − 11,980c − 36,528
)

,

s(c) =
(

5c4 − 703c3 + 32,992c2 − 517,172c + 3,984
)

.
(

5c4 − 964c3 + 62,392c2 − 1,355,672c + 13,344
)

.

The c, h ∈ Q solutions for positive integer p3 with possible VOAs are

c p3 p4 VOA h ∈ Q

− 114
7 1 0 L

(
c3,14, 0

) ⊕ L
(
c3,14, 3

)
0,− 3

7 ,− 4
7 ,− 5

7

4
5 1 0 L

(
c5,6, 0

) ⊕ L
(
c5,6, 3

)
0, 1

15 , 2
5 , 2

3

48 32.192.101.131 56.192.71.101 ?? Höhn Extremal VOA 0

The Höhn Extremal VOA is a conjectural self-dual VOA [Ho1]. If Π3 is a
completely reducible Aut(V )-module, then it must be irreducible excluding Witten’s
suggestion that Aut(V ) = M, the Monster group [Wi].

[l = 4]. Proposition 4 implies ZN(q) satisfies the 5rd order MLDE:

(317c + 3) D5Z − 5

7

(
297c3 + 6,746c2 + 53,133c + 4,644

)
E4 D3Z

−25

8

(
77c4 + 3,057c3 + 31,506c2 + 129,736c − 24,096

)
E6 D2Z

− 25

112

(
231c5 + 12,117c4 + 194,916c3 + 843,728c2 + 1,652,288c − 718,080

)
E4

2 DZ

−25

32
c (c + 24)

(
15c4 + 527c3 + 5,786c2 + 528c + 25,344

)
E4E6 Z = 0.

Solving iteratively for the partition function we find

ZV = q−c/24(1 + q2 + q3 + (2 + p4)q
4 + (3 + p4 + p5)q

5 + . . .),

p4 = 5(3c + 46)(2c − 1)(11c + 232)(7c + 68)(5c + 3)(c + 10)

2(5c4 − 1,006c3 + 67,966c2 − 1,542,764c − 12,576)(c − 67)
,

and p5 = r(c)
s(c)

where

r(c) = 3(c − 1)(5c + 22)(3c + 46)(2c − 1)(11c + 232)(7c + 68)(5c + 3)(c + 24)

.(59c3 − 13,554c2 + 788,182c − 398,640),

s(c) = 2(c − 67)(5c4 − 1,006c3 + 67,966c2 − 1,542,764c − 12,576)

.(5c5 − 1,713c4 + 221,398c3 − 12,792,006c2 + 278,704,260c + 2,426,976).
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The c, h ∈ Q solutions for p4 ≤ 500,000 and c = 48 with possible VOAs are

c p4 p5 VOA h ∈ Q

1 2 0 V +
L for L = 2

√
2Z 0, 1

16 , 1
4 , 9

16 , 1

72 23.114.132.131 2.114 .132.103.131.191 ?? Höhn Extremal VOA 0

The Höhn Extremal VOA is a conjectured self-dual VOA [Ho1, Wi]. If Π4 is a
completely reducible Aut(V )-module, then by Proposition 12, either p4 or 1

2p4 is
the dimension of an irreducible Aut(V )-module.

[l = 5]. ZV satisfies a 6th order MLDE with p5 = r(c)
s(c)

for

r(c) = −(13c + 350)(7c + 25)(5c + 126)(11c + 232)

.(2c − 1)(3c + 46)(68 + 7c)(5c + 3)(10c − 7),

s(c) = 1,750c8 − 760,575c7 + 132,180,881c6 − 11,429,170,478c5

+484,484,459,322c4 − 7,407,871,790,404c3 − 37,323,519,053,016c2

+25,483,483,057,200c − 363,772,080,000.

The c, h ∈ Q solutions for p5 ≤ 500,000 with possible VOAs are

c p5 VOA h ∈ Q

− 350
11 1 L

(
c3,22, 0

) ⊕ L
(
c3,22, 5

)
0,− 8

11 ,− 10
11 ,− 13

11 ,− 14
11 ,− 15

11

6
7 1 L

(
c6,7, 0

) ⊕ L
(
c6,7, 5

)
0, 1

21 , 1
7 , 10

21 , 5
7 , 4

3

Witten’s conjectured Extremal VOA for c = 4.24 = 96 does not appear [Wi].

[l = 6]. ZV satisfies a 7th order MLDE with p6 = r(c)
s(c)

for

r(c) = 7

2
(13c + 350)(5c + 164)(7c + 25)(11c + 232)(3c + 46)

.(4c + 21)(5c + 3)(10c − 7)(5c2 + 316c + 3,600),

s(c) = 1,750c9 − 1,119,950c8 + 297,661,895c7 − 41,808,629,963c6

+3,225,664,221,176c5 − 123,384,054,679,580c4 + 1,266,443,996,541,232c3

+29,763,510,364,647,840c2 + 96,385,155,929,078,400c + 7,743,915,615,744,000.
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The c, h ∈ Q solutions for p6 ≤ 500,000 with possible VOAs are

c p6 VOA h ∈ Q

− 516
13 1 L

(
c3,26, 0

) ⊕ L
(
c3,26, 6

)
0, − 10

13 ,− 15
13 ,− 17

13

− 20
13 ,− 21

13 ,− 22
13

−47 1 W(6) 0,− 5
4 ,− 3

2 ,− 5
3

− 15
8 ,− 23

12 ,−2

120 2.72.11.29.43.67.97.191 ?? Witten Extremal VOA 0

c = −47 is first example of a W(3k)-algebra of Proposition 8. The irreducible
lowest weight h values and character solutions agree with [F]. Witten’s conjecture
Extremal VOA for c = 5.24 = 120 appears [Wi] where either p6 or 1

2p6 is the
dimension of an irreducible Aut(V )–module.

[l = 7]. ZV satisfies an 8th order MLDE where p7 = r(c)
s(c)

for

r(c) = −5 (13c + 350) (5c + 164) (7c + 25) (11c + 232) (3c + 46) (17c + 658)

. (4c + 21) (5c + 3) (10c − 7)
(

35c3 + 3,750c2 + 76,744c − 32,640
)

,

s(c) = 61,250c11 − 54,725,125c10 + 20,922,774,275c9 − 4,421,902,106,730c8

+553,932,117,001,488c7 − 40,395,124,111,104,312c6 + 1,491,080,056,338,817,984c5

−12,528,046,696,953,576,896c4 − 483,238,055,074,755,678,656c3

−1,702,959,754,355,175,160,320c2 + 249,488,376,255,167,616,000c

+362,620,505,915,136,000,000.

There are no rational c solutions for p7 ≤ 500,000.

[l = 8]. ZV (q) satisfies a 9th order MLDE with one c, h ∈ Q solution for p8 ≤
500,000

c p8 VOA h ∈ Q

− 944
17 1 L

(
c3,34, 0

) ⊕ L
(
c3,34, 8

)
0,− 14

17 ,− 25
17 ,− 28

17 ,− 33
17

− 35
17 ,− 38

17 ,− 39
17 ,− 40

17

[l = 9]. ZV (q) satisfies a 10th order MLDE with c, h ∈ Q solutions for p9 ≤
500,000
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c p9 VOA h ∈ Q

− 1,206
19 1 L

(
c3,38, 0

) ⊕ L
(
c3,38, 9

)
0,− 16

19 ,− 29
19 ,− 36

19 ,− 44
19

− 46
19 ,− 49

19 ,− 50
19 ,− 51

19

− 208
35 1 L

(
c5,14, 0

) ⊕ L
(
c5,14, 9

)
0,− 2

7 ,− 9
35 ,− 4

35

1
7 , 11

35 , 9
7 , 8

5

− 14
11 1 L

(
c6,11, 0

) ⊕ L
(
c6,11, 9

)
0,− 1

11 ,− 2
33 , 1

11 , 7
33

6
11 , 25

33 , 14
11 , 52

33 , 8
3

−71 1 W(9) 0,−2,− 9
4 ,− 39

16 ,− 8
3

− 11
4 ,− 35

12 ,− 47
16 ,−3,− 9

8∗
For c = −71, the MLDE solutions agree with all the graded characters for W(9)

except for h = − 9
8 [F].

7 Exceptional VOSAs

7.1 VOSA Quadratic Casimirs and Zhu Theory

We now give an analysis for Vertex Operator Superalgebras (VOSAs). Many of the
results are similar but there are also significant differences, e.g., here the MLDEs
involve twisted Eisenstein series. Let V be a simple VOSA of strong CFT-type with
unique invertible bilinear form 〈 , 〉. Let Πl denote the space of Virasoro primary
vectors of lowest half integer weight l ∈ N + 1

2 , i.e., Πl is of odd parity and Vk =
(V〈ω〉)k for all k ≤ l − 1

2 . We construct quadratic Casimir vectors λ(n) as in Sect. 3.1
(from the odd parity space Πl) which enjoy the same properties as VOA Casimir
vectors.

Define the genus one partition function of a VOSA V by

ZV (q) = TrV
(
σ qL(0)−c/24

)
= q−c/24

∑

n≥0

(−1)2ndimVn qn, (49)

for fermion number operator σ where σu = (−1)p(u)u for u of parity p(u) and
with a corresponding definition for a simple ordinary V -module N . We also define
the genus one 1-point correlation function

ZN(u, q) = TrN
(
σ o(u)qL(0)−c/24

)
. (50)
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In [MTZ] a Zhu reduction formula for the 2-point correlation function
ZN (Y [u, z]v, q) for u, v ∈ V is found expressed in terms of twisted elliptic
Weierstrass functions parameterized by θ, φ ∈ {±1}. Let φ = e2π iκ for κ ∈ {0, 1

2 }.
Then (23) and (24) are generalized to [MTZ]

Pm

[
θ

φ

]

(z) = 1

zm
+ (−1)m

∑

n≥m

(
n − 1

m − 1

)

En

[
θ

φ

]

(q)zn−m, (51)

for twisted Eisenstein series En

[
θ
φ

]
(q) = 0 for n odd, and for n even

En

[
θ

φ

]

(q) = −Bn(κ)

n! + 2

(n − 1)!
∑

k∈N+κ

kn−1θqk

1 − θqk
, (52)

and where Bn(κ) is the Bernoulli polynomial defined by

ezκ

ez − 1
= 1

z
+

∑

n≥1

Bn(κ)

n! zn−1. (53)

(51) and (52) agree with (23) and (24) respectively for (θ, φ) = (1, 1). Pm

[
θ
φ

]
(z)

converges absolutely and uniformly on compact subsets of the domain |q| < |ez| <

1 and En

[
θ
φ

]
(q) is a holomorphic function of q

1
2 for |q| < 1. For (θ, φ) �= (1, 1),

En

[
θ
φ

]
is modular of weight n in the sense that

En

[
θαφβ

θγ φδ

](
ατ + β

γ τ + δ

)

= (γ τ + δ)nEn

[
θ

φ

]

(τ ), (54)

for
( α β

γ δ

) ∈ SL(2,Z). The Zhu reduction formula of Proposition 1 has been
generalized in [MTZ] as follows

Proposition 13. Let N be a simple ordinary V -module for a VOSA V . For u of
parity p(u) and for all v we have

ZN (Y [u, z]v, q) = TrN
(
σ o(u)o(v)qL(0)−c/24

)
δp(u)1

+
∑

m≥0

Pm+1

[
1

p(u)

]

(z)ZN (u[m]v, q) .

For even parity u this agrees with Proposition 1. In particular, Corollary (1)
concerning Virasoro vacuum descendents holds. Much as before, Proposition 13
implies that the Casimir vectors λ[n] ∈ V[n] satisfy
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∑

n≥0

ZN

(
λ[n], q

)
zn−2l =

2l−1∑

m=0

Pm+1

[
1

−1

]

(z)ZN

(
λ[2l−m−1], q

)
. (55)

Equating the z coefficients implies the following variant of Proposition 2.

Proposition 14. ZN

(
λ[2l+1], q

)
satisfies the recursive identity

ZN

(
λ[2l+1], q

)
= −2

l− 1
2∑

r=0

(l − r)E2(l−r)+1

[
1

−1

]

(q)ZN

(
λ[2r], q

)
. (56)

7.2 Exceptional VOSAs

Let V be a simple VOSA of strong CFT-type with primary vectors of lowest weight
l ∈ N + 1

2 for which λ(2l+1) ∈ V〈ω〉. We further assume that
(
V〈ω〉

)
2l+1 contains

no Virasoro singular vectors. We call V an Exceptional VOSA of Odd Parity Lowest
Primary Weight l. Proposition 3 implies

Proposition 15. Let V be an Exceptional VOSA of lowest weight l ∈ N + 1
2 and

central charge c. Then ZN(q) for a simple ordinary V -module N satisfies a Twisted
Modular Linear Differential Equation (TMLDE)

l+ 1
2∑

m=0

gl+ 1
2 −m

[
1

−1

]

(q, c) DmZ(q) = 0, (57)

where gk

[
1−1

]
(q, c) is a twisted modular form of weight 2k whose coefficients over

the ring of twisted Eisenstein series (52) are rational functions of c.

The TMLDE (57) is of order l + 1
2 with a regular singular point at q = 0

provided g0
[

1−1

]
(q, c) = g0(c) �= 0 so that Frobenius–Fuchs theory implies that

its solutions are holomorphic in q
1
2 for 0 < |q| < 1. Furthermore, from (54),

ẐN = ZN

(
ατ+β
γ τ+δ

)
is a solution of the TMLDE

l+ 1
2∑

m=0

g
l+ 1

2 −m

[
(−1)β

(−1)γ

]

(q, c) DmẐ(q) = 0, (58)

which is again of regular singular type provided g0(c) �= 0. We can repeat the

results of Sect. 4 concerning TMLDE q
1
2 -series solutions and the rationality of c

and h noting that ZV (−1/τ, c) (cf. (35)) satisfies (58) for
(

α β
γ δ

)
= (

0 1−1 0

)
. We

therefore find the VOSA analogues of Propositions 5 and 6.
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Proposition 16. Let V be an Exceptional VOSA of lowest primary weight l ∈ N+ 1
2

and central charge c and let N be a simple ordinary V -module of lowest weight h.
Assuming g0(c) �= 0 in the TMLDE (57) then

(i) ZN(q) is holomorphic in q
1
2 for 0 < |q| < 1.

(ii) ZN

(
ατ+β
γ τ+δ

)
is a solution of the TMLDE (58) for all

( α β
γ δ

) ∈ SL(2,Z).

(iii) The central charge c and the lowest conformal weight h are rational.

Proposition 17. Let V be an Exceptional VOSA of lowest primary weight l ∈ N+ 1
2

and central charge c. Assuming that g0(c) �= 0 and that m ≤ l − 1
2 for any indicial

root of the form x = m − c/24. We then find

(i) ZV (q) is the unique q
1
2 –series solution of the TMLDE with leading expansion

ZV (q) = ZV〈ω〉(q) + O
(
ql−c/24

)
.

(ii) dim Vr is a rational function of c for each r ∈ 1
2N.

(iii) V is generated by the space of lowest weight primary vectors Πl .

We verify below for l ≤ 17/2 that g0(c) �= 0 and that m ≤ l − 1
2 for any indicial

root x = m − c/24. We conjecture these conditions hold in general.
We can construct two infinite series of pl = 1 Exceptional VOSAs which we

conjecture are the only examples.

Proposition 18. For each Virasoro minimal model with h1,p−1 ∈ N+ 1
2 there exists

an Exceptional VOSA with one odd parity primary vector of lowest weight l =
h1,p−1 of AD-type

V = L
(
cp,q, 0

) ⊕ L
(
cp,q, h1,p−1

)
. (59)

Proposition 19. For each k ∈ N + 1
2 for k ≥ 3

2 there exists an Exceptional VOSA
W(3k) with one odd parity primary vector of lowest weight 3k and central charge
ck = 1 − 24k.

Finally, similarly to Sect. 5, with G = Aut(V ) we have

Proposition 20. Let V be an Exceptional VOSA of class S2l+1 with primaries Πl of
lowest weight l ∈ N+ 1

2 . If Πl is a completely reducible G-module then it is either an
irreducible G-module or the direct sum of two isomorphic irreducible G-modules.

8 Exceptional SVOAs with Lowest Primary Weight
with l ∈ N + 1

2 for l ≤ 17
2

We now consider examples of Exceptional VOSAs of lowest primary weight l ≤ 17
2 .

We denote by En = En(q) the Eisenstein series and Fn = En

[
1−1

]
(q) the twisted

Eisenstein series of weight n appearing in the order l + 1
2 TMLDE (57). For l ≤ 3

2
we find all c, h ∈ Q, whereas for 5

2 ≤ l ≤ 17
2 we find all c, h ∈ Q for which
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pl = dim Πl ≤ 500,000 found by computer algebra techniques. We obtain many
examples of known exceptional VOAs such as the free fermion VOSAs and the
Baby Monster VOSA VB� = Com(V �, ω 1

2
), the commutant of V � with respect to

a Virasoro vector of central charge 1
2 [Ho1]. Some other such commutant theories

also arise.

[l = 1
2 ]. Propositions 15–17 imply that Z(q) satisfies the 1st order TMLDE

DZ + cF2Z = 0.

But F2(q) = 1
24 + 2

∑
r∈N+ 1

2

rqr

1−qr so that Z(q) =
(

η(τ/2)
η(τ )

)2c

with p1/2 = 2c. An

Exceptional VOSA exists for all p1/2 = m ≥ 1 given by the tensor product of m

copies of the free fermion VOSA L
(

1
2 , 0

)
⊕ L

(
1
2 , 1

2

)
of central charge c = m

2 .

[l = 3
2 ]. Z(q) satisfies a 2nd order TMLDE:

D2Z + 2

17
F2(5c + 22) DZ + 1

34
c (4(5c + 22)F4 + 17E4) Z = 0,

with indicial roots x1 = −c/24, x2 = (7c + 24)/408 with iterative solution

ZV (q) = q−c/24(1 − p3/2q
3/2 + (1 + p2)q

2 − (p3/2 + p5/2)q
5/2 . . .),

p3/2 = 8c(5c + 22)

3(2c − 49)
, p2 = (5c + 22)(4c + 21)(10c − 7)

2(c − 33)(2c − 49)
,

p5/2 = −136c(5c + 22)(4c + 21)(10c − 7)

15(2c − 83)(c − 33)(2c − 49)
.

For 2c = −2 mod 17, the indicial roots differ by an integer leading to denominator
zeros for pn. The c, h ∈ Q solutions with possible VOAs are

c p3/2 p2 p5/2 VOSA h ∈ Q

− 21
4 1 0 0 L

(
c3,8, 0

) ⊕ L
(
c3,8,

3
2

)
0,− 1

4

7
10 1 0 0 L

(
c4,5, 0

) ⊕ L
(
c4,5,

3
2

)
0, 1

10

15
2 35 119 238 Com

(
V +√

2E8
, ω 1

2

)
0, 1

2

16 256 2,295 13,056 V +
BW16

⊕
(
V +

BW16

)

3/2
0, 1

114
5 2,432 48,620 537,472 Com

(
VB�, ω 7

10

)
0, 7

5

47
2 4,371 96,255 1,139,374 VB� 0, 49

34∗
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The c = 15
2 = 8 − 1

2 VOSA is the commutant of V +√
2E8

with respect to a Virasoro

vector of central charge 1
2 with Aut(V ) = S8(2) [LSY] and VB� is the Baby

Monster VOSA with Aut(VB�) = B [Ho1]. In both cases, p3/2 is odd and Π3/2

is Aut(V )-irreducible in agreement with Proposition 20 [Atlas]. The c = 15
2 VOSA

is the simple current extension of the Barnes–Wall Exceptional VOA by its h = 3
2

module. The c = 114
5 = 47

2 − 7
10 VOSA is the commutant of VB� with respect

to a Virasoro vector of central charge 7
10 [HLY, Y]. In the later case, we expect

Aut(V ) = 2.2E6(2) : 2, the maximal subgroup of B, which has a 2,432 dimensional
irreducible representation [Atlas]. VB� is self-dual so that the h = 49

34 TMLDE
solution does not correspond to a graded character ZN(q).

[l = 5
2 ]. Z(q) satisfies a 3rd order TMLDE:

(734c + 49) D3Z + 27(2c − 1)(7c + 68)F2 D2Z

+
(

6(7c + 68)(2c − 1)(5c + 22)F4 + 1

2
(2,634c2 + 1,739c − 29,348)E4

)

DZ

+
(

2c(7c + 68)(2c − 1)(5c + 22)F6 + 27

2
c(2c − 1)(7c + 68)E4F2

+5c(36c2 + 622c − 2,413)E6

)
Z = 0,

where

p5/2 = 8 (7c + 68) (2c + 5) (2c − 1) (5c + 22)

5(8c3 − 716c2 + 16,102c + 239)
.

There is one c, h ∈ Q solution with possible VOSA for p5/2 ≤ 500,000

c p5/2 VOSA h ∈ Q

− 13
14 1 L

(
c4,7, 0

) ⊕ L
(
c4,7,

5
2

)
0,− 1

14 , 1
7

[l = 7
2 ]. ZV (q) satisfies a 4th order TMLDE where p7/2 = r(c)

s(c)
for

r(c) = 128(5c + 22)(3c + 46)(2c − 1)(14 + c)(5c + 3)(7c + 68),

s(c) = 7(160c5 − 31,176c4 + 2,015,748c3 − 41,830,202c2

−92,625,711c + 1,017,681).

The c, h ∈ Q solutions with possible VOSA for p7/2 ≤ 500,000 are
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c p7/2 VOSA h ∈ Q

− 161
8 1 L

(
c3,16, 0

) ⊕ L
(
c3,16,

7
2

)
0,− 5

8 ,− 3
4 ,− 7

8

− 19
6 1 L

(
c4,9, 0

) ⊕ L
(
c4,9,

7
2

)
0,− 1

9 ,− 1
6 , 1

6

[l = 9
2 ]. ZV (q) satisfies a 5th order TMLDE where p9/2 = r(c)

s(c)
for

r(c) = 160(3c + 46)(2c − 1)(5c + 3)(11c + 232)(68 + 7c)(40c2 + 1,778c + 11,025),

s(c) = 9(3,200c6 − 1,096,320c5 + 140,381,096c4 − 7,850,716,276c3 + 149,541,921,538c2

+829,856,821,745c + 7,484,560,125).

The c, h ∈ Q solutions with possible VOSA for p9/2 ≤ 500,000 are

c p9/2 VOSA h ∈ Q

− 279
10 1 L

(
c3,20, 0

) ⊕ L
(
c3,20,

9
2

)
0,− 7

10 ,−1,− 11
10 ,− 6

5

− 125
22 1 L

(
c4,11, 0

) ⊕ L
(
c4,11,

9
2

)
0,− 3

22 ,− 5
22 ,− 3

11 , 2
11

− 7
20 1 L

(
c5,8, 0

) ⊕ L
(
c5,8,

9
2

)
0,− 1

20 , 1
4 , 7

10 , 891
1,850∗

−35 1 W( 9
2 ) 0,− 11

10 ,− 4
3 ,− 7

5 ,− 3
2

The c = − 7
20 , h = 891

1,850 TMLDE solution does not correspond to a graded character
ZN(q).

[l = 11
2 ]. ZV (q) satisfies a 6th order TMLDE where p11/2 = r(c)

s(c)
for

r(c) = −640(13c + 350)(7c + 25)(11c + 232)(2c − 1)(3c + 46)(68 + 7c)

.(5c + 3)(10c − 7)(40c2 + 3,586c + 50,743),

s(c) = 11(2,240,000c9 − 1,185,856,000c8 + 249,718,385,120c7 − 25,848,494,429,040c6

+1,266,635,173,648,176c5 − 18,264,666,939,042,072c4 − 336,264,778,062,263,522c3

−861,021,133,326,393,167c2 + 653,498,177,653,904,632c − 9,760,778,116,675,215).

The c, h ∈ Q solutions with possible VOSA for p11/2 ≤ 500,000 are

c p11/2 VOSA h ∈ Q

− 217
26 1 L

(
c4,13, 0

) ⊕ L
(
c4,13,

11
2

)
0,− 2

13 ,− 7
26 ,− 9

26 ,− 5
13 , 5

26



On Exceptional VO(S)As 381

[l = 13
2 ]. ZV (q) satisfies a 7th order TMLDE with p13/2 = r(c)

s(c)
for

r(c) = 4,480(13c + 350)(5c + 164)(7c + 25)(11c + 232)(3c + 46)(4c + 21)

(5c + 3)(10c − 7)(1,120c4 + 187,160c3 + 6,889,980c2 + 58,079,018c − 24,165,453),

s(c) = 13(125,440,000c11 − 94,806,656,000c10 + 29,650,660,755,200c9

−4,865,828,683,343,040c8 + 431,531,398,085,049,664c7 − 18,001,596,789,986,119,984c6

+107,049,283,968,364,390,448c5 + 9,359,034,900,957,509,468,076c4

+76,817,948,684,836,018,331,724c3 + 155,170,276,090,966,927,173,843c2

−81,951,451,902,336,562,695,126c − 7,944,030,229,978,323,194,805).

The c, h ∈ Q solutions with possible VOSA for p13/2 ≤ 500,000 are

c p13/2 VOSA h ∈ Q

− 611
14 1 L

(
c3,28, 0

) ⊕ L
(
c3,28,

13
2

)
0,− 11

14 ,− 19
14 ,− 3

2 ,

− 12
7 ,− 25

14 ,− 13
7

− 111
10 1 L

(
c4,15, 0

) ⊕ L
(
c4,15,

13
2

)
0,− 1

6 ,− 3
10 ,

− 2
5 ,− 7

15 ,− 1
2 , 1

5

[l = 15
2 ]. ZV (q) satisfies an 8th order TMLDE where p15/2 = r(c)

s(c)
for

r(c) = −28,672(13c + 350)(5c + 164)(7c + 25)(11c + 232)

.(3c + 46)(17c + 658)(4c + 21)(5c + 3)(10c − 7)

.(560c4 + 146,584c3 + 9,082,444c2 + 133,381,952c − 27,346,605),

s(c) = 21,073,920,000c12 − 21,694,120,448,000c11 + 9,524,271,218,201,600c10

−2,298,054,501,201,632,000c9 + 325,029,065,007,052,546,624c8

−26,081,744,761,028,079,338,944c7 + 968,808,700,001,847,281,619,664c6

+787,299,295,625,321,246,276,560c5 − 696,312,046,814,218,010,729,784,676c4

−7,887,852,431,045,609,558,472,152,948c3 − 21,020,840,196,255,652,876,820,528,205c2

+3,455,907,491,220,404,701,398,711,750c + 4,568,101,033,862,110,116,156,159,375.

The c, h ∈ Q solutions with possible VOSA for p15/2 ≤ 500,000 are
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c p15/2 VOSA h ∈ Q

− 825
16 1 L

(
c3,32, 0

) ⊕ L
(
c3,32,

15
2

)
0,− 13

16 ,− 23
16 ,− 7

4 ,

− 15
8 ,− 33

16 ,− 17
8 ,− 35

16

− 473
34 1 L

(
c4,17, 0

) ⊕ L
(
c4,17,

15
2

)
0,− 3

17 ,− 11
34 ,− 15

34 ,

− 9
17 ,− 10

17 ,− 21
34 , 7

34

− 39
10 1 L

(
c5,12, 0

) ⊕ L
(
c5,12,

15
2

)
0, 1

2 , 13
10 ,− 1

6 ,− 1
5 , 2

15

25
28 1 L

(
c7,8, 0

) ⊕ L
(
c7,8,

15
2

)
0, 1

28 , 3
28 , 5

14 , 3
4 , 9

7

−59 1 W( 15
2 ) 0,− 13

7 ,− 21
10 ,− 31

14 ,

− 12
5 ,− 17

7 ,− 5
2 ,− 67

62∗
The c = −59, h = − 67

62 TMLDE solution does not correspond to a graded character
ZN(q) [F].

[l = 17
2 ]. ZV (q) satisfies a 9th order TMLDE. The only c, h ∈ Q solution with

possible VOSA for p17/2 ≤ 500,000 is

c p17/2 VOSA h ∈ Q

− 637
38 1 L

(
c4,19, 0

) ⊕ L
(
c4,19,

17
2

)
0,− 7

38 ,− 13
38 ,− 9

19 ,− 11
19 ,

− 25
38 ,− 27

38 ,− 14
19 , 4

19
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