
Tensor Representations of Mackey Lie Algebras
and Their Dense Subalgebras

Ivan Penkov and Vera Serganova

Abstract In this article we review the main results of the earlier papers [PStyr,PS]
and [DPS], and establish related new results in considerably greater generality.
We introduce a class of infinite-dimensional Lie algebras gM , which we call
Mackey Lie algebras, and define monoidal categories TgM of tensor gM -modules.
We also consider dense subalgebras a ⊂ gM and corresponding categories Ta.
The locally finite Lie algebras sl(V ,W), o(V ), sp(V ) are dense subalgebras of
respective Mackey Lie algebras. Our main result is that if gM is a Mackey Lie
algebra and a ⊂ gM is a dense subalgebra, then the monoidal category Ta is
equivalent to Tsl(∞) or To(∞); the latter monoidal categories have been studied in
detail in [DPS]. A possible choice of a is the well-known Lie algebra of generalized
Jacobi matrices.

Key words Finitary Lie algebra • Mackey Lie algebra • Linear system • Tensor
representation • Socle filtration

Mathematics Subject Classification (2010): Primary 17B10, 17B65. Secondary
18D10.

Support by the DFG Priority Program for both authors.

Vera Serganova acknowledges support from NSF via grant 1303301.

I. Penkov (�)
Jacobs University Bremen, Campus Ring 1,
28759, Bremen, Germany
e-mail: i.penkov@jacobs-university.de

V. Serganova
Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA
e-mail: serganov@math.berkeley.edu

© Springer International Publishing Switzerland 2014
G. Mason et al. (eds.), Developments and Retrospectives in Lie Theory:
Algebraic Methods, Developments in Mathematics 38,
DOI 10.1007/978-3-319-09804-3__14

291

mailto:i.penkov@jacobs-university.de
mailto:serganov@math.berkeley.edu


292 I. Penkov and V. Serganova

Introduction

This paper combines a review of some results on locally finite Lie algebras, mostly
from [PStyr, PS] and [DPS], with new results about categories of representations
of a class of (not locally finite) infinite-dimensional Lie algebras which we call
Mackey Lie algebras. Locally finite Lie algebras (i.e., Lie algebras in which any
finite set of elements generates a finite-dimensional Lie subalgebra) and their
representations have been gaining the attention of researchers in the past 20 years.
An incomplete list of references on this topic is: [Ba1, BB, BS, DiP1, DiP3, DPS,
DPSn, DPW, DaPW, N, Na, NP, NS, O, PS, PStyr, PZ]. In particular, in [PStyr, PS]
and [DPS] integrable representations of the three classical locally finite Lie algebras
g = sl(∞), o(∞), sp(∞) have been studied from various points of view. An
important step in the development of the representation theory of these Lie algebras
has been the introduction of the category of tensor modules Tg in [DPS].

In the present article we shift the focus to understanding a natural generality
in which the category Tg is defined. In particular, we consider the finitary locally
simple Lie algebras g = sl(V ,W), o(V ), sp(V ), where V is an arbitrary vector
space (not necessarily of countable dimension), and either a nondegenerate pairing
V × W → C is given, or V is equipped with a nondegenerate symmetric,
or antisymmetric form. In Sects. 1–5 we reproduce the most important results
from [PStyr] and [DPS] in this greater generality. In fact, we study five different
categories of integrable modules, see Sect. 3.6, but pay maximum attention to the
categoryTg. The central new result in this part of the paper is Theorem 5.5, claiming
that the category Tg for g = sl(V ,W), o(V ), sp(V ) is canonically equivalent, as a
monoidal category, to the respective category Tsl(∞),To(∞) or Tsp(∞). It is shown
in [DPS] that each of the latter categories is Koszul and that Tsl(∞) is self-dual
Koszul, while To(∞) and Tsp(∞) are not self-dual but are equivalent.

In the second part of the paper, starting with Sect. 6, we explore several new ideas.
The first one is that given a nondegenerate pairing V ×W → C between two vector
spaces, or a nondegenerate symmetric or antisymmetric form on a vector space V ,
there is a canonical, in general not locally finite, Lie algebra attached to this datum.
Indeed, fix a pairing V × W → C. Then the Mackey Lie algebra glM(V,W) is the
Lie algebra of all endomorphisms of V whose duals keep W stable (this definition is
given in a more precise form at the beginning of Sect. 6). Similarly, if V is equipped
with a nondegenerate form, the respective Lie algebra oM(V ) or spM(V ) is the Lie
algebra of all endomorphisms of V for which the form is invariant.

The Lie algebras glM(V,W), oM(V ), spM(V ) are not simple as they have
obvious ideals: these are respectively gl(V ,W) ⊕ CId, o(∞), and sp(∞). How-
ever, we prove that, if both V and W are countable dimensional, the quotients
glM(V,W)/(gl(V ,W) ⊕ CId), oM(V )/o(V ), spM(V )/sp(V ) are simple Lie alge-
bras. This result is an algebraic analogue of the simplicity of the Calkin algebra in
functional analysis.

Despite the fact that the Lie algebras glM(V,W), oM(V ), spM(V ) are com-
pletely natural objects, the representation theory of these Lie algebras has not yet
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been explored. We are undertaking the first step of such an exploration by introduc-
ing the categories of tensor modules TgM for gM = glM(V,W), oM(V ), spM(V ).
Our main result about these categories is Theorem 7.10 which implies that
TglM(V,W) is equivalent to Tsl(∞), and ToM(V ) and TspM(V ) are equivalent
respectively to To(∞) and Tsp(∞).

A further idea is to consider dense subalgebras a of the Lie algebras gM (see the
definition in Sect. 7). We show that if a ⊂ g is a dense subalgebra, the category
Ta, whose objects are tensor modules of g considered as a-modules, is canonically
equivalent to TgM , and hence to one of the categories Tsl(∞) or To(∞). It is
interesting that this result applies to the Lie algebra of generalized Jacobi matrices
(infinite matrices with “finitely many nonzero diagonals”) which has been studied
for over 30 years, see for instance [FT].

In short, the main point of this paper is that the categories of tensor modules
Tsl(∞),To(∞),Tsp(∞) introduced in [DPS] are in some sense universal, being
naturally equivalent to the respective categories of tensor representations of a large
class of, possibly not locally finite, infinite-dimensional Lie algebras.

1 Preliminaries

The ground field is C. By M∗ we denote the dual space of a vector space M , i.e.,
M∗ = HomC(M,C). Sn stands for the symmetric group on n letters. The sign ⊂
denotes not necessarily strict inclusion. By definition, a natural representation (or
a natural module) of a classical simple finite-dimensional Lie algebra is a simple
nontrivial finite-dimensional representation of minimal dimension.

In this paper g denotes a locally simple locally finite Lie algebra, i.e., an infinite-
dimensional Lie algebra g obtained as the direct limit lim−→ gα of a directed system of
embeddings (i.e., injective homomorphisms) gα ↪→ gβ of finite-dimensional simple
Lie algebras parametrized by a directed set of indices. It is clear that any such g is
a simple Lie algebra. If g is countable dimensional, then the above directed set can
always be chosen as Z≥1, and the corresponding directed system can be chosen as
a chain

g1 ↪→ g2 ↪→ . . . ↪→ gi ↪→ gi+1 ↪→ . . . . (1)

In this case we write g = lim−→ gi . Moreover, if gi = sl(i+1), then up to isomorphism
there is only one such Lie algebra which we denote by sl(∞). Similarly, if gi = o(i)
or gi = sp(2i), up to isomorphism one obtains only two Lie algebras: o(∞) and
sp(∞). The Lie algebras sl(∞), o(∞), sp(∞) are often referred to as the finitary
locally simple Lie algebras [Ba1, Ba2, BS], or as the classical locally simple Lie
algebras [PS].

A more general (and very interesting) class of locally finite locally simple Lie
algebras are the diagonal locally finite Lie algebras introduced by Y. Bahturin and
H. Strade in [BhS]. We recall that an injective homomorphism g1 ↪→ g2 of simple
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classical Lie algebras of the same type sl, o, sp, is diagonal if the pull-back Vg2↓g1

of a natural representation Vg2 of g2 to g1 is isomorphic to a direct sum of copies
of a natural representation Vg1, of its dual V ∗

g1
, and of the trivial 1-dimensional

representation. In this paper, by a diagonal Lie algebra g we mean an infinite-
dimensional Lie algebra obtained as the limit of a directed system of diagonal
homomorphisms of classical simple Lie algebras gα . We say that a diagonal Lie
algebra is of type sl (respectively, o or sp) if all gα can be chosen to have type sl
(respectively, o or sp).

Countable-dimensional diagonal Lie algebras have been classified up to isomor-
phism by A. Baranov and A. Zhilinskii [BaZh]. S. Markouski [Ma] has determined
when there is an embedding g ↪→ g′ for given countable-dimensional diagonal Lie
algebras g and g′. If both g and g′ are classical locally simple Lie algebras, then an
embedding g ↪→ g′ always exists, and such embeddings have been studied in detail
in [DiP2].

Let V and W be two infinite-dimensional vector spaces with a nondegenerate
pairing V × W → C. G. Mackey calls such a pair V, W a linear system and was
the first to study linear systems in depth [M]. The tensor product V ⊗ W is an
associative algebra (without identity), and we denote the corresponding Lie algebra
by gl(V ,W). The pairing V × W → C induces a homomorphism of Lie algebras
tr : gl(V ,W) → C. The kernel of this homomorphism is denoted by sl(V ,W). The
Lie algebra sl(V ,W) is a locally simple locally finite Lie algebra. A corresponding
directed system is given by {sl(Vf ,Wf )}, where Vf and Wf run over all finite-
dimensional subspaces Vf ⊂ V,Wf ⊂ W such that the restriction of the pairing
V × W → C to Vf × Wf is nondegenerate. If V and W are countable dimensional,
then sl(V ,W) is isomorphic to sl(∞). In what follows we call a pair of finite-
dimensional subspaces Vf ⊂ V , Wf ⊂ W a finite-dimensional nondegenerate pair
if the restriction of the pairing V × W → C to Vf × Wf is nondegenerate. We
can also define gl(V ,W) as a Lie algebra of finite rank linear operators in V ⊕ W

preserving V,W and the pairing V × W → C.
There is an obvious notion of isomorphism of linear systems: given two linear

systems V × W → C and V × W ′ → C, an isomorphism of these linear systems
is a pair of isomorphisms of vector spaces ϕ : V → W , ψ : W → W ′ or ϕ :
V → W ′, ψ : W → V ′, commuting with the respective pairings. If V and W

are countable dimensional then, as shown by G. Mackey [Ma], there exists a basis
{v1, v2, . . . } of V such that V∗ = span{v∗

1 , v∗
2 , . . . }, where {v∗

1 , v∗
2 , . . . } is the set

of linear functionals dual to {v1, v2, . . . }, i.e., v∗
i (vj ) = δij . Consequently, up to

isomorphism, there exists only one linear system V × W → C such that V and W

are countable dimensional. The choice of a basis of V as above identifies gl(V ,W)

with the Lie algebra gl(∞) consisting of infinite matrices X = (xij )i≥1,j≥1 with
finitely many nonzero entries. The Lie algebra sl(V ,W) is identified with sl(∞)

realized as the Lie algebra of traceless matrices X = (xij )i≥1,j≥1 with finitely many
nonzero entries.
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Now let V be a vector space endowed with a nondegenerate symmetric (respec-
tively, antisymmetric) form (·, ·). Then Λ2V (respectively, S2V ) has a Lie algebra
structure, defined by

[v1∧v2, w1∧w2] = −(v1, w1)v2∧w2+(v2, w1)v1∧w2+(v1, w2)v2∧w1−(v2, w2)v1∧w1

(respectively, by

[v1v2, w1w2] = (v1, w1)v2w2 + (v2, w1)v1w2 + (v1, w2)v2w1 + (v2, w2)v1w1).

We denote the Lie algebra Λ2V by o(V ), and the Lie algebra S2V by sp(V ). Let
Vf ⊂ V be an n-dimensional subspace such that the restriction of the form on Vf

is nondegenerate. Then o(Vf ) ⊂ o(V ) (respectively, sp(Vf ) ⊂ sp(V )) is a simple
subalgebra isomorphic to o(n) (respectively, sp(n)). Therefore, o(V ) (respectively,
sp(V )) is the direct limit of all its subalgebras o(Vf ) (respectively, sp(Vf )). This
shows that both o(V ) and sp(V ) are locally simple locally finite Lie algebras. We
can also identify o(V ) (respectively, sp(V )) with the Lie subalgebra of all finite rank
operators in V under which the form (·, ·) is invariant.

If V is countable dimensional, there always is a basis {vi, wj }i,j∈Z of V such
that span{vi}i∈Z and span{wj }j∈Z are isotropic spaces and (vi , wj ) = 0 for i = j ,
(vi , wi) = 1. Therefore, in this case o(V ) � o(∞) and sp(V ) � sp(∞).

Note that if V is not finite or countable dimensional, then V may have several
inequivalent nondegenerate symmetric forms. Indeed, let for instance V := W ⊕W∗
for some countable-dimensional space W . Extend the pairing between W and W∗ to
a nondegenerate symmetric form (·, ·) on V for which W and W∗ are both isotropic.
It is clear that W is a maximal isotropic subspace of V . On the other hand, choose a
basis b in V and let (·, ·)′ be the symmetric form on V for which b is an orthonormal
basis. Then V does not have countable-dimensional maximal isotropic subspaces for
the form (·, ·)′. Hence the forms (·, ·) and (·, ·)′ are not equivalent.

Proposition 1.1. (a) Two Lie algebras sl(V ,W) and sl(V ′,W ′) are isomorphic if
and only if the linear systems V × W → C and V ′ × W ′ → C are isomorphic.

(b) Two Lie algebras o(V ) and o(V ′) (respectively, sp(V ) and sp(V ′)) are iso-
morphic if and only if there is an isomorphism of vector spaces V � V ′
transferring the form defining o(V ) (respectively sp(V )) into the form defining
o(V ′) (respectively, sp(V ′)).

We first prove a lemma.

Lemma 1.2 (cf. Proposition 2.3 in [DiP2]).

(a) Let g1 ⊂ g3 be an inclusion of classical finite-dimensional simple Lie algebras
such that a natural g3-module restricts to g1 as the direct sum of a natural
g1-module and a trivial g1-module. If g2 is an intermediate classical simple
subalgebra, g1 ⊆ g2 ⊆ g3, then a natural g3-module restricts to g2 as the
direct sum of a natural g2-module and a trivial module.
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(b) Assume rkg1 > 4. If g1 � sl(i), then g2 is isomorphic to sl(k) for some k ≥ i.
If g3 � o(j) (respectively, sp(2j)), then g2 is isomorphic to o(k) (respectively,
sp(2k)) for some k ≤ j .

Proof. Let V3 be a natural g3-module. We have a decomposition of g1-modules,
V3 = V1 ⊕ W , where V1 is a natural g1-module and W is a trivial g1-module. Let
V ′ ⊂ V3 be the minimal g2-submodule containing V1. Then V3 = V ′ ⊕ W ′, where
W ′ is a complementary g2-submodule. Since g1 acts trivially on W ′ and g2 is simple,
we obtain that W ′ is a trivial g2-module and V ′ is a simple g2-module.

We now prove that V ′ is a natural g2-module. Recall that for an arbitrary
nontrivial module M over a simple Lie algebra k the symmetric form BM(X, Y ) =
trM(XY) for X,Y ∈ k is nondegenerate. Moreover, BM = tMB, where B is the
Killing form. If M is a simple k-module with highest weight λ, then

tM = dimM

dimk
(λ + 2ρ, λ),

where ρ is the half-sum of positive roots and (·, ·) is the form on the weight lattice
of k induced by B. It is easy to check that a natural module is a simple module with
minimal tM . Let V2 be a natural g2-module. Note that the restriction of BV ′ on g1
equals BV1 and the restriction of BV2 on g1 equals tBV1 for some t ≥ 1. On the other

hand, t = tV2
tV ′ . Since tV2 is minimal, we have t = 1 and tV2 = tV ′ . Hence, V ′ is a

natural module, i.e., (a) is proved.
To prove (b), note that a classical simple Lie algebra of rank greater than 4 admits,

up to isomorphism, two (mutually dual) natural representations when it is of type sl,
and one natural representation when it is of type o or sp. Moreover, in the orthogonal
(respectively, symplectic) case the natural module admits an invariant symmetric
(respectively, skew-symmetric) bilinear form.

Now, assume g1 � sl(i). We claim that g2 � sl(k) for some i ≤ k ≤ j . Indeed,
if g2 is not isomorphic to sl(k), then V ′ is self-dual. Therefore its restriction to
g1 is self-dual, and we obtain a contradiction as V1 is not a self-dual sl(i)-module
for i ≥ 3.

Finally, assume g3 � o(j) (respectively, sp(2j)). Then V ′ ⊕ W ′, and hence
V ′, admits an invariant symmetric (respectively, skew-symmetric) form. Therefore
g2 � o(k) (respectively, sp(2k)). ��
Corollary 1.3 (cf. [DiP2, Corollary 2.4]). Let g = sl(V ,W) and g = lim−→ gα for
some directed system {gα} of simple finite-dimensional Lie subalgebras gα ⊂ g.
Then there exists a subsystem {gα′ } such that g = lim−→ gα′ and, for every α′, gα′ =
sl(Vα′,Wα′) for some finite-dimensional nondegenerate pair Vα′ ⊂ V,Wα′ ⊂ W .
Similarly, if g = o(V ) (respectively, sp(V )), then there exists a subsystem {gα′ }
such that g = lim−→ gα′ and, for every α′, gα′ = o(Vα′) (respectively, sp(Vα′)) for
some finite-dimensional nondegenerate Vα′ ⊂ V .

Proof. Let g = sl(V ,W). One fixes a Lie subalgebra sl(Vf ,Wf ) ⊂ g where Vf ⊂
V,Wf ⊂ W is a finite-dimensional nondegenerate pair, and considers the directed
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subsystem {gα′ } of all gα′ such that sl(Vf ,Wf ) ⊂ gα′ . There exists another finite-
dimensional nondegenerate pair V ′

f ,W ′
f such that sl(Vf ,Wf ) ⊂ gα′ ⊂ sl(V ′

f ,W ′
f ).

Then, by Lemma 1.2, gα′ = sl(Vα′,Wα′) for appropriate Vα′ ⊂ V,Wα′ ⊂ W . The
cases g = o(V ), sp(V ) are similar. ��
Proof of Proposition 1.1. We consider the case g = sl(V ,W) and leave the
remaining cases to the reader. Let g = sl(V ,W) be isomorphic to sl(V ′,W ′).
Then g = lim−→ sl(Vf ,Wf ) over all finite-dimensional nondegenerate pairs Vf ⊂
V,Wf ⊂ W , and at the same time g = lim−→ sl(V ′

f ,W ′
f ) over all finite-dimensional

nondegenerate pairs V ′
f ⊂ V ′,W ′

f ⊂ W ′. By Corollary 1.3 and Lemma 1.2, for
each Vf ⊂ V,Wf ⊂ W one can find V ′

f ⊂ V ′,W ′
f ⊂ W ′ and an embedding

of Lie algebras sl(Vf ,Wf ) ⊂ sl(V ′
f ,W ′

f ) as in Lemma 1.2. That implies the
existence of embeddings Vf ↪→ V ′

f ,Wf ↪→ W ′
f or Vf ↪→ W ′

f ,Wf ↪→ V ′
f

preserving the pairing. After a twist by transposition we may assume that Vf ↪→
V ′

f ,Wf ↪→ W ′
f . Therefore we have embeddings V = lim−→ Vf ↪→ V ′,W =

lim−→Wf ↪→ W ′ preserving the pairing. On the other hand, both maps are surjective
since sl(V ′,W ′) = lim−→ sl(Vf ,Wf ). Therefore the linear systems V × W → C and
V ′ × W ′ → C are isomorphic. ��

Assume next that g is an arbitrary locally finite locally simple Lie algebra. If we
can choose a Cartan subalgebra hα ⊂ gα such that hα ↪→ hβ for any embedding
gα ↪→ gβ , then h := lim−→ hα is called a local Cartan subalgebra.

In general, a local Cartan subalgebra may not exist. For example, the following
proposition implies that the Lie algebra g = sl(V , V ∗) does not have a local Cartan
subalgebra.

Proposition 1.4. Let g = sl(V ,W). Then a local Cartan subalgebra of g

exists if and only if V admits a basis
{
vγ

}
such that W = span

{
v∗
γ

}
, where

v∗
γ̃
(vγ ) = δγ̃ γ . In this case, every local Cartan subalgebra of g is of the form

span
{
vγ ⊗ v∗

γ − vγ̃ ⊗ v∗
γ̃

}

γ,γ̃
for a basis

{
vγ

}
as above.

Proof. By Corollary 1.3 we may assume

g = sl(V ,W) = lim−→ gα = lim−→ sl(Vα,Wα),

where Vα ⊂ V , Wα ⊂ W are certain nondegenerate finite-dimensional pairs, and
that h = lim−→ hα where hα is a Cartan subalgebra of gα . Note that for any α we have
hα · Vα = Vα and hα · Wα = Wα . Since h is abelian, we have h · Vα = Vα and
h · Wα = Wα . Therefore V and W are semisimple h-modules. This means that V is
the direct sum of nontrivial one-dimensional h-submodules Vγ , i.e., V = ⊕

γ Vγ ;
similarly, W = ⊕

γ ′ Wγ ′ . Since however, for any α, the spaces Vα and Wα are
dual to each other, γ ′ and γ run over the same set of indices and Wγ (Vγ̃ ) = 0
precisely for γ = γ̃ . This yields a basis vγ as required: vγ can be chosen as any
nonzero vector in Vγ and v∗

γ is the unique vector in Wγ with v∗
γ (vγ ) = 1. Finally,
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h = span
{
vγ ⊗ v∗

γ − vγ̃ ⊗ v∗
γ̃

}
as, clearly, h ∩ gα = span

{
vγ ⊗ v∗

γ − vγ̃ ⊗ v∗
γ̃

}

for vγ , vγ̃ ∈ Vα.

In the other direction, given a basis vγ of V such that
{
v∗
γ

}
is a basis of W , it is

clear that g = lim−→ sl

(
span

{
vγ

}
γ∈A

, span
{
v∗
γ

}

γ∈A

)
for all finite sets of indices

A, and that h = lim−→
(
h ∩ span

{
vγ ⊗ v∗

γ − vγ̃ ⊗ v∗
γ̃

}

γ,γ̃∈A

)
. ��

In [DPSn] (and also in earlier work, see the references in [DPSn]) Cartan
subalgebras are defined as maximal toral subalgebras of g (i.e., as subalgebras
each vector in which is ad-semisimple). Splitting Cartan subalgebras are Cartan
subalgebras for which the adjoint representation is semisimple. It is shown in [PStr]
that a countable dimensional locally finite, locally simple Lie algebra g admits a
splitting Cartan subalgebra if and only if g � sl(∞), o(∞), sp(∞). Proposition 1.4
determines when Lie algebras of the form g = sl(V ,W), o(V ), sp(V ) admit local
Cartan subalgebras and implies that the notions of local Cartan subalgebra and of
splitting Cartan subalgebra coincide for these Lie algebras.

In what follows, we denote by V, V∗ a pair of infinite-dimensional spaces (of not
necessarily countable dimension) arising from a linear system V × V∗ → C for
which there is a basis {vγ } of V such that V∗ = span({v∗

γ }) where v∗
γ̃
(vγ ) = δγ̃ γ .

2 The Category Intg

Let g be an arbitrary locally simple locally finite Lie algebra. An integrable
g-module is a g-module M which is locally finite as a module over any finite-
dimensional subalgebra g′ of g. In other words, dimU(g′) · m < ∞ ∀ m ∈ M .
We denote the category of integrable g-modules by Intg: Intg is a full subcategory
of the category g-mod of all g-modules. It is clear that Intg is an abelian category
and a monoidal category with respect to usual tensor product. Note that the adjoint
representation of g is an object of Intg.

The functor of g-integrable vectors

Γg : g − mod � Intg,

Γg(M) := {
m ∈ M | dimU(g′) · m < ∞ ∀ finite-dim. subalgebrasg′ ⊂ g

}

is a well-defined left-exact functor. This follows from the fact that the functor of
g′-finite vectors Γg′ is well defined for any finite-dimensional subalgebra g′ ⊂ g,
see for instance [Z], and that g equals the direct limit of its finite-dimensional
subalgebras.

Theorem 2.1. (a) Let M be an object of Intg. Then Γg(M
∗) is an injective object

of Intg.
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(b) Intg has enough injectives. More precisely, for any object M of Intg there is a
canonical injective homomorphism of g−modules

M → Γg(Γg(M
∗)∗).

Proof. In [PS], see Proposition 3.2 and Corollary 3.3, the proof is given under
the assumption that g is countable dimensional. The reader can check that this
assumption is inessential. ��

3 Five Subcategories of Intg

3.1 The Category Intalg
g

We start by defining the full subcategory Intalg
g ⊂ Intg. Its objects are integrable

g-modules M such that for any simple finite-dimensional subalgebra g′ ⊂ g, the
restriction of M to g′ is a direct sum of finitely many g′-isotypic components.
Clearly, if dim M = ∞, at least one of these isotypic components must be infinite
dimensional. If g is diagonal, the adjoint representation of g is easily seen to be an
object of Intalg

g .

The following proposition provides equivalent definitions of Intalg
g .

Proposition 3.1. (a) M ∈ Intalg
g iff M and M∗ are integrable.

(b) An integrable g−module M is an object of Intalg
g iff for any X ∈ g there exists a

nonzero polynomial p(t) ∈ C[t] such that p(X) · M = 0.

Proof. (a) In the countable-dimensional case the statement is proven in [PS,
Lemma 4.1]. In general, let g′ ⊂ g be a finite-dimensional simple subalgebra
and let M = ⊕αMα be the decomposition of M into g′-isotypic components.
Then it is straightforward to check that M∗ = ∏

α M∗
α is an integrable

g′-module iff the direct product is finite. This proves (a), since a g-module is
integrable iff it is g′-integrable for all finite-dimensional Lie subalgebras g′ ⊂ g.

(b) Let M ∈ Intalg
g . Any X ∈ g lies in some finite-dimensional Lie subalgebra

g′ ⊂ g. For each g′-isotypic component Mi of M there exists pi(t) such that
pi(X) · Mi = 0. Since there are finitely many g′-isotypic components, we can
set p(t) = ∏

i pi(t). Then p(X) · M = 0.

On the other hand, if M /∈ Intalg
g , then there are infinitely many isotypic

components for some finite-dimensional simple g′ ⊂ g. That implies the
existence of a semisimple X ∈ g′ which has infinitely many eigenvalues in M .
Therefore p(X) · M = 0 for any 0 = p(t) ∈ C[t]. ��

It is obvious that Intalg
g is an abelian monoidal subcategory of g−mod. It is also

closed under dualization.
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Proposition 3.2. Intalg
g contains a nontrivial module iff g is diagonal.

Proof. Again, for a countable dimensional g the statement is proven in [PS] (see
Proposition 4.3). In fact, we prove in [PS] that if g = lim−→ gi has a non-trivial
integrable module such that M∗ is also integrable, then the embedding gi ↪→ gi+1
is diagonal for all sufficiently large i.

To give a general proof, it remains to show that if g is not diagonal, then Intalg
g

contains no nontrivial modules. Assume that g = lim−→ gα is not diagonal. Fix a simple

finite-dimensional Lie algebra gα1 and a simple g-module M ∈ Intalg
g such that

M↓gα1
is nontrivial. We claim that one can find a chain of proper embeddings of

simple finite-dimensional Lie algebras

gα1 ↪→ gα2 ↪→ · · · ↪→ gαi ↪→ gαi+1 ↪→ · · ·

such that the embeddings gαi ↪→ gαi+1 are not diagonal. Indeed, otherwise there will
exist β0 so that the embedding gβ0 ↪→ gα is diagonal for all α > β0. Then, since
g = lim−→α>β0

gα, g is diagonal. This shows that the existence of β0 is contradictory.

Now Proposition 4.3 in [PS] implies that M↓lim−→ gαi
is a trivial module, which shows

that the assumption that M↓gα1
is nontrivial is false. ��

Let g = sl(V ,W) (respectively, g = o(V ), sp(V )). Then the tensor products
T m,n := V ⊗m⊗W⊗n (respectively, T m := V ⊗m) and their subquotients are objects
of Intalg

g .

Here is a less trivial example of a simple object of Intalg
g for gl = sl(V , V∗)

where V is a countable-dimensional vector space. Let g = lim−→ gi where gi =
sl(Vi), dim Vi = i + 1, and lim−→Vi = V . Define Λ[ ∞

2 ]V as the direct limit

lim−→Λ[ i
2 ](Vi) for i ≥ 2. Then Λ[ ∞

2 ]V is a simple object of Intalg
g and is not

isomorphic to a subquotient of a tensor product of the form T m,n.
Given a g-module M ∈ Intalg

g , where g = lim−→ gα , for each α we can assign to
gα the finite set of isomorphism classes of simple finite-dimensional gα-modules
which occur in the restriction M↓gα . A. Zhilinskii has defined a coherent local
system of finite-dimensional representations of g = lim−→ gα as a function of α with
values in the set of isomorphism classes of finite-dimensional gα-modules, with the
following compatibility condition: if β < α, then the representations assigned to
β are obtained by restriction from the representations assigned to α. Thus, every
M ∈ Intalg

g determines a coherent local system of finite type, i.e., a local system
containing finitely many isomorphism classes for any α.

Zhilinskii has classified all coherent local systems under the condition that g is
countable dimensional [Zh1, Zh2] (see also [PP] for an application of Zhilinskii’s
result). In particular, he has proved that proper coherent local systems, i.e., coherent
local systems different from the ones assigning the trivial 1-dimensional module to
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all α, or all finite-dimensional gα-modules to α, exist only if g is diagonal. This
leads to another proof of Proposition 3.2.

The category Intalg
g has enough injectives: this follows immediately from

Proposition 3.1 (a) and Theorem 2.1. We know of no classification of simple
modules in Intalg

g .

3.2 The Category Intwt
g,h

Given a local Cartan subalgebra h ⊂ g, we define Intwt
g,h as the full subcategory of

Intg consisting of h-semisimple integrable g-modules, i.e., integrable g-modules M

admitting an h-weight decomposition

M = ⊕λ∈h∗Mλ (2)

where

Mλ := {m ∈ M | h · m = λ(h)m ∀h ∈ h} .

If g = sl(V ,W), o(V ), sp(V ) for countable-dimensional V,W , then V (and W

in case g = sl(V ,W)) is a simple object of Intwt
g,h for any h. Moreover, if g is

a countable-dimensional locally simple Lie algebra, it is proved in [PStr] that the
adjoint representation of g is an object of Intwt

g,h iff g � sl(∞), o(∞), sp(∞). The

simple modules of Intwt
g,h for g = sl(∞), o(∞), sp(∞) have been studied in [DiP1],

however there is no classification of such modules.
Assume that g is a locally simple diagonal countable-dimensional Lie algebra.

Without loss of generality, assume that g = lim−→ gi , where all gi are of the same type
A,B,C, or D. The very definition of g implies that there is a well-defined chain

Vg1

κ1
↪→ Vg2

κ2
↪→ . . . ↪→ Vgi

κi
↪→ Vgi+1 ↪→ . . . (3)

of embeddings of natural gi-modules, and we call its direct limit V a natural
representation of g. Moreover, a fixed natural representation V is a simple object
of Intwt

g,h for some local Cartan subalgebra h. To see this, we use induction to define

a local Cartan subalgebra h ⊂ g so that V ∈ Intwt
g,h. Given hi ⊂ gi and an hi -

eigenbasis bi of Vi , let hi+1 be a Cartan subalgebra of gi+1 whose eigenbasis bi+1
of Vi+1 contains bi . The assumption that gi and gi+1 are of the same type A,B,C or
D (in the sense of the classification of simple Lie algebras [Bou]) implies that hi+1
exists as required. Moreover, h := lim−→ hi is a well-defined local Cartan subalgebra
of g and V ∈ Intwt

g,h.
Assume next that g is a locally simple Lie algebra which admits a local Cartan

subalgebra h such that the adjoint representation belongs to Intwt
g,h. This certainly
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holds for g = sl(∞), o(∞), sp(∞), but also for instance for g = sl(V , V∗) where
V is an arbitrary vector space. In this case we can define a left exact functor Γ wt

h :
Intg � Intwt

g,h by setting

Γ wt
h (M) := ⊕λ∈h∗Mλ,

where Mλ is given by (3). It is easy to see that Γ wt
h is right adjoint to the inclusion

functor Intwt
g,h � Intg. Hence Γ wt

h maps injectives to injectives, and therefore Intwt
g,h

has enough injectives. We do not know whether Intwt
g,h has enough injectives in the

case when the adjoint representation is not an object of Intwt
g,h.

We conjecture that for nondiagonal Lie algebras g, the category Intwt
g,h consists

of trivial modules only.

3.3 The Category Intfin
g,h

By Intfin
g,h we denote the full subcategory of Intwt

g,h consisting of integrable

g-modules satisfying dimMλ < ∞ ∀λ ∈ h∗.
Note that for g = sl(V , V∗) (respectively, for g = o(∞), sp(∞)) the tensor

products T m,0 = V ⊗m and T 0,n = W⊗n (respectively, T m = V ⊗m) are objects
of Intfin

g,h for every local Cartan subalgebra g. However, the adjoint representation is

not in Intfin
g,h for any h.

If g is countable dimensional diagonal then, as shown above, for each natural
representation V there is a local Cartan subalgebra h so that V (and more generally
V ⊗m) is an object of Intwt

g,h. In fact, V ⊗m ∈ Intfin
g,h for any m ≥ 0.

Here is a more interesting example of a simple module in Intfin
g,h for g =

sl(V , V∗), where V is a countable-dimensional vector space. Fix a chain of
embeddings

g1 ↪→ g2 ↪→ · · · ↪→ gi ↪→ gi+1 ↪→ · · ·

so that g = sl(Vi) for dim Vi = i + 1, V = lim−→Vi, g = lim−→ gi . Note that

there is a canonical injection of gi-modules Si+1(Vi) ↪→ Si+2(Vi+1), and set
Δ := lim−→ Si+1(Vi). Then one can check that Δ is a multiplicity free h-module,
where h is such that hi := h ∩ gi is a Cartan subalgebra of gi .

The following result is proved in [PS].

Proposition 3.3. Let g = sl(∞), o(∞), sp(∞). Then the category Intfin
g,h is semi-

simple.
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This result should be considered an extension of Weyl’s semisimplicity theorem to
the case of direct limit Lie algebras. It is an interesting question whether the category
Intfin

g,h is semisimple whenever it is well defined.

3.4 The Category ˜Tensg

Let M be a g-module. Recall that the socle soc M = soc1 M of M is the unique
maximal semisimple submodule of M , and

sockM := π−1(soc(M/sock−1M))

for k ≥ 2, where π : M → M/sockM is the natural projection. The ascending
chain

0 ⊂ soc M = soc1 M ⊂ soc2 M ⊂ · · · ⊂ sock M ⊂ . . .

is by definition the socle filtration of M . The g-module M has finite Loewy length if
it has a finite and exhaustive socle filtration, i.e.,

M = soclM

for some l.
By definition, T̃ensg is the full subcategory of Intg whose objects are integrable

g-modules with the property that both M and Γg(M
∗) have finite Loewy length.

The category T̃ensg is studied in detail in [PS] for g = sl(∞), o(∞), sp(∞),
where it is shown in particular that Γg(M

∗) = M∗ for any object M of T̃ensg.
A major result of [PS] is that, up to isomorphism, the simple objects of T̃ensg
are precisely the simple subquotients of the tensor algebra T (V ⊕ V∗) for g =
sl(V , V∗) � sl(∞), and of the tensor algebra T (V ) for g = o(V ) � o(∞) or
g = sp(V ) � sp(∞). These simple modules are discussed in more detail in Sect. 4
below. Note that the objects of T̃ensg have in general infinite length and are not
objects of Intwt

g,h for any h. An example of infinite length module in T̃ensg for
g = sl(V , V∗) � sl(∞) is V ∗: there is a nonsplitting exact sequence of g-modules

0 → V∗ = soc V ∗ → V ∗ → V ∗/V∗ → 0

and V ∗/V∗ is a trivial module of uncountable dimension.
For g = sl(∞), o(∞), sp(∞), the category T̃ensg has enough injectives [PS,

Corollary 6.7a)].
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3.5 The Category Tg

The fifth subcategory we would like to introduce in this section is the category of
tensor modules Tg. We define this category only for g = sl(V ,W), o(V ), sp(V ),
and discuss it in detail in Sect. 5.

We call a subalgebra k ⊂ sl(W, V ) a finite-corank subalgebra if it contains
the subalgebra sl(W⊥

0 , V ⊥
0 ) for some finite-dimensional nondegenerate pair V0 ⊂

V,W0 ⊂ W . Similarly, we call k ⊂ o(V ) (respectively, sp(V )) a finite corank
subalgebra if it contains o(V ⊥) (respectively, sp(V ⊥

0 )) for some finite-dimensional
V0 ⊂ V such that the restriction of the form on V0 is nondegenerate.

We say that a g-module L satisfies the large annihilator condition if the
annihilator in g of any l ∈ L contains a finite-corank subalgera. It follows
immediately from definition that if L1 and L2 satisfy the large annihilator condition,
then the same holds also for L1 ⊕ L2 and L1 ⊗ L2.

By Tg we denote the category of finite length integrable g-modules which satisfy
the large annihilator condition. By definition, Tg is a full subcategory of Intg. It is
clear that Tg is a monoidal category with respect to usual tensor product ⊗.

3.6 Inclusion Pattern

The following diagram summarizes the inclusion pattern for the five subcategories
of Intg introduced above:

Note that all categories except Tg are defined for any locally simple Lie algebra
g, while Tg is defined only for g = sl(V ,W), o(V ), sp(V ). Moreover, under the
latter assumption all inclusions are strict. We support this claim by a list of examples
and leave it to the reader to complete the proof.

Examples. Let g = sl(V , V∗), o(V ), sp(V ), where V is countable dimensional.
The simple objects of Tg and T̃ensg are the same, however V ∗ ∈ T̃ensg while V ∗ /∈
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Tg. Moreover, V ∗ /∈ Intwt
g,h for any local Cartan subalgebra h. The module Δ from

Sect. 3.3 is an object of Intfin
g,h but not an object of Intalg

g . The adjoint representation

is an object of Intwt
g,h but not of Intfin

g,h.

4 Mixed Tensors

In this section g = sl(V ,W), o(V ), sp(V ). By definition, V is a g-module. For
g = sl(V ,W),W is also a g-module.

Consider the tensor algebra T (V ) of V . Then, as it is easy to see, finite-
dimensional Schur duality implies that

T (V ) =
⊕

λ

Cλ ⊗ Vλ, (4)

where λ runs over all Young diagrams (i.e., over all partitions of all integers
m ∈ Z≥0), Cλ denotes the irreducible S|λ|-module (where |λ| is the degree of λ)
corresponding to λ, and Vλ is the image of the Schur projector corresponding to λ.
For g = sl(V ,W), Vλ is an irreducible g-module as it is isomorphic to the direct
limit lim−→(Vf )λ of the directed system {(Vf )λ} of irreducible sl(Vf ,Wf )-modules
for sufficiently large nondegenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W .
For g = o(V ), sp(V ), Vλ is in general a reducible g-module.

Similarly, for g = sl(V ,W),

T (W) =
⊕

λ

Cλ ⊗ Wλ.

Let g = sl(V ,W). Recall that T m,n = V ⊗m ⊗ W⊗n. Then

T m,n =
⊕

|λ|=n, |μ|=m

Cλ ⊗ Cμ ⊗ Vλ ⊗ Wμ.

Note that, as a g-module T (V,W) := ⊕
m,n≥0 T m,n is not completely reducible.

This follows simply from the observation that the exact sequence

0 → g → V ⊗ W → C → 0

does not split as V ⊗W has no trivial submodule. In [PStyr] the structure of T (V,W)

has been studied in detail for countable-dimensional V and W .
For each ordered set I = {i1, . . . , ik, j1, . . . , jk}, where i1, . . . , ik ∈ {1, . . . ,m} ,

j1, . . . , jk ∈ {1, . . . , n} , k ≤ min {m,n} , there is a well-defined surjective
morphism of g-modules

ϕI : T m,n −→ T m−k,n−k
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such that

ϕI (v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wn) =
∏

s

ϕ(vis ⊗ wjs )(⊗i =is vi) ⊗ (⊗j =js wj )

for s = 1, . . . , k, where ϕ : V ⊗ W → C is the linear operator induced by the
pairing V × W → C.

We now define a filtration of T m,n by setting

F
m,n
0 := 0, F

m,n
k := ∩I ker ϕI for k = 1, . . . , min{m,n}, F

m,n
min{m,n}+1 := T m,n,

(5)
where I runs over all ordered sets {i1, . . . , ik, j1, . . . , jk} as above.

Let |λ| = m, |μ| = n. We set

Vλ,μ := F
m,n
1 ∩ (Vλ ⊗ Wμ).

Note that, for sufficiently large finite-dimensional nondegenerate pairs Vf ⊂
V,Wf ⊂ W , the sl(Vf ,Wf )-module T (Vf ,Wf ) ∩ Vλ,μ is simple. Therefore Vλ,μ

is a simple sl(V ,W)-module.

Theorem 4.1. {Fm,n
k }0≤k≤min{m,n}+1 is the socle filtration of T m,n as a sl(V ,W)-

module.

Proof. In [PStyr] this theorem is proven in the countable-dimensional case. Here
we give a proof for arbitrary V and W .

Recall that if M is a g-module, Mg stands for the space of g-invariants in M .

Lemma 4.2. Let g = sl(V ,W) (respectively, o(V ) or sp(V )). Then (T m,n)g = 0
for m + n > 0 (respectively, (T m)g = 0 for m > 0).

Proof. We prove the statement for g = sl(V ,W) and m > 0. The other cases are
similar. Let u ∈ T m,n = V ⊗m ⊗ W⊗n, u = 0. Then u ∈ V ⊗m

f ⊗ W⊗n
f for some

finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W . Choose bases in Vf and
Wf and write

u =
t∑

i=1

civ
i
1 ⊗ · · · ⊗ vi

m ⊗ wi
1 ⊗ · · · ⊗ wi

n,

where all vi
j and wi

j are basis vectors respectively of Vf and Wf . Pick w ∈ W such

that tr(v1
1 ⊗w) = 1 and tr(vi

j ⊗w) = 0 for all vi
j = v1

1. Let v ∈ V \Vf and w ∈ W⊥
f .

Then

(v⊗w)·u =
t∑

i=1

m∑

j=1

ci tr(vi
j ⊗w)vi

1⊗· · ·⊗vi
j−1⊗v⊗vi

j+1⊗· · ·⊗vi
m⊗wi

1⊗· · ·⊗wi
n.
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Our choice of v and w ensures that at least one term in the right-hand side is not
zero and there is no repetition in the tensor monomials appearing with nonzero
coefficients. That implies (v ⊗ w) · u = 0. Hence u /∈ (V ⊗m ⊗ W⊗n)g. ��
Lemma 4.3. Let g = sl(V ,W). If Homg(Vλ,μ, T m,n) = 0, then |λ| = m, |μ| = n.

Proof. Choose a finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W such that
dimVf ≥ max{m,n, |λ|, |μ|}. Then (Vf )λ,μ := T (Vf ,Wf ) ∩ Vλ,μ is annihilated
by the finite corank subalgebra k = sl(W⊥

f , V ⊥
f ) of g. Let l = sl(Vf ,Wf )⊕ k. Then

Homl((Vf )λ,μ, T m,n) = Homsl(Vf ,Wf )((Vf )λ,μ, (T m,n)k)

= Homsl(Vf ,Wf )((Vf )λ,μ, V ⊗m
f ⊗ W⊗n

f ).

Therefore a homomorphism ϕ ∈ Homg(Vλ,μ, T m,n) has a well-defined restric-
tion ϕf ∈ Homsl(Vf ,Wf )((Vf )λ,μ, V ⊗m

f ⊗ W⊗n
f ). According to finite-dimensional

representation theory, ϕf = 0 implies that ϕf is a composition

(Vf )λ,μ → (V
⊗|λ|
f ⊗W

⊗|μ|
f )⊗ (V

⊗(m−|λ|)
f ⊗W

⊗(n−|μ|)
f )sl(Vf ,Wf ) −→ V ⊗m

f ⊗W⊗n
f .

Since ϕ is the inverse limit of ϕf , ϕ is a composition

Vλ,μ → T |λ|,|μ| ⊗ (T m−|λ|,n−|μ|)sl(V ,W) −→ T m,n.

However, by Lemma 4.2, (T m−|λ|,n−|μ|)sl(V ,W) = 0 only if |λ| = m, |μ| = n. ��
Note that Lemma 4.3 implies

socT m,n = soc1T m,n = F
m,n
1 . (6)

Consider now the exact sequence

0 → F
m,n
k−1 → T m,n →

⊕

I

T m−k+1,n−k+1, (7)

where I runs over the same set as in (5). It follows from (6) that (7) induces an exact
sequence

0 → F
m,n
k−1 → F

m,n
k →

⊕

I

F
m−k+1,n−k+1
1 .

Therefore induction on k yields sock T m,n = F
m,n
k . Theorem 4.1 is proved. ��

As a corollary we obtain that the sl(V ,W)-module Vλ ⊗ Wμ is indecomposable
since its socle Vλ,μ is simple. Further one shows that any simple subquotient of
T (V,W) is isomorphic to Vλ,μ for an appropriate pair of partitions λ,μ. The k-th
layer of the socle filtration of Vλ⊗Wμ, i.e., the quotient sock(Vλ⊗Wμ)/sock−1(Vλ⊗
Wμ), can have only simple constituents isomorphic to Vλ′,μ′ where λ′ is obtained
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from λ by removing k−1 boxes and μ′ is obtained from μ by removing k−1 boxes.
An explicit formula for the multiplicity of Vλ′μ′ in sock(Vλ⊗Wμ)/sock−1(Vλ⊗Wμ)

is given in [PStyr].
Next, consider the associative algebra Asl(V ,W) ⊂ Endsl(V ,W)(T (V,W))

generated by all contractions ϕi,j and by the direct sum of group algebras⊕
m,n≥0 C[Sm × Sn]. It is clear that Asl(V ,W) does not depend on the choice

of the linear system V × W → C. In what follows we use the notation
Asl. One can equip Asl with a Z≥0-grading Asl = ⊕

q≥0(Asl)q by
setting (Asl)q := ⊕

m,n≥0 Homsl(V ,W)(T
m,n, T m−q,n−q ) ∩ Asl. If we set

T ≤r (V ,W) := ⊕
m+n≤r T m,n and denote by A(r)

sl the intersection of Asl with

Endsl(V ,W)(T
≤r (V ,W)), then, obviously, Asl = lim−→A(r)

sl .
The following statement is a central result in [DPS].

Proposition 4.4. (a) If V is countable dimensional, then

(Asl)q =
⊕

m,n≥0

Homsl(V ,V∗) (T m,n, T m−q,n−q ).

(b) A(r)
sl is a Koszul self-dual ring for any r ≥ 0.

Now let g = o(V ) (respectively, sp(V )). Recall that T m = V ⊗m. Assume
m ≥ 2. For a pair of indices 1 ≤ i < j ≤ m we have a contraction map
ϕi,j ∈ Homg(V ⊗m, V ⊗m−2). If V is countable dimensional, the socle filtration
of T (V ) considered as a g-module is described in [PStyr]. Recall the decomposition
(4). Each Vλ is an indecomposable g-module with simple socle which we denote by
Vλ,g. Moreover,

sock Vλ = sock (Vλ ∩ V ⊗|λ|) = Vλ ∩ (∩I1,...,Ik ker (ϕI1,...,Ik : V ⊗|λ| → V ⊗|λ|−2k)),

where I1, . . . , Ik run over all sets of k distinct pairs of indices 1, . . . , |λ| and
ϕI1,...,Ik = ϕI1 ◦ · · · ◦ ϕIk .

Next, let Ag ⊂ Endg(T (V )) be the graded subalgebra of Endg(T (V )) generated
by

⊕
m≥0 C[Sm] and the contractions ϕi,j . We define a Z≥0− grading Ag =⊕

q≥0(Ag)q by setting

(Ag)q :=
⊕

m≥0

Homg(T
m, T m−2q) ∩ Ag.

If we set T ≤r (V ) := ⊕
m≤r T m and denote by A(r)

g the intersection of Ag with

Endg(T ≤r (V )), then Ag = lim→ A(r)
g . It is clear that the algebra Ag can depend

only on the symmetry type of the form on V but not on V and the form itself. This
justifies the notations Ao and Asp.
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Proposition 4.5 ([DPS]).

(a) A(r)
o � A(r)

sp for each r ≥ 0, and Ao � Asp.
(b) If V is countable dimensional, then (Ao)q = ⊕

m≥0 Homo(V )(T
m, T m−2q),

(Asp)q = ⊕
m≥0 Homsp(V )(T

m, T m−2q).

(c) A(r)
o � A(r)

sp is a Koszul ring for any r ≥ 0.

In each of the three cases g = sl(∞), o(∞), sp(∞) we call the modules Vλ,μ,
respectively Vλ,g, the simple tensor modules of g.

5 The Category Tg

5.1 The Countable-Dimensional Case

In this subsection we assume that g = sl(V , V∗), o(V ) or sp(V ) for a countable-
dimensional space V . The category Tg has been studied in [DPS], and here we
review some key results.

Denote by G̃ the group of automorphisms of V under which V∗ is stable for
g = sl(V , V∗), and the group of automorphisms of V which keep fixed the form on
V which defines g. The group G̃ is a subgroup of Autg and therefore acts naturally
on isomorphism classes of g-modules: to each g-module M one assigns the twisted
g-module Mg̃ for g̃ ∈ G̃. A g-module M is G̃-invariant if M � Mg̃ for all g̃ ∈ G̃.

Furthermore, define a g-module M to be an absolute weight module if the
decomposition (2) holds for any local Cartan subalgebra of g, i.e., if M is a weight
module for any local Cartan subalgebra h of g. In [DPS] we have given five
equivalent characterizations of the objects of Tg.

Theorem 5.1 ([DPS]). The following conditions on a g-module M of finite length
are equivalent:

(i) M is an object of Tg;
(ii) M is a weight module for some local Cartan subalgebra h ⊂ g and M is

G̃-invariant;
(iii) M is a subquotient of T (V ⊕ V∗) for g = sl(V , V∗) (respectively, of T (V ) for

g = o(V ), sp(V ));
(iv) M is a submodule of T (V ⊕ V∗) for g = sl(V , V∗) (respectively, of T (V ) for

g = o(V ), sp(V ));
(v) M is an absolute weight module.

Furthermore, the following two theorems are crucial for understanding the
structure of Tg.

Theorem 5.2 ([PS, DPS]). The simple objects in the categories T̃ensg and Tg

coincide and are all of the form Vλ,μ for g = sl(V , V∗), or respectively Vλ,g for
g = o(V ), sp(V ).
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Theorem 5.3 ([DPS]).

(a) Tg has enough injectives. If g = sl(V , V∗), then Vλ ⊗ (V∗)μ is an injective hull
of Vλ,μ. If g = o(V ) or sp(V ), then Vλ is an injective hull of Vλ,g.

(b) Tg is anti-equivalent to the category of locally unitary finite-dimensional
Ag−modules.

Theorem 5.3 means that the category Tg is “Koszul” in the sense that it is anti-
equivalent to a module category over the infinite-dimensional Koszul algebra Ag.

Corollary 5.4. To(∞) and Tsp(∞) are equivalent abelian categories.

In fact, the stronger result that To(∞) and Tsp(∞) are equivalent as monoidal
categories also holds, see [SS] and [S].

5.2 The General Case

In this subsection we prove the following result.

Theorem 5.5. Let g = sl(V ,W), o(V ), sp(V ). Then, as a monoidal category, Tg

is equivalent to Tsl(∞) or To(∞).

The proof of Theorem 5.5 is accomplished by proving several lemmas and
corollaries.

Lemma 5.6. (a) Let g = sl(V ,W) and Cm,n := Homg(T
m,n,C). If m = n, then

Cm,n = 0, and if m = n, then Cm,m is spanned by τπ for all π ∈ Sm, where

τπ(v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wm) =
m∏

i=1

tr(vi ⊗ wπ(i)).

(b) Let g = o(V ) or sp(V ). Then Homg(T
2m+1,C) = 0 and Homg(T

2m,C) is
spanned by σπ for all π ∈ Sm, where

σπ (v1 ⊗ · · · ⊗ v2m) =
m∏

i=1

(vi , vm+π(i)).

Proof. In the finite-dimensional case the same statement is the fundamental theorem
of invariant theory. Since T m,n for g = sl(V ,W) (respectively, T m for g =
o(V ), sp(V )) is a direct limit of finite-dimensional representations of the same type,
the statement follows from the fundamental theorem of invariant theory. ��

Let L be a g-module and let g′ denote a subalgebra of g of the form sl(V ′,W ′)
(respectively, o(V ′), sp(V ′)) for some nondegenerate pair V ′ ⊂ V,W ′ ⊂ W
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(respectively, nondegenerate subspace V ′ ⊂ V ). Let (V ′
f ,W ′

f ) be a finite-
dimensional nondegenerate pair satisfying V ′

f ⊂ V ′,W ′
f ⊂ W ′ (respectively, V ′

f ⊂
V ′) and let k′ = sl((W ′

f )⊥, (V ′
f )⊥) ⊂ g (respectively k′ = o((V ′

f )⊥), sp(V ′
f )⊥)).

Then Lk′
is an sl(W ′

f , V ′
f )-module (respectively, an o(V ′

f )− or sp(V ′
f )-module),

and moreover if we let k′ vary, the corresponding sl(V ′
f ,W ′

f )-modules (respectively,
o(V ′

f )− or sp(V ′
f )-modules) form a directed system whose direct limit

Γ ann
g′ (L) = lim−→Lk′

is a g′-module. Note that Γ ann
g′ (L) may simply be defined as the union

⋃
k′ Lk′

of

subspaces Lk′ ⊂ L.
It is easy to check that Γ ann

g′ is a well-defined functor from the category g−mod
to its subcategory of g′−mod consisting of modules satisfying the large annihilator
condition. In particular, Γ ann

g is a well-defined functor from g−mod to the category
of g-modules satisfying the large annihilator condition, and the restriction of Γ ann

g
to Tg is the identity functor.

In the case when g′ is finite dimensional the functor Γ ann
g′ and its right derived

functors are studied in detail in [SSW].

Lemma 5.7. (a) Let g = sl(V ,W); then

Γ ann
g ((T m,n)∗) �

⊕

k≥0

bkT
n−k,m−k

where bk = (
m
k

)(
n
k

)
k!.

(b) Let g = o(V ) or sp(V ), then

Γ ann
g ((T m)∗) �

⊕

k≥0

ckT
m−2k

where ck = (
m
2k

)
k!.

Proof. We prove (a) and leave (b) to the reader. Choose a finite-dimensional
nondegenerate pair Vf ⊂ V,Wf ⊂ W , and let k = sl(W⊥

f , V ⊥
f ). There is an

isomorphism of k-modules

(T m,n)∗ = (V ⊗m⊗W⊗n)∗ �
⊕

k≥0,l≥0

dk,l(W
⊗m−k
f ⊗V ⊗n−l

f )⊗((V ⊥
f )⊗k⊗(W⊥

f )⊗l )∗

(8)
where dk,l = (

m
k

)(
n
l

)
.
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Using (8) and Lemma 5.6 (a) applied to k in place of g, we compute that

(
(T m,n)∗

)k �
⊕

k≥0

bk(W
⊗m−k
f ⊗ V ⊗n−k

f ).

Now the statement follows by taking the direct limit of k-invariants over all
nondegenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W . ��
Corollary 5.8. T m,n is an injective object of Tsl(V ,W), and T m is an injective
object of Tg for g = o(V ), sp(V ).

Proof. We consider only the case g = sl(V ,W). Recall (Theorem 2.1) that if M

is an integrable module such that M∗ is integrable, then M∗ is injective in Intg. In
particular, (T m,n)∗ is injective in Intg. Next, note that Γ ann

g is right adjoint to the
inclusion functor Tg � Intg, i.e., for any L ∈ Tg and any Y ∈ Intg, we have

Homg(L, Y ) = Homg(L, Γ ann
g (Y )).

Hence, Γ ann
g transforms injectives in Intg to injectives in Tg. This implies that

Γ ann
g ((T n,m)∗) is injective in Tg. By Lemma 5.7, T m,n is a direct summand in

Γ ann
g ((T n,m)∗), and the statement follows. ��

Next we impose the condition that our fixed subalgebra g′ ⊂ g is countable
dimensional. In the rest of the paper we set gc := g′. More precisely, we choose
strictly increasing chains of finite-dimensional subspaces

V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ Vi+1 ⊂ . . . , W1 ⊂ W2 ⊂ . . . ⊂ Wi ⊂ Wi+1 ⊂ . . .

and set gc = sl(Vc,Wc) where Vc := lim−→Vi,Wc := lim−→Wi . It is clear that Vc ×
Wc → C is a countable-dimensional linear system, hence gc � sl(∞). If g =
o(V ), sp(V ), choose a strictly increasing chain of nondegenerate finite-dimensional
subspaces V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ Vi+1 ⊂ . . . and set Vc := lim−→ Vi , gc =
o(Vc), sp(Vc).

By Φ we denote the restriction of Γ ann
gc

to Tg. Note that for any L ∈ Tg, Φ(L)

is a gc-submodule of L.

Lemma 5.9. Let L,L′ ∈ Tg.

(a) Φ(L) generates L.
(b) The homomorphism Φ(L,L′) : Homg(L,L′) → Homgc (Φ(L),Φ(L′)) is

injective.

Proof. Again we consider only the case g = sl(V ,W) since the other cases are
similar. Let SL(V,W) denote the direct limit group lim−→ SL(Vf ,Wf ) for all non-
degenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W , where SL(Vf ,Wf ) �
SL(dim Vf ).
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(a) Since L has finite length and satisfies the large annihilator condition, there
is a finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W and a finite-
dimensional gl(Vf ,Wf )-submodule Lf ⊂ L annihilated by sl((Wf )⊥, (Vf )⊥)

such that L is generated by Lf over g. Choose i so that dimVf < dimVi . Then
there exists g ∈ SL(V,W) such that g(Vf ) ⊂ Vi, g(Wf ) ⊂ Wi . Note that
g = exp x for some x ∈ sl(V ,W). By the integrability of L as a g-module, the
action of g is well defined on L, and g(Lf ) also generates L over g. On the
other hand, by construction g(Lf ) is annihilated by gsl((Wf )⊥, (Vf )⊥)g−1.
Observe that

sl((Wi)
⊥, (Vi)

⊥) ⊂ sl(g(Wf )⊥, g(Vf )⊥) = gsl((Wf )⊥, (Vf )⊥)g−1.

Hence g(Lf ) ⊂ Φ(L). The statement follows.
(b) Follows immediately from (a). ��
Lemma 5.10. (a) Φ(T m,n) = V ⊗m

c ⊗W⊗n
c for g = sl(V ,W), and Φ(T m) = V ⊗m

c

for g = o(V ), sp(V );
(b) The homomorphisms

Φ(T m,n, T k,l) : Homg(T
m,n, T k,l) → Homgc (V

⊗m
c ⊗ W⊗n

c , V ⊗k
c ⊗ W⊗l

c )

for g = sl(V ,W), and

Φ(T m, T k) : Homg(T
m, T k) → Homgc (V

⊗k
c , V ⊗k

c )

for g = o(V ) or sp(V ), are isomorphisms.
(c) Let X ⊂ ⊕

i V
⊗mi
c ⊗ W

⊗ni
c , (respectively, X ⊂ ⊕

i V
mi
c for g = o(V ), sp(V ))

be a gc-submodule. Then Φ(U(g) · X) = X.
(d) If X ⊂ V ⊗m

c ⊗ W⊗n
c (respectively, X ⊂ ⊕

i V
mi
c for g = o(V ), sp(V )) is a

simple submodule, then U(g) · X is a simple g-module.

Proof. (a) follows easily from the observation that

(T m,n)k = V ⊗m
i ⊗ W⊗n

i

for any finite corank subalgebra k = sl(W⊥
i , V ⊥

i ). This observation is a straightfor-
ward consequence of Lemma 4.2.

To prove (b), note that the injectivity of the homomorphisms Φ(T m,n, T k,l)

follows from (a) and Lemma 5.9 (b). To prove surjectivity, we observe that
Homgc (V

⊗m
c ⊗ W⊗n

c , V ⊗k
c ⊗ W⊗l

c ) is generated by permutations and contractions
according to Proposition 4.5 (b). Both are defined in Homg(T

m,n, T k,l) by the same
formulae. Therefore the homomorphisms Φ(T m,n, T k,l) are surjective.
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We now prove (c). Note that X = kerα for some α ∈ Homgc (
⊕

i V
⊗mi
c ⊗

W
⊗ni
c ,

⊕
j V

⊗mj
c ⊗ W

⊗nj
c ). Using (b) we have U(g) · X ⊂ kerΦ−1(α). Hence,

Φ(U(g) · X) ⊂ kerα = X. Since the inclusion X ⊂ Φ(U(g) · X) is obvious, the
statement follows.

To prove (d), suppose U(g) · X is not simple, i.e., there is an exact sequence

0 → L → U(g) · X → L′ → 0

for some nonzero L,L′. By the exactness of Φ and by (c), we have an exact
sequence

0 → Φ(L) → X → Φ(L′) → 0.

By Lemma 5.9 (a), Φ(L) and Φ(L′) are both nonzero. This contradicts the
assumption that X is simple. ��
Lemma 5.11. For g = sl(V ,W) (respectively, for g = o(V ), sp(V )) any simple
object in the category Tg is isomorphic to a submodule in T m,n for suitable m and
n (respectively, in T m for a suitable m).

Proof. We assume that g = sl(V ,W) and leave the other cases to the reader. Let L

be a simple module in Tg. By Lemma 5.9 (a), Φ(L) = 0. Let Li = Lsl(W⊥
i ,V ⊥

i ) = 0
for some i, and let L′ ⊂ Li be a simple sl(Vi,Wi)-submodule. Consider the Z-
grading g = g−1 ⊕ g0 ⊕ g1 where g0 = gl(Vi,Wi) ⊕ sl(W⊥

i , V ⊥
i ), g1 = Vi ⊗ V ⊥

i ,
g−1 = W⊥

i ⊗ Wi . There exists a finite-dimensional subspace W ′ ⊂ V ⊥
i , such that

S(Vi ⊗ W ′) generates S(g1) as a module over sl(W⊥
i , V ⊥

i ). By the integrability of
L, (Vi ⊗W ′)q ·L′ = 0 for sufficiently large q ∈ Z≥0, and thus (g1)q ·L′ = 0. Hence,
there is a nonzero vector l ∈ Li ⊂ L annihilated by g1, and consequently there is
a simple g0-submodule L

′′ ⊂ L annihilated by g1. Therefore L is isomorphic to a
quotient of the parabolically induced module U(g)⊗U(g0⊕g1) L

′′
. The latter module

is a direct limit of parabolically induced modules for finite-dimensional subalgebras
of g. Hence it has a unique integrable quotient, and this quotient is isomorphic to
L. On the other hand, L

′′
is a simple g0-submodule of T m,n for some m and n.

Thus, by Frobenius reciprocity, a quotient of U(g) ⊗U(g0⊕g1) L" is isomorphic to a
submodule of T m,n. Since T m,n is integrable, this quotient is isomorphic to L. ��
Corollary 5.12. (a) If g=sl(V ,W), thenAsl=⊕

m,n,q Hom g(T
m,n, T m−q,n−q).

If g = o(V ), sp(V ), then Ag = ⊕
m,q Hom (T m, T m−2q ). Furthermore,

Asl = lim−→ Endg(
⊕

m+n≤r

T m,n),

and for g = o(V ), sp(V )
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Ao = lim−→ Endg(
⊕

m≤r

T m).

(b) Up to isomorphism, the objects of Tg are precisely all finite length submodules
of T (V,W)⊕k for g = sl(V ,W), and of T (V )⊕k for g = o(V ), sp(V ). Equiv-
alently, up to isomorphism, the objects of Tg are the finite length subquotients
of T (V,W)⊕k for g = sl(V ,W), and of T (V )⊕k for g = o(V ), sp(V ).

Proof. Claim (a) is a consequence of Lemma 5.10. Claim (b) follows from
Lemma 5.11 and Corollary 5.8. ��
Lemma 5.13. For any L ∈ Tg, Φ(L) ∈ Tgc . Moreover, the functor Φ : Tg → Tgc

is fully faithful and essentially surjective.

Proof. By Corollary 5.12 (b), L is isomorphic to a submodule in a direct sum of
finitely many copies of T (V,W). Then Φ(L) is isomorphic to a submodule in a
direct sum of finitely many copies of T (Vc,Wc). That implies the first assertion.
The fact that Φ is faithful follows from Lemma 5.9 (b).

To prove that Φ is full, consider L,L′ ∈ Tg and let I (L), I (L′) denote respective
injective hulls in Tg. Then

Homg(L,L′) ⊂ Homg(I (L), I (L′))

and

Homgc (Φ(L),Φ(L′)) ⊂ Homgc (Φ(I (L)),Φ(I (L′))).

By Corollary 5.12 (a), the homomorphism

Φ(I (L), I (L′)) : Homg(I (L), I (L′)) → Homgc (Φ(I (L)),Φ(I (L′)))

is surjective. Therefore for any ϕ ∈ Homgc (Φ(L),Φ(L′)) there exists ψ ∈
Homg(I (L), I (L′)) such that ψ(Φ(L)) ⊂ Φ(L′). By Lemma 5.9 Φ(L) and Φ(L′)
generate respectively L and L′. Hence ψ(L) ⊂ L′. Thus, we obtain that the
homomorphism

Φ(L,L′) : Homg(L,L′) → Homgc (Φ(L),Φ(L′))

is also surjective.
To prove that Φ is essentially surjective, we use again Corollary 5.12 (b). We note

that any L ∈ Tg is isomorphic to the kernel of ϕ ∈ Hom(T (V,W)⊕k, T (V,W)⊕l )

for some k and l and then apply Corollary 5.12 (a). ��
Observe that Lemma 5.13 implies that

Φ : Tg → Tgc
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an equivalence of the abelian categories Tg and Tgc . To prove Theorem 5.5 it
remains to check that Φ is an equivalence of monoidal categories. We therefore
prove the following.

Lemma 5.14. If L,N ∈ Tg, then Φ(L ⊗ N) � Φ(L) ⊗ Φ(N).

Proof. We just consider the case sl(V ,W) as the orthogonal and symplectic cases
are very similar. Let k = sl(W⊥

f , V ⊥
f ) for some finite-dimensional nondegenerate

pair Vf ⊂ V,Wf ⊂ W . We claim that

(L ⊗ N)k = Lk ⊗ Nk.

Indeed, using Lemma 4.2 one can easily show that

(T m,n)k = V ⊗m
f ⊗ W⊗n

f ,

which implies the statement in the case when L and N are injective. For arbitrary
L and N consider embeddings L ↪→ I and N ↪→ J for some injective I, J ∈ Tg.
Then

(L ⊗ N)k = (L ⊗ N) ∩ (I ⊗ J )k = (L ⊗ N) ∩ (I k ⊗ J k) = Lk ⊗ Nk.

Now we set k = sl(W⊥
i , V ⊥

i ) and finish the proof by passing to the direct limit.
��

The proof of Theorem 5.5 is complete. �

6 Mackey Lie Algebras

Let V × W → C be a linear system. Then each of V and W can be considered as
subspace of the dual of the other:

V ⊂ W∗, W ⊂ V ∗.

Let EndW(V ) denote the algebra of endomorphisms ϕ : V → V such that ϕ∗(W) ⊂
W where ϕ∗ : V ∗ → V ∗ is the dual endomorphism. Clearly, there is a canonical
anti-isomorphism of algebras

EndW (V )
∼→ EndV (W), ϕ �−→ ϕ∗|W .

We call the Lie algebra associated with the associative algebra EndW(V ) (or
equivalently EndV (W)) a Mackey Lie algebra and denote it by glM(V,W).

Note that if V, W is a linear system, then for any subspaces W ′ ⊂ V ∗ with
W ⊂ W ′, and V ′ ⊂ W∗ with V ⊂ V ′, the pairs V, W ′ and V ′, W are linear
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systems. In particular V, V ∗ is a linear system and W∗, W is a linear system.
Clearly, glM(V, V ∗) coincides with the Lie algebra of all endomorphisms of V

(respectively, glM(W∗,W) is the Lie algebra of all endomorphisms of W ). Hence
glM(V,W) ⊂ glM(V, V ∗), glM(V,W) ⊂ glM(W∗,W). If V and W = V∗
are countable dimensional, the Lie algebra glM(V, V∗) is identified with the Lie
algebra of all matrices X = (xij )i≥1,j≥1 such that each row and each column
of X have finitely many nonzero entries. The Mackey Lie algebra glM(V, V ∗)
(for a countable dimensional space V ) is identified with the Lie algebra of all
matrices X = (xij )i≥1,j≥1 each column of which has finitely many nonzero entries.
Alternatively, if a basis of V as above is enumerated by Z (i.e., we consider a basis
{vj }j∈Z such that V∗ = span{v∗

j }j∈Z where v∗
j (vi) = 0 for j = i, v∗

j (vj ) = 1),

then glM(V, V∗) is identified with the Lie algebra of all matrices (xij )i,j∈Z whose
rows and columns have finitely many nonzero entries, and glM(V, V ∗) is identified
with the Lie algebra of all matrices (xij )i,j∈Z whose columns have finitely many
nonzero entries.

Obviously V and W are glM(V,W)-modules. Moreover, V and W are not
isomorphic as glM(V,W)-modules.

It is easy to see that gl(V ,W) = V ⊗ W is the subalgebra of glM(V,W)

consisting of operators with finite-dimensional images in both V and W , and that
it is an ideal in glM(V,W). Furthermore, the Lie algebra glM(V,W) has a 1-
dimensional center consisting of the scalar operators CId.

We now introduce the orthogonal and symplectic Mackey Lie algebras. Let
V be a vector space endowed with a nondegenerate symmetric (respectively,
antisymmetric) form, then oM(V ) (respectively, spM(V )) is the Lie algebra

{X ∈ End(V ) | (X · v,w) + (v,X · w) = 0 ∀ v,w ∈ V }.

If V is countable dimensional, there always is a basis {vi, wj }i,j∈Z of V such that
span{vi}i∈Z and span{wj }j∈Z are isotropic spaces and (vi , wj ) = 0 for i = j ,
(vi , wi) = 1. The corresponding matrix form of oM(V ) consists of all matrices

(
aij bkl

crs −aji

)
(9)

each row and column of which are finite and in addition bkl = −blk, crs = −csr

where i, j, k, l, r, s ∈ Z. The matrix form for spM(V ) is similar: here bkl =
blk, crs = csr .

It is clear that o(V ) ⊂ oM(V ) and sp(V ) ⊂ spM(V ):

(v ∧ w) · x = (v, x)w − (x,w)v for v ∧ w ∈ Λ2V = o(V ), x ∈ V

and

(vw) · x = (v, x)w − (x,w)v for vw ∈ S2V = sp(V ), x ∈ V.
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Moreover, o(V ) is an ideal in oM(V ) and sp(V ) is an ideal in spM(V ), since
both Λ2V and S2V consist of the respective operators with finite-dimensional image
in V .

In this way we have the following exact sequences of Lie algebras:

0 → gl(V ,W) → glM(V,W) → glM(V,W)/gl(V ,W) → 0,

0 → o(V ) → oM(V ) → oM(V )/o(V ) → 0,

0 → sp(V ) → spM(V ) → spM(V )/sp(V ) → 0.

Lemma 6.1. sl(V ,W) (respectively, o(V ), sp(V )) is the unique simple ideal in
glM(V,W) (respectively, oM(V ), spM(V )).

Proof. We will prove that if I = CId is a nonzero ideal in glM(V,W), then I

contains sl(V ,W). Indeed, assume that X ∈ I and X = cId. Then one can find v ∈
V and w ∈ W such that X · v is not proportional to v and X∗ · w is not proportional
to w. Hence, Z = [X, v⊗w] = (X ·v)⊗w−v⊗(X ·w) ∈ gl(V ,W)∩I and Z = 0.
Since sl(V ,W) is the unique simple ideal in gl(V ,W) and gl(V ,W) ∩ I = 0, we
conclude that sl(V ,W) ⊂ I .

The two other cases are similar and we leave them to the reader. ��
Corollary 6.2. (a) Two Lie algebras glM(V,W) and glM(V ′,W ′) are isomorphic

if and only if the linear systems V ×W → C and V ′×W ′ → C are isomorphic.
(b) Two Lie algebras oM(V ) and oM(V ′) (respectively, spM(V ) and spM(V ′)) are

isomorphic if and only if there is an isomorphism of vector spaces V � V ′
transferring the form defining oM(V ) (respectively spM(V )) into the form
defining oM(V ′) (respectively, spM(V ′)).

Proof. The statement follows from Proposition 1.1 and Lemma 6.1. ��

The following is our main result about the structure of Mackey Lie algebras.

Theorem 6.3. Let V be a countable-dimensional vector space.

(a) gl(V , V∗) ⊕ CId is an ideal in glM(V, V∗) and the quotient

glM(V, V∗)/ (gl(V , V∗) ⊕ CId)

is a simple Lie algebra.
(b) gl(V , V ∗) ⊕CId is an ideal in End(V ) and the quotient End(V )/ (gl(V , V ∗)⊕

CId) is a simple Lie algebra.
(c) If V is equipped with a nondegenerate symmetric (respectively, antisymmetric)

bilinear form, then oM(V )/o(V ) (respectively spM(V )/sp(V )) is a simple Lie
algebra.

Proof. The proof is subdivided into lemmas and corollaries.



Tensor Representations of Mackey Lie Algebras and Their Dense Subalgebras 319

Note that gl(V , V∗) ⊂ gl(V , V ∗) ⊂ glM(V, V ∗) = End(V ). In what follows we
fix a basis {vi}i≥1 in V and use the respective identification of gl(V , V∗), glM(V, V∗)
and glM(V, V ∗) = End(V ) with infinite matrices. By Eij we denote the elementary
matrix whose only nonzero entry is 1 at position i, j .

Lemma 6.4. Let gM = glM(V, V∗), End(V ). Assume that an ideal I ⊂ gM

contains a diagonal matrix D /∈ gl(V , V∗) ⊕ CId. Then I = gM .

Proof. We first assume that D = ∑
i≥1 diEii satisfies di = dj for all i = j . Then

[D, gM ] = gM
0 , where gM

0 is the space of all matrices in gM with zeroes on the
diagonal. Consequently, gM

0 ⊂ I . Furthermore, any diagonal matrix
∑

i siEii can
be written as the commutator

⎡

⎣
∑

i≥1

Ei i+1,
∑

j≥1

tjEj+1 j

⎤

⎦

with tj = ∑j

i=1 si . Hence, I = gM .
We now consider the case of an arbitrary D ∈ I . After permuting the basis

elements of V , we can assume that D = ∑
i≥1 diEii with d2m−1 = 0 and d2m−1 =

d2m for all m > 0. Let

X :=
∞∑

m=1

1

d2m − d2m−1
E2m 2m−1, Y :=

∞∑

m=1

smE2m−1 2m,

where sm = ±sl for m = l. Then [Y, [X,D]] = s1E11 − s1E22 + s2E33 − s2E44 +
· · · ∈ I , and we reduce this case to the previous one. ��
Lemma 6.5. Let y = (yij ) ∈ gl(n) be a nonscalar matrix. There exist u, v,w ∈
gl(n) such that [u, [v, [w, y]]] is a nonzero diagonal matrix.

Proof. If y is not diagonal, pick i = j such that yij = 0. Set w = Eii, v =
Ejj , u = Eji . If y is diagonal, pick i = j such that yii = yjj and set w = Eij , v =
Eii, u = Eji . ��
Corollary 6.6. Let

∏
i gl(ni) for ni ≥ 2 be a block subalgebra of gM . Suppose that

X ∈ (∏
i gl(ni)

) ∩ I for some ideal I ⊂ gM and that X /∈ gl(V , V∗) ⊕ CId. Then
I = gM .

Proof. Let X = ∏
i Xi, where Xi ∈ gl(ni). Without loss of generality we may

assume that infinitely many Xi are not diagonal, as otherwise X is diagonal modulo
gl(V , V∗) and the result follows from Lemma 6.4. Now pick ui, vi , wi ∈ gi as
in Lemma 6.5. Set u = ∏

i ui , v = ∏
i vi , w = ∏

i wi . Then Z = [u,[v,[w,X]]
is diagonal. By normalizing ui we can ensure that Z /∈ CId. Since Z ∈ I , the
statement follows from Lemma 6.4. ��
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Lemma 6.7. For any X = (xij )i≥1,j≥1 ∈ glM(V, V∗) there exists an increasing
sequence i1 < i2 < . . . such that xij = 0 unless i, j ∈ [ik, ik+2 − 1] for some k.

Proof. Set i1 = 1,

i2 = max{j | x1j = 0 or xj1 = 0} + 1,

and construct the sequence recursively by setting

ik = max{j > ik−1 | xij = 0 or xji = 0 for some ik−2 ≤ i < ik−1} + 1.

��
We are now ready to prove Theorem 6.3 (a).

Corollary 6.8 (Theorem 6.3 (a)). Let an ideal I of gl(V , V∗) be not contained in
gl(V , V∗) ⊕ CId. Then I = glM(V, V∗).

Proof. Let X ∈ I\{gl(V , V∗) ⊕ CId}. Pick i1 < i2 < . . . as in Lemma 6.7 and set

D = diag(1, . . . , 1︸ ︷︷ ︸
i2−1

, 2, . . . , 2︸ ︷︷ ︸
i3−i2

, 3, . . . , 3︸ ︷︷ ︸
i4−i3

, . . . ).

Then X = X−1 + X0 + X1 where [D,Xi ] = iXi . If X0 /∈ gl(V , V∗) ⊕ CId we
are done by Corollary 6.6 as X0 is a block matrix. Otherwise, at least one of X1 and
X−1 does not lie in gl(V , V∗).

Assume for example that X1 = (xij ) /∈ gl(V , V∗). Then there exist infinite
sequences {i1 < i2 < . . . } and {j1 < j2 < . . . } such that xisjs = 0. Moreover,
we may assume that . . . < is ≤ js < is+1 ≤ js+1 < . . . . Set Y = ∑

s≥1 Ejsis .
Then [Y,X1] ∈ I is a block matrix and we can again use Corollary 6.6. ��

Next we prove Theorem 6.3 (b).
Let I be an ideal in End(V ). Assume that I is not contained in gl(V , V ∗) ⊕ CId.

Let X ∈ I \ {gl(V , V ∗) ⊕ CId} and let VX ⊂ V denote the subspace of all X-finite
vectors.

Assume first that VX = V . Then there exists v ∈ V such that v,X · v,X2 · v, . . .

are linearly independent. Let M = span{v,X ·v,X2 ·v, . . . } and let U be a subspace
of V such that V = M ⊕ U . Let πM be the projector on M with kernel U . Then
Y := X +[X,πM ] ∈ I . A simple calculation shows that both U and M are Y -stable
and Y |M = X|M . Let Z ∈ End(M) be defined by Z(U) = 0, Z(Xi · v) = iXi−1 · v
for i ≥ 0. Then [Z, Y ] is a diagonal matrix with infinitely many distinct entries.
Hence I = End(V ) by Lemma 6.4.

Now suppose that VX = V . Then we have a decomposition V = ⊕
λ Vλ, where

Vλ := ⋃
n ker(X − λId)n are generalized eigenspaces of X. First, we assume that

for all λ there exists n(λ) such that Vλ = ker(X − λId)n(λ). In this case V = ⊕
i Vi

is a direct sum of X-stable finite-dimensional subspaces. Thus X is a block matrix
and by Corollary 6.6 we obtain I = End(V ). Next, we assume that for some λ the
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sequence ker(X−λId)n does not stabilize. In this case there are linearly independent
vectors v1, v2, . . . such that (X − λId) · v1 = 0 and (X − λId) · vi = vi−1 for all
i > 1. We repeat the argument from the previous paragraph. Set M to be the span of
vk , let V = M ⊕ U and define Z ∈ End(M) by setting Z(U) = 0, Z(vi) = ivi+1.
Then [Z, ([X,πM ] + X)] ∈ I is a diagonal matrix with infinitely many distinct
entries. Hence I = End(V ).

To complete the proof of Theorem 6.3 it remains to prove claim (c).

Lemma 6.9. If gM = oM(V ) (respectively, spM(V ), then any nonzero proper ideal
I ⊂ gM equals o(V ) (respectively, sp(V )).

Proof. As follows from (9), one can define a Z-grading gM = gM−1 ⊕gM
0 ⊕gM

1 such

that gM
0 � glM(V, V∗). This grading is defined by the matrix

D =
( 1

2 Id 0
0 − 1

2 Id

)
,

i.e., [D,X] = iX for X ∈ gM
i . Since D ∈ gM , any ideal I ⊂ gM is homogeneous

in this grading. Note that the ideal generated by D equals the entire Lie algebra gM .
Hence we may assume that D /∈ I , and thus that I0 := I ∩ gM−1 is a proper ideal
in gM

0 .
Assume first that I1 := I ∩ gM

1 is not contained in o(V ) (respectively, sp(V ))
and let X ∈ I1 \ o(V ) (respectively, X ∈ I1 \ sp(V )). By an argument similar to
the one at the end of the proof of Corollary 6.8, there exists Y ∈ gM−1 such that
[Y,X] /∈ gl(V , V∗) ⊕ CD. Therefore by Corollary 6.8 we obtain a contradiction
with our assumption that I0 is a proper ideal in gM

0 .
Thus, we have proved that I1 ⊂ o(V ) (respectively, sp(V )) and, similarly, I−1 :=

I ∩ gM−1 ⊂ o(V ) (respectively, sp(V )). Moreover, I0 ⊂ gl(V , V∗) by Corollary 6.8.
But then I is a nonzero ideal in o(V ) (respectively, sp(V )). Since both o(V ) and
sp(V ) are simple, the statement follows. ��

The proof of Theorem 6.3 is complete. ��
Theorem 6.3 (a) gives a complete list of ideals in glM(V, V∗) for a countable-

dimensional V . Indeed, since sl(V , V∗) is a simple Lie algebra, we obtain that all
proper nonzero ideals in glM(V, V∗) are gl(V , V∗), sl(V , V∗), CId, sl(V , V∗) ⊕CId
and gl(V , V∗) ⊕ CId. In the same way the Lie algebra End(V ) also has five proper
nonzero ideals.

Note that if V is not countable-dimensional, then glM(V, V∗), End(V ) and
oM(V ) (respectively, spM(V )) have the following ideal:

{X | dim (X · V ) is finite or countable}.

Hence, Theorem 6.3 does not hold in this case.



322 I. Penkov and V. Serganova

7 Dense Subalgebras

7.1 Definition and General Results

Definition 7.1. Let l be a Lie algebra, R be an l-module, k ⊂ l be a Lie subalgebra.
We say that k acts densely on R if for any finite set of vectors r1, . . . , rn ∈ R and
any l ∈ l there is k ∈ k such that k · ri = l · ri for i = 1, . . . , n.

Lemma 7.2. Let k ⊂ l and let R,N be two l-modules such that k acts densely on
R ⊕ N . Then Homl(R,N) = Homk(R,N).

Proof. There is an obvious inclusion Homl(R,N) ⊂ Homk(R,N). Suppose there
exists ϕ ∈ Homk(R,N) \ Homl(R,N). Then one can find r ∈ R, l ∈ l such that
ϕ(l · r) = l · ϕ(r). Since k acts densely on R ⊕ N , there exists k ∈ k such that
k · r = l · r and k · ϕ(r) = l · ϕ(r). Therefore we have

ϕ(l · r) = ϕ(k · r) = k · ϕ(r) = l · ϕ(r).

Contradiction. ��
Lemma 7.3. Let k ⊂ l and R be an l-module on which k acts densely. Then

(a) k acts densely on any l−subquotient of R;
(b) k acts densely on R⊗n for n ≥ 1;
(c) k acts densely on R⊕n for n ≥ 1;
(d) k acts densely on T (R)⊕n for n ≥ 1.

Proof. (a) Let N be an l-submodule of R. It follows immediately from the
definition that k acts densely on N and on R/N . That implies the statement.

(b) Let r1, . . . , rq ∈ R⊗n. Write

ri =
s(i)∑

j=1

mi
j1 ⊗ · · · ⊗ mi

jn

for some mi
jp ∈ R. For any l ∈ l there exists k ∈ k such that k · mi

jp = l · mi
jp

for all i ≤ r , p ≤ n and j ≤ s(i). Then k · ri = l · ri for all i ≤ q .
Proving (c) and (d) is similar to proving (b) and we leave it to the reader. ��

Lemma 7.4. Let k, l and R be as in Lemma 7.3. Then a k-submodule of R is l-stable.
Hence any k-subquotient of R has a natural structure of l-module.

Proof. Straightforward from the definition. ��
Theorem 7.5. Let Cl be a full abelian subcategory of l-mod such that k acts densely
on any object in C. Let Res : l − mod → k − mod be the functor of restriction. Let
Ck be the image of Cl under Res. Then Ck is a full abelian subcategory of k − mod
and Res induces an equivalence of Ck and Cl.
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Proof. The first assertion follows from Lemma 7.2. It also follows from the same
lemma that Res(R) � Res(N) implies R � N . Thus, every object in Ck has a
unique (up to isomorphism) structure of l-module. This provides a quasi-inverse of
Res. Hence the second assertion holds. ��

Let R be an l-module. Denote by T
R
l the full subcategory of l-mod consisting of

all finite length subquotients of finite direct sums T (R)⊕n for n ≥ 1.

Proposition 7.6. Let k, l and R be as in Lemma 8.2. Then the restriction functor

Res : TR
l � T

R
k

is an equivalence of monoidal categories.

Proof. By Lemma 7.3, Res(TR
l ) = T

R
k . Thus Res is an equivalence of TR

l and T
R
k

by Theorem 7.5. In addition, Res clearly commutes with ⊗, hence the statement. ��

7.2 Dense Subalgebras of Mackey Lie Algebras

Now let gM denote one of the Lie algebras glM(V,W), oM(V ), spM(V ), and g
denote respectively the subalgebra gl(V ,W), o(V ), sp(V ). By R we denote the gM -
module V ⊕ W (respectively, V ).

In what follows we call a Lie subalgebra a ⊂ gM dense if it acts densely on R. It
is easy to see that g is a dense subalgebra of gM .

Here are further examples of dense subalgebras of glM(V, V∗) for a countable-
dimensional space V . We identify glM(V, V∗) with the Lie algebra of matrices
(xij )i≥1,j≥1 each row and column of which are finite.

1. The Lie algebra j(V , V∗) consisting of matrices J = (xij )i≥1,j≥1 such that xij =
0 when |i −j | > mJ for some mJ ∈ Z>0 (generalized Jacobi matrices), is dense
in glM(V, V∗).

2. The subalgebra lj(V , V∗) ⊂ glM(V, V∗) consisting of matrices X = (xij )i≥1,j≥1
satisfying the condition xij = 0 when i − j > cXj for some cX ∈ Z>0, is dense
in glM(V, V∗).

3. The subalgebra pj(V , V∗) of matrices Y = (xij )i≥1,j≥1 satisfying the condition
xij = 0 when i − j > pY (j) for some polynomial pY (t) ∈ Z≥0[t], is dense in
glM(V, V∗).

4. Let g be a countable-dimensional diagonal Lie algebra. If g is of type sl, fix a
chain (1) of diagonal embeddings where gi � sl(ni). Observe that given a chain
(3), we can always choose a chain

V ∗
g1

μ1
↪→ V ∗

g2

μ2
↪→ . . . ↪→ V ∗

gi

μi
↪→ V ∗

gi+1
↪→ . . .
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so that the nondegenerate pairing Vgi+1 ×V ∗
gi+1

→ C restricts to a nondegenerate
pairing κi(Vgi ) × μi(V

∗
gi

) → C. Therefore, by multiplying μi by a suitable
constant, we can assume that κi and μi preserve the natural pairings Vgi ×V ∗

gi
→

C. This shows that, given a natural representation V of g, there always is a natural
representation V∗ such that there is a nondegenerateg-invariant pairing V ×V∗ →
C. This gives an embedding of g as a dense subalgebra in glM(V, V∗)

If g is of type o or sp, then a natural representation V of g is defined again by
a chain of embeddings (3). Moreover, V always carries a respective nondegenerate
symmetric or symplectic form. Therefore g can be embedded as a dense subalgebra
in oM(V ), or respectively in spM(V ).

The following statement is a particular case of Proposition 7.6.

Corollary 7.7. Let a be a dense subalgebra in gM . Then the monoidal categories
T

R
gM and T

R
a are equivalent.

7.3 Finite Corank Subalgebras of gM and the Category TgM

We now generalize the notion of finite corank subalgebra to Mackey Lie algebras.
Let Vf ⊂ V,Wf ⊂ W be a nondegenerate pair of finite-dimensional subspaces.

Then gl(W⊥
f , V ⊥

f ) is a subalgebra of glM(W⊥
f , V ⊥

f ) and also a subalgebra of

glM(V,W). Moreover, the following important relation holds

sl(V ,W)/sl(W⊥
f , V ⊥

f ) = gl(Vf ,Wf ) ⊕ (Vf ⊗ V ⊥
f ) ⊕ (W⊥

f ⊗ Wf )

= glM(V,W)/glM(W⊥
f , V ⊥

f ). (10)

We call a subalgebra k ⊂ glM(V,W) a finite corank subalgebra if it contains
glM(W⊥

f , V ⊥
f ) for some nondegenerate pair Vf ⊂ V,Wf ⊂ W .

Similarly, let V be a vector space equipped with a symmetric (respectively, skew-
symmetric) nondegenerate form and Vf be a nondegenerate finite-dimensional
subspace. We have a well-defined subalgebra oM(V ⊥

f ) ⊂ oM(V ) (respectively,

spM(V ⊥
f ) ⊂ spM(V )). Furthermore,

o(V )/o(V ⊥
f ) = o(Vf ) ⊕ (Vf ⊗ V ⊥

f ) = oM(V )/oM(V ⊥
f ),

sp(V )/sp(V ⊥
f ) = sp(Vf ) ⊕ (Vf ⊗ V ⊥

f ) = spM(V )/spM(V ⊥
f ). (11)

We call k ⊂ oM(V ) (respectively, spM(V )) a finite corank subalgebra if it
contains oM(V ⊥

f ) (respectively, spM(V ⊥
f )) for some Vf as above.

Next, we say that gM -module L satisfies the large annihilator condition if the
annihilator in gM of any l ∈ L contains a finite corank subalgebra. It follows
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immediately from the definition that if L1 and L2 satisfy the large annihilator
condition, then the same is true for L1 ⊕ L2 and L1 ⊗ L2.

Lemma 7.8. Let L be a gM -module which is integrable as a g-module. If L satisfies
the large annihilator condition (as a gM -module), then g acts densely on L.

Proof. Since L satisfies the large annihilator condition as a gM -module, so does also
L⊕n. It suffices to show that for all n ∈ Z≥1 and all l ∈ L⊕n we have

g · l = gM · l. (12)

However, as l is annihilated by glM(W⊥
f , V ⊥

f ) for an appropriate finite-dimensional
nondegenerate pair Vf ⊂ V,Wf ⊂ W in the case g = sl(V ,W) (respectively,
by oM(V ⊥

f ), spM(V ⊥
f ) in the case g = o(V ), sp(V )), (12) follows from (10),

(respectively, from (11)). ��
Lemma 7.9. Let L be a g-module satisfying the large annihilator condition. Then
the g-module structure on L extends in a unique way to a gM -module structure such
that L satisfies the large annihilator condition as a gM -module.

Proof. Consider the case g = sl(V ,W). Any l ∈ L is annihilated by sl(W⊥
f , V ⊥

f )

for an appropriate finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W . Let
x ∈ glM(V,W). By (10) there exists y ∈ sl(V ,W) such that x + glM(W⊥

f , V ⊥
f ) =

y + sl(W⊥
f , V ⊥

f ). Moreover, y is unique modulo sl(W⊥
f , V ⊥

f ). Thus we can set

x · l := y · l. It is an easy check that this yields a well-defined glM(V,W)-module
structure on L compatible with the sl(V ,W)-module structure on L.

For g = o(V ), sp(V ) one uses (11) instead of (10). ��
We can now define the category TgM as an analogue of the category Tg. More

precisely, the category TgM is the full subcategory of gM -mod consisting of all
modules of finite length, integrable over g and satisfying the large annihilator
condition.

The following is our main result in Sect. 7.

Theorem 7.10. (a) TgM = T
R
gM , where R = V ⊕W for g = sl(V ,W) and R = V

for g = o(V ), sp(V ).
(b) The functor Res : TgM � Tg is an equivalence of monoidal categories.

Proof. It is clear that TR
gM is a full subcategory of TgM . We need to show only that

any L ∈ TgM is isomorphic to a subquotient of T (R)⊕n for some n. Obviously, L

satisfies the large annihilator condition as a g-module. Furthermore, by Lemma 7.9
(a), g acts densely on L, hence L has finite length as a g-module. By Corollary 5.12
(b), L is isomorphic to a gsubquotient of T (R)⊕n for some n, and by Proposition 7.6
L is the restriction to g of some gM -subquotient L′ of T (R)⊕n. However, since
L′ satisfies the large annihilator condition, Lemma 7.8 implies that there is an
isomorphism of gM -modules L � L′. This proves (a).

(b) follows from (a) and Proposition 7.6. ��
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The following diagram summarizes the equivalences of monoidal categories
established in this paper:

Ta
Res
� TgM = T

R
gM

Res� Tg
Φ� Tgc .

Here a is any dense subalgebra of gM and R = V ⊕W for g = sl(V ,W), R = V for
g = o(V ), sp(V ). In particular, when g = sl(V , V∗) for countable-dimensional V

and V∗, a can be chosen as the Lie algebra j(V , V∗) or as any countable-dimensional
diagonal Lie algebra.

8 Further Results and Open Problems

Theorem 7.10 (a) can be considered an analogue of Theorem 5.1 and Corollary 5.12
(b) as it provides two equivalent descriptions of the category TgM . It is interesting
to have a longer list of such equivalent descriptions.

The following proposition provides another equivalent condition characterizing
the objects of TgM under the additional assumption that g = sl(V , V∗), o(V ), sp(V )

is countable dimensional.

Proposition 8.1. Let gM = glM(V, V∗), oM(V ), spM(V ) for a countable dimen-
sional V , and let L be a gM -module of finite length which is integrable as a
g-module. Then L is an object of TgM if and only if g acts densely on L.

We first need a lemma.

Lemma 8.2. Let gM = glM(V, V∗), oM(V ), spM(V ) for a countable-dimensional
V , and let L and L′ be gM -modules. Assume that L and L′ have finite length as
g-modules. Then

Homg(L,L′) = HomgM (L,L′).

In particular, if L and L′ are isomorphic as g-modules, then L and L′ are
isomorphic as gM -modules.

Proof. Observe that HomC(L,L′) has a natural structure of gM -module defined by

(X · ϕ)(l) := X · ϕ(l) − ϕ(X · l) for X ∈ gM, ϕ ∈ HomC(L,L′), l ∈ L. (13)

Since g is an ideal in gM , Homg(L,L′) is a gM -submodule in HomC(L,L′).
Moreover, Homg(L,L′) is finite dimensional as L and L′ have finite length over
g. On the other hand, Theorem 6.3 implies that gM does not have proper ideals of
finite codimension, hence any finite-dimensional gM -module is trivial. Therefore
(13) defines a trivial gM -module structure of HomgM (L,L′), which means that any
ϕ ∈ Homg(L,L′) belongs to HomgM (L,L′). This shows that Homg(L,L′) =
HomgM (L,L′). The second assertion follows immediately. ��
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Proof of Proposition 8.1. If L ∈ TgM , then g acts densely on L by Lemma 7.9.
Now let g act densely on L. We first prove that L satisfies the large annihilator

condition as a g-module. Assume that g acts densely on L but L does not satisfy
the large annihilator condition as a g-module. Using the matrix realizations of g and
gM one can show that there exists l ∈ L and a sequence {Xi}i∈Z≥1 of commuting
linearly independent elements Xi ∈ g which don’t belong to the annihilator of l.
Furthermore, one can find an infinite subsequence {Yj = Xij } such that each Yj

lies in an sl(2)-subalgebra ßj ⊂ g with the condition [ßj , ßs ] = 0 for j = s. Then∏
j ßj is a Lie subalgebra in gM , and let ß be the diagonal subalgebra in

∏
j ßj . If

x ∈ ß, we denote by xj its component in ßj .
Since g acts densely on L, there exists a linear map θ : ß → g such that θ(y) · l =

y · l for all y ∈ ß. On the other hand, there exists n ∈ Z≥1 such that [θ(y), xj ] = 0
for all y, x ∈ ß and j > n. Let dy := y − θ(y). Then dy · l = 0 and

[dy, xj ] = [y, xj ] = [yj , xj ] for all x, y ∈ ß and j > n. (14)

Set Lj := U(ßj ) · l. Then (14) implies dy · Lj ⊂ Lj for all j > n. Moreover,
ψy := dy − yj commutes with ßj , hence ψy ∈ Endßj

(Lj ). Considering yj + ψy as
an element of EndC(Lj ), we obtain in addition that l ∈ ker(yj + ψy) for all y ∈ ß
and all j > n.

Choose a standard basis E,H,F ∈ ß. Since Lj is a finite-dimensional βj �
sl(2)-module, we obtain easily

ker(Ej + ψE) ∩ Lj = L
Ej

j , ker(Fj + ψF ) ∩ Lj = L
Fj

j .

Since

l ∈ ker(Ej + ψE) ∩ ker(Fj + ψF ) ∩ Lj = L
ßj

j ,

we conclude that Lj is a trivial ßj -module for all j > n, which contradicts our
original assumption that Yj · l = 0. Thus, L satisfies the large annihilator condition
as a g-module.

Note that as g acts densely on L, the length of L as a g-module is the same as the
length of L as a gM -module. Since L satisfies the large annihilator condition for g
and has finite length as a g-module, we conclude that L↓g is a tensor module, i.e.,
an object of Tg. By Theorem 7.10 (b), L↓g = L′↓g for some L′ ∈ TgM . Finally,

Lemma 8.2 implies that the gM modules L′ and L are isomorphic, i.e., L ∈ TgM . ��

Next, under the assumption that V is countable dimensional, consider maximal
subalgebras hM of gM which act semisimply on V and V∗ (respectively only on V

for g = o(V ), sp(V )). It is straightforward to show that the centralizer in gM of any
local Cartan subalgebra h of g is such a subalgebra of gM . If gM = glM(V, V∗) is
realized as the Lie algebra of matrices X = (xij )i,j∈Z with finite rows and columns,
then hM can be chosen as the subalgebra of diagonal matrices.
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The following statement looks plausible to us.

Conjecture 8.3. Let g = sl(V , V∗), o(V ), sp(V ) for a countable-dimensional V .
Let M be a finite length gM -module which is integrable as a g-module. The following
conditions on M are equivalent:

(a) M ∈ TgM ;
(b) M is countable dimensional;
(c) M is a semisimple hM -module for some subalgebra hM ⊂ gM ;
(d) M is a semisimple hM -module for any subalgebra hM ⊂ gM .

Consider now the inclusion of Lie algebras

g = sl(V , V∗) ⊂ glM(V, V ∗) = End(V )

where V is an arbitrary vector space. The subalgebra g is not dense in End(V ), nev-
ertheless the monoidal categories Tg and TEnd(V ) are equivalent by Theorems 5.1
and 7.10. Here is a functor which most likely also provides such an equivalence. Let
M ∈ TEnd(V ). Set

Γ wt
g (M) := ∩h⊂g Γ wt

h (M)

where h runs over all local Cartan subalgebras of g.

Conjecture 8.4. Γ wt
g : TEnd(V ) � Tg is an equivalence of monoidal categories.

If V is countable dimensional, it is easy to check that V ∗/V∗ is a simple gM =
glM(V, V∗)-module. Hence V ∗ is a gM -module of length 2. This raises the natural
question of whether the entire category TEnd(V ) consists of gM -modules of finite
length. A further problem is to compute the socle filtration as a gM -module of a
simple End(V )-module in TEnd(V ).

Another open question is whether there is an analogue of the category T̃ensg
when we replace g by gM . More precisely, what can be said about the abelian
monoidal category of gM -modules obtained from TgM by iterated dualization in
addition to taking submodules, quotients and applying ⊗? In particular, the adjoint
representation, and therefore the coadjoint representation are objects of T̃ensgM .
How can one describe the coadjoint representation (gM)∗ of gM?

Note added in proof: While this paper was under review, Alexandru Chirvasitu
gave a proof of Conjecture 8.4 and computed the gM -module socle filtration of any
simple module in TEnd(V ). His results appear in the article [C] in the present volume.
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