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Abstract We discuss two classical results in homological algebra of modules over
an enveloping algebra – lemmas of Casselman–Osborne and Wigner. They have a
common theme: they are statements about derived functors. While the statements for
the functors itself are obvious, the statements for derived functors are not and the
published proofs were completely different from each other. First we give simple,
pedestrian arguments for both results based on the same principle. Then we give a
natural generalization of these results in the setting of derived categories.
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Introduction

This paper is inspired by two classical results in homological algebra of modules
over an enveloping algebra—lemmas of Casselman–Osborne and Wigner. They
have a common theme: they are statements about derived functors. While the
statements for the functors themselves are obvious, the statements for derived
functors are not and the published proofs were completely different from each other.

In the first section we give simple, pedestrian arguments for both results based
on the same principle. They suggest a common generalization which is the topic of
this paper.
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In the second section we discuss some straightforward properties of centers of
abelian categories and their derived categories. In the third section, we consider
a class of functors and prove a simple result about their derived functors which
generalizes the first two results.

The original arguments were considerably more complicated and based on
different ideas [1, 3] and [5].

1 Classical Approach

1.1 Wigner’s Lemma

Let g be a complex Lie algebra, U (g) its enveloping algebra and Z (g) the center
of U (g). Denote by M (U (g)) the category of U (g)-modules.

Let χ : Z (g) −→ C be an algebra morphism of Z (g) into the field of complex
numbers. We say that a module V in M (g) has an infinitesimal character χ if

z · v = χ(z)v for any z ∈ Z (g) and any v ∈ V.

Theorem 1.1. Let U and V be two objects in M (U (g)) with infinitesimal charac-
ters χU and χV . Then χU �= χV implies ExtpU (g)

(U, V ) = 0 for all p ∈ Z+.

Proof. Clearly, the center Z (g) of U (g) acts naturally on HomU (g)(U, V ) for any
two U (g)-modules U and V , by

z(T ) = z · T = T · z for any z ∈ Z (g) and any T ∈ HomU (g)(U, V ),

i.e., we can view it as a bifunctor from the category of U (g)-modules into the
category of Z (g)-modules. Hence, its derived functors Ext∗U (g)

are bifunctors from
the category of U (g)-modules into the category of Z (g)-modules.

Fix now a U (g)-module U with infinitesimal character χU . Consider the functor
F = HomU (g)(U,−) from the category M (U (g)) into the category of Z (g)-
modules. Since the infinitesimal character of U is χU , any element of z ∈ Z (g)
acts on F(V ) = HomU (g)(U, V ) as multiplication by χU(z) for any object V in
M (U (g)).

Fix now a U (g)-module V with infinitesimal character χV . Let

0 −−−−→ V −−−−→ I0 −−−−→ I1 −−−−→ . . . −−−−→ In −−−−→ . . .

be an injective resolution of V . Let z ∈ ker χV . Then we have the commutative
diagram
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0 −−−−→ I0 I1

I1I0

−−−−→ −−−−→ . . . −−−−→ In

In

−−−−→ . . .
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

.

We can interpret this as a morphism φ· : I · −→ I · of complexes. Clearly, since
H 0(I ·) = V , we have H 0(φ·) = 0. Therefore, φ· is homotopic to 0. By applying
the functor F to this diagram we get

0 −−−−→ F(I0)

F(I0)

F(I1)

F(I1)

F(In)

F(In)

−−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

F( )
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

,F( ) F( )

i.e., a morphism F(φ·) : F(I ·) −→ F(I ·) of complexes. Since φ· is homotopic to 0,
F(φ·) is also homotopic to 0. This implies that all Hp(φ·) : Hp(I ·) −→ Hp(I ·),
p ∈ Z, are equal to 0. Since Hp(I ·) = RpF(V ) = ExtpU (g)

(U, V ), we see that

ExtpU (g)
(U, V ) are annihilated by z.

On the other hand, by the first remark in the proof, z must act on ExtpU (g)
(U, V )

as multiplication by χU(z).
Since χU �= χV , there exists z ∈ ker χV such that χU(z) �= 0. This implies that

ExtpU (g)
(U, V ) must be zero for all p ∈ Z+. ��

1.2 Casselman–Osborne Lemma

Now we assume that g is a complex semisimple Lie algebra. Let h be a Cartan
subalgebra of g, R the root system of (g, h) and R+ a set of positive roots. Let
n be the nilpotent Lie algebra spanned by root subspaces of positive roots. Let
γ : Z (g) −→ U (h) be the Harish-Chandra homomorphism, i.e., the algebra
morphisms such that z − γ (z) ∈ nU (g) [2, Ch. VIII, §6, no. 4].

Let V be a U (g)-module. Since h normalizes n, the quotient V/nV = C⊗U (n)V

has a natural structure of U (h)-module. Also, Z (g) acts naturally on V/nV , and
this action is given by the composition of γ and the U (h)-action.

We can consider F(V ) = V/nV as a right exact functor F from the category of
U (g)-modules into the category of U (h)-modules. Let Forg denote the forgetful
functor from the category of U (g)-modules into the category of U (n)-modules.
Let Forh denote the forgetful functor from the category of U (h)-modules into the
category of linear spaces. Then we have the following commutative diagram
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F−−−−→
For

⏐
⏐
�

⏐
⏐
�For

−−−−→
H0( ,−)

C

.

(( ))

(( )) ( )

(( ))

By the Poincaré–Birkhoff–Witt theorem, a free U (g)-module is a free U (n)-
module, hence we can use free left resolutions in M (U (g)) to calculate Lie algebra
homology Hp(n,−) of U (g)-modules, i.e., we get the commutative diagram

LpF−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−−→
,

(( )) (( ))

(( )) C( )
Hp( ,−)

For For

for any p ∈ Z+. Therefore, Lie algebra homology groups Hp(n,−) of U (g)-
modules have the structure of U (h)-modules.

Theorem 1.2. Let V be an object in M (U (g)). Let z ∈ Z (g) be an element which
annihilates V . Then γ (z) annihilates Hp(n, V ), p ∈ Z+.

Proof. Let z ∈ Z (g). Let

. . . −−−−→ Pn −−−−→ . . . −−−−→ P1 P0−−−−→ −−−−→ V −−−−→ 0

be a projective resolution of V in M (U (g)). Multiplication by z gives the following
commutative diagram:

Pn

Pn

P1

P1

P0

P0

. . . −−−−→ −−−−→ . . . −−−−→ −−−−→ −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . −−−−→ −−−−→ . . . −−−−→ −−−−→ −−−−→ 0

We can interpret this diagram as a morphism ψ· : P· −→ P· of complexes of U (h)-
modules. Applying the functor F we get the diagram
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Pn

Pn

P1

P1

P0

P0

. . . −−−−→ F ( ) )

) )

)

)

−−−−→ . . . −−−−→ F ( −−−−→ F ( −−−−→ 0

F( )
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . −−−−→ F ( −−−−→ . . . −−−−→ F ( −−−−→ F ( −−−−→ 0

F( ) F( )

representing F(ψ·), where F(z) is the multiplication by γ (z).
Now, assume that z ∈ Z (g) annihilates V . Then we have H 0(ψ·) = 0. It

follows that ψ· is homotopic to 0. This in turn implies that F(ψ·) is homotopic to
0. Hence, the multiplication by γ (z) on F(P·) is homotopic to zero. Therefore, the
multiplication by γ (z) annihilates the cohomology groups of the complex F(P·),
i.e., γ (z) · Hp(n, V ) = 0 for p ∈ Z+. ��

2 Centers of Derived Categories

2.1 Center of an Additive Category

Let A be an additive category. This implies that for any object V in A , all its
endomorphisms form a ring End(V ) with identity idV .

An endomorphism z of the identity functor on A is an assignment to each object
U in A of an endomorphism zU of U such that for any two objects U and V in A
and any morphism ϕ : U −→ V we have zV ◦ ϕ = ϕ ◦ zU .

Lemma 2.1. Let z be an endomorphism of the identity functor on A and V an
object in A . Then zV is in the center of the ring End(V ).

Proof. Let e : V −→ V be an endomorphism of V . Then, zV ◦ e = e ◦ zV , i.e., zV

commutes with e. This implies that zV is in the center of End(V ). ��
All endomorphisms of the identity functor on A form a commutative ring with

identity which is called the center Z(A ) of A .
Let B be the full additive subcategory of A . Then, by restriction, any element of

the center of A determines an element of the center of B. Clearly, the induced map
r : Z(A ) −→ Z(B) is a ring homomorphism. If the inclusion functor B −→ A
is an equivalence of categories, the morphism of centers is an isomorphism.

Let U and V be two objects in A . Then the center Z(A ) acts naturally on
Hom(U, V ) by

z(ϕ) = zV ◦ ϕ = ϕ ◦ zU
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for z ∈ Z(A ). Therefore, Hom(U, V ) has a natural structure of a Z(A )-module.
Clearly, in this way Hom(−,−) becomes a bifunctor fromA ◦×A into the category
of Z(A )-modules.1

Assume that C is a triangulated category and T its translation functor. Let z be
an element of the center of C . Let U and V be two objects in C and ϕ : U −→ V

a morphism. Then T −1(ϕ) : T −1(U) −→ T −1(V ) is a morphism and we have

zT −1(V ) ◦ T −1(ϕ) = T −1(ϕ) ◦ zT −1(U).

By applying T to this equality we get

T (zT −1(V )) ◦ ϕ = ϕ ◦ T (zT −1(U)).

Since ϕ : U −→ V is arbitrary, we conclude that the assignment U 
−→ T (zT −1(U))

is an element of the center of A , which we denote by T (z). It follows that T induces
an automorphism of the center Z(C ) of C . The elements of the center Z(C ) fixed
by this automorphisms form a subring with identity which we call the t-center of C
and denote by Z0(C ).

Let

W

[1]
h

U
f

V

g

be a distinguished triangle in C and z an element of the t-center Z0(C ) of C .
Clearly, since z is in the center, we have the commutative diagram

U
f−−−−→ V

g−−−−→ W

U

⏐
⏐
�

⏐
⏐
� V

⏐
⏐
� W

U −−−−→
f

V −−−−→
g

W

.

Moreover, since z is in the t-center of C , we have T (zU ) = zT (U) and the diagram

1A ◦ is the category opposite to A .
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W
h−−−−→ T(U)

T(U)

W

⏐
⏐
�

⏐
⏐
�T(   )U

W −−−−→
h

commutes. Therefore,

T(U)

T(U)

U
f−−−−→ V

g−−−−→ W
h−−−−→

U

⏐
⏐
�

⏐
⏐
� V

⏐
⏐
�

⏐
⏐
�

U −−−−→
f

V −−−−→
g

W −−−−→
h

W T(   )U

is an endomorphism of the above distinguished triangle. It follows that the elements
of the t-center induce endomorphisms of distinguished triangles in C .

Let X be another object of C . The above remark implies that the distinguished
triangle determines long exact sequences

· · · → Hom(X,U) → Hom(X, V ) → Hom(X,W) → Hom(X, T (U)) → . . .

and

· · · → Hom(T (U),X) → Hom(W,X) → Hom(V ,X) → Hom(U,X) → . . .

of Z0(C )-modules.

2.2 Center of a Derived Category

Let C∗(A ) (where ∗ is b, +, − or nothing, respectively) be the category of
(bounded, bounded from below, bounded from above or unbounded) complexes of
objects of A . Then C∗(A ) is also an additive category.

Let z be an element of the center of A . If

. . . −−−−→ V0 V1−−−−→ −−−−→ . . . −−−−→ Vn −−−−→ . . .. . . −−−−→ V0 V1−−−−→ −−−−→ . . . −−−−→ Vn −−−−→ . . .

is an object in C∗(A ), we get the commutative diagram
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V0 V1 Vn

V0 V1 Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1

⏐
⏐
�

⏐
⏐
�

⏐
⏐
� Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1 Vn

V0 V1 Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1

⏐
⏐
�

⏐
⏐
�

⏐
⏐
� Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

which we can interpret as an endomorphism zV · of V ·.
Let ϕ· : U · −→ V · be a morphism in C∗(A ). Then zV p ◦ ϕp = ϕp ◦ zUp for

any p ∈ Z, i.e., zV · ◦ ϕ· = ϕ· ◦ zU · . Therefore, the assignment V · 
−→ zV · defines
an element C∗(z) of the center of C∗(A ). Moreover, we have the following trivial
observation.

Lemma 2.2. The map z 
−→ C∗(z) defines a homomorphism of the center Z(A )

of A into the center Z(C∗(A )) of C∗(A ).

Let K∗(A ) be the corresponding homotopic category of complexes. Let [zV · ]
be the homotopy class of endomorphism zV · of V · in C∗(A ). Then it defines
an endomorphism of V · in K∗(A ). Clearly, the assignment V · 
−→ [zV · ] is an
endomorphism K∗(z) of the identity functor in K∗(A ). Moreover, the category
K∗(A ) is triangulated and the translation functor is given by T (U ·)p = Up+1

for any p ∈ Z for any object U · in K∗(A ). If a morphism ϕ : U · −→ V · is
the homotopy class of a morphism of complexes f · : U · −→ V ·, the morphism
T (ϕ) : T (U ·) −→ T (V ·) is the homotopy class of the morphism of complexes
given by f p+1 : T (U ·)p −→ T (V ·)p for p ∈ Z. This immediately implies that
T ([zU · ]) = [zT (U ·)] for any element z of the center of A . It follows that K∗(z) is
in the t-center Z0(K

∗(A )) of K∗(A ).
Therefore, we have the following observation.

Lemma 2.3. The map z 
−→ K∗(z) defines a homomorphism of the center Z(A )

of A into the t-center Z0(K
∗(A )) of K∗(A ).

Finally, assume that A is an abelian category and let D∗(A ) be the corre-
sponding derived category of A , i.e., the localization of K∗(A ) with respect to all
quasiisomorphisms. Clearly, for any z ∈ Z(A ), [zV · ] determines an endomorphism
[[zV · ]] of V · in D∗(A ).

Let U · and V · be two complexes in D∗(A ) and ϕ : U · −→ V · a morphism of
U · into V · in D∗(A ). We can represent ϕ by a roof (see, for example [4]):

s
∼

f

V ·U ·

W ·

where s : U · −→ W · is a quasiisomorphism and f : W · −→ V · is a morphism in
K∗(A ). On the other hand, [[zU · ]] and [[zV · ]] are represented by roofs
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∼
idU ·

U ·U ·

U ·
[ ]U ·

and

idU ·
∼

[ ]

V ·V ·

V ·

.

V ·

To calculate the composition [[zV · ]] ◦ ϕ we consider the composition diagram

∼
f

s
∼

f

∼
[ ]

W ·

V ·

V ·

V ·

W ·

U ·

idW
·

idV
·

V ·

which obviously commutes. This implies that the composition is represented by
the roof

s
∼

◦ f

.

W ·

V ·U ·

[ ]V ·

Analogously, to calculate ϕ ◦ [[zU · ]] we consider the composition diagram

s
∼

[ ]

∼
[ ] s

∼
f

W ·

W ·U ·

U · U · V ·

idU · U ·

W ·
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which commutes since K∗(z) is in the center of K∗(A ). This implies that the
composition is represented by the roof

s
∼

f◦[ ]

.

W ·

U · V ·

W ·

Since f ◦ [zW · ] = [zV · ] ◦ f , these two roofs are identical and [[zV · ]] ◦ ϕ =
ϕ ◦ [[zV · ]]. Hence, the assignment V · 
−→ [[zV · ]] defines an element of the t-
center Z0(D

∗(A )) of D∗(A ) which we denote by D∗(z). Moreover, we have the
following result.

Lemma 2.4. The map z 
−→ D∗(z) defines an injective morphism of the center
Z(A ) of A into the t-center Z0(D

∗(A )) of D∗(A ).
For any z ∈ Z(A ), we have

Hp([[zV · ]]) = zHp(V ·) for any V · in D∗(A ) and any p ∈ Z.

Proof. The second statement follows immediately from the construction.
To prove injectivity, assume that D∗(z) = 0 for some z ∈ Z(A ). For an object

V in A , denote by D(V )· the complex such that D(V )0 = V and D(V )p = 0
for p �= 0. By our assumption, we have [[zD(V )· ]] = 0. This implies that zV =
H 0([[zD(V )· ]]) = 0. Therefore, zV = 0 for any V in A , i.e., z = 0. ��

Let z be an element of the t-center Z0(D
∗(A )) of D∗(A ). Then

Hp+1(zU ·) = Hp(T (zU ·)) = Hp(zT (U ·))

for any object U · in D∗(A ) and p ∈ Z. Therefore, H 0(zU ·) = 0 for all objects U ·
in D∗(A ) is equivalent to Hp(zU ·) = 0 for all objects U · in D∗(A ) and p ∈ Z. In
particular,

I0(D
∗(A )) = {z ∈ Z0(D

∗(A )) | Hp(zU ·) = 0 for all U · in D∗(A ) and p ∈ Z}
= {z ∈ Z0(D

∗(A )) | H 0(zU ·) = 0 for all U · in D∗(A )}

is an ideal in Z0(D
∗(A )).

On the other hand, let D : A −→ D∗(A ) be the functor which attaches to each
object V in A the complex D(V )·, such that D(V )0 = V and D(V )p = 0 for
all p �= 0. This functor is an isomorphism of A onto the full additive subcategory
of D∗(A ) consisting of all complexes U · such that Up = 0 for all p �= 0 [4].
Therefore, we have a natural homomorphism r of Z(D∗(A )) into Z(A ) which
attaches to an element z of the center of D∗(A ) the element of the center of A
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given by V 
−→ H 0(zD(V )) for any V in A . In particular, we have a natural
homomorphism r : Z0(D

∗(A )) −→ Z(A ).
From Lemma 2.4, we see that

r(D∗(z))V = H 0(D∗(z)D(V )) = H 0([[zD(V )]]) = zV

for any z in the center of A and any V in A . Therefore, we have the following
result.

Proposition 2.5. The natural homomorphism r : Z0(D
∗(A )) −→ Z(A ) is a left

inverse of the homomorphism D∗ : Z(A ) −→ Z0(D
∗(A )). In particular, it is

surjective.
Its kernel is the ideal I0(D

∗(A )).

The situation is particularly nice for bounded derived categories.2

Proposition 2.6. The natural homomorphism r : Z0(D
b(A )) −→ Z(A ) is an

isomorphism.

Proof. We have to prove that I0(D
b(A )) = 0. Let z be an element of I0(D

b(A )).
Clearly, for any object V in A , we have zD(V ) = 0. Moreover, since z is in the

t-center, zT p(D(V )) = 0 for any p ∈ Z.
For any object U · in Db(A ) we put

�(U ·) = Card{p ∈ Z | Hp(U ·) �= 0},

and call �(U ·) the cohomological length of U ·.
Now we want to prove that zU · = 0 for all U · in Db(A ). The proof is by

induction in the cohomological length �(U ·). If �(U ·) = 0, U · = 0 and zU · = 0. If
�(U ·) = 1, there exists p ∈ Z such that Hq(U ·) = 0 for all q �= p. In this case, U ·
is isomorphic to the complex which is zero in all degrees q �= p and in degree p is
equal to Hp(U ·), i.e., to T −p(D(Hp(U ·))). Hence, by the above remark, zU · = 0.

Assume now that �(U ·) > 1. Let τ≤p and τ≥p be the usual truncation functors
[4]. Then, for any p ∈ Z, we have the truncation distinguished triangle

[1]

t≤p(U ·)

t≥p+1(U ·)

U·

2I do not know any example where this result fails in unbounded case.
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and by choosing a right p ∈ Z, we have �(τ≤p(U ·)) < �(U ·) and �(τ≥p+1(U
·)) <

�(U ·). Therefore, by the induction assumption, there exists p ∈ Z such that
zτ≤p(U ·) = 0 and zτ≥p+1(U ·) = 0. As we remarked before, this distinguished triangle
leads to the long exact sequence

· · · → Hom(U ·, τ≤p(U ·)) → Hom(U ·, U ·) → Hom(U ·, τ≥p+1(U
·)) → . . .

of Z0(D
b(A ))-modules. By our construction, z annihilates the first and third

module. Therefore, it must annihilate Hom(U ·, U ·) too. This implies that

0 = z(idU ·) = idU · ◦ zU · = zU · .

��

3 Centers and Derived Functors

3.1 Homogeneous Functors

Let A and B be two abelian categories. Let R be a commutative ring with identity
and α : R −→ Z(A ) and β : R −→ Z(B) ring morphisms of rings with identity.

By Lemma 2.4, α and β define ring morphisms α = D∗ ◦α : R −→ Z0(D
∗(A ))

and β = D∗ ◦ β : R −→ Z0(D
∗(B))

Let F : A −→ B be an additive functor. We say that F is R-homogeneous if
for any r ∈ R we have

β(r)F (V ) = F(α(r)V ) for any object V in A .

Assume now that F is left exact. Assume that there exists a subcategory R of
A right adapted to F [4, ch. III, §6, no. 3].3 Then F has the right derived functor
RF : D+(A ) −→ D+(B).

Theorem 3.1. The functor RF : D+(A ) −→ D+(B) is R-homogeneous.

Proof. Let V · be a complex in D+(A ). Since R is right adapted to F , there exists a
bounded from below complex R· consisting of objects in R and a quasiisomorphism
q : V · −→ R·. Let z be an element of the center of A . Then we have the
commutative diagram

3I would prefer a proof of the next theorem which doesn’t use the construction of the derived
functor, but its universal property. Unfortunately, I do not know such argument.
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q−−−−→
[[ ]]

⏐
⏐
�

⏐
⏐
�[[ ]]

−−−−→
q

.

V ·

V · R·

R·

R·V ·

By applying the functor RF to it, we get the diagram

RF(V ·)

RF(V ·)

RF(q)−−−−→ F(R·)

F(R·)

RF([[ ]])

⏐
⏐
�

⏐
⏐
�[[F ( )F ( ) ]]

−−−−→
RF(q)

.R·V ·

If r ∈ R, α(r) is in the center of A and the above diagram implies that

RF(V ·)

RF(V ·)

RF(q)
F(R·)

F(R·)
RF(q)

[[b(r)F(R·)]][[b(r)RF(V·)]]

−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−→
.

is commutative. Moreover, β(r) is in the center of B, hence we also have

RF(V ·)

RF(V ·)

RF(q)
F(R·)

F(R·)
RF(q)

[[b(r)F(R·)]][[b(r)RF(V·)]]

−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−→
.

Hence, we conclude that RF([[α(r)V · ]]) = [[β(r)RF(V ·)]], i.e., RF is R-
homogeneous. ��

Let V be an object in A . Then

β(r)RF(D(V )) = RF(α(r)D(V )) for any r ∈ R.

By taking cohomology, we get

β(r)RpF(V ) = Hp(β(r)RF(D(V ))) = RpF(α(r)V ) for any r ∈ R and p ∈ Z+.

Therefore, we have the following consequence.

Corollary 3.2. The functors RpF : A −→ B are R-homogeneous.
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We leave to the reader the formulation and proofs of the analogous results for a
right exact functor F and its left derived functor LF : D−(A ) −→ D−(B).

3.2 Special Cases

Now we are going to illustrate how Theorems 1.1 and 1.2 follow from the above
discussion.

First, we prove a well-known result about the center of the category of modules.
This is not necessary for our applications, but puts the constructions in a proper
perspective.

Let A be a ring with identity and Z its center. Let M (A) be the category of
A-modules. Any element z in Z determines an endomorphism zU of an A-module
U . Clearly, the assignment U 
−→ zU defines an element of the center Z(M (A)) of
M (A). Therefore, we have a natural homomorphism i : Z −→ Z(M (A)) of rings.

Lemma 3.3. The morphism i : Z −→ Z(M (A)) is an isomorphism.

Proof. If we consider A as an A-module for the left multiplication, we see that i(z)A
is the multiplication by z for any z ∈ Z. Therefore, i(z)A(1) = z and i : Z −→
Z(M (A)) is injective.

Let ζ be an element of the center of A . Then ζA is an endomorphism of A

considered as A-module for left multiplication. Let z = ζA(1). Then

ζA(a) = aζA(1) = az

for any a ∈ A. Moreover, any b ∈ A defines an endomorphism ϕb of A given by
ϕb(a) = ab for all a ∈ A. Since we must have ζA ◦ ϕb = ϕb ◦ ζA, it follows that

bz = (ζA ◦ ϕb)(1) = (ϕb ◦ ζA)(1) = zb.

Since b ∈ A is arbitrary, z must be in the center Z of A.
Let M be an arbitrary A-module and m ∈ M . Then m determines a module

morphism ψm : A −→ M given by ψm(a) = am for any a ∈ A. Therefore,

ζM(m) = (ζM ◦ ψm)(1) = (ψm ◦ ζA)(1) = zm = i(z)Mm.

Hence ζ = i(z), and i is surjective. ��
Now we return to the notation from the first section. By Lemma 3.3, the center

of the category M (U (g)) is isomorphic to Z (g).
First we discuss Theorem 1.1. The functor F = HomU (g)(U,−) is a functor

from the category U (g) into the category of Z (g)-modules. If we define α as the
natural morphism of Z (g) into the center of M (U (g)) and β as multiplication by
χU(z), F is clearly Z (g)-homogeneous. This implies that the functors RpF are
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Z (g)-homogeneous. Hence, for any V in M (U (g)) we have RpF(zV ) = χU(z)

for all p ∈ Z+. In, particular, if z ∈ ker χV we have

0 = RpF(0) = RpF(zV ) = χU(z).

This clearly contradicts χU �= χV if ExtpU (g)
(U, V ) �= 0 for some p ∈ Z.

No we discuss Theorem 1.2. The functor F = H0(n,−) is a functor from
the category U (g) into the category of Z (g)-modules. If we define α as the
natural morphism of Z (g) into the center of M (U (g)) and β as the composition
of the Harish-Chandra homomorphism with the natural morphism of U (h) into
the center of M (U (h)), F is clearly Z (g)-homogeneous. This implies that the
functors LpF are Z (g)-homogeneous. Hence for any V in M (U (g)), we have
LpF(zV ) = γ (z)LpF (V ) for all p ∈ Z+. In, particular, if z annihilates V , γ (z)

annihilates LpF(V ) = Hp(n, V ) for all p ∈ Z.
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