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Abstract We consider the algebraic structure of N-graded vertex operator algebras
with conformal grading V = ⊕n≥0Vn and dimV0 ≥ 1. We prove several results
along the lines that the vertex operators Y (a, z) for a in a Levi factor of the Leibniz
algebra V1 generate an affine Kac–Moody subVOA. If V arises as a shift of a self-
dual VOA of CFT-type, we show that V0 has a “de Rham structure” with many of the
properties of the de Rham cohomology of a complex connected manifold equipped
with Poincaré duality.
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1 Introduction

The purpose of this paper is the study of the algebraic structure of N-graded vertex
operator algebras (VOAs). A VOA V = (V , Y, 1, ω) is called N-graded if it has
no nonzero states of negative conformal weight, so that its conformal grading takes
the form

V = ⊕∞
n=0Vn. (1)
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The VOAs in this class which have been most closely investigated hitherto are
those of CFT-type, where one assumes that V0 = C1 is spanned by the vacuum
vector. (It is well known that a VOA of CFT-type is necessarily N-graded.) Our
main interest here is in the contrary case, when dimV0 ≥ 2.

There are several available methods of constructing N-graded vertex algebras.
One that particularly motivates the present paper arises from the cohomology of the
chiral de Rham complex of a complex manifold M , due to Malikov, Schechtman and
Vaintrob [MS1,MS2,MSV]. In this construction V0 (which is always a commutative
algebra with respect to the −1th operation ab := a(−1)b) is identified with the de
Rham cohomology H ∗(M). One can also consider algebraic structures defined on
V0 ⊕ V1 or closely related spaces, variously called 1-truncated conformal algebras,
vertex A-algebroids, and Lie A-algebroids [GMS, Br, LY], and construct N-graded
vertex algebras from a 1-truncated conformal algebra much as one constructs affine
VOAs from a simple Lie algebra. A third method involves shifted VOAs [DM3].
Here, beginning with a VOA V = (V , Y, 1, ω), one replaces ω by a second
conformal vector ωh := ω + h(−2)1 (h ∈ V1) so that V h := (V , Y, 1, ωh) is a new
VOA with the same Fock space, vacuum and set of fields as V . We call V h a shifted
VOA. For propitious choices of V and h (lattice theories were used in [DM3]) one
can construct lots of shifted VOAs that are N-graded. In particular, if V is rational,
then V h is necessarily also rational, and in this way one obtains N-graded rational
VOAs that are not of CFT-type.

Beyond these construction techniques, the literature devoted to the study of
N-graded VOAs per se is sparse. There are good reasons for this. For a VOA of
CFT-type the weight 1 space V1 carries the structure of a Lie algebra L with respect
to the bracket [ab] = a(0)b (a, b ∈ V1), and the modes of the corresponding vertex
operators Y (a, z) close on an affinization ̂L of L. For a general VOA, N-graded or
not, this no longer pertains. Rather, V1 satisfies the weaker property of being a left
Leibniz algebra (a sort of Lie algebra for which skew-symmetry fails), but one can
still ask the question:

what is the nature of the algebra spanned

by the vertex operators Y (a, z) for a ∈ V1? (2)

Next we give an overview of the contents of this paper. Section 2 is concerned
with question (2) for an arbitrary VOA. After reviewing general facts about Leibniz
algebras and their relation to VOAs, we consider the annihilator F ⊆ V1 of the
Leibniz kernel of V1. F is itself a Leibniz algebra, and we show (Theorem 1) that
the vertex operators Y (a, z) for a belonging to a fixed Levi subalgebra S ⊆ F close
on an affine algebra U ⊆ V . Moreover, all such Levi factors F are conjugate in
Aut(V ), so that U is an invariant of V . (Finite-dimensional Leibniz algebras have a
Levi decomposition in the style of Lie algebras, and the semisimple part is a true Lie
algebra.) This result generalizes the ‘classical’ case of VOAs of CFT-type discussed
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above, to which it reduces if dimV0 = 1, and provides a partial answer to (2). We
do not know if, more generally, the same result holds if we replace S by a Levi
factor of V1.

From Sect. 3 on we consider simple N-graded VOAs that are also self-dual in
the sense that they admit a nonzero invariant bilinear form ( , ) : V × V → C

(cf. [L]). By results in [DM2] this implies that V0 carries the structure of a local,
commutative, symmetric algebra, and in particular it has a unique minimal ideal Ct .
This result is fundamental for everything that follows. It permits us to introduce a
second bilinear form 〈 , 〉 : V1 × V1 → C on V1, defined in terms of ( , ) and t , and
we try to determine its radical. Section 3 covers background results, and in Sect. 4
we show (Proposition 2) exactly how Rad〈 , 〉 is related to the annihilator of the
endomorphism t (−1) acting on V1. In all cases known to us we have

Rad〈 , 〉 = AnnV1(t (−1)), (3)

and it is of interest to know if this is always true.
In Sects. 5 and 6 we consider shifted VOAs, more precisely we consider the set-

up in which we have a self-dual VOA (W, Y, 1, ω′) of CFT-type together with an
element h ∈ W1 such that the shifted theory Wh = (W, Y, 1, ω′

h) as previously
defined is a self-dual, N-graded VOA V . As we mentioned, triples (W, h, V ) of
this type are readily constructed, and they have very interesting properties. The
main result of Sect. 5 is Theorem 2, which, roughly speaking, asserts that V0 looks
just like the de Rham cohomology of a complex manifold equipped with Poincaré
duality. More precisely, we prove that the eigenvalues of h(0) acting on V0 are
nonnegative integers; the maximal eigenvalue is ν, say, and the ν-eigenspace is 1-
dimensional and spanned by t; and the restriction of the nonzero invariant bilinear
form on V to V0 induces a perfect pairing between the λ- and (ν − λ)-eigenspaces.
One may compare this result with the constructions of Malikov et al. in the chiral
de Rham complex, where the same conclusions arise directly from the identification
of the lowest weight space with H ∗(M) for a complex manifold M . There is, of
course, no a priori complex manifold associated to the shifted triple (W, h, V ), but
one can ask whether, at least in some instances, the cohomology of the chiral de
Rham complex arises from the shifted construction?

In Sect. 8 we present several examples that illustrate the theory described in
the previous paragraph. In particular, we take for W the affine Kac–Moody theory
L

̂sl2
(k, 0) of positive integral level k and show that it has a canonical shift to a

self-dual, N-graded VOA V = WH (2H is semisimple and part of a Chevalley
basis for sl2). It turns out that the algebra structure on V0 is naturally identified with
H ∗(CPk). We also look at shifts of lattice theories WL, where the precise structure
of V0 depends on L.

Keeping the notation of the previous paragraph, in Sect. 6 we use the results of
Sect. 5 to prove that the shifted VOA V indeed satisfies (3). Moreover, if the Lie
algebra W1 on the weight 1 space of the CFT-type VOA W is reductive, we prove
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that Rad〈 , 〉 is the nilpotent radical of the Leibniz algebra V1, i.e., the smallest
ideal in V1 such that the quotient is a reductive Lie algebra. It was precisely for the
purpose of proving such a result that the form 〈 , 〉 was introduced. It is known
[DM1] that W1 is indeed reductive if W is regular (rational and C2-cofinite), so for
VOAs obtained as a shift of such a W , we get a precise description of the nilpotent
radical, generalizing the corrresponding result of [DM3].

In Sect. 7 we study simple, self-dual N-graded VOAs that are C2-cofinite. After
reviewing rationality and C2-cofiniteness of vertex operator algebras, we prove
(Theorem 4) that in this case Rad〈 , 〉 lie between the nilpotent radical of V1 and the
solvable radical of V1. In particular, the restriction of 〈 , 〉 to a Levi factor S ⊆ V1 is
nondegenerate; furthermore, the vertex operators Y (a, z) (a ∈ S) close on a tensor
product of WZW models, i.e., simple affine algebras Lĝ(k, 0) of positive integral
level k. Thus we obtain a partial answer to (2) which extends results in [DM4],
where the result was proved for CFT-type VOAs.

2 Leibniz Algebras and Vertex Operator Algebras

In this section, we assume that V is any simple vertex operator algebra

V = ⊕n≥n0Vn,

with no restriction on the nature of the conformal grading.
A left Leibniz algebra is a C-linear space L equipped with a bilinear product, or

bracket, [ ] satisfying

[a[bc]] = [[ab]c] + [b[ac]], (a, b, c ∈ V ).

Thus [a∗] is a left derivation of the algebra L, and L is a Lie algebra if, and only
if, the bracket is also skew-symmetric. We refer to [MY] for facts about Leibniz
algebras that we use below.

Lemma 1. V is a Z-graded left Leibniz algebra with respect to the 0th operation
[ab] := a(0)b. Indeed, there is a triangular decomposition

V = {⊕n≤0Vn

} ⊕ V1 ⊕ {⊕n≥2Vn

}

(4)

into left Leibniz subalgebras. Moreover, ⊕n≤0Vn is nilpotent.

Proof. Recall the commutator formula

[u(p), v(q)]w =
∞
∑

i=0

(

p

i

)

(u(i)v)(p + q − i)w. (5)
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Upon taking p = q = 0, (5) specializes to

u(0)v(0)w − v(0)u(0)w = (u(0)v)(0)w,

which is the identity required to make V a left Leibniz algebra. The remaining
assertions are consequences of

u(0)(Vn) ⊆ Vn+k−1 (u ∈ Vk).

�
Remark 1. A right Leibniz algebra L has a bracket with respect to which L acts as
right derivations. Generally, a left Leibniz algebra is not a right Leibniz algebra, and
in particular a vertex operator algebra is generally not a right Leibniz algebra.

It is known (e.g., [B, MY]) that a finite-dimensional left Leibniz algebra has a
Levi decomposition. In particular, this applies to the middle summand V1 in (4).
Thus there is a decomposition

V1 = S ⊕ B, (6)

where S is a semisimple Lie subalgebra and B is the solvable radical of V1. As in
the case of a Lie algebra, we call S a Levi subalgebra. Unlike Lie algebras, Levi
factors are generally not conjugate to each other by exponential automorphisms,
i.e., Malcev’s theorem does not extend to Leibniz algebras [MY].

This circumstance leads to several interesting questions in VOA theory. In
particular, what is the nature of the subalgebra of V generated by a Levi subalgebra
S ⊆ V1? Essentially, we want a description of the Lie algebra of operators generated
by the modes a(n) (a ∈ S, n ∈ Z). In the case when V is of CFT-type (i.e., V0 = C1
is spanned by the vacuum), it is a fundamental fact that these modes generate an
affine algebra. Moreover, all Levi subfactors of V1 are conjugate in Aut(V ) (cf.
[M]), so that the affine algebra is an invariant of V . It would be interesting to know
if these facts continue to hold for arbitrary vertex operator algebras. We shall deal
here with a special case.

To describe our result, introduce the Leibniz kernel defined by

N := 〈a(0)a | a ∈ V1〉 = 〈a(0)b + b(0)a | a, b ∈ V1〉 (linear span).

N is the smallest 2-sided ideal of V1 such that V1/N is a Lie algebra. The annihilator
of the Leibniz kernel is

F := AnnV1(N) = {a ∈ V1 |a(0)N = 0}.

This is a 2-sided ideal of V1, in particular it is a Leibniz subalgebra and itself
contains Levi factors. We will prove
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Theorem 1. Let V be a simple vertex operator algebra, with N and F as above.
Then the following hold:

(a) Aut(V ) acts transitively on the Levi subalgebras of F .
(b) Let S ⊆ F be a Levi subalgebra of F . Then u(1)v ∈ C1 (u, v ∈ S), and the

vertex operators Y (u, z) (u ∈ S) close on an affine algebra, i.e.,

[u(m), v(n)] = (u(0)v)(m + n) + mα(u, v)δm+n,0IdV ,

where u(1)v = α(u, v)1.

We prove the theorem in a sequence of lemmas. Fix a Levi subalgebra S ⊆ F ,
and set

W := ⊕n≤0Vn.

Lemma 2. W is a trivial left S-module, i.e., u(0)w = 0 (u ∈ S,w ∈ W).

Proof. We have to show that each homogeneous space Vn (n ≤ 0), is a trivial left
S-module. Because L(−1) : Vn → Vn+1 is an injective V1-equivariant map for
n �= 0, it suffices to show that V0 is a trivial S-module.

Consider L(−1) : V0 → V1, and set N ′ := L(−1)V0. Because [L(−1), u(0)] =
0, L(−1) is V1-equivariant. By skew-symmetry we have u(0)u = 1/2L(−1)u(1)u.
This shows that N ⊆ N ′. Now because (L(−1)v)(0) = 0 (v ∈ V ) then in particular
N ′(0)V1 = 0. Therefore, S(0)N ′ = 〈u(0)v + v(0)u | u ∈ S, v ∈ N ′〉 ⊆ N . But S is
semisimple and it annihilates N . It follows that S annihilates N ′.

Because V is simple, its center Z(V ) = kerL(−1) coincides with C1. By Weyl’s
theorem of complete reducibility, there is an S-invariant decomposition

V0 = C1 ⊕ J,

and restriction of L(−1) is an S-isomorphism J
∼=→ N ′. Because S annihilates N ′,

it must annihilate J . It therefore also annihilates V0, as we see from the previous
display. This completes the proof of the lemma. �

Lemma 3. We have

u(k)w = 0 (u ∈ S,w ∈ W, k ≥ 0). (7)

Proof. Because S is semisimple, we may, and shall, assume without loss that u is a
commutator u = a(0)b (a, b ∈ S). Then

(a(0)b)(k)w = a(0)b(k)w − b(k)a(0)w = 0.
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The last equality holds thanks to Lemma 2, and because b(k)w ∈ W for k ≥ 0. The
lemma is proved. �
Lemma 4. We have

[u(m),w(n)] = 0 (u ∈ S,w ∈ W ; m,n ∈ Z). (8)

Proof. First notice that by Lemma 2,

[u(0),w(n)] = (u(0)w)(n) = 0. (9)

Once again, it is suffices to assume that u = a(0)b (a, b ∈ F). In this case we
obtain, using several applications of (9), that

[u(m),w(n)] = [(a(0)b)(m),w(n)]
= [[a(0), b(m)], w(n)]
= [a(0), [b(m),w(n)]] − [b(m), [a(0),w(n)]]
= [a(0), (b(0)w)(m + n) + m(b(1)w)(m + n − 1)]
= 0.

This completes the proof of the lemma. �
Consider the Lie algebra L of operators on V defined by

L := 〈u(m),w(n) | u ∈ S,w ∈ W ; m,n ∈ Z〉.

If w, x ∈ W , then

[w(m), x(n)] =
∑

i≥0

(

m

i

)

(w(i)x)(m + n − i),

and w(i)x has weight less than that of w and x whenever w, x ∈ W are
homogeneous and i ≥ 0. This shows that the operators w(m) (w ∈ W,m ∈ Z)

span a nilpotent ideal of L, call it P . Let L0 be the Lie subalgebra generated by
u(m) (u ∈ S0,m ∈ Z). By Lemma 4, L0 is also an ideal of L; indeed

L = P + L0, [P,L0] = 0.

Next, for u, v ∈ S we have

[u(m), v(n)] = (u(0)v)(m + n) +
∑

i≥1

(

m

i

)

(u(i)v)(m + n − i). (10)
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So if w ∈ S, then by Lemma 4 once more,

[w(0), [u(m), v(n)]] = [w(0), (u(0)v)(m + n)] = (w(0)(u(0)v))(m + n).

This shows that L0 coincides with its derived subalgebra. Furthermore, the short
exact sequence

0 → P ∩ L0 → L0 → L0/(P ∩ L0) → 0

shows that L0 is a perfect central extension of the loop algebra ̂L(S0) ∼= L0/(P ∩
L0). Because H 2(̂L(G)) is 1-dimensional for a finite-dimensional simple Lie
algebra G, we can conclude that dim(P ∩ L0) is finite.

Taking m = 1 in (10), it follows that

(u(1)v)(n) ∈ P ∩ L0 (n ∈ Z). (11)

Now if u(1)v /∈ Z(V ), then all of the modes (u(1)v)(n), n < 0, are nonzero, and
indeed linearly independent. This follows from the creation formula

∑

n≤−1

(u(1)v)(n)1z−n−1 = ezL(−1)u(1)v.

Because P ∩ L0 is finite-dimensional and contains all of these modes, this is
not possible. We deduce that in fact u(1)v ∈ Z(V ) = C, say u(1)v =
α(u, v)1, α(u, v) ∈ C.

Taking m = 2, 3, . . . in (10), we argue in the same way that u(i)v ∈ Z(V ) for
i ≥ 2. Since Z(V ) ⊆ V0, this means that u(i)v = 0 for i ≥ 2. Therefore, (10)
now reads

[u(m), v(n)] = (u(0)v)(m + n) + mα(u, v)δm+n,0Id, (12)

where u(1)v = α(u, v)1. This completes the proof of part (b) of the Theorem.
It remains to show that Aut(V ) acts transitively on the set of Levi subalge-

bras of F .

Lemma 5. [FF] consists of primary states, i.e., L(k)[FF ] = 0 (k ≥ 1).

Proof. It suffices to show that L(k)a(0)b = 0 for a, b ∈ F and k ≥ 1. Since
L(k)b ∈ W then a(0)L(k)b = 0 by Lemma 2. Using induction on k, we then have

L(k)a(0)b = [L(k), a(0)]b
= (L(−1)a)(k + 1)b + (k + 1)(L(0)a)(k)b + (L(k)a)(0)b
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= (L(k)a)(0)b

=
∑

i≥0

(−1)i+1/i!L(−1)ib(i)L(k)a = 0,

where we used skew-symmetry for the fourth equality, and Lemma 3 for the last
equality. The lemma is proved. �

Finally, by [MY], Theorem 3.1, if S1, S2 are a pair of Levi subalgebras of F ,
then we can find x ∈ [FF ] such that ex(0)(S1) = S2. Because x is a primary state,
it is well known that ex(0) is an automorphism of V . This completes the proof of
Theorem 1. �

3 N-Graded Vertex Operator Algebras

In this section, we assume that V is a simple, self-dual, N-graded vertex operator
algebra. We are mainly interested in the case that dimV0 ≥ 2. There is a lot of
structure available to us in this situation, and in this section we review some of the
details, and at the same time introduce some salient notation.

The self-duality of V means that there is a nonzero bilinear form

( , ) : V × V → C

that is invariant in the sense that

(Y (u, z)v,w) =
(

v, Y (ezL(1)(−z−2)L(0)u, z−1)w
)

(u, v,w ∈ V ). (13)

( , ) is necessarily symmetric [FHL], and because V is simple, it is then nondegen-
erate. The simplicity of V also implies (Schur’s Lemma) that ( , ) is unique up to
scalars. By results of Li [L], there is an isomorphism between the space of invariant
bilinear forms and V0/L(1)V1. Therefore, L(1)V1 has codimension 1 in V0. For
now, we fix a nonzero form ( , ), but do not choose any particular normalization.

If u ∈ Vk is quasiprimary (i.e., L(1)u = 0), then (13) is equivalent to

(u(n)v,w) = (−1)k(v, u(2k − n − 2)w) (n ∈ Z). (14)

In particular, taking u to be the conformal vector ω ∈ V2, which is always
quasiprimary, and n = 1 or 2 yields

(L(0)v,w) = (v, L(0)w), (15)

(L(1)v,w) = (v, L(−1)w). (16)
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We write P ⊥ Q for the direct sum of subspaces P,Q ⊆ V that are orthogonal
with respect to ( , ). Thus (Vn, Vm) = 0 for n �= m by (15), so that

V =⊥n≥0 Vn.

In particular, the restriction of ( , ) to each Vn is nondegenerate. We adopt the
following notational convention for U ⊆ Vn:

U⊥ := {a ∈ Vn | (a,U) = 0}.

The center of V is defined to be Z(V ) := kerL(−1). Because V is simple, we
have Z(V ) = C1 (cf. [LL, DM2]). Then from (16) we find that

(L(1)V1)
⊥ = C1. (17)

V0 carries the structure of a commutative associative algebra with respect to the
operation a(−1)b (a, b ∈ V0). Since all elements in V0 are quasiprimary, we can
apply (14) with u, v,w ∈ V0 to obtain

(u(−1)v,w) = (v, u(−1)w). (18)

Thus ( , ) is a nondegenerate, symmetric, invariant bilinear form on V0, whence V0
is a commutative symmetric algebra, or Frobenius algebra.

What is particularly important for us is that because V is simple, V0 is a local
algebra, i.e., the Jacobson radical J := J (V0) is the unique maximal ideal of V0,
and every element of V0 \ J is a unit. This follows from results of Dong–Mason
([DM2], Theorem 2 and Remark 3).

For a symmetric algebra, the map I → I⊥ is an inclusion-reversing duality on
the set of ideals. In particular, because V0 is a local algebra, it has a unique minimal
(nonzero) ideal, call it T , and T is 1-dimensional. Indeed,

T = J⊥ = AnnV0(J ) = Ct, (19)

for some fixed, but arbitrary, nonzero element t ∈ T . We have

T ⊕ L(1)V1 = V0.

This is a consequence of the nondegeneracy of ( , ) on V0, which entails that L(1)V1
contains no nonzero ideals of V0. In particular, (17) implies that

(t, 1) �= 0. (20)

We will change some of the notation from the previous section by setting N :=
L(−1)V0 (it was denoted N ′ before). In the proof of Lemma 2 we showed that N

contains the Leibniz kernel of V1. In particular, V1/N is a Lie algebra. We write
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N0/N = Nil(V1/N), N1/N = Nilp(V1/N),B/N = solv(V1/N), (21)

the nil radical, nilpotent radical, and solvable radical respectively of V1/N . N0/N

is the largest nilpotent ideal in V1/N , N1/N is the intersection of the annihilators
of simple V1/N-modules, and B/N the largest solvable ideal in V1/N . It is well
known that N1 ⊆ N0 ⊆ B. Moreover, N1/N = [V1/N, V1/N] ∩ B/N , V1/N1 is
a reductive Lie algebra, and N1 is the smallest ideal in V1 with this property. Note
that N0 and B are also the largest nilpotent, and solvable ideals respectively in the
left Leibniz algebra V1.

Each of the homogeneous spaces Vn is a left V1-module with respect to the 0th
bracket. Because u(0) = 0 for u ∈ N , it follows that Vn is also a left module over
the Lie algebra V1/N . Since V0 = C1 ⊕ J , L(−1) induces an isomorphism of
V1-modules

L(−1) : J
∼=→ N. (22)

Remark 2. Most of the structure we have been discussing concerns the 1-truncated
conformal algebra V0 ⊕ V1 [Br, GMS, LY], and many of our results can be couched
in this language.

4 The Bilinear Form 〈 , 〉

We keep the notation of the previous section; in particular t ∈ V0 spans the unique
minimal ideal of V0. We introduce the bilinear form 〈 , 〉 : V1 ⊗ V1 → C, defined
as follows:

〈u, v〉 := (u(1)v, t), (u, v ∈ V1). (23)

We are interested in the radical of 〈 , 〉, defined as

rad〈 , 〉 := {u ∈ V1 | 〈u, V1〉 = 0}.
We will see that 〈 , 〉 is a symmetric, invariant bilinear form on the Leibniz algebra
V1. The main result of this section (Proposition 2) determines the radical in terms of
certain other subspaces that we introduce in due course. In order to study 〈 , 〉 and
its radical, we need some preliminary results.

Lemma 6. We have u(0)J ⊆ J and u(0)T ⊆ T for u ∈ V1. Moreover, the left
annihilator

M := {u ∈ V1 | u(0)T = 0}

is a 2-sided ideal of V1 of codimension 1, and M = (L(−1)T )⊥.

Proof. Any derivation of a finite-dimensional commutative algebra B leaves invari-
ant both the Jacobson radical J (B) and its annihilator. In the case that the derivation
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is u(0), u ∈ V1, acting on V0, this says that the left action of u(0) leaves both J and
T invariant (using (19) for the second assertion). This proves the first two statements
of the lemma.

For u ∈ V1 we have

(L(−1)t, u) = (t (−2)1, u) = (1, t (0)u) = −(1, u(0)t). (24)

Now because T is the unique minimal ideal in V0 then T ⊆ J and hence
dimL(−1)T = 1 by (22). Then (24) and (20) show that (L(−1)T )⊥ = M has
codimension exactly 1 in V1.

Finally, using the commutator formula [u(0), v(0)] = (u(0)v)(0) applied with
one of u, v ∈ M and the other in V1, we see that (u(0)v)(0)T = 0 in either case.
Thus u(0)v ∈ M , whence M is a 2-sided ideal in V1. This completes the proof of
the lemma. �
Lemma 7. We have

t (−2)J = 0.

Proof. Let a ∈ J, u ∈ V1. Then

(t (−2)a, u) = (a, t (0)u) = −(a, u(0)t) = 0.

The last equality follows from u(0)t ∈ T (Lemma 6) and T = J⊥ (19). We deduce
that t (−2)J ⊆ V ⊥

1 = 0, and the lemma follows. �
Proposition 1. 〈 , 〉 is a symmetric bilinear form that is invariant in the sense that

〈v(0)u,w〉 = 〈v, u(0)w〉 (u, v,w ∈ V1).

Moreover N ⊆ rad 〈 , 〉.
Proof. By skew-symmetry we have u(1)v = v(1)u for u, v ∈ V1, so the symmetry
of 〈 , 〉 follows immediately from the definition (23). If u ∈ N , then u = L(−1)a

for some a ∈ J by (22), and we have

〈u, v〉 = ((L(−1)a)(1)v, t) = −(a(0)v, t)

= −(v, a(−2)t) = (v, t (−2)a − L(−1)t (−1)a) = 0.

Here, we used t (−2)a = 0 (Lemma 7) and t (−1)a ∈ t (−1)J = 0 to obtain the last
equality. This proves the assertion that N ⊆ rad〈 , 〉.
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As for the invariance, we have

〈u(0)v,w〉 = ((u(0)v)(1)w, t) = (u(0)v(1)w − v(1)u(0)w, t).

= (u(0)v(1)w, t) − 〈v, u(0)w〉.

Now V0 = C1 ⊕J, u(0)1 = 0, and u(0)J ⊆ J = T ⊥. Therefore, (u(0)v(1)w, t) =
0, whence we obtain 〈u(0)v,w〉 = −〈v, u(0)w〉 from the previous display. Now
because N ⊆ rad〈 , 〉 we see that

〈v(0)u,w〉 = −〈u(0)v − L(−1)u(1)v,w〉 = 〈v, u(0)w〉,

as required. This completes the proof of the proposition. �
Lemma 8. We have

〈u, v〉 = −(v, u(−1)t), u, v ∈ V1. (25)

In particular,

rad〈 , 〉 = {u ∈ V1 | u(−1)t = 0}.

Proof. The first statement implies the second, so it suffices to establish (25). To this
end, we apply (13) with u, v ∈ V1, w = t to find that

〈u, v〉 = (u(1)v, t) = −(v, u(−1)t) − (v, (L(1)u)(−2)t).

On the other hand, L(1)u ∈ V0 = C1 ⊕ J , so that (L(1)u)(−2)t = a(−2)t =
−t (−2)a + L(−1)t (−1)a for some a ∈ J . Since t (−1)a = t (−2)a = 0 (the latter
equality thanks to Lemma 7), the final term of the previous display vanishes, and
what remains is (25). The lemma is proved. �

We introduce

P := {u ∈ V1 | 〈u,M〉 = 0},
AnnV1(t (−1)) := {u ∈ V1 | t (−1)u = 0}.

Lemma 9. We have

P = {u ∈ V1 | t (−1)u ∈ L(−1)T },

and this is a 2-sided ideal of V1.
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Proof. Let m ∈ M,u ∈ V1. By (25) we have

〈u,m〉 = −(m, u(−1)t).

But by Lemma 6 we have M⊥ = L(−1)T . Hence, the last display implies that
P = {u ∈ V1 | u(−1)t ∈ L(−1)T }. Furthermore, we have u(−1)t = t (−1)u −
L(−1)t (0)u = t (−1)u+L(−1)u(0)t ∈ t (−1)u+L(−1)T by Lemma 6 once more.
Thus u(−1)t ∈ L(−1)T if, and only if, t (−1)u ∈ L(−1)T . The first assertion of
the lemma follows.

Because N ⊆ rad〈 , 〉 thanks to Proposition 1, then certainly N ⊆ P . So in order
to show that P is a 2-sided ideal in V1, it suffices to show that it is a right ideal. To
see this, let a ∈ P, n ∈ M,u ∈ V1. By Lemma 6 and Proposition 1 we find that

〈a(0)u, n〉 = 〈a, u(0)n〉 ∈ 〈a,M〉 = 0.

This completes the proof of the lemma. �
Lemma 10. We have M ∩ AnnV1(t (−1)) = M ∩ rad〈 , 〉.

Proof. If u ∈ M , then t (−1)u = u(−1)t − L(−1)u(0)t = u(−1)t . Hence for
u ∈ M , we have u ∈ AnnV1(t (−1)) ⇔ u(−1)t = 0 ⇔ u ∈ rad〈 , 〉, where we used
Lemma 8 for the last equivalence. The lemma follows. �
Lemma 11. At least one of the containments rad〈 , 〉 ⊆ M, AnnV1(t (−1)) ⊆ M

holds.

Proof. Suppose that we can find v ∈ rad〈 , 〉 \ M . Then v(−1)t = 0 by Lemma 8,
and v(0)t = λt for a scalar λ �= 0. Rescaling v, we may, and shall, take λ = 1. Then

0 = v(−1)t = t (−1)v − L(−1)t (0)v

= t (−1)v + L(−1)v(0)t = t (−1)v + L(−1)t.

Then for u ∈ AnnV1(t (−1)) we have

(L(−1)t, u) = −(t (−1)v, u) = −(v, t (−1)u) = 0,

which shows that AnnV1(t (−1)) ⊆ (L(−1)t)⊥ = M (using Lemma 6). This
completes the proof of the Lemma. �

The next result almost pins down the radical of 〈 , 〉.
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Proposition 2. Exactly one of the following holds:

(i) AnnV1(t (−1)) = rad〈 , 〉 ⊂ P ;
(ii) AnnV1(t (−1)) ⊂ rad〈 , 〉 = P ;
(iii) rad〈 , 〉 ⊂ AnnV1(t (−1)) = P.

In each case, the containment ⊂ is one in which the smaller subspace has
codimension one in the larger subspace.

Proof. First note from Lemma 9 that AnnV1(t (−1)) ⊆ P ; indeed, since
dimL(−1)T = 1 then the codimension is at most 1. Also, it is clear from the
definition of P that rad〈 , 〉 ⊆ P .

Suppose first that the containment AnnV1(t (−1)) ⊂ P is proper. Then we can
choose v ∈ P \AnnV1 t (−1) such that t (−1)v = L(−1)t �= 0. If u ∈ AnnV1(t (−1)),
we then obtain

(L(−1)t, u) = (t (−1)v, u) = (v, t (−1)u) = 0,

whence u ∈ (L(−1)t)⊥ = M by Lemma 6. This shows that AnnV1(t (−1)) ⊆
M . By Lemma 10 it follows that AnnV1(t (−1)) = M ∩ rad〈 , 〉. Now if also
rad〈 , 〉 ⊆ M , then Case 1 of the theorem holds. On the other hand, if rad〈 , 〉 �⊆ M ,
then we have AnnV1(t (−1)) ⊂ rad〈 , 〉 ⊆ P and the containment is proper; since
AnnV1(t (−1)) has codimension at most 1 in P then we are in Case 2 of the theorem.

It remains to consider the case that AnnV1(t (−1)) = P ⊇ rad〈 , 〉. Suppose
the latter containment is proper. Because M has codimension 1 in V1, it follows
from Lemma 10 that rad〈 , 〉 has codimension exactly 1 in AnnV1(t (−1)), whence
Case 3 of the theorem holds. The only remaining possibility is that AnnV1(t (−1)) =
P = rad〈 , 〉, and we have to show that this cannot occur. By Lemma 11 we
must have rad〈 , 〉 ⊆ M , so that M/rad〈 , 〉 is a subspace of codimension 1 in
the nondegenerate space V1/rad〈 , 〉 (with respect to 〈 , 〉). But then the space
orthogonal to M/rad〈 , 〉, that is P/rad〈 , 〉, is 1-dimensional. This contradiction
completes the proof of the Theorem. �
Remark 3. In all cases that we know of, it is (i) of Proposition 2 that holds. This
circumstance leads us to raise the question, whether this is always the case? We
shall later see several rather general situations where this is so. At the same time,
we will see how rad〈 , 〉 is related to the Leibniz algebra structure of V1.

5 The de Rham Structure of Shifted Vertex
Operator Algebras

In the next few sections we consider N-graded vertex operator algebras that are
shifts of vertex operator algebras of CFT-type [DM3].
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Let us first recall the idea of a shifted vertex operator algebra [DM3]. Suppose
that W = (W, Y, 1, ω′) is an N-graded vertex operator algebra of central charge c′
and Y (ω′, z) =: ∑

n L′(n)z−n−2. It is easy to see that for any h ∈ W1, the state
ω′

h := ω′ + L′(−1)h is also a Virasoro vector, i.e., the modes of ω′
h satisfy the

relations of a Virasoro algebra of some central charge c′
h (generally different from

c′). (The proof of Theorem 3.1 in [DM3] works in the slightly more general context
that we are using here.) Now consider the quadruple

Wh := (W, Y, 1, ω′
h), (26)

which is generally not a vertex operator algebra. If it is, we call it a shifted vertex
operator algebra.

We emphasize that in this situation, W and Wh share the same underlying Fock
space, the same set of vertex operators, and the same vacuum vector. Only the
Virasoro vectors differ, although this has a dramatic effect because it means that
W and Wh have quite different conformal gradings, so that the two vertex operator
algebras seem quite different.

Now let V = (V , Y, 1, ω) be a simple, self-dualN-graded vertex operator algebra
as in the previous two sections. The assumption of this section is that there is a self-
dual VOA W of CFT-type such that Wh = V . That is, V arises as a shift of a vertex
operator algebra of CFT-type as described above. Thus h ∈ W1 and

(W, Y, 1, ω′
h) = (V , Y, 1, ω).

(Note that by definition, W has CFT-type if W0 = C1. In this case, W is necessarily
N-graded by [DM3], Lemma 5.2.) Although the two vertex operator algebras share
the same Fock space, it is convenient to distinguish between them, and we shall do
so in what follows. We sometimes refer to (W, h, V ) as a shifted triple. Examples
are constructed in [DM3], and it is evident from those calculations that there are
large numbers of shifted triples.

There are a number of consequences of the circumstance that (W, h, V ) is a
shifted triple. We next discuss some that we will need. Because ω = ω′

h = ω′ +
L′(−1)h then

L(n) = (ω′ + L(−1)h)(n + 1) = L′(n) − (n + 1)h(n), (27)

in particular L(0) = L′(0)−h(0). Because h ∈ W1, we also have [L′(0), h(0)] = 0.
Then because L′(0) is semisimple with integral eigenvalues, the same is true of h(0).
Set

Wm,n := {w ∈ W | L′(0)w = mw,h(0)w = nw}.

Hence,

Vn = ⊕m≥0Wm,m−n,
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and in particular

V0 = C1 ⊕m≥1 Wm,m, (28)

V1 = ⊕m≥1Wm,m−1. (29)

(28) follows because W is of CFT-type, so that W0,0 = C1 and Wm,n = 0 for n < 0.
We have L(0)h = L′(0)h − h(0)h. Because W is of CFT-type then W1 is a Lie

algebra with respect to the 0th bracket, and in particular h(0)h = 0. Therefore,
L(0)h = h, that is h ∈ V1. Thus h(0) induces a derivation in its action on the
commutative algebra V0. The decomposition (28) is one of h(0)-eigenspaces, and it
confers on V0 a structure that looks very much like the de Rham cohomology of a
(connected) complex manifold equipped with its Poincaré duality. This is what we
mean by the de Rham structure of V0. Specifically, we have

Theorem 2. Set A = V0 and Aλ := Wλ,λ, the λ-eigenspace for the action of h(0)

on A. Then the following hold;

(i) A = ⊕λA
λ, and if Aλ �= 0, then λ is a nonnegative integer.

(ii) A0 = C1.

(iii) Let h(1)h = (ν/2)1. Then Aν = T = Ct .

(iv) Aλ(−1)Aμ ⊆ Aλ+μ.

(v) Aλ ⊥ Aμ = 0 if λ + μ �= ν.

(vi) If λ + μ = ν, the bilinear form ( , ) induces a perfect pairing

Aλ × Aμ → C.

(Here, ( , ) is the invariant bilinear form on V , and T the unique minimal ideal of
V0, as in Sects. 4 and 5.)

Proof. (i) and (ii) are just restatements of the decomposition (28).
Next we prove (iv). Indeed, because h(0) is a derivation of the algebra A, if a ∈

Aλ, b ∈ Aμ, then h(0)a(−1)b = [h(0), a(−1)]b+a(−1)h(0)b = (h(0)a)(−1)b+
μa(−1)b = (λ + μ)a(−1)b. Part (iv) follows.

Next we note that because W is of CFT-type then certainly h(1)h = (ν/2)1 for
some scalar ν. Now let a, b be as in the previous paragraph. Then

λ(a, b) = (h(0)a, b) = Resz(Y (h, z)a, b)

= Resz(a, Y (ezL(1)(−z−2)L(0)h, z−1)b) (by (13))

= −Reszz
−2(a, Y (h + zL(1)h, z−1)b)

= −(a, h(0)b) − (a, (L(1)h)(−1)b)

= −μ(a, b) − (a, L′(1)h − 2h(1)h)(−1)b)

= −μ(a, b) + 2(a, (h(1)h)(−1)b)

= −μ(a, b) + ν(a, b).
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Here we used the assumption that W is self-dual and of CFT-type to conclude that
L′(1)W1 = 0, and in particular L′(1)h = 0. Thus we have obtained

(λ + μ − ν)(a, b) = 0. (30)

If λ + μ �= ν, then we must have (a, b) = 0 for all choices of a, b, and this is
exactly what (v) says. Because the bilinear form ( , ) is nondegenerate, it follows
that it must induce a perfect pairing between Aλ and Aμ whenever λ + μ = ν. So
(vi) holds.

Finally, taking λ = 0, we know that A0 = C1 by (ii). Thus A0 pairs with Aν and
dimAν = 1. Because (1, t) �= 0 by (20), and T is an eigenspace for h(0) (Lemma 6),
we see that Aν = T . This proves (iii), and completes the proof of the theorem. �

6 The Bilinear Form in the Shifted Case

We return to the issue, introduced in Sect. 5, of the nature of the radical of the
bilinear form 〈 , 〉 for an N-graded vertex operator algebra V , assuming now that
V is a shift of a simple, self-dual vertex operator algebra W = (W, Y, 1, ω′) of
CFT-type as in Sect. 5. We will also assume that dimV0 ≥ 2.

We continue to use the notations of Sects. 3–5. We shall see that the question
raised in Remark 3 has an affirmative answer in this case, and that rad〈 , 〉/N is
exactly the nilpotent radical N1/N of the Lie algebra V1/N when W1 is reductive.
The precise result is as follows.

Theorem 3. We have

⊕m≥2 Wm,m−1 ⊆ AnnV1(t (−1)) = rad〈 , 〉. (31)

Moreover, if W1 is reductive, then

N1 = ⊕m≥2Wm,m−1 = AnnV1(t (−1)) = rad〈 , 〉. (32)

Recall that V1 is a Leibniz algebra, N = L(−1)V0 is a 2-sided ideal in V1, V1/N

is a Lie algebra, and N1/N is the nilpotent radical of V1/N (21). Because W is a
VOA of CFT-type then W1 is a Lie algebra with bracket a(0)b (a, b ∈ W1), and
W1,0 = CW1(h) is the centralizer of h in W1.

Lemma 12. h ∈ P .

Proof. We have to show that 〈h,M〉 = (h(1)M, t) = 0. Since M is an ideal in V1
then M is the direct sum of its h(0)-eigenspaces. Let Mp = {m ∈ M | h(0)m =
pm}. Now h(0)h(1)m = h(1)h(0)m = ph(1)m (m ∈ Mp), showing that
h(1)Mp ⊆ Ap. If p �= 0, then (Ap, t) = 0 by Theorem 2, so that (h(1)Mp, t) = 0
in this case.
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It remains to establish that (h(1)M0, t) = 0. To see this, first note that because W

is self-dual then L′(1)W1 = 0. Since L′(1) = L(1)+2h(1) then h(1)W1 = L(1)W1,
and in particular h(1)M0 = L(1)M0 (because M0 ⊆ V 0

1 = W1,0 ⊆ W1). Therefore,
(h(1)M0, t) = (L(1)M0, t) = (M0, L(−1)t) = 0, where the last equality holds by
Lemma 6. The lemma is proved. �
Lemma 13. h /∈ AnnV1(t (−1)) ∪ rad〈 , 〉.
Proof. First recall that h(1)h = ν/21. Then we have

〈h, h〉 = (h(1)h, t) = ν/2(1, t) �= 0.

Here, ν �= 0 thanks to Theorem 2 and because we are assuming that dimV0 ≥ 2.
Because h ∈ V1, this shows that 〈h, V1〉 �= 0, so that h /∈ rad〈 , 〉.

Next, using (27) we have L(1)h = L′(1)h − 2h(1)h. Because W is assumed to
be self-dual then L′(1)h = 0, so that L(1)h = −2h(1)h = −ν1. Now

(t (−1)h, h) = (h(−1)t − L(−1)h(0)t, h).

Therefore,

(L(−1)h(0)t, h) = (h(0)t, L(1)h) = −ν2(t, 1).

Also,

(h(−1)t, h) = (t,−h(1)h − (L(1)h)(0)h) = −ν/2(t, 1).

Therefore,

(t (−1)h, h) = (ν2 − ν/2)(t, 1).

Because ν is a positive integer, the last displayed expression is nonzero.
Therefore, t (−1)h �= 0, i.e., h /∈ AnnV1(t (−1)). This completes the proof of the
lemma. �
We turn to the proof of Theorem 3. First note that by combining Lemmas 12 and 13
together with Proposition 2, we see that cases (ii) and (iii) of Proposition 2 cannot
hold. Therefore, case (i) must hold, that is

rad〈 , 〉 = AnnV1(t (−1)).

From (28) it is clear that, up to scalars, 1 is the only state in V0 annihilated by
h(0). It then follow from Lemma 6 that J = ⊕m≥1Wm,m. In particular, (Wm,m, t) =
0 (m ≥ 1) by (19).
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Now let u ∈ Wm,m−1, v ∈ Wk,k−1 with m ≥ 1, k ≥ 2. Then u(1)v ∈ V0 and
L′(0)u(1)v = (m + k − 2)u(1)v. Therefore, u(1)v ∈ Wm+k−2,m+k−2, and because
m + k − 2 ≥ 1 it follows that

〈u, v〉 = (u(1)v, t) = 0.

Because this holds for all u ∈ Wm,m−1 and all m ≥ 1, we conclude that v ∈ rad〈 , 〉.
This proves that ⊕m≥2Wm,m−1 ⊆ rad〈 , 〉. Now (31) follows immediately.

Now suppose that W1 is reductive. Because W is self-dual and of CFT-type, it has
(up to scalars) a unique nonzero invariant bilinear form. Let us denote it by (( , )).
In particular, we have

((u, v))1 = u(1)v (u, v ∈ W1).

Because V is simple and V,W have the same set of fields, then W is also simple.
In particular, (( , )) must be nondegenerate. Now if L is a (finite-dimensional,
complex) reductive Lie algebra equipped with a nondegenerate, symmetric invariant
bilinear form, then the restriction of the form to the centralizer of any semisimple
element in L is also nondegenerate. In the present situation, this tells us that the
restriction of (( , )) to CW1(h) is nondegenerate.

On the other hand, we have

〈u, v〉 = (u(1)v, t) = ((u, v))(1, t)

and (1, t) �= 0 by (20). This shows that the restrictions of 〈 , 〉 and (( , )) to CW1(h)

are equivalent bilinear forms. Since the latter is nondegenerate, so is the former.
Therefore, rad〈 , 〉 ∩ CW1(h) = 0. Now the second and third equalities of (32)
follow from (31) and the decomposition V1 = CW1(h) ⊕ ⊕m≥2Wm,m−1.

To complete the proof of the theorem it suffices to prove the next result.

Lemma 14. We have

N1 = Nilp(V1)(CW1(h)) ⊕m≥2 Wm,m−1. (33)

In particular, if W1 is a reductive Lie algebra, then

N1 = ⊕m≥2Wm,m−1. (34)

Proof. Let u ∈ Wk,k−1, v ∈ Wm,m−1 with k ≥ 1,m ≥ 2. Then v(0)u ∈ Wm+k−1 ∩
V1 ⊆ Wm+k−1,m+k−2 and m + k − 1 > k. This shows that ⊕m≥2Wm,m−1 is an ideal
in V1. Moreover, because there is a maximum integer r for which Wr,r−1 �= 0, it
follows that v(0)lV1 = 0 for large enough l, so that the left adjoint action of v(0) on
V1 is nilpotent. This shows that ⊕m≥2Wm,m−1 is a nilpotent ideal. Because h(0) acts
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on Wm,m−1 as multiplication by m − 1, then Wm,m−1 = [h,Wm,m−1] for m ≥ 2,
whence in fact ⊕m≥2Wm,m−1 ⊆ N1. Then (33) follows immediately.

Finally, if W1 is reductive, the centralizer of any semisimple element in W1 is
also reductive. In particular, this applies to CW1(h) since h(0) is indeed semisimple,
so (34) follows from (33). This completes the proof of the lemma, and hence also
that of Theorem 3. �

The VOA W is strongly regular if it is self-dual and CFT-type as well as both
C2-cofinite and rational. For a general discussion of such VOAs see, for example,
[M]. It is known ([M] and [DM1], Theorem 1.1) that in this case W1 is necessarily
reductive. Consequently, we deduce from Theorem 3 that the following holds.

Corollary 1. Suppose that W is a strongly regular VOA, and that V is a self-dual,
N-graded VOA obtained as a shift of W . Then rad〈 , 〉 = Nilp(V1). �
Remark 4. The corollary applies, for example, to the shifted theories V =
L ˆsl2(k, 0)H discussed in Sect. 8 below. In this case, one can directly compute
the relevant quantities.

7 The C2-Cofinite Case

In this section we are mainly concerned with simple VOAs V that are self-dual
and N-graded as before, but that are also rational, or C2-cofinite, or both. Recall
[DLM1, DLM2, Z] that V is rational if every admissible (or N-gradable) V -module
is completely reducible; C2-cofinite if the span of the states u(−2)v (u, v ∈ V ) has
finite codimension in V ; regular if it is both rational and C2-cofinite; and strongly
regular if it is both regular and self-dual (as discussed in Sect. 3). It is known
[DLM1, DLM2, Z] that both rationality and C2-cofiniteness imply that V -Mod has
only finitely many simple objects.

To motivate the main results of this section, we recall some results about vertex
operator algebras V with V0 = C1. In this case, V1 is a Lie algebra, and if V

is strongly regular, then V1 is reductive ([DM1], Theorem 1.1). It is also known
([DM4], Theorem 3.1) that if V is C2-cofinite, but not necessarily rational, and
S ⊆ V1 is a Levi factor, then the vertex operator subalgebra U of V generated by S

satisfies

U ∼= Lĝ1(k1, 0) ⊕ . . . ⊕ Lĝr
(kr , 0), (35)

i.e., a direct sum of simple affine Kac–Moody Lie algebras Lĝj
(kj , 0) of positive

integral level kj .
We want to know to what extent these results generalize to the more general

case when dimV0 > 1. With N = L(−1)V0 as before, we have seen that V1/N

is a Lie algebra. Now V0 = C1 precisely when N = 0, but the natural guess that
V1/N is reductive if V is rational and C2-cofinite is generally false. Thus we need
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to understand the nilpotent radical N1/N of this Lie algebra. That is where the
bilinear form 〈 , 〉 comes in. These questions are naturally related to the issue,
already addressed in Sect. 2, of the structure of the subalgebra of V generated by a
Levi subalgebra of V1. The main result is

Theorem 4. Let V be a simple, self-dual, N-graded vertex operator algebra that is
C2-cofinite, and let V1 = B ⊕S with Levi factor S and solvable radical B. Then the
following hold.

1. N1 ⊆ rad〈 , 〉 ⊆ B, and the restriction of 〈 , 〉 to S is nondegenerate. In
particular, a(1)b ∈ C1 for all a, b ∈ S.

2. If U is the vertex operator algebra generated by S, then U satisfies (35).

We start with

Proposition 3. Let V = ⊕∞
n=0Vn be an N-graded vertex operator algebra such that

dim V0 > 1. Let X = {xi}i∈I ∪ {yj }j∈J be a set of homogeneous elements in V

which are representatives of a basis of V/C2(V ). Here xi are vectors whose weights
are greater than or equal to 1 and yj are vectors whose weights are zero. Then V is
spanned by elements of the form

xi1(−n1) . . . xis (−ns)y
j1(−m1) . . . yjk (−mk)1

where n1 > n2 > . . . . > ns > 0 and m1 ≥ m2 ≥ . . . ≥ mk > 0.

Proof. The result follows by modifying the proof of Proposition 8 in [GN]. �
Notice that for a Lie algebra W ⊂ V1, we have u(0)v = −v(0)u for u, v ∈

W . Hence, L(−1)u(1)v = 0 and u(1)v ∈ C1. Moreover, we have 〈 , 〉1 =
(u(1)v, t)1 = u(1)v for u, v ∈ W .

Let g be a finite-dimensional simple Lie algebra, let h ⊂ g be a Cartan
subalgebra, and let Ψ be the associated root system with simple roots Δ. Also,
we set (·, ·) to be the nondegenerate symmetric invariant bilinear form on g
normalized so that the longest positive root θ ∈ Ψ satisfies (θ, θ) = 2. The
corresponding affine Kac–Moody Lie algebra ĝ is defined as

ĝ = g ⊗ C[t, t−1] ⊕ CK,

where K is central and the bracket is defined for u, v ∈ g, m,n ∈ Z as

[u(m), v(n)] = [u, v](m + n) + mδm+n,0(u, v)K (u(m) = u ⊗ tm).

Let W ⊂ V1 be a Lie algebra such that g ⊂ W and 〈 , 〉 is nondegenerate on W .
If 〈 , 〉 is nondegenerate on g, then the map

ĝ → End(V ); u(m) �→ u(m), u ∈ g,m ∈ Z,
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is a representation of the affine Kac–Moody algebra ĝ of level k where

〈 , 〉 = u(1)v = k(u, v) for u, v ∈ g.

Theorem 5. Let W ⊂ V1 be a Lie algebra such that 〈 , 〉 is nondegenerate on W .
If g is a simple Lie subalgebra of W and U is the vertex operator subalgebra of V

generated by g, then 〈 , 〉 is nondegenerate on g, and U is isomorphic to Lĝ(k, 0).
Furthermore, k is a positive integer and V is an integrable ĝ-module.

Proof. We will follow the proof in Theorem 3.1 of [DM4]. First, assume that g =
sl2(C) with standard basis α, xα, x−α . Hence, (α, α) = 2. Since each homogeneous
subspace of V is a completely reducible g-module, then V is also a completely
reducible g-module. A nonzero element v ∈ V is called a weight vector for g of
g-weight λ (λ ∈ Cα) if α(0)v = (α, λ)v. Here, λ ∈ 1

2Zα.
We now make use of Proposition 3. Let X = {xi}i∈I ∪ {yj }j∈J be a set of

homogeneous weight vectors in V which are representatives of a basis of V/C2(V ).
The xi are vectors whose weights are greater than or equal to 1 and yj are
vectors whose weights are zero. Since X is finite, there is a nonnegative elements
λ0 = mα ∈ 1

2Zα such that the weight of each element in X is bounded above by λ0.
For any integer t ≥ 0, we have

⊕n≤t (t+1)/2 Vn ⊆ SpanC{xi1(−n1) . . . xis (−ns)y
j1(−m1) . . . yjr (−mr)1 |

n1 > n2 > . . . > ns > 0,m1 ≥ m2 ≥ . . . ≥ mr > 0,

0 ≤ s, r ≤ t}. (36)

Furthermore, if n ≤ t (t+1)
2 , then a g-weight vector in Vn has g-weight less than or

equal to 2tλ0 = 2tmα.
Let l be an integer such that l + 1 > 4m and we let

u = (xα)(−1)l(l+1)/21.

We claim that u = 0. Assume u �= 0. By (36), we can conclude that the g-weight
of u is at most 2lmα. This contradicts the direct calculation which shows that the g-
weight of u is l(l+1)

2 α. Hence, u = 0. This implies that U is integrable. Furthermore,
we have V is integrable, k is a positive integer and 〈 , 〉 is nondegenerate.

This proves the theorem for g = sl2. The general case follows easily from this
(cf. [DM4]). �
Lemma 15. Let S be a Levi subalgebra of V1. Then 〈 , 〉 is nondegenerate on S

and Rad〈 , 〉 ∩ S = {0}.
Proof. Clearly, for u, v ∈ S, we have u(1)v ∈ C1. Let f : S × S → C1 be a map
defined by f ((u, v)) = u(1)v. Since u(1)v = v(1)u and

(w(0)u)(1)v = −(u(0)w)(1)v = −(u(0)w(1)v − w(1)u(0)v) = w(1)u(0)v
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for u, v,w ∈ S, we can conclude that f is a symmetric invariant bilinear form on S.
For convenience, we set X = Rad(f ). Since S is semisimple and X is a S-module,
these imply that S = X ⊕ W for some S-module W . Note that W and X are semi-
simple and S ∩ Rad〈 , 〉 ⊆ X.

For u, v ∈ X, we have u(1)v = 0. Hence, the vertex operators Y (u, z), u ∈ X,
generate representation of the loop algebra in the sense that

[u(m), v(n)] = (u(0)v)(m + n), for u, v ∈ X.

Following the proof of Theorem 3.1 in [DM4], we can show that the representation
on V is integrable and the vertex operator subalgebra U generated by a simple
component of X is the corresponding simple vertex operator algebra L(k, 0) and
k = 0. However, the maximal submodule of the Verma module V (0, 0), whose
quotient is L(0, 0), has co-dimension one. This is not possible if X �= {0}.
Consequently, we have X = 0 and S ∩ Rad〈 , 〉 = {0}. Hence 〈 , 〉 is nondegenerate
on S. �

Theorem 4 follows from these results.

8 Examples of Shifted Vertex Operator Algebras

To illustrate previous results, in this section we consider some particular classes of
shifted vertex operator algebras.

8.1 Shifted ̂sl2

We will show that the simple vertex operator algebra (WZW model) L
̂sl2

(k, 0)

corresponding to affine sl2 at (positive integral) level k has a canonical shift to an N-
graded vertex operator algebra L ˆsl2(k, 0)H , and that the resulting de Rham structure

on V0 is that of complex projective space CP
k . The precise result is the following.

Theorem 6. Let e, f, h be Chevalley generators of sl2, and set H = h/2. Then the
following hold:

(a) L ˆsl2(k, 0)H is a simple, N-graded, self-dual vertex operator algebra.

(b) The algebra structure on the zero weight space of L ˆsl2(k, 0)H is

isomorphic to C[x]/〈xk+1〉, where x = e.
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Proof. Let W = L ˆsl2(k, 0). It is spanned by states vIJK := eI fJ hK1, where we
write eI = e(−l1) . . . e(−lr ), fJ = f (−m1) . . . f (−ms), hK = h(−n1) . . . h(−nt )

for li , mi, ni > 0. Note that vIJK ∈ Wn, where n = ∑

li + ∑

mi + ∑

ni

Recall from (27) that LH(0) = L(0) − H(0). We have

[H(0), e(n)] = [H, e](n) = e(n),

[H(0), f (n)] = [H,f ](n) = −f (n),

[H(0), h(n)] = [H,h](n) = 0.

Then H(0)vIJK = (r − s)vIJK , so that

LH (0)vIJK =
(
∑

(li − 1) +
∑

(mj + 1) +
∑

nk

)

vIJK. (37)

It is well known (e.g., [DL], Propositions 13.16 and 13.17) that Y (e, z)k+1 = 0.
Thus we may take r to be no greater than k. It follows from (37) that the eigenvalues
of LH (0) are integral and bounded below by 0, and that the eigenspaces are finite-
dimensional. Therefore, V := WH is indeed an N-graded vertex operator algebra.
Because W is simple then so too is V , since they share the same fields.

Next we show that V is self-dual, which amounts to the assertion that LH (1)V1
is properly contained in V0. Observe from (37) that the states e(−1)p1 (0 ≤ p ≤ k)

span in V0, while V1 is spanned by the states {h(−1)e(−1)i1, e(−2)e(−1)i1 | 0 ≤
i ≤ k − 1}. We will show that e(−1)k1 does not lie in the image of LH (1).

For g ∈ sl2,m ≥ 1, we have

[L(1), g(−m)] = mg(1 − m).

Since L(1)e = 0 and

L(1)e(−1)j+11 = e(−1)L(1)ej(−1)1 + e(0)ej (−1)1 = e(−1)L(1)ej(−1)1

for j ≥ 0, we can conclude by induction that

L(1)e(−1)i1 = 0 for all i ≥ 1.

Similarly, because H(1)e = 0 and

H(1)e(−1)j+11 = e(−1)H(1)e(−1)j1 + e(0)e(−1)j1 = e(−1)H(1)e(−1)j1,

then

H(1)e(−1)i1 = 0 for all i ≥ 0.
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We can conclude that for 0 ≤ i ≤ k − 1,

LH (1)h(−1)e(−1)i1 = (L(1) − 2H(1))h(−1)e(−1)i1

= 2ie(−1)i1 − 2ke(−1)i1

= 2(i − k)e(−1)i1,

while

LH (1)e(−2)e(−1)j1 = (L(1) − 2H(1))e(−2)e(−1)j1 = 0.

Our assertion that e(−1)k1 /∈ imLH(1) follows from these calculations. This
establishes part (a) of the theorem.

Finally, if we set x := e(−1)1 = e, then by induction e(−1)i1 = x.xi−1 = xi ,
so the algebra structure on V0 is isomorphic C[x]/xk+1 and part (b) holds. This
completes the proof of the theorem. �

Remark 5. Suitably normalized, the invariant bilinear form on V0 satisfies
(xp, xq) = δp+q,k (cf. Theorem 2). V0 can be identified with the de Rham
cohomology of CP

k (x has degree 2) equipped with the pairing arising from
Poincaré duality.

8.2 Shifted Lattice Theories

Let L be a positive-definite even lattice of rank d with inner product ( , ) : L×L →
Z. Let H = C ⊗ L be the corresponding complex linear space equipped with the
C-linear extension of ( , ). The dual lattice of L is

L◦ = { f ∈ R ⊗ L | (f, α) ∈ Z all α ∈ L}.

Let (M(1), Y, 1, ωL) be the free bosonic vertex operator algebra based on H and
let (VL, Y, 1, ωL) be the corresponding lattice vertex operator algebra. Both vertex
operator algebras have central charge d , and the Fock space of VL is

VL = M(1) ⊗ C[L],

where C[L] is the group algebra of L.
For a state h ∈ H ⊂ (VL)1, we set ωh = ωL + h(−2)1, with VL,h =

(VL, Y, 1, ωh).

Lemma 16. ([DM3]). Suppose that h ∈ L0. Then VL,h is a vertex operator
algebra, and it is self-dual if, and only if, 2h ∈ L.
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For the rest of this section, we assume that 0 �= h ∈ L◦ and 2h ∈ L, so that VL,h

is a self-dual, simple vertex operator algebra. Set

Y (ωh, z) =
∑

n∈Z
Lh(n)z−n−2.

Then

Lh(0)(u ⊗ eα) = (n + 1

2
(α, α) − (h, α))u ⊗ eα (u ∈ M(1)n).

It follows that VL,h is N-graded if, and only if, the following condition holds:

(2h, α) ≤ (α, α) (α ∈ L). (38)

From now on, we assume that (38) is satisfied. It is equivalent to the condition
(α−h, α−h) ≥ (−h,−h), i.e., −h has the least (squared) length among all elements
in the coset L − h. Set

A := {α ∈ L | (α, α) = (2h, α)}.
Note that 0, 2h ∈ A. We have

(VL,h)0 = SpanC{eα | α ∈ A}.
We want to understand the commutative algebra structure of (VL,h)1, defined by the
−1th product a(−1)b. The identity element is 1 = e0.

First note that if α, β ∈ A, then (−h,−h) ≤ (α + β − h, α + β − h) = (h, h) +
2(α, β) shows that (α, β) ≥ 0. Moreover, (α, β) = 0 if, and only if, α + β ∈ A. We
employ standard notation for vertex operators in the lattice theory VL [LL]. Then

eα(−1)eβ = Reszz
−1E−(−α, z)E+(−α, z)eαzα · eβ

= ε(α, β)Reszz
(α,β)−1E−(−α, z)E+(−α, z)eα+β,

where

E−(−α, z)E+(−α, z) = exp

{

−
∑

n>0

α(−n)

n
zn

}

exp

{

∑

n>0

α(n)

n
z−n

}

.

It follows that

eα(−1)eβ =
{

ε(α, β)eα+β if α + β ∈ A

0 otherwise.
(39)

If 0 �= α ∈ A, then (2h, α) = (α, α) �= 0. Thus 2h + α /∈ A, and the last
calculation shows that eα(−1)e2h = 0. It follows that e2h spans the unique minimal
ideal T ⊆ (VL,h)1
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Recall [LL] ε : L × L → {±1} is a (bilinear) 2-cocycle satisfying
ε(α, β)ε(β, α) = (−1)(α,β). Thus we have proved

Lemma 17. There are signs ε(α, β) = ±1 such that multiplication in (VL,h)1 is
given by (39). The minimal ideal T is spanned by e2h. �
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