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Abstract Given a pair of finite groups F,G and a normalized 3-cocycle ω of G,
where F acts on G as automorphisms, we consider quasi-Hopf algebras defined as a
cleft extension k

G
ω #c kF where c denotes some suitable cohomological data. When

F → F := F/A is a quotient of F by a central subgroup A acting trivially on
G, we give necessary and sufficient conditions for the existence of a surjection of
quasi-Hopf algebras and cleft extensions of the type k

G
ω #c kF → k

G
ω #c kF . Our

construction is particularly natural when F = G acts on G by conjugation, and
k

G
ω #ckG is a twisted quantum double Dω(G). In this case, we give necessary and

sufficient conditions that Rep(kG
ω #c kG) is a modular tensor category.

Key words Twisted quantum double • Quasi Hopf algebra • Modular tensor
category
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1 Introduction

Given finite groups F,G with a right action of F on G as automorphisms, one
can form the cross product k

G#kF , which is naturally a Hopf algebra and a
trivial cleft extension. Moreover, given a normalized 3-cocycle ω of G and suitable
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cohomological data c, this construction can be ‘twisted’ to yield a quasi-Hopf
algebra k

G
ω #c kG. (Details are deferred to Sect. 2.) For a surjection of groups

π : F → F such that ker π acts trivially on G, we consider the possibility of
constructing another quasi-Hopf algebra k

G
ω #c kF (for suitable data c) for which

there is a ‘natural’ surjection of quasi-Hopf algebras f : k
G
ω #c kF → k

G
ω #c kF .

In general such a construction is not possible. The main result of the present
paper (Theorem 3.6) gives necessary and sufficient conditions for the existence of
k

G
ω #c kF and f in the important case when ker π is contained in the center Z(F)

of F . The conditions involve rather subtle cohomological conditions on ker π ; when
they are satisfied we obtain interesting new quasi-Hopf algebras.

A special case of this construction applies to the twisted quantum double Dω(G)

[2], where F = G acts on G by conjugation and the condition that ker π acts
trivially on G is equivalent to the centrality of ker π . In this case, we obtain quotients
k

G
ω #c kG of the twisted quantum double whenever the relevant cohomological

conditions hold. Related objects were considered in [5], and in the case that
±I ∈ G ⊆ SU2(C) the fusion rules were investigated. In fact, we can prove that the
modular data of each of the orbifold conformal field theories V G

̂sl2
, where ̂sl2 is the

level 1 affine Kac–Moody Lie algebra of type sl2 and G = G/ ± I , are reproduced
by the modular data of kG

ω #c kG for suitable choices of cohomological data ω and
c. This result will be appear elsewhere.

The paper is organized as follows. In Sect. 2 we introduce a category associated
to a fixed quasi-Hopf algebra k

G
ω whose objects are the cleft extensions we are

interested in. In Sect. 3 we focus on central extensions and establish the main
existence result (Theorem 3.6). In Sects. 4 and 5 we consider the special case of
twisted quantum doubles. The main result here (Theorem 5.5) gives necessary and
sufficient conditions for Rep(kG

ω #c kG) to be a modular tensor category.

2 Quasi-Hopf Algebras and Cleft Extensions

A quasi-Hopf algebra is a tuple (H,Δ, ε, φ, α, β, S) consisting of a quasi-bialgebra
(H,Δ, ε, φ) together with an antipode S and distinguished elements α, β ∈ H

which together satisfy various consistency conditions. See, for example, [1, 6, 10].
A Hopf algebra is a quasi-Hopf algebra with α = β = 1 and trivial Drinfel’d
associator φ = 1 ⊗ 1 ⊗ 1. As long as α is invertible, (H,Δ, ε, φ, 1, βα−1, Sα) is
also a quasi-Hopf algebra for some antipode Sα ([1]). All of the examples of quasi-
Hopf algebras in this paper, constructed from data associated to a group, will satisfy
the condition α = 1.

Suppose that G is a finite group, k a field, and ω ∈ Z3(G,k×) a normalized (mul-
tiplicative) 3-cocycle. There are several well-known quasi-Hopf algebras associated
to this data. The group algebra kG is a Hopf algebra, whence it is a quasi-Hopf
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algebra too. The dual group algebra is also a quasi-Hopf algebra kG
ω when equipped

with the Drinfel’d associator

φ =
∑

a,b,c∈G

ω(a, b, c)−1ea ⊗ eb ⊗ ec, (1)

where {ea | a ∈ G} is the basis of kG dual to the basis of group elements {a | a ∈ G}
in kG. Here, β = ∑

a∈G ω(a, a−1, a)ea and S(a) = a−1 for a ∈ G. In particular,
k

G = k
G
1 is the usual dual Hopf algebra of kG.

We are particularly concerned with cleft extensions determined by a pair of finite
groups F,G. We assume that there is a right action � of F on G as automorphisms
of G. The right F -action induces a natural left kF -action on k

G, making k
G a

left kF -module algebra. If we consider kF as a trivial kG-comodule (i.e., G acts
trivially on kF ), then (kF,kG) is a Singer pair. Throughout this paper, only these
special kinds of Singer pairs will be considered.

A cleft object of k
G
ω (or simply G) consists of a triple c = (F, γ, θ) where

c0 = F is a group with a right action � on G as automorphisms, and c1 =
γ ∈ C2(G, (kF )×), c2 = θ ∈ C2(F, (kG)×) are normalized 2-cochains. They
are required to satisfy the following conditions:

θg�x(y, z)θg(x, yz) = θg(xy, z)θg(x, y), (2)

γx(gh, k)γx(g, h)ω(g � x, h � x, k � x) = γx(h, k)γx(g, hk)ω(g, h, k), (3)

γxy(g, h)

γx(g, h)γy(g � x, h � x)
= θg(x, y)θh(x, y)

θgh(x, y)
, (4)

where θg(x, y) := θ(x, y)(g), γx(g, h) := γ (g, h)(x) for x, y ∈ F and g, h ∈ G.

Associated to a cleft object c of G is a quasi-Hopf algebra

H = k
G
ω #c kF (5)

with underlying linear space kG ⊗kF ; the ingredients necessary to define the quasi-
Hopf algebra structure are as follows:

egx · ehy = δg�x,h θg(x, y) egxy, 1H =
∑

g∈G

eg,

Δ(egx) =
∑

ab=g

γx(a, b)eax ⊗ ebx, ε(egx) = δg,1 ,

S(egx) = θg−1(x, x−1)−1γx(g, g−1)−1eg−1�xx
−1,

α = 1H, β =
∑

g∈G

ω(g, g−1, g)eg,
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where egx ≡ eg ⊗ x and eg ≡ eg ⊗ 1F . The Drinfel’d associator φ is again given
by (1). This quasi-Hopf algebra is also called the cleft extension of kF by k

G
ω (cf.

[8]). The proof that (5) is indeed a quasi-Hopf algebra when equipped with these
structures is rather routine, and is similar to that of the twisted quantum double
Dω(G), which is the case when F = G and the action on G is conjugation ([2, 6]).
We shall return to this example in due course. Note that these cleft extensions admit
the canonical morphisms of quasi-Hopf algebras

k
G
ω

i→ k
G
ω #c kF

p→ kF (6)

where

i(eg) = eg, p(egx) = δg,1x.

Introduce the category Cleft(kG
ω ) whose objects are the cleft objects of k

G
ω ; a

morphism from c = (F, γ, θ) to c′ = (F ′, γ , θ) is a pair (f1, f2) of quasi-bialgebra
homomorphisms satisfying that

(i) f2 preserves the actions on G, i.e. g � x = g � f2(x), and
(ii) The diagram

i

id

p

f2f1

i
kG
w 
#c′kF ′

kG
w 
#c kF

p′

kF

kF ′kG
w

kG
w

commutes.

It is worth noting that Cleft(kG
ω ) is essentially the category of cleft extensions of

group algebras by k
G
ω .

Remark 2.1. The quasi-Hopf algebra k
G
ω #c kF also admits a natural F -grading

which makes it an F -graded algebra. This F -graded structure can be described in
terms of the kF -comodule via the structure map ρc = (id ⊗p)Δ . A morphism
(f1, f2) : c → c′ in Cleft(kG

ω ) induces the right kF ′-comodule structure ρ′
c =

(id ⊗f2)ρc on k
G
ω #c kF , and f1 : k

G
ω #c kF → k

G
ω #c′ kF ′ is then a right kF ′-

comodule map. In the language of group-grading, f2 induces an F ′-grading on
k

G
ω #c kF and f1 is an F ′-graded linear map. Since f1 is an algebra map and

preserves F ′-grading, f1(egx) = χx(g)egx for some scalar χx(g), where x =
f2(x) ∈ F ′ for x ∈ F .

Remark 2.2. In general, a quasi-bialgebra homomorphism between two quasi-Hopf
algebras is not a quasi-Hopf algebra homomorphism. However, if (f1, f2) is a mor-
phism in Cleft(kG

ω ), then both f1 and f2 are quasi-Hopf algebra homomorphisms.
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We leave this observation as an exercise to readers (cf. (13) and (14) in the proof of
Theorem 3.6 below).

In Cleft(kG
ω ), there is a trivial object 1 in which the group F is trivial and θ, γ

are both identically 1. This cleft object is indeed the trivial cleft extension of kG
ω :

k
G
ω

id→ k
G
ω

ε→ k. It is straightforward to check that 1 is an initial object of Cleft(kG
ω ).

Suppose we are given a cleft object c = (F, γ, θ) and a quotient map πF̄ :
F → F of F which preserves their actions on G. We ask the following question:
is there a cleft object c = (F , γ , θ) of kG

ω and a quasi-bialgebra homomorphism
π : kG

ω #c kF → k
G
ω #c kF such that (π, πF̄ ) : c → c is a morphism of Cleft(kG

ω )?
Equivalently, the diagram

p pF̄

kG
w 
#c kF

kG
w 
#c kFkG

w 

kG
w 

kF

kF
i p

i p

id

(7)

commutes. Generally, one can expect the answer to this question to be ‘no’. In the
following section, we will provide a complete answer in an important special case.

3 Central Quotients

Throughout this section we assume k is a field of any characteristic, c = (F, γ, θ)

an object of Cleft(kG
ω ) with the associated quasi-Hopf algebra monomorphism i :

k
G
ω → k

G
ω #c kF and epimorphism p : kG

ω #c kF → kF . We use the same notation
as before, and write H = k

G
ω #c kF .

We now suppose that A ⊆ Z(F) is a central subgroup of F such that the
restriction of the F -action � on G to A is trivial. Then the quotient group F = F/A

inherits the right action, giving rise to an induced Singer pair (kF ,kG). With this
setup, we will answer the question raised in the previous section about the existence
of the diagram (7). To explain the answer, we need some preparations.

Definition 3.1. (i) 0 	= u ∈ H is group-like if Δ(u) = u ⊗ u. The sets of group-
like elements and central group-like elements of H are denoted by Γ (H) and
Γ0(H) respectively.

(ii) x ∈ F is called γ -trivial if γx ∈ B2(G,k×) is a 2-coboundary. The set of
γ -trivial elements is denoted by Fγ .

(iii) a ∈ F is c-central if there is ta ∈ C1(G,k×) such that

∑

g∈G

ta(g)ega ∈ Γ0(H) . (8)

The set of c-central elements is denoted by Zc(F ).
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Let Ĝ = Hom(G,k×) be the group of linear characters of G. The following
lemma concerning the sets Fγ , Γ (H) and Ĝ is similar to an observation in [9].

Lemma 3.2. The following statements concerning Fγ and Γ (H) hold.

(i) Fγ is a subgroup of F , Γ (H) is a subgroup of the group of units in H , and
p(Γ (H)) = Fγ . Moreover, for x ∈ Fγ and tx ∈ C1(G,k×),

∑

g∈G

tx(g)egx ∈ Γ (H) if, and only if, δtx = γx .

(ii) The sequence of groups

1 → Ĝ
i−→ Γ (H)

p−→ Fγ → 1 (9)

is exact. The 2-cocycle β ∈ Z2(F γ , Ĝ) associated with the section x 
→
∑

g∈G tx(g)egx of p in (9) is given by

β(x, y)(g) = tx(g)ty(g � x)

txy(g)
θg(x, y) (x, y ∈ Fγ , g ∈ G). (10)

Proof. The proofs of (i) and (ii) are similar to Lemma 3.3 in [9]. ��
Remark 3.3. Equation (9) is a central extension if F acts trivially on Ĝ, but in
general it is not a central extension.

Remark 3.4. If a ∈ Zc(F ), then a central group-like element
∑

g∈G ta(g)ega ∈
Γ0(H) will be mapped to the central element a in kF under p. Therefore, by
Lemma 3.2, we always have Zc(F ) ⊆ Z(F) ∩ Fγ . By direct computation, the
condition (8) for a ∈ Zc(F ) is equivalent to the conditions:

δta = γa, ta(g)θg(a, y) = ta(g � y)θg(y, a) and g � a = g (g ∈ G, y ∈ F).

In particular, θg(a, b) = θg(b, a) for all a, b ∈ Zc(F ).

By Lemma 3.2, we can parameterize the elements u = u(χ, x) ∈ Γ (H) by
(χ, x) ∈ Ĝ × Fγ . More precisely, for a fixed family of 1-cochains {tx}x∈Fγ

satisfying δtx = γx , every element u ∈ Γ (H) is uniquely determined by a pair
(χ, x) ∈ Ĝ × Fγ given by

u = u(χ, x) =
∑

g∈G

χ(g)tx(g)egx.

Note that a choice of such a family of 1-cochains {tx}x∈Fγ satisfying δtx = γx is
equivalent to a section of p in (9). With this convention we have i(χ) = u(χ, 1)

and p(u(χ, x)) = x for all χ ∈ Ĝ and x ∈ Fγ .
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Lemma 3.5. The set Zc(F ) of c-central elements is a subgroup of Z(F), and it
acts trivially on G. Moreover, Γ0(H) is a central extension of Zc(F ) by ĜF via the
exact sequence:

1 → ĜF i−→ Γ0(H)
p−→ Zc(F ) → 1 , (11)

where ĜF is the group of F -invariant linear characters of G.
If we choose tx such that u(1, x) ∈ Γ0(H) whenever x ∈ Zc(F ), then the formula

(10) for β(x, y) defines a 2-cocycle for the exact sequence (11).

Proof. By Lemma 3.2 and the preceding paragraph, u(χ, x) ∈ Γ0(H) for some
χ ∈ Ĝ if, and only if, x ∈ Zc(F ). In particular, p(Γ0(H)) = Zc(F ). It follows
from Remark 3.4 that Zc(F ) is a subgroup of Fγ ∩ Z(F) and Zc(F ) acts trivially
on G. By Remark 3.4 again, u(χ, 1) ∈ Γ0(H) is equivalent to

χ(g)t1(g)θg(1, y) = χ(g � y)t1(g � y)θg(y, 1) for all g ∈ G, y ∈ F.

In particular, ĜF = ker p|Γ0(H), and this establishes the exact sequence (11). If tx
is chosen such that u(1, x) ∈ Γ0(H) whenever x ∈ Zc(F ), the second statement
follows immediately from Lemma 3.2 (ii) and the commutative diagram:

1 Ĝ

ĜF

i G(H)
p

F g 1

1

incl

i G0(H)

incl

p
Zc(F)

incl

1 .
��

Theorem 3.6. Let the notation be as before, with A ⊆ Z(F) a subgroup acting
trivially on G, and with the right action of F = F/A on G inherited from that of F .
Then the following statements are equivalent:

(i) There exist a cleft object c = (F , γ , θ) of kG
ω and a quasi-bialgebra map

π : kG
ω #c kF → k

G
ω #c kF such that the diagram

p

i

kG
w 

kG
w 

i

p′

id

kG
w 
#c kF

pF

kF

kFkG
w 
#c kF

p

(12)

commutes.
(ii) A ⊆ Zc(F ) and the subextension

1 → ĜF i−→ p|−1
Γ0(H)(A)

p−→ A → 1

of (11) splits.
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(iii) A ⊆ Zc(F ) and there exist {ta}a∈A in C1(G,k×) and {τg}g∈G in C1(A,k×)

such that δta = γa , δτg = θg|A and

sa(g) = ta(g)τg(a)

defines a F -invariant linear character on G for all a ∈ A.

Proof. ((i) ⇒ (ii)) Suppose there exist a cleft object c = (F , γ , θ) of k
G
ω and

a quasi-bialgebra map π : k
G
ω #c kF → k

G
ω #c kF such that the diagram (12)

commutes. Then π(eg) = eg for all g ∈ G. Since π is an algebra map, π(egx) =
∑

y∈F χx(g, y)egy for some scalars χx(g, y). Here, we simply write y for πF (y).

By Remark 2.1, π is a F -graded linear map and so we have π(egx) =
χx(g, x)egx. Therefore, we simply denote χx(g) for χx(g, x). In particular, χ1 = 1
and χx(1) = 1 by the commutativity of (12). Moreover, we find

γx(g, h)χx(g)χx(h) = γ x(g, h)χx(gh), (13)

θg(x, y)χx(g)χy(g � x) = θg(x, y)χxy(g) (14)

for all x, y ∈ F and g, h ∈ G. An immediate consequence of these equations is that
χx ∈ C1(G,k×) for x ∈ F .

For a ∈ A, θg(a, y) = γ a(g, h) = 1. Then, (13) and (14) imply

γa = δχ−1
a , 1 = χay(g)

χa(g)χy(g)
θg(a, y) = χya(g)

χy(g)χa(g � y)
θg(y, a) (15)

for all a ∈ A, g ∈ G and y ∈ F . These equalities in turn yield

∑

g∈G

χ−1
a (g)ega ∈ Γ0(H)

for all a ∈ A. Therefore A ⊆ Zc(F ).
In particular, A ⊆ Fγ . If we choose ta = χ−1

a for all a ∈ A, then the restriction
of the 2-cocycle β, given in (10), on A is constant function 1. Therefore, the
subextension

1 → ĜF i−→ p|−1
Γ0(H)(A)

p−→ A → 1

of (11) splits.

((ii) ⇒ (i) and (iii)) Assume A ⊆ Zc(F ) and the restriction of β on A is a
coboundary. By Remark 3.4, we let ta ∈ C1(G,k×) such that δta = γa and

ta(g)θg(a, y) = ta(g � y)θg(y, a) (16)
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for all a ∈ A, y ∈ F and g ∈ G. In particular,

∑

g∈G

ta(g)ega ∈ Γ0(H)

for all a ∈ A. By Lemma 3.5, β(a, b) ∈ ĜF for all a, b ∈ A. Suppose ν = {νa |
a ∈ A} is a family in ĜF such that β(a, b) = νaνbν

−1
ab for all a, b ∈ A.

Let r : F → F be a section of πF such that r(1) = 1. For x ∈ F , we set
r(x) = r(x) and

χx(g) = νa(g)

ta(g)θg(a, r(x))
(17)

for all g ∈ G, where a = xr(x)−1. It is easy to see that χ1 = 1 and χx is a
normalized 1-cochain of G. Note that for b ∈ A, θg(a, b) = θg(b, a), so we have

χbx(g)

χb(g)χx(g)
= νab(g)

tab(g)θg(ab, r(x))

tb(g)

νb(g)

ta(g)θg(a, r(x))

νa(g)
= θg(b, x)−1, (18)

χb(g � x)θg(b, x) = χb(g)θg(x, b) and δχ−1
b = γb . (19)

Let τg(a) = χa(g) for all a ∈ A and g ∈ G. Equation (18) implies that δτg =
θg|A and

νa(g) = ta(g)τg(a) ,

and this proves (iii).
Define the maps γ ∈ C2(G, (kF )×) and θ ∈ C2(F , (kG)×) as follows:

γ x(g, h) = χx(g)χx(h)

χx(gh)
γx(g, h) , (20)

θg(x, y) = χxy(g)

χx(g)χy(g � x)
θg(x, y) . (21)

We need to show that these functions are well defined. Let b ∈ A, x, y ∈ F and
g, h ∈ G. By (4), (18) and (19), we find

χbx(g)χbx(h)

χbx(gh)
γbx(g, h) = χx(g)χx(h)

χx(gh)
γx(g, h) ,

and this proves γ is well defined. To show that θ is also well defined, it suffices to
prove

χbxy(g)

χbx(g)χy(g � bx)
θg(bx, y) = χxy(g)

χx(g)χy(g � x)
θg(x, y) = χxby(g)

χx(g)χby(g � x)
θg(x, by)
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for all b ∈ A, x, y ∈ F and g, h ∈ G. However, the first equality follows from (18)
and (2), while the second equality is a consequence of (2), (18) and (19).

It is straightforward to verify that c = (F , γ , θ) defines cleft object of k
G
ω

and π : k
G
ω #c kF → k

G
ω #c kF, egx 
→ χx(g)egx defines a quasi-bialgebra

homomorphism which makes the diagram (12) commute. We leave routine details
to the reader.

((iii) ⇒ (ii)) Since sa(g) = ta(g)τg(a) defines a F -invariant linear character of
G for each a, then ν(a) = sa defines a 1-cochain in C1(A, ĜF ) and

δν = β|A
where β is the 2-cocycle given in (10). In particular, β|A is a coboundary. ��
Remark 3.7. Suppose we are given A ⊆ Zc(A) satisfying condition (ii) of the
preceding theorem, and {ta}a∈A a fixed family of cochains in C1(G,k×) such that
∑

g∈G ta(g)ega ∈ Γ0(H) for a ∈ A. Then the set S (A) of group homomorphism

sections of p : p−1(A) → A is in one-to-one correspondence with B(A) = {ν ∈
C1(A, ĜF ) | δν = β on A}. For ν ∈ B(A), it is easy to see that

p̃ν(a) =
∑

g∈G

ta(g)

ν(a)(g)
ega (a ∈ A)

defines a group homomorphism in S (A). Conversely, if p̃′ ∈ S (A), then there
exists a group homomorphism f : A → ĜF such that i(f (a))p̃′(a) = p̃(a) for all
a ∈ A. In particular, if p̃′(a) = ∑

g∈G t ′a(g)ega for a ∈ A, then

t ′a = ta

ν(a)f (a)

and ν′ = νf ∈ S (A). Therefore, p̃′ = p̃ν ′ .
The cleft object c = (F/A, g, θ) and morphism π constructed in the proof of

Theorem 3.6 are not unique. The definition of χx(g) is determined by the choice of
the section r : F → F of πF and ν ∈ B(A). If ν′ ∈ B(A), then ν′ = νf for some
group homomorphism f : A → ĜF . Thus, the corresponding

χ ′
x(g) = f (xr(x)−1)(g)χx(g) .

This implies c′ = (F/A, γ ′, θ ′
) where γ ′ = γ but

θ
′
g(x, y) = θg(x, y)

f (r(x)r(y)r(xy)−1)(g)
.

Therefore, c as well as π can be altered by the choice of any group homomorphism
f : A → ĜF for a given section r : F → F of πF .
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4 Cleft Objects for the Twisted Quantum Double Dω(G)

Consider the right action of a finite group F = G on itself by conjugation with
ω ∈ Z3(G,k×) a normalized 3-cocycle. We will write xg = g−1xg. There is a
natural cleft object cω = (G, γ, θ) of kG

ω given by

γg(x, y) = ω(x, y, g)ω(g, xg, yg)

ω(x, g, yg)
, θg(x, y) = ω(g, x, y)ω(x, y, gxy)

ω(x, gx , y)
.

(22)

Note that γz = θz for any z ∈ Z(G). The associated quasi-Hopf algebra Dω
k
(G) =

k
G
ω #cωkG of this natural cleft object cω is the twisted quantum double of G [2]. From

now on, we simply abbreviate Dω
k
(G) as Dω(G) when k is the field of complex

numbers C.
For the cleft object cω, we can characterize the cω-central elements in the

following result (cf. Lemma 3.5).

Proposition 4.1. The cω-center Zcω(G) is given by

Zcω(G) = Z(G) ∩ Gγ .

The group Γ0(D
ω(G)) of central group-like elements of Dω(G) is the middle term

of the short exact sequence

1 → Ĝ
i−→ Γ0(D

ω(G))
p−→ Z(G) ∩ Gγ → 1 .

In addition, if H 2(G,k×) is trivial, then Z(G) = Zcω(G).

Proof. The inclusion Zcω(G) ⊆ Z(G) ∩ Gγ follows directly from Remark 3.4.
Suppose z ∈ Z(G) ∩ Gγ and choose tz ∈ C1(G,k×) so that δtz = γz. Since
z ∈ Z(G), θz = γz and so θz = δtz. This implies

θz(y, gy)

θz(g, y)
= tz(g

y)

tz(g)
(g, y ∈ G).

It follows directly from the definition (22) of θ that

θg(z, y)

θg(y, z)
= θz(y, gy)

θz(g, y)
.

Thus we have

tz(g)θg(z, y) = tz(g
y)θg(y, z) (g, y ∈ G).

It follows from Remark 3.4 that z ∈ Zcω(G). Since Ĝ = ĜG, the exact sequence
follows from Lemma 3.5.
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Finally, if H 2(G,k×) is trivial and z ∈ Z(G), then γz ∈ B2(G,k×) and therefore
z ∈ Gγ . The equality Z(G) = Z(G) ∩ Gγ = Zcω(G) follows. ��
Definition 4.2. In light of Theorem 3.6, for the canonical cleft object cω =
(G, γ, θ) of kG

ω , a subgroup A ⊆ Z(G) is called ω-admissible if A satisfies one of
the conditions in Theorem 3.6. The quasi-Hopf algebra k

G
ω #cω

kG of an associated
cleft object cω = (G = G/A, γ , θ) is simply denoted by Dω

r,p̃
(G,A). It depends

on the choice of a section r of πG : G → G and a group homomorphism section
p̃ : A → Γ0(D

ω(G)) of p : p−1(A) → A (cf. Remark 3.7). We drop the subscripts
r, p̃ if there is no ambiguity.

Remark 4.3. The quasi-Hopf algebra Dω(G,N) constructed in [5], where N � G

and ω is an inflation of a 3-cocycle of G/N , is a completely different construction
from the one presented with the same notation in the preceding definition. Both
are attempts to generalized the twisted quantum double construction by taking
subgroups into account.

Example 4.4. Let Q be the quaternion group of order 8 and A = Z(Q). Since
H 2(Q,C×) = 1, A is cω-central for all ω ∈ Z3(Q,C×). Since Q̂ ∼= Z2 × Z2, the
associated 2-cocycle β of the extension

1 → Q̂ → Γ0(D
ω(Q)) → Z(Q) → 1

has order 1 or 2. Thus, if ω is a square of another 3-cocycle, β = 1 and so A is
ω-admissible. In fact, A is ω-admissible for all 3-cocycles of Q but the proof is a
bit more complicated.

5 Simple Currents and ω-Admissible Subgroups

For simplicity, we will mainly work over the base field C for the remaining
discussion. Again, we assume that G is a finite group and ω ∈ Z3(G,C×) a
normalized 3-cocycle. An isomorphism class of a 1-dimensional Dω(G)-module
is also called a simple current of Dω(G). The set SC(G,ω) of all simple currents of
Dω(G) forms a finite group with respect to tensor product of Dω(G)-modules. The
inverse of a simple current V is the left dual Dω(G)-module V ∗. SC(G,ω) is also
called the group of invertible objects of Rep(Dω(G)) in some articles. Since the
category Rep(Dω(G)) of finite-dimensional Dω(G)-modules is a braided monoidal
category, SC(G,ω) is abelian.

Recall that each simple module V (K, t) of Dω(G) is characterized by a
conjugacy class K of G and an irreducible character t of the twisted group algebra
C

θgK (CG(gK)), where gK is a fixed element of K and CG(gK) is the centralizer of
gK in G. The degree of the module V (K, t) is equal to |K|t (1) (cf. [2, 7]).
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Suppose V (K, t) is 1-dimensional. Then K = {z} for some z ∈ Z(G) and t is a
1-dimensional character of Cθz (G). Thus, for g, h ∈ G, we have

θz(g, h)t (˜gh) = t (g̃)t (h̃), (23)

where g̃ denotes g regarded as an element of C
θz (G). Defining t (g) = t (g̃) for

g ∈ G, we see that θz = γz = δt is a 2-coboundary of G. Hence z ∈ Gγ ∩ Z(G).
By Proposition 4.1, z ∈ Zcω(G). Conversely, if z ∈ Zcω(G), then there exists tz ∈
C1(G,C×) such that δtz = γz. Then V (z, tz) is a 1-dimensional Dω(G)-module.
Thus we have proved

Lemma 5.1. Let K be a conjugacy class of G, gK a fixed element of K and t an
irreducible character of CθgK (CG(gK)). Then V (K, t) is a simple current of Dω(G)

if, and only if, K = {z} for some z ∈ Zcω(G) and δt = θz. ��
For simplicity, we denote the simple current V ({z}, t) by V (z, t). By [2] or [7]

the character ξz,t of V (z, t) is given by

ξz,t (egx) = δg,zt (x) . (24)

Fix a family of normalized 1-cochains {tz}z∈Zcω(G) such that δtz = γz. Then for
any simple current V (z, t) of Dω(G), t is a normalized 1-cochain of G satisfying
δt = θz. Thus, t = tzχ for some χ ∈ Ĝ. Therefore,

SC(G,ω) = {V (z, tzχ) | z ∈ Zcω(G) and χ ∈ Ĝ} .

Suppose V (z′, tz′χ ′) is another simple current of Dω(G). Note that

γx(z, z′) = θx(z, z
′) and γz(x, y) = θz(x, y) (25)

for all z, z′ ∈ Z(G) and x, y ∈ G. By considering the action of egx, we find

V (z, tzχ) ⊗ V (z′, tz′χ ′) = V (zz′, tzz′β(z, z′)χχ ′) (26)

where β is given by (10). Therefore, we have an exact sequence

1 i SC(G, ω)
p

1Ĝ Zcw(G)

of abelian groups, where i : χ 
→ V (1, χ) and p : V (z, tzχ) 
→ z. With the same
fixed family {tz}z∈Zcω(G) of 1-cochains, u(χ, z) = ∑

g∈G tz(g)egz (z ∈ Zcω(G),

χ ∈ Ĝ) are all the central group-like elements of Dω(G). By Lemma 3.5, the
2-cocycle associated with the extension
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1 i p
1Ĝ G0(Dw(G)) Zcw(G)

is also β, and so we have proved

Proposition 5.2. Fix a family {tz}z∈Zcω(G) in C1(G,C×) such that δtz = θz. Then

the map ζ : Γ0(D
ω(G)) → SC(G,ω), u(χ, z) 
→ V (z, tzχ) for χ ∈ Ĝ and

z ∈ Zcω(G), defines an isomorphism of the following extensions:

1 i SC(G, )
p

1

1

id

i

ζ

p

id

1.G0(D (G))

Ĝ

Ĝ Zc (G)

Zc (G)

��
Remark 5.3. The preceding proposition implies that these extensions depend only
on the cohomology class of ω. In fact, if ω and ω′ are cohomologous 3-cocycles
of G, then Zcω(G) = Zcω′ (G) but Γ (Dω(G)) and Γ (Dω′

(G)) are not necessarily
isomorphic.

In view of Proposition 5.2, we will identify the group of simple currents
SC(G,ω) with the group Γ0(D

ω(G)) of central group-like elements of Dω(G)

under the map ζ . In particular, we simply write the simple current V (z, tzχ) as
u(χ, z).

The associativity constraint φ and the braiding c of Rep(Dω(G)) define an
Eilenberg–MacLane 3-cocycle (φ̃, d) of SC(G,ω) ([3, 4]) given by

φ̃−1(u(χ1, z1), u(χ2, z2), u(χ3, z3))

:=
(

(u(χ1, z1) ⊗ u(χ2, z2)) ⊗ u(χ3, z3)
φ·−→ u(χ1, z1) ⊗ u(χ2, z2) ⊗ u(χ3, z3)

)

(27)

and

d(u(χ1, z1)|u(χ2, z2)) := cu(χ1,z1),u(χ2,z2)

=
(

u(χ1, z1) ⊗ u(χ2, z2)
R·−→ u(χ1, z1) ⊗ u(χ2, z2)

f lip−−→ u(χ2, z2) ⊗ u(χ1, z1)

)

,

(28)

where R = ∑

g,h∈G eg ⊗ ehg is the universal R-matrix of Dω(G). By (24), one can
compute directly that



Cleft Extensions and Quotients of Twisted Quantum Doubles 243

φ̃(u(χ1, z1), u(χ2, z2), u(χ3, z3)) = ω(z1, z2, z3) , (29)

d(u(χ1, z1)|u(χ2, z2)) = χ2(z1)tz2(z1) . (30)

The double braiding on u(χ1, z1) ⊗ u(χ2, z2) is then the scalar

d(u(χ1, z1)|u(χ2, z2)) · d(u(χ2, z2)|u(χ1, z1)),

which defines a symmetric bicharacter (·|·) on SC(G,ω). Using (24) to compute
directly, we obtain

(u(χ1, z1)|u(χ2, z2)) = χ1(z2)χ2(z1)tz2(z1)tz1(z2)

for all u(χ1, z1), u(χ2, z2) ∈ SC(G,ω). In general, SC(G,ω) is degenerate
relative to this symmetric bicharacter (·|·). However, there could be nondegenerate
subgroups of SC(G,ω).

Remark 5.4. It follows from [11, Cor 7.11] or [12, Cor. 2.16] that a subgroup A ⊆
SC(G,ω) is nondegenerate if, and only if, the full subcategory A of Rep(Dω(G))

generated by A is a modular tensor category.

We now assume A is an ω-admissible subgroup of G. Let ν be a normalized
cochain in C1(A, Ĝ) such that β(a, b) = ν(a)ν(b)ν(ab)−1 for all a, b ∈ A.
Therefore, by Remark 3.7, the assignment p̃ν : a 
→ u(ν(a)−1, a) defines a group
monomorphism from A to SC(G,ω) which is also a section of p : p−1(A) → A.
Hence A admits a bicharacter (·|·)ν via the restriction of (·|·) to p̃ν(A). In particular,

(a|b)ν = (p̃ν(a)|p̃ν(b)) = tb(a)ta(b)

ν(b)(a)ν(a)(b)
. (31)

Obviously, (·|·)ν is nondegenerate if, and only if, p̃ν(A) is a nondegenerate subgroup
of SC(G,ω). On the other hand, ν also defines the quasi-Hopf algebra Dω(G,A)

and a surjective quasi-Hopf algebra homomorphism πν : Dω(G) → Dω(G,A).
In particular, Rep(Dω(G,A)) is a tensor (full) subcategory of Rep(Dω(G)), so it
inherits the braiding c of Rep(Dω(G)). We can now state the main theorem in this
section.

Theorem 5.5. Let A be an ω-admissible subgroup of G, ν a normalized cochain in
C1(A, Ĝ) , and p̃ν : A → SC(G,ω) the associated group monomorphism. Then

cp̃ν(a),V ◦ cV,p̃ν(a) = idV ⊗p̃ν (a)

for all a ∈ A and irreducible V ∈ Rep(Dω(G,A)). Moreover, Rep(Dω(G,A)) is a
modular tensor category if, and only if, the bicharacter (·|·)ν on A is nondegenerate.

Proof. Since a braiding cU,V : U ⊗ V → V ⊗ U is a natural isomorphism and the
regular representation U of Dω(G,A) has every irreducible V ∈ Rep(Dω(G,A))

as a summand, it suffices to show that
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cp̃ν (a),U ◦ cU,p̃ν (a) = idU⊗p̃ν (a)

for all a ∈ A. Let cω = (G/A = G, θ, γ ) be an associated cleft object of CG
ω

and πν : Dω(G) → Dω(G,A) an epimorphism of quasi-Hopf algebras constructed
in the proof of Theorem 3.6 using ν. In particular, πν(egx) = χx(g) egx for all
g, x ∈ G where x denotes the coset xA and the scalar χx(g) is given by (17).

Let 1p̃ν(a) denote a basis element of p̃ν(a) = V (a, taν(a)−1). Then, by (24),

egx · 1p̃ν (a) = δg,a
ta(x)

ν(a)(x)
1p̃ν (a) .

Note that we can take U = Dω(G,A) as a Dω(G)-module via πν , and so

egx · ehy = πν(egx)ehy = δgx,h χx(g) θg(x, y)egxy

for all g, h, x, y ∈ G. Since the R-matrix of Dω(G) is given by R = ∑

g,h∈G eg ⊗
ehg, we have

cp̃ν(a),U ◦ cU,p̃ν(a)(egy ⊗ 1p̃ν (a)) = R21R · (egy ⊗ 1p̃ν (a))

= ta(g)

ν(a)(g)
R21 · (egy ⊗ 1p̃ν (a))

= ta(g)

ν(a)(g)
χa(g)θg(a, y) egy ⊗ 1p̃ν(a)

= egy ⊗ 1p̃ν(a)

for all a ∈ A. This proves the first assertion.

Let A be the full subcategory of C = Rep(Dω(G)) generated by p̃ν(A). The
first assertion of the theorem implies that Rep(Dω(G,A)) is a full subcategory of the
centralizer CC (A ) of A in C . Since dimA = |A| and Rep(Dω(G)) is a modular
tensor category, by [12, Thm. 3.2],

dimCC (A ) = dimDω(G)/dimA = |G|2/|A| = dimDω(G,A).

Therefore

CC (A ) = Rep(Dω(G,A)) and CC (Rep(Dω(G,A))) = A .

By Remark 5.4, A is a modular category if, and only if, p̃ν(A) is nondegenerate
subgroup of SC(G,ω); this is equivalent to the assertion that the bicharacter (·|·)ν
on A is nondegenerate. It follows from [12, Thm. 3.2 and Cor. 3.5] thatA is modular
if, and only if, CC (A ) is modular. This proves the second assertion. ��
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The choice of cochain ν ∈ C1(A, Ĝ) in the preceding theorem determines
an embedding p̃ν of A into SC(G,ω). Therefore, the degeneracy of p̃ν(A) in
SC(G,ω) depends on the choice of ν. However, the degeneracy of p̃ν(A) can also
be independent of the choice of ν in some situations. Important examples of this are
contained in the next result.

Lemma 5.6. If A is an ω-admissible subgroup of G such that A ∼= Z2 or A ≤
[G,G]. Then the bicharacter (·|·)ν on A is independent of the choice of ν.

Proof. Suppose ν′ ∈ C1(A, Ĝ) is another cochain satisfying the condition of
Theorem 5.5. Then there is a group homomorphism f : A → Ĝ such that
ν′(a)(b) = f (a)(b)ν(a)(b). Thus the associated bicharacter (·|·)ν ′ is given by

(a|b)ν ′ = f (a)(b)−1ν(a)(b)−1f (b)(a)−1ν(b)(a)−1ta(b)tb(a)

= f (a)(b)−1f (b)(a)−1(a|b)ν. (32)

If A ⊆ G′, then f (a)(b) = f (b)(a) = 1 for all a, b ∈ A, whence (a|b)ν = (a|b)ν ′ .

On the other hand, if A is a group of order 2 generated by z, then f (z)(z)2 = 1,
so that

(z, z)ν ′ = f (z)(z)2(z|z)ν = (z|z)ν . ��
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