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Preface

The West Coast of the United States has a longstanding tradition in Lie theory,
although before 1991 there had been no systematic cooperation between the various
strongholds. In 1991, partially inspired by the arrival of some well–known Lie
theorists from eastern Europe, the situation changed. A new structure emerged: a
seminar that would meet at various University of California campuses three or four
times a year. The purpose of the seminar was to foster contacts between researchers
and graduate students at the various campuses by facilitating the sharing of ideas
prior to formal publication. This idea quickly gained momentum, and became a great
success. It was enthusiastically supported by graduate students. A crucial feature of
the entire endeavor was the feeling of genuine interest for the work of colleagues
and the strong desire to collaborate.

The first meeting of the new seminar “Lie Groups, Lie Algebras and their
Representations” was held in Berkeley on October 19 and 20, 1991. On the
second day of the seminar, excitement was made even more memorable by the
historic Berkeley–Oakland fire, which we observed from Evans Hall. The original
announcement for that meeting is reprinted here on page v. The phrase “The purpose
of the program is to communicate results and ideas rather than to deliver polished
presentations” quickly became, and still is, the guiding principle of the seminar.
We never restricted ourselves to Lie Theory per se, and speakers from geometry,
algebra, complex analysis, and other adjacent areas were often invited.

NSF travel grants were crucial to the success of the seminar series. These grants
funded travel for speakers, graduate students and postdoctoral researchers, and we
thank the National Science Foundation for its continued support.

Over the years our idea became widely popular. On occasion the seminar took
place in Salt Lake City, in Stillwater, Oklahoma, and in Eugene, Oregon. In addition,
colleagues from other regional centers of Lie theory and related areas picked up on
our idea and created their own meeting series. This is how the “Midwest Lie Theory
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viii Preface

Seminars”, the “Midwest Group Theory Seminar”, the “Southeastern Lie Theory
Workshops”, and other regional series emerged.

The California Lie Theory Seminar has now been alive and well for 23 years. Joe
Wolf has always played a central role in the seminar, along with Geoff Mason and
Ivan Penkov. When Ivan left for Germany in 2004, Susan Montgomery and Milen
Yakimov joined the team of organizers.

Over the course of these 23 years, at about 20 talks per year, some 450 talks
have been hosted by the seminar. It seemed unrealistic to give an overview of all
of the topics covered over all these years, and similarly unrealistic to try to publish
a comprehensive set of volumes. Rather, we settled on two retrospective volumes
containing work representative of the seminar as a whole. We started with a list
of participants who spoke more than once in the seminar, and invited them to
submit work relevant to their seminar talks. For obvious reasons we did not hear
from everyone. Nevertheless, there was a strong response, and the reader of these
Volumes will find 26 research papers, all of which received strong referee reports,
in the greater area of Lie Theory. We decided to split the papers into two volumes:
“Algebraic Methods” and “Geometric/Analytic Methods”. We thank Springer, the
publisher of these volumes, and especially Ann Kostant and Elizabeth Loew, for
their cooperation and assistance in this project.

This is the Algebraic Methods volume.

Santa Cruz, USA Geoffrey Mason
Bremen, Germany Ivan Penkov
Berkeley, USA Joseph A. Wolf
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Group Gradings on Lie Algebras,
with Applications to Geometry. I

Yuri Bahturin, Michel Goze, and Elisabeth Remm

Abstract In this article, which is the first part of a sequence of two, we discuss
modern approaches to the classification of group gradings on simple and nilpotent
Lie algebras. In the second article we discuss applications and related topics in
differential geometry.

Key words Lie and associative algebras of linear transformations • Graded
algebras • Hopf algebras • Automorphisms • Involution gradings

Mathematics Subject Classification (2010): 16K20, 16T05, 16W10, 16W20,
16W50, 17B65, 17B70, 17B40.

1 Introduction

This article is the first is a sequence of two articles in which we discuss several
topics related to the first author’s presentations given at the workshops “Lie Groups,
Lie Algebras and their Representations” at the University of Southern California
and several campuses of the University of California. The main topics covered
were the theory and representations of simple locally finite Lie algebras, Lie
superalgebras, and group gradings on simple Lie algebras, with applications to
differential geometry. The most recent talk, in 2010 at the University of Southern
California, was devoted to a more abstract topic: the study of the distortion arising
when one Lie algebra is embedded in another as a subalgebra.

At least in one of the areas, namely, in the theory of group gradings on simple Lie
algebras, the development that followed was truly spectacular. Thanks to the efforts
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2 Y. Bahturin et al.

of several researchers in several countries, now we have a complete classification
of abelian group gradings on all classical simple Lie algebras over an algebraically
closed fields of characteristic different from 2. The detailed exposition of this theory
can now be found in a monograph [19], which has incorporated the results of [6],
where the above classification, up to the isomorphism, has been completed, with
the exception of D4 and psl3. In the same monograph [19], the authors present
the classification of group gradings on almost all exceptional algebras, which
heavily depends on the study of various classes of nonassociative algebras, such
as octonions, Albert algebra, and so on. In the case char F = 0, a description of fine
gradings on simple Lie algebras, with the same exception, as above, has appeared
in [22] and a description of all group gradings was obtained in [9] and [11].

Lately, the study of gradings on Lie algebras went beyond the boundaries of
the area of classical or exceptional simple finite-dimensional algebras. In the paper
[3] the authors classify up to isomorphism all abelian group gradings on finitary
simple Lie algebras of linear transformations. In the paper [7] the authors classify
all abelian group gradings on two types of restricted simple Lie algebras of Cartan
type over algebraically closed field of characteristic p > 3.

These results became possible thanks to the extensive use of the methods
involving the techniques of the theory of Hopf algebras. Probably the first papers
where this approach was successfully implemented were [5] and [8]. This is a
well-known fact that an algebra A over a field F graded by an abelian group G
bears a canonical structure of the (right) comodule algebra over the group algebra
H = FG (see [24]). Conversely, the H -comodule algebra canonically becomes
a G-graded algebra. If A is an associative envelope of a Lie algebra L then in
some cases of interest to us, the H -comodule structure of L can be extended to
the H -comodule structure of A. Then A becomes G-graded and the grading of L
becomes the restriction of a G-grading of an associative algebra A. It is a usual
pattern that the gradings of simple associative algebras are easier to determine.

The problem of extending the H -comodule structure from Lie to associative
algebras in the case of finite-dimensional algebras is approached using the technique
of affine group schemes [32]. These techniques, however, do not apply in the
case of infinite-dimensional algebras. In the case where the algebras are infinite-
dimensional (or just of sufficiently great dimension) quite another approach works.
As it turns out, the question about the possibility of extending the H -comodule
structure from a Lie to an associative algebra is analogous to the problem of
extending automorphisms of Lie algebras to the automorphisms or negatives of
antiautomorphisms of their associative envelopes. This latter problem, named after
I. Herstein, was successfully solved in the 1990s using so-called functional identities
(see [18]). An appropriate adaptation of the methods of this book made it possible
to classify in [3] all abelian group gradings on simple finitary Lie algebras over
algebraically closed fields of characteristic other than 2 and 3. Note that these results
are also related to the theory of locally finite simple Lie algebras, which was one
of the topics of research of several people related to the West Coast Lie Theory
workshop “Lie Groups, Lie Algebras and their Representations”.
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Since Cartan decompositions of semisimple Lie algebras are a special case of
fine gradings, it is our strong belief that the classification of all gradings on simple
Lie algebras should be important for the study of their structure, representations and
other properties.

As examples, the study of graded identical relations of algebras lately became an
important branch of the theory of algebras with polynomial identities (PI-algebras).
Graded polynomial identities of algebras are often much easier to study, yet they
define the ordinary ones.

2 Group Gradings of Lie Algebras

In what follows K is an algebraically closed field of characteristic other than 2.
For more details on group gradings of algebras, see a recent monograph [19]. These
definitions apply to other classes of algebras, with an appropriate change of notation.

2.1 Definition

Let L be a Lie algebra over K and S a set.

Definition 2.1. An S-grading � of L with support S is a decomposition

� : L =
⊕

s∈S
Ls

of L as the sum on nonzero vector subspaces Ls satisfying the following condition.
For any s1, s2 ∈ S such that [Ls1, Ls2 ] �= 0 there is μ(s1, s2) ∈ S such that
[Ls1, Ls2] ⊂ Lμ(s1,s2).

If S is a subset of a group G such that μ(s1, s2) = s1s2 in G, we say that �
is a group grading by the group G with support S. Such a group G is not defined
uniquely, but for any group grading there is a universal grading group U(�) such
that any other grading groupG of � is a factor group of U(�). The universal group
is given in terms of generators and defining relations if one chooses S as the set
of generators and all the above equations s1s2 = μ(s1, s2) as the set of defining
relations.

2.2 Equivalent and Isomorphic Gradings

If �′ : L = ⊕
s ′∈S ′ L′s ′ is another grading of L, we say that � is equivalent to

�′ if there is an automorphism ϕ ∈ Aut L and a bijection σ : S → S′ such that
ϕ(Ls) = L′σ(s). It follows that σ(μ(s1, s2)) = μ(σ(s1), σ (s2)).
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Two group gradings � and �′ of a Lie algebra L by groups G and G′ with
supports S and S′ are called weakly isomorphic if they are equivalent, as above,
and the map σ : S → S′ extends to the isomorphism of groups G to G′. The
strongest relation is the isomorphism of G-gradings. In this case both � and �′ are
gradings by the same group; they have the same support and the isomorphism of
groups σ is identity. As a result, we have ϕ(Lg) = L′g , for any g ∈ G. In the case of
group G-gradings with support S we will write � : L = ⊕g∈G Lg , assuming that
Lg = {0} if g ∈ G \ S.

2.3 Refinements, Coarsenings, Fine Gradings

Definition 2.2. Let �, as above, and �′ : L = ⊕
t∈T L′t be two gradings on L

with supports S and T , respectively. We say that � is a refinement of �′ or �′ is a
coarsening of � if for any s ∈ S there exists t ∈ T such that Ls ⊂ L′t .

Coarsening and refinements often arise as follow. Let � : L = ⊕
g∈G Lg and

let ε : G → K be a homomorphism of groups. We set L′k =
⊕
ε(g)=k Lg, for

any k ∈ K . Then we obtain the image-grading ε(�) = ⊕k∈K L′k . If ε is an onto
homomorphism, we say that ε(�) is a factor-grading of the grading�. Clearly, ε(�)
a coarsening of � and � is a refinement of ε(�).

A group grading � of L is called a fine grading if doesn’t admit proper group
refinements.

Remark 2.1. If �′ is a refinement of �, then � viewed as a U(�)-grading is a factor
grading of �′ viewed as a U(�′)-grading.

2.4 Abelian Groups Gradings

In the case of Lie algebras it is natural to assume that all groups involved in the group
gradings are abelian. In fact, for many Lie algebras, like finite-dimensional simple
ones, this is satisfied (see [11]) in the sense that the partial function μ : S × S → S

appearing in the definition of the grading is symmetric or that the elements of the
support in the group grading commute. So in what follows we always deal with
gradings by abelian groups. In addition, when we study finite-dimensional algebras,
the supports of the gradings are finite sets, so our groups are finitely generated.

Now given a finitely generated abelian group G, we denote by Ĝ the group of
(1-dimensional) characters of G, that is, the group of all homomorphisms χ : G→
F× where F× is the multiplicative group of the field F . If � : L = ⊕

g∈G Lg
is a grading of a Lie algebra L with a grading group G, there is an action of Ĝ
by semisimple automorphisms of L given on the homogeneous elements of L by
χ ∗ x = χ(g)x where χ ∈ Ĝ and x ∈ Lg. If G is generated by the support
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S of �, different characters act differently. Indeed, assume χ1, χ2 ∈ Ĝ are such
that χ1 ∗ x = χ2 ∗ x, for any x ∈ L. Choose any s ∈ S and 0 �= x ∈ Ls . In
this case χ1(s)x = χ1 ∗ x = χ2 ∗ x = χ2(s)x. As a result, χ1(s) = χ2(s), for
any s ∈ S. Since χ1 and χ2 are homomorphisms and G is generated by S, we
have χ1 = χ2, as claimed. This allows us, in this important case, to view Ĝ as a
subgroup of Aut L. We will view Aut L as an algebraic group. When we study
finite-dimensional algebras, then G is finitely generated abelian and so Ĝ is the
group of characters of a finitely generated abelian group. If G ∼= Z

m × A, where
m is an integer, m ≥ 0, and A a finite abelian group, then Ĝ ∼= (F×)m × Â.
Such subgroups of algebraic groups, consisting of semisimple elements, are called
quasitori.

A quasitorus is a generalization of the notion of a torus, which is an algebraic
subgroup of Aut L isomorphic to Ĝ ∼= (F×)m, for some m. A torus, which is not
contained in a larger torus is called maximal. The following result is classical.

Theorem 2.1. In any algebraic group any two maximal tori are conjugate by an
inner automorphism.

Another well-known result is often attributed to Platonov [27] (but see also [28]).

Theorem 2.2. Any quasitorus is isomorphic to a subgroup in the normalizer of a
maximal torus.

Thus, if we find a maximal torus D in Aut L equal to its normalizer in Aut L,
then for any grading ofL by a finitely generated abelian groupG, there is ϕ ∈ Aut L
such that ϕĜϕ−1 ⊂ D.

Every time we have a quasitorus Q in Aut L there is root space decomposition
of L with roots from the group of (algebraic) characters X(Q) for the groupQ, the
root subspace for λ ∈ X(Q) given by

Lλ = {x ∈ L | α(x) = λ(α)x for any α ∈ Q}.

If Q ⊂ D then, by duality, X(Q) is a factor group of X(D) ∼= Z
m where

m = dimD. The root space decomposition by D is the refinement of the root space
decomposition by Q and so the grading by X(Q) is a coarsening of a grading by
X(D) ∼= Z

m.
Now assume that we deal with a grading of L by a finitely generated abelian

group G, � : L = ⊕
g∈G Lg. Assume that p = char F and write G = Gp ×

Gp′ , where Gp is the Sylow p-subgroup and Gp′ its complement in G that has no
elements of order p. If char F = 0, then G = Gp′ . Let us consider the quasitorus
Ĝ ⊂ Aut L. Then there is ϕ ∈ Aut L such that ϕĜϕ−1 ⊂ D. Let us switch
to another G-grading ϕ(�) : L = ⊕

g∈G ϕ(Lg). The action of Ĝ on L induced

by ϕ(�) gives rise to another copy of Ĝ in Aut L, namely, ϕĜϕ−1 and now this
subgroup is a subgroup in D. Replacing D by another maximal torus ϕ−1Dϕ we
may assume from the very beginning that Ĝ ⊂ D. Then the root decomposition by
D is a refinement of the root decomposition under the action of Ĝ. Thus the grading
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�′ : L =⊕
λ∈X(Ĝ) Lλ induced by this root decomposition resulting from the action

of Ĝ is a coarsening of the X(D) ∼= Z
m grading of L induced by the action of the

torusD.
In the case where G has no elements of order p = char F , we have the original

grading being a coarsening of the grading induced from the action of a maximal
torus. Usually, this is some “standard” torus, and the grading induced by its action
is also called “standard.”

We summarize the above discussion as follows.

Theorem 2.3. Let � : L =⊕g∈G Lg be a grading of a finite-dimensional algebra
L over an algebraically closed field K by a finitely generated abelian group G.
If char K = p > 0, let Gp denote the Sylow p-subgroup of G. Consider the
automorphism group A = Aut L of L and assume D is a maximal torus of A,
of dimension m, equal to its normalizer in A. Then the factor-grading �/Gp is
isomorphic to a factor-grading of the standard Z

m-grading of L induced by the
action ofD on L.

An important particular case is the following.

Theorem 2.4. Let � : L = ⊕
g∈G Lg be a grading of a finite-dimensional Lie

algebra L over an algebraically closed field K by a finitely generated abelian
group G. If char K = p > 0, assume G has no elements of order p. Consider
the automorphism group A = Aut L of L and assumeD is a maximal torus of A, of
dimensionm, equal to its normalizer in A. Then � is isomorphic to a factor-grading
of the standard Z

m-grading of L induced by the action of D on L.

Even more special is the following.

Theorem 2.5. Let � : L =⊕g∈G Lg be a grading of a finite-dimensional algebra
L over an algebraically closed field of characteristic zero K by a finitely generated
abelian group G. Consider the automorphism group A = Aut L of L and assume
D is a maximal torus of A, of dimension m, equal to its normalizer in A. Then �
is isomorphic to a factor-grading of the standard Z

m-grading of L induced by the
action ofD on L.

2.5 Automorphism Group of a Grading

Since we completely classify gradings up to equivalence for certain classes of
algebras, we quote some more results from [19]. Given a grading � : L =⊕s∈S Ls
of an algebra L, the subgroup of the group Aut L permuting the components of
� is called the automorphism group of the grading � and denoted by Aut �. Each
ϕ ∈ Aut � defines a bijection on the support S of the grading: if ϕ(Ls) = Ls ′ , then
s 
→ s′ is the desired permutation σ(ϕ), an element of the symmetric group Sym S.
The kernel of the homomorphism ϕ 
→ σ(ϕ) is called the stabilizer of the grading
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�, denoted by Stab �. Finally a subgroup of Stab �, whose elements are scalar
maps on each graded component of � is called the diagonal group of � and denoted
by Diag �.

Definition 2.3. Let Q ⊂ Aut � be a quasitorus. Let � be the eigenspace
decomposition of L with respect to Q. Then the quasitorus Diag � in Aut � is
called the saturation of Q. We always have Q ⊂ Diag �. If Q = Diag �, then we
say thatQ is a saturated quasitorus.

A quasitorusQ is saturated if and only if the groupX (Q) of algebraic characters
ofQ is U(�), the universal group of �.

Proposition 2.1. The equivalence classes of gradings on L are in one-to-one
correspondence with the conjugacy classes of saturated quasitori in Aut L.

Notice that if we already know that every quasitorus is conjugate to a subgroup
of a fixed maximal torus and that two subgroups of the maximal torus are conjugate
if and only if they are equal, we can say that the equivalence classes of gradings are
in one-to-one correspondence with the saturated subquasitori of a fixed maximal
torus.

2.6 Group Gradings and Actions of Hopf Algebras

In the case where the action of �̂ by automorphisms does not completely reflect
the G-grading, one can still find the transformations which are responsible for the
gradings. For this one need to consider the group algebraH = FG of the groupG.
The Hopf algebra structure on H , that is, the coproduct 	, the counit ε and the
antipode S are given as follows: 	(g) = g ⊗ g, ε(g) = 1 and S(g) = g−1, for any
g ∈ G. Now let us consider the finite dualK = H ◦ ofH , which is just the ordinary
dual H ∗ in the case where |G| < ∞, and the set of linear functions f : H → K

such that Ker f contains a two-sided ideal of finite codimension inH . All operations
on K are defined by duality. The action of f ∈ K on A =⊕g∈G Ag is defined by
setting f ∗ a = f (g)a if a ∈ Ag. If G is a finitely generated abelian group (or,
more generally, a residually linear group), then K separates points of G and the G-
grading can be recovered from theK-action. One has to set Ag = {x ∈ A | f ∗ x =
f (g)x for all f ∈ K}.

If G is a finite group of order coprime to the characteristic of the base field, the
basis of K is formed by the characters of G; they act as automorphisms and so
we are bounced back to the situation described earlier. In the case where char F =
p > 0 and G is an elementary abelian group of order pn, it is known that K is a
restricted enveloping algebra for an abelian p-Lie algebra spanned by n semisimple
commuting derivations. In this case the study of gradings on an algebra is reduced to
the study of action by derivations. In all other cases, although K has a very simple
structure as an algebra, just the direct sum of the copies of the ground field, the
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action of the elements of K on the products of element of A can be extremely
complex. However, this approach was successfully applied to the study of gradings
on algebras of type A in characteristic p > 0 [5].

3 Transfer

If A is an associative algebra over a field K, then we denote by A(−) the Lie algebra
on the same vector space A under the bracket operation [a, b] = ab − ba, for all
a, b ∈ A. By the Poincaré–Birkhoff–Witt Theorem, for any Lie algebra L there is
an associative algebra A such that L is (isomorphic to) a subalgebra of A(−). If A
is generated by (the image of) L, we say that A is an associative envelope of L.
For any L one can choose the universal enveloping algebra U(L) as an associative
envelope, the drawback being that U(L) is an infinite-dimensional algebra, for
any nonzero L. In many cases, however, there are more manageable associative
envelopes. For example, by the Ado–Iwasawa Theorem, every finite-dimensional
Lie algebra has a finite-dimensional associative envelope. A Lie algebra consisting
of linear transformations of a vector space V is a subalgebra of the associative
algebra End (V ), etc.

It was noted a while ago [26] that the study of group gradings on simple Lie
algebras is closely related to the study of gradings on their associative envelopes.
This is especially true in the case of classical simple Lie algebras over algebraically
closed fields of characteristic zero for two reasons. First, because, as we saw, the
study of gradings is equivalent to the study of quasitori in the automorphism groups
of these algebras. Second, because all these algebras have matrix realizations and,
with the exception of D4, their automorphisms extend to the automorphisms or
negatives of the automorphisms of the respective matrix algebras. The situation is
especially benign in the case of algebras of the types B,C,D, except D4. In this
case, every automorphism of a Lie algebra of one of these types is given by a matrix
conjugation. As a result, anyG-grading of a Lie algebra, of the type so(n) or sp(n),
n even, can be obtained by restriction from a G-grading of the matrix algebraMn.

3.1 Affine Group Schemes

An object that most fully reflects the structure of gradings on a finite-dimensional
algebra A by abelian groups is called the automorphism group scheme of A over
a field K, denoted by Aut A. This is a representable functor F from the category
Comm of commutative associative unital algebras over K to the category Ab of
abelian groups, which associates with each commutative associative unital algebra
R the group AutR(A ⊗ R). The value F (K) is just the ordinary Aut A. Being
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representable for a functor G means that there is there is a finitely generated Hopf
algebra H such that G (R) = AlgK(H,R), the group of algebra homomorphisms
from H to R under the convolution product (f ∗ g)(h) = ∑h f (h1)g(h2), where
	(h) =∑h h1 ⊗ h2, h being an arbitrary element of H . Given a finitely generated
abelian group G, the affine group scheme represented by the group algebra H =
KG is denoted by GD .

We quote the following results from [19, Section 1.4].

Proposition 3.1. The G-gradings on an algebra A are in one-to-one correspon-
dence with the morphisms of affine group schemes GD → Aut A. Two G-gradings
are isomorphic if and only if the corresponding morphisms are conjugate by an
element of AutA.

Theorem 3.1. Let A and B be finite-dimensional algebras. Assume that we have a
morphism θ : Aut A→ Aut B. Then, for any abelian groupG, we have a mapping
�→ θ(�) fromG-gradings ofA toG-gradings ofB. If � ∼= �′, then θ(�) ∼= θ(�′).
If θ is an isomorphism and G is the universal grading group of a fine grading �,
then θ(�) is a fine grading with universal groupG.

Using this theorem and the results about the gradings of nonassociative algebras,
such as octonions or the Albert algebra, made it possible to describe abelian group
gradings on simple Lie algebras of the types G2 and F4 in an amazing generality
of arbitrary algebraically closed fields of characteristic not 2 or 3 in the case of
G2 and not 2, in the case of F4. The group scheme Aut L ∼= Aut O, where O is
the octonion algebra in the case where L is of the type G2 and Aut L ∼= Aut A
where A is the Albert algebra in the case where L is of the type F4. For details see
[19, Chapters 4, 5]. In both cases, the Lie algebra L is the derivation algebra of the
respective nonassociative algebra C and the isomorphism of the group schemes is
given by the adjoint map (see below).

The approach via group schemes paved the way for the classification of abelian
group gradings on simple Cartan Lie algebras. These algebras arise as subalgebras
of the derivation algebras of so-called divided power algebras (Witt algebras, type
W; Special algebras, type S; Hamiltonian algebras, type H; Contact algebras, type
K). For the classification of Cartan type Lie algebras see [29, 30]. A fairly recent
paper [7] is devoted to the classification of all abelian group gradings on the
restricted Lie algebras of the types W and S, with important information in the
case S. In the case of restricted algebras, we only need to consider the derivation
algebras of so the truncated polynomial algebras, that is, the algebras of the form
Op(n) = K[x1, . . . , xn]/(xp1 , . . . , xpn ), where n ≥ 1, p = char K. Using the
isomorphism of the group schemes Ad : Aut Op(n) → Aut Wp(n), where
Ad : ϕ → (D → (ϕ−1 ◦ D ◦ ϕ)) where ϕ is an automorphism of Op(n) and
D is a derivation of Op(n) one easily transfers the gradings from Op(n) to Wp(n).
For more details see [19, Chapter 7].
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3.2 Group Gradings, Comodules and Functional Identities

Suppose a Lie algebra L over a field F is graded by an abelian group G. This
is well known [24] to be equivalent to L being a (right) H -comodule Lie algebra
over the group algebra H = FG, that is, to the existence of a Lie homomorphism
ρ : L→ L⊗H such that

(1) (ρ ⊗ idH )ρ = (idL ⊗	)ρ

and

(2) (idL ⊗ ε)ρ = idL.

In the case of a graded algebra, ρ is determined by ρ(ag) = ag ⊗ g where
ag is a homogeneous element of degree g. If L is a Lie subalgebra generating an
associative algebra A and ρ extends to an associative homomorphism ρ : A →
A ⊗ H , then A also becomes G-graded. One easily checks that (1) and (2) will
still be satisfied because L generates A as an associative algebra. Since both Lg
and Ag are defined as the sets of elements x in L and A satisfying ρ(x) = x ⊗ g,
we have Lg = L ∩ Ag. In what follows, we will see that this extension of ρ from
L to A indeed happens in the case where L is the Lie algebra of skew-symmetric
elements in a central simple associative algebra over any field of characteristic not 2,
provided that dimL ≥ 21. The case of L being infinite-dimensional is not excluded
but is rather welcome! On the other hand, it is clear that some gradings of simple Lie
algebras cannot be induced from the associative gradings. This is true for the grading
of sl(n) by Z2, which represents every matrix as the sum its of skew-symmetric
and symmetric components. To correctly handle the situation arising, let us extend
the Lie homomorphism ρ : L → L ⊗ H to ρ̄ : L ⊗ H → L ⊗ H by setting
ρ̄(x ⊗ h) = ρ(x)(1⊗ h). Clearly, this is a surjective Lie homomorphism. We want
to extend ρ̄ to A⊗H .

Recall that a map σ from an associative algebraA ′ to a unital associative algebra
A ′′ is a direct sum of a homomorphism and the negative of an antihomomorphism if
there exist central idempotent e1 and e2 inA′′ with e1+e2 = 1 such that x 
→ e1σ(x)

is a homomorphism and x 
→ e2σ(x) is the negative of an antihomomorphism.
Maps with this property are clearly Lie homomorphisms; the nontrivial question is
whether all Lie homomorphisms can be described in terms of such maps.

The answer to these questions is partially given in the following theorems from
[2]. The technique used, so-called Functional Identities, was developed in course of
solution of the famous Herstein problems about Lie homomorphisms of associative
algebras (see [15–17]). At this time, the best source is the monograph by M. Brešar,
M. Chebotar’ and W. Martindale III [18].

We call a unital associative algebra over a field K central if its center equals K ·1.
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Theorem 3.2. Let A be a central simple algebra such that dimFA ≥ 64. Let H
be a unital commutative algebra. If A is not unital, then assume that H is finite
dimensional. Then every surjective Lie homomorphism ρ : [A,A]⊗H → [A,A]⊗
H can be extended to a direct sum of a homomorphism and the negative of an
antihomomorphism σ : A⊗H → A⊗H .

Theorem 3.3. Let char F �= 2 and let A be a central simple algebra such that
dimFA ≥ 441. Suppose that A has an involution and set K = KA. Let H be a
unital commutative algebra. If A is not unital, assume that H is finite dimensional.
Then every surjective Lie homomorphism ρ : [K,K] ⊗ H → [K,K] ⊗ H can be
extended to a homomorphism σ : A⊗H → A⊗H .

These transfer theorems and the techniques of affine group schemes have been
successfully applied and the final classification of abelian group gradings on
classical simple Lie algebras of types except D4 over algebraically closed fields
of characteristic other than 2 (in one case, different from 3) was obtained in [4]. The
case of D4 was accomplished by A. Elduque (see the details in [19]).

3.3 Case of Finitary Simple Algebras

Theorems 3.2 and 3.3 work well for infinite-dimensional algebras. For example, one
can apply them to the case of Lie algebras L, which are direct limits of algebras
{Li = sl(ni ,K) | k ∈ N}, where each Li is embedded in Li+1 by a diagonal
embedding X → diag (X, . . . , X). In this case the unital algebra A is the direct
limit of {Ai = Mni (K) | k ∈ N}, with the same embeddings. One could also
consider the orthogonal or symplectic Lie algebras of skew-symmetric elements in
A with respect to appropriate involutions. One drawback is that these theorems give
no answer in the case of gradings of non-unital simple algebras by infinite groups,
which is exactly the case when one deals with simple Lie algebras of finitary linear
transformations. These algebras are direct limit of algebras of the same kind as
before but the embedding is given by setting X → diag (X, 0). Let us recall a few
definitions.

An infinite-dimensional simple Lie algebra L of linear operators on an infinite-
dimensional space over a field K is called finitary if L consists of linear operators of
finite rank. These algebras were classified in [13] over any K with char K = 0 and in
[14] over an algebraically closed K with char K �= 2, 3. Under the latter assumption,
finitary simple Lie algebras over K can be described in the following way.

Let U be an infinite-dimensional vector space over K. Let � ⊂ U∗ be a total
subspace, i.e., for any v �= 0 in U there is f ∈ � such that f (v) �= 0. Let F�(U)
be the space spanned by the linear operators of the form v ⊗ f , v ∈ U and f ∈ �,
defined by (v⊗f )(u) = f (u)v for all u ∈ U . It is known from [23] thatR = F�(U)
is a (non-unital) simple associative algebra.

The commutator [R,R] is a simple Lie algebra, which is denoted by fsl(U,�).
The algebraR admits an (K-linear) involution if and only if there is a nondegenerate
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bilinear form  : U × U → K that identifies U with � and that is either
symmetric or skew-symmetric. The set of skew-symmetric elements with respect
to this involution, i.e., the set of r ∈ R satisfying (ru, v) + (u, rv) = 0 for all
u, v ∈ U , is a simple Lie algebra, which is denoted by fso(U,) if  is symmetric
and fsp(U,) if  is skew-symmetric.

In [14] it is shown that if K is algebraically closed and char K �= 2, 3, then any
finitary simple Lie algebra over K is isomorphic to one of fsl(U,�), fso(U,) or
fsp(U,). The most important special case is that of countable (infinite) dimension.
Then U has countable dimension and the isomorphism class of the Lie algebra does
not depend on� or. Hence, there are exactly three finitary simple Lie algebras of
countable dimension: sl(∞), so(∞) and sp(∞).

In the paper [3] we have given a complete classification of the abelian group
gradings on finitary simple Lie algebras. This classification was obtained using the
transfer to the case of associative algebras. Since the authors did not want to restrict
themselves to the case of finite grading groups, as suggested by Theorems 3.2 or 3.3,
they proved the following result.

To state the results, we set A � = A + K1; thus, A � = A if 1 ∈ A . If X is
a subset of an associative algebra, then by 〈X〉 we denote the subalgebra generated
by X.

Theorem 3.4. Let A be any algebra satisfying F�(U) ⊂ A ⊂ End (U), where U
is infinite-dimensional, and let L be a noncentral Lie ideal of A . If H is a unital
commutative associative algebra, M is a Lie ideal of some associative algebra,
and ρ : M → L ⊗H is a surjective Lie homomorphism, then there exist a direct
sum of a homomorphism and the negative of an antihomomorphism σ : 〈M 〉 →
A � ⊗ H and a linear map τ : M → 1 ⊗ H such that τ ([M ,M ]) = 0 and
ρ(x) = σ(x)+ τ (x) for all x ∈M .

If A is any associative algebra with an involutionϕ, then byK (A , ϕ)we denote
the Lie algebra of skew-symmetric elements in A :

K (A , ϕ) = {a ∈ A | ϕ(a) = −a}.

Theorem 3.5. Let A be any algebra satisfying F�(U) ⊂ A ⊂ End (U), where
U is infinite-dimensional and the characteristic of the ground field is other than
2. Assume that A has an involution ϕ and let L be a noncentral Lie ideal of
K (A , ϕ). If H is a unital commutative associative algebra, U is an associative
algebra with involution ∗, M is a Lie ideal of K (U , ∗), and ρ : M → L ⊗H
is a surjective Lie homomorphism, then there exist a homomorphism σ : 〈M 〉 →
A � ⊗ H and a linear map τ : M → 1 ⊗ H such that τ ([M ,M ]) = 0 and
ρ(x) = σ(x)+ τ (x) for all x ∈M .

Note that in the case of simple algebras the map τ is always zero.
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4 Group Gradings on Algebras of Finitary Linear
Transformations

For the transfer approach to work, one needs to classify the gradings by groups on
associative simple finitary algebras. In this section the grading group G does not
need to be abelian.

Now the basic idea about the gradings in the case of finite-dimensional associa-
tive algebras (even graded Artinian algebras) is as follows. Let us call an algebra
graded simple if it has no nontrivial proper ideals which are graded subspaces. Let
us call a G-graded algebra a graded division algebra if any nonzero homogeneous
element is invertible. An algebra is called graded left Artinian if it satisfies the
descending chain condition for its left ideals. A well-known adaptation of the
classical Wedderburn–Artin Theorem (see [25]) is the following.

Theorem 4.1. EveryG-graded left Artinian graded simple algebraA is isomorphic
to an algebra of endomorphisms EndD(V ) of aG-graded right vector space V over
a graded division algebraD.

Basically the same result holds in the case of simple associative algebras or
finitary linear transformations, which belong to a wider class of primitive algebras
with minimal ideals.

As shown in [23, IV.9], R is a primitive algebra with minimal one-sided ideals if
and only if it is isomorphic to a subalgebra of L�(U) containing the ideal F�(U)
where U is a right vector space over a division algebra 	, � is a total subspace of
the left vector space U∗ over 	, L�(U) is the algebra of all continuous 	-linear
operators on U , and F�(U) is the set of all operators in L�(U) whose image has
finite dimension over	. The term continuous refers here to the topology on U with
a neighbourhood basis at 0 consisting of the sets of the form ker f1 ∩ . . . ∩ ker fk
where f1, . . . , fk ∈ � and k ∈ N. A linear operator A : U → U is continuous with
respect to this topology if and only if the adjoint operator A ∗ : U∗ → U∗ leaves
the subspace � invariant. (In particular, if 	 is R and C, U is a Banach space and
� consists of all bounded linear functionals on U , then a linear operator on U is
continuous in our sense if and only if it is bounded.)

In our paper [3], we show that if an algebra R as above is given a grading by
a group G, then it becomes a graded primitive algebra with minimal one-sided
graded ideals. To state the graded analogue of the quoted result from [23, IV.9],
let us remind that a linear transformation f : M → N of G-graded vector spaces
is said to be homogeneous of degree h if f (Mg) ⊂ Nhg , for all g ∈ G. Thus, the
set Homgr(M,N) of finite sums of homogeneous maps fromM to N is a G-graded
vector space. A homomorphism of graded vector spaces is a homogeneous map of
degree e.
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4.1 Graded Division Algebras

In the case where K is algebraically closed and we consider a G-grading on R =
F�(U), which is a locally finite simple algebra with minimal ideals, we have that
in the presentation of R ∼= F

gr
W(V ) in Theorem 4.4, the graded division algebra

is isomorphic to a matrix algebra M�(K), as an ungraded algebra. If we restrict
ourselves to the case where G is abelian (this is all we need when we deal with
simple Lie algebras!) such graded division algebras have been described in [10] and
classified up to isomorphism [4]. The following statement can be found in [19].

Theorem 4.2. Let T be a finite abelian group and let K be an algebraically closed
field. There exists a grading on the matrix algebra Mn(K) with support T making
Mn(K) a graded division algebra if and only if char K does not divide n and T ∼=
Z

2
�1
× · · · × Z

2
�r

where �1 · · · �r = n. The isomorphism classes of such gradings are
in one-to-one correspondence with nondegenerate alternating bicharacters β : T ×
T → K

×. All such gradings belong to one equivalence class. ��
A standard realization can be obtained as follows.
If R is finite-dimensional or a finitary algebra, then D is finite-dimensional and

T = SuppD is a finite subgroup of G. Every homogeneous component of D is
one-dimensional and, one can easily see that D is isomorphic to a group algebra
of T twisted by a 2-cocycle σ : T × T → K

×, usually denoted by K
σ T . This

means that we can choose a basis Xt in each Dt , t ∈ T and then we will have
XtXu = σ(t, u)Xtu. Let us introduce an alternating bicharacter β = βσ by setting
β(t, u) = σ(t, u)σ (u, t)−1. This depends only on the cohomology class of σ , which
defines the isomorphism class of Kσ T . The simplicity of Kσ T is then equivalent to
the nondegeneracy of β.

Suppose there exists a nondegenerate alternating bicharacter β on T . One easily
shows that T admits a “symplectic basis”, i.e., there exists a decomposition of T as
the direct product of cyclic subgroups:

(3) T = H ′1 ×H ′′1 × · · · ×H ′r ×H ′′r
such that H ′i ×H ′′i and H ′j ×H ′′j are β-orthogonal for i �= j , and H ′i and H ′′i are in
duality by β.

4.2 Pauli Gradings on Matrix Algebras

Given a matrix algebra D = Mn(K) over a field K possessing a primitive nth root
of 1, one can define a division grading by the group T = 〈a〉n × 〈b〉n ∼= Z

2
n on D,

as follows. Let
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(4)

X = X(n, ε) =

⎡

⎢⎢⎢⎢⎢⎣

εn−1 0 0 . . . 0 0
0 εn−2 0 . . . 0 0
. . .

0 0 0 . . . ε 0
0 0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎥⎦
and Y = Y (n) =

⎡

⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . .

0 0 0 . . . 0 1
1 0 0 . . . 0 0

⎤

⎥⎥⎥⎥⎥⎦

be called generalized Pauli matrices. Clearly,X and Y are periodic matrices of order
n each. Moreover, YX = ε−1XY . For any t = akbl ∈ T , we set Xt = XkY l . There
are n2 of such different matrices, they form a basis of R and setting Dt = KXt , for
each t ∈ T turns D into a graded algebra. We call this grading a Pauli grading of
D = Mn(K) and denote by �(n, ε). Since for any t ∈ T every nonzero element of
Dt is invertible,D is a graded division algebras.

Using Pauli gradings allows us to describe the classes [σ ] such that βσ is
nondegenerate and the isomorphisms from K

σT onto a matrix algebra, as follows.
Denote by �i the order of H ′i and H ′′i . (We may assume without loss of generality
that �i are prime powers.) If we pick generators ai and bi for H ′i and H ′′i ,
respectively, then εi = β(ai, bi) is a primitive �i -th root of unity, and all other
values of β on the elements a1, b1, . . . , ar , br are 1. We can scale the elements
Xai and Xbi so that X�iai = X

�i
bi
= 1. Then we consider the Kronecker product

M�1(K) ⊗ · · · ⊗ M�r (K) of matrix algebras M�i (K), each with a Pauli grading
�(�i, εi). The degree of the product X1 ⊗ · · · ⊗ Xr is equal to the product of
the degrees of the factors. Then we map the generators Xti of K

σ T , ti ∈ Ti ,
i = 1, . . . , r , as follows:

(5) Xti 
→ I ⊗ · · · I ⊗Xti ⊗ I ⊗ · · · I,

where the only nonzero factor on the ith position is the generalized Pauli matrix
from the definition of the Pauli grading�(�i, εi). Comparing defining relations and
the dimensions shows that this is an isomorphism of graded algebras.

If we scale Xai and Xbi , as above, to have X�iai = X
�i
bi
= 1, and set

X
(a
i1
1 ,b

j1
1 ,...,a

ir
r ,b

jr
r )
= Xi1a1X

j1
b1
· · ·XirarXjrbr , then

X
(a
i1
1 ,b

j1
1 ,...,a

ir
r ,b

jr
r )
X
(a
i′1
1 ,b

j ′1
1 ,...,a

i′r
r ,b

j ′r
r )
= ε−j1i′11 · · · ε−jr i′rr X

(a
i1+i′1
1 ,b

j1+j ′1
1 ,...,a

ir+i′r
r ,b

jr+j ′r
r )

.

Hence, with this choice of Xt , we obtain a representative of the cohomology class
[σ ] that is multiplicative in each variable, i.e., it is a bicharacter (not alternating
unless T is trivial).

Summarizing, we derive the following.

Theorem 4.3. If a matrix algebra R = Mn(K), K an algebraically closed field,
is turned into a G-graded division algebra, then there are l1, . . . , lr , n = l1 · · · lr ,
a subgroup T ∼= Z

2
l1
⊕ · · · ⊕ Z

2
lr

and ε1, . . . , εr , where εi is an li th root of 1, for
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each i = 1, . . . , r , such that R is isomorphic as a graded algebra to the graded
Kronecker product M�1(K) ⊗ · · · ⊗ M�r (K) of matrix algebras, on each of which
the grading is Pauli.

In many arguments, however, it is convenient to simply use that any finite-
dimensional G-graded division algebra D is a twisted group algebra of a group
T , with basis Xt , t ∈ T , Dt = KXt and XtXt ′ = σ(t, t ′)Xtt ′ for some 2-cocycle
σ : T × T → K

×. The isomorphism classes of such gradings are in bijection with
the pairs (T , β) where T ⊂ G is a subgroup of order �2 and β : T × T → K

× is a
nondegenerate alternating bicharacter. Here T is the support of the grading and β is
given by β(t, t ′) = σ(t, t ′)/σ (t ′, t), so we get

XtXt ′ = β(t, t ′)Xt ′Xt for all t, t ′ ∈ T .
Note that char K cannot divide the order of T .

4.3 Graded Primitive Algebras with Minimal Graded
Left Ideals

As mentioned in the introduction, we want to study gradings on the associative
algebras of the form F�(U) whereU is a vector space over K and� ⊂ U∗ is a total
subspace. A natural class to which these algebras belong is the primitive algebras
with minimal left ideals. In fact, the simple algebras in this class are precisely the
algebras F�(U)whereU is a right vector space over a division algebra and� ⊂ U∗
is a total subspace. We are now going to develop a graded version of the theory in
[23, Chapter IV], which will apply to the setting we are interested in—thanks to the
following lemma. All algebras in this section will be associative, but not necessarily
unital. Unless indicated otherwise, the ground field K is arbitrary. (In fact, some
results will also apply to rings.)

Lemma 4.1. Let R be a primitive algebra (or ring) with minimal left ideals.
Suppose that R is given a grading by a group G. Then R is graded primitive with
minimal graded left ideals.

Proof. Any nonzero left ideal of R is a faithful module because R is prime. Now
consider R as a graded left R-module. According to [25, Proposition 2.7.3], the
graded socle Sgr(R) always contains the ordinary socle S(R). HenceR must contain
a minimal graded left ideal I . Since I is a faithful graded simple R-module, R is
graded primitive. ��

4.4 A Structure Theorem

Let R be a G-graded algebra (or ring) and let V be a graded simple faithful left
module over R. Let D = Endgr

R (V ). We will follow the standard convention of
writing the elements of D on the right. By a version of Schur’s Lemma (see e.g.,
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[25, Proposition 2.7.1]),D is a graded division algebra, and thus V is a graded right
vector space overD. Hence R is isomorphic to a graded subalgebra of Endgr

D(V ).
The graded dual V gr ∗ is defined as Homgr

D(V,D). Note that V gr ∗ is a graded
left vector space over D, with the action of D defined by (df )(v) = df (v) for all
d ∈ D, v ∈ V and f ∈ V gr ∗. We will often use the symmetric notation (f, v)
for f (v).

LetW ⊂ V gr ∗ be a total graded subspace, i.e., the restriction of the mapping ( , )
is a nondegenerate D-bilinear form W × V → D. Recall the graded subalgebras
L

gr
W (V ) and F

gr
W (V ) of Endgr

D(V ) defined in the introduction: Lgr
W (V ) is the set of

all operators in Endgr
D(V ) that are continuous with respect to the topology induced

byW and the subalgebra Fgr
W (V ) ⊂ L

gr
W (V ) consists of all finite sums of operators

of the form v⊗w where v ∈ V and w ∈ W are homogeneous and v ⊗w acts on V
as follows:

(v ⊗ w)(u) = v(w, u) for all u, v ∈ V and w ∈ W.

It is easy to see that V is a graded simple module for Fgr
W (V ) and hence for Lgr

W (V )

or any graded subalgebra of Endgr
D(V ) containing F

gr
W (V ).

Suppose that R has a minimal graded left ideal I . Then either I 2 = 0 or I = Rε
where ε is a homogeneous idempotent (hence of degree e). Indeed, if I 2 �= 0, then
there is a homogeneous x ∈ I such that Ix �= 0 and hence Ix = I . The left
annihilator L of x in R is a graded left ideal of R such that I �⊂ L and hence
L ∩ I = 0. Let ε be an element of I such that εx = x. Since x is homogeneous and
every homogeneous component of ε is in I , we may assume that ε is homogeneous
of degree e. Now ε2x = εx = x and hence ε2 − ε ∈ L. Since I ∩ L = 0, we
conclude that ε2 = ε. Since Ix �= 0, it follows that Iε �= 0 and hence Iε = I . Since
we are assuming R graded primitive and hence graded prime, the case I 2 = 0 is not
possible. Hence I = Rε is a graded simple R-module.

The following is a graded version of a result in [23, III.5].

Lemma 4.2. Let R be a graded primitive algebra (or ring) with a minimal graded
left ideal I . Let V be a faithful graded simple leftR-module. Then there exists g ∈ G
such that V is isomorphic to I [g] which is I , with the grading right shifted by g, as a
graded R-module. Hence, all faithful graded simple left R-modules are isomorphic
up to a right shift of grading.

Proof. Since IV is a graded submodule of V , we have either IV = 0 or IV = V .
But V is faithful, so IV = V . Pick a homogeneous v ∈ V such that Iv �= 0
and let g = deg v. Then the map I → V given by r 
→ rv is a homomorphism
of R-modules and sends Ih to Vhg , h ∈ G. By graded simplicity of I and V , this
map is an isomorphism of R-modules. Hence I [g] is isomorphic to V as a graded
R-module. ��

Now we will obtain a graded version of the structure theorem in [23, IV.9].
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Theorem 4.4. Let R be a G-graded algebra (or ring). Then R is graded primitive
with minimal graded left ideals if and only if there exists a G-graded division
algebra D, a graded right vector space V over D and a total graded subspace
W ⊂ V gr ∗ such that R is isomorphic to a graded subalgebra (subring) of Lgr

W (V )

containing F
gr
W(V ). Moreover, Fgr

W(V ) is the only such subalgebra (subring) that is
graded simple.

4.5 An Isomorphism Theorem

We are going to investigate under what conditions two graded simple algebras
described by Theorem 4.4 are isomorphic. By Lemma 4.2, V is determined by R
up to isomorphism and shift of grading. If ϕ ∈ Endgr

RV is homogeneous of degree
t , then ϕ regarded as a map V [g] → V [g] will be homogeneous of degree g−1tg.
Indeed, (Vh)ϕ ⊂ Vht , for all h ∈ G, can be rewritten as (V [g]hg )ϕ ⊂ V [g]htg. Hence if

D = Endgr
R (V ), then Endgr

R (V
[g]) = [g−1]D[g]. It remains to include the total graded

subspace W ⊂ V gr ∗ in the picture. It is convenient to introduce the following
terminology. Fix a groupG.

Definition 4.1. Let D and D′ be G-graded division algebras (or rings) and let V
and V ′ be graded right vector spaces overD andD′, respectively. Let ψ0 : D→ D′
be an isomorphism ofG-graded algebras (or rings). A homomorphismψ1 : V → V ′
of G-graded vector spaces over K (or G-graded abelian groups) is said to be ψ0-
semilinear if ψ1(vd) = ψ1(v)ψ0(d) for all v ∈ V and d ∈ D. The adjoint to ψ1 is
the mapping ψ∗1 : (V ′)gr ∗ → V gr ∗ defined by (ψ∗1 (f ))(v) = ψ−1

0 (f (ψ1(v))) for
all f ∈ (V ′)gr ∗ and v ∈ V .

One easily checks that ψ∗1 is ψ−1
0 -semilinear.

Definition 4.2. Let D and D′ be G-graded division algebras (or rings), let V and
V ′ be graded right vector spaces over D and D′, respectively, and letW andW ′ be
total graded subspaces of V gr ∗ and (V ′)gr ∗, respectively. An isomorphism of triples
from (D, V,W) to (D′, V ′,W ′) is a triple (ψ0, ψ1, ψ2) where ψ0 : D → D′ is an
isomorphism of graded algebras (or rings) while ψ1 : V → V ′ and ψ2 : W → W ′
are isomorphisms of graded vector spaces over K (or graded abelian groups) such
that (ψ2(w),ψ1(v)) = ψ0((w, v)) for all v ∈ V and w ∈ W .

It follows that ψ1 and ψ2 are ψ0-semilinear. Also, for given isomorphisms ψ0
and ψ1 there can exist at most one ψ2 such that (ψ0, ψ1, ψ2) is an isomorphism of
triples. Such ψ2 exists if and only if ψ1 is ψ0-semilinear and ψ∗1 (W ′) = W . Indeed,
we can take ψ2 to be the restriction of (ψ∗1 )−1 to W . The condition ψ∗1 (W ′) =
W means that ψ1 : V → V ′ is a homeomorphism with respect to the topologies
induced byW andW ′.

The following is a graded version of the isomorphism theorem in [23, IV.11].
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Theorem 4.5. Let G be a group. Let D and D′ be G-graded division algebras (or
rings), let V and V ′ be graded right vector spaces overD andD′, respectively, and
let W and W ′ be total graded subspaces of V gr ∗ and (V ′)gr ∗, respectively. Let R
and R′ be G-graded algebras (or rings) such that

F
gr
W (V ) ⊂ R ⊂ L

gr
W (V ) and F

gr
W ′ (V ′) ⊂ R′ ⊂ L

gr
W ′ (V ′).

If ψ : R→ R′ is an isomorphism of graded algebras, then there exist g ∈ G and an
isomorphism (ψ0, ψ1, ψ2) from ([g−1]D[g], V [g], [g−1]W) to (D′, V ′,W ′) such that

(6) ψ(r) = ψ1 ◦ r ◦ ψ−1
1 for all r ∈ R.

If other g′ ∈ G and isomorphism (ψ ′0, ψ ′1, ψ ′2) from ([(g′)−1]D[g′], V [g′], [(g′)−1]W)
to (D′, V ′,W ′) define ψ as above, then there exists a nonzero homogeneous d ∈ D
such that g′ = g deg d , ψ ′0(x) = d−1ψ0(x)d for all x ∈ D, ψ ′1(v) = ψ1(v)d for all
v ∈ V , and ψ ′2(w) = d−1ψ2(w) for all w ∈ W .

As a partial converse, if (ψ0, ψ1, ψ2) is an isomorphism of triples as above, then
setting ψ(r) = ψ1 ◦ r ◦ ψ−1

1 defines an isomorphism of G-graded algebras (or
rings) ψ : Lgr

W (V )→ L
gr
W ′ (V ′) such that ψ(Fgr

W (V )) = F
gr
W ′ (V ′).

Note that it follows that any isomorphism of graded algebras ψ : R → R′
extends to an isomorphism L

gr
W (V ) → L

gr
W ′ (V ′) and restricts to an isomorphism

F
gr
W (V )→ F

gr
W ′ (V ′).

4.6 Graded Simple Algebras with Minimal Graded Left Ideals

Fix a grading groupG. In view of Theorems 4.4 and 4.5, graded simple algebras (or
rings) with minimal graded left ideals are classified by the triples (D, V,W) where
D is a graded division algebra (or ring), V is a right graded vector space overD and
W is a total graded subspace of V gr ∗. For a fixed D, the triples (D, V,W) can be
classified up to isomorphism as follows.

Let T be the support of D and let 	 = De. Clearly, T is a subgroup of G and 	
is a division algebra (or ring). Consider the set G/T of left cosets and the set T \G
of right cosets of T inG. The map A→ A−1 is a bijection betweenG/T and T \G.
Clearly, the graded right D-modules [g]D and [h]D are isomorphic if and only if
gT = hT (similarly for graded leftD-modules). Any graded rightD-module V is a
direct sum of modules of this form, which can be grouped into isotypic components.
Namely, VA = ⊕

a∈A Va is the isotypic component of V corresponding to [g]D
where A = gT . Note that Vg is a right	-module and VA ∼= Vg ⊗	 [g]D as graded
right D-modules. Select a left transversal S for T , i.e., a set of representatives for
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the left cosets of T , and let ṼA = Vg where g is the unique element of A ∩ S. Let
Ṽ = ⊕

A∈G/T ṼA. Then Ṽ is a right 	-module and V ∼= Ṽ ⊗	 D as ungraded

right D-modules. We can recover the G-grading on V if we consider Ṽ as graded
by the set G/T . Similarly, any graded left D-module W can be encoded by a left
	-module W̃ with a grading by the set T \G.

Now observe that since T is the support ofD, we have (WB, VA) = 0 for all A ∈
G/T and B ∈ T \G with BA �= T . It follows that WA−1 is a total graded subspace
of (VA)gr ∗. Selecting a left transversal S and using S−1 as a right transversal, we
obtain Ṽ and W̃ such that (W̃A−1 , ṼA) ⊂ 	 and

(7) (W̃B, ṼA) = 0 for all A ∈ G/T and B ∈ T \G with B �= A−1.

Hence, for each A ∈ G/T , the D-bilinear form W × V → D restricts to a
nondegenerate 	-bilinear form W̃A−1 × ṼA → 	, which identifies W̃A−1 with a
total subspace of the 	-dual (ṼA)∗.

Conversely, let Ṽ be a right	-module that is given a grading byG/T and let W̃
be a left 	-module that is given a grading by T \G. Suppose W̃A−1 is identified
with a total subspace of (ṼA)∗ for each A ∈ G/T or, equivalently, we have a
nondegenerate	-bilinear form W̃ × Ṽ → 	 that satisfies (7). For each A ∈ G/T ,
choose g ∈ A and let VA = ṼA⊗	 [g]D. Then VA is a graded rightD-module whose
isomorphism class does not depend on the choice of g. Also, using the same g, let
WA−1 = D[g] ⊗	 W̃A−1 . Set V =⊕A∈G/T VA andW =⊕B∈T \GWB . Extending

the 	-bilinear form W̃ × Ṽ → 	 to a D-bilinear form W × V → D, we can
identifyW with a total graded subspace of V gr ∗. We will denote the corresponding
G-graded algebra Fgr

W (V ) by F(G,D, Ṽ , W̃ ).

Definition 4.3. We will write (D, Ṽ , W̃ ) ∼ (D′, Ṽ ′, W̃ ′) if there is an element
g ∈ G and an isomorphism ψ0 : [g−1]D[g] → D′ of graded algebras such that,
for any A ∈ G/T , there exists an isomorphism of triples from (	, ṼA, W̃A−1) to
(	′, Ṽ ′Ag, W̃ ′

g−1A−1) whose component	→ 	′ is the restriction of ψ0. (Note that

Ag is a left coset for T ′ = g−1Tg.)

Corollary 4.1. Let G be a group and let R be a G-graded algebra (or ring). If
R is graded simple with minimal graded left ideals, then R is isomorphic to some
F(G,D, Ṽ , W̃ ). Two graded algebras F(G,D, Ṽ , W̃ ) and F(G,D′, Ṽ ′, W̃ ′) are
isomorphic if and only if we have (D, Ṽ , W̃ ) ∼ (D′, Ṽ ′, W̃ ′).

Proof. The first claim is clear by Theorem 4.4 and the above discussion. Defini-
tion 4.4 is set up in such a way that (D, Ṽ , W̃ ) ∼ (D′, Ṽ ′, W̃ ′) if and only if the
triples ([g−1]D[g], V [g], [g−1]W) and (D′, V ′,W ′) are isomorphic for some g ∈ G,
so the second claim follows from Theorem 4.5. ��

An important special case of Corollary 4.1 is where the graded simple algebra
R satisfies the descending chain condition on graded left ideals. Then V is finite-
dimensional over D, so W = V gr ∗ = V ∗ and R is isomorphic to the matrix
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algebra Mk(D) where k = dimDV . Moreover, V = VA1 ⊕ · · · ⊕ VAs for
some distinct A1, . . . , As ∈ G/T , which can be encoded by two s-tuples: κ =
(k1, . . . , ks) and γ = (g1, . . . , gs) where ki = dimDVAi are positive integers with
k1 + · · · + ks = k and gi are representatives for the cosets Ai . Therefore, the said
algebras R are classified by the triples (D, κ, γ ), up to an appropriate equivalence
relation. Explicitly, the grading on R can be written as follows. If {v1, . . . , vk} is
a homogeneous basis of V over D, with deg vi = hi , and {v1, . . . , vk} is the dual
basis of V ∗, then deg vi = h−1

i and, for any homogeneous d ∈ D, the degree
of the operator vid ⊗ vj = vi ⊗ dvj (which is represented by the matrix with
d in position (i, j) and zeros elsewhere) equals hi(deg d)h−1

j . This classification
(under the assumption that R is finite-dimensional over K) already appeared in the
literature—see [4] and references therein. TheG-gradings onMk(D) defined in this
way by k-tuples (h1, . . . , hk) of elements in G will be called elementary.

In general, F(G,D, Ṽ , W̃ ) can be written as Ṽ ⊗	 D ⊗	 W̃ where, for any
ṽ ∈ Ṽ , d ∈ D, w̃ ∈ W̃ , the element ṽ ⊗ d ⊗ w̃ acts on V = Ṽ ⊗	 D as follows:
(ṽ ⊗ d ⊗ w̃)(u ⊗ a) = ṽ ⊗ d(w, u)a for all ũ ∈ Ṽ and a ∈ D. Clearly, the
multiplication of F(G,D, Ṽ , W̃ ) is given by

(8) (ṽ ⊗ d ⊗ w̃)(ṽ′ ⊗ d ′ ⊗ w̃′) = ṽ ⊗ d(w̃, ṽ′)d ′ ⊗ w̃′.

Fixing a left transversal S for T , the G-grading on F(G,D, Ṽ , W̃ ) is given by

(9) deg(ṽ ⊗ d ⊗ w̃) = γ (A)tγ (B)−1 for all ṽ ∈ ṼA, d ∈ Dt , w̃ ∈ W̃B−1 ,

where t ∈ T , A,B ∈ G/T , and γ (A) denotes the unique element of A ∩ S. The
isomorphism class of the grading does not depend on the choice of the transversal.

It is known that for any finite-dimensional subspaces Ṽ1 ⊂ Ṽ and W̃1 ⊂ W̃ ,
there exist finite-dimensional subspaces Ṽ0 ⊂ Ṽ and W̃0 ⊂ W̃ such that Ṽ1 ⊂ Ṽ0,
W̃1 ⊂ W̃0, and the restriction of the bilinear form W̃ × Ṽ → 	 to W̃0 × Ṽ0 is
nondegenerate (see e.g., [13, Lemma 5.7]). Selecting dual bases in Ṽ0 and W̃0, we
see that Ṽ0 ⊗	 D ⊗	 W̃0 is a subalgebra of F(G, T , Ṽ , W̃ ) isomorphic to Mk(D)
where k = dim	Ṽ0 = dim	W̃0. Without loss of generality, we may assume that Ṽ0
is a graded subspace of Ṽ with respect to the grading by G/T and W̃0 is a graded
subspace of W̃ with respect to the grading by T \G. Then our subalgebra Ṽ0 ⊗	
D ⊗	 W̃0 is graded. Moreover, in terms of the matrix algebraMk(D), this grading
is elementary. Thus we obtain the following graded version of Litoff’s Theorem [23,
IV.15] (cf. Theorem 4 in [12]):

Corollary 4.2. Let G be a group and let R be a G-graded algebra (or ring). If R
is graded simple with minimal graded left ideals, then there exists a graded division
algebra D such that R is a direct limit of matrix algebras over D with elementary
gradings. ��
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4.7 Classification of G-Gradings on the Algebras F�(U)

In this work, we are primarily interested in the case R = F�(U) where U is a
vector space over K and � is a total subspace of U∗. We will assume that K

is algebraically closed. Then the algebras of the form F�(U) have the following
abstract characterization: they are precisely the locally finite simple algebras with
minimal left ideals. Indeed,F�(U) = U⊗� is a direct limit of matrix algebras over
K and hence is simple and locally finite. Conversely, if R is a locally finite simple
algebra with minimal left ideals, then R is isomorphic to F�(U) where U is a right
vector space over a division algebra 	 and � is a total subspace of U∗. But 	 is
isomorphic to a subalgebra of R, hence algebraic over K. Since K is algebraically
closed, this implies	 = K.

If R is given a G-grading, then R is graded simple with minimal graded left
ideals (Lemma 4.1), so we can apply Corollary 4.1. Hence R is isomorphic to some
F(G,D, Ṽ , W̃ ) as a graded algebra. We claim that, disregarding the grading, D is
isomorphic toM�(K) for some �.

Recall from the proof of Theorem 4.4 that we can represent R as Fgr
J (I) where

I = Rε is a minimal graded left ideal, ε is a homogeneous idempotent, and J =
εR. Recall also that D = Endgr

R (I) coincides with End R(I) and is isomorphic
to εRε. It is known that R is semisimple as a left or right R-module (see e.g.,
[23, IV.9]). In fact, it is easy to see that if R is represented as F�(U), then the
mapping U0 
→ U0 ⊗ � is a one-to-one correspondence between the subspaces
of U and the right ideals of R whereas the mapping �0 
→ U ⊗ �0 is a one-to-
one correspondence between the subspaces of � and the left ideals of R. Hence
we can write I = Rε1 ⊕ · · · ⊕ Rε� where εi are orthogonal idempotents with
ε1 + · · · + ε� = ε and Rεi are minimal (ungraded) left ideals. Each of the Rεi
is isomorphic to U as a left R-module. Since End R(U) = K, it follows that the
algebra End R(I) is isomorphic toM�(K), completing the proof of the claim.

If R is represented as F�(U), we can construct this isomorphism explicitly.
Namely, write I = U ⊗ �0 where �0 ⊂ � is an �-dimensional subspace and
select U0 ⊂ U such that the restriction of the bilinear form�×U → K to�0×U0
is nondegenerate. Let {e1, . . . , e�} be a basis of U0 and let {e1, . . . , e�} be the dual
basis of �0. Then we can take εi = ei ⊗ ei , so Rεi = U ⊗ Kei , and the elements
ei ⊗ ej constitute a basis of matrix units for εRε.

As for the graded division algebra D, this is a matrix algebra which is given
a G-grading that makes it a graded division algebra. We have described them
completely in Sect. 4.2. In what follows we will use notation introduced therein.

We want to understand the relation between, on the one hand, Ṽ and W̃ and, on
the other hand,U and�. We will use I as V and J asW . The mapping u 
→ u⊗ ei
is an isomorphism of left R-modules U → Rεi . Also, the mapping f 
→ ei ⊗ f
is an isomorphism of right R-modules � → εiR. This allows us to identify I
with U� and J with ��. Recall that the D-bilinear form J × I → D is just the
multiplication of R. Hence, under the above identifications, this D-bilinear form
maps (f1, . . . , f�) ∈ �� and (u1, . . . , u�) ∈ U� to the matrix [(fi, uj )]i,j in D.
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Let M be the unique simple right D-module and let N be the unique simple left
D-module, i.e., M is K

� written as rows and N is K
� written as columns. Then,

disregarding the G-gradings on I and J , we can identify I with U ⊗ M as an
(R,D)-bimodule and also identify J with N ⊗ � as a (D,R)-bimodule. Under
these identifications, the D-bilinear form J × I → D coincides with the extension
of the K-linear form�×U → K. Now, we haveU ∼= I⊗DN and� ∼=M⊗D J as
R-modules. If we identifyU with I ⊗D N and� withM⊗D J , then the K-bilinear
form � ⊗ U → K is related to the D-bilinear form J × I → D by the following
formula:

(10) (m⊗ y, x ⊗ n) = m(y, x)n for all m ∈ M,n ∈ N, x ∈ I, y ∈ J,

where the right-hand side is the scalar in K obtained by multiplying a row, a matrix
and a column. Recall that Ṽ and W̃ associated to V and W are defined in such
a way that V = Ṽ ⊗ D and W = D ⊗ W̃ as ungraded D-modules, and the D-
bilinear form W × V → D is the extension of the K-bilinear form W̃ × Ṽ → K

(recall that De = K). Hence U = V ⊗D N = (Ṽ ⊗ D) ⊗D N ∼= Ṽ ⊗ N and
� = M ⊗D W = M ⊗D (D ⊗ W̃ ) ∼= M ⊗ W̃ as vector spaces over K, where the
isomorphism (Ṽ ⊗ D) ⊗D N ∼= Ṽ ⊗ N is given by ṽ ⊗ d ⊗ n 
→ ṽ ⊗ dn and the
isomorphism M ⊗D (D ⊗ W̃ ) → M ⊗ W̃ is given by m ⊗ d ⊗ w̃ 
→ md ⊗ w̃.
Substituting x = ṽ⊗ a and y = b⊗ w̃, for any ṽ ∈ Ṽ , w̃ ∈ W̃ , a, b ∈ D, into (10),
we obtain

(m⊗ b ⊗ w̃, ṽ ⊗ a ⊗ n) = m(b ⊗ w̃, ṽ ⊗ a)n = mb(w̃, ṽ)an.

Hence, if we identify U with Ṽ ⊗N and� withM ⊗ W̃ , then the K-bilinear forms
�× U → K and W̃ × Ṽ → K are related by the following formula:

(11) (m⊗ w̃, ṽ ⊗ n) = (w̃, ṽ)mn for all m ∈ M,n ∈ N, ṽ ∈ Ṽ , w̃ ∈ W̃ .

In other words, we can identify U with Ṽ � and � with W̃� so that the above
K-bilinear forms are related as follows:

(12) ((w̃1, . . . , w̃�), (ṽ1, . . . , ṽ�)) =
�∑

i=1

(w̃i , ṽi ) for all ṽi ∈ Ṽ and w̃i ∈ W̃ .

Finally, we observe that Definition 4.3 simplifies because De = D′e = K. For
brevity, an isomorphism of triples from (K, U,�) to (K, U ′,�′) will be called an
isomorphism of pairs from (U,�) to (U ′,�′). In other words, pairs (U,�) and
(U ′,�′) are isomorphic if and only if there exists an isomorphism U → U ′ of
vector spaces (over K) whose adjoint (U ′)∗ → U∗ maps�′ onto�.
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Definition 4.4. We will write (D, Ṽ , W̃ ) ∼ (D′, Ṽ ′, W̃ ′) if there is an element
g ∈ G such that [g−1]D[g] ∼= D′ as graded algebras and, for any A ∈ G/T , we have
(ṼA, W̃A−1) ∼= (Ṽ ′Ag, W̃ ′

g−1A−1).

To summarize:

Theorem 4.6. Let R be a locally finite simple algebra with minimal left ideals over
an algebraically closed field K. If R is given a grading by a group G, then R is
isomorphic to some F(G,D, Ṽ , W̃ ) where D is a matrix algebra over K equipped
with a division grading. Conversely, if D = M�(K) with a division grading, then
F(G,D, Ṽ , W̃ ) is a locally finite simple algebra with minimal left ideals, which
can be represented as F�(U) where U = Ṽ �, � = W̃�, and the nondegenerate
bilinear form � × U → K is given by (12). Moreover, two such graded algebras
F(G,D, Ṽ , W̃ ) and F(G,D′, Ṽ ′, W̃ ′) are isomorphic if and only if (D, Ṽ , W̃ ) ∼
(D′, Ṽ ′, W̃ ′) in the sense of Definition 4.4. ��

IfG is abelian, then [g−1]D[g] = D and the isomorphism class ofD is determined
by (T , β). Hence we may write F(G, T , β, Ṽ , W̃ ) for F(G,D, Ṽ , W̃ ).

Definition 4.5. We will write (Ṽ , W̃ ) ∼ (Ṽ ′, W̃ ′) if there is an element g ∈ G such
that for any A ∈ G/T , we have (ṼA, W̃A−1) ∼= (Ṽ ′Ag, W̃ ′

g−1A−1).

Corollary 4.3. If in Theorem 4.6 the group G is abelian, then R is isomorphic
to some F(G, T , β, Ṽ , W̃ ). Two such graded algebras F(G, T , β, Ṽ , W̃ ) and
F(G, T ′, β ′, Ṽ ′, W̃ ′) are isomorphic if and only if T = T ′, β = β ′ and (Ṽ , W̃ ) ∼
(Ṽ ′, W̃ ′) in the sense of Definition 4.5. ��

In the case where R has countable dimension, we can classify G-gradings on R
in combinatorial terms. Clearly, F�(U) has countable dimension if and only if both
� andU have countable dimension. It is known that then there exist dual bases in U
and�, hence all such pairs (U,�) are isomorphic and there is only one such algebra
R, which is denoted byM∞(K). We will state the classification of G-gradings in a
form that also applies toMn(K), for which this result is known under the assumption
that G is abelian [4]. Up to isomorphism, the pairs (ṼA, W̃A−1) can be encoded by
the function κ : G/T → {0, 1, 2, . . . ,∞} that sends A to dimṼA. Note that the
support of the function κ is finite or countable, so |κ | = ∑A∈G/T κ(A) is defined
as an element of {0, 1, 2, . . . ,∞}. We will denote the associated graded algebra
F(G,D, Ṽ , W̃ ) by F(G,D, κ). Finally, for any g ∈ G, define κg : G/(g−1Tg) →
{0, 1, 2, . . . ,∞} by setting κg(Ag) = κ(A) for all A ∈ G/T .

Corollary 4.4. Let K be an algebraically closed field and let R = Mn(K) where
n ∈ N ∪ {∞}. If R is given a grading by a group G, then R is isomorphic to some
F(G,D, κ) where D = M�(K), with � ∈ N and n = |κ |�, is equipped with a
division grading. Moreover, two such graded algebras F(G,D, κ) and F(G,D′, κ ′)
are isomorphic if and only if there exists g ∈ G such that [g−1]D[g] ∼= D′ as graded
algebras and κg = κ ′. ��
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The graded algebra F(G,D, κ) can be constructed explicitly as follows. Select
a left transversal S for T and let γ (A) be the unique element of A ∩ S. For each
A ∈ G/T , select dual bases {vi(A)} and {vj (A)} for ṼA and W̃A, respectively,
consisting each of κ(A) vectors. Then the algebra F(G,D, κ) has a basis

{EA,Bi,j (t) | A,B ∈ G/T, i, j ∈ N, i ≤ κ(A), j ≤ κ(B), t ∈ T },

where EA,Bi,j (t) = vi(A)Xt ⊗ vj (B) = vi(A) ⊗ Xtvj (B). Equations (8) and (9)
imply that the multiplication is given by the formula (using Kronecker delta):

E
A,B
i,j (t)E

A′,B ′
i′,j ′ (t

′) = δB,A′δj,i′σ(t, t ′)EA,B ′i,j ′ (tt
′)

and the G-grading is given by

degEA,Bi,j (t) = γ (A)tγ (B)−1.

Thus we recover Theorem 5 in [12], which asserts the existence of such a basis
under the assumption that G is a finite abelian group and K is algebraically
closed of characteristic zero. Theorem 6 in the same paper gives our condition for
isomorphism of two G-gradings in the special case D = K.

4.8 Antiautomorphisms and Sesquilinear Forms

We want to investigate under what conditions a graded algebra described by
Theorem 4.4 admits an antiautomorphism. So, we temporarily return to the general
setting: R is a G-graded primitive algebra (or ring) with minimal graded left ideals.

We may assume Fgr
W (V ) ⊂ R ⊂ L

gr
W (V ) where V is a right vector space over a

graded division algebraD,W is a left vector space overD, andW is identified with
a total graded subspace of V gr ∗ by virtue of a D-bilinear form ( , ). Thus, we have

(13)
(dw, v) = d(w, v) and (w, vd) = (w, v)d for all v ∈ V, w ∈ W, d ∈ D.

Note that, since the adjoint of any operator r ∈ R leavesW invariant,W becomes a
graded right R-module such that

(14) (wr, v) = (w, rv) for all v ∈ V, w ∈ W, r ∈ R.

It follows that Fgr
V (W) ⊂ Rop ⊂ L

gr
V (W) where W is regarded as a right vector

space over Dop, V as a left vector space over Dop, and V is identified with a total
graded subspace ofW gr ∗ by virtue of (v,w)op = (w, v). (The gradings on all these
objects are by the groupGop.)
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Now suppose that we have an antiautomorphismϕ of the graded algebraR. Since
S = F

gr
W (V ) is the unique minimal graded two-sided ideal of R, we have ϕ(S ) =

S . Thus ϕ restricts to an antiautomorphism of the graded simple algebra S . It is
known (see [9]) that if a graded simple algebra admits an antiautomorphism, then
the support of the grading generates an abelian group. Now observe that any element
of the support of Endgr

D(V ) has the form gh−1 where g and h are in the support of
V , and all elements of this form already occur in the support of Fgr

W (V ). Hence,
the support of R equals the support of S and generates an abelian group. For this
reason, we will assume from now on that G is abelian.

Applying Theorem 4.5 to the isomorphism ϕ : R→ Rop and taking into account
that G is abelian, we see that there exist g0 ∈ G and an isomorphism (ϕ0, ϕ1, ϕ2)

from (D, V [g0],W [g−1
0 ]) to (Dop,W, V ) such that ϕ(r) = ϕ1 ◦ r ◦ϕ−1

1 . In particular,
ϕ0 is an antiautomorphism of the graded algebraD and ϕ1 is ϕ0-semilinear:

(15) ϕ1(vd) = ϕ0(d)ϕ(v) for all v ∈ V and d ∈ D.

Now define a nondegenerate K-bilinear form B : V × V → D as follows:

B(u, v) = (ϕ1(u), v) for all u, v ∈ V.

Then B has degree g0 when regarded as a map V ⊗ V → D. Combining (13)
and (15), we see that, over D, the form B is linear in the second argument and
ϕ0-semilinear in the first argument, i.e.,
(16)
B(ud, v) = ϕ0(d)B(u, v) and B(u, vd) = B(u, v)d for all u, v ∈ V, d ∈ D.

For brevity, we will say that B is ϕ0-sesquilinear.
Applying (14), we obtain for all u, v ∈ V and r ∈ R:

B(ru, v) = (ϕ1(ru), v) = (ϕ1(u)ϕ(r), v)

= (ϕ1(u), ϕ(r)v) = B(u, ϕ(r)v),

which means that ϕ(r) is adjoint to r with respect to B. In particular, ϕ can be
recovered from B.

We will need one further property of B. Consider

B̄(u, v) = ϕ−1
0 (B(v, u)).

Then B̄ is a nondegenerate ϕ−1
0 -sesquilinear form of the same degree as B. Clearly,

we have B̄(ru, v) = B̄(u, ϕ−1(r)v), so B̄ is related to ϕ−1 in the same way as B
is related to ϕ. We claim that there exists a ϕ−2

0 -semilinear isomorphism of graded
vector spacesQ : V → V such that

(17) B̄(u, v) = B(Qu, v) for all u, v ∈ V.
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Indeed, Q = ϕ−1
1 ◦ ϕ−1

2 satisfies the requirements: it is clearly an invertible ϕ−2
0 -

semilinear map, homogeneous of degree e, and we have

B(Qu, v) = (ϕ−1
2 (u), v) = (v, ϕ−1

2 (u))
op = ϕ−1

0 ((ϕ1(v), u)) = B̄(u, v).

It is important to note that the adjoint Q∗ = (ϕ−1
2 )

∗ ◦ (ϕ−1
1 )

∗ = ϕ1 ◦ ϕ2 maps W
ontoW , i.e.,Q is a homeomorphism.

Definition 4.6. We will say that a nondegenerate homogeneous ϕ0-sesquilinear
form B : V × V → D is weakly Hermitian if there exists a ϕ−2

0 -semilinear
isomorphism Q : V → V of graded vector spaces such that (17) holds. (Note that,
since B is nondegenerate, (17) uniquely determinesQ.)

The following is a graded version of the main result in [23, IV.12].

Theorem 4.7. Let G be an abelian group. Let D be a G-graded division algebra
(or ring), let V be a graded right vector space over D, and let W be a total graded
subspace of V gr ∗. Let R be a G-graded algebra (or ring) such that

F
gr
W (V ) ⊂ R ⊂ L

gr
W (V ).

If ϕ is an antiautomorphism of the graded algebra R, then there exist an antiau-
tomorphism ϕ0 of the graded algebra D and a weakly Hermitian nondegenerate
homogeneous ϕ0-sesquilinear form B : V × V → D, such that the following
conditions hold:

(a) The mapping V → V gr ∗ : u 
→ fu, where fu(v) = B(u, v) for all v ∈ V ,
sends V ontoW ;

(b) For any r ∈ R, ϕ(r) is the adjoint to r with respect to B, i.e., B(ru, v) =
B(u, ϕ(r)v), for all u, v ∈ V .

If ϕ′0 is an antiautomorphism of D and B ′ is a ϕ′0-sesquilinear form V × V → D

that define W and ϕ as in (a) and (b), then there exists a nonzero homogeneous
d ∈ D such that B ′ = dB and ϕ′0(x) = dϕ0(x)d

−1 for all x ∈ D.
As a partial converse, if ϕ0 is an antiautomorphism of the graded algebra D

and B : V × V → D is a weakly Hermitian nondegenerate homogeneous ϕ0-
sesquilinear form, then the adjoint with respect to B defines an antiautomorphism ϕ
of the G-graded algebra L

gr
W (V ), with W = {fu | u ∈ V }, such that ϕ(Fgr

W (V )) =
F

gr
W (V ).

Proof. Given an antiautomorphism ϕ, the existence of the pair (ϕ0, B) is already
proved. If (ϕ′0, B ′) is another such pair, then the corresponding mapping u 
→ f ′u is

an isomorphism of graded R-modules V [g′0] → Wϕ . Hence ϕ′1 ◦ ϕ−1
1 is a nonzero

homogeneous element of Endgr
R (W), so there exists a nonzero homogeneous d ∈ D

such that ϕ′1(v) = dϕ1(v) for all v ∈ V , which implies B ′ = dB. Now the equation
ϕ′0(x) = dϕ0(x)d

−1 follows easily from (16).
Conversely, for a given antiautomorphism ϕ0 and a form B of degree g0, define

ϕ1 : V → W by setting ϕ1(u) = fu. This is a homogeneous ϕ0-semilinear
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isomorphism of degree g0. Take ϕ2 = Q−1 ◦ϕ−1
1 . Then one checks that (ϕ0, ϕ1, ϕ2)

is an isomorphism from (D, V [g0],W [g−1
0 ]) to (Dop,W, V ), so Theorem 4.5 tells us

that ϕ(r) = ϕ1 ◦ r ◦ ϕ−1
1 defines an isomorphism of graded algebras L

gr
W (V ) →

L
gr
V (W) = L

gr
W (V )op that restricts to an isomorphism F

gr
W (V ) → F

gr
V (W) =

F
gr
W (V )op. It remains to observe that the definition of ϕ1 implies that ϕ(r) is the

adjoint to r with respect to B, for any r ∈ L
gr
W (V ). ��

Note that it follows that any antiautomorphism ϕ of the graded algebraR extends
to an antiautomorphism of Lgr

W (V ) and restricts to an antiautomorphism of Fgr
W (V ).

Remark 4.1. It is easy to compute ϕ on F
gr
W (V ) explicitly. We have ϕ(v ⊗ fu) =

ϕ2(fu)⊗ϕ1(v), so, taking into account ϕ1(v) = fv and ϕ2 = Q−1 ◦ϕ−1
1 , we obtain

(18) ϕ(v ⊗ fu) = Q−1u⊗ fv for all u, v ∈ V.

4.9 Antiautomorphisms that Are Involutive
on the Identity Component

We restrict ourselves to the case where R is a locally finite simple algebra with
minimal left ideals over an algebraically closed field K. If R is given a grading by
an abelian groupG, then, by Theorem 4.6,R is isomorphic to some F(G,D, Ṽ , W̃ )
where D is a matrix algebra with a division grading. Suppose that the graded
algebra R admits an antiautomorphism ϕ. Then, by Theorem 4.7, we obtain an
antiautomorphism ϕ0 for D. It is known [11] that this forces the support T of D
to be an elementary 2-group and hence char K �= 2 or T = {e}. From now on, we
assume char K �= 2.

Since G is abelian, any division grading on a matrix algebra can be realized
using generalized Pauli matrices. If the support T is an elementary 2-group, then
the matrix transpose preserves this grading. Choose a nonzero element Xt in each
component Dt . Then the transpose of Xt equals β(t)Xt where β(t) ∈ {±1}. It
is easy to check (see [4]) that β : T → {±1} is a quadratic form on T if we
regard it as a vector space over the field of two elements, with the nondegenerate
alternating bicharacter β : T × T → K

× being the associated bilinear form:
β(tt ′) = β(t)β(t ′)β(t, t ′) for all t, t ′ ∈ T . It is easy to see that any automorphism
of the graded algebra D is a conjugation by some Xt . Hence ϕ0 is given by
ϕ0(Xt ′) = β(t ′)X−1

t Xt ′Xt for some t ∈ T . In particular, ϕ0 is an involution. Hence,
the isomorphismQ associated to the ϕ0-sesquilinear formB in Theorem 4.7 is linear
over D and thus Q is an invertible element of the identity component of Lgr

W (V ).
Adjusting B, we may assume without loss of generality that

ϕ0(Xt ) = β(t)Xt for all t ∈ T .

This convention makes the choice of B unique up to a scalar in K
×.
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Assume that ϕ restricts to an involution on Re. Then B has certain symmetry
properties, which we are going to investigate now. In particular, B is balanced, i.e.,
for any pair of homogeneous u, v ∈ V , we have

B(u, v) = 0 ⇔ B(v, u) = 0.

Recall that F(G,D, Ṽ , W̃ ) = F
gr
W (V ) where V and W are constructed from

Ṽ and W̃ as follows. Select a transversal S for T and, for each A ∈ G/T , set
VA = ṼA ⊗D andWA = D ⊗ W̃A, with the degree of the elements of ṼA ⊗ 1 and
1⊗ W̃A set to be the unique element of A ∩ S, which we denote by γ (A). It will be
convenient to identify ṼA with ṼA ⊗ 1 and W̃A with 1⊗ W̃A.

Using the definition of B̄ and Eq. (17), we compute, for all u, v ∈ V and r ∈
L

gr
W (V ):

B(u, ϕ2(r)v) = B(ϕ(r)u, v) = ϕ0(B̄(v, ϕ(r)u)) = ϕ0(B(Qv, ϕ(r)u))

= ϕ0(B(rQv, u)) = B̄(u, rQv) = B(Qu, rQv).(19)

Substituting r = 1, we obtain B(u, v) = B(Qu,Qv) for all u, v ∈ V and hence
B(Qu, v) = B(u,Q−1v). Continuing with (19) we obtain, for all u, v ∈ V ,
B(u, ϕ2(r)v) = B(u,Q−1rQv). Therefore,

(20) ϕ2(r) = Q−1rQ for all r ∈ R.

Observe that the identity component Re is the direct sum of subalgebras RA,
A ∈ G/T , whereRA consists of all operators inRe that map the isotypic component
VA into itself and other isotypic components to zero. Clearly, RA is spanned by the
operators of the form w ⊗ v where v ∈ ṼA and w ∈ W̃A−1 . Being homogeneous
of degree e, Q maps VA onto VA. The restriction of Q to VA is linear over D and,
by (20), commutes with all elements of RA. It follows thatQ acts on VA as a scalar
λA ∈ K

×. Now (17) implies that B is balanced, as claimed.
The fact that B is balanced allows us to define the concept of orthogonality for

homogeneous elements and for graded subspaces of V . Since B is homogeneous
of degree, say, g0, we have, for all u ∈ Vg1 and v ∈ Vg2 , that B(u, v) = 0 unless
g0g1g2 ∈ T . It follows that VA is orthogonal to all isotypic components except
V
g−1

0 A−1 , and hence the restriction of B to VA × Vg−1
0 A−1 is nondegenerate. It will

be important to distinguish whether or not A equals g−1
0 A

−1.
If g0A

2 = T , then the element g0γ (A)
2 ∈ T does not depend on the choice

of the transversal and will be denoted by τ (A). The restriction of B to VA × VA
is a nondegenerate ϕ0-sesquilinear form over D. It is uniquely determined by its
restriction to ṼA × ṼA, which is a bilinear form over K with values in Dτ(A). Set

(21) B(u, v) = B̃A(u, v)Xτ(A) for all u, v ∈ ṼA where g0A
2 = T .
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Then B̃A is a nondegenerate bilinear form on ṼA with values in K. Setting t = τ (A)
for brevity, we compute:

B̃A(v, u)Xt = B(v, u) = ϕ0(B(Qu, v)) = ϕ0(B(λAu, v))

= ϕ0(λAB̃A(u, v)Xt ) = λAB̃A(u, v)ϕ0(Xt) = λAβ(t)B̃A(u, v)Xt ,

so B̃A(v, u) = λAβ(t)B̃A(u, v).
If g0A

2 �= T , then we may assume without loss of generality that the transversal
is chosen so that

(22) g0γ (A)γ (g
−1
0 A

−1) = e.

Then the restrictions of B to ṼA× Ṽg−1
0 A−1 and to Ṽ

g−1
0 A−1 × ṼA are nondegenerate

bilinear forms with values in De = K. Denote them by B̃A and B̃
g−1

0 A−1 ,

respectively, i.e., set
(23)
B(u, v) = B̃A(u, v)1 for all u ∈ ṼA and v ∈ Ṽ

g−1
0 A−1 where g0A

2 �= T .

It is easy to see how B̃A and B̃
g−1

0 A−1 are related: B̃
g−1

0 A−1(v, u) = λAB̃A(u, v).
Putting all pieces together, we set Ṽ{A,g−1

0 A−1} = ṼA ⊕ Ṽg−1
0 A−1 and

(24) Ṽ =
⊕

A∈G/T , g0A2=T
ṼA ⊕

⊕

{A,g−1
0 A−1}⊂G/T , g0A2 �=T

Ṽ{A,g−1
0 A−1},

and define a nondegenerate bilinear form B̃ : Ṽ × Ṽ → K so that all summands in
(24) are orthogonal to each other, the restriction of B̃ to ṼA× ṼA is B̃A if g0A

2 = T
while the restriction of B̃ to ṼA is zero and the restriction to ṼA × Ṽg−1

0 A−1 is B̃A if

g0A
2 �= T .

Conversely, let Ṽ be a vector space over K that is given a grading by G/T and
let B̃ be a nondegenerate bilinear form on Ṽ that is compatible with the grading in
the sense that

B̃(Ṽg1T , Ṽg2T ) = 0 for all g1, g2 ∈ G with g0g1g2T �= T

and, for all A ∈ G/T , satisfies the following symmetry condition:

(25) B̃(v, u) = μAB̃(u, v) for all u ∈ ṼA and v ∈ Ṽ
g−1

0 A−1 where μA ∈ K
×.

It follows thatμAμg−1
0 A−1 = 1. Hence, if g0A

2 = T , then Ṽ restricts to a symmetric

or a skew-symmetric form on ṼA. For any A ∈ G/T , let B̃A be the restriction of
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B̃ to ṼA × Ṽg−1
0 A−1 . It follows that B̃A is nondegenerate. Choose a transversal S

for T so that (22) holds for all A with g0A
2 �= T . Set VA = ṼA ⊗ [γ (A)]D. Then

VA is a graded right D-module whose isomorphism class does not depend on the
choice of S. Set V = ⊕A∈G/T VA. Define B : V × V → D using (21) and (23),
setting B equal to zero in all other cases and then extending by ϕ0-sesquilinearity.
Clearly, B is nondegenerate. Set W = {fu | u ∈ V } where fu(v) = B(u, v). We
will denote the corresponding G-graded algebra F

gr
W (V ) by F(G,D, Ṽ , B̃, g0) or

F(G, T , β, Ṽ , B̃, g0), since D is determined by the support T and bicharacter β.
The graded algebra Fgr

W (V ) has an antiautomorphism ϕ defined by the adjoint with
respect to B. Indeed, letQ : V → V act on VA as the scalar λA where

(26) λA =
{
μAβ(τ(A)) if g0A

2 = T ;
μA if g0A

2 �= T .

Then Q satisfies B̄(u, v) = B(Qu, v) for all u, v ∈ V and hence B is weakly
Hermitian. Since Q commutes with the elements of Re, Eq. (20) tells us that ϕ2 is
the identity on Re.

Definition 4.7. With fixed D and ϕ0, we will write (Ṽ , B̃, g0) ∼ (Ṽ ′, B̃ ′, g′0) if
there is an element g ∈ G such that g′0 = g0g

−2 and, for any A ∈ G/T with
g0A

2 = T , we have ṼA ∼= Ṽ ′gA as inner product spaces while, for any A ∈ G/T
with g0A

2 �= T , we have (ṼA, Ṽg−1
0 A−1) ∼= (Ṽ ′gA, Ṽ ′(g′0)−1g−1A−1) and μA = μ′gA

(where μA is defined by (25) and μ′A by the same equation with B̃ replaced by B̃ ′).

Recall that disregarding the grading, R can be represented as F�(U) with U =
Ṽ ⊗ N and � = M ⊗ W̃ , where M and N are the natural right and left modules
forD = M�(K), respectively (see the analysis preceding Theorem 4.6). In our case,
W = {fu | u ∈ V } and W̃ = {fũ | ũ ∈ Ṽ }. Note that fũ(ṽ) = B(ũ, ṽ) does not
necessarily belong to De = K for all ũ, ṽ ∈ Ṽ , so Eq. (11) for the K-bilinear form
�× U → K should be modified as follows:

(27) (m⊗ ũ, ṽ ⊗ n) = mB(ũ, ṽ)n for all m ∈ M,n ∈ N, ũ, ṽ ∈ Ṽ .

If we identify U and� with Ṽ �, then the above K-bilinear form is given by

(28)

((ũ1, . . . , ũ�), (ṽ1, . . . , ṽ�)) =
�∑

i,j=1

xij B̃(ũi , ṽj ) for all ũi ∈ ṼAi and ṽj ∈ ṼA′j ,

where xij is the (i, j)-entry of the matrix Xτ(A) if Ai = A′j = A with g0A
2 = T

and xij = δi,j otherwise.
Now we are ready to state the result:
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Theorem 4.8. Let R be a locally finite simple algebra with minimal left ideals over
an algebraically closed field K, char K �= 2. If R is given a grading by an abelian
group G and an antiautomorphism ϕ that preserves the grading and restricts to an
involution on Re, then (R, ϕ) is isomorphic to some F(G,D, Ṽ , B̃, g0) where D
is a matrix algebra over K equipped with a division grading and an involution ϕ0
given by matrix transpose. Conversely, if D = M�(K) with a division grading and
ϕ0 is the matrix transpose, then F(G,D, Ṽ , W̃ ) is a locally finite simple algebra
with minimal left ideals, which can be represented as FU(U) where U = Ṽ �

and the nondegenerate bilinear form U × U → K is given by (28). Two such
graded algebras F(G,D, Ṽ , B̃, g0) and F(G,D′, Ṽ ′, B̃ ′, g′0) are not isomorphic
unlessD ∼= D′ as graded algebras, whereas for fixedD and ϕ0, F(G,D, Ṽ , B̃, g0)

and F(G,D, Ṽ ′, B̃ ′, g′0) are isomorphic as graded algebras with antiautomorphism
if and only if (Ṽ , B̃, g0) ∼ (Ṽ ′, B̃ ′, g′0) in the sense of Definition 4.7.

In the case where R has finite or countable dimension, i.e., R = Mn(K) with
n ∈ N ∪ {∞}, we can express the classification in combinatorial terms. Since
K is algebraically closed, two vector spaces with symmetric inner products are
isomorphic if they have the same finite or countable dimension. The same is true
for vector spaces with skew-symmetric inner product. Therefore, for A ∈ G/T
with g0A

2 = T , the isomorphism class of ṼA is encoded by μA and dimṼA. For
A ∈ G/T with g0A

2 �= T , the isomorphism class of (ṼA, Ṽg−1
0 A−1) is encoded by

dimṼA = dimṼ
g−1

0 A−1 . We introduce functions μ : G/T → K
× sending A to μA

(where we set μA = 1 if ṼA = 0) and, as before, κ : G/T → {0, 1, 2, . . . ,∞}
sending A to dimṼA. Recall that μ satisfies μAμg−1

0 A−1 = 1 for all A ∈ G/T
and κ has a finite or countable support. We will denote the associated graded
algebra with antiautomorphism F(G,D, Ṽ , B̃, g0) by F(G,D, κ,μ, g0) or by
F(G, T , β, κ, μ, g0). For a given elementary 2-subgroup T ⊂ G and a bicharacter
β, we fix a realization of D using Pauli matrices and thus fix an involution ϕ0 on
D. Finally, for any g ∈ G, define μg and κg by setting μg(gA) = μ(A) and
κg(gA) = κ(A) for all A ∈ G/T .

Corollary 4.5. Let K be an algebraically closed field, char K �= 2, and let R =
Mn(K) where n ∈ N ∪ {∞}. If R is given a grading by an abelian group G and
an antiautomorphism ϕ that preserves the grading and restricts to an involution on
Re, then (R, ϕ) is isomorphic to some F(G,D, κ,μ, g0) where D = M�(K), with
� ∈ N and n = |κ |�, is equipped with a division grading and an involution ϕ0 given
by matrix transpose. Moreover, F(G, T , β, κ, μ, g0) and F(G, T ′, β ′, κ ′, μ′, g′0) are
isomorphic as graded algebras with antiautomorphism if and only if T ′ = T , β ′ =
β, and there exists g ∈ G such that g′0 = g0g

−2, κ ′ = κg and μ′ = μg . ��
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4.10 Graded Involutions

We can specialize Theorem 4.8 to obtain a classification of involutions on the graded
algebra R. By (20), ϕ is an involution if and only ifQ : V → V is a scalar operator,
i.e., B̄ = λB for some λ ∈ K

×, which implies λ ∈ {±1}. Disregarding the grading,
R = FU(U) where U is an inner product space. Since ϕ0 is matrix transpose,
Eq. (27) implies that (v, u) = λ(u, v) for all u, v ∈ U . Hence in the case B̄ = B,
we obtain an orthogonal involution on R and write sgn(ϕ) = 1, whereas in the case
B̄ = −B, we obtain a symplectic involution and write sgn(ϕ) = −1. Since all λA
must be equal to λ = sgn(ϕ), Eq. (26) yields

(29) μA =
{

sgn(ϕ)β(τ (A)) if g0A
2 = T ;

sgn(ϕ) if g0A
2 �= T .

We note that for g0A
2 �= T , although the space Ṽ{A,g−1

0 A−1} now has a symmetric or

skew-symmetric inner product, the equivalence relation in Definition 4.7 requires
more than just an isomorphism of inner product spaces: the isomorphism must
respect the direct sum decomposition Ṽ{A,g−1

0 A−1} = ṼA ⊕ Ṽg−1
0 A−1 . To summarize:

Proposition 4.1. Under the conditions of Theorem 4.8, ϕ is an involution if and
only if B̃ satisfies the symmetry condition (25) where μA is given by (29). ��

In the case of finite or countable dimension, we again can reduce everything
to combinatorial terms (for the finite case, this result appeared in [4]). Once δ =
sgn(ϕ) is specified, the function μ : G/T → K

× is determined by (29), so we will
denote the corresponding graded algebra with involution by F(G,D, κ, δ, g0) or
F(G, T , β, κ, δ, g0).

Corollary 4.6. Let R = F(G, T , β, κ) where the ground field K is algebraically
closed of characteristic different from 2, and G is an abelian group. The graded
algebra R admits an involution ϕ with sgn(ϕ) = δ if and only if T is an elementary
2-group and, for some g0 ∈ G, we have κ(A) = κ(g−1

0 A
−1) for all A ∈ G/T

and we also have β(g0a
2) = δ for all A = aT ∈ G/T such that g0A

2 = T and
κ(A) is finite and odd. If ϕ is an involution on R with sgn(ϕ) = δ, then the pair
(R, ϕ) is isomorphic to some F(G, T , β, κ, δ, g0). Moreover, F(G, T , β, κ, δ, g0)

and F(G, T ′, β ′, κ ′, δ′, g′0) are isomorphic as graded algebras with involution if
and only if T ′ = T , β ′ = β, δ′ = δ, and there exists g ∈ G such that g′0 = g0g

−2

and κ ′ = κg. ��

5 Gradings on Lie Algebras of Finitary Linear
Transformations

Throughout this section K is an algebraically closed field of characteristic different
from 2, andG is an abelian group. Our goal is to classifyG-gradings on the infinite-
dimensional simple Lie algebras fsl(U,�), fso(U,) and fsp(U,) of finitary
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linear transformation over K. We are going to transfer the classification results
for the associative algebras F�(U) in Sect. 4.3 to the above Lie algebras using the
transfer Theorems 3.4 and 3.5.

We denote by H the group algebra KG, which is a commutative and cocom-
mutative Hopf algebra. A G-grading on an algebra U is equivalent to a (right)
H -comodule structure ρ : U → U ⊗H that is also a homomorphism of algebras.
Indeed, given a G-grading on U , we set ρ(x) = x ⊗ g for all x ∈ Lg and
extend by linearity. Conversely, given ρ, we obtain a G-grading on U by setting
Ug = {x ∈ U | ρ(x) = x ⊗ g}. We can extend ρ to a homomorphism
U ⊗H → U ⊗H by setting ρ(x ⊗ h) = ρ(x)(1⊗ h). It is easy to see that this
extended homomorphism is surjective.

5.1 Special Linear Lie Algebras

Let L = fsl(U,�) where U is infinite-dimensional and let R = F�(U). Suppose
L is given aG-grading and let ρ : L ⊗H → L ⊗H be the Lie homomorphism
obtained by extending the comodule structure map. Then L = [R,R] is a
noncentral Lie ideal of R and M = L ⊗H is a Lie ideal of R ⊗H . Moreover,
〈L 〉 = R implies 〈M 〉 = R ⊗H , and [L ,L ] = L implies [M ,M ] = M .
Applying Theorem 3.4 and observing that τ = 0, we conclude that ρ extends to a
map ρ′ : R⊗H → R⊗H which is a sum of a homomorphism and the negative of
an antihomomorphism. Thus, there are central idempotents e1 and e2 in H (which
can be identified with the center of R� ⊗ H ) with e1 + e2 = 1 such that the
composition of ρ′ and the projection R ⊗H → R ⊗ e1H is a homomorphism,
while the composition of ρ′ and the projectionR⊗H → R⊗ e2H is the negative
of an antihomomorphism.

If ψ is any automorphism of L , it can be extended to a map ψ ′ : R → R that is
a homomorphism or the negative of an antihomomorphism (use [18, Theorem 6.19]
or our Theorem 3.4 with H = K). Clearly, ψ ′ is surjective. Since R is simple,
we conclude that ψ ′ is an automorphism or the negative of an antiautomorphism.
We claim that ψ cannot admit extensions of both types. Indeed, assume that ψ ′
is an automorphism of R and ψ ′′ is the negative of an antiautomorphism of R
such that both restrict to ψ . Let σ = (ψ ′)−1ψ ′′. Then σ is the negative of an
antiautomorphism of R that restricts to identity on L . Hence, for any x ∈ L and
r ∈ R, we have [x, r] = σ([x, r]) = [σ(x), σ (r)] = [x, σ (r)]. It follows that
r − σ(r) belongs to the center of R, which is zero, so σ is the identity map—a
contradiction. We have shown that for any automorphismψ of L , there is a unique
extension ψ ′ : R → R that is either an antiautomorphism or the negative of an
antiautomorphism.

Now any character χ ∈ Ĝ acts as an automorphism ψ of L defined by ψ(x) =
χ(g)x for all x ∈ Lg. Denote this ψ by η(χ), i.e., η(χ) = (idR ⊗ χ)ρ. Clearly, η
is a homomorphism from Ĝ to Aut (L ). Define η′(χ) = η(χ)′. It follows from the
uniqueness of extension that η′ is a homomorphism from Ĝ to the group Aut (R)
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consisting of all automorphisms and the negatives of antiautomorphisms of R. We
can regard χ as a homomorphism of algebras H → K and define η′′(χ) = (idR ⊗
χ)ρ′. Then η′′(χ) is a map R → R that restricts to η(χ) on L . Clearly, χ(e1) is
either 1 or 0, and then χ(e2) is either 0 or 1, respectively. An easy calculation shows
that if χ(e1) = 1, then η′′(χ) is a homomorphism, and if χ(e1) = 0, then η′′(χ)
is the negative of an antihomomorphism. We conclude that η′′(χ) = η′(χ). Setting
h = e1 − e2, we see that, for any χ ∈ Ĝ,

(30) χ(h) =
{

1 if η′(χ) ∈ Aut (R);
− 1 if η′(χ) /∈ Aut (R).

It is well known that any idempotent of H = KG is contained in KK for some
finite subgroup K ⊂ G, such that char K does not divide the order of K . Pick K
such that e1 ∈ KG0, then also h ∈ KK . Since any character of K extends to a
character of G, Eq. (30) implies that (χ1χ2)(h) = χ1(h)χ2(h) for all χ1, χ2 ∈ K̂ ,
so h is a group-like element of (KK̂)∗ = KK . It follows that h ∈ K . Clearly, the
order of h is at most 2. Since char K �= 2, the characterization given by (30) shows
that the element h is uniquely determined by the given G-grading on L . It follows
that e1, e2 and ρ′ are also uniquely determined.

If h has order 1, then e1 = 1 and e2 = 0, so the map ρ′ : R → R ⊗ H is
a homomorphism of associative algebras. Since L generates R, it immediately
follows that ρ′ is a comodule structure. This makes R a G-graded algebra such that
the given grading on L is just the restriction of the grading on R, i.e., Lg = Rg∩L
for all g ∈ G. Such gradings on L will be referred to as grading of Type I. We can
use Corollary 4.3 to obtain all such gradings.

If h has order 2, then both e1 and e2 are nontrivial, so ρ′ is not a homomorphism
of associative algebras, which means that the algebra R does not admit aG-grading
that would restrict to the given grading on L . Such gradings on L will be referred
to as grading of Type II (with the distinguished element h = e1 − e2). Let G =
G/〈h〉 and H = KG. Denote the quotient map G → G by π and extend it to
a homomorphism of Hopf algebras H → H . Since π(e2) = 0, the map ρ =
(idR ⊗ π)ρ is a homomorphism of associative algebras, so ρ : R → R ⊗ H is
a comodule structure, which makes R a G-graded algebra. The restriction of this
grading to L is the coarsening of the givenG-grading induced by π : G→ G, i.e.,
Rg ∩L = Lg ⊕Lgh for all g ∈ G, where g = π(g). The original grading can be
recovered as follows.

Fix a character χ ∈ Ĝ satisfying χ(h) = −1 and let ψ = η(χ). Then we get

Lg = {x ∈ Lg | ψ(x) = χ(g)x}.

Indeed, by definition of ψ , Lg is contained in the right-hand side. Conversely,
suppose x ∈ Lg satisfies ψ(x) = χ(g)x. Write x = y + z where y ∈ Lg and
y ∈ Lgh. Then we have χ(g)(y + z) = ψ(x) = χ(g)(y − z). It follows that z = 0
and so x ∈ Lg.
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By (30), the extension ψ ′ of ψ is not an automorphism, so ψ ′ = −ϕ where
ϕ is an antiautomorphism of R. Since ψ leaves the components Lg invariant and
L generates R, it follows that ϕ leaves the components Rg invariant. Since ϕ2 =
(ψ ′)2 = η′(χ2) and χ2 can be regarded as a character of G, we obtain ϕ2(r) =
χ2(g)r for all r ∈ Rg . Set

(31) Rg = {r ∈ Rg | ϕ(r) = −χ(g)r}.

Then Rg = Rg ⊕ Rgh and hence R =⊕g∈G Rg. Since ψ ′ is not an automorphism
of R, this is not a G-grading on the associative algebra R. It is, however, a G-
grading on the Lie algebra R(−) (corresponding to the comodule structure ρ′). The
G-grading on R and the antiautomorphism ϕ completely determine the G-grading
on L :

(32) Lg = {x ∈ Rg ∩L | ϕ(x) = −χ(g)x}.

Conversely, suppose we have a G-grading on R and an antiautomorphism ϕ of
the G-graded algebra R satisfying the following compatibility condition:

(33) ϕ2(r) = χ2(g)r for all r ∈ Rg, g ∈ G.

Since −ϕ is an automorphism of R(−), Eq. (31) gives a G-grading on R(−) that
refines the given G-grading. Since L = [R,R] is a G-graded subalgebra of R(−),
we see that (32) defines a Type II grading on L with distinguished element h. Note
that the compatibility condition implies that ϕ acts as involution on the identity
component of theG-grading of R, so Theorem 4.8 tells us that (R, ϕ) is isomorphic
to some F(G,D, Ṽ , B̃, g0).

Proposition 5.1. The graded algebra R = F(G,D, Ṽ , B̃, g0) with its antiauto-
morphism ϕ satisfies the compatibility condition (33) if and only if π : G → G

splits over the support T of D and there exists μ0 ∈ K
× such that B̃ satisfies the

symmetry condition (25) where μA, for all A ∈ G/T , is given by

(34) μA =
{
μ0χ

−2(A)β(τ(A)) if g0A
2 = T ;

μ0χ
−2(A) if g0A

2 �= T ;

where we regard χ2 as a character ofG/T (since χ2 is trivial on T ).

We note that since μAμg−1
0 A

−1 = 1 for all A, the scalar μ0 satisfies

μ2
0 = χ−2(g0)

and hence can take only two values.
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To state the classification of G-gradings on the Lie algebras fsl(U,�), we
introduce the model G-graded algebras A(I)(G, T , β, Ṽ , W̃ ) and A(II)(G,H, h, β,
Ṽ , B̃, g0).

Let T ⊂ G be a finite subgroup with a nondegenerate alternating bicharacter
β. The Lie algebra A(I)(G, T , β, Ṽ , W̃ ) is just the commutator subalgebra of the
G-graded associative algebra R = F(G, T , β, Ṽ , W̃ ) (introduced before Corol-
lary 4.3). By Theorem 4.6, it is isomorphic to fsl(U,�) where U = Ṽ �, � = W̃�,
�2 = |T |, and the bilinear form�× U → K is given by (12).

Let H ⊂ G be a finite elementary 2-subgroup, h �= e an element of H , and β a
nondegenerate alternating bicharacter onH/〈h〉. Fix a characterχ ∈ Ĝwith χ(h) =
−1. Let G = G/〈h〉 and T = H/〈h〉. The Lie algebra A(II)(G,H, h, β, Ṽ , B̃, g0)

is the commutator subalgebra of the Lie algebra R(−) with a G-grading defined
by refining the G-grading as in (31), where R is the G-graded associative algebra
F(G, T , β, Ṽ , B̃, g0) with antiautomorphism ϕ (introduced before Theorem 4.8)
and the bilinear form B̃ on Ṽ satisfies the symmetry condition (25) withμA given by
(34) for some μ0 ∈ K

×. By Theorem 4.8, A(II)(G,H, h, β, Ṽ , B̃, g0) is isomorphic
to fslU(U) where U = Ṽ �, �2 = |H |/2, and the bilinear form U ×U → K is given
by (28).

The definition of A(II)(G,H, h, β, Ṽ , B̃, g0) depends on the choice of χ .
However, regardless of this choice, we obtain the same collection of graded algebras
as (Ṽ , B̃) ranges over all possibilities allowed by the chosen χ . We assume that a
choice of χ is fixed for any element h ∈ G of order 2.

Now we can state our main result about gradings on special Lie algebras of
finitary linear operators on an infinite-dimensional vector space.

Theorem 5.1. LetG be an abelian group and let K be an algebraically closed field,
char K �= 2. If a special Lie algebra L of finitary linear operators on an infinite-
dimensional vector space over K is given a G-grading, then L is isomorphic as a
graded algebra to some A(I)(G, T , β, Ṽ , W̃ ) or A(II)(G,H, h, β, Ṽ , B̃, g0). No G-
graded Lie algebra with superscript (I) is isomorphic to one with superscript (II).
Moreover,

• A(I)(G, T , β, Ṽ , W̃ ) and A(I)(G, T ′, β ′, Ṽ ′, W̃ ′) are isomorphic if and only if
T ′ = T and either β ′ = β and (Ṽ ′, W̃ ′) ∼ (Ṽ , W̃ ), or β ′ = β−1 and (Ṽ ′, W̃ ′) ∼
(W̃ , Ṽ ) as in Definition 4.5.

• A(II)(G,H, h, β, Ṽ , B̃, g0) and A(II)(G,H ′, h′, β ′, Ṽ ′, B̃ ′, g′0) are isomorphic if
and only if H ′ = H , h′ = h, β ′ = β, and (Ṽ ′, B̃ ′, g′0) ∼ (Ṽ , B̃, g0) as in
Definition 4.7.

5.1.1 Graded Bases

The Lie algebra L = A(I)(G, T , β, Ṽ , W̃ ) is the commutator subalgebra of R =
F(G, T , β, Ṽ , W̃ ). As a vector space over K, this latter can be written as Ṽ ⊗D ⊗
W̃—see Sect. 4.6. Recall that, for A,A′ ∈ G/T , we have (W̃A, ṼA′) = 0 unless
A′ = A−1, and W̃A−1 is a total subspace of Ṽ ∗A. The action of the tensor v⊗d⊗w ∈
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ṼA ⊗ D ⊗ W̃(A′)−1 on u ⊗ d ′ ∈ ṼA′′ ⊗ D is given by (v ⊗ d ⊗ w)(u ⊗ d ′) =
v ⊗ d(w, u)d ′ = (w, u)(v ⊗ (dd ′)), which is zero unless A′′ = A′. Also, the
degree of the element v ⊗ d ⊗ w in the G-grading equals γ (A)(deg d)γ (A′)−1.
Computing the commutators of such elements and using our standard notation Xt
for the basis elements of D, we find that L is spanned by the elements of the form
v ⊗ Xt ⊗ w where (w, v) = 0 or t = e. Note that since W̃ is a total subspace of
Ṽ ∗, there exist A0 ∈ G/T , v0 ∈ ṼA0 and w0 ∈ W̃A−1

0
such that (w0, v0) = 1.

Then K(v0 ⊗ 1 ⊗ w0) ⊕ L = R. Given bases for the vector spaces ṼA and W̃A
for all A ∈ G/T such that the basis for ṼA0 includes v0 and the basis for W̃

A−1
0

includes w0, we obtain a graded basis for L = A(I)(G, T , β, Ṽ , W̃ ) consisting of
the following two sets: first, the elements of the form v⊗1⊗w−(w, v)(v0⊗1⊗w0)

with v �= v0 or w �= w0, and, second the elements of the form v ⊗ Xt ⊗ w with
t �= e, where v and w range over the given bases of Ṽ and W̃ , respectively. Hence,
for g �= e, a basis for Lg consists of the elements

E(I)g,v,w = v ⊗Xt ⊗ w,

where v ranges over a basis of ṼA, w ranges over a basis of W̃gA−1 , and A ranges
overG/T , while t = gγ (A)−1γ (g−1A). For g = e, we take the elements

E(I)g,v,w − (w, v)E(I)g,v0,w0

and discard the zero obtained when v = v0 and w = w0.
In the case of L = A(II)(G,H, h, β, Ṽ , B̃, g0), we have to start with the G-

grading on R = F(G, T , β, Ṽ , B̃, g0) where G = G/〈h〉 and T = H/〈h〉. Now R
can be written as Ṽ ⊗D⊗ Ṽ where the action of the tensor v⊗ d ⊗w ∈ ṼA⊗D⊗
Ṽ
g−1

0 (A
′)−1 on u⊗d ′ ∈ ṼA′′ ⊗D is given by (v⊗d⊗w)(u⊗d ′) = v⊗dB(w, u)d ′,

which is zero unless A′′ = A′. Here we are using the notation of Sect. 4.9—
in particular, the ϕ0-sesquilinear form B given by (21) and (23)—and we have
identifiedw ∈ Ṽ with fw ∈ W given by fw(u) = B(w, u) for all u ∈ V . The degree
of the element v ⊗ d ⊗ w in the G-grading equals γ (A)(deg d)g0γ (g

−1
0 (A

′)−1) =
γ (A)(deg d)τ(A′)γ (A′)−1 where, as before, τ (A′) = g0γ (A

′)2 if g0(A
′)2 = T ,

and we have set τ (A′) = e if g0(A
′)2 �= T . Also, (18) yields ϕ(v ⊗ d ⊗ w) =

Q−1w ⊗ ϕ0(d)v. Taking d = Xt and recalling that ϕ0(Xt) = β(t)Xt , we obtain

ϕ(v ⊗Xt ⊗ w) = β(t)(Q−1(w)⊗Xt ⊗ v).

With our fixed character χ : G→ K
× satisfying χ(h) = −1, the G-grading on

the vector space R is given by (31). Taking into account that ϕ2(r) = χ(g)2r for
any r ∈ Rg , we can write

r = 1

2

(
r − 1

χ(g)
ϕ(r)

)
+ 1

2

(
r + 1

χ(g)
ϕ(r)

)
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where

1

2

(
r − 1

χ(g)
ϕ(r)

)
∈ Rg and

1

2

(
r + 1

χ(g)
ϕ(r)

)
∈ Rgh.

Since χ(gh) = −χ(g), the second expression is identical to the first one if g is
replaced by gh. Substituting r = v ⊗ Xt ⊗ w and the above expression for ϕ(v ⊗
Xt ⊗ w), we find that Rg is spanned by the elements

v ⊗Xt ⊗ w − β(t)

χ(g)
Q−1w ⊗Xt ⊗ v,

where v ∈ ṼA, w ∈ Ṽ
g−1

0 (A
′)−1 , and γ (A)tτ (A′)γ (A′)−1 = g. The eigenvalues of

Q are given by (26), and μ
g−1

0 (A
′)−1 = μ−1

A′ , so we can rewrite the above spanning

elements as follows:

v ⊗Xt ⊗ w − μA′β(t)β(τ (A′))χ−1(g)(w ⊗Xt ⊗ v).

Finally, recalling that μA′ is determined in Proposition 5.1 and A′ = g−1A, we
conclude that Rg is spanned by the elements

(35) E(II)g,v,w = v ⊗Xt ⊗ w −
μ0β(t)χ(g)

χ2(A)
(w ⊗Xt ⊗ v),

where v ranges over a basis of ṼA, w ranges over a basis of Ṽ
g−1

0 gA
−1 , and A ranges

over G/T = G/H , while t = gγ (A)−1γ (g−1A)τ(g−1A). If we discard zeros
among the elements E(II)g,v,w, the remaining ones form a basis for Rg . This is also a
basis for Lg unless g = e or g = h. For these two cases, bases can be obtained
using the same idea as for Type I, namely, subtracting a suitable scalar multiple
of E(II)g,v0,w0 , where v0 ∈ ṼA0 and w0 ∈ Ṽg−1

0 A
−1
0

are such that B̃(w0, v0) = 1.

Specifically, for g = e and g = h, we replace the elements (35) by

E(II)g,v,w − β(t0)β(t)B̃(w, v)E(II)g,v0,w0

where t = τ (A) and t0 = τ (A0).

5.1.2 Countable Case

In the case L = sl(∞), we can express the classification of G-gradings in combi-
natorial terms. HereR =M∞(K), whoseG-gradings are classified in Corollary 4.4.
Namely, R is isomorphic to F(G,D, κ), which we can write as F(G, T , β, κ)
because G is abelian. Recall that the function κ : G/T → {0, 1, 2, . . . ,∞} has
a finite or countable support; here |κ | = ∑

A∈G/T κ(A) must be infinite. The
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G-grading on F(G, T , β, κ) restricts to L , and we denote the resulting G-graded
Lie algebra by A(I)(G, T , β, κ). In this way we obtain all Type I gradings on L .

For Type II, we can use Corollary 4.5, with G replaced by G = G/〈h〉 and with
the function μ : A 
→ μA (A ∈ G/T ) satisfying (34). With the other parameters
fixed, there are at most two such functions. Indeed, if there is A0 ∈ G/T such that
g0A

2
0 = T and κ(A0) is finite and odd (forcing μA0 = 1), then there is at most one

admissible function μ, defined by (34) with μ0 = χ2(A0)β(τ (A0)). Such function
exists if and only if allA0 of this kind produce the same valueμ0. If there is noA0 of
this kind, then there are exactly two admissible functions μ, defined by (34) where
μ0 satisfies μ2

0 = χ−2(g0). Denote by A(II)(G,H, h, β, κ, μ0, g0) the G-graded
Lie algebra obtained by restricting to L the refinement (31) of the G-grading on
F(G, T , β, κ, μ, g0).

Recall that κg is defined by κg(gA) = κ(A) for all A ∈ G/T . Set κ̃(A) =
κ(A−1).

Corollary 5.1. Let K be an algebraically closed field, char K �= 2, G an abelian
group. Suppose L = sl(∞) over K is given a G-grading. Then, as a graded
algebra, L is isomorphic to one of A(I)(G, T , β, κ) or A(II)(G,H, h, β, κ, μ0, g0).
No G-graded Lie algebra with superscript (I) is isomorphic to one with superscript
(II). Moreover,

• A(I)(G, T , β, κ) ∼= A(I)(G, T ′, β ′, κ ′) if and only if T ′ = T and either β ′ = β
and κ ′ = κg for some g ∈ G, or β ′ = β−1 and κ ′ = κ̃g for some g ∈ G.

• A(II)(G,H, h, β, κ, μ0, g0)
∼= A(II)(G,H ′, h′, β ′, κ ′, μ′0, g

′
0) if and only ifH ′ =

H , h′ = h, β ′ = β, and there exists g ∈ G such that κ ′ = κg, μ′0 = μ0χ
2(g)

and g′0 = g0g
−2. ��

5.2 Orthogonal and Symplectic Lie Algebras

In the case L = fso(U,) or L = fsp(U,), we deal with simple Lie algebras of
skew-symmetric elements in the associative algebra R = F�(U) with respect to the
involution ϕ determined by the nondegenerate form , which is either orthogonal
or symplectic. Here � is identified with U by virtue of . We continue to assume
that U is infinite-dimensional. Suppose that L is given a G-grading. Applying
Theorem 3.5 to the corresponding Lie homomorphism ρ : L ⊗H → L ⊗H
and observing that τ = 0 (because L = [L ,L ]), we conclude that ρ extends to a
homomorphism of associative algebras ρ′ : R⊗H → R⊗H . Since L generates
R, it follows that ρ′ is a comodule structure. This gives R a G-grading that restricts
to the given grading on L , i.e., Lg = Rg ∩ L for all g ∈ G. Moreover, since ϕ
restricts to the negative identity on L , the restriction of the map ϕ⊗idH to L ⊗H
commutes with ρ, which implies that ϕ ⊗ idH commutes with ρ′. This means that
ϕ is an involution of R as a G-graded algebra. Theorem 4.8 and Proposition 4.1
classify all the pairs (R, ϕ) up to isomorphism.
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To state the classification of G-gradings on the Lie algebras fso(U,)
and fsp(U,), we introduce the model algebras B(G, T , β, Ṽ , B̃, g0) and
C(G, T , β, Ṽ , B̃, g0).

Let T ⊂ G be a finite elementary 2-subgroup with a nondegenerate alternating
bicharacter β. Let L be the Lie algebra of skew-symmetric elements in the
G-graded associative algebra R = F(G, T , β, Ṽ , B̃, g0) with involution, where
the bilinear form B̃ on Ṽ satisfies the symmetry condition (25) with μA given by
(29). If sgn(ϕ) = 1, we will denote L by B(G, T , β, Ṽ , B̃, g0). By Theorem 4.8,
it is isomorphic to fso(U,) where U = Ṽ �, �2 = |T |, and the bilinear form
 : U × U → K is given by (28). If sgn(ϕ) = −1, we will denote L by
C(G, T , β, Ṽ , B̃, g0). By Theorem 4.8, it is isomorphic to fsp(U,) where U and
 are as above.

Theorem 5.2. Let G be an abelian group and let K be an algebraically closed
field, char K �= 2. If an orthogonal or symplectic Lie algebra L of finitary linear
operators on an infinite-dimensional vector space over K is given a G-grading,
then L is isomorphic as a graded algebra to some B(G, T , β, Ṽ , B̃, g0) in the
orthogonal case or C(G, T , β, Ṽ , B̃, g0) in the symplectic case. The G-graded
algebras with parameters (T , β, Ṽ , B̃, g0) and (T ′, β ′, Ṽ ′, B̃ ′, g′0) are isomorphic
if an only if T ′ = T , β ′ = β, and (Ṽ ′, B̃ ′, g′0) ∼ (Ṽ , B̃, g0) as in Definition 4.7.

5.2.1 Graded Bases

The calculations which we used to find graded bases in the case of Type II gradings
on special linear Lie algebras apply also for orthogonal and symplectic Lie algebras,
with the following simplifications: we always deal with the groupG (hence we omit
bars and χ) andQ is id in the orthogonal case and−id in the symplectic case. Thus,
B(G, T , β, Ṽ , B̃, g0) is the set of skew-symmetric elements in F(G,D, Ṽ , B̃, g0),
where B̃ is an “orthosymplectic” form on Ṽ that determines a “Hermitian” form on
V , as described in Sect. 4.10. The skew-symmetric elements

(36) v ⊗Xt ⊗ w − β(t)(w ⊗Xt ⊗ v)

span L = B(G, T , β, Ṽ , B̃, g0), so we obtain a basis for Lg by letting A
range over G/T , v over a basis of ṼA, and w over a basis of Ṽ

g−1
0 gA−1 , while

t = gγ (A)−1γ (g−1A)τ(g−1A), and taking the nonzero elements given by (36).
In a similar way, C(G, T , β, Ṽ , B̃, g0) is the set of skew-symmetric elements in

the algebra F(G,D, Ṽ , B̃, g0), where B̃ is an “orthosymplectic” form on Ṽ that
determines a “skew-Hermitian” form on V . The skew-symmetric elements

(37) v ⊗Xt ⊗ w + β(t)(w ⊗Xt ⊗ v)

span L = C(G, T , β, Ṽ , B̃, g0), and we obtain a basis for Lg as above, but using
(37) instead of (36).
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5.2.2 Countable Case

In the cases L = so(∞) and L = Span {(}∞), we can express the classification
of G-gradings in combinatorial terms. Here we have to deal with the pairs (R, ϕ)
where R = M∞(K) is endowed with a G-grading and an involution ϕ that respects
this grading. Such pairs are classified in Corollary 4.6. Namely, (R, ϕ) is isomorphic
to some F(G, T , β, κ, δ, g0) where |κ | must be infinite and δ = sgn(ϕ).

We denote by B(G, T , β, κ, g0) and C(G, T , β, κ, g0) theG-graded Lie algebras
of skew-symmetric elements (with respect to ϕ) in F(G, T , β, κ, δ, g0) where δ = 1
and δ = −1, respectively.

Corollary 5.2. Let K be an algebraically closed field, char K �= 2, G an
abelian group. Let L be so(∞), respectively Span {(}∞), over K. Suppose
L is given a G-grading. Then, as a graded algebra, L is isomorphic
to some B(G, T , β, κ, g0), respectively C(G, T , β, κ, g0). No G-graded Lie
algebra B(G, T , β, κ, g0) is isomorphic to C(G, T ′, β ′, κ ′, g′0). Moreover,
B(G, T , β, κ, g0) and B(G, T ′, β ′, κ ′, g′0) are isomorphic if and only if T ′ = T ,
β ′ = β, and there exists g ∈ G such that g′0 = g0g

−2 and κ ′ = κg. The same holds
for C(G, T , β, κ, g0) and C(G, T ′, β ′, κ ′, g′0). ��

6 Group Gradings on Nilpotent Lie Algebras

Historically one of the deepest result on the grading of Lie algebras was Cartan’s
theorem describing the symmetric decompositions (that is, Z2-graded) of simple
Lie algebras. A notable consequence of this theorem is the classification of compact
riemannian symmetric spaces. In the previous sections we summarized recent results
on general gradings on simple Lie algebras. This will permit us to define in the
second part new homogeneous reductive non-symmetric spaces associated to these
gradings. The gradings on nilpotent Lie algebras have not been so much explored.
It is then interesting on the one hand to classify the symmetric decompositions
of a nilpotent Lie algebra and on the other hand to consider the most general
gradings by finite abelian groups. The geometrical interest is double: on the one
hand, to construct numerous examples of symmetric nilpotent riemannian and
non-riemannian spaces and on the other hand to obtain a new approach of the
affine geometry on nilpotent Lie groups. In this paper we restrict ourselves to
the study of gradings on filiform Lie algebras of positive rank, in the case where
the grading group is finitely generated abelian without elements of order p in case
char K = p > 0.

6.1 An Example of an Ad Hoc Argument

In some cases all gradings, up to isomorphism, can be determined based on the
properties of algebras themselves rather than on the general theory of gradings.
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As an example, let us consider free nilpotent algebras. By definition, each such
algebra L = L(X) is generated by a set of elements X such that any map of X to
L extends to a homomorphism of L. Additionally, L has a finite Z-grading L =⊕
k∈Z Lk , where Lk is the linear span of all monomials of degree k in X. Any

set of generators with the same property as X is call a free base of L. A well-
known example of such an algebra is the 3-dimensional Heisenberg Lie algebra
H = 〈x, y, z | [x, y] = z〉. Here X = {x, y} but actually any set Y of two elements
linearly independent modulo the derived subalgebra [H,H ] = 〈z〉 is also a free base
of H .

Now let us assume the base field K infinite, the grading group G abelian and
the base X = {x1, . . . , xn} finite (one says that L(X) has finite rank n). In this
case, it is easy to show, by a Vandermonde’s type argument [1], that the structural
Z-grading on L can be refined to a Zn-grading, where given α = (i1, . . . , in) ∈ Z

n,
the component Lα is defined as the linear span of monomials in x1, . . . , xn whose
degree in xk equals ik , for any k = 1, . . . , n. Now consider γ = (g1, . . . , gn) ∈ Gn.
Given α ∈ Z

n, define γ α = g
i1
1 · · ·ginn ∈ G and set L(g)γ = ⊕

γ α=g Lα . Then

�γ :⊕g∈G L
(g)
γ is a G-grading of L.

Proposition 6.1. Let � : L =⊕g∈GLg be aG-grading of a free nilpotent algebra
L = L(X) of finite rank over an infinite field K. IfG is an abelian group, then there
is γ ∈ Gn such that � is isomorphic to �γ . If also � is isomorphic to �δ , for some
δ ∈ Gn, then δ can be obtained from γ by permuting its components.

Proof. Notice that the subalgebra L2 = ⊕
k≥2 Lk is G-graded. Hence we have

graded vector space bases B and C in L and L2. We have #B = #C+n. This shows
that L has a basis {y1, . . . , yn} ∪ C, where {y1, . . . , yn} ⊂ B. The elements of
Y = {y1, . . . , yn} are graded of degrees g1, . . . , gn. By a Nakayama type argument
(see, for example, [1, 1.7.2]), since L is nilpotent, a set generatingL moduloL2 is a
generating set of L. Therefore, the map ϕ : X→ L given by xi 
→ yi , i = 1, . . . , n,
extends to a homomorphism of L onto itself, hence to an isomorphism of L. If
γ = (g1, . . . , gn), this map is an isomorphism of �γ and our original map �.

Since any permutation of the elements of X leads to an isomorphism of L, it is
obvious that �γ is isomorphic to �δ if δ is a permutation of γ . Conversely, such
an isomorphism leads to the isomorphism of the graded vector space L1 onto itself.
Now, for each g ∈ G, dimL(g)γ = dimL(g)δ . Clearly then the number of entries of g
to both γ and δ is the same, hence δ is a permutation of δ. ��

6.2 Filiform Lie Algebras

Let K be a field andL be a Lie algebra overK. We denote by
{
Lk | k = 1, 2, . . .

}
the

lower central series of L defined by L1 = L and Lk = [Lk−1, L], for k = 2, 3, . . ..
One callsL nilpotent if there is a natural n such thatLn+1 = {0}. IfLn �= {0}, then n
is called the nilpotent index of L. As just above, a set of elements {x1, . . . , xm} ⊂ L
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generates L if and only if the {x1 + L2, . . . , xm + L2} is the spanning set in the
vector spaceL/L2. As a result, a nilpotent Lie algebra with dimL/L2 ≤ 1 is at most
1-dimensional. If n > 1, then the nilpotent index of an n-dimensional nilpotent Lie
algebra never exceeds n− 1.

Definition 6.1. Given a natural number n, an n-dimensional Lie algebra L is called
n-dimensional filiform if the nilpotent index of L is maximal possible, that is, n−1.
In this case we must have dimL/L2 = 2, dimLk/Lk−1 = 1 for k = 2, 3, . . . , n− 1.

In the situation described in Definition 6.1, the lower central series of
L is “thready”, whence the French name “filiform”. If we choose a basis
{e1, e2, . . . , en−2, en−1, en} of L so that {en} is a basis of Ln−1, {en−1, en} is a
basis of Ln−2, {en−2, en−1, en} is a basis of Ln−3, etc., it is easy to observe that the
center of L is 1-dimensional and equals Ln−1.
Thus, the lower central sequence of L takes the form

L = L1 ⊃ L2 ⊃ . . . ⊃ Ln−1 = Z(L) ⊃ {0},
where Z(L) is the center of L and all containments are proper. In any Lie algebra
the lower central series is a filtration in the sense that [Li,Lj ] ⊂ Li+j .
Theorem 6.1 ([31]). Any n-dimensional filiform K-Lie algebra L admits an
adapted basis {X1, . . . , Xn}, that is, a basis satisfying:

[X1,Xi ] = Xi+1, i = 2, . . . , n− 1,

[X2,X3] =
∑

k≥5

γkXk,

[Xi,Xn−i+1] = (−1)i+1αXn,where α = 0 when n = 2m+ 1,

Li = K {Xi+1, . . . , Xn} for all i ≥ 2.

Now let us consider a collection of vector spaces Wi = Li/Li+1, i =
1, 2, . . . , n − 1. The vector space direct sum gr L =

n−1⊕

i=1

Wi becomes a Lie algebra

if one defines the bracket of the elements by setting [X + Li+1, Y + Lj+1] =
[X,Y ] + Li+j+1, for X ∈ Li , Y ∈ Lj , 1 ≤ i, j ≤ n − 1. It follows from
the above theorem that all the associated graded algebras for filiform Lie algebras
are again filiform. They belong to one of the two types as follows. Note for the
future that when we define a Lie algebra by writing a list of commutators [Xi,Xj ]
of the elements of the basis, we always mean [Xk,Xl] = 0 for (k, l) not on the list,
except, naturally, that [Xj,Xi ] = −[Xi,Xj ].
Ln: Each of these algebras has an adapted basis {X1,X2, . . . , Xn} such that

[X1,Xi ] = Xi+1, for i = 2, 3, . . . , n− 1.
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Qn: Here n = 2m. Each of these algebras has an adapted basis {X1,X2, . . . , Xn}
such that [X1,Xi ] = Xi+1, if i = 2, 3, . . . , n − 1, and [Xj,X2m−j+1] =
(−1)j+1X2m, if 2 ≤ j ≤ m.

If gr L ∼= L, then we call L naturally graded (by the group Z). So there are only
two types of naturally graded algebras: Ln andQn.

Corollary 6.1 ([31]). Any naturally graded filiform Lie algebra is isomorphic to

• Ln if n is odd,
• Ln orQn if n is even.

We deduce that Ln andQn admits a Z-grading with support {1, 2, . . . , n}. From
what follows, we will see the existence of other non-isomorphic Z-gradings and we
will determine the filiform Lie algebras admitting such gradings.

6.3 The Automorphisms Group of a Filiform Lie Algebra

A special feature of filiform Lie algebras is the following.

Theorem 6.2. Let L be an n-dimensional filiform K-Lie algebra with n ≥ 4. Then
the group Aut L is a solvable algebraic group, of toral rank at most 2.

Proof. Assume σ ∈ Aut L and let {X1, . . . , Xn} be an adapted basis of L. We know
that in any algebra L, σ(Li) = Li and so for any i ≥ 3, σ(Xi) = λiXi +Ui , where
λi �= 0 andUi ∈ Li . We also know that [X1,Xi ] = Xi+1 and [X2,X3] = ν3X5+Vi
where Vi ∈ L5. Assume that σ(X2) = μ1X1 + μ2X2 + Y , where Y ∈ L2. Then

[σ(X2), σ (X3)] = [μ1X1 + μ2X2 + Y, λ3X3 + U3]
= μ1λ3X4 + μ1[X1, U3] + μ2λ3(ν3X5 + Vi)+ μ2[X1, U3] + λ3[Y,X3] + [Y,U3].

Because [Li,Lj ] ⊂ Li+j , all [X1, U3], [X1, U3], [Y,X3],[Y,U3] are in L4. So
[σ(X2), σ (X3)] = μ1λ3X4 + Z, where Z ∈ L4. On the other hand,

σ([X2,X3]) = σ(ν3X5 + Vi) ∈ L4.

Thus μ1λ3 = 0. Since dimL ≥ 4, we have λ3 �= 0, and then μ1 = 0. If we set, for
each i = 1, . . . , n, Fi = Span {Xi, . . . , Xn}, then

F : L = F1 ⊃ F2 ⊃ · · · ⊃ Fn ⊃ {0}

is a flag of subspaces in L. It is well-known that the set of all automorphisms of a
linear space respecting a flag is a solvable subgroup of GL (L). Now we have just
proved that Aut L respects F ; hence Aut L is a solvable group, as claimed.

Finally, the matrices of the elements of Aut L with respect to an adapted basis
are triangular. Let Tn is the group of all triangular matrices, Un the subgroup of
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unitriangular matrices, Dn is the subgroup of the diagonal matrices and Cn =
{diag (t, s, ts, . . . , tn−2s) | s, t ∈ K \ {0}}. Then G/G ∩ Un ∼= GUn/Un =
CnUn/Un ∼= Cn. Since Cn is a 2-dimensional torus, the (toral) rank of G does
not exceed 2. ��
Remark. If dimL = 2 or 3, then Aut L contains a subgroup isomorphic to
GL(2,K), hence not solvable.

6.4 Filiform Lie Algebras of Rank 1 or 2

In this section we list filiform Lie algebras of nonzero rank. It is proven in [21]
that over K = C every filiform algebra of nonzero rank is isomorphic to one of the
algebras on the list.

Let L be a n-dimensional filiform K-Lie algebra whose rank r(L) is not 0. Thus
r(L) = 2 or 1 and

(1) If r(L) = 2, L is isomorphic to

(a) Ln, n ≥ 3

[X1,Xi ] = Xi+1, 1 ≤ i ≤ n− 1

(b) Qn, n = 2m, m ≥ 3

[Y1, Yi ] = Yi+1, 1 ≤ i ≤ n− 2,
[Yi, Yn−i+1] = (−1)i+1Yn, 2 ≤ 1 ≤ m

(2) If r(L) = 1, L is isomorphic to

(a) Apn(α1, . . . , αt ), n ≥ 4, t = [ n−p2 ], 1 ≤ p ≤ n− 4

[X1,Xi ] = Xi+1, 1 ≤ i ≤ n− 1,
[Xi,Xi+1] = αi−1X2i+p, 2 ≤ i ≤ t,
[Xi,Xj ] = ai−1,j−1Xi+j+p−1, 2 ≤ i < j, i + j ≤ n− p + 1

(b) Bpn (α1, · · · , αt ), n = 2m, m ≥ 3, 1 ≤ p ≤ n− 5, t = [ n−p−3
2 ]

[Y1, Yi ] = Yi+1, 1 ≤ i ≤ n− 2,
[Yi, Yn−i+1] = (−1)i+1Yn, 2 ≤ i ≤ m
[Yi, Yi+1] = αi−1Y2i+p, 2 ≤ i ≤ t + 1
[Yi, Yj ] = ai−1,j−1Yi+j+p−1, 2 ≤ i < j, i + j ≤ n− p

In both cases
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⎧
⎨

⎩

ai,i = 0,
ai,i+1 = αi,
ai,j = ai+1,j + ai,j+1,

where {X1, . . . , Xn} is an adapted basis and {Y1, . . . , Yn} a quasi-adapted basis.
Note that if L is of the typeApn then gr L is of the type Ln. If L is of the type Bpn

then gr L is of the typeQn.

Remark.

• In this proposition, the basis used to define the brackets is not always an adapted
basis. More precisely, it is adapted for Lie algebras Ln and Akn, and it is not
adapted for Lie algebras Qn and Bkn . But if {Y1, . . . , Yn} is a quasi-adapted
basis, that is a basis which diagonalizes the semisimple derivations, then the basis
{X1 = Y1 − Y2,X2 = Y2, . . . , Xn = Yn} is adapted.

• In [21], the proof of the main result is given for K = C. Without any further
restrictions, we can extend this result to arbitrary fields K which are algebraically
closed and of characteristic 0. Since the proof is based on a simultaneous
reduction of a semisimple endomorphism and a nilpotent adjoint operator, this
result can be extended to any field K which contains the eigenvalues of the
semisimple endomorphism. Thus the result is true over any algebraically closed
field.

• In the statement of the above result in [21], there is a third family denotedCn. But
all the Lie algebras of this family are isomorphic to Qn. This error was noticed
after the publication of the paper (see also [20]).

6.5 Standard Gradings of Filiform Lie Algebras
of Nonzero Rank

In each of the four types of filiform algebras introduced in the previous section there
are standard gradings, as follows.

(1) If L = Ln, then L = ⊕
(a,b)∈Z2 L(a,b) where L(a,b) = {0} except L(1,0) =

〈X1〉, L(s−2,1) = 〈Xs〉, for all s = 2, . . . , n.
(2) If L = Qn, then L = ⊕

(a,b)∈Z2 L(a,b) where L(a,b) = {0} except L(1,0) =
〈(X1 +X2)〉, L(s−2,1) = 〈Xs〉, for s = 2, . . . , n− 1, L(n−3,2) = 〈Xn〉.

(3) If L = Apn , then L =⊕a∈ZLa where La = {0} except L1 = 〈X1〉, Ls+p−1 =
〈Xs〉, for s = 2, . . . n.

(4) If L = Bpn , then L = ⊕a∈Z La where La = {0} except L1 = 〈(X1 + X2)〉,
Ls+p−1 = 〈Xs〉, for s = 2, . . . , n− 1, Ln+2p−1 = 〈Xn〉,

where {X1, · · · ,Xn} is an adapted basis. Our main result says the following.

Theorem 6.3. Let L be a finite-dimensional filiform K-algebra of nonzero rank r
over an algebraically closed field K of characteristic 0. If G is an abelian finitely
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generated group, then anyG-grading of L is a coarsening of a standard grading by
Z
r . The same result is true for the filiform Lie algebras of the types L,Q,A,B over

an algebraically closed field of characteristic p >, provided G has no elements of
order p.

Proof. Each of the four cases above gives rise to a maximal torus D in Aut L. To
describeD we only need to indicate the action of an element ofD on the generators
of L, which will be X1 and X2 in the cases of Ln and An or X1 +X2 and X2 in the
cases ofQn and Bn

(1) If L = Ln, then D = {ϕu,t | u, t ∈ K
×} where ϕu,t (X1) = uX1, ϕu,t (X2) =

tX2.
(2) If L = Qn, then D = {ϕu,t | u, t ∈ K

×} where ϕu,t (X1 +X2) = u(X1 + X2),
ϕu,t (X2) = tX2.

(3) If L = Apn , thenD = {ϕu |u ∈ K
×} where ϕu(X1) = uX1, ϕu(X2) = up+1X2.

(4) If L = Bpn , then D = {ϕu | u ∈ K
×} where ϕu(X1 + X2) = u(X1 + X2),

ϕu(X2) = up+1X2. ��
Lemma 6.1. In each of the four cases in Theorem 6.3, the centralizer ofD is equal
to D.

Proof. If L is of the type Ln, then we have to determine all ϕ ∈ Aut L such that
ϕu,tϕ = ϕϕv,s , for all u, t, v, s ∈ K

×. Notice that ϕu,t (X1) = uX1 and ϕu,t (Xi) =
ui−2tXi , for all i ≥ 2. Now let ϕ(Xi) = ∑j≥i ajiXj , for i = 1, 2, . . . , n. Then

ϕu,tϕ(X1) = a11uX1 +∑j≥2 aiju
j−2tXj whereas ϕϕv,s(X1) = ∑

j≥1 aij vXj .

Also, ϕu,tϕ(Xi) = ∑j≥i aij uj−2tXj whereas ϕϕv,s(Xi) = ∑j≥i aij vi−2sXj , if
i ≥ 2. Thus we have a11u = a11v and since ϕ is a triangular automorphism, a11 �=
0, hence v = u. Similarly, comparing ϕu,tϕ(X2) and ϕϕv,s(X2), we obtain s = t .
Thus the normalizer ofD is equal to its centralizer. Now we have aj1(u

j−2t −u) =
0, for all j �= 1 and aji(uj−2t − ui−2t) = 0, for all j �= i. Here u, t are arbitrary
elements of an infinite set K×. It follows that all aji are zero as soon as j �= i. Notice
that in any case it follows from [X1,Xi ] = Xi+1 for i ≥ 2, that aii = ai−2

11 a22. As
a result, ϕ = ϕa11,a22 , proving that the normalizer of D is indeed,D itself.

Now assume L is of the type Qn. Then, instead of comparing the values of the
sides of ϕu,tϕ = ϕϕs,v at X1,X2, . . . , Xn we can compare them on the quasi-
adapted basis X1 + X2,X2, . . . , Xn. Then we obtain aji = 0, for j �= i, i ≥ 2. At
the same time,

ϕ(X1 +X2) = a11X1 +
∑

j≥2

(aj1 + aj2)Xj = a11(X1 +X2)+ (a21 + a22

+ a11)X2 +
∑

j≥3

(aj1 − aj2)Xj .

Applying the same argument, as before, we obtain aj1 = aj2 = 0, for j ≥ 3 and
a21 = −a11 − a22. Hence ϕ(X1 + X2) = a11(X1 + X2). Thus, ϕ = ϕa11,a22 , as
previously.
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Next, assume L is of one of the types Apn , where p ≥ 1. In this case we can
repeat the argument of the case Ln, bearing in mind that t = up+1. Then we will
have equations aj1(u

j−2up+1 − u) = 0, or aj1(u
j+p−2 − 1) = 0, for all j �= 1 and

aji(u
j−2up+1 − ui−2up+1) = 0, or aji(uj − ui) = 0 for all j �= i and all u ∈ K

×.
Since j +p−2 �= 0, we again can make the same conclusion aji = 0, for all j �= i.

The case Bpn , where k ≥ 1, is reduced to the case Qn in the same manner as Apn
to Ln.

Thus the proof of our lemma is complete. ��
To complete the proof of Theorem 6.3, we need only to refer to Theorem 2.3

from the Introduction.
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1 Introduction

1.1 Cohomology Bounds

Let k be a field, let S be a finite group, and let V be an absolutely irreducible kS-
module on which S acts faithfully. In 1986, Guralnick conjectured the existence
of a universal upper bound, independent of k, S, or V , for the dimension of the
first cohomology group H1(S, V ) [11]. Based on the evidence available at the
time, Guralnick suggested that a suitable upper bound might be 2, though later
work by Scott and his student McDowell showed that if S = PSL6(Fp) with p
sufficiently large, then there exists an absolutely irreducible kS-module V on which
S acts faithfully with dim H1(S, V ) = 3 [24]. Still, the existence of some universal
upper bound remained a plausible idea, and the best guess for a particular bound
remained 3 until the recent American Institute of Mathematics (AIM) workshop
“Cohomology bounds and growth rates” in June 2012.

As reported by AIM and the workshop organizers [12], on day 3 of the
workshop, Scott reported on calculations conducted by his student Sprowl [25],
from which they could deduce the existence of 4- and 5-dimensional examples
for H1(S, V ) when S = PSL7(Fp) with p sufficiently large. These calculations
were independently confirmed by Lübeck, who subsequently showed that large-
dimensional examples also arise when S = G(Fp) is a finite group of Lie type
with underlying root system of type E6 or F4. Among all the dimensions computed
during and in the weeks after the workshop, the largest was dim H1(S, V ) = 469
for S = PSL8(Fp) with p some sufficiently large prime number. These particular
large-dimensional examples do not disprove Guralnick’s conjecture, but they do
make it seem less likely that any universal upper bound exists.

Even if no universal upper bound exists for the dimensions of the cohomol-
ogy groups H1(S, V ), the computer calculations of Scott, Sprowl, and Lübeck
demonstrate how, by exploiting connections between the cohomology of semisimple
algebraic groups and the combinatorics of Kazhdan–Lusztig polynomials, it is
possible to obtain much information about the size of H1(S, V ) when S is a finite
group of Lie type.

Indeed, a thread of research leading up to the 2012 AIM workshop, and since, has
been the desire to obtain, or show the existence of, bounds on the dimensions of the
cohomology groups Hm(G(Fq), V ) that depend only on the (rank of the) underlying
root system. Specifically, let G be a simple simply-connected algebraic group over
an algebraically closed field k of characteristicp > 0. AssumeG is defined and split
over Fp. Given q = pr with r ≥ 1, let G(Fq) be the finite subgroup of Fq -rational
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points in G. Cline, Parshall, and Scott [7] proved that there exists a constant C(Φ),
depending only on the underlying root system Φ, such that for each irreducible
kG(Fq)-module V ,

dim H1(G(Fq), V ) ≤ C(Φ). (1)

Arguing via different methods, Parker and Stewart [19] determined an explicit
(large) constant that can be used for C(Φ) in (1), and which is given by a formula
depending on the rank of Φ. On the other hand, if K is an algebraically closed
field of characteristic relatively prime to q , and if G′ is a finite simple group of Lie
type (defined over Fq ), then Guralnick and Tiep showed for each irreducible KG′-
module V that dim H1(G′, V ) ≤ |W | + e [15, Theorem 1.3]. Here W is the Weyl
group of G′, and e is the twisted Lie rank of G′. Except for certain small values of
q depending on the Lie type of G, the finite groupG(Fq) is a central extension of a
nonabelian simple group of Lie type; see [10, 2.2.6–2.2.7].

Parshall and Scott [21] later extended the Cline–Parshall–Scott result (1) to show
for each irreducible rationalG-module that

dim Hm(G,V ) ≤ c(Φ,m) (2)

for some constant c(Φ,m) depending only on Φ and the degree m. Then Bendel
et al. [3] succeeded in finding a simultaneous generalization of (1) and (2), showing
for each irreducible kG(Fq)-module V that

dim Hm(G(Fq), V ) ≤ C(Φ,m) (3)

for some constant C(Φ,m) depending only on Φ and m. Similar results were also
obtained in [21] bounding the higher extension groups ExtmG(V1, V2), and in [3]
bounding the groups ExtmG(Fq)(V1, V2), assuming that V1 and V2 are irreducible
rational G-modules (resp. kG(Fq)-modules), though some additional restrictions
on V1 are necessary when m > 1.

1.2 Bounds Based on Dimension

In a different direction from the results described above, in this paper we explore
bounds on the dimensions of cohomology groups that depend not on the rank of an
underlying root system, but on the dimension of the coefficient module. This is in
the spirit of a number of earlier general results providing bounds on the dimensions
of H1(S, V ) and H2(S, V ) for S a finite group. Specifically, for m = 1, Guralnick
and Hoffman proved:
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Theorem 1 ([13, Theorem 1]). Let S be a finite group, and let V be an irreducible
kS-module on which S acts faithfully. Then

dim H1(S, V ) ≤ 1
2 dimV.

In the case m = 2, the cohomology group H2(S, V ) parametrizes non-
equivalent group extensions of V by S, and has connections with the study of
profinite presentations. Guralnick, Kantor, Kassabov, and Lubotsky verified an
earlier conjecture of Holt by proving the following theorem:

Theorem 2 ([14, Theorem B]). Let S be a finite quasi-simple group, and let V be
a kS-module. Then

dim H2(S, V ) ≤ (17.5) dimV.

Guralnick et al. also showed that if S is an arbitrary finite group and if V is an
irreducible kS-module that is faithful for S, then dim H2(S, V ) ≤ (18.5) dimV [14,
Theorem C], but that in general no analogue of this result can hold for Hm(S, V )
whenm ≥ 3 [14, Theorem G]. Still, their work leaves open the possibility of finding
constants C(m) for eachm ≥ 3, such that dim Hm(S, V ) ≤ C(m) ·dimV when S is
restricted to a suitable collection of finite groups. If such constants exist, we say that
the cohomology groups Hm(S, V ), for S in the specified collection of finite groups
and V in the specified collection of kS-modules, are linearly bounded. We call the
existence of such constants the linear boundedness question for the given groups
and modules. More generally, we can consider the linear boundedness question
for collections of algebraic groups and for accompanying collections of rational
modules.

1.3 Overview

This paper investigates the linear boundedness question for the rational cohomology
of a simple simply-connected algebraic groupG over k that is defined and split over
Fp. In other words, we investigate, for m ≤ 3, upper bounds on the dimension of
Hm(G,M) forM a rationalG-module (which the reader may assume to always be
finite-dimensional, though we do not always make this assumption explicit, nor is it
necessary for the validity of every result in this paper).

In this context we are able to exploit the existence of a Borel subgroup B in G
(i.e., a maximal closed connected solvable subgroup in G) and a maximal torus T
in B. In Sect. 2 we apply intricate calculations of Bendel, Nakano, and Pillen [5],
Wright [27], and Andersen and Rian [2], summarized in Theorem 7, to prove for a
finite-dimensional rational B-moduleM that

dim Hm(B,M) ≤
{

dimM if m = 1 or 2,

2 dimM if m = 3 and p > h.
(4)
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Here h is the Coxeter number for Φ. For a rational G-moduleM , it is well known
that Hm(G,M) ∼= Hm(B,M), so the above inequalities yield general bounds on
the dimensions of rational cohomology groups for G when m equals 1, 2, or 3.
Further refinements are given in the casem = 1 through the explicit computation of
H1(B,μ) for μ a one-dimensional B-module.

If M is a rational T -module, then M admits a weight space decomposition
M = ⊕

λ∈X(T ) Mλ. Here X(T ) is the character group of T . In particular, let M
be a rationalG-module. Using the weight space decomposition ofM , in Sect. 3 we
establish bounds on the dimension of H1(G,M) in terms of the dimensions of the
weight spaces ofM .

This new idea gives much finer information than previous bounds depending
only on the dimension of M , since it enables us to produce formulas in terms
of the differences of dimensions of weight spaces. For example, given knowledge
about the weight space decomposition ofM , one can use these formulas in various
situations to prove the vanishing of cohomology groups. More generally, when
the dimension of M is relatively small, our bounds provide much more effective
estimates on the dimension of H1(G,M) than the estimates that arise through the
methods of Parshall and Scott [21] or of Parker and Stewart [19].

As an application of our techniques, in Sect. 4 we show how to obtain effective
bounds on the dimension of first cohomology groups for S = Σd , the symmetric
group on d letters. We also demonstrate for S = G(Fq), with q = pr and r
sufficiently large, that

dim Hm(G(Fq), V ) ≤

⎧
⎪⎪⎨

⎪⎪⎩

1
h

dimV if m = 1,

dimV if m = 2,

2 dimV if m = 3 and p > h

(5)

for each kG(Fq)-module V . Our results for m = 2 indicate that the bound given in
Theorem 2 can be significantly improved when S is a finite Chevalley group. We do
not treat the twisted finite groups of Lie type in this paper, but invite the reader to
consider how our results could be extended to those cases.

1.4 Notation

We generally follow the notation and terminology of [18]. Let k be an algebraically
closed field of characteristic p > 0. Let G be a simple simply-connected algebraic
group scheme over k, defined and split over Fp, and let F : G → G be the
standard Frobenius morphism on G. For r ≥ 1 and q = pr , denote by Gr the
r-th Frobenius kernel of G, and by G(Fq) the finite subgroup of Fq -rational points
in G, consisting of the fixed-points in G(k) of Fr . Then G(Fq) is the universal
version of an untwisted finite group of Lie type, as defined in [10, 2.2].
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Let T ⊂ G be a maximal torus, which we assume to be defined and split over
Fp. Let Φ be the set of roots of T in G, and let h be the Coxeter number of Φ.
Then Φ is an indecomposable root system. Fix a set of simple roots Δ ⊂ Φ, and
denote the corresponding sets of positive and negative roots in Φ by Φ+ and Φ−,
respectively. Write W = NG(T )/T for the Weyl group of Φ. Let B = T · U ⊂ G
be a Borel subgroup containing T , with unipotent radical U corresponding to Φ−.
Set B(Fq ) = B∩G(Fq), U(Fq) = U ∩G(Fq), and T (Fq) = T ∩G(Fq ). Similarly,
set Br = B ∩ Gr , Ur = U ∩ Gr , and Tr = T ∩ Gr . We write g = Lie(G) and
u = Lie(U) for the Lie algebras ofG andU , respectively. Then g and u are naturally
restricted Lie algebras. We write u(g) for the restricted enveloping algebra of g, and
U(g) for the ordinary universal enveloping algebra of g.

Let X(T ) be the character group of T . Write

X(T )+ =
{
λ ∈ X(T ) : (λ, α∨) ≥ 0 for all α ∈ Δ}

for the set of dominant weights in X(T ), and for r ≥ 1, write

Xr(T ) =
{
λ ∈ X(T )+ : (λ, α∨) < pr for all α ∈ Δ}

for the set of pr -restricted dominant weights in X(T ). For each λ ∈ X(T )+, let
H 0(λ) = indGB (λ) be the corresponding induced module, which has irreducible
socle socG H 0(λ) = L(λ). Each irreducible rational G-module is isomorphic to
L(λ) for some λ ∈ X(T )+. Since G is assumed to be simply-connected, the L(λ)
for λ ∈ Xr(T ) form a complete set of pairwise nonisomorphic irreducible kG(Fq)-
modules.

2 Bounds on Rational Cohomology Groups

2.1 Weight Spaces and B-Cohomology

The irreducible B-modules are one-dimensional and are identified with elements
of X(T ) via inflation from T to B. For a finite-dimensional rational B-module
M , the B-module composition factors of M can be read off with multiplicities
from its weight space decomposition. By considering the long exact sequence in
cohomology, it follows for each m ≥ 0 that one has the inequality

dim Hm(B,M) ≤∑μ∈X(T ) dimMμ · dim Hm(B,μ). (6)

Thus, if one can determine a bound on the dimension of Hm(B,μ) that depends
only on m and not on μ, then one can obtain a similar bound on the dimension
of Hm(B,M) that depends only on m and the dimension of M . In particular, if M
is a rational G-module considered also as a rational B-module by restriction, then
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one has H•(G,M) ∼= H•(B,M) by [18, II.4.7], so a bound on the dimension of
Hm(B,M) automatically yields a bound on the dimension of Hm(G,M).

For m = 1, we can use Andersen’s explicit computation of H1(B,μ) for each
μ ∈ X(T ), together with the formula (6), to give a general upper bound on
dim H1(B,M).

Theorem 3 ([1, Corollary 2.4]). Let μ ∈ X(T ). Then

H1(B,μ) ∼=
{
k if μ = −ptα for some α ∈ Δ and t ≥ 0,

0 otherwise.

Corollary 4. LetM be a finite-dimensional rational B-module. Then

dim H1(B,M) ≤
∑

α∈Δ,t≥0

dimM−ptα ≤ dimM.

In particular, ifM is a finite-dimensional rationalG-module, then

dim H1(G,M) ≤
∑

α∈Δ, t≥0

dimM−ptα.

2.2 Applications to G-Cohomology

We can now apply the results of the preceding section to give bounds on the
dimension of H1(G,M) for M a rational G-module, by considering the action of
the Weyl group on the set of weights ofM .

Theorem 5. LetM be a finite-dimensional rationalG-module. Then

dim H1(G,M) ≤ 1
h

dimM.

Proof. Recall that restriction from G to B induces an isomorphism H•(G,M) ∼=
H•(B,M). Then

dim H1(G,M) ≤∑α∈Δ, t≥0 dimM−ptα

by Corollary 4. Next, the set of weights of a rational G-module is invariant under
the action of the ambient Weyl groupW , and all roots inΦ of a given root length lie
in a single W -orbit. In particular, if t ≥ 0, and if α, β ∈ Φ are of the same length,
then dimM−ptα = dimM−ptβ . LetΦs (resp.Φl ) denote the set of short (resp. long)
roots in Φ, and set Δs = Δ ∩ Φs (resp. Δl = Δ ∩ Φl ). Then one can check that
|Φs | = h · |Δs | and |Φl | = h · |Δl |; cf. [16, Proposition 3.18] for the case of one root
length. Together these equalities imply that

∑
α∈Δ, t≥0 dimM−ptα ≤ 1

h
dimM . ��
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Corollary 6. LetM be a finite-dimensional rationalG-module. Then

dim H1(G,M) ≤ 1
2 dimM.

Proof. This follows from Theorem 5 since the Coxeter number is always at
least 2. ��

If M = L(λ) is an irreducible rational G-module, then we can use Theorem 1
to give an alternate proof of Corollary 6, as follows. To begin, we may assume
by the Linkage Principle that λ ∈ ZΦ, and also that λ �= 0, since L(0) = k

and H1(G, k) = 0 [18, II.4.11]. Next, choose r > 1 such that λ ∈ Xr(T ), and
set q = pr . Then L(λ) is an irreducible kG(Fq)-module, and the restriction map
H1(G,L(λ)) → H1(G(Fq), L(λ)) is injective by [8, 7.4]. Now write Z(G(Fq))
for the center of G(Fq). Since G is simply-connected (i.e., is of universal type),
G′(Fq) := G(Fq)/Z(G(Fq)) is a nonabelian finite simple group by [10, 2.2.6–
2.2.7]; this uses the fact that r > 1. Also, Z(G(Fq)) is a subgroup of Z(G) by
[10, 2.5.9]. Since Z(G) = ⋂

α∈Φ ker(α) ⊂ T acts trivially on L(λ) whenever
λ ∈ ZΦ, it follows that L(λ) is naturally a nontrivial irreducible module forG′(Fq).
In particular, G′(Fq) must act faithfully on L(λ). The group Z(G(Fq)) has order
prime to p, so it follows from considering the Lyndon–Hochschild–Serre spectral
sequence for the group extension 1 → Z(G(Fq)) → G(Fq) → G′(Fq) → 1 that
H1(G(Fq), L(λ)) ∼= H1(G′(Fq), L(λ)). Then dim H1(G(Fq), L(λ)) ≤ 1

2 dimL(λ)
by Theorem 1.

2.3 Bounds for Second and Third Cohomology Groups

Now we consider Hm(B,μ), Hm(B,M), and Hm(G,M) form equal to 2 or 3. First
recall the following results:

Theorem 7. Let μ ∈ X(T ). Then

(a) dim H2(B,μ) ≤ 1.
(b) If p > h, then dim H3(B,μ) ≤ 2.

Proof. For (a), see [5, Theorem 5.8] and [27, Theorem 4.1.1]. For (b), see [2,
Theorem 5.2]. ��

Applying (6) to the preceding theorem, and using the fact that H•(G,M) ∼=
H•(B,M) for each rationalG-moduleM , one obtains:

Corollary 8. LetM be a finite-dimensional rational B-module. Then

(a) dim H2(B,M) ≤ dimM .
(b) If p > h, then dim H3(B,M) ≤ 2 · dimM .

In particular, ifM is a finite-dimensional rationalG-module, then these inequalities
also hold with B replaced by G.
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As in Corollary 4, a stronger version of the above result can be obtained by
considering precisely which weights μ of M satisfy Hm(B,μ) �= 0. The results in
the corollary motivate posing the following question, an affirmative answer to which
would yield, for each m ≥ 1, upper bounds on the dimensions of Hm(B,M) and
Hm(G,M) for each finite-dimensional rationalG-moduleM .

Question 9 (Linear boundedness for Borel subgroups). For each m ≥ 1, does
there exist a constant C(m), depending onm but independent of the rank ofG or of
the weight μ ∈ X(T ), such that dim Hm(B,μ) ≤ C(m)?

2.4 Bounds for Finite Chevalley Groups

In this section we discuss some rough analogues for the finite subgroup G(Fq) of
G of the results in Sects. 2.2 and 2.3. While the bounds presented here are often
significantly worse than those given by Theorem 1, we point out that they can be
obtained using only purely elementary methods. Recall that p is nonsingular for G
if p > 2 when Φ is of type B, C, or F , and if p > 3 when Φ is of type G2.

Theorem 10. Let M be a finite-dimensional kG(Fq)-module, and suppose p is
nonsingular for G. Then

dim H1(G(Fq),M) ≤ r · |Δ| · dimM.

Proof. Recall that U(Fq) is a Sylow p-subgroup ofG(Fq) [10, 2.3.4]. In particular,
the index of U(Fq) in G(Fq) is prime to p, so restriction from G(Fq) to U(Fq)
defines an injection

H•(G(Fq),M) ↪→ H•(U(Fq),M).

SinceU(Fq) is a p-group, each irreducible kU(Fq)-module is isomorphic to k. Then
considering a U(Fq)-composition series forM , and using the long exact sequence
in cohomology, it follows by induction on the dimension ofM that

dim H1(U(Fq),M) ≤ dim H1(U(Fq), k) · dimM.

Now H1(U(Fq), k) identifies with the space of k-linear maps kU(Fq)ab → k. Here
U(Fq)ab is the abelianization of U(Fq). Since p is nonsingular, it follows from [10,
3.3.1] that U(Fq)ab ∼= (Fq)|Δ| as an abelian group. Specifically, U(Fq)ab identifies
with the direct product of the root subgroups in U(Fq) corresponding to simple
roots. Since q = pr , kFq = k⊗FpFq has k-dimension r . Then dim H1(U(Fq), k) =
r · |Δ|. ��



60 C.P. Bendel et al.

More generally, one can argue as in the proof of the theorem to show for each
m ≥ 0 that

dim Hm(G(Fq),M) ≤ dim Hm(U(Fq), k) · dimM.

In turn, the dimension of Hm(U(Fq), k) is bounded above by the dimension of the
cohomology group Hm(u(u⊕r ), k) for the restricted enveloping algebra u(u⊕r ); see
[26, 2.4].

3 Bounds Depending on Weight Space Multiplicities

3.1 Bounds for Simple Modules

Next we explore some bounds on dim H1(G,M) that depend on weight space
multiplicities.

Lemma 11. Let λ ∈ X(T )+. Then dim H1(G,L(λ)) ≤ dimH 0(λ)0.

Proof. If λ = 0, then the result follows because H 0(0) = L(0) = k and
H1(G, k) = 0. So assume that λ �= 0. There exists a short exact sequence of
G-modules

0 → L(λ)→ H 0(λ)→ Q→ 0.

Since H1(G,H 0(λ)) = 0 by [18, II.4.13], and since HomG(k,L(λ)) = 0 by the
assumption λ �= 0, the corresponding long exact sequence in cohomology yields
H1(G,L(λ)) ∼= HomG(k,Q). Now the multiplicity of the trivial module in socGQ
is bounded above by the composition multiplicity of the trivial module in H 0(λ),
which is bounded above by the weight space multiplicity dimH 0(λ)0. ��

In some cases we can improve the conclusion of the lemma to a strict inequality.
Suppose that the set of weights of T in L(λ) is equal to that of H 0(λ). By [23], this
condition is known to hold if λ ∈ X1(T ) and p is good for Φ. Recall that p is good
forΦ providedp > 2 whenΦ is of typeBn, Cn, orDn; p > 3 whenΦ is of type F4,
G2, E6, orE7; and provided p > 5 whenΦ is of typeE8. By the Linkage Principle,
H1(G,L(λ)) = 0 unless λ ∈ ZΦ. It is well known that the set of weights of H 0(λ)

is saturated. Thus, if λ ∈ ZΦ ∩X(T )+, then 0 is a weight of H 0(λ), and hence also
of L(λ). In particular, dimQ0 < dimH 0(λ)0. Since dim HomG(k,Q) is bounded
above by dimQ0, we obtain in this case that dim H1(G,L(λ)) < dimH 0(λ)0.
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3.2 Relating G-Cohomology to g-Cohomology

We now present a preliminary result that relates H1(G,M) to cohomology for g =
Lie(G), by way of cohomology for the Frobenius kernel G1. Write H•(g,M) =
H•(U(g),M) for the ordinary Lie algebra cohomology of g with coefficients in the
g-moduleM . IfM is a rationalG-module, then the adjoint action ofG on g, together
with the given action ofG onM , induce a rationalG-module structure on H•(g,M).

Lemma 12. LetM be a rationalG-module, and suppose thatMG1 = 0. Then

(a) Restriction fromG toG1 induces an isomorphism H1(G,M) ∼= H1(G1,M)
G/G1 .

(b) There exists a G-equivariant isomorphism H1(G1,M) ∼= H1(g,M).
(c) H1(G,M) ∼= H1(g,M)G.

Proof. Consider the Lyndon–Hochschild–Serre spectral sequence

E
i,j

2 = Hi (G/G1,Hj (G1,M))⇒ Hi+j (G,M), (7)

and its associated five-term exact sequence

0 → E
1,0
2 → H1(G,M)→ E

0,1
2 → E

2,0
2 → H2(G,M). (8)

Since HomG1(k,M) = MG1 = 0, one has Ei,02 = 0 for all i ≥ 0. Then
(8) yields that restriction from G to G1 defines an isomorphism H1(G,M) ∼=
H1(G1,M)

G/G1 . This proves (a).
For (b), recall that the representation theory of the restricted enveloping algebra

u(g) is naturally equivalent to that of the Frobenius kernel G1 [18, I.9.6]. We
thus identify H1(G1,M) and H1(u(g),M) via this equivalence. Since u(g) is
a homomorphic image of U(g), and since the quotient map U(g) → u(g) is
compatible with the adjoint action of G, there exists a corresponding G-module
homomorphism H1(G1,M)→ H1(g,M), which by [18, I.9.19(1)] fits into an exact
sequence

0 → H1(G1,M)→ H1(g,M)→ Homs (g,Mg). (9)

Here, given a vector space V , Homs(g, V ) denotes the set of additive functions
ϕ : g → V satisfying the property ϕ(ax) = apϕ(x) for all a ∈ k and x ∈ g.
SinceM is a rationalG-module, it is in particular a restricted g-module, i.e., a u(g)-
module. Then Mg = MU(g) = Mu(g) = MG1 . This space is zero by assumption,
so we conclude that H1(G1,M) ∼= H1(g,M). This proves (b). Now (c) follows
immediately from (a) and (b). ��

Replacing G by B in the previous proof, one obtains the following lemma:
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Lemma 13. Let M be a rational B-module, and suppose that MB1 = 0. Then
restriction from B to B1 induces an isomorphism H1(B,M) ∼= H1(B1,M)

B/B1 . In
particular, restriction from B toU1 defines an injection H1(B,M) ↪→ H1(U1,M)

T .

Proof. It remains to explain the last statement in the lemma. Since B1 is the
semidirect product of U1 and the diagonalizable group scheme T1, it follows that
restriction from B1 to U1 defines an isomorphism H•(B1,M) ∼= H•(U1,M)

T1

[18, I.6.9]. Then restriction from B to U1 defines an isomorphism H1(B,M) ∼=
H1(U1,M)

B/U1 , and the latter space is a subspace of H1(U1,M)
T . ��

3.3 Bounds Based on Weight Spaces

The results in the preceding section can be employed to establish upper bounds for
H1(G,M) in terms of specific weight space multiplicities.

Proposition 14. Let M be a rational B-module, and suppose that MB1 = 0. Let
Δ′ ⊆ Φ+ be a set of roots such that the root spaces u−α for α ∈ Δ′ generate u as a
Lie algebra. Then

dim H1(B,M) ≤∑α∈Δ′ dimM−α − dimM0.

Proof. First, H1(B,M) injects into H1(U1,M)
T by Lemma 13. Next, replacing G

by U in (9), there exists a B-equivariant injection H1(U1,M) ↪→ H1(u,M). Now
recall that H1(u,M) fits into an exact sequence

0 → Inn(u,M)→ Der(u,M)→ H1(u,M)→ 0. (10)

Here Der(u,M) is the space of all Lie algebra derivations of u into M , and
Inn(u,M) is the space of all inner derivations of u into M . Since M is a rational
B-module, the conjugation action of B on u makes (10) into an exact sequence of
rational B-modules. Then applying the exact functor (−)T to (10), one obtains

dim H1(B,M) ≤ dim H1(u,M)T = dim Der(u,M)T − dim Inn(u,M)T .

As rational B-modules, Inn(u,M) ∼= M/Mu. Observe that (Mu)T = (MU1)T ⊆
MB1 = 0. Then it follows that Inn(u,M)T ∼= (M/Mu)T ∼= M0. Finally, a Lie
algebra derivation u → M is completely determined by its action on a set of
Lie algebra generators for u, say, the root subspaces u−α for α ∈ Δ′. Moreover,
a T -invariant derivation u → M must map u−β into M−β for each β ∈ Φ+.
Then dim Der(u,M)T ≤ ∑

α∈Δ′ dimM−α . Combining this with the previous
observations, we obtain the inequality in the statement of the proposition. ��
Remark 15. If p is nonsingular forG, then one can take Δ′ = Δ in Proposition 14.
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The next result is an analogue for algebraic groups of [6, Corollary 2.9]. Let α0
be the highest short root in Φ, and let α̃ be the highest long root in Φ.

Corollary 16. Let M be a rational G-module, and suppose that MB1 = 0. Let
Δ′ ⊆ Φ+ be a set of roots such that the root spaces u−α for α ∈ Δ′ generate u as a
Lie algebra. Then

dim H1(G,M) ≤∑α∈Δ′ dimMα − dimM0.

In particular, suppose p is nonsingular forG. Then

dim H1(G,M) ≤ |Δs | · dimMα0 + |Δl | · dimMα̃ − dimM0,

where by convention we consider all roots in Φ as long, and set Δs = ∅, whenever
Φ has roots of only a single root length.

Proof. Observe that if the root spaces u−α for α ∈ Δ′ generate u as a Lie
algebra, then so do the root spaces uw0α for α ∈ Δ′. Here w0 ∈ W is the
longest element of W . One has H•(G,M) ∼= H•(B,M), so dim H1(G,M) ≤∑
α∈Δ′ dimMw0α − dimM0. But dimMλ = dimMwλ whenever w ∈ W , so we

conclude that dim H1(G,M) ≤ ∑
α∈Δ′ dimMα − dimM0. In particular, if p is

nonsingular for G, then we can take Δ′ = Δ. Since all roots of a given root
length in Φ are conjugate under W , we then have dimMα = dimMα0 whenever
α ∈ Δs , and dimMα = dimMα̃ whenever α ∈ Δl , so that

∑
α∈Δ dimMα =

|Δs | · dimMα0 + |Δl | · dimMα̃. ��
The bounds established in Corollary 16 can be improved if we assume that

the Weyl group has order prime to p. For the next theorem, recall that if M is a
rational G-module, then the 0-weight space M0 of M is naturally a module for
W = NG(T )/T .

Theorem 17. Let M be a rational G-module. Assume that MG1 = 0, and that
p � |W |. Then

dim H1(G,M) ≤ dimMα0 + dimMα̃ − dimMW0 ,

where by convention we sayMα0 = 0 if Φ has roots of only a single root length. In
particular,

dim H1(G,M) ≤
{

1
|Φ| · dimM if Φ has one root length,
2
|Φ| · dimM if Φ has two root lengths.

Proof. The second statement follows from the first by applying the argument given
in the proof of Theorem 5, so we proceed to prove the first statement. Set N =
NG(T ), and observe that the fixed-point functor (−)N factors as the composition of
the exact functor (−)T with the functor (−)N/T = (−)W , which is also exact by the
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assumption that the finite group W has order prime to p. Then (−)N is exact. One
has H1(G,M) ∼= H1(g,M)G by Lemma 12(c), so in particular dim H1(G,M) ≤
dim H1(g,M)N . Now applying the exact functor (−)N to the exact sequence of
rationalG-modules

0 → Inn(g,M)→ Der(g,M)→ H1(g,M)→ 0,

one obtains

dim H1(g,M)N = dim Der(g,M)N − dim Inn(g,M)N .

As a rational G-module, Inn(g,M) ∼= M/Mg. But Mg = MG1 = 0 by
assumption, so

dim H1(g,M)N = dim Der(g,M)N − dimMN.

Observe thatMN = (MT )W = MW0 . Also, anN-invariant derivation δ : g→ M

is in particular T -invariant, and so must map gβ into Mβ for each β ∈ Φ. All
roots of a given length in Φ are conjugate under W , so it follows that an N-
invariant derivation δ is uniquely determined by its values on any single root space
in g if Φ has only one root length, and by its values on any pair of root spaces
in g corresponding to a long root and a short root if Φ has two root lengths. In
particular, dim Der(g,M)N ≤ dimMα0 + dimMα̃, where by convention we say
that Mα0 = 0 if Φ only has roots of a single root length. Combining this and the
preceding observations, one obtains the first statement of the theorem. ��
Remark 18. The assumption MB1 = 0, and hence also MG1 = 0, is satisfied if
M = L(λ) for some λ ∈ X(T )+ with λ /∈ pX(T ). Indeed, in this case λ =
λ0 + pλ1 for some 0 �= λ0 ∈ X1(T ) and some λ1 ∈ X(T )+. Then L(λ) ∼= L(λ0)⊗
L(λ1)

(1) by the Steinberg tensor product theorem, so that L(λ)B1 ∼= L(λ0)
B1 ⊗

L(λ1)
(1). NowL(λ0)

U1 = L(λ0)w0λ0 (cf. [18, II.3.12]), so it follows thatL(λ0)
B1 =

(L(λ0)
U1)T1 = 0 because w0λ0 /∈ pX(T ) by the condition 0 �= λ0 ∈ X1(T ).

If λ = 0, then L(λ) = k, and one has H1(G, k) = 0 and H1(g, k) ∼=
(g/[g, g])∗ = 0, so that Lemma 12(c) holds in this case. If also p �= 2 when Φ is
of type Cn, then H1(G1, k) = 0 [18, II.12.2], which recovers all parts of Lemma 12
when M = k. Now let λ ∈ X(T )+ ∩ pX(T ) be nonzero. Then λ = psμ for
some μ ∈ X(T )+ with μ /∈ pX(T ), and L(λ) ∼= L(μ)(s) is trivial as a Gs-module.
Suppose that p �= 2 ifΦ is of typeCn. Then H1(Gs, L(λ)) ∼= H1(Gs, k)⊗L(λ) = 0
by [18, II.12.2], and HomGs (k, L(λ)) ∼= L(λ), so replacing G1 by Gs in (7), the
corresponding five-term exact sequence shows that the inflation map induces an
isomorphism

H1(G/Gs,L(μ)
(s)) ∼= H1(G,L(λ)).
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IdentifyingG/Gs with the Frobenius twistG(s) ofG, we can make the identification

H1(G/Gs,L(μ)
(s)) ∼= H1(G,L(μ)).

Then there exists a vector space isomorphism H1(G,L(λ)) ∼= H1(G,L(μ)). This
shows that, assuming that p �= 2 when Φ is of type Cn, Corollary 16 and
Theorem 17 can still be applied to provide bounds on dim H1(G,L(λ)) when
λ ∈ pX(T ).
Remark 19. The results in Sects. 3.2 and 3.3 remain true, with exactly the same
proofs, under the weaker assumption thatG is a connected reductive algebraic group
over k that is defined and split over Fp, that T ⊂ G is a maximal split torus in G,
that the root systemΦ of T inG is indecomposable, thatB ⊂ G is a Borel subgroup
of G, etc. In particular, the results hold forG = GLn(k) when n ≥ 2.

4 Applications

4.1 Bounds for Σd

In this section only, let S = Σd be the symmetric group on d letters (d ≥ 2), and
let G = GLd(k) be the general linear group. It is well known, from considering
commuting actions on tensor space, that there are close connections between the
representation theories of S andG.

Let T ⊂ G be the subgroup of diagonal matrices, and write X(T ) =⊕d
i=1 Zεi

for the character group of T . Here εi : T → k is the i-th diagonal coordinate
function on T . Recall that the set X(T )+ of dominant weights on T consists of the
weights λ = ∑d

i=1 aiεi ∈ X(T ) with ai − ai+1 ≥ 0 for each 1 ≤ i < d . Then
identifying a partition λ = (λ1, λ2, . . .) of d with the weight λ =∑d

i=1 λiεi , the set
of partitions of d is naturally a subset ofX(T )+. Moreover, this subset parametrizes
the irreducible degree-d polynomial representations of G. Recall that a partition
λ = (λ1, λ2, . . .) is p-restricted if λi − λi+1 < p for each i ≥ 1, and is p-regular if
no nonzero part λi of the partition is repeated p or more times. Then the irreducible
kΣd -modules are indexed by the set Λres of p-restricted partitions of d . Given λ ∈
Λres, let Dλ be the corresponding irreducible kΣd -module, and write sgn for the
sign representation of Σd . Given a partition λ, write λ′ for the transpose partition.
Then the irreducible kΣd -modules can be indexed by p-regular partitions by setting
Dλ

′ = Dλ ⊗ sgn for each λ ∈ Λres.
Doty, Erdmann, and Nakano constructed a spectral sequence relating the coho-

mology theories forGLd andΣd , showing for p ≥ 3 and λ ∈ Λres that

H1(Σd,D
λ′ ) = H1(Σd,Dλ ⊗ sgn) ∼= Ext1G(δ,L(λ)), (11)
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where δ = (1d) is the one-dimensional determinant representation of GLd [9,
Theorem 5.4(a)]; cf. also [20, Theorem 4.6(b)]. One can now apply Corollary 16
to obtain the following bound for the first cohomology of symmetric groups.

Theorem 20. Suppose p ≥ 3, and let λ ∈ Λres with λ �= (1d). Then

dim H1(Σd,D
λ′) ≤∑α∈Δ dimL(λ)δ+α − dimL(λ)δ.

Proof. One has H1(Σd,D
λ′) ∼= Ext1G(δ,L(λ)) by (11). Then by Corollary 16 and

Remark 19,

dim Ext1G(δ,L(λ)) = dim H1(G,L(λ) ⊗−δ)
≤ ∑α∈Δ dim(L(λ)⊗−δ)α − dim(L(λ)⊗−δ)0
=∑α∈Δ dimL(λ)δ+α − dimL(λ)δ.

��
We present the following example to illustrate how Theorem 20 can provide

a more effective upper bound on cohomology than earlier established bounds
involving dimDλ

′
.

Example 21. Let char(k) = p ≥ 3, and consider S = Σd with p | d . In this case

Δ = {α1, α2, . . . , αd−1} = {ε1 − ε2, ε2 − ε3, . . . , εd−1 − εd} ,

and δ = (1, 1, . . . , 1). Set λ = (2, 1, 1, . . . , 1, 0). Then λ′ = (d − 1, 1, 0, . . . , 0).
Moreover, L(λ) identifies with the (d2 − 2)-dimensional irreducibleG = GLd(k)-
module that can be realized as a quotient of the adjoint representation ofG tensored
by δ. Also, observe that dimDλ = dimDλ

′ = dimL(2, 1, . . . , 1, 0)δ = d− 2. Now
by Theorem 20,

dim H1(Σd,D
(d−1.1,0,...,0)) ≤∑α∈Δ dimL(λ)δ+α−dimL(λ)δ = |Δ|−(d−2) = 1.

This bound is an equality, because the (d − 1)-dimensional Specht module Sλ
′

is a
nonsplit extension of Dλ

′
by the trivial module k [17, Theorem 24.1]. The equality

dim Ext1G(δ,L(λ)) = 1 can also be seen from observing that the Weyl moduleΔ(λ)
for G is a nonsplit extension of L(λ) by δ. On the other hand, for p ≥ 5, we claim
that Theorem 1 yields the (weaker) estimate

dim H1(Σd,D
(d−1,1,0,...,0)) ≤ 1

2 dimD(d−1,1,0,...,0) = 1
2 (d − 2).

In order to apply Theorem 1, we must explain for p ≥ 5 why the action of Σd on
Dλ

′
is faithful. Write ρ : Σd → GL(Dλ

′
) for the map defining the representation

of Σd on Dλ
′
, and write Ad for the alternating group on d letters. Observe that

ker(ρ) ∩ Ad is a normal subgroup of the nonabelian simple group Ad , so either
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ker(ρ) ∩ Ad = {1}, or ker(ρ) ∩ Ad = Ad . The latter equality is false, because
Ad �⊂ ker(ρ), so we have ker(ρ)∩Ad = {1}. This implies that ker(ρ) contains only
odd permutations and the identity. Since the product of any two odd permutations is
an element of Ad , and since Ad ∩ ker(ρ) = {1}, we conclude that in fact ker(ρ)
can contain at most two elements, namely, the identity and an odd permutation
that is equal to its own inverse. Subgroups of this type are not normal in Σd ,
whereas ker(ρ) is normal in Σd , so we conclude that ker(ρ) = {1}. Thus, Dλ

′
is

an irreducible faithful Σd -module.

4.2 Bounds for G(Fq)

Assume once again that G is as defined in Sect. 1.4. One can apply Cline, Parshall,
Scott, and van der Kallen’s [8] rational and generic cohomology results to identify
certain cohomology groups for G(Fq) with cohomology groups for G. Then
applying our results on the dimensions of rational cohomology groups, one can
obtain corresponding bounds for G(Fq). For sufficiently large q , this approach can
be used to recover, and in general, improve upon, the bounds in Theorem 1. The
following theorem demonstrates this approach.

Theorem 22. Let r ≥ 2, and set s = [ r2
]
. Assume that ps−1(p − 1) > h. Then for

each finite-dimensional kG(Fq)-module V , one has

dim H1(G(Fq), V ) ≤ 1
h

dimV.

Proof. Arguing by induction on the composition length, and using the long exact
sequence in cohomology, it suffices to assume that V is an irreducible kG(Fq)-
module. Then V = L(λ) for some λ ∈ Xr(T ). Write λ in the form λ =
λ0 + psλ1 with λ0 ∈ Xs(T ) and λ1 ∈ X(T )+, and set λ̃ = λ1 + pr−sλ0. Then
L(λ̃) ∼= L(λ)(r−s) as kG(Fq)-modules. In particular, dimL(λ) = dimL(λ̃). Now
by [4, Theorem 5.5], the stated hypotheses imply that either H1(G(Fq), L(λ)) ∼=
H1(G,L(λ)), or H1(G(Fq), L(λ)) ∼= H1(G,L(λ̃)). In either case, the inequality
H1(G(Fq), L(λ)) ≤ 1

h
dimL(λ) then follows from Theorem 5. ��

If V is an irreducible kG(Fq)-module and if the Weyl groupW is of order prime
to p, then the inequality in Theorem 22 can be improved by applying Theorem 17.

4.3 Bounds for Degrees 2 and 3

For higher degrees, one can make use of recent work of Parshall, Scott, and Stewart
[22] to apply the approach of the previous section. Given a positive integer n, they
show that there exists an integer r0, depending on n and on the underlying root
system Φ, such that if r ≥ r0, q = pr , and λ ∈ Xr(T ), then Hn(G(Fq), L(λ)) ∼=
Hn(G,L(λ′)); see [22, Theorem 5.8]. Here λ′ is a certain “q-shift” of λ, similar
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to the weight λ̃ used in the previous proof. Of importance for our purposes is that
dimL(λ′) = dimL(λ). With this, one can recover Theorem 22 for arbitrary primes,
but at the expense of requiring a potentially larger r . For degrees 2 and 3, one can
use this idea along with Corollary 8 to improve, for sufficiently large r , upon the
bound in Theorem 2. As above, the proofs of the following two theorems reduce to
the case where V is an irreducible kG(Fq)-module.

Theorem 23. There exists a constant D(Φ, 2), depending on Φ, such that if r ≥
D(Φ, 2) and if q = pr , then, for each finite-dimensional kG(Fq)-module V , one
has

dim H2(G(Fq), V ) ≤ dimV.

Theorem 24. Suppose p > h. Then there exists a constant D(Φ, 3), depending
on Φ, such that if r ≥ D(Φ, 3) and if q = pr , then, for each finite-dimensional
kG(Fq)-module V , one has

dim H3(G(Fq), V ) ≤ 2 · dimV.

The constants D(Φ, 2) and D(Φ, 3) in the previous two theorems can be
determined recursively. This is done in the proofs of Theorems 5.2 and 5.8 in [22].
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Representations of the General Linear Lie
Superalgebra in the BGG Category O

Jonathan Brundan

Abstract This is a survey of some recent developments in the highest weight
repesentation theory of the general linear Lie superalgebra gln|m(C). The main focus
is on the analog of the Kazhdan–Lusztig conjecture as formulated by the author in
2002, which was finally proved in 2011 by Cheng, Lam and Wang. Recently another
proof has been obtained by the author joint with Losev and Webster, by a method
which leads moreover to the construction of a Koszul-graded lift of category O for
this Lie superalgebra.

Key words General linear Lie superalgebra • Category O
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1 Introduction

The representation theory of the general linear Lie superalgebra (as well as the other
classical families) was first investigated seriously by Victor Kac [30, 31] around
1976. Kac classified the finite-dimensional irreducible representations and proved
character formulae for the typical ones. Then in the 1980s work of Sergeev [44]
and Berele–Regev [5] exploited the superalgebra analog of Schur–Weyl duality to
work out character formulae for the irreducible polynomial representations. It took
another decade before Serganova [43] explained how the characters of arbitrary
finite-dimensional irreducible representations could be approached. Subsequent
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work of the author and others [10, 16, 17, 47] means that by now the category
of finite-dimensional representations is well understood (although there remain
interesting questions regarding the tensor structure).

One can also ask about the representation theory of the general linear Lie
superalgebra in the analog of the Bernstein–Gelfand–Gelfand category O from [7].
This is the natural home for the irreducible highest weight representations. The
classical theory of category O for a semisimple Lie algebra, as in for example
Humphreys’ book [27] which inspired this article, sits at the heart of modern
geometric representation theory. Its combinatorics is controlled by the underlying
Weyl group, and many beautiful results are deduced from the geometry of the
associated flag variety via the Beilinson–Bernstein localization theorem [3]. There
still seems to be no satisfactory substitute for this geometric part of the story for
gln|m(C) but at least the combinatorics has now been worked out: in [10] it was
proposed that the combinatorics of the Weyl group (specifically the Kazhdan–
Lusztig polynomials arising from the associated Iwahori–Hecke algebra) should
simply be replaced by the combinatorics of a canonical basis in a certain Uqsl∞-
module V⊗n⊗W⊗m. This idea led in particular to the formulation of a superalgebra
analog of the Kazhdan–Lusztig conjecture.

The super Kazhdan–Lusztig conjecture is now a theorem. In fact there are two
proofs, first by Cheng, Lam and Wang [18], then more recently in joint work of
the author with Losev and Webster [15]. In some sense both proofs involve a
reduction to the ordinary Kazhdan–Lusztig conjecture for the general linear Lie
algebra. Cheng, Lam and Wang go via some infinite dimensional limiting versions
of the underlying Lie (super)algebras using the technique of “super duality,” which
originated in [17, 22]. On the other hand the proof in [15] involves passing from
category O for gln|m(C) to some subquotients which, thanks to results of Losev
and Webster from [36], are equivalent to sums of blocks of parabolic category O
for some other general linear Lie algebra. The approach of [15] allows also for
the construction of a graded lift of O which is Koszul, in the spirit of the famous
results of Beilinson, Ginzburg and Soergel [4] in the classical setting. The theory of
categorification developed by Rouquier [42] and others, and the idea of Schur–Weyl
duality for higher levels from [14], both play a role in this work.

This article is an attempt to give a brief overview of these results. It might serve
as a useful starting point for someone trying to learn about the combinatorics of
category O for the general linear Lie superalgebra for the first time. We begin
with the definition of O and the basic properties of Verma supermodules and
their projective covers. Then we formulate the super Kazhdan–Lusztig conjecture
precisely and give some examples, before fitting it into the general framework of
tensor product categorifications. Finally we highlight one of the main ideas from
[15] involving a double centralizer property (an analog of Soergel’s Struktursatz
from [45]), and suggest a related question which we believe should be investigated
further. In an attempt to maximize the readability of the article, precise references
to the literature have been deferred to notes at the end of each section.

We point out in conclusion that there is also an attractive Kazhdan–Lusztig
conjecture for the Lie superalgebra qn(C) formulated in [11], which remains quite
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untouched. One can also ponder Kazhdan–Lusztig combinatorics for the other
classical families of Lie superalgebra. Dramatic progress in the case of ospn|2m(C)
has been made recently in [2]; see also [25].

2 Super Category O and Its Blocks

Fix n,m ≥ 0 and let g denote the general linear Lie superalgebra gln|m(C). As

a vector superspace this consists of (n + m) × (n + m) complex matrices

(∗ ∗
∗ ∗
)

with Z/2-grading defined so that the ij -matrix unit ei,j is even for 1 ≤ i, j ≤ n or
n + 1 ≤ i, j ≤ n + m, and ei,j is odd otherwise. It is a Lie superalgebra via the
supercommutator

[x, y] := xy − (−1)x̄ȳyx

for homogeneous x, y ∈ g of parities x̄, ȳ ∈ Z/2, respectively.
By a g-supermodule we mean a vector superspace M = M0̄ ⊕ M1̄ equipped

with a graded linear left action of g, such that [x, y]v = x(yv) − (−1)x̄ȳy(xv)
for all homogeneous x, y ∈ g and v ∈ M . For example, we have the natural
representation U of g, which is just the superspace of column vectors on standard
basis u1, . . . , un+m, where ūi = 0̄ for 1 ≤ i ≤ n and ūi = 1̄ for n+1 ≤ i ≤ n+m.
We write g-smod for the category of all g-supermodules. A morphism f : M → N

in this category means a linear map such that f (Mi) ⊆ Ni for i ∈ Z/2 and
f (xv) = xf (v) for x ∈ g, v ∈ M . This is obviously a C-linear abelian category. It is
also a supercategory, that is, it is equipped with the additional data of an endofunctor
Π : g-smod → g-smod with Π2 ∼= id. The functor Π here is the parity switching
functor, which is defined on a supermodule M by declaring that ΠM is the same
underlying vector space as M but with the opposite Z/2-grading, viewed as a g-
supermodule with the new action x · v := (−1)x̄xv. On a morphism f : M → N

we take Πf : ΠM → ΠN to be the same underlying linear map as f . Clearly
Π2 = id.

Remark 2.1. Given any C-linear supercategory C , one can form the enriched
category Ĉ . This is a category enriched in the monoidal category of vector
superspaces. It has the same objects as in C , and its morphisms are defined from
HomĈ (M,N) := HomC (M,N)0̄ ⊕ HomC (M,N)1̄ where

HomC (M,N)0̄ := HomC (M,N), HomC (M,N)1̄ := HomC (M,ΠN).

The composition law is obvious (but involves the isomorphism Π2 ∼= id which
is given as part of the data of C ). This means one can talk about even and odd
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morphisms between objects of C . In the case of g-smod, an odd homomorphism
f : M → N is a linear map such that f (Mi) ⊆ Ni+1̄ for i ∈ Z/2 and f (xv) =
(−1)|x|xf (v) for homogeneous x ∈ g, v ∈ M .

Let b be the standard Borel subalgebra consisting of all upper triangular matrices
in g. It is the stabilizer of the standard flag 〈u1〉 < 〈u1, u2〉 < · · · < 〈u1, . . . , un+m〉
in the natural representation V . More generally a Borel subalgebra of g is the
stabilizer of an arbitrary homogeneous flag in V . Unlike in the purely even setting,
it is not true that all Borel subalgebras are conjugate under the appropriate action
of the general linear supergroup G = GLn|m. This leads to some combinatorially
interesting variants of the theory which are also well understood, but our focus in
this article will just be on the standard choice of Borel.

Let t be the Cartan subalgebra of g consisting of diagonal matrices. Let
δ1, . . . , δn+m be the basis for t∗ such that δi picks out the ith diagonal entry of a
diagonal matrix. Define a non-degenerate symmetric bilinear form (?, ?) on t∗ by
setting (δi, δj ) := (−1)ūi δi,j . The root system of g is

R := {δi − δj | 1 ≤ i, j ≤ n+m, i �= j },

which decomposes into even and odd roots R = R0̄ � R1̄ so that δi − δj is of parity
ūi + ūj . Let R+ = R+

0̄
� R+

1̄
denote the positive roots associated to the Borel

subalgebra b, i.e., δi − δj is positive if and only if i < j . The dominance order �
on t∗ is defined so that λ� μ if λ− μ is a sum of positive roots. Let

ρ := −δ2−2δ3−· · ·− (n−1)δn+ (n−1)δn+1+ (n−2)δn+2+· · ·+ (n−m)δn+m.

One can check that 2ρ is congruent to the sum of the positive even roots minus the
sum of the positive odd roots modulo δ := δ1 + · · · + δn − δn+1 − · · · − δn+m.

Let sO be the full subcategory of g-smod consisting of all finitely generated
g-supermodules which are locally finite dimensional over b and satisfy

M =
⊕

λ∈t∗
Mλ,

where for λ ∈ t∗ we write Mλ = Mλ,0̄ ⊕Mλ,1̄ for the λ-weight space of M with
respect to t defined in the standard way. This is an abelian subcategory of g-smod
closed under Π . It is the analog for gln|m(C) of the Bernstein–Gelfand–Gelfand
category O for a semisimple Lie algebra. All of the familiar basic properties from
the purely even setting generalize rather easily to the super case. For example all
supermodules in sO have finite length, there are enough projectives, and so on. An
easy way to prove these statements is to compare sO to the classical BGG category
Oev for the even part g0̄

∼= gln(C)⊕ glm(C) of g. One can restrict any supermodule
in sO to g0̄ to get a module in Oev ; conversely for any M ∈ Oev we can view it
as a supermodule concentrated in a single parity then induce to get U(g) ⊗U(g0̄)

M ∈ O . This relies on the fact that U(g) is free of finite rank as a U(g0̄)-module,
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thanks to the PBW theorem for Lie superalgebras. Then the fact that sO has enough
projectives follows because Oev does, and induction sends projectives to projectives
as it is left adjoint to an exact functor.

In fact it is possible to eliminate the “super” in the supercategory sO entirely
by passing to a certain subcategory O . To explain this let Ĉ be some set of
representatives for the cosets of C modulo Z such that 0 ∈ Ĉ. Then define
pz+n := n̄ ∈ Z/2 for each z ∈ Ĉ and n ∈ Z. Finally for λ ∈ t∗ let p(λ) :=
p(λ,δn+1+···+δn+m). This defines a parity function p : t∗ → Z/2 with the key property
that p(λ + δi) = p(λ) + ūi . If M ∈ sO then M decomposes as a direct sum of g-
supermodules as

M =M+ ⊕M− where M+ :=
⊕

λ∈t∗
Mλ,p(λ), M− :=

⊕

λ∈t∗
Mλ,p(λ)+1̄.

Let O (resp. ΠO) be the full subcategory of sO consisting of all supermodules
M such that M = M+ (resp. M = M−). Both are Serre subcategories of sO ,
hence they are abelian, and the functor Π defines an equivalence between O and
ΠO . Moreover there are no nonzero odd homomorphisms between objects of O;
equivalently there are no nonzero even homomorphisms between an object of O
and an object ofΠO . Hence:

Lemma 2.2. sO = O ⊕ΠO .

Remark 2.3. Let sÔ be the enriched category arising from the supercategory sO as
in Remark 2.1. Lemma 2.2 implies that the natural inclusion functor O → sÔ is
fully faithful and essentially surjective, hence it defines an equivalence between O

and sÔ . In particular sÔ is itself abelian, although the explicit construction of kernels
and cokernels of inhomogeneous morphisms in sÔ is a bit awkward.

Henceforth we will work just with the category O rather than the supercategory
sO . Note in particular that O contains the natural supermodule U and its dual U∨,
and it is closed under tensoring with these objects. For each λ ∈ t∗ we have the
Verma supermodule

M(λ) := U(g)⊗U(b) Cλ,p(λ) ∈ O,

where Cλ,p(λ) is a one-dimensional b-supermodule of weight λ concentrated in
parity p(λ). The usual argument shows thatM(λ) has a unique irreducible quotient,
which we denote by L(λ). The supermodules {L(λ) | λ ∈ t∗} give a complete set of
pairwise nonisomorphic irreducibles in O . We say that λ ∈ t∗ is dominant if

{
(λ, δi − δi+1) ∈ Z≥0 for i = 1, . . . , n− 1,
(λ, δi − δi+1) ∈ Z≤0 for i = n+ 1, . . . , n+m− 1.

Then the supermodules {L(λ) | for all dominant λ ∈ t∗} give a complete set
of pairwise non-isomorphic finite-dimensional irreducible g-supermodules (up to
parity switch). This is an immediate consequence of the following elementary but
important result.
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Theorem 2.4 (Kac). For λ ∈ t∗ the irreducible supermodule L(λ) is finite
dimensional if and only if λ is dominant.

Proof. Let Lev(λ) be the irreducible highest weight module for g0̄ of highest weight
λ. Classical theory tells us that Lev(λ) is finite dimensional if and only if λ is
dominant. Since L(λ) contains a highest weight vector of weight λ, its restriction to
g0̄ has Lev(λ) as a composition factor, hence if L(λ) is finite dimensional then λ is
dominant. Conversely, let p be the maximal parabolic subalgebra of g consisting of

block upper triangular matrices of the form

(∗ ∗
0 ∗
)
. There is an obvious projection

p � g0̄, allowing us to viewLev(λ) as a p-supermodule concentrated in parity p(λ).
Then for any λ ∈ t∗ we can form the Kac supermodule

K(λ) := U(g)⊗U(p) Lev(λ) ∈ O.

Since K(λ) is a quotient of M(λ), it has irreducible head L(λ). Moreover the
PBW theorem implies that K(λ) is finite dimensional if and only if Lev(λ) is finite
dimensional. Hence if λ is dominant we deduce that L(λ) is finite dimensional. ��

The degree of atypicality of λ ∈ t∗ is defined to be the maximal number of
mutually orthogonal odd roots β ∈ R+

1̄
such that (λ + ρ, β) = 0. In particular

λ is typical if (λ + ρ, β) �= 0 for all β ∈ R+
1̄

. For typical λ ∈ t∗, Kac showed
further that the Kac supermodules K(λ), defined in the proof of Theorem 2.4, are
actually irreducible. Thus most questions about typical irreducible supermodules in
O reduce to the purely even case. For example, using the Weyl character formula
one can deduce in this way a simple formula for the character of an arbitrary
typical finite-dimensional irreducible g-supermodule. It is not so easy to compute
the characters of atypical finite-dimensional irreducible supermodules, but this has
turned out still to be combinatorially quite tractable. We will say more about the
much harder problem of finding characters of arbitrary (not necessarily typical or
finite-dimensional) irreducible supermodules in O in the next section; inevitably
this involves some Kazhdan–Lusztig polynomials.

Let P(μ) be a projective cover of L(μ) in O . We have the usual statement of
BGG reciprocity: each P(μ) has a Verma flag, i.e., a finite filtration whose sections
are Verma supermodules, and the multiplicity (P (μ) : M(λ)) ofM(λ) as a section
of a Verma flag of P(μ) is given by

(P (μ) : M(λ)) = [M(λ) : L(μ)],

where the right-hand side denotes composition multiplicity. Of course
[M(λ) : L(μ)] is zero unless μ � λ in the dominance ordering, while [M(λ) :
L(λ)] = 1. Thus O is a highest weight category in the formal sense of Cline,
Parshall and Scott, with weight poset (t∗,�).
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The partial order � on t∗ being used here is rather crude. It can be replaced with
a more intelligent order ≤, called the Bruhat order. To define this, given λ ∈ t∗, let

A(λ) := {α ∈ R+
0̄
| (λ+ ρ, α∨) ∈ Z>0}, B(λ) := {β ∈ R+

1̄
| (λ+ ρ, β) = 0},

where α∨ denotes 2α/(α, α). Then introduce a relation ↑ on t∗ by declaring that
μ ↑ λ if we either have that μ = sα · λ for some α ∈ A(λ) or we have that
μ = λ − β for some β ∈ B(λ); here, for α = δi − δj ∈ R+0̄ and λ ∈ t∗, we write
sα · λ for sα(λ+ ρ)− ρ, where sα : t∗ → t∗ is the reflection transposing δi and δj
and fixing all other δk . Finally define ≤ to be the transitive closure of the relation
↑, i.e., we have that μ ≤ λ if there exists r ≥ 0 and weights ν0, . . . , νr ∈ t∗ with
μ = ν0 ↑ ν1 ↑ · · · ↑ μr = λ.

Lemma 2.5. If [M(λ) : L(μ)] �= 0 then μ ≤ λ in the Bruhat order.

Proof. This is a consequence of the super analog of the Jantzen sum formula from
[39, §10.3]; see also [26]. In more detail, the Jantzen filtration onM(λ) is a certain
exhaustive descending filtration M(λ) = M(λ)0 ⊃ M(λ)1 ⊇ M(λ)2 ⊇ · · · such
thatM(λ)0/M(λ)1 ∼= L(λ), and the sum formula shows that

∑

k≥1

chM(λ)k =
∑

α∈A(λ)
chM(sα · λ)+

∑

β∈B(λ)

∑

k≥1

(−1)k−1chM(λ− kβ).

To deduce the lemma from this, suppose that [M(λ) : L(μ)] �= 0. Thenμ�λ, so that
λ−μ is a sum ofN simple roots δi−δi+1 for someN ≥ 0. We proceed by induction
on N , the case N = 0 being vacuous. If N > 0, then L(μ) is a composition factor
of M(λ)1 and the sum formula implies that L(μ) is a composition factor either of
M(sα · λ) for some α ∈ A(λ) or that L(μ) is a composition factor ofM(λ− kβ) for
some odd k ≥ 1 and β ∈ B(λ). It remains to apply the induction hypothesis and the
definition of ↑. ��

Let ≈ be the equivalence relation on t∗ generated by the Bruhat order ≤. We
refer to the ≈-equivalence classes as linkage classes. For a linkage class ξ ∈ t∗/ ≈,
let Oξ be the Serre subcategory of O generated by the irreducible supermodules
{L(λ) |λ ∈ ξ}. Then, as a purely formal consequence of Lemma 2.5, we get that the
category O decomposes as

O =
⊕

ξ∈t∗/≈
Oξ .

In fact this is the finest possible such direct sum decomposition, i.e., each Oξ
is an indecomposable subcategory of O . In other words, this is precisely the
decomposition of O into blocks. An interesting open problem here is to classify
the blocks Oξ up to equivalence.

Let us describe the linkage class ξ of λ ∈ t∗ more explicitly. Let k be the degree of
atypicality of λ and β1, . . . , βk ∈ R+1̄ be distinct mutually orthogonal odd roots such



78 J. Brundan

that (λ + ρ, βi) = 0 for each i = 1, . . . , k. Also let Wλ be the integral Weyl group
corresponding to λ, that is, the subgroup of GL(t∗) generated by the reflections sα
for α ∈ R+

0̄
such that (λ+ ρ, α) ∈ Z. Then

ξ = {w · (λ+ n1β1 + · · · + nkβk)
∣∣ n1, . . . , nk ∈ Z, w ∈ Wλ

}
,

where w · ν = w(ν + ρ) − ρ as before. Note in particular that all μ ≈ λ have the
same degree of atypicality k as λ.

The following useful result reduces many questions about O to the case of
integral blocks, that is, blocks corresponding to linkage classes of integral weights
belonging to the set

t∗
Z
:= Zδ1 ⊕ · · · ⊕ Zδn+m.

Theorem 2.6 (Cheng, Mazorchuk, Wang). Every block Oξ of O is equivalent to
a tensor product of integral blocks of general linear Lie superalgebras of the same
total rank as g.

If λ is atypical, then the linkage class ξ containing λ is infinite. This is a key
difference between the representation theory of Lie superalgebras and the classical
representation theory of a semisimple Lie algebra, in which all blocks are finite
(bounded by the order of the Weyl group). It means that the highest weight category
Oξ cannot be viewed as a category of modules over a finite-dimensional quasi-
hereditary algebra. Nevertheless one can still consider the underlying basic algebra

Aξ :=
⊕

λ,μ∈ξ
Homg(P (λ), P (μ))

with multiplication coming from composition. This is a locally unital algebra,
meaning that it is equipped with the system of mutually orthogonal idempotents
{1λ | λ ∈ ξ} such that

Aξ =
⊕

λ,μ∈ξ
1μAξ1λ,

where 1λ denotes the identity endomorphism of P(λ). Writing mof-Aξ for the
category of finite dimensional locally unital rightAξ -modules, i.e., modulesM with
M =⊕λ∈ξ M1λ, the functor

Oξ → mof-Aξ , M 
→
⊕

λ∈ξ
Homg(P (λ),−)

is an equivalence of categories. Note moreover that each right ideal 1λAξ and each
left ideal Aξ1λ is finite dimensional; these are the indecomposable projectives and
the linear duals of the indecomposable injectives in mof-Aξ , respectively.
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Remark 2.7. It is also natural to view Aξ as a superalgebra concentrated in parity 0̄.
Then the block sOξ = Oξ ⊕ ΠOξ of the supercategory sO associated to the
linkage class ξ is equivalent to the category of finite-dimensional locally unital right
Aξ -supermodules. This gives another point of view on Lemma 2.2.

Example 2.8. Let us work out in detail the example of gl1|1(C). This is easy
but nevertheless very important: often gl1|1(C) plays a role parallel to that of
sl2(C) in the classical theory. So now ρ = 0 and the only postive root is
α = δ1 − δ2 ∈ R+1̄ . The Verma supermodules M(λ) are the same as the Kac
supermodulesK(λ) from the proof of Theorem 2.4; they are two-dimensional with
weights λ and λ − α. MoreoverM(λ) is irreducible for typical λ. If λ is atypical,
then λ = cα for some c ∈ C, and the irreducible supermodule L(λ) comes
from the one-dimensional representation g → C, x 
→ c str x where str denotes
supertrace. Finally let us restrict attention just to the principal block O0 containing
the irreducible supermodules L(i) := L(iα) for each i ∈ Z. We have shown that
M(i) := M(iα) has length two with composition factors L(i) and L(i − 1); hence
by BGG reciprocity the projective indecomposable supermoduleP(i) := P(iα) has
a two-step Verma flag with sectionsM(i) andM(i + 1). We deduce that the Loewy
series of P(i) looks like P(i) = P 0(i) > P 1(i) > P 2(i) > 0 with

P 0(i)/P 1(i) ∼= L(i), P 1(i)/P 2(i) ∼= L(i−1)⊕L(i+1), P 2(i) ∼= L(i).

From this one obtains the following presentation for the underlying basic algebra
A0: it is the path algebra of the quiver

· · ·•
ei−1

•
ei

•
ei+1 ei+2

fi+2fi+1

• •·· ·
fifi−1

with vertex set Z, modulo the relations eifi + fi+1ei+1 = 0, ei+1ei = fifi+1 = 0
for all i ∈ Z. We stress the similarity between these and the relations ef + f e =
c, e2 = f 2 = 0 inU(g) itself (where c = e1,1+e2,2 ∈ z(g), e = e1,2 and f = e2,1).
One should also observe at this point that these relations are homogeneous, so that
A0 can be viewed as a positively graded algebra, with grading coming from path
length. In fact this grading makes A0 into a (locally unital) Koszul algebra.

To conclude the section, we offer one piece of justification for focussing so
much attention on category O . The study of primitive ideals of universal enveloping
algebras of Lie algebras, especially semisimple ones, has classically proved to be
very rich and inspired many important discoveries. So it is natural to ask about the
space of all primitive ideals PrimU(g) in our setting too. It turns out for gln|m(C)
that all primitive ideals are automatically homogeneous. In fact one just needs to
consider annihilators of irreducible supermodules in O:

Theorem 2.9 (Musson). PrimU(g) = {Ann U(g)L(λ) | λ ∈ t∗}.
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This is the analog of a famous theorem of Duflo in the context of semisimple Lie
algebras. Letzter showed subsequently that there is a bijection

PrimU(g0̄)
∼→ PrimU(g), AnnU(g0̄)

Lev(λ) 
→ Ann U(g)L(λ).

Combined with classical results of Joseph, this means that the fibers of the map

t∗ → PrimU(g), λ 
→ Ann U(g)L(λ)

can be described in terms of the Robinson–Schensted algorithm. Hence we get an
explicit description of the set PrimU(g).

Notes. For the basic facts about super category O for basic classical Lie superalge-
bras, see §8.2 of Musson’s book [39]. Lemma 2.2 was pointed out originally in [10,
§4-e]. The observation that sÔ is abelian from Remark 2.3 is due to Cheng and Lam
[17]; in fact these authors work entirely with the equivalent category sÔ in place
of our O .

The classification of finite-dimensional irreducible supermodules from Theo-
rem 2.4 is due to Kac [30]. The irreducibilty of the typical Kac supermodules
was established soon after in [31]. Kac only considered finite-dimensional rep-
resentations at the time but the same argument works in general. The characters
of the atypical finite-dimensional irreducible representations were first described
algorithmically by Serganova in [43]. Then an easier approach was developed in
[10], confirming some conjectures from [29]; see also [41] for a direct combinatorial
proof of the equivalence of the formulae in [43] and [10]. Yet another approach
via “super duality” was developed in [17, 22], based on the important observation
that the Kazhdan–Lusztig polynomials appearing in [10, 43] are the same as
certain Kazhdan–Lusztig polynomials for Grassmannians as computed originally by
Lascoux and Schützenberger [33]. Subsequently Su and Zhang [47] were able to use
the explicit formulae for these Kazhdan–Lusztig polynomials to extract some more
explicit (but cumbersome) closed character and dimension formulae. There is also
an elegant diagrammatic description of the basic algebra that is Morita equivalent
to the subcategory F of O consisting of all its finite-dimensional supermodules in
terms of Khovanov’s arc algebra; see [16].

The analog of BGG reciprocity for gln|m(C) as stated here was first established
by Zou [48]; see also [12]. For the classification of blocks of O and proof of
Theorem 2.6, see [19, Theorems 3.10–3.12]. A related problem is to determine
when two irreducible highest weight supermodules have the same central character.
This is solved via the explicit description of the center Z(g) of U(g) in terms the
Harish-Chandra homomorphism and supersymmetric polynomials, which is due
to Kac, Sergeev and Gorelik; see [39, §13.1] or [21, §2.2] for recent expositions.
Lemma 2.5 is slightly more subtle and cannot be deduced just from central character
considerations. Musson has recently proved a refinement of the sum formula
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recorded in the proof of Lemma 2.5, in which the right-hand side is rewritten as
a finite sum of the characters of highest weight modules; details will appear in [40].

The results of Musson, Letzter and Joseph classifying primitive ideals of U(g)
are in [28,34,38]; see also [39, Ch. 15]. The recent preprint [24] makes some further
progress towards determining all inclusions between primitive ideals.

3 Kazhdan–Lusztig Combinatorics and Categorification

In this section we restrict attention just to the highest weight subcategory OZ of
O consisting of supermodules M such that M = ⊕

λ∈t∗
Z

Mλ,p(λ). In other words
we only consider integral blocks. This is justified by Theorem 2.6. The goal is to
understand the composition multiplicities

[M(λ) : L(μ)]

of the Verma supermodules in OZ. It will be convenient as we explain this to
represent λ ∈ t∗

Z
instead by the n|m-tuple (λ1, . . . , λn|λn+1, . . . , λn+m) of integers

defined from λi := (λ+ ρ, δi).
Let P denote the free abelian group

⊕
i∈Z Zεi and let Q ⊂ P be the subgroup

generated by the simple roots αi := εi − εi+1. ThusQ is the root lattice of the Lie
algebra sl∞. Let ≤ be the usual dominance ordering on P defined by ξ ≤  if
 − ξ is a sum of simple roots. For λ = (λ1, . . . , λn|λn+1, . . . , λn+m) ∈ t∗

Z
we let

|λ| := ελ1 + · · · + ελn − ελn+1 − · · · − ελn+m ∈ P.

Then it is clear that two weights λ,μ ∈ t∗
Z

are linked if and only if |λ| = |μ|, i.e.,
the fibers of the map t∗

Z
→ P, λ 
→ |λ| are exactly the linkage classes. The Bruhat

order ≤ on t∗
Z

can also be interpreted in these terms: let

|λ|i :=
{
ελi for 1 ≤ i ≤ n,

−ελi for n+ 1 ≤ i ≤ n+m,

so that |λ| = |λ|1+· · ·+ |λ|n+m. Then one can show that λ ≤ μ in the Bruhat order
if and only if |λ|1 + · · · + |λ|i ≥ |μ|1 + · · · + |μ|i in the dominance ordering on P
for all i = 1, . . . , n+m, with equality when i = n+m.

Let V be the natural sl∞-module on basis {vi | i ∈ Z} andW be its dual on basis
{wi | i ∈ Z}. The Chevalley generators {fi, ei | i ∈ Z} of sl∞ act by

fivj = δi,j vi+1, eivj = δi+1,j vi , fiwj = δi+1,jwi, eiwj = δi,jwi+1.

The tensor space V ⊗n ⊗W⊗m has the obvious basis of monomials

vλ := vλ1 ⊗ · · · ⊗ vλn ⊗ wλn+1 ⊗ · · · ⊗ wλn+m
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indexed by n|m-tuples λ = (λ1, . . . , λn|λn+1, . . . , λn+m) of integers. In other words
the monomial basis of V ⊗n⊗W⊗m is parametrized by the set t∗

Z
of integral weights

for g = gln|m(C).
This prompts us to bring category O back into the picture. Let OΔ

Z
be the exact

subcategory of OZ consisting of all supermodules with a Verma flag, and denote its
complexified Grothendieck group by K(OΔ

Z
). Thus K(OΔ

Z
) is the complex vector

space on basis {[M(λ)] | λ ∈ t∗
Z
}. Henceforth we identify

K(OΔ
Z
)↔ V ⊗n ⊗W⊗m, [M(λ)] ↔ vλ.

Since projectives have Verma flags we have that P(μ) ∈ OΔ
Z

; let bμ ∈ V ⊗n⊗W⊗m
be the corresponding tensor under the above identification, i.e.,

[P(μ)] ↔ bμ.

By BGG reciprocity we have that

bμ =
∑

λ∈t∗
Z

[M(λ) : L(μ)]vλ.

Now the punchline is that the vectors {bμ|μ ∈ t∗
Z
} turn out to coincide with Lusztig’s

canonical basis for the tensor space V ⊗n ⊗W⊗m . The definition of the latter goes
via some quantum algebra introduced in the next few paragraphs.

Let Uqsl∞ be the quantized enveloping algebra associated to sl∞. This is the
Q(q)-algebra on generators {ḟi , ėi , k̇i , k̇−1

i |i ∈ Z}1 subject to well-known relations.
We view Uqsl∞ as a Hopf algebra with comultiplication

Δ(ḟi) = 1⊗ ḟi + ḟi ⊗ k̇i , Δ(ėi) = k̇−1
i ⊗ ėi + ėi ⊗ 1, Δ(k̇i) = k̇i ⊗ k̇i .

We have the natural Uqsl∞-module V̇ on basis {v̇i | i ∈ Z} and its dual Ẇ on
basis {ẇi | i ∈ Z}. The Chevalley generators ḟi and ėi of Uqsl∞ act on these basis
vectors by exactly the same formulae as at q = 1, and also k̇i v̇j = qδi,j−δi+1,j v̇j
and k̇iẇj = qδi+1,j−δi,j ẇj . There is also an R-matrix giving some distinguished

intertwiners V̇ ⊗ V̇ ∼→ V̇ ⊗ V̇ and Ẇ ⊗ Ẇ ∼→ Ẇ ⊗ Ẇ , from which we produce the
following Uqsl∞-module homomorphisms:

ċ : V̇ ⊗ V̇ → V̇ ⊗ V̇ , v̇i ⊗ v̇j 
→
⎧
⎨

⎩

v̇j ⊗ v̇i + q−1v̇i ⊗ v̇j if i < j ,
(q + q−1)v̇j ⊗ v̇i if i = j ,
v̇j ⊗ v̇i + qv̇i ⊗ v̇j if i > j ;

1We follow the convention of adding a dot to all q-analogs to distinguish them from their classical
counterparts.
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ċ : Ẇ ⊗ Ẇ → Ẇ ⊗ Ẇ , ẇi ⊗ ẇj 
→
⎧
⎨

⎩

ẇj ⊗ ẇi + qẇi ⊗ ẇj if i < j ,
(q + q−1)ẇj ⊗ ẇi if i = j ,
ẇj ⊗ ẇi + q−1ẇi ⊗ ẇj if i > j .

Then we form the tensor space V̇⊗n ⊗ Ẇ⊗m, which is a Uqsl∞-module with its
monomial basis {v̇λ | λ ∈ t∗

Z
} defined just like above. Let ċk := 1⊗(k−1) ⊗ ċ ⊗

1n+m−1−k for k �= n, which is a Uqsl∞-module endomorphism of V̇ ⊗n ⊗ Ẇ⊗m.
Next we must pass to a formal completion V̇⊗n⊗̂Ẇ⊗m of our q-tensor space.

Let I ⊂ Z be a finite subinterval and I+ := I ∪ (I + 1). Let V̇I and ẆI be the
subspaces of V̇ and Ẇ spanned by the basis vectors {v̇i | i ∈ I+} and {ẇi | i ∈ I+},
respectively. Then V̇ ⊗nI ⊗ Ẇ⊗m

I is a subspace of V̇⊗n ⊗ Ẇ⊗m. For J ⊆ I there is
an obvious projection πJ : V̇ ⊗nI ⊗ Ẇ⊗m

I � V̇ ⊗nJ ⊗ Ẇ⊗m
J mapping v̇λ to v̇λ if all

the entries of the tuple λ lie in J+, or to zero otherwise. Then we set

V̇ ⊗n⊗̂Ẇ⊗m := lim
←−

V̇ ⊗nI ⊗ Ẇ⊗m
I ,

taking the inverse limit over all finite subintervals I ⊂ Z with respect to the
projections πJ just defined. The action of Uqsl∞ and of each ċk extend naturally
to the completion.

Lemma 3.1. There is a unique continuous antilinear involution

ψ : V̇⊗n⊗̂Ẇ⊗m → V̇⊗n⊗̂Ẇ⊗m

such that

• ψ commutes with the actions of ḟi and ėi for all i ∈ Z and with the
endomorphisms ċk for all k �= n;

• Eachψ(v̇λ) is equal to v̇λ plus a (possibly infinite) Z[q, q−1]-linear combination
of v̇μ for μ > λ in the Bruhat order.

Proof. For each finite subinterval I ⊂ Z, let UqslI be the subalgebra of Uqsl∞
generated by {ḟi , ėi , k̇±1

i | i ∈ I }. A construction of Lusztig [37, §27.3] involving
the quasi-R-matrixΘI forUqslI gives an antilinear involutionψI : V̇ ⊗nI ⊗Ẇ⊗m

I →
V̇⊗nI ⊗Ẇ⊗m

I commuting with the actions of ḟi and ėi for i ∈ I . Moreover for J ⊂ I
the involutions ψI and ψJ are intertwined by the projection πJ : V̇⊗nI ⊗ Ẇ⊗m

I �
V̇⊗nJ ⊗ Ẇ⊗m

J , as follows easily from the explicit form of the quasi-R-matrix. Hence
the involutions ψI for all I induce a well-defined involution ψ on the inverse limit.
The fact that the resulting involution commutes with each ċk can be deduced from
the formal definition of the latter in terms of the R-matrix. Finally the uniqueness is
a consequence of the existence of an algorithm to uniquely compute the canonical
basis using just the given two properties (as sketched below). ��
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This puts us in position to apply Lusztig’s lemma to deduce for each μ ∈ t∗
Z

that
there is a unique vector ḃμ ∈ V̇ ⊗n⊗̂Ẇ⊗m such that

• ψ(ḃμ) = ḃμ;
• ḃμ is equal to v̇μ plus a (possibly infinite) qZ[q]-linear combination of v̇λ for
λ > μ.

We refer to the resulting topological basis {ḃμ | μ ∈ t∗
Z
} for V̇ ⊗n⊗̂Ẇ⊗m as the

canonical basis. In fact, but this is in no way obvious from the above definition,
each ḃμ is always a finite sum of v̇λ’s, i.e., ḃμ ∈ V̇ ⊗n ⊗ Ẇ⊗m before completion.
Moreover the polynomials dλ,μ(q) arising from the expansion

ḃμ =
∑

λ∈t∗
Z

dλ,μ(q)v̇λ

are known always to be some finite type A parabolic Kazhdan–Lusztig polynomials
(suitably normalized). In particular dλ,μ(q) ∈ N[q].

Now we can state the following fundamental theorem, formerly known as the
“super Kazhdan–Lusztig conjecture.”

Theorem 3.2 (Cheng, Lam, Wang). For any λ,μ ∈ t∗
Z

we have that

[M(λ) : L(μ)] = dλ,μ(1).

In other words, the vectors {bμ |μ ∈ t∗
Z
} arising from the projective indecomposable

supermodules in OZ via the identification K(OΔ
Z
) ↔ V ⊗n ⊗ W⊗m coincide with

the specialization of Lusztig’s canonical basis {ḃμ | μ ∈ t∗
Z
} at q = 1.

We are going to do two more things in this section. First, we sketch briefly how
one can compute the canonical basis algorithmically. Then we will explain how
Theorem 3.2 should really be understood in terms of a certain graded lift ȮZ of OZ,
using the language of categorification.

The algorithm to compute the canonical basis goes by induction on the
degree of atypicality. Recall that a weight μ ∈ t∗

Z
is typical if {μ1, . . . , μn} ∩

{μn+1, . . . , μn+m} = ∅. We also say it is weakly dominant if μ1 ≥ · · · ≥ μn
and μn+1 ≤ · · · ≤ μn+m (equivalently μ + ρ is dominant in the earlier sense).
The weights that are both typical and weakly dominant are maximal in the Bruhat
ordering, so that ḃμ = v̇μ. Then to compute ḃμ for an arbitrary typical but not
weakly dominantμwe just have to follow the usual algorithm to compute Kazhdan–
Lusztig polynomials. Pick k �= n such that either k < n and μk < μk+1 or k > n
andμk > μk+1. Let λ be the weight obtained fromμ by interchangingμk andμk+1.
By induction on the Bruhat ordering we may assume that ḃλ is already computed.
Then ċk ḃλ is ψ-invariant and has v̇μ as its leading term with coefficient 1, i.e., it
equals v̇μ plus a Z[q, q−1]-linear combination of v̇ν for ν > μ. It just remains to
adjust this vector by subtracting bar-invariant multiples of inductively computed
canonical basis vectors ḃν for ν > μ to obtain a vector that is both ψ-invariant and
lies in v̇μ +∑λ>μ qZ[q]v̇λ. This must equal ḃμ by the uniqueness.



Super Category O 85

Now suppose that μ ∈ t∗
Z

is not typical. The idea to compute ḃμ then is to apply
a certain bumping procedure to produce from μ another weight λ of strictly smaller
atypicality, together with a monomial ẋ of quantum divided powers of Chevalley
generators of Uqsl∞, such that ẋḃλ has v̇μ as its leading term with coefficient 1.
Then we can adjust this ψ-invariant vector by subtracting bar-invariant multiples of
recursively computed canonical basis vectors ḃν for ν > μ, to obtain ḃμ as before.
The catch is that (unlike the situation in the previous paragraph) there are infinitely
many weights ν > μ so that it is not clear that the recursion always terminates
in finitely many steps. Examples computed using a GAP implementation of the
algorithm suggest that it always does; our source code is available at [13]. (In any
case one can always find a finite interval I such that ẋḃλ ∈ V̇⊗nI ⊗ Ẇ⊗m

I ; then by
some nontrivial but known positivity of structure constants we get that ḃμ ∈ V̇⊗nI ⊗
Ẇ⊗m
I too; hence one can apply πI prior to making any subsequent adjustments to

guarantee that the algorithm terminates in finitely many steps.)

Example 3.3. With this example we outline the bumping procedure. Given an
atypical μ, we let i be the largest integer that appears both to the left and to the
right of the separator | in the tuple μ. Pick one of the two sides of the separator and
let j ≥ i be maximal such that all of i, i + 1, . . . , j appear on this side of μ. Add 1
to all occurrences of i, i + 1, . . . , j , on the chosen side. Then if j + 1 also appears
on the other side of μ, we repeat the bumping procedure on that side with i replaced
by j + 1. We continue in this way until j + 1 is not repeated on the other side. This
produces the desired output weight λ of strictly smaller atypicality. For example, if
μ = (0, 5, 2, 2|0, 1, 3, 4) of atypicality one we bump as follows:

(1, 6, 3, 3|0, 2, 4, 5) ė5←− (1, 5, 3, 3|0, 2, 4, 5) ḟ4ḟ3←− (1, 5, 3, 3|0, 2, 3, 4)
ė
(2)
2←− (1, 5, 2, 2|0, 2, 3, 4) ḟ1←− (1, 5, 2, 2|0, 1, 3, 4) ė0←− (0, 5, 2, 2|0, 1, 3, 4).

The labels on the edges here are the appropriate monomials that reverse the
bumping procedure; then the final monomial ẋ output by the bumping procedure
is the product ė5ḟ4ḟ3ė

(2)
2 ḟ1ė0 of all of these labels. Thus we should compute

ė5ḟ4ḟ3ė
(2)
2 ḟ1ė0ḃ(1,6,3,3|0,2,4,5), where ḃ(1,6,3,3|0,2,4,5) can be worked out using the

typical algorithm. The result is a ψ-invariant vector equal to ḃ(0,5,2,2|0,1,3,4) plus
some higher terms which can be computed recursively (specifically one finds that
(q + q−1)ḃ(2,5,2,2|1,2,3,4) needs to be subtracted).

Example 3.4. Here we work out the combinatorics in the principal block for
gl2|1(C). The weights are {(0, i|i), (i, 0|i) | i ∈ Z}. The corresponding canonical
basis vectors ḃμ are represented in the following diagram which is arranged
according to the Bruhat graph; we show just enough vertices for the generic pattern
to be apparent.
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−30|−3
0−3|−3⊕−20|−2

0−2|−2

−20|−2
0−2|−2⊕−10|−1

0−1|−1

−10|−1
0−1|−1
00|0

0−3|−3
0−2|−2

0−2|−2
0−1|−1

0−1|−1
00|0⊕10|1

00|0
01|1
10|1

10|1
20|2

20|2
30|3

01|1
10|1⊕02|2

20|2

02|2
20|2⊕03|3

30|3

�
�
�

For example, the center node of this diagram encodes ḃ(0,0|0) = v̇(0,0|0)+qv̇(0,1|1)+
q2v̇(1,0|1); the node to the right of that encodes ḃ(0,1|1) = v̇(0,1|1) + qv̇(1,0|1) +
qv̇(0,2|2)+q2v̇(2,0|2). Let us explain in more detail how we computed ḃ(−1,0|−1) here.
The bumping procedure tells us to look at ė0ė−1ḃ(0,1|−1). As (0, 1| − 1) is typical
we get easily from the typical algorithm that ḃ(0,1|−1) = ċ1v̇(1,0|−1) = v̇(0,1|−1) +
qv̇(1,0|−1). Hence

ė0ė−1ḃ(0,1|−1) = v̇(−1,0|−1)+ (1+ q2)v̇(0,0|0)+ qv̇(0,−1|−1)+ qv̇(0,1|1)+ q2v̇(1,0|1).

This vector is ψ-invariant with the right leading term v̇(−1,0|−1), but we must make
one correction to remove a term v̇(0,0|0), i.e., we must subtract ḃ(0,0|0) as already
computed, to obtain that ḃ(−1,0|−1) = v̇(−1,0|−1) + qv̇(0,−1|−1) + q2v̇(0,0|0).

Returning to more theoretical considerations, the key point is that the category
OZ is an example of an sl∞-tensor product categorification of V ⊗n ⊗ W⊗m. This
means in particular that there exist some exact endofunctorsFi andEi of OΔ

Z
whose

induced actions on K(OΔ
Z
) match the actions of the Chevalley generators fi and ei

on V ⊗n ⊗ W⊗m under our identification. To define these functors, recall that U
denotes the natural g-module of column vectors. Let U∨ be its dual. Introduce the
biadjoint projective functors

F := − ⊗ U : OZ → OZ, E := − ⊗ U∨ : OZ → OZ.

The action of the Casimir tensor

Ω :=
n+m∑

i,j=1

(−1)ūj ei,j ⊗ ej,i ∈ g⊗ g

defines an endomorphism of FM = M ⊗ U for each M ∈ OZ. Let Fi be the
summand of the functor F defined so that FiM is the generalized i-eigenspace
of Ω for each i ∈ Z. We then have that F = ⊕

i∈Z Fi . Similarly the functor E
decomposes as E = ⊕i∈Z Ei where each Ei is biadjoint to Fi ; explicitly one can
check that EiM is the generalized (m−n− i)-eigenspace ofΩ on EM =M⊗U∨.
Now it is an instructive exercise to prove:

Lemma 3.5. The exact functors Fi and Ei send supermodules with Verma flags
to supermodules with Verma flags. Moreover the induced endomorphisms [Fi] and
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[Ei] ofK(OΔ
Z
) agree under the above identification with the endomorphisms fi and

ei of V ⊗n ⊗W⊗m defined by the action of the Chevalley generators of sl∞.

In fact much more is true here. The action of Ω on each FM defines a natural
transformation x ∈ End(F ). Also let t ∈ End(F 2) be such that tM : F 2M → F 2M

is the endomorphism

tM : M ⊗ U ⊗ U → M ⊗ U ⊗ U, v ⊗ ui ⊗ uj 
→ (−1)ūi ūj v ⊗ uj ⊗ ui.

From x and t one obtains xi := Fd−ixF i−1 ∈ End(F d) and tj := Fd−j−1tF j−1 ∈
End(F d) for each d ≥ 0, 1 ≤ i ≤ d and 1 ≤ j ≤ d − 1. It is straightforward
to check that these natural transformations satisfy the defining relations of the
degenerate affine Hecke algebra Hd . This shows that the category OZ equipped
with the biadjoint pair of endofunctors F and E, plus the endomorphisms x ∈
End(F ) and t ∈ End(F 2), is an sl∞-categorification in the sense of Chuang and
Rouquier. In addition OZ is a highest weight category, and Lemma 3.5 checks some
appropriate compatibility of the categorical action with this highest weight structure.
The conclusion is that OZ is actually an sl∞-tensor product categorification of
V⊗n ⊗W⊗m in a formal sense introduced by Losev and Webster.

We are ready to state the following extension of the super Kazhdan–Lusztig
conjecture, which incorporates a Z-grading in the spirit of the classic work of
Beilinson, Ginzburg and Soergel on Koszulity of category O in the purely even
setting.

Theorem 3.6 (Brundan, Losev, Webster). There exists a unique (up to equiva-
lence) graded lift ȮZ of OZ that is a Uqsl∞-tensor product categorification of
V̇⊗n ⊗ Ẇ⊗m. Moreover the category ȮZ is a standard Koszul highest weight
category, and its graded decomposition numbers [Ṁ(λ) : L̇(μ)]q are given by the
parabolic Kazhdan–Lusztig polynomials dλ,μ(q) as defined above.

A few more explanations are in order. To start with we should clarify what it
means to say that ȮZ is a graded lift of OZ. The easiest way to understand this is to
remember as discussed in the previous section that OZ is equivalent to the category
mof-A of finite-dimensional locally unital right A-modules, where A is the locally
unital algebra

A :=
⊕

λ,μ∈t∗
Z

Homg(P (λ), P (μ)).

To give a graded lift ȮZ of OZ amounts to exhibiting some Z-grading on the algebra
A with respect to which each of its distinguished idempotents 1λ are homogeneous;
then the category grmof-A of graded finite-dimensional locally unital right A-
modules gives a graded lift of OZ. Of course there can be many ways to do this,
including the trivial way that puts all of A in degree zero! Theorem 3.6 asserts in
particular that the algebra A admits a positive grading making it into a (locally
unital) Koszul algebra; as is well known such a grading (if it exists) is unique
up to automorphism.
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For this choice of grading, the category ȮZ := grmof-A is a graded highest
weight category with distinguished irreducible objects {L̇(λ) | λ ∈ t∗

Z
}, standard

objects {Ṁ(λ) | λ ∈ t∗
Z
} and indecomposable projective objects {Ṗ (λ) := 1λA | λ ∈

t∗
Z
}; these are graded lifts of the modules L(λ),M(λ) and P(λ), respectively, such

that the canonical maps Ṗ (λ)� Ṁ(λ)� L̇(λ) are all homogeneous of degree zero.
Then the assertion from Theorem 3.6 that ȮZ is standard Koszul means that each
Ṁ(λ) possesses a linear projective resolution, that is, there is an exact sequence

· · · → Ṗ 2(λ)→ Ṗ 1(λ)→ Ṗ (λ)→ Ṁ(λ)→ 0,

such that for each i ≥ 1 the module Ṗ i (λ) is a direct sum of graded modules qiṖ (μ)
for μ > λ. Here q denotes the degree shift functor defined on a graded module
M by letting qM be the same underlying module with new grading defined from
(qM)i := Mi−1.

Let ȮΔ
Z

be the exact subcategory of ȮZ consisting of modules with a graded Δ-
flag. Its Grothendieck group is a Z[q, q−1]-module with q acting by degree shift.
Let Kq(ȮΔZ ) be the Q(q)-vector space obtained by extending scalars, i.e., it is the
Q(q)-vector space on basis {[Ṁ(λ)] | λ ∈ t∗

Z
}. Then again we identify

Kq(Ȯ
Δ
Z
)↔ V̇⊗n ⊗ Ẇ⊗m, [Ṁ(λ)] ↔ v̇λ.

The assertion about graded decomposition numbers in Theorem 3.6 means under
this identification that

[Ṗ (μ)] ↔ ḃμ.

The assertion that ȮZ is a Uqsl∞-tensor product categorification means in particular
that the biadjoint endofunctorsFi and Ei of OZ admit graded lifts Ḟi and Ėi , which
are also biadjoint up to approriate degree shifts. Moreover these graded functors
preserve modules with a graded Verma flag, and their induced actions on Kq(ȮΔZ )
agree with the actions of ḟi , ėi ∈ Uqsl∞ under our identification.

We will say more about the proof of Theorem 3.6 in the next section.

Notes. The identification of the Bruhat order on t∗
Z

with the “reverse dominance
ordering” is justified in [10, Lemma 2.5]. Our Lemma 3.1 is a variation on [10,
Theorem 2.14]; the latter theorem was used in [10] to define a twisted version of
the canonical basis which corresponds to the indecomposable tilting supermodules
rather than the indecomposable projectives in OZ. The super Kazhdan–Lusztig
conjecture as formulated here is equivalent to [10, Conjecture 4.32]; again the
latter was expressed in terms of tilting supermodules. The equivalence of the two
versions of the conjecture can be deduced from the Ringel duality established in
[12, (7.4)]; see also [15, Remark 5.30]. The algorithm for computing the canonical
basis sketched here is a variation on an algorithm described in detail in [10, §2-h];
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the latter algorithm computes the twisted canonical basis rather than the canonical
basis. Example 3.4 was worked out already in [20, §9.5].

Theorems 3.2 and 3.6 are proved in [18] and [15], respectively. In fact both
of these articles also prove a more general form of the super Kazhdan–Lusztig
conjecture which is adapted to arbitrary Borel subalgebras b of g; at the level of
combinatorics this amounts to shuffling the tensor factors in the tensor product
V̇⊗n ⊗ Ẇ⊗m into more general orders. The article [15] also considers parabolic
analogs. The idea that blocks of category O should possess Koszul graded lifts goes
back to the seminal work of Beilinson, Ginzburg and Soergel [4] in the context
of semisimple Lie algebras. The notion of sl-categorification was introduced by
Chuang and Rouquier following their joint work [23]. The definition was recorded
for the first time in the literature in [42, Definition 5.29]. For the definition of tensor
product categorification, see [36, Definition 3.2] and also [15, Definition 2.9]. A full
proof of Lemma 3.5 (and its generalization to the parabolic setting) can be found in
[15, Theorem 3.9].

4 Principal W -Algebras and the Double Centralizer
Property

By a prinjective object we mean an object that is both projective and injective. To
set the scene for this section we recall a couple of classical results. Let O0 be the
principal block of category O for a semisimple Lie algebra g, and recall that the
irreducible modules in O0 are the modules {L(w · 0) |w ∈ W } parametrized by the
Weyl group W . There is a unique indecomposable prinjective module in O0 up to
isomorphism, namely, the projective cover P(w0 · 0) of the “antidominant” Verma
module L(w0 · 0); here w0 is the longest element of the Weyl group.

Theorem 4.1 (Soergel’s Endomorphismensatz). The endomorphism algebra

C0 := Endg(P (w0 · 0))
is generated by the center Z(g) of the universal enveloping algebra of g. Moreover
C0 is canonically isomorphic to the coinvariant algebra, i.e., the cohomology
algebra H ∗(G/B,C) of the flag variety associated to g.

Theorem 4.2 (Soergel’s Struktursatz). The functor

V0 := Homg(P (w0 · 0),−) : O0 → mof-C0

is fully faithful on projectives.

With these two theorems in hand, we can explain Soergel’s approach to the
construction of the Koszul graded lift of the category O0. Introduce the Soergel
modules

Q(w) := V0P(w · 0) ∈ mof-C0



90 J. Brundan

for each w ∈ W . The Struktursatz implies that the finite-dimensional algebra

A0 :=
⊕

x,y∈W
HomC0(Q(x),Q(y))

is isomorphic to the endomorphism algebra of a minimal projective generator for
O0. The algebra C0 is naturally graded as it is a cohomology algebra. It turns out
that each Soergel moduleQ(w) also admits a unique graded lift Q̇(w) that is a self-
dual graded C0-module. Hence we get induced a grading on the algebra A0. This is
the grading making A0 into a Koszul algebra. The resulting category grmof-A0 is
the appropriate graded lift Ȯ0 of O0.

Now we return to the situation of the previous section, so OZ is the integral part
of category O for g = gln|m(C) and we represent integral weights λ ∈ t∗

Z
as n|m-

tuples of integers. The proof of Theorem 3.6 stated above follows a similar strategy
to Soergel’s construction in the classical case but there are several complications. To
start with, in any atypical block, there turn out to be infinitely many isomorphism
classes of indecomposable prinjective supermodules:

Lemma 4.3. For λ ∈ t∗
Z

, the projective supermodule P(λ) ∈ OZ is injective if and
only if λ is antidominant, i.e., λ1 ≤ · · · ≤ λn and λn+1 ≥ · · · ≥ λn+m. (Recall λi
denotes (λ+ ρ, δi) ∈ Z).

Proof. This follows by a special case of [15, Theorem 2.22]. More precisely, there
is an sl∞-crystal with vertex set t∗

Z
, namely, Kashiwara’s crystal associated to the

sl∞-module V⊗n ⊗ W⊗m. Then [15, Theorem 2.22] shows that the set of λ ∈ t∗
Z

such that P(λ) is injective is the vertex set of the connected component of this
crystal containing any weight (i, . . . , i|j, . . . , j ) for i < j . Now it is a simple
combinatorial exercise to see that the vertices in this connected component are
exactly the antidominant λ ∈ t∗

Z
. ��

Remark 4.4. More generally, for λ ∈ t∗, the projective P(λ) ∈ O is injective if and
only if λ is antidominant in the sense that (λ, δi − δj ) /∈ Z≥0 for 1 ≤ i < j ≤ n
and (λ, δi − δj ) /∈ Z≤0 for n+ 1 ≤ i < j ≤ n+m. This follows from Lemma 4.3
and Theorem 2.6. In other words, the projective P(λ) is injective if and only if the
irreducible supermodule L(λ) is of maximal Gelfand–Kirillov dimension amongst
all supermodules in O .

Then, fixing ξ ∈ t∗
Z
/ ≈, the appropriate analog of the coinvariant algebra for the

block Oξ is the locally unital algebra

Cξ :=
⊕

Antidominantλ,μ∈ξ
Homg(P (λ), P (μ)).

For atypical blocks this algebra is infinite dimensional and no longer commutative.
Still there is an analog of the Struktursatz:
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Theorem 4.5 (Brundan, Losev, Webster). The functor Vξ : Oξ → mof-Cξ
sendingM ∈ Oξ to

VξM :=
⊕

Antidominant λ∈ξ
Homg(P (λ),M)

is fully faithful on projectives.

However we do not at present know of any explicit description of the algebra Cξ .
Instead the proof of Theorem 3.6 involves another abelian category mod-Hξ . This
notation is strange because actually there is no single algebra Hξ here; rather, there
is an infinite tower of cyclotomic quiver Hecke algebras H 1

ξ ⊂ H 2
ξ ⊂ H 3

ξ ⊂ · · · ,
which arise as the endomorphism algebras of larger and larger finite direct sums of
indecomposable prinjective supermodules (with multiplicities). Then the category
mod-Hξ consists of sequences of finite-dimensional modules over this tower of
Hecke algebras subject to some stability condition. Moreover there is an explicitly
constructed exact functor Uξ : Oξ → mod-Hξ . The connection between this and
the functor Vξ comes from the following lemma.

Lemma 4.6. There is a unique (up to isomorphism) equivalence of categories

Iξ : mod-Hξ
∼→ mof-Cξ

such that Vξ ∼= Iξ ◦ Uξ .
Proof. This follows because both of the functors Uξ and Vξ are quotient functors,
i.e., they satisfy the universal property of the Serre quotient ofOξ by the subcategory
generated by {L(λ) | λ ∈ ξ such that λ is not antidominant}. For Uξ this universal
property is established in [15, Theorem 4.9]. It is automatic for Vξ . ��

Each of the algebras Hrξ in the tower of Hecke algebras is naturally graded, so
that we are able to define a corresponding graded category grmod-Hξ . Then we
prove that the modules Y (λ) := UξP (λ) ∈ mod-Hξ admit unique graded lifts
Ẏ (λ) ∈ grmod-Hξ which are self-dual in an appropriate sense. Since the functor Uξ
is also fully faithful on projectives (e.g., by Theorem 4.5 and Lemma 4.6), we thus
obtain a Z-grading on the basic algebra

Aξ :=
⊕

λ,μ∈ξ
Homg(P (λ), P (μ)) ∼=

⊕

λ,μ∈ξ
HomHξ (Ẏ (λ), Ẏ (μ)),

that is Morita equivalent to Oξ . This grading turns out to be Koszul, and grmof-Aξ
gives the desired graded lift Ȯξ of the block Oξ from Theorem 3.6.

The results just described provide a substitute for Soergel’s Endomorphismensatz
for gln|m(C), with the tower of cyclotomic quiver Hecke algebras replacing the
coinvariant algebra. However we still do not find this completely satisfactory, and
actually believe that it should be possible to give an explicit (graded!) description of
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the basic algebraCξ itself. This seems like a tractable problem whose solution could
suggest some more satisfactory geometric picture underpinning the rich structure of
super category O .

Example 4.7. Here we give explicit generators and relations for the algebra C0 for
the principal block of O for gl2|1(C). The prinjectives are indexed by Z and their
Verma flags are as displayed on the bottom row of the diagram in Example 3.4. The
algebra C0 is isomorphic to the path algebra of the same infinite linear quiver as in
Example 2.8 modulo the relations

ei+1ei = fifi+1 = 0 for all i ∈ Z,

fi+1ei+1fi+1ei+1 + eifieifi = 0 for i ≤ −2 or i ≥ 1,

f0e0 + e−1f−1e−1f−1 = 0,

f1e1f1e1 + e0f0 = 0.

Moreover the appropriate grading on C0 is defined by setting deg(ei) = deg(fi) =
1+ δi,0. Here is a brief sketch of how one can see this. The main point is to exploit
Theorem 3.6: the grading on Ȯ0 induces a positive grading on C0 with degree
zero component

⊕
i∈ZC1i . LetD(i) be the one-dimensional irreducibleC0-module

corresponding to i ∈ Z and let Q(i) be its projective cover (equivalently, injective
hull). The proof of Theorem 3.6 implies further that these modules possess self-
dual graded lifts Ḋ(i) and Q̇(i). A straightforward calculation using the graded
version of BGG reciprocity and the information in Example 3.4 gives the graded
composition multiplicities of each Q̇(i). From this one deduces for each i ∈ Z that
there are unique (up to scalars) nonzero homomorphisms ei : Q̇(i − 1) → Q̇(i)

and fi : Q̇(i)→ Q̇(i− 1) that are homogeneous of degree 1+ δi,0. By considering
images and kernels of these homomorphisms and using self-duality, it follows
that each Q̇(i) has irreducible head q−2Ḋ(i), irreducible socle q2Ḋ(i), and heart
rad Q̇(i)/soc Q̇(i) ∼= Q̇−(i)⊕ Q̇+(i), where Q̇−(0) := Ḋ(−1), Q̇+(−1) := Ḋ(0)
and all other Q̇±(i) are uniserial with layers q−1Ḋ(i±1), Ḋ(i), qḊ(i±1) in order
from top to bottom. Hence (eifi)2−δi,0 �= 0 �= (fi+1ei+1)

2−δi+1,0 for each i ∈ Z.
Since each EndC0(Q̇(i)) is one-dimensional in degree 4, it is then elementary to see
that ei and fi can be scaled to ensure that the given relations hold, and the result
follows.

Remark 4.8. With a similar analysis, one can show for any n ≥ 1 that the algebra
Cξ associated to the block ξ of gln|1(C) containing the weight −ρ = (0, . . . , 0|0)
is described by the same quiver as in Examples 2.8 and 4.7 subject instead to the
relations

ei+1ei = fifi+1 = (fi+1ei+1)
n−δi+1,0(n−1) + (eifi)n−δi,0(n−1) = 0

for all i ∈ Z. This time deg(ei) = deg(fi) = 1+ δi,0(n− 1).
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To finish the article we draw attention to one more piece of this puzzle. First, we
need to introduce the principal W -superalgebra Wn|m associated to g = gln|m(C).
Let π be a two-rowed array of boxes with a connected strip of min(n,m) boxes in
its first (top) row and a connected strip of max(n,m) boxes in its second (bottom)
row; each box in the first row should be immediately above a box in the second row
but the boxes in the rows need not be left-justified. We write the numbers 1, . . . , n
in order into the boxes on a row of length n and the numbers n + 1, . . . , n + m in
order into the boxes on the other row. Also let s− (resp. s+) be the number of boxes
overhanging on the left hand side (resp. the right-hand side) of this diagram. For
example, here is a choice of the diagram π for gl5,2(C):

6 7
1 2 3 4 5

For this s− = 1 and s+ = 2. Numbering the columns of π by 1, 2, . . . from left to
right, we let col(i) be the column number of the box containing the entry i. Then
define a Z-grading g =⊕d∈Z g(d) by declaring that the matrix unit ei,j is of degree
col(j)− col(i), and let

p :=
⊕

d≥0

g(d), h := g(0), m :=
⊕

d<0

g(d).

Let e := e1,2 + · · · + en−1,n + en+1,n+2 + · · · + en+m−1,n+m ∈ g(1). This is a
representative for the principal nilpotent orbit in g. Let χ : m → C be the one-
dimensional representation with χ(x) := str(xe). Finally set

Wn|m := {u ∈ U(p) | umχ ⊆ mχU(g)}

where mχ := {x − χ(x) | x ∈ m} ⊂ U(m). It is easy to check that Wn|m is a
subalgebra of U(p).

Theorem 4.9 (Brown, Brundan, Goodwin). The superalgebra Wn|m contains

some explicit even elements {d(r)i | i = 1, 2, r > 0} and odd elements {f (r) | r >
s−} ∪ {e(r) | r > s+}. These elements generate Wn|m subject only to the following
relations:

d
(r)
1 = 0 if r > min(m, n),

[d(r)i , d(s)j ] = 0,

[e(r), e(s)] = 0,

[f (r), f (s)] = 0,

[d(r)i , e(s)] = (−1)p
r−1∑

a=0

d
(a)
i e

(r+s−1−a),
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[d(r)i , f (s)] = −(−1)p
r−1∑

a=0

f (r+s−1−a)d(a)i ,

[e(r), f (s)] = (−1)p
r+s−1∑

a=0

d̃
(a)
1 d

(r+s−1−a)
2 .

Here d(0)i = 1 and d̃(r)i is defined recursively from
∑r
a=0 d̃

(a)
i d

(r−a)
i = δr,0. Also

p := 0̄ if the numbers 1, . . . , n appear on the first row of π , and p := 1̄ otherwise.

The relations in Theorem 4.9 arise from the defining relations for the Yangian
Y (gl1|1). In fact the structure of the superalgebraWn|m is quite interesting. To start
with there is an explicit description of its center Z(Wn|m), which is canonically
isomorphic to the center Z(g) of the universal enveloping superalgebra of g
itself. All of the supercommutators [e(r), f (s)] are central. Then Wn|m possesses
a triangular decomposition Wn|m = W−

n|mW 0
n|mW

+
n|m, i.e., the multiplication map

W−
n|m ⊗W 0

n|m ⊗W+
n|m → Wn|m is a vector space isomorphism where

• W−
n|m is a Grassmann algebra generated freely by {f (r) | s− < r ≤ s− +

min(m, n)};
• W+

n|m is a Grassmann algebra generated freely by {e(r) | s+ < r ≤ s+ +
min(m, n)};

• W 0
n|m is the polynomial algebra on {d(r)1 , d

(s)
2 | 0 < r ≤ min(m, n), 0 < s ≤

max(m, n)}.
Using this one can label its irreducible representations by mimicking the usual
arguments of highest weight theory. They are all finite dimensional, in fact of dimen-
sion 2min(m,n)−k where k is the degree of atypicality of the corresponding central
character. Moreover the irreducible representations of integral central character are
parametrized by the antidominant weights in t∗

Z
, i.e., the same weights that index

the prinjective supermodules in OZ.
The principalW -superalgebra is relevant to our earlier discussion because of the

existence of the Whittaker coinvariants functor

W := H0(mχ ,−) : O → Wn|m-smod.

This is an exact functor sending M ∈ O to the vector superspace H0(mχ ,M) :=
M/mχM of mχ -coinvariants in M . The definition of Wn|m ensures that this is a
(finite-dimensional) leftWn|m-supermodule in the natural way. Then it turns out that
the functor W sends the irreducible L(λ) ∈ O to an irreducibleWn|m-supermodule
if λ is antidominant or to zero otherwise, and every irreducible Wn|m-supermodule
arises in this way (up to isomorphism and parity switch).
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Theorem 4.10 (Brown, Brundan, Goodwin). For ξ ∈ t∗
Z
/ ≈, let Wξ : Oξ →

Wn|m-smod be the restriction of the Whittaker coinvariants functor. As Vξ is a
quotient functor, there exists a unique (up to isomorphism) exact functor

Jξ : mof-Cξ → Wn|m-smod

such that Wξ
∼= Jξ ◦Vξ . This defines an equivalence of categories between mof-Cξ

and a certain full subcategory Rξ of Wn|m-smod which is closed under taking
submodules, quotients and finite direct sums.

Thus Wξ : Oξ → Rξ is another quotient functor which is fully faithful on
projectives. One intriguing consequence is that for blocks ξ of maximal atypicality
(in which all the irreducibleWn|m-supermodules are one-dimensional), the algebra
Cξ can be realized also as an “idempotented quotient” of Wn|m. We already saw
a very special case of this in Example 2.8, and describe the next easiest case
in Example 4.11 below; hopefully this gives a rough idea of what we mean by
“idempotented quotient.” Unfortunately in general we still have no idea of the
precise form that the relations realizing Cξ as a quotient ofWn|m should take.

Example 4.11. The generators and relations for the principalW -superalgebraW2|1
from Theorem 4.9 collapse to just requiring generators c := d

(1)
2 − d(1)1 , d :=

−d(1)1 , e := e(1+s+) and f := f (1+s−), subject to the relations [c, d] = [c, e] =
[c, f ] = 0 (i.e., c is central), [d, e] = e, [d, f ] = −f and e2 = f 2 = 0. Let
C0 be the algebra described explicitly in Example 4.7 and let Ĉ0 be its completion
consisting of (possibly infinite) formal sums {∑i,j∈Z ai,j | ai,j ∈ 1iC01j }. The
relations imply that there is a homomorphism

φ : W2|1 → Ĉ0, c 
→ 0, d 
→
∑

i∈Z
i1i, e 
→

∑

i∈Z
ei, f 
→

∑

i∈Z
fi.

Then we have that C0 =⊕i,j∈Z 1iφ(W2|1)1j .

Notes. Soergel’s Theorems 4.1–4.2 were proved originally in [45]. Soergel’s proof
of the Endomorphismensatz goes via deformed category O; Bernstein subsequently
gave a more elementary proof in [6]. We also mention [46] which contains a
generalization of the Struktursatz to parabolic category O; our Theorem 4.5 is a
close relative of that. For the formal definition of the category mod-Hξ of stable
modules over the tower of Hecke algebras mentioned briefly here we refer to [15,
§4]. Theorem 4.5 follows from [15, Theorem 4.10] and Lemma 4.6. Example 4.7
was computed with help from Catharina Stroppel.

The definition of principal W -algebras for semisimple Lie algebras is due to
Kostant [32], although of course the language is much more recent. Kostant showed
in the classical case that the principal W -algebra is canonically isomorphic to the
center Z(g) of the universal enveloping algebra of g. The explicit presentation
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for the principal W -superalgebra for gln|m(C) from Theorem 4.9 is proved in [8,
Theorem 4.5]. For the classification of irreducible Wn|m-supermodules we refer to
[8, Theorems 7.2–7.3].

The Whittaker coinvariants functor W for the principal nilpotent orbit of
gln|m(C) is studied in detail in [9], culminating in the proof of Theorem 4.10. The
identification of Cξ as an idempotented quotient of Wn|m is also explained more
fully there. The idea that Soergel’s functor V is related to W goes back to the work
of Backelin [1] in the classical case. In [35, Theorem 4.7], Losev has developed a
remarkably general theory of Whittaker coinvariant functors associated to arbitrary
nilpotent orbits in semisimple Lie algebras; see also the brief discussion of Lie
superalgebras in [35, §6.3.2].
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Lie Algebras
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Abstract I. Penkov and V. Serganova have recently introduced, for any
nondegenerate pairing W ⊗ V → C of vector spaces, the Lie algebra glM =
glM(V,W) consisting of endomorphisms of V whose duals preserve W ⊆ V ∗. In
their work, the category TglM of glM -modules, which are finite length subquotients
of the tensor algebra T (W ⊗V ), is singled out and studied. Denoting by TV⊗W the
category with the same objects as TglM but regarded as V ⊗ W -modules, we first
show that when W and V are paired by dual bases, the functor TglM → TV⊗W
taking a module to its largest weight submodule with respect to a sufficiently nice
Cartan subalgebra of V ⊗W is a tensor equivalence. Secondly, we prove that when
W and V are countable-dimensional, the objects of TEnd(V ) have finite-length as

glM -modules. Finally, under the same hypotheses, we compute the socle filtration
of a simple object in TEnd(V ) as a glM -module.
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subspace of the full dual V ∗, and vice versa. The associated Mackey Lie algebra
gM = glM(V,W) is then simply the set of all endomorphisms of V whose duals
leaveW ⊆ V ∗ invariant. It can be shown that the definition is symmetric in the sense
that reversing the roles of V and W produces canonically isomorphic Lie algebras.
WhenW = V ∗, the resulting Lie algebra is simply End(V ).

Categories TgM of gM -representations are then introduced. They consist of
modules for which all elements have appropriately large annihilators; see [4, § 7.3].
One remarkable result is that all these categories, for all possible nondegenerate
pairs (V ,W), are in fact equivalent as tensor categories (i.e., symmetric monoidal
abelian categories). Moreover, they are also equivalent to the categories Tsl(V ,W)

from [4, § 3.5] and T = Tsl(∞) introduced and studied earlier in [1]; all of this
follows from [4, Theorems 5.1 and 7.9].

In view of the abstract equivalence between TEnd(V ) $ Tsl(V ,W) noted above,
it is a natural problem to try to find as explicit and natural a functor as possible
that implements this equivalence. In order to do this, we henceforth specialize to
the case when W = V∗ is a vector space whose pairing with V is given by a pair
of dual bases vγ ∈ V , v∗γ ∈ V∗ for γ ranging over some (possibly uncountable)
set I . This assumption ensures the existence of a so-called local Cartan subalgebra
h ⊆ sl(V , V∗) [4, 1.4].

Denote g = sl(V , V∗). In our setting, for a local Cartan subalgebra h ⊆ g, let Γ wt
h

be the functor from End(V )-modules to g-modules which picks out the h-weight
part of a representation. Similarly, denote by Γ wt the functor

⋂
h Γ

wt
h , where the

intersection ranges over all local Cartan subalgebras of g. We will abuse notation and
denote by these same symbols the restrictions of Γ wt

h and Γ wt to various categories
of End(V )-modules.

With these preparations (and keeping the notations we’ve been using), the
following seems reasonable [4, 8.4].

Conjecture 1. The functor Γ wt implements an equivalence from TEnd(V ) onto Tg.

One of the main results of this paper is a proof of this conjecture. The outline is
as follows:

In the next section we prove Conjecture 1, making use of the results in [6] on a
certain universality property for the category Tg.

In Sect. 2 we specialize to a pairing V∗⊗V → C of countable-dimensional vector
spaces V , V∗. In this case, noting that V ∗/V∗ is a simple gM = slM(V, V∗)-module,
the authors of [4] ask whether all objects of TEnd(V ) are finite-length gM -modules.
We show that this is indeed the case in Theorem 3.

Finally, Theorem 4 in Sect. 3 contains the description of the socle filtration as a
gM -module of a simple object in TEnd(V ). This solves a third problem posed in the
cited paper.
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1 Explicit Equivalence Between TEnd(V ) and Tg

We will actually prove a slightly strengthened version of Conjecture 1. Before
formulating it, recall our setting: We are considering a pairing between V and V∗
determined by dual bases vγ ∈ V and v∗γ ∈ V∗, and g stands for sl(V , V∗). By
h ⊆ g we denote the local Cartan subalgebra spanned linearly by the elements
vγ ⊗ v∗γ − vγ̄ ⊗ v∗̄γ ∈ g ⊆ V ⊗ V∗ for γ �= γ̄ ∈ I .

Throughout, “tensor category” means symmetric monoidal,C-linear and abelian.
Similarly, tensor functors are symmetric monoidal and C-linear, and tensor natural
transformations are symmetric monoidal.

Our main result in the present section reads as follows.

Theorem 1. The functor Γ wt
h implements a tensor equivalence from TEnd(V )

onto Tg.

Before embarking on the proof, note that as claimed above, the theorem implies
the conjecture.

Corollary 1. Conjecture 1 is true.

Proof. On the one hand, the functor Γ wt from the statement of the conjecture is a
subfunctor of Γ wt

h . On the other hand though, the theorem says that Γ wt
h already

lands inside the category Tg which consists of weight modules for any local Cartan
subalgebra of g (because it consists of modules emendable in finite direct sums of
copies of the tensor algebra T (V ⊕ V∗); see e.g., [4, 7.9]). In conclusion, we must
have Γ wt = Γ wt

h , and we are done. ��
We will make use of the following simple observation.

Lemma 1. Let H be a cocommutative Hopf algebra over an arbitrary field F, and
FIN : H − mod → H − mod the functor sending an H -moduleM to the largest
H -submodule ofM which is a union of finite-dimensionalH -modules. Then, FIN is
a tensor functor.

Proof. Let S be the antipode ofH . For anH -module V , denote by V ∗ the algebraic
dual of V made into an H -module via (hf )(v) = f (S(h)v) for h ∈ H , v ∈ V and
f ∈ V ∗. Then the usual evaluation V ∗ ⊗V → F is an H -module map if V ∗ ⊗V is
a module via the tensor cateory structure of H −mod.

Now let M,N be H -modules, and V ⊆ FIN(M ⊗ N) be a finite-dimensional
H -submodule. We need to show that V is in fact a submodule of FIN(M)⊗FIN(N).

Denote byNV ⊆ N the image of theH -module morphismM∗⊗V ⊆ M∗⊗M⊗
N → N , where the last arrow is evaluation on the first two tensorands. Similarly,
denote by MV ⊆ M the image of V ⊗ N∗ ⊆ M ⊗ N ⊗ N∗ → M . ThenMV and
NV are H -submodules of M and N respectively, being images of module maps. It
is now easily seen from their definition thatMV andNV are finite-dimensional, and
that the inclusion V ⊆ M ⊗N factors throughMV ⊗NV ⊆ M ⊗N . ��
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Remark 1. The cocommutativity of H is used in the proof to conclude that the
categoryH −mod is symmetric monoidal, and henceN⊗N∗ → F is anH -module
map because its domain is isomorphic to N∗ ⊗N .

Although we do not need this in the sequel, as Lemma 1 will only be applied to
universal envelopes of Lie algebras, the above proof can be generalized to show that
the functor FIN, defined in the obvious fashion, is monoidal for any Hopf algebra
with bijective antipode. In the definition of VN one would need to use the evaluation
map N ⊗ ∗N → F instead, where ∗N is the full dual of N made into an H -module
using the inverse of the antipode instead of the antipode.

We now need a characterization of the category TEnd(V ) $ Tg in terms of
a universality property which defines it uniquely up to tensor equivalence. The
following result is Theorem 3.4.2 from [6], where the category Tg is denoted by
Rep(GL).

Theorem 2. For any tensor category C with monoidal unit 1 and any morphism
b : x⊗y → 1 in C, there is a left exact tensor functor F : TEnd(V ) → C sending the
pairing V ∗ ⊗ V → C in TEnd(V ) to b. Moreover, F is unique up to tensor natural
isomorphism. ��

As an immediate consequence we have:

Corollary 2. A left exact tensor functor TEnd(V ) → Tg turning the pairing
V ∗ ⊗ V → C into the pairing V∗ ⊗ V → C, is a tensor equivalence.

Proof. The abstract tensor equivalence TEnd(V ) $ Tg established in [4, 5.1,7.9]
identifies the two bilinear pairings in the statement. The conclusion then follows
from Theorem 2 in the usual manner (a universality property implies uniqueness up
to equivalence). ��

The proof of Theorem 1 makes use of the following auxiliary result.

Lemma 2. Let h be a complex abelian Lie algebra. For any functional ϕ ∈ h∗, let
Mϕ ∈ h−mod be an h-module all of whose elements are vectors of weight ϕ. Then,
using the notation FIN from Lemma 1, we have

FIN

⎛

⎝
∏

ϕ∈h∗
Mϕ

⎞

⎠ =
⊕

ϕ∈h∗
Mϕ.

Proof. We denote the direct product
∏

ϕ

Mϕ by M . Let x ∈ M be an element

contained in some d-dimensional h-submoduleN ofM .
Assume there are d+1 distinct functionals ϕ0 up to ϕd such that the components

xi , 0 ≤ i ≤ d of x in Mϕi are all nonzero. Because ϕi ∈ h∗ are distinct, we can
find some element h ∈ h such that the scalars ti = ϕi(h) are distinct (as h cannot
be the union of the kernels of ϕi − ϕj , 0 ≤ i �= j ≤ d; here we use the fact that we
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are working over C, or more generally, over an infinite field). The claim now is that
x, hx, . . . , hdx are linearly independent, contradicting the assumption dimN = d .

To prove the claim, consider the images of the vectors hix, 0 ≤ i ≤ d , through

the projection M →
d∏

i=0

Mϕi . They are linear combinations of the xi’s, and their

coefficients form the columns of the (d + 1)× (d + 1) non-singular Vandermonde
matrix

⎛

⎜⎜⎜⎝

1 t0 · · · td0
1 t1 · · · td1
...
...
. . .

...

1 td · · · tdd

⎞

⎟⎟⎟⎠

This finishes the proof. ��
We are now ready to prove our first main result.

Proof of Theorem 1. First, recall from [1, §4] that TEnd(V ) has enough injectives,
that the tensor products (V ∗)⊗m ⊗ V⊗n contain all indecomposable injectives as
summands, and also [5] that all morphisms between such tensor products are built
out of the pairing V ∗ ⊗ V → C by taking tensor products, permutations, and linear
combinations. Therefore, if we show that Γ = Γ wt

h : TEnd(V ) → g − mod sends
V ∗ ⊗ V → C to V∗ ⊗ V → C and is a left exact tensor functor, its image will
automatically lie in Tg. We can then apply Corollary 2 to conclude that the resulting
functor from TEnd(V ) → Tg is a tensor equivalence.

The functor Γ , regarded as a functor from g−mod to h-weight g-modules, is the
right adjoint of the exact inclusion functor going in the opposite direction; it’s thus
clear that it is left exact.

Since the pairing V∗ ⊗ V → C is simply the restriction of the full pairing V ∗ ⊗
V → C and Γ is compatible with inclusions, we will be done as soon as we prove
that it is a tensor functor and it sends V ∗ to V∗.

We prove tensoriality first. In fact, since compatibility with the symmetry is clear,
it is enough to prove monoidality. That is, that the inclusion Γ (M) ⊗ Γ (N) ⊆
Γ (M ⊗N) is actually an isomorphism for anyM,N ∈ TEnd(V ). To see that this is
indeed the case, note that every object of TEnd(V ), being embedded in some finite
direct sum of tensor products (V ∗)⊗m ⊗ V ⊗n, is certainly a submodule of a direct
product of h-weight spaces. Lemma 2 now shows that every finite-dimensional
h-submodule of an object in TEnd(V ) is automatically an h-weight module. Con-
versely, h-weight modules are unions of finite-dimensional h-modules. It follows
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that Γ coincides with the functor FIN considered in Lemma 1 for the Hopf algebra
H = U(h) (i.e., the universal enveloping algebra of h); the lemma finishes the job
of proving monoidality.

Finally, it is almost immediate that Γ (V ∗) = V∗: simply note that the h-weight
subspaces of V ∗ are the lines spanned by the basis elements v∗γ . ��

2 Restrictions from TEnd(V ) to gM(V,V∗) Have Finite
Length

In what follows V∗ ⊗ V → C will be a nondegenerate pairing between countable-
dimensional vector spaces. In this case, it is shown in [3] that we can find dual bases
vi , v∗i , i ∈N = {0, 1, . . .} for V and V∗ respectively, in the sense that v∗i (vj ) = δij .

Denote g = sl(V , V∗) and gM = slM(V, V∗). In general, for a vector space W
and a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0), denote by Wλ the image of the
Schur functor corresponding to λ applied to W .

We think of elements of V ∗ as row vectors indexed by N, on which the Lie
algebra End(V ) of N×N matrices with finite columns acts on the left via − right
multiplication. The subspace V∗ ⊆ V ∗ consists of row vectors with only finitely
many nonzero entries. We will often think of elements of V ∗/V∗ as row vectors as
well, keeping in mind that changing finitely many entries does not alter the element.
For a subset I ⊆ N and a vector x ∈ V ∗, the restriction x|I is the vector obtained
by keeping the entries of x indexed by I intact, and turning all other entries to zero.
The same terminology applies to x ∈ V ∗/V∗.

Let I ⊆ N be a subset. An element of V ∗ (respectively V ∗/V∗) is I-
concentrated, or concentrated in I if all of its nonzero entries (respectively all but
finitely many of its nonzero entries) belong to I . Similarly, a matrix in End(V ) is
I -concentrated if all of its nonzero entries are in I × I .

Our result is:

Theorem 3. The objects of TEnd(V ) have finite length when regarded as gM -
modules.

Remark 2. In fact, the proof of the theorem could be adapted to the more general
case covered in the previous section: V∗ and V could be allowed to be uncountable-
dimensional, so long as they are still paired by means of dual bases.

We need some preparations. The following result is very likely well known.

Lemma 3. Let G be a Lie algebra over some field F, and I ⊆ G an ideal. Let U be
a simple G/I -module, andW an G-module on which I acts densely and irreducibly,
and such that EndI (W) = F. Then, U ⊗W is a simple G-module.

Proof. Let x = ∑n
i=1 ui ⊗ wi be a nonzero element of U ⊗ W , with the tensor

product decomposition chosen such that the ui are linearly independent and all wi
are nonzero. We have to show that x generates U ⊗W as an G-module.
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Because I annihilatesU , it acts on
⊕n
i=1 Fui ⊗W ∼= W⊕n. By the simplicity of

W over I , there are vectors w′i ∈ W , i ∈ {1, . . . , n}, with w′1 = w1 and such that
the projectionW⊕n → W onto the first component maps the I -submodule ofW⊕n
generated by

∑
ui ⊗ w′i isomorphically ontoW .

Now note thatw′1 
→ w′i , i > 1 extend to I -module automorphisms ofW . By the
condition EndI (W) = F, these automorphisms are scalar: w′i = tiw′1 = tiw1 for all
i > 1; for simplicity, set t1 = 1 so that this identity holds for all i. Now, substituting∑
i tiui for u1 and denoting u1 = u, we may assume that a nonzero simple tensor

u⊗ w ∈ U ⊗W belongs to the I -span of x.
Starting with a simple tensor u ⊗ w as above, note first that the enveloping

algebra U(I) can act so as to obtain any other tensor of the form u⊗w′ (because I
annihilates U and acts irreducibly onW ).

On the other hand, for h ∈ G, we have h(u ⊗ w) = hu ⊗ w + u ⊗ hw. Since
I acts densely on W , we can find k ∈ I such that kw = hw. In this case we have
(h− k)(u⊗w) = hu⊗w; since U is simple over G, all simple tensors of the form
u′ ⊗w are in the G-span of u⊗w. Combining this with the previous paragraph, we
get the desired conclusion. ��

We now need the following infinite-dimensional analogue of Schur–Weyl duality.

Proposition 1. For any partition λ = (λ1 ≥ . . . ≥ λm ≥ 0), the gM -module
(V ∗/V∗)λ is simple.

Proof. Let k = |λ| =
m∑

i=1

λi . Choose an arbitrary nonzero x ∈ (V ∗/V∗)⊗k , thought

of as a sum
∑
� x
� for x� = x�1 ⊗ . . .⊗ x�k .

We denote the symmetric group on k letters by Sk . Partition N into k infinite
subsets I1, . . . , Ik such that the element of (V ∗/V∗)⊗k defined by

xRES =
∑

�

∑

σ∈Sk
(x�1|Iσ(1) )⊗ . . .⊗ (x�k |Iσ(k) )

is nonzero; we leave it to the reader to show that this is possible. Now choose
k complex numbers tj , j ∈ {1, . . . , k} such the sums

∑
j mj tj for nonnegative

integers
∑
j mj = k are distinct for different choices of tuples m1, . . . ,mk (e.g.,

tj could equal (k + 1)j ), and let h ∈ gM be the diagonal matrix whose Ij -indexed
entries are equal to tj . By breaking everything up into h-eigenspaces, we see that
the gM -module generated by x contains xRES. In order to keep notation simple, we
substitute xRES for x and assume that the individual tensorands x�j of each summand

x� of x are concentrated in distinct Ij ’s.
Now consider the subspaceW1 of V ∗/V∗ generated by all I1-concentrated x�j ’s,

and let p1, . . . , ps be rank one idempotent I1-concentrated matrices in gM such
that

∑
i pi acts as the identity on W1. Since x = ∑

i pix, some pix must be
nonzero. Substitute it for x, and repeat the process with I2 in place of I1, etc. The
resulting nonzero element, again denoted by x, will now be a linear combination
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of simple tensors x� as before, with tensorands x�j concentrated in distinct Ij ’s for

each �, and such that all x�i ’s concentrated in Ij (for all �) are equal. Denoting by
xj this common Ij -concentrated vector, our element x is a linear combination of
permutations of x1 ⊗ . . .⊗ xk.

Note that the entire procedure we have just described is Sk-equivariant: If the
vector we started out with was in (V ∗/V∗)λ ⊆ (V ∗/V∗)⊗k , then so is the output of
the process. We assume this to be the case for the rest of the proof.

Because gM acts transitively on V ∗/V∗ (in the sense that any nonzero element
can be transformed into any other element by acting on it with some matrix in gM ),
we can find k2 elements aij of gM such that apqxr = δqrxp. The elements aij
generate a Lie algebra isomorphic to gl(k), and by ordinary Schur–Weyl duality
we conclude that the gM -module generated by x contains cλ(W⊗k), whereW is the
linear space spanned by the xj , and cλ is the Young symmetrizer corresponding to λ.

Since for each j the vector xj can be transformed into any other Ij -concentrated
vector by acting on it with some Ij -concentrated matrix, the conclusion from the
previous paragraph applies to any choice of xj ’s. The desired result follows from
the fact that every element of cλ(V ∗/V∗)⊗k is a sum of elements from cλ(W⊗k) for
variousW spanned by various tuples {xj }. ��

As a consequence of Lemma 3 and Proposition 1 we get:

Corollary 3. Let W be a simple object in TgM , and λ be a partition. Then, the
gM -module (V ∗/V∗)λ ⊗W is simple.

Proof. We apply Lemma 3 to the Lie algebra G = gM , the ideal I = g, and the
modules U = (V ∗/V∗)λ and W . We already know that W is simple over g and is
acted upon densely by the latter Lie algebra [4, Corollary 7.6], and the remaining
condition Endg(W) = C follows for example from the fact that all simple modules
in Tg = TgM are highest weight modules with respect to a certain Borel subalgebra
of g. ��

We can now turn to Theorem 3.

Proof of Theorem 3. Since all objects of TEnd(V ) are isomorphic to subquotients
of finite direct sums of tensor products (V ∗)⊗m ⊗ V ⊗n, it suffices to prove the
conclusion for these tensor products. In turn, when regarded as gM -modules,
these tensor products have filtrations by finite direct sums of objects of the form
(V ∗/V∗)⊗m1 ⊗ V ⊗m2∗ ⊗ V⊗n. The leftmost tensorand (V ∗/V∗)⊗m1 breaks up as a
direct sum of images (V ∗/V∗)λ of Schur functors, while V⊗m2∗ ⊗ V ⊗n has a finite
filtration by simple modules from the category TgM . The conclusion now follows
from Corollary 3 above. ��
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3 Socle Filtrations of TEnd(V )-Objects Over gM(V,V∗)

We now tackle the problem of finding the socle filtrations of simples in TEnd(V ) as
gM -modules. We start with a definition.

Definition 1. A filtration M0 ⊆ M1 ⊆ . . . ⊆ Mn = M of an object M in an
abelian category is essential if for every p < q < r , the moduleMq/Mp is essential
inMr/Mq , i.e. intersects every nonzero submodule ofMr/Mq non-trivially.

Remark 3. It can be shown by induction on r − p that the condition in Definition 1
is equivalent toMp+1/Mp being essential inMp+2/Mp for all p.

For dealing with tensor products of copies of V ∗ and V∗ we use the following
notation: For a binary word r = (r1, . . . , rk), ri ∈ {0, 1}, let V r be the tensor
product

⊗k
i=1 V

ri , where V 0 = V∗ and V 1 = V ∗. We denote
∑
i ri by |r|.

Now consider the following (ascending) filtration ofW = (V ∗)⊗m ⊗ V⊗n:

Wk =
∑

|r|⊆k
V r ⊗ V ⊗n, for every 0 ⊆ k ⊆ m. (1)

Proposition 2. The filtration (1) ofW = (V ∗)⊗m⊗V ⊗n is essential in gM −mod.

Proof. By Remark 3, it suffices to show that for any k ≥ 0, the gM -module
generated by any element x ∈ Wk+2 − Wk+1 intersects Wk+1 − Wk (the minus
signs stand for set difference). Moreover, it is enough to assume that x is a sum of
simple tensors y = y1⊗ . . .⊗ ym⊗ x1⊗ . . .⊗ xn for yi ∈ V ∗ and xj ∈ V such that
exactly k + 2 of the yi’s are in V∗.

Acting on a term y as above with an element g of g which annihilates all yi ∈ V∗
and all xj will produce an element ofWk+1, which belongs toWk+1−Wk provided
it is nonzero; this element can be written as a sum of simple tensors, each of which
has the tensorands yi ∈ V∗ and xj in common with the original term y. Hence,
focusing on the action of g on only those tensorands yi which do not belong to V∗,
it is enough to prove the following claim (which we apply to s = m− (k + 2)):

The annihilator in g of an element z ∈ (V ∗)⊗s whose image in (V ∗/V∗)⊗s is
nonzero does not contain a finite corank subalgebra (as defined in [4, § 3.5]).

Fixing p ∈ N, we have to prove that some matrix a ∈ g concentrated in N≥p =
{p,p + 1, . . .} does not annihilate z. In fact, it is enough to prove this for a ∈ gM .
Indeed, it would then follow that for sufficiently large q > p, the vector (az)≤q
obtained by annihilating all coordinates with index larger than q is nonzero. But we
can find some large r such that (az)≤q equals (a≤rz)≤r , where a≤r is the {p, . . . , r}-
concentrated truncation of a. We would then conclude that a≤rz is nonzero, and the
proof would be complete.

Finally, to show that some N≥p-concentrated a ∈ gM does not annihilate
z, it suffices to pass to the quotient by V∗, and regard z as a nonzero ele-
ment of (V ∗/V∗)⊗s . Since gM acts on V ∗/V∗ via its quotient gM/g, being
N≥p-concentrated no longer matters: any element of gM can be brought into
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N≥p-concentrated form by adding an element of g. In conclusion, the desired result
is now simply that no nonzero element of (V ∗/V∗)⊗s is annihilated by gM ; this
follows immediately from Proposition 1, for example. ��

The proof is easily applicable to traceless tensors in (V ∗)⊗m ⊗ V ⊗n, i.e., the
intersection of the kernels of all mn evaluation maps

(V ∗)⊗m ⊗ V ⊗n → (V ∗)⊗(m−1) ⊗ V⊗(n−1).

In other words:

Corollary 4. LetW ⊆ (V ∗)⊗m ⊗ V ⊗n be the space of traceless tensors, and set

Wk = W ∩
⎛

⎝
∑

|r|≤k
V r ⊗ V ⊗n

⎞

⎠ , for every 0 ≤ k ≤ m. (2)

The filtration {Wk} ofW is essential over gM . ��
We can push this even further, making use of the Sm × Sn-equivariance of the

corollary. Recall that the irreducible objects in TEnd(V ) are precisely the modules
Wλ,μ of traceless tensors in (V ∗)⊗|λ| ⊗ V ⊗|μ|, for partitions λ,μ (see e.g., [4,
Theorem 4.1] and discussion preceding it). For any pair of partitions, the intersection
of (2) (for m = |λ| and n = |ν|) with Wλ,μ is a filtration of Wλ,μ by gM -modules.
It turns out that it is precisely what we are looking for:

Theorem 4. For any two partitions λ,μ, the intersection of (2) with Wλ,μ is the
socle filtration of this latter module over gM .

Proof. Immediate by the proof of Proposition 2: simply work with Wλ,μ instead of
(V ∗)⊗|λ| ⊗ V ⊗n. ��

We now rephrase the theorem slightly, to give a more concrete description of the
quotients in the socle filtration. To this end, recall that the ring SYM of symmetric
functions is a Hopf algebra over Z (e.g., §2 of [2]), with comultiplication Δ. We
regard partitions as elements of SYM by identifying them with the corresponding
Schur functions, and we always think of Δ(λ) as a Z-linear combination of tensor
products μ⊗ ν of partitions.

For a partition λ we denote Δ(λ) by λ(1) ⊗ λ(2). Note that this is a slight
notational abuse, as Δ(λ) is not a simple tensor but rather a sum of tensors; we
are suppressing the summation symbol to streamline the notation. The summation
suppression extends to Schur functors: The expressionMλ(1) ⊗Mλ(2) , for instance,
denotes a direct sum over all summands μ⊗ ν of Δ(λ).

Finally, one last piece of notation: For an element ν ∈ SYM and k ∈ N, we
denote by νk ∈ SYM the degree-k homogeneous component of ν with respect to the
usual grading of SYM.

We can now state the following consequence of Theorem 4, whose proof we
leave to the reader (it consists simply of running through the definition of the
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comultiplication of SYM). Recall that we denote simple modules in TEnd(V ) by
Wλ,μ; similarly, simple modules in TgM are denoted by Vμ,ν .

Corollary 5. Let λ,μ be two partitions. The semisimple subquotient Wk/Wk−1,
k ≥ 0 of the socle filtration 0 = W−1 ⊆ W 0 ⊆ W 1 . . . of Wλ,ν in gM − mod is
isomorphic to

(V ∗/V∗)λk
(1)
⊗ V

λ
|λ|−k
(2) ,μ

.

Finally, it seems likely that as a category of gM -modules, TEnd(V ) has a universal
property of its own, reminiscent of Theorem 2. Denoting by TRES the full (tensor)
subcategory of gM −mod on the objects of TEnd(V ), the following seems sensible.

Conjecture 2. For any tensor category C with monoidal unit 1, any morphism b :
x ⊗ y → 1 in C, and any subobject x ′ ⊆ x, there is a left exact tensor functor
F : TRES → C sending the pairing V ∗ ⊗ V → C to b and turning the inclusion
V∗ ⊆ V ∗ into x ′ ⊆ x. Moreover, F is unique up to tensor natural isomorphism.

Acknowledgements I would like to thank Ivan Penkov and Vera Serganova for useful discussions
on the contents of [1, 4] and for help editing the manuscript.
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operators.
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1 Introduction

SupposeR is a commutative algebra and g is a simple Lie algebra, both defined over
the complex numbers. From the work of C. Kassel and J.L. Loday (see [KL82], and
[Kas84]) it is shown that the universal central extension ĝ of g⊗R is the vector space
(g⊗ R)⊕Ω1

R/dR whereΩ1
R/dR is the space of Kähler differentials modulo exact

forms (see [Kas84]). Let a denote the image of a ∈ Ω1
R in the quotient Ω1

R/dR

and let (−,−) denote the Killing form on g. Then more precisely the universal
central extension ĝ is the vector space (g⊗ R) ⊕ Ω1

R/dR made into a Lie algebra
by defining

[x ⊗ f, y ⊗ g] := [xy] ⊗ fg + (x, y)f dg, [x ⊗ f,ω] = 0
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for x, y ∈ g, f, g ∈ R, and ω ∈ Ω1
R/dR. A natural and useful question comes

to mind as to whether there exists free field or Wakimoto type realizations of these
algebras. M. Wakimoto and B. Feigin and E. Frenkel answered this quesiton when
R is the ring of Laurent polynomials in one variable (see [Wak86] and [FF90]).

The goal of this paper is to describe such a realization for the universal central
extension of g⊗R = sl(2, R) where R = C[t, t−1, u|u2 = t4−2ct2+1], c �= ±1,
which we call a DJKM algebra. More precisely, for this particular ring R, we call
sl(2, R) the current DJKM algebra and its universal central extension (g⊗ R) ⊕
Ω1
R/dR the DJKM algebra. There are many other interesting commutative rings

that one can use instead of this one and we discuss some of them below and what is
known about their free field realizations.

There are a number of different veins that lead up to algebraic and geo-metric
research on free field realizations of Lie algebras of the universal central extension
of g ⊗ R. One of them was M. Wakimoto’s motivation for the use of a free field
realization was to prove a conjecture of V. Kac and D. Kazhdan on the character
of certain irreducible representations of affine Kac–Moody algebras at the critical
level (see [Wak86] and [Fre05]). Previous related work on highest weight modules
of sl(2, R) written in terms of infinite sums of partial differential operators is be
found in the early paper of H. P. Jakobsen and V. Kac [JK85]. Interestingly free
field realizations have been used by V. V. Schechtman and A. N. Varchenko (and
others) to provide integral solutions to the KZ-equations (see for example [SV90]
and [EFK98] and their references).

Another application is to help in describing the center of a certain completion
of the enveloping algebra of an affine Lie algebra at the critical level and this
determination of the center is an important ingredient in the formulation of the
geometric Langland’s correspondence [Fre07]. As a last bit of motivation, the work
B. Feigin and E. Frenkel has shown that free field realizations of an affine Lie
algebra appear naturally in the context of the generalized AKNS hierarchies [FF99].
There are numerous other authors who have done interesting work on free field
realizations for affine Lie algebras, but we will only mention just the few above.

A separate vein appears as follows: In Kazhdan and Luszig’s explicit study of
the tensor structure of modules for affine Lie algebras (see [KL93] and [KL91]) the
ring of functions, regular everywhere except at a finite number of points, appears
naturally. This algebra M. Bremner gave the name n-point algebra. In particular in
the monograph [FBZ01, Ch. 12] algebras of the form⊕ni=1g((t − xi))⊕Cc appear
in the description of the conformal blocks. These contain the n-point algebras g ⊗
C[(t−x1)

−1, . . . , (t−xN)−1]⊕Cc modulo part of the centerΩR/dR. M. Bremner
explicitly described the universal central extension of such an algebra in [Bre94a]
and called it the n-point algebra. To our knowledge free field realizations of a general
n-point algebra have not been constructed with the exception of when n = 2, 3, 4
and we describe this work in this following paragraphs. The case n = 2 is just the
affine case and is roughly described in the previous paragraph.

If these realizations had been constructed in a logically historical fashion one
would have then described them for a three-point algebra. This is the case where
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R denotes the ring of rational functions with poles only in the set of distinct
complex numbers {a1, a2, a3}. This algebra is isomorphic to C[s, s−1, (s − 1)−1].
M. Schlichenmaier gave an isomorphic description of the three-point algebra as
C[(z2 − a2)k, z(z2 − a2)k | k ∈ Z] where a �= 0 (see [Sch03a]). E. Jurisich and the
first author of the present paper proved that R ∼= C[t, t−1, u | u2 = t2 + 4t] so that
the three-point algebra looks more like Sb above. The main result of [CJ] provides
a natural free field realization in terms of a β-γ -system and the oscillator algebra of
the three-point affine Lie algebra when g = sl(2,C). Besides M. Bremner’s article
mentioned above, other work on the universal central extension of 3-point algebras
can be found in [BT07].

Let R denote the ring of rational functions on the Riemann sphere S2 = C∪{∞}
with poles only in the set of distinct points {a1, a2, a3,∞} ⊂ S2. In the literature
one can find the fact that the automorphism group PGL2(C) of C(s) is simply 3-
transitive and R is a subring of C(s), so that R is isomorphic to the ring of rational
functions with poles at {∞, 0, 1, a}. This isomorphism motivates one setting a = a4
and then defining the 4-point ring as R = Ra = C[s, s−1, (s − 1)−1, (s − a)−1]
where a ∈ C\{0, 1}. Letting S := Sb = C[t, t−1, u] where u2 = t2 − 2bt + 1
with b a complex number not equal to ±1, M. Bremner showed us that Ra ∼= Sb .
(This in fact lead to the description above for the three-point algebra given in [CJ].)
The latter ring is Z2-graded where t is even and u is odd, and is a cousin to super
Lie algebras, so this ring lends itself to the techniques of conformal field theory.
M. Bremner gave an explicit description of the universal central extension of g ⊗
R, in terms of ultraspherical (Gegenbauer) polynomials where R is this four-point
algebra (see [Bre95]). Motivated by talks with M. Bremner, the first author gave
free field realizations for the four-point algebra where the center acts nontrivially
(see [Cox08]).

In Bremner’s study of the elliptic affine Lie algebras, sl(2, R) ⊕ (ΩR/dR)
where R = C[x, x−1, y | y2 = 4x3 − g2x − g3], he next explicitly described the
universal central extension of this algebra in terms of Pollaczek polynomials (see
[Bre94b]). Variations of these algebras appear in the work of A. Fialowski and M.
Schlichenmaier [FS06] and [FS05]. Together with André Bueno, the first and second
authors of this article described free field type realizations of the elliptic Lie algebra
where R = C[t, t−1, u |, u2 = t3 − 2bt2 − t], b �= ±1 (see [BCF09]).

In [DJKM83] Date, Jimbo, Kashiwara and Miwa described integrable systems
arising from the Landau–Lifshitz differential equation. The integrable hierarchy of
this equation was shown to be written in terms of free fermions defined on an elliptic
curve. These authors introduced an infinite-dimensional Lie algebra which is a one-
dimensional central extension of g ⊗ C[t, t−1, u|u2 = (t2 − b2)(t2 − c2)] where
b �= ±c are complex constants and g is a simple finite-dimensional Lie algebra.
This algebra, which we call the DJKM algebra, acts on the space of solutions of the
Landau–Lifshitz equation as infinitesimal Bäcklund transformations.

In [CF11] the first and second authors provided the commutation relations of
the universal central extension of the DJKM Lie algebra in terms of a basis of the
algebra and certain polynomials. More precisely, in order to pin down this central
extension, one needed to describe four families of polynomials that appeared as
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coefficients in the commutator formulae. Two of these families of polynomials are
given in terms of elliptic integrals and the other two families are slight variations of
ultraspherical polynomials. One of the elliptic families is precisely given by the
associated ultraspherical polynomials (see [BI82]). The associated ultraspherical
polynomials in turn are, up to factors of ascending factorials, particular associated
Jacobi polynomials. The associated Jacobi polynomials are known to satisfy
certain fourth-order linear differential equations (see [Ism05] and formula (48) in
[Wim87]). In [CFT13] the first and second authors together with Juan Tirao showed
that the remaining elliptic family of polynomials are not of classical type and are
orthogonal. We call this later elliptic family, DJKM polynomials. It is not clear to
us whether a four-point algebra or an elliptic affine Lie algebra or a DJKM algebra
can be realized as either a quotient or subalgebra of one of the others. One should
however note that the coordinate ring of the four-point algebra is of genus 0, whereas
for the elliptic affine Lie algebra is of genus 1.

The Lie algebras above are examples of Krichever–Novikov algebras (see
([KN87b,KN87a,KN89]). A fair amount of interesting and fundamental work has be
done by Krichever, Novikov, Schlichenmaier, and Sheinman on the representation
theory of these algebras. In particular, Wess–Zumino–Witten–Novikov theory and
analogues of the Knizhnik–Zamolodchikov equations are developed for these
algebras (see the survey article [She05], and for example [SS99, SS99, She03,
Sch03a, Sch03b], and [SS98]).

Here is an outline of the paper. We review in the Sect. 2 the description of
the universal central extension of g ⊗ R where g is a simple finite-dimensional
Lie algebra defined over C and R is a commutative algebra defined over C.
We describe in particular a basis for the universal central extension in the case
R = C[t, t−1, u | u2 = (t2 − a2)(t2 − b2) with a �= ±b and neither a nor b
are zero. The associated ultraspherical polynomials and another new family that we
call the DJKM polynomials play an important role in the explicit description of the
free field realization of the DJKM algebras. These latter two families of orthogonal
polynomials are not of classical type.

In Sect. 3 we give two distinct sets of generators and relations for the DJKM
algebra in order to make explicit the relationship between the current algebra
type description and the Chevalley type basis. This allows us to provide a free
field description based on just fields coming from the Chevalley basis. In Sect. 4
we give a weak triangular decomposition of g ⊗ R, review the notion of formal
distributions, and Wick’s Theorem. In Sect. 5 we recall the β − γ system, Taylor’s
theorem in the setting of formal distributions and give the definition of the DJKM
Heisenberg algebra and realization of it in terms of partial differential operators. In
the last section we give our main result describing two free field realizations of the
DJKM algebra. The proof relies heavily on Wick’s Theorem together with Taylor’s
Theorem given in Sect. 4 together with the results in Sect. 4.

We thank the referee for useful suggestions on the exposition of this paper.
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2 Description of the Universal Central Extension
of DJKM Algebras

As we described in the introduction, C. Kassel showed the universal central
extension of the current algebra g ⊗ R, where g is a simple finite-dimensional Lie
algebra defined over C, is the vector space ĝ = (g⊗R)⊕Ω1

R/dR with Lie bracket
given by

[x ⊗ f, Y ⊗ g] = [xy] ⊗ fg + (x, y)f dg, [x ⊗ f,ω] = 0, [ω,ω′] = 0,

where x, y ∈ g, and ω,ω′ ∈ Ω1
R/dR and (x, y) denotes the Killing form on g.

Consider the polynomial

p(t) = tn + an−1t
n−1 + · · · + a0

where ai ∈ C and an = 1. Fundamental to the explicit description of the universal
central extension for R = C[t, t−1, u|u2 = p(t)] is the following:

Theorem 1 ([Bre94b], Theorem 3.4). Let R be as above. The set

{t−1 dt, t−1u dt, . . . , t−nu dt}

forms a basis of Ω1
R/dR (omitting t−nu dt if a0 = 0).

Lemma 2.1 ([CF11]). If um = p(t) and R = C[t, t−1, u|um = p(t)], then in
Ω1
R/dR, one has

((m+ 1)n+ im)tn+i−1u dt ≡ −
n−1∑

j=0

((m+ 1)j +mi)aj t i+j−1u dt mod dR. (1)

In the DJKM algebra setting one takes m = 2 and p(t) = (t2 − a2)(t2 − b2)

with a �= ±b and neither a nor b is zero. The lemma above leads one to introduce
the polynomials Pk := Pk(c) in c = (a2 + b2)/2 to satisfy the recursion relation

(6+ 2k)Pk(c) = 4kcPk−2(c)− 2(k − 3)Pk−4(c)

for k ≥ 0. Setting

P(c, z) :=
∑

k≥−4

Pk(c)z
k+4 =

∑

k≥0

Pk−4(c)z
k
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one proves in [CF11] that

d

dz
P (c, z)− 3z4 − 4cz2 + 1

z5 − 2cz3 + z P (c, z)

= 2 (P−1 + cP−3) z
3 + P−2z

2 + (4cz2 − 1)P−4

z5 − 2cz3 + z . (2)

There are four cases to consider when solving this differential equation depend-
ing on the parameters Pk , k = −1,−2,−3,−4.

2.1 Elliptic Case 1

Taking the initial conditions P−3(c) = P−2(c) = P−1(c) = 0 and P−4(c) = 1 we
then arrive at a generating function

P−4(c, z) :=
∑

k≥−4

P−4,k(c)z
k+4 =

∑

k≥0

P−4,k−4(c)z
k,

expressed in terms of an elliptic integral

P−4(c, z) = z
√

1− 2cz2 + z4

∫
4cz2 − 1

z2(z4 − 2cz2 + 1)3/2
dz.

The way that we interpret the right-hand integral is to expand (z4−2cz2+1)−3/2 as
a Taylor series about z = 0 and then formally integrate term-by-term and multiply
the result by the Taylor series of z

√
1− 2cz2 + z4. More precisely, one integrates

formally with zero constant term

∫
(4c− z−2)

∞∑

n=0

Q
(3/2)
n (c)z2n dz =

∞∑

n=0

4cQ(3/2)n (c)

2n+ 1
z2n+1 −

∞∑

n=0

Q
(3/2)
n (c)

2n− 1
z2n−1

whereQ(λ)n (c) is the n-th Gegenbauer polynomial. When multiplying this by

z
√

1− 2cz2 + z4 =
∞∑

n=0

Q
(−1/2)
n (c)z2n+1

one obtains the series P−4(c, z).
The polynomials P−4,k are a special case of associated ultraspherical polynomi-

als (see [CFT13] and its references).
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2.2 Elliptic Case 2

If we take initial conditions P−4(c) = P−3(c) = P−1(c) = 0 and P−2(c) = 1, then
we arrive at a generating function defined in terms of another elliptic integral:

P−2(c, z) = z
√

1− 2cz2 + z4

∫
1

(z4 − 2cz2 + 1)3/2
dz.

The polynomials P−2,k are a new family of polynomials related to associated
ultraspherical polynomials and we call them the DJKM polynomials (see [CFT13]
and its references).

2.3 Gegenbauer Case 3

If we take P−1(c) = 1, and P−2(c) = P−3(c) = P−4(c) = 0 and set

P−1(c, z) =
∑

n≥0

P−1,n−4z
n,

then we get a solution which after solving for the integration constant can be turned
into a power series solution

P−1(c, z) = 1

c2 − 1

(
cz− z3 − cz+ c2z3 −

∞∑

k=2

cQ
(−1/2)
n (c)z2n+1

)

whereQ(−1/2)
n (c) is the n-th Gegenbauer polynomial. Hence

P−1,−4(c) = P−1,−3(c) = P−1,−2(c) = P−1,2m(c) = 0, P−1,−1(c) = 1,

P−1,2n−3(c) = −cQn(c)
c2 − 1

,

form ≥ 0 and n ≥ 2 .

2.4 Gegenbauer Case 4

Next we consider the initial conditions P−1(c) = 0 = P−2(c) = P−4(c) = 0 with
P−3(c) = 1 and set

P−3(c, z) =
∑

n≥0

P−3,n−4(c)z
n.
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then we get a power series solution

P−3(c, z) = 1

c2 − 1

(
c2z− cz3 − z+ cz3 −

∞∑

k=2

Q
(−1/2)
n (c)z2n+1

)

whereQ(−1/2)
n (c) is the n-th Gegenbauer polynomial. Hence

P−3,−4(c) = P−3,−2(c) = P−3,−1(c) = P−1,2m(c) = 0, P−3,−3(c) = 1,

P−3,2n−3(c) = −Qn(c)
c2 − 1

,

form ≥ 0 and n ≥ 2.

3 Generators and Relations

Given the universal central extension of the current algebra g ⊗ R one can define
it using generators and relations in more than at least two ways. One is in terms of
the generators x ⊗ r where x ∈ g and r ∈ R, plus the center and the other is in
terms of Chevalley generators. It is the latter which we need in order to describe
a free field realization of the universal central extension. In the case of three-point
algebras there are at least four different sets of generators and relations, three of
which are described in [CJ]. One of the sets of generators and relations for the three-
point algebra given in [Sch03a] seems to be missing some relations. Nevertheless,
in the previous work cited in the introduction we neglected to explicitly prove
the isomorphism of these two sets of generators and relations for respectively
the four point and elliptic algebras. In the theorems below we make explicit this
isomorphism.

Set ω0 = t−1 dt , and ω−k = t−ku dt , k = 1, 2, 3, 4.

Theorem 2 (see [CF11]). Let g be a simple finite-dimensional Lie algebra over the
complex numbers with the Killing form ( | ) and define ψij (c) ∈ Ω1

R/dR by

ψij (c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ωi+j−2 for i + j = 1, 0,−1,−2

P−3,i+j−2(c)(ω−3 + cω−1) for i + j = −1+ 2n ≥ 3,

P−3,i+j−2(c)(cω−3 + ω−1) for i + j = 1− 2n ≤ −3,

P−4,|i+j |−2(c)ω−4 + P−2,|i+j |−2(c)ω−2 for |i + j | = 2n ≥ 2,

(3)
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with n ∈ Z. The universal central extension of the Date–Jimbo–Kashiwara–Miwa
algebra is the Z2-graded Lie algebra

ĝ = ĝ0 ⊕ ĝ1,

where

ĝ0 =
(
g⊗C[t, t−1]

)
⊕ Cω0,

ĝ1 =
(
g⊗C[t, t−1]u

)
⊕ Cω−4 ⊕ Cω−3 ⊕ Cω−2 ⊕Cω−1

with bracket

[x ⊗ t i , y ⊗ tj ] = [x, y] ⊗ t i+j + δi+j,0j (x, y)ω0,

[x ⊗ t i−1u, y ⊗ tj−1u] = [x, y] ⊗ (t i+j+2 − 2ct i+j + t i+j−2)

+ (δi+j,−2(j + 1) − 2cjδi+j,0 + (j − 1)δi+j,2
)
(x, y)ω0,

[x ⊗ t i−1u, y ⊗ tj ] = [x, y]u ⊗ t i+j−1 + j (x, y)ψij (c).

The theorem above is similar to the results that M. Bremner obtained for the
elliptic and four-point affine Lie algebra cases ([Bre94b, Theorem 4.6] and [Bre95,
Theorem 3.6] respectively) and with the isomorphism obtained for the three point
algebra given in [CJ].

Theorem 3. The universal central extension of the algebra sl(2,C) ⊗ R is
isomorphic to the Lie algebra with generators en, e1

n, fn, f
1
n , hn, h1

n, n ∈ Z, ω0,
ω−1, ω−2, ω−3, ω−4 and relations given by

[xm, xn] := [xm, x1
n] = [x1

m, x
1
n] = 0, for x = e, f (4)

[hm, hn] := −2mδm,−nω0 = (n−m)δm,−nω0, (5)

[h1
m, h

1
n] := 2

(
(n+ 2)δm+n,−4 − 2c(n+ 1)δm+n,−2 + nδm+n,0

)
ω0, (6)

[hm, h1
n] := −2mψmn(c), (7)

[ωi, xm] = [ωi, ωj ] = 0, for x = e, f, h, i, j ∈ {0, 1} (8)

[em, fn] = hm+n −mδm,−nω0, (9)

[em, f 1
n ] = h1

m+n −mψmn(c) =: [e1
m, fn], (10)

[e1
m, f

1
n ] := hm+n+4 − 2chm+n+2 + hm+n (11)

+ ((n+ 2)δm+n,−4 − 2c(n+ 1)δm+n,−2 + nδm+n,0
)
ω0,
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[hm, en] := 2em+n, (12)

[hm, e1
n] := 2e1

m+n =: [h1
m, em], (13)

[h1
m, e

1
n] := 2em+n+4 − 4cem+n+2 + 2em+n, (14)

[hm, fn] := −2fm+n, (15)

[hm, f 1
n ] := −2f 1

m+n =: [h1
m, fm], (16)

[h1
m, f

1
n ] := −2fm+n+4 + 4cfm+n+2 − 2fm+n, (17)

for all m,n ∈ Z.

Proof. Let f denote the free Lie algebra with the generators en, e1
n, fn, f

1
n , hn, h1

n,
n ∈ Z, ω0, ω−1, ω−2, ω−3, ω−4 and relations given above (4)– (17). The map
φ : f→ (sl(2,C)⊗R)⊕ (ΩR/dR) given by

φ(en) : = e ⊗ tn, φ(e1
n) = e ⊗ utn,

φ(fn) : = f ⊗ tn, φ(f 1
n ) = f ⊗ utn,

φ(hn) : = h⊗ tn, φ(h1
n) = h⊗ utn,

φ(ω0) : = t−1 dt, φ(ω−1) = t−1u dt,

φ(ω−2) : = t−2u dt, φ(ω−3) = t−3u dt,

φ(ω−4) : = t−4u dt,

for n ∈ Z is a surjective Lie algebra homomorphism.
Consider the subalgebras

S+ = 〈en, e1
n | n ∈ Z〉

S0 = 〈hn, h1
n, ω0, ω−1, ω−2, ω−3, ω−4 | n ∈ Z〉

S− = 〈fn, f 1
n | n ∈ Z〉

where 〈X 〉 means spanned by the set X and set S = S− + S0+ S+. By (4)–(8) we
have

S+ =
∑

n∈Z
Cen +

∑

n∈Z
Ce1
n, S− =

∑

n∈Z
Cfn +

∑

n∈Z
Cf 1
n

S0 =
∑

n∈Z
Chn +

∑

n∈Z
Ch1

n + Cω0 + Cω−1 + Cω−2 + Cω−3 + Cω−4
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By (9)–(14) we see that

[en, S+] = [e1
n, S+] = 0, [hn, S+] ⊆ S+, [h1

n, S+] ⊆ S+,
[fn, S+] ⊆ S0, [f 1

n , S+] ⊆ S0,

and similarly [xn, S−] = [x1
n, S−] ⊆ S, [xn, S0] = [x1

n, S0] ⊆ S for x = e, f, h.
To sum it up, we observe that [xn, S] ⊆ S and [x1

n, S] ⊆ S for n ∈ Z, x = h, e, f .
Thus [S, S] ⊂ S. Hence S contains the generators of f and is a subalgebra. Hence
S = f. One can now see that φ is a Lie algebra isomorphism. ��

4 A Triangular Decomposition of DJKM
Current Algebras g ⊗ R

From now on we identify Ra with S and set R = S which has a basis t i , t iu, i ∈ Z.
Let p : R → R be the automorphism given by p(t) = t and p(u) = −u. Then
one can decompose R = R0 ⊕ R1 where R0 = C[t±1] = {r ∈ R |p(r) = r} and
R1 = C[t±1]u = {r ∈ R |p(r) = −r} are the eigenspaces of p. From now on g will
denote a simple Lie algebra over C with triangular decomposition g = n−⊕h⊕n+
and then the DJKM loop algebraL(g) := g⊗R has a correspondingZ/2Z-grading:
L(g)i := g ⊗ Ri for i = 0, 1. However the degree of t does not render L(g) a Z-
graded Lie algebra. This leads one to the following notion.

Suppose I is an additive subgroup of the rational numbersP and A is a C-algebra
such that A = ⊕i∈IAi and there exists a fixed l ∈ N, with

AiAj ⊂ ⊕|k−(i+j)|≤lAk
for all i, j ∈ Z. Then A is said to be an l-quasigraded algebra. For 0 �= x ∈ Ai one
says that x is homogeneous of degree i and one writes degx = i.

For example, R has the structure of a 1-quasigraded algebra where I = 1
2Z and

deg t i = i, deg t iu = i + 1
2 .

A weak triangular decomposition of a Lie algebra l is a triple (H, l+, σ )
satisfying

1. H and l+ are subalgebras of l,
2. H is abelian and [H, l+] ⊂ l+,
3. σ is an antiautomorphism of l of order 2 which is the identity on h and
4. l = l+ ⊕H⊕ σ(l+).
We will let σ(l+) be denoted by l−.

Theorem 4. The DJKM current algebra L(g) is 1-quasigraded Lie algebra where
deg(x ⊗ f ) = deg f for f homogeneous. Set R+ = C(1 + u) ⊕ C[t, u]t and
R− = p(R+). Then L(g) has a weak triangular decomposition given by

L(g)± = g⊗ R±, H := h⊗ C.
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Proof. This is essentially the same proof as [Bre95], Theorem 2.1 and so will be
omitted. ��

4.1 Formal Distributions

We need some more notation that will make some of the arguments later more
transparent. Our notation follows roughly [Kac98] and [MN99]: The formal (Dirac)
delta function δ(z/w) is the formal distribution

δ(z/w) = z−1
∑

n∈Z
z−nwn = w−1

∑

n∈Z
znw−n.

For any sequence of elements {am}m∈Z in the ring End(V ), V a vector space, the
formal distribution

a(z) : =
∑

m∈Z
amz

−m−1

is called a field, if for any v ∈ V , amv = 0 form' 0. If a(z) is a field, then we set

a(z)− :=
∑

m≥0

amz
−m−1, and a(z)+ :=

∑

m<0

amz
−m−1. (18)

The normal ordered product of two distributions a(z) and b(w) (and their coeffi-
cients) is defined by

∑

m∈Z

∑

n∈Z
: ambn : z−m−1w−n−1 =: a(z)b(w) := a(z)+b(w)+ b(w)a(z)−. (19)

Then one defines recursively

: a1(z1) · · · ak(zk) :=: a1(z1)
(
: a2(z2)

(
: · · · : ak−1(zk−1)a

k(zk) :
)
· · · :

)
:,

while normal ordered product

: a1(z) · · · ak(z) := lim
z1,z2,··· ,zk→z

: a1(z1)
(
: a2(z2)

(
: · · · : ak−1(zk−1)a

k(zk) :
)
· · ·
)
:

will only be defined for certain k-tuples (a1, . . . , ak).
Set

(ab) = a(z)b(w)− : a(z)b(w) := [a(z)−, b(w)], (20)

which is called the contraction of the two formal distributions a(z) and b(w).
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Theorem 5 (Wick’s Theorem, [BS83, Hua98] or [Kac98]). Let ai(z) and bj (z)
be formal distributions with coefficients in the associative algebra End(C[x]⊗C[y]),
satisfying

1. [(ai(z)bj (w)), ck(x)±] = [(aibj), ck(x)±] = 0, for all i, j, k and ck(x) =
ak(z) or ck(x) = bk(w).

2. [ai(z)±, bj (w)±] = 0 for all i and j .
3. The products

(ai1bj1) · · · (ais bis) : a1(z) · · · aM(z)b1(w) · · · bN(w) :(i1,...,is ;j1,...,js)
have coefficients in End(C[x] ⊗ C[y]) for all subsets {i1, . . . , is} ⊂ {1, . . . ,M},
{j1, . . . , js} ⊂ {1, · · ·N}. Here the subscript (i1, . . . , is; j1, . . . , js) means that
those factors ai(z), bj (w) with indices i ∈ {i1, . . . , is}, j ∈ {j1, . . . , js} are to
be omitted from the product : a1 · · · aMb1 · · · bN : and when s = 0 we do not
omit any factors.

Then

: a1(z) · · · aM(z) :: b1(w) · · · bN(w) :=
∑

0≤s≤min(M,N),
i1<···<is , j1 �=···�=js

(ai1bj1) · · · (ais bjs ) : a1(z) · · · aM(z)b1(w) · · · bN(w) :(i1,...,is ;j1,...,js ) .

Setting m = i − 1
2 , i ∈ Z + 1

2 and x ∈ g, define x
m+ 1

2
= x ⊗ t i− 1

2 u = x1
m and

xm := x ⊗ tm. Define

x1(z) :=
∑

m∈Z
xm+ 1

2
z−m−1, x(z) :=

∑

m∈Z
xmz

−m−1.

The relations in Theorem 3 then can be rewritten succinctly as

[x(z), y(w)] = [xy](w)δ(z/w) − (x, y)ω0∂wδ(z/w), (21)

[x1(z), y1(w)] = P (w) ([x, y](w)δ(z/w) − (x, y)ω0∂wδ(z/w))

− 1

2
(x, y)(∂P (w))ω0δ(z/w),

(22)

[x(z), y1(w)] = [x, y]1(w)δ(z/w) − (x, y)(∂wψ(c,w)δ(z/w)
− wψ(c,w)∂wδ(z/w)) (23)

= [x1(z), y(w)],

where x, y ∈ {e, f, h}, P(w) = w4 − 2cw2+ 1 and ψ(c,w) =∑n∈Z ψn(c)wn for
ψi+j (c) := ψ ′ij (c).
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5 Oscillator Algebras

5.1 The β − γ System

The β − γ is the infinite-dimensional oscillator algebra â with generators
an, a

∗
n, a

1
n, a

1∗
n , n ∈ Z, together with 1 satisfying the relations

[an, am] = [am, a1
n] = [am, a1∗

n ] = [a∗n, a∗m] = [a∗n, a1
m] = [a∗n, a1∗

m ] = 0,

[a1
n, a

1
m] = [a1∗

n , a
1∗
m ] = 0 = [a, 1],

[an, a∗m] = δm+n,01 = [a1
n, a

1∗
m ].

For c = a, a1 and respectively X = x, x1 with r = 0 or r = 1, sets C[x] :=
C[xn, x1

n | n ∈ Z and define ρ : â→ gl(C[x]) by

ρr(cm) : =
{
∂/∂Xm if m ≥ 0, and r = 0

Xm otherwise,
(24)

ρr(c
∗
m) : =

{
X−m if m ≤ 0, and r = 0

−∂/∂X−m otherwise,
(25)

and ρr(1) = 1. These two representations can be constructed using induction: For
r = 0 the representation ρ0 is the â-module generated by 1 =: |0〉, where

am|0〉 = a1
m|0〉 = 0, m ≥ 0, a∗m|0〉 = a1∗

m |0〉 = 0, m > 0.

For r = 1 the representation ρ1 is the â-module generated by 1 =: |0〉, where

a∗m|0〉 = a1∗
m |0〉 = 0, m ∈ Z.

If we write

α(z) :=
∑

n∈Z
anz

−n−1, α∗(z) :=
∑

n∈Z
a∗nz−n,

and

α1(z) :=
∑

n∈Z
a1
nz
−n−1, α1∗(z) :=

∑

n∈Z
a1∗
n z

−n,
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then

[α(z), α(w)] = [α∗(z), α∗(w)] = [α1(z), α1(w)] = [α1∗(z), α1∗(w)] = 0

[α(z), α∗(w)] = [α1(z), α1∗(w)] = 1δ(z/w).

Corresponding to these two representations there are two possible normal orderings:
For r = 0 we use the usual normal ordering given by (18) and for r = 1 we define
the natural normal ordering to be

α(z)+ = α(z), α(z)− = 0

α1(z)+ = α1(z), α1(z)− = 0

α∗(z)+ = 0, α∗(z)− = α∗(z),
α1∗(z)+ = 0, α1∗(z)− = α1∗(z),

This means in particular that for r = 0 we get

(α(z)α∗(w)) =∑m≥0 δm+n,0z−m−1w−n = δ−(z/w) = ιz,w

(
1
z−w

)
(26)

(α∗(z)α(w)) = −∑m≥1 δm+n,0z−mw−n−1 = −δ+(w/z) = ιz,w
(

1
w−z

)
(27)

(where ιz,w Taylor series expansion in the “ region” |z| > |w|), and for r = 1

(αα∗) = [α(z)−, α∗(w)] = 0 (28)

(α∗α) = [α∗(z)−, α(w)] = −
∑

∈Z
δm+n,0z−mw−n−1 = −δ(w/z), (29)

where similar results hold for α1. Notice that in both cases we have

[α(z), α∗(w)] = (α(z)α∗(w)) − (α∗(w)α(z)) = δ(z/w).

The following two Theorems are needed for the proof of our main result:

Theorem 6 (Taylor’s Theorem, [Kac98], 2.4.3). Let a(z) be a formal distribution.
Then in the region |z−w| < |w|,

a(z) =
∞∑

j=0

∂(j)w a(w)(z−w)j . (30)
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Theorem 7 ([Kac98], Theorem 2.3.2). Set C[x] = C[xn, x1
n|n ∈ Z] and C[y] =

C[ym, y1
m|m ∈ N

∗]. Let a(z) and b(z) be formal distributions with coefficients in
the associative algebra End(C[x] ⊗ C[y]) where we are using the usual normal
ordering. The following are equivalent:

(i) There exists cj (w) ∈ End(C[x] ⊗ C[y])[[w,w−1]] such that

[a(z), b(w)] =
N−1∑

j=0

∂(j)w δ(z−w)cj (w).

(ii) (ab) =
N−1∑

j=0

ιz,w

(
1

(z−w)j+1

)
cj (w).

So the singular part of the operator product expansion

(ab) =
N−1∑

j=0

ιz,w

(
1

(z−w)j+1

)
cj (w)

completely determines the bracket of mutually local formal distributions a(z) and
b(w). In the physics literature one writes

a(z)b(w) ∼
N−1∑

j=0

cj (w)

(z−w)j+1 .

5.2 DJKM Heisenberg Algebra

Set

ψ ′ij (c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1i+j−2 for i + j = 1, 0,−1,−2

P−3,i+j−2(c)(1−3 + c1−1) for i + j = −1+ 2n ≥ 3,

P−3,i+j−2(c)(c1−3 + 1−1) for i + j = 1− 2n ≤ −3,

P−4,|i+j |−2(c)1−4 + P−2,|i+j |−2(c)1−2 for |i + j | = 2n ≥ 2,
(31)

for n ∈ Z and ψ ′(c,w) =∑n∈Z ψ ′n(c)wn for ψ ′i+j (c) := ψ ′ij (c).
The Cartan subalgebra h tensored with R generates a subalgebra of ĝ which is an

extension of an oscillator algebra. This extension motivates the following definition:
The Lie algebra with generators bm, b1

m, m ∈ Z, 1i , i ∈ {0,−1,−2,−3,−4} and
relations
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[bm, bn] = (n−m) δm+n,010 = −2mδm+n,010 (32)

[b1
m, b

1
n] = 2

(
(n+ 2)δm+n,−4 − 2c(n+ 1)δm+n,−2 + nδm+n,0

)
10 (33)

[b1
m, bn] = 2nψ ′mn(c) (34)

[bm, 1i] = [b1
m, 1i] = 0, (35)

give the appellation the DJKM (affine) Heisenberg algebra and denote it by b̂3.
If we introduce the formal distributions

β(z) :=
∑

n∈Z
bnz

−n−1, β1(z) :=
∑

n∈Z
b1
nz
−n−1 =

∑

n∈Z
bn+ 1

2
z−n−1. (36)

(where b
n+ 1

2
:= b1

n) then using calculations done earlier for DJKM Lie algebra we
can see that the relations above can be rewritten in the form

[β(z), β(w)] = 210∂zδ(z/w) = −2∂wδ(z/w)10

[β1(z), β1(w)] = −2

(
P(w)∂wδ(z/w)+ 1

2
∂wP(w)δ(z/w)

)
10

[β1(z), β(w)] = 2∂wψ ′(c,w)δ(z/w)− 2wψ ′(c,w)∂wδ(z/w).

Set

ĥ±3 :=
∑

n≷0

(
Cbn + Cb1

n

)
,

ĥ0
3 := C10 ⊕ C1−1 ⊕ C1−2 ⊕ C1−3 ⊕ C1−4 ⊕ Cb0 ⊕ Cb1

0.

We introduce a Borel type subalgebra

b̂3 = ĥ+3 ⊕ ĥ0
3.

Due to the defining relations above one can see that b̂3 is a subalgebra.

Lemma 5.1 Let V = Cv0⊕Cv1 be a two-dimensional representation of ĥ+3 vi = 0
for i = 0, 1. Suppose λ,μ, ν,κ, χ−1, χ−2, χ−3, χ−4, κ0 ∈ C are such that

b0v0 = λv0, b0v1 = λv1

b1
0v0 = μv0 + νv1, b1

0v1 = κv0 + μv1

1jvi = χjvi , 10vi = κ0vi , i = 0, 1, j = −1,−2,−3,−4.
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Then the above defines a representation of b̂3. Not only that but also χ−1 = χ−2 =
χ−3 = χ−4 = 0 and ψ ′mn = 0, for all m,n ∈ Z.

Proof. Since bm acts by scalar multiplication form,n ≥ 0, the first defining relation
(32) is satisfied form,n ≥ 0. The second relation (33) is also satisfied as the right-
hand side is zero if m ≥ 0, n ≥ 0. If n = 0, then since b0 acts by a scalar, the
relation (34) leads to no condition on λ,μ, ν,κ, χ1, κ0 ∈ h0

3. If m �= 0 and n �= 0,
the third relation gives us

0 = b1
mbnvi − bnb1

mvi = [b1
m, bn]vi = 2nψ ′mnvi = 0,

and then ψ ′mn = 0 for n �= 0. Consequently χ−1 = χ−2 = χ−3 = χ−4 = 0 and
ψ ′mn = 0 for all m,n ∈ Z. ��
Lemma 5.2. The linear map ρ : b̂3 → End(C[y] ⊗ V) defined by

ρ(bn) = yn for n < 0 (37)

ρ(b1
n) = y1

n + δn,−1∂y1−3
χ0 − δn,−3∂y1−1

χ0 for n < 0 (38)

ρ(bn) = −2n∂y−nχ0 for n > 0 (39)

ρ(b1
n) = 2(n + 2)∂y1−n−4

χ0 − 4c(n+ 1)∂y1−n−2
χ0 + 2n∂y1−nχ0 for n > 0 (40)

ρ(b0) = λ (41)

ρ(b1
0) = 4∂y1−4

χ0 − 2c∂y1−2
χ0 + B1

0 . (42)

is a representation of b̂3.

Proof. For m,n > 0, it is straight forward to see

[ρ(bn), ρ(bm)] = [ρ(b1
n), ρ(b

1
m)] = 0,

and similarly for m,n < 0, [ρ(bn), ρ(bm)] = 0 and [ρ(b1
n), ρ(b

1
m)] = 0 if n /∈

{−1,−3} and

[ρ(b1−1), ρ(b
1
m)] = [y1−1 + ∂y1−3

χ0, y
1
m + δm,−1∂y1−3

χ0 − δm,−3∂y1−1
χ0]

= −δm,−3χ0[y1−1, ∂y1−1
]χ0 + δm,−3[∂y1−3

, y1−3]χ0

= −2δm,−3χ0,

[ρ(b1−3), ρ(b
1
m)] = [y1−3 − ∂y1−1

χ0, y
1
m + δm,−1∂y1−3

χ0 − δm,−3∂y1−1
χ0]

= δm,−1χ0[y1−3, ∂y1−3
]χ0 − δm,−1[∂y1−1

, y1−1]χ0

= 2δm,−1χ0,
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[ρ(b1
0), ρ(b

1
m)] = [4∂y1−4

χ0 − 2c∂y1−2
χ0, y

1
m + δm,−1∂y1−3

χ0 − δm,−3∂y1−1
χ0]

= −4δm,−4χ0 + 2cδm,−2χ0.

For m > 0 and n ≤ 0 we have

[ρ(bm), ρ(bn)] = [−2m∂y−mχ0, yn] = −2mδm,−nχ0,

[ρ(bm), ρ(b1
n)] = [−2m∂y−mχ0, y

1
n + δn,−1∂y1−3

χ0 − δn,−3∂y1−1
χ0] = 0,

[ρ(b1
m), ρ(b

1
n)] = [2(n+ 2)∂y1−n−4

χ0 − 4c(n+ 1)∂y1−n−2
χ0 + 2n∂y1−nχ0

, y1
n + δn,−1∂y1−3

χ0 − δn,−3∂y1−1
χ0]

= 2(n+ 2)δm+n,−4χ0 − 4c(n+ 1)δm+n,−2χ0 + 2nδm+n,0χ0,

[ρ(b1
m), ρ(bn)] = [2(m+ 2)∂y1−m−4

χ0 − 4c(m+ 1)∂y1−m−2
χ0 + 2m∂y1−mχ0,

yn + δn,−1∂y1−3
χ0 − δn,−3∂y1−1

χ0]
= 0. ��

6 Two Realizations of DJKM Algebra ĝ

Recall

P(w) = w4 − 2cw2 + 1. (43)

Our main result is the following.

Theorem 8. Fix r ∈ {0, 1}, which then fixes the corresponding normal ordering
convention defined in the previous section. Set ĝ = (sl(2,C)⊗R)⊕Cω0⊕Cω−1⊕
Cω−2⊕Cω−3⊕Cω−4 and assume that χ0 ∈ C and V as in Lemma 5.1. Then using
(24), (25) and Lemma 5.2, the following defines a representation of DJKM algebra
g on C[x] ⊗ C[y] ⊗ V:

τ (ω−1) = τ (ω−2) = τ (ω−3) = τ (ω−4) = 0, τ (ω0) = χ0 = κ0 + 4δr,0,

τ (f (z)) = −α, τ(f 1(z)) = −α1,

τ (h(z)) = 2
(
: αα∗ : + : α1α1∗ :

)
+ β,

τ(h1(z)) = 2
(
: α1α∗ : +P(z) : αα1∗ :

)
+ β1,

τ (e(z)) =: α(α∗)2 : +P(z) : α(α1∗)2 : +2 : α1α∗α1∗ : +βα∗ + β1α1∗ + χ0∂α
∗
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Table 1 Defining relations [·λ·] f (w) f 1(w) h(w) h1(w) e(w) e1(w)

f (z) 0 0 ∗ ∗ ∗ ∗
f 1(z) 0 ∗ ∗ ∗ ∗
h(z) ∗ ∗ ∗ ∗
h1(z) ∗ ∗ ∗
e(z) 0 0

e1(z) 0

τ (e1(z)) = α1α∗α∗ + P(z)
(
α1(α1∗)2 + 2 : αα∗α1∗ :

)

+ β1α∗ + P(z)βα1∗ + χ0

(
P(z)∂zα

1∗ + 1

2
∂zP (z)α

1∗
)
.

Proof. The proof is very similar to the proof of Theorem 5.1 in [BCF09] and
Theorem 5.1 in [CJ]. We need to check that the following table is preserved under τ .

Here ∗ indicates nonzero formal distributions that are obtained from the defining
relations (21), (22), and (23). The proof is carried out using Wick’s theorem and
Taylor’s theorem. We are going to make use of V. Kac’s λ-notation (see [Kac98]
section 2.2 for some of its properties) used in operator product expansions. If a(z)
and b(w) are formal distributions, then

[a(z), b(w)] =
∞∑

j=0

(a(j)b)(w)

(z−w)j+1

is transformed under the formal Fourier transform

Fλz,wa(z,w) = Resze
λ(z−w)a(z,w),

into the sums

[aλb] =
∞∑

j=0

λj

j ! a(j)b.

[τ (f )λτ (f )] = 0, [τ (f )λτ (f 1)] = 0, [τ (f 1)λτ (f
1)] = 0

[τ (f )λτ (h)] = −
[
αλ

(
2
(
αα∗ + α1α1∗)+ β

)]
= −2α = 2τ (f ),

[τ (f )λτ (h1)] = −[αλ
(

2
(
α1α∗ + Pαα1∗)+ β1

)
] = −2α1 = 2τ (f 1),

[τ (f )λτ (e)] = −2
(
: αα∗ : + : α1α1∗ :

)
− β − χ0λ = −τ (h)− χ0λ
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[τ (f )λτ (e1)] = −2
(
: α1α∗ : +P : αα1∗ :

)
− β1 = −τ (h1).

[τ (f 1)λτ (h)] = −[α1
λ

(
2
(
: αα∗ : + : α1α1∗ :

)
+ β

)
] = −2α1 = 2τ (f 1),

[τ (f 1)λτ (h
1)] = −[α1

λ

(
2
(
: α1α∗ : +P : αα1∗ :

)
+ β1

)
] = −2Pα1 = 2Pτ(f 1),

[τ (f 1)λτ (e)] = −
(

2P : αα1∗ : +2 : α1α∗ : +β1
)
= −τ (h1)

[τ (f 1)λτ (e
1)] = −

(
P
(

2
(
: α1α1∗ : + : αα∗ :

)
+ β + χ0λ

)
+ 1

2
χ0∂P

)

= −
(
Pτ(h)+ Pχ0λ+ χ0

1

2
∂P

)
.

Note that : a(z)b(z) : and : b(z)a(z) : are usually not equal, but : α1(w)α∗1(w) :=:
α1∗(w)α1(w) : and : α(w)α∗(w) :=: α∗(w)α(w) :. Thus we calculate

[τ (h)λτ (h)] =
[(

2
(
: αα∗ : + : α1α1∗ :

)
+ β

)

λ

(
2
(
: αα∗ : + : α1α1∗ :

)
+ β

)]

= 4
(
− : αα∗ : + : α∗α : − : α1α1∗ : + : α1∗α1 :

)
− 8δr,0λ+ [βλβ]

= −2(4δr,0 + κ0)λ,

which can be put into the form of (21):

[τ (h(z)), τ (h(w))] = −2(4δr,0 + κ0)∂wδ(z/w) = −2χ0∂wδ(z/w)

= τ (−2ω0∂wδ(z/w)) .

Next we calculate

[τ(h)λτ(h1)] =
[(

2
(
: αα∗ : + : α1α1∗ :

)
+ β

)

λ

(
2
(
: α1α∗ : +P : αα1∗ :

)
+ β1

)]

= 4
( (
: α∗α1 : − : α1α∗ :

)
+ P

(
− : αα1∗ : + : α1∗α :

) )
+ [βλβ1].

Since [an, a1∗
m ] = [a1

n, a
∗
m] = 0, we have

[
τ (h(z)), τ (h1(w))

]
= [β(z), β1(w)] = 0.

As τ (ω1) = 0, relation (23) is satisfied.
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We continue with

[τ (h1)λτ (h
1)] = 4P

(
− : αα∗ : + : α1∗α1 :

)
+ 4P

(
− : α1α1∗ : + : α∗α :

)

− 8δr,0Pλ − 4δr,0∂P + [β1
λβ

1]

= −8δr,0Pλ − 4δr,0∂P − 2κ0(Pλ+ 1

2
∂P ),

yielding the relation

[
τ (h1(z)), τ (h1(w))

]
= τ (−(h, h)ω0P∂wδ(z/w)− 1

2
(h, h)∂Pω0δ(z/w))

Next we calculate the h’s paired with the e’s:

[τ(h)λτ(e)] =
[(

2
(
: αα∗ : + : α1α1∗ :

)
+ β

)

λ

: α(α∗)2 : +P : α(α1∗)2 : +2 : α1α∗α1∗ : +βα∗ + β1α1∗ + χ0∂α
∗]

= 4 : α(α∗)2 : −2 : α(α∗)2 : −4δr,0α∗λ− 2P : α(α1∗)2 : +4 : α∗α1α1∗ :
+ 2α∗β + 2χ0α

∗λ+ 2χ0∂α
∗ + 4P : α(α1∗)2 :

− 4δr,0α
∗λ+ 2β1α1∗ − 2λα∗κ0

= 2τ(e)

and

[τ (h1)λτ (e)] = 2 : α1(α∗)2 : +2P : α1(α1∗)2 : +4P : αα∗α1∗ : +2δ(z/w)α∗β1

+ 2Pβα1∗ + 2Pχ0∂α
1∗ + ∂Pα1∗χ0

= 2τ (e1)

Next we must calculate

[τ (h)λτ (e1)] = 4 : α1(α∗)2 : −4Pδr,0α1∗λ+ 2α∗β1 − 2δ(z/w) : α1α∗α∗ :
− 4Pδr,0α1∗λ+ 2P : α1∗α1α1∗ : +4P : α1∗αα∗ : +2Pβα1∗

+ 2χ0(Pα
1∗λ+ P∂α1∗ + 1

2
∂Pα1∗)− 2Pα1∗κ0λ

= 2 : α1(α∗)2 : +2P : α1(α1∗)2 : +4P : αα∗α1∗ :
+ 2β1α∗ + 2Pβα1∗ + 2χ0

(
P∂wα

1∗ + (1/2∂P )α1∗)

= 2τ (e1)

and the proof for [τ (h1)λτ (e
1)] is similar.
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We prove the Serre relation for just one of the relations, [τ (e)λτ (e1)], and the
proof of the others ([τ (e)λτ (e)], [τ (e1)λτ (e

1)]) are similar as the reader can verify.

[τ(e)λτ (e1)] =
[
: α(α∗)2 :λ

(
: α1(α∗)2 : +2P : αα∗α1∗ : +β1α∗

)]

+
[
P : α(α1∗)2 : λ

(
: α1(α∗)2 : +P

(
: α1(α1∗)2 : +2 : αα∗α1∗ :

)
+ β1α∗

)]

+
[
2 : α1α∗α1∗ : λ

(
α1(α∗)2 + P

(
: α1(α1∗)2 : +2 : αα∗α1∗ :

)
+ Pβα1∗

+ χ0

(
(w4 − 2cw2 + 1)∂wα

1∗ + (2w3 − 2cw)α1∗) )]

+
[
βα∗λ

(
2P : αα∗α1∗ : +β1α∗ + Pβα1∗)]

+
[
β1α1∗

λ

(
: α1(α∗)2 : +Pα1(α1∗)2 + β1α∗ + Pβα1∗)]

+
[
χ0∂α

∗
λ

(
2P : αα∗α1∗ :

)]

= 2 : α1α∗(α∗)2 : +2P : α(α∗)2α1∗ : −4P : α(α∗)2α1∗ : −4δr,0P : α∗α1∗ : λ
− 4δr,0P : ∂(α∗)α1∗ : +β1(α∗)2

− 2P : α(α∗)2α1∗ : +2Pα1α∗(α1∗)2

− 4δr,0P : α1∗α∗ : λ− 4δr,0∂P : α1∗α∗ : −4δr,0P : ∂α1∗α∗ :
− 2P 2 : α(α1∗)3 : +2P 2 : α(α1∗)3 : +Pβ1(α1∗)2

− 2 : α1α∗(α∗)2 : +4P : α1α∗(α1∗)2 : −2P : α1α∗(α1∗)2 : −4δr,0P : α∗α1∗ : λ
− 4δr,0P : ∂(α∗)α1∗ : +4P : α(α∗)2α1∗ : −4P : α1α∗(α1∗)2 :
− 4δr,0P : α∗α1∗ : λ− 4δr,0P : α∗∂α1∗ : +2Pβ : α∗α1∗ :

+ 2χ0

(
P : ∂α∗α1∗ : +P : α∗∂α1∗ : +P : α∗α1∗ : λ+ 1

2
(∂P ) : α∗α1∗ :

)

− 2Pβα∗α1∗ − 2κ0Pα
∗α1∗λ− 2κ0P∂α

∗α1∗

− β1(α∗)2 − Pβ1(α1∗)2 − κ0

(
2Pα∗α1∗λ+ 2Pα∗∂α1∗ + ∂Pα∗α1∗)

+ 2χ0Pα
∗α1∗λ

= −4δr,0P : α∗α1∗ : λ− 4δr,0P : ∂(α∗)α1∗ :
+ χ1

(
2 : α∗∂α∗ : + : (α∗)2 : λ

)

− 4δr,0P : α1∗α∗ : λ− 4δr,0∂P : α1∗α∗ : −4δr,0P : ∂α1∗α∗ :
− 4δr,0P : α∗α1∗ : λ− 4δr,0P : ∂(α∗)α1∗ :
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− 4δr,0P : α∗α1∗ : λ− 4δr,0P : α∗∂α1∗ :

+ 2χ0

(
P : ∂α∗α1∗ : +P : α∗∂α1∗ : +P : α∗α1∗ : λ+ 1

2
(∂P ) : α∗α1∗ :

)

− κ0Pα
∗α1∗λ− κ0P∂α

∗α1∗

− κ0

(
2Pα∗α1∗λ+ 2Pα∗∂α1∗ + ∂Pα∗α1∗)

− 2χ0Pα
∗α1∗λ

= 0. ��
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Abstract To a homotopy algebra one may associate its deformation complex,
which is naturally a differential graded Lie algebra. We show that ∞-quasi-
isomorphic homotopy algebras have L∞-quasiisomorphic deformation complexes
by an explicit construction.
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1 Introduction

Given two homotopy algebras A, B of a certain type (e.g., L∞- or A∞-algebras),
we may define their deformation complexes Def(A) and Def(B) [11], which are
differential graded Lie algebras. Suppose that A and B are quasiisomorphic. For
example, there may be an L∞- or A∞-quasiisomorphism A → B. It is natural
to ask whether in this case the deformation complexes Def(A) and Def(B) are
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quasiisomorphic as L∞-algebras, and whether a quasiisomorphism may be written
down in a (sufficiently) functorial way. The answer to the above question is (not
surprisingly) yes, as is probably known to the experts. However, the authors were
not able to find a proof of this statement in the literature in the desired generality.

The modest purpose of this paper is fill in this gap by presenting the construction
of an explicit sequence of quasiisomorphisms connecting Def(A) with Def(B) .

This paper is organized as follows. After a brief description of our construc-
tion, we recall in Sect. 2, the necessary prerequisites about homotopy algebras.
Section 3 is the core of this paper. In this section, we formulate the main statement
(see Theorem 3.1), describe various auxiliary constructions, and finally prove
Theorem 3.1 in Sect. 3.4. Section 4 is devoted to the notion of homotopy algebra
and its deformation complex in the setting of dg sheaves on a topological space. In
this section, we give a version of Theorem 3.1 (see Corollary 4.6) and describe its
application.

1.1 The Construction in a Nutshell

For the reader who already knows some homotopy algebra, here is what we will
do in this paper. First, the homotopy algebras of the type we consider are governed
by some operad P. For example, for A∞-algebras P = As∞ and for L∞-algebras
P = Lie∞. Providing P algebra structures on A and B is equivalent to providing
operad maps P → End(A), P → End(B) into the endomorphism operads.
The deformation complexes Def(A), Def(B) are by definition the deformation
complexes of the operad maps Def(A) = Def(P → End(A)), Def(B) = Def(P →
End(B)).

Similarly, one may define a two-colored operad HomP, whose algebras are
triples (A,B, F ), where A and B are P algebras and F is a homotopy (∞-)
morphism between them. Furthermore, given an ∞ quasiisomorphism A � B,
we may build a colored operad map HomP → End(A,B) into the colored
endomorphism operad. One may build a deformation complex Def(HomP →
End(A,B)), which is an L∞-algebra. Furthermore, there are natural maps

Def(A)← Def(HomP → End(A,B))→ Def(B)

which one may check to be quasiisomorphisms. Hence this zigzag constitutes
desired explicit and natural quasiisomorphisms of L∞-algebras.

2 Preliminaries

The base field K has characteristic zero. The underlying symmetric monoidal
category is the category of unbounded cochain complexes of K-vector spaces.
We will use the notation and conventions about labeled planar trees from [5]. In
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Fig. 1 An example of a
pitchfork

2 1 4 3

Fig. 2 This is not a pitchfork 2 1

3

particular, we denote by Tree(n) the groupoid of n-labeled planar trees. As in [5],
we denote by Tree2(n) the full subcategory of Tree(n) whose objects are n-labeled
planar trees with exactly two nodal vertices. For a groupoid G, the notation π0(G) is
reserved for the set of isomorphism classes of objects in G.

We say that an n-labeled planar tree t is a pitchfork if each leaf of t has height1 3.
Figure 1 shows a pitchfork while Fig. 2 shows a tree that is not a pitchfork.

The notation Tree�(n) is reserved for the full sub-groupoid of Tree(n) whose
objects are pitchforks.

Let C be a coaugmented dg cooperad satisfying the following technical condi-
tion:

Condition 2.1. The cokernel C◦ of the coaugmentation carries an ascending
exhaustive filtration

0 = F0C◦ ⊂ F1C◦ ⊂ F2C◦ ⊂ . . . (1)

which is compatible with the pseudo-cooperad structure on C◦.

For example, if the dg cooperad C has the properties

C(1) ∼= K, C(0) = 0, (2)

then the filtration “by arity minus one” onC◦ satisfies the above technical condition.
For a cochain complex V we denote by

C(V) :=
⊕

n≥1

(
C(n)⊗ V⊗ n

)

Sn
(3)

the “cofree” C-coalgebra cogenerated by V .

1Recall that the height of a vertex v is the length of the (unique) path which connects v to the root
vertex.
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We denote by

coDer
(
C(V)) (4)

the cochain complex of coderivations of the cofree coalgebra C(V) cogenerated by
V . In other words, coDer

(
C(V)) consists of K-linear maps

D : C(V)→ C(V) (5)

which are compatible with the C-coalgebra structure on C(V) in the following
sense:

Δn ◦D =
n∑

i=1

(
idC ⊗ id⊗(i−1)

V ⊗D⊗idn−iV
) ◦Δn, (6)

whereΔn is the comultiplication map

Δn : C(V)→
(
C(n)⊗ (C(V))⊗n

)

Sn
.

The Z-graded vector space (4) carries a natural differential ∂ induced by those on C
and V .

Since the commutator of two coderivations is again a coderivation, the cochain
complex (4) is naturally a dg Lie algebra.

Recall that, since the C-coalgebra C(V) is cofree, every coderivation D :
C(V)→ C(V) is uniquely determined by its composition pV ◦D with the canonical
projection:

pV : C(V)→ V . (7)

We denote by

coDer′
(
C(V)) (8)

the dg Lie subalgebra of coderivations D ∈ coDer
(
C(V)) satisfying the additional

technical condition

D
∣∣∣V = 0 . (9)

Due to [5, Proposition 4.2], the map

D 
→ pV ◦D
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induces an isomorphism of dg Lie algebras

coDer′
(
C(V)) ∼= Conv(C◦,EndV ) , (10)

where the differential ∂ on Conv(C◦,EndV ) comes solely from the differential on
C◦ and V . Here Conv(· · · ) denotes the convolution Lie algebra of (S-module-) maps
from a cooperad to an operad, cf. [10, Section 6.4.4].

Recall that [5, Proposition 5.2] Cobar(C)-algebra structures on a cochain
complex V are in bijection with Maurer–Cartan (MC) elements in coDer′

(
C(V)),

i.e., with degree 1 coderivations

Q ∈ coDer′
(
C(V)) (11)

satisfying the Maurer–Cartan equation

∂Q+ 1

2
[Q,Q] = 0 . (12)

Hence, given a Cobar(C)-algebra structure on V , we may consider the dg Lie
algebra (10) and the C-coalgebra C(V) with the new differentials

∂ + [Q, ] , (13)

and

∂ +Q, (14)

respectively.
In this text we use the following “pedestrian” definition of homotopy algebras:

Definition 2.2. Let C be a coaugmented dg cooperad satisfying Condition 2.1.
A homotopy algebra of type C is a Cobar(C)-algebra V .

Using the above link between Cobar(C)-algebra structures on V and Maurer–
Cartan elementsQ of coDer′

(
C(V)), we see that every homotopy algebra V of type

C gives us a dg C-coalgebra C(V) with the differential ∂ + Q. This observation
motivates our definition of an∞-morphism between homotopy algebras:

Definition 2.3. Let A, B be homotopy algebras of type C and let QA (resp. QB)
be the MC element of coDer′

(
C(A)) (resp. coDer′

(
C(B))) corresponding to the

Cobar(C)-algebra structure on A (resp. B). Then an ∞-morphism from A to B is a
homomorphism

F : C(A)→ C(B)

of the dg C-coalgebras C(A) and C(B) with the differentials ∂ +QA and ∂ +QB ,
respectively.
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A homomorphism of dg C-coalgebras F is called an∞ quasiisomorphism if the
composition

A ↪→ C(A) F→ C(B) pB→ B

is a quasiisomorphism of cochain complexes.

We say that two homotopy algebras A and B are quasiisomorphic if there exists
a sequence of∞ quasiisomorphisms connecting A with B.

Definition 2.4. Let A be a homotopy algebra of typeC andQ be the corresponding
MC element of coDer′

(
C(A)). Then the cochain complex

Def(A) := coDer′
(
C(A)) (15)

with the differential ∂ + [Q, ] is called the deformation complex of the homotopy
algebra A .

3 The Main Statement

We observe that the deformation complex (15) of a homotopy algebra A is naturally
a dg Lie algebra. We claim that

Theorem 3.1. Let C be a coaugmented dg cooperad satisfying Condition 2.1. If
A and B are quasiisomorphic homotopy algebras of type C, then the deformation
complex Def(A) of A is L∞-quasiisomorphic to the deformation complex Def(B)
of B.

Remark 1. For A∞-algebras this statement follows from the result [9] of B. Keller.

It is clearly sufficient to prove this theorem in the case when A and B are
connected by a single∞ quasiisomorphism F : A � B.

We will prove the theorem by constructing anL∞-algebra Def(A F� B), together
with quasiisomorphisms

Def(A) ← Def(A F� B) → Def(B).

The next subsections are concerned with the definition of Def(A F� B). The
proof of Theorem 3.1 is given in Sect. 3.4 below.
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3.1 The Auxiliary L∞-Algebra Cyl(C,A,B)

Let A, B be cochain complexes. We consider the graded vector space

Cyl(C,A,B) := Hom(C◦(A),A) ⊕ sHom(C(A),B) ⊕ Hom(C◦(B),B) (1)

with the differential coming from those on C, A and B . Here we denote by sV the
suspension of the graded vector space V . Concretely, if v ∈ V has degree d , then
the corresponding element sv ∈ sV has degree d + 1.

We equip the cochain complex Cyl(C,A,B) with an L∞-structure by declaring
that

{s−1 P1, s−1 P2, . . . , s−1 Pn}n :=
{
(−1)|P1|+1s−1 [P1, P2] if n = 2 ,

0 otherwise .
(2)

{s−1 R1, s−1 R2, . . . , s−1 Rn}n :=
{
(−1)|R1|+1s−1 [R1, R2] if n = 2 ,

0 otherwise ,
(3)

for Pi ∈ Hom(C◦(A),A) ∼= Conv(C◦,EndA) , and Ri ∈ Hom(C◦(B),B) ∼=
Conv(C◦,EndB) , and [ , ] is the Lie bracket on the convolution algebras
Conv(C◦,EndA) and Conv(C◦,EndB), respectively.

Furthermore,

{T , s−1 P }2(X, a1, . . . , an) =
∑

0≤p≤n
σ∈Shp,n−p

∑

i

(−1)|T |+|P |(|X
′
σ,i |+1)

T
(
X′σ,i, P (X′′σ,i; aσ(1), . . . , aσ(p)), aσ(p+1), . . . , aσ(n)

)
,

(4)

where T ∈ Hom(C(A),B), P ∈ Hom(C◦(A),A),X ∈ C◦(n),X′σ,i ,X′′σ,i are tensor
factors in

Δtσ (X) =
∑

i

X′σ,i ⊗X′′σ,i ,

P is extended by zero to A ⊂ C(A), and tσ is the n-labeled planar tree depicted in
Fig. 1.

To define yet another collection of nonzero L∞-brackets, denote by
Isom�(m, r) the set of isomorphism classes of pitchforks t ∈ Tree�(m) with
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Fig. 1 Here σ is a
(p, n − p)-shuffle

s(1) s(p)

s(p+1) s(n)

...

...

r nodal vertices of height 2. For every z ∈ Isom�(m, r) we choose a representative
tz and denote by Xkz,i the tensor factors in

Δtz (X) =
∑

i

X0
z,i ⊗X1

z,i ⊗ · · · ⊗Xrz,i , (5)

where X ∈ C(m) .
Finally, for vectors Tj ∈ Hom(C(A),B) and R ∈ Hom(C◦(B),B) we set

{s−1 R, T1, . . . , Tr }r+1(X, a1, . . . , am) =
∑

σ∈Sr

∑

z∈Isom�(m,r)

∑

i

±(−1)|R|+1R
(
X0
z,i , Tσ(1)(X

1
z,i; aλz(1), . . . , aλz(nz1)),

Tσ(2)(X
2
z,i; aλz(nz1+1), . . . , aλz(nz1+nz2)), . . . , Tσ(r)(X

r
z,i; aλz(m−nzr+1), . . . , aλz(m))

)
,

(6)

where nzq is the number of leaves adjacent to the (q + 1)-th nodal vertex of tz, λz(l)
is the label of the l-th leaf of tz, the map R is extended by zero to B ⊂ C(B) and
the sign factor ± comes from the rearrangement of the homogeneous vectors

R, T1, . . . , Tr ,X
0
z,i , X

1
z,i , . . . , X

r
z,i , a1, . . . , am (7)

from their original positions in (7) to their positions in the right-hand side of (6).
We observe that, due to axioms of a cooperad, the right-hand side of (6) does not

depend on the choice of representatives tz ∈ Tree�(m) .
The remainingL∞-brackets are either extended in the obvious way by symmetry

or declared to be zero.
We claim that

Claim. The operations

{ , , . . . , }n : Sn(s−1 Cyl(C,A,B))→ s−1 Cyl(C,A,B), n ≥ 2 (8)
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defined above, have degree 1 and satisfy the desired L∞-identities:

∂{f1, f2, . . . , fn}n +
n∑

i=1

(−1)|f1|+···+|fi−1|{f1, . . . , fi−1, ∂(fi), fi+1, . . . , fn}n

n−1∑

p=2

∑

σ∈Shp,n−p
±{{fσ(1), fσ(2), . . . , fσ(p)}p, fσ(p+1), . . . , fσ(n)}n−p+1 , (9)

where fj ∈ s−1 Cyl(C,A,B) and the usual Koszul rule of signs is applied.

Before proving Claim 3.1, we would like to show that

Claim. The MC equation for the L∞-algebra Cyl(C,A,B) is well defined. More-
over, MC elements of the L∞-algebra Cyl(C,A,B) are triples:

• A Cobar(C)-algebra structure on A,
• A Cobar(C)-algebra structure on B, and
• An ∞-morphism from A to B .

Proof. Let U be a degree 1 element in Cyl(C,A,B).
We observe that the components of

{s−1U, s−1 U, . . . , s−1 U}n
in Hom(C◦(A),A) and Hom(C◦(B),B) are zero for all n ≥ 3 . Furthermore, for
every (X, a1, . . . , ak) ∈ C(A)

{s−1 U, s−1 U, . . . , s−1 U}n(X, a1, . . . , ak) = 0 ∀ n ≥ k + 1 .

Therefore the infinite sum

[∂,U ] +
∞∑

n=2

1

n! {s
−1 U, s−1 U, . . . , s−1 U}n (10)

makes sense for every degree 1 element U in Cyl(C,A,B) and we can talk about
MC elements of Cyl(C,A,B).

To prove the second statement, we split the degree 1 element U ∈ Cyl(C,A,B)
into a sum

U = QA + sUF +QB ,

where QA ∈ Conv(C◦,EndA), QB ∈ Conv(C◦,EndB), and UF ∈
Hom(C(A),B) .



146 V. Dolgushev and T. Willwacher

Then the MC equation for U is equivalent to the following three equations:

∂QA + 1

2
[QA,QA] = 0 in Conv(C◦,EndA) , (11)

∂QB + 1

2
[QB,QB] = 0 in Conv(C◦,EndB) , (12)

and

[∂,UF ] + {UF , s−1QA}2 +
∞∑

r=1

1

r! {s
−1QB, UF ,UF , . . . , UF }r+1 = 0 . (13)

Equations (11) and (12) imply that QA (resp. QB) gives us a Cobar(C)-algebra
structure on A (resp. B) . Furthermore, Eq. (13) means that UF is an ∞-morphism
from A to B . ��

3.1.1 Proof of Claim 3.1

The most involved identity on L∞-brackets defined above is

{{s−1 R1, s
−1 R2}2, T1, . . . , Tn}n+1 +

∑

1≤p≤n−1
σ∈Shp,n−p

±{s−1 R1, {s−1 R2, Tσ(1), . . . , Tσ(p)}p+1, Tσ(p+1), . . . , Tσ(n)}n−p+2 +

∑

1≤p≤n−1

σ∈Shp,n−p

±{s−1 R2, {s−1 R1, Tσ(1), . . . , Tσ(p)}p+1, Tσ(p+1), . . . , Tσ(n)}n−p+2 = 0 .

(14)

This identity is a consequence of a combinatorial fact about certain isomorphism
classes in the groupoid Tree(n). To formulate this fact, we recall that the set of
isomorphism classes of r-labeled planar trees with two nodal vertices are in bijection
with the set of shuffles

r⊔

p=0

Shp,r−p . (15)

This bijection assigns to a shuffle σ ∈ Shp,r−p the r-labeled planar tree tσ shown
in Fig. 2.
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Fig. 2 Here σ is a
(p, r − p)-shuffle ...

...

s(1) s(p)

s(p+1) s(n)

t(1)

...

t(q1+1)

...

t(q2)t(q1) t(qr−1)

...

t(n)

...

Fig. 3 The pitchfork t�τ

Next, we observe that π0(Tree�(n)) is in bijection with the set

⊔

r≥1

SHn,r , (16)

where2

SHn,r = (17)

⊔

1≤q1<q2<···<qr−1<qr=n
{τ ∈ Shq1,q2−q1,...,n−qr−1 |τ (1) < τ(q1+1) < τ(q2+1) < · · · < τ(qr−1+1)}.

This bijection assigns to a shuffle τ in the set (16) the isomorphism class of the
pitchfork t�τ depicted in Fig. 3.

Note that, in the degenerate cases r = 1 and r = n, SHn,r is the one-element
set consisting of the identity permutation id ∈ Sn . The corresponding pitchforks are
shown in Figs. 4 and 5, respectively.

For every permutation τ ∈ SHn,r and a shuffle σ ∈ Shp,r−p we can form the
following n-labeled planar tree:

t�τ •1 tσ , (18)

where t •j t′ denotes the insertion of the tree t′ into the j -th nodal vertex of the tree
t (see Section 2.2 in [5]).

2It is obvious that for every τ ∈ SHn,r , τ(1) = 1 .
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Fig. 4 The pitchfork for
r = 1

1 2
...

n

Fig. 5 The pitchfork for
r = n

1 2
...

n

It is clear that for distinct pairs (τ, σ ) ∈ SHn,r × Shp,r−p, we get mutually
non-isomorphic labeled planar trees.

Let τ ′ ∈ SHn,r ′ andmi be the number of edges which terminate at the (i+ 1)-th
nodal vertex of t�

τ ′ . For every τ ′′ ∈ SHmi,r ′′ , we may form the n-labeled planar tree

t�τ ′ •i+1 t�τ ′′ . (19)

It is clear that for distinct triples (τ ′, i, τ ′′) ∈ SHn,r ′ × {1, 2, . . . , r ′} ×
SHmi,r ′′ , the corresponding labeled planar trees (19) are mutually nonisomorphic.
Furthermore, every tree of the form (19) is isomorphic to exactly one tree of the
form (18) and vice versa. This is precisely the combinatorial fact that is need to
prove that identity (14) holds.

Indeed, the terms in the expression

{{s−1 R1, s−1 R2}2, T1, . . . , Tn}n+1

involve trees of the form (18) and the terms in the expressions
∑

1≤p≤n−1

σ∈Shp,n−p

±{s−1 R1, {s−1 R2, Tσ(1), . . . , Tσ(p)}p+1, Tσ(p+1), . . . , Tσ(n)}n−p+2

and
∑

1≤p≤n−1
σ∈Shp,n−p

±{s−1 R2, {s−1 R1, Tσ(1), . . . , Tσ(p)}p+1, Tσ(p+1), . . . , Tσ(n)}n−p+2

involve trees of the form (19).
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Thus it only remains to check that the sign factors match.
The remaining identities on L∞-brackets are simpler and we leave their verifica-

tion to the reader.
Claim 3.1 is proved. ��

3.2 The L∞-Algebra Cyl(C,A,B)sF1 and Its MC Elements

Let

F1 : A→ B (20)

be a map of cochain complexes.
We may view sF1 as a degree 1 element in Cyl(C,A,B):

sF1 ∈ sHom(A,B) ⊂ sHom(C(A),B) ⊂ Cyl(C,A,B) .

Since F1 is compatible with the differentials on A and B, sF1 is obviously a MC
element of Cyl(C,A,B) and, in view of Claim 3.1, sF1 corresponds to the triple:

• The trivial Cobar(C)-algebra structure on A,
• The trivial Cobar(C)-algebra structure on B, and
• A strict3 ∞-morphism F1 from A to B.

LetQ1,Q2, . . . ,Qm be vectors in Cyl(C,A,B). We recall that the components
of

{F1, F1, . . . , F1︸ ︷︷ ︸
n times

, s−1Q1, s−1Q2, . . . , s−1Qm}n+m

in Hom(C◦(A),A) and Hom(C◦(B),B) are zero if n + m > 2 . Furthermore, for
every (X, a1, . . . , ak) ∈ C(A)

{F1, F1, . . . , F1︸ ︷︷ ︸
n times

, s−1Q1, s−1Q2, . . . , s−1Qm}n+m(X, a1, . . . , ak) = 0 (∈ B)

provided n+m ≥ k + 2 .
Therefore we may twist (see [7, Remark 3.11.]) the L∞-algebra on Cyl(C,A,B)

by the MC element sF1. We denote by

Cyl(C,A,B)sF1 (21)

the L∞-algebra obtained in this way.

3i.e., an ∞-morphism F : A � B whose all higher structure maps are zero.
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It is not hard to see that4

Cyl◦(C,A,B)sF1 := Hom(C◦(A),A) ⊕ sHom(C◦(A),B)⊕ Hom(C◦(B),B)
(22)

is an L∞-subalgebra of Cyl(C,A,B)sF1 . Furthermore, Claim 3.1 implies that

Claim. MC elements of the L∞-algebra (22) are triples:

• A Cobar(C)-algebra structure on A,
• A Cobar(C)-algebra structure on B,
• An ∞-morphism F : A � B for which the composition

A ↪→ C(A) F−→ C(B) pB−→ B

coincides with F1 .
��

Remark 2. Using the ascending filtration (1) on the pseudo-operad C◦, we equip
the L∞-algebra Cyl(C,A,B) with the complete descending filtrations:

Cyl(C,A,B) = F0Cyl(C,A,B) ⊃ F1Cyl(C,A,B) ⊃ F2Cyl(C,A,B) ⊃ . . . ,
(23)

where (for m ≥ 1)

FmCyl(C,A,B) :=
{
Q′ ⊕ F ⊕Q′′ ∈ Hom(C◦(A),A)⊕ sHom(C(A),B)⊕ Hom(C◦(B),B) (24)

Q′(X, a1, . . . , ak) = 0 , F (X, a1, . . . , ak) = 0 , Q′′(X, b1, . . . , bk) = 0 ∀ X ∈ Fm−1C(k)
}
.

The same formulas define a complete descending filtration on the L∞-algebras
Cyl(C,A,B)sF1 and Cyl◦(C,A,B)sF1 .

We observe that

Cyl◦(C,A,B)sF1 = F1Cyl◦(C,A,B)sF1 (25)

and hence Cyl◦(C,A,B)sF1 is pro-nilpotent. Later, we will use this advantage of
Cyl◦(C,A,B)sF1 over Cyl(C,A,B)sF1 .

4In Cyl◦(C,A,B)sF1 , we have sHom(C◦(A),B) instead of sHom(C(A),B) .
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3.3 What If F1 Is a Quasiisomorphism?

Starting with a chain map (20) we define two maps of cochain complexes:

P 
→ f (P ) = F1 ◦ P : Hom(C◦(A),A)→ Hom(C◦(A),B) (26)

R 
→ f̃ (R) = R ◦ C◦(F1) : Hom(C◦(B),B)→ Hom(C◦(A),B) (27)

and observe that the cochain complex Cyl◦(C,A,B)sF1 is precisely the cochain
complex Cyl(f, f̃ ) defined in (9), (10) in the Appendix.

Hence, using Lemma 1, we deduce the following statement:

Proposition 3.2. If the chain map F1 : A → B induces an isomorphism on the
level of cohomology, then so do the following canonical projections:

πA : Cyl◦(C,A,B)sF1 → Hom(C◦(A),A) , (28)

πB : Cyl◦(C,A,B)sF1 → Hom(C◦(B),B) . (29)

The maps πA and πB are strict homomorphisms of L∞-algebras.

Proof. Since we work over a field of characteristic zero, the functors Hom,
⊗, as well as the functors of taking (co)invariants with respect to actions of
symmetric groups preserve quasiisomorphisms. Therefore the maps (26) and (27)
are quasiisomorphisms of cochain complexes.

Thus the first statement follows directly from Lemma 1.
The second statement is an obvious consequence of the definition ofL∞-brackets

on Cyl◦(C,A,B)sF1 . ��

3.4 Proof of Theorem 3.1

We will now give a proof of Theorem 3.1
Let A and B be homotopy algebras of type C . As said above, we may

assume, without loss of generality, that A and B are connected by a single ∞
quasiisomorphism:

F : A � B . (30)

We denote by αCyl the MC element of Cyl◦(C,A,B)sF1 which corresponds to
the triple

• The homotopy algebra structure on A,
• The homotopy algebra structure on B, and
• The∞-morphism F .
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Due to (25), we may twist (see [7, Remark 3.11.]) the L∞-algebra
Cyl◦(C,A,B)sF1 by the MC element αCyl . We denote by

Def(A F� B) (31)

the L∞-algebra which is obtained from Cyl◦(C,A,B)sF1 via twisting by the MC
element αCyl.

We also denote by QA (resp. QB) the MC element of Conv(C◦,EndA) (resp.
Conv(C◦,EndB)) corresponding to the homotopy algebra structure on A (resp.
B) and recall that Def(A) (resp. Def(B)) is obtained from Conv(C◦,EndA) (resp.
Conv(C◦,EndB)) via twisting by the MC elementQA (resp.QB).

It is easy to see that

πA(αCyl) = QA , πB(αCyl) = QB . (32)

Since πA (28) and πB (29) are strict L∞-morphisms, they do not change under
twisting by MC elements. Thus, we conclude that the same maps πA and πB give
us (strict) L∞-morphisms

πA : Def(A F� B)→ Def(A) ,
πB : Def(A F� B)→ Def(B) . (33)

According to [7, Proposition 6.2], twisting preserves quasiisomorphisms. Thus,
due to Proposition 3.2, the two arrows in (33) are (strict) L∞-quasiisomorphisms,
as desired.

Theorem 3.1 is proven. ��

4 Sheaves of Homotopy Algebras

For a topological space X we consider the category dgShX of dg sheaves (i.e.,
sheaves of unbounded cochain complexes of K-vector spaces). We recall that
dgShX is a symmetric monoidal category for which the monoidal product is the
tensor product followed by sheafification.

Given coaugmented dg cooperad C (satisfying condition (2.1)) one may give the
following naive definition of a homotopy algebra of type C in the category dgShX:

Definition 4.1 (Naive!). We say that a dg sheaf A on X carries a structure of a
homotopy algebra of type C if A is an algebra over the dg operad Cobar(C) .

One can equivalently define a homotopy algebra of type C by considering coderiva-
tions of the cofree C-coalgebra (in the category dgShX)

C(A) :=
⊕

n

(
C(n)⊗A⊗n)

Sn
. (1)
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In other words, a homotopy algebra of type C on A is a degree 1 coderivation Q of
C(A) satisfying the MC equation and the additional condition

Q
∣∣∣A = 0 .

Given such a coderivation Q, it is natural to consider the C-coalgebra (1) with
the new differential

∂ +Q (2)

where ∂ comes from the differentials on C and A.
This observation motivates the following naive definition of ∞-morphism of

homotopy algebra in dgShX:

Definition 4.2 (Naive!). Let A and B be homotopy algebras of type C in dgShX
and let QA and QB be the corresponding coderivations of C(A) and C(B)
respectively. An∞-morphism F : A � B is a map of sheaves

F : C(A)→ C(B)

which is compatible with the C-coalgebra structure and the differentials ∂ + QA,
∂ +QB .

An important disadvantage of the above naive definitions is that they do not
admit an analogue of the homotopy transfer theorem [10, Theorem 10.3.2]. For this
reason we propose “more mature” definitions based on the use of the Thom–Sullivan
normalization [1], [12, Appendix A].

Let U be a covering of X and A be a dg sheaf on X . The associated cosimplicial
set U(A) is naturally a cosimplicial cochain complex. So, applying the Thom–
Sullivan functor NTS to U(A), we get a cochain complex

NTSU(A) (3)

which computes the Cech hypercohomology of A with respect to the cover U.
Let us assume, for simplicity, that there exists an acyclic covering U for A. In

particular, ȞU(A) ∼= H(A) agrees with the sheaf cohomology of A.
Then we have the following definition:

Definition 4.3. A homotopy algebra structure of type C on a dg sheaf A is
Cobar(C)-algebra structure on the cochain complex (3).

Remark 3. Since the Thom–Sullivan normalization NTS is a symmetric monoidal
functor from cosimplicial cochain complexes into cochain complexes, a homotopy
algebra structure on A in the sense of naive Definition 4.1 is a homotopy algebra
structure on A in the sense of Definition 4.3.
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Remark 4. Let U′ be another acyclic covering of X and V be a common acyclic
refinement of U and U′. Since the functor NTS preserves quasiisomorphisms, the
cochain complexesNTSU(A) andNTSU′(A) are connected by the following pair of
quasiisomorphisms:

NTSU(A) ∼−→ NTSV(A) ∼←− NTSU′(A) . (4)

Hence, using the usual homotopy transfer theorem [10, Theorem 10.3.2], we
conclude that the notion of homotopy algebra structure on a dg sheaf A is, in some
sense, independent of the choice of acyclic covering.

Proceeding further in this fashion, we give the definition of an∞-morphism (and
∞ quasiisomorphism) in the setting of sheaves:

Definition 4.4. Let A and B be dg sheaves on X equipped with structures of
homotopy algebras of type C. An∞-morphism F from A to B is an∞-morphism

F : NTSU(A)� NTSU(B) (5)

of the corresponding homotopy algebras (in the category of cochain complexes) for
some acyclic cover U. If (5) is an ∞ quasiisomorphism then, we say that, F is an
∞ quasiisomorphism from A to B .

Remark 5. Again, since the Thom–Sullivan normalization NTS is a symmetric
monoidal functor from cosimplicial cochain complexes into cochain complexes, an
∞-morphism in the sense of naive Definition 4.2 gives us an∞-morphism in the of
Definition 4.4.

4.1 The Deformation Complex in the Setting of Sheaves

Let X be a topological space and let A be a dg sheaf on X. Let us assume that U is
an acyclic (for A) cover of X and A carries a homotopy algebra of type C defined
in terms of this cover U.

Definition 4.5. The deformation complex of the sheaf of homotopy algebras A is

Def(A) := Def(NTSU(A)).

Remark 6. The above definition of the deformation complex is independent on the
choice of the acyclic cover in the following sense: Let U′ be another acyclic cover
of X. Since the cochain complexes NTSU(A) and NTSU′(A) are connected by the
pair of quasiisomorphisms (4), Theorem 3.1 and the homotopy transfer theorem
imply that the deformation complexes corresponding to different acyclic coverings
are connected by a sequence of quasiisomorphisms of dg Lie algebras.

Theorem 3.1 has the following obvious implication.
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Corollary 4.6. Let A and B be dg sheaves on X equipped with structures of
homotopy algebras of type C. If A and B are connected by a sequence of ∞
quasiisomorphisms, then Def(A) and Def(B) are quasiisomorphic dg Lie algebras.

��

4.2 An Application of Corollary 4.6

In applications we often deal with honest (versus∞) algebraic structures on sheaves
and maps of sheaves which are compatible with these algebraic structures on the
nose (not up to homotopy). Here we describe a setting of this kind in which
Corollary 4.6 can be applied.

Let O be a dg operad and Cobar(C) be a resolution ofO for which the cooperad
C satisfies condition (2.1).

Every dg sheaf of O-algebras A is naturally a sheaf of Cobar(C)-algebras.
Hence, A carries a structure of homotopy algebra of type C and we define the
deformation complex of A as

Def(A) := Def(NTSU(A)) .

Theorem 4.7. Let A and B be dg sheaves ofO-algebras on a topological spaceX.
If there exists a sequence of quasiisomorphisms of dg sheaves of O-algebras

A ∼← A1
∼→ A2

∼← · · · ∼→ An ∼→ B

then the dg Lie algebras Def(A) and Def(B) are quasiisomorphic.

Proof. It is suffices to prove this theorem in the case when A and B are connected
by a single quasiisomorphism

f : A ∼→ B (6)

of dg sheaves ofO-algebras.
Since the functor NTS preserves quasiisomorphisms, f induces a quasiisomor-

phism

f∗ : NTSU(A) ∼→ NTSU(B) (7)

for any acyclic cover U.
Furthermore, since NTS is compatible with the symmetric monoidal structure,

the map f∗ is compatible with theO-algebra structures onNTSU(A) andNTSU(B).
Therefore, f∗ may be viewed as an ∞ quasiisomorphism from A to B. Thus

Corollary 4.6 implies the desired statement. ��
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4.3 A Concluding Remark About Definitions 4.3–4.5

For certain applications, Definitions 4.3–4.5 may still be naive. One may ask about
the possibility to extend the notion of homotopy algebras to the setting of twisted
complexes [2–4, 8]. For some application one may need a universal way of keeping
track of “dependencies on covers” by using the notion of hypercover. For other
applications one may need a notion of deformation complex which would also
govern deformations of A as a sheaf or possibly as a (higher) stack.

However, for applications considered in [6], the framework of Definitions 4.3–
4.5 is sufficient.

Appendix: Cylinder Type Construction

Given a pair (f, f̃ ) of maps of cochain complexes

V
f−→ W

f̃←− Ṽ , (8)

we form another cochain complex Cyl(f, f̃ ) . As a graded vector space

Cyl(f, f̃ ) := V ⊕ sW ⊕ Ṽ (9)

and the differential ∂Cyl is defined by the formula

∂Cyl(v + sw + ṽ) := ∂v + s(f (v)− ∂w + f̃ (ṽ))+ ∂ṽ . (10)

The equation

∂Cyl ◦ ∂Cyl = 0

is a consequence of ∂2 = 0 and the compatibility of f (resp. f̃ ) with the
differentials5 on V ,W , and Ṽ .

We have the obvious pair of maps of cochain complexes:

V
πV←− Cyl(f, f̃ )

π
Ṽ−→ Ṽ (11)

πV (v + sw + ṽ) = v, (12)

πṼ (v + sw + ṽ) = ṽ. (13)

We claim that

5By abuse of notation, we denote by the same letter ∂ the differential on V ,W , and Ṽ .
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Lemma 1. If f and f̃ are quasiisomorphisms of cochain complexes, then so are
πV and πṼ .

Proof. Let us prove that πV is surjective on the level of cohomology.
For this purpose, we observe that for every cocycle v ∈ V its image f (v) inW is

cohomologous to some cocycle of the form f̃ (v′), where v′ is a cocycle in Ṽ . The
latter follows easily from the fact that f and f̃ are quasiisomorphisms.

In other words, for every degree n cocycle v ∈ V there exists a degree n cocycle
v′ ∈ V and a degree (n− 1) vector w ∈ W such that

f (v)− f̃ (v′)− ∂w = 0 . (14)

Hence, v + sw − v′ is a cocycle in Cyl(f, f̃ ) such that π(v + sw − v′) = v .
Let us now prove that πV is injective on the level of cohomology.
For this purpose, we observe that the cocycle condition for v + sw + v′ ∈

Cyl(f, f̃ ) is equivalent to the three equations:

∂v = 0 , (15)

∂v′ = 0 , (16)

and

f (v)+ f̃ (v′)− ∂w = 0 . (17)

Therefore, for every cocycle v + sw + v′ ∈ Cyl(f, f̃ ), the vectors v and v′ are
cocycles in V and Ṽ , respectively, and the cocycles f (v) and −f̃ (v′) in W are
cohomologous.

Hence, v + sw + v′ ∈ Cyl(f, f̃ ) is a cocycle and v is exact, then so is v′, i.e.,
there exist vectors v1 ∈ V and v′1 ∈ Ṽ such that

v = ∂v1 , v′ = ∂v′1 .

Subtracting the coboundary of v1 ⊕ s0⊕ v′1 from v ⊕ sw ⊕ v′ we get a cocycle
in Cyl(f, f̃ ) of the form

0⊕ s(w − f (v1)− f̃ (v′1))⊕ 0. (18)

Since w − f (v1)− f̃ (v′1) is a cocycle onW and f̃ is a quasiisomorphism, there
exists a cocycle ṽ ∈ Ṽ and a vector w1 ∈ W such that

w − f (v1)− f̃ (v′1)− f̃ (ṽ)− ∂(w1) = 0 . (19)
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Hence the cocycle (18) is the coboundary of

0⊕ (−sw1)⊕ ṽ ∈ Cyl(f, f̃ ) .

Thus πV is indeed injective on the level of cohomology.
Switching the roles V ↔ Ṽ , f ↔ f̃ , and πV ↔ πṼ we also prove the desired

statement about πṼ . ��
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Invariants of Artinian Gorenstein Algebras
and Isolated Hypersurface Singularities

Michael Eastwood and Alexander Isaev

Abstract We survey our recently proposed method for constructing biholomorphic
invariants of quasihomogeneous isolated hypersurface singularities and, more gen-
erally, invariants of graded Artinian Gorenstein algebras. The method utilizes certain
polynomials associated to such algebras, called nil-polynomials, and we compare
them with two other classes of polynomials that have also been used to produce
invariants.
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1 Introduction

On 27th October 2001, one of us (MGE) gave a talk entitled ‘Invariants of isolated
hypersurface singularities’ at the West Coast Lie Theory Workshop held at the
University of California, Berkeley. The purpose of this talk was to propose, at that
time only by means of examples, a method for extracting invariants of isolated
hypersurface singularities. Since classical invariant theory was the key ingredient in
the method and since classical invariants may be derived from representation theory
of the general linear group, this seemed an appropriate topic for the West Coast Lie
Theory Series. The examples from this talk were presented in [5]. Since that time,
the method from [5] has been considerably improved (by authors other than MGE)
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and related to other methods. Also, it has been realized that the proper framework in
which to formulate the results is within the theory of Gorenstein algebras. Although
this now seems quite far from Lie theory, we believe it is the natural development
and we thank the editors of this volume for the opportunity to present this survey,
which might otherwise appear out of place.

Let V be a complex hypersurface germ with an isolated singularity at 0 ∈ C
n,

n ≥ 2. It follows that the complex structure of V is reduced, i.e., defined by the ideal
I (V ) in the algebra On of germs of holomorphic functions at the origin that consists
of all elements of On vanishing on V . The singularity of V is called quasihomoge-
neous if some (hence every) generator of I (V ) in some coordinates z1, . . . , zn near
the origin is the germ of a quasihomogeneous polynomial Q(z1, . . . , zn), i.e., a
polynomial satisfying Q(tp1z1, . . . , t

pnzn) ≡ tqQ(z1, . . . , zn) for fixed positive
integers p1, . . . , pn, q and all t ∈ C, where pj is called the weight of zj and q the
weight of Q. The singularity is called homogeneous if one can choose Q to be a
form (homogeneous polynomial). This paper concerns the biholomorphic invariants
of quasihomogeneous singularities introduced in our recent article [6]. Various
invariants of hypersurface singularities have been extensively studied by many
authors (see Chapter 1 in [13] for an account of some of the results). The objective of
[6] was to construct, in the quasihomogeneous case, numerical invariants that: (i) are
easy to compute, and (ii) form a complete system with respect to the biholomorphic
equivalence problem for hypersurface germs. Although we succeed only in a very
limited setting (concerning binary quintics and sextics, whose classical invariants
are well understood), to the best of our knowledge, no such system of invariants had
been previously known.

Our approach utilizes the Milnor algebra of V , which is the complex local
commutative associative algebra M(V ) := On/J (f ), where f is any generator
of I (V ) and J (f ) is the ideal in On generated by all first-order partial derivatives
of f calculated with respect to some coordinate system near the origin. It is easy
to observe that the above definition is independent of the choice of f as well as
the coordinate system, and that the Milnor algebras of biholomorphically equivalent
singularities are isomorphic. Furthermore, the dimension n and the isomorphism
class ofM(V ) determine V up to biholomorphic equivalence (see [23] and a more
general result in [18]). Thus, any quantity that depends only on the isomorphism
class of M(V ) is a biholomorphic invariant of V , and any collection of quantities
of this kind uniquely characterizing the isomorphism class of every Milnor algebra
is a complete system of biholomorphic invariants for hypersurface germs of fixed
dimension.

In order to produce invariants of Milnor algebras of quasihomogeneous singular-
ities, we focus on three important properties of M(V ). First, since the singularity
of V is isolated, one has dimCM(V ) < ∞ (see, e.g., Chapter 1 in [13]), that is,
the algebra M(V ) is Artinian. It then follows that the first-order partial derivatives
of f form a regular sequence in On (see Theorem 2.1.2 in [3]), hence, by [2],
the algebra M(V ) is Gorenstein. (Recall that a local commutative associative
algebra A of finite vector space dimension greater than 1 is Gorenstein if the
annihilator Ann(m) := {x ∈ m : xm = 0} of the maximal ideal m ⊂ A is
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1-dimensional – see, e.g., [16].) Finally, M(V ) is (nonnegatively) graded, i.e., it
can be represented as a direct sumM(V ) =⊕i≥0 Li , where Li are subspaces such
that L0 $ C and LiLj ⊂ Li+j for all i, j . Indeed, choosing coordinates near the
origin in which f is the germ of a quasihomogeneous polynomial, we set Li to
be the subspace of elements of M(V ) represented by germs of quasihomogeneous
polynomials of weight i.

Rather than focussing on invariants of Milnor algebras of quasihomogeneous
singularities, one can take a broader viewpoint and introduce certain invariants of
general complex graded Artinian Gorenstein algebras. Our method for constructing
invariants is based on associating to every algebra A a form PA of degree dA on a
complex vector space WA of dimension NA, such that for any pair of isomorphic
algebras A, Ã, there exists a linear isomorphism ϕ : WA → WÃ with PA = PÃ ◦ ϕ.
Then, upon identification of WA with C

NA , for any absolute classical invariant I
of forms of degree dA on C

NA , the quantity I(PA) is invariantly defined. Observe
that for a given choice of PA all invariants of this kind are easy to calculate using
computer algebra.

The idea of building invariants by the above method goes back at least as far as
article [9] (see also [7] and references therein for more detail), where it was briefly
noted for the case of standard graded Artinian Gorenstein algebras, in which case
PA is a Macaulay inverse system for A. For instance, if the singularity of V is
homogeneous, the algebraM(V ) is standard graded. For general quasihomogeneous
singularities the idea was explored in [5], with PA being a certain form a on
m/m2. Finally, in [6] we utilized homogeneous components of nil-polynomials
introduced in [10] to construct a large number of invariants of arbitrary graded
Artinian Gorenstein algebras. Relationships among the above three choices of PA
are discussed in Sect. 2, where we will see, in particular, that nil-polynomials can be
regarded as certain extensions of both inverse systems and the form a. Hence, the
invariants produced from nil-polynomials incorporate those arising from the other
two possibilities for PA. The construction of this most general system of invariants
and results concerning its completeness are surveyed in Sect. 3.

2 Polynomials Associated to Artinian Gorenstein Algebras

In this section we establish relationships among three kinds of polynomials arising
from Artinian Gorenstein algebras. As mentioned in the introduction, we will con-
sider inverse systems, the form a introduced in [5], and nil-polynomials introduced
in [10]. For expository purposes, it is convenient for us to start with nil-polynomials.

LetA be an Artinian Gorenstein algebra over a field F of characteristic zero, with
dimF A > 2 and maximal ideal m. Define a map exp : m→ 1+m by the formula

exp(x) :=
∞∑

s=0

1

s!x
s,
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where x0 := 1, with 1 being the identity element of A. By Nakayama’s lemma, m
is a nilpotent algebra, and therefore the above sum is in fact finite, with the highest-
order term corresponding to s = ν, where ν ≥ 2 is the nil-index ofm (i.e., the largest
of all integers μ for which mμ �= 0). Fix a hyperplane Π in m complementary to
Ann(m) = mν . An F-valued polynomial P on Π is called a nil-polynomial if there
exists a linear form ω : A→ F such that ker ω = 〈Π, 1〉 and

P = ω ◦ exp |Π, i.e., P(x) = ω
(
ν∑

s=2

1

s!x
s

)
, x ∈ Π,

where 〈 · 〉 denotes linear span.
As shown in [10, 11, 17], nil-polynomials solve the isomorphism problem for

Artinian Gorenstein algebras as follows: A and Ã are isomorphic if and only if the
graphs Γ ⊂ Π × F, Γ̃ ⊂ Π̃ × F of any nil-polynomials P , P̃ arising from A,
Ã, respectively, are affinely equivalent, that is, there exists a bijective affine map
ψ : Π × F → Π̃ × F such that ψ(Γ ) = Γ̃ . Furthermore, if both A and Ã are
graded, then Γ and Γ̃ are affinely equivalent if and only if P and P̃ are linearly
equivalent up to scale, i.e., there exist c ∈ F

∗ and a linear isomorphism ϕ : Π → Π̃

with cP = P̃ ◦ ϕ. As will be seen in Sect. 3, this is exactly the property that allows
one to use nil-polynomials for producing invariants of graded Artinian Gorenstein
algebras.

Further, any nil-polynomialP = ω ◦ exp |Π arising from a Gorenstein algebraA
extends to the polynomial P̂ := ω ◦ exp on all of m. Let

P̂ [s](x) := 1

s!ω(x
s), x ∈ m,

be the homogeneous component of P̂ of degree s, with s = 2, . . . , ν. One has
P̂ [s](y) = 0, P̂ [s](x + y) = P̂ [s](x) for all x ∈ m, y ∈ mν+2−s . Thus, P̂ [s]
gives rise to a form P[s] on the quotient m/mν+2−s . The forms P[s] will be used in
Sect. 3 for constructing the invariants mentioned above. Here we only observe that
the highest-degree form P[ν] defined on m/m2 is special. Indeed, for any other nil-
polynomial P ′ arising from A, the corresponding form P

′[ν] coincides with P[ν] up
to scale. Moreover, it is clear from the definition of the form a given on p. 305 in
[5] that it is equal, up to scale, to P[ν]. Thus, loosely speaking, a can be regarded,
up to proportionality, as the highest-degree homogeneous component of any nil-
polynomial.

Next, let k := emb dimA := dimF m/m2 ≥ 1 be the embedding dimension of
A. Since dimF A > 2, the hyperplane Π contains a k-dimensional subspace that
forms a complement to m2 in m. Fix any such subspace L, choose a basis e1, . . . , ek
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in it, and let y1, . . . , yk be the coordinates with respect to this basis. Denote by
R ∈ F[y1, . . . , yk] the restriction of the nil-polynomial P to L expressed in these
coordinates. Clearly, one has

R(y1, . . . , yk) =
ν∑

j=0

1

j !ω
(
(y1e1 + · · · + ykek)j

)
,

and the homogeneous componentR[ν] of degree ν of R is given by

R[ν](y1, . . . , yk) = 1

ν!ω
(
(y1e1 + · · · + ykek)ν

)
.

Thus, identifying L with m/m2, we see that R[ν] is a coordinate representation of
the form P[ν] and therefore that of the form a up to a scaling factor.

Further, the elements e1, . . . , ek generateA as an algebra, hence A is isomorphic
to F[x1, . . . , xk]/I , where I is the ideal of all relations among e1, . . . , ek ,
i.e., polynomials f ∈ F[x1, . . . , xk] with f (e1, . . . , ek) = 0. Observe that I
contains the monomials xν+1

1 , . . . , xν+1
k , and therefore A is also isomorphic

to F[[x1, . . . , xk]]/F[[x1, . . . , xk]]I . It is well known that since the quotient
F[x1, . . . , xk]/I is Gorenstein, there is a polynomial g ∈ F[y1, . . . , yk] of degree ν
satisfying Ann(g) = I , where

Ann(g) :=
{
f ∈ F[x1, . . . , xk] : f

(
∂

∂y1
, . . . ,

∂

∂yk

)
(g) = 0

}

is the annihilator of g (see, e.g., [7] and references therein). The freedom in choosing
g with Ann(g) = I is fully understood, and any such polynomial is called a
Macaulay inverse system for the Gorenstein quotient F[x1, . . . , xk]/I . The classical
correspondence I ↔ g can be also derived from the Matlis duality (see Section 5.4
in [22]).

Inverse systems can be used for solving the isomorphism problem for quotients
of this kind. Namely, two Gorenstein quotients are isomorphic if and only if
their inverse systems are equivalent in a certain sense (see Proposition 16 in
[9] and a more explicit formulation in Proposition 2.2 in [7]). Observe that in
general the equivalence relation for inverse systems is harder to analyze than the
affine equivalence of graphs of nil-polynomials mentioned above, and therefore
the criterion for isomorphism of Artinian Gorenstein algebras in terms of inverse
systems seems to be less convenient in applications than that in terms of nil-
polynomials. There is one case, however, when the criterion in terms of inverse
systems is rather useful. It is discussed in Remark 2 at the end of this section.

The following theorem provides a connection between nil-polynomials and
inverse systems.

Theorem 1. The polynomialR is an inverse system for the quotientF[x1, . . . , xk]/I .
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Proof. Fix any polynomial f ∈ F[x1, . . . , xk]

f =
∑

0≤i1,...,ik≤N
ai1,...,ik x

i1
1 . . . x

ik
k

and calculate

f

(
∂

∂y1
, . . . ,

∂

∂yk

)
(R)

=
∑

0≤i1,...,ik≤N
ai1,...,ik

ν∑

j=i1+···+ik

1

(j − (i1 + · · · + ik))!
×ω

(
(y1e1 + · · · + ykek)j−(i1+···+ik )ei11 . . . eikk

)

=
ν∑

m=0

1

m!ω
(
(y1e1 + · · · + ykek)m ×

∑

0 ≤ i1, . . . , ik ≤ N,
i1 + · · · + ik ≤ ν −m

ai1,...,ik e
i1
1 . . . e

ik
k

)

=
ν∑

m=0

1

m!ω
(
(y1e1 + · · · + ykek)m f (e1, . . . , ek)

)
.

(1)

Formula (1) immediately implies I ⊂ Ann(R).
Conversely, let f ∈ F[x1, . . . , xk] be an element of Ann(R). Then (1) yields

ν∑

m=0

1

m!ω
(
(y1e1 + · · · + ykek)m f (e1, . . . , ek)

)
= 0. (2)

Collecting the terms containing yi11 . . . y
ik
k in (2) we obtain

ω
(
e
i1
1 . . . e

ik
k f (e1, . . . , ek)

)
= 0 (3)

for all indices i1, . . . , ik . Since e1, . . . , ek generate A, identities (3) yield

ω
(
Af (e1, . . . , ek)

)
= 0. (4)

Further, since the bilinear form (a, b) 
→ ω(ab) is nondegenerate on A (see,
e.g., p. 11 in [14]), identity (4) implies f (e1, . . . , ek) = 0. Therefore f ∈ I , which
shows that I = Ann(R) as required. ��
Remark 1. Theorem 1 easily generalizes to the case of Artinian Gorenstein quo-
tients F[x1, . . . , xm]/I , where I lies in the ideal generated by x1, . . . , xm and m
is not necessarily the embedding dimension of the quotient. Indeed, let e1, . . . , em
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be the elements of F[x1, . . . , xm]/I represented by x1, . . . , xm, respectively, and
consider the polynomial in F[y1, . . . , ym] defined as follows:

S(y1, . . . , ym) :=
ν∑

j=0

1

j !ω
(
(y1e1 + · · · + ymem)j

)
,

where ω is a linear form on F[x1, . . . , xm]/I with kernel complementary to Ann(m)
and ν is the nil-index of the maximal ideal of F[x1, . . . , xm]/I . Then arguing as
in the proof of Theorem 1, we see that S is an inverse system for F[x1, . . . , xm]/I .
However, ifm > emb dimF [x1, . . . , xm]/I , this inverse system does not come from
restricting a nil-polynomial to a subspace of m complementary to m2.

We will now give an example illustrating the relationships among nil-
polynomials, inverse systems and the form a established above.

Example 1. Consider the following one-parameter family of algebras:

At := F[x1, x2]/(2x3
1 + tx1x

3
2 , tx

2
1x

2
2 + 2x5

2), t ∈ F, t �= ±2.

It is straightforward to verify that every At is a Gorenstein algebra of dimension 15
with ν = 7 for t �= 0 and ν = 6 for t = 0.

Consider the following monomials in F[x1, x2]:

x1, x2, x
2
1 , x1x2, x

2
2 , x

2
1x2, x1x

2
2 , x

3
2 , x1x

3
2 , x

2
1x

2
2 , x

4
2 , x

2
1x

3
2 , x1x

4
2 , x

2
1x

4
2 .

Let e1, . . . , e14, respectively, be the elements ofAt represented by these monomials.
They form a basis of m. The hyperplaneΠ := 〈e1, . . . , e13〉 in m is complementary
to Ann(m) = 〈e14〉, and we denote by y1, . . . , y13 the coordinates in Π with
respect to e1, . . . , e13. Further, define ω : At → F to be the linear form such that
kerω = 〈Π, 1〉 and ω(e14) = 1. Then the nil-polynomial P := ω ◦ exp |Π is
expressed in the coordinates y1, . . . , y13 as follows:

P (y1, . . . , y13) = t

10080
y7

2 −
1

48
y4

2

(
y2

1 −
t

5
y2y5

)
+ t

48
y4

1y2 − 1

4
y2

1y
2
2y5

−1

6
y1y

3
2y4 + t

24
y3

2y
2
5 +

t

48
y4

2y8 − 1

24
y4

2y3 + terms of deg ≤ 4 .

Further, setting L := 〈e1, e2〉 and restricting P to L, we arrive at an inverse
system of At :

R(y1, y2) = t

10080
y7

2 −
1

48
y2

1y
4
2 +

t

48
y4

1y2
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(note that all terms of deg ≤ 4 in P vanish for y3 = · · · = y13 = 0). Then, choosing
the highest-degree terms inR and identifyingLwith m/m2, we obtain the following
coordinate representation of the form a:

a(y1, y2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t

10080
y7

2 if t �= 0,

− 1

48
y2

1y
4
2 if t = 0

up to scale.

Remark 2. Let now A be a standard graded algebra, i.e., an algebra that can be
represented as a direct sum A =⊕i≥0 Li , with L0 $ F, LiLj ⊂ Li+j for all i, j ,
and Ll = (L1)

l for all l ≥ 1. Choose

Π :=
ν−1⊕

i=1

Li, L := L1.

In this case for any choice of the basis e1, . . . , ek in L the ideal I is homogeneous,
i.e., generated by homogeneous relations. For an arbitrary nil-polynomial P on Π
its restriction to L expressed in the corresponding coordinates is

R(y1, . . . , yk) = 1

ν!ω
(
(y1e1 + · · · + ykek)ν

)
.

Identifying L with m/m2, we observe that the homogeneous inverse system R is
a coordinate representation of the form P[ν] and therefore that of the form a up to
scale.

Theorem 1 yields the well-known fact (see, e.g., Proposition 7 in [9]) that
a standard graded Artinian Gorenstein algebra, when written as a quotient by a
homogeneous ideal, admits a homogeneous inverse system (note that any two such
systems are proportional). In this situation the criterion for isomorphism of algebras
in terms of inverse systems stated in Proposition 16 in [9] becomes rather simple:
two quotients are isomorphic if and only if their homogeneous inverse systems are
linearly equivalent up to scale (see Proposition 17 in [9] and Proposition 2.2 in [7]).
We note that this classical criterion can be easily derived from Theorem 1 as well.

3 The System of Invariants

In this section we survey the construction and properties of the system of invariants
introduced in [6]. Here we assume that F = C, although much of what follows
works for any algebraically closed field of characteristic zero.
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Let A and Ã be graded Artinian Gorenstein algebras of vector space dimension
greater than 2, and P : Π → C, P̃ : Π̃ → C some nil-polynomials arising from
A, Ã, respectively. Assume thatA and Ã are isomorphic. As stated in Sect. 2, in this
case P and P̃ are linearly equivalent up to scale, i.e., there exist c ∈ C

∗ and a linear
isomorphism ϕ : Π → Π̃ with cP = P̃ ◦ϕ. Moreover, as shown in [10,11,17], the
map

ϕ̂ : m→ m̃, x + y 
→ ϕ(x)+ c ω̃−1
0 (ω(y)), x ∈ Π, y ∈ Ann(m),

is an algebra isomorphism, where ω̃0 := ω̃|Ann(m̃).
Further, for s = 2, . . . , ν consider the forms P[s] and P̃[s] on m/mν+2−s

and m̃/m̃ν+2−s arising from P and P̃ , respectively, as explained in Sect. 2.
Since the map ϕ̂ is an algebra isomorphism, there exist algebra isomorphisms
ϕ[s] : m/mν+2−s → m̃/m̃ν+2−s such that cP[s] = P[s] ◦ ϕ[s]. This fact allows one
to utilize classical invariant theory for constructing numerical invariants of graded
Artinian Gorenstein algebras. We will now recall the definitions of relative and
absolute classical invariants (see, e.g., [20] for details). These definitions can be
given in a coordinate-free setting.

Let W be a finite-dimensional complex vector space and QmW the linear space of
holomorphic forms of degree m on W , with m ≥ 2. Define an action of GL(W) on
QmW by the formula

(C,Q) 
→ QC, QC(w) := Q(C−1w), where C ∈ GL(W), Q ∈ QmW , w ∈ W .

If two forms lie in the same GL(W)-orbit, they are called linearly equivalent. A
relative invariant (or relative classical invariant) of forms of degree m on W is a
polynomial I : QmW → C, such that for any Q ∈ QmW and any C ∈ GL(W), one
has I(Q) = (detC)�I(QC), where � is a nonnegative integer called the weight of
I. It follows that I is in fact homogeneous of degree � dimC W/m. Finite sums
of relative invariants comprise the algebra of polynomial SL(W)-invariants of QmW ,
called the algebra of invariants (or algebra of classical invariants) of forms of degree
m onW . As shown by Hilbert in [15], this algebra is finitely generated. For any two
invariants I and J , with J �≡ 0, the ratio I/J yields a rational function on QmW
that is defined, in particular, at the points where J does not vanish. If I and J have
equal weights, this function does not change under the action of GL(W), and we say
that I/J is an absolute invariant (or absolute classical invariant) of forms of degree
m onW .

If one fixes coordinates z1, . . . , zn in W , then W is identified with C
n, GL(W)

with GL(n,C), and any elementQ ∈ QmW is written as a homogeneous polynomial
of degreem in z1, . . . , zn. Invariants are usually defined in terms of the coefficients
of the polynomial in z1, . . . , zn representingQ. Observe, however, that the value of
any absolute invariant atQ is independent of the choice of coordinates inW .

The above discussion yields the following result.
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Theorem 2 ([6]). Let A be a graded Artinian Gorenstein algebra with dimC A >

2, and P a nil-polynomial arising from A. Further, for a fixed s ∈ {2, . . . , ν}, let
W be a complex vector space isomorphic to m/mν+2−s by means of a linear map
ψ : W → m/mν+2−s . Fix an absolute invariant I of forms of degree s on W . Then
the value I(ψ∗P[s]) depends only on the isomorphism class of A.

For each s, let ψs : C
Ns → m/mν+2−s be some linear isomorphism, where

Ns := dimC m/mν+2−s . We have thus constructed the following system of
invariants:

I :=
ν⊔

s=2

Is ,

where

Is :=
{

I(ψ∗s P[s]), I is an absolute invariant of forms of degree s on C
Ns

}
.

The highest stratum Iν of I was introduced in [5] by means of the form a,
which, as we noted in Sect. 2, coincides with any P[ν] up to scale. For standard
graded Artinian Gorenstein algebras the idea of building invariants by the above
method was briefly indicated in [9] in relation to homogeneous inverse systems.
Any homogeneous inverse system in C[z1, . . . , zk] arising from a given algebra
of embedding dimension k is calculated as explained in Remark 2 and therefore
is proportional to a coordinate representation of any P[ν]. Hence, the invariants
resulting from the idea expressed in [9] also comprise the stratum Iν . This stratum
will play an important role below.

We now return to quasihomogeneous singularities, which are the main motivation
of this study, and denote by IM the restriction of the system I to the Milnor
algebras of such singularities. In the remainder of the paper we will discuss the
completeness property of IM . At this stage, all our completeness results only
concern homogeneous singularities, and this is the case that we will consider from
now on. We thus further restrict IM to the class of Milnor algebras of homogeneous
singularities and denote the restriction by IMH .

Let Q be a nonzero element of Qm
Cn

with n ≥ 2, m ≥ 3, and VQ the germ at the
origin of the hypersurface {Q = 0}. Then the singularity of VQ is isolated if and
only if Δ(Q) �= 0, whereΔ is the discriminant (see Chapter 13 in [12]). Define

Xmn := {Q ∈ Qm
Cn
: Δ(Q) �= 0}.

Any hypersurface germ V at the origin in C
n with homogeneous singularity and

dimC M(V ) > 1 is biholomorphic to some VQ with Q ∈ Xmn , m ≥ 3.
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Next, forQ, Q̃ ∈ Xmn the germs VQ, VQ̃ are biholomorphically equivalent if and

only if Q and Q̃ are linearly equivalent. On the other hand, we have the following
fact.

Proposition 1 ([6]1). The orbits of the GL(n,C)-action on Xmn are separated
by invariant regular functions on the affine algebraic variety Xmn , i.e., by absolute
invariants of the form I/Δp, where p is a nonnegative integer and I a relative
invariant.

Let Imn be the algebra of invariant regular functions on Xmn . This algebra is finitely
generated. The above discussion yields that the completeness of the system IMH

will follow if one shows that the algebra Imn can be somehow “extracted” from
IMH .

Observe that emb dimM(VQ) = n andM(VQ) is canonically isomorphic to the
quotient M(VQ) := C[z1, . . . , zn]/J(Q), where J(Q) is the ideal in C[z1, . . . , zn]
generated by all first-order partial derivatives of Q. From now on, we will only
consider algebras of this form. Notice that the ideal J(Q) is homogeneous, and
therefore, as stated in Remark 2, the isomorphism class of M(VQ) is determined by
the linear equivalence class of any of its homogeneous inverse systems. Hence, it
is a reasonable idea to explore whether Imn can be derived from the highest stratum
IMHν of IMH .

By Lemma 3.3 in [21], the annihilator Ann(m) of the maximal ideal m of
M(VQ) is generated by the element represented by the Hessian ofQ, which implies
that the nil-index of m is found from the formula ν = n(m − 2). Therefore,
every nil-polynomial P arising from M(VQ) has degree n(m − 2), and, since
emb dim M(VQ) = n, the corresponding highest-degree form P[n(m−2)] is a form on
an n-dimensional vector space. We say that any such form P[n(m−2)] is associated
to Q (recall that all these forms are proportional to each other). Thus, upon
identification of m/m2 with C

n, every element of IMHn(m−2) calculated for the algebra
M(VQ) is given as I(Q), where I is an absolute invariant of forms of degree n(m−2)
on C

n and Q is any form associated to Q.
Computing associated forms is quite easy for any realization of the algebra.

Choose a basis e1, . . . , en in a complement to m2 in m, and let fj be the element of
m/m2 represented by ej for j = 1, . . . , n. Denote by w1, . . . , wn the coordinates
in m/m2 with respect to the basis f1, . . . , fn. Further, choose a vector v spanning
Ann(m). If k1, . . . , kn are nonnegative integers such that k1+ · · ·+ kn = n(m− 2),
the product ek1

1 . . . e
kn
n is an element of Ann(m), and thus we have ek1

1 . . . e
kn
n =

μk1,...,knv for some μk1,...,kn ∈ C. Then the form

∑

k1+···+kn=n(m−2)

μk1,...,kn

(
n(m− 2)
k1, . . . , kn

)
w
k1
1 . . . w

kn
n (5)

1The proof of this proposition given in [6] was suggested to us by A. Gorinov.
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is a coordinate representation of a form associated to Q, where

(
n(m− 2)
k1, . . . , kn

)
:= (n(m− 2))!

k1! . . . kn!
is a multinomial coefficient.

We now propose a conjecture.

Conjecture 1. For any I ∈ Imn there exists an absolute invariant I of forms of degree
n(m− 2) on C

n, such that for allQ ∈ Xmn , the invariant I is defined at some (hence
at every) form Q associated to Q and I(Q) = I(Q).

For binary quartics (n = 2,m = 4) and ternary cubics (n = 3,m = 3) the conjecture
was essentially verified in [5] (see also [6] and Example 2 below). Furthermore, in
[6] we showed that the conjecture holds for binary quintics (n = 2, m = 5) and
binary sextics (n = 2, m = 6) as well. If the conjecture were confirmed in full
generality, it would imply that the stratum IMHn(m−2) is a complete system of invariants
for homogeneous hypersurface singularities defined by forms in Xmn .

We will now mention another interesting consequence of Conjecture 1. First,
we observe that I(Q) is rational when regarded as a function of Q, provided I is
defined for at least one associated form. In order to see this, we choose a particular
(canonical) identification of m/m2 with C

n. Namely, for j = 1, . . . , n, let ej be
the element of m represented by the coordinate function zj . Also, we let v be
the element represented by the Hessian of Q. Denote by Qc the corresponding
associated form found from formula (5). As follows from Remark 2, the form Qc is
an inverse system for M(VQ). It is clear that μk1,...,kn that occur in (5) are rational
functions of the coefficients ofQ, and therefore for an absolute invariant I of forms
of degree n(m− 2) on C

n, the expression I(Qc) is an invariant rational function of
Q if it is defined at least at one point of Xmn .

Let Rmn denote the collection of all invariant rational functions onXmn obtained in
this way. Further, let Îmn be the algebra of restrictions toXmn of all absolute invariants
of forms of degreem on C

n. Note that Rmn lies in Îmn (see Proposition 1 in [4]). We
claim that Conjecture 1 implies

Rmn = Îmn . (6)

Indeed, since every element of Îmn can be represented as a ratio of two elements
of Imn (see Proposition 6.2 in [19]), identity (6) is equivalent to the inclusion
Imn ⊂ Rmn , which clearly follows from Conjecture 1 (cf. Conjecture 3.2 in [6]).

We remark that identity (6) is interesting from the invariant-theoretic point of
view, since it means that the invariant theory of forms of degreem can be completely
recovered from that of forms of degree n(m − 2). Observe that (6) is a priori
weaker than Conjecture 1. Indeed, it may potentially happen that for some I ∈ Imn



Invariants of Artinian Gorenstein Algebras and Isolated Hypersurface Singularities 171

there exists an absolute invariant I of forms of degree n(m − 2) on C
n, such that

I(Q) ≡ I(Q), where I(Q) is regarded as a function of Q, but for some Q0 ∈ Xmn
the invariant I is not defined at the forms associated to Q0. In the recent paper [1],
identity (6) was shown to always hold.

We will now illustrate Conjecture 1 with the example of simple elliptic singular-
ities of type Ẽ6.

Example 2. Simple elliptic Ẽ6-singularities form a family Vt parametrized by
t ∈ C satisfying t3 + 27 �= 0. Namely, for every such t let Vt := VQt , where
Qt is the following cubic on C

3:

Qt(z1, z2, z3) := z3
1 + z3

2 + z3
3 + tz1z2z3.

Since n = m = 3, we have ν = n(m − 2) = 3; thus any form associated to Qt is
again a ternary cubic. To compute such a form using formula (5), set ej to be the
element of m represented by zj for j = 1, 2, 3 and v the element represented by
z1z2z3. Then for the coefficients in formula (5) we have

μ3,0,0 = μ0,3,0 = μ0,0,3 = − t
3
, μ1,1,1 = 1,

with all the remaining μk1,k2,k3 being zero. These coefficients yield the following
associated form:

Qt := − t
3
(w3

1 +w3
2 +w3

3)+ 6w1w2w3.

The form Qt is an inverse system for M(Vt ) and has been known for a long time
(see [5, 9]). For t �= 0, t3 − 216 �= 0 one has Δ(Qt ) �= 0, in which case the original
cubicQt is associated to Qt and thus there is a natural duality betweenQt and Qt .

Further, the algebra of classical invariants of ternary cubics is generated by
certain invariants I4 and I6, where the subscripts indicate the degrees (see pp. 381–
389 in [8]). For a ternary cubic of the form

Q(z) = az3
1 + bz3

2 + cz3
3 + 6dz1z2z3

the values of I4 and I6 are computed as follows:

I4(Q) = abcd − d4, I6(Q) = a2b2c2 − 20abcd3 − 8d6,

andΔ(Q) = I2
6 + 64I3

4 .2

2This formula for the discriminant of a ternary cubic differs from the general formula given in [12]
by a scalar factor.
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Consider the j -invariant of ternary cubics, which is the absolute invariant defined
as follows:

j := 64 I3
4

Δ
.

It is easy to see that the restriction j |X3
3

generates the algebra I3
3 . In particular, any

two nonequivalent ternary cubics with nonvanishing discriminant are distinguished
by j (see Proposition 1). Further, we have

j (Qt ) = − t3(t3 − 216)3

1728(t3 + 27)3
.

Details on computing j (Q) for any ternary cubicQ with Δ(Q) �= 0 can be found,
for example, in [5].

Next, consider the following absolute invariant of ternary cubics:

j := 1

j
.

A straightforward calculation shows that for any Q ∈ X3
3 the absolute invariant j is

defined at Qt and j(Qt ) = j (Qt ), which demonstrates that Conjecture 1 is indeed
valid for n = m = 3.
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Generalized Loop Modules for Affine
Kac–Moody Algebras

Vyacheslav Futorny and Iryna Kashuba

Abstract We construct new families of irreducible modules for any affine
Kac–Moody algebra by considering the parabolic induction from irreducible
modules over the Heisenberg subalgebra with a nonzero central charge.

Key words Kac–Moody algebra • Loop module • Parabolic induction • Heisen-
berg subalgebra

Mathematics Subject Classification (2010): 17B67.

1 Introduction

In the recent paper [BBFK] parabolic induction was used to construct irreducible
modules for affine Lie algebras from certain modules over the Heisenberg sub-
algebra. In particular, when the central charge is nonzero the induced module
is always irreducible. Previously this result was also known for highest weight
modules (with respect to nonstandard Borel subalgebras) with nonzero central
charge [C, FS, F1, F4]. We extend this result to any irreducible Z-graded module
over the Heisenberg subalgebra.

Let G be an affine Lie algebra with a 1-dimensional center Z = Cc, that is, a
Kac–Moody algebra corresponding to an affine generalized Cartan matrix. Let H be
a Cartan subalgebra of G, H = h⊕ Cc ⊕ Cd , where d is the degree derivation and
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h is a Cartan subalgebra of underlined simple finite-dimensional Lie subalgebra g
of G. Then G has the following root decomposition:

G = H⊕ (⊕α∈ΔGα),

where Gα := {x ∈ G | [h, x] = α(h)x for every h ∈ H} and Δ is the root system
of G.

Denote by U(G) the universal enveloping algebra of G.
A G-module V is a weight module if V = ⊕μ∈H∗Vμ, where

Vμ = {v ∈ V |hv = μ(h)v,∀h ∈ H}.

We will denote by W the category of all weight G-modules.
Classification of irreducible weight modules is only known for modules with

finite-dimensional weight spaces [FT] (nonzero central charge), [DG] (zero central
charge) and in certain subcategories of induced modules with infinite-dimensional
weight spaces [BBFK, F2, FK].

Let G be the Heisenberg subalgebra of G generated by the root spaces Gkδ ,
k ∈ Z\{0}, i.e.,G =∑k∈Z\{0}Gkδ⊕Cc. HenceG has a natural Z-grading. We will
denote by K the category of all Z-gradedG-modules with the grading compatible
with the above grading of G. If V is a G-module (respectively G-module) with a
scalar action of c, then this scalar is called the level of V .

Let P = P0 ⊕ N be a parabolic subalgebra of G with the Levi subalgebra
P0 = G + H. If N is a module from K , then one defines on it a structure of a
P0-module by choosing any λ ∈ H∗ and setting hv = λ(h)v for any h ∈ H and any
v ∈ N . Moreover,N can be viewed as a P-module with a trivial action of N.

Consider the induced G-module indλ(P,G;N) = U(G)⊗U(P) N . Hence

indλ(P,G) : N 
−→ indλ(P,G;N)

defines a functor from the category K of G-modules to the category W of weight
G-modules.

Denote by ˜K the full subcategory of Z-gradedG-modules on which the central
element c acts injectively. The main result of [BBFK] shows that this functor
preserves irreducibility when applied to a particular class of irreducibleG-modules.
Our main result is the following theorem which shows that the same result holds for
any irreducibleG-module in ˜K . The proof of the result in [BBFK] depends on the
property of a Z-gradedG-module to have a special countable basis while our proof
is basis-free.

Theorem 1. P =P0⊕N a parabolic subalgebra of G, where P0 = G+H. Let
λ ∈ H∗ such that λ(c) �= 0. Then the functor indλ(P,G) preserves the irreducibles.



Generalized Loop Modules for Affine Kac–Moody Algebras 177

Thus any irreducibleZ-graded moduleV over the Heisenberg subalgebra and any
λ ∈ H∗ with λ(c) �= 0 induce the irreducible G-module indλ(P,G)(V ). Moreover,

indλ(P,G)(V ) $ indλ′(P,G)(V
′)

if and only if V $ V ′ and λ = λ′.
In [FK] a similar reduction theorem was shown for pseudo-parabolic subalge-

bras. We explain the difference between our result and the main result in [FK].
Let P = P0 ⊕ N be a nonsolvable parabolic subalgebra of G with infinite-

dimensional Levi factor P0. Then P0 = [P0,P0] ⊕ G(P) + H, where
G(P) ⊂ G is the orthogonal completion (with respect to the Killing form) of
the Heisenberg subalgebra of [P0,P0]. We have G(P) + ([P0,P0] ∩ G) = G
and G(P) ∩ [P0,P0] = Cc. Here [P0,P0] is a sum of affine subalgebras of
G whose intersection equals Cc. Consider a triangular decomposition G(P) =
G(P)− ⊕ Cc⊕G(P)+ ofG(P). Then a pseudo-parabolic subalgebra is defined
as Pps = P

ps

0 ⊕ Nps , where P
ps

0 = [P0,P0] + H, Nps = N ⊕ G(P)+
and P = Pps ⊕ G(P)−. One can start with an irreducible weight module
over [P0,P0], extend it naturally to a module over Pps

0 , and then induce up to
a G-module letting Nps to act trivially. The main result of [FK] establishes the
irreducibility of such induced module when the central element acts nonzero. It is
essential for the proof that P is not solvable Lie algebra, that is, dim[P0,P0] > 1.
On the other, the parabolic subalgebra P = G + H considered in this paper is
solvable and the proof in this case requires a different argument.

All results in the paper hold for both untwisted and twisted affine Lie algebras of
rank greater than 1.

2 Parabolic Induction

Let π (respectively π̇) be a basis of the root system Δ (respectively Δ̇) of G
(respectively g), Δ+(π) (respectively Δ̇+(π̇)) the set of positive roots with respect
to π (respectively π̇). Denote by δ ∈ Δ+(π) the indivisible positive imaginary root.
ThenΔim = {kδ|k ∈ Z \ {0}} is the set of imaginary roots.

A closed subset P ⊂ Δ is called a partition if P ∩(−P) = ∅ and P ∪(−P) = Δ.
In the case of finite-dimensional simple Lie algebras every partition corresponds to a
choice of positive roots and all partitions are conjugate by the Weyl group. For affine
root systems the partitions were classified in [JK, F3] and in this case there exist a
finite family of nonconjugate partitions. A parabolic subset P ∈ Δ is a closed subset
in Δ such that P ∪ (−P) = Δ. Parabolic subsets were classified in [F3]. Given a
parabolic subset P , one defines a parabolic subalgebra GP of G generated by H and
all the root spaces Gα , α ∈ P .

Set P0 = P ∩−P . Then G has the following triangular decomposition

G = G−P ⊕G0
P ⊕G+P ,
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where G±P =
∑
α∈P \(−P)G±α and the Levi factor G0

P is generated by H and the

subspaces Gα, α ∈ P0. We have GP = G0
P ⊕G+P .

Let P = P0 ⊕ N be a parabolic subalgebra of G with Levi factor P0. Then
it has type I if P0 is a finite-dimensional reductive Lie algebra and it has type II if
P0 contains the Heisenberg subalgebraG. In the latter case if Gα+kδ ⊂ N for some
real root α and some k ∈ Z, then the same holds for Gα+sδ for all s ∈ Z.

The smallest Levi factor of a parabolic subalgebra of type II is P0 = G + H.
Then N is generated by Gα+nδ , α ∈ Δ̇+(π̇), n ∈ Z for some choice of π̇ . Such
parabolic subalgebras will be considered in this paper.

3 Z-Graded Modules over a Heisenberg Subalgebra

Here we construct a series of simple modules for the infinite Heisenberg Lie algebras
which are Z-graded with infinite-dimensional homogeneous components and have
a nonzero central charge.

LetH = Cc⊕⊕i∈Z\{0}Cei be an infinite-dimensional Lie algebra of Heisenberg
type, where [ei, ej ] = δi,−j c, [ej , c] = 0 for all i ≥ 1 and all j . Note that H $ G
if g = sl(2). If g �= sl(2), then U(G) is isomorphic to a tensor product of finitely
many copies of U(H). Hence irreducible G-modules can be constructed by taking
a tensor product of irreducibleH -modules.

Denote by KH the category of all Z-graded H -modules V such that V =⊕
i∈Z Vi and eiVj ⊂ Vi+j .
If V ∈ KH is irreducible, then the action of c is scalar, the central charge of

V . All irreducible modules with a zero central charge were classified by Chari
[Ch]. Irreducible weight module with a nonzero finite-dimensional weight space
and with a nonzero central charge were described in [F2]. A class of admissible
diagonal modules in KH was constructed in [BBFK] using the classification of
simple weight admissible modules over the infinite rank Weyl algebra A∞ [BBF]
(roughly admissibility means the existence of a maximal set for any increasing
chain of annihilators in A∞ of elements of the module, see [BBFK] for a precise
definition). After rescaling the generators of H , we may assume that an irreducible
module V ∈ KH has central charge 1 and hence it becomes a module for A = A∞,
sinceU(H)modulo the ideal generated by c−1 is isomorphic to A∞ by identifying
∂i = ei and xi = e−i for all i > 0. These H -modules have a nonzero central
charge and infinite-dimensional weight subspaces (with respect to the Z-grading).
All simple weight modules over the infinite rank Weyl algebra A∞ were classified
in [FGM] providing a classification of all irreducible diagonal H -modules. Taking
any such module and applying a parabolic induction we obtain new families of
irreducible modules (after taking a quotient by a maximal submodule if necessary)
for the affine sl(2) algebra.

In order to generalize this to any affine Kac–Moody algebra we need to extend
the above mentioned result in [FGM] for the Heisenberg algebraG. For each k ∈ Z,
k �= 0, let dk = dimGkδ . Set [dk] = {1, . . . ,dk}. Choose a basis {xk,i | i ∈ [dk]}
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for Gkδ such that [xk,i, x−k,j ] = δi,j kc, i, j . ThenG can be written as direct sum of
finitely many Lie subalgebras isomorphic to H (possibly with a shift of gradation).
Hence, taking a tensor product of irreducible modules from [FGM] and applying
a parabolic induction, we obtain new families of irreducible modules for arbitrary
affine Lie algebra.

4 Generalized Loop Modules

Let P =P0⊕N be a parabolic subalgebra of G such that P0 = G+H. LetN be
an irreducible G-module from K and λ ∈ H∗. Define P0-module structure on N
by hv = λ(h)v for all v ∈ N . Next define onN a weight (with respect to H) module
over the parabolic subalgebra P with a trivial action of N and let

MP (N, λ) = ind(P,G;N)

be the induced weight G-module. If N is irreducible, then MP (N, λ) has a
unique irreducible quotient LP (N, λ). Extending [BBFK] we call MP (N, λ) the
generalized loop module associated with N and λ.

A nonzero element v of a G-module V is called P-primitive if Nv = 0.

Proposition 1. Let V be an irreducible weight G-module with a P = P0 ⊕ N-
primitive element of weight λ, P0 = G + H, N = ∑

k∈Z Vλ+kδ. Then N is an
irreducible P-module and V is isomorphic to LP (N, λ).

Proof. The proof is standard. ��
The following theorem implies the main result.

Theorem 2. Let P = G+H be a parabolic subalgebra of G, V ∈ K aG-module,
λ ∈ H∗ with λ(c) �= 0. Then for any submodule U ofMP (V , λ) we have U ∩ (1⊗
V ) �= 0. In particular,MP (V , λ) is irreducible if and only if V is irreducible.

Recall that the algebra H is Z-graded. Below we will use a change of grading
on H by interchanging of some positive and negative components of the original
grading. Similar change of grading can be done for the algebraG. Any such change
of grading corresponds to an automorphism of H (respectivelyG).

Lemma 1. Let V be an arbitrary nonzero level Z-graded module over G. Fix
k1, . . . , ks ∈ Z, ki �= kj if i �= j , and fi ∈ Gkiδ , i = 1, . . . , s and set f0 = 1.
Also fix nonzero elements xk ∈ Gkδ , k ∈ Z \ {0} such that [xk, x−k] �= 0 for any
k. Then for any nonzero homogeneous element v ∈ V there exist a change of Z-
grading on G and n ∈ Z, n >> 0, such that for any N ≥ n,

s∑

i=0

xN−ifiv �= 0.
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Proof. Let fiv = 0 for all i = 1, . . . , s. Then for any N ∈ Z, N �= 0 and for any
nonzero x ∈ GNδ , either xv �= 0 or there exists x ′ ∈ G−Nδ such that x ′v �= 0. Then
the statement follows after a suitable change of the Z-grading on G. Consider now
the general case. Assume fiv �= 0 for some i. Without loss of generality, we may
assume that fiv �= 0 for all i = 1, . . . , s. Suppose that for some N ∈ Z and for
all nonzero elements xi ∈ G(N−ki )δ and x ′i ∈ G(−N+ki )δ , i = 0, . . . , s, such that
[xi, x ′i ] �= 0 for all i,

s∑

i=0

xifiv =
s∑

i=0

x ′ifiv = 0.

Then x0v = −∑s
i=1 xifiv and x ′0v = −

∑s
i=1 x

′
ifiv. IfN is sufficiently large, then

we will have [xi, fj ] = [x ′i , fj ] = 0 for all i, j . Then

[
s∑

i=1

xifi ,

s∑

i=1

x ′ifi]

=
s∑

i,j=1

(xix
′
j fifj − x ′j xifj fi)

=
s∑

i=1

[xi, x ′i]f 2
i .

Hence

[x0, x
′
0]v =

s∑

i=1

[xi, x ′i]f 2
i v,

and thus v can be written as an integral linear combination of f 2
1 v, . . ., f

2
s v. Due to

the Z-grading on V , this can only happen when f 2
1 v = . . . = f 2

s v = v = 0 which
is a contradiction. Therefore the statement is shown for all sufficiently largeN after
a suitable change of the Z-grading on G. ��

The universal enveloping algebra U(G) inherits the Z-grading fromG, U(G) =
⊕i∈ZU(G)i . One can easily generalize Lemma 1 for the case when fi ’s are arbitrary
elements of U(G). Namely, we have

Corollary 1. Let V be an arbitrary nonzero level Z-graded module over G, ui ∈
U(G)i , i ∈ I ⊂ Z. Fix nonzero elements xk ∈ Gkδ, k ∈ Z\{0} such that [xk, x−k] �=
0 for any k. Then for any nonzero homogeneous element v ∈ V such that u0v+v �= 0
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(if 0 ∈ I ) there exist a change of Z-grading on G and n ∈ Z, n >> 0, such that for
any N ≥ n,

∑

i∈I
xN−iuiv + xNv �= 0.

Proof. The proof is similar to the proof of Lemma 1. It is sufficient to compare the
top graded components of ui’s and use the fact that [xi, uj ] = [x ′i , uj ] = 0 for all
i, j when N is sufficiently large. Here xi’s and x ′i’s are as in Lemma 1. ��
Proof of Theorem 2. The proof is analogous to the proof of Lemma 5.3 in [BBFK].
Let P = P0 ⊕ N, P0 = G + H. Consider a Lie subalgebra N− of G
obtained from N applying the Chevalley involution. Then P ⊕ N− = G. Let
MP (λ, V ) = indλ(P,G;V ) where V is a G-module, λ ∈ H∗ with λ(c) �= 0.
Denote M̂P (λ, V ) = 1 ⊗ V. Then M̂P (λ, V ) is a P-submodule of MP (λ, V )

isomorphic to V , which consists of P-primitive elements. Let U be a nonzero
submodule of MP (λ, V ). We will show that Û = U ∩ M̂P (λ, V ) �= 0 and that
U is generated by Û which implies the statement. Let v ∈ U be a nonzero element.
One can assume that u is a weight vector. Then

v =
∑

i∈I
uivi,

where ui ∈ U(N−) are linearly independent homogeneous elements, i ∈ I , vi ∈
M̂P (λ, V ). First we assume that G is not of type A(2)2� .

Let π̇ = {α1, . . . , αn} be a suitable base of simple roots for Δ̇ such that N =
⊕α∈Δ̇+,k∈ZGα+kδ , where Δ̇+ is the set of positive roots with respect to π̇ and α +
kδ ∈ Δ. Then

N− = ⊕α∈Δ̇+,k∈ZG−α+kδ,

as long as α + kδ ∈ Δ. If α = ∑n
j=1 kjαj , where each kj is in Z≥0, then we set

ht(α) =∑n
j=1 kj , the height of α.

Since v is a weight vector then each ui is a homogeneous element of U(G) of
degree

−ϕi = −
n∑

j=1

kijαj +miδ,

where kij ∈ Z≥0, mi ∈ Z. We have that all ϕi’s have the same height. Assume first
that ht(ϕi) = 1 for all i. Using the fact that all ui’s are linearly independent, all vi ’s
are P-primitive elements and Corollary 1, one can show that there exists a nonzero
x ∈ N such that [x, ui] ∈ U(G) for all i and 0 �= xv ∈ M̂P (λ, V ). Thus, we obtain
a nonzero element which belongs to U ∩ M̂P (λ, V ). This completes the proof in
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the case ht(ϕ) = 1. The case ht(ϕ) > 1 is considered similarly. Using the fact that
ui’s are linearly independent it is easy to find an element y of N of height 1 which
produces a nonzero element yv and reduces the height by 1. Then induction implies
the statement of the theorem. In particular, if V is irreducible, then MP (λ, V ) is
irreducible. If G is of type A(2)2� , then for any α ∈ (Δ̇l)+, 1

2 (α + (2n − 1)δ) ∈ Δ.
Let α0 be a root of Δ such that {α0, . . . , αn} is a base of simple roots for Δ. Then
α0 = 1

2 (−α1 − 2α2 − . . .− 2αn + δ). Using this, one can write any root as α + kδ
for some integer k where α = k0α0 +∑n

j=2 kjαj , where each kj is in Z≥0. Setting
ht(α) = k0 +∑n

j=2 kj and using induction on ht(α) as above, we complete the

proof in the case of A(2)2� . ��
We also conjecture that the structure of MP(λ, V ) is completely determined

by M̂P (λ, V ) when λ(c) �= 0. Namely, that any submodule U of MP (V , λ) is
generated by VU = U ∩ M̂P (λ, V ) as a G-module. Therefore we have

U $ indλ(P,G;VU).

This is known to be true in different particular cases, see [FK].
Theorem 2 immediately implies our main result about the structure of generalized

loop modules. As a consequence of this result, any irreducible module V from the
category K with a nonzero central charge a �= 0 and any λ ∈ H∗, such that λ(c) =
a will determine an irreducible module MP (λ, V ) for the affine Lie algebra G. If
V and V ′ are irreducible modules in K with central charge a �= 0, and λ,μ ∈ H∗
are such that λ(c) = μ(c) = a, thenMP (λ, V ) andMP (μ, V

′) are isomorphic if
and only if V and V ′ are isomorphic as G-modules (up to a shift of gradation) and
λ = μ.

Suppose H1 and H2 are Lie algebras isomorphic to H . Consider Hi-module V i ,
i = 1, 2, in K and the H1 ⊗ H2-module W = V 1 ⊗ V 2. If V 1 = ⊕i∈ZV 1

i and
V 2 = ⊕i∈ZV 2

i , then W ∈ K where V 1
i ⊗ V 2

j ⊂ Wi+j . If both V i , i = 1, 2
are also modules in W (A ), that is they are weight modules over the infinite rank
Weyl algebra, and all weight spaces are 1-dimensional, then W is a weight module
over A ⊗ A with 1-dimensional weight spaces. Moreover, if both V 1 and V 2 are
irreducible, thenW is irreducibleH1 ⊗H2-module.

Corollary 2. Let G be an affine Lie algebra with the Heisenberg subalgebra G.
Write G as a direct sum of Lie subalgebras G = ⊕mi=1Gi where Gi $ H for all
i. For each i, let Vi be an irreducible Gi-module with a nonzero central charge
a ∈ C. Choose λ ∈ H∗ such that λ(c) = a and define a G + H-module structure
on V = ⊗mi=1Vi by hv = λ(h)v for all h ∈ H, v ∈ V . Consider any parabolic
subalgebra P of G such that P0 = G+ H. ThenMP (λ, V ) is irreducible.

Proof. Since V = ⊗iVi is irreducible G-module, then it is irreducible P-module
and the statement follows immediately from Theorem 2. ��

As a particular case we obtain the following statement.
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Corollary 3. Let V be a highest weight G-module with central charge a ∈ C.
Choose λ ∈ H∗ such that λ(c) = a and define a G + H-module structure on V =
⊗mi=1Vi by hv = λ(h)v for all h ∈ H, v ∈ V . Consider any parabolic subalgebra
P of G such that P0 = G+ H. ThenMP (λ, V ) is irreducible.
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Twisted Localization of Weight Modules

Dimitar Grantcharov

Abstract We discuss how the twisted localization functor leads to a classification
of the simple objects and a description of the injectives in various categories of
weight modules. The article is a survey on existing results for finite-dimensional
simple Lie algebras and superalgebras, affine Lie algebras, and algebras of differen-
tial operators.

Key words Lie algebra • Lie superalgebra • Weyl algebra • Weight module
• Localization
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1 Introduction

The study of weight modules of Lie algebras and superalgebras have attracted
considerable attenion in the last 30 years. Examples of weight modules include
parabolically induced modules (in particular, modules in the category O), D-
modules, generalized Harish-Chandra modules, among others. The first major steps
in the systematic study of weight modules were made in the 1980s and 1990s by
G. Benkart, D. Britten, S. Fernando, V. Futorny, A. Joseph, F. Lemire, and others,
[3, 6, 19, 20, 30]. Two remarkable results for simple finite-dimensional Lie algebras
include the Fernando–Futorny parabolic induction theorem, [19, 20], reducing the
classification of all simple weight modules with finite weight multiplicities to the
classification of all simple cuspidal modules (defined in Sect. 3.5); and the result
of Fernando [19] that cuspidal modules exist only for Lie algebras of type A
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and C. In 2000 O. Mathieu [32], classified the simple cuspidal modules, and in this
way completed the classification of all simple weight modules with finite weight
multiplicities of all finite-dimensional reductive Lie algebras.

An essential part of Mathieu’s classification result is the application of the twisted
localization functor: the result states that every cuspidal module is a twisted local-
ization of a highest weight module. The definition of a twisted localization functor
for Lie algebras in [32] generalizes other fundamental constructions: Deodhar’s
localization functors, and in particular, Enright’s completions, see [11] and [18].
The twisted localization functor is especially convenient on categories of bounded
weight modules, i.e., those weight modules whose sets of weight multiplicities are
uniformly bounded. The functor admits several important properties: it preserves
central characters; it commutes with the parabolic induction and the translation
functors; it generally maps injectives and projectives to injectives and projectives,
respectively. After its inception in [32], it was obvious that the application of the
functor is not limited only to finite-dimensional Lie algebras. For the last 10 years
the twisting localization functor was used in numerous other important classification
results and in particular for:

– Description of injective modules in categories of bounded and cuspidal weight
modules [25–27];

– Classification of simple weight modules with finite weight multiplicities of affine
Lie algebras and Schrödinger algebras [13, 17];

– Classification of simple and injective weight modules of algebras of twisted
differential operators on the projective space [27].

A detailed account on the twisted localization functor can be found in Chapter 3
of [33].

The main goal of this paper is to present a survey on the applications of
the twisted localization functor in the classification of the simple and injective
objects of various categories of weight modules. Due to the technical nature of
the classification results, the content of the paper is limited to the presentation of
simple and indecomposable injective objects in terms of twisted localization, but
it does not address the uniqueness of this presentation. One should note that such
uniqueness is present for all results collected in the paper and the reader is referred
to the corresponding references for details.

The content of the paper is as follows. Section 3 is devoted to the background
material on weight modules of associative algebras. The notations and definitions
of all categories of weight modules is introduced in this section. The cases of simple
finite-dimensional Lie algebras and superalgebras, Weyl algebras of differential
operators, and affine Lie algebras are considered as separate subsections. In Sect. 4
we first introduce the twisted localization functor in its most general setting and then
following the subsection order of Sect. 3, we present the classification results on the
simple and injective weight modules on a case-by-case basis.
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2 Index of Notation

Below we list some notation that are frequently used in the paper under the section
number they are first introduced.

3.1 supp,Mλ,M(λ), (U ,H )-mod, f(U ,H )-mod, w(U ,H )-mod, wf(U ,H )-
mod.

3.2 D(n), D , (D,H )-mod, b(D,H )-mod, (D,H )ν-mod, b(D,H )ν-mod.
3.3 |ν|, E, (DE,H )a-mod, (DE,H )aν -mod, s(D,H )-mod, s(D

E,H )a-mod,
b
s (D

E,H )a-mod, s(D
E,H )aν-mod, b

s (D
E,H )aν -mod, SH ′ .

3.4 D(∞)
3.5 B, GB, B, GB, Bν , GBν , Bλ, GBλ, Bλ

ν , GBλ
ν , B

λ

ν , GB
λ

ν .
3.6 hss

0̄
.

3.7 G, H, L (g), L (g, σ ), A (g), A (g, σ ).
4.1 DF , Θx

F , Θx
F , Dx

F .
4.2 D+i , D

−
i , Dx,+i , D

x,−
i , Di,j , Dxi,j .

4.4 DΓ , Dx
Γ , γ , Fν,F

log
ν , σJ , F log

ν (J ), Int(ν), Γa , Φ, ψA,ΨA,ψC,ΨC , Sh.
4.6 La1,...,ak (Y1 ⊗ . . .⊗ Yk), L σ

a1,...,ak
(Y1 ⊗ . . .⊗ Yk), Va1,...,ak (Y1 ⊗ . . .⊗ Yk).

3 Background

In this paper the ground field is C and N stands for the set of positive integers.
All vector spaces, algebras, and tensor products are assumed to be over C unless
otherwise stated.

3.1 Categories of Weight Modules of Associative Algebras

Let U be an associative unital algebra and let H ⊂ U be a commutative
subalgebra. We assume in addition that H is a polynomial algebra identified with
the symmetric algebra of a vector space h, and that we have a decomposition

U =
⊕

μ∈h∗
U μ,

where

U μ = {x ∈ U |[h, x] = μ(h)x,∀h ∈ h}.

Let QU = ZΔU be the Z-lattice in h∗ generated by ΔU = {μ ∈ h∗ | U μ �= 0}.
We obviously have U μU ν ⊂ U μ+ν .
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We call a U -module M a generalized weight (U ,H )-module if M =⊕
λ∈h∗M(λ), where

M(λ) = {m ∈ M|(h− λ(h)Id)Nm = 0 for someN > 0 and all h ∈ h}.

Equivalently, generalized weight modules are those on which h acts locally finitely.
We callM(λ) the generalized weight space ofM and dimM(λ) the weight multiplic-
ity of the weight λ. Note that

U μM(λ) ⊂ M(μ+λ). (1)

A generalized weight moduleM is called a weight module ifM(λ) = Mλ, where

Mλ = {m ∈ M|(h− λ(h)Id)m = 0 for all h ∈ h}.

Equivalently, weight modules are those on which h acts semisimply. Weight and
generalized weight modules in similar situations and general setting are also studied
in [15].

By (U ,H )-mod and w(U ,H )-mod we denote the category of generalized
weight modules and weight modules, respectively. Furthermore, by f(U ,H )-mod
and b(U ,H )-mod we denote the subcategories of (U ,H )-mod consisting of
modules with finite weight multiplicities and bounded set of weight multiplicities,
respectively. By wf(U ,H )-mod and wb(U ,H )-mod we denote the subcategories
of w(U ,H )-mod that are in f(U ,H )-mod and b(U ,H )-mod, respectively.

For any moduleM in (U ,H )-mod we set

suppM := {λ ∈ h∗ | M(λ) �= 0}

to be the support of M . It is clear from (1) that Ext1A (M,N) = 0 if (suppM +
QU)∩suppN = ∅, where A is any of the categories of generalized weight modules
or weight modules defined above. Then we have

(U ,H )-mod =
⊕

μ∈h∗/Q
(U ,H )μ-mod, (2)

where (U ,H )μ-mod denotes the subcategory of (D,H )-mod consisting of
modules M with suppM ⊂ μ = μ + Q. We similarly define w(U ,H )μ-
mod, f(U ,H )μ-mod, b(U ,H )μ-mod, wf(U ,H )μ-mod, and wb(U ,H )μ-mod,
and obtain the corresponding support composition where the direct summands are
parametrized by elements of h∗/Q. With a slight abuse of notation, for μ ∈ h∗ we
set (U ,H )μ-mod = (U ,H )μ-mod, etc.
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3.2 Weight D(n)-Modules

Let D(n) be the Weyl algebra, i.e., the algebra of polynomial differential operators
of the ring C[t1, . . . , tn] and consider U = D(n). When n ≥ 1 is fixed, we
use the notation D for D(n). Let h = Span{t1∂1, . . . , tn∂n} and hence H =
C[t1∂1, . . . , tn∂n] is a maximal commutative subalgebra of D . Note that the adjoint
action of the abelian Lie subalgebra h on D is semisimple. We identify C

n with the
dual space of h = Span{t1∂1, . . ., tn∂n}, and fix {ε1, . . . , εn} to be the standard basis
of this space, i.e., εi(tj ∂j ) = δij . ThenQ =⊕n

i=1 Zεi is identified with Z
n, and

D =
⊕

μ∈Zn
Dμ.

Here D0 = H and each Dμ is a free left H -module of rank 1 with generator∏
μi≥1 t

μi
i

∏
μj<0 ∂

−μj
j .

From this we see that the simple objects of f(D,H )-mod (equivalently, of
wf(D,H )-mod) are in b(D,H )-mod, i.e., have bounded sets of weight multiplic-
ities. Using the description of these simple objects (see for example Theorem 4.5),
we obtain that b(D,H )-mod = f(D,H )-mod and wb(D,H )-mod = wf(D,H )-
mod. The latter category was studied in [2] and [25] and the former in [1].

The support of every (D,H )-module will be considered as a subset of Cn and
we have a natural decomposition

(D,H )-mod =
⊕

ν∈Cn/Zn
(D,H )ν-mod,

As before, for ν ∈ C
n we write (D,H )ν-mod = (D,H )ν-mod. The same

applies for the subcategories w(D,H )ν-mod, b(D,H )ν-mod = f(D,H )ν-mod,
and wb(D,H )ν-mod = wf(D,H )ν-mod.

3.3 Weight DE-Modules

In this subsection D = D(n + 1) and we assume n ≥ 1. Let E = ∑n+1
i=1 ti∂i be

the Euler vector field. Denote by DE the centralizer of E in D . Note that D has a
Z-grading D = ⊕m∈ZDm, where Dm = {d ∈ D |[E, d] = md}. It is not hard to
see that the center of DE is generated by E. The quotient algebra DE/(E − a) is
the algebra of global sections of twisted differential operators on P

n.
Let a ∈ C, let (DE,H )a-mod be the category of generalized weight DE-

modules with locally nilpotent action of E − a and b(DE,H )a-mod be the
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subcategory of b(DE,H )a-mod consisting of modules with finite weight multi-
plicities. We have again a decomposition

(DE,H )a-mod =
⊕

|ν|=a
(DE,H )aν -mod,

where (DE,H )aν-mod is the subcategory of modules with support in ν +∑n
i=1 Z(εi − εi+1) and |ν| :=∑n+1

i=1 νi .
Let H ′ be the subalgebra of D generated by ti∂i− tj ∂j . We denote by s(D,H )-

mod (respectively, s(DE,H )-mod , b
s (D

E,H )-mod) the subcategory of (D,H )-
mod (resp., the subcategory of (DE,H )-mod , b(DE,H )-mod) consisting of all
modules semisimple over H ′. Similarly we define the categories s(DE,H )a-mod,
b
s (D

E,H )a-mod, s(DE,H )aν -mod, and b
s (D

E,H )aν -mod. These categories are
studied in [27] in detail. In this paper we will limit our attention to the role that the
simples and injectives of these categories play in the classification of the simples
and injectives in categories of bounded and generalized bounded sl(n+ 1)-modules
(see Proposition 4.10).

Define the left exact functor SH ′ : (D,H )-mod → s(D,H )-mod to be the
one that mapsM to its submodule consisting of all H ′-eigenvectors. One can easily
verify that SH ′ maps injectives to injectives and blocks to blocks. For the injectives,
note that if α : X → I is a homomorphism of D-modules, X is in s(D,H )-mod,
and I is in (D,H )-mod, then α(X) is in s(D,H )-mod, hence a submodule of
SH ′(I).

Finally, we define two functors between the categories of weight D-modules and
weight DE-modules. For anyM ∈ (D,H )-mod, let

Γa(M) =
⋃

l>0

Ker(E − a)l .

Then Γa is an exact functor from the category (D,H )-mod to the category
(DE,H )a-mod. The induction functor

Φ(X) = D ⊗DE X

is its left adjoint.

3.4 Weight D(∞)-Modules

Denote by C[ti ]i∈N the polynomial algebra in ti , i ∈ Z. In this section U =
D(∞) is the infinite Weyl algebra, where D(∞) is defined as the subalgebra of
End(C[ti]i∈N) generated by the operators ti (multiplication by ti) and ∂i (derivative
with respect to ti). We also let h to be the space spanned by ti∂i , i ∈ N, and hence
H = S(h) = C[ti∂i ]i∈N. All other definitions from Sect. 3.2 transfer trivially to the
infinite case.
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3.5 Weight Modules of Lie Algebras

Let g be a simple finite-dimensional Lie algebra and let U = U(g) be its universal
enveloping algebra. We fix a Cartan subalgebra h of g and denote by ( , ) the Killing
form on g. We apply the setting of Sect. 3.1 with U = U and H = S(h). We
will use the following notation: GB = b(U ,H )-mod, B = wb(U ,H )-mod,
GBμ = GBμ = b(U ,H )μ-mod, and Bμ = Bμ = wb(U ,H )μ-mod. By a
result of Fernando [19] and Benkart, Britten and Lemire [3], infinite-dimensional
simple objects of B and GB exist only for Lie algebras of type A and C. The
modules in B and GB are called bounded and generalized bounded modules,
respectively.

A generalized weight module M with finite weight multiplicities will be called
a generalized cuspidal module if the nonzero elements of the root space gα act
injectively (and hence bijectively) on M for all roots α of g. If M is a weight
cuspidal module we will call it simply cuspidal module. By GC and C we will
denote the categories of generalized cuspidal and cuspidal modules, respectively,
and the corresponding subcategories defined by the supports will be denoted by
GC μ and Cμ. One should note that the simple objects of B and GB (as well as
those of C and GC ) coincide. The category C was described in [26] and [34] for
g = sl(n + 1), and in [7] for g = sp(2n). The category GC was described in [34]
for g = sl(n+ 1), and in [35] for g = sp(2n).

The induced form on h∗ will be denoted by ( , ) as well. In this case Q ⊂ h∗
is the root lattice. By W we denote the Weyl group of g. Denote by Z := Z(U)
the center of U and let Z′ := Hom(Z,C) be the set of all central characters (here
Hom stands for homomorphisms of unital C-algebras). By χλ ∈ Z′ we denote the
central character of the irreducible highest weight module with highest weight λ.
Recall that χλ = χμ iff λ + ρ = w(μ + ρ) for some element w of the Weyl group
W , where, as usual, ρ denotes the half-sum of positive roots. Finally, recall that λ is
dominant integral if (λ, α) ∈ Z≥0 for all positive roots α.

One should note that every generalized bounded module has finite Jordan–
Hölder series (see Lemma 3.3 in [32]). Since the center Z of U preserves weight
spaces, it acts locally finitely on the generalized bounded modules. For every central
character χ ∈ Z′ let GBχ (respectively, Bχ ,GC χ ,C χ ) denote the category
of all generalized bounded modules (respectively, bounded, generalized cuspidal,
cuspidal) modulesM with generalized central character χ , i.e., such that for some
n (M) , (z− χ (z))n(M) = 0 on M for all z ∈ Z. It is clear that every generalized
bounded module M is a direct sum of finitely many Mi ∈ GBχi . Thus, one can
write

GB =
⊕

χ∈Z′
μ̄∈h∗/Q

GB
χ
μ̄, GC =

⊕

χ∈Z′
μ̄∈h∗/Q

GC
χ
μ̄, B =

⊕

χ∈Z′
μ̄∈h∗/Q

B
χ
μ̄, C =

⊕

χ∈Z′
μ̄∈h∗/Q

C
χ
μ̄ ,

where GBχ
μ̄ = GBχ ∩ GBμ̄, etc. Note that many of the direct summands above

are trivial.
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By χλ we denote the central character of the simple highest weight g-module
with highest weight λ. For simplicity we put GBλ := GBχλ , GBλ

μ̄ := GB
χλ
μ̄ , etc.

Let B (respectively, GB) be the full subcategory of all weight modules (respec-
tively, generalized weight modules) consisting of g-modules M with countable
dimensional weight spaces whose finitely generated submodules belong to B
(respectively, GB). With the aid of (2), it is not hard to see that every such M is a
direct limit lim−→Mi for some directed system {Mi | i ∈ I } such that eachMi ∈ GB

(respectively, Mi ∈ B). It implies that the action of the center Z of the universal
enveloping algebra U onM is locally finite and we have decompositions

B =
⊕

χ∈Z′,
μ̄∈h∗/Q

B
χ

μ̄, GB =
⊕

χ∈Z′
μ̄∈h∗/Q

GB
χ

μ.

In a similar way we define C and GC and obtain their block decompositions.

Finally, we set GB
λ

μ̄ := GB
χλ
μ̄ , B

λ

μ̄ :=B
χλ
μ̄ , and so on.

3.6 Weight Modules of Lie Superalgebras

In this case g is a simple finite-dimensional Lie superalgebra, U = U(g). Let
h = h0̄ ⊕ h1̄ be a Cartan subalgebra of g, i.e., a self-normalizing nilpotent Lie
subsuperalgebra of g. In particular (see [36, 37]), h0̄ is a Cartan subalgebra of g0̄
and h1̄ is the generalized weight space of weight 0 of the h0̄-module g1̄. We fix a
Levi subalgebra hss

0̄
of h0̄ and set H = S(hss

0̄
). Note that in this case the vector

space h from Sect. 3.1 is hss
0̄

. If g is a classical Lie superalgebra, then hss
0̄
= h0̄.

For the four Cartan type series g, a list of the corresponding hss
0̄

can be found for
example in the appendix of [24]. Note that while the definitions of bounded and
generalized bounded modules can be easily transferred from the Lie algebra case
to the Lie superalgebra case (by replacing h with hss

0̄
), the definitions of cuspidal

and generalized cuspidal modules for Lie superalgbras require some additional
conditions (see §1.5 in [14]).

3.7 Weight Modules of Affine Lie Algebras

In this section U = U(G) and H = S(H) where G is an affine Lie algebra and H
is a Cartan subalgebra of G. For the reader’s convenience, we recall the construction
of affine Lie algebras and fix notation. For more detail, see [31].
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Let g be a simple finite-dimensional Lie algebra with a nondegenerate invariant
symmetric bilinear form ( , ). Denote by L (g) the loop algebra g⊗C[t, t−1]. The
affine Lie algebra A (g) = L (g)⊕ CD ⊕ CK has commutation relations

[x ⊗ tm, y ⊗ tn] = [x, y] ⊗ tm+n + δm,−nm (x, y)K, [D,x ⊗ tm] = mx ⊗ tm, [K,A (g)] = 0,

where x, y ∈ g, m,n ∈ Z, and δi,j is Kronecker’s delta. The form ( , ) extends
to a nondegenerate invariant symmetric bilinear form on A (g), still denoted by
( , ) : A (g)×A (g)→ C, via

(x ⊗ tm, y ⊗ tn) = δm,−n(x, y), (D,K) = 1,

(x ⊗ tm,D) = (x ⊗ tm,K) = (K,K) = (D,D) = 0.

If σ is a diagram automorphism of g of order s, then σ extends to an
automorphism of A (g), still denoted by σ , via

σ(x ⊗ tm) = ζmσ(x)tm, σ (D) = D, σ(K) = K,

where ζ is a fixed primitive sth root of unity. The twisted affine Lie algebra A (g, σ )
is the Lie algebra A (g)σ of σ -fixed points of A (g). Note that

A (g, σ ) = L (g, σ )⊕ CD ⊕ CK,

where L (g, σ ) = L (g)σ is the subalgebra of σ -fixed points of L (g). One has that

L (g, σ ) =
⊕

j∈Z
gj̄ ⊗ tj ,

where

g =
⊕

j̄∈Z/sZ
gj̄

is the decomposition of g into σ -eigenspaces. The restriction of ( , ) to A (g, σ ) is
a nondegenerate invariant symmetric bilinear form for which we will use the same
notation.

If h is a Cartan subalgebra of g, then h ⊕ CD ⊕ CK is a Cartan subalgebra
of A (g). Furthermore, σ preserves h and hσ ⊕ CD ⊕ CK is a Cartan subalgebra
of A (g, σ ). For the rest of the paper h denotes a fixed Cartan subalgebra of g, G
denotesA (g) or A (g, σ ), andH denotes the corresponding Cartan subalgebra of G.

The Lie algebra G admits a root decomposition

G = H⊕
(
⊕

α∈Δ
Gα

)
.
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To describe the root system Δ of G, let δ ∈ H∗ denote the element with

δ(D) = 1, δ(h) = δ(K) = 0 for every h ∈ h.

If G = A (g), denote the root system of g by Δ̊. If G = A (g, σ ), denote the
nonzero weights of the g0̄-module gj̄ by Δ̊j̄ and set Δ̊ = ∪j̄∈Z/sZΔ̊j̄ . Note that for

G = A (g, σ ) �∼= A(2)2l , Δ̊ = Δ̊0̄ is the root system of g0̄ and for G ∼= A(2)2l , Δ̊ is the
non–reduced root system BCl .

The decomposition H = h ⊕ CD ⊕ CK (respectively, H = hσ ⊕ CD ⊕ CK)
allows us to consider Δ̊ as a subset of H∗. The root system Δ decomposes as

Δ = Δre �Δim,

where

Δim = {nδ | n ∈ Z\{0}}

are the imaginary roots of G and the real rootsΔre are given as follows.

(i) If G = A (g), then

Δre = {α + nδ | n ∈ Z, α ∈ Δ̊}.

(ii) If G = A (g, σ ), then

Δre = {α + nδ | n ∈ Z, α ∈ Δ̊n̄}.

3.8 Parabolically Induced Module

In this subsection we have that U = U(g) or U = U(G), where g is a simple finite
dimensional Lie algebra or superalgebras, and G is an affine Lie algebra, i.e., we
have the setting of Sects. 3.5, 3.6, or 3.7. In this subsection, for simplicity, Δ will
denote the root system of g or G.

IfΔ is symmetric (i.e.,Δ = −Δ), then we call a proper subsetP ofΔ a parabolic
set in Δ if

Δ = P ∪ (−P) and α, β ∈ P with α + β ∈ Δ implies α + β ∈ P.

A detailed treatment of parabolic subsets of symmetric root systems can be found
in [12]. If Δ �= −Δ, then P � Δ will be called parabolic if P = P̃ ∩Δ for some
parabolic subset P̃ of Δ ∪ (−Δ).

For a symmetric root systems Δ and a parabolic subset of roots P of Δ, we call
L := P ∩ (−P) the Levi component of P , N+ := P\(−P) the nilradical of P , and
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P = L�N+ the Levi decomposition of P . IfΔ �= −Δ, then we choose a parabolic
subset P̃ ofΔ∩ (−Δ) such that P = P̃ ∩Δ, and define L̃ = P̃ ∩ (−P̃ ) and Ñ+ =
P̃ \(−P̃ ).We call L := L̃∩P a Levi component of P , N+ = Ñ+∩P a nilradical of
P , and P = L �N+ a Levi decomposition of P . We note that in the nonsymmetric
case the definition of a Levi component and nilradical of P essentially depends on
the choice of a parabolic subset P̃ ofΔ∩ (−Δ). We refer the reader to Remarks 1.7
and 3.3 in [28] for examples.

We will call a subalgebra p of g (respectively, P of G) parabolic if it is of the

form pP = h ⊕
(⊕

μ∈P gμ
)

(respectively, PP = H ⊕
(⊕

μ∈P Gμ
)

) for some

parabolic subset P of Δ. If L and N+ are Levi component and a nilradical of a

parabolic set P , respectively, then l = h⊕
(⊕

μ∈L gμ
)

and n = h⊕
(⊕

μ∈N+ gμ
)

are called a Levi subalgebra, and a nilradical of pP , respectively. Similarly, we
define a Levi subalgebra, and a nilradical of a parabolic subalgebra PP of G.

Let l and n be a Levi subalgebra and a nilradical of a parabolic subalgebra
p. Every l-module S can be considered as a p-module with the trivial action of
n. We define Mp(S) = U(g) ⊗U(p) S. Among the submodules of Mp(S) which
intersect trivially with 1 ⊗ S there is a unique maximal one Zp(S). Set Vp(S) =
Mp(S)/Zp(S). In this paper we will call a g-module parabolically induced if it
isomorphic to Vp(S) for some parabolic subalgebra p of g and some module S over
a Levi component l of p. We similarly define parabolically induced modules of G.
For properties of the version of the parabolic induction functor used in the paper the
reader is referred to [14].

4 Twisted Localization

4.1 Twisted Localization in General Setting

Retain the notation of Sect. 3.1. Namely, U is an associative unital algebra, and
H = S(h) is a commutative subalgebra of U = ⊕

μ∈QU
Uμ, in particular,

ad(h) is semisimple on U for every h ∈ h. Now let F = {fj | j ∈ J } be a
subset of commuting elements of U such that ad (f ), f ∈ F , are locally nilpotent
endomorphisms of U . In addition, we assume that for every u ∈ U , uf = fu, for
all but finitely many f ∈ F . Let 〈F 〉 be the multiplicative subset of U generated
by F , i.e., the 〈F 〉 consists of the elements f n1

1 . . .f
nk
k for fi ∈ F , ni ∈ N. By

DFU we denote the localization of U relative to 〈F 〉. Note that 〈F 〉 satisfies Ore’s
localizability condition due to the fact that fi are locally ad-nilpotent. The proof of
that and more details on the 〈F 〉-localization can be found in §4 of [32].

For a U -moduleM , by DFM = DFU ⊗U M we denote the localization ofM
relative to 〈F 〉. We will considerDFM both as a U -module and as aDFU -module.
By θF : M → DFM we denote the localization map defined by θF (m) = 1 ⊗ m.
Then

annMF := {m ∈ M | sm = 0 for some s ∈ F }
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is a submodule ofM (often called, the torsion submodule with respect to F ). Note
that if annMF = 0, then θF is an injection. In the latter case, we will say thatM is
F -torsion free, andM will be considered naturally as a submodule of DFM . Note
also that if F = F1 ∪ F2, then DF1DF2M $ DF2DF1M $ DFM .

It is well known that DF is a functor from the category of U -modules to the
category of DFU -modules. For any category A of U -modules, by AF we denote
the category of DFU -modules considered as U -modules are in A . Some useful
properties of the localization functorDF are listed in the following lemma.

Lemma 4.1. (i) If ϕ : M → N is a homomorphism of U -modules, then
DF (ϕ)θF = θF ϕ.

(ii) DF is an exact functor.
(iii) If N is a DFU -module and ϕ : M → N is a homomorphism of U -modules,

then there exists a unique homomorphism of DFU -modules ϕ : DFM → N

such that ϕθF = ϕ. If we identify N with DFN , then ϕ = DF (ϕ).
(iv) Let A be any category of U -modules. If I is an injective module in AF , then

I (considered as an U -module) is injective in A as well.

We now introduce the “generalized conjugation” in DFU following §4 of [32].
For x ∈ C

J define the automorphism Θx
F of DFU in the following way. For u ∈

DFU , f ∈ F , and x ∈ C set

Θx{f }(u) :=
∑

i≥0

(
x

i

)
ad(f )i(u) f−i ,

where
(
x
i

) := x(x − 1). . .(x − i + 1)/i! for x ∈ C and i ∈ Z≥0. Note that the sum
on the right-hand side is well defined since f is ad-nilpotent on U . Now, for J ⊂ I
and x = (xj )j∈J ∈ C

J define

Θx
F (u) :=

∏

j∈J
Θ
xj
{fj }(u).

The product above is in fact finite since ad(fj )(u) = 0 for all but finitely many
fj . Note that if J = {1, 2, . . ., k} and x ∈ Z

k , we have Θx
F (u) = fxuf−x, where

fx := f x1
1 . . .f

xk
k .

For aDFU -moduleN byΦx
FN we denote theDFU -moduleN twisted byΘx

F .
The action on Φx

FN is given by

u · vx := (Θx
F (u) · v)x,

where u ∈ DFU , v ∈ N , andwx stands for the elementw considered as an element
of Φx

FN . In the case J = {1, 2, . . ., k} and x ∈ Z
k , there is a natural isomorphism

of DFU -modulesM → Φx
FM given by m 
→ (fx · m)x with inverse map defined

by nx 
→ f−x · n. In view of this isomorphism, for x ∈ Z
k , we will identifyM with

Φx
FM , and for any x ∈ C

k we will write fx · m (or simply fxm) for m−x whenever
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m ∈ M . The action of Φx
F on a homomorphism α : M → N of DFU -modules is

defined by Φx
F (α)(f

x ·m) = fx · (α(m)).
The basic properties of the twisting functor Φx

F on DFU -mod are summarized
in the following lemma. The proofs are straightforward.

Lemma 4.2. Let F = {f1, . . ., fk} be a set of locally ad-nilpotent commuting
elements of U ,M and N be DFU -modules,m ∈ M , u ∈ U , and x, y ∈ C

k .

(i) Θx
F ◦Θy

F = Θx+y
F , in particular fx · (fy ·m) = fx+y ·m;

(ii) Φx
FΦ

y
F = Φ

x+y
F , in particular, Φx

FΦ
−x
F = Id on the category of DFU -

modules;
(iii) fx · (u · (f−x ·m)) = Θx

F (u) ·m;
(iv) Φx

F is an exact functor;
(v) M is simple (respectively, injective) if and only ifΦx

FM is simple (respectively,
injective);

(vi) HomU (M,N) = HomU (Φ
x
FM,Φ

x
FN).

For any U -moduleM , and x ∈ C
J we define the twisted localization Dx

FM of
M relative to F and x by Dx

FM := Φx
FDFM . The twisted localization is a exact

functor from U -mod to DFU -mod.
Some properties of the functor Dx

F on the category of generalized weight
(U ,H )-modules are described in the following lemma.

Lemma 4.3. Assume that fi ∈ U ai for ai ∈ QU .

(i) If M is a generalized weight (U ,H )-module, then DFM is a generalized
weight (DFU ,H )-module.

(ii) If N is a generalized weight (DFU ,H )-module, then fxm ∈ N(λ+xa)

whenever m ∈ N(λ), where xa = x1a1 + . . . + xkak. In particular, Φx
FN is

a generalized weight (DFU ,H )-module.

In what follows we will treat each of the special cases of U and H considered
in the previous section separately. We will show in particular that in all cases
every simple object of f(U ,H )-mod (equivalently, in wf(U ,H )-mod) is either
parabolically induced or it is isomorphic to a twisted localization of a well
understood module (for example, highest weight module, loop module, etc.).

4.2 Twisted Localization for D(n)

Consider now U = D(n) and H = C[t1∂1, . . ., tn∂n]. Obvious choices for F
are {ti}, {∂i}, {ti∂j }, i �= j . We set for convenience D+i = D{∂i }, D−i = D{ti},
D
x,−
i := Dx{ti }, Dx,+i = Dx{∂i }, and Dxi,j = Dx{ti ∂j } for x ∈ C and i �= j .
Let us first focus on the case n = 1, i.e., D = D(1). We fix t1 = t and ∂1 = ∂ .

For ν ∈ C we set

Fν = tνC[t, t−1]
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and consider Fν as a D-module with the natural action of D . It is easy to check that
Fν ∈ b(D,H )μ−mod and Fν is simple iff ν /∈ Z. By definition, Fν $ Fμ if and
only if μ − ν ∈ Z. So, if ν ∈ Z we may assume ν = 0. One easily checks that F0
has length 2 and one has the following nonsplit exact sequence

0 → F+
0 → F0 → F−

0 → 0,

where F+
0 = C[t] and F−

0 is a simple quotient. Moreover, if σ denotes the
automorphism of D defined by σ(t) = ∂, σ (∂) = −t , then F−

0 $ (F+
0 )
σ . As

follows for instance from [25], any simple object in (D,H )-mod is isomorphic
to Fν for some non-integer ν, F−

0 or F+
0 . A classification of all simple D(1)-

modules (not necessarily generalized weight ones) can be found in [5]. Also, an
alternative approach that leads to a classification of the simple weight modules of a
more general class of Weyl type algebras can be found in [16].

Now let D = D(n). To describe the simple and injective modules in the category
(D,H )-mod we use the fact that D(n) is the tensor product of n copies of D(1).
With this in mind, for ν ∈ C

n, we set Fν = Fν1⊗. . .⊗Fνn , F+ = F+
0 ⊗. . .⊗F+

0 ,

F
log
ν = F

log
ν1 ⊗. . .⊗F

log
νn , and F+

0 = C[t1, . . ., tn]. Ifμ has the property that μi ≥
0 whenever μi ∈ Z, by F+

μ we denote the submodule of Fμ generated by tμ. One
can check that F+

μ is the unique simple submodule of Fμ. For a nonempty subset
J of {1, 2, . . .., n} let σJ be the automorphism of D(n) defined as σ on the j -th
D(1)-component of D(n) for j ∈ J , and as identity for all other D(1)-components.
We set F log

ν (J ) = (F log
ν )

σJ and Fν(J ) = (Fν)σJ .
The application of the twisted localization functors Dx,±i on the modules

F
log
ν (J ) is described in the following lemma. Recall that εi ∈ C

n are defined by
(εi)j = δij .
Lemma 4.4. The following isomorphisms hold.

D
x,+
i (F

log
ν (J )) $ F

log
ν−xεi (J ∪ i), Dx,−i (F

log
ν (J )) $ F

log
ν+xεi (J \ i).

One can show that for ν = (ν1, . . . , νn) every simple module in (D,H )ν-
mod is the tensor product S1 ⊗ · · · ⊗ Sn where each Si is a simple module in
(D(1),H (1))νi -mod (see for example [25]).

Let Int(ν) be the set of all i such that νi ∈ Z and P(ν) be the power set of Int(ν).
For every J ∈P(ν) set

Sν(J ) := S1 ⊗ · · · ⊗ Sn,

where Si = Fνi if i /∈ Int(ν), Si = F+
0 if i ∈ Int(ν) \ J and Si = F−

0 if
i ∈ J . As discussed above, Sν(J ) are exactly the simple objects of (D,H )-mod.
On the other hand, as follows from Proposition 5.2 in [27], F log

ν (J ) is injective in
(D,H )-mod. Combining these results with the lemma above, one has the following
theorem.
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Theorem 4.5 Every simple object M in (D,H )-mod (or, equivalently, in
w(D,H )-mod, in f(D,H )-mod, and in wf(D,H )-mod) is isomorphic to some
Sν(J ) and the injective envelope of Sν(J ) in (D,H )-mod is isomorphic to
F

log
ν (J ). In particular, every such simple moduleM is isomorphic to the σJ -twist of

a twisted localized moduleDx
FF

+
0 , and the injective envelope ofM in (D,H )-mod

is isomorphic to the σJ -twist of Dx
FF

log
0 .

4.3 Twisted Localization for D(∞)

Recall that N stands for the set of positive integers. The D(∞)-analogs of the D(n)-
modules Fν can be defined with the aid of twisted localization. Indeed, for ν ∈ C

N

and T = {ti | i ∈ N}, set Fν = DνTF+
0 , where, as before, F+

0 = C[ti]i∈N. In
particular, one can show that F0 $ C[t±1

i ]i∈N. One way to think of Fν is as the
space with basis tνtz, where z = (z1, z2, . . .) runs through all sequences of integers,
such that all but finitely many zi are zero, and tz = ∏

i>0 t
zi
i . As in the case of

D(n), for any J ⊂ N, we may define an automorphism σJ of D(∞). The following
theorem is proved in [21].

Theorem 4.6 (i) For every ν ∈ C
N, the module Fν has a unique simple

submodule F+
ν . If ν is such that νi ≥ 0 whenever νi ∈ Z, then the module

F+
ν is the submodule of Fν generated by tν .

(ii) Every simple module in w(D(∞),H )-mod is isomorphic to the σJ -twist
(F+
ν )
σJ of some F+

ν . Here J is a subset of Int(ν) and ν can be chosen so
that νi ≥ 0 whenever νi ∈ Z.

(iii) The injective envelope of (F+
ν )
σJ in w(D(∞),H )-mod is (Fν)σJ .

Remark 4.7 The above theorem can be extended to the category (D(∞),H )-mod.
Namely, every simple object in (D(∞),H )-mod is also of the form (F+

ν )
σJ and

the injective envelope of (F+
ν )
σJ in (D(∞),H )-mod is isomorphic to (F log

ν )
σJ .

Here F
log
ν = DνTF log

0 , and F
log
0 = C[t±1

i , log ti ]i∈N. To prove that (F log
ν )

σJ is
injective in (D(∞),H )-mod, it is sufficient to prove it for J = ∅, and for the
latter we follow the steps of the proof of the same statement in (D(n),H )-mod
(see Proposition 5.2 in [27]).

4.4 Twisted Localization for Finite-Dimensional Lie Algebras

In this case we consider a simple finite-dimensional Lie algebra g with a fixed Cartan
subalgebra h, U = U(g) and H = S(h). The multiplicative sets will be always
of the form F = 〈eα | α ∈ Γ 〉, where Γ is a set of k commuting roots and eα is in
the α-root space of sl(n + 1). For x ∈ C

k , we write DΓ and Dx
Γ for DF and Dx

F ,
respectively. The following theorem is proved in [32].
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Proposition 4.8 Every simple module in wf(U ,H ) (equivalently, in f(U ,H )) is
either parabolically induced, or it is cuspidal. Every cuspidal module is isomorphic
toDx

Γ L for some simple highest weight bounded module L, a set Γ of n commuting
roots, and x ∈ C

n.

For the classification of the simple highest weight bounded modules we refer the
reader to Sects. 8 and 9 in [32]. Below we describe the injectives in the categories of
bounded and generalized bounded modules using equivalence of categories in each
of the two cases g = sl(n+ 1) and g = sp(2n).

4.4.1 The Case g = sl(n + 1)

In this case h∗ is identified with the subspace of Cn+1 spanned by the simple roots
ε1 − ε2, . . . , εn − εn+1. By γ we denote the projection C

n+1 → h∗ with one-
dimensional kernel C(ε1 + · · · + εn+1).

Consider the homomorphism ψA : U(sl(n + 1)) → D(n + 1) defined by
ψ(Eij ) = ti∂j , i �= j , where Eij is the elementary (ij)th matrix in sl(n + 1).
The image of ψA is contained in DE . Using lift by ψA any DE-module becomes
sl(n+1)-module. SinceψA(U(h)) ⊂H , one has a functorΨA : (DE,H )-mod →
GB. One can check that ΨA is exact and that we have the following commutative
diagram.

( , )−mod ( E, )a−mod

S ′

(ae1

ae1

)

S

s −mod s(
E, )a−mod

yA

yA
( )

g

g( , )

S ′

Ga

Ga

F

F

where Sh stands for the functor GBγ (aε1) → Bγ (aε1) mapping a module to its
submodule consisting of all h-eigenvectors.

Using translation functors (in terms of [4]), one can show that every block
GBμ and Bμ, of GB and B, respectively, is equivalent to GBγ (aε1) and Bγ (aε1),
respectively, for some a ∈ C. The case a /∈ Z corresponds to a nonintegral central
character, a = −1, . . .,−n to singular central character, and all remaining a to a
regular integral central character.

The following theorem is proved in [27].

Theorem 4.9 Assume that a /∈ Z or a = −1, . . .,−n. Then ΨA provides an
equivalence between b(DE,H )a-mod and GBγ (aε1) and between (DE,H )a-mod

and GB
γ (aε1).

Moreover, ΨA provides an equivalence between b
s (D

E,H )a-mod and Bγ (aε1),

as well as, between s(DE,H )a-mod and B
γ (aε1).
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An important part of the proof of the above proposition is the description of the
injectives and the application of the twisted localization functor. More precisely, we
have the following.

Proposition 4.10 Assume that a /∈ Z or a = −1, . . .,−n, and that ν ∈ C
n+1.

Every indecomposable injective in GB
γ (aε1)

γ (ν) (respectively, in B
γ (aε1)

γ (ν) ) is iso-

morphic to ΨA(Γa(F
log
ν (J ))) (respectively, to ΨA(Γa(SH ′(F log

ν (J ))))) for some
subset J of {1, 2, . . ., n+1}. In particular, if ν = 0 and J = ∅, the injective envelope

of ΨA(Γa(F
+
0 )) in GB

γ (aε1) is ΨA(Γa(F
log
0 )), while the injective envelope of

ΨA(Γa(F
+
0 )) in B

γ (aε1) is ΨA(Γa(SH ′(F log
0 ))).

It is not hard to see that

SH ′(Fν) = Fν, SH ′(F log
ν ) =Fν ⊗ C[u],

where u = log(t1t2 · · · tn+1).
One can easily show that the twisted localization functor commutes with the

functors Γa,Φ,ΨA, more precisely, that the following diagram is commutative.

ae1

ae1
yA

yAmod

Dx
i, j Dx

i, j

( E, )a - mod ( )
(
g
g

g
g

)

i− j

mod ( )a -

-

- mod ( )
( )

( , )

( , ) E,
Ga

F

Ga

F nnn

m mm

e eDx

where μ = ν + x(εi − εj ). With this and Lemma 4.2. (v) in mind, one can describe
the injectives B and GB (for singular and nonintegral central characters) as twisted
localization of the injectives in C and GC . Note that B and GB do not have
injectives for g = sl(n + 1), and this is the main reason one needs to introduce
the categories B and GB.

4.4.2 The Case g = sp(2n)

In contrast with g = sl(n + 1), for g = sp(2n), the category B does have enough
injectives. In fact one has (as proved in [25]) the following.

Theorem 4.11 The injective envelope of a simple object L in B is isomorphic to
Dx
FL for some set of n commuting long roots F and x ∈ C

n.

To describe the injectives in GB (note that GB does not have injectives) one
needs to use an equivalenceΨC of categories analogous to the functor ΨA described
above. To define ΨC , we use the presentation of every element X ∈ g as a block
matrix of the form
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[
A B

C −At
]

where A is an arbitrary n × n-matrix, and B and C are symmetric n × n-matrices.
Then the maps

B 
→
∑

i≤j
bij ti tj , C 
→

∑

i≤j
cij ∂i∂j

extend to a homomorphism of Lie algebras

g→ D(n)

which induces a homomorphism of associative algebras

ω : U (g)→ D(n).

The image of ω coincides with the D(n)ev := ⊕
|ν|∈2ZD(n)

ν (recall that |ν| =
ν1 + . . . + νn). For convenience in this subsubsection we set D = D(n) and
Dev = D(n)ev. With the aid of the homomorphism ω we obtain equivalence
of categories wb(Dev,H )-mod → Bχ and (Dev,H )-mod → GB

χ
, where

χ stands for any central character of a bounded g-module (translation functors
provided equivalence between all blocks Bχ ). By definition, the functor ΨC is
the one providing the second equivalence, i.e., (Dev,H )-mod → GB

χ
. The first

equivalence is established in §5 of [25]. For the second equivalence one needs to
prove the sp(2n)-analogs of Lemmas 8.8 and 8.9 in [27]. More precisely, one first
proves that ΨC is an equivalence on the cuspidal blocks by using the description of
the cuspidal blocks in the category GB provided by [35]. Then applying twisted
localization functors to the cuspidal injectives we obtain all injectives in GB. To
describe the injectives in (Dev,H )-mod we introduce the modules F ev

ν , F ev,+
ν ,

F
ev,log
ν , and F

ev,log
ν (J ) which are the even degree components of Fν , F+

ν ,

F
log
ν , and F

log
ν (J ), respectively. Let χ+ be the central character of the module

ΨC(F
ev,+
0 ).

Theorem 4.12 Every indecomposable injective object in GB
χ+

is isomorphic to
ΨC(F

ev,log
ν (J )) for some ν and a subset J of {1, 2, . . ., n}. In particular, the

injective envelope of ΨC(F
ev,+
0 ) in GB

χ+
is ΨC(F

ev,log
0 ).
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4.5 Twisted Localization for Finite-Dimensional
Lie Superalgebras

In this case we consider a simple finite-dimensional Lie superalgebra g, U = U(g)
and H = S(hss

0̄
). We consider multiplicative subsets consisting of root elements eα

in gα for even roots α.
The following theorem is proved in [23].

Proposition 4.13 Let g be a classical Lie superalgebra. Every simple module in
f(U ,H ) (equivalently, in wf(U ,H )) is isomorphic to Dx

Γ L for some simple
highest weight module L, a set Γ of n even commuting roots, and x ∈ C

n.

The parabolic induction theorem for any g (including the Cartan type series) is
proved in [14], where a classification of all cuspidal modules of g is provided for
all g except for g = osp(m|2n), m = 1, 3, 4, 5, 6, g = psq(n), g = D(α), and
the Cartan type series. The simple cuspidal modules of psq(n) are classified in [22],
while those of g = D(α), are classified in [29]. The classification of the simple
cuspidal modules for g = osp(m|2n), m = 1, 3, 4, 5, 6, and for the Cartan type
series remains an open question.

4.6 Twisted Localization for Affine Lie Algebras

In this case, we consider commuting subsets of real roots Γ ⊂ Δre and the
multiplicative subsets of U(G) are F = {eα | α ∈ Γ }, where eα ∈ gα. As in the Lie
algebra case we will writeDΓ forDF . An important part of the classification of the
simple objects of wf(U ,H ) achieved in [13] is the constructions of loop modules
and their relations with twisted localization.

We recall the definition and some properties of loop modules. For more detail,
see [8–10]. Let G = A (g), let Y1, . . . , Yk be weight g-modules, and let a1, . . . , ak
be nonzero scalars. Following [9], we define the loop moduleLa1,...,ak (Y1⊗. . .⊗Yk)
in the following way: the underlining vector space of La1,...,ak (Y1 ⊗ . . .⊗ Yk) is

(Y1 ⊗ . . .⊗ Yk)⊗ C[t, t−1],

X ⊗ tn ∈ A (g) acts as

(X ⊗ tn) · ((v1 ⊗ . . .⊗ vk)⊗ ts ) =
k∑

i=1

ani (v1 ⊗ . . .⊗X · vi ⊗ . . .⊗ vk)⊗ tn+s ,

D acts as t d
dt

, and K acts trivially. If the scalars a1, . . . , ak are distinct, then
La1,...,ak (Y1 ⊗ . . . ⊗ Yk) is completely reducible with finitely many simple com-
ponents. Furthermore, the simple components of La1,...,ak (Y1 ⊗ . . . ⊗ Yk) are
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isomorphic simple L (g)-modules. Denote by Va1,...,ak (Y1 ⊗ . . . ⊗ Yk) the simple
L (g)-module which is a component of La1,...,ak (Y1 ⊗ . . . ⊗ Yk). Considered as
A (g)-modules, the constituents of La1,...,ak (Y1 ⊗ . . .⊗ Yk) differ only by a shift of
the action of D. By a slight abuse of notation we denote by Va1,...,ak (Y1 ⊗ . . .⊗ Yk)
any shift of a simple A (g)–component of La1,...,ak (Y1 ⊗ . . . ⊗ Yk). A relation
between loop modules and twisted localization is provided in the following result
in [13].

Proposition 4.14 Let G = L (g) be an untwisted affine Lie algebra, let α ∈ Δ̊,
and let La0,...,ak (S⊗F1⊗ . . .⊗Fk) be the loop G-module for which ai ∈ C, Fi are
simple finite-dimensional g-modules, and S is a simple eα-torsion free g-module.
Then La0,...,ak (S ⊗ F1 ⊗ . . .⊗ Fk) is eα+rδ-torsion free and

Dα+rδLa0,...,ak (S ⊗ F1 ⊗ . . .⊗ Fk) $ La0,...,ak (DαS ⊗ F1 ⊗ . . .⊗ Fk)

for every integer r .

If G = A (g, σ ), then La1,...,ak (Y1 ⊗ . . . ⊗ Yk) admits an endomorphism
compatible with σ if and only if the modules Y1, . . . , Yk come in r-tuples of
isomorphic modules and for each r-tuple the corresponding scalars a1, . . . , ar
are multiples (with the same scalar) of the rth roots of unity. We denote the
corresponding endomorphism of La1,...,ak (Y1 ⊗ . . . ⊗ Yk) by σ again and let
L σ
a1,...,ak

(Y1 ⊗ . . . ⊗ Yk) denote the fixed points of σ . Similarly, we can define
V σa1,...,ak

(Y1 ⊗ . . .⊗ Yk).
The following is the main theorem in [13].

Theorem 4.15 Every simple module M of G in f(U ,H ) (equivalently, in
wf(U ,H )) either is parabolically induced or is isomorphic (up to a shift) to

Va0,a1,...,ak (N ⊗ F1 ⊗ . . .⊗ Fk),

where a0, . . . , ak are distinct nonzero scalars, N is a cuspidal g-module, and
F1, . . . , Fk are finite-dimensional g-modules. In the latter case G ∼= A

(1)
l or

G ∼= C(1)l . In particular,M is isomorphic toDx
FVa0,a1,...,ak (L⊗F1⊗ . . .⊗Fk), for

some bounded highest weight g-moduleL, commuting set of � roots F , and x ∈ C
�.

The study of the category of bounded modules of G, and in particular, describing
the injectives in that category, is a largely open question.
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Abstract We generalize certain classical results on branching rules such as the
Littlewood restriction formulae. Our formulae are expressed in terms of a linear
integral combination of the Littlewood–Richardson coefficients and in terms of
Dirac cohomology.
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1 Introduction

LetG and H be complex algebraic groups with an embeddingH ↪→ G. Let V and
W be completely reducible representations of G and H respectively. We let

[V,W ] = dim HomH(W,V ),

where V is regarded as a representation of H by restriction. A description of this
number [V,W ] as the multiplicity ofW in the restriction of V to H is referred to as
a branching rule.

The Littlewood–Richardson rule which describes the decomposition of
tensor product of two irreducible representations of the general linear group
is exactly the branching rule with H = GLn(C) diagonally embedded into

The research in this paper is supported by grants from Research Grant Council of HKSAR and the
National Science Foundation of China.

J.-S. Huang (�)
Department of Mathematics, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong SAR, China
e-mail: mahuang@ust.hk

© Springer International Publishing Switzerland 2014
G. Mason et al. (eds.), Developments and Retrospectives in Lie Theory:
Algebraic Methods, Developments in Mathematics 38,
DOI 10.1007/978-3-319-09804-3__10

207

mailto:mahuang@ust.hk


208 J.-S. Huang

G = GLn(C)×GLn(C). The multiplicity of an irreducible representation ν in
the tensor product of two other irreducible representations λ and μ is denoted
cνλ,μ [Kn]. The numbers cνλ,μ are called Littlewood–Richardson coefficients. The
Littlewood–Richardson rule plays an important role in representation theory and it
has been a topic of intense study in the theory of combinatorics with connection to
many other branches of mathematics. For a new proof the Littlewood–Richardson
rule and the reference to some of related work, we refer to the recent article by
Howe and Lee [HL].

Let G be a classical reductive algebraic group over C: G = GLn(C) = GLn,
the general linear group, or G = On(C) = On, the orthogonal group or G =
SOn(C) = SOn, the connected component of On; or G = Sp2n(C) = Sp2n the
symplectic group. There are a total of four kinds of simple classical symmetric pairs.
We list them here:

(1) Diagonal:GLn ⊂ GLn ×GLn,On ⊂ On ×On, Spn ⊂ Spn × Spn;
(2) Direct sum:GLn×GLm ⊂ GLn+m,On×Om ⊂ On+m, Spn×Spm ⊂ Spn+m;
(3) Polarization:GLn ⊂ SO2n and GLn ⊂ Sp2n;
(4) Bilinear form:On ⊂ GLn and Sp2n ⊂ GL2n.

In 1940s, D. E. Littlewood [L1, L2] gave a formula for the decomposition of
some representations of GLn restricted to On, and GL2n restricted to Sp2n. Those
branching rules are in terms of Littlewood–Richardson coefficients and for the
classical symmetric pairs associated to the bilinear form

On ⊂ GLn and Sp2n ⊂ GL2n.

They are well known as the Littlewood Restriction Formulae. Inspired by the work
of Enright and Willenbring [EW], we obtained a generalization of the Littlewood
Restriction Formulae which are expressed in terms of the Littlewood–Richardson
coefficients and Dirac cohomology [HPZ].

The Dirac cohomology is a new tool in representation theory. It appears
to be a basic invariant of irreducible unitary representations and more general
admissible representations. The main result of [HP1], conjectured by Vogan [V],
says that the standard parameters of the infinitesimal character of a Harish-Chandra
module X and the infinitesimal character of its Dirac cohomology HD(X) are
conjugated. The Dirac cohomology HD(X) has been completely determined for
finite-dimensional g-modules and unitary irreducibleAq(λ)-modules [HKP], which
includes all discrete series and tempered representations. Another important family
of irreducible unitary representations is the unitary highest weight modules. The
results of [HPR] ensure that their Dirac cohomology is equal to the p+ cohomology
(up to a 1-dimensional character), which had been determined in [E]. Still, it remains
to be an interesting open problem to find all irreducible unitary representations with
nonzero Dirac cohomology and to determine their Dirac cohomology.

Kostant extended Vogan’s conjecture to the setting of the cubic Dirac operator
and proved a nonvanishing result on Dirac cohomology for highest weight modules
in the most general setting [K2]. He also determined the Dirac cohomology of



Dirac Cohomology and Generalization of Classical Branching Rules 209

finite-dimensional modules in the equal rank case. The Dirac cohomology for all
irreducible highest weight modules was determined in [HX] in terms of coefficients
of Kazhdan–Lusztig polynomials.

The purpose of this paper is to describe the branching rules for the symmetric
pairs of classical algebraic groups associated to the polarization

GLn ⊂ SO2n and GLn ⊂ Sp2n.

Our branching rules cover not only finite-dimensional representations, but also
infinite-dimensional lowest (or highest) weight modules. We also recall the general-
ized Littlewood Restriction Formulae that were obtained in [HPZ]. These formulae
describe the branching rules for finite-dimensional representations ofGLn restricted
to On and GL2n to Sp2n. We note that the formulae obtained in [HPZ] are inspired
by the work of [EW] in terms of nilpotent Lie algebra cohomology.

We also note that the stable branching rules for all classical symmetric pairs were
studied by Howe, Tan and Willenbring [HTW]. Their formulae are also in terms of
the Littlewood–Richardson coefficients, but are involved with combining products
of Littlewood–Richardson coefficients. In all of our branching formula there is only
a linear integral combination of Littlewood–Richardson coefficients.

The paper is organized as follows. In Sect. 2 we define the holomorphic
representations for simple Lie groups of Hermitian symmetric type and recall the
definition of the related category Oq. In Sect. 3 we recall the definition and basic
properties of the Dirac cohomology. In Sect. 4 we prove a K-character formula
for the holomorphic representations. In Sect. 5 we prove the branching rules for
GLn ↪→ SO2n and GLn ↪→ Sp2n. In Sect. 6 we prove the branching rules for
On ↪→ GLn and Sp2n ↪→ GL2n.

2 Hermitian Symmetric Pairs and Holomorphic
Representations

We write U(n), SO(n) and Sp(2n) for the compact real forms of GLn, SOn
and Sp2n respectively. The two compact symmetric spaces SO(2n)/U(n) and
Sp(2n)/U(n) associated to polarization are Hermitian symmetric. Since some
of our branching rules are naturally extended to the infinite-dimensional repre-
sentations, we will include the consideration of the Hermitian symmetric spaces
SO∗(2n)/U(n) and Sp(2n,R)/U(n) of noncompact type. The branching laws can
be regarded the description of the multiplicities of K-types of (g,K)-modules for
the noncompact simple Lie groups of Hermitian type.

Therefore in this section we assume that G is a simple noncompact Lie
group with a maximal compact subgroup such that the pair (G,K) is Hermi-
tian symmetric. This assumption is equivalent to the condition that K has a
one-dimensional center. We denote by g0, k0 the Lie algebras of G and K , and by
g, k their complexifications. The k-module g decomposes as g = k⊕p = k⊕p+⊕p−.
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An irreducible unitary representation π on a Hilbert space is said to be holo-
morphic if it has nonzero vectors that are annihilated by p−. We will work with the
space Xπ of K-finite vectors of the unitary representation (π,H). The space Xπ is
called the Harish-Chandra module of the representation π . All of our considerations
can be extended to the more general admissible (g,K)-modules. An irreducible
(g,K)-module X is holomorphic if it has nonzero vectors that are annihilated by
p−. Equivalently, an irreducible holomorphic (g,K)-module is defined to be an
irreducible (g,K)-module that is also a lowest weight module.

Fix a Cartan subalgebra h of k. Then h is also a Cartan subalgebra of g. The roots
	 = 	(g, h) decompose as 	 = 	c ∪ 	n, where 	c = 	(k, h) (the compact
roots), and 	n consists of the h-weights of p (the noncompact roots). We fix a
positive root system 	+c for k. Let 	+n be the set of roots corresponding to p+.
Then	+ = 	+c ∪	+n is a positive root system for g. Let ρ (resp. ρc, ρn) equal one
half the sum of the roots in 	+ (resp. 	+c , 	+n ).

Let Fμ denote the irreducible finite-dimensional representation of k with highest
weight μ. One can consider Fμ as a module for the Lie algebra k⊕ p−, by letting
p− act by zero. The module

N(μ) = U(g)⊗U(k⊕p−) Fμ

is called a (lowest weight) generalized Verma module. This module has a unique
irreducible quotient denoted by L(μ). Conversely, any irreducible (g, k)-module
which is also a lowest weight g-module must be L(μ) for some μ. Note that
the lowest weight of N(μ) and L(μ) is the k-lowest weight of Fμ, which we
denote by μ−. Thus the infinitesimal character of N(μ) and L(μ) is μ− − ρ,
up to conjugacy by the Weyl group W = Wg of g. The problem of classifying
unitary highest (or lowest) weight modules was solved by Enright, Howe and
Wallach [EHW].

Note that q = k + p+ is a parabolic subalgebra of g. Let τ be the Chevalley
automorphism of g. This is the automorphism of g induced by multiplying −1 on
the Cartan subalgebra. It takes positive roots to their negatives and the corresponding
positive root vectors to negative root vectors. Under the action of τ , the holomorphic
or the lowest weight (g,K)-modules become antiholomorphic or highest weight
(g,K)-modules. This family of g-modules fall into the category Oq associated with
a parabolic subalgebra q = k+ p+.

In the remaining part of this section we recall the definition and some of the basic
properties of the category Oq associated with an arbitrary parabolic subalgebra q
of g [BGG]. As a matter of fact, we only need the relevant concepts and results
in the next section for the special case when the parabolic subalgebra q is equal to
k+ p+. But the general case is as easy as (or as hard as) the special case.

Let g be a complex semisimple Lie algebra. Let h be a Cartan subalgebra of g.
Denote by ⊆ h∗ the root system of (g, h). For α ∈ , let gα be the root subspace
of g corresponding to α. We fix a choice of the set of positive roots + and let 	
be the corresponding subset of simple roots in +. Note that each subset I ⊂ 	
generates a root system I ⊂ , with positive roots+I = I ∩+.
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The parabolic subalgebras of g up to conjugation are in one-to-one correspon-
dence with the subsets in 	. We let

lI = h⊕
∑

α∈I
gα

be the Levi subalgebra and let

uI =
∑

α∈+\+I
gα, ūI =

∑

α∈+\+I
g−α

be the nilpotent radical and its dual space with respect to the Killing form B. Then
qI = lI ⊕ uI is the standard parabolic subalgebra associated with I . We set

ρ = ρ(g) = 1

2

∑

α∈+
α, ρ(lI ) = 1

2

∑

α∈+I
α, and ρ(uI ) = 1

2

∑

α∈+\+I
α.

Then we have ρ(ūI ) = −ρ(uI ). We note that once I is fixed there is little use for
other subsets of 	. We will omit the subscript if a subalgebra is clearly associated
with I .

Definition 2.1. The category Oq is defined to be the full subcategory of U(g)-
modulesM that satisfy the following conditions:

(i) M is a finitely generated U(g)-module;
(ii) M is a direct sum of finite-dimensional simple U(l)-modules;

(iii) M is locally finite as a U(q)-module.

We adopt notations in [Hum]. Let-+I be the set of+I -dominant integral weights
in h∗, namely,

-+I := {λ ∈ h∗ | 〈λ, α∨〉 ∈ Z
≥0 for all α ∈ +I }.

Here 〈, 〉 is the bilinear form on h∗ (induced from the Killing form B) and α∨ =
2α/〈α, α〉.

Let F(λ) be the finite-dimensional simple l-module with highest weight λ. Then
λ ∈ -+I . We consider F(λ) as a q-module by letting u act trivially on it. Then the
parabolic Verma module with highest weight λ is the induced module

MI(λ) = U(g)⊗U(q) F (λ).

The module MI(λ) is a quotient of the ordinary Verma module M(λ). Using
Theorem 1.2 in [Hum], we can write unambiguously L(λ) for the unique simple
quotient ofMI(λ) and M(λ). Furthermore, since every nonzero module in Oq has
at least one nonzero vector of maximal weight, Proposition 9.3 in [Hum] implies
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that every simple module in Oq is isomorphic to L(λ) for some λ ∈ -+I and is
therefore determined uniquely up to isomorphism by its highest weight.

Let Z(g) be the center of U(g). Recall that MI (λ) and all its subquotients
including L(λ) have the same infinitesimal character χλ. Here χλ is an algebra
homomorphism Z(g) → C such that z · v = χλ(z)v for all z ∈ Z(g) and all
v ∈ M(λ).

It follows from Corollary 1.2 in [Hum] that every nonzero moduleM ∈ Oq has
a finite filtration with nonzero quotients each of which is a highest weight module
in Oq. Then the action of Z(g) onM is finite. We set

Mχ := {v ∈ M | (z− χ(z))nv = 0 for some n > 0 depending on z}.

Then z − χ(z) acts locally nilpotently on Mχ for all z ∈ Z(g) andMχ is a U(g)-
submodule of M . Let Oq

χ denote the full subcategory of Oq whose objects are the
modules M for which M = Mχ . By the above discussion we have the following
direct sum decomposition:

Oq =
⊕

χ

Oq
χ ,

where χ is of the form χ = χλ for some λ ∈ h∗.
Let W be the Weyl group associated to the root system . We define the dot

action of W on h∗ by w · λ = w(λ + ρ) − ρ for λ ∈ h∗. Then χλ = χμ if and
only if λ ∈ W ·μ by the Harish-Chandra isomorphismZ(g)→ S(h)W . An element
λ ∈ h∗ is called regular if the isotropy group of λ in W is trivial. In other words,
λ is regular if 〈λ + ρ, α∨〉 �= 0 for all α ∈ . A nonregular element in h∗ will be
called singular.

Denote by � the set of all Z≥0-linear combinations of simple roots in 	. Let X
be the additive group of functions f : h∗ → Z whose support lies in a finite union
of sets of the form λ− � for λ ∈ h∗. Define the convolution product on X by

(f ∗ g)(λ) :=
∑

μ+ν=λ
f (μ)g(ν).

We regard e(λ) as a function in X which takes value 1 at λ and value 0 at μ �= λ.
Then e(λ) ∗ e(μ) = e(λ + μ). It is clear that X is a commutative ring under
convolution, with e(0) as its multiplicative identity. Let

Mλ := {v ∈ M | h · v = λ(h)v for all h ∈ h}.
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We say that a weight module (semisimple h-module)M has a character if

(2.2) chM :=
∑

λ∈h∗
dimMλ e(λ)

is contained in X . In this case chM is called the formal character ofM . Notice that
all the modules in Oq have characters, as do all the finite-dimensional semisimple
h-modules. In particular, if M has a character and dimL < ∞, then M ⊗ L has a
character

ch(M ⊗ L) = chM ∗ chL.

In addition, for semisimple h-modules which have characters, their direct sums,
submodules and quotients also have characters.

3 Dirac Cohomology of Holomorphic (g,K)-Modules

In this section we first recall the definition of Kostant’s cubic Dirac and the basic
properties of Dirac cohomology. Then we focus on the case of the Hermitian
symmetric pairs and the holomorphic representations.

Let r ⊂ g be any reductive Lie subalgebra of the semisimple Lie algebra g. Let
B denote the Killing form of g. We assume that the restriction B|r of B to r is
nondegenerate. Let g = r ⊕ s be the orthogonal decomposition with respect to B.
Then the restriction B|s is also nondegenerate. Denote by C(s) the Clifford algebra
of s with

uu′ + u′u = −2B(u, u′)

for all u, u′ ∈ s. The above choice of sign is the same as in [HP1], but it is different
from [K1] or [HPR]. We note that the two conventions have no essential difference
since the two bilinear forms are equivalent over C. Now fix an orthonormal basis
Z1, . . . , Zm of s. Kostant [K1] defines the cubic Dirac operatorD by

D =
m∑

i=1

Zi ⊗ Zi + 1⊗ v ∈ U(g)⊗ C(s).

Here v ∈ C(s) is the image of the fundamental 3-formw ∈ ∧3
(s∗),

w(X, Y,Z) = 1

2
B(X, [Y,Z]),
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under the Chevalley map
∧
(s∗) → C(s) and the identification of s∗ with s by the

Killing form B. Explicitly,

v = 1

2

∑

1≤i<j<k≤m
B([Zi,Zj ], Zk)ZiZjZk.

The cubic Dirac operator has a good square similar to the case of symmetric
pairs [P]. To explain this, we start with a Lie algebra map

α : r→ C(s)

which is defined by the adjoint map ad : r→ so(s) composed with the embedding
of so(s) into C(s) using the identification so(s) $ ∧2 s. The explicit formula for
α is

(3.1) α(X) = 1

2

∑

i<j

B(X, [Zi,Zj ])ZiZj , X ∈ r.

Using α we can embed the Lie algebra r diagonally into U(g)⊗ C(s) by

X→ X	 = X ⊗ 1+ 1⊗ α(X).

This embedding extends to U(r). We denote the image of r by r	, and then the
image of U(r) is the enveloping algebra U(r	) of r	. Let 0g (resp. 0r) be the
Casimir elements for g (resp. r). The image of 0r under	 is denoted by 0r	 .

Let hr be a Cartan subalgebra of r which is contained in h. It follows from
Kostant [K1, Theorem 2.16] that

(3.2) D2 −0g ⊗ 1+0r	 = (‖ρ‖2 − ‖ρr‖2)1⊗ 1,

where ρr denote the half sum of positive roots for (r, hr).

Definition 3.3. Let S be a spin module of C(s). Consider the action ofD on V ⊗S

(3.4) D : V ⊗ S → V ⊗ S

with g acting on V and C(s) on S. The Dirac cohomology of V is defined to be the
r-module

HD(V ) := KerD/KerD ∩ ImD.

We denote by Wr the Weyl group associated to the root system (r, hr). The
following theorem due to Kostant is an extension of Vogan’s conjecture on the
symmetric pair case which is proved in [HP1]. (See [K2] Theorems 4.1 and 4.2
or [HP2] Theorem 4.1.4).
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Theorem 3.5. There is an algebra homomorphism ζ : Z(g) → Z(r) ∼= Z(r	)
such that for any z ∈ Z(g) one has

z⊗ 1− ζ(z) = Da + aD for some a ∈ U(g)⊗ C(s).

Moreover, ζ is determined by the following commutative diagram:

Z( )
ζ−−−−→ Z( )

η

⏐
⏐
� η

⏐
⏐
�

S( )W
Res−−−−→ S( )W .

Here the vertical maps η and ηr are Harish-Chandra isomorphisms.

We will focus on the case when r = l and s = u+ ū. Applying the above theorem
we have the following theorem on generalized infinitesimal characters, which is a
generalization of Vogan’s conjecture on infinitesimal characters [HP1].

Theorem 3.6. ([DH], Theorem 4.3) Let V be a g-module with a generalizedZ(g)
infinitesimal character χμ. Suppose that an l-module N with a generalized Z(l)
infinitesimal character χ l

λ is contained in the Dirac cohomologyHD(V ). Then λ+
ρl = w(μ+ ρ) for some w ∈ W .

Remark 3.7. We note that the spin action α(l) on S makes it a finite-dimensional
l-module. If V ∈ Oq, then V ⊗ S is a direct sum of finite-dimensional simple l-
modules. Hence any submodule, quotient or subquotient of V ⊗ S is also a direct
sum of finite-dimensional simple l-modules.

As a consequence we have the following proposition (See also [DH]
Theorem 4.3).

Proposition 3.8. Suppose that V is in Oq
χμ . Then the Dirac cohomology HD(V )

is a completely reducible finite-dimensional l-module. Moreover, if the finite-dimen-
sional l-module F(λ) is contained in HD(V ), then λ + ρl = w(μ + ρ) for some
w ∈ W .

WhenG is simple and Hermitian symmetric with the maximal compact subgroup
K , the k-module g decomposes as g = k ⊕ p = k ⊕ p+ ⊕ p−. In this case the
fundamental 3-form ω = 0 and therefore the corresponding cubic term vanishes in
Kostant’s Dirac operator. We can choose the basis bi of p in the following special
way. Let 	+n = {β1, . . . , βm}. For each βi we choose a root vector ei ∈ p+.
Let fi ∈ p− be the root vector for the root −βi such that B(ei, fi) = 1. Then
for the basis bi of p we choose e1, . . . , em; f1, . . . , fm. The dual basis is then
f1, . . . , fm; e1, . . . , em. Thus the Dirac operator is

D =
m∑

i=1

ei ⊗ fi + fi ⊗ ei .
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We also note that in the Hermitian case p is even-dimensional, there is a unique
irreducible C(p)-module, the spin module S, which we choose to construct as S =∧

p+. It is also a module for the double K̃ of K . Since p+ ∼= (p−)∗, we have

(3.9) X ⊗ S ∼= X ⊗∧p+ ∼= Hom(
∧
p−,X)

as vector spaces. Note that the underlying vector space
∧
p+ of the spin module

S carries the adjoint action of k, but the relevant k-action on S is the spin action
defined using the map (3.1). The spin action is equal to the adjoint action shifted by
the character −ρn of k (see [K1, Proposition 3.6]). So as a k-module, X ⊗ S differs
fromX⊗∧p+ and Hom(

∧
p−,X) by a twist of the 1-dimensional k-module C−ρn .

Let C = ∑m
i=1 fi ⊗ ei and C− = ∑m

i=1 ei ⊗ fi ; so D = C + C−. Then,
under the identifications (3.9), C acts on X ⊗ S as the p−-cohomology differential,
whileC− acts by 2 times the p+-homology differential (see [HP2, Proposition 9.1.6]
or [HPR]). Furthermore, C and C− are adjoints of each other with respect to the
Hermitian inner product on X ⊗ S mentioned above (see [HP2, Lemma 9.3.1]
or [HPR]). It was proved that Dirac cohomology is isomorphic to nilpotent Lie
algebra cohomology up to a one-dimensional character by using a version of Hodge
decomposition.

Theorem 3.10. [[HPR], Theorem 7.11] Let X be a unitary (g,K)-module. Then

HD(X) ∼= H ∗(p−,X) ⊗ C−ρn ∼= H∗(p+,X)⊗ C−ρn

as k-modules.

Note that we may use
∧

p− instead of
∧

p+ to construct the spin module S.
Then we have

(3.11) HD(X) ∼= H ∗(p+,X)⊗ Cρn
∼= H∗(p−,X) ⊗ Cρn.

Namely, the Dirac operator is independent of the choice of positive roots. Thus, we
also have

H ∗(p+,X)⊗Cρn
∼= H ∗(p−,X)⊗C−ρn;H∗(p+,X)⊗C−ρn ∼= H∗(p−,X)⊗Cρn .

It also follows that we know the Dirac cohomology of all irreducible unitary highest
weight modules explicitly from Enright’s calculation of p+-cohomology [E].

Now we discuss the action of an automorphism on Dirac cohomology. Let τ be
an automorphism of G preserving K . Then τ

∣∣
K

is an automorphism of K . Also, τ
induces automorphisms of g0 and g, denoted again by τ , and τ preserves the Cartan
decomposition g = k⊕ p. Finally, τ

∣∣
p

extends to an automorphism of the Clifford
algebra C(p), denoted again by τ .

For any (g,K)-module (π,X), if we setXτ = X, then (π ◦τ,Xτ ) is also (g,K)-
module. Similarly, for any K-module (ϕ, V ), if we set V τ = V , then (ϕ ◦ τ, V τ ) is
also aK-module. The same is true if we replaceK by K̃. The following property of
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Dirac cohomology was proved for any unitary (g,K)-module in [HPZ] (Prop. 5.1
of [HPZ]). The proof is extended easily to any (g,K)-modules.

Proposition 3.12. Let (π,X) be a (g,K)-module. Then

HD(X
τ ) ∼= (HD(X))τ .

Proof. Denote by c : C(p) → End S the map given by the action of C(p) on the
spin module S. Setting Sτ = S we see that c ◦ τ : C(p) → End Sτ makes Sτ

into a C(p)-module. This module has to be isomorphic to S, since it is of the same
dimension as S, and any C(p)-module is isomorphic to a multiple of S.

Now to define HD(Xτ ), we can use (c ◦ τ, Sτ ) instead of (c, S). Then the action
of the Dirac operator on Xτ ⊗ Sτ is given by

Dτ =
∑

i

π(τ (Zi))⊗ c(τ (Zi)).

Here {Zi} is an orthonormal basis of p. Since τ (Zi) is another orthonormal basis
of p, and since D does not depend on the choice of the orthonormal basis Zi , we
see that

Dτ =
∑

i

π(Zi)⊗ c(Zi) = D.

This implies that HD(Xτ ) = HD(X) = KerD/KerD ∩ ImD as vector spaces.
It remains to see that the k-action on HD(Xτ ) is the same as the τ -twist of the k-
action onHD(Xτ ). These actions are induced by the diagonal k-actions onXτ ⊗Sτ ,
respectivelyX ⊗ S. So it is enough to show that

(π ◦ τ ⊗ c ◦ τ ) ◦ (id⊗1+ 1⊗ α) = (π ⊗ c) ◦ (id⊗1+ 1⊗ α) ◦ τ,

where α : k → U(g) ⊗ C(p) is the map defined in (3.1). This is obvious from the
formula (3.1). ��

The above proposition enables us to obtain the Dirac cohomology of lowest
weight modules from that of highest weight modules. Let X be an irreducible
holomorphic (g,K)-module. If τ is the Chevalley automorphism, then V = Xτ is
in Oq as we saw in Sect. 2. Then the Casimir element0g acts semisimply on V . We
have shown thatHD(V ) is isomorphic to the nilpotent Lie algebra cohomology up to
a character in [HX]. We recall here the main steps of the proof of this isomorphism
([HX] Theorem 5.12). The nilpotent Lie algebra homology is Z2-graded as follows:

H+(u, V ) =
⊕

i=0

H2i(u, V ) and H−(u, V ) =
⊕

i=0

H2i+1(u, V ).
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Then there are injective l-module homomorphisms ([HX] Proposition 4.8):

H±D (V )→ H±(u, V )⊗ Cρ(ū).

Note that we also have ([HX] Proposition 5.2),

chH+D (V )− chH−D (V ) = (chH+(u, V )− chH−(u, V )) ∗ chCρ(ū).

The key lemma in [HX] (Lemma 5.11) states that H+(u, V ) and H−(u, V ) have no
common l-submodules, namely,

Homl(H+(u, V ),H−(u, V )) = 0.

It follows that H±D (V )→ H±(u, V )⊗ Cρ(ū) are isomorphisms.
For a Harish-Chandra module V , we have similar injective homomorphisms of

H±D (V ) into H±(p+, V ) ⊗ C−ρ(p+). We conjecture that these injective homomor-
phisms are actually isomorphisms for any simple Harish-Chandra module V .

It is shown in [HX] that determining HD(L(λ)) is equivalent to determining
chL(λ) in term of chMI(μ), which is solved by the Kazhdan–Lusztig algorithm.
Namely, if

chL(λ) =
∑
(−1)ε(λ,μ)m(λ,μ) chMI(μ),

then we have

HD(L(λ)) =
⊕

m(λ,μ)F (μ)⊗Cρ(u).

By using the known results on Kazhdan–Lusztig polynomials we can calculate
explicitly the Dirac cohomology of all irreducible highest weight modules (and
lowest weight modules).

In case L(λ) is a finite-dimensional representation Vλ with highest weight λ ∈
h∗, Kostant [K2] calculated the Dirac cohomology of Vλ with respect to any equal
rank quadratic subalgebra r of g. Suppose that h ⊂ r ⊂ g is the Cartan subalgebra
for both r and g. DefineW(g, h)1 to be the subset of the Weyl groupW(g, h) by

W(g, h)1 = {w ∈ W(g, h) |w(ρ) is 	+(r, h) − dominant}.

This is the same as the subset of element w ∈ W(g, h) that maps the positive Weyl
g-chamber into the positive r-chamber. There is a bijectionW(r, h) ×W(g, h)1 →
W(g, h) given by (w, τ) 
→ wτ . Kostant proved [K2] that

HD(Vλ) =
⊕

w∈W(g,h)1
Ew(λ+ρ)−ρ(r).

Kostant’s theorem implies
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Proposition 3.13. Let G be a semisimple Lie group of Hermitian symmetric type.
Let Vλ be a finite-dimensional representation with highest weight λ of G. Then

HD(Vλ) =
⊕

w∈W(g,h)1
Ew(λ+ρ)−ρc .

We note that the above formula also follows from the calculation of Dirac
cohomology for the more general case of all finite-dimensional Harish-Chandra
modules in [HKP].

4 K-Characters of Holomorphic (g,K)-Modules

In this section we prove a K-character formula for holomorphic or irreducible
lowest weight (g,K)-modules. This is a straightforward extension of the K-
character formula for unitary lowest weight modules in [HPZ].

Recall that if V is an admissible (g,K)-module withK-type decomposition V =⊕
λ mλF

λ, then the K-character of V is the formal series

chV =
∑

λ

mλ chFλ,

where chFλ is the character of the irreducible K-module Fλ. Moreover, this
definition makes sense also for virtual (g,K)-modules V ; in that case, the integers
mλ can be negative. In the following we will often deal with representations of the
spin double cover K̃ of K , and not K , but we will still denote the corresponding
character by ch.

We keep the notation of the previous section. Since p is even-dimensional, the
spin module S decomposes as S+ ⊕ S−, with the k-submodules S± being the
even respectively odd part of S ∼= ∧

p+. For any irreducible (g,K)-module X,
we consider the K̃-equivariant operators

D± : X ⊗ S± → X ⊗ S∓

defined by the restrictions of D.
Recall that ([HX] Proposition 5.2) for any X in Oq such that given the Casimir

element0g acting semisimply, one has

(4.1) chX ∗ (ch S+ − ch S−) = chH+D − chH−D .

By the same argument in the proof of Proposition 5.2 of [HX] we can prove the
same formula for K-characters of admissible (g,K)-modules such that 0g acts
semisimply. Consider the exact sequence
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0 → KerD+ → V ⊗ S+ → V ⊗ S− → CokerD+ → 0,

where CokerD+ = V ⊗ S−/ ImD+. It follows that

ch(V ⊗ S+)− ch(V ⊗ S−) = ch KerD+ − ch CokerD+.

Since D is an isomorphism on ImD2, the calculation of ch KerD+ − ch CokerD+
can be reduced to the subspace U = KerD2. We writeD′ for the restriction ofD to
U . Then (D′)2 = 0 and ImD′− ∼= U/KerD′−. It follows that

ch KerD+ − ch CokerD+ = ch KerD′+ − ch CokerD′+

= ch KerD′+/ ImD′− − ch KerD′−/ ImD′+ = chH+D (V )− chH−D (V ).

To obtain K-character formulae for generalized Verma modules we need the
following lemma. Let S(p+) denote the symmetric algebra of p+.

Lemma 4.2. Let C−ρn be the 1-dimensional k-module with weight −ρn. Then

ch S(p+)(ch S+ − ch S−) = chC−ρn .

Proof. Note that S(p+)⊗ S ∼= S(p+)⊗∧ p+ is the Koszul complex of p+. By the
Euler–Poincaré principle, ch S(p+)(ch S+−ch S−) is the Euler characteristic of this
complex, i.e., the alternating sum of its cohomology modules. It is well known (see
for example [HP2, Proposition 3.3.5]) that the cohomology of the Koszul complex
is spanned by the vector 1 ⊗ 1. Since C · 1 ⊗ 1 = C−ρn as a k-module, the lemma
follows. ��

Since N(μ) = S(p+)⊗ Fμ as a K-module, Lemma 4.2 immediately implies

(4.3) chN(μ)(ch S+ − ch S−) = chFμ chC−ρn .

This leads to a Blattner-type formula for chN(μ); we will give more explicit
expression for some special but very interesting cases at the end of this section.
Before that, we want to use (4.3) to express chL(μ) in terms of its Dirac
cohomology (or rather, Dirac index). For this we need the following lemma.

Lemma 4.4. ([HPZ] Lemma 3.4) Let V be a virtual (g,K)-module, with chV =∑∞
i=1 ni chFμi for some ni ∈ Z and some distinct μi . Assume that the numbers

(μi, ρn), i ≥ 1, are bounded from below. Then the identity chV (ch S+−ch S−) = 0
implies that V = 0.

Proof. We include here the proof given in [HPZ]. The arguments were adopted from
[HS] Sect. 4. We enclose the proof here for the convenience of readers. We assume
that our positive root system 	+ is chosen so that the simple roots are compact
roots α1, . . . , αr−1 and a noncompact root αr . Now any positive noncompact root
β is of the form

∑
miαi with all mi ≥ 0 and mr > 0. It is clear that (αi , ρn) = 0
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for i ≤ r − 1. Moreover, (αr , ρn) = (αr , ρ − ρk) > 0, since αr has negative
inner product with compact simple roots and hence also with ρk. It follows that
(β, ρn) > 0 for any positive noncompact root β.

If V �= 0, we can assume that n1 �= 0 and that

(4.5) (μ1, ρn) ≤ (μi, ρn)

for all i. Since Fμ1 ⊗ S contains Fμ1 ⊗ 1 ∼= Fμ1−ρn with multiplicity 1, chFμ1−ρn
appears in chFμ1(ch S+ − ch S−) with coefficient 1.

In order to cancel this contribution to chV (ch S+ − ch S−), chFμ1−ρn must
appear in some chFμi (ch S+ − ch S−), and hence also in Fμi ⊗ S, for some i >
1. It is well known that all weights of S are of the form −ρn + ∑j βj with βj
distinct noncompact positive roots (the sum can be empty). So we must have μi −
ρn + ∑j βj = μ1 − ρn, i.e., μ1 = μi + ∑j βj . Since μi �= μ1, the sum is
nonempty. Note that (βj , ρn) > 0 for each j . It follows that (μ1, ρn) > (μi, ρn),
which contradicts (4.5). ��
Proposition 4.6. Let L(μ) be an irreducible lowest weight (g,K)-module. Assume
that H+D (L(μ)) =

∑
ξ F

ξ and H−D (L(μ)) =
∑
η F

η. Then

(4.7) chL(μ) =
∑

ξ

chN(ξ + ρn)−
∑

η

chN(η + ρn).

Proof. Using (4.1) for X = L(μ), (4.3), and the obvious fact chN(ν) chCρn =
chN(ν + ρn), we see that

chL(μ)(ch S+ − ch S−) = chH+D (L(μ))− chH−D (L(μ))

=
∑

ξ

chFξ −
∑

η

chFη

= (
∑

ξ

chN(ξ + ρn)−
∑

η

chN(η + ρn)
)
(ch S+ − ch S−).

Thus we have

(
chL(μ)−

∑

ξ

chN(ξ + ρn)+
∑

η

chN(η + ρn)
)
(ch S+ − ch S−) = 0.

The assertion now follows from Lemma 4.4 applied to V = L(μ) −∑ξ N(ξ +
ρn)+∑η N(η + ρn). Namely, if Fν is a K-type appearing in either N(γ ) or L(γ )
for some γ , then ν = γ +∑j βj for some positive noncompact roots βj . In the
proof of Lemma 4.4 we saw that (βj , ρn) > 0, so it follows that (ν, ρn) ≥ (γ, ρn)
(equality is attained when the sum

∑
j βj is empty). It follows that the K-types

appearing in V are bounded from below and so Lemma 4.4 applies. ��
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5 Branching Rules for GLn ↪→ Sp2n and GLn ↪→ SO2n

The branching formulae of finite-dimensional representations for GLn ↪→ Sp2n
and GLn ↪→ SO2n can be regarded as K-type multiplicities for noncompact Lie
groups of Sp(2n,R) and SO∗(2n). In this section we show how to obtain the K-
multiplicity formulae from theK-character formulae that are proved in the previous
section. The formulae for K-multiplicity naturally extend to infinite-dimensional
holomorphic (g,K)-modules or the lowest weight modules.

We start with the symplectic case, for which the Lie algebra for the noncompact
Lie group Sp(2n,R) is g0 = sp(2n,R). In this case, both g = sp(2n,C) and
k = gl(n,C) have rank n. So if t is a common Cartan subalgebra of g and k, both t
and its dual can be identified with C

n. It is standard to choose the positive compact
roots to be ei − ej for 1 ≤ i < j ≤ n, and the positive noncompact roots to be
ei + ej for i < j and 2ei , i = 1, . . . , n. The simple roots corresponding to our
choice of positive roots are ei − ei+1, i = 1, . . . , n − 1, and 2en. If we as usual
denote by ρ and ρc the half sums of the positive roots for g respectively for k, and
by ρn = ρ − ρc the half sum of the noncompact positive roots, then we see that

ρ = (n, . . . , 1); ρc = (n− 1

2
, . . . ,−n− 1

2
); ρn = (n+ 1

2
, . . . ,

n+ 1

2
).

The Weyl group WK consists of permutations of the variables, while WG also
contains arbitrary sign changes of the variables. The fundamental chamber for g is
given by the inequalities x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, while the fundamental chamber
for k is given by x1 ≥ x2 ≥ · · · ≥ xn. (These are the closed fundamental chambers;
the open ones are given by strict inequalities.)

We now consider the orthogonal case, for which the Lie algebra of SO∗(2n,R)
is g0 = so∗(2n,R). The Lie algebras g = so(2n,C) and k = gl(n,C) both have
rank n, and we choose a common Cartan subalgebra t in both of them. Both t and
t∗ are identified with C

n. We choose the positive compact roots to be ei − ej for
1 ≤ i < j ≤ n, and the noncompact positive roots to be ei + ej for 1 ≤ i < j ≤ n.
The simple roots corresponding to our choice of positive roots are ei − ei+1, i =
1, . . . , n− 1, and en−1 + en. In this case,

ρ = (n− 1, . . . , 0); ρc = (n− 1

2
, . . . ,−n− 1

2
); ρn = (n− 1

2
, . . . ,

n− 1

2
).

(The entries of ρc and ρ decrease by one, while the entries of ρn are constant.)
The Weyl group WK consists of permutations of the variables, while WG also

contains arbitrary sign changes of even number of the variables. The fundamental
chamber for g is given by the inequalities x1 ≥ x2 ≥ · · · ≥ xn−1 ≥ |xn|, while the
fundamental chamber for k is given by x1 ≥ x2 ≥ · · · ≥ xn. (These are the closed
fundamental chambers; the open ones are given by strict inequalities.)

We now assume g0 is either sp(2k,R) or so∗(2k). Then k0 = u(k). Let τ ∈
Aut(g0) be defined by τ (X) = −XT , where T denotes the matrix transpose. It is
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easy to see that τ fixes u(k) and that the extension of τ to g interchanges p+ and p−.
The following lemma is straightforward.

Lemma 5.1. Let τ be as above. For σ = (σ1, . . . , σk), let σ ′ = (−σk, . . . ,−σ1).

(i) For any irreducible representation (ϕ, F σ ) of u(k), ϕ ◦ τ is the dual represen-
tation Fσ

′
of Fσ .

(ii) Let (π,N(σ)) be a lowest weight generalized Verma module for (g,K). Then
(π ◦ τ,N(σ)τ ) is the highest weight generalized Verma module N(σ ′) =
U(g)⊗U(k⊕p+) F σ ′ .

Now we turn to the parametrization of the irreducible finite-dimensional rep-
resentations for the classical groups. A partition σ is a finite sequence of weakly
decreasing positive integers, σ1 ≥ σ2 ≥ . . . ≥ σk . For such a partition σ , we
denote by l(σ )(= k), the length of σ and |σ |(= ∑

i σi), the size of σ . Given a
partition σ , we denote the conjugate partition to σ by σ ′. That is, σ ′ is the partition
obtained by flipping the Young diagram of σ over the main diagonal. Equivalently,
(σ ′)i = |{j : σj ≥ i}|. Note that |σ | = |σ ′| and l(σ ) = (σ ′)1.

For each partition σ with at most k parts, let Fσ denote the irreducible (finite-
dimensional) representation ofGLk with highest weight σ1ε1 + σ2ε2 + · · · + σkεk .
Here we are using the standard coordinates for the dual Cartan algebra of GLk; εi
denotes the i-th projection of h ∼= C

k. Similarly, for k even, let V σ be the irreducible
Spk representation indexed by σ , and for σ with (σ ′)1 + (σ ′)2 ≤ k let Eσ be the
irreducibleOk representation indexed by σ (see [GW], page 420).

We remark that not all representations ofGLk correspond to nonnegative integer
partitions as above; those that do are called polynomial representations, since their
matrix coefficients turn out to be polynomial functions. However, we do not lose
generality by studying only polynomial representations, because any representation
can be twisted to a polynomial one by a sufficiently large one-dimensional character.

Given nonnegative integer partitions σ , μ and ν, each with at most k parts, the
classical Littlewood–Richardson coefficient cσμν is defined by

cσμν = dim HomGLk(F
σ , Fμ ⊗ Fν).

Let P denote the set of partitions. We define

(5.2)
PR = {σ ∈ P : σi ∈ 2N for all i},
PC = {σ ∈ P : (σ ′)i ∈ 2N for all i}.

The set PR (resp. PC ) consists of partitions whose Young diagrams have even rows
(resp. columns). For partitions σ and μ with at most k parts, we define the following
sums of the Littlewood–Richardson coefficients:

(5.3) Cσμ :=
∑

ν∈PR,l(ν)≤k
cσμν and Dσμ :=

∑

ν∈PC,l(ν)≤k
cσμν.
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To compute the K-type multiplicities of L(μ) using Proposition 4.6, we first
need to know the Dirac cohomology HD(L(μ)). This is known explicitly, since
by Theorem 3.10 it can be read off from the corresponding p+-cohomology which
is determined by [E]. (Here we are exchanging roles of p+ and p−, which also
exchanges roles of lowest and highest weight modules.) We can also compute
HD(L(μ)) directly in some cases; see for example [HPP]. The other ingredient of
Proposition 4.6 is knowing theK-type multiplicities for generalized Verma modules
N(μ). Since N(μ) = S(p+) ⊗ Fμ as a K-module, one needs to understand the
K-module structure of S(p+). In general, this was first done by Schmid [S]. The
following completely explicit special cases can be found in [GW, §5.2.5] and [GW,
§5.2.6]. Let C

k denote the standard module for GLk(C), and let PR,PC be as
in (5.2).

Lemma 5.4. (i) For the Hermitian symmetric pair (sp(2k,R), u(k)), p+ =
S2(Ck) as a module for k = gl(k,C), and the k-module S(p+) decomposes
as

S(p+) =
⊕

ν∈PR,l(ν)≤k
F ν.

(ii) For the Hermitian symmetric pair (so∗(2k), u(k)), p+ = ∧2
(Ck) as a module

for k = gl(k,C), and the k-module S(p+) decomposes as

S(p+) =
⊕

ν∈PC,l(ν)≤k
F ν.

To get the K-multiplicities for N(μ) we tensor the above formulas with Fμ and
recall the sums of the Littlewood–Richardson coefficients Cσμ , Dσμ defined above in
(5.3). Consequently, we obtain the following proposition.

Proposition 5.5. (i) For the Hermitian symmetric pair (sp(2k,R), u(k)), the mul-
tiplicity of the gl(k,C)-module Fσ in N(μ) is Cσμ , the sum of the Littlewood–
Richardson coefficients defined in (5.3).

(ii) For the Hermitian symmetric pair (so∗(2k), u(k)), the multiplicity of the
gl(k,C)-module Fσ in N(μ) is Dσμ , the sum of the Littlewood–Richardson
coefficients defined in (5.3).

Theorem 5.6. Assume that H+D (L(μ)) =
∑
ξ F

ξ and H−D (L(μ)) =
∑
η F

η.
Then

(i) For the Hermitian symmetric pair (sp(2k,R), u(k)),

[L(μ), Fσ ] =
∑

ξ

Cσξ+ρn −
∑

η

Cση+ρn .

(ii) For the Hermitian symmetric pair (so∗(2k), u(k)),
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[L(μ), Fσ ] =
∑

ξ

Dσξ+ρn −
∑

η

Dση+ρn .

Here σ and μ are regarded as k-tuples with the sums running over the same
sets as above, and Cσξ and Dση are defined in (5.3).

Proof. Let N(μ) be a lowest weight generalized Verma module as above, with
unique irreducible quotient L(μ). Assume that H+D (L(μ)) = ∑

ξ F
ξ and

H−D (L(μ)) =
∑
η F

η, where ξ and η run over some finite sets of dominant k-
weights. Then

chL(μ) =
∑

ξ

chN(ξ + ρn)−
∑

η

chN(η + ρn),

with ξ and η running over the same sets as above. Then the theorem follows from
Proposition 5.5. ��
Remark 5.7. The Dirac cohomology HD(L(μ)) appearing in the above theorem
can be calculated very explicitly in many cases. For example, the Proposition 3.13
gives the result for the case L(μ) is finite dimensional. The main result in [HPP]
deals with the case when μ is one-dimensional. The formula for the general case is
Theorem 6.16 in [HX].

6 Branching Rules for On ↪→ GLn and Sp2n ↪→ GL2n

In this final section we recall the generalized Littlewood Restriction Formulae
obtained in [HPZ]. These formulae are branching rules forOn ↪→ GLn and Sp2n ↪→
GL2n. It was important for the proof in [HPZ] to use Howe’s dual pair
correspondence (see [H1] and [H2]) and the see-saw dual pairs introduced by
Kudla [Ku] (see also in [HK]).

We first recall that D. E. Littlewood [L1] gave a formula in 1940 for the
decomposition of some representations of GLk restricted to Ok , or Spk for k even.
We use the same notation as in Sect. 5; namely, the representations of classical
groups are parametrized by partitions. The Littlewood Restriction Formulae can be
described as follows (see [L1] and [L2]).

(i) (Littlewood Restriction Formula forOk(C) ⊂ GLk(C)). For partitions σ and
μ with at most k2 parts,

dim HomOk(C)(E
μ, Fσ ) = Cσμ.

(ii) (Littlewood Restriction Formula for Spk(C) ⊂ GLk(C), k even). For
partitions σ and μ with at most k2 parts,

dim HomSpk(C)(V
μ, Fσ ) = Dσμ.
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Here σ and μ are regarded as k-tuples, Cσξ andDση are defined in (5.3). We note
the definition of Cσξ andDση in (5.3) extends to general k-tuples σ and μ, which
are regarded as highest weights of irreducible gl(k,C)-modules.

Inspired by the work of Enright and Willenbring [EW], a generalized Littlewood
Restriction Formulae in terms of Dirac cohomology was obtained in [HPZ]. It was
proved that those formulae are equivalent to the formulae that were proved in [EW]
in terms of nilpotent Lie algebra cohomology.

Recall that for any n-tuple σ , it is defined in [HPZ]

(6.1) σ 0 = σ + (k
2
, . . . ,

k

2︸ ︷︷ ︸
n

) and σ−0 = σ − (k
2
, . . . ,

k

2︸ ︷︷ ︸
n

).

We recall that L(μ) is the lowest weight (g,K)-module of Sp(2n,R) or
SO∗(2n,R) defined and studied in Sects. 2 and 4 and we specialize here to the
case n = k. These branching formulae involve some twist (partitions are shifted by
±0). This twist was due to Proposition 4.1 of [HPZ] which is proved by the Howe
dual pair correspondence. The classical case of Littlewood Restriction Theorem has
no such twist (see Remark 4.7 in [HPZ]). To understand the proof and the twist we
recall the proposition needed in the proof.

Proposition 6.2. ([HPZ] Proposition 4.1)

(i) (For generalization of Littlewood Restriction Formula for Ok(C) ⊂ GLk(C)).
Let σ and μ be partitions with at most k parts. Then

[Eμ,Fσ ] = dim HomOk(C)(E
μ, Fσ ) = dim Homu(k)(F

σ0 , L(μ0)).

(ii) (For generalization of Littlewood Restriction Formula for Spk(C) ⊂ GLk(C),
k even). For partitions σ and μ with l(σ ) ≤ k and l(μ) ≤ k

2 ,

[V μ, Fσ ] = dim HomSpk(C)(V
μ, Fσ ) = dim Homu(k)(F

σ0 , L(μ0)).

Then Theorem 5.6 and the above proposition give the Generalized Littlewood
Restriction Formulae in [HPZ].

Theorem 6.3. ([HPZ] Theorem 4.9)
Assume that H+D (L(μ0)) =

∑
ξ F

ξ and H−D (L(μ0)) =
∑
η F

η.

(i) Let σ and μ be partitions with at most k parts. Assume that the sum of the first
two columns of the Young diagram of μ is at most k. Then

[Eμ,Fσ ] = dim HomOk(C)(E
μ, Fσ ) =

∑

ξ

Cσξ−0+ρn −
∑

η

Cση−0+ρn .
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(ii) Let k be even. Let σ and μ be partitions with l(σ ) ≤ k and l(μ) ≤ k
2 . Then

[V μ, Fσ ] = dim HomSpk(C)(V
μ, Fσ ) =

∑

ξ

Dσξ−0+ρn −
∑

η

Dση−0+ρn .

Here σ and μ are regarded as k-tuples with the sums running over the same
sets as above, and Cσξ and Dση are defined in (5.3).

Recall from the previous section that ρn = ( k+1
2 , . . . ,

k+1
2 ) for g0 = sp(2k,R)

and ρn = ( k−1
2 , . . . ,

k−1
2 ) for g0 = so∗(2k). It follows that ξ−0 + ρn = ξ +

( 1
2 , · · · , 1

2 ) in case g0 = sp(2k,R) and ξ−0 + ρn = ξ − ( 1
2 , · · · , 1

2 ) in case g0 =
so∗(2k). Then we have the following corollary.

Corollary 6.4. Assume thatH+D (L(μ0)) =
∑
ξ F

ξ andH−D (L(μ0)) =
∑
η F

η.

(i) Let σ and μ be partitions with at most k parts. Assume that the sum of the first
two columns of the Young diagram of μ is at most k. Then

[Eμ,Fσ ] =
∑

ξ

Cσ
ξ+( 1

2 ,··· , 1
2 )
−
∑

η

Cσ
η+( 1

2 ,··· , 1
2 )
.

(ii) Let k be even. Let σ and μ be partitions with l(σ ) ≤ k and l(μ) ≤ k
2 . Then

[V μ, Fσ ] =
∑

ξ

Dσ
ξ−( 1

2 ,··· , 1
2 )
−
∑

η

Dσ
η−( 1

2 ,··· , 1
2 )
.

Here σ and μ are regarded as k-tuples with the sums running over the same
sets as above, and Cσξ and Dση are defined in (5.3).
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Abstract Given a pair of finite groups F,G and a normalized 3-cocycle ω of G,
where F acts onG as automorphisms, we consider quasi-Hopf algebras defined as a
cleft extension k

G
ω #c kF where c denotes some suitable cohomological data. When

F → F := F/A is a quotient of F by a central subgroup A acting trivially on
G, we give necessary and sufficient conditions for the existence of a surjection of
quasi-Hopf algebras and cleft extensions of the type k

G
ω #c kF → k

G
ω #c kF . Our

construction is particularly natural when F = G acts on G by conjugation, and
k
G
ω #ckG is a twisted quantum double Dω(G). In this case, we give necessary and

sufficient conditions that Rep(kGω #c kG) is a modular tensor category.
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1 Introduction
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can form the cross product k

G#kF , which is naturally a Hopf algebra and a
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cohomological data c, this construction can be ‘twisted’ to yield a quasi-Hopf
algebra k

G
ω #c kG. (Details are deferred to Sect. 2.) For a surjection of groups

π : F → F such that kerπ acts trivially on G, we consider the possibility of
constructing another quasi-Hopf algebra k

G
ω #c kF (for suitable data c) for which

there is a ‘natural’ surjection of quasi-Hopf algebras f : kGω #c kF → k
G
ω #c kF .

In general such a construction is not possible. The main result of the present
paper (Theorem 3.6) gives necessary and sufficient conditions for the existence of
k
G
ω #c kF and f in the important case when kerπ is contained in the center Z(F)

of F . The conditions involve rather subtle cohomological conditions on kerπ ; when
they are satisfied we obtain interesting new quasi-Hopf algebras.

A special case of this construction applies to the twisted quantum doubleDω(G)
[2], where F = G acts on G by conjugation and the condition that kerπ acts
trivially onG is equivalent to the centrality of kerπ . In this case, we obtain quotients
k
G
ω #c kG of the twisted quantum double whenever the relevant cohomological

conditions hold. Related objects were considered in [5], and in the case that
±I ∈ G ⊆ SU2(C) the fusion rules were investigated. In fact, we can prove that the
modular data of each of the orbifold conformal field theories V G

ŝl2
, where ŝl2 is the

level 1 affine Kac–Moody Lie algebra of type sl2 and G = G/± I , are reproduced
by the modular data of kGω #c kG for suitable choices of cohomological data ω and
c. This result will be appear elsewhere.

The paper is organized as follows. In Sect. 2 we introduce a category associated
to a fixed quasi-Hopf algebra k

G
ω whose objects are the cleft extensions we are

interested in. In Sect. 3 we focus on central extensions and establish the main
existence result (Theorem 3.6). In Sects. 4 and 5 we consider the special case of
twisted quantum doubles. The main result here (Theorem 5.5) gives necessary and
sufficient conditions for Rep(kGω #c kG) to be a modular tensor category.

2 Quasi-Hopf Algebras and Cleft Extensions

A quasi-Hopf algebra is a tuple (H,Δ, ε, φ, α, β, S) consisting of a quasi-bialgebra
(H,Δ, ε, φ) together with an antipode S and distinguished elements α, β ∈ H
which together satisfy various consistency conditions. See, for example, [1, 6, 10].
A Hopf algebra is a quasi-Hopf algebra with α = β = 1 and trivial Drinfel’d
associator φ = 1 ⊗ 1 ⊗ 1. As long as α is invertible, (H,Δ, ε, φ, 1, βα−1, Sα) is
also a quasi-Hopf algebra for some antipode Sα ([1]). All of the examples of quasi-
Hopf algebras in this paper, constructed from data associated to a group, will satisfy
the condition α = 1.

Suppose thatG is a finite group, k a field, andω ∈ Z3(G,k×) a normalized (mul-
tiplicative) 3-cocycle. There are several well-known quasi-Hopf algebras associated
to this data. The group algebra kG is a Hopf algebra, whence it is a quasi-Hopf
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algebra too. The dual group algebra is also a quasi-Hopf algebra kGω when equipped
with the Drinfel’d associator

φ =
∑

a,b,c∈G
ω(a, b, c)−1ea ⊗ eb ⊗ ec, (1)

where {ea | a ∈ G} is the basis of kG dual to the basis of group elements {a | a ∈ G}
in kG. Here, β = ∑a∈G ω(a, a−1, a)ea and S(a) = a−1 for a ∈ G. In particular,
k
G = k

G
1 is the usual dual Hopf algebra of kG.

We are particularly concerned with cleft extensions determined by a pair of finite
groups F,G. We assume that there is a right action 1 of F on G as automorphisms
of G. The right F -action induces a natural left kF -action on k

G, making k
G a

left kF -module algebra. If we consider kF as a trivial kG-comodule (i.e., G acts
trivially on kF ), then (kF,kG) is a Singer pair. Throughout this paper, only these
special kinds of Singer pairs will be considered.

A cleft object of k
G
ω (or simply G) consists of a triple c = (F, γ, θ) where

c0 = F is a group with a right action 1 on G as automorphisms, and c1 =
γ ∈ C2(G, (kF )×), c2 = θ ∈ C2(F, (kG)×) are normalized 2-cochains. They
are required to satisfy the following conditions:

θg1x(y, z)θg(x, yz) = θg(xy, z)θg(x, y), (2)

γx(gh, k)γx(g, h)ω(g 1 x, h 1 x, k 1 x) = γx(h, k)γx(g, hk)ω(g, h, k), (3)

γxy(g, h)

γx(g, h)γy(g 1 x, h 1 x) =
θg(x, y)θh(x, y)

θgh(x, y)
, (4)

where θg(x, y) := θ(x, y)(g), γx(g, h) := γ (g, h)(x) for x, y ∈ F and g, h ∈ G.

Associated to a cleft object c of G is a quasi-Hopf algebra

H = k
G
ω #c kF (5)

with underlying linear space kG⊗kF ; the ingredients necessary to define the quasi-
Hopf algebra structure are as follows:

egx · ehy = δg1x,h θg(x, y) egxy, 1H =
∑

g∈G
eg,

Δ(egx) =
∑

ab=g
γx(a, b)eax ⊗ ebx, e(egx) = δg,1 ,

S(egx) = θg−1(x, x
−1)−1γx(g, g

−1)−1eg−11xx−1,

α = 1H, β =
∑

g∈G
ω(g, g−1, g)eg,
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where egx ≡ eg ⊗ x and eg ≡ eg ⊗ 1F . The Drinfel’d associator φ is again given
by (1). This quasi-Hopf algebra is also called the cleft extension of kF by k

G
ω (cf.

[8]). The proof that (5) is indeed a quasi-Hopf algebra when equipped with these
structures is rather routine, and is similar to that of the twisted quantum double
Dω(G), which is the case when F = G and the action on G is conjugation ([2, 6]).
We shall return to this example in due course. Note that these cleft extensions admit
the canonical morphisms of quasi-Hopf algebras

k
G
ω

i→ k
G
ω #c kF

p→ kF (6)

where

i(eg) = eg, p(egx) = δg,1x.

Introduce the category Cleft(kGω ) whose objects are the cleft objects of k
G
ω ; a

morphism from c = (F, γ, θ) to c′ = (F ′, γ , θ) is a pair (f1, f2) of quasi-bialgebra
homomorphisms satisfying that

(i) f2 preserves the actions on G, i.e. g 1 x = g 1 f2(x), and
(ii) The diagram

i

id

p

f2f1

i
kG
w 
#c′kF ′

kG
w 
#c kF

p′

kF

kF ′kG
w

kG
w

commutes.

It is worth noting that Cleft(kGω ) is essentially the category of cleft extensions of
group algebras by k

G
ω .

Remark 2.1. The quasi-Hopf algebra k
G
ω #c kF also admits a natural F -grading

which makes it an F -graded algebra. This F -graded structure can be described in
terms of the kF -comodule via the structure map ρc = (id⊗p)Δ . A morphism
(f1, f2) : c → c′ in Cleft(kGω ) induces the right kF ′-comodule structure ρ′c =
(id⊗f2)ρc on k

G
ω #c kF , and f1 : k

G
ω #c kF → k

G
ω #c′ kF ′ is then a right kF ′-

comodule map. In the language of group-grading, f2 induces an F ′-grading on
k
G
ω #c kF and f1 is an F ′-graded linear map. Since f1 is an algebra map and

preserves F ′-grading, f1(egx) = χx(g)egx for some scalar χx(g), where x =
f2(x) ∈ F ′ for x ∈ F .

Remark 2.2. In general, a quasi-bialgebra homomorphism between two quasi-Hopf
algebras is not a quasi-Hopf algebra homomorphism. However, if (f1, f2) is a mor-
phism in Cleft(kGω ), then both f1 and f2 are quasi-Hopf algebra homomorphisms.
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We leave this observation as an exercise to readers (cf. (13) and (14) in the proof of
Theorem 3.6 below).

In Cleft(kGω ), there is a trivial object 1 in which the group F is trivial and θ, γ
are both identically 1. This cleft object is indeed the trivial cleft extension of kGω :

k
G
ω

id→ k
G
ω

ε→ k. It is straightforward to check that 1 is an initial object of Cleft(kGω ).

Suppose we are given a cleft object c = (F, γ, θ) and a quotient map πF̄ :
F → F of F which preserves their actions on G. We ask the following question:
is there a cleft object c = (F , γ , θ) of kGω and a quasi-bialgebra homomorphism
π : kGω #c kF → k

G
ω #c kF such that (π, πF̄ ) : c → c is a morphism of Cleft(kGω )?

Equivalently, the diagram

p pF̄

kG
w 
#c kF

kG
w 
#c kFkG

w 

kG
w 

kF

kF
i p

i p

id

(7)

commutes. Generally, one can expect the answer to this question to be ‘no’. In the
following section, we will provide a complete answer in an important special case.

3 Central Quotients

Throughout this section we assume k is a field of any characteristic, c = (F, γ, θ)
an object of Cleft(kGω ) with the associated quasi-Hopf algebra monomorphism i :
k
G
ω → k

G
ω #c kF and epimorphism p : kGω #c kF → kF . We use the same notation

as before, and write H = k
G
ω #c kF .

We now suppose that A ⊆ Z(F) is a central subgroup of F such that the
restriction of the F -action 1 onG to A is trivial. Then the quotient group F = F/A
inherits the right action, giving rise to an induced Singer pair (kF ,kG). With this
setup, we will answer the question raised in the previous section about the existence
of the diagram (7). To explain the answer, we need some preparations.

Definition 3.1. (i) 0 �= u ∈ H is group-like if Δ(u) = u⊗ u. The sets of group-
like elements and central group-like elements of H are denoted by Γ (H) and
Γ0(H) respectively.

(ii) x ∈ F is called γ -trivial if γx ∈ B2(G,k×) is a 2-coboundary. The set of
γ -trivial elements is denoted by Fγ .

(iii) a ∈ F is c-central if there is ta ∈ C1(G,k×) such that

∑

g∈G
ta(g)ega ∈ Γ0(H) . (8)

The set of c-central elements is denoted by Zc(F ).
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Let Ĝ = Hom(G,k×) be the group of linear characters of G. The following
lemma concerning the sets Fγ , Γ (H) and Ĝ is similar to an observation in [9].

Lemma 3.2. The following statements concerning Fγ and Γ (H) hold.

(i) Fγ is a subgroup of F , Γ (H) is a subgroup of the group of units in H , and
p(Γ (H)) = Fγ . Moreover, for x ∈ Fγ and tx ∈ C1(G,k×),

∑

g∈G
tx(g)egx ∈ Γ (H) if, and only if, δtx = γx .

(ii) The sequence of groups

1 → Ĝ
i−→ Γ (H)

p−→ Fγ → 1 (9)

is exact. The 2-cocycle β ∈ Z2(F γ , Ĝ) associated with the section x 
→∑
g∈G tx(g)egx of p in (9) is given by

β(x, y)(g) = tx(g)ty(g 1 x)
txy(g)

θg(x, y) (x, y ∈ Fγ , g ∈ G). (10)

Proof. The proofs of (i) and (ii) are similar to Lemma 3.3 in [9]. ��
Remark 3.3. Equation (9) is a central extension if F acts trivially on Ĝ, but in
general it is not a central extension.

Remark 3.4. If a ∈ Zc(F ), then a central group-like element
∑
g∈G ta(g)ega ∈

Γ0(H) will be mapped to the central element a in kF under p. Therefore, by
Lemma 3.2, we always have Zc(F ) ⊆ Z(F) ∩ Fγ . By direct computation, the
condition (8) for a ∈ Zc(F ) is equivalent to the conditions:

δta = γa, ta(g)θg(a, y) = ta(g 1 y)θg(y, a) and g 1 a = g (g ∈ G, y ∈ F).

In particular, θg(a, b) = θg(b, a) for all a, b ∈ Zc(F ).
By Lemma 3.2, we can parameterize the elements u = u(χ, x) ∈ Γ (H) by

(χ, x) ∈ Ĝ × Fγ . More precisely, for a fixed family of 1-cochains {tx}x∈Fγ
satisfying δtx = γx , every element u ∈ Γ (H) is uniquely determined by a pair
(χ, x) ∈ Ĝ× Fγ given by

u = u(χ, x) =
∑

g∈G
χ(g)tx(g)egx.

Note that a choice of such a family of 1-cochains {tx}x∈Fγ satisfying δtx = γx is
equivalent to a section of p in (9). With this convention we have i(χ) = u(χ, 1)
and p(u(χ, x)) = x for all χ ∈ Ĝ and x ∈ Fγ .
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Lemma 3.5. The set Zc(F ) of c-central elements is a subgroup of Z(F), and it
acts trivially on G. Moreover, Γ0(H) is a central extension of Zc(F ) by ĜF via the
exact sequence:

1 → ĜF
i−→ Γ0(H)

p−→ Zc(F )→ 1 , (11)

where ĜF is the group of F -invariant linear characters of G.
If we choose tx such that u(1, x) ∈ Γ0(H)whenever x ∈ Zc(F ), then the formula

(10) for β(x, y) defines a 2-cocycle for the exact sequence (11).

Proof. By Lemma 3.2 and the preceding paragraph, u(χ, x) ∈ Γ0(H) for some
χ ∈ Ĝ if, and only if, x ∈ Zc(F ). In particular, p(Γ0(H)) = Zc(F ). It follows
from Remark 3.4 that Zc(F ) is a subgroup of Fγ ∩ Z(F) and Zc(F ) acts trivially
on G. By Remark 3.4 again, u(χ, 1) ∈ Γ0(H) is equivalent to

χ(g)t1(g)θg(1, y) = χ(g 1 y)t1(g 1 y)θg(y, 1) for all g ∈ G, y ∈ F.

In particular, ĜF = kerp|Γ0(H), and this establishes the exact sequence (11). If tx
is chosen such that u(1, x) ∈ Γ0(H) whenever x ∈ Zc(F ), the second statement
follows immediately from Lemma 3.2 (ii) and the commutative diagram:

1 Ĝ

ĜF

i G(H)
p

F g 1

1

incl

i G0(H)

incl

p
Zc(F)

incl

1 .
��

Theorem 3.6. Let the notation be as before, with A ⊆ Z(F) a subgroup acting
trivially onG, and with the right action of F = F/A onG inherited from that of F .
Then the following statements are equivalent:

(i) There exist a cleft object c = (F , γ , θ) of kGω and a quasi-bialgebra map
π : kGω #c kF → k

G
ω #c kF such that the diagram

p

i

kG
w 

kG
w 

i

p′

id

kG
w 
#c kF

pF

kF

kFkG
w 
#c kF

p

(12)

commutes.
(ii) A ⊆ Zc(F ) and the subextension

1 → ĜF
i−→ p|−1

Γ0(H)
(A)

p−→ A→ 1

of (11) splits.
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(iii) A ⊆ Zc(F ) and there exist {ta}a∈A in C1(G,k×) and {τg}g∈G in C1(A,k×)
such that δta = γa , δτg = θg|A and

sa(g) = ta(g)τg(a)

defines a F -invariant linear character on G for all a ∈ A.

Proof. ((i) ⇒ (ii)) Suppose there exist a cleft object c = (F , γ , θ) of k
G
ω and

a quasi-bialgebra map π : k
G
ω #c kF → k

G
ω #c kF such that the diagram (12)

commutes. Then π(eg) = eg for all g ∈ G. Since π is an algebra map, π(egx) =∑
y∈F χx(g, y)egy for some scalars χx(g, y). Here, we simply write y for πF (y).

By Remark 2.1, π is a F -graded linear map and so we have π(egx) =
χx(g, x)egx. Therefore, we simply denote χx(g) for χx(g, x). In particular, χ1 = 1
and χx(1) = 1 by the commutativity of (12). Moreover, we find

γx(g, h)χx(g)χx(h) = γ x(g, h)χx(gh), (13)

θg(x, y)χx(g)χy(g 1 x) = θg(x, y)χxy(g) (14)

for all x, y ∈ F and g, h ∈ G. An immediate consequence of these equations is that
χx ∈ C1(G,k×) for x ∈ F .

For a ∈ A, θg(a, y) = γ a(g, h) = 1. Then, (13) and (14) imply

γa = δχ−1
a , 1 = χay(g)

χa(g)χy(g)
θg(a, y) = χya(g)

χy(g)χa(g 1 y)θg(y, a) (15)

for all a ∈ A, g ∈ G and y ∈ F . These equalities in turn yield

∑

g∈G
χ−1
a (g)ega ∈ Γ0(H)

for all a ∈ A. ThereforeA ⊆ Zc(F ).
In particular, A ⊆ Fγ . If we choose ta = χ−1

a for all a ∈ A, then the restriction
of the 2-cocycle β, given in (10), on A is constant function 1. Therefore, the
subextension

1 → ĜF
i−→ p|−1

Γ0(H)
(A)

p−→ A→ 1

of (11) splits.

((ii) ⇒ (i) and (iii)) Assume A ⊆ Zc(F ) and the restriction of β on A is a
coboundary. By Remark 3.4, we let ta ∈ C1(G,k×) such that δta = γa and

ta(g)θg(a, y) = ta(g 1 y)θg(y, a) (16)
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for all a ∈ A, y ∈ F and g ∈ G. In particular,

∑

g∈G
ta(g)ega ∈ Γ0(H)

for all a ∈ A. By Lemma 3.5, β(a, b) ∈ ĜF for all a, b ∈ A. Suppose ν = {νa |
a ∈ A} is a family in ĜF such that β(a, b) = νaνbν−1

ab for all a, b ∈ A.
Let r : F → F be a section of πF such that r(1) = 1. For x ∈ F , we set

r(x) = r(x) and

χx(g) = νa(g)

ta(g)θg(a, r(x))
(17)

for all g ∈ G, where a = xr(x)−1. It is easy to see that χ1 = 1 and χx is a
normalized 1-cochain of G. Note that for b ∈ A, θg(a, b) = θg(b, a), so we have

χbx(g)

χb(g)χx(g)
= νab(g)

tab(g)θg(ab, r(x))

tb(g)

νb(g)

ta(g)θg(a, r(x))

νa(g)
= θg(b, x)−1, (18)

χb(g 1 x)θg(b, x) = χb(g)θg(x, b) and δχ−1
b = γb . (19)

Let τg(a) = χa(g) for all a ∈ A and g ∈ G. Equation (18) implies that δτg =
θg|A and

νa(g) = ta(g)τg(a) ,

and this proves (iii).
Define the maps γ ∈ C2(G, (kF )×) and θ ∈ C2(F , (kG)×) as follows:

γ x(g, h) =
χx(g)χx(h)

χx(gh)
γx(g, h) , (20)

θg(x, y) = χxy(g)

χx(g)χy(g 1 x)θg(x, y) . (21)

We need to show that these functions are well defined. Let b ∈ A, x, y ∈ F and
g, h ∈ G. By (4), (18) and (19), we find

χbx(g)χbx(h)

χbx(gh)
γbx(g, h) = χx(g)χx(h)

χx(gh)
γx(g, h) ,

and this proves γ is well defined. To show that θ is also well defined, it suffices to
prove

χbxy(g)

χbx(g)χy(g 1 bx) θg(bx, y) =
χxy(g)

χx(g)χy(g 1 x) θg(x, y) =
χxby(g)

χx(g)χby(g 1 x) θg(x, by)
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for all b ∈ A, x, y ∈ F and g, h ∈ G. However, the first equality follows from (18)
and (2), while the second equality is a consequence of (2), (18) and (19).

It is straightforward to verify that c = (F , γ , θ) defines cleft object of k
G
ω

and π : k
G
ω #c kF → k

G
ω #c kF, egx 
→ χx(g)egx defines a quasi-bialgebra

homomorphism which makes the diagram (12) commute. We leave routine details
to the reader.

((iii) ⇒ (ii)) Since sa(g) = ta(g)τg(a) defines a F -invariant linear character of
G for each a, then ν(a) = sa defines a 1-cochain in C1(A, ĜF ) and

δν = β|A
where β is the 2-cocycle given in (10). In particular, β|A is a coboundary. ��
Remark 3.7. Suppose we are given A ⊆ Zc(A) satisfying condition (ii) of the
preceding theorem, and {ta}a∈A a fixed family of cochains in C1(G,k×) such that∑
g∈G ta(g)ega ∈ Γ0(H) for a ∈ A. Then the set S (A) of group homomorphism

sections of p : p−1(A) → A is in one-to-one correspondence with B(A) = {ν ∈
C1(A, ĜF ) | δν = β on A}. For ν ∈ B(A), it is easy to see that

p̃ν(a) =
∑

g∈G

ta(g)

ν(a)(g)
ega (a ∈ A)

defines a group homomorphism in S (A). Conversely, if p̃′ ∈ S (A), then there
exists a group homomorphism f : A→ ĜF such that i(f (a))p̃′(a) = p̃(a) for all
a ∈ A. In particular, if p̃′(a) =∑g∈G t ′a(g)ega for a ∈ A, then

t ′a =
ta

ν(a)f (a)

and ν′ = νf ∈ S (A). Therefore, p̃′ = p̃ν ′ .
The cleft object c = (F/A, g, θ) and morphism π constructed in the proof of

Theorem 3.6 are not unique. The definition of χx(g) is determined by the choice of
the section r : F → F of πF and ν ∈ B(A). If ν′ ∈ B(A), then ν′ = νf for some
group homomorphism f : A→ ĜF . Thus, the corresponding

χ ′x(g) = f (xr(x)−1)(g)χx(g) .

This implies c′ = (F/A, γ ′, θ ′) where γ ′ = γ but

θ
′
g(x, y) =

θg(x, y)

f (r(x)r(y)r(xy)−1)(g)
.

Therefore, c as well as π can be altered by the choice of any group homomorphism
f : A→ ĜF for a given section r : F → F of πF .
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4 Cleft Objects for the Twisted Quantum Double Dω(G)

Consider the right action of a finite group F = G on itself by conjugation with
ω ∈ Z3(G,k×) a normalized 3-cocycle. We will write xg = g−1xg. There is a
natural cleft object cω = (G, γ, θ) of kGω given by

γg(x, y) = ω(x, y, g)ω(g, x
g, yg)

ω(x, g, yg)
, θg(x, y) = ω(g, x, y)ω(x, y, g

xy)

ω(x, gx , y)
.

(22)

Note that γz = θz for any z ∈ Z(G). The associated quasi-Hopf algebra Dω
k
(G) =

k
G
ω #cωkG of this natural cleft object cω is the twisted quantum double ofG [2]. From

now on, we simply abbreviate Dω
k
(G) as Dω(G) when k is the field of complex

numbers C.
For the cleft object cω, we can characterize the cω-central elements in the

following result (cf. Lemma 3.5).

Proposition 4.1. The cω-center Zcω(G) is given by

Zcω(G) = Z(G) ∩Gγ .

The group Γ0(D
ω(G)) of central group-like elements of Dω(G) is the middle term

of the short exact sequence

1 → Ĝ
i−→ Γ0(D

ω(G))
p−→ Z(G) ∩Gγ → 1 .

In addition, if H 2(G,k×) is trivial, then Z(G) = Zcω(G).
Proof. The inclusion Zcω(G) ⊆ Z(G) ∩ Gγ follows directly from Remark 3.4.
Suppose z ∈ Z(G) ∩ Gγ and choose tz ∈ C1(G,k×) so that δtz = γz. Since
z ∈ Z(G), θz = γz and so θz = δtz. This implies

θz(y, g
y)

θz(g, y)
= tz(g

y)

tz(g)
(g, y ∈ G).

It follows directly from the definition (22) of θ that

θg(z, y)

θg(y, z)
= θz(y, g

y)

θz(g, y)
.

Thus we have

tz(g)θg(z, y) = tz(gy)θg(y, z) (g, y ∈ G).

It follows from Remark 3.4 that z ∈ Zcω(G). Since Ĝ = ĜG, the exact sequence
follows from Lemma 3.5.
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Finally, ifH 2(G,k×) is trivial and z ∈ Z(G), then γz ∈ B2(G,k×) and therefore
z ∈ Gγ . The equality Z(G) = Z(G) ∩Gγ = Zcω(G) follows. ��
Definition 4.2. In light of Theorem 3.6, for the canonical cleft object cω =
(G, γ, θ) of kGω , a subgroup A ⊆ Z(G) is called ω-admissible if A satisfies one of
the conditions in Theorem 3.6. The quasi-Hopf algebra k

G
ω #cωkG of an associated

cleft object cω = (G = G/A, γ , θ) is simply denoted by Dω
r,p̃
(G,A). It depends

on the choice of a section r of πG : G → G and a group homomorphism section
p̃ : A→ Γ0(D

ω(G)) of p : p−1(A)→ A (cf. Remark 3.7). We drop the subscripts
r, p̃ if there is no ambiguity.

Remark 4.3. The quasi-Hopf algebra Dω(G,N) constructed in [5], where N � G
and ω is an inflation of a 3-cocycle of G/N , is a completely different construction
from the one presented with the same notation in the preceding definition. Both
are attempts to generalized the twisted quantum double construction by taking
subgroups into account.

Example 4.4. Let Q be the quaternion group of order 8 and A = Z(Q). Since
H 2(Q,C×) = 1, A is cω-central for all ω ∈ Z3(Q,C×). Since Q̂ ∼= Z2 × Z2, the
associated 2-cocycle β of the extension

1 → Q̂→ Γ0(D
ω(Q))→ Z(Q)→ 1

has order 1 or 2. Thus, if ω is a square of another 3-cocycle, β = 1 and so A is
ω-admissible. In fact, A is ω-admissible for all 3-cocycles of Q but the proof is a
bit more complicated.

5 Simple Currents and ω-Admissible Subgroups

For simplicity, we will mainly work over the base field C for the remaining
discussion. Again, we assume that G is a finite group and ω ∈ Z3(G,C×) a
normalized 3-cocycle. An isomorphism class of a 1-dimensional Dω(G)-module
is also called a simple current of Dω(G). The set SC(G,ω) of all simple currents
of Dω(G) forms a finite group with respect to tensor product of Dω(G)-modules.
The inverse of a simple current V is the left dual Dω(G)-module V ∗. SC(G,ω) is
also called the group of invertible objects of Rep(Dω(G)) in some articles. Since the
category Rep(Dω(G)) of finite-dimensionalDω(G)-modules is a braided monoidal
category, SC(G,ω) is abelian.

Recall that each simple module V (K, t) of Dω(G) is characterized by a
conjugacy class K of G and an irreducible character t of the twisted group algebra
C
θgK (CG(gK)), where gK is a fixed element of K and CG(gK) is the centralizer of
gK in G. The degree of the module V (K, t) is equal to |K|t (1) (cf. [2, 7]).
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Suppose V (K, t) is 1-dimensional. Then K = {z} for some z ∈ Z(G) and t is a
1-dimensional character of Cθz (G). Thus, for g, h ∈ G, we have

θz(g, h)t (g̃h) = t (g̃)t (h̃), (23)

where g̃ denotes g regarded as an element of C
θz (G). Defining t (g) = t (g̃) for

g ∈ G, we see that θz = γz = δt is a 2-coboundary of G. Hence z ∈ Gγ ∩ Z(G).
By Proposition 4.1, z ∈ Zcω(G). Conversely, if z ∈ Zcω(G), then there exists tz ∈
C1(G,C×) such that δtz = γz. Then V (z, tz) is a 1-dimensional Dω(G)-module.
Thus we have proved

Lemma 5.1. Let K be a conjugacy class of G, gK a fixed element of K and t an
irreducible character of CθgK (CG(gK)). Then V (K, t) is a simple current ofDω(G)
if, and only if, K = {z} for some z ∈ Zcω(G) and δt = θz. ��

For simplicity, we denote the simple current V ({z}, t) by V (z, t). By [2] or [7]
the character ξz,t of V (z, t) is given by

ξz,t (egx) = δg,zt (x) . (24)

Fix a family of normalized 1-cochains {tz}z∈Zcω(G) such that δtz = γz. Then for
any simple current V (z, t) of Dω(G), t is a normalized 1-cochain of G satisfying
δt = θz. Thus, t = tzχ for some χ ∈ Ĝ. Therefore,

SC(G,ω) = {V (z, tzχ) | z ∈ Zcω(G) and χ ∈ Ĝ} .

Suppose V (z′, tz′χ ′) is another simple current of Dω(G). Note that

γx(z, z
′) = θx(z, z′) and γz(x, y) = θz(x, y) (25)

for all z, z′ ∈ Z(G) and x, y ∈ G. By considering the action of egx, we find

V (z, tzχ)⊗ V (z′, tz′χ ′) = V (zz′, tzz′β(z, z′)χχ ′) (26)

where β is given by (10). Therefore, we have an exact sequence

1 i SC(G, ω)
p

1Ĝ Zcw(G)

of abelian groups, where i : χ 
→ V (1, χ) and p : V (z, tzχ) 
→ z. With the same
fixed family {tz}z∈Zcω(G) of 1-cochains, u(χ, z) = ∑

g∈G tz(g)egz (z ∈ Zcω(G),
χ ∈ Ĝ) are all the central group-like elements of Dω(G). By Lemma 3.5, the
2-cocycle associated with the extension
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1 i p
1Ĝ G0(Dw(G)) Zcw(G)

is also β, and so we have proved

Proposition 5.2. Fix a family {tz}z∈Zcω(G) in C1(G,C×) such that δtz = θz. Then

the map ζ : Γ0(D
ω(G)) → SC(G,ω), u(χ, z) 
→ V (z, tzχ) for χ ∈ Ĝ and

z ∈ Zcω(G), defines an isomorphism of the following extensions:

1 i SC(G, )
p

1

1

id

i

ζ

p

id

1.G0(D (G))

Ĝ

Ĝ Zc (G)

Zc (G)

��
Remark 5.3. The preceding proposition implies that these extensions depend only
on the cohomology class of ω. In fact, if ω and ω′ are cohomologous 3-cocycles
of G, then Zcω(G) = Zcω′ (G) but Γ (Dω(G)) and Γ (Dω

′
(G)) are not necessarily

isomorphic.

In view of Proposition 5.2, we will identify the group of simple currents
SC(G,ω) with the group Γ0(D

ω(G)) of central group-like elements of Dω(G)
under the map ζ . In particular, we simply write the simple current V (z, tzχ) as
u(χ, z).

The associativity constraint φ and the braiding c of Rep(Dω(G)) define an
Eilenberg–MacLane 3-cocycle (φ̃, d) of SC(G,ω) ([3, 4]) given by

φ̃−1(u(χ1, z1), u(χ2, z2), u(χ3, z3))

:=
(
(u(χ1, z1)⊗ u(χ2, z2))⊗ u(χ3, z3)

φ·−→ u(χ1, z1)⊗ u(χ2, z2)⊗ u(χ3, z3)

)

(27)

and

d(u(χ1, z1)|u(χ2, z2)) := cu(χ1,z1),u(χ2,z2)

=
(
u(χ1, z1)⊗ u(χ2, z2)

R·−→ u(χ1, z1)⊗ u(χ2, z2)
f lip−−→ u(χ2, z2)⊗ u(χ1, z1)

)
,

(28)

where R =∑g,h∈G eg ⊗ ehg is the universal R-matrix ofDω(G). By (24), one can
compute directly that
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φ̃(u(χ1, z1), u(χ2, z2), u(χ3, z3)) = ω(z1, z2, z3) , (29)

d(u(χ1, z1)|u(χ2, z2)) = χ2(z1)tz2(z1) . (30)

The double braiding on u(χ1, z1)⊗ u(χ2, z2) is then the scalar

d(u(χ1, z1)|u(χ2, z2)) · d(u(χ2, z2)|u(χ1, z1)),

which defines a symmetric bicharacter (·|·) on SC(G,ω). Using (24) to compute
directly, we obtain

(u(χ1, z1)|u(χ2, z2)) = χ1(z2)χ2(z1)tz2(z1)tz1(z2)

for all u(χ1, z1), u(χ2, z2) ∈ SC(G,ω). In general, SC(G,ω) is degenerate
relative to this symmetric bicharacter (·|·). However, there could be nondegenerate
subgroups of SC(G,ω).

Remark 5.4. It follows from [11, Cor 7.11] or [12, Cor. 2.16] that a subgroup A ⊆
SC(G,ω) is nondegenerate if, and only if, the full subcategory A of Rep(Dω(G))
generated by A is a modular tensor category.

We now assume A is an ω-admissible subgroup of G. Let ν be a normalized
cochain in C1(A, Ĝ) such that β(a, b) = ν(a)ν(b)ν(ab)−1 for all a, b ∈ A.
Therefore, by Remark 3.7, the assignment p̃ν : a 
→ u(ν(a)−1, a) defines a group
monomorphism from A to SC(G,ω) which is also a section of p : p−1(A)→ A.
HenceA admits a bicharacter (·|·)ν via the restriction of (·|·) to p̃ν(A). In particular,

(a|b)ν = (p̃ν(a)|p̃ν(b)) = tb(a)ta(b)

ν(b)(a)ν(a)(b)
. (31)

Obviously, (·|·)ν is nondegenerate if, and only if, p̃ν(A) is a nondegenerate subgroup
of SC(G,ω). On the other hand, ν also defines the quasi-Hopf algebra Dω(G,A)
and a surjective quasi-Hopf algebra homomorphism πν : Dω(G) → Dω(G,A).
In particular, Rep(Dω(G,A)) is a tensor (full) subcategory of Rep(Dω(G)), so it
inherits the braiding c of Rep(Dω(G)). We can now state the main theorem in this
section.

Theorem 5.5. Let A be an ω-admissible subgroup ofG, ν a normalized cochain in
C1(A, Ĝ) , and p̃ν : A→ SC(G,ω) the associated group monomorphism. Then

cp̃ν(a),V ◦ cV,p̃ν(a) = idV⊗p̃ν (a)

for all a ∈ A and irreducible V ∈ Rep(Dω(G,A)). Moreover, Rep(Dω(G,A)) is a
modular tensor category if, and only if, the bicharacter (·|·)ν onA is nondegenerate.

Proof. Since a braiding cU,V : U ⊗ V → V ⊗ U is a natural isomorphism and the
regular representation U of Dω(G,A) has every irreducible V ∈ Rep(Dω(G,A))
as a summand, it suffices to show that
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cp̃ν (a),U ◦ cU,p̃ν (a) = idU⊗p̃ν (a)

for all a ∈ A. Let cω = (G/A = G, θ, γ ) be an associated cleft object of CGω
and πν : Dω(G)→ Dω(G,A) an epimorphism of quasi-Hopf algebras constructed
in the proof of Theorem 3.6 using ν. In particular, πν(egx) = χx(g) egx for all
g, x ∈ G where x denotes the coset xA and the scalar χx(g) is given by (17).

Let 1p̃ν(a) denote a basis element of p̃ν(a) = V (a, taν(a)−1). Then, by (24),

egx · 1p̃ν (a) = δg,a
ta(x)

ν(a)(x)
1p̃ν (a) .

Note that we can take U = Dω(G,A) as a Dω(G)-module via πν , and so

egx · ehy = πν(egx)ehy = δgx,h χx(g) θg(x, y)egxy

for all g, h, x, y ∈ G. Since the R-matrix of Dω(G) is given by R =∑g,h∈G eg ⊗
ehg, we have

cp̃ν(a),U ◦ cU,p̃ν(a)(egy ⊗ 1p̃ν (a)) = R21R · (egy ⊗ 1p̃ν (a))

= ta(g)

ν(a)(g)
R21 · (egy ⊗ 1p̃ν (a))

= ta(g)

ν(a)(g)
χa(g)θg(a, y) egy ⊗ 1p̃ν(a)

= egy ⊗ 1p̃ν(a)

for all a ∈ A. This proves the first assertion.

Let A be the full subcategory of C = Rep(Dω(G)) generated by p̃ν(A). The
first assertion of the theorem implies that Rep(Dω(G,A)) is a full subcategory of the
centralizer CC (A ) of A in C . Since dimA = |A| and Rep(Dω(G)) is a modular
tensor category, by [12, Thm. 3.2],

dimCC (A ) = dimDω(G)/dimA = |G|2/|A| = dimDω(G,A).

Therefore

CC (A ) = Rep(Dω(G,A)) and CC (Rep(Dω(G,A))) = A .

By Remark 5.4, A is a modular category if, and only if, p̃ν(A) is nondegenerate
subgroup of SC(G,ω); this is equivalent to the assertion that the bicharacter (·|·)ν
onA is nondegenerate. It follows from [12, Thm. 3.2 and Cor. 3.5] thatA is modular
if, and only if, CC (A ) is modular. This proves the second assertion. ��
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The choice of cochain ν ∈ C1(A, Ĝ) in the preceding theorem determines
an embedding p̃ν of A into SC(G,ω). Therefore, the degeneracy of p̃ν(A) in
SC(G,ω) depends on the choice of ν. However, the degeneracy of p̃ν(A) can also
be independent of the choice of ν in some situations. Important examples of this are
contained in the next result.

Lemma 5.6. If A is an ω-admissible subgroup of G such that A ∼= Z2 or A ≤
[G,G]. Then the bicharacter (·|·)ν on A is independent of the choice of ν.

Proof. Suppose ν′ ∈ C1(A, Ĝ) is another cochain satisfying the condition of
Theorem 5.5. Then there is a group homomorphism f : A → Ĝ such that
ν′(a)(b) = f (a)(b)ν(a)(b). Thus the associated bicharacter (·|·)ν ′ is given by

(a|b)ν ′ = f (a)(b)−1ν(a)(b)−1f (b)(a)−1ν(b)(a)−1ta(b)tb(a)

= f (a)(b)−1f (b)(a)−1(a|b)ν. (32)

If A ⊆ G′, then f (a)(b) = f (b)(a) = 1 for all a, b ∈ A, whence (a|b)ν = (a|b)ν ′ .
On the other hand, if A is a group of order 2 generated by z, then f (z)(z)2 = 1,

so that

(z, z)ν ′ = f (z)(z)2(z|z)ν = (z|z)ν . ��
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On the Structure of N-Graded Vertex Operator
Algebras

Geoffrey Mason∗ and Gaywalee Yamskulna†

Abstract We consider the algebraic structure of N-graded vertex operator algebras
with conformal grading V = ⊕n≥0Vn and dimV0 ≥ 1. We prove several results
along the lines that the vertex operators Y (a, z) for a in a Levi factor of the Leibniz
algebra V1 generate an affine Kac–Moody subVOA. If V arises as a shift of a self-
dual VOA of CFT-type, we show that V0 has a “de Rham structure” with many of the
properties of the de Rham cohomology of a complex connected manifold equipped
with Poincaré duality.

Key words Vertex operator algebra • Lie algebra • Leibniz algebra.
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1 Introduction

The purpose of this paper is the study of the algebraic structure of N-graded vertex
operator algebras (VOAs). A VOA V = (V , Y, 1, ω) is called N-graded if it has
no nonzero states of negative conformal weight, so that its conformal grading takes
the form

V = ⊕∞n=0Vn. (1)
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The VOAs in this class which have been most closely investigated hitherto are
those of CFT-type, where one assumes that V0 = C1 is spanned by the vacuum
vector. (It is well known that a VOA of CFT-type is necessarily N-graded.) Our
main interest here is in the contrary case, when dimV0 ≥ 2.

There are several available methods of constructing N-graded vertex algebras.
One that particularly motivates the present paper arises from the cohomology of the
chiral de Rham complex of a complex manifoldM , due to Malikov, Schechtman and
Vaintrob [MS1,MS2,MSV]. In this construction V0 (which is always a commutative
algebra with respect to the −1th operation ab := a(−1)b) is identified with the de
Rham cohomology H ∗(M). One can also consider algebraic structures defined on
V0⊕ V1 or closely related spaces, variously called 1-truncated conformal algebras,
vertex A-algebroids, and Lie A-algebroids [GMS, Br, LY], and construct N-graded
vertex algebras from a 1-truncated conformal algebra much as one constructs affine
VOAs from a simple Lie algebra. A third method involves shifted VOAs [DM3].
Here, beginning with a VOA V = (V , Y, 1, ω), one replaces ω by a second
conformal vector ωh := ω + h(−2)1 (h ∈ V1) so that V h := (V , Y, 1, ωh) is a new
VOA with the same Fock space, vacuum and set of fields as V . We call V h a shifted
VOA. For propitious choices of V and h (lattice theories were used in [DM3]) one
can construct lots of shifted VOAs that are N-graded. In particular, if V is rational,
then V h is necessarily also rational, and in this way one obtains N-graded rational
VOAs that are not of CFT-type.

Beyond these construction techniques, the literature devoted to the study of
N-graded VOAs per se is sparse. There are good reasons for this. For a VOA of
CFT-type the weight 1 space V1 carries the structure of a Lie algebra L with respect
to the bracket [ab] = a(0)b (a, b ∈ V1), and the modes of the corresponding vertex
operators Y (a, z) close on an affinization L̂ of L. For a general VOA, N-graded or
not, this no longer pertains. Rather, V1 satisfies the weaker property of being a left
Leibniz algebra (a sort of Lie algebra for which skew-symmetry fails), but one can
still ask the question:

what is the nature of the algebra spanned

by the vertex operators Y (a, z) for a ∈ V1? (2)

Next we give an overview of the contents of this paper. Section 2 is concerned
with question (2) for an arbitrary VOA. After reviewing general facts about Leibniz
algebras and their relation to VOAs, we consider the annihilator F ⊆ V1 of the
Leibniz kernel of V1. F is itself a Leibniz algebra, and we show (Theorem 1) that
the vertex operators Y (a, z) for a belonging to a fixed Levi subalgebra S ⊆ F close
on an affine algebra U ⊆ V . Moreover, all such Levi factors F are conjugate in
Aut(V ), so that U is an invariant of V . (Finite-dimensional Leibniz algebras have a
Levi decomposition in the style of Lie algebras, and the semisimple part is a true Lie
algebra.) This result generalizes the ‘classical’ case of VOAs of CFT-type discussed
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above, to which it reduces if dimV0 = 1, and provides a partial answer to (2). We
do not know if, more generally, the same result holds if we replace S by a Levi
factor of V1.

From Sect. 3 on we consider simple N-graded VOAs that are also self-dual in
the sense that they admit a nonzero invariant bilinear form ( , ) : V × V → C

(cf. [L]). By results in [DM2] this implies that V0 carries the structure of a local,
commutative, symmetric algebra, and in particular it has a unique minimal ideal Ct .
This result is fundamental for everything that follows. It permits us to introduce a
second bilinear form 〈 , 〉 : V1 × V1 → C on V1, defined in terms of ( , ) and t , and
we try to determine its radical. Section 3 covers background results, and in Sect. 4
we show (Proposition 2) exactly how Rad〈 , 〉 is related to the annihilator of the
endomorphism t (−1) acting on V1. In all cases known to us we have

Rad〈 , 〉 = AnnV1(t (−1)), (3)

and it is of interest to know if this is always true.
In Sects. 5 and 6 we consider shifted VOAs, more precisely we consider the set-

up in which we have a self-dual VOA (W, Y, 1, ω′) of CFT-type together with an
element h ∈ W1 such that the shifted theory Wh = (W, Y, 1, ω′h) as previously
defined is a self-dual, N-graded VOA V . As we mentioned, triples (W, h, V ) of
this type are readily constructed, and they have very interesting properties. The
main result of Sect. 5 is Theorem 2, which, roughly speaking, asserts that V0 looks
just like the de Rham cohomology of a complex manifold equipped with Poincaré
duality. More precisely, we prove that the eigenvalues of h(0) acting on V0 are
nonnegative integers; the maximal eigenvalue is ν, say, and the ν-eigenspace is 1-
dimensional and spanned by t; and the restriction of the nonzero invariant bilinear
form on V to V0 induces a perfect pairing between the λ- and (ν − λ)-eigenspaces.
One may compare this result with the constructions of Malikov et al. in the chiral
de Rham complex, where the same conclusions arise directly from the identification
of the lowest weight space with H ∗(M) for a complex manifold M . There is, of
course, no a priori complex manifold associated to the shifted triple (W, h, V ), but
one can ask whether, at least in some instances, the cohomology of the chiral de
Rham complex arises from the shifted construction?

In Sect. 8 we present several examples that illustrate the theory described in
the previous paragraph. In particular, we take for W the affine Kac–Moody theory
Lŝl2(k, 0) of positive integral level k and show that it has a canonical shift to a

self-dual, N-graded VOA V = WH (2H is semisimple and part of a Chevalley
basis for sl2). It turns out that the algebra structure on V0 is naturally identified with
H ∗(CPk). We also look at shifts of lattice theoriesWL, where the precise structure
of V0 depends on L.

Keeping the notation of the previous paragraph, in Sect. 6 we use the results of
Sect. 5 to prove that the shifted VOA V indeed satisfies (3). Moreover, if the Lie
algebra W1 on the weight 1 space of the CFT-type VOA W is reductive, we prove
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that Rad〈 , 〉 is the nilpotent radical of the Leibniz algebra V1, i.e., the smallest
ideal in V1 such that the quotient is a reductive Lie algebra. It was precisely for the
purpose of proving such a result that the form 〈 , 〉 was introduced. It is known
[DM1] thatW1 is indeed reductive ifW is regular (rational and C2-cofinite), so for
VOAs obtained as a shift of such a W , we get a precise description of the nilpotent
radical, generalizing the corrresponding result of [DM3].

In Sect. 7 we study simple, self-dual N-graded VOAs that are C2-cofinite. After
reviewing rationality and C2-cofiniteness of vertex operator algebras, we prove
(Theorem 4) that in this case Rad〈 , 〉 lie between the nilpotent radical of V1 and the
solvable radical of V1. In particular, the restriction of 〈 , 〉 to a Levi factor S ⊆ V1 is
nondegenerate; furthermore, the vertex operators Y (a, z) (a ∈ S) close on a tensor
product of WZW models, i.e., simple affine algebras Lĝ(k, 0) of positive integral
level k. Thus we obtain a partial answer to (2) which extends results in [DM4],
where the result was proved for CFT-type VOAs.

2 Leibniz Algebras and Vertex Operator Algebras

In this section, we assume that V is any simple vertex operator algebra

V = ⊕n≥n0Vn,

with no restriction on the nature of the conformal grading.
A left Leibniz algebra is a C-linear space L equipped with a bilinear product, or

bracket, [ ] satisfying

[a[bc]] = [[ab]c] + [b[ac]], (a, b, c ∈ V ).

Thus [a∗] is a left derivation of the algebra L, and L is a Lie algebra if, and only
if, the bracket is also skew-symmetric. We refer to [MY] for facts about Leibniz
algebras that we use below.

Lemma 1. V is a Z-graded left Leibniz algebra with respect to the 0th operation
[ab] := a(0)b. Indeed, there is a triangular decomposition

V = {⊕n≤0Vn
}⊕ V1 ⊕

{⊕n≥2Vn
}

(4)

into left Leibniz subalgebras. Moreover, ⊕n≤0Vn is nilpotent.

Proof. Recall the commutator formula

[u(p), v(q)]w =
∞∑

i=0

(
p

i

)
(u(i)v)(p + q − i)w. (5)
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Upon taking p = q = 0, (5) specializes to

u(0)v(0)w − v(0)u(0)w = (u(0)v)(0)w,

which is the identity required to make V a left Leibniz algebra. The remaining
assertions are consequences of

u(0)(Vn) ⊆ Vn+k−1 (u ∈ Vk).

��
Remark 1. A right Leibniz algebra L has a bracket with respect to which L acts as
right derivations. Generally, a left Leibniz algebra is not a right Leibniz algebra, and
in particular a vertex operator algebra is generally not a right Leibniz algebra.

It is known (e.g., [B, MY]) that a finite-dimensional left Leibniz algebra has a
Levi decomposition. In particular, this applies to the middle summand V1 in (4).
Thus there is a decomposition

V1 = S ⊕ B, (6)

where S is a semisimple Lie subalgebra and B is the solvable radical of V1. As in
the case of a Lie algebra, we call S a Levi subalgebra. Unlike Lie algebras, Levi
factors are generally not conjugate to each other by exponential automorphisms,
i.e., Malcev’s theorem does not extend to Leibniz algebras [MY].

This circumstance leads to several interesting questions in VOA theory. In
particular, what is the nature of the subalgebra of V generated by a Levi subalgebra
S ⊆ V1? Essentially, we want a description of the Lie algebra of operators generated
by the modes a(n) (a ∈ S, n ∈ Z). In the case when V is of CFT-type (i.e., V0 = C1
is spanned by the vacuum), it is a fundamental fact that these modes generate an
affine algebra. Moreover, all Levi subfactors of V1 are conjugate in Aut(V ) (cf.
[M]), so that the affine algebra is an invariant of V . It would be interesting to know
if these facts continue to hold for arbitrary vertex operator algebras. We shall deal
here with a special case.

To describe our result, introduce the Leibniz kernel defined by

N := 〈a(0)a | a ∈ V1〉 = 〈a(0)b + b(0)a | a, b ∈ V1〉 (linear span).

N is the smallest 2-sided ideal of V1 such that V1/N is a Lie algebra. The annihilator
of the Leibniz kernel is

F := AnnV1(N) = {a ∈ V1 |a(0)N = 0}.

This is a 2-sided ideal of V1, in particular it is a Leibniz subalgebra and itself
contains Levi factors. We will prove
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Theorem 1. Let V be a simple vertex operator algebra, with N and F as above.
Then the following hold:

(a) Aut(V ) acts transitively on the Levi subalgebras of F .
(b) Let S ⊆ F be a Levi subalgebra of F . Then u(1)v ∈ C1 (u, v ∈ S), and the

vertex operators Y (u, z) (u ∈ S) close on an affine algebra, i.e.,

[u(m), v(n)] = (u(0)v)(m+ n)+mα(u, v)δm+n,0IdV ,

where u(1)v = α(u, v)1.

We prove the theorem in a sequence of lemmas. Fix a Levi subalgebra S ⊆ F ,
and set

W := ⊕n≤0Vn.

Lemma 2. W is a trivial left S-module, i.e., u(0)w = 0 (u ∈ S,w ∈ W).
Proof. We have to show that each homogeneous space Vn (n ≤ 0), is a trivial left
S-module. Because L(−1) : Vn → Vn+1 is an injective V1-equivariant map for
n �= 0, it suffices to show that V0 is a trivial S-module.

Consider L(−1) : V0 → V1, and set N ′ := L(−1)V0. Because [L(−1), u(0)] =
0, L(−1) is V1-equivariant. By skew-symmetry we have u(0)u = 1/2L(−1)u(1)u.
This shows that N ⊆ N ′. Now because (L(−1)v)(0) = 0 (v ∈ V ) then in particular
N ′(0)V1 = 0. Therefore, S(0)N ′ = 〈u(0)v+ v(0)u | u ∈ S, v ∈ N ′〉 ⊆ N . But S is
semisimple and it annihilates N . It follows that S annihilatesN ′.

Because V is simple, its center Z(V ) = kerL(−1) coincides with C1. By Weyl’s
theorem of complete reducibility, there is an S-invariant decomposition

V0 = C1⊕ J,

and restriction of L(−1) is an S-isomorphism J
∼=→ N ′. Because S annihilates N ′,

it must annihilate J . It therefore also annihilates V0, as we see from the previous
display. This completes the proof of the lemma. ��

Lemma 3. We have

u(k)w = 0 (u ∈ S,w ∈ W, k ≥ 0). (7)

Proof. Because S is semisimple, we may, and shall, assume without loss that u is a
commutator u = a(0)b (a, b ∈ S). Then

(a(0)b)(k)w = a(0)b(k)w− b(k)a(0)w = 0.
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The last equality holds thanks to Lemma 2, and because b(k)w ∈ W for k ≥ 0. The
lemma is proved. ��
Lemma 4. We have

[u(m),w(n)] = 0 (u ∈ S,w ∈ W ;m,n ∈ Z). (8)

Proof. First notice that by Lemma 2,

[u(0),w(n)] = (u(0)w)(n) = 0. (9)

Once again, it is suffices to assume that u = a(0)b (a, b ∈ F). In this case we
obtain, using several applications of (9), that

[u(m),w(n)] = [(a(0)b)(m),w(n)]
= [[a(0), b(m)], w(n)]
= [a(0), [b(m),w(n)]] − [b(m), [a(0),w(n)]]
= [a(0), (b(0)w)(m+ n)+m(b(1)w)(m+ n− 1)]
= 0.

This completes the proof of the lemma. ��
Consider the Lie algebra L of operators on V defined by

L := 〈u(m),w(n) | u ∈ S,w ∈ W ;m,n ∈ Z〉.

If w, x ∈ W , then

[w(m), x(n)] =
∑

i≥0

(
m

i

)
(w(i)x)(m+ n− i),

and w(i)x has weight less than that of w and x whenever w, x ∈ W are
homogeneous and i ≥ 0. This shows that the operators w(m) (w ∈ W,m ∈ Z)

span a nilpotent ideal of L, call it P . Let L0 be the Lie subalgebra generated by
u(m) (u ∈ S0,m ∈ Z). By Lemma 4, L0 is also an ideal of L; indeed

L = P + L0, [P,L0] = 0.

Next, for u, v ∈ S we have

[u(m), v(n)] = (u(0)v)(m+ n)+
∑

i≥1

(
m

i

)
(u(i)v)(m+ n− i). (10)
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So if w ∈ S, then by Lemma 4 once more,

[w(0), [u(m), v(n)]] = [w(0), (u(0)v)(m+ n)] = (w(0)(u(0)v))(m+ n).

This shows that L0 coincides with its derived subalgebra. Furthermore, the short
exact sequence

0 → P ∩ L0 → L0 → L0/(P ∩ L0)→ 0

shows that L0 is a perfect central extension of the loop algebra L̂(S0) ∼= L0/(P ∩
L0). Because H 2(L̂(G)) is 1-dimensional for a finite-dimensional simple Lie
algebraG, we can conclude that dim(P ∩ L0) is finite.

Taking m = 1 in (10), it follows that

(u(1)v)(n) ∈ P ∩ L0 (n ∈ Z). (11)

Now if u(1)v /∈ Z(V ), then all of the modes (u(1)v)(n), n < 0, are nonzero, and
indeed linearly independent. This follows from the creation formula

∑

n≤−1

(u(1)v)(n)1z−n−1 = ezL(−1)u(1)v.

Because P ∩ L0 is finite-dimensional and contains all of these modes, this is
not possible. We deduce that in fact u(1)v ∈ Z(V ) = C, say u(1)v =
α(u, v)1, α(u, v) ∈ C.

Taking m = 2, 3, . . . in (10), we argue in the same way that u(i)v ∈ Z(V ) for
i ≥ 2. Since Z(V ) ⊆ V0, this means that u(i)v = 0 for i ≥ 2. Therefore, (10)
now reads

[u(m), v(n)] = (u(0)v)(m+ n)+mα(u, v)δm+n,0Id, (12)

where u(1)v = α(u, v)1. This completes the proof of part (b) of the Theorem.
It remains to show that Aut(V ) acts transitively on the set of Levi subalge-

bras of F .

Lemma 5. [FF] consists of primary states, i.e., L(k)[FF ] = 0 (k ≥ 1).

Proof. It suffices to show that L(k)a(0)b = 0 for a, b ∈ F and k ≥ 1. Since
L(k)b ∈ W then a(0)L(k)b = 0 by Lemma 2. Using induction on k, we then have

L(k)a(0)b = [L(k), a(0)]b
= (L(−1)a)(k + 1)b + (k + 1)(L(0)a)(k)b+ (L(k)a)(0)b
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= (L(k)a)(0)b
=
∑

i≥0

(−1)i+1/i!L(−1)ib(i)L(k)a = 0,

where we used skew-symmetry for the fourth equality, and Lemma 3 for the last
equality. The lemma is proved. ��

Finally, by [MY], Theorem 3.1, if S1, S2 are a pair of Levi subalgebras of F ,
then we can find x ∈ [FF ] such that ex(0)(S1) = S2. Because x is a primary state,
it is well known that ex(0) is an automorphism of V . This completes the proof of
Theorem 1. ��

3 N-Graded Vertex Operator Algebras

In this section, we assume that V is a simple, self-dual, N-graded vertex operator
algebra. We are mainly interested in the case that dimV0 ≥ 2. There is a lot of
structure available to us in this situation, and in this section we review some of the
details, and at the same time introduce some salient notation.

The self-duality of V means that there is a nonzero bilinear form

( , ) : V × V → C

that is invariant in the sense that

(Y (u, z)v,w) =
(
v, Y (ezL(1)(−z−2)L(0)u, z−1)w

)
(u, v,w ∈ V ). (13)

( , ) is necessarily symmetric [FHL], and because V is simple, it is then nondegen-
erate. The simplicity of V also implies (Schur’s Lemma) that ( , ) is unique up to
scalars. By results of Li [L], there is an isomorphism between the space of invariant
bilinear forms and V0/L(1)V1. Therefore, L(1)V1 has codimension 1 in V0. For
now, we fix a nonzero form ( , ), but do not choose any particular normalization.

If u ∈ Vk is quasiprimary (i.e., L(1)u = 0), then (13) is equivalent to

(u(n)v,w) = (−1)k(v, u(2k − n− 2)w) (n ∈ Z). (14)

In particular, taking u to be the conformal vector ω ∈ V2, which is always
quasiprimary, and n = 1 or 2 yields

(L(0)v,w) = (v, L(0)w), (15)

(L(1)v,w) = (v, L(−1)w). (16)
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We write P ⊥ Q for the direct sum of subspaces P,Q ⊆ V that are orthogonal
with respect to ( , ). Thus (Vn, Vm) = 0 for n �= m by (15), so that

V =⊥n≥0 Vn.

In particular, the restriction of ( , ) to each Vn is nondegenerate. We adopt the
following notational convention for U ⊆ Vn:

U⊥ := {a ∈ Vn | (a,U) = 0}.

The center of V is defined to be Z(V ) := kerL(−1). Because V is simple, we
have Z(V ) = C1 (cf. [LL, DM2]). Then from (16) we find that

(L(1)V1)
⊥ = C1. (17)

V0 carries the structure of a commutative associative algebra with respect to the
operation a(−1)b (a, b ∈ V0). Since all elements in V0 are quasiprimary, we can
apply (14) with u, v,w ∈ V0 to obtain

(u(−1)v,w) = (v, u(−1)w). (18)

Thus ( , ) is a nondegenerate, symmetric, invariant bilinear form on V0, whence V0
is a commutative symmetric algebra, or Frobenius algebra.

What is particularly important for us is that because V is simple, V0 is a local
algebra, i.e., the Jacobson radical J := J (V0) is the unique maximal ideal of V0,
and every element of V0 \ J is a unit. This follows from results of Dong–Mason
([DM2], Theorem 2 and Remark 3).

For a symmetric algebra, the map I → I⊥ is an inclusion-reversing duality on
the set of ideals. In particular, because V0 is a local algebra, it has a unique minimal
(nonzero) ideal, call it T , and T is 1-dimensional. Indeed,

T = J⊥ = AnnV0(J ) = Ct, (19)

for some fixed, but arbitrary, nonzero element t ∈ T . We have

T ⊕ L(1)V1 = V0.

This is a consequence of the nondegeneracy of ( , ) on V0, which entails thatL(1)V1
contains no nonzero ideals of V0. In particular, (17) implies that

(t, 1) �= 0. (20)

We will change some of the notation from the previous section by setting N :=
L(−1)V0 (it was denoted N ′ before). In the proof of Lemma 2 we showed that N
contains the Leibniz kernel of V1. In particular, V1/N is a Lie algebra. We write
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N0/N = Nil(V1/N), N1/N = Nilp(V1/N),B/N = solv(V1/N), (21)

the nil radical, nilpotent radical, and solvable radical respectively of V1/N . N0/N

is the largest nilpotent ideal in V1/N , N1/N is the intersection of the annihilators
of simple V1/N-modules, and B/N the largest solvable ideal in V1/N . It is well
known that N1 ⊆ N0 ⊆ B. Moreover, N1/N = [V1/N, V1/N] ∩ B/N , V1/N1 is
a reductive Lie algebra, and N1 is the smallest ideal in V1 with this property. Note
that N0 and B are also the largest nilpotent, and solvable ideals respectively in the
left Leibniz algebra V1.

Each of the homogeneous spaces Vn is a left V1-module with respect to the 0th
bracket. Because u(0) = 0 for u ∈ N , it follows that Vn is also a left module over
the Lie algebra V1/N . Since V0 = C1 ⊕ J , L(−1) induces an isomorphism of
V1-modules

L(−1) : J ∼=→ N. (22)

Remark 2. Most of the structure we have been discussing concerns the 1-truncated
conformal algebra V0 ⊕ V1 [Br, GMS, LY], and many of our results can be couched
in this language.

4 The Bilinear Form 〈 , 〉

We keep the notation of the previous section; in particular t ∈ V0 spans the unique
minimal ideal of V0. We introduce the bilinear form 〈 , 〉 : V1 ⊗ V1 → C, defined
as follows:

〈u, v〉 := (u(1)v, t), (u, v ∈ V1). (23)

We are interested in the radical of 〈 , 〉, defined as

rad〈 , 〉 := {u ∈ V1 | 〈u, V1〉 = 0}.
We will see that 〈 , 〉 is a symmetric, invariant bilinear form on the Leibniz algebra
V1. The main result of this section (Proposition 2) determines the radical in terms of
certain other subspaces that we introduce in due course. In order to study 〈 , 〉 and
its radical, we need some preliminary results.

Lemma 6. We have u(0)J ⊆ J and u(0)T ⊆ T for u ∈ V1. Moreover, the left
annihilator

M := {u ∈ V1 | u(0)T = 0}

is a 2-sided ideal of V1 of codimension 1, andM = (L(−1)T )⊥.

Proof. Any derivation of a finite-dimensional commutative algebra B leaves invari-
ant both the Jacobson radical J (B) and its annihilator. In the case that the derivation
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is u(0), u ∈ V1, acting on V0, this says that the left action of u(0) leaves both J and
T invariant (using (19) for the second assertion). This proves the first two statements
of the lemma.

For u ∈ V1 we have

(L(−1)t, u) = (t (−2)1, u) = (1, t (0)u) = −(1, u(0)t). (24)

Now because T is the unique minimal ideal in V0 then T ⊆ J and hence
dimL(−1)T = 1 by (22). Then (24) and (20) show that (L(−1)T )⊥ = M has
codimension exactly 1 in V1.

Finally, using the commutator formula [u(0), v(0)] = (u(0)v)(0) applied with
one of u, v ∈ M and the other in V1, we see that (u(0)v)(0)T = 0 in either case.
Thus u(0)v ∈ M , whence M is a 2-sided ideal in V1. This completes the proof of
the lemma. ��
Lemma 7. We have

t (−2)J = 0.

Proof. Let a ∈ J, u ∈ V1. Then

(t (−2)a, u) = (a, t (0)u) = −(a, u(0)t) = 0.

The last equality follows from u(0)t ∈ T (Lemma 6) and T = J⊥ (19). We deduce
that t (−2)J ⊆ V⊥1 = 0, and the lemma follows. ��
Proposition 1. 〈 , 〉 is a symmetric bilinear form that is invariant in the sense that

〈v(0)u,w〉 = 〈v, u(0)w〉 (u, v,w ∈ V1).

Moreover N ⊆ rad 〈 , 〉.
Proof. By skew-symmetry we have u(1)v = v(1)u for u, v ∈ V1, so the symmetry
of 〈 , 〉 follows immediately from the definition (23). If u ∈ N , then u = L(−1)a
for some a ∈ J by (22), and we have

〈u, v〉 = ((L(−1)a)(1)v, t) = −(a(0)v, t)
= −(v, a(−2)t) = (v, t (−2)a − L(−1)t (−1)a) = 0.

Here, we used t (−2)a = 0 (Lemma 7) and t (−1)a ∈ t (−1)J = 0 to obtain the last
equality. This proves the assertion that N ⊆ rad〈 , 〉.
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As for the invariance, we have

〈u(0)v,w〉 = ((u(0)v)(1)w, t) = (u(0)v(1)w − v(1)u(0)w, t).
= (u(0)v(1)w, t)− 〈v, u(0)w〉.

Now V0 = C1⊕J, u(0)1 = 0, and u(0)J ⊆ J = T ⊥. Therefore, (u(0)v(1)w, t) =
0, whence we obtain 〈u(0)v,w〉 = −〈v, u(0)w〉 from the previous display. Now
because N ⊆ rad〈 , 〉 we see that

〈v(0)u,w〉 = −〈u(0)v − L(−1)u(1)v,w〉 = 〈v, u(0)w〉,

as required. This completes the proof of the proposition. ��
Lemma 8. We have

〈u, v〉 = −(v, u(−1)t), u, v ∈ V1. (25)

In particular,

rad〈 , 〉 = {u ∈ V1 | u(−1)t = 0}.

Proof. The first statement implies the second, so it suffices to establish (25). To this
end, we apply (13) with u, v ∈ V1, w = t to find that

〈u, v〉 = (u(1)v, t) = −(v, u(−1)t)− (v, (L(1)u)(−2)t).

On the other hand, L(1)u ∈ V0 = C1 ⊕ J , so that (L(1)u)(−2)t = a(−2)t =
−t (−2)a + L(−1)t (−1)a for some a ∈ J . Since t (−1)a = t (−2)a = 0 (the latter
equality thanks to Lemma 7), the final term of the previous display vanishes, and
what remains is (25). The lemma is proved. ��

We introduce

P := {u ∈ V1 | 〈u,M〉 = 0},
AnnV1(t (−1)) := {u ∈ V1 | t (−1)u = 0}.

Lemma 9. We have

P = {u ∈ V1 | t (−1)u ∈ L(−1)T },

and this is a 2-sided ideal of V1.
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Proof. Let m ∈ M,u ∈ V1. By (25) we have

〈u,m〉 = −(m, u(−1)t).

But by Lemma 6 we have M⊥ = L(−1)T . Hence, the last display implies that
P = {u ∈ V1 | u(−1)t ∈ L(−1)T }. Furthermore, we have u(−1)t = t (−1)u −
L(−1)t (0)u = t (−1)u+L(−1)u(0)t ∈ t (−1)u+L(−1)T by Lemma 6 once more.
Thus u(−1)t ∈ L(−1)T if, and only if, t (−1)u ∈ L(−1)T . The first assertion of
the lemma follows.

Because N ⊆ rad〈 , 〉 thanks to Proposition 1, then certainlyN ⊆ P . So in order
to show that P is a 2-sided ideal in V1, it suffices to show that it is a right ideal. To
see this, let a ∈ P, n ∈ M,u ∈ V1. By Lemma 6 and Proposition 1 we find that

〈a(0)u, n〉 = 〈a, u(0)n〉 ∈ 〈a,M〉 = 0.

This completes the proof of the lemma. ��
Lemma 10. We haveM ∩ AnnV1(t (−1)) = M ∩ rad〈 , 〉.

Proof. If u ∈ M , then t (−1)u = u(−1)t − L(−1)u(0)t = u(−1)t . Hence for
u ∈ M , we have u ∈ AnnV1(t (−1))⇔ u(−1)t = 0 ⇔ u ∈ rad〈 , 〉, where we used
Lemma 8 for the last equivalence. The lemma follows. ��
Lemma 11. At least one of the containments rad〈 , 〉 ⊆ M, AnnV1(t (−1)) ⊆ M
holds.

Proof. Suppose that we can find v ∈ rad〈 , 〉 \M . Then v(−1)t = 0 by Lemma 8,
and v(0)t = λt for a scalar λ �= 0. Rescaling v, we may, and shall, take λ = 1. Then

0 = v(−1)t = t (−1)v − L(−1)t (0)v

= t (−1)v + L(−1)v(0)t = t (−1)v + L(−1)t.

Then for u ∈ AnnV1(t (−1)) we have

(L(−1)t, u) = −(t (−1)v, u) = −(v, t (−1)u) = 0,

which shows that AnnV1(t (−1)) ⊆ (L(−1)t)⊥ = M (using Lemma 6). This
completes the proof of the Lemma. ��

The next result almost pins down the radical of 〈 , 〉.
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Proposition 2. Exactly one of the following holds:

(i) AnnV1(t (−1)) = rad〈 , 〉 ⊂ P ;
(ii) AnnV1(t (−1)) ⊂ rad〈 , 〉 = P ;
(iii) rad〈 , 〉 ⊂ AnnV1(t (−1)) = P.

In each case, the containment ⊂ is one in which the smaller subspace has
codimension one in the larger subspace.

Proof. First note from Lemma 9 that AnnV1(t (−1)) ⊆ P ; indeed, since
dimL(−1)T = 1 then the codimension is at most 1. Also, it is clear from the
definition of P that rad〈 , 〉 ⊆ P .

Suppose first that the containment AnnV1(t (−1)) ⊂ P is proper. Then we can
choose v ∈ P \AnnV1 t (−1) such that t (−1)v = L(−1)t �= 0. If u ∈ AnnV1(t (−1)),
we then obtain

(L(−1)t, u) = (t (−1)v, u) = (v, t (−1)u) = 0,

whence u ∈ (L(−1)t)⊥ = M by Lemma 6. This shows that AnnV1(t (−1)) ⊆
M . By Lemma 10 it follows that AnnV1(t (−1)) = M ∩ rad〈 , 〉. Now if also
rad〈 , 〉 ⊆ M , then Case 1 of the theorem holds. On the other hand, if rad〈 , 〉 �⊆ M ,
then we have AnnV1(t (−1)) ⊂ rad〈 , 〉 ⊆ P and the containment is proper; since
AnnV1(t (−1)) has codimension at most 1 in P then we are in Case 2 of the theorem.

It remains to consider the case that AnnV1(t (−1)) = P ⊇ rad〈 , 〉. Suppose
the latter containment is proper. Because M has codimension 1 in V1, it follows
from Lemma 10 that rad〈 , 〉 has codimension exactly 1 in AnnV1(t (−1)), whence
Case 3 of the theorem holds. The only remaining possibility is that AnnV1(t (−1)) =
P = rad〈 , 〉, and we have to show that this cannot occur. By Lemma 11 we
must have rad〈 , 〉 ⊆ M , so that M/rad〈 , 〉 is a subspace of codimension 1 in
the nondegenerate space V1/rad〈 , 〉 (with respect to 〈 , 〉). But then the space
orthogonal to M/rad〈 , 〉, that is P/rad〈 , 〉, is 1-dimensional. This contradiction
completes the proof of the Theorem. ��
Remark 3. In all cases that we know of, it is (i) of Proposition 2 that holds. This
circumstance leads us to raise the question, whether this is always the case? We
shall later see several rather general situations where this is so. At the same time,
we will see how rad〈 , 〉 is related to the Leibniz algebra structure of V1.

5 The de Rham Structure of Shifted Vertex
Operator Algebras

In the next few sections we consider N-graded vertex operator algebras that are
shifts of vertex operator algebras of CFT-type [DM3].
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Let us first recall the idea of a shifted vertex operator algebra [DM3]. Suppose
that W = (W, Y, 1, ω′) is an N-graded vertex operator algebra of central charge c′
and Y (ω′, z) =: ∑n L

′(n)z−n−2. It is easy to see that for any h ∈ W1, the state
ω′h := ω′ + L′(−1)h is also a Virasoro vector, i.e., the modes of ω′h satisfy the
relations of a Virasoro algebra of some central charge c′h (generally different from
c′). (The proof of Theorem 3.1 in [DM3] works in the slightly more general context
that we are using here.) Now consider the quadruple

Wh := (W, Y, 1, ω′h), (26)

which is generally not a vertex operator algebra. If it is, we call it a shifted vertex
operator algebra.

We emphasize that in this situation,W and Wh share the same underlying Fock
space, the same set of vertex operators, and the same vacuum vector. Only the
Virasoro vectors differ, although this has a dramatic effect because it means that
W andWh have quite different conformal gradings, so that the two vertex operator
algebras seem quite different.

Now let V = (V , Y, 1, ω) be a simple, self-dualN-graded vertex operator algebra
as in the previous two sections. The assumption of this section is that there is a self-
dual VOAW of CFT-type such thatWh = V . That is, V arises as a shift of a vertex
operator algebra of CFT-type as described above. Thus h ∈ W1 and

(W, Y, 1, ω′h) = (V , Y, 1, ω).

(Note that by definition,W has CFT-type ifW0 = C1. In this case,W is necessarily
N-graded by [DM3], Lemma 5.2.) Although the two vertex operator algebras share
the same Fock space, it is convenient to distinguish between them, and we shall do
so in what follows. We sometimes refer to (W, h, V ) as a shifted triple. Examples
are constructed in [DM3], and it is evident from those calculations that there are
large numbers of shifted triples.

There are a number of consequences of the circumstance that (W, h, V ) is a
shifted triple. We next discuss some that we will need. Because ω = ω′h = ω′ +
L′(−1)h then

L(n) = (ω′ + L(−1)h)(n+ 1) = L′(n)− (n+ 1)h(n), (27)

in particularL(0) = L′(0)−h(0). Because h ∈ W1, we also have [L′(0), h(0)] = 0.
Then becauseL′(0) is semisimple with integral eigenvalues, the same is true of h(0).
Set

Wm,n := {w ∈ W | L′(0)w = mw,h(0)w = nw}.

Hence,

Vn = ⊕m≥0Wm,m−n,
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and in particular

V0 = C1⊕m≥1 Wm,m, (28)

V1 = ⊕m≥1Wm,m−1. (29)

(28) follows becauseW is of CFT-type, so thatW0,0 = C1 andWm,n = 0 for n < 0.
We have L(0)h = L′(0)h − h(0)h. Because W is of CFT-type then W1 is a Lie

algebra with respect to the 0th bracket, and in particular h(0)h = 0. Therefore,
L(0)h = h, that is h ∈ V1. Thus h(0) induces a derivation in its action on the
commutative algebra V0. The decomposition (28) is one of h(0)-eigenspaces, and it
confers on V0 a structure that looks very much like the de Rham cohomology of a
(connected) complex manifold equipped with its Poincaré duality. This is what we
mean by the de Rham structure of V0. Specifically, we have

Theorem 2. Set A = V0 and Aλ := Wλ,λ, the λ-eigenspace for the action of h(0)
on A. Then the following hold;

(i) A = ⊕λAλ, and if Aλ �= 0, then λ is a nonnegative integer.

(ii) A0 = C1.

(iii) Let h(1)h = (ν/2)1. Then Aν = T = Ct .

(iv) Aλ(−1)Aμ ⊆ Aλ+μ.
(v) Aλ ⊥ Aμ = 0 if λ+ μ �= ν.
(vi) If λ+ μ = ν, the bilinear form ( , ) induces a perfect pairing

Aλ × Aμ→ C.

(Here, ( , ) is the invariant bilinear form on V , and T the unique minimal ideal of
V0, as in Sects. 4 and 5.)

Proof. (i) and (ii) are just restatements of the decomposition (28).
Next we prove (iv). Indeed, because h(0) is a derivation of the algebra A, if a ∈

Aλ, b ∈ Aμ, then h(0)a(−1)b = [h(0), a(−1)]b+a(−1)h(0)b = (h(0)a)(−1)b+
μa(−1)b = (λ+ μ)a(−1)b. Part (iv) follows.

Next we note that because W is of CFT-type then certainly h(1)h = (ν/2)1 for
some scalar ν. Now let a, b be as in the previous paragraph. Then

λ(a, b) = (h(0)a, b) = Resz(Y (h, z)a, b)

= Resz(a, Y (ezL(1)(−z−2)L(0)h, z−1)b) (by (13))

= −Reszz
−2(a, Y (h+ zL(1)h, z−1)b)

= −(a, h(0)b)− (a, (L(1)h)(−1)b)

= −μ(a, b)− (a, L′(1)h− 2h(1)h)(−1)b)

= −μ(a, b)+ 2(a, (h(1)h)(−1)b)

= −μ(a, b)+ ν(a, b).
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Here we used the assumption that W is self-dual and of CFT-type to conclude that
L′(1)W1 = 0, and in particular L′(1)h = 0. Thus we have obtained

(λ+ μ− ν)(a, b) = 0. (30)

If λ + μ �= ν, then we must have (a, b) = 0 for all choices of a, b, and this is
exactly what (v) says. Because the bilinear form ( , ) is nondegenerate, it follows
that it must induce a perfect pairing between Aλ and Aμ whenever λ + μ = ν. So
(vi) holds.

Finally, taking λ = 0, we know that A0 = C1 by (ii). Thus A0 pairs with Aν and
dimAν = 1. Because (1, t) �= 0 by (20), and T is an eigenspace for h(0) (Lemma 6),
we see that Aν = T . This proves (iii), and completes the proof of the theorem. ��

6 The Bilinear Form in the Shifted Case

We return to the issue, introduced in Sect. 5, of the nature of the radical of the
bilinear form 〈 , 〉 for an N-graded vertex operator algebra V , assuming now that
V is a shift of a simple, self-dual vertex operator algebra W = (W, Y, 1, ω′) of
CFT-type as in Sect. 5. We will also assume that dimV0 ≥ 2.

We continue to use the notations of Sects. 3–5. We shall see that the question
raised in Remark 3 has an affirmative answer in this case, and that rad〈 , 〉/N is
exactly the nilpotent radical N1/N of the Lie algebra V1/N when W1 is reductive.
The precise result is as follows.

Theorem 3. We have

⊕m≥2 Wm,m−1 ⊆ AnnV1(t (−1)) = rad〈 , 〉. (31)

Moreover, ifW1 is reductive, then

N1 = ⊕m≥2Wm,m−1 = AnnV1(t (−1)) = rad〈 , 〉. (32)

Recall that V1 is a Leibniz algebra,N = L(−1)V0 is a 2-sided ideal in V1, V1/N

is a Lie algebra, and N1/N is the nilpotent radical of V1/N (21). Because W is a
VOA of CFT-type then W1 is a Lie algebra with bracket a(0)b (a, b ∈ W1), and
W1,0 = CW1(h) is the centralizer of h in W1.

Lemma 12. h ∈ P .

Proof. We have to show that 〈h,M〉 = (h(1)M, t) = 0. Since M is an ideal in V1
then M is the direct sum of its h(0)-eigenspaces. Let Mp = {m ∈ M | h(0)m =
pm}. Now h(0)h(1)m = h(1)h(0)m = ph(1)m (m ∈ Mp), showing that
h(1)Mp ⊆ Ap. If p �= 0, then (Ap, t) = 0 by Theorem 2, so that (h(1)Mp, t) = 0
in this case.
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It remains to establish that (h(1)M0, t) = 0. To see this, first note that becauseW
is self-dual thenL′(1)W1 = 0. SinceL′(1) = L(1)+2h(1) then h(1)W1 = L(1)W1,
and in particular h(1)M0 = L(1)M0 (becauseM0 ⊆ V 0

1 = W1,0 ⊆ W1). Therefore,
(h(1)M0, t) = (L(1)M0, t) = (M0, L(−1)t) = 0, where the last equality holds by
Lemma 6. The lemma is proved. ��
Lemma 13. h /∈ AnnV1(t (−1)) ∪ rad〈 , 〉.
Proof. First recall that h(1)h = ν/21. Then we have

〈h, h〉 = (h(1)h, t) = ν/2(1, t) �= 0.

Here, ν �= 0 thanks to Theorem 2 and because we are assuming that dimV0 ≥ 2.
Because h ∈ V1, this shows that 〈h, V1〉 �= 0, so that h /∈ rad〈 , 〉.

Next, using (27) we have L(1)h = L′(1)h − 2h(1)h. Because W is assumed to
be self-dual then L′(1)h = 0, so that L(1)h = −2h(1)h = −ν1. Now

(t (−1)h, h) = (h(−1)t − L(−1)h(0)t, h).

Therefore,

(L(−1)h(0)t, h) = (h(0)t, L(1)h) = −ν2(t, 1).

Also,

(h(−1)t, h) = (t,−h(1)h− (L(1)h)(0)h) = −ν/2(t, 1).

Therefore,

(t (−1)h, h) = (ν2 − ν/2)(t, 1).

Because ν is a positive integer, the last displayed expression is nonzero.
Therefore, t (−1)h �= 0, i.e., h /∈ AnnV1(t (−1)). This completes the proof of the
lemma. ��
We turn to the proof of Theorem 3. First note that by combining Lemmas 12 and 13
together with Proposition 2, we see that cases (ii) and (iii) of Proposition 2 cannot
hold. Therefore, case (i) must hold, that is

rad〈 , 〉 = AnnV1(t (−1)).

From (28) it is clear that, up to scalars, 1 is the only state in V0 annihilated by
h(0). It then follow from Lemma 6 that J = ⊕m≥1Wm,m. In particular, (Wm,m, t) =
0 (m ≥ 1) by (19).
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Now let u ∈ Wm,m−1, v ∈ Wk,k−1 with m ≥ 1, k ≥ 2. Then u(1)v ∈ V0 and
L′(0)u(1)v = (m+ k − 2)u(1)v. Therefore, u(1)v ∈ Wm+k−2,m+k−2, and because
m+ k − 2 ≥ 1 it follows that

〈u, v〉 = (u(1)v, t) = 0.

Because this holds for all u ∈ Wm,m−1 and all m ≥ 1, we conclude that v ∈ rad〈 , 〉.
This proves that⊕m≥2Wm,m−1 ⊆ rad〈 , 〉. Now (31) follows immediately.

Now suppose thatW1 is reductive. BecauseW is self-dual and of CFT-type, it has
(up to scalars) a unique nonzero invariant bilinear form. Let us denote it by (( , )).
In particular, we have

((u, v))1 = u(1)v (u, v ∈ W1).

Because V is simple and V,W have the same set of fields, thenW is also simple.
In particular, (( , )) must be nondegenerate. Now if L is a (finite-dimensional,
complex) reductive Lie algebra equipped with a nondegenerate, symmetric invariant
bilinear form, then the restriction of the form to the centralizer of any semisimple
element in L is also nondegenerate. In the present situation, this tells us that the
restriction of (( , )) to CW1(h) is nondegenerate.

On the other hand, we have

〈u, v〉 = (u(1)v, t) = ((u, v))(1, t)

and (1, t) �= 0 by (20). This shows that the restrictions of 〈 , 〉 and (( , )) to CW1(h)

are equivalent bilinear forms. Since the latter is nondegenerate, so is the former.
Therefore, rad〈 , 〉 ∩ CW1(h) = 0. Now the second and third equalities of (32)
follow from (31) and the decomposition V1 = CW1(h)⊕⊕m≥2Wm,m−1.

To complete the proof of the theorem it suffices to prove the next result.

Lemma 14. We have

N1 = Nilp(V1)(CW1(h))⊕m≥2 Wm,m−1. (33)

In particular, ifW1 is a reductive Lie algebra, then

N1 = ⊕m≥2Wm,m−1. (34)

Proof. Let u ∈ Wk,k−1, v ∈ Wm,m−1 with k ≥ 1,m ≥ 2. Then v(0)u ∈ Wm+k−1 ∩
V1 ⊆ Wm+k−1,m+k−2 and m+ k− 1 > k. This shows that⊕m≥2Wm,m−1 is an ideal
in V1. Moreover, because there is a maximum integer r for which Wr,r−1 �= 0, it
follows that v(0)lV1 = 0 for large enough l, so that the left adjoint action of v(0) on
V1 is nilpotent. This shows that⊕m≥2Wm,m−1 is a nilpotent ideal. Because h(0) acts
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on Wm,m−1 as multiplication by m − 1, then Wm,m−1 = [h,Wm,m−1] for m ≥ 2,
whence in fact ⊕m≥2Wm,m−1 ⊆ N1. Then (33) follows immediately.

Finally, if W1 is reductive, the centralizer of any semisimple element in W1 is
also reductive. In particular, this applies to CW1(h) since h(0) is indeed semisimple,
so (34) follows from (33). This completes the proof of the lemma, and hence also
that of Theorem 3. ��

The VOA W is strongly regular if it is self-dual and CFT-type as well as both
C2-cofinite and rational. For a general discussion of such VOAs see, for example,
[M]. It is known ([M] and [DM1], Theorem 1.1) that in this case W1 is necessarily
reductive. Consequently, we deduce from Theorem 3 that the following holds.

Corollary 1. Suppose thatW is a strongly regular VOA, and that V is a self-dual,
N-graded VOA obtained as a shift ofW . Then rad〈 , 〉 = Nilp(V1). ��
Remark 4. The corollary applies, for example, to the shifted theories V =
L ˆsl2(k, 0)

H discussed in Sect. 8 below. In this case, one can directly compute
the relevant quantities.

7 The C2-Cofinite Case

In this section we are mainly concerned with simple VOAs V that are self-dual
and N-graded as before, but that are also rational, or C2-cofinite, or both. Recall
[DLM1, DLM2, Z] that V is rational if every admissible (or N-gradable) V -module
is completely reducible; C2-cofinite if the span of the states u(−2)v (u, v ∈ V ) has
finite codimension in V ; regular if it is both rational and C2-cofinite; and strongly
regular if it is both regular and self-dual (as discussed in Sect. 3). It is known
[DLM1, DLM2, Z] that both rationality and C2-cofiniteness imply that V -Mod has
only finitely many simple objects.

To motivate the main results of this section, we recall some results about vertex
operator algebras V with V0 = C1. In this case, V1 is a Lie algebra, and if V
is strongly regular, then V1 is reductive ([DM1], Theorem 1.1). It is also known
([DM4], Theorem 3.1) that if V is C2-cofinite, but not necessarily rational, and
S ⊆ V1 is a Levi factor, then the vertex operator subalgebra U of V generated by S
satisfies

U ∼= Lĝ1(k1, 0)⊕ . . .⊕ Lĝr (kr , 0), (35)

i.e., a direct sum of simple affine Kac–Moody Lie algebras Lĝj (kj , 0) of positive
integral level kj .

We want to know to what extent these results generalize to the more general
case when dimV0 > 1. With N = L(−1)V0 as before, we have seen that V1/N

is a Lie algebra. Now V0 = C1 precisely when N = 0, but the natural guess that
V1/N is reductive if V is rational and C2-cofinite is generally false. Thus we need
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to understand the nilpotent radical N1/N of this Lie algebra. That is where the
bilinear form 〈 , 〉 comes in. These questions are naturally related to the issue,
already addressed in Sect. 2, of the structure of the subalgebra of V generated by a
Levi subalgebra of V1. The main result is

Theorem 4. Let V be a simple, self-dual, N-graded vertex operator algebra that is
C2-cofinite, and let V1 = B⊕S with Levi factor S and solvable radical B. Then the
following hold.

1. N1 ⊆ rad〈 , 〉 ⊆ B, and the restriction of 〈 , 〉 to S is nondegenerate. In
particular, a(1)b ∈ C1 for all a, b ∈ S.

2. If U is the vertex operator algebra generated by S, then U satisfies (35).

We start with

Proposition 3. Let V = ⊕∞n=0Vn be an N-graded vertex operator algebra such that
dim V0 > 1. Let X = {xi}i∈I ∪ {yj }j∈J be a set of homogeneous elements in V
which are representatives of a basis of V/C2(V ). Here xi are vectors whose weights
are greater than or equal to 1 and yj are vectors whose weights are zero. Then V is
spanned by elements of the form

xi1(−n1) . . . x
is (−ns)yj1(−m1) . . . y

jk (−mk)1

where n1 > n2 > . . . . > ns > 0 and m1 ≥ m2 ≥ . . . ≥ mk > 0.

Proof. The result follows by modifying the proof of Proposition 8 in [GN]. ��
Notice that for a Lie algebra W ⊂ V1, we have u(0)v = −v(0)u for u, v ∈

W . Hence, L(−1)u(1)v = 0 and u(1)v ∈ C1. Moreover, we have 〈 , 〉1 =
(u(1)v, t)1 = u(1)v for u, v ∈ W .

Let g be a finite-dimensional simple Lie algebra, let h ⊂ g be a Cartan
subalgebra, and let Ψ be the associated root system with simple roots Δ. Also,
we set (·, ·) to be the nondegenerate symmetric invariant bilinear form on g
normalized so that the longest positive root θ ∈ Ψ satisfies (θ, θ) = 2. The
corresponding affine Kac–Moody Lie algebra ĝ is defined as

ĝ = g⊗ C[t, t−1] ⊕ CK,

whereK is central and the bracket is defined for u, v ∈ g, m,n ∈ Z as

[u(m), v(n)] = [u, v](m+ n)+mδm+n,0(u, v)K (u(m) = u⊗ tm).

LetW ⊂ V1 be a Lie algebra such that g ⊂ W and 〈 , 〉 is nondegenerate onW .
If 〈 , 〉 is nondegenerate on g, then the map

ĝ→ End(V ); u(m) 
→ u(m), u ∈ g,m ∈ Z,
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is a representation of the affine Kac–Moody algebra ĝ of level k where

〈 , 〉 = u(1)v = k(u, v) for u, v ∈ g.

Theorem 5. Let W ⊂ V1 be a Lie algebra such that 〈 , 〉 is nondegenerate on W .
If g is a simple Lie subalgebra of W and U is the vertex operator subalgebra of V
generated by g, then 〈 , 〉 is nondegenerate on g, and U is isomorphic to Lĝ(k, 0).
Furthermore, k is a positive integer and V is an integrable ĝ-module.

Proof. We will follow the proof in Theorem 3.1 of [DM4]. First, assume that g =
sl2(C) with standard basis α, xα, x−α . Hence, (α, α) = 2. Since each homogeneous
subspace of V is a completely reducible g-module, then V is also a completely
reducible g-module. A nonzero element v ∈ V is called a weight vector for g of
g-weight λ (λ ∈ Cα) if α(0)v = (α, λ)v. Here, λ ∈ 1

2Zα.
We now make use of Proposition 3. Let X = {xi}i∈I ∪ {yj }j∈J be a set of

homogeneous weight vectors in V which are representatives of a basis of V/C2(V ).
The xi are vectors whose weights are greater than or equal to 1 and yj are
vectors whose weights are zero. Since X is finite, there is a nonnegative elements
λ0 = mα ∈ 1

2Zα such that the weight of each element inX is bounded above by λ0.
For any integer t ≥ 0, we have

⊕n≤t (t+1)/2 Vn ⊆ SpanC{xi1(−n1) . . . x
is (−ns)yj1(−m1) . . . y

jr (−mr)1 |
n1 > n2 > . . . > ns > 0,m1 ≥ m2 ≥ . . . ≥ mr > 0,

0 ≤ s, r ≤ t}. (36)

Furthermore, if n ≤ t (t+1)
2 , then a g-weight vector in Vn has g-weight less than or

equal to 2tλ0 = 2tmα.
Let l be an integer such that l + 1 > 4m and we let

u = (xα)(−1)l(l+1)/21.

We claim that u = 0. Assume u �= 0. By (36), we can conclude that the g-weight
of u is at most 2lmα. This contradicts the direct calculation which shows that the g-
weight of u is l(l+1)

2 α. Hence, u = 0. This implies thatU is integrable. Furthermore,
we have V is integrable, k is a positive integer and 〈 , 〉 is nondegenerate.

This proves the theorem for g = sl2. The general case follows easily from this
(cf. [DM4]). ��
Lemma 15. Let S be a Levi subalgebra of V1. Then 〈 , 〉 is nondegenerate on S
and Rad〈 , 〉 ∩ S = {0}.
Proof. Clearly, for u, v ∈ S, we have u(1)v ∈ C1. Let f : S × S → C1 be a map
defined by f ((u, v)) = u(1)v. Since u(1)v = v(1)u and

(w(0)u)(1)v = −(u(0)w)(1)v = −(u(0)w(1)v − w(1)u(0)v) = w(1)u(0)v
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for u, v,w ∈ S, we can conclude that f is a symmetric invariant bilinear form on S.
For convenience, we set X = Rad(f ). Since S is semisimple and X is a S-module,
these imply that S = X ⊕W for some S-moduleW . Note that W and X are semi-
simple and S ∩ Rad〈 , 〉 ⊆ X.

For u, v ∈ X, we have u(1)v = 0. Hence, the vertex operators Y (u, z), u ∈ X,
generate representation of the loop algebra in the sense that

[u(m), v(n)] = (u(0)v)(m+ n), for u, v ∈ X.

Following the proof of Theorem 3.1 in [DM4], we can show that the representation
on V is integrable and the vertex operator subalgebra U generated by a simple
component of X is the corresponding simple vertex operator algebra L(k, 0) and
k = 0. However, the maximal submodule of the Verma module V (0, 0), whose
quotient is L(0, 0), has co-dimension one. This is not possible if X �= {0}.
Consequently, we haveX = 0 and S ∩Rad〈 , 〉 = {0}. Hence 〈 , 〉 is nondegenerate
on S. ��

Theorem 4 follows from these results.

8 Examples of Shifted Vertex Operator Algebras

To illustrate previous results, in this section we consider some particular classes of
shifted vertex operator algebras.

8.1 Shifted ̂sl2

We will show that the simple vertex operator algebra (WZW model) Lŝl2(k, 0)
corresponding to affine sl2 at (positive integral) level k has a canonical shift to an N-
graded vertex operator algebra L ˆsl2(k, 0)

H , and that the resulting de Rham structure

on V0 is that of complex projective space CP
k . The precise result is the following.

Theorem 6. Let e, f, h be Chevalley generators of sl2, and set H = h/2. Then the
following hold:

(a) L ˆsl2(k, 0)
H is a simple, N-graded, self-dual vertex operator algebra.

(b) The algebra structure on the zero weight space of L ˆsl2(k, 0)
H is

isomorphic to C[x]/〈xk+1〉, where x = e.
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Proof. Let W = L ˆsl2(k, 0). It is spanned by states vIJK := eI fJ hK1, where we
write eI = e(−l1) . . . e(−lr ), fJ = f (−m1) . . . f (−ms), hK = h(−n1) . . . h(−nt )
for li , mi, ni > 0. Note that vIJK ∈ Wn, where n =∑ li +∑mi +∑ni

Recall from (27) that LH(0) = L(0)−H(0). We have

[H(0), e(n)] = [H, e](n) = e(n),
[H(0), f (n)] = [H,f ](n) = −f (n),
[H(0), h(n)] = [H,h](n) = 0.

Then H(0)vIJK = (r − s)vIJK , so that

LH (0)vIJK =
(∑

(li − 1)+
∑
(mj + 1)+

∑
nk

)
vIJK. (37)

It is well known (e.g., [DL], Propositions 13.16 and 13.17) that Y (e, z)k+1 = 0.
Thus we may take r to be no greater than k. It follows from (37) that the eigenvalues
of LH (0) are integral and bounded below by 0, and that the eigenspaces are finite-
dimensional. Therefore, V := WH is indeed an N-graded vertex operator algebra.
BecauseW is simple then so too is V , since they share the same fields.

Next we show that V is self-dual, which amounts to the assertion that LH (1)V1
is properly contained in V0. Observe from (37) that the states e(−1)p1 (0 ≤ p ≤ k)
span in V0, while V1 is spanned by the states {h(−1)e(−1)i1, e(−2)e(−1)i1 | 0 ≤
i ≤ k − 1}. We will show that e(−1)k1 does not lie in the image of LH (1).

For g ∈ sl2,m ≥ 1, we have

[L(1), g(−m)] = mg(1−m).

Since L(1)e = 0 and

L(1)e(−1)j+11 = e(−1)L(1)ej(−1)1+ e(0)ej (−1)1 = e(−1)L(1)ej(−1)1

for j ≥ 0, we can conclude by induction that

L(1)e(−1)i1 = 0 for all i ≥ 1.

Similarly, because H(1)e = 0 and

H(1)e(−1)j+11 = e(−1)H(1)e(−1)j1+ e(0)e(−1)j1 = e(−1)H(1)e(−1)j1,

then

H(1)e(−1)i1 = 0 for all i ≥ 0.
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We can conclude that for 0 ≤ i ≤ k − 1,

LH (1)h(−1)e(−1)i1 = (L(1)− 2H(1))h(−1)e(−1)i1

= 2ie(−1)i1− 2ke(−1)i1

= 2(i − k)e(−1)i1,

while

LH (1)e(−2)e(−1)j1 = (L(1)− 2H(1))e(−2)e(−1)j1 = 0.

Our assertion that e(−1)k1 /∈ imLH(1) follows from these calculations. This
establishes part (a) of the theorem.

Finally, if we set x := e(−1)1 = e, then by induction e(−1)i1 = x.xi−1 = xi ,
so the algebra structure on V0 is isomorphic C[x]/xk+1 and part (b) holds. This
completes the proof of the theorem. ��

Remark 5. Suitably normalized, the invariant bilinear form on V0 satisfies
(xp, xq) = δp+q,k (cf. Theorem 2). V0 can be identified with the de Rham
cohomology of CP

k (x has degree 2) equipped with the pairing arising from
Poincaré duality.

8.2 Shifted Lattice Theories

LetL be a positive-definite even lattice of rank d with inner product ( , ) : L×L→
Z. Let H = C ⊗ L be the corresponding complex linear space equipped with the
C-linear extension of ( , ). The dual lattice of L is

L◦ = { f ∈ R⊗ L | (f, α) ∈ Z all α ∈ L}.

Let (M(1), Y, 1, ωL) be the free bosonic vertex operator algebra based on H and
let (VL, Y, 1, ωL) be the corresponding lattice vertex operator algebra. Both vertex
operator algebras have central charge d , and the Fock space of VL is

VL = M(1)⊗ C[L],

where C[L] is the group algebra of L.
For a state h ∈ H ⊂ (VL)1, we set ωh = ωL + h(−2)1, with VL,h =

(VL, Y, 1, ωh).

Lemma 16. ([DM3]). Suppose that h ∈ L0. Then VL,h is a vertex operator
algebra, and it is self-dual if, and only if, 2h ∈ L.
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For the rest of this section, we assume that 0 �= h ∈ L◦ and 2h ∈ L, so that VL,h
is a self-dual, simple vertex operator algebra. Set

Y (ωh, z) =
∑

n∈Z
Lh(n)z

−n−2.

Then

Lh(0)(u⊗ eα) = (n+ 1

2
(α, α) − (h, α))u⊗ eα (u ∈ M(1)n).

It follows that VL,h is N-graded if, and only if, the following condition holds:

(2h, α) ≤ (α, α) (α ∈ L). (38)

From now on, we assume that (38) is satisfied. It is equivalent to the condition
(α−h, α−h) ≥ (−h,−h), i.e.,−h has the least (squared) length among all elements
in the coset L− h. Set

A := {α ∈ L | (α, α) = (2h, α)}.
Note that 0, 2h ∈ A. We have

(VL,h)0 = SpanC{eα | α ∈ A}.
We want to understand the commutative algebra structure of (VL,h)1, defined by the
−1th product a(−1)b. The identity element is 1 = e0.

First note that if α, β ∈ A, then (−h,−h) ≤ (α + β − h, α + β − h) = (h, h)+
2(α, β) shows that (α, β) ≥ 0. Moreover, (α, β) = 0 if, and only if, α+ β ∈ A. We
employ standard notation for vertex operators in the lattice theory VL [LL]. Then

eα(−1)eβ = Reszz−1E−(−α, z)E+(−α, z)eαzα · eβ
= ε(α, β)Reszz(α,β)−1E−(−α, z)E+(−α, z)eα+β,

where

E−(−α, z)E+(−α, z) = exp
{
−
∑

n>0

α(−n)
n

zn

}
exp

{
∑

n>0

α(n)

n
z−n
}
.

It follows that

eα(−1)eβ =
{
ε(α, β)eα+β if α + β ∈ A

0 otherwise.
(39)

If 0 �= α ∈ A, then (2h, α) = (α, α) �= 0. Thus 2h + α /∈ A, and the last
calculation shows that eα(−1)e2h = 0. It follows that e2h spans the unique minimal
ideal T ⊆ (VL,h)1
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Recall [LL] ε : L × L → {±1} is a (bilinear) 2-cocycle satisfying
ε(α, β)ε(β, α) = (−1)(α,β). Thus we have proved

Lemma 17. There are signs ε(α, β) = ±1 such that multiplication in (VL,h)1 is
given by (39). The minimal ideal T is spanned by e2h. ��
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Abstract We discuss two classical results in homological algebra of modules over
an enveloping algebra – lemmas of Casselman–Osborne and Wigner. They have a
common theme: they are statements about derived functors. While the statements for
the functors itself are obvious, the statements for derived functors are not and the
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In the second section we discuss some straightforward properties of centers of
abelian categories and their derived categories. In the third section, we consider
a class of functors and prove a simple result about their derived functors which
generalizes the first two results.

The original arguments were considerably more complicated and based on
different ideas [1, 3] and [5].

1 Classical Approach

1.1 Wigner’s Lemma

Let g be a complex Lie algebra, U (g) its enveloping algebra and Z (g) the center
of U (g). Denote by M (U (g)) the category of U (g)-modules.

Let χ : Z (g) −→ C be an algebra morphism of Z (g) into the field of complex
numbers. We say that a module V in M (g) has an infinitesimal character χ if

z · v = χ(z)v for any z ∈ Z (g) and any v ∈ V.

Theorem 1.1. Let U and V be two objects in M (U (g)) with infinitesimal charac-
ters χU and χV . Then χU �= χV implies ExtpU (g)(U, V ) = 0 for all p ∈ Z+.

Proof. Clearly, the center Z (g) of U (g) acts naturally on HomU (g)(U, V ) for any
two U (g)-modules U and V , by

z(T ) = z · T = T · z for any z ∈ Z (g) and any T ∈ HomU (g)(U, V ),

i.e., we can view it as a bifunctor from the category of U (g)-modules into the
category of Z (g)-modules. Hence, its derived functors Ext∗U (g) are bifunctors from
the category of U (g)-modules into the category of Z (g)-modules.

Fix now a U (g)-moduleU with infinitesimal character χU . Consider the functor
F = HomU (g)(U,−) from the category M (U (g)) into the category of Z (g)-
modules. Since the infinitesimal character of U is χU , any element of z ∈ Z (g)
acts on F(V ) = HomU (g)(U, V ) as multiplication by χU(z) for any object V in
M (U (g)).

Fix now a U (g)-module V with infinitesimal character χV . Let

0 −−−−→ V −−−−→ I0 −−−−→ I1 −−−−→ . . . −−−−→ In −−−−→ . . .

be an injective resolution of V . Let z ∈ kerχV . Then we have the commutative
diagram



Variations on a Casselman–Osborne Theme 277

0 −−−−→ I0 I1

I1I0

−−−−→ −−−−→ . . . −−−−→ In

In

−−−−→ . . .
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

.

We can interpret this as a morphism φ· : I · −→ I · of complexes. Clearly, since
H 0(I ·) = V , we have H 0(φ·) = 0. Therefore, φ· is homotopic to 0. By applying
the functor F to this diagram we get

0 −−−−→ F(I0)

F(I0)

F(I1)

F(I1)

F(In)

F(In)

−−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

F( )

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

,F( ) F( )

i.e., a morphismF(φ·) : F(I ·) −→ F(I ·) of complexes. Since φ· is homotopic to 0,
F(φ·) is also homotopic to 0. This implies that all Hp(φ·) : Hp(I ·) −→ Hp(I ·),
p ∈ Z, are equal to 0. Since Hp(I ·) = RpF(V ) = ExtpU (g)(U, V ), we see that

ExtpU (g)(U, V ) are annihilated by z.

On the other hand, by the first remark in the proof, z must act on ExtpU (g)(U, V )
as multiplication by χU(z).

Since χU �= χV , there exists z ∈ kerχV such that χU(z) �= 0. This implies that
ExtpU (g)(U, V ) must be zero for all p ∈ Z+. ��

1.2 Casselman–Osborne Lemma

Now we assume that g is a complex semisimple Lie algebra. Let h be a Cartan
subalgebra of g, R the root system of (g, h) and R+ a set of positive roots. Let
n be the nilpotent Lie algebra spanned by root subspaces of positive roots. Let
γ : Z (g) −→ U (h) be the Harish-Chandra homomorphism, i.e., the algebra
morphisms such that z− γ (z) ∈ nU (g) [2, Ch. VIII, §6, no. 4].

Let V be a U (g)-module. Since h normalizes n, the quotientV/nV = C⊗U (n)V

has a natural structure of U (h)-module. Also, Z (g) acts naturally on V/nV , and
this action is given by the composition of γ and the U (h)-action.

We can consider F(V ) = V/nV as a right exact functor F from the category of
U (g)-modules into the category of U (h)-modules. Let Forg denote the forgetful
functor from the category of U (g)-modules into the category of U (n)-modules.
Let Forh denote the forgetful functor from the category of U (h)-modules into the
category of linear spaces. Then we have the following commutative diagram
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F−−−−→
For

⏐
⏐
�

⏐
⏐
�For

−−−−→
H0( ,−)

C

.

(( ))

(( )) ( )

(( ))

By the Poincaré–Birkhoff–Witt theorem, a free U (g)-module is a free U (n)-
module, hence we can use free left resolutions in M (U (g)) to calculate Lie algebra
homologyHp(n,−) of U (g)-modules, i.e., we get the commutative diagram

LpF−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−−→
,

(( )) (( ))

(( )) C( )
Hp( ,−)

For For

for any p ∈ Z+. Therefore, Lie algebra homology groups Hp(n,−) of U (g)-
modules have the structure of U (h)-modules.

Theorem 1.2. Let V be an object in M (U (g)). Let z ∈ Z (g) be an element which
annihilates V . Then γ (z) annihilatesHp(n, V ), p ∈ Z+.

Proof. Let z ∈ Z (g). Let

. . . −−−−→ Pn −−−−→ . . . −−−−→ P1 P0−−−−→ −−−−→ V −−−−→ 0

be a projective resolution of V in M (U (g)). Multiplication by z gives the following
commutative diagram:

Pn

Pn

P1

P1

P0

P0

. . . −−−−→ −−−−→ . . . −−−−→ −−−−→ −−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . −−−−→ −−−−→ . . . −−−−→ −−−−→ −−−−→ 0

We can interpret this diagram as a morphism ψ· : P· −→ P· of complexes of U (h)-
modules. Applying the functor F we get the diagram
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Pn

Pn

P1

P1

P0

P0

. . . −−−−→ F ( ) )

) )

)

)

−−−−→ . . . −−−−→ F ( −−−−→ F ( −−−−→ 0

F( )

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

. . . −−−−→ F ( −−−−→ . . . −−−−→ F ( −−−−→ F ( −−−−→ 0

F( ) F( )

representing F(ψ·), where F(z) is the multiplication by γ (z).
Now, assume that z ∈ Z (g) annihilates V . Then we have H 0(ψ·) = 0. It

follows that ψ· is homotopic to 0. This in turn implies that F(ψ·) is homotopic to
0. Hence, the multiplication by γ (z) on F(P·) is homotopic to zero. Therefore, the
multiplication by γ (z) annihilates the cohomology groups of the complex F(P·),
i.e., γ (z) ·Hp(n, V ) = 0 for p ∈ Z+. ��

2 Centers of Derived Categories

2.1 Center of an Additive Category

Let A be an additive category. This implies that for any object V in A , all its
endomorphisms form a ring End(V ) with identity idV .

An endomorphism z of the identity functor on A is an assignment to each object
U in A of an endomorphism zU of U such that for any two objects U and V in A
and any morphism ϕ : U −→ V we have zV ◦ ϕ = ϕ ◦ zU .

Lemma 2.1. Let z be an endomorphism of the identity functor on A and V an
object in A . Then zV is in the center of the ring End(V ).

Proof. Let e : V −→ V be an endomorphism of V . Then, zV ◦ e = e ◦ zV , i.e., zV
commutes with e. This implies that zV is in the center of End(V ). ��

All endomorphisms of the identity functor on A form a commutative ring with
identity which is called the center Z(A ) of A .

Let B be the full additive subcategory of A . Then, by restriction, any element of
the center of A determines an element of the center of B. Clearly, the induced map
r : Z(A ) −→ Z(B) is a ring homomorphism. If the inclusion functor B −→ A
is an equivalence of categories, the morphism of centers is an isomorphism.

Let U and V be two objects in A . Then the center Z(A ) acts naturally on
Hom(U, V ) by

z(ϕ) = zV ◦ ϕ = ϕ ◦ zU
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for z ∈ Z(A ). Therefore, Hom(U, V ) has a natural structure of a Z(A )-module.
Clearly, in this way Hom(−,−) becomes a bifunctor fromA ◦×A into the category
of Z(A )-modules.1

Assume that C is a triangulated category and T its translation functor. Let z be
an element of the center of C . Let U and V be two objects in C and ϕ : U −→ V

a morphism. Then T −1(ϕ) : T −1(U) −→ T −1(V ) is a morphism and we have

zT −1(V ) ◦ T −1(ϕ) = T −1(ϕ) ◦ zT −1(U).

By applying T to this equality we get

T (zT −1(V )) ◦ ϕ = ϕ ◦ T (zT −1(U)).

Since ϕ : U −→ V is arbitrary, we conclude that the assignmentU 
−→ T (zT −1(U))

is an element of the center of A , which we denote by T (z). It follows that T induces
an automorphism of the center Z(C ) of C . The elements of the center Z(C ) fixed
by this automorphisms form a subring with identity which we call the t-center of C
and denote by Z0(C ).

Let

W

[1]
h

U
f

V

g

be a distinguished triangle in C and z an element of the t-center Z0(C ) of C .
Clearly, since z is in the center, we have the commutative diagram

U
f−−−−→ V

g−−−−→ W

U

⏐
⏐
�

⏐
⏐
� V

⏐
⏐
� W

U −−−−→
f

V −−−−→
g

W

.

Moreover, since z is in the t-center of C , we have T (zU ) = zT (U) and the diagram

1A ◦ is the category opposite to A .
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W
h−−−−→ T(U)

T(U)

W

⏐
⏐
�

⏐
⏐
�T(   )U

W −−−−→
h

commutes. Therefore,

T(U)

T(U)

U
f−−−−→ V

g−−−−→ W
h−−−−→

U

⏐
⏐
�

⏐
⏐
� V

⏐
⏐
�

⏐
⏐
�

U −−−−→
f

V −−−−→
g

W −−−−→
h

W T(   )U

is an endomorphism of the above distinguished triangle. It follows that the elements
of the t-center induce endomorphisms of distinguished triangles in C .

Let X be another object of C . The above remark implies that the distinguished
triangle determines long exact sequences

· · · → Hom(X,U)→ Hom(X, V )→ Hom(X,W)→ Hom(X, T (U))→ . . .

and

· · · → Hom(T (U),X)→ Hom(W,X)→ Hom(V ,X)→ Hom(U,X)→ . . .

of Z0(C )-modules.

2.2 Center of a Derived Category

Let C∗(A ) (where ∗ is b, +, − or nothing, respectively) be the category of
(bounded, bounded from below, bounded from above or unbounded) complexes of
objects of A . Then C∗(A ) is also an additive category.

Let z be an element of the center of A . If

. . . −−−−→ V0 V1−−−−→ −−−−→ . . . −−−−→ Vn −−−−→ . . .. . . −−−−→ V0 V1−−−−→ −−−−→ . . . −−−−→ Vn −−−−→ . . .

is an object in C∗(A ), we get the commutative diagram
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V0 V1 Vn

V0 V1 Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1

⏐
⏐
�

⏐
⏐
�

⏐
⏐
� Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1 Vn

V0 V1 Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

V0 V1

⏐
⏐
�

⏐
⏐
�

⏐
⏐
� Vn

. . . −−−−→ −−−−→ −−−−→ . . . −−−−→ −−−−→ . . .

which we can interpret as an endomorphism zV · of V ·.
Let ϕ· : U · −→ V · be a morphism in C∗(A ). Then zV p ◦ ϕp = ϕp ◦ zUp for

any p ∈ Z, i.e., zV · ◦ ϕ· = ϕ· ◦ zU · . Therefore, the assignment V · 
−→ zV · defines
an element C∗(z) of the center of C∗(A ). Moreover, we have the following trivial
observation.

Lemma 2.2. The map z 
−→ C∗(z) defines a homomorphism of the center Z(A )
of A into the center Z(C∗(A )) of C∗(A ).

Let K∗(A ) be the corresponding homotopic category of complexes. Let [zV · ]
be the homotopy class of endomorphism zV · of V · in C∗(A ). Then it defines
an endomorphism of V · in K∗(A ). Clearly, the assignment V · 
−→ [zV · ] is an
endomorphism K∗(z) of the identity functor in K∗(A ). Moreover, the category
K∗(A ) is triangulated and the translation functor is given by T (U ·)p = Up+1

for any p ∈ Z for any object U · in K∗(A ). If a morphism ϕ : U · −→ V · is
the homotopy class of a morphism of complexes f · : U · −→ V ·, the morphism
T (ϕ) : T (U ·) −→ T (V ·) is the homotopy class of the morphism of complexes
given by f p+1 : T (U ·)p −→ T (V ·)p for p ∈ Z. This immediately implies that
T ([zU · ]) = [zT (U ·)] for any element z of the center of A . It follows that K∗(z) is
in the t-center Z0(K

∗(A )) of K∗(A ).
Therefore, we have the following observation.

Lemma 2.3. The map z 
−→ K∗(z) defines a homomorphism of the center Z(A )
of A into the t-center Z0(K

∗(A )) of K∗(A ).

Finally, assume that A is an abelian category and let D∗(A ) be the corre-
sponding derived category of A , i.e., the localization of K∗(A ) with respect to all
quasiisomorphisms. Clearly, for any z ∈ Z(A ), [zV · ] determines an endomorphism
[[zV · ]] of V · in D∗(A ).

Let U · and V · be two complexes in D∗(A ) and ϕ : U · −→ V · a morphism of
U · into V · in D∗(A ). We can represent ϕ by a roof (see, for example [4]):

s
∼

f

V ·U ·

W ·

where s : U · −→ W · is a quasiisomorphism and f : W · −→ V · is a morphism in
K∗(A ). On the other hand, [[zU · ]] and [[zV · ]] are represented by roofs
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∼
idU ·

U ·U ·

U ·
[ ]U ·

and

idU ·
∼

[ ]

V ·V ·

V ·

.

V ·

To calculate the composition [[zV · ]] ◦ ϕ we consider the composition diagram

∼
f

s
∼

f

∼
[ ]

W ·

V ·

V ·

V ·

W ·

U ·

idW
·

idV
·

V ·

which obviously commutes. This implies that the composition is represented by
the roof

s
∼

◦ f

.

W ·

V ·U ·

[ ]V ·

Analogously, to calculate ϕ ◦ [[zU · ]] we consider the composition diagram

s
∼

[ ]

∼
[ ] s

∼
f

W ·

W ·U ·

U · U · V ·

idU · U ·

W ·
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which commutes since K∗(z) is in the center of K∗(A ). This implies that the
composition is represented by the roof

s
∼

f◦[ ]

.

W ·

U · V ·

W ·

Since f ◦ [zW · ] = [zV · ] ◦ f , these two roofs are identical and [[zV · ]] ◦ ϕ =
ϕ ◦ [[zV · ]]. Hence, the assignment V · 
−→ [[zV · ]] defines an element of the t-
center Z0(D

∗(A )) of D∗(A ) which we denote by D∗(z). Moreover, we have the
following result.

Lemma 2.4. The map z 
−→ D∗(z) defines an injective morphism of the center
Z(A ) of A into the t-center Z0(D

∗(A )) of D∗(A ).
For any z ∈ Z(A ), we have

Hp([[zV · ]]) = zHp(V ·) for any V · in D∗(A ) and any p ∈ Z.

Proof. The second statement follows immediately from the construction.
To prove injectivity, assume that D∗(z) = 0 for some z ∈ Z(A ). For an object

V in A , denote by D(V )· the complex such that D(V )0 = V and D(V )p = 0
for p �= 0. By our assumption, we have [[zD(V )· ]] = 0. This implies that zV =
H 0([[zD(V )· ]]) = 0. Therefore, zV = 0 for any V in A , i.e., z = 0. ��

Let z be an element of the t-center Z0(D
∗(A )) of D∗(A ). Then

Hp+1(zU ·) = Hp(T (zU ·)) = Hp(zT (U ·))

for any object U · in D∗(A ) and p ∈ Z. Therefore,H 0(zU ·) = 0 for all objects U ·
in D∗(A ) is equivalent to Hp(zU ·) = 0 for all objects U · in D∗(A ) and p ∈ Z. In
particular,

I0(D
∗(A )) = {z ∈ Z0(D

∗(A )) | Hp(zU ·) = 0 for all U · in D∗(A ) and p ∈ Z}
= {z ∈ Z0(D

∗(A )) | H 0(zU ·) = 0 for all U · in D∗(A )}

is an ideal in Z0(D
∗(A )).

On the other hand, let D : A −→ D∗(A ) be the functor which attaches to each
object V in A the complex D(V )·, such that D(V )0 = V and D(V )p = 0 for
all p �= 0. This functor is an isomorphism of A onto the full additive subcategory
of D∗(A ) consisting of all complexes U · such that Up = 0 for all p �= 0 [4].
Therefore, we have a natural homomorphism r of Z(D∗(A )) into Z(A ) which
attaches to an element z of the center of D∗(A ) the element of the center of A
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given by V 
−→ H 0(zD(V )) for any V in A . In particular, we have a natural
homomorphism r : Z0(D

∗(A )) −→ Z(A ).
From Lemma 2.4, we see that

r(D∗(z))V = H 0(D∗(z)D(V )) = H 0([[zD(V )]]) = zV
for any z in the center of A and any V in A . Therefore, we have the following
result.

Proposition 2.5. The natural homomorphism r : Z0(D
∗(A )) −→ Z(A ) is a left

inverse of the homomorphism D∗ : Z(A ) −→ Z0(D
∗(A )). In particular, it is

surjective.
Its kernel is the ideal I0(D∗(A )).

The situation is particularly nice for bounded derived categories.2

Proposition 2.6. The natural homomorphism r : Z0(D
b(A )) −→ Z(A ) is an

isomorphism.

Proof. We have to prove that I0(Db(A )) = 0. Let z be an element of I0(Db(A )).
Clearly, for any object V in A , we have zD(V ) = 0. Moreover, since z is in the

t-center, zT p(D(V )) = 0 for any p ∈ Z.
For any object U · in Db(A ) we put

�(U ·) = Card{p ∈ Z | Hp(U ·) �= 0},

and call �(U ·) the cohomological length of U ·.
Now we want to prove that zU · = 0 for all U · in Db(A ). The proof is by

induction in the cohomological length �(U ·). If �(U ·) = 0, U · = 0 and zU · = 0. If
�(U ·) = 1, there exists p ∈ Z such that Hq(U ·) = 0 for all q �= p. In this case, U ·
is isomorphic to the complex which is zero in all degrees q �= p and in degree p is
equal to Hp(U ·), i.e., to T −p(D(Hp(U ·))). Hence, by the above remark, zU · = 0.

Assume now that �(U ·) > 1. Let τ≤p and τ≥p be the usual truncation functors
[4]. Then, for any p ∈ Z, we have the truncation distinguished triangle

[1]

t≤p(U ·)

t≥p+1(U ·)

U·

2I do not know any example where this result fails in unbounded case.



286 D. Miličić

and by choosing a right p ∈ Z, we have �(τ≤p(U ·)) < �(U ·) and �(τ≥p+1(U
·)) <

�(U ·). Therefore, by the induction assumption, there exists p ∈ Z such that
zτ≤p(U ·) = 0 and zτ≥p+1(U ·) = 0. As we remarked before, this distinguished triangle
leads to the long exact sequence

· · · → Hom(U ·, τ≤p(U ·))→ Hom(U ·, U ·)→ Hom(U ·, τ≥p+1(U
·))→ . . .

of Z0(D
b(A ))-modules. By our construction, z annihilates the first and third

module. Therefore, it must annihilate Hom(U ·, U ·) too. This implies that

0 = z(idU ·) = idU · ◦ zU · = zU · .

��

3 Centers and Derived Functors

3.1 Homogeneous Functors

Let A and B be two abelian categories. Let R be a commutative ring with identity
and α : R −→ Z(A ) and β : R −→ Z(B) ring morphisms of rings with identity.

By Lemma 2.4, α and β define ring morphisms α = D∗ ◦α : R −→ Z0(D
∗(A ))

and β = D∗ ◦ β : R −→ Z0(D
∗(B))

Let F : A −→ B be an additive functor. We say that F is R-homogeneous if
for any r ∈ R we have

β(r)F (V ) = F(α(r)V ) for any object V in A .

Assume now that F is left exact. Assume that there exists a subcategory R of
A right adapted to F [4, ch. III, §6, no. 3].3 Then F has the right derived functor
RF : D+(A ) −→ D+(B).

Theorem 3.1. The functor RF : D+(A ) −→ D+(B) is R-homogeneous.

Proof. Let V · be a complex inD+(A ). Since R is right adapted to F , there exists a
bounded from below complexR· consisting of objects in R and a quasiisomorphism
q : V · −→ R·. Let z be an element of the center of A . Then we have the
commutative diagram

3I would prefer a proof of the next theorem which doesn’t use the construction of the derived
functor, but its universal property. Unfortunately, I do not know such argument.
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q−−−−→
[[ ]]

⏐
⏐
�

⏐
⏐
�[[ ]]

−−−−→
q

.

V ·

V · R·

R·

R·V ·

By applying the functor RF to it, we get the diagram

RF(V ·)

RF(V ·)

RF(q)−−−−→ F(R·)

F(R·)

RF([[ ]])

⏐
⏐
�

⏐
⏐
�[[F ( )F ( ) ]]

−−−−→
RF(q)

.R·V ·

If r ∈ R, α(r) is in the center of A and the above diagram implies that

RF(V ·)

RF(V ·)

RF(q)
F(R·)

F(R·)
RF(q)

[[b(r)F(R·)]][[b(r)RF(V·)]]

−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−→
.

is commutative. Moreover, β(r) is in the center of B, hence we also have

RF(V ·)

RF(V ·)

RF(q)
F(R·)

F(R·)
RF(q)

[[b(r)F(R·)]][[b(r)RF(V·)]]

−−−−→
⏐
⏐
�

⏐
⏐
�

−−−−→
.

Hence, we conclude that RF([[α(r)V · ]]) = [[β(r)RF(V ·)]], i.e., RF is R-
homogeneous. ��

Let V be an object in A . Then

β(r)RF(D(V )) = RF(α(r)D(V )) for any r ∈ R.

By taking cohomology, we get

β(r)RpF(V ) = Hp(β(r)RF(D(V ))) = RpF(α(r)V ) for any r ∈ R and p ∈ Z+.

Therefore, we have the following consequence.

Corollary 3.2. The functors RpF : A −→ B are R-homogeneous.
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We leave to the reader the formulation and proofs of the analogous results for a
right exact functor F and its left derived functor LF : D−(A ) −→ D−(B).

3.2 Special Cases

Now we are going to illustrate how Theorems 1.1 and 1.2 follow from the above
discussion.

First, we prove a well-known result about the center of the category of modules.
This is not necessary for our applications, but puts the constructions in a proper
perspective.

Let A be a ring with identity and Z its center. Let M (A) be the category of
A-modules. Any element z in Z determines an endomorphism zU of an A-module
U . Clearly, the assignmentU 
−→ zU defines an element of the centerZ(M (A)) of
M (A). Therefore, we have a natural homomorphism i : Z −→ Z(M (A)) of rings.

Lemma 3.3. The morphism i : Z −→ Z(M (A)) is an isomorphism.

Proof. If we considerA as anA-module for the left multiplication, we see that i(z)A
is the multiplication by z for any z ∈ Z. Therefore, i(z)A(1) = z and i : Z −→
Z(M (A)) is injective.

Let ζ be an element of the center of A . Then ζA is an endomorphism of A
considered as A-module for left multiplication. Let z = ζA(1). Then

ζA(a) = aζA(1) = az

for any a ∈ A. Moreover, any b ∈ A defines an endomorphism ϕb of A given by
ϕb(a) = ab for all a ∈ A. Since we must have ζA ◦ ϕb = ϕb ◦ ζA, it follows that

bz = (ζA ◦ ϕb)(1) = (ϕb ◦ ζA)(1) = zb.

Since b ∈ A is arbitrary, z must be in the center Z of A.
Let M be an arbitrary A-module and m ∈ M . Then m determines a module

morphism ψm : A −→ M given by ψm(a) = am for any a ∈ A. Therefore,

ζM(m) = (ζM ◦ ψm)(1) = (ψm ◦ ζA)(1) = zm = i(z)Mm.

Hence ζ = i(z), and i is surjective. ��
Now we return to the notation from the first section. By Lemma 3.3, the center

of the category M (U (g)) is isomorphic to Z (g).
First we discuss Theorem 1.1. The functor F = HomU (g)(U,−) is a functor

from the category U (g) into the category of Z (g)-modules. If we define α as the
natural morphism of Z (g) into the center of M (U (g)) and β as multiplication by
χU(z), F is clearly Z (g)-homogeneous. This implies that the functors RpF are
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Z (g)-homogeneous. Hence, for any V in M (U (g)) we have RpF(zV ) = χU(z)
for all p ∈ Z+. In, particular, if z ∈ kerχV we have

0 = RpF(0) = RpF(zV ) = χU(z).

This clearly contradicts χU �= χV if ExtpU (g)(U, V ) �= 0 for some p ∈ Z.
No we discuss Theorem 1.2. The functor F = H0(n,−) is a functor from

the category U (g) into the category of Z (g)-modules. If we define α as the
natural morphism of Z (g) into the center of M (U (g)) and β as the composition
of the Harish-Chandra homomorphism with the natural morphism of U (h) into
the center of M (U (h)), F is clearly Z (g)-homogeneous. This implies that the
functors LpF are Z (g)-homogeneous. Hence for any V in M (U (g)), we have
LpF(zV ) = γ (z)LpF (V ) for all p ∈ Z+. In, particular, if z annihilates V , γ (z)
annihilates LpF(V ) = Hp(n, V ) for all p ∈ Z.
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Introduction

This paper combines a review of some results on locally finite Lie algebras, mostly
from [PStyr, PS] and [DPS], with new results about categories of representations
of a class of (not locally finite) infinite-dimensional Lie algebras which we call
Mackey Lie algebras. Locally finite Lie algebras (i.e., Lie algebras in which any
finite set of elements generates a finite-dimensional Lie subalgebra) and their
representations have been gaining the attention of researchers in the past 20 years.
An incomplete list of references on this topic is: [Ba1, BB, BS, DiP1, DiP3, DPS,
DPSn, DPW, DaPW, N, Na, NP, NS, O, PS, PStyr, PZ]. In particular, in [PStyr, PS]
and [DPS] integrable representations of the three classical locally finite Lie algebras
g = sl(∞), o(∞), sp(∞) have been studied from various points of view. An
important step in the development of the representation theory of these Lie algebras
has been the introduction of the category of tensor modules Tg in [DPS].

In the present article we shift the focus to understanding a natural generality
in which the category Tg is defined. In particular, we consider the finitary locally
simple Lie algebras g = sl(V ,W), o(V ), sp(V ), where V is an arbitrary vector
space (not necessarily of countable dimension), and either a nondegenerate pairing
V × W → C is given, or V is equipped with a nondegenerate symmetric,
or antisymmetric form. In Sects. 1–5 we reproduce the most important results
from [PStyr] and [DPS] in this greater generality. In fact, we study five different
categories of integrable modules, see Sect. 3.6, but pay maximum attention to the
categoryTg. The central new result in this part of the paper is Theorem 5.5, claiming
that the category Tg for g = sl(V ,W), o(V ), sp(V ) is canonically equivalent, as a
monoidal category, to the respective category Tsl(∞),To(∞) or Tsp(∞). It is shown
in [DPS] that each of the latter categories is Koszul and that Tsl(∞) is self-dual
Koszul, while To(∞) and Tsp(∞) are not self-dual but are equivalent.

In the second part of the paper, starting with Sect. 6, we explore several new ideas.
The first one is that given a nondegenerate pairing V ×W → C between two vector
spaces, or a nondegenerate symmetric or antisymmetric form on a vector space V ,
there is a canonical, in general not locally finite, Lie algebra attached to this datum.
Indeed, fix a pairing V ×W → C. Then the Mackey Lie algebra glM(V,W) is the
Lie algebra of all endomorphisms of V whose duals keepW stable (this definition is
given in a more precise form at the beginning of Sect. 6). Similarly, if V is equipped
with a nondegenerate form, the respective Lie algebra oM(V ) or spM(V ) is the Lie
algebra of all endomorphisms of V for which the form is invariant.

The Lie algebras glM(V,W), oM(V ), spM(V ) are not simple as they have
obvious ideals: these are respectively gl(V ,W) ⊕ CId, o(∞), and sp(∞). How-
ever, we prove that, if both V and W are countable dimensional, the quotients
glM(V,W)/(gl(V ,W) ⊕ CId), oM(V )/o(V ), spM(V )/sp(V ) are simple Lie alge-
bras. This result is an algebraic analogue of the simplicity of the Calkin algebra in
functional analysis.

Despite the fact that the Lie algebras glM(V,W), oM(V ), spM(V ) are com-
pletely natural objects, the representation theory of these Lie algebras has not yet
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been explored. We are undertaking the first step of such an exploration by introduc-
ing the categories of tensor modules TgM for gM = glM(V,W), oM(V ), spM(V ).
Our main result about these categories is Theorem 7.10 which implies that
TglM(V,W) is equivalent to Tsl(∞), and ToM(V ) and TspM(V ) are equivalent
respectively to To(∞) and Tsp(∞).

A further idea is to consider dense subalgebras a of the Lie algebras gM (see the
definition in Sect. 7). We show that if a ⊂ g is a dense subalgebra, the category
Ta, whose objects are tensor modules of g considered as a-modules, is canonically
equivalent to TgM , and hence to one of the categories Tsl(∞) or To(∞). It is
interesting that this result applies to the Lie algebra of generalized Jacobi matrices
(infinite matrices with “finitely many nonzero diagonals”) which has been studied
for over 30 years, see for instance [FT].

In short, the main point of this paper is that the categories of tensor modules
Tsl(∞),To(∞),Tsp(∞) introduced in [DPS] are in some sense universal, being
naturally equivalent to the respective categories of tensor representations of a large
class of, possibly not locally finite, infinite-dimensional Lie algebras.

1 Preliminaries

The ground field is C. By M∗ we denote the dual space of a vector space M , i.e.,
M∗ = HomC(M,C). Sn stands for the symmetric group on n letters. The sign ⊂
denotes not necessarily strict inclusion. By definition, a natural representation (or
a natural module) of a classical simple finite-dimensional Lie algebra is a simple
nontrivial finite-dimensional representation of minimal dimension.

In this paper g denotes a locally simple locally finite Lie algebra, i.e., an infinite-
dimensional Lie algebra g obtained as the direct limit lim−→ gα of a directed system of
embeddings (i.e., injective homomorphisms) gα ↪→ gβ of finite-dimensional simple
Lie algebras parametrized by a directed set of indices. It is clear that any such g is
a simple Lie algebra. If g is countable dimensional, then the above directed set can
always be chosen as Z≥1, and the corresponding directed system can be chosen as
a chain

g1 ↪→ g2 ↪→ . . . ↪→ gi ↪→ gi+1 ↪→ . . . . (1)

In this case we write g = lim−→ gi . Moreover, if gi = sl(i+1), then up to isomorphism
there is only one such Lie algebra which we denote by sl(∞). Similarly, if gi = o(i)
or gi = sp(2i), up to isomorphism one obtains only two Lie algebras: o(∞) and
sp(∞). The Lie algebras sl(∞), o(∞), sp(∞) are often referred to as the finitary
locally simple Lie algebras [Ba1, Ba2, BS], or as the classical locally simple Lie
algebras [PS].

A more general (and very interesting) class of locally finite locally simple Lie
algebras are the diagonal locally finite Lie algebras introduced by Y. Bahturin and
H. Strade in [BhS]. We recall that an injective homomorphism g1 ↪→ g2 of simple
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classical Lie algebras of the same type sl, o, sp, is diagonal if the pull-back Vg2↓g1

of a natural representation Vg2 of g2 to g1 is isomorphic to a direct sum of copies
of a natural representation Vg1, of its dual V ∗g1

, and of the trivial 1-dimensional
representation. In this paper, by a diagonal Lie algebra g we mean an infinite-
dimensional Lie algebra obtained as the limit of a directed system of diagonal
homomorphisms of classical simple Lie algebras gα . We say that a diagonal Lie
algebra is of type sl (respectively, o or sp) if all gα can be chosen to have type sl
(respectively, o or sp).

Countable-dimensional diagonal Lie algebras have been classified up to isomor-
phism by A. Baranov and A. Zhilinskii [BaZh]. S. Markouski [Ma] has determined
when there is an embedding g ↪→ g′ for given countable-dimensional diagonal Lie
algebras g and g′. If both g and g′ are classical locally simple Lie algebras, then an
embedding g ↪→ g′ always exists, and such embeddings have been studied in detail
in [DiP2].

Let V and W be two infinite-dimensional vector spaces with a nondegenerate
pairing V ×W → C. G. Mackey calls such a pair V, W a linear system and was
the first to study linear systems in depth [M]. The tensor product V ⊗ W is an
associative algebra (without identity), and we denote the corresponding Lie algebra
by gl(V ,W). The pairing V × W → C induces a homomorphism of Lie algebras
tr : gl(V ,W)→ C. The kernel of this homomorphism is denoted by sl(V ,W). The
Lie algebra sl(V ,W) is a locally simple locally finite Lie algebra. A corresponding
directed system is given by {sl(Vf ,Wf )}, where Vf and Wf run over all finite-
dimensional subspaces Vf ⊂ V,Wf ⊂ W such that the restriction of the pairing
V ×W → C to Vf ×Wf is nondegenerate. If V andW are countable dimensional,
then sl(V ,W) is isomorphic to sl(∞). In what follows we call a pair of finite-
dimensional subspaces Vf ⊂ V ,Wf ⊂ W a finite-dimensional nondegenerate pair
if the restriction of the pairing V × W → C to Vf × Wf is nondegenerate. We
can also define gl(V ,W) as a Lie algebra of finite rank linear operators in V ⊕W
preserving V,W and the pairing V ×W → C.

There is an obvious notion of isomorphism of linear systems: given two linear
systems V ×W → C and V ×W ′ → C, an isomorphism of these linear systems
is a pair of isomorphisms of vector spaces ϕ : V → W , ψ : W → W ′ or ϕ :
V → W ′, ψ : W → V ′, commuting with the respective pairings. If V and W
are countable dimensional then, as shown by G. Mackey [Ma], there exists a basis
{v1, v2, . . . } of V such that V∗ = span{v∗1 , v∗2 , . . . }, where {v∗1 , v∗2 , . . . } is the set
of linear functionals dual to {v1, v2, . . . }, i.e., v∗i (vj ) = δij . Consequently, up to
isomorphism, there exists only one linear system V ×W → C such that V and W
are countable dimensional. The choice of a basis of V as above identifies gl(V ,W)
with the Lie algebra gl(∞) consisting of infinite matrices X = (xij )i≥1,j≥1 with
finitely many nonzero entries. The Lie algebra sl(V ,W) is identified with sl(∞)
realized as the Lie algebra of traceless matricesX = (xij )i≥1,j≥1 with finitely many
nonzero entries.
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Now let V be a vector space endowed with a nondegenerate symmetric (respec-
tively, antisymmetric) form (·, ·). Then Λ2V (respectively, S2V ) has a Lie algebra
structure, defined by

[v1∧v2, w1∧w2] = −(v1, w1)v2∧w2+(v2, w1)v1∧w2+(v1, w2)v2∧w1−(v2, w2)v1∧w1

(respectively, by

[v1v2, w1w2] = (v1, w1)v2w2 + (v2, w1)v1w2 + (v1, w2)v2w1 + (v2, w2)v1w1).

We denote the Lie algebra Λ2V by o(V ), and the Lie algebra S2V by sp(V ). Let
Vf ⊂ V be an n-dimensional subspace such that the restriction of the form on Vf
is nondegenerate. Then o(Vf ) ⊂ o(V ) (respectively, sp(Vf ) ⊂ sp(V )) is a simple
subalgebra isomorphic to o(n) (respectively, sp(n)). Therefore, o(V ) (respectively,
sp(V )) is the direct limit of all its subalgebras o(Vf ) (respectively, sp(Vf )). This
shows that both o(V ) and sp(V ) are locally simple locally finite Lie algebras. We
can also identify o(V ) (respectively, sp(V )) with the Lie subalgebra of all finite rank
operators in V under which the form (·, ·) is invariant.

If V is countable dimensional, there always is a basis {vi, wj }i,j∈Z of V such
that span{vi}i∈Z and span{wj }j∈Z are isotropic spaces and (vi , wj ) = 0 for i �= j ,
(vi , wi) = 1. Therefore, in this case o(V ) $ o(∞) and sp(V ) $ sp(∞).

Note that if V is not finite or countable dimensional, then V may have several
inequivalent nondegenerate symmetric forms. Indeed, let for instance V := W⊕W∗
for some countable-dimensional spaceW . Extend the pairing betweenW andW∗ to
a nondegenerate symmetric form (·, ·) on V for whichW andW∗ are both isotropic.
It is clear thatW is a maximal isotropic subspace of V . On the other hand, choose a
basis b in V and let (·, ·)′ be the symmetric form on V for which b is an orthonormal
basis. Then V does not have countable-dimensional maximal isotropic subspaces for
the form (·, ·)′. Hence the forms (·, ·) and (·, ·)′ are not equivalent.

Proposition 1.1. (a) Two Lie algebras sl(V ,W) and sl(V ′,W ′) are isomorphic if
and only if the linear systems V ×W → C and V ′ ×W ′ → C are isomorphic.

(b) Two Lie algebras o(V ) and o(V ′) (respectively, sp(V ) and sp(V ′)) are iso-
morphic if and only if there is an isomorphism of vector spaces V $ V ′
transferring the form defining o(V ) (respectively sp(V )) into the form defining
o(V ′) (respectively, sp(V ′)).

We first prove a lemma.

Lemma 1.2 (cf. Proposition 2.3 in [DiP2]).

(a) Let g1 ⊂ g3 be an inclusion of classical finite-dimensional simple Lie algebras
such that a natural g3-module restricts to g1 as the direct sum of a natural
g1-module and a trivial g1-module. If g2 is an intermediate classical simple
subalgebra, g1 ⊆ g2 ⊆ g3, then a natural g3-module restricts to g2 as the
direct sum of a natural g2-module and a trivial module.
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(b) Assume rkg1 > 4. If g1 $ sl(i), then g2 is isomorphic to sl(k) for some k ≥ i.
If g3 $ o(j) (respectively, sp(2j)), then g2 is isomorphic to o(k) (respectively,
sp(2k)) for some k ≤ j .

Proof. Let V3 be a natural g3-module. We have a decomposition of g1-modules,
V3 = V1 ⊕ W , where V1 is a natural g1-module and W is a trivial g1-module. Let
V ′ ⊂ V3 be the minimal g2-submodule containing V1. Then V3 = V ′ ⊕W ′, where
W ′ is a complementary g2-submodule. Since g1 acts trivially onW ′ and g2 is simple,
we obtain thatW ′ is a trivial g2-module and V ′ is a simple g2-module.

We now prove that V ′ is a natural g2-module. Recall that for an arbitrary
nontrivial moduleM over a simple Lie algebra k the symmetric form BM(X, Y ) =
trM(XY) for X,Y ∈ k is nondegenerate. Moreover, BM = tMB, where B is the
Killing form. IfM is a simple k-module with highest weight λ, then

tM = dimM

dimk
(λ+ 2ρ, λ),

where ρ is the half-sum of positive roots and (·, ·) is the form on the weight lattice
of k induced by B. It is easy to check that a natural module is a simple module with
minimal tM . Let V2 be a natural g2-module. Note that the restriction of BV ′ on g1
equalsBV1 and the restriction of BV2 on g1 equals tBV1 for some t ≥ 1. On the other

hand, t = tV2
tV ′

. Since tV2 is minimal, we have t = 1 and tV2 = tV ′ . Hence, V ′ is a
natural module, i.e., (a) is proved.

To prove (b), note that a classical simple Lie algebra of rank greater than 4 admits,
up to isomorphism, two (mutually dual) natural representations when it is of type sl,
and one natural representation when it is of type o or sp. Moreover, in the orthogonal
(respectively, symplectic) case the natural module admits an invariant symmetric
(respectively, skew-symmetric) bilinear form.

Now, assume g1 $ sl(i). We claim that g2 $ sl(k) for some i ≤ k ≤ j . Indeed,
if g2 is not isomorphic to sl(k), then V ′ is self-dual. Therefore its restriction to
g1 is self-dual, and we obtain a contradiction as V1 is not a self-dual sl(i)-module
for i ≥ 3.

Finally, assume g3 $ o(j) (respectively, sp(2j)). Then V ′ ⊕ W ′, and hence
V ′, admits an invariant symmetric (respectively, skew-symmetric) form. Therefore
g2 $ o(k) (respectively, sp(2k)). ��
Corollary 1.3 (cf. [DiP2, Corollary 2.4]). Let g = sl(V ,W) and g = lim−→ gα for
some directed system {gα} of simple finite-dimensional Lie subalgebras gα ⊂ g.
Then there exists a subsystem {gα′ } such that g = lim−→ gα′ and, for every α′, gα′ =
sl(Vα′,Wα′) for some finite-dimensional nondegenerate pair Vα′ ⊂ V,Wα′ ⊂ W .
Similarly, if g = o(V ) (respectively, sp(V )), then there exists a subsystem {gα′ }
such that g = lim−→ gα′ and, for every α′, gα′ = o(Vα′) (respectively, sp(Vα′)) for
some finite-dimensional nondegenerate Vα′ ⊂ V .

Proof. Let g = sl(V ,W). One fixes a Lie subalgebra sl(Vf ,Wf ) ⊂ g where Vf ⊂
V,Wf ⊂ W is a finite-dimensional nondegenerate pair, and considers the directed
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subsystem {gα′ } of all gα′ such that sl(Vf ,Wf ) ⊂ gα′ . There exists another finite-
dimensional nondegenerate pair V ′f ,W ′

f such that sl(Vf ,Wf ) ⊂ gα′ ⊂ sl(V ′f ,W ′
f ).

Then, by Lemma 1.2, gα′ = sl(Vα′,Wα′) for appropriate Vα′ ⊂ V,Wα′ ⊂ W . The
cases g = o(V ), sp(V ) are similar. ��
Proof of Proposition 1.1. We consider the case g = sl(V ,W) and leave the
remaining cases to the reader. Let g = sl(V ,W) be isomorphic to sl(V ′,W ′).
Then g = lim−→ sl(Vf ,Wf ) over all finite-dimensional nondegenerate pairs Vf ⊂
V,Wf ⊂ W , and at the same time g = lim−→ sl(V ′f ,W ′

f ) over all finite-dimensional
nondegenerate pairs V ′f ⊂ V ′,W ′

f ⊂ W ′. By Corollary 1.3 and Lemma 1.2, for
each Vf ⊂ V,Wf ⊂ W one can find V ′f ⊂ V ′,W ′

f ⊂ W ′ and an embedding
of Lie algebras sl(Vf ,Wf ) ⊂ sl(V ′f ,W ′

f ) as in Lemma 1.2. That implies the
existence of embeddings Vf ↪→ V ′f ,Wf ↪→ W ′

f or Vf ↪→ W ′
f ,Wf ↪→ V ′f

preserving the pairing. After a twist by transposition we may assume that Vf ↪→
V ′f ,Wf ↪→ W ′

f . Therefore we have embeddings V = lim−→Vf ↪→ V ′,W =
lim−→Wf ↪→ W ′ preserving the pairing. On the other hand, both maps are surjective
since sl(V ′,W ′) = lim−→ sl(Vf ,Wf ). Therefore the linear systems V ×W → C and
V ′ ×W ′ → C are isomorphic. ��

Assume next that g is an arbitrary locally finite locally simple Lie algebra. If we
can choose a Cartan subalgebra hα ⊂ gα such that hα ↪→ hβ for any embedding
gα ↪→ gβ , then h := lim−→ hα is called a local Cartan subalgebra.

In general, a local Cartan subalgebra may not exist. For example, the following
proposition implies that the Lie algebra g = sl(V , V ∗) does not have a local Cartan
subalgebra.

Proposition 1.4. Let g = sl(V ,W). Then a local Cartan subalgebra of g

exists if and only if V admits a basis
{
vγ
}

such that W = span
{
v∗γ
}

, where

v∗
γ̃
(vγ ) = δγ̃ γ . In this case, every local Cartan subalgebra of g is of the form

span
{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}

γ,γ̃
for a basis

{
vγ
}

as above.

Proof. By Corollary 1.3 we may assume

g = sl(V ,W) = lim−→ gα = lim−→ sl(Vα,Wα),

where Vα ⊂ V , Wα ⊂ W are certain nondegenerate finite-dimensional pairs, and
that h = lim−→ hα where hα is a Cartan subalgebra of gα . Note that for any α we have
hα · Vα = Vα and hα · Wα = Wα . Since h is abelian, we have h · Vα = Vα and
h ·Wα = Wα . Therefore V andW are semisimple h-modules. This means that V is
the direct sum of nontrivial one-dimensional h-submodules Vγ , i.e., V = ⊕γ Vγ ;
similarly, W = ⊕

γ ′ Wγ ′ . Since however, for any α, the spaces Vα and Wα are
dual to each other, γ ′ and γ run over the same set of indices and Wγ (Vγ̃ ) �= 0
precisely for γ = γ̃ . This yields a basis vγ as required: vγ can be chosen as any
nonzero vector in Vγ and v∗γ is the unique vector in Wγ with v∗γ (vγ ) = 1. Finally,
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h = span
{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}
as, clearly, h ∩ gα = span

{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}

for vγ , vγ̃ ∈ Vα.

In the other direction, given a basis vγ of V such that
{
v∗γ
}

is a basis ofW , it is

clear that g = lim−→ sl

(
span

{
vγ
}
γ∈A , span

{
v∗γ
}

γ∈A

)
for all finite sets of indices

A, and that h = lim−→
(
h ∩ span

{
vγ ⊗ v∗γ − vγ̃ ⊗ v∗γ̃

}

γ,γ̃∈A

)
. ��

In [DPSn] (and also in earlier work, see the references in [DPSn]) Cartan
subalgebras are defined as maximal toral subalgebras of g (i.e., as subalgebras
each vector in which is ad-semisimple). Splitting Cartan subalgebras are Cartan
subalgebras for which the adjoint representation is semisimple. It is shown in [PStr]
that a countable dimensional locally finite, locally simple Lie algebra g admits a
splitting Cartan subalgebra if and only if g $ sl(∞), o(∞), sp(∞). Proposition 1.4
determines when Lie algebras of the form g = sl(V ,W), o(V ), sp(V ) admit local
Cartan subalgebras and implies that the notions of local Cartan subalgebra and of
splitting Cartan subalgebra coincide for these Lie algebras.

In what follows, we denote by V, V∗ a pair of infinite-dimensional spaces (of not
necessarily countable dimension) arising from a linear system V × V∗ → C for
which there is a basis {vγ } of V such that V∗ = span({v∗γ }) where v∗

γ̃
(vγ ) = δγ̃ γ .

2 The Category Intg

Let g be an arbitrary locally simple locally finite Lie algebra. An integrable
g-module is a g-module M which is locally finite as a module over any finite-
dimensional subalgebra g′ of g. In other words, dimU(g′) · m < ∞ ∀ m ∈ M .
We denote the category of integrable g-modules by Intg: Intg is a full subcategory
of the category g-mod of all g-modules. It is clear that Intg is an abelian category
and a monoidal category with respect to usual tensor product. Note that the adjoint
representation of g is an object of Intg.

The functor of g-integrable vectors

Γg : g−mod � Intg,

Γg(M) :=
{
m ∈ M | dimU(g′) ·m <∞ ∀ finite-dim. subalgebrasg′ ⊂ g

}

is a well-defined left-exact functor. This follows from the fact that the functor of
g′-finite vectors Γg′ is well defined for any finite-dimensional subalgebra g′ ⊂ g,
see for instance [Z], and that g equals the direct limit of its finite-dimensional
subalgebras.

Theorem 2.1. (a) LetM be an object of Intg. Then Γg(M∗) is an injective object
of Intg.
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(b) Intg has enough injectives. More precisely, for any object M of Intg there is a
canonical injective homomorphism of g−modules

M → Γg(Γg(M
∗)∗).

Proof. In [PS], see Proposition 3.2 and Corollary 3.3, the proof is given under
the assumption that g is countable dimensional. The reader can check that this
assumption is inessential. ��

3 Five Subcategories of Intg

3.1 The Category Intalg
g

We start by defining the full subcategory Intalg
g ⊂ Intg. Its objects are integrable

g-modules M such that for any simple finite-dimensional subalgebra g′ ⊂ g, the
restriction of M to g′ is a direct sum of finitely many g′-isotypic components.
Clearly, if dim M = ∞, at least one of these isotypic components must be infinite
dimensional. If g is diagonal, the adjoint representation of g is easily seen to be an
object of Intalg

g .

The following proposition provides equivalent definitions of Intalg
g .

Proposition 3.1. (a) M ∈ Intalg
g iffM andM∗ are integrable.

(b) An integrable g−moduleM is an object of Intalg
g iff for anyX ∈ g there exists a

nonzero polynomial p(t) ∈ C[t] such that p(X) ·M = 0.

Proof. (a) In the countable-dimensional case the statement is proven in [PS,
Lemma 4.1]. In general, let g′ ⊂ g be a finite-dimensional simple subalgebra
and let M = ⊕αMα be the decomposition of M into g′-isotypic components.
Then it is straightforward to check that M∗ = ∏

α M
∗
α is an integrable

g′-module iff the direct product is finite. This proves (a), since a g-module is
integrable iff it is g′-integrable for all finite-dimensional Lie subalgebras g′ ⊂ g.

(b) Let M ∈ Intalg
g . Any X ∈ g lies in some finite-dimensional Lie subalgebra

g′ ⊂ g. For each g′-isotypic component Mi of M there exists pi(t) such that
pi(X) ·Mi = 0. Since there are finitely many g′-isotypic components, we can
set p(t) =∏i pi(t). Then p(X) ·M = 0.

On the other hand, if M /∈ Intalg
g , then there are infinitely many isotypic

components for some finite-dimensional simple g′ ⊂ g. That implies the
existence of a semisimple X ∈ g′ which has infinitely many eigenvalues in M .
Therefore p(X) ·M �= 0 for any 0 �= p(t) ∈ C[t]. ��

It is obvious that Intalg
g is an abelian monoidal subcategory of g−mod. It is also

closed under dualization.
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Proposition 3.2. Intalg
g contains a nontrivial module iff g is diagonal.

Proof. Again, for a countable dimensional g the statement is proven in [PS] (see
Proposition 4.3). In fact, we prove in [PS] that if g = lim−→ gi has a non-trivial
integrable module such thatM∗ is also integrable, then the embedding gi ↪→ gi+1
is diagonal for all sufficiently large i.

To give a general proof, it remains to show that if g is not diagonal, then Intalg
g

contains no nontrivial modules. Assume that g = lim−→ gα is not diagonal. Fix a simple

finite-dimensional Lie algebra gα1 and a simple g-module M ∈ Intalg
g such that

M↓gα1
is nontrivial. We claim that one can find a chain of proper embeddings of

simple finite-dimensional Lie algebras

gα1 ↪→ gα2 ↪→ · · · ↪→ gαi ↪→ gαi+1 ↪→ · · ·

such that the embeddings gαi ↪→ gαi+1 are not diagonal. Indeed, otherwise there will
exist β0 so that the embedding gβ0 ↪→ gα is diagonal for all α > β0. Then, since
g = lim−→α>β0

gα, g is diagonal. This shows that the existence of β0 is contradictory.

Now Proposition 4.3 in [PS] implies thatM↓lim−→ gαi
is a trivial module, which shows

that the assumption thatM↓gα1
is nontrivial is false. ��

Let g = sl(V ,W) (respectively, g = o(V ), sp(V )). Then the tensor products
T m,n := V ⊗m⊗W⊗n (respectively, T m := V ⊗m) and their subquotients are objects
of Intalg

g .

Here is a less trivial example of a simple object of Intalg
g for gl = sl(V , V∗)

where V is a countable-dimensional vector space. Let g = lim−→ gi where gi =
sl(Vi), dimVi = i + 1, and lim−→Vi = V . Define Λ[∞2 ]V as the direct limit

lim−→Λ[ i2 ](Vi) for i ≥ 2. Then Λ[∞2 ]V is a simple object of Intalg
g and is not

isomorphic to a subquotient of a tensor product of the form T m,n.
Given a g-module M ∈ Intalg

g , where g = lim−→ gα , for each α we can assign to
gα the finite set of isomorphism classes of simple finite-dimensional gα-modules
which occur in the restriction M↓gα . A. Zhilinskii has defined a coherent local
system of finite-dimensional representations of g = lim−→ gα as a function of α with
values in the set of isomorphism classes of finite-dimensional gα-modules, with the
following compatibility condition: if β < α, then the representations assigned to
β are obtained by restriction from the representations assigned to α. Thus, every
M ∈ Intalg

g determines a coherent local system of finite type, i.e., a local system
containing finitely many isomorphism classes for any α.

Zhilinskii has classified all coherent local systems under the condition that g is
countable dimensional [Zh1, Zh2] (see also [PP] for an application of Zhilinskii’s
result). In particular, he has proved that proper coherent local systems, i.e., coherent
local systems different from the ones assigning the trivial 1-dimensional module to
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all α, or all finite-dimensional gα-modules to α, exist only if g is diagonal. This
leads to another proof of Proposition 3.2.

The category Intalg
g has enough injectives: this follows immediately from

Proposition 3.1 (a) and Theorem 2.1. We know of no classification of simple
modules in Intalg

g .

3.2 The Category Intwt
g,h

Given a local Cartan subalgebra h ⊂ g, we define Intwt
g,h as the full subcategory of

Intg consisting of h-semisimple integrable g-modules, i.e., integrable g-modulesM
admitting an h-weight decomposition

M = ⊕λ∈h∗Mλ (2)

where

Mλ := {m ∈ M | h ·m = λ(h)m ∀h ∈ h} .

If g = sl(V ,W), o(V ), sp(V ) for countable-dimensional V,W , then V (and W
in case g = sl(V ,W)) is a simple object of Intwt

g,h for any h. Moreover, if g is
a countable-dimensional locally simple Lie algebra, it is proved in [PStr] that the
adjoint representation of g is an object of Intwt

g,h iff g $ sl(∞), o(∞), sp(∞). The

simple modules of Intwt
g,h for g = sl(∞), o(∞), sp(∞) have been studied in [DiP1],

however there is no classification of such modules.
Assume that g is a locally simple diagonal countable-dimensional Lie algebra.

Without loss of generality, assume that g = lim−→ gi , where all gi are of the same type
A,B,C, or D. The very definition of g implies that there is a well-defined chain

Vg1

κ1
↪→ Vg2

κ2
↪→ . . . ↪→ Vgi

κi
↪→ Vgi+1 ↪→ . . . (3)

of embeddings of natural gi-modules, and we call its direct limit V a natural
representation of g. Moreover, a fixed natural representation V is a simple object
of Intwt

g,h for some local Cartan subalgebra h. To see this, we use induction to define

a local Cartan subalgebra h ⊂ g so that V ∈ Intwt
g,h. Given hi ⊂ gi and an hi -

eigenbasis bi of Vi , let hi+1 be a Cartan subalgebra of gi+1 whose eigenbasis bi+1
of Vi+1 contains bi . The assumption that gi and gi+1 are of the same typeA,B,C or
D (in the sense of the classification of simple Lie algebras [Bou]) implies that hi+1
exists as required. Moreover, h := lim−→ hi is a well-defined local Cartan subalgebra
of g and V ∈ Intwt

g,h.
Assume next that g is a locally simple Lie algebra which admits a local Cartan

subalgebra h such that the adjoint representation belongs to Intwt
g,h. This certainly
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holds for g = sl(∞), o(∞), sp(∞), but also for instance for g = sl(V , V∗) where
V is an arbitrary vector space. In this case we can define a left exact functor Γ wt

h :
Intg � Intwt

g,h by setting

Γ wt
h (M) := ⊕λ∈h∗Mλ,

whereMλ is given by (3). It is easy to see that Γ wt
h is right adjoint to the inclusion

functor Intwt
g,h � Intg. Hence Γ wt

h maps injectives to injectives, and therefore Intwt
g,h

has enough injectives. We do not know whether Intwt
g,h has enough injectives in the

case when the adjoint representation is not an object of Intwt
g,h.

We conjecture that for nondiagonal Lie algebras g, the category Intwt
g,h consists

of trivial modules only.

3.3 The Category Intfin
g,h

By Intfin
g,h we denote the full subcategory of Intwt

g,h consisting of integrable

g-modules satisfying dimMλ <∞ ∀λ ∈ h∗.
Note that for g = sl(V , V∗) (respectively, for g = o(∞), sp(∞)) the tensor

products T m,0 = V ⊗m and T 0,n = W⊗n (respectively, T m = V⊗m) are objects
of Intfin

g,h for every local Cartan subalgebra g. However, the adjoint representation is

not in Intfin
g,h for any h.

If g is countable dimensional diagonal then, as shown above, for each natural
representation V there is a local Cartan subalgebra h so that V (and more generally
V⊗m) is an object of Intwt

g,h. In fact, V⊗m ∈ Intfin
g,h for any m ≥ 0.

Here is a more interesting example of a simple module in Intfin
g,h for g =

sl(V , V∗), where V is a countable-dimensional vector space. Fix a chain of
embeddings

g1 ↪→ g2 ↪→ · · · ↪→ gi ↪→ gi+1 ↪→ · · ·

so that g = sl(Vi) for dimVi = i + 1, V = lim−→Vi, g = lim−→ gi . Note that

there is a canonical injection of gi-modules Si+1(Vi) ↪→ Si+2(Vi+1), and set
Δ := lim−→ Si+1(Vi). Then one can check that Δ is a multiplicity free h-module,
where h is such that hi := h ∩ gi is a Cartan subalgebra of gi .

The following result is proved in [PS].

Proposition 3.3. Let g = sl(∞), o(∞), sp(∞). Then the category Intfin
g,h is semi-

simple.
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This result should be considered an extension of Weyl’s semisimplicity theorem to
the case of direct limit Lie algebras. It is an interesting question whether the category
Intfin

g,h is semisimple whenever it is well defined.

3.4 The Category ˜Tensg

Let M be a g-module. Recall that the socle socM = soc1M of M is the unique
maximal semisimple submodule ofM , and

sockM := π−1(soc(M/sock−1M))

for k ≥ 2, where π : M → M/sockM is the natural projection. The ascending
chain

0 ⊂ socM = soc1M ⊂ soc2M ⊂ · · · ⊂ sock M ⊂ . . .

is by definition the socle filtration ofM . The g-moduleM has finite Loewy length if
it has a finite and exhaustive socle filtration, i.e.,

M = soclM

for some l.
By definition, T̃ensg is the full subcategory of Intg whose objects are integrable

g-modules with the property that bothM and Γg(M∗) have finite Loewy length.
The category T̃ensg is studied in detail in [PS] for g = sl(∞), o(∞), sp(∞),

where it is shown in particular that Γg(M∗) = M∗ for any object M of T̃ensg.
A major result of [PS] is that, up to isomorphism, the simple objects of T̃ensg
are precisely the simple subquotients of the tensor algebra T (V ⊕ V∗) for g =
sl(V , V∗) $ sl(∞), and of the tensor algebra T (V ) for g = o(V ) $ o(∞) or
g = sp(V ) $ sp(∞). These simple modules are discussed in more detail in Sect. 4
below. Note that the objects of T̃ensg have in general infinite length and are not
objects of Intwt

g,h for any h. An example of infinite length module in T̃ensg for
g = sl(V , V∗) $ sl(∞) is V ∗: there is a nonsplitting exact sequence of g-modules

0 → V∗ = socV ∗ → V ∗ → V ∗/V∗ → 0

and V ∗/V∗ is a trivial module of uncountable dimension.
For g = sl(∞), o(∞), sp(∞), the category T̃ensg has enough injectives [PS,

Corollary 6.7a)].
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3.5 The Category Tg

The fifth subcategory we would like to introduce in this section is the category of
tensor modules Tg. We define this category only for g = sl(V ,W), o(V ), sp(V ),
and discuss it in detail in Sect. 5.

We call a subalgebra k ⊂ sl(W, V ) a finite-corank subalgebra if it contains
the subalgebra sl(W⊥

0 , V
⊥
0 ) for some finite-dimensional nondegenerate pair V0 ⊂

V,W0 ⊂ W . Similarly, we call k ⊂ o(V ) (respectively, sp(V )) a finite corank
subalgebra if it contains o(V⊥) (respectively, sp(V ⊥0 )) for some finite-dimensional
V0 ⊂ V such that the restriction of the form on V0 is nondegenerate.

We say that a g-module L satisfies the large annihilator condition if the
annihilator in g of any l ∈ L contains a finite-corank subalgera. It follows
immediately from definition that if L1 and L2 satisfy the large annihilator condition,
then the same holds also for L1 ⊕ L2 and L1 ⊗ L2.

By Tg we denote the category of finite length integrable g-modules which satisfy
the large annihilator condition. By definition, Tg is a full subcategory of Intg. It is
clear that Tg is a monoidal category with respect to usual tensor product⊗.

3.6 Inclusion Pattern

The following diagram summarizes the inclusion pattern for the five subcategories
of Intg introduced above:

Note that all categories except Tg are defined for any locally simple Lie algebra
g, while Tg is defined only for g = sl(V ,W), o(V ), sp(V ). Moreover, under the
latter assumption all inclusions are strict. We support this claim by a list of examples
and leave it to the reader to complete the proof.

Examples. Let g = sl(V , V∗), o(V ), sp(V ), where V is countable dimensional.
The simple objects of Tg and T̃ensg are the same, however V ∗ ∈ T̃ensg while V ∗ /∈
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Tg. Moreover, V ∗ /∈ Intwt
g,h for any local Cartan subalgebra h. The module Δ from

Sect. 3.3 is an object of Intfin
g,h but not an object of Intalg

g . The adjoint representation

is an object of Intwt
g,h but not of Intfin

g,h.

4 Mixed Tensors

In this section g = sl(V ,W), o(V ), sp(V ). By definition, V is a g-module. For
g = sl(V ,W),W is also a g-module.

Consider the tensor algebra T (V ) of V . Then, as it is easy to see, finite-
dimensional Schur duality implies that

T (V ) =
⊕

λ

Cλ ⊗ Vλ, (4)

where λ runs over all Young diagrams (i.e., over all partitions of all integers
m ∈ Z≥0), Cλ denotes the irreducible S|λ|-module (where |λ| is the degree of λ)
corresponding to λ, and Vλ is the image of the Schur projector corresponding to λ.
For g = sl(V ,W), Vλ is an irreducible g-module as it is isomorphic to the direct
limit lim−→(Vf )λ of the directed system {(Vf )λ} of irreducible sl(Vf ,Wf )-modules
for sufficiently large nondegenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W .
For g = o(V ), sp(V ), Vλ is in general a reducible g-module.

Similarly, for g = sl(V ,W),

T (W) =
⊕

λ

Cλ ⊗Wλ.

Let g = sl(V ,W). Recall that T m,n = V⊗m ⊗W⊗n. Then

T m,n =
⊕

|λ|=n, |μ|=m
Cλ ⊗ Cμ ⊗ Vλ ⊗Wμ.

Note that, as a g-module T (V,W) :=⊕m,n≥0 T
m,n is not completely reducible.

This follows simply from the observation that the exact sequence

0 → g→ V ⊗W → C→ 0

does not split as V⊗W has no trivial submodule. In [PStyr] the structure of T (V,W)
has been studied in detail for countable-dimensional V andW .

For each ordered set I = {i1, . . . , ik, j1, . . . , jk}, where i1, . . . , ik ∈ {1, . . . ,m} ,
j1, . . . , jk ∈ {1, . . . , n} , k ≤ min {m,n} , there is a well-defined surjective
morphism of g-modules

ϕI : T m,n −→ T m−k,n−k
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such that

ϕI (v1 ⊗ · · · ⊗ vm ⊗w1 ⊗ · · · ⊗ wn) =
∏

s

ϕ(vis ⊗ wjs )(⊗i �=is vi)⊗ (⊗j �=jswj )

for s = 1, . . . , k, where ϕ : V ⊗ W → C is the linear operator induced by the
pairing V ×W → C.

We now define a filtration of T m,n by setting

F
m,n
0 := 0, Fm,nk := ∩I kerϕI for k = 1, . . . ,min{m,n}, Fm,nmin{m,n}+1 := T m,n,

(5)
where I runs over all ordered sets {i1, . . . , ik, j1, . . . , jk} as above.

Let |λ| = m, |μ| = n. We set

Vλ,μ := Fm,n1 ∩ (Vλ ⊗Wμ).

Note that, for sufficiently large finite-dimensional nondegenerate pairs Vf ⊂
V,Wf ⊂ W , the sl(Vf ,Wf )-module T (Vf ,Wf ) ∩ Vλ,μ is simple. Therefore Vλ,μ
is a simple sl(V ,W)-module.

Theorem 4.1. {Fm,nk }0≤k≤min{m,n}+1 is the socle filtration of T m,n as a sl(V ,W)-
module.

Proof. In [PStyr] this theorem is proven in the countable-dimensional case. Here
we give a proof for arbitrary V andW .

Recall that ifM is a g-module,Mg stands for the space of g-invariants inM .

Lemma 4.2. Let g = sl(V ,W) (respectively, o(V ) or sp(V )). Then (T m,n)g = 0
for m+ n > 0 (respectively, (T m)g = 0 for m > 0).

Proof. We prove the statement for g = sl(V ,W) and m > 0. The other cases are
similar. Let u ∈ T m,n = V⊗m ⊗ W⊗n, u �= 0. Then u ∈ V ⊗mf ⊗ W⊗n

f for some
finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W . Choose bases in Vf and
Wf and write

u =
t∑

i=1

civ
i
1 ⊗ · · · ⊗ vim ⊗ wi1 ⊗ · · · ⊗ win,

where all vij and wij are basis vectors respectively of Vf andWf . Pick w ∈ W such

that tr(v1
1⊗w) = 1 and tr(vij⊗w) = 0 for all vij �= v1

1. Let v ∈ V \Vf andw ∈ W⊥
f .

Then

(v⊗w)·u =
t∑

i=1

m∑

j=1

ci tr(vij⊗w)vi1⊗· · ·⊗vij−1⊗v⊗vij+1⊗· · ·⊗vim⊗wi1⊗· · ·⊗win.
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Our choice of v and w ensures that at least one term in the right-hand side is not
zero and there is no repetition in the tensor monomials appearing with nonzero
coefficients. That implies (v ⊗ w) · u �= 0. Hence u /∈ (V⊗m ⊗W⊗n)g. ��
Lemma 4.3. Let g = sl(V ,W). If Homg(Vλ,μ, T

m,n) �= 0, then |λ| = m, |μ| = n.

Proof. Choose a finite-dimensional nondegenerate pairVf ⊂ V,Wf ⊂ W such that
dimVf ≥ max{m,n, |λ|, |μ|}. Then (Vf )λ,μ := T (Vf ,Wf ) ∩ Vλ,μ is annihilated
by the finite corank subalgebra k = sl(W⊥

f , V
⊥
f ) of g. Let l = sl(Vf ,Wf )⊕ k. Then

Homl((Vf )λ,μ, T
m,n) = Homsl(Vf ,Wf )((Vf )λ,μ, (T

m,n)k)

= Homsl(Vf ,Wf )((Vf )λ,μ, V
⊗m
f ⊗W⊗n

f ).

Therefore a homomorphism ϕ ∈ Homg(Vλ,μ, T
m,n) has a well-defined restric-

tion ϕf ∈ Homsl(Vf ,Wf )((Vf )λ,μ, V
⊗m
f ⊗ W⊗n

f ). According to finite-dimensional
representation theory, ϕf �= 0 implies that ϕf is a composition

(Vf )λ,μ→ (V
⊗|λ|
f ⊗W⊗|μ|

f )⊗ (V ⊗(m−|λ|)f ⊗W⊗(n−|μ|)
f )sl(Vf ,Wf ) −→ V ⊗mf ⊗W⊗n

f .

Since ϕ is the inverse limit of ϕf , ϕ is a composition

Vλ,μ→ T |λ|,|μ| ⊗ (T m−|λ|,n−|μ|)sl(V ,W) −→ T m,n.

However, by Lemma 4.2, (T m−|λ|,n−|μ|)sl(V ,W) �= 0 only if |λ| = m, |μ| = n. ��
Note that Lemma 4.3 implies

socT m,n = soc1T m,n = Fm,n1 . (6)

Consider now the exact sequence

0 → F
m,n
k−1 → T m,n→

⊕

I

T m−k+1,n−k+1, (7)

where I runs over the same set as in (5). It follows from (6) that (7) induces an exact
sequence

0 → F
m,n
k−1 → F

m,n
k →

⊕

I

F
m−k+1,n−k+1
1 .

Therefore induction on k yields sock T m,n = Fm,nk . Theorem 4.1 is proved. ��
As a corollary we obtain that the sl(V ,W)-module Vλ ⊗Wμ is indecomposable

since its socle Vλ,μ is simple. Further one shows that any simple subquotient of
T (V,W) is isomorphic to Vλ,μ for an appropriate pair of partitions λ,μ. The k-th
layer of the socle filtration of Vλ⊗Wμ, i.e., the quotient sock(Vλ⊗Wμ)/sock−1(Vλ⊗
Wμ), can have only simple constituents isomorphic to Vλ′,μ′ where λ′ is obtained
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from λ by removing k−1 boxes and μ′ is obtained fromμ by removing k−1 boxes.
An explicit formula for the multiplicity of Vλ′μ′ in sock(Vλ⊗Wμ)/sock−1(Vλ⊗Wμ)
is given in [PStyr].

Next, consider the associative algebra Asl(V ,W) ⊂ Endsl(V ,W)(T (V,W))
generated by all contractions ϕi,j and by the direct sum of group algebras⊕
m,n≥0 C[Sm × Sn]. It is clear that Asl(V ,W) does not depend on the choice

of the linear system V × W → C. In what follows we use the notation
Asl. One can equip Asl with a Z≥0-grading Asl = ⊕

q≥0(Asl)q by
setting (Asl)q := ⊕

m,n≥0 Homsl(V ,W)(T
m,n, T m−q,n−q ) ∩ Asl. If we set

T ≤r (V ,W) := ⊕
m+n≤r T m,n and denote by A(r)sl the intersection of Asl with

Endsl(V ,W)(T ≤r (V ,W)), then, obviously, Asl = lim−→A(r)sl .
The following statement is a central result in [DPS].

Proposition 4.4. (a) If V is countable dimensional, then

(Asl)q =
⊕

m,n≥0

Homsl(V ,V∗) (T
m,n, T m−q,n−q ).

(b) A(r)sl is a Koszul self-dual ring for any r ≥ 0.

Now let g = o(V ) (respectively, sp(V )). Recall that T m = V⊗m. Assume
m ≥ 2. For a pair of indices 1 ≤ i < j ≤ m we have a contraction map
ϕi,j ∈ Homg(V

⊗m, V ⊗m−2). If V is countable dimensional, the socle filtration
of T (V ) considered as a g-module is described in [PStyr]. Recall the decomposition
(4). Each Vλ is an indecomposable g-module with simple socle which we denote by
Vλ,g. Moreover,

sock Vλ = sock (Vλ ∩ V ⊗|λ|) = Vλ ∩ (∩I1,...,Ikker (ϕI1,...,Ik : V ⊗|λ| → V ⊗|λ|−2k)),

where I1, . . . , Ik run over all sets of k distinct pairs of indices 1, . . . , |λ| and
ϕI1,...,Ik = ϕI1 ◦ · · · ◦ ϕIk .

Next, let Ag ⊂ Endg(T (V )) be the graded subalgebra of Endg(T (V )) generated
by
⊕
m≥0 C[Sm] and the contractions ϕi,j . We define a Z≥0− grading Ag =⊕

q≥0(Ag)q by setting

(Ag)q :=
⊕

m≥0

Homg(T
m, T m−2q) ∩Ag.

If we set T ≤r (V ) := ⊕
m≤r T m and denote by A(r)g the intersection of Ag with

Endg(T ≤r (V )), then Ag = lim→ A(r)g . It is clear that the algebra Ag can depend

only on the symmetry type of the form on V but not on V and the form itself. This
justifies the notations Ao and Asp.
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Proposition 4.5 ([DPS]).

(a) A(r)o $ A(r)sp for each r ≥ 0, and Ao $ Asp.
(b) If V is countable dimensional, then (Ao)q = ⊕

m≥0 Homo(V )(T
m, T m−2q),

(Asp)q =⊕m≥0 Homsp(V )(T
m, T m−2q).

(c) A(r)o $ A(r)sp is a Koszul ring for any r ≥ 0.

In each of the three cases g = sl(∞), o(∞), sp(∞) we call the modules Vλ,μ,
respectively Vλ,g, the simple tensor modules of g.

5 The Category Tg

5.1 The Countable-Dimensional Case

In this subsection we assume that g = sl(V , V∗), o(V ) or sp(V ) for a countable-
dimensional space V . The category Tg has been studied in [DPS], and here we
review some key results.

Denote by G̃ the group of automorphisms of V under which V∗ is stable for
g = sl(V , V∗), and the group of automorphisms of V which keep fixed the form on
V which defines g. The group G̃ is a subgroup of Autg and therefore acts naturally
on isomorphism classes of g-modules: to each g-moduleM one assigns the twisted
g-moduleMg̃ for g̃ ∈ G̃. A g-moduleM is G̃-invariant ifM $ Mg̃ for all g̃ ∈ G̃.

Furthermore, define a g-module M to be an absolute weight module if the
decomposition (2) holds for any local Cartan subalgebra of g, i.e., ifM is a weight
module for any local Cartan subalgebra h of g. In [DPS] we have given five
equivalent characterizations of the objects of Tg.

Theorem 5.1 ([DPS]). The following conditions on a g-moduleM of finite length
are equivalent:

(i) M is an object of Tg;
(ii) M is a weight module for some local Cartan subalgebra h ⊂ g and M is

G̃-invariant;
(iii) M is a subquotient of T (V ⊕ V∗) for g = sl(V , V∗) (respectively, of T (V ) for

g = o(V ), sp(V ));
(iv) M is a submodule of T (V ⊕ V∗) for g = sl(V , V∗) (respectively, of T (V ) for

g = o(V ), sp(V ));
(v) M is an absolute weight module.

Furthermore, the following two theorems are crucial for understanding the
structure of Tg.

Theorem 5.2 ([PS, DPS]). The simple objects in the categories T̃ensg and Tg

coincide and are all of the form Vλ,μ for g = sl(V , V∗), or respectively Vλ,g for
g = o(V ), sp(V ).
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Theorem 5.3 ([DPS]).

(a) Tg has enough injectives. If g = sl(V , V∗), then Vλ⊗ (V∗)μ is an injective hull
of Vλ,μ. If g = o(V ) or sp(V ), then Vλ is an injective hull of Vλ,g.

(b) Tg is anti-equivalent to the category of locally unitary finite-dimensional
Ag−modules.

Theorem 5.3 means that the category Tg is “Koszul” in the sense that it is anti-
equivalent to a module category over the infinite-dimensional Koszul algebra Ag.

Corollary 5.4. To(∞) and Tsp(∞) are equivalent abelian categories.

In fact, the stronger result that To(∞) and Tsp(∞) are equivalent as monoidal
categories also holds, see [SS] and [S].

5.2 The General Case

In this subsection we prove the following result.

Theorem 5.5. Let g = sl(V ,W), o(V ), sp(V ). Then, as a monoidal category, Tg

is equivalent to Tsl(∞) or To(∞).

The proof of Theorem 5.5 is accomplished by proving several lemmas and
corollaries.

Lemma 5.6. (a) Let g = sl(V ,W) and Cm,n := Homg(T
m,n,C). If m �= n, then

Cm,n = 0, and if m = n, then Cm,m is spanned by τπ for all π ∈ Sm, where

τπ(v1 ⊗ · · · ⊗ vm ⊗ w1 ⊗ · · · ⊗ wm) =
m∏

i=1

tr(vi ⊗ wπ(i)).

(b) Let g = o(V ) or sp(V ). Then Homg(T
2m+1,C) = 0 and Homg(T

2m,C) is
spanned by σπ for all π ∈ Sm, where

σπ (v1 ⊗ · · · ⊗ v2m) =
m∏

i=1

(vi , vm+π(i)).

Proof. In the finite-dimensional case the same statement is the fundamental theorem
of invariant theory. Since T m,n for g = sl(V ,W) (respectively, T m for g =
o(V ), sp(V )) is a direct limit of finite-dimensional representations of the same type,
the statement follows from the fundamental theorem of invariant theory. ��

Let L be a g-module and let g′ denote a subalgebra of g of the form sl(V ′,W ′)
(respectively, o(V ′), sp(V ′)) for some nondegenerate pair V ′ ⊂ V,W ′ ⊂ W
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(respectively, nondegenerate subspace V ′ ⊂ V ). Let (V ′f ,W ′
f ) be a finite-

dimensional nondegenerate pair satisfying V ′f ⊂ V ′,W ′
f ⊂ W ′ (respectively, V ′f ⊂

V ′) and let k′ = sl((W ′
f )
⊥, (V ′f )⊥) ⊂ g (respectively k′ = o((V ′f )⊥), sp(V ′f )⊥)).

Then Lk′ is an sl(W ′
f , V

′
f )-module (respectively, an o(V ′f )− or sp(V ′f )-module),

and moreover if we let k′ vary, the corresponding sl(V ′f ,W ′
f )-modules (respectively,

o(V ′f )− or sp(V ′f )-modules) form a directed system whose direct limit

Γ anng′ (L) = lim−→Lk′

is a g′-module. Note that Γ anng′ (L) may simply be defined as the union
⋃

k′ L
k′ of

subspaces Lk′ ⊂ L.
It is easy to check that Γ anng′ is a well-defined functor from the category g−mod

to its subcategory of g′−mod consisting of modules satisfying the large annihilator
condition. In particular, Γ anng is a well-defined functor from g−mod to the category
of g-modules satisfying the large annihilator condition, and the restriction of Γ anng
to Tg is the identity functor.

In the case when g′ is finite dimensional the functor Γ anng′ and its right derived
functors are studied in detail in [SSW].

Lemma 5.7. (a) Let g = sl(V ,W); then

Γ anng ((T m,n)∗) $
⊕

k≥0

bkT
n−k,m−k

where bk =
(
m
k

)(
n
k

)
k!.

(b) Let g = o(V ) or sp(V ), then

Γ anng ((T m)∗) $
⊕

k≥0

ckT
m−2k

where ck =
(
m
2k

)
k!.

Proof. We prove (a) and leave (b) to the reader. Choose a finite-dimensional
nondegenerate pair Vf ⊂ V,Wf ⊂ W , and let k = sl(W⊥

f , V
⊥
f ). There is an

isomorphism of k-modules

(T m,n)∗ = (V ⊗m⊗W⊗n)∗ $
⊕

k≥0,l≥0

dk,l(W
⊗m−k
f ⊗V ⊗n−lf )⊗((V⊥f )⊗k⊗(W⊥

f )
⊗l )∗

(8)
where dk,l =

(
m
k

)(
n
l

)
.
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Using (8) and Lemma 5.6 (a) applied to k in place of g, we compute that

(
(T m,n)∗

)k $
⊕

k≥0

bk(W
⊗m−k
f ⊗ V ⊗n−kf ).

Now the statement follows by taking the direct limit of k-invariants over all
nondegenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W . ��
Corollary 5.8. T m,n is an injective object of Tsl(V ,W), and T m is an injective
object of Tg for g = o(V ), sp(V ).

Proof. We consider only the case g = sl(V ,W). Recall (Theorem 2.1) that if M
is an integrable module such that M∗ is integrable, then M∗ is injective in Intg. In
particular, (T m,n)∗ is injective in Intg. Next, note that Γ anng is right adjoint to the
inclusion functor Tg � Intg, i.e., for any L ∈ Tg and any Y ∈ Intg, we have

Homg(L, Y ) = Homg(L, Γ
ann
g (Y )).

Hence, Γ anng transforms injectives in Intg to injectives in Tg. This implies that
Γ anng ((T n,m)∗) is injective in Tg. By Lemma 5.7, T m,n is a direct summand in
Γ anng ((T n,m)∗), and the statement follows. ��

Next we impose the condition that our fixed subalgebra g′ ⊂ g is countable
dimensional. In the rest of the paper we set gc := g′. More precisely, we choose
strictly increasing chains of finite-dimensional subspaces

V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ Vi+1 ⊂ . . . , W1 ⊂ W2 ⊂ . . . ⊂ Wi ⊂ Wi+1 ⊂ . . .

and set gc = sl(Vc,Wc) where Vc := lim−→Vi,Wc := lim−→Wi . It is clear that Vc ×
Wc → C is a countable-dimensional linear system, hence gc $ sl(∞). If g =
o(V ), sp(V ), choose a strictly increasing chain of nondegenerate finite-dimensional
subspaces V1 ⊂ V2 ⊂ . . . ⊂ Vi ⊂ Vi+1 ⊂ . . . and set Vc := lim−→ Vi , gc =
o(Vc), sp(Vc).

By Φ we denote the restriction of Γ anngc to Tg. Note that for any L ∈ Tg, Φ(L)

is a gc-submodule of L.

Lemma 5.9. Let L,L′ ∈ Tg.

(a) Φ(L) generates L.
(b) The homomorphism Φ(L,L′) : Homg(L,L

′) → Homgc (Φ(L),Φ(L
′)) is

injective.

Proof. Again we consider only the case g = sl(V ,W) since the other cases are
similar. Let SL(V,W) denote the direct limit group lim−→ SL(Vf ,Wf ) for all non-
degenerate finite-dimensional pairs Vf ⊂ V,Wf ⊂ W , where SL(Vf ,Wf ) $
SL(dimVf ).
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(a) Since L has finite length and satisfies the large annihilator condition, there
is a finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W and a finite-
dimensional gl(Vf ,Wf )-submoduleLf ⊂ L annihilated by sl((Wf )

⊥, (Vf )⊥)
such that L is generated by Lf over g. Choose i so that dimVf < dimVi . Then
there exists g ∈ SL(V,W) such that g(Vf ) ⊂ Vi, g(Wf ) ⊂ Wi . Note that
g = exp x for some x ∈ sl(V ,W). By the integrability of L as a g-module, the
action of g is well defined on L, and g(Lf ) also generates L over g. On the
other hand, by construction g(Lf ) is annihilated by gsl((Wf )⊥, (Vf )⊥)g−1.
Observe that

sl((Wi)
⊥, (Vi)⊥) ⊂ sl(g(Wf )

⊥, g(Vf )⊥) = gsl((Wf )⊥, (Vf )⊥)g−1.

Hence g(Lf ) ⊂ Φ(L). The statement follows.
(b) Follows immediately from (a). ��
Lemma 5.10. (a) Φ(T m,n) = V ⊗mc ⊗W⊗n

c for g = sl(V ,W), andΦ(T m) = V ⊗mc
for g = o(V ), sp(V );

(b) The homomorphisms

Φ(T m,n, T k,l) : Homg(T
m,n, T k,l)→ Homgc (V

⊗m
c ⊗W⊗n

c , V ⊗kc ⊗W⊗l
c )

for g = sl(V ,W), and

Φ(T m, T k) : Homg(T
m, T k)→ Homgc (V

⊗k
c , V ⊗kc )

for g = o(V ) or sp(V ), are isomorphisms.
(c) Let X ⊂⊕i V

⊗mi
c ⊗W⊗ni

c , (respectively, X ⊂⊕i V
mi
c for g = o(V ), sp(V ))

be a gc-submodule. Then Φ(U(g) ·X) = X.
(d) If X ⊂ V ⊗mc ⊗ W⊗n

c (respectively, X ⊂ ⊕i V
mi
c for g = o(V ), sp(V )) is a

simple submodule, then U(g) ·X is a simple g-module.

Proof. (a) follows easily from the observation that

(T m,n)k = V ⊗mi ⊗W⊗n
i

for any finite corank subalgebra k = sl(W⊥
i , V

⊥
i ). This observation is a straightfor-

ward consequence of Lemma 4.2.
To prove (b), note that the injectivity of the homomorphisms Φ(T m,n, T k,l)

follows from (a) and Lemma 5.9 (b). To prove surjectivity, we observe that
Homgc (V

⊗m
c ⊗W⊗n

c , V ⊗kc ⊗W⊗l
c ) is generated by permutations and contractions

according to Proposition 4.5 (b). Both are defined in Homg(T
m,n, T k,l) by the same

formulae. Therefore the homomorphismsΦ(T m,n, T k,l) are surjective.
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We now prove (c). Note that X = kerα for some α ∈ Homgc (
⊕
i V

⊗mi
c ⊗

W
⊗ni
c ,

⊕
j V

⊗mj
c ⊗ W⊗nj

c ). Using (b) we have U(g) · X ⊂ kerΦ−1(α). Hence,
Φ(U(g) · X) ⊂ kerα = X. Since the inclusion X ⊂ Φ(U(g) · X) is obvious, the
statement follows.

To prove (d), suppose U(g) ·X is not simple, i.e., there is an exact sequence

0 → L→ U(g) ·X→ L′ → 0

for some nonzero L,L′. By the exactness of Φ and by (c), we have an exact
sequence

0 → Φ(L)→ X→ Φ(L′)→ 0.

By Lemma 5.9 (a), Φ(L) and Φ(L′) are both nonzero. This contradicts the
assumption that X is simple. ��
Lemma 5.11. For g = sl(V ,W) (respectively, for g = o(V ), sp(V )) any simple
object in the category Tg is isomorphic to a submodule in T m,n for suitable m and
n (respectively, in T m for a suitable m).

Proof. We assume that g = sl(V ,W) and leave the other cases to the reader. Let L
be a simple module in Tg. By Lemma 5.9 (a),Φ(L) �= 0. LetLi = Lsl(W⊥

i ,V
⊥
i ) �= 0

for some i, and let L′ ⊂ Li be a simple sl(Vi,Wi)-submodule. Consider the Z-
grading g = g−1 ⊕ g0 ⊕ g1 where g0 = gl(Vi,Wi)⊕ sl(W⊥

i , V
⊥
i ), g

1 = Vi ⊗ V⊥i ,
g−1 = W⊥

i ⊗Wi . There exists a finite-dimensional subspace W ′ ⊂ V⊥i , such that
S(Vi ⊗W ′) generates S(g1) as a module over sl(W⊥

i , V
⊥
i ). By the integrability of

L, (Vi⊗W ′)q ·L′ = 0 for sufficiently large q ∈ Z≥0, and thus (g1)q ·L′ = 0. Hence,
there is a nonzero vector l ∈ Li ⊂ L annihilated by g1, and consequently there is
a simple g0-submodule L

′′ ⊂ L annihilated by g1. Therefore L is isomorphic to a
quotient of the parabolically induced moduleU(g)⊗U(g0⊕g1) L

′′
. The latter module

is a direct limit of parabolically induced modules for finite-dimensional subalgebras
of g. Hence it has a unique integrable quotient, and this quotient is isomorphic to
L. On the other hand, L

′′
is a simple g0-submodule of T m,n for some m and n.

Thus, by Frobenius reciprocity, a quotient of U(g)⊗U(g0⊕g1) L" is isomorphic to a
submodule of T m,n. Since T m,n is integrable, this quotient is isomorphic to L. ��
Corollary 5.12. (a) If g=sl(V ,W), thenAsl=⊕m,n,q Hom g(T

m,n, T m−q,n−q).
If g = o(V ), sp(V ), then Ag =⊕m,q Hom (T m, T m−2q ). Furthermore,

Asl = lim−→Endg(
⊕

m+n≤r
T m,n),

and for g = o(V ), sp(V )
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Ao = lim−→Endg(
⊕

m≤r
T m).

(b) Up to isomorphism, the objects of Tg are precisely all finite length submodules
of T (V,W)⊕k for g = sl(V ,W), and of T (V )⊕k for g = o(V ), sp(V ). Equiv-
alently, up to isomorphism, the objects of Tg are the finite length subquotients
of T (V,W)⊕k for g = sl(V ,W), and of T (V )⊕k for g = o(V ), sp(V ).

Proof. Claim (a) is a consequence of Lemma 5.10. Claim (b) follows from
Lemma 5.11 and Corollary 5.8. ��
Lemma 5.13. For anyL ∈ Tg,Φ(L) ∈ Tgc . Moreover, the functorΦ : Tg → Tgc

is fully faithful and essentially surjective.

Proof. By Corollary 5.12 (b), L is isomorphic to a submodule in a direct sum of
finitely many copies of T (V,W). Then Φ(L) is isomorphic to a submodule in a
direct sum of finitely many copies of T (Vc,Wc). That implies the first assertion.
The fact that Φ is faithful follows from Lemma 5.9 (b).

To prove thatΦ is full, considerL,L′ ∈ Tg and let I (L), I (L′) denote respective
injective hulls in Tg. Then

Homg(L,L
′) ⊂ Homg(I (L), I (L

′))

and

Homgc (Φ(L),Φ(L
′)) ⊂ Homgc (Φ(I (L)),Φ(I (L

′))).

By Corollary 5.12 (a), the homomorphism

Φ(I (L), I (L′)) : Homg(I (L), I (L
′))→ Homgc (Φ(I (L)),Φ(I (L

′)))

is surjective. Therefore for any ϕ ∈ Homgc (Φ(L),Φ(L
′)) there exists ψ ∈

Homg(I (L), I (L
′)) such that ψ(Φ(L)) ⊂ Φ(L′). By Lemma 5.9 Φ(L) and Φ(L′)

generate respectively L and L′. Hence ψ(L) ⊂ L′. Thus, we obtain that the
homomorphism

Φ(L,L′) : Homg(L,L
′)→ Homgc (Φ(L),Φ(L

′))

is also surjective.
To prove thatΦ is essentially surjective, we use again Corollary 5.12 (b). We note

that any L ∈ Tg is isomorphic to the kernel of ϕ ∈ Hom(T (V,W)⊕k, T (V,W)⊕l )
for some k and l and then apply Corollary 5.12 (a). ��

Observe that Lemma 5.13 implies that

Φ : Tg → Tgc
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an equivalence of the abelian categories Tg and Tgc . To prove Theorem 5.5 it
remains to check that Φ is an equivalence of monoidal categories. We therefore
prove the following.

Lemma 5.14. If L,N ∈ Tg, then Φ(L⊗N) $ Φ(L)⊗Φ(N).
Proof. We just consider the case sl(V ,W) as the orthogonal and symplectic cases
are very similar. Let k = sl(W⊥

f , V
⊥
f ) for some finite-dimensional nondegenerate

pair Vf ⊂ V,Wf ⊂ W . We claim that

(L⊗N)k = Lk ⊗Nk.

Indeed, using Lemma 4.2 one can easily show that

(T m,n)k = V ⊗mf ⊗W⊗n
f ,

which implies the statement in the case when L and N are injective. For arbitrary
L and N consider embeddings L ↪→ I and N ↪→ J for some injective I, J ∈ Tg.
Then

(L⊗N)k = (L⊗N) ∩ (I ⊗ J )k = (L⊗N) ∩ (I k ⊗ J k) = Lk ⊗Nk.

Now we set k = sl(W⊥
i , V

⊥
i ) and finish the proof by passing to the direct limit.

��

The proof of Theorem 5.5 is complete. �

6 Mackey Lie Algebras

Let V ×W → C be a linear system. Then each of V and W can be considered as
subspace of the dual of the other:

V ⊂ W∗, W ⊂ V ∗.
Let EndW(V ) denote the algebra of endomorphismsϕ : V → V such that ϕ∗(W) ⊂
W where ϕ∗ : V ∗ → V ∗ is the dual endomorphism. Clearly, there is a canonical
anti-isomorphism of algebras

EndW(V )
∼→ EndV (W), ϕ 
−→ ϕ∗|W .

We call the Lie algebra associated with the associative algebra EndW(V ) (or
equivalently EndV (W)) a Mackey Lie algebra and denote it by glM(V,W).

Note that if V, W is a linear system, then for any subspaces W ′ ⊂ V ∗ with
W ⊂ W ′, and V ′ ⊂ W∗ with V ⊂ V ′, the pairs V, W ′ and V ′, W are linear
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systems. In particular V, V ∗ is a linear system and W∗, W is a linear system.
Clearly, glM(V, V ∗) coincides with the Lie algebra of all endomorphisms of V
(respectively, glM(W∗,W) is the Lie algebra of all endomorphisms of W ). Hence
glM(V,W) ⊂ glM(V, V ∗), glM(V,W) ⊂ glM(W∗,W). If V and W = V∗
are countable dimensional, the Lie algebra glM(V, V∗) is identified with the Lie
algebra of all matrices X = (xij )i≥1,j≥1 such that each row and each column
of X have finitely many nonzero entries. The Mackey Lie algebra glM(V, V ∗)
(for a countable dimensional space V ) is identified with the Lie algebra of all
matricesX = (xij )i≥1,j≥1 each column of which has finitely many nonzero entries.
Alternatively, if a basis of V as above is enumerated by Z (i.e., we consider a basis
{vj }j∈Z such that V∗ = span{v∗j }j∈Z where v∗j (vi) = 0 for j �= i, v∗j (vj ) = 1),

then glM(V, V∗) is identified with the Lie algebra of all matrices (xij )i,j∈Z whose
rows and columns have finitely many nonzero entries, and glM(V, V ∗) is identified
with the Lie algebra of all matrices (xij )i,j∈Z whose columns have finitely many
nonzero entries.

Obviously V and W are glM(V,W)-modules. Moreover, V and W are not
isomorphic as glM(V,W)-modules.

It is easy to see that gl(V ,W) = V ⊗ W is the subalgebra of glM(V,W)
consisting of operators with finite-dimensional images in both V and W , and that
it is an ideal in glM(V,W). Furthermore, the Lie algebra glM(V,W) has a 1-
dimensional center consisting of the scalar operators CId.

We now introduce the orthogonal and symplectic Mackey Lie algebras. Let
V be a vector space endowed with a nondegenerate symmetric (respectively,
antisymmetric) form, then oM(V ) (respectively, spM(V )) is the Lie algebra

{X ∈ End(V ) | (X · v,w) + (v,X ·w) = 0 ∀ v,w ∈ V }.

If V is countable dimensional, there always is a basis {vi, wj }i,j∈Z of V such that
span{vi}i∈Z and span{wj }j∈Z are isotropic spaces and (vi , wj ) = 0 for i �= j ,
(vi , wi) = 1. The corresponding matrix form of oM(V ) consists of all matrices

(
aij bkl

crs −aji
)

(9)

each row and column of which are finite and in addition bkl = −blk, crs = −csr
where i, j, k, l, r, s ∈ Z. The matrix form for spM(V ) is similar: here bkl =
blk, crs = csr .

It is clear that o(V ) ⊂ oM(V ) and sp(V ) ⊂ spM(V ):

(v ∧ w) · x = (v, x)w − (x,w)v for v ∧w ∈ Λ2V = o(V ), x ∈ V

and

(vw) · x = (v, x)w − (x,w)v for vw ∈ S2V = sp(V ), x ∈ V.
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Moreover, o(V ) is an ideal in oM(V ) and sp(V ) is an ideal in spM(V ), since
bothΛ2V and S2V consist of the respective operators with finite-dimensional image
in V .

In this way we have the following exact sequences of Lie algebras:

0 → gl(V ,W)→ glM(V,W)→ glM(V,W)/gl(V ,W)→ 0,

0 → o(V )→ oM(V )→ oM(V )/o(V )→ 0,

0 → sp(V )→ spM(V )→ spM(V )/sp(V )→ 0.

Lemma 6.1. sl(V ,W) (respectively, o(V ), sp(V )) is the unique simple ideal in
glM(V,W) (respectively, oM(V ), spM(V )).

Proof. We will prove that if I �= CId is a nonzero ideal in glM(V,W), then I
contains sl(V ,W). Indeed, assume that X ∈ I and X �= cId. Then one can find v ∈
V and w ∈ W such that X · v is not proportional to v and X∗ ·w is not proportional
tow. Hence, Z = [X, v⊗w] = (X ·v)⊗w−v⊗(X ·w) ∈ gl(V ,W)∩I and Z �= 0.
Since sl(V ,W) is the unique simple ideal in gl(V ,W) and gl(V ,W) ∩ I �= 0, we
conclude that sl(V ,W) ⊂ I .

The two other cases are similar and we leave them to the reader. ��
Corollary 6.2. (a) Two Lie algebras glM(V,W) and glM(V ′,W ′) are isomorphic

if and only if the linear systems V ×W → C and V ′×W ′ → C are isomorphic.
(b) Two Lie algebras oM(V ) and oM(V ′) (respectively, spM(V ) and spM(V ′)) are

isomorphic if and only if there is an isomorphism of vector spaces V $ V ′
transferring the form defining oM(V ) (respectively spM(V )) into the form
defining oM(V ′) (respectively, spM(V ′)).

Proof. The statement follows from Proposition 1.1 and Lemma 6.1. ��

The following is our main result about the structure of Mackey Lie algebras.

Theorem 6.3. Let V be a countable-dimensional vector space.

(a) gl(V , V∗)⊕ CId is an ideal in glM(V, V∗) and the quotient

glM(V, V∗)/ (gl(V , V∗)⊕ CId)

is a simple Lie algebra.
(b) gl(V , V ∗)⊕CId is an ideal in End(V ) and the quotient End(V )/ (gl(V , V ∗)⊕

CId) is a simple Lie algebra.
(c) If V is equipped with a nondegenerate symmetric (respectively, antisymmetric)

bilinear form, then oM(V )/o(V ) (respectively spM(V )/sp(V )) is a simple Lie
algebra.

Proof. The proof is subdivided into lemmas and corollaries.
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Note that gl(V , V∗) ⊂ gl(V , V ∗) ⊂ glM(V, V ∗) = End(V ). In what follows we
fix a basis {vi}i≥1 in V and use the respective identification of gl(V , V∗), glM(V, V∗)
and glM(V, V ∗) = End(V ) with infinite matrices. By Eij we denote the elementary
matrix whose only nonzero entry is 1 at position i, j .

Lemma 6.4. Let gM = glM(V, V∗), End(V ). Assume that an ideal I ⊂ gM

contains a diagonal matrix D /∈ gl(V , V∗)⊕CId. Then I = gM .

Proof. We first assume that D = ∑i≥1 diEii satisfies di �= dj for all i �= j . Then
[D, gM ] = gM0 , where gM0 is the space of all matrices in gM with zeroes on the
diagonal. Consequently, gM0 ⊂ I . Furthermore, any diagonal matrix

∑
i siEii can

be written as the commutator
⎡

⎣
∑

i≥1

Ei i+1,
∑

j≥1

tjEj+1 j

⎤

⎦

with tj =∑j

i=1 si . Hence, I = gM .
We now consider the case of an arbitrary D ∈ I . After permuting the basis

elements of V , we can assume that D =∑i≥1 diEii with d2m−1 �= 0 and d2m−1 �=
d2m for all m > 0. Let

X :=
∞∑

m=1

1

d2m − d2m−1
E2m 2m−1, Y :=

∞∑

m=1

smE2m−1 2m,

where sm �= ±sl for m �= l. Then [Y, [X,D]] = s1E11 − s1E22 + s2E33 − s2E44 +
· · · ∈ I , and we reduce this case to the previous one. ��
Lemma 6.5. Let y = (yij ) ∈ gl(n) be a nonscalar matrix. There exist u, v,w ∈
gl(n) such that [u, [v, [w, y]]] is a nonzero diagonal matrix.

Proof. If y is not diagonal, pick i �= j such that yij �= 0. Set w = Eii, v =
Ejj , u = Eji . If y is diagonal, pick i �= j such that yii �= yjj and set w = Eij , v =
Eii, u = Eji . ��
Corollary 6.6. Let

∏
i gl(ni) for ni ≥ 2 be a block subalgebra of gM . Suppose that

X ∈ (∏i gl(ni)
) ∩ I for some ideal I ⊂ gM and that X /∈ gl(V , V∗) ⊕ CId. Then

I = gM .

Proof. Let X = ∏
i Xi, where Xi ∈ gl(ni). Without loss of generality we may

assume that infinitely manyXi are not diagonal, as otherwiseX is diagonal modulo
gl(V , V∗) and the result follows from Lemma 6.4. Now pick ui, vi , wi ∈ gi as
in Lemma 6.5. Set u = ∏

i ui , v =
∏
i vi , w = ∏

i wi . Then Z = [u,[v,[w,X]]
is diagonal. By normalizing ui we can ensure that Z /∈ CId. Since Z ∈ I , the
statement follows from Lemma 6.4. ��
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Lemma 6.7. For any X = (xij )i≥1,j≥1 ∈ glM(V, V∗) there exists an increasing
sequence i1 < i2 < . . . such that xij = 0 unless i, j ∈ [ik, ik+2 − 1] for some k.

Proof. Set i1 = 1,

i2 = max{j | x1j �= 0 or xj1 �= 0} + 1,

and construct the sequence recursively by setting

ik = max{j > ik−1 | xij �= 0 or xji �= 0 for some ik−2 ≤ i < ik−1} + 1.

��
We are now ready to prove Theorem 6.3 (a).

Corollary 6.8 (Theorem 6.3 (a)). Let an ideal I of gl(V , V∗) be not contained in
gl(V , V∗)⊕ CId. Then I = glM(V, V∗).

Proof. Let X ∈ I\{gl(V , V∗)⊕CId}. Pick i1 < i2 < . . . as in Lemma 6.7 and set

D = diag(1, . . . , 1︸ ︷︷ ︸
i2−1

, 2, . . . , 2︸ ︷︷ ︸
i3−i2

, 3, . . . , 3︸ ︷︷ ︸
i4−i3

, . . . ).

Then X = X−1 + X0 + X1 where [D,Xi ] = iXi . If X0 /∈ gl(V , V∗) ⊕ CId we
are done by Corollary 6.6 as X0 is a block matrix. Otherwise, at least one ofX1 and
X−1 does not lie in gl(V , V∗).

Assume for example that X1 = (xij ) /∈ gl(V , V∗). Then there exist infinite
sequences {i1 < i2 < . . . } and {j1 < j2 < . . . } such that xisjs �= 0. Moreover,
we may assume that . . . < is ≤ js < is+1 ≤ js+1 < . . . . Set Y = ∑s≥1Ejsis .
Then [Y,X1] ∈ I is a block matrix and we can again use Corollary 6.6. ��

Next we prove Theorem 6.3 (b).
Let I be an ideal in End(V ). Assume that I is not contained in gl(V , V ∗) ⊕ CId.

Let X ∈ I \ {gl(V , V ∗)⊕ CId} and let VX ⊂ V denote the subspace of all X-finite
vectors.

Assume first that VX �= V . Then there exists v ∈ V such that v,X · v,X2 · v, . . .
are linearly independent. LetM = span{v,X ·v,X2 ·v, . . . } and let U be a subspace
of V such that V = M ⊕ U . Let πM be the projector on M with kernel U . Then
Y := X+[X,πM ] ∈ I . A simple calculation shows that bothU andM are Y -stable
and Y |M = X|M . Let Z ∈ End(M) be defined by Z(U) = 0, Z(Xi · v) = iXi−1 · v
for i ≥ 0. Then [Z, Y ] is a diagonal matrix with infinitely many distinct entries.
Hence I = End(V ) by Lemma 6.4.

Now suppose that VX = V . Then we have a decomposition V =⊕λ Vλ, where
Vλ := ⋃n ker(X − λId)n are generalized eigenspaces of X. First, we assume that
for all λ there exists n(λ) such that Vλ = ker(X − λId)n(λ). In this case V =⊕i Vi
is a direct sum of X-stable finite-dimensional subspaces. Thus X is a block matrix
and by Corollary 6.6 we obtain I = End(V ). Next, we assume that for some λ the
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sequence ker(X−λId)n does not stabilize. In this case there are linearly independent
vectors v1, v2, . . . such that (X − λId) · v1 = 0 and (X − λId) · vi = vi−1 for all
i > 1. We repeat the argument from the previous paragraph. SetM to be the span of
vk , let V = M ⊕ U and define Z ∈ End(M) by setting Z(U) = 0, Z(vi) = ivi+1.
Then [Z, ([X,πM ] + X)] ∈ I is a diagonal matrix with infinitely many distinct
entries. Hence I = End(V ).

To complete the proof of Theorem 6.3 it remains to prove claim (c).

Lemma 6.9. If gM = oM(V ) (respectively, spM(V ), then any nonzero proper ideal
I ⊂ gM equals o(V ) (respectively, sp(V )).

Proof. As follows from (9), one can define a Z-grading gM = gM−1⊕gM0 ⊕gM1 such

that gM0 $ glM(V, V∗). This grading is defined by the matrix

D =
( 1

2 Id 0
0 − 1

2 Id

)
,

i.e., [D,X] = iX for X ∈ gMi . Since D ∈ gM , any ideal I ⊂ gM is homogeneous
in this grading. Note that the ideal generated byD equals the entire Lie algebra gM .
Hence we may assume that D /∈ I , and thus that I0 := I ∩ gM−1 is a proper ideal
in gM0 .

Assume first that I1 := I ∩ gM1 is not contained in o(V ) (respectively, sp(V ))
and let X ∈ I1 \ o(V ) (respectively, X ∈ I1 \ sp(V )). By an argument similar to
the one at the end of the proof of Corollary 6.8, there exists Y ∈ gM−1 such that
[Y,X] /∈ gl(V , V∗) ⊕ CD. Therefore by Corollary 6.8 we obtain a contradiction
with our assumption that I0 is a proper ideal in gM0 .

Thus, we have proved that I1 ⊂ o(V ) (respectively, sp(V )) and, similarly, I−1 :=
I ∩ gM−1 ⊂ o(V ) (respectively, sp(V )). Moreover, I0 ⊂ gl(V , V∗) by Corollary 6.8.
But then I is a nonzero ideal in o(V ) (respectively, sp(V )). Since both o(V ) and
sp(V ) are simple, the statement follows. ��

The proof of Theorem 6.3 is complete. ��
Theorem 6.3 (a) gives a complete list of ideals in glM(V, V∗) for a countable-

dimensional V . Indeed, since sl(V , V∗) is a simple Lie algebra, we obtain that all
proper nonzero ideals in glM(V, V∗) are gl(V , V∗), sl(V , V∗), CId, sl(V , V∗)⊕CId
and gl(V , V∗) ⊕ CId. In the same way the Lie algebra End(V ) also has five proper
nonzero ideals.

Note that if V is not countable-dimensional, then glM(V, V∗), End(V ) and
oM(V ) (respectively, spM(V )) have the following ideal:

{X | dim (X · V ) is finite or countable}.

Hence, Theorem 6.3 does not hold in this case.
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7 Dense Subalgebras

7.1 Definition and General Results

Definition 7.1. Let l be a Lie algebra, R be an l-module, k ⊂ l be a Lie subalgebra.
We say that k acts densely on R if for any finite set of vectors r1, . . . , rn ∈ R and
any l ∈ l there is k ∈ k such that k · ri = l · ri for i = 1, . . . , n.

Lemma 7.2. Let k ⊂ l and let R,N be two l-modules such that k acts densely on
R ⊕N . Then Homl(R,N) = Homk(R,N).

Proof. There is an obvious inclusion Homl(R,N) ⊂ Homk(R,N). Suppose there
exists ϕ ∈ Homk(R,N) \ Homl(R,N). Then one can find r ∈ R, l ∈ l such that
ϕ(l · r) �= l · ϕ(r). Since k acts densely on R ⊕ N , there exists k ∈ k such that
k · r = l · r and k · ϕ(r) = l · ϕ(r). Therefore we have

ϕ(l · r) = ϕ(k · r) = k · ϕ(r) = l · ϕ(r).

Contradiction. ��
Lemma 7.3. Let k ⊂ l and R be an l-module on which k acts densely. Then

(a) k acts densely on any l−subquotient of R;
(b) k acts densely on R⊗n for n ≥ 1;
(c) k acts densely on R⊕n for n ≥ 1;
(d) k acts densely on T (R)⊕n for n ≥ 1.

Proof. (a) Let N be an l-submodule of R. It follows immediately from the
definition that k acts densely on N and on R/N . That implies the statement.

(b) Let r1, . . . , rq ∈ R⊗n. Write

ri =
s(i)∑

j=1

mij1 ⊗ · · · ⊗mijn

for some mijp ∈ R. For any l ∈ l there exists k ∈ k such that k · mijp = l ·mijp
for all i ≤ r , p ≤ n and j ≤ s(i). Then k · ri = l · ri for all i ≤ q .

Proving (c) and (d) is similar to proving (b) and we leave it to the reader. ��
Lemma 7.4. Let k, l andR be as in Lemma 7.3. Then a k-submodule ofR is l-stable.
Hence any k-subquotient of R has a natural structure of l-module.

Proof. Straightforward from the definition. ��
Theorem 7.5. Let Cl be a full abelian subcategory of l-mod such that k acts densely
on any object in C. Let Res : l−mod → k −mod be the functor of restriction. Let
Ck be the image of Cl under Res. Then Ck is a full abelian subcategory of k − mod
and Res induces an equivalence of Ck and Cl.
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Proof. The first assertion follows from Lemma 7.2. It also follows from the same
lemma that Res(R) $ Res(N) implies R $ N . Thus, every object in Ck has a
unique (up to isomorphism) structure of l-module. This provides a quasi-inverse of
Res. Hence the second assertion holds. ��

Let R be an l-module. Denote by T
R
l the full subcategory of l-mod consisting of

all finite length subquotients of finite direct sums T (R)⊕n for n ≥ 1.

Proposition 7.6. Let k, l and R be as in Lemma 8.2. Then the restriction functor

Res : TRl � T
R
k

is an equivalence of monoidal categories.

Proof. By Lemma 7.3, Res(TRl ) = T
R
k . Thus Res is an equivalence of TRl and T

R
k

by Theorem 7.5. In addition, Res clearly commutes with ⊗, hence the statement. ��

7.2 Dense Subalgebras of Mackey Lie Algebras

Now let gM denote one of the Lie algebras glM(V,W), oM(V ), spM(V ), and g
denote respectively the subalgebra gl(V ,W), o(V ), sp(V ). By R we denote the gM -
module V ⊕W (respectively, V ).

In what follows we call a Lie subalgebra a ⊂ gM dense if it acts densely on R. It
is easy to see that g is a dense subalgebra of gM .

Here are further examples of dense subalgebras of glM(V, V∗) for a countable-
dimensional space V . We identify glM(V, V∗) with the Lie algebra of matrices
(xij )i≥1,j≥1 each row and column of which are finite.

1. The Lie algebra j(V , V∗) consisting of matrices J = (xij )i≥1,j≥1 such that xij =
0 when |i−j | > mJ for somemJ ∈ Z>0 (generalized Jacobi matrices), is dense
in glM(V, V∗).

2. The subalgebra lj(V , V∗) ⊂ glM(V, V∗) consisting of matricesX = (xij )i≥1,j≥1
satisfying the condition xij = 0 when i − j > cXj for some cX ∈ Z>0, is dense
in glM(V, V∗).

3. The subalgebra pj(V , V∗) of matrices Y = (xij )i≥1,j≥1 satisfying the condition
xij = 0 when i − j > pY (j) for some polynomial pY (t) ∈ Z≥0[t], is dense in
glM(V, V∗).

4. Let g be a countable-dimensional diagonal Lie algebra. If g is of type sl, fix a
chain (1) of diagonal embeddings where gi $ sl(ni). Observe that given a chain
(3), we can always choose a chain

V ∗g1

μ1
↪→ V ∗g2

μ2
↪→ . . . ↪→ V ∗gi

μi
↪→ V ∗gi+1

↪→ . . .
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so that the nondegenerate pairing Vgi+1×V ∗gi+1
→ C restricts to a nondegenerate

pairing κi(Vgi ) × μi(V ∗gi ) → C. Therefore, by multiplying μi by a suitable
constant, we can assume that κi and μi preserve the natural pairings Vgi×V ∗gi →
C. This shows that, given a natural representationV of g, there always is a natural
representationV∗ such that there is a nondegenerateg-invariant pairingV×V∗ →
C. This gives an embedding of g as a dense subalgebra in glM(V, V∗)

If g is of type o or sp, then a natural representation V of g is defined again by
a chain of embeddings (3). Moreover, V always carries a respective nondegenerate
symmetric or symplectic form. Therefore g can be embedded as a dense subalgebra
in oM(V ), or respectively in spM(V ).

The following statement is a particular case of Proposition 7.6.

Corollary 7.7. Let a be a dense subalgebra in gM . Then the monoidal categories
TR
gM

and TRa are equivalent.

7.3 Finite Corank Subalgebras of gM and the Category TgM

We now generalize the notion of finite corank subalgebra to Mackey Lie algebras.
Let Vf ⊂ V,Wf ⊂ W be a nondegenerate pair of finite-dimensional subspaces.

Then gl(W⊥
f , V

⊥
f ) is a subalgebra of glM(W⊥

f , V
⊥
f ) and also a subalgebra of

glM(V,W). Moreover, the following important relation holds

sl(V ,W)/sl(W⊥
f , V

⊥
f ) = gl(Vf ,Wf )⊕ (Vf ⊗ V⊥f )⊕ (W⊥

f ⊗Wf )
= glM(V,W)/glM(W⊥

f , V
⊥
f ). (10)

We call a subalgebra k ⊂ glM(V,W) a finite corank subalgebra if it contains
glM(W⊥

f , V
⊥
f ) for some nondegenerate pair Vf ⊂ V,Wf ⊂ W .

Similarly, let V be a vector space equipped with a symmetric (respectively, skew-
symmetric) nondegenerate form and Vf be a nondegenerate finite-dimensional
subspace. We have a well-defined subalgebra oM(V⊥f ) ⊂ oM(V ) (respectively,

spM(V ⊥f ) ⊂ spM(V )). Furthermore,

o(V )/o(V ⊥f ) = o(Vf )⊕ (Vf ⊗ V ⊥f ) = oM(V )/oM(V⊥f ),

sp(V )/sp(V ⊥f ) = sp(Vf )⊕ (Vf ⊗ V ⊥f ) = spM(V )/spM(V ⊥f ). (11)

We call k ⊂ oM(V ) (respectively, spM(V )) a finite corank subalgebra if it
contains oM(V ⊥f ) (respectively, spM(V ⊥f )) for some Vf as above.

Next, we say that gM -module L satisfies the large annihilator condition if the
annihilator in gM of any l ∈ L contains a finite corank subalgebra. It follows



Tensor Representations of Mackey Lie Algebras and Their Dense Subalgebras 325

immediately from the definition that if L1 and L2 satisfy the large annihilator
condition, then the same is true for L1 ⊕ L2 and L1 ⊗ L2.

Lemma 7.8. LetL be a gM -module which is integrable as a g-module. IfL satisfies
the large annihilator condition (as a gM -module), then g acts densely on L.

Proof. SinceL satisfies the large annihilator condition as a gM -module, so does also
L⊕n. It suffices to show that for all n ∈ Z≥1 and all l ∈ L⊕n we have

g · l = gM · l. (12)

However, as l is annihilated by glM(W⊥
f , V

⊥
f ) for an appropriate finite-dimensional

nondegenerate pair Vf ⊂ V,Wf ⊂ W in the case g = sl(V ,W) (respectively,
by oM(V⊥f ), spM(V⊥f ) in the case g = o(V ), sp(V )), (12) follows from (10),
(respectively, from (11)). ��
Lemma 7.9. Let L be a g-module satisfying the large annihilator condition. Then
the g-module structure on L extends in a unique way to a gM -module structure such
that L satisfies the large annihilator condition as a gM -module.

Proof. Consider the case g = sl(V ,W). Any l ∈ L is annihilated by sl(W⊥
f , V

⊥
f )

for an appropriate finite-dimensional nondegenerate pair Vf ⊂ V,Wf ⊂ W . Let
x ∈ glM(V,W). By (10) there exists y ∈ sl(V ,W) such that x + glM(W⊥

f , V
⊥
f ) =

y + sl(W⊥
f , V

⊥
f ). Moreover, y is unique modulo sl(W⊥

f , V
⊥
f ). Thus we can set

x · l := y · l. It is an easy check that this yields a well-defined glM(V,W)-module
structure on L compatible with the sl(V ,W)-module structure on L.

For g = o(V ), sp(V ) one uses (11) instead of (10). ��
We can now define the category TgM as an analogue of the category Tg. More

precisely, the category TgM is the full subcategory of gM -mod consisting of all
modules of finite length, integrable over g and satisfying the large annihilator
condition.

The following is our main result in Sect. 7.

Theorem 7.10. (a) TgM = T
R
gM

, whereR = V ⊕W for g = sl(V ,W) andR = V
for g = o(V ), sp(V ).

(b) The functor Res : TgM � Tg is an equivalence of monoidal categories.

Proof. It is clear that TR
gM

is a full subcategory of TgM . We need to show only that

any L ∈ TgM is isomorphic to a subquotient of T (R)⊕n for some n. Obviously, L
satisfies the large annihilator condition as a g-module. Furthermore, by Lemma 7.9
(a), g acts densely on L, hence L has finite length as a g-module. By Corollary 5.12
(b),L is isomorphic to a gsubquotient of T (R)⊕n for some n, and by Proposition 7.6
L is the restriction to g of some gM -subquotient L′ of T (R)⊕n. However, since
L′ satisfies the large annihilator condition, Lemma 7.8 implies that there is an
isomorphism of gM -modules L $ L′. This proves (a).

(b) follows from (a) and Proposition 7.6. ��
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The following diagram summarizes the equivalences of monoidal categories
established in this paper:

Ta
Res
� TgM = T

R
gM

Res� Tg
Φ� Tgc .

Here a is any dense subalgebra of gM andR = V ⊕W for g = sl(V ,W), R = V for
g = o(V ), sp(V ). In particular, when g = sl(V , V∗) for countable-dimensional V
and V∗, a can be chosen as the Lie algebra j(V , V∗) or as any countable-dimensional
diagonal Lie algebra.

8 Further Results and Open Problems

Theorem 7.10 (a) can be considered an analogue of Theorem 5.1 and Corollary 5.12
(b) as it provides two equivalent descriptions of the category TgM . It is interesting
to have a longer list of such equivalent descriptions.

The following proposition provides another equivalent condition characterizing
the objects of TgM under the additional assumption that g = sl(V , V∗), o(V ), sp(V )
is countable dimensional.

Proposition 8.1. Let gM = glM(V, V∗), oM(V ), spM(V ) for a countable dimen-
sional V , and let L be a gM -module of finite length which is integrable as a
g-module. Then L is an object of TgM if and only if g acts densely on L.

We first need a lemma.

Lemma 8.2. Let gM = glM(V, V∗), oM(V ), spM(V ) for a countable-dimensional
V , and let L and L′ be gM -modules. Assume that L and L′ have finite length as
g-modules. Then

Homg(L,L
′) = HomgM (L,L

′).

In particular, if L and L′ are isomorphic as g-modules, then L and L′ are
isomorphic as gM -modules.

Proof. Observe that HomC(L,L
′) has a natural structure of gM -module defined by

(X · ϕ)(l) := X · ϕ(l)− ϕ(X · l) for X ∈ gM, ϕ ∈ HomC(L,L
′), l ∈ L. (13)

Since g is an ideal in gM , Homg(L,L
′) is a gM -submodule in HomC(L,L

′).
Moreover, Homg(L,L

′) is finite dimensional as L and L′ have finite length over
g. On the other hand, Theorem 6.3 implies that gM does not have proper ideals of
finite codimension, hence any finite-dimensional gM -module is trivial. Therefore
(13) defines a trivial gM -module structure of HomgM (L,L

′), which means that any
ϕ ∈ Homg(L,L

′) belongs to HomgM (L,L
′). This shows that Homg(L,L

′) =
HomgM (L,L

′). The second assertion follows immediately. ��
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Proof of Proposition 8.1. If L ∈ TgM , then g acts densely on L by Lemma 7.9.
Now let g act densely on L. We first prove that L satisfies the large annihilator

condition as a g-module. Assume that g acts densely on L but L does not satisfy
the large annihilator condition as a g-module. Using the matrix realizations of g and
gM one can show that there exists l ∈ L and a sequence {Xi}i∈Z≥1 of commuting
linearly independent elements Xi ∈ g which don’t belong to the annihilator of l.
Furthermore, one can find an infinite subsequence {Yj = Xij } such that each Yj
lies in an sl(2)-subalgebra ßj ⊂ g with the condition [ßj , ßs ] = 0 for j �= s. Then∏
j ßj is a Lie subalgebra in gM , and let ß be the diagonal subalgebra in

∏
j ßj . If

x ∈ ß, we denote by xj its component in ßj .
Since g acts densely on L, there exists a linear map θ : ß → g such that θ(y) · l =

y · l for all y ∈ ß. On the other hand, there exists n ∈ Z≥1 such that [θ(y), xj ] = 0
for all y, x ∈ ß and j > n. Let dy := y − θ(y). Then dy · l = 0 and

[dy, xj ] = [y, xj ] = [yj , xj ] for all x, y ∈ ß and j > n. (14)

Set Lj := U(ßj ) · l. Then (14) implies dy · Lj ⊂ Lj for all j > n. Moreover,
ψy := dy − yj commutes with ßj , hence ψy ∈ Endßj (Lj ). Considering yj +ψy as
an element of EndC(Lj ), we obtain in addition that l ∈ ker(yj + ψy) for all y ∈ ß
and all j > n.

Choose a standard basis E,H,F ∈ ß. Since Lj is a finite-dimensional βj $
sl(2)-module, we obtain easily

ker(Ej + ψE) ∩ Lj = LEjj , ker(Fj + ψF ) ∩ Lj = LFjj .

Since

l ∈ ker(Ej + ψE) ∩ ker(Fj + ψF ) ∩ Lj = Lßj
j ,

we conclude that Lj is a trivial ßj -module for all j > n, which contradicts our
original assumption that Yj · l �= 0. Thus, L satisfies the large annihilator condition
as a g-module.

Note that as g acts densely on L, the length of L as a g-module is the same as the
length of L as a gM -module. Since L satisfies the large annihilator condition for g
and has finite length as a g-module, we conclude that L↓g is a tensor module, i.e.,
an object of Tg. By Theorem 7.10 (b), L↓g = L′↓g for some L′ ∈ TgM . Finally,

Lemma 8.2 implies that the gM modules L′ and L are isomorphic, i.e., L ∈ TgM . ��

Next, under the assumption that V is countable dimensional, consider maximal
subalgebras hM of gM which act semisimply on V and V∗ (respectively only on V
for g = o(V ), sp(V )). It is straightforward to show that the centralizer in gM of any
local Cartan subalgebra h of g is such a subalgebra of gM . If gM = glM(V, V∗) is
realized as the Lie algebra of matricesX = (xij )i,j∈Z with finite rows and columns,
then hM can be chosen as the subalgebra of diagonal matrices.
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The following statement looks plausible to us.

Conjecture 8.3. Let g = sl(V , V∗), o(V ), sp(V ) for a countable-dimensional V .
LetM be a finite length gM -module which is integrable as a g-module. The following
conditions onM are equivalent:

(a) M ∈ TgM ;
(b) M is countable dimensional;
(c) M is a semisimple hM -module for some subalgebra hM ⊂ gM ;
(d) M is a semisimple hM -module for any subalgebra hM ⊂ gM .

Consider now the inclusion of Lie algebras

g = sl(V , V∗) ⊂ glM(V, V ∗) = End(V )

where V is an arbitrary vector space. The subalgebra g is not dense in End(V ), nev-
ertheless the monoidal categories Tg and TEnd(V ) are equivalent by Theorems 5.1
and 7.10. Here is a functor which most likely also provides such an equivalence. Let
M ∈ TEnd(V ). Set

Γ wt
g (M) := ∩h⊂g Γ wt

h (M)

where h runs over all local Cartan subalgebras of g.

Conjecture 8.4. Γ wt
g : TEnd(V ) � Tg is an equivalence of monoidal categories.

If V is countable dimensional, it is easy to check that V ∗/V∗ is a simple gM =
glM(V, V∗)-module. Hence V ∗ is a gM -module of length 2. This raises the natural
question of whether the entire category TEnd(V ) consists of gM -modules of finite
length. A further problem is to compute the socle filtration as a gM -module of a
simple End(V )-module in TEnd(V ).

Another open question is whether there is an analogue of the category T̃ensg
when we replace g by gM . More precisely, what can be said about the abelian
monoidal category of gM -modules obtained from TgM by iterated dualization in
addition to taking submodules, quotients and applying ⊗? In particular, the adjoint
representation, and therefore the coadjoint representation are objects of T̃ensgM .
How can one describe the coadjoint representation (gM)∗ of gM?

Note added in proof: While this paper was under review, Alexandru Chirvasitu
gave a proof of Conjecture 8.4 and computed the gM -module socle filtration of any
simple module in TEnd(V ). His results appear in the article [C] in the present volume.
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Introduction

Generalized Harish-Chandra modules have now been actively studied for more than
10 years. A generalized Harish-Chandra moduleM over a finite-dimensional reduc-
tive Lie algebra g is a g-module M for which there is a reductive in g subalgebra
k such that as a k-module, M is the direct sum of finite-dimensional generalized
k-isotypic components. IfM is irreducible, k acts necessarily semisimply onM , and
in what follows we restrict ourselves to the study of generalized Harish-Chandra
modules on which k acts semisimply; see [Z] for an introduction to the topic.

In this paper we present a brief review of results obtained in the past 10 years
in the framework of algebraic representation theory, more specifically in the
framework of cohomological induction, see [KV] and [Z]. In fact, generalized
Harish-Chandra modules have been studied also with geometric methods, see for
instance [PSZ] and [PS1, PS2, PS3, Pe], but the geometric point of view remains
beyond the scope of the current review. In addition, we restrict ourselves to finite-
dimensional Lie algebras g and do not review the paper [PZ4], which deals with the
case of locally finite Lie algebras. We omit the proofs of most results which have
already appeared.

The cornerstone of the algebraic theory of generalized Harish-Chandra modules
so far is our work [PZ2]. In this work we define the notion of simple generalized
Harish-Chandra modules with generic minimal k-type and provide a classification
of such modules. The result extends in part the Vogan–Zuckerman classification
of simple Harish-Chandra modules. It leaves open the questions of existence and
classification of simple (g, k)-modules of finite type whose minimal k-types are not
generic. While the classification of such modules presents a major open problem in
the theory of generalized Harish-Chandra modules, in the note [PZ3] we establish
the existence of simple (g, k)-modules with arbitrary given minimal k-type.

In the paper [PZ5] we establish another general result, namely the fact that each
module in the fundamental series of generalized Harish-Chandra modules has finite
length. We then consider in detail the case when k = sl(2). In this case the highest
weights of k-types are just nonnegative integers μ, and the genericity condition is
the inequality μ ≥ Γ , Γ being a bound depending on the pair (g, k). In [PZ5] we
improve the bound Γ to an, in general, much lower bound Λ. Moreover, we show
that in a number of low-dimensional examples the bound Λ is sharp in the sense
that the our classification results do not hold for simple (g, k)-modules with minimal
k-type V (μ) for μ lower than Λ. In [PZ5] we also conjecture that the Zuckerman
functor establishes an equivalence of a certain subcategory of the thickening of
categoryO and a subcategory of the category of (g, k $ sl(2))-modules.

Sections 2 and 3 of the present paper are devoted to a brief review of the above
results. We also establish some new results in terms of the algebra k̃ := k + C(k)
(where C(·) stands for centralizer in g). A notable such result is Corollary 2.10
which gives a sufficient condition on a simple (g, k)-moduleM for k̃ to be a maximal
reductive subalgebra of g which acts locally finitely onM .
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The idea of bringing k̃ into the picture leads naturally to considering a preferred
class of reductive subalgebras k which we call eligible: they satisfy the condition
C(t) = t + C(k) where t is Cartan subalgebra of k. In Sect. 5 we study a
natural generalization of Harish-Chandra’s discrete series to the case of an eligible
subalgebra k. A key statement here is that under the assumption of eligibility of k, the
isotypic component of the minimal k-type of a generalized discrete series module is
an irreducible k̃-module (Theorem 5.1).

1 Notation and Preliminary Results

We start by recalling the setup of [PZ2] and [PZ5].

1.1 Conventions

The ground field is C, and if not explicitly stated otherwise, all vector spaces and
Lie algebras are defined over C. The sign ⊗ denotes tensor product over C. The
superscript ∗ indicates dual space. The sign ⊂+ stands for semidirect sum of Lie
algebras (if l = l′⊂+ l′′, then l′ is an ideal in l and l′′ ∼= l/l′). H ·(l,M) stands for
the cohomology of a Lie algebra l with coefficients in an l-module M , and Ml =
H 0(l,M) stands for space of l-invariants of M . By Z(l) we denote the center of l,
and by lss we denote the semisimple part of l when l is reductive. Λ·(·) and S·(·)
denote respectively the exterior and symmetric algebra.

If l is a Lie algebra, then U(l) stands for the enveloping algebra of l and ZU(l)
denotes the center of U(l). We identify l-modules with U(l)-modules. It is well
known that if l is finite dimensional and M is a simple l-module (or equivalently
a simple U(l)-module), then ZU(l) acts on M via a ZU(l)-character, i.e., via an
algebra homomorphism θM : ZU(l)→ C, see Proposition 2.6.8 in [Dix].

We say that an l-moduleM is generated by a subspaceM ′ ⊆ M ifU(l)·M ′ = M ,
and we say thatM is cogenerated byM ′ ⊆ M , if for any nonzero homomorphism
ψ : M → M̄ ,M ′ ∩ kerψ �= {0}.

By SocM we denote the socle (i.e., the unique maximal semisimple submodule)
of an l-moduleM . If ω ∈ l∗, we put Mω := {m ∈ M | l · m = ω(l)m ∀l ∈ l}. By
supplM we denote the set {ω ∈ l∗ | Mω �= 0}.

A finite multiset is a function f from a finite set D into N. A submultiset of
f is a multiset f ′ defined on the same domain D such that f ′(d) ≤ f (d) for any
d ∈ D. For any finite multiset f , defined on a subset D of a vector space, we put
ρf := 1

2

∑
d∈D f (d)d .

If dimM < ∞ and M = ⊕
ω∈l∗Mω, then M determines the finite multiset

charlM which is the function ω 
→ dimMω defined on supplM .
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1.2 Reductive Subalgebras, Compatible Parabolics
and Generic k-Types

Let g be a finite-dimensional semisimple Lie algebra. By g-mod we denote the
category of g-modules. Let k ⊂ g be an algebraic subalgebra which is reductive in
g. We set k̃ = k+C(k) and note that k̃ = kss⊕C(k) where C(·) stands for centralizer
in g. We fix a Cartan subalgebra t of k and let h denote an as yet unspecified Cartan
subalgebra of g. Everywhere, except in Sect. 1.3 below, we assume that t ⊆ h, and
hence that h ⊆ C(t). ByΔwe denote the set of h-roots of g, i.e.,Δ = {supphg}\{0}.
Note that since k is reductive in g, g is a t-weight module, i.e., g = ⊕η∈t∗ gη. We
set Δt := {supptg} \ {0}. Note also that the R-span of the roots of h in g fixes a
real structure on h∗, whose projection onto t∗ is a well-defined real structure on t∗.
In what follows, we denote by Reη the real part of an element η ∈ t∗. We fix also a
Borel subalgebra bk ⊆ k with bk ⊇ t. Then bk = t⊃+ nk, where nk is the nilradical of
bk. We set ρ := ρchart nk . The quartet g, k, bk, t will be fixed throughout the paper.
ByW we denote the Weyl group of g.

As usual, we parametrize the characters of ZU(g) via the Harish-Chandra
homomorphism. More precisely, if b is a given Borel subalgebra of g with b ⊃ h
(b will be specified below), the ZU(g)-character corresponding to ζ ∈ h∗ via the
Harish-Chandra homomorphism defined by b is denoted by θζ (θρcharh b is the trivial
ZU(g)-character). Sometimes we consider a reductive subalgebra l ⊂ g instead of
g and apply this convention to the characters of ZU(l). In this case we write θ lζ for
ζ ∈ h∗l , where hl is a Cartan subalgebra of l.

By 〈· ·〉 we denote the unique g-invariant symmetric bilinear form on g∗ such
that 〈α, α〉 = 2 for any long root of g. The form 〈· , ·〉 enables us to identify g with
g∗. Then h is identified with h∗, and k is identified with k∗. We sometimes consider
〈· , ·〉 as a form on g. The superscript ⊥ indicates orthogonal space. Note that there
is a canonical k-module decomposition g = k⊕ k⊥ and a canonical decomposition
h = t⊕ t⊥ with t⊥ ⊆ k⊥. We also set ‖ ζ ‖2:= 〈ζ, ζ 〉 for any ζ ∈ h∗.

We say that an element η ∈ t∗ is (g, k)-regular if 〈Reη, σ 〉 �= 0 for all σ ∈ Δt.
To any η ∈ t∗ we associate the following parabolic subalgebra pη of g:

pη = h⊕ (
⊕

α∈Δη
gα),

where Δη := {α ∈ Δ | 〈Reη, α〉 ≥ 0}. By mη and nη we denote respectively the
reductive part of p (containing h) and the nilradical of p. In particular pη = mη⊃+ nη,
and if η is bk-dominant, then pη ∩ k = bk. We call pη a t-compatible parabolic
subalgebra. Note that

pη = C(t)⊕ (
⊕

β∈Δ+t,η
gβ),

where Δ+t,η := {β ∈ Δt | 〈Reη, β〉 ≥ 0}. Hence pη depends upon our choice of t
and η, but not upon the choice of h.
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A t-compatible parabolic subalgebra p = m⊃+ n (i.e., p = pη for some η ∈ t∗) is
t-minimal (or simply minimal) if it does not properly contain another t-compatible
parabolic subalgebra. It is an important observation that if p = m⊃+ n is minimal,
then t ⊆ Z(m). In fact, a t-compatible parabolic subalgebra p is minimal if and only
if m equals the centralizer C(t) of t in g, or equivalently, if and only if p = pη for a
(g, k)-regular η ∈ t∗. In this case n ∩ k = nk.

Any t-compatible parabolic subalgebra p = pη has a well-defined opposite
parabolic subalgebra p̄ := p−η; clearly p is minimal if and only if p̄ is minimal.

A k-type is by definition a simple finite-dimensional k-module. By V (μ) we
denote a k-type with bk-highest weight μ. The weight μ is then k-integral (or,
equivalently, kss−integral) and bk-dominant.

Let V (μ) be a k-type such that μ + 2ρ is (g, k)-regular, and let p = m⊃+ n be
the minimal compatible parabolic subalgebra pμ+2ρ . Put ρ̃n := ρcharh n and ρn :=
ρchart n. Clearly ρn = ρ̃n|t. We define V (μ) to be generic if the following two
conditions hold:

1. 〈Reμ+ 2ρ − ρn, α〉 ≥ 0 ∀α ∈ supptnk;
2. 〈Reμ+ 2ρ − ρS, ρS〉 > 0 for every submultiset S of chart n.

It is easy to show that there exists a positive constant C depending only on g, k
and p such that 〈Reμ + 2ρ, α〉 > C for every α ∈ supptn implies pμ+2ρ = p and
that V (μ) is generic.

1.3 Generalities on g-Modules

SupposeM is a g-module and l is a reductive subalgebra of g.M is locally finite over
ZU(l) if every vector inM generates a finite-dimensional ZU(l)-module. Denote by
M(g, ZU(l)) the full subcategory of g-modules which are locally finite over ZU(l).

SupposeM ∈M(g, ZU(l)) and θ is a ZU(l)-character. Denote by P(l, θ)(M) the
generalized θ -eigenspace of the restriction ofM to l. TheZU(l)-spectrum ofM is the
set of characters θ of ZU(l) such that P(l, θ)(M) �= 0. Denote the ZU(l) spectrum
ofM by σ(l,M). We say that θ is a central character of l inM if θ ∈ σ(l,M). The
following is a standard fact.

Lemma 1.1. IfM ∈M(g, ZU(l)), then

M =
⊕

θ∈σ(l,M)
P (l, θ)(M).

A g-moduleM is locally Artinian over l if for every vector v ∈ M , U(l) · v is an
l-module of finite length.

Lemma 1.2. IfM is locally Artinian over l, thenM ∈M(g, ZU(l)).
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Proof. The statement follows from the fact that ZU(l) acts via a character on any
simple l-module. ��

If p is a parabolic subalgebra of g, by a (g, p)-module M we mean a g-module
M on which p acts locally finitely. By M(g, p) we denote the full subcategory of
g-modules which are (g, p)-modules.

In the remainder of this subsection we assume that h is a Cartan subalgebra of g
such that hl := h∩ l is a Cartan subalgebra of l, and that p is a parabolic subalgebra
of g such that h ⊂ p and p ∩ l is a parabolic subalgebra of l. By M we denote a
g-module from M(g, p). Note thatM is not necessarily semisimple as an h-module.

Lemma 1.3. The set supphM is independent of the choice of h ⊆ p, i.e. supphM
is equivariant with respect to inner automorphisms of g preserving p.

Proof. As p acts locally finitely on M , the statement is an immediate consequence
of the equivariance of the support (set of weights) of a finite-dimensional
p−module. ��
Proposition 1.4. M is locally Artinian over l.

Proof. We apply Proposition 7.6.1 in [Dix] to the pair (l, l ∩ p). In particular, if
v ∈ M , then U(l) · v has finite length as an l-module. ��
Corollary 1.5. M ∈M(g, ZU(l)).

Lemma 1.6. σ(l,M) ⊆ {θ l(η|hl)+ρl | η ∈ supphM}.
Proof. The simple l-subquotients ofM are (l, l∩p)-modules, and our claim follows
the well-known relationship between the highest weight of a highest weight module
and its central character. ��

Let N be a g-module, and let g[N] be the set of elements x ∈ g that act locally
finitely in N . Then g[N] is a Lie subalgebra of g, the Fernando–Kac subalgebra
associated to N . The fact has been proved independently by V. Kac in [K] and by
S. Fernando in [F].

Theorem 1.7. Let M1 be a nonzero subquotient of M . Assume that η|hl is non-
integral relative to l for all η ∈ supphM . Then l � g[M1].
Proof. By Lemma 1.6, no central character of l in M1 is l-integral. Therefore,
no nonzero l-submodule of M1 is finite dimensional. But M1 �= 0. Hence,
l � g[M1]. ��

In agreement with [PZ2], we define a g-moduleM to be a (g, k)-module ifM is
isomorphic as a k-module to a direct sum of isotypic components of k-types. If M
is a (g, k)-module, we write M[μ] for the V (μ)-isotypic component of M , and we
say that V (μ) is a k-type of M if M[μ] �= 0. We say that a (g, k)-module M is of
finite type if dimM[μ] �= ∞ for every k-type V (μ) ofM . Sometimes, we also refer
to (g, k)-modules of finite type as generalized Harish-Chandra modules.

Note that for any (g, k)-module of finite typeM and any k-type V (σ) ofM , the
finite-dimensional k-moduleM[σ ] is a k̃-module for k̃ = k+ C(k). In particular,M
is a (g, k̃)-module of finite type. We will write M〈δ〉 for the k̃-isotypic components
ofM where δ ∈ (h ∩ k̃)∗.
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IfM is a module of finite length, a k-type V (μ) ofM is minimal if the function
μ′ 
→‖ Reμ′ + 2ρ ‖2 defined on the set {μ′ ∈ t∗ | M[μ′] �= 0} has a minimum at
μ. Any nonzero (g, k)-moduleM of finite length has a minimal k-type.

1.4 Generalities on the Zuckerman Functor

Recall that the functor of k-finite vectors Γ g,t
g,k is a well-defined left-exact functor on

the category of (g, t)-modules with values in (g, k)-modules,

Γ
g,t
g,k (M) :=

∑

M ′⊂M,dimM ′=1,dimU(k)·M ′<∞
M ′.

By R·Γ g,t
g,k :=

⊕
i≥0 R

iΓ
g,t
g,k we denote as usual the total right derived functor of

Γ
g,t
g,k , see [Z] and the references therein.

Proposition 1.8. If l is any reductive subalgebra of g containing k, then there is a
natural isomorphism of l-modules

R·Γ g,t
g,k (N)

∼= R·Γ l,t
l,k (N). (1)

Proof. See Proposition 2.5 in [PZ4]. ��
Proposition 1.9. If Ñ ∈M(l, t, ZU(l)) :=M(l, ZU(l)) ∩M(l, t), then

R·Γ l,t
l,k (Ñ) ∈M(l, k, ZU(l)).

Moreover,

σ(l, R·Γ l,t
l,k (Ñ)) ⊂ σ(l, Ñ ).

Proof. See Proposition 2.12 and Corollary 2.8 in [Z]. ��
Corollary 1.10. If N ∈M(g, t, ZU(l)) :=M(g, ZU(l)) ∩M(g, t), then

R·Γ g,t
g,k (N) ∈M(g, k, ZU(l)).

Moreover,

σ(l, R·Γ g,t
g,k (N)) ⊆ σ(l, N).

Proof. Apply Propositions 1.8 and 1.9. ��
Note that the isomorphism (1) enables us to write simply Γk,t instead of Γ g,t

g,k .
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For g ⊇ l ⊇ k ⊇ t as above, let p be a t-compatible parabolic subalgebra of g.
Then l ∩ p is a t-compatible parabolic subalgebra of l. Let hl ⊂ l ∩ p be a Cartan
subalgebra of l containing t, and let h ⊂ p be a Cartan subalgebra of g such that
hl = h ∩ l. We have the following diagram of subalgebras:

In this setup we have the following result.

Theorem 1.11. Suppose N ∈ M(g, p) ∩M(g, t), M is a nonzero subquotient of
R·Γk,t (N) and η|hl is not l-integral for all η ∈ supphN . Then l � g[M].
Proof. Every central character of l inM is a central character of l inN . This follows
from Corollary 2.8 in [Z]. By our assumptions, no central character of l in N is
l-integral. Hence, no l-submodule ofM is finite dimensional, and thus l � g[M]. ��

2 The Fundamental Series: Main Results

We now introduce one of our main objects of study: the fundamental series of
generalized Harish-Chandra modules.

We start by fixing some more notation: if q is a subalgebra of g and J is a
q-module, we set indgqJ := U(g)⊗U(q) J and progqJ := HomU(q)(U(g), J ). For a

finite-dimensional p- or p̄-moduleE, we set Np(E) := Γt,0(progp(E⊗Λdimn(n))),

Np̄(E
∗) := Γt,0(progp̄(E

∗ ⊗ Λdimn(n∗))). One can show that both Np(E) and
Np̄(E

∗) have simple socles as long as E itself is simple.
The fundamental series of (g, k)-modules of finite type F ·(k, p, E) is defined as

follows. Let p = m⊃+ n be a minimal compatible parabolic subalgebra (recall that
m = C(t)), let E be a simple finite-dimensional p-module on which t acts via a
fixed weight ω ∈ t∗, and μ := ω + 2ρ⊥n where ρ⊥n := ρn − ρ. Set

F ·(k, p, E) := R·Γk,t(Np(E)).

In the rest of the paper we assume that h ∩ k̃ is a Cartan subalgebra of k̃.

Theorem 2.1. (a) F ·(k, p, E) is a (g, k)-module of finite type and ZU(g) acts on
F ·(p, E) via the ZU(g)-character θν+ρ̃ where ρ̃ := ρcharh b for some Borel
subalgebra b of g with b ⊃ h, b ⊂ p and b ∩ k = bk, and where ν is the
b-highest weight of E (note that ν|t = ω).
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(b) F ·(k, p, E) is a (g, k)-module of finite length.
(c) There is a canonical isomorphism

F ·(k, p, E) $ R·Γk̃,k̃∩m(Γk̃∩m,0(progp(E ⊗Λdim n(n)))). (2)

Proof. Part (a) is a recollection of Theorem 1.11, (a) in [PZ2]. Part (b) is a
recollection of Theorem 2.5 in [PZ5]. Part (c) follows from the comparison principle
(Proposition 2.6) in [PZ4]. ��
Corollary 2.2. F ·(k, p, E) is a (g, k̃)-module of finite type.

Proof. As we observed in Sect. 1.3, every (g, k)-module of finite type is a (g, k̃)-
module of finite type. ��
Corollary 2.3. Let k1 and k2 be two algebraic reductive in g subalgebras such
that k̃1 = k̃2. Suppose that p is a parabolic subalgebra which is both t1- and t2-
compatible and t1- and t2-minimal for some Cartan subalgebras t1 of k1 and t2 of
k2. Then there exists a canonical isomorphism

F ·(k1, p, E) $ F(k2, p, E).

Proof. Consider the isomorphism (2) for k1 and k2, and notice that

R·Γk̃,k̃∩m(Γk̃∩m,0(progp(E ⊗Λdim n(n))))

depends only on k̃ and p but not on k1 and k2. ��
Corollary 2.4. Let M be any nonzero subquotient of F ·(k, p, E). If the b-highest
weight ν ∈ h∗ of E is non-integral after restriction to h ∩ l for any reductive
subalgebra l of g such that l ⊃ k̃, then k̃ is a maximal reductive subalgebra of
g[M].
Proof. Corollary 2.2 shows that k̃ ⊆ g[M]. Theorem 1.11 shows that if l is a
reductive subalgebra of g such that l is strictly larger than k̃, then l � g[M]. The
assumption on ν implies that all weights in supph∩l (Np(E)) are non-integral with
respect to l. ��
Example. Here is an example to Corollary 2.4. Let g = F4, k $ so(3)⊕so(6). Then
k = k̃. By inspection, there is only one proper intermediate subalgebra l, k̃ ⊂ l ⊂ g,
and l is isomorphic to so(9). We have t = h, and ε1, ε2, ε3, ε4 is a standard basis of
h∗, see [Bou]. A weight ν = ∑4

i=1miεi is k-integral iff m1 ∈ Z or m1 ∈ Z + 1
2 ,

and (m2,m3,m4) ∈ Z3 or (m2,m3,m4) ∈ Z3 + ( 1
2 ,

1
2 ,

1
2 ). On the other hand, ν is

l-integral if (m1,m2,m3,m4) ∈ Z4 or (m1,m2,m3,m4) ∈ Z4 + ( 1
2 ,

1
2 ,

1
2 ,

1
2 ). So

if the b-highest weight ν of E is not l-integral, Corollary 2.4 implies that g[M] = k̃
for any simple subquotientM of F ·(k, p, E).
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Remark. (a) In [PZ1] another method, based on the notion of a small subalgebra
introduced by Willenbring and Zuckerman in [WZ], for computing maximal
reductive subalgebras of the Fernando-Kac subalgebras associated to simple
subquotients of F ·(k, p, E) is suggested. Note that the subalgebra k $ so(3)⊕
so(6) of F4 considered in the above example is not small in so(9), so the above
conclusion that g[M] = k does not follow from [PZ1]. On the other hand, if
one replaces k in the example by k′ $ so(5)⊕ so(4), then a conclusion similar
to that of the example can be reached both by the method of [PZ1] and by
Corollary 2.4.

(b) There are pairs (g, k) to which neither the method of [PZ1] nor Corollary 2.4
apply. Such an example is a pair (g = F4, k $ so(8)). The only proper
intermediate subalgebra in this case is l $ so(9); however so(8) is not small
in so(9) and any k = k̃-integrable weight is also l-integrable.

If M is a (g, k)-module of finite type, then Γk,0(M∗) is a well-defined (g, k)-
module of finite type and Γk,0(·∗) is an involution on the category of (g, k)-modules
of finite type. We put Γk,0(M∗) := M∗

k . There is an obvious g-invariant nondegen-
erate pairingM ×M∗

k → C.

The following five statements are recollections of the main results of [PZ2]
(Theorem 2 through Corollary 4 in [PZ2]).

Theorem 2.5. Assume that V (μ) is a generic k-type and that p = pμ+2ρ (μ is
necessarily bk-dominant and k-integral).

(a) F i(k, p, E) = 0 for i �= s := dim nk .
(b) There is a k-module isomorphism

Fs(k, p, E)[μ] ∼= C
dimE ⊗ V (μ),

and V (μ) is the unique minimal k-type of Fs(k, p, E).
(c) Let F̄ s(k, p, E) be the g-submodule of Fs(k, p, E) generated by Fs(k, p, E)[μ].

Then F̄ s (k, p, E) is simple and F̄ s(k, p, E) = SocFs(k, p, E). Moreover,
Fs(k, p, E) is cogenerated by Fs(k, p, E)[μ]. This implies that Fs(k, p, E)∗t
is generated by Fs(k, p, E)∗t [wm(−μ)], where wm ∈ Wk is the element of
maximal length in the Weyl groupWk of k.

(d) For any nonzero g-submoduleM of Fs(k, p, E) there is an isomorphism of m-
modules

Hr(n,M)ω ∼= E.

where r := dim(n ∩ k⊥).

Theorem 2.6. Let M be a simple (g, k)-module of finite type with minimal k-type
V (μ) which is generic. Then p := pμ+2ρ = m⊃+ n is a minimal compatible
parabolic subalgebra. Let ω := μ − 2ρ⊥n (recall that ρ⊥n = ρcht(n∩k⊥)), and let



Algebraic Methods in the Theory of Generalized Harish-Chandra Modules 341

E be the p-moduleHr(n,M)ω with trivial n-action, where r = dim(n ∩ k⊥). Then
E is a simple p-module, the pair (p, E) satisfies the hypotheses of Theorem 2.5, and
M is canonically isomorphic to F̄ s (p, E) for s = dim(n ∩ k).

Corollary 2.7. (Generic version of a theorem of Harish-Chandra). There exist
at most finitely many simple (g, k)-modules M of finite type with a fixed ZU(g)-
character such that a minimal k-type ofM is generic. (Moreover, each suchM has
a unique minimal k-type by Theorem 2.5 (b).)

Proof. By Theorems 2.1 (a) and 2.6, if M is a simple (g, k)-module of finite type
with generic minimal k-type V (μ) for some μ, then the ZU(g)-character of M is
θν+ρ̃ . There are finitely many Borel subalgebras b as in Theorem 2.1 (a); thus,
if θν+ρ̃ is fixed, there are finitely many possibilities for the weight ν (as θν+ρ̃
determines ν+ ρ̃ up to a finite choice). Hence, up to isomorphism, there are finitely
many possibilities for the p-module E, and consequently, up to isomorphism, there
are finitely many possibilities forM . ��
Theorem 2.8. Assume that the pair (g, k) is regular, i.e., t contains a regular
element of g. Let M be a simple (g, k)-module (a priori of infinite type) with
a minimal k-type V (μ) which is generic. Then M has finite type, and hence by
Theorem 2.6,M is canonically isomorphic to F̄ s(p, E) (where p, E and s are as in
Theorem 2.6).

Corollary 2.9. Let the pair (g, k) be regular.

(a) There exist at most finitely many simple (g, k)-modules M with a fixed ZU(g)-
character, such that a minimal k-type of M is generic. All such M are of finite
type (and have a unique minimal k-type by Theorem 2.5 (b)).

(b) (Generic version of Harish-Chandra’s admissibility theorem). Every simple
(g, k)-module with a generic minimal k-type has finite type.

Proof. The proof of (a) is as the proof of Corollary 2.7 but uses Theorem 2.8 instead
of Theorem 2.6, and (b) is a direct consequence of Theorem 2.8. ��

The following statement follows from Corollary 2.4 and Theorem 2.6.

Corollary 2.10. LetM be as in Theorem 2.6. If the b-highest weight of E is not l-
integral for any reductive subalgebra l with k̃ ⊂ l ⊆ g, then k̃ is a maximal reductive
subalgebra of g[M].
Definition 2.11. Let p ⊃ bk be a minimal t-compatible parabolic subalgebra and
let E be a simple finite-dimensional p-module on which t acts by ω. We say that the
pair (p, E) is allowable if μ = ω + 2ρ⊥n is dominant integral for k, pμ+2ρ = p, and
V (μ) is generic.

Theorem 2.6 provides a classification of simple (g, k)-modules with generic
minimal k-type in terms of allowable pairs. Note that for any minimal t-compatible
parabolic subalgebra p ⊃ bk, there exists a p-moduleE such that (p, E) is allowable.
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3 The Case k � sl(2)

Let k $ sl(2). In this case there is only one minimal t-compatible parabolic
subalgebra p = m⊃+ n of g which contains bk. Furthermore, we can identify the
elements of t∗ with complex numbers, and the bk-dominant integral weights of t in
n∩ k⊥ with nonnegative integers. It is shown in [PZ2] that in this case the genericity
assumption on a k-type V (μ),μ ≥ 0, amounts to the condition μ ≥ Γ := ρ̃(h)− 1
where h ∈ h is the semisimple element in a standard basis e, h, f of k $ sl(2).

In our work [PZ5] we have proved a different sufficient condition for the main
results of [PZ2] to hold when k $ sl(2). Let λ1 and λ2 be the maximum and
submaximum weights of t in n ∩ k⊥ (if λ1 has multiplicity at least two in n ∩ k⊥,
then λ2 = λ1; if dim n ∩ k⊥ = 1, then λ2 = 0). Set Λ := λ1+λ2

2 .

Theorem 3.1. If k $ sl(2), all statements of Sect. 2 from Theorem 2.5 through
Corollary 2.9 hold if we replace the assumption that μ is generic by the assumption
μ ≥ Λ. As a consequence, the isomorphism classes of simple (g, k)-modules whose
minimal k-type is V (μ) with μ ≥ Λ are parameterized by the isomorphism classes
of simple p-modulesE on which t acts via μ− 2ρ⊥n .

The sl(2)-subalgebras of a simple Lie algebra are classified (up to conjugation)
by Dynkin in [D]. We will now illustrate the computation of the boundΛ as well as
the genericity condition on μ in examples.

We first consider three types of sl(2)-subalgebras of a simple Lie algebra: long
root−sl(2), short root−sl(2) and principal sl(2) (of course, there are short roots
only for the series B,C and for G2 and F4). We compare the bounds Λ and Γ in
the following table.

Table A

Long root Short root Principal

An, n ≥ 2 Γ = n − 1 ≥ 1 = Λ Not applicable Γ = n(n+1)(n+2)
6 − 1 ≥ 2n− 1 = Λ

Bn, n ≥ 2 Γ = 2n − 3 ≥ 1 = Λ Γ = 2n − 2 ≥ 2 = Λ Γ = n(n+1)(4n−1)
6 − 1 > 4n− 3 = Λ

Cn, n ≥ 3 Γ = n − 1 > 1 = Λ Γ = 2n − 2 > 2 = Λ Γ = n(n+1)(2n+1)
3 − 1 > 4n− 3 = Λ

Dn, n ≥ 4 Γ = 2n − 4 > 1 = Λ Not applicable Γ = 2(n−1)n(n+1)
3 − 1 > 4n− 7 = Λ

E6 Γ = 10 > 1 = Λ Not applicable Γ = 155 > 21 = Λ
E7 Γ = 16 > 1 = Λ Not applicable Γ = 398 > 33 = Λ
E8 Γ = 28 > 1 = Λ Not applicable Γ = 1,239 > 57 = Λ
F4 Γ = 7 > 1 = Λ Γ = 10 > 2 = Λ Γ = 109 > 21 = Λ
G2 Γ = 2 > 1 = Λ Γ = 4 > 3 = Λ Γ = 15 > 9 = Λ

Let’s discuss the case g = F4 in more detail. Recall that the Dynkin index
of a semisimple subalgebra s ⊂ g is the quotient of the normalized g-invariant
symmetric bilinear form on g restricted to s and the normalized s-invariant
symmetric bilinear form on s, where for both g and s the square length of a long
root equals 2. According to Dynkin [D], the conjugacy class of an sl(2)-subalgebra
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k of F4 is determined by the Dynkin index of k in F4. Moreover, for g = F4 the
following integers are Dynkin indices of sl(2)-subalgebras: 1(long root), 2(short
root), 3, 4, 6, 8, 9, 10, 11, 12, 28, 35, 36, 60, 156.The boundsΛ and Γ are given in
the following table.

Table B

Dynkin index 1 2 3

Γ = 7 > 1 = Λ Γ = 10 > 2 = Λ Γ = 14 > 3 = Λ
Dynkin index 4 6 8

Γ = 15 > 3 = Λ Γ = 16 > 4 = Λ Γ = 17 > 4 = Λ
Dynkin index 9 10 11

Γ = 25 > 5 = Λ Γ = 26 > 5 = Λ Γ = 28 > 6 = Λ
Dynkin index 12 28 35

Γ = 29 > 6 = Λ Γ = 45 > 9 = Λ Γ = 50 > 10 = Λ
Dynkin index 36 60 156

Γ = 51 > 10 = Λ Γ = 67 > 13 = Λ Γ = 109 > 21 = Λ

We conclude this section by recalling a conjecture from [PZ5]. Let Cp̄,t,n denote
the full subcategory of g-mod consisting of finite-length modules with simple
subquotients which are p̄-locally finite (g, t)-modules N whose t-weight spaces
Nβ, β ∈ Z, satisfy β ≥ n. Let Ck,n be the full subcategory of g-mod consisting of
finite length modules whose simple subquotients are (g, k)-modules with minimal
k $ sl(2)-type V (μ) for μ ≥ n. We show in [PZ5] that the functor R1Γk,t is a
well-defined fully faithful functor from Cp,t,n+2 to Ck,n for n ≥ 0. Moreover, we
make the following conjecture.

Conjecture 3.2. Let n ≥ Λ. Then R1Γk,t is an equivalence between the categories
Cp̄,t,n+2 and Ck,n.

We have proof of this conjecture for g $ sl(2) and, jointly with V. Serganova,
for g $ sl(3).

4 Eligible Subalgebras

In what follows we adopt the following terminology. A root subalgebra of g is
a subalgebra which contains a Cartan subalgebra of g. An r-subalgebra of g is a
subalgebra l whose root spaces (with respect to a Cartan subalgebra of l) are root
spaces of g. The notion of r-subalgebra goes back to [D]. A root subalgebra is, of
course, an r-subalgebra.

We now give the following key definition.

Definition 4.1. An algebraic reductive in g subalgebra k is eligible if C(t) =
t+ C(k).
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Note that in the above definition one can replace t with any Cartan subalgebra of
k. Furthermore, if k is eligible, then h ⊂ C(t) = t+ C(k) ⊂ k̃ = k+ C(k), i.e., h is
a Cartan subalgebra of both k̃ and g. In particular, k̃ is a reductive root subalgebra of
g. As k is an ideal in k̃, k is an r-subalgebra of g.

Proposition 4.2. Assume k is an r-subalgebra of g. The following three conditions
are equivalent:

(i) k is eligible;
(ii) C(k)ss = C(t)ss;

(iii) dimC(k)ss = dimC(t)ss .

Proof. The implications (i)⇒(ii)⇒(iii) are obvious. To see that (iii) implies (i),
observe that if k is an r-subalgebra of g, then h ⊆ t + C(k) ⊆ C(t). Therefore the
inclusion t + C(k) ⊆ C(t) is proper if and only if g±α ∈ C(t)\C(k) for some root
α ∈ Δ, or equivalently, if the inclusion C(k)ss ⊆ C(t)ss is proper. ��

An algebraic, reductive in g, r-subalgebra k may or may not be eligible. If k is a
root subalgebra, then k is always eligible. If g is simple of types A,C,D and k is
a semisimple r-subalgebra, then k is necessarily eligible. In general, a semisimple
r-subalgebra is eligible if and only if the roots of g which vanish on t are strongly
orthogonal to the roots of k. For example, if g is simple of type B and k is a simple
r-subalgebra of type B of rank less or equal than rkg − 2, then C(k)ss is simple of
type D whereas C(t)ss is simple of type B. Hence in this case k is not eligible.

Note, however, that any semisimple r-subalgebra k′ can be extended to an eligible
subalgebra k just by setting k := k′ + hC(k′) where hC(k′) is a Cartan subalgebra of
C(k′). Finally, note that if x is any algebraic regular semisimple element of C(k′),
then k := k′ ⊕ Z(C(k′)) + Cx is an eligible subalgebra of g. Indeed, if t′ ⊆ k′ is a
Cartan subalgebra of k′, and hk := t′ ⊕ Z(C(k′))+ Cx is the corresponding Cartan
subalgebra of k, then C(hk) is a Cartan subalgebra of g. Hence,

C(hk) = hk + C(k) (3)

as the right-hand side of (3) necessarily contains a Cartan subalgebra of g.
To any eligible subalgebra k we assign a unique weight κ ∈ h∗ (the “canon-

ical weight associated with k”). It is defined by the conditions κ|(h∩kss ) =
ρ, κ|(h∩C(k)) = 0.

5 The Generalized Discrete Series

In what follows we assume that k is eligible and h ⊂ k̃. In this case h is a
Cartan subalgebra both of k̃ and g. Let λ ∈ h∗ and set γ := λ|t. Assume that
m := mγ = C(t). Assume furthermore that λ is m-integral and let Eλ be a simple
finite-dimensional m-module with b-highest weight λ. Then
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D(k, λ) := Fs(k, pγ , Eλ ⊗Λdimnγ (n∗γ ))

is by definition a generalized discrete series module.
Note that since D(k, λ) is a fundamental series module, Theorem 2.1 applies

to D(k, λ). In the case when k is a root subalgebra and λ is regular, we have
λ = γ and pγ is a Borel subalgebra of g which we denote by bλ. Then
D(k, λ) = RsΓk,h(Γh(progbλ Eλ)), i.e.,D(k, λ) is cohomologically co-induced from
a 1-dimensional bλ-module. If in addition, k is a symmetric subalgebra, λ is k-
integral, and λ − ρ̃ is bλ-dominant regular, then D(k, λ) is a (g, k)-module in
Harish-Chandra’s discrete series, see [KV], Ch.XI.

Suppose k is eligible but k is not a root subalgebra. Suppose further that k̃ is
symmetric. Any simple subquotient M of D(k, λ) is a (g, k̃)-module and thus a
Harish-Chandra module for (g, k̃). However,M may or may not be in the discrete
series of (g, k̃)-modules. This becomes clear in Theorem 5.6 below.

Our first result is a sharper version of the main result of [PZ3] for an eligible k.

Theorem 5.1. Let k ⊆ g be eligible. Assume that λ−2κ is k̃-integral and dominant.
Then, D(k, λ) �= 0. Moreover, if we set μ := (λ − 2κ)|t, then V (μ) is the
unique minimal k-type of D(k, λ). Finally, there are isomorphisms of simple finite-
dimensional k̃-modules

D(k, λ)[μ] ∼= D(k, λ)〈λ − 2κ〉 $ Vk̃(λ− 2κ).

Proof. Note that μ = γ − 2ρ. By Lemma 2 in [PZ3]

dim Homk(V (μ),D(k, λ)) = dimEλ,

and hence D(k, λ) �= 0. In addition, V (μ) is the unique minimal k-type of
D(k, λ). By construction, D(k, λ)[μ] is a finite-dimensional k̃-module. We will use
Theorem 2.1 (c) to compute D(k, λ)[μ] as a k̃-module. Since k is eligible, we have
m = t+C(k). As [t, C(k)] = 0 and t is toral, the restriction of Eλ to C(k) is simple.
We have

k̃ = kss ⊕ C(k),

and hence there is an isomorphism of k̃-modules

Vk̃(λ− 2κ) ∼= (V (μ)|kss )� Eλ.

Consequently, we have isomorphisms of C(k)-modules

Homk(V (μ), Vk̃(λ− 2κ)) ∼= Homkss ((V (μ)|kss ), Vk̃(λ− 2κ)) ∼= Eλ. (4)

Write pγ = p and note that k̃∩m = m. By Theorem 2.1 (c), we have a canonical
isomorphism



346 I. Penkov and G. Zuckerman

D(k, λ) ∼= RsΓk̃,m(Γm,0(progpEλ)).

According to the theory of the bottom layer [KV], Ch.V, Sec.6,D(k, λ) contains the
k̃-module

RsΓk̃,m(Γm,0(prok̃
k̃∩pEλ))

which is in turn isomorphic to Vk̃(λ− 2κ).
By the above argument, we have a sequence of injections

Vk̃(λ− 2κ) ↪→ D(k, λ)〈λ − 2κ〉 ↪→ D(k, λ)[μ].

We conclude from (4) that the above sequence of injections is in fact a sequence
of isomorphisms of simple k̃-modules. ��
Corollary 5.2. Under the assumptions of Theorem 5.1, there exists a simple (g, k)-
moduleM of finite type over k, such that if V (μ) is a minimal k-type ofM , then V (μ)
is the unique minimal k-type ofM and there is an isomorphism of finite-dimensional
k̃-modules

M[μ] ∼= Vk̃(λ− 2κ).

In particular,M[μ] is a simple k̃-submodule ofM .

Proof. First we construct a module M as required. Let D̄(k, λ) be the U(g)-
submodule of D(k, λ) generated by the k̃-isotypic component D(k, λ)〈λ − 2κ〉.
Suppose N is a proper g-submodule of D̄(k, λ). Since D(k, λ)〈λ − 2κ〉 is simple
over k̃,

N ∩ (D(k, λ)〈λ − 2κ〉) = 0.

Thus, if N(k, λ) is the maximum proper submodule of D̄(k, λ), the quotient
module

M = D̄(k, λ)/N(k, λ)

is a simple (g, k̃)-module, and M has finite type over k. Theorem 5.1 implies now
that V (μ) is the unique minimal k-type of M and that there is an isomorphism of
finite-dimensional k̃-modules,

M[μ] ∼= Vk̃(λ− 2κ).

��
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If k is symmetric (and hence k is a root subalgebra due to the eligibility of k),
Theorem 5.1 and Corollary 5.2 go back to [V] (where they are proven by a different
method).

The following two statements are consequences of the main results of Sect. 2 and
Theorem 5.1.

Corollary 5.3. Let k be eligible, λ ∈ h∗ be such that λ− 2κ is k̃-integral and V (μ)
is generic for μ := λ|t − 2ρ.

(a) SocD(k, λ) is a simple (g, k)-module with unique minimal k-type V (μ).
(b) There is a canonical isomorphism of C(k)-modules

Homk(V (μ),SocD(k, λ)) $ Eλ.

(c) There is a canonical isomorphism of k̃-modules

V (μ)⊗ Homk(V (μ),SocD(k, λ)) $ Vk̃(λ− 2κ),

i.e. the V (μ)-isotypic component of SocD(k, λ) is a simple k̃-module isomor-
phic to Vk̃(λ− 2κ).

(d) If λ − 2κ is not l-integral for any reductive subalgebra l such that k̃ ⊂ l ⊆ g,
then k̃ is a maximal reductive subalgebra of g[M] for any subquotient M of
D(k, λ), in particular of SocD(k, λ).

Proof. (a) Observe that pγ = pμ+2ρ , and D(k, λ) = Fs(k, pμ+2ρ, Eλ ⊗
Λdimn(n∗)). So, (a) follows from Theorem 2.5 (c).

(b) By Theorem 2.5 (c), Homk(V (μ), SocD(k, λ)) = Homk(V (μ), D(k, λ)),
which in turn is isomorphic to Homk(V (μ), Vk̃(λ− 2κ)) by Theorem 5.1. The
desired isomorphism follows now from (4).

(c) This follows from the isomorphism in (b) and the isomorphism V (μ) ⊗ Eλ ∼=
Vk̃(λ− 2κ) of k̃−modules.

(d) Follows from Corollary 2.4. Note that, since k is eligible, k̃ is a root subalgebra
and the condition that λ − 2κ be not l-integral involves only finitely many
subalgebras l.

��
Corollary 5.4. Let k be eligible and let V (μ) be a generic k-type.

(a) Let M be a simple (g, k)-module of finite type with minimal k-type V (μ). Then
M[μ] is a simple finite-dimensional k̃-module isomorphic to Vk̃(λ) for some

weight λ ∈ h∗ such that λ|t = μ+ 2ρ and μ− 2κ is k̃-integral. Moreover,

M ∼= SocD(k, λ).

If in addition λ is not l-integral for any reductive subalgebra l with k̃ ⊂ l ⊆ g,
then k̃ is a unique maximal reductive subalgebra of g[M].
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(b) If k is regular in g, then (a) holds for any simple (g, k)-module with generic
minimal k-type V (μ). In particularM has finite type over k.

Proof. (a) We apply Theorem 2.6. Since V (μ) is generic, p = pμ+2ρ = m⊃+ n is
a minimal t-compatible parabolic subalgebra. Let ω := μ − 2ρ⊥n (recall that
ρ⊥n = ρn − ρ) and letQ be the m-moduleHr(n,M)ω where r = dim(k⊥ ∩ n).

Observe that Q is a simple m-module and M is canonically isomorphic to
F̄ s (p,Q) = SocFs(p,Q). Let λ ∈ h∗ be so that λ− 2ρ̃n is an extreme weight
of h in Q. Thus, Fs(p,Q) = Fs(p, Eλ ⊗ Λdimn(n∗)) = D(k, λ). Finally,
M ∼= SocD(k, λ), and λ|t = μ + 2ρ. It follows that λ − 2κ is both k-integral
and C(k)-integral. Hence, the weight λ− 2κ is k̃-integral.

(b) We apply Theorem 2.8.
��

Corollary 5.5. If k $ sl(2), the genericity assumption on V (μ) in Corollaries 5.3
and 5.4 can be replaced by the assumption μ ≥ Λ.

Proof. The statement follows directly from Theorem 3.1. ��

We conclude this paper by discussing in more detail an example of an eligible
sl(2)-subalgebra. Note first that if g is any simple Lie algebra and k is a long root
sl(2)-subalgebra, then the pair (g, k̃) is a symmetric pair. This is a well-known fact
and it implies in particular that any (g, k)-module of finite type and of finite length is
a Harish-Chandra module for the pair (g, k̃). The latter modules are classified under
the assumption of simplicity, see [KV], Ch.XI; however, in general, it is an open
problem to determine which simple (g, k̃)-modules have finite type over k. Without
having been explicitly stated, this problem has been discussed in the literature, see
[GW, OW] and the references therein. On the other hand, in this case Λ = 1,
hence Corollaries 5.4 and 5.5 provide a classification of simple (g, k)-modules of
finite type with minimal k-types V (μ) for μ ≥ 1. So the above problem reduces
to matching the above two classifications in the case when μ ≥ 1, and finding all
simple (g, k)-modules of finite type whose minimal k-type equals V (0) among the
simple Harish-Chandra modules for the pair (g, k̃). We do this here in a special case.

Let g = sp(2n+ 2) for n ≥ 2. By assumption, k is a long root sl(2)-subalgebra,
and k̃ $ sp(2n)⊕ k. Consider simple (g, k̃)-modules with ZU(g)-character equal to
the character of a trivial module. According to the Langlands classification, there
are precisely (n + 1)2 pairwise non-isomorphic such modules, one of which is the
trivial module. Following [Co] (see Figure 4.5 on page 93) we enumerate them as
σt for 0 ≤ t ≤ n and σij for 0 ≤ i ≤ n − 1, 1 ≤ j ≤ 2n, i < j, i + j ≤ 2n. The
modules σt are discrete series modules. The modules σij are Langlands quotients of
the principal series (all of them are proper quotients in this case).

We announce the following result which we intend to prove elsewhere.

Theorem 5.6. Let g = sp(2n + 2) for n ≥ 2 and k be a long root
sl(2)-subalgebra.
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(a) Any simple (g, k)-module of finite type is isomorphic to a subquotient of the
generalized discrete series module D(k, λ) for some k̃ = sp(2n) ⊕ k-integral
weight λ− 2κ.

(b) The modules σ0, σ0i for i = 1, . . . , 2n, σ12 are, up to isomorphism, all of
the simple (g, k)-modules of finite type whose ZU(g)-character equals that of
a trivial g-module. Moreover, their minimal k-types are as follows:

Module Minimal k−type
σ0 V (2n)

σ0j , n+ 1 ≤ j ≤ 2n V (j − 1)
σ0j , 2 ≤ j ≤ n V (j − 2)

σ01 (trivial representation) V (0)
σ12 V (0)
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1 Introduction

Vertex Operator Algebras (VOAs) and Super Algebras (VOSAs) have deep con-
nections to Lie algebras, number theory, group theory, combinatorics and Riemann
surfaces (e.g., [FHL, FLM, Kac1, MN, MT]) and, of course, conformal field theory
e.g., [DMS]. The classification of VOAs and VOSAs still seems to be a very difficult
task, for example, there is no proof of the uniqueness of the Moonshine module
[FLM]. Nevertheless, it would be very useful to be able to characterize VOA/VOSAs
with interesting properties such as large automorphism groups (e.g., the Monster
group for the Moonshine module), rational characters, generating vectors, etc. In
[Mat], Matsuo introduced VOAs of class Sn with the defining property that the
Virasoro vacuum descendents are the only Aut(V )-invariant vectors of weight
k ≤ n. Thus the Moonshine module [FLM] is of class S11, the Baby Monster
VOA [Ho1] of class S6 and the level one Kac–Moody VOAs generated by Deligne’s
Exceptional Lie algebras A1, A2,G2,D4, F4, E6, E7, E8 [D] are of class S4.1

In this paper we consider a refinement and generalization of previous results
in [T1, T2] concerning such exceptional VOAs. Assuming the VOA is simple and
of strong CFT-type (e.g., [MT]) we consider quadratic Casimir vectors λ(k) of
conformal weight k = 0, 1, 2, . . . constructed from the primary vectors of lowest
conformal weight l ∈ N. We say that a VOA is exceptional of lowest primary weight
l if λ(2l+2) is a Virasoro vacuum descendent. Every VOA of class S2l+2 with lowest
primary weight l is exceptional, but the converse is not known to be true. We show,
using Zhu’s theory for genus one correlation functions [Z], that for an Exceptional
VOA of lowest primary weight l, the partition function and the characters for simple
ordinary VOA modules satisfy a Modular Linear Differential Equation (MLDE) of
order at most l+ 1. Given that order of the MLDE is exactly l+ 1 (which is verified
for all l ≤ 9) we show that the central charge c and module lowest weights h
are rational, the MLDE solution space is modular invariant and the dimension of
each VOA graded space is a rational function of c. Subject to a further indicial
root condition (again verified for all l ≤ 9) we show that an Exceptional VOA is
generated by its primary vectors of lowest weight l.

We also consider other properties that arise from genus zero correlation functions
for all l. Assuming the VOA is of class S2l+2 this leads to conditions on the
reducibility of the lowest weight l primary space as a module for the VOA
automorphism group.

A similar analysis is carried out for Exceptional VOSAs of lowest primary weight
l ∈ N + 1

2 for which λ(2l+1) is a Virasoro vacuum descendent. Using a twisted
version of Zhu theory [MTZ] we obtain a twisted MLDE of order at most l+ 1

2 which
is satisfied by the partition function and simple ordinary VOA module characters.
This differential equation leads to a similar set of general results to those for VOAs.
Likewise, we can consider genus zero correlation functions for all l ∈ N+ 1

2 leading

1In fact, the A1 theory is of class S∞ and the E8 theory is of class S6.
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to conditions on the reducibility of the space of the space of weight l primaries as a
module for the VOSA automorphism group.

The paper also summarizes rational c, h solutions to the MLDE for all l ≤ 9 and
the twisted MLDE for all l ≤ 17

2 . In most cases we can identify a VOA/VOSA
with the requisite properties. These include a number of special VOA/VOSAs,
some VOSAs obtained by commutant constructions, some simple current extensions
of Virasoro minimal models and W-algebras. We also present evidence for four
candidate/conjectured VOAs with simple Griess algebras for l = 2 and three
extremal VOAs for l = 3, 4, 6. All the VOSA solutions found can be identified
with known theories.

2 Vertex Operator (Super) Algebras

We review some aspects of vertex operator super algebra theory (e.g., [FHL,
FLM, Kac1, MN, MT]). A Vertex Operator Superalgebra (VOSA) is a quadruple
(V , Y (·, ·), 1, ω) with a Z2-graded vector space V = V0̄ ⊕ V1̄ with parity p(u) = 0
or 1 for u ∈ V0̄ or V1̄ respectively. (V , Y (·, ·), 1, ω) is called a Vertex Operator
Algebra (VOA) when V1̄ = 0.

V also has a 1
2Z-grading with V = ⊕

r∈ 1
2Z
Vr with dimVr < ∞. 1 ∈ V0 is

the vacuum vector and ω ∈ V2 is called the conformal vector. Y is a linear map
Y : V → End(V )[[z, z−1]] for formal variable z giving a vertex operator

Y (u, z) =
∑

n∈Z
u(n)z−n−1, (1)

for every u ∈ V . The linear operators (modes) u(n) : V → V satisfy creativity

Y (u, z) 1 = u+O(z), (2)

and lower truncation

u(n)v = 0, (3)

for each u, v ∈ V and n' 0. For the conformal vector ω

Y(ω, z) =
∑

n∈Z
L(n)z−n−2, (4)

where L(n) satisfies the Virasoro algebra for some central charge c

[L(m),L(n)] = (m− n)L(m+ n)+ c

12
(m3 −m)δm,−n idV . (5)
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Each vertex operator satisfies the translation property

Y (L(−1)u, z) = ∂zY (u, z). (6)

The Virasoro operator L(0) provides the 1
2Z-grading with L(0)u = wt(u)u for

u ∈ Vr and with weight wt(u) = r ∈ Z + 1
2p(u). Finally, the vertex operators

satisfy the Jacobi identity

z−1
0 δ

(
z1−z2
z0

)
Y (u, z1)Y (v, z2)− (−1)p(u)p(v)z−1

0 δ
(
z2−z1−z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1−z0
z2

)
Y (Y (u, z0)v, z2) ,

with δ
(
x
y

)
=∑r∈Z xry−r .

These axioms imply u(n)Vr ⊂ Vr−n+wt(u)−1 for u of weight wt(u). They also
imply locality, skew-symmetry, associativity and commutativity:

(z1 − z2)NY (u, z1)Y (v, z2) = (−1)p(u)p(v)(z1 − z2)NY (v, z2)Y (u, z1),
(7)

Y (u, z)v = (−1)p(u)p(v)ezL(−1)Y (v,−z)u, (8)

(z0 + z2)NY (u, z0 + z2)Y (v, z2)w = (z0 + z2)NY (Y (u, z0)v, z2)w, (9)

u(k)Y (v, z)− (−1)p(u)p(v)Y (v, z)u(k) =
∑

j≥0

(
k

j

)
Y (u(j)v, z)zk−j , (10)

for u, v,w ∈ V and integersN ' 0 [FHL, Kac1, MT].
We define an invariant symmetric bilinear form 〈 , 〉 on V by

〈
Y

(
ezL(1)

(
−z−2

)L(0)
w, z−1

)
u, v

〉
= (−1)p(u)p(w)〈v, Y (w, z)v〉, (11)

for all u, v,w ∈ V [FHL]. V is said to be of CFT-type if V0 = C 1 and of strong
CFT-type if additionallyL(1)V1 = 0 in which case 〈 , 〉, with normalization 〈1, 1〉 =
1, is unique [Li]. Furthermore, 〈 , 〉 is invertible if V is simple. All VOSAs in this
paper are assumed to be of this type.

Every VOSA contains a subVOA,2 which we denote by V〈ω〉, generated by the
Virasoro vector ω with Fock basis of vacuum descendents of the form

L(−n1)L(−n2) . . . L(−nk) 1, (12)

2This subVOA is often denoted byMc e.g., [FZ].
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for ni ≥ 2. 〈 , 〉 is singular on
(
V〈ω〉

)
n

iff the central charge is

cp,q = 1− 6
(p − q)2
pq

, (13)

for coprime integers p, q ≥ 2 and n ≥ (p − 1)(q − 1) [Wa]. The Virasoro minimal
model VOA L(cp,q, 0) is the quotient of V〈ω〉 by the radical of 〈 , 〉. L(cp,q, 0) has
a finite number of simple ordinary V -modules L(cp,q, hr,s ) ∼= L(cp,q, hq−r,p−s )
(e.g., [DMS]) with lowest weight

hr,s = (pr − qs)
2 − (p − q)2

4pq
, (14)

for r = 1, . . . , q − 1 and s = 1, . . . , p − 1.

3 Quadratic Casimirs and Genus One Zhu Theory

3.1 Quadratic Casimirs

Let (V , Y (·, ·), 1, ω) be a simple VOA of strong CFT-type with unique invertible
bilinear form 〈 , 〉. Let Πl denote the space of primary vectors of lowest weight
l ≥ 1, i.e., L(n)u = 0 for all n > 0 for u ∈ Πl . Choose a Πl-basis {ui} for
i = 1, . . . , pl = dimΠl with dual basis {ui}, i.e., 〈ui, uj 〉 = δij . Define quadratic
Casimir vectors λ(n) for n ≥ 0 by [Mat, T1, T2]

λ(n) =
pl∑

i=1

ui(2l − n− 1)ui ∈ Vn. (15)

In particular we find

λ(0) =
pl∑

i=1

ui(2l − 1)ui = (−1)l
pl∑

i=1

〈ui, ui〉 1 = (−1)l pl 1 .

Furthermore, if l > 1, then dimV1 = 0 and hence λ(1) = 0, whereas for l = 1 the
Jacobi identity implies λ(1) =∑pl

i=1 ui(0)ui = −
∑pl
i=1 ui(0)ui = 0 [T1]. Thus we

find

Lemma 1. λ(0) = (−1)l pl 1 and λ(1) = 0.

Since theΠl elements are primary then for all m > 0

L(m)λ(n) = (n−m+ l(m− 1)) λ(n−m). (16)
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Suppose that λ(n) ∈ V〈ω〉, then (16) implies that λ(m) ∈ V〈ω〉 for all m ≤ n.
Furthermore, since 〈 , 〉 is invertible we have the following lemma

Lemma 2 (Matsuo [Mat]). If λ(n) ∈ V〈ω〉, then λ(n) is uniquely determined.

Thus if λ(2) ∈ V〈ω〉, then λ(2) = κL(−2) 1 for some κ so that 〈L(−2) 1, λ(2)〉 = κ c2 .
But (11) and (16) imply 〈L(−2) 1, λ(2)〉 = 〈1, L(2)λ(2)〉 = (−1)l pl , so that for
c �= c2,3 = 0 (cf. (13))

λ(2) = pl 2 (−1)l l

c
L(−2) 1 . (17)

Similarly, if λ(4) ∈ V〈ω〉 and c �= 0 or c �= c2,5 = −22/5, then [Mat, T1, T2]

λ(4) = pl 2 (−1)l l (5l + 1)

c (5c + 22)
L(−2)2 1+pl 3 (−1)l l (c − 2l + 4)

c (5c + 22)
L(−4) 1 .

(18)

These examples illustrate a general observation:

Lemma 3. Each coefficient in the expansion of λ(n) ∈ V〈ω〉 in a basis of Virasoro
Fock vectors is of the form pl r(c) for some rational function r(c) of c.

3.2 Genus One Constraints from Quadratic Casimirs

Define genus one partition and 1-point correlation functions for u ∈ V by

ZV (q) = TrV
(
qL(0)−c/24

)
= q−c/24

∑

n≥0

dimVn q
n, (19)

ZV (u, q) = TrV
(
o(u)qL(0)−c/24

)
, (20)

where q is a formal parameter and o(u) = u(wt (u)− 1) : Vn → Vn is the ‘zero
mode’ for homogeneous u. By replacing V by a simple ordinary V -module N (on
which L(0) acts semisimply e.g., [FHL, MT]) these definitions may be extended to
graded characters ZN(q) and 1-point functions ZN(u, q), e.g.,

ZN(q) = TrN
(
qL(0)−c/24

)
= qh−c/24

∑

n≥0

dimNn qn, (21)

where h denotes the lowest weight of N . Zhu also introduced an isomorphic VOA
(V , Y [·, ·], 1, ω̃) with ‘square bracket’ vertex operators

Y [u, z] ≡ Y
(
ezL(0)u, ez − 1

)
=
∑

n∈Z
u[n]z−n−1, (22)
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for Virasoro vector ω̃ = ω−c/24 1 with modes {L[n]}.L[0] defines an alternativeZ
grading with V =⊕k≥0 V[k] whereL[0]v = wt[v]v for wt[v] = k for v ∈ V[k]. Zhu
obtained a reduction formula for the 2-point correlation function ZN (Y [u, z]v, q)
for u, v ∈ V in terms of the elliptic Weierstrass function

Pm(z) = 1

zm
+ (−1)m

∑

n≥m

(
n− 1

m− 1

)
En(q) z

n−m, (23)

form ≥ 1 and with Eisenstein series En(q) = 0 for odd n and

En(q) = −Bn
n! +

2

(n− 1)!
∑

k≥1

kn−1qk

1− qk , (24)

for even n with Bn the nth Bernoulli number. Pm(z) converges absolutely and
uniformly on compact subsets of the domain |q| < |ez| < 1. En(q) is a modular
form of weight n for n ≥ 4 and E2(q) is a quasi-modular form of weight 2, i.e.,
letting q = exp(2π iτ ) for τ ∈ H1

En

(
ατ + β
γ τ + δ

)
= (γ τ + δ)n En(τ )− γ (γ τ + δ)

2π i
δn2, (25)

for
( α β
γ δ

) ∈ SL(2,Z) [Se]. We then have

Proposition 1 (Zhu [Z]). Let N be a simple ordinary V -module.

ZN (Y [u, z]v, q) = TrN
(
o(u)o(v)qL(0)−c/24

)
+
∑

m≥0

Pm+1(z)ZN (u[m]v, q) .

Taking u = ω̃ and noting that o(ω̃) = L(0)− c/24 we obtain:

Corollary 1. The 1-point function of a Virasoro descendent L[−k]v is

ZN (L[−k]v, q) = (−1)k
∑

r≥0

(
k + r − 1

k − 2

)
Ek+r (q)ZN (L[r]v, q) ,

for all k ≥ 3, whereas for k = 2 we have

ZN (L[−2]v, q) =
(
q
∂

∂q
+ wt[v]E2(q)

)
ZN (v, q) +

∑

s≥1

E2s+2(q)ZN (L[2s]v, q) .

Let us now consider a simple VOA V of strong CFT-type with lowest weight
l ≥ 1 Virasoro primary vectorsΠl so that

ZV (q) = ZV〈ω〉(q)+O
(
ql+c/24

)
. (26)
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Let {ui} and {ui} be a basis and dual basis forΠl . Apply Proposition 1 to

ZN

(
pl∑

i=1

Y [ui, z]ui, q
)
=
∑

n≥0

ZN

(
λ[n], q

)
zn−2l , (27)

(for Casimir vector λ[n] ∈ V[n] in square bracket modes) to find

∑

n≥0

ZN

(
λ[n], q

)
zn−2l = TrN

(
pl∑

i=1

o(ui)o(ui)q
L(0)−c/24

)

+
2l−1∑

m=0

Pm+1(z)ZN

(
λ[2l−m−1], q

)
. (28)

Comparing the coefficients of zn−2l for n ≥ 2l on both sides of this equality leads
to a recursive identity between ZN

(
λ[n], q

)
and ZN

(
λ[m], q

)
for m ≤ n − 2. In

particular, comparing the coefficients of z2 we find

Proposition 2. ZN
(
λ[2l+2], q

)
satisfies the recursive identity

ZN

(
λ[2l+2], q

)
=
l−1∑

r=0

(
2l − 2k + 1

2

)
E2l−2k+2(q)ZN

(
λ[2k], q

)
. (29)

4 Exceptional VOAs

Consider a simple VOA of strong CFT-type with primary vectors of lowest weight
l ≥ 1 for which λ(2l+2) ∈ V〈ω〉 (or equivalently,λ[2l+2] ∈ V〈ω̃〉). We also assume that(
V〈ω〉

)
2l+2 contains no Virasoro singular vector, i.e., c �= cp,q for (p− 1)(q − 1) ≤

2l + 2. We call such a VOA an Exceptional VOA of lowest primary weight l. (16)
implies λ(2k) ∈ V〈ω〉 and λ[2k] ∈ V〈ω̃〉 for all k ≤ l.
Proposition 3. Let λ[2k] ∈ V〈ω̃〉. Then for a simple ordinary V -module N

ZN

(
λ[2k], q

)
=

k∑

m=0

fk−m(q, c)DmZN(q); (30)

where D is the Serre modular derivative defined for m ≥ 0 by

Dm+1ZN(q) =
(
q
∂

∂q
+ 2mE2(q)

)
DmZN(q); (31)
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fm(q, c) is a modular form of weight 2m whose coefficients over the ring of
Eisenstein series are of the form pl r(c) for a rational function r(c).

Proof. Equation (30) follows from Corollary 1 by induction in the number of
Virasoro modes where the DkZN(q) term arises from a L[−2]k 1 component in
λ[2k]. The coefficients of fm(q, c) over the ring of Eisenstein series are of the form
pl r(c) for a rational function r(c) from Lemma 3. ��
Applying Proposition 3 to the recursive identity (29) implies ZN(q) satisfies a
Modular Linear Differential Equation (MLDE) [Mas1].

Proposition 4. Let V be an Exceptional VOA of lowest primary weight l. ZN(q)
for each simple ordinary V –module N satisfies a MLDE of order ≤ l + 1

l+1∑

m=0

gl+1−m(q, c)DmZ(q) = 0, (32)

where gm(q, c) is a modular form of weight 2m whose coefficients over the ring of
Eisenstein series are rational functions of c.

Remark 1. Proposition 4 states that each simple ordinary V -module N character
ZN(q) satisfies the same MLDE (32). However, the MLDE may also have further
solutions unrelated to module characters.

g0(q, c) = g0(c) is independent of q since it is a modular form of weight 0. For
g0(c) �= 0, the MLDE (32) is of order l + 1 with a regular singular point at q = 0
so that Frobenius–Fuchs theory concerning the l + 1-dimensional solution space F
applies, e.g., [Hi, I]. Any solution Z(q) ∈ F is holomorphic in q for 0 < |q| < 1
since the MLDE coefficients gm(q, c) are holomorphic for |q| < 1. We may thus
view each solution as a function of τ ∈ H1 for q = e2π iτ .

Using the quasi-modularity of E2(τ ) and (31) with q ∂
∂q
= 1

2π i
∂
∂τ

, it follows

that for all
( α β
γ δ

) ∈ SL(2,Z), Z
(
ατ+β
γ τ+δ

)
is also a solution of the MLDE since

gl+1−m(q, c) is a modular form of weight 2l + 2− 2m. Thus T : τ → τ + 1 has a
natural action on F = F1⊕ . . .⊕Fr for distinct eigenspaces Fi with T monodromy
eigenvalue e2π ixi where xi is a root of the indicial polynomial

l+1∑

m=0

gl+1−m(0, c)
m−1∏

s=0

(
x − 1

6
s

)
= 0. (33)

If x1 = x2 mod Z, for roots x1, x2, they determine the same monodromy
eigenvalue. Let x̂i denote an indicial root with least real part for a given monodromy
eigenvalue e2π ixi . Then Fi has a basis of the form [17, Hi]

f ni (τ ) = φ1
i (q)+ τφ2

i (q)+ . . .+ τn−1φni (q), (34)
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for n = 1, . . . , dimFi and where each φni (q) is a q-series

φni (q) = qx̂i
∑

k≥0

anikq
k,

which is holomorphic on 0 < |q| < 1. The solutions f ni (τ ) for n ≥ 2, which are
referred to as logarithmic solutions (since they contain nonnegative integer powers
of log q = 2π iτ ), occur if the same indicial root occurs multiple times or, possibly, if
two roots differ by an integer. However, every graded character ZN(q) for a simple
ordinary module with lowest weight h has a pure q-series with indicial root x =
h− c/24 from (21).

We now sketch a proof that the central charge c is rational following [AM] (which
is extended to logarithmic solutions (34) in [Miy]). Suppose c /∈ Q and consider
φ ∈ Aut(C) such that c̃ = φ(c) �= c. Then ZV (τ, c̃) is a solution to the MLDE,
found by replacing c by c̃ in (32). But since the coefficients in the q-expansion of
ZV (τ, c) are integral we have

ZV (τ, c̃) = q(c̃−c)/24ZV (τ, c).

Applying the modular transformation S : τ →−1/τ we find

ZV

(
−1

τ
, c̃

)
= exp

(
−π i(c̃ − c)

12τ

)
ZV

(
−1

τ
, c

)
. (35)

But ZV (−1/τ, c) satisfies (32) and ZV (−1/τ, c̃) satisfies (32) with c replaced by
c̃ and thus both are expressed in terms of the basis (34). Analysing (35) along rays
τ = reiθ in the limit r →∞ with 0 < θ < π , a contradiction results unless c̃ = c.
Hence c ∈ Q [AM, Miy]. Similarly, the lowest conformal weight h of a simple
ordinary module N is rational. Altogether we have

Proposition 5. Let V be an Exceptional VOA of lowest primary weight l ≥ 1 and
central charge c and let N be a simple ordinary V -module of lowest weight h.
Assuming g0(c) �= 0 in the MLDE (32), then

(i) ZN(q) is holomorphic for 0 < |q| < 1.

(ii) ZN
(
ατ+β
γ τ+δ

)
is a solution of the MLDE for all

( α β
γ δ

) ∈ SL(2,Z) viewed as a

function of τ ∈ H1 for q = e2π iτ .
(iii) The central charge c and the lowest conformal weight h are rational.

Consider the general solution with indicial root x = c/24 of the form Z(q) =
q−c/24∑

n≥0 anq
n. Substituting into the MLDE, we obtain a linear equation in

a0, . . . , an for each n. This can be iteratively solved for an provided the coefficient
of an is nonzero. This coefficient may vanish if x = m− c/24 is an indicial root for
some integerm > 0. Hence we have
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Proposition 6. Let V be an Exceptional VOA of lowest primary weight l ≥ 1 and
central charge c. Suppose g0(c) �= 0 and that m < l for any indicial root of the
form x = m− c/24. Then

(i) ZV (q) is the unique q-series solution of the MLDE satisfying (26).
(ii) dimVn is a rational function of c for each n ≥ 0.

(iii) V is generated by the space of lowest weight primary vectorsΠl .

Proof. (i) The x = −c/24 solution Z(q) = q−c/24∑
n≥0 anq

n is determined by
a0 and am for any indicial root(s) of the form x = m− c/24 for m > 0. Thus
the partition function is uniquely determined by the l Virasoro leading terms
(26) under the assumption that m < l.

(ii) The modular forms gm(q, c) of the MLDE of Proposition 4 have q-expansions
whose coefficients are rational functions of c. Hence solving iteratively it
follows that an = dimVn is a rational function of c.

(iii) Let V〈Πl〉 ⊆ V be the subalgebra generated by the lowest weight primary
vectors Πl . But ω ∈ V〈Πl〉 from (17) so that V〈Πl〉 is a VOA of central charge
c. Furthermore, since λ(2l+2) ∈ V〈Πl〉, the subVOA is an Exceptional VOA of
lowest primary weight l. Hence ZV〈Πl 〉(q) satisfies the same MLDE as ZV (q).
From (i) it follows that ZV〈Πl 〉(q) = ZV (q) implying V〈Πl〉 = V . ��

Remark 2. Note that g0(c) �= 0 provided λ(2l+2) contains an L(−2)l+1 1 compo-
nent. We conjecture that such a component exists for all l. We further conjecture
thatm < l for any indicial root of the form x = m− c/24 for all l. These properties
are verified for all l ≤ 9 in Sect. 6.

4.1 Exceptional VOAs with pl = 1

Let V be a simple VOA of strong CFT-type generated by one primary vector u of
lowest weight l with dual u = u/〈u, u〉. Consider the commutator (10)

[u(m), Y (u, z)] =
∑

j≥0

(
m

j

)
Y (u(j)u, z) zm−j

= 〈u, u〉
2l−1∑

k=0

(
m

2l − k − 1

)
Y
(
λ(k), z

)
zm+k+1−2l , (36)

using (15). Suppose that λ(2l−1) ∈ V〈ω〉 so that λ(k) ∈ V〈ω〉 for 0 ≤ k ≤ 2l−1 which
implies the RHS of (36) is expressed in terms of Virasoro modes. Thus (36) defines
a W(l) algebra VOA with one primary vector u of weight l, e.g., [BFKNRV,F]. The
further condition λ(2l+2) ∈ V〈ω〉 constrains c to specific rational values.
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We consider two infinite families of Exceptional W(l)-VOAs. One is of AD-
type, from the ADE series of [CIZ], given by the simple current extension of a
minimal model L

(
cp,q, 0

)
by an irreducible module L

(
cp,q, l

)
with

l = h1,p−1 = 1

4
(p − 2)(q − 2) ∈ N, (37)

for hr,s , of (14), i.e., for any coprime pair p, q such that p or q = 2 mod 4. Then
(36) is consistent with respect to the Virasoro fusion rule (e.g., [DMS])

L
(
cp,q, h1,p−1

)× L (cp,q, h1,p−1
) = L (cp,q, 0

)
.

Furthermore, since

2l + 2 = (p − 1)(q − 1)− 1

2
(pq − 6) < (p − 1)(q − 1),

it follows that
(
V〈ω〉

)
2l+2 contains no Virasoro singular vectors. Hence

Proposition 7. For a minimal model with h1,p−1 ∈ N there exists an Exceptional
VOA with one primary vector of lowest weight l = h1,p−1 of AD-type

V = L (cp,q, 0
)⊕ L (cp,q, h1,p−1

)
. (38)

A second infinite family of W(l)-VOAs for l = 3k for k ≥ 1 is given in
[BFKNRV, F]. A more complete VOA description of this construction will appear
elsewhere [T3]. W(3k) is of central charge ck = 1 − 24k and contains a unique
Virasoro primary vector of weight hn = (n2−1)k for each n ≥ 1. The corresponding
Virasoro Verma module contains a unique singular vector of weight hn + n2 so that
the partition function is [F]:

ZW(3k)(q) =
∑

n≥1

q−ck/24
∏
m≥0(1− qm)

(
qhn − qhn+n2

)

= 1

2η(q)

∑

n∈Z

(
qn

2k − qn2(k+1)
)
. (39)

This VOA is generated by the lowest weight primary of weight l = h2 = 3k
λ(2l+2) ∈ (V〈ω〉

)
2l+2 and requires that h3 = 8k > 2l + 2 i.e., k > 1. Thus we

find

Proposition 8. For each k ≥ 2 there exists an Exceptional VOA W(3k) with one
primary vector of lowest weight 3k and central charge ck = 1− 24k.

Remark 3. We conjecture that the two VOA series of Propositions 7 and 8 are the
only Exceptional VOAs for which pl = 1.
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5 Genus Zero Constraints from Quadratic Casimirs

We next consider how an Exceptional VOA is also subject to local genus zero
constraints following an approach originally described for l = 1, 2 in [T1, T2].
Let V be a simple VOA of strong CFT-type of central charge c with lowest primary
weight l ≥ 1. Let Πl be the vector space of pl primary vectors of weight l with
basis {ui} and dual basis {ui}. Define the genus zero correlation function

F(a, b; x, y) =
〈
a,

pl∑

i=1

Y (ui, x)Y (ui, y)b

〉
, (40)

for a, b ∈ Πl . F(a, b; x, y) is linearly dependent on a and b and is constructed
locally fromΠl alone.

Locality (7), associativity (9) and lower truncation (3) give

Proposition 9. F(a, b; x, y) is determined by a rational function

F(a, b; x, y) = G(a, b; x, y)
x2ly2l(x − y)2l , (41)

forG(a, b; x, y), a symmetric homogeneous polynomial in x, y of degree 4l.

F(a, b; x, y) can be considered as a rational function on the genus zero Riemann
sphere and expanded in various domains to obtain the 2l+1 independent parameters
determiningG(a, b; x, y) =∑4l

r=0Arx
4l−ryr where Ar = A4l−r . In particular, we

expand in ξ = −y/(x− y) using skew-symmetry (8), translation (6) and invariance
of 〈 , 〉 to find that

y2lF (a, b; x, y) = y2l
pl∑

i=1

〈
a, Y (ui, x)e

yL−1Y (b,−y)ui
〉

= y2l
pl∑

i=1

〈
a, eyL−1Y (ui, x − y)Y (b,−y)ui

〉

= y2l
pl∑

i=1

〈a, Y (ui, x − y)Y (b,−y)ui〉

=
∑

m≥0

Cmξ
m, (42)

for Cm = ∑pl
i=1 〈a, ui(m− 1)b(2l −m− 1)ui〉. Since l is the lowest primary

weight, we have b(2l − m − 1)ui ∈ Vm = (
V〈ω〉

)
m

for 0 ≤ m < l which
determines the coefficients C0, . . . , Cl−1. This follows by writing b(2l −m− 1)ui
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in a Virasoro basis with coefficients computed in a similar way as for the Casimir
vectors in Lemma 2. On the other hand, from (41) we find using y = −ξx/(1− ξ)
that

y2lF (a, b; x, y) = g
(
− ξ

1− ξ
)
(1− ξ)2l

= A0 − (2lA0 + A1) ξ +O(ξ2),

for g(y) = G(a, b; 1, y) = ∑4l
r=0Ary

r . Hence the coefficients C0, . . . , Cl−1
determineA0, . . . , Al−1. For example, using b(2l−1)ui = (−1)l〈b, ui〉 1, we have

A0 = C0 =
pl∑

i=1

〈a, ui(−1)b(2l − 1)ui〉 = (−1)l
pl∑

i=1

〈a, ui〉〈b, ui〉 = (−1)l〈a, b〉.

In general, Ak = 〈a, b〉ak(c) for k = 0, . . . , l − 1 where ak(c) is a rational function
of c.

The other l + 1 coefficients of g(y) (recalling Ar = A4l−r ) are determined by
using associativity (9) and expanding in ζ = (x − y)/y as follows:

(x − y)2l F (a, b; x, y) =
∑

m∈Z

pl∑

i=1

〈a, Y (ui(m)ui, y) b〉(x − y)2l−m−1

=
∑

n≥0

Bnζ
n, (43)

for Bn = 〈a, o(λ(n))b〉 for n ≥ 0 and recalling o(λ(n)) = λ(n)(n− 1).

Lemma 4. The leading coefficients of (43) are B0 = (−1)lpl〈a, b〉 and B1 = 0.
For k ≥ 1, the odd labelled coefficients B2k+1 satisfy

B2k+1 = 1

2

2k∑

r=2

( −r
2k + 1− r

)
(−1)rBr , (44)

i.e., B2k+1 is determined by the lower even labelled coefficients B2, . . . , B2k . The
even labelled coefficients for k ≥ 0 are given by

B2k = A2lδk,0 +
2l∑

m=1

[(
m

2k

)
+
(−m

2k

)]
A2l−m. (45)

Proof. From Lemma 1 we have λ(0) = (−1)lpl 1 and λ(1) = 0 so that B0 =
(−1)lpl〈a, b〉 and B1 = 0. Comparing (43) to (41) we find that

∑

n≥0

Bnζ
n = g

(
1

1+ ζ
)
(1+ ζ )2l = g (1+ ζ ) (1+ ζ )−2l ,
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since G(a, b; x, y) is symmetric and homogeneous. Thus

∑

n≥0

Bnζ
n =

∑

n≥0

Bn

( −ζ
1+ ζ

)n
.

This implies Bn = ∑n
r=0

( −r
n−r
)
(−1)rBr . Taking n = 2k + 1 leads to (44). (45)

follows from the identity

∑

n≥0

Bnζ
n = A2l +

2l∑

m=1

A2l−m
[
(1+ ζ )m + (1+ ζ )−m] .

��
We next assume that λ(n) ∈ V〈ω〉 for even n ≤ 2l giving B2k = 〈a, o(λ(2k))b〉 =

pl〈a, b〉b2k(c) for k = 1, . . . , l for some rational functions b2k(c) via Lemma 3.
Note that we are not (yet) assuming λ(2l+2) ∈ V〈ω〉. G(a, b; x, y) is uniquely
determined provided we can invert (45) to solve for Al, . . . , A2l . Define the l × l
matrix

Mmk =
(
m

2k

)
+
(−m

2k

)
, (46)

of coefficients for A2l−m of B2k in (45), wherem, k = 1, . . . , l.

Lemma 5. M is invertible with detM = 1.

Proof. Define unit diagonal lower and upper triangular matrices L and U by

Lij =
{(2i−j−1

j−1

)
for i ≤ j,

0 for i > j,
Ujk =

{
k
j

(
j+k−1
2j−1

)
for j ≤ k,

0 for j > k.

By induction in k, one can show thatMik = (LU)ik and so detM = 1. ��
Thus it follows that A2l−m =∑l

k=1 B2k(M
−1)km for m = 1, . . . , l. Altogether, we

have therefore shown the following.

Proposition 10. Let V be a simple VOA of strong CFT–type of central charge c
with lowest primary weight l ≥ 1. Suppose that λ(n) ∈ V〈ω〉 for all even n ≤ 2l.
Then the genus zero correlation function is uniquely determined with

F(a, b; x, y) = 1

x2ly2l(x − y)2l
2l∑

r=0

Ar

(
x4l−ryr + xry4l−r) ,
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where

Ak =
{ 〈a, b〉ak(c), k = 0, . . . , l − 1,
pl〈a, b〉ak(c), k = l, . . . , 2l,

for 2l + 1 specific rational functions a0(c), . . . , a2l(c).

Next we assume λ(2l+2) ∈ V〈ω〉 so that V is an Exceptional VOA. This
implies B2l+2 = 〈a, o(λ(2l+2))b〉 = pl〈a, b〉b2l+2(c) for some rational function
b2l+2(c). But B2l+2 is already determined from (45) in terms of A1, . . . , A2l from
Proposition 10. Hence we have

Proposition 11. Let V be an Exceptional VOA with lowest primary weight l. Then
the genus zero correlation function F(a, b; x, y) is uniquely determined and pl =
pl(c), a specific rational function of c.

For l = 1, 2 we may use F(a, b; x, y) to understand many properties of the
corresponding VOA (as briefly reviewed below) [T1, T2]. We already know from
Proposition 6(ii) that pl = dimVl − dim

(
V〈ω〉

)
l

is a rational function of c. In
principle, the specific rational expressions for pl may differ but, in practice, the
same expression is observed to arise for all l ≤ 9. A more significant point is
that the argument leading to Proposition 11 may be adopted to understanding some
automorphism group properties of V .

5.1 Exceptional VOAs of Class S2l+2

Let G = Aut(V ) denote the automorphism group of a VOA V and let VG denote
the sub-VOA fixed by G. Since the Virasoro vector is G invariant it follows that
V〈ω〉 ⊆ V G. V is said to be of Class Sn if VGk = (

V〈ω〉
)
k

for all k ≤ n [Mat].
(The related notion of conformal t-designs is described in [Ho2].) In particular, the
quadratic Casimir (15) isG-invariant so it follows that a VOAV with lowest primary
weight l of class S2l+2 is an Exceptional VOA. It is not known if every Exceptional
VOA is of class S2l+2.

The primary vector space Πl is a finite-dimensionalG-module. Assuming Πl is
a completely reducibleG-module (e.g., for G linearly reductive [Sp]) we have

Proposition 12. Let V be an Exceptional VOA of class S2l+2 with primaries Πl
of lowest weight l. If Πl is a completely reducible G-module, then it is either an
irreducibleG-module or the direct sum of two isomorphic irreducibleG-modules.

Remark 4. For odd pl it follows that Πl must be an irreducibleG-module.

Proof. Let ρ be a G-irreducible component of Πl and let ρ denote the 〈 , 〉 dual
vector space. ρ and ρ are isomorphic as G-modules. Define

R =
{
ρ if ρ = ρ,
ρ ⊕ ρ if ρ �= ρ.
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Clearly R ⊆ Πl is a self-dual vector space. We next repeat the Casimir construction
and analysis that lead up to Proposition 11. Choose an R-basis {vi : i =
1, . . . , dimR} and dual basis {vi} and define Casimir vectors

λ
(n)
R =

dimR∑

i=1

vi(2l − n− 1)vi ∈ Vn, n ≥ 0. (47)

But λ(n)R is G-invariant and since V is of class S2l+2, it follows that λ(n)R ∈ V〈ω〉 for
all n ≤ 2l + 2. We define a genus zero correlation function constructed from the
vector space R

FR(a, b; x, y) =
dimR∑

i=1

〈a, Y (vi , x)Y (vi, y)b〉, (48)

for all a, b ∈ R. We then repeat the earlier arguments to conclude that Proposition 11
also holds for FR(a, b; x, y) where, in particular, dimR = pl(c), for the same
rational function. Thus dimR = pl and the result follows. ��

6 Exceptional VOAs of Lowest Primary Weight l ≤ 9

We now consider Exceptional VOAs of lowest primary weight l ≤ 9. We denote
by En = En(q) the Eisenstein series of weight n appearing in the MLDE (32). For
l ≤ 4 we describe all the rational values for c, h, whereas for 5 ≤ l ≤ 9 we give all
rational values for c, h for which pl = dimΠl ≤ 500,000, found by computer
algebra techniques. We also consider conjectured extremal self-dual VOAs with
c = 24(l − 1) [Ho1, Wi]. Any MLDE solution for rational h for which there is
no graded character ZN(q) is marked with an asterisk. We obtain many examples
of known Exceptional VOAs such as Deligne’s exceptional series of Lie algebras,
the Moonshine and Baby Monster modules. There are also a number of candidate
solutions for which no construction yet exists indicated by question marks.

[l = 1]. This is discussed in much greater detail in [T1,T2]. Propositions 4–6 imply
that ZN(q) satisfies the following 2nd order MLDE [T2]:

D2Z − 5

4
c (c + 4) E4Z = 0.

This MLDE has also appeared in [MatMS,KZ,Mas2,KKS,Kaw]. The indicial roots
x1 = −c/24, x2 = (c + 4)/24 are exchanged under the MLDE symmetry c ↔
−c − 24. Solving iteratively for the partition function
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ZV (q) = q−c/24
(

1+ p1q + (1+ p1 + p2)q
2 + (1+ 2p1 + p2 + p3)q

3 + . . .
)
,

where pn = dimΠn, for weight n primary vector spaceΠn, we have

p1 = c(5c+ 22)

10− c , p2 = 5(5c+ 22)(c− 1)(c + 2)2

2(c− 10)(c− 22)
,

p3 = −5c(5c+ 22)(c− 1)(c + 5)(5c2 + 268)

6(c− 10)(c− 22)(c− 34)
, . . . .

For c = 10 mod 12, the indicial roots differ by an integer leading to denominator
zeros for all pn.

By Proposition 6, V is generated by V1 which defines a Lie algebra g.
F(a, b; x, y) from Proposition 11 determines the Killing form which can be used to
show that g is simple with dual Coxeter number [T1, MT]

h∨ = 6k
2+ c

10− c ,

for some real level k. Thus V = Vg(k), a level k Kac–Moody VOA.
The indicial root x2 of the MLDE gives the lowest weight h = (c + 2)/12 of

any independent irreducible V -module(s)N . Therefore Vg(k) has at most two inde-
pendent irreducible characters so that the level k must be a positive integer [Kac2].
Comparing p1 and h∨ to Cartan’s list of simple Lie algebras shows that in fact
k = 1 with c = 1, 2, 14

5 , 4,
26
5 , 6, 7, 8 with g = A1, A2,G2,D4, F4, E6, E7, E8,

respectively, known as Deligne Exceptional Series [D, DdeM, MarMS, T2]. In
summary, we have

c > 0 p1 p2 p3 VOA h ∈ Q

1 3 0 0 VA1(1) 0, 1
4

2 8 8 21 VA2(1) 0, 1
3

14
5 14 27 84 VG2(1) 0, 2

5

4 28 105 406 VD4(1) 0, 1
2

26
5 52 324 1,547 VF4(1) 0, 3

5

6 78 650 3,575 VE6(1) 0, 2
3

7 133 1,539 10,108 VE7(1) 0, 3
4

8 248 3,875 30,380 VE8(1) 0, 5
6∗

The table also shows h for a possible irreducibleV -module(s). For c = 2 and 4 there
are 2 independent irreducible modules but which share the same character (due to g
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outer automorphisms). VE8(1) is self-dual so that the MLDE solution with h = 5
6

does not correspond to a graded character ZN(q).

[l = 2]. This case is also discussed in detail in [Mat,T1,T2]. Propositions 4–6 imply
that ZN(q) satisfies the following 3rd order MLDE [T2]

D3Z − 5

124

(
704+ 240c+ 21c2

)
E4DZ − 35

248
c
(

144+ 66c+ 5c2
)
E6 Z = 0,

with indicial equation (33)

(x − x1)

(
x2 −

(
1

2
+ x1

)
x + 20x2

1 − 11x1 + 1

62

)
= 0,

for x1 = −c/24. Solving iteratively for the partition function (x = x1)

ZV (q) = q−c/24(1+ (1+ p2)q
2 + (1+ p2 + p3)q

3 + . . .),

where pn = dimΠn, for weight n primary vector spaceΠn, we find that

p2 = (7c + 68)(2c − 1)(5c + 22)

2(c2 − 55c + 748)
, p3 = 31c(7c + 68)(2c − 1)(5c + 44)(5c + 22)

6(c2 − 55c + 748)(c2 − 86c + 1,864)
.

From Proposition 6, the Griess algebra generates V and from Proposition 11 the
Griess algebra is simple [T1]. The solutions for c, h ∈ Q with positive p3 and
possible Exceptional VOAs are listed as follows:

c p2 p3 VOA h ∈ Q

− 44
5 1 0 L

(
c3,10, 0

)⊕ L (c3,10, 2
)

0,− 1
5 ,− 2

5

8 155 868 V+√
2E8

0, 1
2 , 1

16 2,295 63,240 V+BW16
0, 1, 3

2

47
2 96,255 9,550,635 VB2

Z
0, 3

2 ,
31
16

24 196,883 21,296,876 V 2 0

32 3.72.13.73 24.3.72.13.31.73 ?? V+
L
⊕ (VL)+T ; L extremal S-D 0

164
5 32.17.19.31 2.5.13.17.19.31.41 ?? 0, 11

5 ,
12
5

236
7 5.19.23.29 2.19.23.29.31.59 ?? 0, 16

7 ,
17
7

40 32.29.79 22.5.29.31.61.79 ?? V+L ⊕ (VL)+T ; L extremal S-D 0

The list includes the famous Moonshine Module V 2 [FLM], the Baby Monster VOA
VB2

Z
[Ho1], V +L for L = √2E8 [G] and the rank 16 Barnes–Wall lattice L = BW16

[Sh], and a minimal model simple current extension AD-type as in Proposition 7.
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The value(s) of h = xi + c/24 for the lowest weight(s) agree with those for the
irreducible V -modules as do the corresponding MLDE solutions for the characters
in each case. There are also four other possible candidates. For c = 32 and 40 one
can construct a self-dual VOA from an extremal even self-dual lattice L (with no
vectors of squared length 2). However, such lattices are not unique and it is not
known which, if any, gives rise to a VOA satisfying the exceptional conditions.
There are no known candidate constructions for c = 164

5 and 236
7 .

Note that p2 = dimΠ2 is odd in every case and Proposition 12 implies that if
Π2 is completely AutV -reducible, then it is irreducible. This is indeed the case
in the first five known cases for c ≤ 24 [Atlas]. Π3 is also an AutV -module
whose dimension p3 is given. The MLDE solutions (with positive coprime integer
coefficients) for c = 164/5 with h = 11/5, 12/5 and for c = 236/7 with
h = 16/7, 17/7 have respective leading q-expansions:

Z11/5(q) = q5/6
(

23.31.41 + 5.11.31.41.53 q+O(q2)
)
,

Z12/5(q) = q31/30
(

22.112.31.41 + 25.112.312.41 q +O(q2)
)
,

Z16/7(q) = q37/42
(

17.23.31 + 25.7.17.31.37 q +O(q2)
)
,

Z17/7(q) = q43/42
(

24.29.31.59 + 2.3.17.29.31.43.59 q+O(q2)
)
.

These coefficients constrain the possible structure of AutV further.

[l = 3]. ZN(q) satisfies the 4th order MLDE:

(578c− 7) D4Z − 5

2

(
168c3 + 2,979c2 + 15,884c− 4,936

)
E4D

2Z

−35

2

(
25c4 + 661c3 + 4,368c2 + 10,852c+ 1,144

)
E6DZ

−75

16
c
(

14c4 + 425c3 + 3,672c2 + 5,568c+ 9,216
)
E2

4 Z = 0.

Solving iteratively for the partition function we find [T2]:

ZV = q−c/24(1+ q2 + (1+ p3)q
3 + (2+ p3 + p4)q

3 + . . .),
p3 = − (5c+ 22)(3c+ 46)(2c− 1)(5c+ 3)(7c+ 68)

5c4 − 703c3 + 32,992c2 − 517,172c+ 3,984
,

and p4 = r(c)
s(c)

for

r(c) = −1

2
(2c− 1) (3c+ 46) (5c − 4) (7c + 68) (5c+ 3) (7c+ 114)
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.
(

55c3 − 5,148c2 − 11,980c− 36,528
)
,

s(c) =
(

5c4 − 703c3 + 32,992c2 − 517,172c+ 3,984
)

.
(

5c4 − 964c3 + 62,392c2 − 1,355,672c+ 13,344
)
.

The c, h ∈ Q solutions for positive integer p3 with possible VOAs are

c p3 p4 VOA h ∈ Q

− 114
7 1 0 L

(
c3,14, 0

)⊕ L (c3,14, 3
)

0,− 3
7 ,− 4

7 ,− 5
7

4
5 1 0 L

(
c5,6, 0

)⊕ L (c5,6, 3
)

0, 1
15 ,

2
5 ,

2
3

48 32.192.101.131 56.192.71.101 ?? Höhn Extremal VOA 0

The Höhn Extremal VOA is a conjectural self-dual VOA [Ho1]. If Π3 is a
completely reducible Aut(V )-module, then it must be irreducible excluding Witten’s
suggestion that Aut(V ) =M, the Monster group [Wi].

[l = 4]. Proposition 4 implies ZN(q) satisfies the 5rd order MLDE:

(317c + 3) D5Z − 5

7

(
297c3 + 6,746c2 + 53,133c + 4,644

)
E4D

3Z

−25

8

(
77c4 + 3,057c3 + 31,506c2 + 129,736c − 24,096

)
E6D

2Z

− 25

112

(
231c5 + 12,117c4 + 194,916c3 + 843,728c2 + 1,652,288c − 718,080

)
E4

2DZ

−25

32
c (c + 24)

(
15c4 + 527c3 + 5,786c2 + 528c + 25,344

)
E4E6 Z = 0.

Solving iteratively for the partition function we find

ZV = q−c/24(1+ q2 + q3 + (2+ p4)q
4 + (3+ p4 + p5)q

5 + . . .),
p4 = 5(3c+ 46)(2c− 1)(11c+ 232)(7c+ 68)(5c+ 3)(c + 10)

2(5c4 − 1,006c3 + 67,966c2 − 1,542,764c− 12,576)(c− 67)
,

and p5 = r(c)
s(c)

where

r(c) = 3(c − 1)(5c + 22)(3c + 46)(2c − 1)(11c + 232)(7c + 68)(5c + 3)(c + 24)

.(59c3 − 13,554c2 + 788,182c − 398,640),

s(c) = 2(c − 67)(5c4 − 1,006c3 + 67,966c2 − 1,542,764c − 12,576)

.(5c5 − 1,713c4 + 221,398c3 − 12,792,006c2 + 278,704,260c + 2,426,976).
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The c, h ∈ Q solutions for p4 ≤ 500,000 and c = 48 with possible VOAs are

c p4 p5 VOA h ∈ Q

1 2 0 V +L for L = 2
√

2Z 0, 1
16 ,

1
4 ,

9
16 , 1

72 23.114.132.131 2.114 .132.103.131.191 ?? Höhn Extremal VOA 0

The Höhn Extremal VOA is a conjectured self-dual VOA [Ho1, Wi]. If Π4 is a
completely reducible Aut(V )-module, then by Proposition 12, either p4 or 1

2p4 is
the dimension of an irreducible Aut(V )-module.

[l = 5]. ZV satisfies a 6th order MLDE with p5 = r(c)
s(c)

for

r(c) = −(13c+ 350)(7c+ 25)(5c+ 126)(11c+ 232)

.(2c− 1)(3c+ 46)(68+ 7c)(5c+ 3)(10c− 7),

s(c) = 1,750c8 − 760,575c7 + 132,180,881c6 − 11,429,170,478c5

+484,484,459,322c4 − 7,407,871,790,404c3 − 37,323,519,053,016c2

+25,483,483,057,200c− 363,772,080,000.

The c, h ∈ Q solutions for p5 ≤ 500,000 with possible VOAs are

c p5 VOA h ∈ Q

− 350
11 1 L

(
c3,22, 0

)⊕ L (c3,22, 5
)

0,− 8
11 ,− 10

11 ,− 13
11 ,− 14

11 ,− 15
11

6
7 1 L

(
c6,7, 0

)⊕ L (c6,7, 5
)

0, 1
21 ,

1
7 ,

10
21 ,

5
7 ,

4
3

Witten’s conjectured Extremal VOA for c = 4.24 = 96 does not appear [Wi].

[l = 6]. ZV satisfies a 7th order MLDE with p6 = r(c)
s(c)

for

r(c) = 7

2
(13c+ 350)(5c+ 164)(7c+ 25)(11c+ 232)(3c+ 46)

.(4c+ 21)(5c+ 3)(10c− 7)(5c2 + 316c+ 3,600),

s(c) = 1,750c9 − 1,119,950c8 + 297,661,895c7 − 41,808,629,963c6

+3,225,664,221,176c5 − 123,384,054,679,580c4 + 1,266,443,996,541,232c3

+29,763,510,364,647,840c2 + 96,385,155,929,078,400c+ 7,743,915,615,744,000.
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The c, h ∈ Q solutions for p6 ≤ 500,000 with possible VOAs are

c p6 VOA h ∈ Q

− 516
13 1 L

(
c3,26, 0

)⊕ L (c3,26, 6
)

0,− 10
13 ,− 15

13 ,− 17
13

− 20
13 ,− 21

13 ,− 22
13

−47 1 W(6) 0,− 5
4 ,− 3

2 ,− 5
3

− 15
8 ,− 23

12 ,−2

120 2.72.11.29.43.67.97.191 ?? Witten Extremal VOA 0

c = −47 is first example of a W(3k)-algebra of Proposition 8. The irreducible
lowest weight h values and character solutions agree with [F]. Witten’s conjecture
Extremal VOA for c = 5.24 = 120 appears [Wi] where either p6 or 1

2p6 is the
dimension of an irreducible Aut(V )–module.

[l = 7]. ZV satisfies an 8th order MLDE where p7 = r(c)
s(c)

for

r(c) = −5 (13c+ 350) (5c+ 164) (7c + 25) (11c + 232) (3c + 46) (17c + 658)

. (4c + 21) (5c + 3) (10c − 7)
(

35c3 + 3,750c2 + 76,744c− 32,640
)
,

s(c) = 61,250c11 − 54,725,125c10 + 20,922,774,275c9 − 4,421,902,106,730c8

+553,932,117,001,488c7 − 40,395,124,111,104,312c6 + 1,491,080,056,338,817,984c5

−12,528,046,696,953,576,896c4 − 483,238,055,074,755,678,656c3

−1,702,959,754,355,175,160,320c2 + 249,488,376,255,167,616,000c

+362,620,505,915,136,000,000.

There are no rational c solutions for p7 ≤ 500,000.

[l = 8]. ZV (q) satisfies a 9th order MLDE with one c, h ∈ Q solution for p8 ≤
500,000

c p8 VOA h ∈ Q

− 944
17 1 L

(
c3,34, 0

)⊕ L (c3,34, 8
)

0,− 14
17 ,− 25

17 ,− 28
17 ,− 33

17

− 35
17 ,− 38

17 ,− 39
17 ,− 40

17

[l = 9]. ZV (q) satisfies a 10th order MLDE with c, h ∈ Q solutions for p9 ≤
500,000
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c p9 VOA h ∈ Q

− 1,206
19 1 L

(
c3,38, 0

)⊕ L (c3,38, 9
)

0,− 16
19 ,− 29

19 ,− 36
19 ,− 44

19

− 46
19 ,− 49

19 ,− 50
19 ,− 51

19

− 208
35 1 L

(
c5,14, 0

)⊕ L (c5,14, 9
)

0,− 2
7 ,− 9

35 ,− 4
35

1
7 ,

11
35 ,

9
7 ,

8
5

− 14
11 1 L

(
c6,11, 0

)⊕ L (c6,11, 9
)

0,− 1
11 ,− 2

33 ,
1

11 ,
7
33

6
11 ,

25
33 ,

14
11 ,

52
33 ,

8
3

−71 1 W(9) 0,−2,− 9
4 ,− 39

16 ,− 8
3

− 11
4 ,− 35

12 ,− 47
16 ,−3,− 9

8∗
For c = −71, the MLDE solutions agree with all the graded characters for W(9)
except for h = − 9

8 [F].

7 Exceptional VOSAs

7.1 VOSA Quadratic Casimirs and Zhu Theory

We now give an analysis for Vertex Operator Superalgebras (VOSAs). Many of the
results are similar but there are also significant differences, e.g., here the MLDEs
involve twisted Eisenstein series. Let V be a simple VOSA of strong CFT-type with
unique invertible bilinear form 〈 , 〉. Let Πl denote the space of Virasoro primary
vectors of lowest half integer weight l ∈ N + 1

2 , i.e., Πl is of odd parity and Vk =
(V〈ω〉)k for all k ≤ l− 1

2 . We construct quadratic Casimir vectors λ(n) as in Sect. 3.1
(from the odd parity space Πl) which enjoy the same properties as VOA Casimir
vectors.

Define the genus one partition function of a VOSA V by

ZV (q) = TrV
(
σ qL(0)−c/24

)
= q−c/24

∑

n≥0

(−1)2ndimVn q
n, (49)

for fermion number operator σ where σu = (−1)p(u)u for u of parity p(u) and
with a corresponding definition for a simple ordinary V -module N . We also define
the genus one 1-point correlation function

ZN(u, q) = TrN
(
σ o(u)qL(0)−c/24

)
. (50)
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In [MTZ] a Zhu reduction formula for the 2-point correlation function
ZN (Y [u, z]v, q) for u, v ∈ V is found expressed in terms of twisted elliptic
Weierstrass functions parameterized by θ, φ ∈ {±1}. Let φ = e2π iκ for κ ∈ {0, 1

2 }.
Then (23) and (24) are generalized to [MTZ]

Pm

[
θ

φ

]
(z) = 1

zm
+ (−1)m

∑

n≥m

(
n− 1

m− 1

)
En

[
θ

φ

]
(q)zn−m, (51)

for twisted Eisenstein series En
[
θ
φ

]
(q) = 0 for n odd, and for n even

En

[
θ

φ

]
(q) = −Bn(κ)

n! + 2

(n− 1)!
∑

k∈N+κ

kn−1θqk

1− θqk , (52)

and where Bn(κ) is the Bernoulli polynomial defined by

ezκ

ez − 1
= 1

z
+
∑

n≥1

Bn(κ)

n! z
n−1. (53)

(51) and (52) agree with (23) and (24) respectively for (θ, φ) = (1, 1). Pm
[
θ
φ

]
(z)

converges absolutely and uniformly on compact subsets of the domain |q| < |ez| <
1 and En

[
θ
φ

]
(q) is a holomorphic function of q

1
2 for |q| < 1. For (θ, φ) �= (1, 1),

En
[
θ
φ

]
is modular of weight n in the sense that

En

[
θαφβ

θγ φδ

](
ατ + β
γ τ + δ

)
= (γ τ + δ)nEn

[
θ

φ

]
(τ ), (54)

for
( α β
γ δ

) ∈ SL(2,Z). The Zhu reduction formula of Proposition 1 has been
generalized in [MTZ] as follows

Proposition 13. Let N be a simple ordinary V -module for a VOSA V . For u of
parity p(u) and for all v we have

ZN (Y [u, z]v, q) = TrN
(
σ o(u)o(v)qL(0)−c/24

)
δp(u)1

+
∑

m≥0

Pm+1

[
1
p(u)

]
(z)ZN (u[m]v, q) .

For even parity u this agrees with Proposition 1. In particular, Corollary (1)
concerning Virasoro vacuum descendents holds. Much as before, Proposition 13
implies that the Casimir vectors λ[n] ∈ V[n] satisfy
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∑

n≥0

ZN

(
λ[n], q

)
zn−2l =

2l−1∑

m=0

Pm+1

[
1
−1

]
(z)ZN

(
λ[2l−m−1], q

)
. (55)

Equating the z coefficients implies the following variant of Proposition 2.

Proposition 14. ZN
(
λ[2l+1], q

)
satisfies the recursive identity

ZN

(
λ[2l+1], q

)
= −2

l− 1
2∑

r=0

(l − r)E2(l−r)+1

[
1
−1

]
(q)ZN

(
λ[2r], q

)
. (56)

7.2 Exceptional VOSAs

Let V be a simple VOSA of strong CFT-type with primary vectors of lowest weight
l ∈ N + 1

2 for which λ(2l+1) ∈ V〈ω〉. We further assume that
(
V〈ω〉

)
2l+1 contains

no Virasoro singular vectors. We call V an Exceptional VOSA of Odd Parity Lowest
Primary Weight l. Proposition 3 implies

Proposition 15. Let V be an Exceptional VOSA of lowest weight l ∈ N + 1
2 and

central charge c. Then ZN(q) for a simple ordinary V -moduleN satisfies a Twisted
Modular Linear Differential Equation (TMLDE)

l+ 1
2∑

m=0

gl+ 1
2−m

[
1
−1

]
(q, c)DmZ(q) = 0, (57)

where gk
[

1−1

]
(q, c) is a twisted modular form of weight 2k whose coefficients over

the ring of twisted Eisenstein series (52) are rational functions of c.

The TMLDE (57) is of order l + 1
2 with a regular singular point at q = 0

provided g0
[

1−1

]
(q, c) = g0(c) �= 0 so that Frobenius–Fuchs theory implies that

its solutions are holomorphic in q
1
2 for 0 < |q| < 1. Furthermore, from (54),

ẐN = ZN
(
ατ+β
γ τ+δ

)
is a solution of the TMLDE

l+ 1
2∑

m=0

g
l+ 1

2−m
[
(−1)β

(−1)γ

]
(q, c)DmẐ(q) = 0, (58)

which is again of regular singular type provided g0(c) �= 0. We can repeat the

results of Sect. 4 concerning TMLDE q
1
2 -series solutions and the rationality of c

and h noting that ZV (−1/τ, c) (cf. (35)) satisfies (58) for
(
α β
γ δ

)
= (

0 1−1 0

)
. We

therefore find the VOSA analogues of Propositions 5 and 6.
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Proposition 16. Let V be an Exceptional VOSA of lowest primary weight l ∈ N+ 1
2

and central charge c and let N be a simple ordinary V -module of lowest weight h.
Assuming g0(c) �= 0 in the TMLDE (57) then

(i) ZN(q) is holomorphic in q
1
2 for 0 < |q| < 1.

(ii) ZN
(
ατ+β
γ τ+δ

)
is a solution of the TMLDE (58) for all

( α β
γ δ

) ∈ SL(2,Z).

(iii) The central charge c and the lowest conformal weight h are rational.

Proposition 17. Let V be an Exceptional VOSA of lowest primary weight l ∈ N+ 1
2

and central charge c. Assuming that g0(c) �= 0 and that m ≤ l − 1
2 for any indicial

root of the form x = m− c/24. We then find

(i) ZV (q) is the unique q
1
2 –series solution of the TMLDE with leading expansion

ZV (q) = ZV〈ω〉(q)+O
(
ql−c/24

)
.

(ii) dimVr is a rational function of c for each r ∈ 1
2N.

(iii) V is generated by the space of lowest weight primary vectorsΠl .

We verify below for l ≤ 17/2 that g0(c) �= 0 and that m ≤ l − 1
2 for any indicial

root x = m− c/24. We conjecture these conditions hold in general.
We can construct two infinite series of pl = 1 Exceptional VOSAs which we

conjecture are the only examples.

Proposition 18. For each Virasoro minimal model with h1,p−1 ∈ N+ 1
2 there exists

an Exceptional VOSA with one odd parity primary vector of lowest weight l =
h1,p−1 of AD-type

V = L (cp,q, 0
)⊕ L (cp,q, h1,p−1

)
. (59)

Proposition 19. For each k ∈ N + 1
2 for k ≥ 3

2 there exists an Exceptional VOSA
W(3k) with one odd parity primary vector of lowest weight 3k and central charge
ck = 1− 24k.

Finally, similarly to Sect. 5, with G = Aut(V ) we have

Proposition 20. Let V be an Exceptional VOSA of class S2l+1 with primariesΠl of
lowest weight l ∈ N+ 1

2 . IfΠl is a completely reducibleG-module then it is either an
irreducibleG-module or the direct sum of two isomorphic irreducibleG-modules.

8 Exceptional SVOAs with Lowest Primary Weight
with l ∈ N + 1

2 for l ≤ 17
2

We now consider examples of Exceptional VOSAs of lowest primary weight l ≤ 17
2 .

We denote by En = En(q) the Eisenstein series and Fn = En
[

1−1

]
(q) the twisted

Eisenstein series of weight n appearing in the order l + 1
2 TMLDE (57). For l ≤ 3

2
we find all c, h ∈ Q, whereas for 5

2 ≤ l ≤ 17
2 we find all c, h ∈ Q for which
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pl = dimΠl ≤ 500,000 found by computer algebra techniques. We obtain many
examples of known exceptional VOAs such as the free fermion VOSAs and the
Baby Monster VOSA VB2 = Com(V 2, ω 1

2
), the commutant of V 2 with respect to

a Virasoro vector of central charge 1
2 [Ho1]. Some other such commutant theories

also arise.

[l = 1
2 ]. Propositions 15–17 imply that Z(q) satisfies the 1st order TMLDE

DZ + cF2Z = 0.

But F2(q) = 1
24 + 2

∑
r∈N+ 1

2

rqr

1−qr so that Z(q) =
(
η(τ/2)
η(τ )

)2c
with p1/2 = 2c. An

Exceptional VOSA exists for all p1/2 = m ≥ 1 given by the tensor product of m

copies of the free fermion VOSA L
(

1
2 , 0
)
⊕ L

(
1
2 ,

1
2

)
of central charge c = m

2 .

[l = 3
2 ]. Z(q) satisfies a 2nd order TMLDE:

D2Z + 2

17
F2(5c+ 22)DZ + 1

34
c (4(5c+ 22)F4 + 17E4) Z = 0,

with indicial roots x1 = −c/24, x2 = (7c+ 24)/408 with iterative solution

ZV (q) = q−c/24(1− p3/2q
3/2 + (1+ p2)q

2 − (p3/2 + p5/2)q
5/2 . . .),

p3/2 = 8c(5c+ 22)

3(2c− 49)
, p2 = (5c + 22)(4c+ 21)(10c− 7)

2(c− 33)(2c− 49)
,

p5/2 = −136c(5c+ 22)(4c+ 21)(10c− 7)

15(2c− 83)(c− 33)(2c− 49)
.

For 2c = −2 mod 17, the indicial roots differ by an integer leading to denominator
zeros for pn. The c, h ∈ Q solutions with possible VOAs are

c p3/2 p2 p5/2 VOSA h ∈ Q

− 21
4 1 0 0 L

(
c3,8, 0

)⊕ L
(
c3,8,

3
2

)
0,− 1

4

7
10 1 0 0 L

(
c4,5, 0

)⊕ L
(
c4,5,

3
2

)
0, 1

10

15
2 35 119 238 Com

(
V +√

2E8
, ω 1

2

)
0, 1

2

16 256 2,295 13,056 V +BW16
⊕
(
V +BW16

)

3/2
0, 1

114
5 2,432 48,620 537,472 Com

(
VB2, ω 7

10

)
0, 7

5

47
2 4,371 96,255 1,139,374 VB2 0, 49

34∗
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The c = 15
2 = 8 − 1

2 VOSA is the commutant of V +√
2E8

with respect to a Virasoro

vector of central charge 1
2 with Aut(V ) = S8(2) [LSY] and VB2 is the Baby

Monster VOSA with Aut(VB2) = B [Ho1]. In both cases, p3/2 is odd and Π3/2

is Aut(V )-irreducible in agreement with Proposition 20 [Atlas]. The c = 15
2 VOSA

is the simple current extension of the Barnes–Wall Exceptional VOA by its h = 3
2

module. The c = 114
5 = 47

2 − 7
10 VOSA is the commutant of VB2 with respect

to a Virasoro vector of central charge 7
10 [HLY, Y]. In the later case, we expect

Aut(V ) = 2.2E6(2) : 2, the maximal subgroup of B, which has a 2,432 dimensional
irreducible representation [Atlas]. VB2 is self-dual so that the h = 49

34 TMLDE
solution does not correspond to a graded character ZN(q).

[l = 5
2 ]. Z(q) satisfies a 3rd order TMLDE:

(734c+ 49)D3Z + 27(2c− 1)(7c+ 68)F2D
2Z

+
(

6(7c+ 68)(2c− 1)(5c+ 22)F4 + 1

2
(2,634c2 + 1,739c− 29,348)E4

)
DZ

+
(

2c(7c+ 68)(2c− 1)(5c+ 22)F6 + 27

2
c(2c− 1)(7c+ 68)E4F2

+5c(36c2 + 622c− 2,413)E6

)
Z = 0,

where

p5/2 = 8 (7c+ 68) (2c + 5) (2c − 1) (5c + 22)

5(8c3 − 716c2 + 16,102c+ 239)
.

There is one c, h ∈ Q solution with possible VOSA for p5/2 ≤ 500,000

c p5/2 VOSA h ∈ Q

− 13
14 1 L

(
c4,7, 0

)⊕ L
(
c4,7,

5
2

)
0,− 1

14 ,
1
7

[l = 7
2 ]. ZV (q) satisfies a 4th order TMLDE where p7/2 = r(c)

s(c)
for

r(c) = 128(5c+ 22)(3c+ 46)(2c− 1)(14+ c)(5c+ 3)(7c+ 68),

s(c) = 7(160c5 − 31,176c4 + 2,015,748c3 − 41,830,202c2

−92,625,711c+ 1,017,681).

The c, h ∈ Q solutions with possible VOSA for p7/2 ≤ 500,000 are
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c p7/2 VOSA h ∈ Q

− 161
8 1 L

(
c3,16, 0

)⊕ L
(
c3,16,

7
2

)
0,− 5

8 ,− 3
4 ,− 7

8

− 19
6 1 L

(
c4,9, 0

)⊕ L
(
c4,9,

7
2

)
0,− 1

9 ,− 1
6 ,

1
6

[l = 9
2 ]. ZV (q) satisfies a 5th order TMLDE where p9/2 = r(c)

s(c)
for

r(c) = 160(3c + 46)(2c − 1)(5c + 3)(11c + 232)(68 + 7c)(40c2 + 1,778c + 11,025),

s(c) = 9(3,200c6 − 1,096,320c5 + 140,381,096c4 − 7,850,716,276c3 + 149,541,921,538c2

+829,856,821,745c + 7,484,560,125).

The c, h ∈ Q solutions with possible VOSA for p9/2 ≤ 500,000 are

c p9/2 VOSA h ∈ Q

− 279
10 1 L

(
c3,20, 0

)⊕ L
(
c3,20,

9
2

)
0,− 7

10 ,−1,− 11
10 ,− 6

5

− 125
22 1 L

(
c4,11, 0

)⊕ L
(
c4,11,

9
2

)
0,− 3

22 ,− 5
22 ,− 3

11 ,
2

11

− 7
20 1 L

(
c5,8, 0

)⊕ L
(
c5,8,

9
2

)
0,− 1

20 ,
1
4 ,

7
10 ,

891
1,850∗

−35 1 W( 9
2 ) 0,− 11

10 ,− 4
3 ,− 7

5 ,− 3
2

The c = − 7
20 , h = 891

1,850 TMLDE solution does not correspond to a graded character
ZN(q).

[l = 11
2 ]. ZV (q) satisfies a 6th order TMLDE where p11/2 = r(c)

s(c)
for

r(c) = −640(13c + 350)(7c + 25)(11c+ 232)(2c− 1)(3c + 46)(68+ 7c)

.(5c + 3)(10c− 7)(40c2 + 3,586c + 50,743),

s(c) = 11(2,240,000c9 − 1,185,856,000c8 + 249,718,385,120c7 − 25,848,494,429,040c6

+1,266,635,173,648,176c5 − 18,264,666,939,042,072c4 − 336,264,778,062,263,522c3

−861,021,133,326,393,167c2 + 653,498,177,653,904,632c − 9,760,778,116,675,215).

The c, h ∈ Q solutions with possible VOSA for p11/2 ≤ 500,000 are

c p11/2 VOSA h ∈ Q

− 217
26 1 L

(
c4,13, 0

)⊕ L
(
c4,13,

11
2

)
0,− 2

13 ,− 7
26 ,− 9

26 ,− 5
13 ,

5
26
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[l = 13
2 ]. ZV (q) satisfies a 7th order TMLDE with p13/2 = r(c)

s(c)
for

r(c) = 4,480(13c + 350)(5c + 164)(7c + 25)(11c + 232)(3c + 46)(4c + 21)

(5c+ 3)(10c − 7)(1,120c4 + 187,160c3 + 6,889,980c2 + 58,079,018c − 24,165,453),

s(c) = 13(125,440,000c11 − 94,806,656,000c10 + 29,650,660,755,200c9

−4,865,828,683,343,040c8 + 431,531,398,085,049,664c7 − 18,001,596,789,986,119,984c6

+107,049,283,968,364,390,448c5 + 9,359,034,900,957,509,468,076c4

+76,817,948,684,836,018,331,724c3 + 155,170,276,090,966,927,173,843c2

−81,951,451,902,336,562,695,126c − 7,944,030,229,978,323,194,805).

The c, h ∈ Q solutions with possible VOSA for p13/2 ≤ 500,000 are

c p13/2 VOSA h ∈ Q

− 611
14 1 L

(
c3,28, 0

)⊕ L
(
c3,28,

13
2

)
0,− 11

14 ,− 19
14 ,− 3

2 ,

− 12
7 ,− 25

14 ,− 13
7

− 111
10 1 L

(
c4,15, 0

)⊕ L
(
c4,15,

13
2

)
0,− 1

6 ,− 3
10 ,

− 2
5 ,− 7

15 ,− 1
2 ,

1
5

[l = 15
2 ]. ZV (q) satisfies an 8th order TMLDE where p15/2 = r(c)

s(c)
for

r(c) = −28,672(13c + 350)(5c + 164)(7c + 25)(11c + 232)

.(3c + 46)(17c + 658)(4c + 21)(5c+ 3)(10c − 7)

.(560c4 + 146,584c3 + 9,082,444c2 + 133,381,952c − 27,346,605),

s(c) = 21,073,920,000c12 − 21,694,120,448,000c11 + 9,524,271,218,201,600c10

−2,298,054,501,201,632,000c9 + 325,029,065,007,052,546,624c8

−26,081,744,761,028,079,338,944c7 + 968,808,700,001,847,281,619,664c6

+787,299,295,625,321,246,276,560c5 − 696,312,046,814,218,010,729,784,676c4

−7,887,852,431,045,609,558,472,152,948c3 − 21,020,840,196,255,652,876,820,528,205c2

+3,455,907,491,220,404,701,398,711,750c + 4,568,101,033,862,110,116,156,159,375.

The c, h ∈ Q solutions with possible VOSA for p15/2 ≤ 500,000 are
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c p15/2 VOSA h ∈ Q

− 825
16 1 L

(
c3,32, 0

)⊕ L
(
c3,32,

15
2

)
0,− 13

16 ,− 23
16 ,− 7

4 ,

− 15
8 ,− 33

16 ,− 17
8 ,− 35

16

− 473
34 1 L

(
c4,17, 0

)⊕ L
(
c4,17,

15
2

)
0,− 3

17 ,− 11
34 ,− 15

34 ,

− 9
17 ,− 10

17 ,− 21
34 ,

7
34

− 39
10 1 L

(
c5,12, 0

)⊕ L
(
c5,12,

15
2

)
0, 1

2 ,
13
10 ,− 1

6 ,− 1
5 ,

2
15

25
28 1 L

(
c7,8, 0

)⊕ L
(
c7,8,

15
2

)
0, 1

28 ,
3

28 ,
5
14 ,

3
4 ,

9
7

−59 1 W( 15
2 ) 0,− 13

7 ,− 21
10 ,− 31

14 ,

− 12
5 ,− 17

7 ,− 5
2 ,− 67

62∗
The c = −59, h = − 67

62 TMLDE solution does not correspond to a graded character
ZN(q) [F].

[l = 17
2 ]. ZV (q) satisfies a 9th order TMLDE. The only c, h ∈ Q solution with

possible VOSA for p17/2 ≤ 500,000 is

c p17/2 VOSA h ∈ Q

− 637
38 1 L

(
c4,19, 0

)⊕ L
(
c4,19,

17
2

)
0,− 7

38 ,− 13
38 ,− 9

19 ,− 11
19 ,

− 25
38 ,− 27

38 ,− 14
19 ,

4
19

Acknowledgements The authors are particularly grateful to Geoffrey Mason for very useful
comments over many discussions about this work. The authors also thank Terry Gannon, Atsushi
Matsuo and Ching Hung Lam for their comments.

References

[AM] G. Anderson and G. Moore, Rationality in conformal field theory, Comm. Math. Phys.
117 (1988), 441–450.

[Atlas] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite
Groups, Oxford, Clarendon, 1985.

[BFKNRV] R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel and R. Varnhagen,
W-algebras with two and three generators, Nucl. Phys. B361 (1991), 255–289.

[CIZ] A. Cappelli, C. Itzykson and J. B. Zuber, The A-D-E Classification of Minimal and
A
(1)
1 Conformal Invariant Theories, Commun. Math. Phys. 113 (1987), 1–26.



On Exceptional VO(S)As 383

[D] P. Deligne, La série exceptionnelle de groupes de Lie (The exceptional series of Lie
groups), C.R.Acad.Sci.Paris Sér. I Math. 322 (1996), 321–326.

[DdeM] P. Deligne and R. de Man, La série exceptionnelle de groupes de Lie II (The
exceptional series of Lie groups II), C.R.Acad.Sci.Paris Sér. I Math. 323 (1996),
577–582.

[DMS] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory, Springer
Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997.

[F] M. Flohr, W-algebras, new rational models and completeness of the c = 1
classification, Commun.Math.Phys. 157 (1993), 179–212.

[FHL] I. Frenkel, Y-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator
algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494.

[FLM] I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster,
New York, Academic Press, 1988.

[FZ] I. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine
and Virasoro algebras, Duke. Math. J. 66, (1992), 123–168.

[G] R.L. Griess, The vertex operator algebra related to E8 with automorphism group
O+(10, 2), in The Monster and Lie algebras, Columbus, Ohio, 1996, Ohio State
University Math. Res. Inst. Public. 7, Berlin, de Gruyter, 1998.

[Hi] E. Hille, Ordinary Differential Equations in the Complex domain, Dover, New York,
1956.

[HLY] G. Höhn, C.H. Lam and H. Yamauchi, McKay’s E7 observation on the Baby Monster,
Int. Math. Res. Notices 2012, (2012), 166–212.

[Ho1] G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Ph.D.
thesis, Bonn. Math. Sch., 286, (1996), 1–85.

[Ho2] G. Höhn, Conformal designs based on vertex operator algebras, Adv. Math. 217
(2008), 2301–2335.

[I] E. Ince, Ordinary Differential Equations, Dover, New York, 1976.
[Kac1] V. Kac, Vertex Operator Algebras for Beginners, University Lecture Series, Vol. 10,

Boston, AMS, 1998.
[Kac2] V. Kac, Infinite Dimensional Lie Algebras, Cambridge, CUP, 1995.
[KKS] M. Kaneko, K. Nagatomo and Y. Sakai, Modular forms and second order ordinary

differential equations: applications to vertex operator algebras, Lett. Math. Phys. 103
(2013), 439–453.

[KZ] M. Kaneko and D. Zagier, Supersingular j -invariants, hypergeometric series, and
Atkin’s orthogonal polynomials, AMS/IP Stud. Adv. Math. 7 (1998), 97–126.

[Kaw] K. Kawasetsu, The intermediate vertex subalgebras of the lattice vertex operator
algebras, preprint: arXiv:1305.6463.

[Li] H. Li, Symmetric invariant bilinear forms on vertex operator algebras,
J. Pure. Appl. Alg. 96 (1994), 279–297.

[LSY] C.H. Lam, S. Sakuma and H. Yamauchi, Ising vectors and automorphism groups of
commutant subalgebras related to root systems, Math. Z. 255 (2007), 597–626.

[MarMS] H. Maruoka, A. Matsuo and H. Shimakura, Trace formulas for representations of
simple Lie algebras via vertex operator algebras, unpublished preprint, (2005).

[Mas1] G. Mason, Vector-valued modular forms and linear differential operators, Int. J. Num.
Th. 3 (2007), 377–390.

[Mas2] G. Mason, 2-Dimensional vector-valued modular forms, Ramanujan J. 17 (2008),
405–427.

[MatMS] S.D. Mathur, S. Mukhi and A. Sen, On the classification of rational conformal field
theories, Phys. Lett. B213 (1988), 303–308.

[Mat] A. Matsuo, Norton’s trace formula for the Griess algebra of a vertex operator algebra
with large symmetry, Commun. Math. Phys. 224 (2001), 565–591.

[MN] A. Matsuo and K. Nagatomo, Axioms for a vertex algebra and the locality of quantum
fields, Math. Soc. Jap. Mem. 4 (1999).



384 M.P. Tuite and H.D. Van

[MT] G. Mason and M.P. Tuite, Vertex operators and modular forms, MSRI Publications
57 (2010) 183–278 , ‘A Window into Zeta and Modular Physics’, eds. K. Kirsten and
F. Williams, Cambridge University Press, Cambridge, 2010.

[MTZ] G. Mason, M.P. Tuite and A. Zuevsky, Torus chiral n-point functions for R

graded vertex operator superalgebras and continuous fermion orbifolds, Com-
mun. Math. Phys. 283 (2008), 305–342.

[Miy] M. Miyamoto, Modular invariance of vertex operator algebras satisfying C − 2–
cofiniteness Duke Math. J. 122 (2004), 51–91.

[Se] J.-P. Serre, A Course in Arithmetic, Springer-Verlag, Berlin 1978.
[Sh] H. Shimakura, The automorphism group of the vertex operator algebra V +L for an

even lattice L without roots, J. Alg. 280 (2004), 29–57.
[Sp] T.A. Springer, Linear Algebraic Groups, Volume 9, Progress in Mathematics,

Birkhäuser, Boston 1998.
[T1] M.P. Tuite, The Virasoro algebra and some exceptional Lie and finite groups, SIGMA

3 (2007), 008.
[T2] M.P. Tuite, Exceptional vertex operator algebras and the Virasoro algebra, Con-

temp. Math. 497 (2009), 213–225.
[T3] M.P. Tuite, On the construction of some W algebras, to appear.
[Y] H. Yamauchi, Extended Griess algebras and Matsuo-Norton trace formulae,

arXiv:1206.3380.
[Wa] W. Wang, Rationality of Virasoro vertex operator algebras, Int. Math. Res. Notices.

1993 (1993), 197–211.
[Wi] E. Witten, Three-dimensional gravity revisited, preprint, arXiv:0706.3359.

[Z] Y. Zhu, Modular invariance of characters of vertex operator algebras,
J. Amer. Math. Soc. 9 (1996), 237–302.



The Cubic, the Quartic, and the Exceptional
Group G2

Anthony van Groningen and Jeb F. Willenbring

Abstract We study an example first addressed in a 1949 paper of J. A. Todd,
in which the author obtains a complete system of generators for the covariants
in the polynomial functions on the eight-dimensional space of the double binary
form of degree (3,1), under the action of SL2 × SL2. We reconsider Todd’s result
by examining the complexified Cartan complement corresponding to the maximal
compact subgroup of simply connected split G2. A result of this analysis involves
a connection with the branching rule from the rank two complex symplectic Lie
algebra to a principally embedded sl2-subalgebra. Special cases of this branching
rule are related to covariants for cubic and quartic binary forms.

Key words Binary form • Branching rule • Double binary form • G2 • Har-
monic polynomials • Principal sl2 • Symmetric space

Mathematics Subject Classification (2010): 20G05, 22E45, 17B10.

1 Introduction

Let Fk denote the irreducible k + 1-dimensional representation of SL2 over the
field C. If V is a complex vector space, then we will denote the complex algebra
of polynomial functions on V by C[V ], which is graded by degree. That is, for a
nonnegative integer k denote
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C[V ]k =
{
f ∈ C[V ]|f (tv) = tkf (v) for all t ∈ C, v ∈ V

}
.

Thus, C[V ] = ⊕
C[V ]k . We will identify Fk = C[V ]k where V = C

2 is the
defining representation of SL2 with the usual action defined by g · f (v) = f (vg)
for g ∈ SL2, v ∈ V and f ∈ Fk .

Let x and y denote the standard coordinate functionals on C
2, so that C[V ] may

be identified with the polynomial algebra C[x, y]. Thus, Fk = C[x, y]k for each
nonnegative integer k. In particular, we have

F 2 =
{
ax2 + bxy + cy2|a, b, c ∈ C

}
.

The SL2-invariant subalgebra of C[F 2] is generated by δ = b2 − 4ac (i.e., the
discriminant), which defines a nondegenerate symmetric bilinear form on F 2. The
image of sl2 in End(F 2) is contained in so3 with respect to this symmetric form.
Define

Δ = ∂2

∂b2 − 4
∂2

∂a∂c
,

which is in turn a generator of the constant coefficient SL2-invariant differential
operators on C[F 2]. The spherical harmonic polynomials are denoted by

kerΔ =
{
f ∈ C[F 2]|Δf = 0

}
.

It is well known that we have a “separation of variables”, C[F 2] = C[δ] ⊗ kerΔ.
Furthermore, as a representation of SL2, the graded components of kerΔ are
irreducible SL2-representations. Specifically, the degree k harmonic polynomials
is equivalent to F 2k . Thus, the theory of spherical harmonics provides a graded
decomposition of C[F 2] into irreducible representations of SL2.

One desires a similar decomposition of C[Fk] for k > 2 (see [7]), which we
present for d ≤ 4. Specifically, our goal in this article is to point out a connection
between the (infinite-dimensional) representation theory of the simply connected
split real form of the exceptional group G2 with the invariant theory for the cubic
(k = 3, see Corollary 1) and quartic (k = 4, see Corollary 2) binary forms.

An important ingredient to the background of this paper concerns the various
embedding of sl2 into a given Lie algebra. Specifically, a subalgebra l of a
semisimple Lie algebra g is said to be a principal sl2-subalgebra if l ∼= sl2
and contains a regular nilpotent element of g [4, 6, 9]. These subalgebras are
conjugate, so we sometimes speak of “the” principal sl2-subalgebra. There is a
beautiful connection between the principal sl2-subalgebra and the cohomology of
the corresponding simply connected compact Lie group (see [9]). There is a nice
discussion of this theory in [3].
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A principal sl2 subalgebra of sln is given by the image of sl2 in the n-dimensional
irreducible representation of sl2 (over C). For n ≥ 4 these are not maximal. Rather,
for even n the image is contained in the standard symplectic subalgebra of sln, while
for odd n the image is contained in the standard orthogonal subalgebra of sln.

Since we are interested in the cubic (n=4) and quartic (n=5), it is worthwhile to
recall the Lie algebra isomorphism sp4

∼= so5. As we shall see, we will exploit an
instance of Howe duality for sp4. Nonetheless, an exposition of the results presented
here could equally well be cast for so5. Along these lines, the referee has pointed
out to us that another proof of the main theorem may be obtained from the theory of
spinors (following [14]).

Central to our treatment is the observation that the complex rank two symplectic
Lie algebra sp4(

∼= so5) acts on the cubic and quartic forms. In particular, these are
the two fundamental representations of sp4 of dimension four and five respectively.
From this point of view the problem of decomposing finite-dimensional representa-
tions of sp4 when restricted to the principally embedded sl2-subalgebra generalizes
the invariant theory of the cubic and quartic.

The unitary dual of simply connected split G2 was determined in [18]. This
important example was an outgrowth of decades of work emerging from the study
of Harish-Chandra modules. More recently, several authors have taken on the task
of classification of the generalized Harish-Chandra modules. Specifically, we find
motivation from [13].

Since Fk ∼= (F k)∗ as an SL2-representation, we have an SL2-invariant form in
End(F k). For even k, this invariant is symmetric and for odd k the form is skew-
symmetric. The cubic forms, F 3, define a four-dimensional representation of sl2,
which is symplectic. That is,

sl2 ↪→ sp4 ↪→ EndF 3,

where sp4 is the subalgebra of End(F 3) preserving the degree-two skew-symmetric
form.

On the other hand, the quartic forms,F 4, define a five-dimensional representation
of sl2, which is orthogonal. That is,

sl2 ↪→ so5 ↪→ EndF 4,

where so5 is the subalgebra of EndF 4 preserving the degree-two symmetric form.
Upon a fixed choice of Cartan subalgebra h ⊂ sp4, and Borel subalgebra h ⊂

b ⊂ sp4 we obtain a choice of root system, Φ with positive roots, Φ+, and simple
roots denoted Π . Let ω1 and ω2 denote the corresponding fundamental weights,
and denote the irreducible finite-dimensional representation indexed by λ = aω1 +
bω2 ∈ h∗ for nonnegative integer a and b by

L(λ) = L(a, b),

where we let dimL(1, 0) = 4 and dimL(0, 1) = 5.
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The key point here is that upon restriction to sl2, the space of the sp4-
representation L(1, 0) is the space of cubic forms, while L(0, 1) is the space of
quartic forms. This unification of cubic and quartic forms was first systematically
studied in [11] and [12].

In general, if V denotes a representation of a group (resp. Lie algebra) and W
denotes an irreducible representation of a subgroup (resp. subalgebra)H , then upon
restriction to H , let

[W,V] = dimHomH(W,V)

denote the multiplicity.
The present article concerns, in part, the function, b(k, l,m) = [Fk,L(l,m)], for

a principally embedded sl2 in sp4. It is important to note that the numbers b(k, l,m)
are not difficult to compute nor are they theoretically mysterious. The point is the
relationship to the group G2, as we shall see.

We relate this situation to the problem of decomposing harmonic polynomials,
in the sense of B. Kostant and S. Rallis [10]. Specifically, we let K denote a
symmetrically embedded subgroup of the complex exceptional group G2, such that
the Lie algebra, k, of K is isomorphic to sl2 ⊕ sl2. Let p denote the complexified
Cartan complement of p in the Lie algebra of G2. The group K acts on p by
restricting the adjoint representation. From the general theory of Kostant and Rallis,
we know that the K-invariant subalgebra, C[p]K, is a polynomial ring and C[p] is a
free module over C[p]K.

In the instance where g is the Lie algebra of G2 and K = SL2 × SL2, we have
C[p]K = C[δ1, δ2] with δi degree 2 and 6 respectively. Let Δi (i = 1, 2) denote the
corresponding constant coefficient K-invariant differential operators and set

Hp = {f ∈ C[p]|Δi(f ) = 0 for i = 1, 2 } .

to be the harmonic polynomials together with their gradation by degree. For each
d = 0, 1, 2, . . . the group K acts linearly on Hdp. See [19] for general results on the
decomposition of Hdp into irreducible K-representations.

Motivation for considering Hp for the symmetric pair corresponding to split
G2 comes from considering the (underlying Harish-Chandra module) of spherical
principal series, which are isomorphic to Hp as representations of K.

The finite-dimensional irreducible representations of K ∼= SL2 × SL2 with
polynomial matrix coefficients are of the form Fk ⊗ F l . In the G2 case when
K = SL2× SL2, we have p = F 3⊗F 1. We organize the graded K-multiplicities in
a formal power series in q defined by

pk,l(q) =
∞∑

d=0

[Fk ⊗ F l,Hdp]qd.

We set p(k, l; d) = [Fk ⊗ F l,Hdp] for nonnegative integers k, l and d .
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It turns out that pk,l(q) is a polynomial in q . That is, K-irreps occur with finite
multiplicity in Hp. In the last section we recall the results from [10] concerning this
multiplicity. In the special case of G2 falls into the literature on double binary (3,1)
forms studied by J. A. Todd (see [16]).

From our point of view, we find the unification of the cubic and quartic seen in
[12] via sp4-representations in parallel with the work presented in [16] on (3,1)-
forms. Neither of these references mention the group G2. Since the group G2 plays
an important role in invariant theory (see [1]), we would like to point out:

Theorem 1. For nonnegative integers k, l and m we have

b(k, l,m) =
∑

j≥0

p(k, l; 2m+ l − 6j).

We prove this theorem in the next section, and point out special cases, including
the decomposition of the polynomial functions on the cubic and quartic. The proof
uses an instance of R. Howe’s theory of dual pairs (see [5]) applied to the problem
of computing branching multiplicities (see [8]). In the final section we recall the
result of Todd, and provide a picture of the Brion polytope (see [2, 15]) associated
with this example.

2 Proof of the Main Theorem

If λ = (λ1 ≥ λ2 ≥ · · · ≥ λl > 0) is an integer partition, then let Fλn denote the
irreducible finite-dimensional representation of GLn (resp. gln) with highest weight
indexed by λ as in [5]. Note that these representations restrict irreducibly to SLn
(resp. sln). In the case n = 2 we will use the notation Fd = F (d)2 .

For positive integers r and c, let Mr,c denote the r × c complex matrices.
Throughout this section we set p = F 3 ⊗ F 1, which as a vector space may
be identified with M4,2. The group GL4 × GL2 acts on C[M4,2] by the action
(g1, g2) · f (X) = f (gT1 Xg2) for g1 ∈ GL4, g2 ∈ GL2, f ∈ C[M4,2], and
X ∈ M4,2. (Here gT denotes the transpose of a matrix g.) Under this action, we
have a multiplicity free decomposition

C[M4,2]d ∼=
⊕

F
μ
4 ⊗ Fμ2 ,

where the sum is over all partitions μ = (μ1 ≥ μ2 ≥ 0) with at most two parts and
of size d (i.e., μ1 + μ2 = d).

This, multiplicity free decomposition of C[M4,2]d into irreducible GL4 × GL2-
representations is the starting point. We will proceed as follows: (1) restrict to the
group Sp4 ×GL2 ⊂ GL4 ×GL2 and decompose by using (Sp4, so4)-Howe duality,
then (2) restrict further to the principally embedded SL2 in Sp4 on the left, and the
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SL2 ⊂ GL2 on the right. Lastly, we compare this decomposition into irreducibles as
predicted by Kostant–Rallis theory.

With this plan in mind, we will set

H(k, l) =
∞∑

d=0

[
Fk ⊗ F l,C[M4,2]d

]
qd

for nonnegative integers k and l. We will compute two expressions for H(k, l). For
the first, we start with (GL4,GL2)-Howe duality,

H(k, l) =
∑

λ1≥λ2≥0

[
Fk ⊗ F l, F λ4 ⊗ Fλ2

]
qλ1+λ2,

where we restrict the GL4 and GL2 irreps to (the principally embedded) SL2. The
key idea is to first restrict the left acting GL4 to Sp4, then restrict from Sp4 to SL2.

2.1 Symplectic-Orthogonal Howe Duality

The (Sp2k, so(2n)) instance of Howe duality concerns two commuting actions
on C[M2k,n]. The first is given by left multiplication of Sp2k , while the second
is given by a Lie algebra of Sp2k-invariant polynomial coefficient differential
operators. The operators in this second action are generated by a set spanning a Lie
algebra isomorphic to so(2n) (with respect to the commutator bracket). We have a
multiplicity free decomposition:

Theorem 2. Given integers k and n,

C[M2k,n] ∼=
⊕

V
μ
2k ⊗ V 2n

μ

where the sum is over μ = (μ1 ≥ · · · ≥ μl > 0)—a nonnegative integer partition
with l ≤ min(k, n).

The modules V μ2k are finite-dimensional irreducible representations of Sp2k ,
while V 2n

μ are, in general (n > 1), infinite-dimensional irreducible highest weight
representations of the Lie algebra so(2n).

Using the results of [8] one is able to obtain, in a stable range (k ≥ n), a
concrete combinatorial description of the branching rule from SL2n to the symmetric
subgroup Sp2n. These results come from translating the branching problem to one
of decomposing the so2n irreps under the actin of gln.
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In the stable range (see [8]), the so2n-representations V 2n
μ are (generalized)

Verma modules. This fact implies that upon restriction to the symmetrically
embedded gln subalgebra we have

V 2n
μ = C[∧2

C
n] ⊗ Fμn ,

as a gln-representation.
If n = 2, then ∧2

C
2 is invariant for SL2. Thus, it is very easy to see the

decomposition of these so4 irreps into sl2-irreps. Consequently, in the very special
case of decomposing SL4 representations into Sp4-irreps, we obtain a multiplicity
free branching rule. This is no surprise since SL4 is isomorphic to Spin(6) and Sp4
is isomorphic to Spin(5), and the (Spin(6), Spin(5)) branching rule is well known to
be multiplicity free (see [5]).

In any case, we have that, upon restriction, the GL4-representations,

F
μ
4
∼= V μ4 ⊕ V μ−(1,1)4 ⊕ V μ−(2,2)4 ⊕ · · · ⊕ V (μ1−μ2,0),

as Sp4-representations.
The fact that the partition (1, 1) has size 2 means that there is a degree 2 Sp4 ×

SL2-invariant, f1, in C[M4,2]. This polynomial, obviously, remains invariant under
the subgroup SL2 × SL2. Moreover, the algebra C[M4,2] is free as a module over
C[f1]. Since the degree of f1 is two, we have the following:

H(k, l) = 1

1− q2

∑

μ

[
Fk ⊗ F l, V μ ⊗ Fμ1−μ2

]
qμ1+μ2,

where the sum is over all μ = (μ1 ≥ μ2 ≥ 0) with |μ| = μ1 + μ2. Thus,
l = μ1 − μ2.

Let m = μ2 so that μ1 + μ2 = 2m+ l. That is, V μ = L(l,m) and we have

b(k, l,m) =
[
Fk,L(l,m)

]
.

Restricting from Sp4 to the principally embedded SL2 we obtain

H(k, l) = 1

1− q2

∞∑

m=0

b(k, l,m)q2m+l. (1)

2.2 The Symmetric Pair (G2, sl2 ⊕ sl2)

An ordered pair of groups, (G,K), is said to be a symmetric pair if G is a connected
reductive linear algebraic group (over C), and K is an open subgroup of the fixed
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points of a regular involution on G. The Lie algebra of G, denoted g, contains the
Lie algebra of K, denoted k. The differential of the involution, denoted θ has −1
eigenspace

p = {X ∈ g|θ(X) = −X} .

Let a denote a maximal toral1 subalgebra contained in p. Let M denote the
centralizer of a in K.

Upon restricting the adjoint representation of G on g, we obtain a linear group
action of K on p. From [10], we know that C[p]K is freely generated by dima
elements, as an algebra. The same is true about the constant coefficient K-invariant
differential operators, denoted D(p)K. Define

Hp = {f ∈ C[p]|∂f = 0 for all ∂ ∈ D(p)K}.

These are the K-harmonic polynomials on p. Set Hdp = Hp ∩ C[p]d . As a K-
representation we have a gradation, Hp =⊕∞

d=0 Hdp.

From [10], Hp
∼= IndKM1. That is, as a representation of K,

H ∼= {f ∈ C[K]|f (mk) = f (k) for all m ∈ M and k ∈ K} .

By Frobenius reciprocity, each irreducible K-representation, F , occurs with multi-
plicity dimFM in Hp.

In the present article, we consider the case when g is the Lie algebra of G2 and
k = sl2 ⊕ sl2 in detail. We have remarked that p ∼= F 3 ⊗ F 1. The group M is
isomorphic to the eight element quaternion group,

M ∼= {±1,±i,±j,±k} .

An embedding of M into K is given by

i 
→
([

0 1
−1 0

]
,

[
0 1
−1 0

])

j 
→
([−i 0

0 i

]
,

[−i 0
0 i

])

k 
→
([

0 i
i 0

]
,

[
0 i
i 0

])
.

1A toral subalgebra is an abelian subalgebra consisting of semisimple elements.
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In [5], this example is treated in Chapter 12. It is pointed out that C[p]K =
C[f1, f2]where degf1 = 2 and degf2 = 6. The fact thatC[p] is free overC[f1, f2]
leads to

H(k, l) = pk,l(q)

(1− q2)(1− q6)
= 1

(1− q2)(1− q6)

∞∑

d=0

p(k, l; d)qd

= 1

1− q2

∞∑

d=0

∞∑

j=0

p(k, l; d)qd+6j .

We introduce a new parameterm, and re-index with d+6j = l+2m and we obtain

H(k, l) = 1

1− q2

∞∑

m=0

∞∑

j=0

p(k, l; l + 2m− 6j)ql+2m. (2)

The main result follows by comparing Eqs. 1 and 2.

2.3 Special Cases

The insolvability of the quintic motivates special attention to forms of degree less
than five. The invariant theory of quadratic forms reduces to the theory of spherical
harmonics (i.e., Kostant–Rallis theory for the pair (SO(4),SO(3)).) mentioned at the
beginning of this article.

The structure of G2 is intimately related to the cubic (see [1]). The complexified
Cartan decomposition of split G2 has p being two copies of the cubic. However,
there is no symmetric pair in which p consists of exactly on copy of the cubic form.
Nonetheless, the algebra of polynomial functions on the cubic forms is free over the
invariant subalgebra (see Chapter 12 of [5]).

From our point of view, the multiplicity of an irreducible SL2-representation in
the polynomial function on the cubic is given by reduces to:

Corollary 1 (The Cubic).

[
Fk,C[F 3]d

]
=
∑

j≥0

p(k, d; d − 6j).

Proof. The irreducible representation of sp4 of the form L[d, 0] ∼= C[V ]d where
V = C

4 is the defining representation. Upon restriction to a principal sl2 subalgebra
V ∼= F 3. The result follows by taking m = 0 in the main theorem.
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The polynomial function on the quartic forms are a free module over the
invariants. This fact is a special case of Kostant–Rallis theory for (SL3,SO3), where
p consists of the five-dimensional space of trace zero 3 × 3 symmetric matrices,
denoted SM(3)0. As a representation of SL2 (locally SO3), p = SM(3)0 is the
quartic under the conjugation action of SO3.

The relationship between the quartic and G2 is less transparent. In a nutshell,
since Sp4 is isomorphic to Spin(5), and the five-dimensional defining representation
of Spin(5) restricts irreducibly to the quartic with respect to the principally
embedded SL2.

However, it follows from the split G2 example by specializing the main theorem
that:

Corollary 2 (The Quartic). Let H(F 4) denote the space of spherical harmonics
with respect to the orthogonal representation, F 4. For each d , we have L(0, d) =
Hd(F 4), and

[
Fk,Hd(F 4)

]
=
∑

j≥0

p(k, 0; 2d − 6j).

Proof. Let l = 0 from the main theorem.

There is a third obvious special case describing the sl2-invariants in an arbitrary
sp4-representation with respect to the principal embedding. That is:

Corollary 3 (principal invariants).

dim (L(l,m))SL2 =
∑

j≥0

p(0, l; 2m− 6j)

Proof. Let k = 0 in the main theorem.

The pair (sp4, sl2) is not a symmetric pair. In particular, there is no instance of
the Cartan–Helgason theorem describing sp4-irreps. with a sl2-invariant vector. In
fact, the sl2-invariant subspace does not have to be one dimensional.

We mention this special case since it suggests a relationship between the
(sp4, sl2) generalized Harish-Chandra modules and the unitary dual of split G2.

3 Todd’s Covariants for Double Binary (3,1) Forms,
and the Brion Polytope

We conclude this article with the remark that the (G2, sl2⊕sl2) instance of Kostant–
Rallis theory is seen in the double binary (3,1) forms, as studied by J. A. Todd in
1949. Although there is no mention of the group G2, a generating set of covariants
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is provided. That is, for each d = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 a list of highest
weight vectors (given as polynomials) is provided. The weights are summarized in
the following.

3.1 Table: SL2 × SL2-Covariants in C[F 3 ⊗ F 1]

The SL2 × SL2 highest weight vectors in C[F 3 ⊗ F 1] span a graded subalgebra –
the covariants. In the table below, we denote Todd’s generator for the highest weight
of Fk ⊗ F l by [k, l]. The degrees are indicated.

degree weight

1 [3, 1]
2 [4, 0] [2, 2] [0, 0]
3 [5, 1] [3, 3] [1, 1]
4 [4, 0] [2, 2] [0, 4]
5 [3, 1] [1, 3]
6 [6, 0] [4, 2] [2, 4] [0, 0]
7 [1, 3]
8 [0, 4]
9 [1, 5]

12 [0, 6]

Not included in [16] are the relations between these covariants, nor is there any
information about the vector space dimension of their span in each multi-graded
component. Note that, modulo the degree 2 and 6 invariants, the multiplicity of a
given covariant may be computed by the dimension of the M-fixed vectors. Thus,
implicitly the eight element quaternion group plays a role in this example.

A convenient way to “visualize” this example comes from the theory of the Brion
polytope as described in [15] (see also [2]). That is, for each occurrence of Fk ⊗F l
in Hdp, with d > 0, plot the point

(
k

d
,
l

d

)

on the xy-plane. The closure of these points is a polytope. In the special case
corresponding to G2, this polytope is two dimensional and can be visualized as
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The large dots in the above picture are the Todd covariants. The smaller dots
correspond to specific K-types. We refer the reader to [17] for a detailed account of
how this polytope relates to the (sp4, sl2) branching rule, asymptotically.
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