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    Chapter 5   
 ATP Binding Cassette Transporters in Cancer 
Stem-Like Cells 

             Paola     Perego    

    Abstract     A fraction of tumor cells designated as cancer stem cells (CSC) has been 
identifi ed in various tumor types. Such cells appear to be capable of initiating and 
sustaining the growth of a tumor, being responsible for tumor initiation, invasive 
growth, metastasis, and drug resistance. The isolation of CSC is not easy to achieve 
due to the need for proving phenotypic and functional features; thus, under many 
circumstances “putative CSC” is the most appropriate designation. Like normal 
stem cells, CSC appear to exhibit increased expression of ABC transporters as com-
pared to their nonstem counterparts. Here, the cancer stem cell hypothesis is 
described with particular reference to the timeline of its development, together with 
the acquired knowledge on ABC transporters that may be instrumental for therapeu-
tic targeting of CSC.  
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   CSC    Cancer stem cells   
  ABC    ATP binding cassette   
  HSC    Hematopoietic stem cells   
  SP    Side population   
  BCRP    Breast cancer resistance protein   
  EMT    Epithelial to mesenchymal transition   
  Pg-p    P-Glycoprotein   
  MRP    Multidrug resistance-related protein   
  miRNAs    microRNAs   
  MRP1    Multidrug resistance-related protein 1   
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  PI3K    Phosphoinositide-3-kinase   
  Akt    V-Akt murine thymoma viral oncogene homolog   
  MAPK    Mitogen-activated protein kinases   
  ERK    Extracellular signal- regulated kinases   
  LMWH    Low molecular weight heparin   
  ALDH1    Aldehyde dehydrogenase 1         

5.1     Introduction 

    In all differentiated mammalian normal tissues there are cells that can differentiate in 
response to environmental stimuli, because they maintain stem cell features [ 77 ]. 
Such cells are abundant in regenerating tissues, but represent a small fraction of the 
tissue cells in nonregenerating tissues. The existence also in tumors of a cell fraction 
endowed with self-renewal, differentiating and tumor initiating properties is sup-
ported by old and recent studies. Such cells designated as cancer stem cells (CSC) 
have been proposed to represent a population of cancer cells which initiates and sus-
tains the growth of a tumor, being responsible for tumor initiation, invasive growth, 
and metastasis [ 90 ,  6 ,  16 ]. CSC have been identifi ed in different tumor types, but only 
in a few diseases (e.g., breast and brain tumors) the precise phenotypic and functional 
features of CSC have been well defi ned [ 20 ]. A better defi nition of the role of CSC in 
various tumor types and molecular subtypes will need additional efforts, specifi cally 
in establishing refi ned markers for CSC. Moreover, extensive in vivo work, in par-
ticular limiting dilution assays will be required to establish the tumor-initiating capa-
bility of the used experimental models. Such approaches are expected to reduce 
over-interpretation of results that has been a frequent risk in the fi eld of CSC. 

 Expression of proteins contributing to drug resistance, and in particular of the 
ATP-binding cassette (ABC) transporters, in putative CSC versus differentiated 
cancer cells are being regarded as a major feature of CSC that could be pharmaco-
logically targeted in an attempt to improve the effi cacy of treatment and to achieve 
durable responses [ 22 ]. It has been reported that normal and tumor stem cells exhibit 
increased expression of ABC transporters as compared to their nonstem counter-
parts [ 5 ,  103 ]. Indeed, ABC transporters have been documented to be involved in 
the regulation of stem cell physiology in studies regarding normal hematopoietic 
stem cells (HSC, see below). 

 Here, the cancer stem cell hypothesis is described with particular reference to the 
timeline of its development, together with the acquired knowledge on ABC trans-
porters that may be instrumental for therapeutic targeting of CSC. The signifi cance 
of ABC transporters in the biology of CSC is presented by considering the specifi c 
features of those transporters that have been implicated in phenotypes related to 
CSC, such as the side population (SP) phenotype. In addition, the interrelation 
between ABC transporters and other markers for CSC is examined, as well as the 
regulation of ABC transporters expressed in CSC or cancer stem-like cells by spe-
cifi c factors or pathways. Moreover, clinical trials involving CSC have been 
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reported. In summary, the available evidence on CSC supports the need for strong 
basic science efforts before fully translating the knowledge generated in the pre-
clinical context to the clinical setting. Several modulators of ABC transporters seem 
to have promising therapeutic potential, as shown in preclinical studies. The scien-
tifi c community is already facing a few clinical observations that may be useful to 
interpret recurrence and that will be hopefully exploited to defi ne improved thera-
pies to cure cancer patients.  

5.2    The Cancer Stem Cell Hypothesis 

5.2.1    Rationale and Historical Notes 

 The CSC hypothesis proposes a hierarchical model for tumors in which cells “at the 
apex of tumor hierarchy” can be identifi ed. Such a hypothesis is apparently in con-
trast with the clonal evolution model or stochastic model of tumorigenesis, which is 
based on increased proliferative potential of the clone with the best fi tness among 
tumor cells. The model of a dominant clone where clonal selection relies on genetic 
mutation does not appear real, or at least exclusive. In fact, epigenetic mechanisms 
and also the tumor microenvironment contribute to tumor heterogeneity. In this con-
text, nonmutational mechanisms of drug resistance have been described (i.e., poly-
genic clinical drug resistance) [ 39 ], that may be useful to interpret the real nature of 
tumor heterogeneity and may be in line with a relevant role for CSC. 

 The fi rst report that started to build the CSC hypothesis was published in 1937 by 
Furth and Kahn [ 89 ], who documented that a single tumor cell can initiate leukemia 
in mice. “The transmission of leukemia of mice with a single cell” was subsequently 
confi rmed in several studies [ 108 ]. Remarkably, in 1997, Bonnet and Dick reported 
that human acute myeloid leukemia is organized as a hierarchy that originates from 
a primitive hematopoietic cell. Such a study shed light on the mechanism underscor-
ing the phenotypic, genotypic, and clinical heterogeneity of acute myeloid leuke-
mia, given the debate about the target cell, within the hematopoietic stem cell 
hierarchy, that is susceptible to leukemic transformation [ 8 ]. The study suggested 
that normal primitive cells, rather than committed progenitor cells, are the target for 
leukemic transformation, and that such cells could differentiate in vivo into leuke-
mic blasts, a phenomenon supporting that the leukemic clone is organized as a hier-
archy [ 8 ]. The fi rst evidence of the existence of CSC in solid tumors was provided 
in 2003, when the CSC hypothesis was tested starting from considering the pheno-
typically diverse population of breast cancer cells [ 1 ]. In this context, it was found 
that only a small number of breast cancer cells were able to form new tumors in 
immune-defi cient mice, and tumor initiating cells were distinguished from noniniti-
ating cells based on surface marker expression [ 1 ]. Indeed, starting from patient- 
derived material, tumorigenic cells that were found to be positive for CD44, negative 
for CD24 or expressing low levels of CD24 and negative for lineage markers could 
be serially transplanted and generated heterogeneous tumors [ 1 ].  
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5.2.2     Tumor Heterogeneity and Tumor Initiating Capability 
of CSC 

 At present, the available evidence supports that a tumor can be regarded as a hetero-
geneous aberrant tissue, possibly originating from a single cancer stem cell, and 
maintained by the surrounding niche which contains stromal cells and other compo-
nents of the microenvironment (i.e., immune cells). Thus, the defi nition of CSC has 
been précised over time and expanded to comprise tumor cells capable to regrow the 
tumor from which they were isolated [ 115 ]. In such a view, several laboratories have 
directed their efforts toward the isolation of CSC from tumor biopsies and from 
tumor cell lines with the fi nal goal to discover druggable targets expressed by 
CSC. In principle, CSC are endowed with tumor initiating capability—supported by 
in vivo testing—and with differentiation properties. In addition, CSC express a set 
of markers that allow researchers to accomplish their identifi cation and isolation. 
Using multiple tools, it has been shown that subpopulations of CSC may account for 
tumor initiation, invasive growth, and dissemination to distant organs [ 90 ]. It has 
been documented that a rare population of CSC is more easily detectable in hema-
tological malignancies than in solid tumors, like for example in leukemia [ 64 ]. 
Indeed, Lapidot and colleagues identifi ed an acute myeloid leukemia cell initiating 
human acute myeloid leukemia after transplantation into severe combined immune- 
defi cient mice. Such cells that were CD34 positive and CD38 negative, displayed 
leukemic cell morphology and produced a pattern of dissemination similar to what 
observed in the original patients [ 64 ]. No information about the expression of ABC 
transporters, in particular of BCRP, was provided in this study for historical reasons. 
Indeed, the gene coding for BCRP was cloned in 1998 and subsequent studies 
revealed the expression of ABC transporters (see below).  

5.2.3    CSC and the Cell of Origin 

 A matter of debate in the fi eld of CSC is the relationship between CSC and cell of 
origin of tumors. It is important to note that a clear distinction between the cancer 
stem cell and the cell of origin of a tumor has recently been proposed [ 107 ]. In this 
perspective, the cell of origin would be the tumor initiating cell and CSC would be 
tumor propagating cells. Such distinct cell categories would have different pheno-
types. In chronic myeloid leukemia, the cell of origin has been recognized as the 
hematopoietic stem cell containing the BCR-ABL mutation; however, subsequent 
genetic lesions in progenitor cells downstream of the hematopoietic stem cell pro-
duce leukemia stem cells [ 107 ]. Additional evidence has shown that cancer can arise 
from differentiated cells (e.g. T-cell acute lymphoblastic leukemia) [ 76 ]. In particu-
lar, the  LMO2  oncogene was reported to induce a subset of human T cell acute lym-
phoblastic leukemias, by promoting the self-renewal of pre-leukemic thymocytes; 
thus, committed T cells appear to accumulate additional genetic mutations required 
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for leukemic transformation [ 76 ]. Moreover, whether in solid tumors the stem or 
progenitor cells appear to be candidates for tumor initiation, the exact mapping of the 
cell of origin is far from being completed, and further effort is needed in this fi eld.  

5.2.4    CSC and Differentiation 

 The capability of putative CSC to differentiate can be easily proven in specifi c 
tumor types, whereas in others it is not clear which differentiation markers should 
be considered. In fact, tumors present phenotypic plasticity and dedifferentiation 
properties that may result in changes of markers and molecular features during dis-
ease progression. Some diseases provide examples of clearly assessable differentia-
tion markers (e.g., neuroblastoma, melanoma). In this regard, melanospheres 
containing tumor initiating cells when cultured in differentiating media for the mes-
enchymal lineages (adipocytes, chondrocytes, osteocytes) were shown to be capable 
of differentiating into all cell types [ 84 ]. In addition to their differentiation ability, 
like normal stem cells, CSC must be capable of self-renewal, which is the ability to 
undergo an unlimited number of replicative cycles, while maintaining the stemness 
properties. The cancer stem cell produces one cancer stem cell and a cell which dif-
ferentiates by asymmetric division. This phenomenon allows the maintenance of the 
pool of CSC (Fig.  5.1 ).

Dedifferentiation

Cancer Stem Cells

Multipotent progenitor cells

Differentiated cells

  Fig. 5.1    Schematic representation of cell division of cancer stem cells. Cancer stem cells (CSC) 
can divide symmetrically producing two daughter cells with the same characteristics of the cancer 
stem cell of origin, or can divide asymmetrically, thereby generating differentiated cells. Over the 
different rounds of division, cells with decreased stemness features as compared to the cancer stem 
cell of origin can be generated. Such cells are designated as pluripotent progenitors. Cells that have 
lost the stemness phenotype can eventually dedifferentiate and reacquire some stemness features       
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5.2.5       CSC and Metastasis 

 Increasing evidence supports the notion that CSC play a role in tumor progression 
and may be responsible for tumor growth as well as for metastatic spread, a multi-
step process in which epithelial to mesenchymal transition (EMT) occurs [ 73 ]. Of 
note, the process of EMT—in which cells lose the expression of epithelial markers 
and acquire a mesenchymal phenotype—has been shown to be able to produce cells 
with stem cell-like features [ 74 ]. The coexistence of a stationary phase population 
embedded in the epithelial tissue that cannot disseminate (stationary CSC) and a 
migratory population of mobile cells located at the tumor microenvironment inter-
face (migratory CSC) has been proposed [ 10 ]. In keeping with a tight relation 
between EMT and stemness, when tumor cells undergo EMT, a number of proper-
ties and processes (invasiveness, drug resistance, angiogenesis, and metastasis) 
appear to be increased in parallel, thus generating a tumor with more aggressive 
characteristics. The acquisition of a drug-resistant phenotype is associated with the 
expression of ABC transporters (see below).  

5.2.6    Tumor Initiating Capability of CSC and Markers 

 The demonstration of the tumor initiating capability is a critical aspect in the CSC 
fi eld because in vivo experiments are required and the use of immune-compromised 
mice is hampered by the need for properly equipped animal facilities as well as by 
the costs. Besides being capable of self-renewal and asymmetric division, CSC 
should have tumor initiating capability (Fig.  5.2 ). However, not all the literature 
published on CSC contains proofs about the tumor initiating capability of the stud-
ied CSC. This is the reason why, the designation of cancer stem-like cells should be 
preferred in general to that of CSC, and specifi cally in experimental work not includ-
ing assessment of the tumor initiating capability. Indeed, CSC are very often identi-
fi ed (a) on the basis of the expression of multiple markers (CD24, CD29, CD44, 
CD133, ALDH1, etc.) that, however, are not necessarily unique to CSC [ 53 ,  56 ,  103 ] 
or (b) on their ability to grow independently of anchorage (i.e., as spheres) in serum-
free medium added with growth factors. Of note, such growth factors are recognized 
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  Fig. 5.2    Hallmarks of cancer stem cells. The main features of cancer stem cells (CSC) are 
represented       
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as being capable of activating survival pathways, a feature that has rendered 
complex the set up of comparisons between the growth characteristics of differenti-
ated cells, cultured in serum-containing media, and those of CSC cells cultured in 
peculiar media, under circumstances often diffi cult to standardize among different 
laboratories due to patent issues and/or to complex procedures.

5.3        ATP-Binding Cassette Transporters 

 Membrane proteins of the ABC super-family have been documented to participate 
in energy-dependent effl ux of a variety of structurally unrelated antitumor agents 
[ 26 ]. Such a phenomenon is known as multidrug resistance and besides over- 
expression of effl ux pumps it can involve other interrelated or independent mecha-
nisms. ABC transporters play a relevant physiological role in protection against 
xenotoxins. In fact, they decrease the intestinal uptake and tissue penetration repre-
senting important physiological barriers (brush border membrane of intestinal cells 
and epithelium of the blood-brain barrier) and mediate excretion of their substrates 
[ 3 ]. Based on sequence similarity, all ABC transporters can be grouped in seven 
classes (A–G) and members of at least four classes (A, B, C, G) have been clearly 
implicated in conferring resistance to antitumor agents [ 33 ]. All ABC transporters 
share an ABC domain, but the organization of the domains is different in various 
transporters with diverse numbers and location of trans-membrane domains. The 
structural characteristics may infl uence folding of the transporter as well as sub-
strate accessibility, thereby regulating transport properties. Among the 49 members 
of the ABC super-family, different transporters play a major role in multidrug resis-
tance. The fi rst identifi ed transporter for which a contribution to multidrug resis-
tance has been shown is the P-glycoprotein (Pg-p) encoded by the  ABCB1  gene 
[ 59 ]. Pg-p is the best known ABC transporter and is a 170 kDa protein which trans-
ports neutral, cationic, and hydrophobic compounds, including antitumor agents 
commonly used in the clinical setting (anthracyclines, camptothecins, epipodophyl-
lotoxins, Vinca alkaloids). The MRP (multidrug resistance-related protein) family, 
which comprises ten members has been implicated in conferring resistance to sev-
eral antitumor agents. The fi rst member of the family, MRP1, has shown transport 
specifi city similar to that of Pg-p, but it transports drugs conjugated with glutathi-
one or anionic compounds [ 17 ]. BCRP, the second member of the ABCG family, is 
encoded by  ABCG2 . It is a 72 kDa protein which transports unmodifi ed drugs and 
xenobiotics [ 23 ]. It is an organic anion pump very effi cient in transport of sulfate, 
glucuronic acid, and glutathione conjugates. ABCB5 codes for a protein of 90 kDa 
that has been implicated in the effl ux of the DNA topoisomerase II inhibitor doxo-
rubicin and more recently in reduced sensitivity to 5-fl uorouracil [ 28 ,  110 ]. 

 At the time the above mentioned transporters were identifi ed and cloned, studies 
regarding the hypothesis on CSC were already ongoing, but the two lines of research 
were somehow parallel till the SP assay was set up and innovative technical 
approaches allowed fi ne molecular studies (Fig.  5.3 ). The clinical relevance of 
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increased expression of ABC transporters in conferring resistance in patients is still 
a matter of debate, but it is possible that the ABC transporter super-family plays still 
not well defi ned roles in CSC.

5.3.1      Profi ling of ABC Transporters 

 The advent of genome-wide approaches as well as of quantitative methods for 
examining expression of gene families have allowed researchers to improve the 
molecular characterization of tumors, with particular focus on drug-resistant tumors. 
Expression profi ling of ABC transporter super-family genes has been carried out 
both in drug-resistant cell lines and in tumor specimens, including posttreatment 
tumors [ 47 ,  87 ] to identify genes that are potential regulators of drug resistance or 
modifi ers of progression and/or response. More refi ned analyses have included an 
evaluation of specifi c transporters at the mRNA and protein levels. The concomitant 
analysis of the transcript and protein appears a wise strategy, if considering the 
layers of regulation occurring between mRNAs and proteins. In addition to a variable 
stability of the different mRNA molecules, the regulation by microRNAs (miRNAs) 
is an important aspect that may explain discrepancies between mRNA and pro-
tein levels. In fact, miRNAs, endogenous, noncoding-single stranded RNAs of 
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  Fig. 5.3    Time frame of research on CSC and on ABC transporters. Some relevant years for 
research about CSC and ABC transporters are indicated together with the published fi ndings. The 
two lines of research were parallel and then began being interrelated when the side population (SP) 
phenotype was described       
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19–25 nucleotides that can modulate gene expression, play an important role in 
regulating different aspect of the biology of CSC (proliferation, differentiation), and 
are therefore expected to participate in a complex network that also regulates ABC 
transporters. In general, miRNAs target specifi c mRNAs, thereby causing their deg-
radation [ 101 ]. The levels of several genes of the ABC super-family have been 
shown to be modulated by miRNAs, which are expected to be involved in CSC biol-
ogy [ 33 ]. Of note, the available literature already supports the complex transcrip-
tional regulation of the ABCG2 transcript that in cellular studies has been reported 
to be downregulated by various miRNAs such as miR-328, miR519c and miR-520h, 
miR-487a, miR-181a [ 33 ,  71 ,  66 ,  58 ,  97 ,  109 ]. 

 An analysis of the expression of ABC transporters has been undertaken also in 
different models of CSC, as these transporters or at least some of them are consid-
ered phenotypic markers of CSC and are regarded as functional regulators. For 
example, putative prostate stem cells and prostate CSC in benign and malignant 
tumors have been defi ned by the expression of BCRP and concomitant lack of the 
androgen receptor [ 50 ]. According to the fi ndings, BCRP may protect prostate CSC 
from androgen deprivation, hypoxia, or chemotherapy, thus favoring recurrence of 
prostate cancer [ 50 ]. 

 A relevant evidence emerging from the recent literature is the link between the 
ABC transporter activity and radiation resistance [ 52 ]. In this regard, sensitization 
to radiation was found in pediatric medulloblastoma cells upon treatment with the 
ABC transporter inhibitors verapamil or reserpine. Of note, radiation tolerant cells 
displayed stem cell-like behavior (e.g., increased tumorigenic potential). In medul-
loblastoma specimens, selected ABC transporter super-family members were found 
to be associated with specifi c molecular subtypes (high ABCA8 and ABCB4 in 
Sonic/Hedgehog-driven tumors) [ 52 ]. The mechanism for increased ABC trans-
porter expression in radiation resistant cells is not clear, but it is likely that their 
upregulation results from a stress response, from a pro-survival response, or from 
activation of regulators of ABC transporters expression. In this regard, it has been 
shown that both hypoxia and oxidative stress can upregulate or stimulate ABC 
transporters [ 54 ,  95 ]. 

 In addition, gene expression profi les of normal cells should be taken into account 
(e.g., melanocyte). In fact, two mRNA isoforms of the  ABCB5  gene,  ABCB5alfa  
and  ABCB5beta  have been shown to be expressed in melanoma, but also in melano-
cytes, their expression being pigment-cell specifi c, thereby suggesting their possible 
involvement in melanogenesis [ 14 ]. The expression of ABCB5 and other transport-
ers of the ABC super-family has been linked to the resistance of melanoma cells to 
structurally unrelated drugs, but also to the resistance of melanocytes to toxic inter-
mediates of melanin metabolism, supporting that the melanogenic pathway may 
provide therapeutic targets [ 15 ]. 

 The profi ling of ABC transporters in cancer cells including cancer stem-like cells 
has been simplifi ed by the availability of quantitative Real time PCR platforms pro-
viding standardized assays [ 37 ]. However, further effort is needed to set up routine 
high-throughput analysis for detecting protein levels of the specifi c transporters.  
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5.3.2    ABCG2/Breast Cancer Resistance Protein 

  ABCG2  is a gene included in the super-family of ABC transporters that codes for a 
protein member of the White subfamily. As briefl y mentioned above, the protein is 
referred to as a breast cancer resistance protein and it acts as a xenobiotic trans-
porter. ABCG2 is a widely studied transporter, which has been characterized in 
terms of substrate specifi city and for its role in drug resistance. Its signifi cance in 
CSC and in normal stem cells (e.g., placental trophoblasts, neural stem cells, hema-
topoietic progenitors) physiology is mainly related to its expression in side popula-
tion cells; indeed, its expression is fundamental for the capability of a cell population 
to give rise to a side population (see below) [ 118 ,  25 ,  55 ,  61 ,  93 ]. ABCG2 expres-
sion in human embryonic stem cells has been debated as confl icting results have 
been published [ 83 ]. However, recent results obtained with sensitive methods indi-
cate that ABCG2 may be regarded as a late stage differentiation marker in cultured 
human embryonic stem cells. 

 Leukemic CD34 positive and CD38 negative stem cells are considered relevant 
to cure acute myeloid leukemia as incomplete eradication of these cells may be 
responsible for disease relapse. BCRP was found to be expressed by these cells 
[ 88 ]. Inhibition of mitoxantrone extrusion by a specifi c BCRP inhibitor (the fumit-
remorgin C analog, KO143) produced increased drug accumulation in cells obtained 
from different patients, but drug effl ux still occurred in the presence of KO143, 
thereby suggesting that additional transporters including Pg-p and MRP1 are 
expressed by leukemic stem cells. Consistently, KO143 could not increase chemo- 
sensitivity of leukemic stem cells. Such a study supports the need for broad- spectrum 
inhibition of different mechanisms/transporters [ 88 ]. 

 Although BCRP was originally identifi ed in breast cancer cells [ 23 ], such a 
transporter plays a role in a variety of tumor types comprising colorectal cancer, 
brain tumors, etc.  

5.3.3    ABCB5 

 In addition to BCRP, the ABCB5 transporter has been implicated in CSC biology, 
with particular reference to malignant melanoma; in such a disease ABCB5 has been 
proposed as a marker of melanoma-initiating cells [ 94 ]. Indeed, ABCB5 has been 
shown to mark CD133-expressing progenitor cells among human epidermal mela-
nocytes, and to positively regulate the propensity of this subpopulation to undergo 
cell fusion, a process contributing to culture growth and differentiation [ 29 ]. ABCB5 
has also been involved in doxorubicin effl ux transport and it has been already 
exploited as a therapeutic target by the development of a specifi c antibody [ 28 ]. 

 High ABCB5 expression has been recently associated with progression of oral 
squamous cell carcinoma and tumor recurrence [ 44 ]. Interestingly, double labeling 
immunofl uorescence and immunohistochemistry experiments indicated that 
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ABCB5 was expressed by CD44 positive cells. Unfortunately, in this study, there 
was no in vitro or in vivo characterization of the stem cell properties of the ABCB5 
positive cells. Thus, although the results are statistically sound as ABCB5 was an 
independent prognostic factor in multivariate analyses, further studies will be 
needed to establish if such cells are endowed with features of CSC. 

 ABCB5 positive melanoma cells have been shown to be targeted by partheno-
lide, a natural sesquiterpene lactone described as an NF-kB inhibitor, endowed with 
anti-microbial, anti-infl ammatory and anticancer effects [ 19 ]. Of note, cell survival 
after treatment exhibited an immunophenotype different from that of control cells. 
In spite of its limited penetration capacity, parthenolide could target both CSC like 
cells and bulk tumor cells [ 19 ]. 

 Recent evidence suggests that ABCB5 together with CD133 play a critical func-
tion in promoting vasculogenic mimicry and the morphogenesis of the perivascular 
niche in melanoma [ 63 ]. In fact, loss of function approaches based on RNA interfer-
ence could prove that knockdown of CD133 produced an impairment in the cell 
ability to form vascular mimicry-like channels, a phenomenon associated with the 
depletion of the ABCB5 positive population [ 63 ]. Thus, co-expression of CD133 
and ABCB5 in melanoma cells seems to be important for the generation of a 
vascular- mimicry-dependent perivascular niche, although the specifi c role of each 
one of the markers, in particular that of ABCB5, is not clear. Based on the available 
data, it is uncertain whether the transport capability of ABCB5 is used by CD133/
ABCB5 double positive cells to regulate the content of the cellular or extracellular 
level of molecules which regulate vascular mimicry [ 63 ]. This process appears com-
plex and has been shown to involve VEGF-A signaling which stimulates the expres-
sion of vascular mimicry associated genes such as  CD144 , a marker reported to be 
preferentially expressed by ABCB5 positive cells in colorectal cancer [ 110 ]. In this 
context, ABCB5 appeared to be responsible for resistance to 5-fl uorouracil. ABCB5 
was expressed only on rare cells within normal intestinal tissue, whereas increased 
levels of ABCB5 were found in colorectal cancer specimens. The abundance of 
ABCB5 positive cells appeared increased after treatment in residual disease. Thus, 
ABCB5 has been proposed as a novel molecular marker of therapy-refractory tumor 
cells in colorectal cancer patients. Targeting of ABCB5 positive cells is proposed to 
eradicate such tumors. Moreover, additional evidence is available in melanoma 
where, by highlighting the role of the immune system in tumor progression, it has 
been shown that ABCB5 positive melanoma initiating cells induce T regulatory 
cells via a B7.2-dependent pathway [ 94 ]. 

 In keeping with a relevant role for ABCB5 in the biology of CSC and with the 
drug-resistant phenotype of melanoma cells, melanoma chemotherapy has recently 
been shown to lead to the selection of ABCB5-expressing cells [ 12 ]. In addition, 
increased expression of the ABCB5 protein from benign nevi to invasive melanoma 
has been reported in a study in which immunohistochemistry was used [ 96 ]. ABCB5 
should not be regarded, however, as a transporter playing a role only in melanoma, 
because an evaluation of its expression in hematological malignances suggested that 
it may be involved in both the progression and the resistance of acute leukemia [ 112 ].  

5 ATP Binding Cassette Transporters in Cancer Stem-Like Cells



116

5.3.4    ABCB1/P-Glycoprotein 

 Breast cancer stem cells have been reported to express high levels of Pg-p [ 21 ]. 
A recent report suggests that the commercially available anti-alcoholism drug disul-
fi ram may be useful in reversing drug resistance of CSC by virtue of its pleiotropic 
effects on factors expressed by CSC [ 67 ]. In fact, disulfi ram has been shown to 
produce persistent inhibition of Pg-p activity    by covalent modifi cation of cysteine 
residues localized in the nucleotide binding domain of the transporter [ 70 ]. Besides 
this effect, disulfi ram is capable of inhibiting the activity of ALDH, a marker for 
CSC [ 38 ,  79 ,  102 ]. Of note, in a triple negative drug-resistant breast cancer cell line 
endowed with CSC features (slow cycling, high transporter expression, high levels 
of embryonic stem cell markers), disulfi ram was shown to target CSC characteris-
tics leading to reversal of resistance [ 67 ]. This evidence supports the value of drugs 
that are already available and that may fi t with a drug repositioning program. 

 In addition, although the relevance of Pg-p in conferring resistance in the clinics 
is still reported as uncertain, likely because in real tumors overexpression is not eas-
ily achieved like in cultured cells [ 9 ], the clinical relevance of Pg-p might be linked, 
in principle, to its expression in selected subpopulations of tumors cells present in 
the tumor (e.g., CSC), that may fi nally underlie recurrence. Further studies are 
needed to clarify these aspects.  

5.3.5    Multidrug Resistance-Related Protein 1 (MRP1) 

 MRP1 has also been shown to be increased in SP cells [ 118 ], although it does not 
appear to be a major determinant of the SP phenotype (see below, Sect.  5.4.1 ). Thus, 
BCRP appears to be the most relevant determinant of the SP phenotype, but other 
transporters expressed by SP cells may cooperate with it to effl ux drugs, thereby 
underscoring resistance. Specifi c inhibitors of each one of the transporters should, 
therefore, be used to better examine if more than one SP phenotype exists and which 
transporters are implicated.  

5.3.6    ABCA5 

 Using an approach based on multiple markers, it has been shown that osteosarcoma 
cell populations enriched for putative CSC are characterized by high ABCA5 
expression. Of note, in this study, ABCA5 was proposed as a putative biomarker of 
CSC [ 91 ]. 

 Although ABCA5 is still a poorly understood transporter, its correlation with the 
differentiation state has been reported in human colon cancer, thereby suggesting a 
possible role in the CSC biology [ 82 ]. Of note, in the same study also ABCB1 was 
shown to be correlated with the differentiation state, a phenomenon that may be an 
indicator of common regulation.  
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5.3.7    Regulation of the Function of Drug Transporters 

 Increasing evidence supports that cellular survival pathways, in particular the PI3K/
Akt pathway, play a role in the biology of CSC. The PI3K/Akt pathway has been 
shown to be important for maintaining the pluripotency of embryonic stem cells [ 4 ]. 
Indeed, transcriptional analysis and a functional assay have shown that PI3K/Akt 
together with the MAPK/ERK and NF-kB pathways are down regulated during dif-
ferentiation of these cells [ 51 ]. The PI3K/Akt pathway has been proposed to be required 
in the maintenance of CSC in the brain, breast, prostate cancer, and glioma [ 116 ]. 

 The regulation of CSC by the PI3K/Akt pathway is supported by a variety of 
studies pointing out (a) a reduced SP cells in the bone marrow of Akt1-null mice, 
and (b) increased SP cells in the bone marrow of mice following enforced expres-
sion of Akt. Moreover, inhibition of the PI3K/Akt pathway has been associated with 
BCRP internalization, a phenomenon that suggests a regulation of distribution of 
BCRP by the PI3K/Akt signaling. The precise mechanisms involved are still poorly 
understood [ 51 ]. The relationship between cell survival pathways and ABC trans-
porters is also supported by the association between ABCG2 and HER-2 expression 
in breast invasive ductal carcinoma [ 111 ]. Of note, the Hedgehog pathway had been 
previously shown to regulate also ABCB1 besides ABCG2, although the molecular 
determinants of the regulation were less characterized; the pharmacological rele-
vance of the Hedgehog pathway inhibition was proved as its targeting reversed 
resistance to structurally unrelated antitumor agents [ 98 ]. Activated Hedgehog sig-
naling has been implicated in sustaining high ABCG2 expression in diffuse large B 
cell lymphoma, a disease in which high expression of this transporter was shown to 
inversely correlate with disease-free survival [ 99 ]. A molecular analysis indicated 
that the ABCG2 promoter contains a binding site for the GLI1 transcription factor; 
since high ABCG2 and GLI1 expression was found in tumors with lymphnodes 
involvement, it has been proposed that the stroma microenvironment might regulate 
ABCG2 and GLI1 [ 99 ]. This hypothesis was supported by in vitro assays including 
coculture experiments in which tumor cells upregulated ABCG2 as a result of 
stroma cell-induced Hedgehog signaling. In this experimental model, ABCG2 was 
not the only resistance factor induced by Hedgehog signaling as also anti-apoptotic 
proteins were upregulated, but ABCG2 was characterized in detail in terms of the 
transcriptional regulation [ 99 ]. An indirect regulation of ABC transporters levels by 
E2F involving p73 has also been described [ 2 ], further corroborating the view of a 
complex regulatory network acting to favor the survival of CSC.   

5.4    The Side Population 

 ABC transporters are not straightforward markers for CSC, but it has been docu-
mented that CSC can express ABC transporters. This characteristic is shared by 
CSC and normal stem cells. Both normal and CSC can be identifi ed in the so called 
SP in a dot plot from fl ow cytometry analysis. In fact, the term “side” refers to the 
position at the side of the plot. The isolation of SP cells has been carried out and 
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described from different types of normal tissues including the bone marrow and 
tumors. Indeed, a small fraction of bone marrow cells that can be evidenced by fl ow 
cytometry for the ability to effl ux the fl uorescent dye Hoechst 33342 and are 
enriched for HSC, has been identifi ed in the hematopoietic compartments of differ-
ent organisms including humans and in non-hematopoietic tissues [ 42 ,  104 ]. SP 
cells from murine bone marrow can self-renew and generate both lymphoid and 
myeloid lineages [ 42 ]. Normal HSC express at least two ABC transporters, but the 
complexity of the ABC transporter family suggests that other members could be 
present [ 100 ]. Studies carried out in mice more than a decade ago have indicated 
that BCRP, but not MDR1, is responsible for the HSC phenotype [ 104 ,  117 ,  93 ]. 
Accordingly, in Abcb1-knockout mice, the SP is not depleted [ 11 ]. Expression of 
the murine orthologue of ABCG2 appears a constant feature of murine stem cells 
from different sources such as bone marrow, skeletal muscle, primary mammary 
tissue, and embryos. In murine HSC, Abcg2 is highly expressed and is downregu-
lated during differentiation. The dependency on Abcg2 of the SP phenotype has 
been clearly defi ned by gain and loss of function studies [ 118 ]. 

 Moreover, fl ow cytometry approaches applied to the CSC fi eld have allowed 
researchers to defi ne the existence of a tumor cell fraction that is enriched for drug 
effl ux transporters, specifi cally ABC transporters. Again, this tumor cell population is 
functionally defi ned based on its capability to extrude the specifi c fl uorescent dye 
Hoechst 33342, an activity that produces a shift of the fl uorescence of the cells belong-
ing to this population in a dot plot obtained by fl ow cytometry analysis. In particular, 
cells expressing ABC transporters recognizing the fl uorescent dye, decrease their 
fl uorescence becoming clearly separated from the rest of the cells. In this kind of 
assay, verapamil, a calcium channel blocker which binds with high affi nity to Pg-p 
and with less affi nity to BCRP, is used, as the SP disappears upon transporter inhibi-
tion in the presence of verapamil. Thus, the SP is identifi able as reported in Fig.  5.4 . 
It is important to note that evaluation of the SP is not an easy procedure and should be 
carried out with a well set up protocol and adequate gating procedures.

   The SP assay is routinely carried out in the presence of verapamil, a well known 
inhibitor of ABCB1. This is surprising as the SP phenotype is thought to be due to 
the expression of ABCG2. However, verapamil can also inhibit, although less 
strongly, ABCG2. Indeed, it has been shown that in bone marrow cells, ABCB1 
contributes in part to the SP phenotype [ 118 ]. 

 A causal link between the expression of ABCG2 and SP has been proposed in a 
report on leukemia in which over-expression of ABCG2 in Jurkat and HL60 cells 
was shown to increase the SP; such a phenomenon was concomitant with upregula-
tion of the phosphorylated forms of PI3K and Akt [ 49 ]. Conversely, treatment with 
PI3K or Akt inhibitors downregulated ABCG2 expression, phospho-PI3K, phospho- 
Akt and SP. Activation of Akt appears to occur via inactivation of PTEN, a lipid 
phosphatase which has been implicated in preventing leukemogenesis [ 114 ]. Thus, 
ABCG2 regulation by the PI3K/Akt pathway appears a likely phenomenon in leu-
kemia, similarly to what was described in glioma and esophageal cancer [ 7 ,  65 ]. 

 SP cells from bladder cancer were found to be characterized by increased levels of 
ABCG2 together with phospho-ERK1/2 activation [ 46 ]. Accordingly, inhibition of 
MEK1/2, the upstream regulator of ERK1/2, resulted in inhibition of the SP phenotype. 
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An important fi nding of this study is the observation that, in tumor specimens, ABCG2 
and pERK1/2 were positively correlated and their expression correlated with decreased 
progression-free survival [ 46 ]. 

 The application of the SP approach to the study of CSC has some limitations for 
subsequent analysis of the tumor initiating capability of the non-SP cell fraction. 
Such a fraction that in principle should be devoid of tumor initiating capability by 
virtue of its intrinsic nature, i.e. the lack of stemness, may result devoid of the capa-
bility due to the fact that it is treated with a fl uorescent dye in the SP assay. In fact, 
because the dye is a DNA binding agent, it might fi nally affect the proliferative 
potential of the non-SP cells simply because it targets the DNA (Fig.  5.5 ). Again, 
the use of SP an indicator of stemness should be regarded with caution. Indeed, it 
has been reported that not all SP populations diplay increased tumorigenic potential 
as compared to non-SP cells [ 113 ].

   An important step in the study of the SP has been represented by the isolation of 
SP cell from biopsies [ 40 ]. Using glioblastoma samples grown orthotopically in 
immune-defi cient mice, SP cells of human glioblastoma were found to be stroma- 
derived and nonneoplastic [ 40 ]. Indeed, tumor cells did not exhibit effl ux properties 
which were present in brain-derived endothelial cells and in astrocytes. 

 In summary, a SP fraction has been demonstrated in different tumor types and 
the SP has been shown to be endowed with tumor initiating ability. SP cells can 
divide asymmetrically, generating SP and non-SP cells, and can form spheres when 
grown in serum-free media. Due to the toxic effects of the dye used in the SP assay, 
the identifi cation of CSC by the SP assay has major limitations. 

  Fig. 5.4    Representative plots of side population. The rat C6 glioma cells were used and incubated 
with Hoechst 33342 ( a ,  b ). The so-called side population evidenced in the gate in plot  a  displays 
low fl uorescence because ABC transporters effl ux the dye. If transporters are blocked by verapamil 
(plot  b ), the dye is not extruded and the cell fraction which expresses ABC transporters kept inac-
tivated retains the fl uorescence of the main cell population. Viable cells were gated and blue (FL-4) 
and red (FL-5) fl uorescence of viable cells are reported. The shown plots are a courtesy of Dr. 
Emilio Ciusani (Fondazione IRCCS, Istituto Neurologico C. Besta)       
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5.4.1     Approaches to Modulate the Side Population 

 Various strategies are being employed at the cellular level to hit the SP in an attempt 
to discover therapeutic options selective for CSC. Some examples taken from the 
recent literature are provided below. It has to be considered when examining the 
literature available on targeting CSC by interference with the SP that, although sev-
eral of the preclinically tested compounds display an effect on ABC transporters, a 
direct cause-effect relationship between treatment and ABC transporter inactivation 
or downregulation cannot always be defi ned. 

 A promising approach has exploited the capability of CSC to effl ux dyes and to 
be identifi ed as SP in a high-throughput screening platform in which hit compounds 
were selected based on decrease of SP after treatment. Thus, in an attempt to hit 
CSC in breast cancer, in a recent study [ 41 ], a combination of an inhibitor of NF-kB 
(IMD-0354) and nanoparticle-encapsulated doxorubicin has been employed. A 
reduction in the SP and in ABC transporters (ABCB1, ABCG2) was associated with 
a decrease of self-renewal genes ( Oct4 ,  Sox2 ,  Nanog ). The NF-kB inhibitor pro-
duced cell death also in non-CSC cells. Of note, targeted delivery to hypoxic cells 
could be achieved, a feature that allowed the administration of a well tolerated treat-
ment as normal nonhypoxic tissues were spared. 

 It has been recently reported that low-molecular weight heparin (LMWH), which 
is approved for anticoagulant therapy, can inhibit survival of lung cancer SP cells, 
as it decreases their colony forming abilities [ 81 ]. Interestingly, it also decreases 
ABCG2 protein levels by interference with its proteasomal degradation; in fact, 
LMWH- induced ABCG2 downregulation could be rescued by proteasome inhibi-
tion. Treatment with LMWH has been reported to ablate lung cancer cisplatin resis-
tance [ 81 ]. However, a clear synergistic interaction between cisplatin and LMWH 

  Fig. 5.5    Chemical structure of the fl uorescent dye Hoechst 33342 and its mechanism of action. 
The dye is a DNA targeting agents which binds the minor groove of DNA. In the side population 
assay, it accumulates in viable cells, when not effl uxed by ABC transporters       
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could not be proven, in keeping with the fact that cisplatin is not a substrate for 
ABCG2. Thus, it is likely that the combination of cisplatin and LMWH is additive 
although, in principle, cells downregulating ABCG2 may display reduced fi tness 
when treated with a variety of antitumor agents, even if not substrates, due to the 
possible transport by ABCG2 of molecules indirectly affecting the cell response to 
drugs [ 85 ]. Among the compounds recently tested on CSC-like models, secalonic 
acid D, the main toxic metabolite of several strains of  Penicillium oxalicum , has 
shown antiproliferative activity on tumor cells over-expressing ABCB1, ABCC1, 
and ABCG2 as well as its capability to decrease SP cells in lung cancer cells [ 48 ]. 
Modulation of ABCG2 mRNA levels may occur via epigenetic events induced by 
pharmacological treatments. For example, the indolamine melatonin which contrib-
utes to regulate endocrine functions and has been reported to exhibit cytotoxic and 
antioxidant effects, appears capable to induce methylation of the ABCG2 promoter 
[ 75 ]. Such a phenomenon—which is prevented by an inhibitor of DNA methyla-
tion—has been proposed to underscore the synergism observed between melatonin 
and antitumor agents in brain tumor stem-like cells [ 75 ]. 

 The search for drugs selectively killing CSC has lead to the identifi cation of 
promising compounds which, however, under most circumstances, are endowed 
with their activity versus CSC and bulk tumors. Most of the compounds have been 
tested in preclinical studies, mainly in vitro, and only a fraction of the tested com-
pounds are proposed to act by virtue of their interference with ABC transporters. 
Among them, salinomycin, a polyether ionophore antibiotic isolated from 
 Streptomyces albus  has shown promising results [ 80 ]. Such a compound known to 
be endowed with antibacterial activity was shown to be capable of killing CSC in a 
murine model of breast cancer [ 45 ]. Subsequently, additional studies reported that 
this biomolecule can kill a variety of human tumor cells [ 32 ], thereby providing 
evidence that it acts both on CSC and the tumor bulk [ 31 ]. The drug is already 
undergoing clinical evaluation [ 80 ].   

5.5    Markers for CSC Other Than ABC Transporters 

 Several markers are used to identify CSC in different tumor types, and the available 
literature suggests unexpected links between some of these markers and ABC trans-
porters. To identify such links, the concomitant expression of ABC transporters and 
of other markers has to be taken into account. For example, aldehyde dehydroge-
nase 1 (ALDH1) is a NAD(P)-dependent enzyme which detoxifi es endogenous or 
exogenous aldehydes [ 38 ,  56 ] because it has been implicated in the physiology of 
normal and CSC, ALDH1 is being used as a marker. Indeed, since the SP allows a 
functional identifi cation of stem cells, ALDH1 activity has been proposed as a func-
tional marker of potential interest in different tumor types. In 1990, Kastan and 
colleagues showed that ALDH displays increased activity in human hematopoietic 
progenitor cells [ 60 ]. Since then, a variety of studies have reported the isolation of 
stem cells from normal and cancer tissues on the basis of ALDH activity [ 56 ]. 
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Recent studies have shown that ALDH1 appears to be an appropriate marker for 
stemness also in human sarcomas [ 69 ]. Indeed, the subpopulations characterized by 
high ALDH1 activity are also endowed with increased proliferation rate, colony 
forming ability, increased expression of ABC transporters and stemness markers, as 
well as by reduced sensitivity to antitumor agents as compared to cells with low 
ALDH1 activity [ 69 ]. 

 The concomitant expression of ALDH1 and ABCG2 or other transporters in 
CSC appears to support the need for the presence in CSC of multiple independent 
mechanisms for detoxication. Indeed, because stem cells are rare it is reasonable 
that they try to activate a complex pro-survival response in which different factors 
can eventually cooperate to improve chances of survival. 

 A very interesting study has shown that ABC transporters can be transcription-
ally regulated by the transcription factor Oct1, which is fundamental in self-renewal 
[ 72 ]. Thus, in drug-resistant cells, there are genes that act as hubs by coregulating 
multiple processes fi nally leading to drug resistance. For example, exposure of 
breast cancer cells to TGF beta or Twist over-expression have been shown to lead to 
enhanced expression of ABC transporters [ 105 ]. Conversely, knockdown of Twist 
and Zeb, besides reversing EMT, also results in reversal of drug resistance [ 73 ]. In 
addition, a positive correlation between ABCG2 and Oct4 has been reported in cel-
lular models of liver CSC, in which the effl ux transporter and the transcription fac-
tors involved in self-renewal appeared to be highly expressed in CD90/CD133 
positive cells [ 57 ].  

5.6    Clinical Implications of the CSC Hypothesis 

 The translation of the CSC hypothesis toward the clinics is far from being accom-
plished also in view of the skepticism regarding the biology of CSC. There is a wide 
heterogeneity in the experimental models used for CSC, especially in vitro, where 
research for appropriate 3D culture systems is still ongoing [ 13 ]. In spite of this, 
some clinical studies may already offer positive results in terms of validation of the 
CSC hypothesis in the clinical setting. In fact, as recently reviewed [ 36 ], enrichment 
for tumor cells with a CSC phenotype has been reported in minimal residual disease 
of different tumor types. Thus, the CSC hypothesis may explain why patients can-
not be cured in spite of initial responses; some studies support this concept. For 
example, in breast cancer, residual tumor cells after conventional treatment have 
been shown to display tumor initiating cell features [ 18 ]. In addition, Huff and col-
leagues have shown that a correlation between clonogenic growth of CSC and clini-
cal outcomes occurs in multiple myeloma [ 36 ]. The expression of a stem cell 
phenotype by minimal residual disease in acute myeloid leukemia has also been 
documented [ 34 ]. 

 The association between breast cancer stem cells and resistance to paclitaxel- 
epirubicin based chemotherapy has been reported in a case material of primary breast 
cancer patients [ 102 ]. In such a study, breast CSC identifi ed as ALDH1-positive, but 
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not CD44 positive/CD24 negative cells, have been proposed to play a role in resistance 
to chemotherapy. This study underscores the variability that may result from consider-
ing different markers. Although it is likely that ALDH positive cells express ABC 
transporters, this aspect was not considered in the study. 

 Many of the ongoing clinical trials in which ABC transporters relevant in the 
CSC biology, in particular ABCG2, have been taken into account, deal with phar-
macokinetics and pharmaco-dynamics issues in an attempt to establish the role of 
single nucleotide polymorphisms of drug transporters in the effi cacy of therapies 
based on the use of substrates of transporters. Moreover, a certain number of trials 
focuses on the assessment of the feasibility of isolation and characterization of CSC 
(NCT01641003), on the set up of reliable drug sensitivity assays (Feasibility Study 
on Stem Cells Sensitivity Assay, STELLA, NCT01483001), and on the character-
ization of CSC of different tumor types. A few studies are already directed at evalu-
ating the anti-cancer stem cell activity of treatment, for example by measuring the 
amount of ALDH1 positive cells before and after treatment (NCT01190345), or in 
an attempt to target CSC for prevention of relapse (NCT01579812). When the 
results of these clinical studies will be available, it will be possible to consider the 
opportunity to translate positive achievements to the routine clinical analysis, fol-
lowing further validation in further studies.  

5.7    Discussion 

 In spite of the technical progress and of the intellectual knowledge acquired in the 
molecular characterization of tumors and in the processes leading to tumorigenesis, 
multidrug resistance still represents an obstacle to the cure of cancer. ABC transport-
ers are implicated in multidrug resistance of tumor cells mainly because of their 
capability to extrude toxic compounds including antitumor agents from cells, but also 
through indirect mechanisms as recently reviewed by Fletcher and colleagues [ 26 ]. 

 If CSC are indeed the tumor cells that maintain the tumor and they express ABC 
transporters, a successful therapeutic option tempting to cure patients or at least to 
improve disease-free survival should include drugs targeting transporters of the ABC 
super-family, in particular ABCG2, because the product of this gene is the most fre-
quently reported transporter in CSC. However, it is evident that the expression of ABC 
transporters is not an exclusive characteristic of CSC, as their expression in tumors 
might also be related to the tissue of origin of the tumor. In addition, also normal stem 
cells express ABC transporters. Thus, a wise therapeutic strategy would need to spare 
normal cells. Accordingly, selectivity of therapies remains an important issue and 
there is an effort towards testing of selective approaches at the preclinical level, like 
for example in a study in which targeting of hypoxic cells was undertaken [ 41 ]. 

 The effects of natural compounds on cancer stem-like cells have been recently 
reviewed, highlighting the variety of pathways that can be targeted in an attempt to 
kill CSC [ 24 ,  68 ]. Different pathways including self-renewal pathways, Wnt/β- -
catenin, Sonic Hedgehog, and Notch signaling are implicated in the biology of CSC 
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and they can favor high self-renewal potential, survival, invasion and the metastatic 
behavior of CSC and their progeny [ 78 ,  106 ]. Thus, the expression of ABC trans-
porters is only one of the mechanisms by which CSC evade the effects of therapies 
(Fig.  5.6 ). Because ABC transporters do not appear to be simply in charge of effl ux 
of drugs, but they participate in a complex molecular network in which other mech-
anisms, in part even coregulated mechanisms, contribute to cell survival, the inhibi-
tion of their function could be regarded as a sort of multi-targeting strategy. Indeed, 
it has been reported that transcription factors that participate in EMT can positively 
regulate ABC transporters [ 72 ,  92 ]. Moreover, it has been reported that the PI3K/
Akt pathway can modulate the function of transporters through different mecha-
nisms [ 51 ]. In addition, in keeping with the wide current interest in metabolic altera-
tions of tumor cells, SP cells have been shown to exhibit increased glycolytic 
activity than non-SP cells [ 68 ].

   In summary, research on CSC is a fast-moving fi eld, but translation of results in 
the clinics is still at an early stage. Additional studies are required to establish a pre-
cise link between expression of BCRP or other ABC transporters and stem cell- like 
features and behavior. Prospective studies are required to establish the utility of less 
characterized transporters as therapeutic targets for CSC. The evidence that protec-
tion of CSC against drugs and toxins is mediated by expression of several ABC trans-
porters continues to provide therapeutic opportunities to overcome resistance. 
However, it is true that a careful consideration of the specifi c literature should be 
made when facing the fi eld of CSC, also considering that CSC have been correctly 
designated as a moving target [ 27 ]. With specifi c reference to the analysis of levels of 
ABC transporters in addition to modulation of mRNA levels, also protein levels 
should be considered. Again, not only ABCG2 should be taken into account, given the 
complexity of the ABC super-family. In an attempt to generate experimental models 
for studying CSC, enrichment for CSC by therapy has been proposed [ 30 ]. However, 
this approach cannot be exclusive, but it should be complementary to the others 
reported above. With such caveats and trying to control the complexity of the biology 
of CSC, it will be easier to establish also the predictive and prognostic signifi cance of 
CSC, as recently proposed for Non-small Cell Lung Cancer [ 43 ,  86 ]. The complexity 
of the ABC transporter super-family suggests that it will be a diffi cult task to clearly 
defi ne the specifi c role of ABC transporters in CSC biology and resistance. The role 
of ABCG2 as well as of a few other transporters has been in part defi ned, but we are 
far from effective strategies to target them for modulation of antitumor therapy. 

 In conclusion, among the transporters involved in CSC biology, ABCG2 appears 
to play a remarkable role, because it is expressed by SP cells, and its expression is 
associated with the activation of cell survival pathways and with the expression of 
self-renewal genes in specifi c models of CSC. Indeed, BCRP is very likely to play 
relevant physiological functions because of its expression by normal stem cells and 
by CSC or cancer stem-like cells. In addition, the less known ABCB5 transporter, 
besides playing a role in melanoma resistance, may be of relevance also in colon 
carcinoma and leukemia (see above). It is therefore expected that CSC-related 
research will provide knowledge useful for the development of novel therapeutic 
strategies involving targeting of ABC transporters. Even if the contribution of dif-
ferent transporters to drug resistance of CSC remains to be clarifi ed, it is evident 
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that a lot of information about transporters is already available from the in vitro and 
in vivo preclinical studies carried out using cell cultures or murine models and 
xenografts. For instance, the mutational status of specifi c transporters can affect 
their interaction with substrate and the reversal activity of all modulators may be 
infl uenced by the gene status of the transporters. An effi cient targeting of CSC will 
be possibly achieved also considering the complexity of the tumor niche and of all 
the processes favoring the maintenance and survival of CSC [ 35 ,  62 ].     
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