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  Pref ace   

 The development of resistance is a major obstacle in cancer chemotherapy since 
decades. Drug resistance may develop during repeated treatment cycles after ini-
tially successful therapy (acquired or secondary resistance). Alternatively, tumors 
may be resistant from the beginning (inherent or primary resistance). The failure of 
chemotherapy is a major reason for the fatal outcome of tumor diseases in many 
patients. Even worse, tumors frequently develop resistance not only to single drugs 
but also to many others at the same time. This phenomenon was termed  multidrug 
resistance  and decreases the success rates of therapy regimens with combinations 
of structurally and functionally different drugs. 

 The pioneering research of Victor Ling, Michael M. Gottesman, and others led 
to the discovery of the drug effl ux transporter  P - glycoprotein  and its encoding 
gene,  MDR1 . This membrane protein expels a large array of different drugs and 
xenobiotic compounds out of the tumor cell leading to sublethal intracellular drug 
concentration and ultimately survival of tumor cells. 

 The initial cross-resistance profi le of P-glycoprotein (P-gp) comprises  anthra-
cyclines  ( doxorubicin ,  daunorubicin ),  Vinca - alkaloids  ( vincristine ,  vinblastine ), 
 epipodophyllotoxins  ( etoposide ,  teniposide ),  taxanes  ( paclitaxel ,  docetaxel ), 
and others. 

 P-gp/ MDR1  belongs to the family of ATP-binding cassette (ABC) transporters 
which are widely distributed in nature from bacteria to humans. The human genome 
consists of 48 ABC transporter genes, with P-gp/ MDR1  as the best analyzed one. 
Other drug resistance mediating ABC transporters are the multidrug resistance- 
related proteins (MRPs), breast cancer resistance protein (BCRP), and others. These 
ABC transporters are also characterized by specifi c cross-resistance profi les, which 
partly differ from the one of P-gp. They can also confer resistance to  camptothecin 
derivatives  ( topotecan ,  irinotecan ),  Mitoxantrone    ,  sterols ,  tyrosine kinase inhib-
itors ,  compounds used in photodynamic therapy antimetabolites,  and others. 

 The uncommonly broad spectrum of anticancer agents that are transported by 
ABC transporters makes these proteins exquisite targets to search for compounds 
that inhibit their transport function. The idea is to block ABC transporter-mediated 



vi

drug effl ux by specifi c inhibitors and thereby to overcome multidrug resistance. 
This concept was introduced by Takashi Tsuruo, who described that verapamil is 
able to inhibit P-gp’s transport function. Subsequently, a huge amount of com-
pounds from many pharmacologically established drug classes (e.g.,  calcium chan-
nel blockers ,  calmodulin antagonists ,  cyclosporines ,  dipyridamole ,  and other 
hydrophobic ,  cationic compounds ) were observed to inhibit P-gp and to reverse 
multidrug resistance. Interestingly, many natural compounds derived from plants or 
marine organisms were also found to block ABC transporters’ function. 

 All these fascinating results from basic cancer research were complemented by 
investigations from clinical oncology. A plethora of analyses have shown that 
P-gp/ MDR1  is of predictive value for success or failure of chemotherapy and of 
prognostic value for the survival time of cancer patients. Since certain  radiophar-
maceuticals  are also transported by ABC transporters, they can be used for radio-
logical diagnosis of multidrug-resistant tumors. 

 The importance of ABC transporters for drug resistance in tumors and the thriv-
ing development of research in this area can also be documented by the number of 
papers appearing every year during the past three decades (Fig.  1 ). ABC transport-
ers have been a hot topic in cancer research for many years and still are. This moti-
vated me to edit a book on this topic to keep scientists and physicians updated with 
the latest development in this exciting research area. I was fortunate to team up a 
panel of international experts with renowned expertise in the fi eld of ABC trans-
porters in drug-resistant tumors. The book covers most currently relevant topics in 

  Fig. 1    Survey of the literature deposited in the PubMed database from 1980 to 2012 with the 
indicated keywords         
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the fi eld reaching from the clinical relevance of ABC transporters for resistance 
to novel and established anticancer drugs and prognosis of patients to compounds to 
modulate multidrug resistance, compounds used in photodynamic therapy, tyrosine 
kinase inhibitors, and others. Furthermore, the potential of radiopharmaceuticals for 
diagnosis of multidrug-resistant tumors will be discussed.

     Mainz, Germany     Thomas     Efferth   
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    Chapter 1   
 Role of P-Glycoprotein for Resistance 
of Tumors to Anticancer Drugs: 
From Bench to Bedside 

                Manfred     Volm      and     Thomas     Efferth    

    Abstract     Success of cancer chemotherapy is limited by simultaneous resistance 
towards many anticancer drugs making clinical combination therapy protocols less 
effi cient. P-glycoprotein represents an effl ux pump of the ABC transporter family, 
which recognizes and extrudes anticancer drugs of diverse chemical classes and 
 biochemical functions. The P-glycoprotein-mediated profi le of cross-resistance has 
been termed multidrug resistance (MDR). In our investigations, we focused on MDR 
of in vivo tumor lines maintained in mice. The development of in vivo resistance 
towards anthracyclines (doxorubicin, daunorubicin) in L1210 and S180 ascites 
tumor lines was accompanied with decreased uptake and increased effl ux of the fl uo-
rescent dye rhodamine 123, overexpression of P-glycoprotein as well as  MDR1  
mRNA overexpression and  MDR1  gene amplifi cation. In addition to acquired multi-
drug resistance in these syngeneic mouse tumor lines, we investigated inherent drug 
resistance in human lung xenograft tumors transplanted to nude mice. Drug resis-
tance in these xenografts was also associated with overexpression of P-glycoprotein 
and  MDR1  mRNA, but without  MDR1  gene amplifi cation. Furthermore, we explored 
P-glycoprotein expression in clinical biopsies of diverse tumor entities (leukemia, 
lung cancer, breast cancer, cervical carcinoma, endometrial carcinoma. nephroblas-
toma, renal cell carcinoma) and found that high levels of P-glycoprotein expression 
correlated with pretreatment with chemotherapy, drug resistance, and failure to 
achieve complete remission. During the past years, a wealth of publications world-
wide confi rmed a role of the P-glycoprotein for clinical treatment refractoriness and 
as an unfavorable prognostic factor for survival time of patients.  

  Keywords     ABC transporter   •   Anthracyclines   •   Cancer   •   Chemotherapy   •   Drug 
resistance   •   Prognostic factor   •   Rhodamine 123   •   Survival time   •   Xenograft tumor  

        M.   Volm      (*) 
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mailto:m.volm@gmx.de
mailto:efferth@uni-mainz.de


2

1.1         Introduction 

 The development of resistance to anticancer drugs has dogged clinical oncology 
since the very early days of chemotherapy. Since the establishment of nitrogen 
mustard- derived compounds and methotrexate in the 1940s and 1950s, it became 
clear that tumors have effi cient escape mechanisms preventing the cure of many 
cancer patients [ 1 ,  2 ]. A surprising observation was that over the decades until today 
it was not possible to develop drugs without appearance of resistance phenomena in 
tumors. The development of combination therapy improved the situation compared 
to monotherapy, but sustainable treatment success leading to reliable cure of patients 
could also not be reached [ 3 – 5 ]. A main problem is that the side effects of most 
cytotoxic and cytostatic drugs to proliferating normal tissues (e.g. bone marrow, 
gastrointestinal mucosa, hair roots, reproductive organs) are signifi cantly such that 
suffi cient doses of drugs cannot be applied to kill tumor cells Suboptimal drug con-
centrations facilitate the survival of inherently more resistant cells in a heteroge-
neous tumor population. Depending of the type of tumor, the clinical situation is 
that a fraction, but not all patients, benefi ts from chemotherapy leading to improved 
survival times. It was unexpected at that time that combination regimens were also 
subject to resistance development, since drugs with different cellular and molecular 
modes of action were used. The clinical phenomenon of unresponsiveness to mul-
tiple drugs was reproducible under cell culture conditions in the laboratory. It was 
David Kessel who described in 1968 that cell lines display cross-resistance to dif-
ferent drugs [ 6 ]. This observation was also reported in hundreds of publications in 
subsequent years and laid the bases for a new area of research in cancer biology. 
Strikingly, tumors that are initially responsive to chemotherapy can develop resis-
tance during treatment. Resistant tumor cells can acquire cross-resistance to a wide 
range of compounds that have no obvious structural or functional similarities, e.g. 
alkaloids (colchicine, vinblastine, vincristine), anthracyclines (doxorubicin, dauno-
rubicin), taxanes (paclitaxel, docetaxel), epipodophyllotoxins (etoposide, tenipo-
side), and antibiotics (actinomycin D, mitomycin C) [ 7 ,  8 ]. This phenomenon has 
been designated as pleiotropic or multidrug resistance (MDR). 

 MDR of cancer cells is associated with decreased net cellular drug concentra-
tions and has been attributed to alterations in the plasma membrane [ 9 – 11 ]. A drug 
effl ux pump termed P-glycoprotein (P for permeability) has been unraveled as an 
underlying mechanism [ 10 ,  12 ]. The  MDR1 / ABCB1  gene encoding the P-glycoprotein 
has been cloned in 1986 and was found to be amplifi ed in many multidrug-resistant 
cell lines in vitro [ 13 ]. P-glycoprotein was the fi rst member of the ATP-binding cas-
sette (ABC) transporter family identifi ed in cancer. Its discovery has enormously 
stimulated cancer research in subsequent years and numerous in vitro cell lines were 
characterized to overexpress P-glycoprotein and  MDR1  mRNA as well to carry 
amplifi ed copy numbers of the  MDR1  genes in their genomes [ 14 ].  

M. Volm and T. Efferth
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1.2     Architecture and Function of the P-Glycoprotein 

 This effl ux transporter belongs to a gene family of ATP-binding cassette (ABC) 
transporters. The human genome consists of 48 members of this gene family. About 
one dozen ABC transporters have been suggested to transport anticancer drugs, 
although the P-glycoprotein is the best understood. The P-glycoprotein consists of 
1,258 amino acids which are organized as two duplicated halves. It spans the cell 
membrane with 123 transmembrane segments and two intracellular ATP-binding 
domains. The extracellular glycosylation of P-glycoprotein is not of functional 
relevance. 

 Several hypotheses have been discussed on the biochemical mode of action 
(Fig.  1.1 ):

   The partitioning model: It has been speculated that the P-glycoprotein does not 
transport drugs by itself but affects drug distribution indirectly by altering the pH 
value or membrane potential [ 15 ]. This model was supported by the fact that some 
anticancer drugs are positively charged and that the pH in multidrug-resistant cells 
differs from sensitive cells. It is now generally accepted that the P-glycoprotein is 
primarily not an ion channel [ 16 ]. 

 The hydrophobic vacuum cleaner hypothesis: Many P-glycoprotein substrates 
are hydrophobic and are better soluble in the lipid bilayer of the cell membrane than 

  Fig. 1.1    Models on the function of P-glycoprotein       
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in the extracellular aqueous phase. Anticancer drugs are thought fi rst to interact with 
the cell membrane and then bind to a binding site of the P-glycoprotein leading the 
drug to the internal channel of P-glycoprotein and effl uxes out of the cell [ 17 ,  18 ]. 
This model may not only explain the increased effl ux of multidrug-resistant cells, 
but also the frequently observed decreased drug infl ux [ 19 ,  20 ]. Hydrophilic drugs 
do not enter the P-glycoprotein from the lipid bilayer but fi rst they passively diffuse 
into the cytosol and then reach the P-glycoprotein from the intracellular side. 

 The translocase or fl ippase model postulates that according to the higher intra-
cellular drug concentration gradient, drug molecules bind to the intracellular bind-
ing domains of the P-glycoprotein, which changes conformation by an energy-driven 
process (i.e. ATP cleavage) and fl ips drugs to the extracellular space [ 17 ].  

1.3     Acquired Drug Resistance in Tumor Lines In Vivo 

 Instead of studying multidrug resistance in vitro, our own research efforts were 
directed to investigate drug resistance in animals to get closer to the clinical situa-
tion. One reason for that decision was that drug-resistant cell lines have been 
described to exhibit 1,000- to 10,000-fold resistance to drugs such as methotrexate 
[ 21 – 23 ]. These high degrees of resistance do usually not occur in the clinical situa-
tion and might be laboratory artifacts. 

 We established doxorubicin-resistant L1210 leukemia cells, which express the 
MDR phenotype. The tumor cell line was generated in vivo in mice—an approach 
which might be more analogous to the clinical development of drug resistance. 
Mice bearing L1210 ascites cells were treated with doxorubicin i.p. weekly. 
Doxorubicin was applied at a concentration of 2 mg/kg body weight. The pretreat-
ment was carried out for at least 20 passages. The test for resistance was carried out 
by injecting groups of animals with either untreated (sensitive) or drug-pretreated 
(resistant) tumor cells. Then, doxorubicin was injected i.p. on the fourth and fi fth 
days after tumor cell transplantation. The effects of doxorubicin (different concen-
trations) on the tumor cells were measured 2 days after the last injection. Under 
these conditions, tumor-bearing animals were killed, the ascites cells were removed 
by puncture and counted using a coulter counter. L1210 ascites tumor cells precon-
ditioned with doxorubicin were more resistant in vivo to this drug than the parental 
cells (Fig.  1.2 ,  left side ).

   An in-vitro short-term test was also used to detect the resistance of the pretreated 
tumor cells and to defi ne the degree of resistance. The basic feature of this test is the 
measurement of inhibition of incorporation of radioactive nucleic acid precursors 
into tumor cells after the addition of cytostatic agents [ 24 ]. The tumor cells were 
incubated in vitro with doxorubicin for 3 h. The radioactive precursor was added 
during the third hour of incubation. Aliquots of the cell suspensions were pipetted 
onto fi lter discs, the acid-soluble radioactivity extracted, and the incorporated activ-
ity measured by scintillation counting. As shown in Fig.  1.2  ( right side ), the resis-
tance of the pretreated cells found in vivo could be confi rmed in vitro. The maximum 
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degree of resistance was 45-fold for the cells preconditioned with doxorubicin. 
Cross-resistance of these cell lines was found to doxorubicin and daunorubicin, but 
not to cytosine-arabinoside and cyclophosphamide [ 25 ]. 

 Cross-resistance of anthracyclines to the cytotoxic fl uorescent dye rhodamine 
123 has been described [ 26 ]. Therefore, we determined rhodamine 123 accumula-
tion in the resistant and sensitive L1210 ascites cells by fl uorescence microscopy. 
We found that resistant cells needed more time to accumulate rhodamine 123 than 
their sensitive parental cells. Sensitive cells showed a signifi cant rhodamine 123 
fl uorescence, whereas daunorubicin-resistant cells did not (Fig.  1.3 ).

   For the quantifi cation of rhodamine 123 fl uorescence, we used an ORTHO 30L 
cytofl uorescence analyzer equipped with two argon ion lasers and an 
INTERTECHNIQUE Plurimed spectrum analysis computer system. Figure  1.3  
shows representative biparametrical fl uorescence histograms of intracellular rhoda-
mine 123 fl uorescence intensity in resistant and sensitive L1210 ascites tumor cells. 
These fl ow cytometric data confi rmed the microscopic observation that resistant 
cells accumulated less rhodamine 123. 

 The rhodamine 123 accumulation was measured in a time- and concentration- 
dependent manner. Drug-sensitive parental L12010 cells accumulated high amounts 
of rhodamine 123 depending on the concentration and the incubation time 
(Fig.  1.3c ), whereas rhodamine 123 was taken up at much lower amounts in the 
resistant L1210 cells (Fig.  1.3d ). These accumulation kinetics showed the intracel-
lular accumulation, which was the net sum of both the uptake and the effl ux. 
Therefore, the question remains about the relevance of drug effl ux, since 
P-glycoprotein functions as an effl ux transporter. Sensitive and resistant L1210 

  Fig. 1.2    Detection of resistance of doxorubicin-preconditioned L1210 ascites tumor cells in vivo 
and In vitro. Abscissa: different dose levels of doxorubicin. Closed symbols indicate parental (sen-
sitive) ascites tumor cells and open symbols drug-pretreated (resistant) ones. Data were taken from 
Volm et al. [ 25 ]       
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cells were loaded with rhodamine 123, centrifuged and transferred into rhodamine 
123- free medium. As shown in Fig.  1.3e , sensitive cells retained rhodamine 123, 
whereas resistant cells showed a considerable effl ux of this fl uorescent dye. 
To  further  analyze whether rhodamine 123 is pumped out in an energy-dependent 
process (presumably by the P-glycoprotein), resistant cells were incubated with 
and without 2-deoxy-glucose. Cells use glucose for energy metabolism to generate 
ATP and 2-deoxy-glucose is an effi cient inhibitor of ATP production. Hence, 
2-deoxy- glucose is expected to inhibit the ATP-dependent effl ux of P-glycoprotein. 
Resistant cells loaded with 2-deoxy-glucose were incubated with rhodamine 123 

  Fig. 1.3    Accumulation of rhodamine 123 in sensitive and daunorubicin-resistant L1210 ascites 
tumor cells as measured by fl ow cytometry. Biparametrical histograms of cells stained with ( a ) 
rhodamine 123 (4 mg/ml, 60 min incubation) and ( b ) propidium iodide (35 μg/ml). At least 20,000 
cells were measured per histogram. Propidium iodide was used to exclude dead cells. Time and 
concentration kinetics of rhodamine 123 (2, 4, and 8 μg/ml) in sensitive ( c ) and resistant L1210 
cells ( d ). ( e ) Determination of rhodamine 123 effl ux (1 h preincubation with 8 μg/ml) in sensitive 
( closed symbols ) and resistant L1210 cells ( open symbols ). Data were taken from Efferth [ 27 ] and 
Efferth et al. [ 28 ]       

 

M. Volm and T. Efferth



7

and then transferred into rhodamine 123-free Hanks’s balanced salt solution. 
2-Deoxy- glucose-treated resistant cells did not show a considerable effl ux of 
 rhodamine 123, whereas untreated resistant cells did [ 27 ,  28 ]. We conclude that the 
ATP-dependent effl ux of rhodamine 123 was blocked by 2-deoxy-glucose and that 
ATP is necessary for the energy-dependent effl ux function of the P-glycoprotein.  

1.4     Development of Resistance by Repeated Drug Treatments 

 To monitor the development of drug resistance during consecutively repeated doxo-
rubicin treatments, mice bearing L1210 tumors were once weekly treated with 
0.5 mg doxorubicin/kg body weight i.p. The development of doxorubicin resistance 
was analyzed during eight treatments in vivo by using the in vitro short term test. 
Sensitive (S) and established resistant L1210 ascites tumor cells (R) with a resis-
tance factor of 45 were used as negative and positive controls respectively (Fig.  1.4 ). 
Resistance increased with the number of treatments and the level of resistance 
achieved after eight treatments is similar to that of the established tumor line 
(Fig.  1.4 ). This suggests that a maximum level of resistance was already reached 
after only eight treatments. In order to prove this result, we increased the dosage of 
doxorubicin in the established tumor line from 2 to 8 mg /kg body weight for ten 
treatments and indeed did not observe a further increase of the level of resistance.

  Fig. 1.4    Development of resistance to doxorubicin in L1210 ascites tumor cells in vivo. Dose–
response curves of doxorubicin after treatments (2–8×) with 0.5 mg/kg doxorubicin. S, sensitive 
(parental) tumor line; R, doxorubicin-resistant line after more than 20 treatments with 2 mg/kg 
body weight doxorubicin. Each point represents mean of four measurements. Data were taken 
from Volm et al. [ 32 ]       
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   In order to fi nd out whether the P-glycoprotein increases according to both the 
number of treatments and the increase of doxorubicin resistance, we investigated 
 MDR1  gene amplifi cation and mRNA expression as well as P-glycoprotein 
expression. After four treatments many tumor cells expressed P-glycoprotein and 
after eight treatments nearly all tumor cells showed increased expression of the 
P-glycoprotein as shown by immunohistochemistry (Fig.  1.5 ). Southern-blot 
analysis during eight treatments with doxorubicin showed that the development 
of resistance was associated with  MDR1  gene amplifi cation and correlated with 
the degree of drug resistance. A comparison of the intensity of the bands in the 
established line (L1210/Dox) with that in the tumors with eight treatments indi-
cated similar degrees of amplifi cation. Slot-blots probing  MDR1  mRNA expres-
sion confi rmed these results (Fig.  1.5 ). The gene amplifi cation did not increase by 
further treatments with a higher concentration of doxorubicin.

  Fig. 1.5    Development of doxorubicin resistance, MDR1 gene amplifi cation, MDR1 and 
P-glycoprotein overexpression in L1210 tumor cells after treatment (2–8×) with 0.5 mg/kg doxo-
rubicin in vivo. S, sensitive (parental) tumor line; R, doxorubicin-resistant cell line after more than 
20 treatments with 2 mg/kg body weight doxorubicin. Figure was taken from Volm [ 33 ]       
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1.5        Reversal of Resistance After Cessation 
of Chemotherapy 

 The question arises as to whether or not the resistance that developed over 20 
 passages would persist after cessation of doxorubicin treatment. Remarkably, 
 resistance decreased over time and disappeared after 20 passages without 
 treatment (Fig.  1.6 ). This decrease in resistance was accompanied by a loss of 
P-glycoprotein as well as by a loss of  MDR1  mRNA expression and gene amplifi ca-
tion (Fig.  1.7 ; [ 32 ]). These results in mouse tumors fi t to the clinical situation. It has 
been observed clinically that the longer the duration of the disease free intervals 
following chemotherapy, the more likely is the response of the tumors to the same 
chemotherapy.

    Corresponding to the development of resistant L1210 leukemia ascites cell lines, 
we developed doxorubicin- or daunorubicin-resistant sarcoma S180 ascites cell 
lines. These resistant S180 cell lines also displayed cross-resistance to various other 
drugs [ 29 ,  30 ]. As shown in Fig.  1.8 , these two resistant S180 ascites tumor lines 
also displayed decreased uptake of rhodamine 123 (as shown by fl ow cytometry), 
amplifi cation of the  MDR1  gene (as shown by Southern blot), as well as overexpres-
sion of  MDR1  mRNA (as shown by Northern blot) and protein overexpression (as 
shown by Western blot, immunofl uorescence and immunohistochemistry). Hence, 
multidrug resistance in these S180 tumor lines can also be explained by the 
P-glycoprotein in a comparable fashion as observed in the multidrug-resistant 
L1210 tumor lines.

  Fig. 1.6    Dose response curves of doxorubicin after cessation of doxorubicin treatment (5–25 pas-
sages). S, sensitive (parental) tumor line; R, doxorubicin-resistant tumor line. Each point repre-
sents mean of four measurements. Data were taken from Volm et al. [ 32 ]       
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1.6        Inherent Drug Resistance in Human 
Lung Tumor Xenografts In Vivo 

 Transplantable murine tumors have the advantage that they can be maintained in 
mice with an intact immune system. Chemotherapy depresses the immune functions 
of the body—a process that takes place both in mice and men. In this respect, syn-
geneic mouse tumors refl ect the situation in human cancer patients. Another animal 
model utilizes human xenograft tumors. These tumors grow in nude mice with a 
defi cient immune system and do, therefore, not reject human cells. The advantage 
of this animal model is that the human tumors can be investigated in living mouse 
models without performing experiments in patients. Hence, this is an attractive 
model to analyze the chemotherapy effects in human tumors. 

  Fig. 1.7    Reversion of doxorubicin resistance, P-glycoprotein and MDR1 overexpression and 
MDR1 gene amplifi cation in L1210 tumor cells after cessation of treatment for 20 passages 
in vivo. Each point represents mean of four measurements. Data were taken from Volm [ 33 ]       
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  Fig. 1.8    Different methods for detecting multidrug resistance. Shown are results in sensitive 
parental cells (S) and multidrug-resistant cell lines (R1, R2). Resistance was developed in response 
to doxorubicin (R1) and daunorubicin (R2). ( a ) In vitro short-term test to determine the degree of 
resistance. ( b ) Flow cytometry to measure accumulation of rhodamine 123. ( c ) Southern blotting 
to detect gene amplifi cation of the MDR1 gene. The hybridization was performed with the pcDR 
1.5 cDNA probe. ( d ) Northern blotting to detect mRNA overexpression of the MDR1 gene 
(Hybridization with pcDR 1.5). ( e ) Western blotting to detect overexpression of P-glycoprotein 
(with mAb C219). ( f ) Immunofl uorescence and ( g ) immunohistochemistry to detect overexpres-
sion of P-glycoprotein (with mAb C219). Taken from Volm et al. [ 31 ]       
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 In addition to the development of resistance during repeated treatments with 
anticancer drugs (termed acquired or secondary drug resistance), resistance can also 
occur in untreated tumors. This form of resistance is characterized by unresponsive-
ness to anticancer drugs even if the tumors had never been challenged with chemo-
therapy. This form is termed inherent or primary resistance. Clinically, both forms 
lead to the failure of chemotherapy and the question arises, whether the 
P-glycoprotein/ MDR1  is also of relevance for the inherent drug resistance. Lung 
cancer is frequently characterized by inherent drug resistance, which is one reason 
for the observed survival times of lung cancer patients. 

 We investigated the intrinsic resistance of a panel of eight human epidermoid lung 
cancer xenografts to vincristine and daunorubicin and tested the cross- resistance pat-
tern to a variety of other agents. Our results demonstrated that xenograft lines derived 
from human lung tumors, not previously treated with chemotherapy exhibited a 
comparable pattern of cross-resistance as observed in the multidrug-resistant L1210 
or S180 cell lines [ 34 ,  35 ]. By means of fl uorescence microscopy, we found that 
drug-resistant epidermoid lung carcinoma xenograft tumors showed an intensive 
immunostaining for P-glycoprotein, whereas no immunoreactivity could be seen in 
drug-sensitive xenografts (Fig.  1.9 ). Northern and Southern blot analyses revealed 

  Fig. 1.9    Effect of a single dose of 2 mg/kg vincristine on tumor size ( top ), MDR1 gene amplifi ca-
tion and mRNA expression ( middle ) and P-glycoprotein expression ( bottom ) of eight different 
epidermoid lung cancer xenografts. MDR1 hybridization was performed with the genomic pcDr 
1.5 DNA probe. P-glycoprotein was detected by immunofl uorescence and mAb 265/F4. Data are 
taken from [ 33 ,  35 ]       
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that the  MDR1  mRNA expression was increased according to P-glycoprotein 
 expression and the degree of drug resistance, whereas  MDR1  gene amplifi cation was 
not detectable (Fig.  1.9 ).

1.7        P-Glycoprotein in Clinical Tumor Biopsies 

 After studying transplantable tumors with either acquired or inherent drug resis-
tance in animals, we were interested to explore the relevance of P-glycoprotein in 
human tumors. Patients with previously untreated non-small cell lung carcinomas 
(NSCLC) were surgically treated and specimens of the tumors for resistance testing 
(in vitro-short-term test) and detection of P-glycoprotein (immunohistochemistry) 
were used. 

 Of the 91 lung tumors, 43 were P-glycoprotein positive and 48 were negative. 
There was a signifi cant correlation between the resistance and P-glycoprotein 
expression (Fig.  1.10 ) Of the 64 resistant tumors 39 were P-glycoprotein positive 
(61 %), whereas of the 27 sensitive tumors only four were P-glycoprotein positive 
(15 %) [ 38 ]. Furthermore, a signifi cant correlation between the oncoproteins c-Fos 

  Fig. 1.10    Relationship 
between the response to 
doxorubicin as determined 
by the in vitro short-term 
test (ordinate) and 
immunohistochemical 
detection of P-glycoprotein 
(abscissa) in human lung 
cancer biopsies [ 38 ]       
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and c-Jun and the P-glycoprotein was found [ 36 ,  37 ]. Both proteins form a protein 
complex, which functions as transcription factor (AP-1). These results and the fact 
that the  MDR1  gene promoter carries AP-1 binding motifs may be taken as a clue 
that the P-glycoprotein may be regulated by the transcription factor AP-1.

   Investigations by us and others on liver carcinogenesis revealed a connection 
between P-glycoprotein expression and resistance to liver-carcinogenic compounds 
[ 39 – 41 ]. As smoking is widely accepted to cause lung cancer, we hypothesized an 
association between smoking habits, resistance to doxorubicin, and expression of 
P-glycoprotein. Biopsies of 94 non-small cell lung cancers were analyzed for their 
doxorubicin resistance using an in vitro short-term assay as well as their 
P-glycoprotein expression by immunohistochemistry. These results have been cor-
related to the smoking habits of the patients [ 42 ]. As shown in Fig.  1.11 , lung tumors 
from smokers were more frequently resistant to doxorubicin and expressed higher 
levels of P-glycoprotein than lung tumors from nonsmokers ( p  = 0.007 and 
 p  = 0.0001, respectively). These data may be taken as a hint that smoking contributes 
not only to lung carcinogenesis but also to drug resistance of lung tumors. This is an 
interesting result, since non-small cell lung cancer is a tumor entity well known for 
its unresponsiveness to chemotherapy and short survival times of patients.

   Another question raised was whether chemotherapy of tumors may induce 
P-glycoprotein expression. Accordingly, we analyzed a total number of 162 tumor 
biopsies by means of immunohistochemistry [ 43 – 54 ]. The tumors were divided into 
three groups according to their treatment. The fi rst group consisted of untreated tumors 

  Fig. 1.11    Relationship 
between smoking habits of 
patients and response to 
doxorubicin as determined by 
the in vitro short-term test 
and immunohistochemical 
detection of P-glycoprotein in 
94 human non-small cell lung 
cancer biopsies [ 42 ]       
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and the second group of tumors was treated with anticancer drugs not inducing MDR. 
The third group consisted of tumors, which were pretreated with drugs known to cause 
MDR (e.g. doxorubicin, vincristine). Biopsies from leukemia, breast cancer, ovarian 
carcinoma, or nephroblastoma which have not been pretreated displayed P-glycoprotein 
expression in a few cases (3 of 49 = 6 %). Among the tumors treated with non-MDR-
drugs only one out of nine was P-glycoprotein positive (=11 %). By contrast, biopsies 
from 44 tumors treated with MDR-inducing drugs exhibited P-glycoprotein in 22 
cases (=50 %) (Table  1.1 ). This pattern of P-glycoprotein expression speaks for the 
expression of P-glycoprotein during chemotherapy and indicates that P-glycoprotein 
is one responsible factor for the development of acquired (secondary) drug resistance 
(Table  1.1 ). Another group of tumors (renal, cervical, and endometrial carcinoma) 
showed a completely different profi le. These tumors showed P-glycoprotein expres-
sion in a high number of biopsies, although these tumors have not been pretreated 
(43 out of 55 tumors = 78 %). A few tumors were nevertheless treated with MDR-
relevant drugs and they were all P-glycoprotein positive (5/5 = 100 %). These three 
tumor types are known to be relatively unresponsive towards chemotherapy. This indi-
cates that P-glycoprotein expression in these tumor types is tightly correlated with 
inherent (primary) resistance towards anticancer drugs. Exemplary immunostainings 
of P-glycoprotein in human tumors are depicted in Fig.  1.12 .

    The results of our own investigations were compared with data from the litera-
ture. In a previous meta-analysis, a total number of 6.248 tumors were investigated 
for their P-glycoprotein and  MDR1  mRNA expression as well as  MDR1  gene ampli-
fi cation [ 55 ]. While  MDR1  gene amplifi cation is a very rare event in clinical tumor 
samples, overexpression of MDR1 mRNA frequently occurred even in untreated 
tumors (Fig.  1.13 ). Comparable results were found for the expression of 
P-glycoprotein in untreated tumors (Fig.  1.14 ). These results in a large number of 
clinical tumors indicate that  MDR1  gene expression does not account for multidrug 

    Table 1.1       Expression of P-glycoprotein in 162 human tumor biopsies   

 Tumor type  Without therapy  Non-MDR therapy  MDR therapy  Sum 

  Acquired resistance  
 Leukemia  1/4  1/5  3/11  20 
 Breast cancer  0/12  0/4  4/7  23 
 Ovarian carcinoma  2/25  0/0  3/3  28 
 Nephroblastoma  0/8  0/0  12/23  31 
  Sum    3 / 49  ( =6 % )   1 / 9  ( =11 % )   22 / 44  ( =50 % )   102  
  Inherent resistance  
 Endometrial carcinoma  20/20  0/0  3/3  23 
 Cervix carcinoma  15/26  0/0  0/0  26 
 Renal carcinoma  8/9  0/0  2/2  11 
  Sum    43 / 55  ( =78 % )   0 / 0  ( =0 % )   5 / 5  ( =100 % )   60  

  The numbers indicate P-glycoprotein-positive cases in comparison to the total tumor number. 
Extended data based on Volm et al. [ 31 ]  
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resistance in the clinic. Nevertheless, overexpression of  MDR1  mRNA and 
P-glycoprotein represent a frequent event. Their occurrence even in untreated 
tumors point to the relevance of P-glycoprotein/ MDR1  for inherent or primary drug 
resistance.

  Fig. 1.12    Immunohistochemical detection of P-glycoprotein in human tumors by mAb C219. ( a ) 
Renal cell carcinoma, ( b ) endometrial carcinoma, ( c ) multiple myeloma, ( d ) ovarian carcinoma, 
( e ) breast carcinoma, and ( f ) control tumor (daunorubicin-resistant solid carcinoma 180 of the 
mouse). Taken from Volm et al. [ 31 ]       
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    The next question raised was whether the increase of P-glycoprotein/ MDR1  in 
animal tumors in vivo after treatment with anticancer drugs could also be observed 
in a clinical setting. Therefore, it was evaluated whether the expression of 
P-glycoprotein/ MDR1  in human tumors was higher after chemotherapy as com-
pared to untreated tumors before chemotherapy. As shown in Fig.  1.15 , the mRNA 
and protein expression levels considerably increased after chemotherapy. This indi-
cates that P-glycoprotein/ MDR1  also plays a role for acquired or secondary drug 
resistance.

  Fig. 1.13    Expression of 
MDR1 mRNA in untreated 
human tumors as determined 
by Northern blotting, slot 
blotting, in situ hybridization, 
RNAse protection assay or 
RT-PCR. Taken from Efferth 
and Osieka [ 55 ]       
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  Fig. 1.14    Expression of 
P-glycoprotein in untreated 
human tumors. 
P-glycoprotein was detected 
either by Western blotting, 
immunohistochemistry, 
immunofl uorescence, or fl ow 
cytometry. Taken from 
Efferth and Osieka [ 55 ]       

  Fig. 1.15    Increase of 
P-glycoprotein/MDR1 
expression in treated as 
compared to untreated 
tumors. Taken from Efferth 
and Osieka [ 55 ]       
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1.8        Prognostic Relevance of P-Glycoprotein 
for Treatment Outcome 

 To address the question whether P-glycoprotein expression is of prognostic rele-
vance for the survival of patients, a total number of 104 pediatric patients with 
untreated non-B-type acute lymphoblastic leukemia are analyzed using immunohis-
tochemistry for the expression of P-glycoprotein in relationship to their therapy 
outcome. As response criteria, we used the relapse rate and the relapse-free interval. 
P-glycoprotein expression was detected in 36 out of 104 leukemia (35 %). We found 
a signifi cant lower probability of remaining in fi rst continuous complete remission 
(CCR) ( p  = 0.05) and a tendency for an increased relapse rate in patients with 
P-glycoprotein-positive blast cells (Fig.  1.16 ; [ 56 ]).

   Since the pioneering work on the role of P-glycoprotein for multidrug resistance 
by us and others in the 1980s and 1990s, several hundred clinical papers appeared 
on the prognostic role of P-glycoprotein. It seems that the scientifi c fruits of the 
early years of P-glycoprotein fell on a fertile ground leading to fl owering clinical 
research. It is beyond the scope of the present article to give a comprehensive over-
view of the prognostic role of P-glycoprotein vis-a-vis survival time of patients with 
all different tumor types. Nevertheless, we have focused on few tumor entities to 
highlight the clinical value of P-glycoprotein. For that purpose, we have chosen 
acute myeloic leukemia and acute lymphoblastic leukemia as hematopoietic tumors 
and breast cancer as example of a solid tumor. 

 As can be seen in Table  1.2 , most but not all clinical investigations on 
P-glycoprotein expression in acute myeloid or acute lymphoblastic leukemia 
are signifi cantly correlated with shorter survival times of patients. The prognostic 
signifi cance of P-glycoprotein has also been reported in detail by Marie and Legrand 
[ 73 ]. While most studies used immunohistochemistry or fl ow cytometry,  MDR1  

  Fig. 1.16    Curves 
of relapse-free intervals 
in children with 
P-glycoprotein- positive 
versus -negative acute 
lymphoblastic leukemia 
(ALL) obtained by 
Kaplan- Meier statistics. 
Insert: P-glycoprotein 
immunostaining in ALL. 
Data taken from Sauerbrey 
et al. [ 56 ]       
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mRNA or P-glycoprotein effl ux function have been addressed in only a few studies. 
These investigations confi rm the prognostic value of P-glycoprotein found in 
protein expression analyses.

   Most investigations on P-glycoprotein expression in breast cancer were also per-
formed using immunohistochemistry. Similar to acute leukemia, P-glycoprotein 
expression in breast cancer was signifi cantly associated with shorter progression- 
free survival and overall survival of patients in most clinical studies (Table  1.2 ).  

1.9     Conclusion and Perspectives 

 Analysis of the drug resistance phenomenon revealed that P-glycoprotein is not 
only important to explain multidrug resistance of tumors in laboratory animals, but 
also in cancer patients. Hence, this effl ux transporter represents a determinant lead-
ing to the failure of chemotherapy and ultimately to the death of many patients. 

 A consequence drawn from these research efforts during the past three decades 
may be the development of diagnostic tools to detect P-glycoprotein in tumors before 
chemotherapy to predict treatment success or failure. Indeed, there have been consid-
erable efforts to develop methods making P-glycoprotein detection possible for rou-
tine diagnostics in clinical laboratories [ 78 ,  79 ]. It turned out that the standardization 
of P-glycoprotein detection assays for routine diagnostics seems not to be trivial, but 
nevertheless is a reachable task. For leukemia, fl ow cytometric assays based on dou-
ble labeling with a fl uorescent-labeled anti-P-glycoprotein antibody and a fl uores-
cent P-glycoprotein substrate such as rhodamine 123 have been reported as reliable 
techniques to determine even low amounts of P-glycoprotein expression and activity 
[ 80 ,  81 ]. For the detection of P-glycoprotein in solid tumors, radiolabeled substrates 
of P-glycoprotein (e.g. sestamibi) represent an interesting approach [ 82 – 84 ]. 

 The pretherapeutic determination of P-glycoprotein expression in human tumors 
may be a valuable tool for personalized cancer therapy. In the case of high 
P-glycoprotein expression, anticancer drugs involved in the MDR phenotype may 
be ceased and other non-cross-resistant drugs or treatment modalities (e.g. immuno-
therapy) may be used. Another well-known approach is the use of inhibitors, which 
specifi cally inhibit the effl ux function of P-glycoprotein, thereby, re-sensitizing 
tumors to standard antitumor drugs. This concept will be discussed in more detail in 
Chap. 7 of this book.     
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    Chapter 2   
    Clinical Relevance of Multidrug-Resistance- 
Proteins (MRPs) for Anticancer Drug 
Resistance and Prognosis 

                E.A.     Roundhill     ,     J.I.     Fletcher     ,     M.     Haber     , and     M.D.     Norris    

    Abstract     Chemoresistance in cancer is frequently associated with elevated levels 
of multidrug transporters. While P-glycoprotein is the best known, the majority of 
multidrug transporters belong to the Multidrug Resistance Protein (MRP) family, 
also known as the ABCC family, which includes MRP1–9. These proteins are typi-
cally found in the plasma membrane of cells, where they effl ux a broad range of 
both physiological substrates and xenobiotics, including anticancer drugs. Consistent 
with the removal of chemotherapeutics from the cancer cell, high expression of 
several MRPs has been linked to poorer outcome in a variety of cancer types, sug-
gesting these proteins represent targets for therapy. In this review we will describe 
the range of reported substrates for MRP1–9 in vitro, discuss associations between 
the MRP family and patient outcome, and investigate the evidence that MRP family 
members contribute directly to drug resistance based on in vivo models and patient 
data. We will also discuss the value of MRP expression as a prognostic marker and 
its potential role in selecting treatment protocols and examine existing and novel 
strategies to target MRPs.  

  Keywords     Cancer   •   MRP   •   ABCC   •   Multidrug resistance   •   Chemotherapy  
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  BCRP/ABCG2    Breast cancer resistance protein   
  CSC    Cancer stem-like cell   
  CLL    Chronic lymphoblastic leukaemia   
  ESCC    Esophageal squamous cell carcinoma   
  EFS    Event-free survival   
  ESFT    Ewing’s sarcoma family of tumours   
  GSH    Glutathione   
  HER2    Human epidermal growth factor receptor 2   
  MDR    Multi-drug resistance   
  miRNA    MicroRNA   
  MRP    Multidrug resistance protein   
  NSCLC    Non-small cell lung cancer   
  OS    Overall survival   
  P-gp    P-glycoprotein   
  RNAi    RNA interference   
  SCLC    Small cell lung cancer   
  shRNA    Short hairpin RNA   
  siRNA    Small interfering RNA   
  SNPs    Single nucleotide polymorphisms   

2.1           Introduction 

 The net uptake of drugs into cells is regulated by both import and export mechanisms, 
with the latter commonly mediated by ABC transporters. Not surprisingly, ele-
vated levels of ABC transporters are frequently observed in cancer cells com-
pared to their normal counterparts and the role of ABC transporters in 
chemoresistance has been an area of major research interest more than three 
decades. P-glycoprotein (P-gp, MDR1, ABCB1) stands out for conferring the 
most extensive resistance to the broadest range of compounds [ 152 ] and has 
received by far the most attention, followed by the Breast Cancer Resistance 
Protein (BCRP, ABCG2). However, at least a dozen other family members have 
been demonstrated to effl ux chemotherapeutics and mediate chemoresistance 
in vitro, the majority of which belong to the ABCC subfamily, commonly referred 
to as the Multidrug Resistance Protein (MRP) family. For the majority of MRP 
family members, the ability to confer drug resistance in vitro is well established, 
and a large number of reports describe associations between their expression in 
tumours and patient outcome. To date, however, compelling evidence for a clini-
cally relevant role in multidrug resistance is very limited. This chapter will exam-
ine the ability of MRPs to effl ux chemotherapeutics in vitro, the available evidence 
for their importance in clinical drug resistance and mediating therapeutic responses, 
their potential prognostic value, and possible approaches to more clearly defi ne 
their roles.  
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2.2     The ABCC/MRP Subfamily 

 The ABCC (or MRP) subfamily of ABC transporters consists of 12 members, 9 of 
which function as energy-dependent transporters, including MRP1–6 (ABCC1–6) 
and MRP7–9 (ABCC10–12). The remaining members of the ABCC subfamily, 
CFTR (ABCC7), SUR1 (ABCC8) and SUR2 (ABCC9), are either ion channels or 
ion channel regulators. The MRPs are often further subdivided into the short MRPs 
(MRP4, MRP5, MRP8, MRP9), which contain two membrane-spanning domains 
and two nucleotide binding domains, and the long MRPs (MRP1, MRP2, MRP3, 
MRP6, MRP7), which contain an additional  N -terminal membrane-spanning domain. 
The long MRPs are mostly closely related to MRP1, with 46, 56 and 45 % identity 
for MRP2, MRP3 and MRP6, respectively, although the identity of MRP7 to long 
and short MRPs is comparable [ 35 ,  142 ]. The short MRPs are also generally more 
closely related, with MRP5 and MRP8 exhibiting 42 and 46 % identity with MRP9, 
while MRP4 is less closely related (31 %) [ 142 ]. For more detailed discussion of 
the structure and evolutionary relationships between family members, the reader is 
referred to previous comprehensive reviews [ 33 ,  35 ,  142 ]. Of the MRPs, all except 
MRP9 [ 118 ] have been shown to effl ux chemotherapeutics and, therefore, have the 
potential to contribute to drug resistance in cancer. Drugs established as MRP sub-
strates are listed in Table  2.1 . As with P-gp and ABCG2, transporters of the MRP 
family are also present in a range of pharmacological barriers including in the gastro-
intestinal tract, the blood–brain barrier and the proximal tubules of the kidney where 
they contribute to the vectorial transport of their substrates [ 153 ]. Consequently, they 
are key contributors to the absorption, distribution and elimination of cancer drugs. 
Table  2.2  lists the localisation of MRP family members in different pharmacological 
barriers and cell types.  

2.3        Specifi city of MRPs for Chemotherapeutic Agents 

 A variety of compounds with differing mechanisms of action have been identifi ed as 
MRP substrates (Table  2.1 ), ranging from traditional DNA damaging cytotoxics 
(doxorubicin) to antifolates (methotrexate) and microtubule damaging agents (vin-
cristine). In contrast to P-gp, which effl uxes unmodifi ed neutral and positively charged 
hydrophobic drugs, members of the MRP family also effl ux a range organic anions 
and drugs modifi ed by Phase II metabolism, including glutathione (GSH), glucuro-
nide and sulphate conjugates, or (in the case of MRP1) effl ux some drugs in a GSH-
dependent manner. There is signifi cant overlap in the substrate profi les of the family 
members, particularly within the long and short MRP subfamilies. Each of the long 
MRPs, for instance, effl uxes etoposide (Table  2.1 ), while each of the short MRPs 
effl uxes nucleoside analogues. Interestingly, MRP7, which has comparable sequence 
identity to both short and long MRPs, effl uxes both these drug classes. 

 To date there are few examples of targeted agents as substrates of MRP family 
members. Sorafenib was shown to be an MRP2 substrate [ 141 ] while sunitinib has 
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        Table 2.1    Anticancer substrates of MRP1–9   

 Class  Drug  Experimental method  References 

 MRP1  Alkylating agents  Chlorambucil (GSH 
conjugate) 

 Stable transfectant  [ 5 ,  104 ] 

 Melphalan (GSH 
conjugate) 

 Membrane vesicles  [ 5 ,  69 ] 

 Anthracenedione  Mitoxantrone  Drug-resistant cell line  [ 14 ,  105 , 
 143 ]  Membrane vesicles 

 Stable transfectant 
 Anthracyclines  Daunorubicin (GSH 

conjugate) 
 Drug-resistant cell line  [ 14 ,  27 ,  128 , 

 126 ]  Knockout cell line 
 Stable transfectant 

 Doxorubicin (GSH 
conjugate) 

 Drug-resistant cell line  [ 14 ,  27 ,  52 , 
 128 ,  126 ]  Knockout cell line 

 Stable transfectant 
 Epirubicin  Stable transfectant  [ 27 ] 

 Antifolates  Methotrexate  Membrane vesicles  [ 61 ] 
 Stable transfectant 

 ZD1694  Stable transfectant  [ 61 ] 
 Arsenic-based  Arsenate (conversion to 

arsenite) 
 Stable transfectant  [ 27 ,  93 ,  128 ] 
 Knockout cell line 

 Arsenite (GSH 
conjugate) 

 Knockout cell line  [ 27 ,  93 ,  128 ] 
 Stable transfectant 

 Epipodophyllotoxins  Etoposide (glucuronide 
conjugate; stimulated by 
GSH) 

 Drug-resistant cell line  [ 14 ,  27 ,  52 , 
 128 ,  69 , 
 133 ] 

 Membrane vesicles 
 Knockout cell line 
 Stable transfectant 

 Teniposide  Knockout cell line  [ 128 ] 
 Camptothecins  Irinotecan  Drug-selected cells  [ 23 ,  150 ] 

 SN-38  Drug-selected cells  [ 23 ,  150 ] 
 Membrane vesicles 

 Microtubule 
damaging 

 Colchicine  Drug-selected cells  [ 27 ,  75 ,  78 ] 
 Stable transfectant 

 Taxane  Taxol  Stable transfectant  [ 27 ] 
 Vinca alkaloids  Vinblastine  Drug-resistant cell line  [ 14 ,  27 ,  52 ] 

 Stable transfectant 
 Vincristine (GSH 
co-transport) 

 Drug-resistant cell line  [ 14 ,  27 ,  52 , 
 99 ,  128 ]  Knockout cell line 

 Stable transfectant 

(continued)
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 Class  Drug  Experimental method  References 

 MRP2  Anthracyclines  Doxorubicin  Stable transfectant  [ 31 ,  77 ] 
 Epirubicin  Stable transfectant  [ 31 ] 

 Antifolates  GW1843  Stable transfectant  [ 61 ] 
 Methotrexate  Membrane vesicles  [ 4 ,  61 ] 

 Stable transfectant 
 ZD1694  Stable transfectant  [ 61 ] 

 Arsenic oxoanion  Arsenite  Stable transfectant  [ 37 ,  93 ] 
 Camptothecins  Irinotecan  Animal studies  [ 22 ] 

 SN-38  Animal studies  [ 22 ] 
 Epipodophyllotoxins  Etoposide (stimulated by 

GSH) 
 Stable transfectant  [ 31 ] 

 Platinum-containing  Cisplatin (GSH 
dependent) 

 Stable transfectant  [ 31 ,  77 ] 

 Taxanes  Docetaxel  Stable transfectant  [ 67 ] 
 Paclitaxel  Stable transfectant  [ 67 ] 

 Vinca alkaloid  Vinblastine (stimulated 
by GSH) 

 Stable transfectant  [ 42 ,  158 ] 

 Vincristine (stimulated 
by GSH) 

 Stable transfectant  [ 31 ,  77 ] 

 MRP3  Antifolates  Methotrexate  Stable transfectant  [ 81 ] 
 Epipodophyllotoxins  Etoposide  Membrane vesicles  [ 81 ,  173 ] 

 Stable transfectant 
 Teniposide  Stable transfectant  [ 81 ] 

 Vinca alkaloid  Vincristine  Stable transfectant  [ 175 ] 
 MRP4  Alkylating agent  Cyclophosphamide  Stable transfectant  [ 156 ] 

 Camptothecins  10-hydroxy-camptothecin  Stable transfectant  [ 156 ] 
 Irinotecan  Stable transfectant  [ 114 ,  156 ] 
 Rubitecan  Stable transfectant  [ 156 ] 
 SN-38  Stable transfectant  [ 114 ,  156 ] 

 Purine analogues  6-mercaptopurine, 
Azathioprine 

 Stable transfectant  [ 20 ] 

 6-thioguanine  Stable transfectant  [ 20 ] 
 Methotrexate  Stable transfectant  [ 89 ,  156 ] 

 MRP5  Anthracyclines  Doxorubicin  Stable transfectant  [ 125 ] 
 Antifolates  Methotrexate  Membrane vesicles  [ 125 ,  165 ] 

 Stable transfectant 
 Pemetrexed  Stable transfectant  [ 125 ] 

 Platinum-based  Cisplatin  Stable transfectant  [ 125 ] 
 Oxaliplatin  Stable transfectant  [ 125 ] 

 Purine analogues  5-fl uorouracil, 
5′-deoxy-5′-fl uoridine 

 Membrane vesicles  [ 125 ] 
 Stable transfectant 

 Azathioprine, 
6-mercaptopurine 

 Stable transfectant  [ 168 ] 

 6-thioguanine  Stable transfectant  [ 125 ,  168 ] 

(continued)
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 Class  Drug  Experimental method  References 

 MRP6  Actinomycines  Actinomycin D  Stable transfectant  [ 9 ] 
 Anthracyclines  Daunorubicin  Stable transfectant  [ 9 ] 

 Doxorubicin  Stable transfectant  [ 9 ] 
 Epipodophyllotoxins  Etoposide  Stable transfectant  [ 9 ] 

 Teniposide  Stable transfectant  [ 9 ] 
 Platinum-containing  Cisplatin  Stable transfectant  [ 9 ] 

 MRP7  Anthracyclines  Daunorubicin  Stable transfectant  [ 63 ] 
 Camptothecins  SN-38  Stable transfectant  [ 63 ] 
 Epipodophyllotoxins  Etoposide  Stable transfectant  [ 63 ] 
 Epothilones  Epothilone B  Stable transfectant  [ 63 ] 
 Platinum-containing  Cisplatin  Stable transfectant  [ 151 ] 
 Pyrimidine 
analogues 

 Cytarabine  Animal studies  [ 62 ,  63 ] 
 Stable transfectant 

 Gemcitabine  Stable transfectant  [ 63 ] 
 Taxanes  Docetaxel  Stable transfectant  [ 62 ,  63 ] 

 Paclitaxel  Stable transfectant  [ 62 ,  63 ] 
 Vinca alkaloids  Vincristine  Stable transfectant  [ 62 ,  63 ] 

 Vinblastine  Stable transfectant  [ 62 ] 
 Vinorelbine  Drug selected cells  [ 13 ] 

 MRP8  Antifolates  Methotrexate  Stable transfectant  [ 21 ] 
 Purine analogues  5-fl uorouracil  Stable transfectant  [ 53 ] 

   Stable transfectant : cells transfected with vector containing specifi c MRP construct, resulting in 
specifi c overexpression of the MRP 
  Membrane vesicles : inside out membrane vesicles prepared from cell lines, with uptake of sub-
strates into vesicles determined 
  Drug-resistant cell line : cell line selected for high transporter expression in vitro by continuous 
culture in the presence of a cytotoxic agent 
  Knockout cell line : cells derived from knockout mice lacking a particular transporter, or cells 
expressing an RNAi construct targeting a transporter 
  Animal studies : studies performed in whole animals  

been identifi ed as a weak substrate of MRP4 [ 66 ]. However, since a range of tyro-
sine kinase inhibitors has been identifi ed as MRP inhibitors, including imatinib, 
nilotinib and cediranib (MRP1 inhibitors [ 38 ,  58 ,  155 ]) and lapatanib, erlotinib and 
masatinib (MRP7 inhibitors [ 72 ,  85 ]), it remains possible that some of these agents 
may be MRP substrates. 

 While the list of established substrates for MRP family members is quite extensive, 
it should be recognised that the majority of these were determined to be substrates 
using cell lines selected for high transporter expression in vitro by continuously 
culturing in the presence of a cytotoxic drug, cell lines overexpressing individual trans-
porters or as “inside-out vesicles” derived from these cell lines [ 50 ]. These systems, 
while often well controlled, do not necessarily refl ect typical endogenous transporter 
expression levels. Furthermore, transport of a substrate in vitro does not necessarily 
imply physiological relevance in vivo, with the latter dependent on both the affi nity of 
the substrate for the transporter and the achievable concentration of the substrate 

Table 2.1 (continued)
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in vivo. Furthermore, the transport of some substrates is dependent on or modulated by 
endogenous molecules, as exemplifi ed by the glutathione dependence of both doxoru-
bicin and vincristine transport by MRP1 [ 14 ,  27 ,  52 ,  128 ,  99 ] (Table  2.1 ). Validation of 
drugs as transporter substrates using MRP knockout mice has the potential to be infor-
mative, although care is required with the interpretation of these data as the affi nity of 
some MRP substrates varies markedly between the mouse and human transporters. 
Human MRP1, for example, confers resistance to anthracyclines, whereas mouse 
MRP1 does not [ 147 ], while cGMP has a very low affi nity for mouse MRP4 compared 
to human MRP4 [ 32 ]. On the other hand, Mrp1 −/−  mice show increased sensitivity to 
etoposide [ 100 ,  166 ], Mrp2 −/−  mice show elevated plasma methotrexate, Mrp4 −/−  mice 
have higher levels of plasma and cerebrospinal fl uid topotecan [ 90 ] and Mrp7 −/−  mice 
are more sensitive to paclitaxel [ 64 ], these fi ndings validated these drugs as physi-
ologically relevant substrates of their respective transporters.  

2.4     Association of MRPs With Cancer Survival 

2.4.1     MRP1 

 MRP1 was the fi rst of the family to be identifi ed [ 26 ] and as a result, it has been the 
focus of the majority of clinical and in vitro studies. MRP1 expression has been 
reported in a variety of cancer types, including chronic lymphoblastic leukaemia 
(CLL) [ 111 ], non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) 
[ 12 ], prostate cancer [ 160 ], gastric carcinoma [ 41 ], esophageal squamous cell 

   Table 2.2    Localisation of MRP family members relevant to drug disposition   

 Pharmacological barrier/cell  Cellular localization  References 

 MRP1  Blood–brain barrier  Apical (luminal)  [ 149 ,  177 ] 
 Blood–cerebrospinal fl uid barrier  Basolateral  [ 127 ] 
 Blood–testis barrier  Basolateral  [ 157 ] 
 Placenta  Apical  [ 146 ] 
 Bronchial epithelium  Basolateral  [ 137 ] 

 MRP2  Intestinal epithelium  Apical (luminal)  [ 48 ] 
 Hepatocytes  Apical (canalicular)  [ 15 ,  122 ] 
 Kidney proximal tubules  Apical (luminal)  [ 136 ] 

 MRP3  Intestinal epithelium  Basolateral  [ 138 ] 
 Hepatocytes  Basolateral (sinusoidal)  [ 79 ] 

 MRP4  Hepatocytes  Basolateral (sinusoidal)  [ 129 ] 
 Blood–brain barrier  Apical (luminal)  [ 90 ,  109 ,  177 ] 
 Blood–cerebrospinal fl uid barrier  Basolateral  [ 90 ] 
 Kidney proximal tubules  Apical (luminal)  [ 159 ] 

 MRP5  Blood–brain barrier  Apical (luminal)  [ 109 ,  177 ] 
 MRP6  Hepatocytes  Basolateral (sinusoidal)  [ 102 ] 

 Kidney proximal tubules  Basolateral  [ 51 ,  139 ] 
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carcinoma (ESCC) [ 112 ], colorectal cancer [ 46 ], endometrial carcinoma [ 82 ], gli-
oma [ 1 ], retinoblastoma [ 19 ], acute myeloid leukaemia (AML) [ 91 ], acute lympho-
blastic leukaemia (ALL) [ 7 ], breast cancer [ 44 ], Ewing’s Sarcoma Family of Tumours 
(ESFT) [ 131 ] and neuroblastoma [ 55 ,  113 ]. The presence of MRP1 in this broad 
range of adult and childhood cancer tissues is consistent with the hypothesis that 
MRP1 may have an important role in cancer biology. Supporting this, MRP1 expres-
sion has been associated with the time to a fi rst event (event-free survival, EFS) and 
overall survival (OS). More specifi cally, MRP1 mRNA expression has been linked 
with poor survival rates in NSCLC [ 95 ,  96 ], neuroblastoma [ 55 ,  113 ], childhood and 
adult AML [ 134 ] and ALL [ 40 ,  124 ]. Similarly, protein expression of this ABC trans-
porter has been linked with an adverse outcome in both adult breast cancer [ 44 ] and 
nasopharyngeal carcinoma [ 87 ] and childhood cancers (ESFT; [ 131 ]). In contrast, 
although expressed, MRP1 protein levels have been reported as showing no associa-
tion with EFS in breast cancer [ 17 ], ovarian carcinomas [ 68 ] and ALL [ 148 ] or OS in 
AML [ 43 ]. 

 Consistent with increased ABC transporter protein expression as a mechanism 
by which cells develop multidrug resistance, MRP1 mRNA and protein expression 
have been identifi ed as increased in post-treatment and metastatic samples com-
pared to normal and diagnosis tissues, respectively, in a variety of solid tumours 
[ 1 ,  19 ,  80 ]. Similarly, MRP1 expression has been linked with adverse tumour grade 
in primary epithelial ovarian carcinoma [ 3 ]. Taken together, these data suggest a 
role for MRP1 in the progression of cells from a normal to a malignant phenotype. 
However, despite this, very few studies have described a signifi cant link between 
MRP1 expression and patient response to therapy [ 12 ,  65 ,  68 ,  119 ], although this 
likely refl ects the complexity of the chemotherapeutic response in patients.  

2.4.2     MRP2 

 Similar to studies investigating MRP1, both MRP2 protein and mRNA expression 
have been reported as predictive of a worse OS in oesophageal squamous cell carci-
noma [ 172 ], gall bladder carcinoma [ 74 ], breast cancer [ 101 ], NSCLC [ 45 ], AML 
[ 145 ], and adult and child ALL [ 124 ]. An association with a shorter EFS in breast 
cancer [ 101 ] and both adult and child ALL [ 124 ] has also been reported. Furthermore, 
MRP2 also appears to be involved in the response of cells to therapy. For example, 
in oesophageal squamous cell carcinoma tumour samples, MRP2 mRNA and pro-
tein expressions were increased after treatment with MRP2 substrates [ 172 ].  

2.4.3     MRP3 

 Unlike MRP1 and MRP2, the prognostic signifi cance of MRP3 expression at the 
protein level is yet to be evaluated. However, increased mRNA expression levels 
have been linked to a poor OS and EFS in ALL [ 124 ,  145 ], AML [ 145 ] and 
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pancreatic carcinoma [ 80 ]. In contrast, high MRP3 mRNA has been correlated with 
better outcome in neuroblastoma [ 59 ].  

2.4.4     MRP4 

 Although MRP4 expression in cancer has been described [ 124 ,  145 ], studies inves-
tigating the clinical relevance of MRP4 are limited and inconsistent. Although a 
correlation between high MRP4 expression and poor patient survival has been 
described in epithelial ovarian carcinoma [ 3 ] and neuroblastoma [ 114 ], low MRP4 
protein expression in prostate cancer was linked to a worse EFS and prostate- 
specifi c Gleason score [ 103 ]. Interestingly, MRP4 expression has been shown to be 
signifi cantly higher in colorectal and pancreatic carcinoma tumour specimens com-
pared with normal tissue [ 60 ], and in polyps from  ApcMin /+ mice compared with 
normal mucosa [ 60 ,  80 ], consistent with a role in tumour development. Furthermore, 
 Abcc4  defi ciency reduces systemic exposure to oral Dasatinib [ 49 ], possibly through 
reducing oral absorption.  

2.4.5     MRP5 

 A correlation between MRP5 mRNA expression and both overall and EFS has been 
described in adult and child ALL [ 124 ] and, consistent with a causative role in can-
cer development, mRNA is increased in pancreatic carcinoma compared to normal 
tissue [ 80 ] and in lung cancer patients exposed to platinum drugs [ 117 ]. However, 
no association between MRP5 mRNA levels and patient survival was described in 
AML [ 145 ], suggesting the role of MRP5 is not consistent across all cancer types.  

2.4.6     MRP6 

 To our knowledge only one study has evaluated MRP6 expression in cancer tissues; 
MRP6 mRNA was expressed in 98 % of ALL patients and was predictive of EFS 
and OS in both adult and child ALL [ 124 ], suggesting a role in the biology of 
ALL. However, since MRP6 overexpression induced only low-level resistance to 
chemotherapeutics in vitro (less than threefold increase in IC 50  [ 9 ]), its ability to 
contribute to chemoresistance in vivo would seem limited.  

2.4.7     MRP7 

 Although MRP7 has been well characterised in vitro (Table  2.1 ; [ 62 ,  63 ]), the 
prognostic signifi cance of this protein is yet to be investigated. However, incubation 
with MRP7 substrates increased expression of the transporter in NSCLC [ 13 ] and in 
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salivary gland adenocarcinoma [ 106 ] cell lines, and MRP7 expression was inversely 
correlated with paclitaxel sensitivity in 17 non-small cell lung cancer (NSCLC) 
cell lines [ 117 ], suggesting MRP7 is important for the response of cells to specifi c 
substrates in cancer.  

2.4.8     MRP8 

 The prognostic signifi cance of MRP8 has been examined exclusively in breast cancer 
and the data are confl icting. Although MRP8 has been associated with a poor progno-
sis in all subtypes except luminal A [ 171 ], mRNA and protein expression were 
decreased in cancer compared to normal breast tissue [ 144 ]. In addition, SNPs within 
MRP8 have also been linked with cancer risk in 270 Japanese patients [ 120 ] but this 
association was not observed in European cohorts [ 8 ,  86 ]. Therefore, it is likely that 
MRP8 is similar to MRP3 and MRP6, since despite an association with patient 
survival in some cases, there is no clear evidence that MRP8 has a specifi c role in 
cancer development or the response of cancer cells to therapy.   

2.5     Validation of Multidrug Resistance Proteins 
as Therapeutic Targets 

 Despite the multitude of clinical correlations between the expression of MRP family 
members and outcome, evidence of a causative link between MRP expression and 
clinical multidrug resistance is largely absent. A number of factors contribute to the 
diffi culty of establishing causality subsequent to validation as a therapeutic target. 
Firstly, drug resistance in the clinic is frequently multifactorial. In additional to 
enhanced drug effl ux, which may be mediated by multiple transporters, alterations 
in the ability of cancer cells to take up drugs, and alterations affecting the ability of 
drugs to kill cells, including increased drug metabolism activity, increased DNA 
repair capacity, alterations to the cell cycle, and increased resistance to apoptosis, 
can all contribute to multidrug resistance. Secondly, many of the clinical correlations 
described above have been determined in the context of combination chemotherapy 
that may include both substrates and non-substrates for a given transporter. Thirdly, 
the cohorts examined frequently contain multiple cancer subtypes and/or consist of 
patients treated under differing chemotherapeutic protocols, and have been con-
ducted retrospectively rather than prospectively, or have been conducted solely with 
diagnosis samples with no measure of MRP expression at relapse. Finally, few if 
any of the studies described above have been able to account for the possibility of 
tumour heterogeneity, which may limit the ability to detect MRP expression in the 
tumour cell subpopulations that allow relapse [ 148 ]. This consideration is also rel-
evant for cancer stem-like cell (CSC) populations, which express a variety of ABC 
transporters [ 34 ,  73 ,  178 ,  135 ], that may allow them to remain viable after therapy, 
leading to re-population of the tumour and patient relapse. 
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 In the absence of compelling clinical data, the knockout of MRPs in genetically 
modifi ed mouse cancer models can provide opportunities to formally assess their role 
in drug resistance. Mice defi cient in MRP1 [ 100 ,  167 ], MRP2 [ 24 ,  108 ,  161 ], MRP3 
[ 10 ,  174 ], MRP4 [ 11 ,  90 ,  98 ], MRP5 [ 32 ], MRP6 [ 51 ,  76 ] and MRP7 [ 64 ] have all 
been previously described, however to date, only the MRP1 knockout mouse has been 
crossed to a genetic cancer mouse model. In these experiments, the TH-MYCN 
mouse, a clinically relevant model of the paediatric solid tumour neuroblastoma [ 164 ] 
was crossed with an Mrp1 knockout (Mrp1 −/− ) mouse [ 18 ]. To examine tumour intrin-
sic effects, as opposed to pharmacokinetic effects, tumours were harvested from 
Mrp1 +/+  or Mrp1 −/−  mice and engrafted into secondary recipients. In tumours lacking 
Mrp1, the response to the MRP1 substrates vincristine and etoposide was signifi cantly 
enhanced, with a two to threefold delay in tumour growth, while response to cisplatin 
and cyclophosphamide, neither of which are effl uxed by MRP1, was unaffected by 
MRP1 status [ 18 ]. These data provide direct evidence that MRP1 mediates chemore-
sistance in vivo. Comparable approaches may be of value for determining the role of 
other MRPs in chemoresistance, although as mentioned in Sect.  2.3  above, the affi nity 
of some MRP substrates varies markedly between the mouse and human transporters, 
limiting the ability to extrapolate to humans.  

2.6     Can Knowledge of MRP Expression 
Improve Patient Outcome? 

2.6.1     MRP Expression as a Marker of Patient Prognosis 

 While MRP expression in tumours is frequently associated with outcome, it is less 
clear whether their expression has additional prognostic value beyond standard pre-
dictors of outcome. In breast cancer and ovarian cancer, where histological subtypes 
are more clearly defi ned, MRP expression appears to correlate with a more aggres-
sive phenotype. MRP1 was more frequently expressed in both high-risk resistant 
triple-negative (Human Epidermal Growth Factor Receptor 2 (HER2), oestrogen 
and progesterone receptor negative) breast cancer [ 171 ] and stage 1C endometrial 
carcinoma [ 82 ] than in other subtypes. Furthermore, expression of MRP1 predicted 
a worse OS in these groups [ 82 ,  171 ], consistent with the classical markers of 
adverse prognosis in these subtypes [ 30 ,  36 ]. Similarly, MRP8 was more common 
in HER2 enriched and luminal A subtypes, where it predicts an adverse outcome 
[ 171 ], consistent with the poor survival associated with these patient groups [ 57 ]. 
Furthermore, increased MRP2 mRNA expression has been linked with poor sur-
vival in oestrogen receptor negative patients [ 101 ] which is linked to an adverse 
survival compared to receptor positive patients [ 39 ]. Therefore, since increased 
MRP expression identifi es a similar population to that of the current well- established 
markers of patient outcome in breast and ovarian cancer, a role for MRP expression 
in improving patient prognosis in this scenario is unclear. However, more generally, 
while associations between MRP expression and clinical outcome have been 
frequently described, only relatively few studies have addressed whether MRP 
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  Fig. 2.1    Prognostic signifi cance of ABCC gene expression in neuroblastoma. ( a ) Combined 
expression of the ABCC1, ABCC3 and ABCC4 genes and cumulative event-free survival (EFS) in 
209 patients with neuroblastoma. Patients were categorized into eight clusters on the basis of their 
combined ABCC1, ABCC3, and ABCC4 expression pattern. Kaplan–Meier survival analysis 
of these clusters revealed three statistically distinct groupings (Groups A, B, and C), which were 
associated with the risk of relapse associated with individual ABCC gene expression. Group A 

 

E.A. Roundhill et al.



39

expression is informative independent of established predictors of outcome 
[ 3 ,  87 ,  95 ,  114 ,  134 ]. The prognostic value of the MRP family, therefore, remains to 
be fi rmly established in any cancer, at least at the level of a single gene. It is possi-
ble, however, that the combined expression of several MRPs may be of prognostic 
value. The combined expression of MRP1 (ABCC1), MRP3 (ABCC3), and MRP4 
(ABCC4) stratifi ed neuroblastoma patients into groups having excellent, intermedi-
ate, or poor outcome (Fig.  2.1 ), and is one of the most powerful independent prog-
nostic markers yet identifi ed for this disease [ 59 ].   

2.6.2     MRP Expression as a Method to Stratify Patients 
for Therapy 

 If we assume that an MRP family member contributes to response to therapy, 
expression of that MRP might be exploited to select more effective therapeutic 
options. For instance, patients with high expression of MRP may be treated with a 
non-MRP substrate chemotherapeutic, thereby avoiding the resistance generated by 
effl ux of the agent. 

 In addition to expression at the protein and mRNA levels, specifi c single nucleo-
tide polymorphisms (SNPs) in genes of the MRP family (particularly MRP1) have 
also been associated with patient survival [ 2 ,  16 ,  154 ,  121 ] and response to therapy 
[ 154 ,  163 ], including alterations in drug plasma levels [ 2 ], response to exogenous 
and endogenous substrates [ 28 ,  29 ,  94 ,  84 ], and increased chemotherapy-induced 
side effects (cardiotoxicity) [ 84 ,  140 ,  169 ,  162 ]. Therefore, similar to the basic 
expression of MRPs in cancer, it would be advantageous to stratify patients with a 
SNP conferring a more aggressive phenotype, to more extensive therapy, and/or 
include those substrates unaffected by the expression of a specifi c SNP. However, as 
we have described, the response of cells to chemotherapy is dependent on multiple 
factors and so it is unlikely that the use of a non-MRP substrate in patient treatment 
would completely bypass the resistance of tumours to therapy.   

Fig. 2.1 (continued) included only those patients whose tumours displayed low levels of ABCC1 
and ABCC4 and high levels of ABCC3, refl ecting “favourable” ABCC gene expression. Group B 
consisted of patients whose tumours displayed only one unfavourable risk factor with respect to the 
three ABCC genes analysed (i.e., ABCC1 high, ABCC4 high, or ABCC3 low), and Group C com-
prised patients whose tumours exhibited two or more unfavourable ABCC risk factors. Similar 
associations between combined ABCC gene expression and increasingly poor outcome were also 
observed in subgroups of patients ( b ) with stage 3 or 4 disease or ( c ) whose tumours lacked MYCN 
amplifi cation. ( d ) Combined expression of the ABCC1, ABCC3, and ABCC4 genes and cumula-
tive EFS in 251 neuroblastoma patient samples analysed by Oberthuer et al. [ 116 ]. Patients in the 
Oberthuer et al. cohort were categorized into eight groups as described for panel ( a ) above. These 
groupings were also strongly predictive of EFS in subgroups of patients ( e ) with unfavourable 
(stages 3 and 4) disease or ( f ) with non–MYCN-amplifi ed disease. At 0, 3, and 6 years from diag-
nosis [Panels ( a ), ( b ), and ( c )], or 0, 5, and 10 years from diagnosis [Panels ( d ), ( e ), and ( f )], the 
number of patients at risk of relapse are shown. Figure reproduced from [ 59 ], with permission       
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2.7     MRPs as Targets for Therapy 

2.7.1     Small Molecule Modulators 

 Assuming that MRP transporters contribute signifi cantly to clinical multidrug 
resistance, it will be critical to establish whether MRPs can be successfully targeted 
to either reverse drug resistance, or at least allow a broader therapeutic window for 
drugs that are at or approaching their maximum tolerated dose. Therefore, a variety 
of strategies have been employed to abolish the resistance caused by MRPs. The 
most common of these is the use of small molecule inhibitors which, prevent bind-
ing or effl ux of substrates, thus enhancing the effi cacy of chemotherapeutics [ 152 ]. 
Although many small molecule inhibitors of MRPs have been evaluated in vitro 
and shown good inhibition of effl ux activity and enhanced the effects of MRP sub-
strates (Table  2.1 ), sulindac, an inhibitor of MRP1 ([ 115 ], clinicaltrials.gov) is the 
only modulator to progress through in vivo studies to clinical trials. Several hypoth-
eses have been suggested as to why a lack of correlation exists between the 
responses observed using in vivo models and behaviour in clinical studies, including 
differences in pharmacokinetics of combination therapies in mice and humans, 
leading to unpredicted toxicities. Furthermore, the cellular heterogeneity that 
exists in patient tumours, in addition to differences in basal MRP expression and 
pharmacokinetic activity, cannot be modelled effectively using in vitro cell line 
and in vivo mouse models. 

 Inhibitors of P-glycoprotein (discussed in detail elsewhere in this volume) have 
been extensively examined in clinical studies and several P-gp inhibitors, also 
reported to inhibit MRP1, have been evaluated in Phase I clinical trials [ 123 ,  132 ]. 
However, only one MRP inhibitor, sulindac, has been examined in a Phase II clini-
cal trial, given in combination with epirubicin in patients with advanced melanoma, 
where no unacceptable toxicity was observed (ClinicalTrials.gov). Despite the lim-
ited MRP inhibitor trials, extensive studies modulating P-gp have identifi ed a range 
of challenges associated with ABC transporter protein inhibition. For instance, 
pharmacokinetic interactions between modulators and chemotherapeutics often 
limit the normal effl ux, absorption and metabolism of therapeutics, leading to unac-
ceptable plasma levels. Therefore, it is essential to appreciate the normal physiolog-
ical role of these proteins when developing inhibitors. 

 An ideal modulator would have high specifi city and potency, good bioavailabil-
ity, absence of toxicity in combination with chemotherapeutics and be screened/
designed specifi cally for MRP inhibition. As with early generation P-gp inhibitors, 
MRP inhibitors have typically been drugs previously identifi ed for other purposes. 
Sulindac, for example, is a non-steroidal anti-infl ammatory drug [ 115 ], while MK-571 
was developed as a cysteinyl leukotriene receptor antagonist [ 92 ]. Modulators 
optimised specifi cally for MRP inhibition would be expected to be more effective. 
In addition to non-specifi c modulators, the only clinical trial evaluating sulindac 
enrolled advanced cancer patients, after failure of initial chemotherapy protocols 
[ 115 ]. As a result, tumours in this cohort may have acquired multiple alternative 
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mechanisms of resistance, which may also contribute to clinical outcome. Ideally, 
clinical studies with more stringent criteria and objectives should be employed, 
including evaluating modulators in ABC transporter expressing cancer types at 
diagnosis, using MRP substrate chemotherapeutics, effective monitoring of patient 
side effects/toxicity and effect on MDR phenotype [ 152 ].  

2.7.2     Monoclonal Antibodies 

 In addition to the traditional inhibition of MRP effl ux activity by small molecule 
modulators, several strategies to prevent MRP activity are currently under investiga-
tion. Targeting general cancer cell-specifi c mechanisms using monoclonal antibod-
ies has been a successful strategy in a variety of leukaemias and solid tumours [ 88 ]. 
However, although a large number of MRP antibodies are currently available and 
have shown activity in vitro, an antibody targeting an MRP is yet to be evaluated 
in vivo. In the case of MRP1, in addition to ineffective inhibition, the lack of pro-
gression to in vivo studies has also been linked with the intracellular binding of 
currently available antibodies and subsequent inability to generate antibodies to the 
extracellular domains [ 25 ].  

2.7.3     RNA Interference 

 Although RNA interference (RNAi) targeting MRPs has proved valuable in vitro, 
there are limited studies investigating the use of RNAi in vivo. Signifi cant altera-
tions in tumour mass or substrate accumulation after treatment with substrates and 
MRP1 siRNA [ 170 ] or MRP2 shRNA by adenovirus [ 107 ] in vivo have been 
described, suggesting this is a plausible strategy for MRP inhibition. In addition, 
several microRNAs have been associated with expression of MRPs, particularly 
MRP1 in vitro [ 54 ,  83 ,  97 ]. However, as a single miRNA has multiple mRNA tar-
gets [ 6 ], it is likely that the addition of an MRP inhibitory miRNA to a cell will 
induce effects on additional mRNA species and pathways. Therefore, to confi rm 
inhibition of MRP by a particular RNA species as a viable strategy, more extensive 
validation in vivo is required. 

 It must be remembered that MRPs are also expressed on the surface of non- cancer 
cells and so targeting the malignant cell specifi cally by RNAi represents a challenge. 
However, recent studies have suggested the use of bio-nanocapsules, which display 
a molecule capable of recognising a tumour cell-specifi c target, such as HER2 in 
breast and ovarian cancer. Consequently, capsules deliver RNAi only to abnormal 
cells, inducing target protein knockdown [ 110 ].   
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2.8     Are There Roles for MRPs in Cancer Progression 
Other Than in Drug Resistance? 

 Although the focus of most studies has been the role of MRPs in drug resistance and 
the subsequent effects on cancer patient prognosis, there is some suggestion that 
MRPs may infl uence patient outcomes by alternative mechanisms [ 47 ]. The effl ux of 
endogenous substrates, such as glutathione and sulphur conjugates [ 56 ,  176 ], leukot-
riene C 4  [ 92 ], bilirubicin, bile salts [ 70 ], 17-beta- D -glucuronide, cAMP and cGMP 
[ 20 ,  71 ] by MRPs is well described and the ability of cells to successfully maintain 
cellular homeostasis in conditions of stress, such as chemotherapy insult, may also 
represent a targetable mechanism. Furthermore, MRPs have also been linked with 
normal [ 130 ] and cancer [ 59 ] cell migration in vitro and also tumour formation in a 
transgenic mouse model of neuroblastoma [ 59 ], suggesting a possible secondary role 
for these proteins in cancer development in addition to traditional effl ux activity.  

2.9     Summary 

 In this chapter we have described the wide range of known anticancer substrates of 
MRPs, and the correlations between expression and patient outcome in a variety of 
cancer types. However, whether these associations will improve the prediction of patient 
prognosis above existing markers is yet to be fully examined. Furthermore, there is 
some diffi cultly in confi rming a causative role for MRPs in cancer, since although some 
substrates induce expression of MRPs in tissues, multiple factors contribute to drug 
resistance. In addition, clinical correlative studies routinely involve patients who have 
been treated with differing chemotherapeutic protocols, both between and within a can-
cer type. A better understanding of the role of MRPs in patient outcome may lead to 
expression of MRPs being usefully employed to stratify patients with increased expres-
sion for more intensive therapy or treatment with a non-MRP substrate. However, only 
one MRP inhibitor has been evaluated in clinical trials, although monoclonal antibodies 
and RNAi techniques are currently showing promise as novel strategies for MRP inhibi-
tion. Therefore, until these multidrug transporter proteins are shown to have clear caus-
ative roles in drug resistance, we must question whether MRP inhibition will be a viable 
therapy in combination with traditional therapeutics.     
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    Abstract     The breast cancer resistance protein (BCRP), formally known as ATP- binding 
cassette protein G2 (ABCG2), is an effl ux transporter that plays a signifi cant role in 
altering absorption, distribution, metabolism, and excretion (ADME) of most extant and 
emerging molecular cancer therapeutics. BCRP expressed by neoplastic cells may also 
contribute to the resistance of these cells to chemotherapeutic agents. Although the 
expression of BCRP in human cancers has often correlated with adverse outcomes, to 
date therapeutic strategies utilizing the inhibition of BCRP function to improve the 
ADME of cancer chemotherapeutics or to sensitize cancer cells that express BCRP to 
chemotherapy have not been fruitful. This review will examine the most current litera-
ture probing BCRP’s role in ADME of cancer therapeutic agents and drug resistance.  
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3.1           Introduction 

 The breast cancer resistance protein, (BCRP), formally known as ATP-binding 
 cassette protein G2 (ABCG2), is an effl ux transporter that plays a signifi cant role in 
altering absorption, distribution, metabolism, and excretion (ADME) of most extant 
and emerging molecular cancer therapeutic agents. BCRP expressed on neoplastic 
cells may also contribute to the resistance of these cells to chemotherapeutic agents. 
BCRP was cloned for the fi rst time in our laboratories at the University of Maryland 
from multidrug resistant human breast cancer cells [ 1 ]. Although the expression of 
BCRP in human cancers has often correlated with adverse outcomes, to date thera-
peutic strategies utilizing the inhibition of BCRP function to improve the ADME of 
cancer chemotherapeutics or to sensitize cancer cells that express BCRP to chemo-
therapy have not been fruitful. This review will examine the most current literature 
probing BCRP’s role in cancer ADME and drug resistance. 

 This chapter will be a sequel to two previous reviews [ 2 ,  3 ], the more recent 
published in January of 2012. Except for background information on BCRP, the 
literature review for the present paper will be from July 2011 to August 15, 2013. 
The present chapter will reprise the basic structure of the most recent review pub-
lished in Biochemical Pharmacology in 2012 [ 3 ]. Prior to August 15, 2013, there 
were 2860 articles listed in PubMed concerning BCRP or ABCG2. In the interval 
from July 1, 2011 to Aug 15, 2013, PubMed identifi ed 919 articles relating to BCRP 
or ABCG2.  

3.2     Background Review: BCRP Functional 
Dynamics in Normal Tissues 

 The past two decades have seen an accumulation of information on BCRP structure, 
function, expression, and regulation, thereby providing novel features/targets for 
altering BCRP expression and function. 

3.2.1     BCRP Structure and Function 

 BCRP, a half-transporter, is synthesized as a monomer and subsequently dimerizes 
and translocates to the plasma membrane to function as a drug effl ux pump for its 
substrates. The BCRP monomer has six transmembrane domains (TMDs) and a 
single nucleotide binding domain (NBD) (Refs.  15 – 17  in our most recent review 
[ 3 ]). It is now established that the amino acid at position 482 (R/G/T) in TMD3 is 
essential for BCRP substrate binding and specifi city [ 4 ,  5 ]. Recently, specifi c muta-
genesis of proline residues on BCRP demonstrated that the proline residue at posi-
tion 485, but not at 480, in TMD3 is also essential for substrate specifi city, while the 

K. Natarajan et al.



55

proline residue at 392 was essential for transport activity of BCRP in general [ 6 ]. 
In addition to the substrate binding site around R482, a sterol binding site (SBE) 
encompassing amino acids 555–558 (LXXL) exists in the cytoplasmic loop between 
TMD4 and TMD5 in BCRP [ 7 ]. The data on the role of BCRP in sterol transport are 
contradictory [ 8 – 11 ], but cholesterol was found to be essential for optimal function-
ing of BCRP in vitro [ 12 ]. Another study confi rmed sterol dependence of BCRP 
function, with sterols such as estradiol, testosterone, progesterone, and androstene-
dione inhibiting BCRP transport noncompetitively [ 13 ], suggesting that these hor-
mones bound to an allosteric site, possibly the SBE. Mutation analysis of L558 in 
the SBE indeed rescued BCRP from cholesterol dependence, confi rming the role of 
cholesterol as a regulator of BCRP function. Until recently functional BCRP was 
thought to localize primarily to the plasma membrane, but recent studies have 
shown that BCRP can also localize to the mitochondria [ 14 ,  15 ] as well as to the 
nucleus [ 16 ]. The function of nuclear-localized BCRP is yet unclear, but BCRP 
localized to the mitochondria regulates heme metabolism by modulating protopor-
phyrin IX (PPIX) transport and accumulation in the mitochondria [ 14 ,  15 ]. BCRP, 
a half- transporter, in addition to forming functional homodimers or oligomers, 
could possibly also heterodimerize or heteromultimerize. Indeed several interacting 
partners of BCRP have been reported, including CD147 (extracellular matrix metal-
loproteinase inducer) [ 17 ], F-actin, Eps8 (epidermal growth factor receptor pathway 
 substrate 8) and rp3 (actin-related protein 3) [ 18 ,  19 ].  

3.2.2     BCRP Expression 

 Studies have reported BCRP expression in the side population (SP) cells of every 
organ and tumor studied so far. BCRP determines the symmetric cell division and 
the G1-S transition of the cell cycle in cardiac side population progenitor cells [ 20 ]. 
Besides the more primitive side population cells, BCRP is also expressed in the 
well-differentiated surface epithelial cells of all organs involved in drug transport, 
as well as in fully mature erythrocytes. Since different organs and specifi c tissues 
within an organ express BCRP, to enhance specifi city and decrease toxicity, it is 
critical to target and inhibit BCRP only in the specifi c tumor/cancer tissue or phar-
macokinetically relevant organ. To achieve this goal, it is necessary to characterize 
BCRP expression and understand its function in various organs. Recent studies have 
focused on characterizing BCRP expression within specifi c cell types of a particular 
organ. BCRP was found to be expressed in the cortex of the adrenal gland and the 
plasma membrane of adipocytes, while its expression in the pituitary, pancreas, 
ovary, and testis was limited to capillaries [ 13 ]. However, during spermatogenesis in 
mouse, rat, and bull testis, BCRP expression in the spermatogonia and the acrosome 
of the spermatozoa has also been reported [ 21 ]. A more comprehensive character-
ization of BCRP expression in the rat testis during spermatogenesis revealed that 
the apical ectoplasmic specialization (ES), which is the spermatid–Sertoli cell inter-
face, expresses BCRP selectively in stages VI–VIII. BCRP formed a complex with 
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F-actin, Eps8, and rp3 at the apical ES in Sertoli cells. The basal ES forms the 
blood–testis barrier (BTB) but BCRP was not associated with any of the molecules 
of the basal ES, suggesting that BCRP might not regulate drug transport across BTB 
[ 18 ,  19 ]. BCRP expression and complex formation with F-actin, Eps8, and rp3 were 
essential for spermatid polarity as well as properly timed release of mature sperma-
tids from the seminiferous epithelium. This is the fi rst report of a role of BCRP 
other than its effl ux transport activity. Irrespective of the stage of the seminiferous 
epithelial cycle, myoid peritubular cells, and capillaries in the testis expressed 
BCRP, the function of which is yet unclear. 

 While BCRP expression and function in the BTB is now questionable based on 
the above study, the blood–brain barrier (BBB) expresses BCRP [ 22 ]. Besides the 
BBB, a blood–cerebrospinal fl uid (CSF) barrier also exists in the brain. In a recent 
study in mice, BCRP was expressed in the arachnoid cells that form part of the 
blood–CSF barrier. The arachnoid cells express BCRP on both their basal and api-
cal surfaces, the dura- and CSF-facing membranes respectively, indicating that 
BCRP is also a component of the blood–CSF barrier. Drug transporters on the 
arachnoid barrier cells contribute to the blood–CSF barrier [ 23 ]. 

 Limited availability of human tissues restricts human BCRP expression studies. 
Since our last review on BCRP, only two studies have analyzed BCRP expression in 
human tissues. One study analyzed regional differences in BCRP expression in the 
human placenta, revealing uniform BCRP expression in different regions of the 
human placenta [ 24 ]. The other study demonstrated BCRP expression in the human 
retina, both in the nerve fi bers and in the retinal pigment epithelium (RPE) [ 25 ]. 
The function of BCRP in the RPE is yet unclear, but the RPE is the active site of 
photoreceptor phagocytosis as well as melanin synthesis. Further studies are 
required to elucidate the role of BCRP in the RPE.  

3.2.3     BCRP Regulation 

 Methylation status, alternative promoters, microRNAs (miRs), dimerization/multi-
merization, and degradation pathways regulate BCRP expression and function. Any 
of these mechanisms or a combination can be therapeutically targeted to alter BCRP 
expression and function. 

3.2.3.1     Pretranscriptional and Transcriptional Regulation 

 Pretranscriptionally, BCRP promoter methylation can be enhanced and hence its 
expression decreased by treatment with melatonin [ 26 ]. We and others have reported 
tissue-specifi c alternative promoter usage in normal tissues of both humans and mice 
[ 27 – 29 ]. We also showed that alternative promoter usage varied between normal 
human tissues and BCRP-overexpressing resistant cancer cell lines, suggesting that 
cancer cell-specifi c alternative promoters and transcription factors can be targeted to 
overcome BCRP-mediated resistance [ 27 ]. For example, non-Down syndrome-asso-
ciated pediatric acute megakaryoblastic leukemia [French-American- British (FAB) 
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subtype M7] is associated with E1U isoform-specifi c high BCRP mRNA expression 
with functional activity for the promoter upstream of the E1U 5′ UTRs, while all 
other subtypes of pediatric AML and normal tissues expressed the E1C mRNA iso-
form [ 30 ]. Since pediatric patients with M7-AML have poor treatment outcomes, 
targeting the E1U promoter or E1U mRNA isoform might help overcome drug resis-
tance specifi cally in FAB M7 AML with minimal side effects [ 30 ]. However, thera-
peutic targeting of tissue-/cancer-specifi c BCRP isoforms requires proof of concept 
data. We and others have indeed shown modulation of specifi c BCRP mRNA isoform 
expression by treatment with specifi c agonists/antagonists of BCRP alternative pro-
moter-specifi c transcription factors. We have shown specifi c binding and activation of 
a BCRP alternative promoter upstream of the novel mouse testis-specifi c E1u isoform 
by the steroidogenic factor-1 (SF-1) [ 31 ]. Also, with two Aryl hydrocarbon Response 
Elements (AhRE) in the genomic region between the 5′ UTRs of human BCRP A and 
B/C transcript variants, the Aryl hydrocarbon Receptor (AhR) agonist 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD) activated expression of the B/C variant, but not the 
A variant [ 32 ]. Two separate groups have reported interaction of AhR with the AhRE 
in the BCRP promoter [ 33 ,  34 ]. 

 Chromatin immunoprecipitation (ChIP) assays have confi rmed direct interaction 
of several transcription factors with their respective transcription factor binding ele-
ments on the BCRP E1B/C promoter [ 3 ]. Recently, in SP cells isolated from the 
lung cancer cell line A549, Sp1 and Sp3 transcription factors interacted with Sp1 
cis-elements on the BCRP promoter and regulated BCRP expression [ 35 ]. 

 Correlation studies to identify specifi c upregulated or downregulated genes dur-
ing development of chemoresistance or an aggressive phenotype have identifi ed 
numerous transcriptional BCRP modulators. The transcription factors regulating 
BCRP expression other than those reported in our previous reviews are described. 
Estrogen receptor alpha (ERα) regulates BCRP transcription by binding to the 
estrogen response element (ERE) [ 36 ] in the BCRP promoter, but the role of estro-
gen receptor beta (ERβ), which also binds to estrogen response elements on its tar-
get genes, is unclear [ 37 ]. In human ERα-/Progesterone receptor (PR)-human breast 
cancer samples ERβ expression correlated positively with BCRP expression. 
Further analysis showed that ERβ upregulated BCRP expression in ERα-/PR- breast 
cancer cells by interacting directly with the ERE [ 36 ,  37 ] in the BCRP promoter, 
suggesting a potential role of ERβ in regulating BCRP expression in cells devoid of 
ERα. Prolactin, essential for normal mammary development, induced both BCRP 
mRNA and protein by activation of the Janus kinase/signal transducer and activator 
of transcription 5 (JAK/STAT5) pathway in breast cancer cells. The activated STAT5 
interacted with the gamma-interferon activation sequence (GAS element) in the 
BCRP promoter, but required binding of coregulators activated by the mitogen-
activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways in 
order to induce BCRP transcription [ 38 ]. 

 A positive correlation between the E2F transcription factor 1 (E2F1) and BCRP 
expression has been demonstrated in human lung cancers. Microarray analysis of 
E2F1-expressing human osteosarcoma (Saos-2) cells revealed BCRP as the main down-
stream target of E2F1 (a G1-S phase transition regulator) [ 39 ]. E2F1 binds to the E2F1 
binding site on the BCRP promoter, upregulating its expression [ 39 ]. Interestingly, in 
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progenitor cardiac side population cells from BCRP knockout mice, the G1-S transition 
was defective and the SP cells underwent asymmetric cell division [ 20 ], raising the 
possibility that BCRP is a downstream effector of E2F1 for G1-S cell transition. 

Cigarette smoke is a predisposing factor for esophageal squamous cell carci-
noma (ESCC), while ABCG2 expression is a negative prognostic factor. Cigarette 
smoke contains AhR agonists and AhR interaction with its xenobiotic response ele-
ment on the BCRP promoter induces BCRP expression and chemoresistance in 
cisplatin-resistant ESCC [ 40 ]. Furthermore, cigarette smoke condensate (CSC) was 
found to enhance resistance to chemotherapy in lung cancer cells by upregulating 
both phospho-Akt (p-Akt) and BCRP, suggesting CSC’s- posttranscriptional regu-
lation of BCRP [ 41 ]. However, in another study, exposure to CSC altered BCRP 
mRNA transcription as well [ 42 ]. Direct binding of Sp1, AhR, and nuclear factor 
erythroid 2-like 2 (NRF2) transcription factors to their respective elements on the 
ABCG2 promoter mediated this transcriptional increase in BCRP expression. 
Mithramycin, a DNA binding transcriptional inhibitor, decreased the effect of CSC 
on transcription factor binding to the ABCG2 promoter [ 42 ]. 

 The constitutive androstane receptor (CAR) interacts with a direct repeat motif 
separated by fi ve nucleotides (DR5) on the BCRP promoter to increase BCRP 
mRNA expression in normal hepatocytes [ 43 ]. The CAR agonist 6-(4- chlorophenyl)
imidazo[2,1-b][ 1 ,  3 ]thiazole-5-carbaldehydeO-(3,4-dichlorobenzyl)oxime (CITCO) 
increases BCRP expression in the BBB via the CAR receptor [ 44 ]. Peroxisome pro-
liferator-activated receptor (PPAR)-α directly interacts with the peroxisome prolif-
erator response element (PPRE) on the BCRP promoter in a cerebral microvascular 
endothelial system. Treatment with PPARα ligands and pharmacological inhibitors, 
respectively, increased and decreased BCRP mRNA/protein expression and accu-
mulation of BCRP substrates [ 45 ,  46 ]. Changes to CAR levels would possibly alter 
the pharmacokinetics of BCRP substrate chemotherapeutics. 

 The circadian rhythm of BCRP expression was altered by binding of ATF4 to the 
cyclic AMP response element (CRE) in the exon 1B promoter in mouse cell lines 
[ 47 ]. We had previously shown binding and activation of the CRE by phospho- 
cAMP response element-binding protein (p-CREB), with the CRE unique to the 
exon 1B promoter [ 28 ]. 

 Based on the above pharmacological transcriptional activators and repressors of 
BCRP expression, as proposed by To et al., antagonists or compounds that decrease 
the stability of positive transcription factors that upregulate BCRP or agonists of the 
transcription factors that downregulate BCRP would help overcome BCRP- 
mediated chemoresistance [ 40 ].  

3.2.3.2     Post-transcriptional Regulation 

 Binding of IMP3, an insulin-like growth factor II mRNA binding protein, stabilizes 
BCRP and increases its expression in ER-/PR-/human epidermal growth factor 
receptor 2 (HER2)- triple negative breast cancers. Since IMP3 expression is absent 
in normal breast cells, it might be a novel target to overcome BCRP-mediated drug 
resistance in triple negative breast cancer cells [ 48 ]. 
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 BCRP mRNA stability is decreased by binding of mir-487a [ 49 ], mir-142-3p 
[ 50 ]), mir-181a [ 51 ], mir-519c [ 52 ], mir-520h [ 53 ], mir-199a [ 54 ], mir-328 [ 55 ,  56 ], 
and mir-212 [ 56 ] to the BCRP 3′ UTR. mir-487a, mir-142-3p, mir181a, mir-519c, 
mir-199a, mir-520h, mir-328, mir-212, and mir-9 expression levels negatively cor-
relate with ABCG2 expression. Moreover, in a study of gliomas, mir-21 and mir-7 
expression correlated positively with glioma grade IV and mir-222 with grade I–II, 
possibly correlating with expression of BCRP, as well as other genes [ 57 ].  

3.2.3.3     BCRP Dimerization/Multimerization 

 Once translated, BCRP monomers undergo glycosylation [ 58 ], dimerize/multimer-
ize [ 59 – 61 ], and translocate to the cell surface where BCRP functions as a drug 
effl ux pump. BCRP phosphorylation at T362 by the serine/threonine kinase Pim-1 
is essential for its dimerization and surface translocation [ 62 ]. Pim-1 inhibition with 
SGI-1776 or Pim-1 knockdown with shRNA overcomes BCRP-mediated chemore-
sistance by decreasing BCRP phosphorylation and cell surface expression [ 63 ]. 
Phospho-Akt, essential for surface translocation of BCRP, is also a target for modu-
lation of BCRP function [ 64 ,  65 ]. Pathways that positively and negatively regulate 
phosphorylation of Akt indirectly regulate BCRP expression. Knockdown of epi-
dermal growth factor receptor (EGFR) inactivates the PI3K/AKT pathway, decreas-
ing BCRP expression [ 66 ]. EGFR inhibitors including gefi tinib and PD158780 
decrease BCRP expression and drug resistance in breast cancer cells [ 67 ]. 

 There is a negative correlation between phosphatase and tensin homolog (PTEN) 
expression and p-Akt expression. Downregulation of PTEN increases BCRP expres-
sion in adult acute leukemia, while PPARγ agonists that increase PTEN levels 
decrease p-AKT and hence decrease surface localization and function of BCRP 
[ 68 ]. The abstract of an article in a Chinese journal reported that metformin, an anti- 
diabetic drug, inhibited BCRP expression in a hepatocellular carcinoma cell line by 
upregulating PTEN and downregulating p-Akt [ 69 ]. 

 In acute lymphoblastic leukemia (ALL) cell lines the MAPK/extracellular signal- 
regulated kinase (ERK) pathway downregulates BCRP expression, while activation 
of the JNK pathway increases BCRP expression [ 70 ]. Activation of JNK1/c-jun also 
upregulates BCRP in human colon cancer cells [ 71 ]. The PI3K/Akt and β-catenin/
TCF pathways are involved in c-kit-mediated activation of BCRP transcription [ 72 ]. 

 In addition to identifying the promoter elements, the interacting transcription 
factors and the signal transduction pathways involved in regulating BCRP  expression 
and function, it is essential to delineate the mechanism underlying induction of 
BCRP overexpression by standard chemotherapeutic agents. Doxorubicin treatment- 
induced BCRP expression negatively correlates with expression of Hu antigen R 
(HUR), protein kinase C delta (PKC-delta) and DNA topoisomerase 2-alpha [ 73 ]. 
Rescue of either HUR or PKC-delta restores the chemosensitivity of doxorubicin- 
treated cells, suggesting that BCRP might function in concert with other proteins to 
cause resistance to doxorubicin [ 73 ]. BCRP expression in rat placental trophoblast 
cells was induced by upregulation of ERα levels by mitoxantrone treatment [ 74 ]. 
As described earlier, ERα directly interacts with the ERE on the BCRP promoter, 
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regulating its expression [ 36 ]. Camptothecin upregulated BCRP, multidrug 
resistance- associated protein 2 (MRP2) and B-cell lymphoma 2 (Bcl-2) by enhanc-
ing phosphorylation of ataxia telangiectasia mutated (ATM), which in turn induced 
phosphorylation of NF-kappa-B inhibitor alpha (IkBα) and nuclear factor 
NF-kappa-B p65 subunit (p65(A)), as well as translocation of p65 in the (Nuclear 
Factor-kappaB (NF-kB) pathway [ 75 ]. 

 Inhibitors of BCRP recently reported in the literature are shown in Table  3.1 .

   Table 3.1    Inhibitors of BCRP recently reported in the literature   

 Inhibitor 
 BCRP 
substrate  Effect on BCRP 

 BCRP substrate 
modulated  Reference 

 MBL187  Not known  Protein inhibition  Irinotean     [ 188 ] 
 Elacridar  Yes  Protein inhibition  ABT-888 

 Crizotinib 
 Sunitinib 
 Vemurafenib 

 [ 189 ] 
 [ 190 ] 
 [ 191 ] 
 [ 192 ] 

 Genistein  Yes  Decreased protein 
expression 

 5-fl uorouracil, 
cisplatin 

 [ 193 ] 

 Symmetric 
bis- chalcones 1p 

 No  Protein inhibition  Mitoxantrone  [ 194 ] 

 Chromone 1  No  Protein inhibition  [ 195 ] 
 Telatinib  Not known  Protein inhibition  Mitoxantrone, 

doxorubicin 
 [ 196 ] 

 Low molecular 
weight heparin 

 Not known  Decreased protein 
expression 

 Cisplatin  [ 78 ] 

 Quinazoline 
compound 20 

 Not known  Protein inhibition  [ 197 ] 

 Cannabidiol  Not known  Protein inhibition  Mitoxantrone  [ 198 ] 
 Falcarinol type 
dietary polyacetylenes 

 Not known  Protein inhibition  Mitoxantrone, 
methotrexate 

 [ 199 ] 

 YHO-13351  Not known  Protein inhibition  Irinotecan  [ 200 ,  201 ] 
 Emodin  Not known  Decreased protein 

expression 
 Doxorubicin  [ 202 ] 

 Terrien  Not known  Decreased surface 
expression 

 [ 203 ] 

 3,5,3′,4′-tetramethoxy 
trans-stilbene 

 No  Protein inhibition  Mitoxantrone  [ 204 ] 

 Methoxylated aurones  No  Protein inhibition  Mitoxantrone  [ 205 ] 
 Purvalanol A  No  Protein inhibition  Mitoxantrone  [ 206 ,  207 ] 
 Olomoucine II  Yes  Protein inhibition  Mitoxantrone  [ 206 ,  207 ] 
 Poloxamines  Not known  Decreased protein 

expression, protein 
inhibition 

 Rhodamine 
123 

 [ 208 ,  209 ] 

 Oncostatin M  Not known  Decreased mRNA 
and protein expression 

 [ 210 ] 

 Gefi tinib  Yes  Decreased mRNA 
and protein expression 

 5-aminolevu linic 
acid 

 [ 211 ] 
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3.2.3.4        BCRP Degradation 

 Mature, properly folded, plasma membrane-localized BCRP is degraded in the 
 lysosome, while misfolded BCRP, the Q141K mutant form, is degraded in the pro-
teasome [ 3 ]. Enhancing BCRP degradation might serve as a mechanism of decreas-
ing BCRP function. Sorafenib [ 76 ], a tyrosine kinase inhibitor (TKI), and human 
cathelicidin cationic peptide [ 77 ], an endogenously expressed natural host defense 
peptide, were indeed found to overcome BCRP-mediated resistance by increasing 
its lysosomal degradation. Interestingly, low molecular weight heparin (LMWH) 
was found to enhance proteasomal degradation of BCRP in cisplatin-resistant lung 
cancer cells [ 78 ]. Recently calpain-dependent proteolytic cleavage and degradation 
of BCRP not mediated by lysosomal or proteasomal processes was reported when 
the BCRP-overexpressing the human colon carcinoma cell line S1-M1-80 was 
treated with secalonic acid D, a mycotoxin [ 79 ].    

3.3     Impact of Non-neoplastic Expression of BCRP 
on Cancer Treatment Outcomes 

3.3.1     BCRP Polymorphisms 

 The major functional single nucleotide polymorphism (SNP) reported for BCRP is 
the 421C>A SNP, translating into the Q141K BCRP variant [ 80 ]. Meta-analysis 
studies of literature revealed a signifi cant association between the 421C>A SNP and 
a decrease in susceptibility to cancer [ 81 ]. Mechanistic studies showed that the fully 
processed Q141K mutant is retained in aggresomes where misfolded proteins 
aggregate [ 82 ], but other studies suggest that it has mild processing and folding 
defects as well as reduced activity [ 83 ]. Treatment of Q141K-expressing cells with 
colchicine or histone deacetylase inhibitors could restore membrane localization 
and function of the aberrant BCRP Q141K variant protein [ 82 ]. Another group is of 
the opinion that the Q141K mutation is in the NBD, resulting in decreased stability 
of the protein [ 84 ]. However, all studies agree that the Q141K mutant BCRP has 
reduced activity compared to the nonmutant. A recent study also showed that the 
421C>A SNP is associated with lower expression of BCRP in the human liver [ 85 ]. 

 The role of the Q141K mutation in determining molecular response has been 
widely studied. One study suggested absence of correlation between imatinib 
 therapy response and the Q141K mutation in chronic phase CML patients, but a 
 correlation between high BCRP mRNA levels and decreased rate of achievement 
of major molecular response (MMR) ,  as well as poor response to subsequent 
second- generation tyrosine kinase inhibitor therapy [ 86 ]. The 421C>A genotype 
was associated with a good molecular response to imatinib treatment, whereas the 
BCRP diplotype G34A421C>A correlated well with good response of patients to 
imatinib therapy [ 87 ]. After 6 months on imatinib therapy at 400 mg/day dose, the 

3 Role of Breast Cancer Resistance Protein (BCRP, ABCG2)…



62

MMR was associated with the 421C>A mutation [ 88 ]. Another study confi rmed 
that the 421C>A polymorphism was an independent positive predictor of complete 
molecular response to imatinib therapy in chronic phase CML patients [ 89 ]. In addi-
tion, the BCRP haplotype (G–G, rs12505410, and rs2725252) was positively asso-
ciated with cumulative incidence of MMR in patients treated with 400 mg per day 
imatinib dose but this association was overcome by increasing the dose to 600 mg 
per day [ 90 ], suggesting that a higher dose of imatinib could overcome the infl uence 
of this haplotype. These studies suggest better outcome for CML patients with the 
Q141K mutant treated with imatinib. 

 In adult acute myeloid leukemia (AML) patients treated with idarubicin-based 
chemotherapy, the Q141K mutant was associated paradoxically with poor progno-
sis. A positive correlation existed only between better disease-free survival and low 
wild type BCRP expression [ 91 ]. 

 Besides 421C>A, the 34GA/AA genotype (rs2231137) has also been associated 
with altered prognosis. 34GG was associated with poor prognosis in Chinese 
patients with acute leukemia undergoing treatment including bone marrow trans-
plantation (BMT) [ 92 ]. The G34A (V12M) mutation is more frequent in a Spanish 
population when compared to the hapmap data, and better response to immunosup-
pressants as well as higher toxicity profi les were suggested in these patients [ 93 ]. 

 A lower risk for developing B-cell Non-Hodgkin’s lymphoma (B-NHL) was 
associated with the presence of the BCRP rs6857600 SNP minor allele [ 94 ], and a 
lower risk for developing CLL was associated with the BCRP rs2231142 variant. 

 The infl uence of BCRP SNPs has also been studied in both colorectal cancer and 
non-small cell lung cancer (NSCLC). In colorectal cancer patients receiving oxali-
platin therapy, the BCRP wild type rs3114018 A/A was associated with a higher 
incidence of peripheral neuropathy [ 95 ]. The rs3114018 SNP has also been shown 
to be associated with the heritable dental caries phenotype DMSFS 5  and DMFS 5mand  
[ 96 ]. Hence, investigation of the association of the rs3114018 SNP in BCRP with 
occurrence of dental caries with oxaliplatin therapy is warranted. For patients with 
metastatic colorectal cancer treated with folic acid, 5-fl uorouracil and irinotecan 
(FOLFIRI), the BCRP (−15622C>T) mutation and the rs7699188 mutation were 
associated with lower and higher tumor response rates [ 97 ], respectively. In patients 
with metastatic colorectal cancer undergoing treatment with folic acid, 5- fl uorouracil 
and oxaliplatin (FOLFOX), low BCRP expression was associated with a better 
response [ 98 ]; however, in another study the BCRP 421C>A mutation was associ-
ated with a good response rate [ 99 ]. 

 In non-small cell lung cancer (NSCLC) patients receiving gefi tinib therapy, the 
34G>A mutation was associated with occurrence of grade 2 or worse skin rash 
[ 100 ]. In an overall comparison of fi rst-line platinum-based chemotherapy to 
taxane- platinum and gemcitabine-platinum treatment groups in unresectable 
NSCLC patients, there was an association of overall survival (OS) of the overall and 
taxane-platinum group with BCRP htSNP rs2725264 and of the gemcitabine- 
platinum group with rs4148149 [ 101 ]. The systemic exposure and enhanced CSF 
penetration of erlotinib and OSI-420 was higher in NSCLC patients harboring the 
421C>A mutation, with more frequent adverse effects as well [ 102 ]. 
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 In metastatic renal cell carcinoma (RCC) patients, the heterozygous BCRP 
421C>A allele was associated with higher systemic exposure of sunitinib, while 
presence of the homozygous BCRP 421C>A was associated with sunitinib-related 
toxicity [ 103 ]. In ovarian cancer patients receiving platinum-taxane-based therapy, 
the 421C>A variant allele was associated with longer progression-free survival 
(PFS) [ 104 ]. In breast cancer patients receiving docetaxel therapy, the BCRP 
rs2231142 C/C mutant allele was associated with the development of neutropenic 
fever [ 105 ].  

3.3.2     BCRP Effects on Absorption, Distribution, 
Metabolism, and Elimination (ADME) 
of Antineoplastic Drugs 

 BCRP limits brain penetration of sorafenib [ 106 ], erlotinib [ 107 ] and methotrexate 
[ 108 ], and penetration is further inhibited by P-glycoprotein (Pgp, ABCB1), as 
shown in BCRP- and (Pgp-double knockout mice. BCRP knockout by itself 
increased systemic exposure of all these compounds signifi cantly. However, for 
dantrolene [ 109 ] and CYT387 [ 110 ], BCRP knockout signifi cantly increased brain 
exposure but not systemic exposure. In addition, the presence of homozygous C421 
or A421 signifi cantly altered brain penetration of the tyrosine kinase inhibitors, 
which are substrates and modulators of both Pgp and BCRP [ 111 ]. 

 Urate excretion is both renal and extra-renal (intestinal). In the 5/6 nephrectomy 
rat model of chronic kidney disease, BCRP expression in the ileum increased to 
compensate for the loss of BCRP expression and effl ux of uric acid in the kidney 
[ 112 ]. Hence blocking ABCG2 activity at one organ/tissue site might increase its 
expression and activity at another site as a compensatory mechanism, and compen-
satory changes in expression should be considered when studying tissue-specifi c 
inhibitors of BCRP expression and function.  

3.3.3     BCRP Novel-Drug Delivery Mechanisms 

 BCRP-mediated chemoresistance can be overcome by formulating cancer chemo-
therapeutics in dosage forms that override BCRP-mediated drug resistance, such as 
pegylated topotecan [ 113 ] or nanostructured lipid-dextran sulfate hybrid carriers for 
delivering mitoxantrone [ 114 ], or targeting BCRP with anti-BCRP antibody in con-
junction with paclitaxel nanoparticles for treating multiple myeloma [ 115 ]. The bio-
availability of elacridar, the combined inhibitor of BCRP and Pgp, the two major 
drug effl ux transporters in the BBB, is improved when it was administered as a 
microemulsion [ 116 ]. Alternatively, novel stable formulations of BCRP siRNA can 
be prepared to target and knock down BCRP mRNA expression [ 117 ,  118 ].   
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3.4     BCRP Expression in Human Cancers: 
Roles in Drug Resistance and Prognosis 

3.4.1     BCRP Expression and Hematologic Malignancies 

3.4.1.1     Brief Summary of Findings and Controversies 
as of the Last Paper  

 Our group last summarized the literature on BCRP in hematologic malignancies in 
our 2012 publication [ 3 ]. BCRP is frequently expressed on malignant hematopoi-
etic and lymphoid cells, and, importantly, on stem cells in these malignancies. 
Moreover, some of the chemotherapeutic agents used to treat hematologic malig-
nancies are substrates of BCRP. Of additional note, tyrosine kinase inhibitors (TKIs) 
are being incorporated into treatment of several hematologic malignancies, and an 
evolving literature focuses on interactions between tyrosine kinase inhibitors and 
BCRP. Finally, an evolving literature associates BCRP SNPs with both incidence of 
hematologic malignancies and treatment response. 

 The most recent literature, summarized here, has included novel insights into 
regulation of BCRP in hematologic malignancies. There is also additional recent 
work on interactions of BCRP with TKIs used in the treatment of hematologic 
malignancies and on the signifi cance of BCRP SNPs.  

3.4.1.2     Regulation of ABCG2 in Hematologic Malignancies 

 Recent literature has focused on novel mechanisms of regulation of BCRP in hema-
tologic malignancies. 

 Sorrentino’s group at St. Jude Children’s Research Hospital identifi ed a new 
tissue-specifi c BCRP promoter selectively expressed in pediatric acute megakaryo-
blastic leukemia (AML FAB-M7) [ 30 ]. Analyzing BCRP transcript isoforms from 
85 pediatric AML samples, they found uniformly higher levels of BCRP transcripts 
in samples from children with AML FAB-M7 not associated with Down syndrome, 
compared to other AML subtypes. AML FAB-M7 samples contained a novel 5′ 
UTR identifi ed 90 kb upstream of the exon 2 translation, and an associated upstream 
promoter fragment was selectively expressed in these leukemia samples. Finally, 
these pediatric AML FAB-M7 samples had a relatively high incidence of BCRP 
mRNA expression, which might contribute to the relatively poor prognosis of chil-
dren with this AML subtype. 

 A variety of signal transduction pathways have been implicated in regulation of 
BCRP expression in recent publications. Activation of the MAPK/ERK pathway was 
found to downregulate BCRP expression but upregulate Pgp expression in the T-acute 
lymphoblastic leukemia (ALL) cell line CCRF-HSB-2 and the B-ALL cell line 

K. Natarajan et al.



65

YAMN90, while activation of the JNK pathway upregulated BCRP gene expression 
[ 70 ]. Inactivation of PTEN protein was found to upregulate BCRP via activation of 
the PI3K/Akt pathway in acute leukemia [ 119 ] and chronic myelogenous leukemia 
(CML) [ 120 ] cells. c-Myc was also found to upregulate BCRP as well as other ABC 
proteins in CD34+ CML cells, and c-Myc regulation in CD34+ CML cells is enabled 
by hypomethylation of the c-Myc binding site in the BCRP promoter [ 121 ]. 
Additionally, an activated hedgehog (Hh) signaling pathway was found to upregulate 
BCRP transcription in diffuse large B-cell lymphoma via binding of GLI transcrip-
tion factors to a single binding site in the BCRP promoter, and Hh was shown to be 
upregulated by paracrine signaling from stromal cells [ 122 ]. Finally, in primary effu-
sion lymphoma, caused by Kaposi’s sarcoma-associated herpesviruses and charac-
terized by chemoresistance, BCRP was found to colocalize with the protein emmprin 
(CD147) which modulates leukocyte transmigration, and with the lymphatic vessel 
endothelial hyaluronan receptor-1 (LYVE-1) on the cell surface, and to be upregu-
lated by emmprin [ 123 ].  

3.4.1.3     Interactions with Kinase Inhibitors 

 Diverse TKIs are playing increasing roles in the management of hematologic malig-
nancies, and interactions with ABC proteins including BCRP have been a focus of 
recent studies and were the subject of several recent review articles [ 124 ,  125 ]. The 
BCR-ABL TKIs imatinib, nilotinib, and dasatinib interact with BCRP, as well as 
Pgp, with interactions that are concentration-dependent, so it is important to per-
form in vitro studies with TKIs at pharmacologically relevant concentrations [ 126 ]. 
Both imatinib and nilotinib are potent inhibitors of BCRP, and may also be BCRP 
substrates, while dasatinib is a substrate of BCRP, but likely does not inhibit it at 
clinically relevant concentrations [ 126 ]. Statins were found to increase intracellular 
levels of imatinib via inhibition of Pgp and BCRP transport function, without an 
effect on their expression [ 127 ]. ABC transporters also decrease TKI penetration of 
the BBB, with brain accumulation of dasatinib mainly restricted by Pgp, that of the 
multikinase inhibitor sorafenib mainly by BCRP, and that of the multikinase inhibi-
tor sunitinib equally by Pgp and BCRP [ 111 ]. Moreover both Pgp and BCRP   restrict 
brain accumulation of the active sunitinib metabolite  N -desethyl sunitinib     [ 128 ]. 
Both sorafenib and sunitinib can be used as fms-like tyrosine kinase 3 (FLT3) inhib-
itors in AML with FLT3 mutations. In addition, the FLT3 inhibitor tandutinib inhib-
its BCRP function, and may thus be active in AML stem cells [ 129 ]. Finally, 
quizartinib or AC220, the most potent and specifi c FLT3 inhibitor tested to date, 
inhibits BCRP at pharmacologically relevant concentrations, and may thus sensitize 
cells to chemotherapy, but also increases intestinal absorption of orally adminis-
tered BCRP substrate drugs, including some that may potentiate the QT prolonga-
tion that is the dose-limiting toxicity of quizartinib [ 130 ]. 
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 Other novel kinase inhibitors under study in hematologic malignancies also 
interact with BCRP, including BI 2536, a potent and selective inhibitor of Polo-like 
kinase 1 [ 131 ] and the aurora-B kinase inhibitor barasertib-hQPA [ 132 ], which are 
substrates.  

3.4.1.4     BCRP Polymorphisms 

 In a study investigating the frequency and clinical signifi cance of BCRP SNPs in 
malignant blasts from 184 Chinese patients with de novo acute leukemia, a novel 
SNP at exon 16 (13561218 C/T) and fi ve known SNPs at exon 2 (13608835 G/A), 
exon 5 (13600044 C/A), intron 10 (13576005 C/T), intron 13 (13564503 C/T), and 
intron 14 (13563578 A/G) occurred with frequencies of 1.1 %, 64.1 %, 30.4 %, 
21.2 %, 39.7 %, and 28.8 %, respectively, and the 34GG genotype was associated 
with longer disease-free survival (DFS) ( P  < 0.001) and overall survival (OS) 
( P  < 0.001) than the 34GA/AA genotypes [ 92 ]. A subsequent study evaluated the 
frequency of the Q141K variant (421C>A polymorphism, exon 5), associated with 
decreased BCRP protein expression, in a cohort of Caucasian AML patients, fi nd-
ing the Q141K polymorphism in 29 of 163 patients (18 %), with no association with 
attainment of complete remission, but longer disease-free survival in patients with 
low BCRP expression and wild-type gene, compared to those with Q141K or high 
BCRP expression [ 91 ]. 

 Several recent studies examined the importance of BCRP SNPs in CML therapy. 
In one study of 82 patients with CML who had been treated with 400 mg imatinib 
mesylate daily for over 6 months, the CC, CA, and AA genotypes in BCRP 421C>A 
did not correlate with differences in imatinib trough levels, but were associated with 
signifi cantly different frequencies in MMR, with the AA genotype associated with 
a signifi cantly higher frequency of MMR than the CC and CA genotypes [ 88 ]. In 
another study, the frequency distribution of ABCG2 421 CC, CA, and AA  genotypes 
was signifi cantly different between imatinib good response and resistant groups 
( P  = 0.01), with the AA diplotype signifi cantly correlated with good response and 
MMR [ 87 ]. Thus genotyping of this SNP may be useful in predicting imatinib 
response in CML patients. Based on in vitro data, this SNP is also relevant for dasat-
inib, and nilotinib [ 133 ]. 

 BCRP polymorphisms were also implicated in risk for B-cell malignancies, pos-
sibly via altered exposure to environmental toxins. In a recent study, carriers of the 
BCRP rs2231142 variant (exon 5, Q141K, as above) were found to have a decreased 
risk of chronic lymphocytic leukemia (CLL) ( P  = 0.0004), while carriers of the 
BCRP SNP rs6857600 minor allele (intron 1) had a decreased risk of B-cell lym-
phoma (B-NHL) ( P  < 0.001) [ 94 ]. 

 Hyperuricemia is a frequent complication of hematologic malignancies. An accu-
mulating literature has demonstrated a role of BCRP polymorphisms in modifying 
renal uric acid excretion. Two nonsynonymous BCRP SNPs, 421C>A (major) (dis-
cussed above, resulting in Q141K) and 376C>T (minor), result in impaired transport 
activity, owing to ubiquitination-mediated proteasome degradation and truncation of 
BCRP, respectively; both are associated with hyperuricemia and gout [ 134 ].   
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3.4.2     BCRP Expression and Solid Tumors 
(Summarized in Table  3.2 ) 

3.4.2.1        Brief Summary of Findings, Controversies Since 
the Previous Paper  

 Our most recent review [ 2 ] described a growing number of reports that BCRP is 
expressed in a wide variety of human cancers in sub-populations of cells that pos-
sess stem cell properties, particularly those that are able to exclude Hoechst 33342 
dye, termed side-population (SP) cells. SP cells generally display multidrug resis-
tance manifested by multiple mechanisms of resistance acting in concert, including 
diminished programmed cell death, expression of drug resistance transporters, 
upregulated cellular repair mechanisms and anti-oxidant defenses, and commitment 
to self-renewal. Such reports have continued to be published since our last review: 
in many of these papers the focus is on the characterization of the cancer stem cell, 
with BCRP expression reported in the context of other genes that are commonly 
expressed in SP or stem cell populations. Papers that focus on documentation of 
neoplastic cells with stem cell properties that do not describe the specifi c function-
ality or relationship of BCRP to resistance or aggressiveness have not been included 
in the present review.  

3.4.2.2    Gastrointestinal Cancers 

 A number of recent studies investigated regulation of BCRP expression in colorec-
tal cancers. Inhibition of the JNK1 signaling pathway reversed the expression of 
BCRP in cultured human colon cancer cells (SW1116) that were made resistant to 
hydroxycamptothecin [ 71 ]. miR expression profi ling studies found that miR-328 
was a regulator of the SP in colorectal cancer cell lines, with lower expression of 
miR-328 in SP cells; furthermore, it was found that miR-328 directly regulates the 
expression of BCRP [ 135 ]. Expression of the novel gene schlafen-3 (Slfn-3) has 
been shown to correlate with intestinal epithelial cell differentiation [ 136 ]. 
Transfection of human colorectal HCT-116 cells resistant to 5-fl uorouracil and 
oxaliplatin with Slfn-3 reduced mRNA levels of cancer stem cell markers, including 
BCRP [ 137 ]. 

 Some studies looked at the infl uence of BCRP on colon carcinogenesis. Butyrate, 
an HDAC-inhibiting short chain fatty acid important for normal colonic epithelial 
homeostasis, was found to be a substrate for BCRP, but not for Pgp or MRP. It was 
proposed that increased expression of BCRP may play a carcinogenetic role in 
colon cancer by reducing intracellular levels of butyrate and hence thwarting butyr-
ate’s differentiating and reactive oxygen species (ROS) protective effects [ 138 ]. In 
contrast, other investigators found downregulation of BCRP expression in 29 
colonic adenomas from 21 patients and eight adenomas from four ApcMin mice 
(which develop spontaneous intestinal adenomas) compared to normal adjacent 
colonic epithelial cells [ 139 ]. Another group found that mice given the dietary 
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 carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-β] (PhIP, a BCRP substrate) 
accumulated higher levels of PhIP and PhIP-DNA adducts in colonic adenomas 
than in normal colonic epithelium, suggesting that the loss of BCRP expression 
could play a carcinogenetic role by leading to carcinogen accumulation and ade-
noma formation. 

 In three gastric cancer cell lines, expression levels of BCRP, Pgp, and CD133 
measured by immunohistochemistry were found to correlate with the grade of 
malignancy; these fi ndings were corroborated in a study of biopsy specimens from 
90 patients with gastric cancer: poorly differentiated cancers expressed more BCRP, 
Pgp, and CD133 than did well differentiated ones [ 140 ]. In esophageal cancer, the 
prognostic value of the expression of CD133 and BCRP, putative “stem cell” mark-
ers, was evaluated by immunohistochemistry in paraffi n-embedded biopsy speci-
mens from 110 patients with esophageal squamous cell carcinoma [ 141 ]. BCRP 
expression was found to be an independent adverse prognostic factor, using multi-
variate analysis. CD133 expression predicted the degree of tumor differentiation, 
but did not correlate with survival. In another study, esophageal carcinoma cell lines 
with acquired resistance to cisplatin displayed constitutive activation of the aryl 
hydrocarbon receptor, AhR, which bound to a xenobiotic response element in the 
BCRP promoter, upregulating BCRP and causing drug resistance [ 40 ]. 

 In pancreatic ductal adenocarcinoma—a highly drug-resistant neoplasm—sam-
ples of tumor from 32 patients had upregulation of transcript levels of seven ABC 
transporters including BCRP, compared to normal pancreatic tissue [ 142 ]. Other 
investigators examining inhibition of hedgehog signaling in pancreatic cancer stem 
cells (isolated from PANC-1 tumorspheres) observed that hedgehog signaling inhi-
bition decreased self-renewal and expression of BCRP [ 143 ]. A study of BCRP 
expression in 67 surgically resected pancreatic ductal adenocarcinomas revealed 
that BCRP expression was a predictor of early relapse and poor survival [ 144 ]. 
Expression of BCRP in biopsy specimens from 37 patients with pancreatic ductal 
adenocarcinomas did not correlate with tumor grade or disease stage [ 145 ]. Germline 
inactivating mutations of BCRP (rs2231164) were associated with improved sur-
vival in patients with pancreatic cancer [ 146 ]. The homeobox gene MSX2 was 
found to regulate BCRP expression in pancreatic cancer cell lines via the SP1 bind-
ing elements in the BCRP promoter [ 147 ]. 

 In hepatocellular carcinoma cell lines, isocorydine, an investigational anticancer 
drug, diminished the SP and BCRP expression and sensitized these cells to doxoru-
bicin [ 148 ]. In primary tumor specimens from patients with cholangiocarcinoma, 
and in cholangiocarcinoma cell lines, the transcriptional coactivator “amplifi ed in 
breast cancer 1” (AIB1) was found to be frequently upregulated, compared to nor-
mal bile duct tissue [ 149 ]. AIB1 upregulation was found to activate the Akt and Nrf2 
pathways, resulting in an increase in BCRP mRNA and functional expression. 

 Intrahepatic cholangiocarcinoma (ICC) is a tumor derived from hepatic cholan-
giocytes. Bile ducts are known to exhibit high expression of ABC transporters, 
including BCRP. A recent study in Thailand evaluated the expression of Pgp, 
MRP1 and BCRP in tumor specimens from 60 patients with ICC tumors, using 
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immunohistochemical techniques [ 150 ]. Paradoxically, low expression of BCRP 
in these tumors was correlated with worse prognosis and higher tumor grade. 
The authors suggest that BCRP plays a role in cholangiocarcinogenesis.  

3.4.2.3    Breast Cancer 

 Investigators in Siberia used qPCR to examine transcript levels of genes associated 
with multidrug resistance (ABCB1, ABCC1, ABCC2, ABCC3, ABCC5, ABCG1, 
ABCG2, GSTP1, and major vault protein) in 84 clinical stage IIA to IIIC breast 
cancers, before and following neoadjuvant chemotherapy with 5-FU-, doxorubicin- 
or taxane-containing regimens [ 151 ]. Nine patients achieved a complete remission, 
and hence paired comparisons were not possible; in the remaining patients with 
tumor available pre- and post-neoadjuvant therapy, an increase in the transcript lev-
els of all of these genes was observed following neoadjuvant chemotherapy in 
patients who showed progression or stabilization of disease, whereas reductions in 
mRNA levels were seen in patients who showed a partial response to therapy. 

 Some controversy exists regarding the infl uence of HER2 on BCRP expression 
and side population stem cells. As will be discussed, many investigators report that 
HER2 can regulate the SP and promote BCRP expression; moreover, many studies 
fi nd that stem cells identifi ed as the SP are associated with breast cancer cells with 
a “luminal” phenotype, and not a “basal” phenotype. However, one recent study 
which analyzed fi ne needle aspirations of breast tumors for presence of SP cells 
found that the size of the SP correlated with BCRP expression that was measured in 
paraffi n-embedded tissue from the same patients, and that the SP presence in the 
fi ne needle aspirations was associated with estrogen receptor-negativity, and with 
“triple negative” breast cancers [ 152 ]. Other investigators examined the expression 
of BCRP, progesterone receptor (PR), estrogen receptor α (ERα), androgen receptor 
(AR), and HER2 in 95 breast cancer samples from patients, using immunohisto-
chemical methods [ 153 ]. Expression of BCRP was inversely correlated with those 
of PR and ER α. These studies contrast with earlier fi ndings that HER2 regulated 
BCRP expression in SP cells, that the SP was associated with a “luminal” breast 
cancer phenotype (generally HER2-, estrogen, and progesterone receptor-positive), 
and the observation that “triple negative” cell lines generally lacked a side popula-
tion [ 154 ]. Breast cancer cell lines selected for resistance to aromatase inhibitors 
were found to overexpress HER2 and BCRP and to exhibit enhanced tumor- 
initiating cell properties [ 155 ]. This paper confi rmed that HER2 regulated BCRP 
expression in breast cancers, as shown previously [ 154 ]. Other investigators pro-
vided further confi rmation of HER2 regulation of BCRP expression in breast cancer 
cells by enforced expression of HER2 in MCF-7 cells: BCRP expression and drug 
resistance were enhanced by HER2 stimulation of the Akt/PI3K and NF-kB path-
ways [ 156 ]. In tumor tissue from 196 patients with invasive ductal breast cancer, 
expression of BCRP was found to correlate with expression of HER2, lymph node 
metastasis and clinical stage [ 157 ]. 
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 BCRP was found to cause drug and photoactive dye accumulation in BCRP-rich 
extracellular vesicles and intracellular lysosomes in human breast cancer cells, 
which can result in cellular destruction with photodynamic treatment [ 158 ]. The 
BCRP-rich vesicles were disrupted by inhibition of the PI3K/Akt signaling pathway 
in human breast cancer cells [ 159 ]. 

 Hypoxia-inducible factor 2a (Hif-2a) expression detected by immunohistochem-
istry correlated with BCRP expression, histologic grade, and Ki62 expression in a 
study of biopsy samples from 196 patients with invasive ductal breast cancer [ 160 ]. 
Other investigators found that prolactin induced the expression of BCRP in human 
breast cancer cells, mediated, at least in part, by the JAK2/STAT5 pathway [ 38 ]. 

 BCRP may confer resistance to tamoxifen, based on in vitro studies of MCF-7 
cells [ 161 ].  

3.4.2.4    Lung Cancers 

   Small Cell Lung Cancer (SCLC) 

 Metastatic cells obtained by fi ne needle aspiration biopsy of enlarged mediastinal 
lymph nodes from 14 patients with SCLC and 7 patients with previously untreated 
non-small cell lung cancer (NSCLC) were evaluated for the expression of topoi-
somerase IIα and BCRP mRNA. The expression of topoisomerase IIα mRNA was 
signifi cantly increased and the expression of BCRP mRNA was signifi cantly 
decreased in the nodal metastatic cells from SCLC compared to NSCLC patients, 
suggesting to these investigators that  de novo  metastatic cells from SCLC are more 
chemosensitive than those from NSCLC patients [ 162 ]. 

 In vitro studies by investigators in Japan found that HER2 is more frequently 
upregulated in SCLC cell lines derived from Japanese patients compared to cell 
lines derived from Caucasian patients. One Japanese-derived cell line, SBC-3, was 
selected for resistance to etoposide, SN-38, or cisplatin. All three drug-resistant 
sublines displayed further upregulation of HER2; the subline made resistant to 
SN-38 had upregulated BCRP. Treatment with a HER2 inhibitor, lapatinib, sensi-
tized these cells to SN-38 both in vitro and in a murine xenograft model; however, 
silencing of HER2 by RNA interference methods did not affect BCRP function 
in vitro, suggesting that HER2 did not regulate BCRP expression in this line, but 
rather that lapatinib acted as an inhibitor of BCRP to exert its effect on reversing 
resistance to SN-38 [ 163 ].  

   Non-small Cell Lung Cancer (NSCLC) 

 A number of clinical translational studies have been completed recently: one study 
examined the BCRP polymorphism 421C>A, which results in diminished trans-
porter function. Presence of this polymorphism did not predict the effectiveness of 
erlotinib (a BCRP substrate/inhibitor) in a clinical trial of 242 patients with advanced 
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NSCLC who underwent genotyping for BCRP and other gene polymorphisms 
[ 164 ]. Another study found that BCRP protein expression (as measured by immu-
nohistochemistry) was present in 33 % of 80 cases of resected, early-stage NSCLC 
with neuroendocrine differentiation; however, expression of BCRP as well as other 
stem cell markers (CD117, CD133) did not correlate with prognosis or clinico-
pathologic characteristics of these patients [ 165 ]. Another investigation looked at 
the expression of cancer stem cell antigens, including BCRP, in biopsies from 133 
patients with completely resected stage I/II non-small cell lung cancer with a median 
follow-up time of 53.8 months. These cancer stem cell markers were not refl ective 
of prognosis [ 166 ]. Other investigators examined the drug sensitivity of xenografts 
derived from 24 human NSCLC cases, compared with the mRNA and protein 
expression of a variety of multidrug resistance markers, including BCRP. With only 
one exception, there was no association of marker expression with drug sensitivity, 
leading these investigators to conclude that multidrug resistance must be a multifac-
torial process [ 167 ]. In contrast, a separate study of tumor samples from 145 patients 
with stage I NSCLC found that coexpression of CD133 and BCRP was predictive 
of early postoperative recurrence [ 168 ]. 

 Studies evaluating the role of BCRP in drug resistance in lung cancer cell lines 
have also been completed recently. One group of investigators observed that low- 
dose cisplatin treatment of human NSCLC adenocarcinoma cell lines enriched the 
percentage of cells expressing the stem cell marker CD133, accompanied by an 
increase in BCRP expression and activity of the NOTCH signaling pathway [ 169 ]. 
Other workers found that exposure of cultured human lung cancer and esophageal 
cancer cells to cigarette smoke condensate caused an increase in BCRP expression, 
as well as an increase the side population of stem cells. This effect was thought to 
be mediated via elements in the BCRP promoter; mithramycin exposure caused 
downregulation of BCRP [ 42 ]. Another study found that low molecular weight hep-
arin induced proteasomal degradation of BCRP in SP cells from cisplatin-resistant 
lung adenocarcinoma A549/DDP cells in vitro, and restored the cisplatin sensitivity 
of these lung cancer cells in vitro and in vivo [ 78 ].   

3.4.2.5    Head and Neck Cancers 

 Paraffi n-embedded samples from 98 cases of laryngeal squamous cell cancer were 
probed for expression of BCRP and Pgp, using immunohistochemical techniques. 
Expression of either protein was found to be an independent adverse prognostic fac-
tor in this disease [ 170 ]. 

 Oral erythroplakia is an aggressive premalignant lesion with high potential for 
developing into oral cancer. Investigators in China evaluated samples from lesions 
of 34 patients with erythroplakia for expression of podoplanin (a transmembrane 
glycoprotein) and BCRP. More than 90 % of patients whose lesions expressed both 
podoplanin and BCRP subsequently developed oral cancers [ 171 ]. 

 A long-term follow-up study of 135 patients with oral leukoplakia was per-
formed at a Chinese institution. The duration of follow-up averaged 5.5 years, 
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 during which time 32 patients developed oral cancer. Expression of BCRP and 
BMI-1 in the leukoplakia was found to be associated with a high risk of developing 
oral cancer in this group [ 172 ]. 

 Purifi cation of BCRP-expressing nasopharyngeal carcinoma cells from the 5-8F 
NPC cell line revealed that some, but not all, BCRP-expressing cells have a stem 
cell phenotype [ 173 ]. Constitutive activation of the aryl hydrocarbon receptor (AhR) 
was observed in three human cell lines derived from tumors from patients with 
squamous cell head and neck cancers; AhR activation was found to be increased in 
the cancer cell lines than in human epidermal keratinocytes (HEK). Treatment with 
AhR antagonists decreased the aggressive phenotype of these cell lines by inhibit-
ing cell migration, invasion, and benzo[a]pyrene induction of BCRP [ 174 ].  

3.4.2.6    Ovarian Cancer 

 A clinical trial of the combination of lapatinib (a tyrosine kinase inhibitor as well as 
an inhibitor of BCRP) with topotecan (a BCRP substrate) in patients with ovarian 
cancer in fi rst relapse was reported in 2012 [ 175 ]. No clinical benefi t was observed 
compared to topotecan alone; furthermore, no correlation was seen between BCRP 
expression and clinical outcomes, suggesting involvement of other resistance mech-
anisms in addition to BCRP. In a similar study (LapTop) from 2011 in refractory/
relapsed ovarian cancer, the combination of lapatinib and topotecan was found to 
lack suffi cient activity and to have substantial hematologic toxicity [ 176 ]. Both 
studies concluded that mechanisms other than, or in addition to, BCRP are involved 
in topotecan resistance. 

 In contrast to studies in NSCLC patients harboring the 412C>A polymorphism 
of BCRP (which has impaired transporter activity) who were treated with erlotinib, 
in whom no benefi t was observed [ 164 ], patients with advanced ovarian or primary 
peritoneal cancers and the 412C>A polymorphism had longer progression-free sur-
vival following treatment with platinum- and taxane-containing regimens [ 177 ]. 

 Ovarian cancer stem cells that expressed BCRP, CD44, and CD117 were dimin-
ished by exposure of primary ovarian tumor tissues to miR-199a, which downregu-
lates its target gene CD44. This sensitized these ovarian cancer stem cells to 
cisplatin, paclitaxel, and doxorubicin, and reduced expression of BCRP [ 54 ]. It is of 
interest that paclitaxel is a substrate for Pgp, but not BCRP. 

 Lysosomal sequestration of photosentizing imidazoacridinone dyes mediated by 
ABC transporters (including BCRP) resulted in selective destruction of ovarian can-
cer xenografts in a chorioallantoic membrane model following photodynamic ther-
apy [ 178 ].  

3.4.2.7    Glioblastoma 

 Malignant gliomas were induced in wild type or Mdr1a/b −/−  or BCRP −/−  mice, then 
treated with oral dasatanib (an inhibitor of BCR/Abl and Src family tyrosine 
kinases), which is a substrate for Pgp and BCRP. Survival of the knockout mice was 
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twice that of the wild-type mice following dasatinib therapy. Human gliomas were 
also found to express Pgp and BCRP, and xenografts from cell lines were sensitized 
to dasatanib by treatment with a Pgp/BCRP inhibitor [ 179 ]. 

 Sonodynamic therapy employs a “sonosensitizer” which kills cancer cells (usu-
ally by ROS activation) when activated by ultrasound. BCRP was found to be a key 
determinant in the effectiveness of the photo/sonosensitizer photofrin in cultured 
U251 glioma cells [ 180 ]. 

 BCRP expression was found to localize to the nuclear membrane in 6 of 7 glio-
blastoma multiforme cell lines studied, and BCRP inhibitors or RNAi to BCRP 
sensitized the cell lines to mitoxantrone cytotoxicity [ 15 ]. In a similar vein, Pgp has 
been found previously to be expressed on nuclear membranes of certain multidrug- 
resistant cell lines using immunohistological methods [ 181 ].  

3.4.2.8    Prostate Cancer 

 Exposure of PC-3 or DU145 human prostate cancer cells to stem cell factor or 
G-CSF increased their expression of the stem cell markers CD117, BCRP, and 
CD44, accompanied by increased clonogenicity and tumor sphere formation, sug-
gesting that such conditions may create a favorable bone marrow niche for prostate 
cancer cells [ 182 ]. PC-3 and DU145 cultured under hypoxic conditions exhibited 
upregulation of Hif1a, Hif2a, and developed stem cell-like characteristics, including 
expression of BCRP [ 183 ]. Cells with BCRP expression induced by hypoxia tended 
to coexpress CD44, another protein often expressed in stem cells.  

3.4.2.9    Other Cancers 

 In malignant pleural mesothelioma (MPM), the PI3K pathway was found to be a 
key player in maintaining the side-population (SP) phenotype and BCRP expression 
in three cell lines [ 184 ]. In a clinical trial in children with newly diagnosed high-risk 
neuroblastoma, the TKI gefi tinib (a BCRP inhibitor) was combined with irinotecan 
(a BCRP substrate): the combination was tolerable but insuffi ciently effi cacious to 
warrant further study [ 185 ]. 

 The human osteosarcoma cell line MNNG/HOS has cell subpopulations with 
high expression of Pgp and BCRP which are resistant to chemotherapy [ 186 ]. For 
patients with malignant melanoma, vemurafenib is a clinically effective inhibitor of 
mutant BRAF (V600E), however, resistance develops rapidly. A recent study found 
that vemurafenib is a substrate/inhibitor of ABCG2 [ 187 ].    

3.5     Summary 

 Transport mediated by BCRP is crucial to multiple cellular processes, including the 
intracellular transport of heme and other porphyrins involved in the heme synthesis 
pathway, protection of the organism from natural dietary toxins and carcinogens, 
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protection of the fetus, brain, and stem cells from potential toxins, and importantly, 
the disposition of many pharmaceuticals. Evidence is growing that the BCRP physi-
ologic function as well as BCRP gene polymorphisms can have an impact on cancer 
development and cancer treatment outcomes. Numerous chemotherapy drugs are 
substates or inhibitors of BCRP, including recently developed novel therapeutics 
targeting the cancer kinome. Evidence continues to accrue relating tumor expres-
sion of BCRP with adverse prognosis. Since BCRP is expressed in stem cells, 
including many so-called cancer stem cells, BCRP could be part of a cassette of 
genes whose expression is increased in neoplastic cells with embryonic properties 
programmed for self-renewal and immortality. As such, BCRP may be a contribut-
ing factor (but not in itself suffi cient) to drug resistance in cancer stem cells, and 
hence serve as a sentinel for these more aggressive or resistant cancers. Future 
research into the mechanisms that regulate BCRP expression in specifi c normal tis-
sues, in cancers, and in normal and neoplastic stem cells may enable precise target-
ing BCRP expression in cancers and cancer stem cells to weaken neoplastic cellular 
resistance to therapy.     
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    Chapter 4   
 A New Strategy of ALA-Photodynamic 
Cancer Therapy: Inhibition of ABC 
Transporter ABCG2 

             Toshihisa     Ishikawa      ,     Yutaka     Inoue    ,     Yoji     Ikegami    ,     Takahiro     Fujishiro    , 
    Tomohiro     Osaki    ,     Yoshinaga     Kajimoto    ,     Shin-Ichi     Miyatake    , 
and     Toshihiko     Kuroiwa   

    Abstract     Photodynamic therapy (PDT) is a clinical tool for treating various 
tumors. PDT is achieved by a photon-induced physicochemical reaction that is 
induced by excitation of porphyrins by exposure to light and the subsequent genera-
tion of singlet oxygen ( 1 O 2 ) and other reactive oxygen species. Recently, 
5- aminolevulinic acid (ALA)-based PDT has been developed as an anticancer treat-
ment whereby ALA is orally administered as the precursor of protoporphyrin IX 
(PpIX) to induce the biosynthesis and accumulation of PpIX in cancer cells. Recent 
studies, however, provide evidence that the ABC transporter ABCG2 plays a pivotal 
role in regulating the cellular accumulation of PpIX in cancer cells and thereby 
affects the effi cacy of ALA-based PDT. In response to the photoreaction of porphy-
rin leading to oxidative stress, the NF-E2-related transcription factor (Nrf2) can 
transcriptionally upregulate many target genes, including those for metabolizing 
enzymes and transporters essential for cellular defense. Whereas Nrf2 upregulates 
transcription of the  ABCG2  gene to confer cancer cells resistance, several protein 
kinase inhibitors reportedly interfere with the transport function of ABCG2. In fact, 
gefi tinib inhibits ABCG2-mediated porphyrin effl ux from cancer cells to enhance 
the effi cacy of PDT in vitro. Thus, it is of great interest to develop ABCG2-specifi c 
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inhibitors that are clinically applicable to photodynamic cancer therapy. Hitherto, 
we have performed high-speed screening, quantitative structure–activity relation-
ship (QSAR) analysis, and in vivo validation to identify potent ABCG2-inhibitors. 
This chapter addresses such a new approach to improve ALA-based photodynamic 
cancer therapy.  

  Keywords     ABCG2   •   Brain tumor   •   Cancer stem cell   •   Nrf2   • 
  Photodynamic therapy   •   Porphyrin   •   Gefi tinib  

   Abbreviations 

   ALA    5-Aminolevulinic acid   
  PDT    Photodynamic therapy   
  PpIX    Protoporphyrin IX   
  Nrf2    NF-E2-related transcription factor   
   1 O 2     Singlet oxygen   
  ROS    Reactive oxygen species   
  QSAR    Quantitative structure-activity relationship   
  HO-1    Hemeoxigenase   
  PKC    Protein kinase C         

4.1     Introduction 

 Porphyrins and heme are important components of diverse biological processes, 
such as respiration and oxidative metabolism [ 41 ,  76 ]. Both porphyrin biosynthesis 
and its intracellular concentration are tightly regulated by multiple biochemical 
mechanisms. The biosynthesis of porphyrin molecules begins with 5- aminolevulinic 
acid (ALA) synthesis from glycine and succinyl Co-A, and is followed by multiple 
enzymatic reactions that are spatially shared among mitochondria and cytoplasmic 
compartments (Fig.  4.1 ). Different from the endogenous biosynthesis of ALA 
within cells, exogenous ALA administration short circuits the fi rst step of porphyrin 
biosynthesis, whereby ALA is transported into cancer cells by the oligopeptide 
transporter 1 or 2 (PEPT1 or PEPT2) [ 17 ,  50 ,  79 ,  61 ]. Exogenously administered 
ALA induces high levels of PpIX biosynthesis and accumulation in cancer cells, 
rendering them photosensitive. ALA-induced endogenous PpIX accumulation, 
thus, constitutes a photosensitization process in which the tendency of neoplastic 
cells to synthesize and/or accumulate PpIX may be exploited to enhance the effi -
cacy of photodynamic therapy (PDT).

   PDT utilizes porphyrin derivatives to generate singlet oxygen ( 1 O 2 ) and other reac-
tive oxygen species (ROS) through visible light irradiation in cancerous tissues [ 16 ,  18 ] 
(Fig.  4.2 , upper panel). Multiple signaling cascades are concomitantly activated in 
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cancer cells exposed to photodynamic stress. Dependent upon the subcellular local-
ization of cytotoxic ROS, those signals are transduced into adaptive or cell death 
responses [ 10 ]. Currently available evidence indicates that photodynamic therapy can 
kill cancer cells directly by the effi cient induction of both apoptotic and non-apop-
totic cell death pathways [ 16 ]. The identifi cation of molecular effectors that regulate 
the cross-talk between cell death and cell protection pathways is an area of intense 
interest in the fi eld of photodynamic killing of cancer cells.

   In response to oxidative stress, nuclear factor erythroid-derived 2 (NF-E2)-related 
factor (Nrf2) is known to play a role in transcriptional upregulation of many target 
genes essential for cellular defense [ 47 ,  75 ]. Nrf2 is a basic region-leucine zipper 
(bZip)-type transcription factor [ 31 ,  46 ], which targets the antioxidant responsive 
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element (ARE) containing the consensus sequence of 5′-A/GTGACNNNGC-3′ [ 49 ]. 
On the other hand, the Kelch-like ECH-associated protein 1 (Keap1) acts as a nega-
tive regulator of Nrf2 by retrieving it from the cytoplasm. Oxidative stress and/or 
electrophilic attack leads to the dissociation of Nrf2 from Keap1 and thereby acti-
vates Nrf2 for transcriptional regulation of ARE- dependent genes. The induction of 
ARE-regulated genes is under the control of Nrf2. Indeed, many genes encoding 
detoxifying and antioxidant enzymes were found to be regulated by Nrf2 [ 36 ,  38 ]. 
It has recently been reported that mRNA levels of ABC transporters ABCC1, ABCC2, 
ABCC3, and ABCG2 were signifi cantly elevated under oxidative stress and that 
translocation of Nrf2 into the nucleus was associated with the induction of ABCG2 
[ 1 ]. Nrf2 interacts with the ARE located in the human  ABCG2  gene promoter region. 
Nrf2-specifi c siRNA treatments suppressed the induction of ABCG2 and hemeoxige-
nase (HO-1) expression after the photoactivation of porphyrins in vitro (Fig.  4.2 , 
lower panel). These fi ndings strongly suggest that the induction of ABCG2 expres-
sion under oxidative stress is mediated, at least in part, by the Nrf2/Keap1 system. 
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 The activation and nuclear translocation processes of Nrf2 seem to be more com-
plex. Activation of the Nrf2 protein may involve at least three distinct pathways [ 30 ]. 
Pathway 1: Oxidation of critical cysteinyl residues of the Keap1 protein with 
 concomitant inhibition of the ubiquitination activity of Keap1 [ 38 ,  80 ]. Pathway 2: 
Phosphorylation of the Nrf2 protein via protein kinases, such as p38 MAPK , 
phosphoinositol- 3-kinase (PI3K), protein kinase C (PKC), and RNA-dependent pro-
tein kinase (PKR)-like ER kinase (PERK) [ 44 ,  37 ,  4 ,  6 ,  12 ,  13 ,  33 ,  32 ]. Pathway 3: 
Direct binding of heme to Bach1 and the facilitation of Nrf2/small Maf heterodimer 
formation [ 23 ,  53 ,  68 ,  69 ,  21 ,  34 ,  64 ,  52 ,  71 ,  82 ,  57 ]. Thus, it is important to under-
stand the molecular mechanisms underlying the activation of Nrf2 in cancer cells so 
as to understand the nature of ABCG2-mediated drug resistance of human cancer.  

4.2    Key Role of ABCG2 in Photodynamic Therapy 

 The ABC transporter ABCG2 was originally identifi ed as a breast cancer resistance 
protein (BCRP) [ 15 ]. The  ABCG2  gene encodes a half ABC transporter protein, 
which forms a homodimer [ 78 ,  27 ] (Fig.  4.3 ). Reportedly, ABCG2 is overexpressed 
in many cancer cells and functions to transport a wide variety of anticancer agents 
[ 60 ,  5 ], including cytotoxic agents (e.g., mitoxantrone, topotecan, fl avopiridol, 
methotrexate), fl uorescent dyes (e.g., Hochest 33342), and various toxic compounds 
found in normal food (e.g., 2-amino-1-methyl-6-phenylimidazo[4,5-β]pyridine). 
Typical ABCG2 substrates are shown in Fig.  4.4 .

    ABCG2 is responsible for the cellular homeostasis of porphyrins and their 
related compounds [ 39 ,  77 ,  28 ]. Hitherto, evidence has been accumulating to show 
that ABCG2 transports porphyrins in an ATP-dependent manner [ 72 – 74 ]. Robey 
et al. [ 59 ] reported that ABCG2-mediated transport of photosensitizers has the 
potential to impact photodynamic therapy. ABCG2 has recently been recognized to 
have physiologically important roles in porphyrin homeostasis, photosensitivity, 
and photodynamic therapy [ 59 ,  19 ,  9 ,  35 ,  20 ,  29 ]. Genetic polymorphisms of 
ABCG2 and its inhibition by certain drugs may be associated with photosensitivity 
[ 72 ,  73 ]. ABCG2 expression in tumor cells is associated with resistance to multiple 
chemotherapeutic agents [ 5 ,  26 ]. ABCG2 also protects cells against phototoxicity 
by mediating the effl ux of porphyrins from them [ 59 ]. Clinical photosensitizers, 
such as protoporphyrin, 2-(1-hexyloxethyl)-2-devinyl pyropheophorbide-a (photo-
chlor), and benzoporphyrin derivative monoacid ring A (verteporfi n) were also 
transported out of cells by the action of ABCG2, whereas this effect was abrogated 
by the co- administration of imatinib mesylate in vitro [ 43 ]. It is suggested that, by 
increasing intracellular photosensitizer levels in ABCG2-positive tumors, imatinib 
mesylate or other ABCG2 transport inhibitors could enhance the effi cacy of clinical 
photodynamic therapy [ 43 ]. In fact, cellular phototoxicity was evoked through the 
inhibition of ABCG2 function by several protein kinase inhibitors, including ima-
tinib and cyclin-dependent kinase (CDK) inhibitors in vitro [ 73 ,  3 ,  29 ]. 
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 Interestingly, gefi tinib was found to inhibit not only the transport function of 
ABCG2 but also its expression [ 3 ]. When brain tumor cell lines were incubated 
in vitro with ALA (1 mM) and gefi tinib at different concentrations (0.01–1.0 μM), 
gefi tinib enhanced the intracellular accumulation of protoporphyrin IX in a 
 dose- dependent manner [ 70 ]. Concomitantly, incubation of brain tumor cells with 
gefi tinib resulted in decreased levels of ABCG2 mRNA. Moreover, gefi tinib signifi -
cantly decreased ABCG2 protein levels expressed at the plasma membrane surface 
[ 70 ]. These observations suggest that ABCG2 expression is regulated via a protein 
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  Fig. 4.3    Schematic illustrations of ABCG2 protein structure ( upper panel ) and transport mecha-
nism ( lower panel ). The ABCG2 protein expressed in the plasma membrane is a homodimer linked 
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kinase-mediated pathway and that ABCG2 expression is regulated by the EGFR- 
tyrosine kinase cascade [ 45 ,  22 ] as well as by the Nrf2-Keap1 pathway [ 65 ,  30 ].  

4.3    Mechanism of ABCG2 Inhibition by Gefi tinib 

 Özvegy-Laczka et al. [ 54 ] provided the fi rst evidence that gefi tinib, imatinib, and 
N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (EKI-785) interacted 
with ABCG2 at submicromolar concentrations in vitro [ 54 ]. At low concentrations, 
gefi tinib, imatinib, and EKI-785 inhibited ABCG2-dependent active drug extrusion 
and signifi cantly affected drug resistance patterns in cells expressing ABCG2 [ 54 ]. 
In ABCG2-overexpressing cancer cells in vitro, gefi tinib potently reversed resis-
tance to SN-38 [ 81 ]. In mice, gefi tinib treatment dramatically increased the oral 
bioavailability of irinotecan after simultaneous oral administration and enhanced the 
accumulation of SN-38, an active metabolite of irinotecan, in cancer [ 24 ]. Thus, it is 
expected that gefi tinib modulates SN-38 activity at the cellular level to reverse tumor 
resistance mediated by ABCG2 through inhibition of the oral drug effl ux and, thus, 
might potentially be used in humans to modulate the oral bioavailability of poorly 
absorbed camptothecins such as irinotecan [ 67 ,  24 ]. 

 It was originally speculated that gefi tinib would compete with the ATP-binding 
site on ABC transporters, because it was designed to interact with the conserved 
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  Fig. 4.4    Chemical structures of ABCG2 substrates. These substrates are classifi ed into two 
groups; namely, drugs and nondrugs       
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kinase domain [ 8 ]. Therefore, a question was raised about whether gefi tinib might 
inhibit ABCG2-mediated drug transport by occupying the ATP-binding cassette of 
ABCG2. To answer this question, we carried out transport experiments using 
ABCG2-expressing membrane vesicles, where methotrexate (MTX) was used as a 
substrate of ABCG2 [ 62 ]. Contrary to our expectation, gefi tinib did not interfere with 
ATP at all. As clearly demonstrated in Fig.  4.5b , inhibition of ABCG2 by gefi tinib 
was “uncompetitive” with ATP, whereas AMP-PNP, an ATP analogue, competed 
with ATP (Fig.  4.5c ). These results have revealed that gefi tinib is bound to an 
ABCG2-ATP complex; namely gefi tinib behaves as a substrate for ABCG2 (Fig.  4.2 ).

0.00

0.02

0.04

0.06

4 0 4 8

1/ATP (mM−1)

1/
V

 (
%

-1
)

−4

Gefitinib (mM)

1

0.3

0

0

50

100

0 0.01 0.1 1 10 100

Gefitinib (mM)

)
%(tropsnart

X
T

M

N O
N

NO

NH

Cl

F

H3C

O

AMP-PNP (mM)

1

0.3

0

0.00

0.04

0.08

0.12

−4 0 4 8

1/ATP (mM−1)

1/
V

 (
%

−1
)

Gefitinib

a

b

c

  Fig. 4.5    Inhibition of ABCG2-mediated methotrexate transport by gefi tinib. ( a ) ATP-dependent 
[ 3 H]methotrexate (MTX) transport was measured at 37 °C for 20 min in the presence of gefi tinib 
at different concentrations in the standard incubation medium (0.25 M sucrose and 10 mM Tris/
Hepes, pH 7.4, 10 mM creatine phosphate, 100 μg/ml creatine kinase, 10 mM MgCl 2 ). MTX trans-
port is expressed as relative values as compared with the transport activity measured without gefi -
tinib (100 % of MTX transport). Data are expressed as mean values ± S.E.M. ( n  = 4). ( b ) membrane 
vesicles were incubated with 200 μM [ 3 H]MTX in the presence of 0.1, 0.2, 0.5, 1, or 5 mM ATP in 
the standard incubation medium at 37 °C for 20 min, where gefi tinib was added in the reaction 
mixture at a concentration of 0 μM ( circle ), 0.3 μM ( fi lled circle ), or 1 μM ( fi lled triangle ). Data 
are expressed as mean values ± S.E.M. ( n  = 3). ( c ) Membrane vesicles were incubated with 200 μM 
[ 3 H]MTX in the presence of 0.1, 0.2, 0.5, 1, or 5 mM ATP in the standard incubation medium at 
37 °C for 20 min, where AMP-PNP was added to the reaction mixture at a concentration of 0 mM 
( circle ), 0.3 mM ( fi lled circle ), or 1 mM ( fi lled triangle ). MTX transport was quantifi ed by measur-
ing the amount of MTX transported into membrane vesicles as described in Saito et al. [ 62 ]       
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4.4       QSAR Analysis of ABCG2 Inhibitors 

 Hitherto we performed quantitative structure–activity relationship (QSAR) analysis 
and showed that a structure having one amine bonded to one carbon of a heterocy-
clic ring is an important component for interaction with the ABCG2 protein [ 62 ,  63 ]. 
In addition, fused heterocyclic ring(s) and two substituents on a carbocyclic ring of 
the fused heterocyclic ring(s) have been noted to be important chemical moieties for 
the interaction with ABCG2 [ 62 ,  63 ]. Interestingly, many protein kinase inhibitors 
carry such structural components within their molecules [ 62 ]. To gain further 
insights into drug–ABCG2 interactions and the three-dimensional (3D) structures 
of protein kinase inhibitors, we performed ab initio molecular orbital (MO) calcula-
tions based on the restricted Hartree-Fock (RHF) level of theory [ 3 ]. It has become 
clear that, like gefi tinib, purvalanol A and WHI-P180 have a planar structure, 
whereas bohemine, roscovitine, and olomoucine do not [ 3 ]. As compared with 
bohemine, roscovitine, and olomoucine, both purvalanol A and WHI-P180 were 
stronger inhibitors of ABCG2-mediated porphyrin transport in membrane vesicles. 
Thus, it is suggested that the planar structure is an important factor for interactions 
with the active site of ABCG2. Furthermore, the highest occupied molecular orbital 
(HOMO) of protein kinase inhibitors may play a signifi cant role for stronger inter-
action with a substrate-binding site(s) of the ABCG2 protein [ 63 ]. Indeed, gefi tinib, 
purvalanol, and WHI-P180 have very similar HOMO structures. Among them, how-
ever, gefi tinib was the strongest inhibitor for ABCG2.  

4.5     The Effect of Gefi tinib on ALA-PDT in Brain 
Tumor U87MG Cells In Vitro 

 It is of great interest to experimentally examine the inhibition of ABCG2 by gefi tinib 
and its effect on ALA-PDT in vitro. Since the human brain tumor U87MG cell line 
is capable of effi ciently synthesizing PpIX from ALA, we used this cell line to evalu-
ate the effect of gefi tinib on cellular accumulation of PpIX [ 25 ]. U87MG cells were 
incubated with 2 mM ALA in the absence or presence of gefi tinib (1 nM to 100 μM). 
During the incubation (4 h), ALA was taken up by peptide transporters PEPT1/2 into 
the cell, wherein PpIX was then synthesized. While PpIX was released from U87MG 
cells by ABCG2, gefi tinib inhibited the ABCG2-mediated PpIX effl ux in a dose-
dependent manner and, consequently, greatly affected cellular PpIX accumulation 
(Fig.  4.6 ). It is suggested that cellular PpIX accumulation levels are signifi cantly 
enhanced by gefi tinib at concentration ranges over 1 μM, reaching approximately 
fi vefold enhancement when cells were treated with 100 μM gefi tinib.

   As shown in Fig.  4.6 , the intracellular accumulation of PpIX was signifi cantly 
enhanced through ABCG2 inhibition by gefi tinib. We therefore evaluated the effect 
of gefi tinib on ALA-PDT in brain tumor U87MG cells in vitro. After a 24 h- incubation 
with ALA and gefi tinib, cells were exposed to the light with a maximal intensity at 
635 nm from a light-emitting diode (LED). Figure  4.7  depicts the relationship 
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  Fig. 4.6    Effect of gefi tinib on accumulation of PpIX in human brain tumor U87MG cells after 
incubation with ALA. U87MG cells were incubated with 2 mM ALA and gefi tinib at different 
concentrations for 4 h under the standard incubation conditions. The fl uorescence of PpIX, which 
was synthesized and accumulated in individual cells, was measured by FACS in the EPICS ALTRA 
fl ow cytometry system with excitation at 325 nm; detection at 575 nm. The mean fl uorescence 
intensity and standard deviation were calculated from measurement results. Data are expressed as 
mean ± S.D. in triplicate experiments [ 25 ]       
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  Fig. 4.7    Effect of gefi tinib on ALA-PDT of human brain tumor U87MG cells in vitro. U87MG 
cells were fi rst seeded into 96-well plates (1,000 cells/well) and cultured at 37 °C. After 24 h, ALA 
was added to the culture medium at varying concentrations of 0–10 mM with or without gefi tinib, 
and cells were cultured at 37 °C for 4 h in the dark. Cells were then exposed to LED (635 nm) at a 
power of 12 J/cm 2  ( a ) or 24 J/cm 2  ( b ). Surviving cells were detected by MTT assay. Data are 
expressed as means ± S.D. in triplicate experiments [ 25 ]       
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between the ALA concentration and the viability of U87MG cells incubated without 
or with 30 μM gefi tinib. We performed PDT at two different light intensities, i.e., 
12 J/cm 2  (a) or 24 J/cm 2  (b). Gefi tinib sensitized the brain tumor cells to ALA- PDT 
in vitro. It is suggested that inhibition of ABCG2-mediated PpIX effl ux by gefi tinib 
may be effective for ALA-PDT in vivo.

4.6        The Effect of Gefi tinib on ALA-PDT 
in a Xenograft Model  

 Using a xenograft model, i.e., BALB/c-nu/nu nude mice, we next examined the 
effect of gefi tinib on ALA-PDT in vivo [ 25 ]. Human brain tumor U87MG cells 
were subcutaneously inoculated into the right fl ank of each mouse (5 × 10 6  cells/0.1 ml/
mouse). Three days after this injection, the mice were orally administered 
ALA (30 mg/kg body weight, p.o.) and/or gefi tinib (100 mg/kg body weight, p.o.). 
Three hours later, the tumor tissue was exposed to LED light (maximal intensity at 
635 nm) for 30 min. 

 Figure  4.8  demonstrates the effect of ALA, gefi tinib, or ALA + gefi tinib on the 
growth of brain tumor U87MG cells in BALB/c-nu/nu nude mice after LED irra-
diation. When nude mice were administered with both ALA and gefi tinib and 
exposed to the LED light, the tumor growth rate appeared to slow down, as com-
pared with the control; however, this difference was very modest and lacked statis-
tical signifi cance [ 25 ]. While experimental conditions could be changed to obtain 
better results, we concluded that gefi tinib is not potent enough to inhibit the ABCG2 
function for ALA-PDT. PpIX has a high affi nity to human ABCG2. We need to 
explore more potent ABCG2 inhibitors that are clinically applicable to photody-
namic cancer therapy.

4.7       Conclusion and Future Perspectives 

 Hitherto, cancer research has focused on the molecular and cellular analyses of the 
bulk tumor mass. There is overwhelming evidence in some malignancies, however, 
that the tumor clone is heterogeneous with respect to proliferation and differentia-
tion. Recently, cancer stem cells are regarded to be a factor in causing chemo/radio- 
resistance of many neoplasms [ 40 ,  14 ]. Cancer stem cells represent a new paradigm 
in tumor biology. These cells have been demonstrated to initiate and sustain tumor 
growth in cancers of the hematopoietic system [ 7 ], breast [ 2 ], brain [ 66 ,  48 ], pros-
tate [ 11 ,  55 ], head and neck [ 56 ], pancreas [ 42 ], and colon [ 51 ,  58 ]. The discovery 
of cancer stem cells within certain tumor types has launched a new discipline within 
cancer research and therapy. Cancer stem cells are defi ned as those cells within a 
tumor that can self-renew and drive tumorigenesis. For the next step, we will eluci-
date whether ALA-PDT administered together with an ABCG2 inhibitor is 

4 A New Strategy of ALA-Photodynamic Cancer Therapy…



100

clinically useful for killing cancer stem cells. The new strategy of achieving 
 ALA-photodynamic cancer therapy by inhibiting ABC Transporter ABCG2 is 
 presently in progress.     
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  Fig. 4.8    Effect of gefi tinib on ALA-PDT of human brain tumor U87MG cells in the xenograft 
model. ALA-PDT in the xenograft model. U87MG cells were injected subcutaneously into the 
right fl ank of each mouse (5 × 10 6  cells/0.1 ml/mouse). Under ether anesthesia, the tumor tissue 
was irradiated with LED light (100 J/cm 2 ) for 30 min. After the LED light irradiation, tumor 
growth in each mouse was observed for 1 week. On day 7, the mice were killed and each tumor 
was surgically excised to measure its size. Data are from Inoue et al. [ 25 ]       
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    Chapter 5   
 ATP Binding Cassette Transporters in Cancer 
Stem-Like Cells 

             Paola     Perego    

    Abstract     A fraction of tumor cells designated as cancer stem cells (CSC) has been 
identifi ed in various tumor types. Such cells appear to be capable of initiating and 
sustaining the growth of a tumor, being responsible for tumor initiation, invasive 
growth, metastasis, and drug resistance. The isolation of CSC is not easy to achieve 
due to the need for proving phenotypic and functional features; thus, under many 
circumstances “putative CSC” is the most appropriate designation. Like normal 
stem cells, CSC appear to exhibit increased expression of ABC transporters as com-
pared to their nonstem counterparts. Here, the cancer stem cell hypothesis is 
described with particular reference to the timeline of its development, together with 
the acquired knowledge on ABC transporters that may be instrumental for therapeu-
tic targeting of CSC.  

  Keywords     Cancer stem cells   •   ABC transporters   •   Drug resistance  

   Abbreviations 

   CSC    Cancer stem cells   
  ABC    ATP binding cassette   
  HSC    Hematopoietic stem cells   
  SP    Side population   
  BCRP    Breast cancer resistance protein   
  EMT    Epithelial to mesenchymal transition   
  Pg-p    P-Glycoprotein   
  MRP    Multidrug resistance-related protein   
  miRNAs    microRNAs   
  MRP1    Multidrug resistance-related protein 1   
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  PI3K    Phosphoinositide-3-kinase   
  Akt    V-Akt murine thymoma viral oncogene homolog   
  MAPK    Mitogen-activated protein kinases   
  ERK    Extracellular signal- regulated kinases   
  LMWH    Low molecular weight heparin   
  ALDH1    Aldehyde dehydrogenase 1         

5.1     Introduction 

    In all differentiated mammalian normal tissues there are cells that can differentiate in 
response to environmental stimuli, because they maintain stem cell features [ 77 ]. 
Such cells are abundant in regenerating tissues, but represent a small fraction of the 
tissue cells in nonregenerating tissues. The existence also in tumors of a cell fraction 
endowed with self-renewal, differentiating and tumor initiating properties is sup-
ported by old and recent studies. Such cells designated as cancer stem cells (CSC) 
have been proposed to represent a population of cancer cells which initiates and sus-
tains the growth of a tumor, being responsible for tumor initiation, invasive growth, 
and metastasis [ 90 ,  6 ,  16 ]. CSC have been identifi ed in different tumor types, but only 
in a few diseases (e.g., breast and brain tumors) the precise phenotypic and functional 
features of CSC have been well defi ned [ 20 ]. A better defi nition of the role of CSC in 
various tumor types and molecular subtypes will need additional efforts, specifi cally 
in establishing refi ned markers for CSC. Moreover, extensive in vivo work, in par-
ticular limiting dilution assays will be required to establish the tumor-initiating capa-
bility of the used experimental models. Such approaches are expected to reduce 
over-interpretation of results that has been a frequent risk in the fi eld of CSC. 

 Expression of proteins contributing to drug resistance, and in particular of the 
ATP-binding cassette (ABC) transporters, in putative CSC versus differentiated 
cancer cells are being regarded as a major feature of CSC that could be pharmaco-
logically targeted in an attempt to improve the effi cacy of treatment and to achieve 
durable responses [ 22 ]. It has been reported that normal and tumor stem cells exhibit 
increased expression of ABC transporters as compared to their nonstem counter-
parts [ 5 ,  103 ]. Indeed, ABC transporters have been documented to be involved in 
the regulation of stem cell physiology in studies regarding normal hematopoietic 
stem cells (HSC, see below). 

 Here, the cancer stem cell hypothesis is described with particular reference to the 
timeline of its development, together with the acquired knowledge on ABC trans-
porters that may be instrumental for therapeutic targeting of CSC. The signifi cance 
of ABC transporters in the biology of CSC is presented by considering the specifi c 
features of those transporters that have been implicated in phenotypes related to 
CSC, such as the side population (SP) phenotype. In addition, the interrelation 
between ABC transporters and other markers for CSC is examined, as well as the 
regulation of ABC transporters expressed in CSC or cancer stem-like cells by spe-
cifi c factors or pathways. Moreover, clinical trials involving CSC have been 
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reported. In summary, the available evidence on CSC supports the need for strong 
basic science efforts before fully translating the knowledge generated in the pre-
clinical context to the clinical setting. Several modulators of ABC transporters seem 
to have promising therapeutic potential, as shown in preclinical studies. The scien-
tifi c community is already facing a few clinical observations that may be useful to 
interpret recurrence and that will be hopefully exploited to defi ne improved thera-
pies to cure cancer patients.  

5.2    The Cancer Stem Cell Hypothesis 

5.2.1    Rationale and Historical Notes 

 The CSC hypothesis proposes a hierarchical model for tumors in which cells “at the 
apex of tumor hierarchy” can be identifi ed. Such a hypothesis is apparently in con-
trast with the clonal evolution model or stochastic model of tumorigenesis, which is 
based on increased proliferative potential of the clone with the best fi tness among 
tumor cells. The model of a dominant clone where clonal selection relies on genetic 
mutation does not appear real, or at least exclusive. In fact, epigenetic mechanisms 
and also the tumor microenvironment contribute to tumor heterogeneity. In this con-
text, nonmutational mechanisms of drug resistance have been described (i.e., poly-
genic clinical drug resistance) [ 39 ], that may be useful to interpret the real nature of 
tumor heterogeneity and may be in line with a relevant role for CSC. 

 The fi rst report that started to build the CSC hypothesis was published in 1937 by 
Furth and Kahn [ 89 ], who documented that a single tumor cell can initiate leukemia 
in mice. “The transmission of leukemia of mice with a single cell” was subsequently 
confi rmed in several studies [ 108 ]. Remarkably, in 1997, Bonnet and Dick reported 
that human acute myeloid leukemia is organized as a hierarchy that originates from 
a primitive hematopoietic cell. Such a study shed light on the mechanism underscor-
ing the phenotypic, genotypic, and clinical heterogeneity of acute myeloid leuke-
mia, given the debate about the target cell, within the hematopoietic stem cell 
hierarchy, that is susceptible to leukemic transformation [ 8 ]. The study suggested 
that normal primitive cells, rather than committed progenitor cells, are the target for 
leukemic transformation, and that such cells could differentiate in vivo into leuke-
mic blasts, a phenomenon supporting that the leukemic clone is organized as a hier-
archy [ 8 ]. The fi rst evidence of the existence of CSC in solid tumors was provided 
in 2003, when the CSC hypothesis was tested starting from considering the pheno-
typically diverse population of breast cancer cells [ 1 ]. In this context, it was found 
that only a small number of breast cancer cells were able to form new tumors in 
immune-defi cient mice, and tumor initiating cells were distinguished from noniniti-
ating cells based on surface marker expression [ 1 ]. Indeed, starting from patient- 
derived material, tumorigenic cells that were found to be positive for CD44, negative 
for CD24 or expressing low levels of CD24 and negative for lineage markers could 
be serially transplanted and generated heterogeneous tumors [ 1 ].  
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5.2.2     Tumor Heterogeneity and Tumor Initiating Capability 
of CSC 

 At present, the available evidence supports that a tumor can be regarded as a hetero-
geneous aberrant tissue, possibly originating from a single cancer stem cell, and 
maintained by the surrounding niche which contains stromal cells and other compo-
nents of the microenvironment (i.e., immune cells). Thus, the defi nition of CSC has 
been précised over time and expanded to comprise tumor cells capable to regrow the 
tumor from which they were isolated [ 115 ]. In such a view, several laboratories have 
directed their efforts toward the isolation of CSC from tumor biopsies and from 
tumor cell lines with the fi nal goal to discover druggable targets expressed by 
CSC. In principle, CSC are endowed with tumor initiating capability—supported by 
in vivo testing—and with differentiation properties. In addition, CSC express a set 
of markers that allow researchers to accomplish their identifi cation and isolation. 
Using multiple tools, it has been shown that subpopulations of CSC may account for 
tumor initiation, invasive growth, and dissemination to distant organs [ 90 ]. It has 
been documented that a rare population of CSC is more easily detectable in hema-
tological malignancies than in solid tumors, like for example in leukemia [ 64 ]. 
Indeed, Lapidot and colleagues identifi ed an acute myeloid leukemia cell initiating 
human acute myeloid leukemia after transplantation into severe combined immune- 
defi cient mice. Such cells that were CD34 positive and CD38 negative, displayed 
leukemic cell morphology and produced a pattern of dissemination similar to what 
observed in the original patients [ 64 ]. No information about the expression of ABC 
transporters, in particular of BCRP, was provided in this study for historical reasons. 
Indeed, the gene coding for BCRP was cloned in 1998 and subsequent studies 
revealed the expression of ABC transporters (see below).  

5.2.3    CSC and the Cell of Origin 

 A matter of debate in the fi eld of CSC is the relationship between CSC and cell of 
origin of tumors. It is important to note that a clear distinction between the cancer 
stem cell and the cell of origin of a tumor has recently been proposed [ 107 ]. In this 
perspective, the cell of origin would be the tumor initiating cell and CSC would be 
tumor propagating cells. Such distinct cell categories would have different pheno-
types. In chronic myeloid leukemia, the cell of origin has been recognized as the 
hematopoietic stem cell containing the BCR-ABL mutation; however, subsequent 
genetic lesions in progenitor cells downstream of the hematopoietic stem cell pro-
duce leukemia stem cells [ 107 ]. Additional evidence has shown that cancer can arise 
from differentiated cells (e.g. T-cell acute lymphoblastic leukemia) [ 76 ]. In particu-
lar, the  LMO2  oncogene was reported to induce a subset of human T cell acute lym-
phoblastic leukemias, by promoting the self-renewal of pre-leukemic thymocytes; 
thus, committed T cells appear to accumulate additional genetic mutations required 
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for leukemic transformation [ 76 ]. Moreover, whether in solid tumors the stem or 
progenitor cells appear to be candidates for tumor initiation, the exact mapping of the 
cell of origin is far from being completed, and further effort is needed in this fi eld.  

5.2.4    CSC and Differentiation 

 The capability of putative CSC to differentiate can be easily proven in specifi c 
tumor types, whereas in others it is not clear which differentiation markers should 
be considered. In fact, tumors present phenotypic plasticity and dedifferentiation 
properties that may result in changes of markers and molecular features during dis-
ease progression. Some diseases provide examples of clearly assessable differentia-
tion markers (e.g., neuroblastoma, melanoma). In this regard, melanospheres 
containing tumor initiating cells when cultured in differentiating media for the mes-
enchymal lineages (adipocytes, chondrocytes, osteocytes) were shown to be capable 
of differentiating into all cell types [ 84 ]. In addition to their differentiation ability, 
like normal stem cells, CSC must be capable of self-renewal, which is the ability to 
undergo an unlimited number of replicative cycles, while maintaining the stemness 
properties. The cancer stem cell produces one cancer stem cell and a cell which dif-
ferentiates by asymmetric division. This phenomenon allows the maintenance of the 
pool of CSC (Fig.  5.1 ).

Dedifferentiation

Cancer Stem Cells

Multipotent progenitor cells

Differentiated cells

  Fig. 5.1    Schematic representation of cell division of cancer stem cells. Cancer stem cells (CSC) 
can divide symmetrically producing two daughter cells with the same characteristics of the cancer 
stem cell of origin, or can divide asymmetrically, thereby generating differentiated cells. Over the 
different rounds of division, cells with decreased stemness features as compared to the cancer stem 
cell of origin can be generated. Such cells are designated as pluripotent progenitors. Cells that have 
lost the stemness phenotype can eventually dedifferentiate and reacquire some stemness features       
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5.2.5       CSC and Metastasis 

 Increasing evidence supports the notion that CSC play a role in tumor progression 
and may be responsible for tumor growth as well as for metastatic spread, a multi-
step process in which epithelial to mesenchymal transition (EMT) occurs [ 73 ]. Of 
note, the process of EMT—in which cells lose the expression of epithelial markers 
and acquire a mesenchymal phenotype—has been shown to be able to produce cells 
with stem cell-like features [ 74 ]. The coexistence of a stationary phase population 
embedded in the epithelial tissue that cannot disseminate (stationary CSC) and a 
migratory population of mobile cells located at the tumor microenvironment inter-
face (migratory CSC) has been proposed [ 10 ]. In keeping with a tight relation 
between EMT and stemness, when tumor cells undergo EMT, a number of proper-
ties and processes (invasiveness, drug resistance, angiogenesis, and metastasis) 
appear to be increased in parallel, thus generating a tumor with more aggressive 
characteristics. The acquisition of a drug-resistant phenotype is associated with the 
expression of ABC transporters (see below).  

5.2.6    Tumor Initiating Capability of CSC and Markers 

 The demonstration of the tumor initiating capability is a critical aspect in the CSC 
fi eld because in vivo experiments are required and the use of immune-compromised 
mice is hampered by the need for properly equipped animal facilities as well as by 
the costs. Besides being capable of self-renewal and asymmetric division, CSC 
should have tumor initiating capability (Fig.  5.2 ). However, not all the literature 
published on CSC contains proofs about the tumor initiating capability of the stud-
ied CSC. This is the reason why, the designation of cancer stem-like cells should be 
preferred in general to that of CSC, and specifi cally in experimental work not includ-
ing assessment of the tumor initiating capability. Indeed, CSC are very often identi-
fi ed (a) on the basis of the expression of multiple markers (CD24, CD29, CD44, 
CD133, ALDH1, etc.) that, however, are not necessarily unique to CSC [ 53 ,  56 ,  103 ] 
or (b) on their ability to grow independently of anchorage (i.e., as spheres) in serum-
free medium added with growth factors. Of note, such growth factors are recognized 

Quiescent

Rare

Self-renewal

Tumor initiating capability

Asymmetric division Differentiation

  Fig. 5.2    Hallmarks of cancer stem cells. The main features of cancer stem cells (CSC) are 
represented       
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as being capable of activating survival pathways, a feature that has rendered 
complex the set up of comparisons between the growth characteristics of differenti-
ated cells, cultured in serum-containing media, and those of CSC cells cultured in 
peculiar media, under circumstances often diffi cult to standardize among different 
laboratories due to patent issues and/or to complex procedures.

5.3        ATP-Binding Cassette Transporters 

 Membrane proteins of the ABC super-family have been documented to participate 
in energy-dependent effl ux of a variety of structurally unrelated antitumor agents 
[ 26 ]. Such a phenomenon is known as multidrug resistance and besides over- 
expression of effl ux pumps it can involve other interrelated or independent mecha-
nisms. ABC transporters play a relevant physiological role in protection against 
xenotoxins. In fact, they decrease the intestinal uptake and tissue penetration repre-
senting important physiological barriers (brush border membrane of intestinal cells 
and epithelium of the blood-brain barrier) and mediate excretion of their substrates 
[ 3 ]. Based on sequence similarity, all ABC transporters can be grouped in seven 
classes (A–G) and members of at least four classes (A, B, C, G) have been clearly 
implicated in conferring resistance to antitumor agents [ 33 ]. All ABC transporters 
share an ABC domain, but the organization of the domains is different in various 
transporters with diverse numbers and location of trans-membrane domains. The 
structural characteristics may infl uence folding of the transporter as well as sub-
strate accessibility, thereby regulating transport properties. Among the 49 members 
of the ABC super-family, different transporters play a major role in multidrug resis-
tance. The fi rst identifi ed transporter for which a contribution to multidrug resis-
tance has been shown is the P-glycoprotein (Pg-p) encoded by the  ABCB1  gene 
[ 59 ]. Pg-p is the best known ABC transporter and is a 170 kDa protein which trans-
ports neutral, cationic, and hydrophobic compounds, including antitumor agents 
commonly used in the clinical setting (anthracyclines, camptothecins, epipodophyl-
lotoxins, Vinca alkaloids). The MRP (multidrug resistance-related protein) family, 
which comprises ten members has been implicated in conferring resistance to sev-
eral antitumor agents. The fi rst member of the family, MRP1, has shown transport 
specifi city similar to that of Pg-p, but it transports drugs conjugated with glutathi-
one or anionic compounds [ 17 ]. BCRP, the second member of the ABCG family, is 
encoded by  ABCG2 . It is a 72 kDa protein which transports unmodifi ed drugs and 
xenobiotics [ 23 ]. It is an organic anion pump very effi cient in transport of sulfate, 
glucuronic acid, and glutathione conjugates. ABCB5 codes for a protein of 90 kDa 
that has been implicated in the effl ux of the DNA topoisomerase II inhibitor doxo-
rubicin and more recently in reduced sensitivity to 5-fl uorouracil [ 28 ,  110 ]. 

 At the time the above mentioned transporters were identifi ed and cloned, studies 
regarding the hypothesis on CSC were already ongoing, but the two lines of research 
were somehow parallel till the SP assay was set up and innovative technical 
approaches allowed fi ne molecular studies (Fig.  5.3 ). The clinical relevance of 
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increased expression of ABC transporters in conferring resistance in patients is still 
a matter of debate, but it is possible that the ABC transporter super-family plays still 
not well defi ned roles in CSC.

5.3.1      Profi ling of ABC Transporters 

 The advent of genome-wide approaches as well as of quantitative methods for 
examining expression of gene families have allowed researchers to improve the 
molecular characterization of tumors, with particular focus on drug-resistant tumors. 
Expression profi ling of ABC transporter super-family genes has been carried out 
both in drug-resistant cell lines and in tumor specimens, including posttreatment 
tumors [ 47 ,  87 ] to identify genes that are potential regulators of drug resistance or 
modifi ers of progression and/or response. More refi ned analyses have included an 
evaluation of specifi c transporters at the mRNA and protein levels. The concomitant 
analysis of the transcript and protein appears a wise strategy, if considering the 
layers of regulation occurring between mRNAs and proteins. In addition to a variable 
stability of the different mRNA molecules, the regulation by microRNAs (miRNAs) 
is an important aspect that may explain discrepancies between mRNA and pro-
tein levels. In fact, miRNAs, endogenous, noncoding-single stranded RNAs of 
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  Fig. 5.3    Time frame of research on CSC and on ABC transporters. Some relevant years for 
research about CSC and ABC transporters are indicated together with the published fi ndings. The 
two lines of research were parallel and then began being interrelated when the side population (SP) 
phenotype was described       
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19–25 nucleotides that can modulate gene expression, play an important role in 
regulating different aspect of the biology of CSC (proliferation, differentiation), and 
are therefore expected to participate in a complex network that also regulates ABC 
transporters. In general, miRNAs target specifi c mRNAs, thereby causing their deg-
radation [ 101 ]. The levels of several genes of the ABC super-family have been 
shown to be modulated by miRNAs, which are expected to be involved in CSC biol-
ogy [ 33 ]. Of note, the available literature already supports the complex transcrip-
tional regulation of the ABCG2 transcript that in cellular studies has been reported 
to be downregulated by various miRNAs such as miR-328, miR519c and miR-520h, 
miR-487a, miR-181a [ 33 ,  71 ,  66 ,  58 ,  97 ,  109 ]. 

 An analysis of the expression of ABC transporters has been undertaken also in 
different models of CSC, as these transporters or at least some of them are consid-
ered phenotypic markers of CSC and are regarded as functional regulators. For 
example, putative prostate stem cells and prostate CSC in benign and malignant 
tumors have been defi ned by the expression of BCRP and concomitant lack of the 
androgen receptor [ 50 ]. According to the fi ndings, BCRP may protect prostate CSC 
from androgen deprivation, hypoxia, or chemotherapy, thus favoring recurrence of 
prostate cancer [ 50 ]. 

 A relevant evidence emerging from the recent literature is the link between the 
ABC transporter activity and radiation resistance [ 52 ]. In this regard, sensitization 
to radiation was found in pediatric medulloblastoma cells upon treatment with the 
ABC transporter inhibitors verapamil or reserpine. Of note, radiation tolerant cells 
displayed stem cell-like behavior (e.g., increased tumorigenic potential). In medul-
loblastoma specimens, selected ABC transporter super-family members were found 
to be associated with specifi c molecular subtypes (high ABCA8 and ABCB4 in 
Sonic/Hedgehog-driven tumors) [ 52 ]. The mechanism for increased ABC trans-
porter expression in radiation resistant cells is not clear, but it is likely that their 
upregulation results from a stress response, from a pro-survival response, or from 
activation of regulators of ABC transporters expression. In this regard, it has been 
shown that both hypoxia and oxidative stress can upregulate or stimulate ABC 
transporters [ 54 ,  95 ]. 

 In addition, gene expression profi les of normal cells should be taken into account 
(e.g., melanocyte). In fact, two mRNA isoforms of the  ABCB5  gene,  ABCB5alfa  
and  ABCB5beta  have been shown to be expressed in melanoma, but also in melano-
cytes, their expression being pigment-cell specifi c, thereby suggesting their possible 
involvement in melanogenesis [ 14 ]. The expression of ABCB5 and other transport-
ers of the ABC super-family has been linked to the resistance of melanoma cells to 
structurally unrelated drugs, but also to the resistance of melanocytes to toxic inter-
mediates of melanin metabolism, supporting that the melanogenic pathway may 
provide therapeutic targets [ 15 ]. 

 The profi ling of ABC transporters in cancer cells including cancer stem-like cells 
has been simplifi ed by the availability of quantitative Real time PCR platforms pro-
viding standardized assays [ 37 ]. However, further effort is needed to set up routine 
high-throughput analysis for detecting protein levels of the specifi c transporters.  
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5.3.2    ABCG2/Breast Cancer Resistance Protein 

  ABCG2  is a gene included in the super-family of ABC transporters that codes for a 
protein member of the White subfamily. As briefl y mentioned above, the protein is 
referred to as a breast cancer resistance protein and it acts as a xenobiotic trans-
porter. ABCG2 is a widely studied transporter, which has been characterized in 
terms of substrate specifi city and for its role in drug resistance. Its signifi cance in 
CSC and in normal stem cells (e.g., placental trophoblasts, neural stem cells, hema-
topoietic progenitors) physiology is mainly related to its expression in side popula-
tion cells; indeed, its expression is fundamental for the capability of a cell population 
to give rise to a side population (see below) [ 118 ,  25 ,  55 ,  61 ,  93 ]. ABCG2 expres-
sion in human embryonic stem cells has been debated as confl icting results have 
been published [ 83 ]. However, recent results obtained with sensitive methods indi-
cate that ABCG2 may be regarded as a late stage differentiation marker in cultured 
human embryonic stem cells. 

 Leukemic CD34 positive and CD38 negative stem cells are considered relevant 
to cure acute myeloid leukemia as incomplete eradication of these cells may be 
responsible for disease relapse. BCRP was found to be expressed by these cells 
[ 88 ]. Inhibition of mitoxantrone extrusion by a specifi c BCRP inhibitor (the fumit-
remorgin C analog, KO143) produced increased drug accumulation in cells obtained 
from different patients, but drug effl ux still occurred in the presence of KO143, 
thereby suggesting that additional transporters including Pg-p and MRP1 are 
expressed by leukemic stem cells. Consistently, KO143 could not increase chemo- 
sensitivity of leukemic stem cells. Such a study supports the need for broad- spectrum 
inhibition of different mechanisms/transporters [ 88 ]. 

 Although BCRP was originally identifi ed in breast cancer cells [ 23 ], such a 
transporter plays a role in a variety of tumor types comprising colorectal cancer, 
brain tumors, etc.  

5.3.3    ABCB5 

 In addition to BCRP, the ABCB5 transporter has been implicated in CSC biology, 
with particular reference to malignant melanoma; in such a disease ABCB5 has been 
proposed as a marker of melanoma-initiating cells [ 94 ]. Indeed, ABCB5 has been 
shown to mark CD133-expressing progenitor cells among human epidermal mela-
nocytes, and to positively regulate the propensity of this subpopulation to undergo 
cell fusion, a process contributing to culture growth and differentiation [ 29 ]. ABCB5 
has also been involved in doxorubicin effl ux transport and it has been already 
exploited as a therapeutic target by the development of a specifi c antibody [ 28 ]. 

 High ABCB5 expression has been recently associated with progression of oral 
squamous cell carcinoma and tumor recurrence [ 44 ]. Interestingly, double labeling 
immunofl uorescence and immunohistochemistry experiments indicated that 

P. Perego



115

ABCB5 was expressed by CD44 positive cells. Unfortunately, in this study, there 
was no in vitro or in vivo characterization of the stem cell properties of the ABCB5 
positive cells. Thus, although the results are statistically sound as ABCB5 was an 
independent prognostic factor in multivariate analyses, further studies will be 
needed to establish if such cells are endowed with features of CSC. 

 ABCB5 positive melanoma cells have been shown to be targeted by partheno-
lide, a natural sesquiterpene lactone described as an NF-kB inhibitor, endowed with 
anti-microbial, anti-infl ammatory and anticancer effects [ 19 ]. Of note, cell survival 
after treatment exhibited an immunophenotype different from that of control cells. 
In spite of its limited penetration capacity, parthenolide could target both CSC like 
cells and bulk tumor cells [ 19 ]. 

 Recent evidence suggests that ABCB5 together with CD133 play a critical func-
tion in promoting vasculogenic mimicry and the morphogenesis of the perivascular 
niche in melanoma [ 63 ]. In fact, loss of function approaches based on RNA interfer-
ence could prove that knockdown of CD133 produced an impairment in the cell 
ability to form vascular mimicry-like channels, a phenomenon associated with the 
depletion of the ABCB5 positive population [ 63 ]. Thus, co-expression of CD133 
and ABCB5 in melanoma cells seems to be important for the generation of a 
vascular- mimicry-dependent perivascular niche, although the specifi c role of each 
one of the markers, in particular that of ABCB5, is not clear. Based on the available 
data, it is uncertain whether the transport capability of ABCB5 is used by CD133/
ABCB5 double positive cells to regulate the content of the cellular or extracellular 
level of molecules which regulate vascular mimicry [ 63 ]. This process appears com-
plex and has been shown to involve VEGF-A signaling which stimulates the expres-
sion of vascular mimicry associated genes such as  CD144 , a marker reported to be 
preferentially expressed by ABCB5 positive cells in colorectal cancer [ 110 ]. In this 
context, ABCB5 appeared to be responsible for resistance to 5-fl uorouracil. ABCB5 
was expressed only on rare cells within normal intestinal tissue, whereas increased 
levels of ABCB5 were found in colorectal cancer specimens. The abundance of 
ABCB5 positive cells appeared increased after treatment in residual disease. Thus, 
ABCB5 has been proposed as a novel molecular marker of therapy-refractory tumor 
cells in colorectal cancer patients. Targeting of ABCB5 positive cells is proposed to 
eradicate such tumors. Moreover, additional evidence is available in melanoma 
where, by highlighting the role of the immune system in tumor progression, it has 
been shown that ABCB5 positive melanoma initiating cells induce T regulatory 
cells via a B7.2-dependent pathway [ 94 ]. 

 In keeping with a relevant role for ABCB5 in the biology of CSC and with the 
drug-resistant phenotype of melanoma cells, melanoma chemotherapy has recently 
been shown to lead to the selection of ABCB5-expressing cells [ 12 ]. In addition, 
increased expression of the ABCB5 protein from benign nevi to invasive melanoma 
has been reported in a study in which immunohistochemistry was used [ 96 ]. ABCB5 
should not be regarded, however, as a transporter playing a role only in melanoma, 
because an evaluation of its expression in hematological malignances suggested that 
it may be involved in both the progression and the resistance of acute leukemia [ 112 ].  
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5.3.4    ABCB1/P-Glycoprotein 

 Breast cancer stem cells have been reported to express high levels of Pg-p [ 21 ]. 
A recent report suggests that the commercially available anti-alcoholism drug disul-
fi ram may be useful in reversing drug resistance of CSC by virtue of its pleiotropic 
effects on factors expressed by CSC [ 67 ]. In fact, disulfi ram has been shown to 
produce persistent inhibition of Pg-p activity    by covalent modifi cation of cysteine 
residues localized in the nucleotide binding domain of the transporter [ 70 ]. Besides 
this effect, disulfi ram is capable of inhibiting the activity of ALDH, a marker for 
CSC [ 38 ,  79 ,  102 ]. Of note, in a triple negative drug-resistant breast cancer cell line 
endowed with CSC features (slow cycling, high transporter expression, high levels 
of embryonic stem cell markers), disulfi ram was shown to target CSC characteris-
tics leading to reversal of resistance [ 67 ]. This evidence supports the value of drugs 
that are already available and that may fi t with a drug repositioning program. 

 In addition, although the relevance of Pg-p in conferring resistance in the clinics 
is still reported as uncertain, likely because in real tumors overexpression is not eas-
ily achieved like in cultured cells [ 9 ], the clinical relevance of Pg-p might be linked, 
in principle, to its expression in selected subpopulations of tumors cells present in 
the tumor (e.g., CSC), that may fi nally underlie recurrence. Further studies are 
needed to clarify these aspects.  

5.3.5    Multidrug Resistance-Related Protein 1 (MRP1) 

 MRP1 has also been shown to be increased in SP cells [ 118 ], although it does not 
appear to be a major determinant of the SP phenotype (see below, Sect.  5.4.1 ). Thus, 
BCRP appears to be the most relevant determinant of the SP phenotype, but other 
transporters expressed by SP cells may cooperate with it to effl ux drugs, thereby 
underscoring resistance. Specifi c inhibitors of each one of the transporters should, 
therefore, be used to better examine if more than one SP phenotype exists and which 
transporters are implicated.  

5.3.6    ABCA5 

 Using an approach based on multiple markers, it has been shown that osteosarcoma 
cell populations enriched for putative CSC are characterized by high ABCA5 
expression. Of note, in this study, ABCA5 was proposed as a putative biomarker of 
CSC [ 91 ]. 

 Although ABCA5 is still a poorly understood transporter, its correlation with the 
differentiation state has been reported in human colon cancer, thereby suggesting a 
possible role in the CSC biology [ 82 ]. Of note, in the same study also ABCB1 was 
shown to be correlated with the differentiation state, a phenomenon that may be an 
indicator of common regulation.  
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5.3.7    Regulation of the Function of Drug Transporters 

 Increasing evidence supports that cellular survival pathways, in particular the PI3K/
Akt pathway, play a role in the biology of CSC. The PI3K/Akt pathway has been 
shown to be important for maintaining the pluripotency of embryonic stem cells [ 4 ]. 
Indeed, transcriptional analysis and a functional assay have shown that PI3K/Akt 
together with the MAPK/ERK and NF-kB pathways are down regulated during dif-
ferentiation of these cells [ 51 ]. The PI3K/Akt pathway has been proposed to be required 
in the maintenance of CSC in the brain, breast, prostate cancer, and glioma [ 116 ]. 

 The regulation of CSC by the PI3K/Akt pathway is supported by a variety of 
studies pointing out (a) a reduced SP cells in the bone marrow of Akt1-null mice, 
and (b) increased SP cells in the bone marrow of mice following enforced expres-
sion of Akt. Moreover, inhibition of the PI3K/Akt pathway has been associated with 
BCRP internalization, a phenomenon that suggests a regulation of distribution of 
BCRP by the PI3K/Akt signaling. The precise mechanisms involved are still poorly 
understood [ 51 ]. The relationship between cell survival pathways and ABC trans-
porters is also supported by the association between ABCG2 and HER-2 expression 
in breast invasive ductal carcinoma [ 111 ]. Of note, the Hedgehog pathway had been 
previously shown to regulate also ABCB1 besides ABCG2, although the molecular 
determinants of the regulation were less characterized; the pharmacological rele-
vance of the Hedgehog pathway inhibition was proved as its targeting reversed 
resistance to structurally unrelated antitumor agents [ 98 ]. Activated Hedgehog sig-
naling has been implicated in sustaining high ABCG2 expression in diffuse large B 
cell lymphoma, a disease in which high expression of this transporter was shown to 
inversely correlate with disease-free survival [ 99 ]. A molecular analysis indicated 
that the ABCG2 promoter contains a binding site for the GLI1 transcription factor; 
since high ABCG2 and GLI1 expression was found in tumors with lymphnodes 
involvement, it has been proposed that the stroma microenvironment might regulate 
ABCG2 and GLI1 [ 99 ]. This hypothesis was supported by in vitro assays including 
coculture experiments in which tumor cells upregulated ABCG2 as a result of 
stroma cell-induced Hedgehog signaling. In this experimental model, ABCG2 was 
not the only resistance factor induced by Hedgehog signaling as also anti-apoptotic 
proteins were upregulated, but ABCG2 was characterized in detail in terms of the 
transcriptional regulation [ 99 ]. An indirect regulation of ABC transporters levels by 
E2F involving p73 has also been described [ 2 ], further corroborating the view of a 
complex regulatory network acting to favor the survival of CSC.   

5.4    The Side Population 

 ABC transporters are not straightforward markers for CSC, but it has been docu-
mented that CSC can express ABC transporters. This characteristic is shared by 
CSC and normal stem cells. Both normal and CSC can be identifi ed in the so called 
SP in a dot plot from fl ow cytometry analysis. In fact, the term “side” refers to the 
position at the side of the plot. The isolation of SP cells has been carried out and 
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described from different types of normal tissues including the bone marrow and 
tumors. Indeed, a small fraction of bone marrow cells that can be evidenced by fl ow 
cytometry for the ability to effl ux the fl uorescent dye Hoechst 33342 and are 
enriched for HSC, has been identifi ed in the hematopoietic compartments of differ-
ent organisms including humans and in non-hematopoietic tissues [ 42 ,  104 ]. SP 
cells from murine bone marrow can self-renew and generate both lymphoid and 
myeloid lineages [ 42 ]. Normal HSC express at least two ABC transporters, but the 
complexity of the ABC transporter family suggests that other members could be 
present [ 100 ]. Studies carried out in mice more than a decade ago have indicated 
that BCRP, but not MDR1, is responsible for the HSC phenotype [ 104 ,  117 ,  93 ]. 
Accordingly, in Abcb1-knockout mice, the SP is not depleted [ 11 ]. Expression of 
the murine orthologue of ABCG2 appears a constant feature of murine stem cells 
from different sources such as bone marrow, skeletal muscle, primary mammary 
tissue, and embryos. In murine HSC, Abcg2 is highly expressed and is downregu-
lated during differentiation. The dependency on Abcg2 of the SP phenotype has 
been clearly defi ned by gain and loss of function studies [ 118 ]. 

 Moreover, fl ow cytometry approaches applied to the CSC fi eld have allowed 
researchers to defi ne the existence of a tumor cell fraction that is enriched for drug 
effl ux transporters, specifi cally ABC transporters. Again, this tumor cell population is 
functionally defi ned based on its capability to extrude the specifi c fl uorescent dye 
Hoechst 33342, an activity that produces a shift of the fl uorescence of the cells belong-
ing to this population in a dot plot obtained by fl ow cytometry analysis. In particular, 
cells expressing ABC transporters recognizing the fl uorescent dye, decrease their 
fl uorescence becoming clearly separated from the rest of the cells. In this kind of 
assay, verapamil, a calcium channel blocker which binds with high affi nity to Pg-p 
and with less affi nity to BCRP, is used, as the SP disappears upon transporter inhibi-
tion in the presence of verapamil. Thus, the SP is identifi able as reported in Fig.  5.4 . 
It is important to note that evaluation of the SP is not an easy procedure and should be 
carried out with a well set up protocol and adequate gating procedures.

   The SP assay is routinely carried out in the presence of verapamil, a well known 
inhibitor of ABCB1. This is surprising as the SP phenotype is thought to be due to 
the expression of ABCG2. However, verapamil can also inhibit, although less 
strongly, ABCG2. Indeed, it has been shown that in bone marrow cells, ABCB1 
contributes in part to the SP phenotype [ 118 ]. 

 A causal link between the expression of ABCG2 and SP has been proposed in a 
report on leukemia in which over-expression of ABCG2 in Jurkat and HL60 cells 
was shown to increase the SP; such a phenomenon was concomitant with upregula-
tion of the phosphorylated forms of PI3K and Akt [ 49 ]. Conversely, treatment with 
PI3K or Akt inhibitors downregulated ABCG2 expression, phospho-PI3K, phospho- 
Akt and SP. Activation of Akt appears to occur via inactivation of PTEN, a lipid 
phosphatase which has been implicated in preventing leukemogenesis [ 114 ]. Thus, 
ABCG2 regulation by the PI3K/Akt pathway appears a likely phenomenon in leu-
kemia, similarly to what was described in glioma and esophageal cancer [ 7 ,  65 ]. 

 SP cells from bladder cancer were found to be characterized by increased levels of 
ABCG2 together with phospho-ERK1/2 activation [ 46 ]. Accordingly, inhibition of 
MEK1/2, the upstream regulator of ERK1/2, resulted in inhibition of the SP phenotype. 
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An important fi nding of this study is the observation that, in tumor specimens, ABCG2 
and pERK1/2 were positively correlated and their expression correlated with decreased 
progression-free survival [ 46 ]. 

 The application of the SP approach to the study of CSC has some limitations for 
subsequent analysis of the tumor initiating capability of the non-SP cell fraction. 
Such a fraction that in principle should be devoid of tumor initiating capability by 
virtue of its intrinsic nature, i.e. the lack of stemness, may result devoid of the capa-
bility due to the fact that it is treated with a fl uorescent dye in the SP assay. In fact, 
because the dye is a DNA binding agent, it might fi nally affect the proliferative 
potential of the non-SP cells simply because it targets the DNA (Fig.  5.5 ). Again, 
the use of SP an indicator of stemness should be regarded with caution. Indeed, it 
has been reported that not all SP populations diplay increased tumorigenic potential 
as compared to non-SP cells [ 113 ].

   An important step in the study of the SP has been represented by the isolation of 
SP cell from biopsies [ 40 ]. Using glioblastoma samples grown orthotopically in 
immune-defi cient mice, SP cells of human glioblastoma were found to be stroma- 
derived and nonneoplastic [ 40 ]. Indeed, tumor cells did not exhibit effl ux properties 
which were present in brain-derived endothelial cells and in astrocytes. 

 In summary, a SP fraction has been demonstrated in different tumor types and 
the SP has been shown to be endowed with tumor initiating ability. SP cells can 
divide asymmetrically, generating SP and non-SP cells, and can form spheres when 
grown in serum-free media. Due to the toxic effects of the dye used in the SP assay, 
the identifi cation of CSC by the SP assay has major limitations. 

  Fig. 5.4    Representative plots of side population. The rat C6 glioma cells were used and incubated 
with Hoechst 33342 ( a ,  b ). The so-called side population evidenced in the gate in plot  a  displays 
low fl uorescence because ABC transporters effl ux the dye. If transporters are blocked by verapamil 
(plot  b ), the dye is not extruded and the cell fraction which expresses ABC transporters kept inac-
tivated retains the fl uorescence of the main cell population. Viable cells were gated and blue (FL-4) 
and red (FL-5) fl uorescence of viable cells are reported. The shown plots are a courtesy of Dr. 
Emilio Ciusani (Fondazione IRCCS, Istituto Neurologico C. Besta)       
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5.4.1     Approaches to Modulate the Side Population 

 Various strategies are being employed at the cellular level to hit the SP in an attempt 
to discover therapeutic options selective for CSC. Some examples taken from the 
recent literature are provided below. It has to be considered when examining the 
literature available on targeting CSC by interference with the SP that, although sev-
eral of the preclinically tested compounds display an effect on ABC transporters, a 
direct cause-effect relationship between treatment and ABC transporter inactivation 
or downregulation cannot always be defi ned. 

 A promising approach has exploited the capability of CSC to effl ux dyes and to 
be identifi ed as SP in a high-throughput screening platform in which hit compounds 
were selected based on decrease of SP after treatment. Thus, in an attempt to hit 
CSC in breast cancer, in a recent study [ 41 ], a combination of an inhibitor of NF-kB 
(IMD-0354) and nanoparticle-encapsulated doxorubicin has been employed. A 
reduction in the SP and in ABC transporters (ABCB1, ABCG2) was associated with 
a decrease of self-renewal genes ( Oct4 ,  Sox2 ,  Nanog ). The NF-kB inhibitor pro-
duced cell death also in non-CSC cells. Of note, targeted delivery to hypoxic cells 
could be achieved, a feature that allowed the administration of a well tolerated treat-
ment as normal nonhypoxic tissues were spared. 

 It has been recently reported that low-molecular weight heparin (LMWH), which 
is approved for anticoagulant therapy, can inhibit survival of lung cancer SP cells, 
as it decreases their colony forming abilities [ 81 ]. Interestingly, it also decreases 
ABCG2 protein levels by interference with its proteasomal degradation; in fact, 
LMWH- induced ABCG2 downregulation could be rescued by proteasome inhibi-
tion. Treatment with LMWH has been reported to ablate lung cancer cisplatin resis-
tance [ 81 ]. However, a clear synergistic interaction between cisplatin and LMWH 

  Fig. 5.5    Chemical structure of the fl uorescent dye Hoechst 33342 and its mechanism of action. 
The dye is a DNA targeting agents which binds the minor groove of DNA. In the side population 
assay, it accumulates in viable cells, when not effl uxed by ABC transporters       
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could not be proven, in keeping with the fact that cisplatin is not a substrate for 
ABCG2. Thus, it is likely that the combination of cisplatin and LMWH is additive 
although, in principle, cells downregulating ABCG2 may display reduced fi tness 
when treated with a variety of antitumor agents, even if not substrates, due to the 
possible transport by ABCG2 of molecules indirectly affecting the cell response to 
drugs [ 85 ]. Among the compounds recently tested on CSC-like models, secalonic 
acid D, the main toxic metabolite of several strains of  Penicillium oxalicum , has 
shown antiproliferative activity on tumor cells over-expressing ABCB1, ABCC1, 
and ABCG2 as well as its capability to decrease SP cells in lung cancer cells [ 48 ]. 
Modulation of ABCG2 mRNA levels may occur via epigenetic events induced by 
pharmacological treatments. For example, the indolamine melatonin which contrib-
utes to regulate endocrine functions and has been reported to exhibit cytotoxic and 
antioxidant effects, appears capable to induce methylation of the ABCG2 promoter 
[ 75 ]. Such a phenomenon—which is prevented by an inhibitor of DNA methyla-
tion—has been proposed to underscore the synergism observed between melatonin 
and antitumor agents in brain tumor stem-like cells [ 75 ]. 

 The search for drugs selectively killing CSC has lead to the identifi cation of 
promising compounds which, however, under most circumstances, are endowed 
with their activity versus CSC and bulk tumors. Most of the compounds have been 
tested in preclinical studies, mainly in vitro, and only a fraction of the tested com-
pounds are proposed to act by virtue of their interference with ABC transporters. 
Among them, salinomycin, a polyether ionophore antibiotic isolated from 
 Streptomyces albus  has shown promising results [ 80 ]. Such a compound known to 
be endowed with antibacterial activity was shown to be capable of killing CSC in a 
murine model of breast cancer [ 45 ]. Subsequently, additional studies reported that 
this biomolecule can kill a variety of human tumor cells [ 32 ], thereby providing 
evidence that it acts both on CSC and the tumor bulk [ 31 ]. The drug is already 
undergoing clinical evaluation [ 80 ].   

5.5    Markers for CSC Other Than ABC Transporters 

 Several markers are used to identify CSC in different tumor types, and the available 
literature suggests unexpected links between some of these markers and ABC trans-
porters. To identify such links, the concomitant expression of ABC transporters and 
of other markers has to be taken into account. For example, aldehyde dehydroge-
nase 1 (ALDH1) is a NAD(P)-dependent enzyme which detoxifi es endogenous or 
exogenous aldehydes [ 38 ,  56 ] because it has been implicated in the physiology of 
normal and CSC, ALDH1 is being used as a marker. Indeed, since the SP allows a 
functional identifi cation of stem cells, ALDH1 activity has been proposed as a func-
tional marker of potential interest in different tumor types. In 1990, Kastan and 
colleagues showed that ALDH displays increased activity in human hematopoietic 
progenitor cells [ 60 ]. Since then, a variety of studies have reported the isolation of 
stem cells from normal and cancer tissues on the basis of ALDH activity [ 56 ]. 
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Recent studies have shown that ALDH1 appears to be an appropriate marker for 
stemness also in human sarcomas [ 69 ]. Indeed, the subpopulations characterized by 
high ALDH1 activity are also endowed with increased proliferation rate, colony 
forming ability, increased expression of ABC transporters and stemness markers, as 
well as by reduced sensitivity to antitumor agents as compared to cells with low 
ALDH1 activity [ 69 ]. 

 The concomitant expression of ALDH1 and ABCG2 or other transporters in 
CSC appears to support the need for the presence in CSC of multiple independent 
mechanisms for detoxication. Indeed, because stem cells are rare it is reasonable 
that they try to activate a complex pro-survival response in which different factors 
can eventually cooperate to improve chances of survival. 

 A very interesting study has shown that ABC transporters can be transcription-
ally regulated by the transcription factor Oct1, which is fundamental in self-renewal 
[ 72 ]. Thus, in drug-resistant cells, there are genes that act as hubs by coregulating 
multiple processes fi nally leading to drug resistance. For example, exposure of 
breast cancer cells to TGF beta or Twist over-expression have been shown to lead to 
enhanced expression of ABC transporters [ 105 ]. Conversely, knockdown of Twist 
and Zeb, besides reversing EMT, also results in reversal of drug resistance [ 73 ]. In 
addition, a positive correlation between ABCG2 and Oct4 has been reported in cel-
lular models of liver CSC, in which the effl ux transporter and the transcription fac-
tors involved in self-renewal appeared to be highly expressed in CD90/CD133 
positive cells [ 57 ].  

5.6    Clinical Implications of the CSC Hypothesis 

 The translation of the CSC hypothesis toward the clinics is far from being accom-
plished also in view of the skepticism regarding the biology of CSC. There is a wide 
heterogeneity in the experimental models used for CSC, especially in vitro, where 
research for appropriate 3D culture systems is still ongoing [ 13 ]. In spite of this, 
some clinical studies may already offer positive results in terms of validation of the 
CSC hypothesis in the clinical setting. In fact, as recently reviewed [ 36 ], enrichment 
for tumor cells with a CSC phenotype has been reported in minimal residual disease 
of different tumor types. Thus, the CSC hypothesis may explain why patients can-
not be cured in spite of initial responses; some studies support this concept. For 
example, in breast cancer, residual tumor cells after conventional treatment have 
been shown to display tumor initiating cell features [ 18 ]. In addition, Huff and col-
leagues have shown that a correlation between clonogenic growth of CSC and clini-
cal outcomes occurs in multiple myeloma [ 36 ]. The expression of a stem cell 
phenotype by minimal residual disease in acute myeloid leukemia has also been 
documented [ 34 ]. 

 The association between breast cancer stem cells and resistance to paclitaxel- 
epirubicin based chemotherapy has been reported in a case material of primary breast 
cancer patients [ 102 ]. In such a study, breast CSC identifi ed as ALDH1-positive, but 
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not CD44 positive/CD24 negative cells, have been proposed to play a role in resistance 
to chemotherapy. This study underscores the variability that may result from consider-
ing different markers. Although it is likely that ALDH positive cells express ABC 
transporters, this aspect was not considered in the study. 

 Many of the ongoing clinical trials in which ABC transporters relevant in the 
CSC biology, in particular ABCG2, have been taken into account, deal with phar-
macokinetics and pharmaco-dynamics issues in an attempt to establish the role of 
single nucleotide polymorphisms of drug transporters in the effi cacy of therapies 
based on the use of substrates of transporters. Moreover, a certain number of trials 
focuses on the assessment of the feasibility of isolation and characterization of CSC 
(NCT01641003), on the set up of reliable drug sensitivity assays (Feasibility Study 
on Stem Cells Sensitivity Assay, STELLA, NCT01483001), and on the character-
ization of CSC of different tumor types. A few studies are already directed at evalu-
ating the anti-cancer stem cell activity of treatment, for example by measuring the 
amount of ALDH1 positive cells before and after treatment (NCT01190345), or in 
an attempt to target CSC for prevention of relapse (NCT01579812). When the 
results of these clinical studies will be available, it will be possible to consider the 
opportunity to translate positive achievements to the routine clinical analysis, fol-
lowing further validation in further studies.  

5.7    Discussion 

 In spite of the technical progress and of the intellectual knowledge acquired in the 
molecular characterization of tumors and in the processes leading to tumorigenesis, 
multidrug resistance still represents an obstacle to the cure of cancer. ABC transport-
ers are implicated in multidrug resistance of tumor cells mainly because of their 
capability to extrude toxic compounds including antitumor agents from cells, but also 
through indirect mechanisms as recently reviewed by Fletcher and colleagues [ 26 ]. 

 If CSC are indeed the tumor cells that maintain the tumor and they express ABC 
transporters, a successful therapeutic option tempting to cure patients or at least to 
improve disease-free survival should include drugs targeting transporters of the ABC 
super-family, in particular ABCG2, because the product of this gene is the most fre-
quently reported transporter in CSC. However, it is evident that the expression of ABC 
transporters is not an exclusive characteristic of CSC, as their expression in tumors 
might also be related to the tissue of origin of the tumor. In addition, also normal stem 
cells express ABC transporters. Thus, a wise therapeutic strategy would need to spare 
normal cells. Accordingly, selectivity of therapies remains an important issue and 
there is an effort towards testing of selective approaches at the preclinical level, like 
for example in a study in which targeting of hypoxic cells was undertaken [ 41 ]. 

 The effects of natural compounds on cancer stem-like cells have been recently 
reviewed, highlighting the variety of pathways that can be targeted in an attempt to 
kill CSC [ 24 ,  68 ]. Different pathways including self-renewal pathways, Wnt/β- -
catenin, Sonic Hedgehog, and Notch signaling are implicated in the biology of CSC 
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and they can favor high self-renewal potential, survival, invasion and the metastatic 
behavior of CSC and their progeny [ 78 ,  106 ]. Thus, the expression of ABC trans-
porters is only one of the mechanisms by which CSC evade the effects of therapies 
(Fig.  5.6 ). Because ABC transporters do not appear to be simply in charge of effl ux 
of drugs, but they participate in a complex molecular network in which other mech-
anisms, in part even coregulated mechanisms, contribute to cell survival, the inhibi-
tion of their function could be regarded as a sort of multi-targeting strategy. Indeed, 
it has been reported that transcription factors that participate in EMT can positively 
regulate ABC transporters [ 72 ,  92 ]. Moreover, it has been reported that the PI3K/
Akt pathway can modulate the function of transporters through different mecha-
nisms [ 51 ]. In addition, in keeping with the wide current interest in metabolic altera-
tions of tumor cells, SP cells have been shown to exhibit increased glycolytic 
activity than non-SP cells [ 68 ].

   In summary, research on CSC is a fast-moving fi eld, but translation of results in 
the clinics is still at an early stage. Additional studies are required to establish a pre-
cise link between expression of BCRP or other ABC transporters and stem cell- like 
features and behavior. Prospective studies are required to establish the utility of less 
characterized transporters as therapeutic targets for CSC. The evidence that protec-
tion of CSC against drugs and toxins is mediated by expression of several ABC trans-
porters continues to provide therapeutic opportunities to overcome resistance. 
However, it is true that a careful consideration of the specifi c literature should be 
made when facing the fi eld of CSC, also considering that CSC have been correctly 
designated as a moving target [ 27 ]. With specifi c reference to the analysis of levels of 
ABC transporters in addition to modulation of mRNA levels, also protein levels 
should be considered. Again, not only ABCG2 should be taken into account, given the 
complexity of the ABC super-family. In an attempt to generate experimental models 
for studying CSC, enrichment for CSC by therapy has been proposed [ 30 ]. However, 
this approach cannot be exclusive, but it should be complementary to the others 
reported above. With such caveats and trying to control the complexity of the biology 
of CSC, it will be easier to establish also the predictive and prognostic signifi cance of 
CSC, as recently proposed for Non-small Cell Lung Cancer [ 43 ,  86 ]. The complexity 
of the ABC transporter super-family suggests that it will be a diffi cult task to clearly 
defi ne the specifi c role of ABC transporters in CSC biology and resistance. The role 
of ABCG2 as well as of a few other transporters has been in part defi ned, but we are 
far from effective strategies to target them for modulation of antitumor therapy. 

 In conclusion, among the transporters involved in CSC biology, ABCG2 appears 
to play a remarkable role, because it is expressed by SP cells, and its expression is 
associated with the activation of cell survival pathways and with the expression of 
self-renewal genes in specifi c models of CSC. Indeed, BCRP is very likely to play 
relevant physiological functions because of its expression by normal stem cells and 
by CSC or cancer stem-like cells. In addition, the less known ABCB5 transporter, 
besides playing a role in melanoma resistance, may be of relevance also in colon 
carcinoma and leukemia (see above). It is therefore expected that CSC-related 
research will provide knowledge useful for the development of novel therapeutic 
strategies involving targeting of ABC transporters. Even if the contribution of dif-
ferent transporters to drug resistance of CSC remains to be clarifi ed, it is evident 
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that a lot of information about transporters is already available from the in vitro and 
in vivo preclinical studies carried out using cell cultures or murine models and 
xenografts. For instance, the mutational status of specifi c transporters can affect 
their interaction with substrate and the reversal activity of all modulators may be 
infl uenced by the gene status of the transporters. An effi cient targeting of CSC will 
be possibly achieved also considering the complexity of the tumor niche and of all 
the processes favoring the maintenance and survival of CSC [ 35 ,  62 ].     
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    Chapter 6   
 Radiopharmaceuticals for the Imaging 
of ABC-Transporter-Mediated Multidrug 
Resistance in Cancer 

             Sabina     Dizdarevic       and        Adrien     Michael     Peters    

    Abstract     ATP-binding cassette (ABC) transporter proteins, the most widely studied 
of which is P-glycoprotein (P-gp), function to translocate a wide range of xenobiotics 
across biological membranes, especially those exposed to the external environment. 
Radiopharmaceuticals that are substrates for ABC-transporter proteins are used to 
image their expression. They can be divided into single photon- emitters, especially 
technetium-99 m, and positron emitters, e.g. carbon-11 and fl uorine-18. Tc-99m-
MIBI has been most frequently used to image ABC transporters. Following passive 
diffusion into cytoplasm, it accumulates in mitochondria at a rate dependent on tis-
sue perfusion and cellularity. Tissue retention of Tc-99m-MIBI correlates inversely 
with P-gp expression and can be modifi ed with P-gp antagonists. Inter-individual 
variability of P-gp expression is linked to C3435T polymorphism of the human 
 ABCB1  gene. C/C, T/C and T/T genotypes are associated with increased, interme-
diate and low P-gp expression, respectively. Functional up- regulation of ABC 
proteins results from exposure to inhibitors, resulting in acquired multi-drug resis-
tance (MDR). Tc-99m-MIBI has been used for imaging MDR in several cancers. 
Early compounds developed to reverse MDR have not shown any benefi t in patient 
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outcome due to toxicity or interactions with chemotherapeutic agents. Newer MDR 
modulators, however, are less toxic, more specifi c for P-gp and do not interact with 
anti-cancer drugs. Combinations of chemotherapeutics to reverse MDR with tumour 
targeting agents are being evaluated. In conclusion, clinical trials optimally tailored 
to tumour types, genetic polymorphism and adequate dosing regimens need to be 
conducted and based on imaging for selecting patients whose cancers express MDR 
primarily though ABC-mediated mechanisms.  

  Keywords     Radiopharmaceuticals   •   ABC-transporters   •   P-glycoprotein   •   Positron 
emission tomography   •   Single photon emission tomography   •   Cancer   •   Imaging  

  Abbreviations 

   ABC-transporters    ATP-binding cassette transporters   
  MDR    Multi drug resistance   
  P-gp    P-glycoprotein   
  PET    Positron emission tomography   
  SPECT    Single photon emission tomography   
  MIBI    Tc-99m-hexakis-methoxy-isobutyl isonitrile   

6.1           Introduction 

 ATP-binding cassette (ABC) transporter proteins belong to the largest transporter 
gene family and are so called because they generally use energy derived from ATP 
hydrolysis for translocation of their substrates across biological membranes. They 
are classifi ed into seven sub-families based on phylogenetic analysis and designated 
as ABCA to ABCG [ 1 ]. ABC proteins that confer drug resistance include 
P-glycoprotein (P-gp; gene symbol  ABCB1 ), the multidrug resistance protein 1 
(MRP1, gene symbol  ABCC1 ), MRP2 (gene symbol  ABCC2 ), and breast cancer 
resistance protein (BCRP; gene symbol  ABCG2 ). 

 Collectively, these proteins are capable of transporting a large and chemically 
diverse range of toxins that include bulky lipophilic cationic, anionic and neutrally 
charged molecules, many drugs in routine clinical use, as well as conjugated organic 
anions, that encompass dietary and environmental carcinogens, pesticides, metals, 
metalloids, and lipid peroxidation products [ 2 ]. 

 P-gp is the most widely studied transporter protein. It is a 170-kDa plasma mem-
brane protein that serves as an energy-dependent adenosine-5′-triphosphate (ATP) 
effl ux pump [ 3 ]. It has been termed a molecular “hydrophobic vacuum cleaner” 
because it extracts substrates from the membrane and expels them to promote mul-
tiple drug resistance [ 3 ,  4 ]. By protecting tissues from toxic xenobiotics and endog-
enous metabolites, P-gp fulfi ls an important physiological role. Along with other 
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proteins in the family, it regulates the transport of various structurally unrelated 
substrates, such as anticancer agents and toxins [ 5 ]. 

 Many tissues express P-gp physiologically (Fig.  6.1 ) [ 6 ,  7 ], including the 
broncho- pulmonary epithelium, hepato-biliary epithelium, renal tubular epithelium, 
gastro-intestinal tract, blood–brain barrier and choroid plexus. P-gp in the apical 
border of foetus-derived epithelial cells faces the maternal circulation and is there-
fore optimally placed to protect the foetus against toxins [ 8 ]. So it can be appreci-
ated that these tissues share the common property of a strategic location where they 
protect against the passage of xenobiotics from the external environment. P-gp is 
also expressed in cells of the haematopoietic system, including natural killer cells, 
antigen-presenting dendritic cells, human peripheral blood mononuclear cells 
(PBMCs) and subpopulations of T and B lymphocytes, implying diverse physiolog-
ical and pharmacological roles [ 8 ,  9 ].

   In addition to their role in drug resistance, there is compelling evidence that in 
tissue defence, ABC transporter proteins have overlapping physiological functions. 
Single nucleotide polymorphisms (SNPs) in ABC drug-effl ux pumps may play a 
role in responses to drug therapy and disease susceptibility. The effects of various 
genotypes and haplotypes (combinations of single nucleotide polymorphisms) on 
the expression and function of these proteins are not yet entirely clear [ 10 ].  

  Fig. 6.1    Direction of substrate transport by P-glycoprotein (P-gp) located in various organs of the 
human body. The  bold solid arrows  indicate the known direction of transport, whereas the  broken- 
line arrow  indicates unclear direction of transport. P-gp is located in the lipid bilayer ( thick black 
line ) that forms a barrier between various organs;  red  indicates vasculature,  blue  represents tissue, 
and  white  indicates excreta. Reprinted with permission from Kannan P, John C, Zoghbi S, Halldin 
C, Gottesman M, Innis R, et al. Imaging the Function of P-Glycoprotein With Radiotracers: 
Pharmacokinetics and In Vivo Applications. Clin Pharmacol Ther. 2009; 86(4): 368–377 (Fig. 2) 
modifi ed from Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. 
Nat Rev Drug Discov. 2006;5:219–234       
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6.2     Radiopharmacueticals for the Diagnosis 
of Multidrug Resistance 

    Radiopharmaceuticals that are substrates for ABC transporter proteins can be used 
to image their expression. Radiopharmaceuticals for the diagnosis of ABC-
transporter- mediated multidrug resistance in cancer can be divided into single pho-
ton agents, generally labelled with technetium-99m (Tc-99m), and agents that emit 
positrons, generally labelled with carbon-11 (C-11), gallium-68 (Ga-68) or fl uo-
rine- 18 (F-18). They share the general functional property of being substrates or 
inhibitors for ABC transporters. 

 The term ‘radiopharmaceutical’ implies the association of a radionuclide with a 
pharmaceutical. The biological properties of the pharmaceutical determine the tissues 
in the body that are targeted by the radiopharmaceutical, while the radionuclide emits 
single photons or positrons that are externally detected and used to construct a func-
tional image. Images are constructed from the detection of single photons using planar 
gamma camera imaging or single photon emission computed tomography (SPECT), 
and from the detection of positrons using positron emission tomography (PET).  

6.3     SPECT 

 A radioactive element has an unstable nucleus which when it emits a neutron and/
or proton becomes a new element. The disintegration process is accompanied by the 
emission of electromagnetic radiation (photons) of a specifi c energy measured in 
KeV. Most radioactive elements used for routine imaging emit single gamma pho-
tons as discrete events in association with nuclear disintegration. Such photons can 
be detected using equipment that comprises fi rstly a transparent crystal, which 
absorbs the photon, and an array of photomultiplier tubes that detect the resulting 
fl ash of light (scintillation) and its location in the crystal that is imparted by the 
photon when its kinetic energy is converted into visible light within the crystal. 
Gamma cameras get their name by analogy with light cameras, because visible light 
is replaced by gamma radiation. The focusing device of a gamma camera is its col-
limator, a lead disc perforated with hundreds of parallel holes of suffi cient length-
to- radius ratio to permit the passage only of photons travelling perpendicular to the 
collimator face. Like light cameras, gamma cameras generate 2-dimensional 
images. However, by rotating the camera slowly around the subject and obtaining an 
image every 6˚ of rotation, 3-dimensional images can be re-constructed.  

6.4     PET 

 Some radionuclides emit positrons from the nucleus when it is unstable. A positron 
is positively charged and has the mass of an electron. Following emission from 
the nucleus, the positron is immediately attracted to a negatively charged electron 
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with the result that the two particles collide and undergo mutual annihilation. 
Their energies are converted into two gamma photons of 511 keV energy that leave 
the atom at exactly 180˚ to each other. These co-incident photons are then simulta-
neously detected by a ring of detectors that encircle the subject. The opposing direc-
tions of the emitted pair of photons is random and their simultaneous detection 
allows the construction of a 3-dimensional tomographic image. 

 SPECT and PET provide images of function. Structural details of tissues are 
portrayed with relatively poor anatomical resolution. Modern SPECT and PET 
cameras, therefore, have ‘built-in’ CT machines so that the functional image gener-
ated by the gamma radiation can be precisely registered on to a high-resolution 
structural image (‘hybrid’ imaging). The latest technological development is a PET- 
MRI hybrid camera. 

6.4.1     Single Photon-Emitting Radiopharmaceuticals 

 Tc-99m-hexakis-methoxy-isobutyl isonitrile (Tc-99m-MIBI) is the radiopharma-
ceutical that has most frequently been used to image ABC transporters. Tc-99m-
tetrofosmin and several other Tc-99m-Q complexes that are closely related to 
Tc-99m-MIBI with respect to their clinical applications are also transport substrates 
for P-gp and MRP [ 11 ], although Tc-99m-tetrofosmin is recognised by fewer trans-
porters than Tc-99m- MIBI. Nevertheless, the available data suggest that the clinical 
imaging and in vivo modulation of multi-drug resistance can be performed with 
either Tc-99m- tetrofosmin or Tc-99m-MIBI [ 12 ], even though they do not have 
identical physiological properties. Both agents were originally introduced for imag-
ing myocardial perfusion, although from an early stage, Tc-99m-MIBI was also, and 
continues to be, used for imaging tumours, such as parathyroid adenomas [ 13 ] and 
assessment of thyroid nodules [ 14 ] rather than characterising their ABC transporter 
status. Tc-99m-MIBI and Tc-99m-tetrofosmin have also been used for diagnosing 
breast cancer in patients with indeterminate mammography and dense breasts [ 15 ]. 

6.4.1.1     Tc-99m-MIBI 

 Tc-99m-MIBI is a substrate for P-gp, MRP1, MRP2 and BCRP [ 16 ]. It is a lipo-
philic, stable monovalent cation with a central Tc(I) core surrounded by six identi-
cal MIBI ligands, coordinated through the isonitrile carbons in an octahedral 
geometry [ 4 ]. Tc-99m–MIBI is taken up by passive diffusion into the cytoplasm and 
accumulates in the mitochondria. Its tissue uptake rate following intravenous injec-
tion is broadly dependent on tissue blood fl ow and cellularity. Cellular transport of 
Tc-99m-MIBI is affected by apoptosis, cellular proliferation and angiogenesis. 
Tc-99m-MIBI is therefore used to image cellular metabolism in tumours [ 17 ,  18 ]. 
Tissue retention is variable and markedly infl uenced by tissue expression of P-gp [ 4 , 
 19 ,  20 ]. The mechanism of Tc-99m-MIBI cellular uptake is clearly different from 
the mechanism of elimination, which specifi cally refl ects activity of drug transporters, 
such as P-gp. 
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 Tc-99m-MIBI has been validated as a transport substrate for P-gp in cultured 
multidrug-resistant rodent [ 20 ,  21 ] and human tumour cells [ 4 ,  22 ], as well as in 
cells over-expressing the recombinant human  mdr1  gene [ 23 ]. Piwnica-Worms 
et al. fi rst demonstrated that Tc-99m-MIBI is a substrate of P-gp and that it can be 
used as a functional imaging agent for P-gp in tumour xenografts in nude mice [ 4 ]. 
They and others have shown that tumour retention of Tc-99m-MIBI correlates 
inversely with the degree of P-gp expression and can be modifi ed in vitro with P-gp 
antagonists [ 24 ]. 

 In rodent models, tumours that express P-gp eliminate Tc-99m-MIBI faster than 
those that do not [ 20 ,  22 ]. The hepatic and renal excretion pathways of Tc-99m- 
MIBI are mediated by P-gp and can be modulated in humans following administra-
tion of cytotoxic drugs. Thus, intravenous administration of a P-gp modulator 
delayed excretion of Tc-99m-MIBI from the liver and kidney in patients investi-
gated for MDR [ 25 ]. In vitro Tc-99m-MIBI studies have shown that P-gp inhibitors, 
such as varapamil and ciclosporin, can reverse P-gp expression in adenocarcinoma 
cells if given shortly before the administration of cytotoxic drug [ 26 ]. 

 Additional mechanisms of cell resistance, mainly involving alterations of apop-
tosis, may also affect tumour Tc-99m-MIBI uptake. In particular, over-expression 
of the anti-apoptotic protein, Bcl-2, prevents tumour cells entering apoptosis and 
inhibits Tc-99m-MIBI accumulation in mitochondria. So, whilst absent or reduced 
early tracer uptake in breast cancer refl ects the existence of a defective apoptotic 
programme, an enhanced tracer clearance in Tc-99m-MIBI-positive lesions refl ects 
the activity of drug transporters, such as P-gp. The existence of two different mech-
anisms underlying the predictive role of Tc-99m-MIBI scan may be important to 
establish whether individual patients may benefi t from P-gp inhibitors or Bcl-2 
antagonists [ 27 ]. 

 In general and in relation to a range of malignancies, patients whose tumours 
showed Tc-99m-MIBI uptake or retention responded well to chemotherapy, whereas 
those whose tumours showed little or no uptake, or a rapid rate of Tc-99m-MIBI 
washout, responded poorly [ 6 ].  

6.4.1.2     Tc-99m-Tetrofosmin 

 Similar to Tc-99m-MIBI, Tc-99m-tetrofosmin is a widely available lipophilic cat-
ionic complex routinely used for imaging myocardial perfusion. Also similar to 
Tc-99m-MIBI, it has been explored as a tumour-seeking agent in the evaluation of 
a diverse range of human malignancies or for predicting anti-cancer treatment 
response [ 28 ]. 

 Tc-99m-tetrofosmin has been shown to be a transport substrate for P-gp and MRP 
in vitro and in vivo. Its properties are similar but not identical to those of Tc-99m- 
MIBI and, hence, the two should probably not be used interchangeably [ 12 ]. 

 The potential response to chemotherapy in lung carcinoma has been investigated 
by both Tc-99m-tetrofosmin and Tc-99m-MIBI. A low baseline uptake was correlated 
with a poor response to chemotherapy in non-small and small cell lung carcinomas 
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likely due to MDR expression in tumour cells. However, a few false positive results 
were also recorded with Tc-99m-tetrofosmin, which could be due to other mecha-
nisms of resistance and decreasing image specifi city. In addition, Tc-99m- MIBI imag-
ing correlates more closely with P-gp immunohistochemistry (IHC) than 
Tc-99m-tetrofosmin in patients with lung carcinoma suggesting that besides the 
expression of P-gp, other MDR-related proteins or other mechanisms and factors may 
contribute to the cellular elimination of Tc-99m-tetrofosmin [ 11 ].   

6.4.2     Tc-99m-HIDA for MRP Imaging 

 Although many studies are currently focussing on functional imaging of P-gp, other 
ABC drug transporters have also attracted interest. Thus, Tc-99m-HIDA (Hepatic 
IminoDiacetic Acid) is transported only by MRP1 and MRP2 (MRP). Hepatic P-gp 
and MRP could therefore be assessed by sequential use of both Tc-99m-MIBI (or 
Tc-99m-tetrofosmin) and Tc-99m-HIDA [ 11 ].  

6.4.3     Positron-Emitting Radiopharmaceuticals 

 Several C-11-labelled P-gp-avid radiopharmaceuticals developed for PET, includ-
ing C-11-colchicine, C-11-verapamil, C-11-daunorubicin, C-11-paclitaxel, and 
C-11-loperamide, have been evaluated in animals, but only C-11-verapamil and 
C-11-loperamide [ 29 ] have been extended to humans to investigate multidrug resis-
tance and quantify P-gp expression in the blood–brain barrier [ 8 ]. Other compounds 
that have been developed include (Ga-67/68-[3-ethoxy-ENBDMPI])(+) tracers 
[ 30 ], 4-F-18-Fluoropaclitaxel (Fig.  6.2 ) [ 31 ] and the positron-labelled P-gp inhibi-
tor, C-11-Tariquidar [ 32 ]. Recent studies using the positron-emitter, Tc-94m-MIBI 
and parallel previous studies with Tc-99m-MIBI show essentially identical perfor-
mance, thereby providing validation for microPET [ 33 ].

   Leukotrienes are substrates for MRP, so N-C-11-acetyl-leukotriene E4 could 
possibly be used to noninvasively image MRP expression [ 11 ]. 

 The development of new radiotracers for PET and SPECT imaging is challeng-
ing. Effective radiotracers to visualise molecular targets need to fulfi l certain key 
criteria, such as high affi nity and selectivity for the molecular target of interest, a 
low degree of nonspecifi c binding in tissue where the molecular target is located and 
absence of radiolabelled metabolites taken up into tissue. To date, three different 
kinds of imaging probes have been described for visualisation of ABC transporters 
in vivo: (1) radiolabelled transporter substrates, (2) radiolabelled transporter inhibi-
tors and (3) radiolabelled pro-drugs that are enzymatically converted into trans-
porter substrates in the organ of interest (e.g. brain) [ 34 ]. 

 SPECT and PET radiotracers used in clinical practice and research and their 
relationship to genotypes are shown in Table  6.1 .
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6.4.4        Genetics in Relation to Cancer Imaging 
with ABC Transporter Substrates 

 Genetically determined responses to some anticancer drugs may infl uence anti- 
cancer treatment. It has been shown that imaging the liver with Tc-99m-MIBI may 
provide pre-treatment indicators of ABCB1–mediated hepatic drug clearance in 

  Fig. 6.2    Images of a breast cancer patient with biopsy-proven tumor in the right breast mass 
( arrows  on CT [ a ] and PET [ b  and  c ] scans) and biopsy-proven sarcoid in the mediastinum or hila. 
Increased F-18-fl uoropaclitaxel ( b ; Standardised uptake value (SUV) corresponding to tumor and 
no F-18- fl uoropaclitaxel       uptake corresponding to mediastinum/hilar lesions) seen on F-18-FDG 
scan ( c ;  open arrow ). F-18- FDG and F-18-fl uoropaclitaxel images are scaled to SUVmax of 2.0. 
Tumor SUVmax on F-18-fl uoropaclitaxel ( b ) at 78 min was 0.9; 18F-FDG ( c ) SUVmax at 123 min 
was 10.0. Uptake in anterior portion of left arm on F-18-fl uoropaclitaxel image ( b ) is residual 
tracer within vessel wall. Reprinted with permission from the Society of Nuclear Medicine from 
Kurdziel KA, Kalen JD, Hirsch JI et al. Human Dosimetry and Preliminary Tumor Distribution of 
18F-Fluoropaclitaxel in Healthy Volunteers and Newly diagnosed breast cancer patients using 
PET-CT. J Nucl Med. 2011;52: 1339–1345 (Fig. 6)       
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cancer patients. Tc-99m-MIBI hepatic elimination (kH) was signifi cantly reduced 
in patients with SNPs in exons 21 and 26. The mean Tc-99m-MIBI kH was respec-
tively 1.90 times and 2.21 times higher in subjects homozygous for the wild-type 
alleles compared with those homozygous for these SNPs [ 35 ]. 

 The inter-individual variability of P-gp expression is linked to C3435T polymor-
phism of the human  ABCB1  gene, which is located on the long arm of 7th chromo-
some at q21.1 band position. The C/C, T/C and T/T genotypes are associated with 
increased, intermediate and low P-gp expression, respectively [ 5 ] (Fig.  6.3 ).

   C3435T polymorphism plays a signifi cant role in ADME processes (absorption, 
distribution, metabolism, and excretion) and drug-drug interactions. Variations in 
the  ABCB1 (MDR1)  gene product may directly affect therapeutic effectiveness; 
thus, over-expression of P-gp results in increased effl ux of anticancer drugs and 
development of drug resistance. The ABCB1 ( MDR1 ) gene is highly polymorphic 
and numerous single nucleotide polymorphisms (SNPs) have been identifi ed, some 
of which infl uence MDR1 expression levels [ 5 ]. Polymorphism in exon 26 at 
C3435T (silent polymorphism) infl uences P-gp expression. 

 In the analysis of MDR1 variant genotype distribution in a large sample of Caucasian 
subjects, Cascorbi et al. demonstrated that C3435T occurred in 53.9 % of heterozygous 
individuals (T/C), while 28.6 % were homozygous (T/T) carriers and 17.5 % were 
homozygous (C/C) carriers [ 31 ]. In general, the prevalence of the T/T genotype in 
Caucasian individuals has been shown to range between 24 % and 29 % [ 36 ,  37 ].  

   Table 6.1    SPECT and PET ABC substrates (s) and inhibitors (i) and their relationships to    genes   

 Imaging modality  Radiopharmaceuticals  ABC transporter  Gene symbol 

 SPECT  Tc-99m-MIBI (s)  P-gp   ABCB1 (mdr1)  
 MRP1,2 BCRP   ABCC1,2  

  ABCG2  
 Tc-99-m-tetrofosmin (s)  P-gp   ABCB1(mdr1)  

 MRP1,2   ABCC1,2  
 Tc-99m-HIDA (s)  MRP1,2   ABCC1,2  
 67Ga-[3-ethoxy-ENBDMPI] (s)  P-gp   ABCB1(mdr1)  

 MRP1   ABCC1  
 PET and micro 
PET(μ) 

 Tc-94m-MIBI (s, μ)  P-gp   ABCB1 (mdr1)  
 MRP1,2   ABCC1,2  
 BCRP   ABCG2  

 C-11-colchicines (i, μ)  P-gp   ABCB1 (mdr1)  
 C-11-verapamil (i)  P-gp   ABCB1 (mdr1)  
 C-11-loperamide (i)  P-gp   ABCB1 (mdr1)  
 C-11-paclitaxel (i, μ)  P-gp   ABCB1 (mdr1)  
 C-11-daunorubicin (i, μ)  P-gp   ABCB1 (mdr1)  
 4-F-18-Fluoropaclitaxel (i, μ)  P-gp   ABCB1 (mdr1)  
 C-11-Tariquidar (i, μ)  P-gp   ABCB1 (mdr1)  
 68-Ga-[3-ethoxy-ENBDMPI] (s)  P-gp, MRP1   ABCB1(mdr1);ABCC1  
 N-C-11-acetyl-leukotriene E4 (s)  MRP 2   ABCC2  
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6.4.5     T/T Genotype: Link with Drug Toxicity and 
Susceptibility to P-gp-Mediated Disease 

 As the T/T genotype is associated with low P-gp expression, and therefore lower 
protection against specifi c P-gp-dependent xenobiotics and carcinogens, individuals 
with T/T genotype have a reduced effi ciency to eliminate toxins. This results in 
higher intracellular concentrations of mutagens and susceptibility to DNA damage 
and accumulation of mutations. The reduced capacity of detoxifi cation may there-
fore have implications for disease risk and therapeutic outcome arising from the 
development of drug toxicity. For instance, T/T individuals were found to be at 
increased risk of CML [ 5 ], acute childhood lymphoblastic leukaemia (ALL) [ 38 ], 
renal epithelial tumours [ 39 ], colorectal cancer, glioblastoma, breast cancer [ 5 ] and 
infl ammatory bowel disease [ 37 ]. 

 With respect to gender, the T/T genotype is more frequent in males. Tumour 
development in response to exposure to carcinogens was found to be higher in males 
compared with females. The association with gender is illustrated by male glioblas-
toma in relation to the T/T genotype as well as by a greater risk of developing 
chronic myeloid leukaemia (CML) in males [ 5 ]. 

 In the post-genomic era of individualized medicine, ABC transporter imaging 
may be helpful to adjust the treatment dose in individual patients. More research is 
needed to identify patients, ideally non-invasively by functional imaging, who are 
susceptible to the side effects of drug toxicity, to provide information concerning 
dose adjustment and to allow better decision making when considering therapy with 
anti-cancer drugs that are substrates for ABC transporters.  

  Fig. 6.3    Genetically determined P-glycoprotein (P-gp) expression: Polymorphism in exon 26 at 
C3435T (silent polymorphism) infl uences the P-gp expression. The C/C, T/C, and T/T genotypes 
are associated with  increased ,  intermediate , and  low  P-gp expression, respectively. High P-gp 
expressors (C3435C/C) are linked to MDR. Low P-gp expressors (C3435T/T) are prone to drug 
toxicity.  SNP  single-nucleotide polymorphism (Fig.  6.3  is our own Figure no permission required)       
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6.4.6     C/C Genotype: Link with Multidrug Resistance 
(MDR) and Poor Risk Prognosis 

 The C/C genotype is associated with MDR. In cancer therapy, for example, a high 
expression of MDR1 makes cancer cells refractory to treatment with agents that are 
P-gp substrates. 

 The functional signifi cance of MDR1 C3435T polymorphism with respect to 
 Imatinib  treatment was studied in terms of haematological and cytogenetic 
responses. The frequency of the C/C genotype was signifi cantly increased in cyto-
genetic non-responders to an extent that was inversely proportional to the degree of 
cytogenetic response. As a result of MDR, the C/C genotype is also associated with 
poor prognosis in acute lymphoblastic and myeloid leukaemias [ 5 ,  38 ]. 

 The effects of  ABCB1  polymorphism on the handling of drugs that are P-gp sub-
strates have also been shown to vary among races [ 40 ]. Racial variability within 
C3434T has been demonstrated. Thus, there is a signifi cantly higher frequency of 
the C/C genotype in West Africans and African Americans (83 % and 61 %, respec-
tively [ 41 ]), compared with Caucasians (17.5 % [ 12 ] and 26 %;  p  < 0.0001 [ 41 ]). 
This could affect treatment with drugs, in addition to anti-cancer drugs, that are also 
P-gp substrates, such as HIV-1 protease inhibitors and ciclosporin, in African 
 populations [ 41 ] in whom there is a higher prevalence of the relevant diseases. 
The development of MDR not only refl ects multiple genetic and epigenetic changes 
in cells under cytotoxic conditions, but is also a normal physiological response dis-
played by cells in their struggle to survive. The challenge of translating the concept 
of MDR modulation in vivo involves a complex cellular interplay between both 
malignant and normal cells [ 42 ].  

6.4.7    Imaging Multidrug Resistance in Cancer 

 Functional up-regulation of ABC transporter proteins often results from prolonged 
exposure to inhibitors [ 43 ]. As many inhibitors are also modulators, initial down- 
regulation may be followed by up-regulation, resulting in acquired drug resistance. 
Thus, treatment of patients with malignant tumours using a variety of structurally unre-
lated classes of drugs that include anthracyclines, taxanes and epipodophyllotoxines to 
which the tumour had previously been sensitive is sometimes rendered inadequate 
because of the activation of cellular biochemical mechanisms that result in MDR. 

 In tumour cell lines, MDR is associated with an ATP-dependent decrease in cel-
lular drug accumulation attributable to over-expression of ABC transporter pro-
teins. Non-invasive imaging techniques have been developed that can identify such 
MDR. For example, Tc-99m-MIBI has been used for imaging MDR in lung cancer 
[ 44 ], brain tumours [ 45 ,  46 ], gastric cancer [ 47 ], head and neck cancer [ 48 ], hepa-
tobilliary cancer [ 49 ] and haematological malignancies [ 50 ].  
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6.4.8     Examples of Individual Cancers 

6.4.8.1     Breast Cancer 

 It has been demonstrated that pre-operative elimination rates of Tc-99m-MIBI from 
primary breast tumours correlated with levels of P-gp semi-quantifi ed by immuno- 
histochemistry in the surgically resected specimens (Fig.  6.4 ). Imaging demon-
strated that the elimination rates from cancers over-expressing P-gp were three-fold 
faster than those from cancers not expressing P-gp [ 51 ,  52 ].

6.4.8.2        Lung Cancer 

 In lung cancer, the sensitivity, specifi city and accuracy of Tc-99m-MIBI for identi-
fying responders to chemotherapy are 94 %, 90 % and 92 %, respectively [ 48 ]. 
There is evolving evidence that Tc-99m-MIBI is cost-effective in predicting the 
response to chemotherapy in patients with lung cancer [ 44 ].  

  Fig. 6.4    Images of breast cancer obtained 20 min ( early ) and 120 min ( late ) after injection of 
Tc-99m-MIBI. ( a ) A patient with tumour displaying immunohistochemically negative P-gp expres-
sion showing Tumour/Background (T/B) that increased from 1.65 to 1.99. ( b ) A patient with 
tumour displaying strongly positive P-gp expression showing T/B that decreased from 2.25 to 1.52. 
Reprinted with permission from the Society of Nuclear Medicine from Mubashar M, Harrington 
KJ, Chaudhary KS, et al.  99m Tc-Sestamibi Imaging in the Assessment of Toremifene as a Modulator 
of Multidrug Resistance in Patients with Breast Cancer. J Nucl Med. 2002;43(4): 519–525 (Fig. 2)       
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6.4.8.3     Thyroid Cancer 

 In thyroid imaging, Tc-99m-MIBI scintigraphy can be used to reliably exclude thy-
roid cancer when ultrasound-guided fi ne needle aspiration cytology (US-FNAC) is 
reported as non-diagnostic, and hence avoid more invasive surgery and reduce costs 
[ 53 ]. It has, however, also been demonstrated that semi-quantitative Tc-99m-MIBI 
scintigraphy may pre-operatively predict the malignant behaviour of non-oncocytic 
follicular thyroid nodules indeterminate at US-FNAC. Moreover, a good correlation 
was found between Tc-99m-MIBI scintigraphy and immuno-histochemical apical 
expression of MRP1. A negative Tc-99m-MIBI retention index correlated strongly 
with high MRP1 expression. So Tc-99m-MIBI scinitgraphy may provide informa-
tion on the molecular expression of MRP1 in the thyroid gland [ 54 ].  

6.4.8.4     Haematological Malignancies 

 A potential role for Tc-99m-MIBI scintigraphy has been investigated in the man-
agement of haematological malignancies, particularly multiple myeloma, in which 
it has been shown that the rate of Tc-99m-MIBI elimination can predict response to 
chemotherapy. Patients showing disease progression at re-staging had higher elimi-
nation rates (19.3 ± 9.8 % vs. 12.8 ± 6.9 %,  p  < 0.05) than patients in remission. 
Disease-free survival was signifi cantly longer in patients with lower elimination 
rates. When patients treated with melphalan were excluded from the analysis, 
87.5 % of patients in remission displayed slow elimination [ 55 ].   

6.4.9     MDR Modulation 

 Based on the premise that blockade of ATP-dependent drug effl ux pumps will 
enhance the effect of chemotherapy, there has been an intense search for compounds 
able to reverse MDR in cultured cells, animal models, and patients. There have been 
many attempts to image these pumps using both SPECT and PET tracers [ 34 ]. 
However, administration of P-gp or MRP1 modulators has failed to show any sig-
nifi cant clinical benefi t in patient outcome, mainly due to toxicity (fi rst generation) 
or interaction with anticancer drugs and alterations in pharmacokinetics of the che-
motherapy agents (second generation). These MDR tracers have not, therefore, 
found routine clinical use. 

 Promising clinical trials have been conducted in acute myeloid leukaemia, breast 
cancer, and non-Hodgkin’s lymphoma, all of which are known to express P-gp. 
Paradoxically, several studies focused on MDR reversal in cancers in which resis-
tance may not be ABC transporter-mediated. Several clinical trials, including the 
phase III trials of tariquidar, unsurprisingly yielded negative results in cancers in 
which P-gp expression is generally low, such as small-cell lung cancer and 
 non-small- cell lung cancer [ 6 ]. Poor study design, regarding either dosing regi-
mens or patient selection, and genetic polymorphism of P-gp were further major 
reasons for negative results in clinical trials using third generation P-gp modulators. 
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The two major phase III trials of tariquidar in patients with non-small-cell lung 
cancer were terminated prematurely due to toxicity as a result of higher doses of 
chemotherapy than recommended. Furthermore, the prevalence of various genetic 
polymorphisms of P-gp may have infl uenced results (both negatively and posi-
tively). Some  single- nucleotide polymorphisms and haplotypes of the  ABCB1  gene 
have been shown to alter P-gp expression and activity both in vitro and in vivo. For 
example, patients with ovarian cancer who express the wild-type allele for P-gp had 
a mean progression- free survival of 19 months when treated with chemotherapy, 
whereas in those expressing the G1199A polymorphism, corresponding survival 
was only 2 months [ 6 ]. Other studies have shown a relation with C3435T polymor-
phism. All the above-mentioned factors may infl uence imaging outcome in an indi-
vidual patient, leading to controversial results. In general, functional imaging of 
MDR remains under-utilised in clinical practice.  

6.4.10     Third Generation MDR Modulators 

 On-going research has led to the development of a third generation of MDR modula-
tors, some of which have demonstrated encouraging results compared to earlier mod-
ulators. They are less toxic, more specifi c for P-gp and do not affect the pharmacokinetics 
of anti-cancer drugs. Some MDR-reversing strategies aim to destroy mRNAs for 
ABC drug transporters, inhibit transcription of ABC transporter genes, or block ABC 
transporter activity using monoclonal antibodies. There is an optimistic view that 
much more can be achieved in developing agents for reversing ABC transporters [ 56 ]. 
It is therefore likely that with the development of more potent P-gp inhibitors, effec-
tive imaging agents that are analogues of ABC transporters will emerge.  

6.4.11     Chemotherapeutic Drug Combinations 

 It has emerged that combinations of chemotherapeutic drugs aimed to reverse MDR 
with the so-called targeting agents may improve patient outcome. Molecular imag-
ing can be used to visualise the targets for these agents, such as HER2/neu, and 
angiogenic factors, such as vascular endothelial growth factor (VEGF). Visualisation 
of molecular drug targets in the tumour could serve as biomarkers to facilitate treat-
ment decisions for the individual patient [ 11 ]. Simultaneous combined imaging 
using both MDR and target analogues may also evolve initially in the clinical trial 
setting, a potential role yet to be explored.  

6.4.12     Imaging MDR in Drug Trials 

 Clinical trials optimally tailored to tumour types, genetic polymorphism and 
 adequate dosing regimens need to be conducted. Imaging in such trials may be 
 useful for selecting patients whose cancers express MDR primarily though 
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ABC-mediated mechanisms. For accurate assessment of tumour P-gp levels, 
patients should be scanned twice with a P-gp radiolabelled substrate: fi rstly at base-
line and again after P-gp inhibition. Patients whose tumours show enhanced uptake 
of the radiotracer following P-gp blockade would be suitable candidates for P-gp 
inhibitor trials [ 6 ,  57 ] (Fig.  6.5 ). Two studies using Tc-99m-sestamibi have shown 
the potential value of this approach with respect to the administration of tariquidar 
or valspodar. Another ongoing study is using Tc-99m-MIBI to monitor progress 
throughout the trial [ 6 ].

  Fig. 6.5    Tc-99m-sestamibi images at baseline and after administration of XR95767 for patients 3, 
5, and 10. Patient numbers are shown in  parentheses . ( a )  Arrow  identifi es a left thigh mass that had 
gone undetected until the whole body Tc-99m-sestamibiscan was performed (patient 3, renal cell 
carcinoma, 263 % increase in tumour:heart area under curve (AUC) 0–3 h ratio). ( b )  Arrow  indi-
cates a soft tissue mass invading the iliac bone (patient 5, renal cell carcinoma, 18 % increase in 
tumour:heart AUC0–3 h ratio). ( c )  Arrows  indicate numerous bilateral lung metastases that are all 
more readily visualized after the administration of XR9576 (patient 10, adrenocortical carcinoma, 
76–191 % increase in tumour:heart AUC0–3 h ratios). Reprinted with permission from the American 
Association for Cancer Research from Agrawal M, Abraham J, Balis FM et al. Increased 99mTc-
Sestamibi Accumulation in Normal Liver and Drug-Resistant Tumors after the Administration of 
the Glycoprotein Inhibitor, XR9576. Clinical Cancer Research. 2003;9: 650–656 (Fig. 2)       

 

6 Radiopharmaceuticals for the Imaging of ABC-Transporter-Mediated Multidrug…



148

6.5         Conclusions 

 Multidrug resistance and specifi c ABC transporters may be imaged with either sin-
gle photon or positron emitting radiopharmaceuticals that are MDR substrates, 
inhibitors or radiolabelled pro-drugs that are converted into transporter substrates. 
The most studied of these, and the fi rst to be used in clinical practice, is the single 
photon emitting radiopharmaceutical, Tc-99m-sestamibi, which is a substrate for 
P-gp, MRP1, MRP2 and BCRP, and can therefore be used to image their expression 
in vivo. Tc99m-tetrofosmin and several other Tc-99m-Q complexes that are closely 
related to MIBI with respect to their clinical applications are also transport sub-
strates for P-gp and MRP. Recent studies using the positron-emitter, Tc-94m-MIBI 
and parallel previous studies with Tc-99m-MIBI show essentially identical perfor-
mance, thereby providing validation for microPET. 

 Several C-11, F-18 and Ga-68-labelled P-gp-avid radioligands developed for 
PET have been evaluated in animals and some have been extended to humans to 
investigate MDR and quantify P-gp expression in the blood–brain barrier. Although 
many studies are currently focussing on functional imaging of P-gp, other ABC 
drug transporters, particularly MRP, have also attracted interest. Thus, Tc-99m- 
HIDA is transported only by MRP1, MRP2. Leukotrienes are substrates for MRP, 
so N-C-11-acetyl-leukotriene E4 could possibly be used to noninvasively image 
MRP function. Clinical trials better tailored to tumour types, genetic polymorphism 
and adequate dosing regimens need to be conducted because imaging is proving to 
be useful for selecting patients whose cancers express MDR primarily though ABC- 
mediated mechanisms. More research is needed to identify patients, through imag-
ing, who are susceptible to multidrug resistance, but also drug toxicity side effects, 
to provide information concerning dose adjustment and to allow better decision 
making when considering therapy with anti-cancer drugs that are ABC transporter 
substrates. In the post-genomic era of individualised medicine, ABC imaging may 
be helpful to adjust the treatment dose in individual patients.     
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    Chapter 7   
 Modulation of P-Glycoprotein-Mediated 
Multidrug Resistance by Synthetic 
and Phytochemical Small Molecules, 
Monoclonal Antibodies, and Therapeutic 
Nucleic Acids 
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    Abstract     Multidrug resistance of malignant tumors severely hampers their successful 
treatment frequently leading to fatal consequences for affected patients. During the 
past three decades, many efforts have been spent to develop strategies to overcome 
multidrug resistance. Many chemical compounds have been shown to inhibit 
the drug effl ux of the multidrug-resistance-mediating P-glycoprotein. Chemical 
P-glycoprotein inhibitors are from the classes of calcium channel antagonists, 
calmodulin inhibitors, cyclosporins, antiarrhythmics, hormones, antimalarials, anti-
biotics, detergents, beta-blockers, antidepressants, blood pressure lowering indol 
alkaloids, aerobic glycolysis inhibitors, HIV-protease inhibitors, antimycotics, and 
others. More recently, chemical compounds from medicinal plants or food were 
also identifi ed as potent P-glycoprotein inhibitors. P-glycoprotein-inhibiting phyto-
chemicals are from diverse classes, such as fl avonoids, nonfl avonoid polyphenols, 
alkaloids, steroids, stilbenes, monoterpenoids, dipterpenoids, triterpenoids, triterpene 
saponines, lignans, fl avolignans, polyketides, carotenoids, and others. In addition to 
chemical synthetic or natural small molecules several other therapeutic strategies 
have been devised, e.g. monoclonal antibodies blocking drug effl ux, immunotoxins 
specifi cally targeting and killing multidrug-resistant cells and therapeutic nucleic 
acids downregulating the P-glycoprotein encoding the  MDR1  gene and resensitiz-
ing tumor cells to anticancer drugs. We give an overview of our own research with 
in vitro and in vivo tumor models in the context of the worldwide efforts to over-
come multidrug resistance.  
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   Abbreviations 

   ABC    ATP-binding cassette   
  ATP    Adenosine triphosphate     
Calcein-AM    Calcein      - acetoxymethylester     
     CHO    Chinese    hamster ovary   
  CLO    Clomipramine   
  Cpm    Counts per million
     DOX    Doxorubicin     
EGC    Epigallocatechin
     EGCG    Epigallocatechin- gallate
          HIV    Human    immunodefi ciency virus   
  MDR    Multidrug resistance   
  MDR1    Multidrug resistance gene 1   
  NBD    Nucleotide binding domain   
  PBCEC    Porcine brain capillary endothelial cells   
  P-gp    P-glycoprotein   
  S180    Sarcoma 180   
  TAM    Tamoxifen   
  TFP    Trifl uperazine   
  VER    Verapamil         

7.1     Introduction 

    Multidrug resistance (MDR) of tumor cells to cytostatic agents is a major limiting 
factor in successful clinical chemotherapy. Therefore, over the past several years 
there has been considerable interest in devising strategies to combat MDR. This 
could be achieved either by using non-cross-resistant drugs and thereby bypassing 
resistance or by the use of specifi c inhibitors of the MDR-mediating drug effl ux 
pump, P-glycoprotein. Numerous synthetic and natural agents have been described 
to block P-glycoprotein and thereby mediate sensitivity to standard cytostatic drugs 
which are transported by the P-glycoprotein. Chemical classes of P-glycoprotein 
inhibitors are derived from many different pharmacological classes such as antibiotics, 
antidepressants, calcium channel blockers, calmodulin antagonists, cyclosporins, 
detergents, hormones, and many others [ 1 – 4 ] (Table  7.1 ). More recently, phytochem-
icals have also been found to inhibit P-glycoprotein, e.g. fl avonoids, alkaloids 

T. Efferth et al.



155

and terpenoids [ 5 ,  6 ] (Table  7.2 ). In spite of these numerous substances that overcome 
MDR in vitro and in vivo, the question was as to which of these potentially wide 
assortment of chemicals might be the most suitable candidates for use in cancer 
patients. The ideal compound should reveal high affi nity and specifi city to bind to the 
P-glycoprotein and should be of proven low toxicity.

    In addition to overcoming multidrug resistance by small molecules–either chemi-
cally synthesized or derived from natural resources such as plants, monoclonal anti-
bodies have been used. Antibodies targeting external epitopes of the P-glycoprotein 
are able to plug the effl ux channel, thereby inhibiting the extrusion of anticancer 
drugs. Furthermore, such antibodies can also be used for coupling with toxins. 
P-glycoprotein-directed immunotoxins are capable of highly specifi c targeting and 
killing of P-glycoprotein expressing tumor cells. 

 Moreover, multidrug resistance may be modulated by downregulating P-glyco-
protein in MDR cells and thereby resensitizing them to anticancer drugs. This goal may 
be achieved by therapeutic nucleic acids (antisense oligodeoxynucleotides, siRNA, 
ribozymes), which target MDR1 mRNA and thereby initiate the degradation of MDR1 
mRNA and P-glycoprotein.  

   Table 7.1    Synthetic small molecules that inhibit P-glycoprotein   

 Compounds  Class 

 Lonidamine  Aerobic glycolysis inhibitor 
 Amiodarone, quinidine, lidocain  Antiarrhythmics 
 Erthromycin, cefoperazone, ceftriaxone, clarithromycin  Antibiotics 
 Clomipramine, yohimbine, trimethoxyyohimbine  Antidepressants 
 Chloroquine, quinine, quinacrine, cinchonine  Antimalaria drugs 
 Ketonazole, Itraconzole  Antimycotics 
 Propanolol  Beta-blocker 
 Reserpine, rescin amine  Blood pressure lowering 

indol alkaloids 
 Verapamil, (dextroverapamil), nifedipin, diltiazene, tiapamile, 
nicardipine, nimodipine, caroverine, felodipine, nitrendipine 

 Calcium channel inhibitors: 

 Trifl uoperazine, thioridenzine, chlorpromazine, trifl uopromazine, 
perphenazine, clomipramine, fl uphenazine, cis/transfl upenthixol, 
cis/trans-chlorprothixene, cis/trans-clopenthixol 

 Calmodulin inhibitors 

 Cyclosporin A, PSC-833, cyclosporin C, cyclosporin G, 
cyclosporin 4 

 Cyclosporins 

 Tween 80, Cremophor EL  Detergents 
 Indinavir, nelfi navir, ritonavir, saquinavir  HIV-protease inhibitors 
 Progesterone, deoxycorticosteroide, tamoxifen, toremifene, 
testosterone, ethinylestradiol 

 Hormones 

 Biricodar (VX-710), S9788, elacridar (GF-120918), Zosuquidar 
(LY335979), tariquidar (XR9576), dofequidar (MS-209) 

 Others (3rd generation 
drugs) 

 Dipyridamole, B1BW22BS  Platelet anticoagulant 
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   Table 7.2    Phytochemical small molecules that inhibit P-glycoprotein   

 Phytochemical  Class  Plant 

 (−)Epigallocatechin gallate  Flavonoid   Camelia sinensis  
 (R)-(+)-citronellol  Monoterpenoid   Cymgopogon nardus  
 (S)-(−)-beta-citronellol  Monoterpenoid   Cymbopogon nardus  
 [6]-gingerol  Catechol   Zingiber offi cinale  
 Acetogenin  Polykeside   Sinomonium acutum  
 Apigenin  Flavonoid   Petroselinum crispum  and others 
 Astragalosides  Triterpene saponin   Astragalus membranaceus  
 Auraptene  Monoterpenoid   Citrus  ×  aurantium  
 Baicalin  Flavonoid   Scutellaria baicalensis  
 Berbamine  Alkaloid   Cephalotaxus harringtonia  
 Berberine  Alkaloid   Coptis chinensis  
 Bergamottin  Flavonoid   Citrus  ×  aurantium  
 Biochanin A  Flavonoid   Trifolium pratense  
 Canadine  Alkaloid   Coptis chinensis  
 Capsaicin  Alkaloid   Capsicum annuum  
 Capsanthin  Carotenoid   Capsicum annuum  
 Capsorubin  Carotenoid   Capsicum annuum  
 Carmosic acid  Diterpenoid   Rosmarinus offi cinalis  
 Chrysin  Flavonoid   Passifl ora caerulea  and others 
 Coptisine  Alkaloid   Coptis chinensis  
 Cryptotanshinone  Diterpenoid   Salvia milthiorrhiza  
 Curcumin  Nonfl avonoid polyphenol   Curcuma longa  
 Dauricine  Alkaloid   Menispermum canadense  and others 
 Daurigoline  Alkaloid   Cephalotaxus harringtonia  
 Ephedrine  Alkaloid   Angelica sinensis  
 Fangchinoline  Alkaloid   Stephania tetrandra  
 Fisetin  Flavonoid   Rheum palmatum  
 Galangin  Flavonoid   Alpinia offi cinarum  
 Genistein  Flavonoid   Genista tinctoria  
 Ginkgolides A and B  Diterpenoid   Ginkgo biloba  and others 
 Ginsenosides  Triterpene saponin   Panax ginseng  
 Glabridin  Flavonoid   Glycorrhiza glabra  
 Glycyrrhetinic acid  Triterpene saponin   Glycorrhiza glabra  
 Guggulsterone  Seroid   Commiphora mukul  
 Hesperitin  Flavonoid   Citrus spec.  
 Homoharringtonine  Alkaloid   Cephalotaxus harringtonia  
 Honokiol  Lignan   Pseudolarix kaempferi  
 Hypericin  Anthraquinone   Hypericum perforatum  
 Icariin  Flavonoid   Epimedium koreanum  
 Jatrorrhizine  Alkaloid   Coptis chinensis  
 Kaempherol  Flavonoid   Brassica oleracea  and others 
 Lutein  Carotenoid   Spinacia oleracea  and others 

(continued)
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7.2    Function of P-Glycoprotein 

 As a starting point of a discussion, we questioned how the P-glycoprotein can 
be inhibited with the aim to overcome multidrug resistance of tumors, what are 
the different models and hypotheses, and how the P-glycoprotein extrudes anti-
cancer drugs out of cancer cells should be addressed. There are two classes of 
P-glycoprotein substrates. Hydrophobic compounds (e.g. vinblastine) enter the 

Table 7.2 (continued)

 Phytochemical  Class  Plant 

 Lycopene  Carotenoid   Solanum lycopersicum  and others 
 Matairesinol  Lignan   Glycine max  
 Morin  Flavonoid   Morus tinctoria  
 Naringenin  Flavonoid   Citrus spec.  
 Neostenine  Alkaloid   Stemona tuberosa  
 Neotuberostermonine  Alkaloid   Stemona tuberosa  
 Nobiletin  Flavonoid   Citrus spec.  
 Paeonifl orin  Monoterpenoid   Paeonia lactifl ora  
 Palmatine  Alkaloid   Coptis chinensis  
 Phellamurin  Flavonoid   Phellodendron acutum  
 Phloretin  Flavonoid   Pyrus communis  and others 
 Procyanidine  Flavonoid   Pinus massoniana  
 Pseudolaric acid B  Diterpene acid   Pseudolarix kaempferi  
 Pyranocoumarins  Courmarins   Peucadanum praeruptorum  
 Quercetin  Flavonoid   Ginkgo biloba  
 Resveratrol  Stilbene   Vitis vinifera  
 Rhinacanthin C  Naphthoquinone   Rhinacanthus nasutus  
 Rotenone  Flavonoid   Derris eliptica  and others 
 Rutin  Flavonoid   Morus alba  and others 
 Sakuranetin  Flavonoid   Polymnia fruticosa  
 Schisandrins (=Gomisins)  Lignan   Schisandra chinensis  
 Sesamin  Lignan   Sesamum indicum  
 Silibinin  Flavolignan   Silybum marianum  
 Silymarin  Flavonoid   Silybum marianum  
 Sinomenine  Alkaloid   Sinomonium acutum  
 Spiraeoside  Flavonoid   Filipendula ulmaria  
 Tamarixetin  Flavonoid   Ginkgo biloba  and others 
 Tangeretin  Flavonoid   Citrus tangerina  
 Tanshinone B  Diterpenoid   Salvia milthiorrhiza  
 Tenacissimoside A  Steroid   Marsdenia tenacissima  
 Tetramethylpyrazine  Alkaloid   Cephalotaxus harringtonia  and others 
 Tetrandrine  Alkaloid   Stephania tetrandra  
 Triptolide  Diterpenoid   Triterygum wilfordii  
 Ursolic acid  Triterpenoid   Rosmarinus offi cinalis  
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outward channel of the P-glycoprotein through the lipid bilayer by an entrance gate 
in the transmembrane domains of the P-glycoprotein. Hydrophobic compounds 
(e.g. rhodamine 123) enter the cell by passive diffusion and bind to the effl ux channel 
of the P-glycoprotein from the intracellular side (Fig.  7.1 ). There are also different 
classes of inhibitors of P-glycoprotein effl ux. The number of binding sites at the 
P-glycoprotein has been a matter of long-lasting discussions ranging from several 
defi ned pharmacophores to a substrate-induced fi t model [ 7 ]. Three overlapping 
binding sites in the transmembrane region of the P-glycoprotein have been suggested    [ 8 , 
 9 ,  19 ]. They have been termed the R-site (rhodamine 123 binding site), H-site 
(Hoechst 33342 binding site), and M-site (modulator-binding site). Modulators 
interact with substrates at these overlapping sites leading to competitive effl ux inhi-
bition. A second class of inhibitors (e.g. fl avonoids) bind to the ATP binding domain, 
thereby inhibiting ATP hydrolysis and allocation of energy, which is necessary for 
the effl ux process (Fig.  7.1 ). This type of P-glycoprotein inhibition occurs in a non-
competitive manner. A third type of drug resistance modulators have been described 
not to (e.g. Tween 80, cremohor EL) interact with the P-glycoprotein at all. Rather, 
these surfactants alter the membrane fl uidity and thereby membrane permeability 
for anticancer drugs (Fig.  7.1 ) [ 10 ]. In addition to small molecule inhibitors of 
P-glycoprotein resistance-modifying detergents, monoclonal antibodies have been 
used to overcome multidrug resistance. Some of them bind to the extracellular loops 
(e.g. MRK16), thereby inhibiting drug effl ux, whereas others bind to a cytoplasmic 
domain (e.g. C219).

  Fig. 7.1    Schematic illustration of different classes of substrates and modulators of P-glycoprotein 
function       
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   The binding sites of competitive and noncompetitive small molecule inhibitors 
as well as of monoclonal antibodies have been illustrated in a three-dimensional 
homology model of the human P-glycoprotein (Fig.  7.2 ), which is based on the 
X-ray structure or murine P-glycoprotein [ 11 ]. Representative small molecules at 
the MRK16 epitope, transmembrane drug binding site, and the nucleotide binding 
domain (NBD) are also displayed in this fi gure as found from our dockings (refer to 
Tables  7.3  and  7.4 ).

  Fig. 7.2    Different binding pockets on P-gp: ( a ) Graphical presentations of the different potential 
binding sites on P-gp: P-gp molecule has been depicted in new cartoon format ( white ), whereas 
different binding sites in CPK format: MRK16 epitope ( blue ), M-site ( yellow ), R-site ( orange ), 
H-site ( red ), and amino acids involved in ATP interaction ( gray ). ( b ,  c , and  d ) Molecular docking 
of chlorpromazine (lowest binding energy mode [−6.14 kcal/mol]), R-verapamil (lowest binding 
energy mode [−4.96 kcal/mol]) and hesperitin (cluster with highest number of conformations 
[−6.01]) respectively. All ligands are depicted in  green        
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7.3         Modulation of Resistance by Synthetic Drugs 

 As a starting point we made a comparison of the most active effects for reversing 
multidrug resistance in vitro. The effects of the modifying substances were deter-
mined by the nucleoside incorporation assay [ 12 ,  13 ]. As a test model, we used 
parental L1210 ascites tumor cells, a doxorubicin-resistant subline thereof, which 
expresses the MDR-phenotype (30-fold resistance to doxorubicin) and a cytosine-
arabinoside- resistant subline without the MDR phenotype as a negative control 
(2,500-fold resistance). The leukemic L1210 cells were grown intraperitoneally in 
ascites form and were transplanted at 7-day intervals (1.5 × 10 7  cells/mouse). For 
experiments on MDR reversal, cells were taken on the 5th to 7th day after tumor cells 
inoculation. The maximal concentration of each drug was selected by exhibiting only 
a slight inhibitory effect on both resistant and parental L1210 ascites cell lines. 

 The MDR-reversing    activity of eight chemical substances derived from different 
pharmacological classes is shown in Fig.  7.3 . All tested substances enhanced the 
cytotoxicity of doxorubicin in the MDR-resistant cells in vitro [ 14 ]. MDR resis-
tance was partly circumvented by bamipine, chlorophenoxamine, and verapamil 
(10- to 30-fold) compared to hycanthone, tamoxifen, and trifl uoperazine which 
completely reversed doxorubicin resistance. All these agents were ineffective in the 
sensitive (parental) L1210 ascites cells. Furthermore, none of these drugs had any 
signifi cant sensitizing effects on L1210 ascites cells resistant to cytosine- arabinoside 
(data not shown). The chemical structures of all these modulators had two features 
in common: a lipophilic aromatic ring-system with a hydrophilic N-alkyl chain.

   To prove whether the resistance reversal is restricted to agents with these struc-
tural properties, we tested substances lacking an aromatic ring and an N-alkyl-group 

  Fig. 7.3    Dose-response curves of doxorubicin on doxorubicin-resistant ( triangle ,  fi lled triangle ) 
and parental ( circle ,  fi lled circle ) L1210 ascites tumor cells with ( closed symbols ) or without 
( closed symbols ) modulators. Ordinate: Nucleoside incorporation (% of control). The short-term 
test was carried out as described [ 12 ,  13 ]. Abscissa: doses of doxorubicin. Mean and range of 6 
determinations of three independent experiments are shown. Data were taken from [ 14 ]       
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(e.g. testosterone), having a N-alkyl-group but no aromatic ring (methylpiperazine), 
or aromatic substances lacking an N-alkyl group (ß-estradiol). Indeed, all these 
substances could not overcome the resistance in doxorubicin-resistant L1210 ascites 
cells (data not shown). In contrast to estradiol, estracit which has both an aromatic 
ring and an N-alkyl group showed a signifi cant MDR reversal. 

 In further investigations, we analyzed the reversal of doxorubicin resistance 
in vivo. As shown in Fig.  7.4b , a strong reduction of doxorubicin-resistant solid 
L1210 tumors was observed following treatment with doxorubicin plus verapamil 
compared to both compounds, if applied alone to animals. In contrast, this effect 
was not observed in sensitive solid L1210 tumors (Fig.  7.4a ) [ 16 ].

   As clinical pilot studies with verapamil have been ceased due to intolerable high 
cardiovascular effects [ 18 ,  19 ], the stereoisomer (R)-verapamil might be more suit-
able as a P-glycoprotein inhibitor, since it revealed considerable less cardiovascular 
effects compared to (S)-verapamil and racemic (R/S)-verapamil [ 20 ,  21 ]. Therefore, 
we compared the effects of (R)-verapamil (Fig.  7.4c ) in comparison to racemic 
(R/S)-verapamil (Fig.  7.4b ) in doxorubicin-resistant solid L1210 tumors in mice 
[ 15 ]. While (R)-verapamil did not reveal signifi cant inhibition of tumor growth 
compared to untreated control tumors, doxorubicin signifi cantly inhibited tumor 
growth. Similar to R/S-verapamil (Fig.  7.4b ), the combination of doxorubicin plus 
(R)-verapamil synergistically increased the inhibitory effects of the compounds 
applied alone (Fig.  7.4c ). During treatment, the body weight of the animals were 
recorded as a parameter of toxicity. (R)-verapamil-treated animals did not reveal a 
weight loss in contrast to (R/S)-verapamil treated mice. 

 Since our in vitro experiments showed that tamoxifen reversed doxorubicin 
resistance (Fig.  7.3 ), we were interested to see whether reversal of resistance can 
also be obtained in vivo [ 16 ]. Figure  7.4e  depicts that the combination of doxorubi-
cin with tamoxifen led to a signifi cant decrease of growth of doxorubicin-resistant 
solid L1210 tumors compared to both drugs alone. No signifi cant effect was found 
in the sensitive solid L1210 tumors (Fig.  7.4d ). 

 Finally, the effect of clomipramine in doxorubicin-resistant solid L1210 tumors 
in mice was investigated [ 17 ]. A signifi cant inhibition of tumor growth was observed 
after treatment with clomipramine and doxorubicin combined when compared to 
doxorubicin alone ( p  = 0.014). Clomipramine or doxorubicin alone showed only 
marginal effects compared to untreated control (Fig.  7.4f ). 

 In addition to measuring the effects of P-glycoprotein modulators on tumor 
growth in vitro and in vivo, we also analyzed these compounds by fl ow cytometry 
and the rhodamine 123 accumulation assay. Figure  7.5  shows representative 

Fig. 7.4 (continued) L1210 tumors within 4 days in nontreated animals (controls), after treatment 
with doxorubicin (3 × 2 mg/kg body weight), R/S-verapamil or R-verapamil (3 × 30 mg/kg), tamoxi-
fen (3 × 20 mg/kg), and clomipramine (4 × 0.3/kg) alone or doxorubicin in combination with the 
modulators. The animals were treated daily (4 consecutive days). Each bar represents mean values of 
tumor volumes of 6–8 animals.  The data were taken from Pommerenke et al.  [ 15 ,  16 ],  Pommerenke 
and Volm  [ 17 ]       

T. Efferth et al.



  Fig. 7.4    Reversal of doxorubicin resistance in solid L1210 tumors in vivo. P-glycoprotein- expressing 
doxorubicin-resistant and P-glycoprotein-negative sensitive L1210 WT tumors were treated with 
doxorubicin and resistance-reversing agents (R/S-verapamil, R-verapamil, tamoxifen, clomipramine) 
either alone or in combination. Increase in tumor volumes (mm 3 ) of doxorubicin- resistant solid 
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biparametric fl uorescence histograms of intracellular rhodamine 123 fl uorescence. 
The fl uorescence intensity was signifi cantly higher in cells that were treated with 
modulators. Propidium iodide (PI) staining was used to stain nuclei of dead cells, 
which nonspecifi cally accumulate rhodamine 123. PI-stained dead cells were 

  Fig. 7.5    Modulation of rhodamine 123 accumulation in multidrug-resistant L1210 ascites tumor 
cells. Synthetic compounds (hycanthone, chlorophenoxamine) able to partially modulate doxorubi-
cin cytotoxicity in the short-term test ( fi gure at the top ) increase the accumulation of the fl uorescent 
dye, rhodamine 123 in resistant cells. The low rhodamine 123 accumulation in multidrug-resistant 
cells ( second fi gure ) was increased by the addition of hycanthone ( third fi gure ) or chlorophenox-
amine ( fourth fi gure ). The high rhodamine 123 accumulation of sensitive cells (without P-glycoprotein 
expression) was, however, not reached. Data were taken from Efferth et al. [ 22 ]       
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electronically excluded and fl uorescence signals of rhodamine 123-stained living 
cells were plotted onto monoparametric histograms. The fl ow cytometric data of the 
rhodamine 123 accumulation assay shown in Fig.  7.5  confi rmed the results found by 
the short-term test.

   We have performed molecular docking using AutodockTools-1.5.6rc3 and 
Autodock4 on a homology modeled human P-glycoprotein for a selection of the 
synthetic compounds mentioned throughout the text above. The results are pre-
sented in Table  7.3 , where information about binding energies, number of confor-
mations in the lowest binding energy cluster and the cluster containing the highest 
number of conformations, interacting amino acids and their assignment to the 
 previously described interaction sites on P-glycoprotein are listed. It is worth men-
tioning that estimation of binding energies in regards of P-glycoprotein has been 
unsatisfactory and molecular docking was more reliable in identifying the binding 
mode [ 23 ]. As may be noticed, most compounds were found to be docked in the 
transmembrane region (M-, R-, and H-site). Interestingly, chlorpromazine and 
Trifl uorperazine have shown to bind close to the MRK16 epitope, which might indi-
cate for the fi rst time that a small molecule may possibly interact on the extracellu-
lar domain as some monoclonal antibodies do. This represents a new aspect of a 
small molecule interaction with the P-glycoprotein.  

7.4    Modulation of Resistance by Phytochemicals 

 In evolution of life, P-glycoprotein-type transporters served as detoxifi cation mech-
anisms, which expel natural xenobiotic substances taken up by food or inhaled by 
breath. P-glycoprotein is a phase 3 protein in liver metabolism transporting sub-
strates oxidized by phase I enzymes (e.g. cytochrome P450 monooxigenases) and 
conjugated by phase II enzymes (e.g. glutathione S-transferases). Moreover, the 
P-glycoprotein is expressed in many normal organs, which are in contact with xeno-
biotic substances, e.g. the gastrointestinal tract, kidneys, and pancreas. In brain and 
placenta, the P-glycoprotein contributes to the blood–brain and blood–placenta bar-
riers preventing the entry of potentially harmful substances into the brain or the 
fetus. It has been discussed that secondary plant metabolites were useful weapons 
in the evolutionary arms race between plants and herbivores and that phase I and II 
detoxifying enzymes and phase III transporters in mammalian herbivores were 
effective defense lines against toxic xenobiotic compounds from plants [ 24 ]. Having 
this background in mind, it comes as no surprise that a huge number of natural com-
pounds are either substrates or inhibitors of the P-glycoprotein. 

 Consumption of green tea made from unfermented leaves of  Camellia sinensis  
has been shown to afford protection against carcinogenesis of the esophagus, stom-
ach, duodenum, colon, liver, and lung in humans. The main responsible components 
of green tea are some polyphenols, especially fl avonols from the catechin-type, in 
particular epigallocatechin gallate (EGCG) and epigallocatechin (EGC). We proved 
whether these compounds modulate the activity of antineoplastic drugs. We found a 
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modulating effect of EGCG and EGC on the sensitivity of human SW620 and 
murine S180 doxorubicin-resistant cells to doxorubicin [ 25 ]. 

 In addition to quinine and quinidine, shown in Fig.  7.3 , which have shown along 
with hycanthone, tamoxifen, and trifl uoperazine to cause a complete reversal of 
MDR, a screening of phytochemicals with a special focus on medicinal plants used 
in traditional Chinese medicine was carried out. We identifi ed a number of com-
pounds that are able to inhibit the P-glycoprotein either in tumor cells or at the 
blood–brain barrier [ 26 – 30 ]. The P-glycoprotein acts not only as a drug transporter 
in tumor cells, but also at the blood–brain barrier to prevent penetration of harmful 
substances from the blood circulatory system into the brain tissue [ 31 ]. 

 Using immunofl uorescence, we showed that the P-glycoprotein revealed a lumi-
nal localization at membranes of freshly isolated porcine brain capillaries (Fig.  7.6a ). 
We isolated porcine brain capillary endothelial cells (PBCECs), cultured them 
in vitro, and performed P-glycoprotein staining. P-glycoprotein expression was 
detected not only in cell membranes, but also in intracellular vesicular-like struc-
tures (Fig.  7.6a ).

   Living cell confocal microscopy was used for functional investigations of the 
P-glycoprotein in brain capillaries. Brain capillaries were maintained in vitro and 
incubated with fl uorescent NBD-cyclosporin A. Whereas control brain capillaries 
transported NBD-cyclosporin A into the capillary lumen indicating functional 
P-glycoprotein, the addition of the PSC-833 inhibited luminal accumulation of the 
fl uorescent compound (Fig.  7.6b ). NBD-cyclosporin A accumulated only in endo-
thelial cells, but was not secreted anymore into the capillary lumen due to effective 
P-glycoprotein inhibition. Likewise, one of the test compounds, 4-methoxy [2,3,-b]
quinolone, inhibited P-glycoprotein transport (Fig.  7.6b ). 

 A total of 57 chemical compounds from plants used in traditional Chinese medi-
cine and three control phytochemicals (biochanin A, diosmetin, hesperitin) were 
investigated in PBCECs, P-glycoprotein-positive CEM/ADR5000, and 
P-glycoprotein-negative CCRF-CEM leukemia cells [ 29 ]. For measuring 
P-glycoprotein transport, another P-glycoprotein fl uorescent probe was used, 
calcein- acetoxymethylester (calcein-AM). Inhibition of P-glycoprotein reduces 
calcein-AM effl ux and cytosolic esterases rapidly cleave ester bonds, leading to the 
formation of highly fl uorescent organic anion calcein, which is intracellularly 
trapped and detectable by confocal microscopy and fl ow cytometry. As shown in 
Fig.  7.6c , six phytochemicals derived from traditional Chinese medicine and the 
three control compounds (biochanin A, diosmetin, hesperitin) increased calcein 
fl uorescence in PBCEC and CEM/ADR5000 cells, but not in CCRF-CEM cells. 

Fig. 7.6 (continued) (two independent experiments with each two parallel measurements). The bar 
diagram shows intracellular fl uorescence ( E  max ) values a concentration of 5 μg/ml for PBCECs and 
50 μg/ml for CCRF-CEM and CEM/ADR5000 cells. The  inset  exemplarily shows three dose 
response curves used for  E  max  calculation. *** p  < 0.001; ** p  < 0.01; * p  < 0.05. ( d ) Inhibition of 
P-glycoprotein by bufadienolides and bufatrienolides showing a concentration-dependent increase 
of intracellular fl uorescence in freshly isolated PBCECs (two independent experiments with each 
6 parallel measurements). The data were taken from Mahringer et al. [ 29 ]       
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  Fig. 7.6    Inhibition of P-glycoprotein by phytochemicals from traditional Chinese medicine. ( a ) 
Immunostaining for P-glycoprotein in porcine brain capillaries shows luminal localization of the 
effl ux transporter. In cultivated PBCECs, P-glycoprotein is also localized at the membrane, but 
also in cytoplasmic vesicles. The left image shows a transmitted light image of a porcine capillary 
discriminating between luminal and basolateral endothelial membrane side. ( b ) Freshly isolated 
brain capillaries were incubated with the fl uorescent NBD-cyclosporin A and left untreated (con-
trol), or treated for 30 min with PSC-833 or 4-methoxy [2,3-b]quinolone. Images are representa-
tive for two separate capillary isolations. ( c ) Concentration-dependent increase of intracellular 
fl uorescence in P-glycoprotein-expressing b rain capillary endothelial cells sub-cultures as mono-
layer, P-glycoprotein expressing human CEM/ADR5000 leukemia cells and P-glycoprotein- 
negative CCRF-CEM leukemia cells. Intracellular calcein fl uorescence in PBCECs was determined 
in a fl uorescence reader (two independent experiments with each 6 parallel measurements), 
whereas fl uorescence in CEM/ADR5000 and CCRF-CEM cells was determined by fl ow cytometry 
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They also increased calcein fl uorescence and expressed as  E  max  values, which were 
calculated from concentrations of intracellular calcein fl uorescence (see inset in 
Fig.  7.7c ). The  E  max  values tended to be higher in CEM/ADR5000 cells than in 
PBCECs, indicating a higher modulatory activity. The  E  max  values of CCRF-CEM 
cells were not increased as compared to untreated controls.

   Next, we analyzed a panel of chemically related bufadienolides and bufatrieno-
lides for their interaction with P-glycoprotein in cultivated PBCECs [ 29 ]. The results 
of the calcein assays are shown in Fig.  7.6d . Proscillaridin and scillaren A revealed 
the most pronounced P-glycoprotein inhibition, Acetylmarinobufogenin, bufotalin-
3-acetate, and scillarenin showed intermediate and bufalin exhibited the weakest 
P-glycoprotein inhibition. 

 Molecular docking on phytochemicals discussed above has also been conducted 
in the same approach used for the synthetic compounds represented in Table  7.3 . 
Results are displayed in Table  7.4  below. We noticed here as well that most of the 
compounds showed preference to the transmembrane region. Two compounds, 
namely bufotalin-3-acetate and hesperitin, were shown to probably interact at the 
nucleotide binding domain (NBD). Hesperitin belongs to fl avonoids, which have 
been described throughout literature to interact with the nucleotide binding domain 
[ 34 ], but they also as well might interact at the common binding site within the 
transmembrane region [ 35 ]. 

 The investigation of phytochemicals in the context of P-glycoprotein has two 
important implications:

    1.    A large number of cancer patients takes herbal remedies in addition to chemo-
therapy with or without informing their physicians [ 36 ]. As herbs interfere with 
Phase I–III detoxifi cation proteins, they may alter pharmacokinetics and –dynamics 
of standard drugs by either increasing or decreasing the activity of Phase I–III 
proteins. This has been not only shown for anticancer drugs but also for many 
drugs used for diverse diseases [ 37 – 41 ]. One well-known example is St. John’s 
Wort ( Hypericum perforatum ). Cancer patients are frequently depressive about 
their disease and take antidepressive preparations. St. John’s Wort indeed reveals 
considerable antidepressive activity, but also induces the expression of cyto-
chrome P450 monooxigenases and P-glycoprotein in the liver [ 38 ]. This leads to 
an increased metabolization and detoxifi cation of anticancer drugs potentially 
leading to reduced response of tumor cells to chemotherapy or even therapy fail-
ure. As yet, the potential harm of herb-drug interactions has not been fully uncov-
ered and needs to be studied in more detail to prevent unwanted effects during 
cancer chemotherapy.   

   2.    The inhibition of P-glycoprotein may be specifi cally exploited to overcome 
multidrug resistance. Many phytochemicals effectively inhibit P-glycoprotein 
function in a comparable manner to well-known P-glycoprotein inhibitors such 
as verapamil or cyclosporin A [ 5 ,  6 ,  42 – 44 ]. A number of phytochemicals also 
reveal cytotoxic activity towards cancer cells. Both features—P-glycoprotein 
activity and cytotoxicity towards cancer cells—may lead to synergistic tumor 
killing rates if used in combination therapy.      
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  Fig. 7.7    Antibody-directed therapy of multidrug-resistant tumors. ( a ) Enhancement of vincristine 
by anti-P-glycoprotein monoclonal antibody MRK16. Primary cell cultures of kidney carcinoma 
were incubated with vincristine without or with addition of MRK16 (1 μg/ml). Cell number was 
determined after 7 days incubation. ( b ) Selective growth inhibition by immunotoxin 265/F4-ricin- 
alpha of P-glycoprotein expressing CHO-C 5 R cells ( open symbols ,  dashed line ), but not of 
P-glycoprotein negative parental CHO cells ( closed symbols ,  solid line ). ( c ) Combination treat-
ment with doxorubicin and immunotoxin 265/F4-ricin-alpha of mixed cultures of sensitive and 
multidrug-resistant CHO cells. Doxorubicin was applied at 1 μm/mL and the immunotoxin at 3 μg/
mL. In contrast to doxorubicin alone, the combination of doxorubicin plus immunotoxin killed all 
cell cultures with comparable effi cacy. The diagrams were taken from Efferth et al. [ 32 ] and 
Efferth and Volm [ 33 ]       
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7.5     Modulation of Multidrug Resistance by Monoclonal 
Antibodies and Immunotoxins 

 In addition to small molecule inhibitors of P-glycoprotein, multidrug resistance can 
also be overcome by a specifi c eradication of multidrug-resistant cells with mono-
clonal antibodies directed against P-glycoprotein. Tsuruo and colleagues raised a 
monoclonal antibody, MRK16, which binds to an external epitope of P-glycoprotein 
and thereby, inhibits drug effl ux [ 45 ]. Figure  7.7a  shows that cotreatment of MRK16 
and vincristine inhibited growth of P-glycoprotein-expressing primary kidney car-
cinoma cells in a similar fashion as non-P-glycorotein-expressing primary kidney 
carcinoma cells, whereas the antibody did not affect the cytotoxicity of vincristine 
in cells without P-glycoprotein expression [ 46 ]. These results indicate that MRK16 
blocked the outward channel of P-glycoprotein and thereby inhibited the effl ux of 
vincristine out of multidrug-resistant cells. 

 Furthermore, we coupled another monoclonal antibody, 265/F4, which also 
binds to an external epitope of P-glycoprotein to the highly potent toxin ricin-alpha 
[ 32 ]. This immunotoxin was used to treat P-glycoprotein-negative CHO cells and 
P-glycoprotein-positive CHO-C 5 R cells. As depicted in Fig.  7.7b , the growth of 
P-glycoprotein-expressing cells was inhibited in a dose-dependent manner, whereas 
P-glycoprotein-negative cells remained unaffected. 

 Tumor heterogeneity is a considerable problem to successful chemotherapy, since 
small subpopulations which differ in their biological features from the main popula-
tion may evade drug therapy and overgrow the tumor, which ultimately leads to refrac-
tory tumors and treatment failure. As P-glycoprotein expression in human tumors is 
also rather heterogeneous, immunotoxins may not kill all malignant cells in a tumor. 
To illustrate the dimension of this problem, we mixed P-glycoprotein- negative CHO 
and P-glycoprotein-positive CHO-C 5 R cells in various proportions. These mixtures 
artifi cially yielded heterogeneous cell cultures, which were then treated either with 
doxorubicin alone (to kill the drug-sensitive P-glycoprotein- negative cells) or with a 
combination of doxorubicin plus immunotoxin. Doxorubicin effectively inhibited 
sensitive CHO cells, whereas resistant cells were not affected (Fig.  7.7c ) [ 33 ]. Mixed 
cultures were killed according to their fraction of P-glycoprotein-negative sensitive 
cells. Combination therapy with doxorubicin plus immunotoxin optimized cell killing 
independent of their proportion of P-glycoprotein-positive resistant cells (Fig.  7.7c ). 
Therefore, this combination treatment may be suitable to overcome multidrug resis-
tance in tumors with heterogeneous P-glycoprotein expression.  

7.6     Modulation of Multidrug Resistance 
by Albumin- Doxorubicin Conjugates 

 Coupling anticancer drugs to protein carriers may improve tumor targeting and 
overcome multidrug resistance. We analyzed the reversing effect of bovine serum 
albumin-conjugated doxorubicin on doxorubicin-resistant solid tumors in vivo. 
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Coupling of doxorubicin to bovine serum albumin was carried out using a method 
described previously [ 47 ]. Mice bearing doxorubicin-resistant solid S180 sarcoma 
tumors were treated with a single intraperitoneal injection of uncoupled doxorubi-
cin (8 mg/kg), bovine serum albumin-conjugated doxorubicin (conjugate at equiva-
lent doses of doxorubicin) or 0.9 % NaCl solution (each group 10 mice) as mock 
control. Tumor growth was measured daily using calipers and the tumor volume was 
calculated by the formula ( a  2  ×  b /2). The in vivo effect on 4th day after treatment is 
shown in Fig.  7.8 . Mice treated with the albumin-doxorubicin conjugate had a 
signifi cant reduction in tumor volume compared to mice treated with doxorubicin 
alone ( p  = 0.023; Kruskal Wallis test) Mice treated with doxorubicin alone had no 
signifi cant changes in tumor volume compared to tumors of control mice. In contrast 
to unconjugated doxorubicin, the conjugate was well tolerated.

7.7       Inhibition of P-Glycoprotein in Tumor and Normal Cells 

 In general, cancer chemotherapy exerts a number of severe side effects such as 
myelosuppression, gastrointestinal mucositis, nausea, vomiting, cardiotoxicity 
(anthracyclines), neurotoxicity ( Vinca  alkaloids, taxanes), sterility, alopecia, and others. 
Therefore, the question arises, whether modulation of P-glycoprotein- mediated 

  Fig. 7.8    Inhibition of solid 
multidrug-resistant S180 
sarcoma in mice by 
albumin-doxorubicin 
conjugates. Increase/decrease 
in tumor    volumes (From day 
0 to day 4 after treatment). 
After the solid tumors had 
reached an average of 5 mm, 
the animals were treated with 
doxorubicin alone (8 mg/kg 
or bovine serum albumin- 
conjugated doxorubicin at 
equivalent dose). The control 
animals were treated with 
0.9 % NaCl solution. Four 
days after treatment, the 
tumor volumes were 
determined. Mean values of 
each 10 tumors per treatment 
group are shown ( n  = 40 
mice). Data were taken from 
Pommerenke et al. [ 47 ]       
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multidrug resistance would also provoke side effects. The dimension of this prob-
lem becomes clear, if one recalls that P-glycoprotein is not a tumor-specifi c protein 
but is also expressed in many normal organs such as kidney, adrenal, colon, liver, 
blood-placenta-barrier, and blood–brain barrier [ 31 ,  48 ,  49 ]. Therefore, it can be 
expected that any strategy targeting P-glycoprotein would affect both P-glycoprotein-
expression tumor and normal tissues. To prove this hypothesis, we selected matched 
pairs of primary cell cultures derived from kidney cancer or normal kidney with 
different P-glycoprotein expression levels [ 50 ]. The P-glycoprotein expression has 
been determined by three different anti-P-glycoprotein monoclonal antibodies 
(C219; 265/F4, JSB-1) (Fig.  7.9a ).

   To investigate the effect of the calmodulin inhibitor, trifl uperazine, on the sensi-
tivity of the primary cell cultures to doxorubicin, trifl uperazine was added 30 min 
before doxorubicin. As can be seen in Fig.  7.9b , trifl uperazine increased the effect 
of doxorubicin both in kidney tumor and normal kidney primary cell cultures. 
The extent of inhibition was associated with the expression level of P-glycoprotein, 
i.e. cell cultures with low P-glycoprotein expression were less affected by the 
combination of trifl uperazine and doxorubicin than cell cultures with high 
P-glycoprotein expression. These results also indicate that the inhibitory effects of 
trifl uperazine occurred independent of whether the cell cultures were of malignant 
or normal origin. 

 As a next step, we investigated whether this phenomenon is restricted to 
P-glycoprotein inhibition only by chemical compounds or whether antibody- 
directed approaches would also affect both normal and tumor cells. This set of 
experiments is shown in Fig.  7.9c . We observed that monoclonal antibody 265/F4 
alone or coupled to ricin-alpha inhibited the growth of both normal kidney and kidney 
carcinoma cells according to their P-glycoprotein expression. 

 Therapeutic nucleic acids (antisense oligodeoxynucleotides, ribozymes, siRNA) 
are gene therapeutic approaches, which can specifi cally target  MDR1  and 
P-glycoprotein. We also investigated the effect of antisense oligodeoxynucleotides 
directed against  MDR1 . Normal kidney and kidney carcinoma derived cell cultures 
with either low (patient 1), intermediate (patient 2) or high P-glycoprotein expres-
sion (patient 3) were used for this set of experiments (Fig.  7.10a ). The antisense 
oligodeoxynucleotides partially downregulated P-glycoprotein expression in both 
normal and tumor cell cultures. Then, primary cell cultures of patients 1 and 3 were 
incubated with antisense or sense phosphorothioate-labeled oligodeoxynucleotides 

Fig. 7.9 (continued) and radioimmunoassay. Mean values and standard deviations of 6–8 determi-
nations are shown. ( b ) Reversal of inherent doxorubicin resistance by trifl uoperazine in kidney carci-
noma and normal kidney primary cells. In vitro effects (% of control) of 3H-uridine incorporation 
after addition of doxorubicin (DOX, 1 μg/ml, 3 h) alone or in combination with trifl uoperazine (TFP, 
1 μg/ml). TFP was added 30 min before DOX. Mean values and range of four determinations are 
shown. ( c ) Selective growth inhibition by monoclonal antibody 265/F4 (30 μg/ml, left side) and 265/
F4-ricin-alpha immunotoxin (3 μg/ml, right side) in kidney carcinoma and normal kidney primary 
cells (% of control). Three independent determinations with each four parallel measurements are 
shown. Data were taken from Volm et al. [ 50 ] and Efferth and Volm [ 65 ]       
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  Fig. 7.9    Inhibition of P-glycoprotein in kidney carcinoma and normal kidney primary cell cultures 
of three patients by small molecules and antibodies. ( a ) Expression of P-glycoprotein in kidney car-
cinoma and normal kidney primary cells using three monoclonal antibodies (265/F4, C219, JSB-1) 
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  Fig. 7.10    Inhibition of 
P-glycoprotein in kidney 
carcinoma and normal kidney 
primary cell cultures of three 
patients by antisense 
oligodeoxynucleotides. ( a ) 
Downregulation of 
P-glycoprotein expression by 
antisense 
oligodeoxynucleotides in 
primary cell cultures. Effect 
with ( fi lled square ) or without 
( square ) 10 μM antisense 
oligodeoxynucleotides as 
measured by 
radioimmunoassay 
(cpm/10 4  cells). In control 
experiments kidney 
carcinoma cells of patient 3 
were treated with sense 
oligodeoxynucleotides and a 
P-glycoprotein expression of 
2,072 (1856–
2297) cpm/10 4  cells was 
measured. Median and range 
of 2–5 determinations are 
shown. ( b ,  c ) Effect of 
antisense 
oligodeoxynucleotides on 
vincristine or doxorubicin 
cytotoxicity of ( b ) kidney 
cells and ( c ) normal kidney 
cells of patient 3. Cells were 
treated with vincristine or 
doxorubicin alone or in 
combination with 
phosphorothioate-labeled 
sense and antisense 
oligodeoxynucleotides. 
Details see ( a ). Data were 
taken from Efferth and 
Volm [ 65 ]       

at different concentrations or left untreated. Cells were additionally treated with 
vincristine or doxorubicin. With increasing antisense oligodeoxynucleotide concen-
trations, kidney tumor cells of patient 3 with high P-glycoprotein expression were 
sensitized to vincristine and doxorubicin (Fig.  7.10c ), but not cells of patient 1 with 
low P-glycoprotein expression (Fig.  7.10c ) [ 65 ].
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7.8       Conclusions and Perspectives 

 The reversal of multidrug resistance is possible in vitro by different strategies directed 
against P-glycoprotein, i.e. synthetic and natural small molecules, monoclonal anti-
bodies, and immunotoxins, as well as therapeutic nucleic acids (e.g. oligodeoxynucle-
otides). A still unresolved problem is that the P-glycoprotein does not represent a 
tumor-specifi c marker of multidrug resistance. Its expression in several normal organs 
and tissues raise the possibility that attempts to overcome P-glycoprotein-mediated 
multidrug resistance in a clinical setting may lead to unwanted side effects in these 
normal tissues. Clinical trials with several P-glycoprotein modulators were not suc-
cessful due to intolerable toxicity and other problems [ 51 ,  52 ]. 

 Therefore, in addition to further optimizing clinical trial designs to overcome 
multidrug resistance in the clinic, other treatment strategies should be explored for 
their potential to kill P-glycoprotein-expressing, multidrug-resistant tumors:

    1.    Collateral sensitivity: In the search for P-glycoprotein inhibitors, it was 
 underestimated that multidrug resistance comprises many but not all anticancer 
drugs. P-glycoprotein-expressing tumor cells retain sensitivity to alkylating 
agents, platin compounds, and some antimetabolites. This fi nding opens the pos-
sibility to treat multidrug-resistant tumors by non-cross-resistant established or 
novel cytotoxic and thereby to bypass multidrug resistance [ 53 ,  54 ]. Some of the 
non-cross- resistant drugs are even hypersensitive, i.e. they kill resistant cells at 
low IC 50  values than their drug-sensitive counterparts [ 55 ]. This phenomenon has 
been termed collateral sensitivity. Molecular and cellular mechanisms of collat-
eral sensitivity have been investigated in recent years opening avenues for the 
specifi c targeting of multidrug-resistant tumor cells by collateral sensitive drugs 
[ 56 ,  57 ].   

   2.    Immunogenic cell death: One of the most threatening side effects of standard 
cancer chemotherapy is myelosuppression. Thereby, drugs kill not only cancer 
cells but also proliferating bone marrow cells leading to a severe damage of the 
immune system. It is known that immune cells of the body help to eradicate 
cancer cells. Treated patients lack this favorable effect, which might ultimately 
lead to refractory cancers. Recently, it has been proposed to use low dose chemo-
therapy instead of the standard high doses of anticancer drugs. Cell death can be 
immunogenic. Some drugs, e.g. anthracyclines stimulate dendritic cells to take 
up and process tumor antigens of dying cells. Antigen presentation by dendritic 
cells prime cytotoxic T lymphocytes, thus eliciting a tumor-specifi c cognate 
immune response [ 58 – 60 ]. Immunogenic cell death can also target multidrug- 
resistant cancer cells ultimately leading to tumor eradication independent of 
P-glycoprotein [ 61 ].   

   3.    Drug holidays: Frequently, tumors develop drug resistance after several cycles of 
chemotherapy. Therefore, intermittent chemotherapy may be more benefi cial 
than continuous drug treatment [ 62 – 64 ]. The reduced cumulative toxic effects of 
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chemotherapy improve quality of life of cancer patients. As repeatedly shown, 
intermittent chemotherapy may bear the danger of shorter survival times for 
patients due to suboptimal tumor killing compared to continuous treatment. In 
some patients, intermittent chemotherapy even improves the response rates to 
chemotherapy. Genetic aberrations and epigenetic changes in resistant tumor 
subpopulations may disappear during treatment holidays leading to a resensitiza-
tion of the tumor. This point of view has been substantiated by in vivo experi-
ments with revertant multidrug-resistant tumor lines. Withdrawal of drug 
treatment for 25 weeks led to a reversion of amplifi cation of the MDR1 gene and 
downregulation of MDR1 mRNA and P-glycoprotein expression in L1210 
tumors in mice (see Chap. 1 of this book).         
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    Chapter 8   
 ABC Transporter Modulatory Drugs 
from Marine Sources: A New Approach 
to Overcome Drug Resistance in Cancer 

                Atish     Patel     ,     De-Shen     Wang     ,     Hong-May     Sim     ,     Suresh     V.     Ambudkar     , 
and     Zhe-Sheng     Chen     

    Abstract     Fighting this unconquerable mammoth of a disease that is cancer has 
been increasingly diffi cult from its discovery over a century ago. A multitude of 
agents have been identifi ed in the past to conquer the battle against cancer. 
Nevertheless, controlling it from its onset has been very diffi cult, the reason being 
its ability to evade the toxic insults, and to develop mechanisms to survive in the 
presence of cancer drugs. Of the several factors responsible, the phenomenon of 
multidrug resistance (MDR) has contributed essentially for the cancerous cells to 
survive. This phenomenon is characterized by the ability to impart immunity to 
several classes of drugs with different structural and mechanistic traits. The associa-
tion of ATP-binding cassette (ABC) effl ux transporters with the development of 
MDR has been a major impediment toward attaining an effi cient chemotherapeutic 
outcome in cancer patients. Overcoming this pathway of resistance with the use of 
modulators to block the drug effl ux transporters has shown some promise in recent 
years. However, there is still room for improvement in designing the clinical strategy 
and developing newer agents to overcome MDR. Nature has provided researchers 
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amazing treatment options in the past for numerous diseases. Hence, it is now time 
to look into nature and fi nd answers to effectively modulate the function of ABC 
drug transporters to overcome resistance to anticancer drugs. Here we discuss some 
lead molecules isolated from marine organisms that have shown promising results 
in overcoming MDR associated with ABC transporters.  

  Keywords     ABC transporters   •   Marine drugs   •   Modulators   •   Multidrug resistance   
•   Drug effl ux   •   P-glycoprotein   •   Anticancer drugs  

  Abbreviations 

   ABC    ATP-binding cassette   
  ABCP    ABC transporter expressed in the placenta   
  BCRP    Breast cancer resistance protein   
  DX    Doxorubicin   
  MDR    Multidrug resistance   
  MRP1    Multidrug resistance protein 1   
  MRP7    Multidrug resistance protein 7   
  MXR    Mitoxantrone resistance protein   
  P-gp    P-glycoprotein   
  VCR    Vincristine   
  VLB    Vinblastine   

8.1           Introduction 

 Two centuries ago a 21 year old German, Friedrich Sertürner, while serving as a phar-
macist’s apprentice isolated morphine, the fi rst pharmacologically active compound 
from a natural plant source, it was isolated from opium produced by the cut seeds of 
poppy,  papaver somniferum  [ 1 ]. With this started an era where compounds extracted 
from natural sources began being explored for their medicinal values. Research in the 
pharmaceutical industry heightened soon after the Second World War. By the early 
1990s, scientists and clinicians were left inspired and enlightened by the amount of 
medicinally active ingredients nature had to provide. About 80 % of the available 
drugs, then, were either discovered from natural origin or were synthetic analogs of 
the same. Antibiotics (e.g., penicillin, tetracycline, erythromycin), antiparasitics (e.g., 
ivermectin), antimalarials (e.g., quinine, artemisinin), lipid control agents (e.g., lovas-
tatin and its analogs), immunosuppressants for organ transplants (e.g., cyclosporine, 
rapamycin), and a majority of anticancer drugs (e.g., paclitaxel, doxorubicin) revolu-
tionized medicine. Life expectancy in much of the world lengthened from about 40 
years early in the twentieth century to more than 77 years today. 

 Cancer, however, has always been a hard-fought disease from its discovery 
 centuries ago. The treatment of cancer has been controversial due to its highly 
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robust and impervious mechanisms to resist chemotherapy. Although the neoplastic 
process has been recognized for centuries, little was known about the biological 
mechanisms of transformation and tumor progression until the advent of molecular 
medicine in the latter half of the twentieth century. Getting acquainted with this 
vastly disseminating disease is now no longer based on the empirical observations 
of tumor growth by surgeons but has now become increasingly dependent on the 
understanding of tumor biology and its genetic makeup. Surgery and radiation 
therapy remained the only source of treatment options in the past. Unfortunately, 
however, they were unable to eradicate the metastatic cancers. It was soon under-
stood that the treatment needed to reach every organ in the body, and hence, drugs 
biologically tailored molecules and immune therapy have become the focus of 
mainstream chemotherapy. From the introduction of the fi rst chemotherapeutic 
strategy by Louis Goodman and Alfred Gilman in the 1940s there has been immense 
progress in the fi eld of anticancer drug discovery with the introduction of several 
mainline chemotherapeutic drugs to specifi c target modeled drugs. Throughout 
time, nature has been an important tool in providing key lead molecules to combat 
this highly proliferative and invasive disease. 

8.1.1     Plant Sources of Anticancer Drugs 

 Traditional Native Americans have been using the plant extracts over a long period of 
time providing them relief from several diseases such as skin cancers and venereal 
warts. The main constituent of that was podophyllotoxin, the forerunner of the drugs 
now known as etoposide and teniposide. Soon as the importance of these medicinal 
extracts was realized, scientists at the National Cancer Institute in the 1960s began an 
intensive large-scale screening of antitumor agents from natural origin. After screen-
ing of over 35,000 plant extracts a wonder drug “paclitaxel” (taxol) was introduced 
to the world of cancer chemotherapy. The extract from the bark of the Pacifi c yew 
tree,  Taxus brevifolia , was used widely to fi ght cancer. It soon became the best sell-
ing drug in the United States for refractory breast and ovarian cancer. Very soon a 
plethora of molecules were isolated and identifi ed for their use in cancer chemo-
therapy, drugs such as vincristine, etoposide, and camptothecin are among various 
others that are a part of several mainline chemotherapeutic strategies; together 
accounting to more than 60 % of the chemotherapeutic regimens. Thus, the mod-
ern pharmaceutical discovery programs owe much debt to natural products.  

8.1.2     Marine Sources of Anticancer Drugs 

 Interest in natural products isolated from marine sources, however, awaited refi nements in 
technologies (mainly scuba diving) to collect the source organisms. The medicinal 
value of the marine environment attracted much interest even in the late 1950s. 
Beginning in 1951, Werner Bergmann published three reports of unusual arabino- and 

8 ABC Transporter Modulatory Drugs from Marine Sources…



186

ribo-pentosyl nucleosides obtained from marine sponges collected in Florida, USA 
[ 2 – 4 ]. The compounds eventually led to the development of the chemical deriva-
tives ara-A (vidarabine) and ara-C (cytarabine), two nucleosides with signifi cant 
anticancer properties that have been in clinical use for decades. Although the marine 
environment puts forth a few challenges toward acquiring source materials, techno-
logical advances in analytical chemistry, spectroscopy, and high- throughput screen-
ing have aided in isolating and identifying valuable constituents. This being an 
essential driving force due to the broad realization that competing technologies, 
such as combinatorial chemistry, have failed to deliver new drug leads in signifi cant 
numbers. The major impediment for this fl ourishing natural marine resource library 
was obvious from its outset, the procurement and manufacture of quantities of rare 
compounds from marine sources to ensure a sustainable supply. For example, the 
chemically versatile marine sponges, the source of many developmental compounds 
such as discodermolide, a natural promoter of tubulin assembly and hemiasterlin, a 
natural disruptor of tubulin [ 5 ,  6 ], are primitive metazoans that live almost exclu-
sively in marine habitats. Sponges and their microbial fauna are largely un-cultur-
able under laboratory conditions, and the valuable compounds they produce must be 
extracted and purifi ed from specimens collected by hand with the help of scuba 
diving from shallow to deep waters, or sometimes with the aid of submersibles 
equipped with robotic arms. Both of these techniques are expensive endeavors that 
are unwieldy and foreign to the modern pharmaceutical industry. Nevertheless, 
interest in the remarkable properties of marine natural products remained high 
enough, inspiring modern techniques such as aquaculture of marine invertebrates to 
semi-synthesizing these molecules.   

8.2     Cancer and Drug Resistance 

 Along with the evolution of technology and advances in isolation of novel molecu-
lar targeted anticancer drugs, cancer, the disease, has evolved to resist these antican-
cer drugs and lived on to co-exist in their presence. A diverse range of host specifi c 
and molecular mechanisms have been implicated in drug resistance; these include 
but not limited to host-specifi c factors such as poor absorption, rapid metabolism, 
patient tolerance, drug delivery, and molecular mechanisms such as increased rates 
of drug effl ux, alterations in drug metabolism, increased DNA damage repair, and 
mutation of drug targets (Fig.  8.1 ) [ 7 – 11 ]. With this, cancer cells gain cross immu-
nity against the cytotoxic insults of multiple chemotherapeutic agents, a phenome-
non widely accepted as multidrug resistance (MDR) that is characterized by 
resistance to a multitude of structurally and mechanistically unrelated drugs [ 8 ,  12 ]. 
Tumors are highly adaptable, and the activation of survival signaling pathways and 
the inactivation of downstream death signaling pathways can also lead to drug resis-
tance [ 13 ,  14 ]. Moreover, the increasingly recognized molecular and genetic hetero-
geneity that is present in many tumors is another major problem that can contribute 
substantially to drug resistance [ 15 ]. Several interestingly detailed reviews enumerate 
and elaborate on the mechanisms of resistance in cancer cells [ 12 ,  8 ,  16 – 18 ].
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8.3        ABC Transporters and MDR 

 Comprised of 48 members over seven subfamilies from A through G, human ABC 
proteins work together to help maintain homeostasis within the body. These evolu-
tionarily conserved and widely expressed transporters are one of the largest family 
of transporter proteins in bacteria and eukaryotes [ 19 ]. Genetic defects in the ABC 
transporters give rise to several disease phenotypes. Some important ones include 
the well-known cystic fi brosis, characterized by a defect in the chloride channel 
function of CFTR, and the autosomal recessive disorder called progressive familial 
intrahepatic cholestasis. These are characterized by an inability to transport bile 
salts and phospholipids from and to the liver, due to a dysfunctionally mutated 
 ABCB11  and  ABCB4  genes, respectively [ 20 – 23 ]. Dubin–Johnson syndrome, 
another autosomal recessive disorder, has its roots embedded in the disruption of 
functionally important ABC domains in MRP2 (ABCC2), a hepatobiliary anionic 
conjugate exporter [ 24 – 26 ]. Another intriguing disorder is Pseudoxanthoma elasti-
cum (PXE), a heritable disorder characterized by calcifi cation of elastic fi bers in 
skin, arteries, and retina, which results in dermal lesions with associated laxity and 
loss of elasticity, arterial insuffi ciency, and retinal hemorrhages leading to macular 
degeneration [ 27 – 30 ]. A list of ABC transporters and the associated diseases are 
enlisted in Table  8.1 .

  Fig. 8.1    List of different mechanisms used for acquiring drug resistance in cancer cells. Over the 
years, a great amount of research has been conducted to understand the pathology and to uncover 
the backbone that this disease thrives upon. The progress made thus far has helped unveil the 
resistance mechanisms adopted by the cancer cells to avoid the cytotoxic effects of anticancer 
agents and grow even in their presence. Here we enlist the various mechanisms that the cancer 
cells embrace to overcome chemotherapeutic insults       
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   More importantly, the association of ABC transporters with cancer was just like 
a curve ball thrown at the scientists, when it was discovered that cancer cells have 
been utilizing these effl ux transporters to vault themselves to the toxic insults of 
chemotherapeutic agents. P-glycoprotein (P-gp), also known as multidrug resis-
tance 1 (MDR1) and ABCB1, is an ATP-dependent effl ux transporter that was 
among the fi rst of the superfamily of ABC transporters to have been linked to MDR 
in cancer cells. ABCG2, the second member of the G subfamily of ABC transport-
ers, also known as BCRP (breast cancer resistance protein) is another effl ux trans-
porter to have been linked to MDR. Also contributing to MDR is the fi rst member 
of the C subfamily of ABC transporters ABCC1 also known as multidrug resistant 
protein 1 (MRP1). ABCC10 the tenth member of the C subfamily of transporters, or 
multidrug resistance protein 7 (MRP7), is a recently identifi ed and characterized 
transporter to contribute toward the development of MDR in cancer cells. These 
transporters are overexpressed in cancer cells and they all have broad, overlapping 
substrate specifi city and promote the elimination of various hydrophobic com-
pounds, including major cancer chemotherapeutics such as taxanes, topoisomerase 
inhibitors, and antimetabolites.  

   Table 8.1    ABC transporters involved in diseases   

 ABC 
transporter  Disease associated  Implication 

 ABCA1  Tangier disease  Inability to transport HDL 
 Familial HDL defi ciency 

 ABCA4  Stargardt disease  Inability to transport  N -retinyl- 
phosphatidylethanolamine  in turn causing 
degeneration of photoreceptors 

 Age-related macular degeneration 
 Retinitis pigmentosa 

 ABCB1  Cancer  Overexpression of ABCB1 causing MDR 
 ABCB4  Progressive familial intrahepatic 

cholestasis 
 Inability to transport phospholipids 

 ABCB7  Sideroblastic anemia and ataxia  Inability to produce heme 
 ABCB11  Progressive familial intrahepatic 

cholestasis 
 Reduction of bile salt transport 

 ABCC1  Cancer  Overexpression of MRP1 
 Chronic obstructive pulmonary 
disease 

 Reduced MRP1 expression levels in lung 

 Cystic fi brosis 
 ABCC2  Dubin–Johnson syndrome  Reduced expression of ABCC2 levels in liver 
 ABCC6  Pseudoxanthoma elasticum  Reduced expression of ABCC6 
 ABCC7  Cystic fi brosis  Absence or reduced expression of ABCC7 in 

liver respiratory and intestinal tract 
 ABCC8  Persistent hypoglycemia of infancy  Increased and continuous insulin secretion 
 ABCC9  Persistent hypoglycemia of infancy  Increased and continuous insulin secretion 
 ABCD1  Adrenoleukodystrophy  Inability to transport fatty acids into 

peroxisomes 
 ABCG2  Cancer  Overexpression of ABCG2 causing MDR 

 Gout  Reduced expression of ABCG2 in renal tubules 
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8.4     Clinical Signifi cance of ABC Transporters 

 P-gp was the fi rst ABC transporter to be identifi ed; it is a membrane-bound glyco-
protein that is expressed in almost all tissues at low levels, but is found at much 
higher levels on the surface of epithelial cells that have excretory roles, such as 
those lining the colon, small intestine, pancreatic ducts, bile ducts, and kidney prox-
imal tubules [ 31 ]. The  MDR1  gene is innately overexpressed in many tumors (thus 
causing intrinsic drug resistance) and the expression of  MDR 1 can also be induced 
by chemotherapy (thus also resulting in the acquired development of MDR) [ 32 ]. 
The overexpression of  MDR 1 or  ABCB 1 has been associated with chemotherapy 
failure in many cancers, including kidney, colon, and liver cancers, as well as leuke-
mias and lymphomas. More recently, the overexpression of MRP1 has also been 
correlated with chemoresistance in prostate, lung, glioblastoma, and breast cancer 
[ 27 ,  33 – 35 ]. BCRP, which was the third major MDR drug effl ux pump to be identi-
fi ed, has been associated with chemoresistance in breast cancer and leukemia [ 36 ,  37 ]. 
Recent reports have suggested that molecularly targeted therapeutics such as ima-
tinib, erlotinib, sunitinib, and nilotinib are also substrates and modulators of P-gp 
and BCRP [ 38 ]. Cancer stem cells, which are inherently drug resistant, also display 
higher levels of drug effl ux proteins [ 39 ]. CD44 is a cancer stem cell marker that 
exhibits strong negative correlations with patient survival [ 40 ] and has been associ-
ated with expression of MDR proteins, most notably BCRP. Recent reports have 
suggested that the ABCC10 expression level is elevated in non-small cell lung cancer 
(NSCLC) compared with normal lung, with ABCC10 expression in adenocarci-
noma correlated with tumor grade and stage [ 41 ]. A list of anticancer drug sub-
strates of the corresponding MDR-linked ABC transporters is given in Table  8.2 .

   Table 8.2    ABC transporters overexpressed in MDR cancers, their localization, topology, and 
substrate anticancer drugs   

 MDR 
transporter 

 Alternate 
nomenclature  Localization 

 Topology 
model  Anticancer substrates 

 P-gp  ABCB1, 
MDR1 

 Apical        Multiple, including Vinca 
alkaloids, anthracyclines, 
etoposide, taxanes, imatinib, 
irinotecan, methotrexate, 
mitoxantrone 

 BCRP  ABCP, 
ABCG2, MXR 

 Apical        Multiple, including 
anthracyclines, etoposide, 
imatinib, fl avopiridol, irinotecan, 
methotrexate, mitoxantrone 

 MRP1  ABCC1  Basolateral        Vinca alkaloids, anthracyclines, 
etoposide, imatinib, irinotecan, 
methotrexate, mitoxantrone 

 MRP7  ABCC10  Basolateral        Vinca alkaloids, taxanes, 
nucleoside analogs, gemcitabine, 
Ara-C 
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8.5        Overcoming MDR in Cancer Cells 

 The clinical prevalence of these ABC transporters in rendering the cancer cells MDR 
was soon realized and strategies to block this detestable transporter were being pre-
pared. The strategies involved searching within the huge library of drugs to effec-
tively block these MDR transporter effl ux systems and soon a vast majority of drugs 
were identifi ed such as verapamil, cyclosporine A for P-gp blockade [ 42 – 45 ] to 
newly identifi ed molecular target specifi c drugs such as nilotinib, lapatinib, erlotinib 
for P-gp, BCRP, MRP1 and MRP7 [ 46 – 57 ]. Figure  8.2  depicts the different modali-
ties of overcoming MDR in cancer cells. A total of three generations of modulators 
for ABC transporters were developed in order to elucidate their functions and attain 
a better outcome of blocking these ABC transporters in cancer patients. Some showed 
promising results in clinical trials achieving better overall survival (OS) rates; these 
include the addition of quinine to mitoxantrone and cytarabine therapy for patients 
with high-risk myelodysplastic syndromes resulting in improved OS rates among 
P-gp positive patients [ 58 ]. The addition of cyclosporine to daunorubicin and cytara-
bine therapy for patients with poor-risk acute-myeloid leukemia (AML) also 
resulted in improved OS rates [ 59 ] and cyclosporine plus daunorubicin increased 
the complete remission (CR) rate for patients with AML [ 60 ]. These results encour-
age clinicians and researchers around the world to search for drugs with improved 
ability to modulate the effl ux function of these crucial ABC transporters.

  Fig. 8.2    ABC transporters have been used by cancer cells to overcome chemotherapeutic insults and 
to impart immunity to the cancer cells against anticancer drugs. The fi gure describes the modalities 
used in the past to successfully overcome the phenomenon of ABC transporters-mediated MDR. The 
structure of mouse P-gp [ 137 ] is shown as a representative MDR-linked ABC transporter       
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   Another strategy involves the ability of lead molecules to diminish the protein 
expression of ABC transporters. A number of studies have shown that targeted agents 
inhibiting specifi c pathways may induce downstream effects on MDR as a conse-
quence of signaling inhibition. In a recent report, the cyclooxygenase-2 (COX- 2) inhib-
itor SC236 and the nonsteroidal anti-infl ammatory drug (NSAID) indomethacin were 
shown to inhibit P-gp and MRP1 expression and, thus, to enhance doxorubicin cytotox-
icity in an MDR hepatocellular carcinoma cell line [ 61 ]. Multiple cell line studies have 
demonstrated that numerous novel compounds have the ability to inhibit MDR protein 
function, although no recent clinical studies have been reported. Curcumin, an active 
ingredient in the plant  Curcuma longa,  showed inhibitory activity against P-gp expres-
sion in leukemia cells from patients [ 62 ] and the combretastatin A-4 analog 
4-(4-bromophenyl)-2,3-dihydro- N ,3-bis(3,4,5- trimethoxyphenyl)-2-oxoidmidazole-1-
carboxamide (MZ3) overcame MDR in leukemia cells by downregulating  MDR1  tran-
scription and antiapoptotic protein expression [ 63 ]. 

 Another interesting approach is to use small interfering RNAs (siRNAs), includ-
ing short hairpin RNAs (shRNAs), targeted at MDR genes that were shown to be 
effective in a number of studies [ 64 ]. shRNAs/siRNAs targeting  MDR1  were shown 
to be effective in inhibiting P-gp expression and resensitizing cells to harringtonine 
and curcumin when they were transfected into MDR HT9 leukemia cells [ 65 ], and 
they were shown to downregulate P-gp expression and to increase drug sensitivity 
in MDR K562/Adr leukemia cells [ 66 ]. A combination of daunorubicin-conjugated 
magnetic Fe 3 O 4  nanoparticles and shRNA expression vector aimed at P-gp mRNA 
overcame resistance in MDR K562/AO2 leukemia cells [ 67 ]. Alternative approaches 
to gene silencing, including the use of antisense oligonucleotides [ 68 ], transcrip-
tional regulation [ 69 ], and targeted ribozymes [ 70 ], also have been studied [ 64 ]. 

 An alternative approach to circumvent MDR was to develop chemotherapeutic 
agents that are not substrates of ABC transporters. New therapeutic agents might be 
designed to avoid these effl ux mechanisms and, thus, to achieve high drug concentra-
tions in cancer cells, which might result in enhanced cell death. Amonafi de, a novel 
topoisomerase II inhibitor considered for the treatment of AML, was shown to be 
neither a substrate nor an inhibitor of P-gp [ 71 ,  72 ]. Also increasing the lipophilicity 
by encapsulation of agents in liposomes as in the case of pegylated liposomal doxo-
rubicin [ 73 ] or stealthy liposomal encapsulation of vincristine and quinacrine [ 74 ] 
may increase the lipid permeability and improve their passive diffusion in turn 
abolishing the large concentration gradients and thereby alleviating the resistance 
attributed to effl ux transporters.  

8.6     ABC Transporter Modulators and the 
Lack of Clinical Benefi t 

 Although many MDR modulators have been discovered, there has been more failure 
of outcome than success since several clinical trials then sought to evaluate their 
ability to improve the therapeutic index in patients with advanced cancer. Most of 
the agents tested were not evaluated for their ability to improve the therapeutic 
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index when used in rodents with established macroscopic tumors. In addition, 
modulators of ABC transporters were soon identifi ed as substrates of the cyto-
chrome P450 systems thereby compromising the action of these biotransformation 
enzymes, which are necessary for the clearance and/or metabolism of co-adminis-
tered anticancer drugs [ 75 ,  76 ]. While ABC transporter modulator development 
being in its nascent stages, patients chosen for preclinical and clinical trials had 
undergone several chemotherapeutic regimens making MDR multifactorial and not 
primarily due to ABC transporters. Thus, the failure of modulators of ABC trans-
porters was attributed to the inability of such agents to account for the full spectrum 
of MDR found in the clinic [ 77 – 79 ]. Modulators identifi ed were also not selective 
to the action on one ABC transporter, thereby increasing the unexpected side effects. 
Taking into consideration these multitudes of factors and the lack of a successful 
clinical trial in the recent past warrants the need to search for newer chemical agents 
to overcome this seemingly invincible drug effl ux system. 

 Nature in the past has provided scientists answers in the most diffi cult times giving 
us wondrous chemical agents to fi ght several diseases; hence there is no better place 
to look for modulatory agents than nature itself. Here we discuss the several efforts 
made in the past to isolate and characterize agents isolated from marine origin 
having potential to overcome MDR in cancer cells.  

8.7     Marine Modulators of ABC Transporters 

 Succeeding the failure of several agents in the past to qualify for clinical trials and 
others that have failed to impart improved survival in MDR cancer patients, scien-
tists took a detour and started to look for answers in nature. The challenge further 
lies in fi nding a way to improve the MDR phenotype by supporting the chemothera-
peutic agents with clinically useful ABC transporter inhibitors. These efforts resulted 
in the identifi cation of a number of marine compounds that are able to reverse MDR, 
such as lamellarins, agosterol A, ecteinascidin 743, sipholane triterpenoids, welwitin-
dolinones   , and parguerenes among others (Fig.  8.3 , Table  8.3 ). In this review, we 
discuss marine compounds, their activity as MDR reversal agents, and their impact on 
the chemotherapy over various malignancies. Recently, Lopez and Martinez-Luis [ 80 ] 
reported in a review that patellamide d, kendarimide A, bryostatin 1, ISA, ISA B, 
nocardioazines, discodermolide, and polyoxygenated steroids are also MDR reversal 
agents (these will not be discussed here).

8.7.1        Lamellarins 

 Lamellarins are polyaromatic alkaloids previously isolated from  Lamellaria  sp. a 
prosobranch mollusc collected from tunicates belonging to the genus , Didemnum 
chartaceum  from the Great Barrier Reef [ 81 ,  82 ]. Most probably the reason for the 
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presence of these compounds in the mollusc is the use of these ascidians as a food 
source. Quesada et al. in 1996 identifi ed their potential for reversing MDR mediated 
by P-gp in cancer cells [ 83 ]. The results obtained depicted two independent modali-
ties in which lamellarins could be useful for the treatment of cancer: cytotoxicity 
against cancer cells and enhancement of the cytotoxicity of doxorubicin (DX) against 
MDR cells restoring in them the levels of sensitivity to those of the parental cells. 

  Fig. 8.3    Structures of active constituents isolated from marine natural sources identifi ed as having 
potent activity toward reversing the MDR-linked ABC transporters in cancer cells       
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The anticancer activity was tested in cells derived from murine leukemias (p388), 
human colon adenocarcinoma (LoVo), lung carcinoma (A549), human colon carci-
noma (HT29), and melanoma (MEL28). Five of the lamellarins tested (lamellarins 
 d -triacetate, K, K-triacetate, M and N-triacetate) displayed considerable cytotoxic 
activity against all the tumor cell lines tested showing IC 50  in the nanomolar to sub-
micromolar range. This cytotoxic activity among the fi ve lamellarins tested in 
these cells was not affected by the effl ux activity of P-gp. Among the lamellarins 
isolated, lamellarin I completely sensitized the DX resistant cells LoVo/DX cells 
to the cytotoxic effects of DX, vinblastine (VLB), and daunorubicin at concentra-
tions up to 2 μM. Also lamellarin I reduced the effl ux of rhodamine 123, a fl uores-
cent P-gp substrate in Lo Vo/DX cells. The increase in accumulation of rhodamine 
123 in MDR cells after the addition of lamellarin I supports its P-gp modulatory 
activity.  

8.7.2     Agosterols 

 In 1998 Aoki et al. described the potential anticancer activity of agosterol A, a 
novel polyhydroxylated sterol acetate from a marine sponge of  Spongia  sp. col-
lected in Mie Prefecture, Japan [ 84 – 86 ]. The ethyl acetate-soluble extract sensi-
tized the KB-C2 epithelial carcinoma cells overexpressing P-gp to the cytotoxic 
effects of colchicine. Later upon isolating the extract, Aoki et al. identifi ed six 
different sterol analogues, agosterol A, B, C, D2, A5, and C6 [ 85 ]. Of them, agos-
terol A showed the strongest activity by completely reversing the colchicine resis-
tance in KB-C2 and vincristine resistance in KB-CV60 cells, at 1 μg/mL 
concentration. Even at 10 μg/mL concentration, agosterol A was not cytotoxic to 
parental cells. Subsequent biological evaluation of agosterol A was published 2 
years later [ 87 ]. Agosterol A completely reversed the resistance to vincristine, col-
chicine, doxorubicin, and etoposide in both KB-C2 and KB-CV60 cells at a 3 μM 
concentration. Functional assays conduced then showed that agosterol A inhibited 
the ATP-dependent active effl ux of vincristine in both KB-C2 and KB-CV60 cells 
and increased the intracellular levels of vincristine. Moreover, agosterol A inhib-
ited both the photolabeling of P-gp with [ 3 H]-azidopine and the uptake of [ 3 H]-S-
(2,4-dinitrophenyl) glutathione (DNP-SG) in inside-out membrane vesicles derived 
from KB-CV60 cells. These data indicated that agosterol A inhibited the drug effl ux 
activity of P-gp and MRP1 by directly binding to the drug-binding pocket of these 
transporters. Agosterol A inhibited MRP1-mediated transport of typical amphipa-
thic substrates, increased the drug accumulation of vincristine in MRP1-transfected 
cells, and reduced intracellular glutathione levels [ 88 ]. This suggests that agosterol 
A diminished MRP1- mediated drug resistance by both directly inhibiting the ability 
of the pump to transport drugs and reducing the levels of the cellular component 
glutathione required for drug effl ux.  
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8.7.3     Ecteinascidin-743 (ET-743) 

 ET-743 is a unique isolate from the Caribbean tunicate sea squirt  Ecteinascidia 
turbinate  possessing remarkable antiproliferative activity and modulatory activity 
against P-gp. It was discovered in the late 1960s; however the purifi cation and the 
chemical structure elucidation of the active constituents were not completed until 
1990 [ 89 ,  90 ]. To perform basic studies for the mechanism of action and preclinical 
in vivo studies, large amounts of the tunicate had to be collected. Currently, ET-743 
is obtained by a semisynthetic process using cyanosafracin B obtained in bulk 
through fermentation of the marine bacterium  Pseudomonas fl uorescens  [ 91 ]. 
ET-743 has been reported to bind to the minor groove of DNA, thus bending the 
DNA helix toward the major groove [ 92 ]. Its mechanism of action also includes 
interference with cellular transcription-coupled nucleotide excision repair to induce 
cell death and cytotoxicity [ 93 ]. Phase II/III clinical trials demonstrated the potency 
of ET-743 against human solid tumors and soft tissue sarcomas [ 94 – 96 ]. ET-743 
being a potent inhibitor of (nuclear transcription factor-Y) NF-Y, (transcription 
factor) sp1, and (steroid and xenobiotic receptor) SXR transcription factors, 
ET-743 in turn blocks the transcription of certain genes including the  MDR 1 pro-
moter [ 97 – 99 ]. Also reported was the fact that P-gp was overexpressed in the human 
ovarian carcinoma IGROV-1 cell line selected for resistance to ET-743 in vitro and 
that this resistance was attenuated by the P-gp reversing drug agent PSC833 (valsop-
odar), a cyclosporine A analog [ 100 ]. Kanzaki et al. investigated the activity of 
ET-743 in two well-characterized P-gp overexpressing cell lines, KB-8-5 and 
KB-C-2, both derived from exposing KB-3-1 cells to increasing concentrations of 
colchicine up to 10 ng/mL and 2 μg/mL, respectively, and they found that neither 
cell line was cross- resistant to ET-743 [ 101 ]. Furthermore, they found sub-toxic 
concentrations of ET-743 reversed resistance to DX and VCR in these cells. In addi-
tion, human colon carcinoma HCT116 cells made resistant to ET-743 at concentra-
tions up to 15 nM did not upregulate P-gp nor did they show any resistance toward 
paclitaxel or VCR. Pretreatment with ET-743 increased the accumulation of these 
two drugs, by downregulating the expression of P-gp. These results suggest the use-
fulness of ET-743 alone or in combination with other agents in P-gp-overexpressing 
tumors. Currently, ET-743 has received orphan drug status for the treatment of soft 
tissue sarcoma in the United States and for recurrent ovarian cancer in both the 
United States and Europe [ 102 ].  

8.7.4     Hapalosin 

 In screening extracts of blue–green algae (cyanobacteria) for activity against MDR, 
about 1 % of the extracts exhibited MDR reversing activity. The lipophilic extracts 
of two strains of  Hapalosiphon welwitschii  W. & G. S. West (UH IC-52-3 and 
UTEX B1830) reversed MDR in a P-gp overexpressing, VLB-resistant cell line 
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(SKVLB1) derived from a human ovarian adenocarcinoma cell line (SKOV3) [ 103 ]. 
Hapalosin was found to have better MDR reversing activity than verapamil. In an 
independent accumulation study of [ 3 H]-paclitaxel, a substrate of P-gp, hapalosin at 
concentrations up to 20 μM signifi cantly and dose dependently enhanced the accu-
mulation of [ 3 H]-paclitaxel in the SKVLB1 cells. Breast cancer cells MCF-7/ADR, 
a P-gp overexpressing subline derived from the MCF-7 cells, resistant to VLB were 
more sensitive to the cytotoxic effect of VLB when combined with hapalosin than 
VLB alone treatment. The MCF-7 cells showed no change in sensitivities to VLB 
either in combination with hapalosin or alone, thereby attributing the changes in 
sensitivities to the ability of hapalosin to sensitize MCF-7/ADR cells to VLB due to 
the inhibition of P-gp transport function. Further efforts were made to synthesize 
hapalosin and its analogs with the aim of obtaining compounds with similar or supe-
rior MDR reversal activity [ 104 ]. Twenty-six structural analogs were synthesized 
with partial or less than desired MDR reversal activity, thus making hapalosin and its 
structural modifi cation open for research and the potential to develop agents with 
more potent MDR reversal abilities.  

8.7.5     Ningalin 

 Ningalin B is the member of a newly described family of marine natural products 
isolated by Fenical (1997) from an ascidian of the genus  Didemnum  collected in 
western Australia near Ningaloo Reef which appear to be derived from condensation 
of 3,4-dihydroxyphenylalanine (DOPA) [ 105 ]. Ningalin A-D compounds are the 
newest members of a family of DOPA-derived  o -catechol metabolites that include 
the tunichromes. Boger et al. in 1999 were successfully able to isolate and then syn-
thesize the complete ningalin B structure along with precursors to ningalin B [ 106 –
 108 ]. Of these precursors 10 (Dimethyl 3-(4,5-Dimethoxy-2-(methoxymethoxy)
phen-yl)-4-(3,4-dimethoxyphenyl)-1-[2-(3,4- dimethoxyphenyl)-ethyl]pyrrole-
2,5-dicarboxylate), 11 (Methyl 7,8-Dimethoxy-3-(2-(3,4-dimethoxyphenyl)ethyl)-
1-(3,4-dimethoxyphenyl)-[1]-benzopyrano[3,4- b ]pyrrol-4(3 H )-one-2-carboxylate), 
13 (Hexamethyl Ningalin B), and 14 (9,10-Dihydro-12,13-dimethoxy-1-(3′,4′-
dimethoxyphenyl)-3,4-dimethoxy-[4,3- d ]-[1]-benzopyrano-15 H -benzaze-pino[3,2-
 a ]-[3]-pyrrol-7,15(18 H )-dione) signifi cantly sensitized the HCT116/VM46 human 
colorectal carcinoma cells overexpressing P-gp to VLB and DX but not to ningalin 
B. Thus, ningalin B characterized by a highly functionalized tetra- or penta-substi-
tuted pyrrole, which is ideally suited to construction using this strategy, inspired 
scientists to modulate its structure to come up with more active MDR reversal agents. 
These compounds lacked intrinsic cytotoxic activity and, in turn, were potentially 
safe MDR reversal agents. Furthermore, ningalin B analogs, namely, N1–N6 showed 
reversal ability toward HCT116/VM46 cells. These compounds contain a common 
3,4-diaryl-substituted pyrrole nucleus bearing 2- or 2,5-carboxylates. Of them, N3 
showed the greatest potential, reversing the MDR phenotype at 1 μM concentration 
[ 108 ]. N3 at 10 μM showed about a 4,000-fold increase in sensitivity against the 
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VLB resistant MDR- leukemia cell line CCRF-CEM/VLB 100  against VLB compared 
to the sensitive cells whose sensitivity against VLB remained relatively unaffected by 
the presence of N3 [ 109 ]. N3, in turn, demonstrates that it competes with 
[ 3 H]-azidopine for the P-gp binding site. At the cellular level, N3 increases the intra-
cellular accumulation and retention of the MDR substrates [ 3 H]-VLB and 
[ 3 H]-paclitaxel. Furthermore, in nude mice-xenograft models, combination of subop-
timal doses of paclitaxel with N3 not only led to shrinkage of HCT116 tumor size but 
also achieved a complete therapeutic remission, without increasing toxicity toward 
the host. Later in 2010, Zhang et al. designed and synthesized ningalin B analogs 
around the permethyl ningalin B structure and demonstrated remarkable enhancement 
of MDR reversal abilities of a synthetic analog compound 25 (1-[2-(4-Methoxyphenyl)-
2-oxoethyl]-3, 4-bis (3,4-dimethoxyphe-nyl)-1H-pyrrole-2, 5-dione) that reversed 
P-gp-mediated MDR at concentrations up to 1 μM [ 110 ]. Thus, these fi ndings lead to 
opening up a whole new potential of marine isolates and analogs for safer use as MDR 
reversal agents.  

8.7.6     Sipholane Triterpenoids 

 The Red Sea sponge  Siphonochalina siphonella  when isolated yielded about 30 
triterpenoids that have been isolated, possessing four different skeletons, namely, 
the sipholane, siphonellane, neviotane, and dahabane [ 111 – 114 ]. Sipholenol A and 
sipholenone A are the major sipholane triterpenoids. The sipholanes contain a per-
hydrobenzoxepine and a bicyclodecane system, linked together through an ethylene 
bridge. Jain et al. reported for the fi rst time the ability of sipholane triterpenoids to 
reverse MDR mediated via P-gp [ 115 ]. The sipholane triterpenoid sipholenol A at a 
concentration of 5 μM signifi cantly sensitized the P-gp overexpressing KB-C2 cells 
to the cytotoxic effects of colchicine, a substrate of P-gp, while having no reversal 
ability toward MRP1 when tested for the same sensitization in KB-CV60 cells 
(a subline resistant to vincristine overexpressing MRP1 derived from KB-3-1). Also 
surprising was the selectivity since it had no effect toward ABCG2 overexpressing 
S1-M1-80 colorectal cancer cells derived from the parental S1 cells [ 116 ]. Delving 
into the mechanism of action of reversal it was found that this marine natural prod-
uct increased the accumulation of paclitaxel by directly inhibiting P-gp-mediated 
drug effl ux, stimulated ATPase activity, and inhibited the photolabeling of P-gp with 
its transport substrate [ 125 I]-iodoarylazidoprazosin (IAAP). Treatment of KB-C2 
and KB-V1 cells with sipholenol A for 36 and 72 h had no effect on P-gp expres-
sion. These data indicate that sipholenol A inhibited the function of P-gp through 
direct interactions and attested the potential of sipholane triterpenoids as a new class 
of P-gp reversing agents. Further studying the isolates from the same sponge sipho-
lenone E, sipholenol L, and siphonellinol D were later found to inhibit the function 
of P-gp [ 117 ]. They enhanced the cytotoxicity of P-gp substrate anticancer drugs 
and reversed the MDR phenotype in KB-C2 cells in a similar fashion to sipholenol 
A. These sipholanes had no effect on the response to cytotoxic agents in MRP1-, 
MRP7- and BCRP-overexpressing cells [ 117 ]. They increased the accumulation of 
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[ 3 H]-paclitaxel and calcein by inhibiting the drug effl ux function of P-gp. All three 
triterpenoids stimulated P-gp ATPase activity and inhibited the photolabeling of this 
transporter with IAAP, suggesting that they directly interact with P-gp. In silico 
molecular docking analysis identifi ed the ligand binding sites of these compounds. 
These fi ndings provided evidence of marine derived isolated structures demonstrating 
specifi c and satisfactory reversal of MDR mediated by P-gp.  

8.7.7     Eribulin 

 Eribulin mesylate is a fully synthetic analog of the polyether macrolide natural 
product halichondrin B, which was isolated from  Halichondria okadai  and other 
marine sponges [ 118 – 121 ]. The US Food and Drug Administration recently 
approved eribulin for the treatment of locally advanced and metastatic breast cancer 
based on results of a Phase III clinical trial [ 122 ,  123 ]. Several ongoing trials have 
shown promising results using eribulin for the treatment of sarcoma, non-small cell 
lung cancer and prostate cancer [ 124 ,  125 ]. Eribulin acts by targeting the microtu-
bule dynamics as an antimitotic agent. However, distinct in its mode of action from 
paclitaxel and vinblastine, it inhibits the microtubule growth, with little or no effect 
on microtubule shortening [ 126 – 130 ]. With its high potency and wide therapeutic 
window in preclinical studies and combined with its great physicochemical and 
pharmacokinetic properties, eribulin mesylate was selected for further develop-
ment. However, eribulin was seen to be a substrate for P-gp [ 131 ]. This was averted 
by uniquely modulating the structure of the parent eribulin to yield structures that 
were not recognized by the P-gp pump and also had good antitumor activity. 
Altogether, these compounds also showed higher plasma concentrations in mice 
after intravenous administration after 3–4 h of dosing. These structural modifi cations 
assist in developing analogs that are equally cytotoxic and do not succumb to the 
effl ux activity of P-gp.  

8.7.8     Welwitindolinones 

 Smith et al. started a wide search for compounds holding potential to reverse the 
MDR phenotype mediated by P-gp [ 132 ]. These compounds were isolated from 
close to 1,500 strains of blue–green algae (cyanobacteria), with some initial success 
they delved deeper into fi nding a strong candidate. Soon after a novel alkaloid was 
discovered that thrived to reverse the P-gp-mediated MDR, they were named wel-
witindolinones. These were isolated from the extracts of  Hapalosiphon welwitschii  W. 
& G .S. West [ 133 ]. The activity of these compounds was tested on SK-VLB-1, an 
ovarian cancer adenocarcinoma cell line derived from the parental SKOV3 cells at 
concentrations up to 5 μM.  N -Methylwelwitindolinone C isothiocyanate had revers-
ing effi cacy similar to that of verapamil in two different MDR cell lines. 
 N -Methylwelwitindolinone C increased the cytotoxicity of actinomycin D and 
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daunorubicin in SK-VLB-1 cells. It also decreased the IC 50  values of vinblastine, 
paclitaxel, actinomycin D, colchicine, and daunorubicin in the drug-resistant breast 
carcinoma (MCF-7/ADR) cells. While welwitindolinone C isothiocyanate exhibited a 
weaker reversing activity, an analog of the former compound with the isothiocyanate 
group replaced by an isonitrile group was inactive. The  N -Methylwelwitindolinone C 
isothiocyanate derivative seemed to give the most activity toward inhibiting the P-gp 
effl ux activity. In addition, results obtained from photoaffi nity labeling indicated that 
this compound could inhibit the labeling of P-gp with [ 3 H]-azidopine in MDR cells. 
As a result, replacement of the isothiocyanate by the isonitrile group seems to 
infl uence the activity and ability of these agents to interact with P-gp.  

8.7.9     Parguerenes 

 First reported by Capon et al. in 1996 from a southern Australian marine red alga, 
 Laurencia fi liformis , parguerenes I (15-bromoparguer-9(11)-ene-2,7,16,19-tetrol- 
2,7,16-triacetate) and parguerene II (15-bromoparguer-9(11)-ene-2,7,16,19-tetrol- 
2,7,16,19-tetraacetate) belong to a rare class of brominated diterpene unique to 
marine alga of the genus  Laurencia  [ 134 ]. Another study by Huang et al. demon-
strated the potential of parguerene I and II to reverse MDR mediated by P-gp and 
MRP1 [ 135 ]. Parguerene I and II at concentrations of 10 μM resensitized the cells 
overexpressing P-gp (SW620/ADV300, CEM/VLB100, and HEK293/ABCB1) to 
its substrate chemotherapeutic agents when used in combination. In addition, this 
effect also extended toward MRP1 when it was combined with calcein-AM a fl uo-
rescent substrate. It increased the intracellular accumulation of calcein in the ovarian 
cancer 2008/MRP1 cells overexpressing MRP1 compared to the parental 2008 cells. 
However, accumulation analysis performed along with a fl uorescent substrate of BCRP 
pheophorbide A (PhA) revealed no change in accumulation of the fl uorescent substrate 
either in the presence or the absence of parguerene I and II. Thereby, the reversal effect 
of parguerene I and II is only toward P-gp and MRP1. Drug accumulation and effl ux 
studies in the presence of fl uorescent and radioactive substrates of P-gp on SW620/
ADV300 cells directly portrayed the ability of parguerene I and II to inhibit the effl ux 
activity of P-gp. Further, there was no change in the expression profi le of P-gp in the 
presence of parguerene I and II at concentrations up to 10 μM. This discovery and 
characterization of the interaction between parguerenes and P-gp and MRP1 reveal a 
new inhibitory pharmacophore, deserving further investigations.   

8.8     Conclusions 

 The discussion entailed herein enumerates the great amount of potential and valuable 
information held in nature and the interest of scientists in further delving into the 
depths of nature to fi ght cancer. The therapeutic potential of marine products has 
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driven innovative methods for its procurement, and also elaborated on newer methods 
such as aquaculture, semi-synthesis, and molecular modeling to yield large amounts 
of the therapeutically active ingredients. While scientists in an academic setting 
have been inspired to isolate the marine natural products and drug discovery in the 
past, novel approaches to translational medicine including preclinical studies unite 
marine natural products chemists and pharmacologists. This is an important step in 
accelerating the progression of marine natural products from their discovery to the 
laboratory bench and later to the clinic. Successful collaborations between aca-
demic institutes and pharmaceutical companies will continue to provide mutual 
benefi ts that each party seeks. Academic programs gain access capacities for sophis-
ticated screening, pharmacological evaluation, and advancement of leads to in vivo 
models, whereas industry gains high-value leads while evading the high risk associ-
ated with marine drug discovery. The importance of naturally originated therapeu-
tics remains in the fact that the cure for cancer needs newer chemicals having high 
potency and less toxic side effects. Some may argue that the combinatorial libraries 
are capable of providing us with these lead molecules; however, these structures are 
intentionally imbued with high randomness. This is due to the fact that the struc-
tures of drugs used in the modern medicine today are merely a refl ection in some 
way or other of their natural counterparts. 

 The constant failure of a majority of MDR reversal agents in the past warrants a 
closer look at the modulators that are currently available. Isolation and identifi ca-
tion of lead structures for the reversal of the MDR phenotype is currently very criti-
cal for overcoming this overpowering resistance factor. Not only do these natural 
marine isolates provide an effective solution to this impediment to successful che-
motherapy, but they also provide scaffolds for rational drug design of analogs hav-
ing higher potency and fewer pharmacokinetic interactions. These make it hard to 
ignore the usefulness of chemicals of marine origin as modulators of ABC trans-
porters. Furthermore, recently, Shipp and Hamdoun [ 136 ] described the use of sea 
urchins as an alternative model to screen for modulators of ABC transporters. Sea 
urchins embryos are reported to express  ABCB, ABCC,  and  ABCG  transporter genes 
in their fi rst 58 h of development and thus make them a valuable experimental 
marine model.     
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    Abstract     Currently the main treatment option for generalized or metastatic cancer 
is chemotherapy. Besides conventional chemotherapeutics, small molecule targeted 
kinase inhibitors (TKIs), which are specifi cally capable of eliminating key path-
ways driving cancer growth and metastasis, are also applied in cancer treatment. 
The hydrophobic TKI molecules need to pass the cell membrane to reach their 
intracellular targets, and in many cases become substrates of ABC multidrug (MDR) 
transporters. These large membrane proteins, by using the energy of cellular ATP, 
actively extrude a wide variety of xeno- and endobiotics from the cells. Tumor cells, 
and especially cancer stem cells, abuse this promiscuous transporter capacity to 
protect themselves against therapeutic molecules, including many TKIs. Importantly, 
the interaction/extrusion by MDR-ABC transporters is not related to the specifi c, 
targeted mechanism of TKI action. In this review, we present the key TKIs currently 
used in cancer therapy, and discuss their interactions with MDR-ABC transporters. 
We also describe the methods for studying various forms of direct MDR-ABC and 
TKI interactions, and present a framework for understanding a complex regulation 
of transporter expression and function by these therapeutic molecules.  
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  Abbreviations 

   ABC    ATP-binding cassette   
  ADME-Tox    Absorption, distribution, metabolism, excretion, and toxicity   
  EGFR    Epidermal growth factor receptor   
  MDR    Multidrug resistance   
  P-gp    P-glycoprotein   
  SP    Side population   
  TKI    Targeted kinase inhibitor   

9.1           Introduction 

 Targeted kinase inhibitors (TKIs) have already provided a major clinical success and 
are promising to bring further breakthroughs in treating various malignancies. These 
treatments are based on targeting well-defi ned aberrant signal transduction mecha-
nisms in selected cancer types, thus requiring personalized diagnostics for selecting 
the most appropriate, stratifi ed treatment strategies. Based on properly characterized 
tyrosine kinases and their mutant variants involved in the development of uncon-
trolled cell division, an array of new small molecules have been developed and many 
more are currently in the pipeline of the biotech and pharmaceutical companies. 
Reversible and irreversible, competitive and noncompetitive types of inhibitory 
molecules are devised; single- or multispecifi c, high-affi nity agents are selected in 
high-throughput methodologies. These efforts should provide many more clinically 
applicable kinase inhibitors for the targeted treatment of even those types of cancers 
which are currently untreatable by conventional chemotherapy. 

 Still, the occurrence of inherent drug resistance and the treatment-dependent 
development of cancer resistance against initially successful TKIs are major clinical 
problems. Resistance to TKIs often develops through secondary mutations of the 
target enzymes, activation of alternative pathways, or the occurrence of additional 
signaling mutations. These alterations require the adaptation of treatment modali-
ties to the resistant cancer phenotype, in many cases by the application of TKIs with 
modifi ed target specifi cities. 

 In addition to these specifi c alterations, cancer cells may develop nonspecifi c 
(target independent) resistance against various TKIs by protective cellular responses, 
including, e.g., increased DNA or protein repair mechanisms, or decreased apoptotic 
response. One of these protective mechanisms is the upregulation of MDR- ABC 
transporters, protecting the cancer cells against a wide range of drugs or xenobiot-
ics. Since small molecule TKIs have intracellular targets, they have to pass the cell 
membrane, and thus may become the substrates of the transporters capable for an 
active extrusion of these molecules. It is important to note that this nonspecifi c 
extrusion of drugs by MDR-ABC transporters is in contrast to the specifi c, targeted 
mechanism of kinase inhibitor action. That is, independent of the well- defi ned 
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mechanism of action of a TKI compound, the biologically active molecule may or 
may not be a substrate for the drug-extrusion mechanisms. 

 An important aspect of cancer drug resistance is related to the cancer initiating 
cell populations, often called “cancer stem cells.” These cells with a less differenti-
ated phenotype have high potential for regenerating the tumor, and are also inher-
ently drug resistant. This drug resistance in many cases is caused by the 
overexpression of MDR-ABC transporters, experimentally observed as the so- 
called side population (SP) of cancer stem cells. Thus, small molecule TKI and 
MDR-ABC transporter interactions may have a special importance in fi nding kinase 
inhibitors capable of selectively killing the cancer stem cells. 

 In this chapter, we focus on the role of the key ABC transporters involved in 
multidrug resistance (MDR), ABCB1-MDR1, ABCC1-MRP1, and ABCG2-ABCP/
BCRP/MXR in resistance to TKIs. We discuss the basic features of the abovemen-
tioned MDR-ABC transporters and describe the basic methodologies for assessing 
their interactions with the TKIs. We also provide a detailed description of the 
in vitro and in vivo observed interactions of several clinically applied TKIs with the 
MDR-ABC transporters. Interestingly, the hydrophobic xenobiotic-like TKI mole-
cules may signifi cantly modify the complex drug handling properties of the tumor 
cells. Therefore, in addition to discussing the direct MDR-ABC transporter-kinase 
inhibitor interactions, we give an overview of the potential regulation of the MDR- 
ABC transporter expression and cellular localization by these therapeutic agents. 

 Based on reviewing these data in the literature, we discuss potential methodolo-
gies to overcome MDR-ABC transporter-based TKI resistance at the clinic. In the 
past decades numerous efforts for a direct, specifi c inhibition of one or more trans-
porters failed at the clinical trials, because the general inhibition of the physiologi-
cal drug and xenobiotic transport in multiple tissues, including important barriers, 
caused a major toxicity in the patients. We suggest that the most successful strategy 
in this regard could be based on the detailed knowledge of the actual, experimen-
tally established TKI-transporter interactions. Development of new, effi cient TKI 
small molecules which can avoid pump-dependent extrusion can be one of the solu-
tions for avoiding cancer TKI resistance. Interestingly, an even more successful 
attempt could be to select small molecule TKIs which, in addition to their kinase 
targeted effect, effi ciently modulate transporter functions. This strategy should be 
devised to focus on kinases and transporters especially overexpressed in the cancer 
stem cells; thus TKIs could provide a selective lethality in the tumor initiating cel-
lular compartments.  

9.2     Targeted Kinase Inhibitors (TKIs) in Cancer Therapy 

9.2.1     Targeted Cancer Therapy 

 Conventional chemotherapeutics target universal cellular functions such as DNA 
replication, DNA uncoiling, nucleic acid metabolism, or microtubule function, and 
therefore cannot distinguish between rapidly dividing normal and cancer cells. 
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Accumulating evidence suggests that the proliferation and survival of cancer cells 
often depend on a single, or at least a small number of activated oncogene(s). This 
phenomenon is currently believed to render cancer cells especially susceptible to 
interference with the function of the oncogene and also the oncogene-associated 
signaling pathways, and has recently been termed as “oncogene addiction.” The 
addiction of cancer cells to certain oncogenes has provided a rationale for the design 
and clinical application of molecularly targeted cancer therapeutic strategies, which 
could enable the specifi c targeting and elimination of the malignant cells [ 1 – 4 ]. 

 Oncogenes which confer oncogene addiction most frequently code for kinases 
[ 2 ,  5 – 7 ]. The human kinome has been shown to contain 518 putative kinase genes 
which constitute about 1.7 % of the human genes [ 8 ]. Chromosomal mapping of the 
human kinase genes revealed that 164 kinases are located to amplicons frequently 
appearing in tumors [ 8 ]; furthermore, an unexpectedly large number of putative 
driver (playing a causal role in oncogenesis) and passenger somatic mutations in 
kinomes of various tumor origins has recently been described [ 9 ,  10 ]. Several 
kinases have been validated as major contributors to oncogenesis, and therefore 
have already served as promising drug targets.  

9.2.2     Bcr-Abl Signaling in Cancer and 
Its Small Molecule Inhibitors 

 Bcr-Abl is an oncogenic non-receptor tyrosine kinase whose kinase activity is 
required for the pathogenesis of chronic myeloid leukemia (CML), a clonal myelo-
proliferative disorder of hematopoietic stem cell origin. The genetic hallmark of 
CML is the Philadelphia chromosome, which is generated by the t(9;22)(q34;q11) 
reciprocal translocation. The Philadelphia chromosome (actually a shortened chro-
mosome 22) can be detected in approximately 95 % of CML patients. The above-
mentioned chromosomal translocation fuses the  Abl  proto-oncogene physiologically 
located on chromosome 9 to the  Bcr  (breakpoint cluster region) gene on chromo-
some 22, thus generating the  Bcr - Abl  hybrid gene. Depending on the exact location 
of the breakpoints in  Bcr  (designated as major, minor, and micro breakpoint cluster 
regions; M- bcr , m- bcr , and μ- bcr , respectively) and on alternative splicing of the 
different transcripts, four fusion protein variants can be generated, with molecular 
weights of 190, 210, or 230 kDa. Most CML patients carry the 210 kDa Bcr-Abl 
kinase [ 11 ,  12 ]. The fusion-mediated loss of the N-terminal myristoylation site of 
Abl and the Bcr coiled-coil motif-mediated interference with the kinase autoinhibi-
tory domains (Src homology domains, SH2 and SH3) of Abl results in constitutive 
tyrosine kinase activity and leukemogenic potential of Bcr-Abl [ 13 ,  14 ]. The auto-
phosphorylation of Bcr-Abl at Tyr177 links Bcr-Abl to mitogenic Ras signaling 
through its direct interaction with the adaptor protein Grb2 (growth factor receptor- 
bound protein 2), a phenomenon which is required for the transforming potential of 
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the fusion kinase [ 15 – 17 ]. Bcr-Abl also transduces pro-survival and anti-apoptotic 
signals, and signals resulting in altered cell adhesion and migration [ 13 ,  18 ]. 

 Since Bcr-Abl plays a pivotal role in leukemogenesis, it was soon recognized as 
a promising molecular drug target. The fi rst identifi ed small molecule inhibitor 
showing potent in vitro and in vivo Abl inhibitory activity was imatinib (Gleevec/
Glivec/imatinib-mesylate/CGP57148/STI-571) [ 19 ]. Imatinib was soon reported to 
suppress proliferation and induce apoptosis of Bcr-Abl positive primary and model 
cells, setting the stage to its translation to clinical use [ 20 – 23 ]. Imatinib also dis-
plays an additional inhibitory activity on c-KIT (stem cell factor receptor, CD117) 
and PDGFR (platelet-derived growth factor receptor) kinases [ 24 ]. Imatinib received 
accelerated FDA (US Food and Drug Administration) approval in 2001, and 5- and 
6-year follow-up studies reported impressive response rates and outstanding esti-
mated overall survival rates in CML patient cohorts receiving imatinib as initial 
therapy [ 25 ,  26 ]. Nevertheless, imatinib is observed to be less effective in the 
advanced phases of CML as disease persistence is detected in the majority of 
patients thus indicating that imatinib is unable to eradicate all of the malignant cells, 
and resistance to imatinib also develops in many cases [ 27 ]. 

 To overcome the problems experienced with imatinib, a second generation small 
molecule inhibitors of Bcr-Abl have been developed. The novel inhibitors include 
the selective Abl inhibitor nilotinib (Tasigna/AMN107), and the dual inhibitors of 
the Abl and Src kinases dasatinib (Sprycel/BMS-354825) and bosutinib (Bosulif/
SKI-606). Similarly to imatinib, nilotinib and dasatinib also inhibit c-KIT and 
PDGFR [ 24 ]. Nilotinib and dasatinib are currently approved as a frontline therapy 
of CML, and as a second-line treatment option in CML patients resistant or intoler-
ant to imatinib. Bosutinib has recently been approved to treat CML patients who 
failed on prior treatments with multiple Bcr-Abl inhibitors [ 28 ,  29 ]. Novel TKIs 
which are active against the Bcr-Abl kinase are also emerging, including ponatinib 
[ 30 ], danusertib, and saracatinib. Ponatinib (AP24534) is a pan-Bcr-Abl inhibitor 
and has been shown to be active against the T315I gatekeeper mutant. In addition, 
ponatinib showed inhibitory activity on Src kinase, members of the VEGFR, FGFR, 
and PDGFR families, and FLT3 [ 30 ,  31 ]. Danusertib (PHA-739358) is also active 
against several resistance causing Bcr-Abl mutant variants (including T315I), and 
inhibits Aurora kinases as well [ 32 ,  33 ], while saracatinib (AZD0530) is a dual Src/
Abl kinase inhibitor [ 34 ,  35 ]. Resistance against several representatives of the new 
generation inhibitors of Bcr-Abl has also been reported to occur [ 27 ].  

9.2.3     EGFR Signaling in Cancer and Its Small 
Molecule Inhibitors 

 The Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1) belongs to the ErbB 
subclass of the receptor tyrosine kinase (RTK) superfamily. ErbB receptors are 
physiologically expressed in various tissues of epithelial, mesenchymal, and 
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neuronal origins and play an essential role in embryogenesis. ErbBs are single-pass 
transmembrane receptors having an extracellular domain responsible for the bind-
ing of polypeptide ligands of the EGF (epidermal growth factor) family, and an 
intracellular region containing a tyrosine kinase catalytic domain. ErbB receptors 
homo- or heterodimerize upon ligand binding that results in activation of the intrin-
sic kinase domain and subsequent phosphorylation of tyrosine residues in the cyto-
plasmic tail. The phosphotyrosine residues serve as docking sites for adaptor 
proteins or enzymes with Src homology-2 (SH2) or phosphotyrosine-binding (PTB) 
domains, recruitment of which mediates the activation of multiple downstream sig-
naling cascades involved in various cellular programs, such as proliferation, differ-
entiation, survival, migration, and adhesion. Under physiological conditions, the 
ErbB receptor activity is tightly controlled by the spatial and temporal ligand acces-
sibilities [ 36 ,  37 ]. 

 EGFR (and ErbB2/HER2/Neu as well) has been reported to be constitutively 
active in numerous cancer types, including glioma, breast cancer, ovarian cancer, 
colorectal cancer (CRC), squamous-cell carcinoma of head and neck (SCCHN), and 
non-small cell lung cancer (NSCLC). Aberrant activation of EGFR was reported to 
result from an autocrine ligand production or overexpression or mutation of the 
receptor itself and was associated with poor clinical outcomes [ 36 ]. Accordingly, 
EGFR has intensively been pursued as a molecular drug target. Therapeutic inhibi-
tion of EGFR can be achieved by monoclonal antibodies (mAbs) that either neutral-
ize ligands or target the extracellular ligand binding domain of the receptor thus 
preventing dimerization-mediated activation and causing receptor internalization. 
Still, the major therapeutic option is the administration of small molecule inhibitors 
which target the intracellular tyrosine kinase domain of the receptor [ 37 ,  38 ]. 

 The fi rst generation of EGFR inhibitors includes gefi tinib (Iressa/ZD1839) and 
erlotinib (Tarceva/OSI-774), which reversibly bind to and inhibit EGFR [ 37 ]. 
Second generation EGFR inhibitors are multikinase specifi c and/or irreversibly 
bind to the target receptor that is believed to enable augmentation of drug effi cacy 
and the targeting of multiple types of solid tumors. The second generation of EGFR 
inhibitors includes lapatinib (Tykerb/GW572016), vandetanib (Zactima/ZD6474), 
pelitinib (EKB-569), and neratinib (HKI-272) [ 4 ,  37 ,  39 ]. Lapatinib is a reversible 
inhibitor of EGFR and is also active against another HER2, another member of the 
ErbB receptor family. Vandetanib is a potent inhibitor of vascular endothelial growth 
factor receptor 2 and 3 (VEGFR-2,3), and shows additional inhibitory activity 
against EGFR [ 40 ]. Pelitinib covalently binds to and inhibits EGFR [ 41 ]. Neratinib, 
another irreversible inhibitor of EGFR, was synthesized on the chemical scaffold of 
pelitinib, and has additional inhibitory activity against ErbB2/HER2/Neu [ 42 ]. 
These EGFR inhibitors are presently under clinical evaluation or being used either 
as monotherapy or in combination for a histologically diverse range of tumors, 
including lung cancer [ 39 ], breast cancer [ 43 – 45 ], and colorectal cancer [ 46 ]. 
Notably, resistance to small molecule inhibitors of EGFR has also been reported to 
occur in several cases and represents a major impediment to the successful manage-
ment of the relevant solid tumors [ 39 ,  47 ,  48 ].  
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9.2.4     Other Kinases Important in Cancer Cell Signaling 
and Their Small Molecule Inhibitors 

 Several other kinase enzymes have been shown to play an important role in cancer 
cell signaling, including the c-Kit, FLT3, PDGFR, VEGFR receptor tyrosine kinases 
[ 5 ,  49 ], and also the Ser/Thr kinase BRAF whose oncogenic mutations are the most 
common genetic events detected in melanoma [ 50 ]. Inhibitors targeted against these 
kinases include the multikinase inhibitors sunitinib (Sutent/SU11248) and sorafenib 
(Nexavar/BAY-43-9006) which are active against c-Kit/FLT3/PDGFR/VEGFR [ 51 , 
 52 ]; apatinib (YN968D1) [ 53 ], telatinib (BAY 57-9352) [ 54 ], and axitinib [ 55 ] 
which all inhibit VEGFR and other kinase targets such as Ret, c-Kit, c-Src, PDGFR; 
tandutinib (MLN518/CT5351) [ 56 ] and quizartinib (AC220) [ 57 ] with primary 
inhibitory activity against FLT3; and vemurafenib (PLX4032) that inhibits BRAF 
(V600E), the most common mutant BRAF variant in melanoma [ 50 ].   

9.3     Potential Mechanisms of Tumor Resistance 
Against TKIs: The Role of Cancer Stem Cells 

9.3.1     Resistance to TKIs 

 Target-dependent and target-independent molecular mechanisms causing resistance 
to small molecule TKIs have both been described. These include secondary muta-
tions in the targeted kinase enzymes, overexpression of the targeted kinases, or acti-
vation of alternative signaling molecules (such as increased signaling by Lyn kinase 
or the MET receptor kinase in CML and lung cancer, respectively) [ 4 ,  24 ,  27 ,  37 – 39 , 
 47 ,  48 ,  58 ]. Increased DNA repair mechanisms, decreased apoptosis, and altered 
transport of drugs might also account for the emergence of drug resistance [ 59 ]. 
Here we do not discuss these mechanisms in detail.  

9.3.2     Relevance of MDR-ABC Transporters 
in Resistance to Anticancer TKIs 

 As small molecule TKIs have to pass the cell membrane to exert their intracellular 
kinase inhibitory action, involvement of the MDR-ABC effl ux transporters has 
also been implicated in the emergence of drug resistance. Cancer cells which over-
express MDR-ABC proteins exploit the physiological protective function of these 
transporters and can develop resistance against a wide array of chemically and 
target- wise unrelated compounds. Therefore, the MDR-ABC transporter function 
can signifi cantly modify the anticancer effi cacy of the administered agents in the 
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targeted cancer cells. On the other hand, as MDR-ABC transporters are physiolog-
ically expressed at pharmacologically important tissue barriers, they might also 
signifi cantly modify the biodistribution of the orally administered small molecule 
kinase inhibitors [ 60 ]. Furthermore, accumulating evidence suggests that the 
ABCG2 multidrug transporter might also be a molecular marker of cancer stem 
cells (CSCs). Thus, the specifi c protective function of ABCG2 might also protect 
the cancer stem cell population, and therefore might signifi cantly contribute to the 
replenishment of the tumor. The expression and the role of MDR-ABC transport-
ers in cancer stem cells are discussed below.  

9.3.3     The Cancer Stem Cell Hypothesis: SP Cells 
and Overexpression of MDR-ABC Transporters 

 The cancer stem cell hypothesis, originally formulated by Bonnet and Dick and 
Reya et al. [ 61 ,  62 ], suggests that cancer growth is driven by rare cancer stem cells. 
These cancer stem cells are suggested to possess especially high self-renewal capac-
ity, and play a key role in tumor initiation, progression, and metastasis. Moreover, 
these cells are highly resistant to chemo- or radiotherapy, thus are protected against 
these medical interventions. Cancer stem cells (CSCs) have been suggested to be 
present in various hematological and solid tumors, including retinoblastoma, mela-
noma, tumors of the breast, brain, liver, pancreas, colon, or the lung [ 63 ,  64 ]. 

 The underlying mechanisms of cancer stem cell resistance have been attributed to 
a greater capacity for DNA repair, activation of survival pathways [ 65 ,  66 ], and the 
overexpression of MDR-ABC transporters [ 67 ]. It is by now well documented that 
many kinds of stem cells preferentially express the ABCG2 multidrug transporter. 
Regarding tissue-derived normal stem cells, the fi rst fi nding was that a high- level 
expression of the ABCG2 protein and its fl uorescent dye extrusion function could 
identify hematopoietic stem cells [ 68 ,  69 ]. In the following studies, the so- called 
side population (SP) of progenitor cells, actively extruding the fl uorescent Hoechst 
33342 dye, has been reported to represent stem cells in a variety of tissues. 

 The activity of ABCG2 may protect stem cells against drugs and xenobiotics, 
and these functions become important under unfavorable conditions. Zhou et al. 
fi rst showed that ABCG2 null hematopoietic stem cells (HSCs) were signifi cantly 
more sensitive to mitoxantrone in vivo, thus ABCG2 expression in HSCs may pro-
vide protection from cytotoxic substrates [ 70 ]. The SP cells are also more resistant 
against hypoxic challenges [ 71 ], or the accumulation of free radicals [ 72 ]. 

 A key approach in the CSC identifi cation thus became the fl ow cytometry-based 
determination of the side population (SP) cells. Several reports indicate that SP cells 
obtained from a number of tumor cells have especially high tumorigenicity and pro-
liferation capacity and also show higher resistance to a number of anticancer agents 
[ 73 – 78 ]. Thus, the overexpression of the ABCG2 protein may serve as a biomarker 
of tumor stem cells. Clearly, ABCG2 expression and active drug extrusion in the 
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CSCs may impede their effective eradication and result in long-term cancer reap-
pearance after chemotherapy [ 79 ]. The special tumorigenic potential of the ABCG2 
positive subpopulation of cancer cells, however, is still controversial [ 80 ].   

9.4     Basic Features of the Key MDR-ABC Transporters 
Involved in Resistance TKIs 

 In this book, several chapters deal with the structure and function of multidrug 
(MDR) transporter ABC proteins. Therefore, here we provide only a basic descrip-
tion of their structural and functional aspects, general features of drug recognition 
and transport, and the important pharmacological and physiological functions. For 
further details see the reviews [ 49 ,  59 ,  60 ,  81 – 86 ]. 

 MDR-ABC transporters are large, glycosylated proteins residing in the plasma 
membrane and capable of actively extruding a large variety of xenobiotics and 
endobiotics. All these proteins contain major membrane-spanning domains com-
posed of alpha helices, and the functioning units contain two cytoplasmic nucleo-
tide binding, often called ATP-binding cassette (ABC) domains. Recent structural 
data indicate that the membrane-spanning and the ABC domains are connected by 
specifi c alpha helices which provide the transfer of conformational information 
between the two major domains. Binding and hydrolysis of ATP in the ABC 
domains drive the conformational changes leading to drug extrusion performed by 
the transmembrane regions. 

 The ABCB1 (MDR1/Pgp) multidrug transporter and its closely related homo-
logs contain two ABC domains and 12 transmembrane helices within one polypep-
tide; the ABCC type multidrug transporters contain the same basic elements and in 
many cases an additional 5 helix N-terminal transmembrane regions within one 
large polypeptide. The (ABCP/BCRP/MXR) protein is called a “half transporter,” 
as it has only six transmembrane helices and one ABC domain, but the functional 
unit is a homodimer [ 81 ]. 

 All MDR-ABC transporters have the feature of promiscuity in drug recogni-
tion and transport, which is believed to be based on their relatively large and fl ex-
ible transmembrane domains which can accommodate (probably more than one) 
drug molecules with chemically different cores and side chains. This promiscuity 
is the explanation for the fact that even the specifi cally targeted signaling inhibi-
tors are nonspecifi cally recognized and potentially extruded by the MDR- ABC 
transporters. Most of the MDR-ABC inhibitors are also similar to transported 
substrates, but are unable to cross the transporting mechanism and thus fi x the 
protein in a state when further transport cycles cannot be performed. This sub-
strate to inhibitor switch is in many cases drug concentration-dependent, thus 
higher substrate concentrations block further transport cycles. In addition, a com-
petitive inhibition of the transport of one substrate may occur by another substrate 
of the transporter. 
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 In addition to their key role in cancer multidrug resistance, MDR-ABC transporters 
have major physiological roles in the xenobiotic defense mechanism. As described in 
Chap. 7, in this regard, these proteins are major “effectors” in a chemodefense system 
protecting our body against harmful, mostly hydrophobic chemicals. Thus, MDR-ABC 
transporter and drug interactions may also affect these physiological functions. 

 As to the ABCB1 proteins, there is no well-described other physiological func-
tions than its role in the xenobiotic defense mechanism. Some close relatives 
(ABCB4/MDR3 and ABCB11/BSEP) are more specifi c lipid or bile acid transport-
ers, while their role in xenobiotic extrusion is less defi ned. Still, TKI interactions 
may affect these proteins and some major side effects of targeted inhibitors may 
result in reduced liver functions [ 87 ]. 

 Some of the ABCC type proteins have well-defi ned physiological functions, 
especially in exporting partially detoxifi ed compounds from the cells. The key role 
of the ABCC proteins ABCC2/MRP2, ABCC3/MRP3, and ABCC4/MRP4 in the 
Phase III metabolic step [ 84 ] in the liver and kidney functions is well accepted in 
this regard. ABCC1, which has a key role in cancer multidrug resistance, may have 
only a minor role in endogenous transport processes. 

 In the case of ABCG2, in addition to xenobiotic extrusion, there are known 
physiological functions related to the transport of endogenous metabolites. Human 
ABCG2 is an effi cient uric acid transporter, and mutations or polymorphic variants 
of this transporter are causative in the development of gout [ 88 – 90 ]. ABCG2 is 
preferentially expressed in stem cells, where it may be involved in protection 
against hypoxic challenges [ 71 ]. Progenitor cells obtained from Abcg2 knockout 
mice showed a reduced ability to form colonies under hypoxia, and blocking of 
Abcg2 function in normal progenitor cells reduced survival under hypoxic condi-
tions. The primary cause of this hypoxic susceptibility was the accumulation of 
cellular heme and/or porphyrins. Heme was shown to be specifi cally bound by 
ABCG2, and drug transport by ABCG2 was signifi cantly modulated by heme. It has 
been further demonstrated that ABCG2 overexpression permits enhanced stem cell 
survival in oxygen- poor environments by reducing the accumulation of toxic heme 
metabolites [ 91 ].  

9.5     Methods for Studying Interactions 
of MDR-ABC Transporters and TKIs 

 Several methods have been established for the evaluation of the drug interaction 
profi les of MDR-ABC transporters. The white paper published by the International 
Transporter Consortium has recently highlighted the importance of the transporter 
studies in drug development, and has also provided workfl ows and decision trees 
supposed to aid effi cient screening of the transporter-interaction profi les [ 82 ]. In the 
following sections, we provide a brief overview of the in vitro assays and the in vivo 
model systems which are widely used to assess drug interactions of the MDR-ABC 
transporters. 
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9.5.1     Membrane-Based In Vitro Assays to Assess Drug 
Interactions of the MDR-ABC Transporters 

 The MDR-ABC transporters utilize the energy of ATP hydrolysis to facilitate the 
active transport of their substrates across the plasma membrane, and the transloca-
tion of substrate molecules is strictly coupled to ATP hydrolysis. The effect of drug 
molecules on the ATPase activity of MDR-ABC proteins can be measured using 
isolated transporter-expressing membranes. Heterologous expression of human 
MDR-ABC proteins in  Spodoptera frugiperda  ( Sf9 ) cells by the baculovirus expres-
sion system is the most common method of choice to yield membranes highly 
enriched in functional transporters [ 92 – 94 ]. Recent fi ndings, however, suggest that 
the lipid composition, especially the cholesterol content of the plasma membrane, 
signifi cantly infl uences the function of MDR-ABC transporters [ 95 – 100 ]. Therefore, 
cholesterol-loading of the cholesterol-poor insect membranes is suggested to 
achieve enhanced MDR-ABC function and therefore greater sensitivity of the insect 
membrane-based MDR-ABC functional assays [ 95 ,  101 ]. 

 The effect of test molecules on the vanadate-sensitive ATPase activity of the 
transporters expressed in insect membranes can be measured by determining the 
liberation of inorganic phosphate in a colorimetric reaction [ 92 ]. In general, ATP 
hydrolyzing activity of MDR-ABC proteins is stimulated in the presence of trans-
ported substrate molecules. However, especially in the case of ABCG2, a relatively 
high basal ATPase activity exerted in insect membranes in the absence of drugs 
might mask the ATPase stimulatory effect of ABCG2 substrates. This relatively high 
basal ABCG2 ATPase activity had previously been believed to represent either an 
uncoupled state of the transporter or its ATPase stimulation by an unknown substrate 
resident in the insect membrane [ 94 ]. An uncoupled ATPase activity was also sug-
gested to be important for the promiscuous drug recognition capability of multidrug 
transporters [ 102 ]. Studies performed on purifi ed and reconstituted functional 
ABCG2 proposed that the basal ABCG2 ATPase is dependent on the lipid environ-
ment and especially on the presence of cholesterol but may not be coupled to any 
transport activity [ 97 ]. It is widely accepted that drugs which can stimulate the rela-
tively high ABCG2 ATPase in Sf9 insect membrane preparations are most probably 
transported substrates, whereas transporter inhibitors signifi cantly decrease the 
basal ABCG2 ATPase. However, known ABCG2 substrates, most probably trans-
ported at a lower rate, have also been described to decrease or not to affect the basal 
ATPase activity of the transporter; thus, results of the ATPase assay do not always 
predict the drug-transporter interaction and the nature of the interaction [ 60 ,  101 ]. 
Therefore, it is important to highlight that a combination of in vitro measurements is 
required to determine whether a drug interacts with ABCG2 and other MDR- ABC 
proteins and to further distinguish between transporter substrates and inhibitors. 

 Intact MDR-ABC transporter-containing membrane vesicles isolated from insect 
or mammalian cells can also be applied to study the direct transport of the test 
molecules. Inside-out membrane vesicles, in which the nucleotide-binding 
domains of the MDR-ABC transporters are oriented extra-vesicularly whereas the 
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substrate off- sites are facing the intravesicular space, allow the determination of the 
ATP- dependent vesicular accumulation of drugs. However, this experimental setup 
requires either fl uorescently or radioactively labeled test drugs that allow for detec-
tion of the test molecules [ 101 ]. Detection of TKIs by sensitive analytical methods 
(e.g., HPLC-MS) has also been successfully applied and represents another option 
for the direct evaluation of the vesicular accumulation of TKIs [ 103 – 107 ]. 

 Both the ATPase and the transport measurements can be performed in an indirect 
setup, that is, when the modulatory effect of the TKI on the drug-stimulated ATPase 
activity or on the vesicular transport of a simultaneously applied MDR-ABC sub-
strate molecule is followed. In the indirect ATPase assay, MDR-ABC interacting 
molecules are expected to decrease the substrate-stimulated ATPase activity of 
MDR-ABC transporters. Similarly, drugs that interact with the transporters most 
probably inhibit the accumulation of MDR-ABC substrates in inside-out membrane 
vesicles. Purifi ed MDR-ABC proteins incorporated into liposomes, containing fl uo-
rescent reporter molecules, and measuring ATP-dependent, transport-related 
changes in vesicular fl uorescence may provide additional, more specifi c methodolo-
gies for drug interaction screening [ 108 ]. It is important to note, however, that while 
these indirect measurements predict drug-transporter interactions, they cannot 
distinguish between MDR-ABC substrates and inhibitors. 

 The MDR-ABC protein expressing membranes can also be used to investigate 
whether a test drug interacts with the nucleotide binding domain or the substrate 
binding site of a given transporter. This experimental setup is based on the photoaf-
fi nity labeling of the transporters with nucleotide or substrate analogue molecules. 
Co-incubation of transporter-expressing membranes or of isolated MDR-ABC pro-
teins with the nucleotide analogue [α- 32 P]-8-azidoATP or the substrate analogue 
[ 125 I]Iodoarylazidoprazosin (IAAP) followed by UV-irradiation results in covalent 
binding of these compounds [ 109 ]. [α- 32 P]-8-azidoATP is supposed to bind to the 
nucleotide binding domain, whereas [ 125 I]IAAP binds to the substrate binding sites 
of these MDR-ABC transporters. The solubilized proteins are then separated by gel 
electrophoresis and binding of the photolabels is visualized by autoradiography. 
Competitive inhibition of the binding and photoaffi nity labeling of the MDR-ABC 
transporters with [α- 32 P]-8-azidoATP or [ 125 I]IAAP by the TKI indicates that the 
TKI interacts with the nucleotide binding domain or the substrate binding sites of 
the given transporter, respectively [ 101 ,  110 ].  

9.5.2     Cell-Based In Vitro Assays to Assess Drug 
Interactions of MDR-ABC Transporters 

 Numerous cellular assays have been developed to investigate the drug interactions 
of MDR-ABC transporters. Cellular toxicity assays are commonly applied to assess 
whether the presence of a functional MDR-ABC transporter can signifi cantly alter 
the effect of the investigated TKI on cell viability. If proliferation and survival of the 
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model cells depend on the function of the kinase targeted by TKI of interest, the 
direct cytotoxic effect of the TKI can be compared in parental and transporter- 
expressing cells. If the TKI is a transporter substrate, the presence of a functional 
MDR-ABC protein can reduce its intracellular concentration below the drug effi -
cacy threshold, resulting in increased IC50 values in the transporter-expressing 
cells. Changes in key signaling events (e.g., phosphorylation status of the targeted 
kinase enzyme or downstream kinase molecules) can also be compared in parental 
and MDR-ABC-expressing cells exposed to the TKI of interest, which can further 
confi rm whether the presence of    a functional transporter can limit the access of the 
TKI to its intracellular kinase targets. 

 The specifi c contribution of MDR-ABC transporters to the cellular TKI resis-
tance can be evaluated by co-incubation of the TKI with a specifi c pharmacological 
inhibitor of the given transporter, which is supposed to restore TKI sensitivity of the 
transporter-expressing cells. Notably, direct cellular toxicity measurements allow 
for the investigation of a relatively narrow TKI concentration range. Intracellular 
accumulation or vectorial    transport across cell monolayers of TKIs can also be com-
pared in parental and transporter-expressing cells, in cases of radioactively or fl uo-
rescently labeled compounds or an appropriate analytical method are available for 
the detection of the TKI. Both the cellular toxicity and the transport measurements 
can be performed in an indirect setup, where the effect of the tested TKIs on the 
toxicity or the transport of a simultaneously administered MDR-ABC substrate 
“reporter” drug is followed. MDR-ABC-interacting TKIs are supposed to inhibit 
the transport of MDR-ABC substrates and, on the same basis, they can reverse 
transporter-mediated cellular drug resistance. Similarly to the indirect membrane- 
based assays mentioned above, the indirect cell-based transport and cytotoxicity 
measurements only indicate drug-transporter interactions and cannot distinguish 
between transporter substrates and inhibitors [ 49 ,  101 ]. 

 In the presence of interacting drugs, MDR-ABC proteins undergo conforma-
tional changes which can be followed by monoclonal antibodies that recognize an 
extracellular epitope and bind to the transporters in a conformation-sensitive fash-
ion. UIC2, an ABCB1-specifi c antibody [ 111 ], and 5D3, an ABCG2-specifi c anti-
body [ 68 ,  112 ], have both been shown to be sensitive to drug-induced conformational 
changes of the transporters, and therefore have been used to identify transporter- 
interacting compounds, including TKIs [ 113 – 115 ].  

9.5.3     In Vivo Models to Assess Drug Interactions 
of MDR- ABC Transporters 

 Accumulating evidence suggests that MDR-ABC transporters, which are physio-
logically expressed on pharmacologically important tissue barriers, can signifi -
cantly modify the ADME-Tox (absorption, distribution, metabolism, excretion, and 
toxicity) parameters of drug molecules, including TKIs [ 60 ]. The ADME-Tox prop-
erties of drugs can be evaluated in animals, mostly rodent models; a series of 
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MDR- ABC transporter knockout (KO) mouse models have been generated and 
successfully used for the assessment of the in vivo impact of MDR-ABC transport-
ers on the biodistribution and toxicity of drugs [ 60 ,  116 ]. Although MDR-ABC KO 
mice have proved to be useful tools in evaluating the transporter effects on the tissue 
distribution of several drugs, it has to be mentioned that species differences in the 
substrate recognition of MDR-ABC transporters might limit the applicability of 
these rodent models [ 60 ,  117 ,  118 ]. In order to circumvent this problem, humanized 
ABC transporter mouse models (that is the stable, heritable expression of the human 
ortholog of a transporter in an endogenous transporter knockout mouse) have 
already been developed [ 119 ,  120 ].   

9.6     Interactions of Clinically Applied TKIs 
with MDR-ABC Transporters 

 MDR-ABC transporters have been shown to interact with several conventional che-
motherapeutic agents and mediate cancer cell resistance against these drugs [ 59 , 
 83 ]. As MDR-ABC proteins display multispecifi c substrate recognition profi les, it 
could be suspected that they might also interact with the novel, molecularly targeted 
anticancer kinase inhibitor drugs. Indeed, several studies have thus far reported an 
interaction of MDR-ABC transporters with small molecule TKIs. Both in vitro and 
in vivo data are now available showing that MDR-ABC transporters are capable of 
recognizing and transporting a wide array of clinically relevant kinase inhibitors, 
and thus have the potential to confer cancer cell resistance against these agents and 
can also modify their pharmacokinetic profi les. Interestingly, accumulating evi-
dence also suggests that TKI molecules, especially when applied at higher doses, 
can effi ciently block the function of MDR-ABC proteins and thereby can enhance 
the intracellular accumulation of MDR-ABC substrate cytotoxic drugs and revers-
ing the transporter-mediated multidrug resistance phenotype of cancer cells. In the 
following sections, we give a detailed overview on the current literature about the 
in vitro fi ndings and the in vivo relevance of the interaction between MDR-ABC 
transporters and clinically relevant anticancer TKIs. 

9.6.1     In Vitro Interaction of MDR-ABC Transporters 
with Bcr- Abl Inhibitors 

 Imatinib, the prototype of the targeted kinase inhibitor molecules, has been exten-
sively characterized concerning its interaction with MDR-ABC transporters. In the 
fi rst published studies, imatinib was reported to modulate the ATPase activity of 
both ABCB1 [ 121 ] and ABCG2 [ 122 ], which strongly suggested that these 
transporters recognize and interact with imatinib. However, initially imatinib was 
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recognized either as a transported substrate [ 123 ] or as a transporter inhibitor [ 124 ]. 
In subsequent reports, the modulatory effect of imatinib on the transporter ATPase 
activity was confi rmed [ 110 ,  125 ] and both ABCB1 and ABCG2 were shown to 
actively transport imatinib and were demonstrated to specifi cally confer in vitro cel-
lular imatinib resistance [ 114 ,  123 ,  125 – 133 ]. ABCB1 and ABCG2 were also 
shown to mediate retained phosphorylation of CRKL, a downstream protein target 
of Bcr-Abl, which further suggested that these transporters effi ciently prevent ima-
tinib from reaching its intracellular target kinase and inducing apoptosis of Bcr-Abl 
positive cells [ 125 ,  128 ,  133 ]. 

 Parallelly, imatinib was also reported to inhibit the transport of calcein-AM [ 127 ], 
rhodamine 123 [ 127 ,  133 ], mitoxantrone [ 123 ], pheophorbide a [ 134 ,  135 ], and Hoechst 
33342 [ 122 ,  125 ], which are well-established substrates of ABCB1 or ABCG2. 
Accordingly, imatinib was also capable of reversing transporter-mediated cellular 
resistance to simultaneously applied ABCB1 or ABCG2 substrates, such as mitoxan-
trone [ 122 ], topotecan, SN-38 [ 124 ], vincristine, paclitaxel, and etoposide [ 136 ]. 
Notably, the chemo-sensitizing effect of imatinib occurred, when it was administered 
at higher concentrations compared to the relatively narrow concentration range, when 
effi cient transport of imatinib by ABCB1 or ABCG2 could be measured. 

 Following the extensive studies on the MDR-ABC transporter interactions of 
imatinib, information about the interaction of ABCB1 and ABCG2 with second 
generation Bcr-Abl inhibitors soon started to emerge. Nilotinib, dasatinib, and 
bosutinib, the Bcr-Abl kinase inhibitors which are already approved by the FDA, 
have all been shown to interact with both ABCB1 and ABCG2. Several reports sug-
gested that nilotinib and dasatinib are actively transported by ABCB1 and ABCG2, 
a phenomenon that ultimately resulted in cellular resistance against these agents 
[ 103 ,  104 ,  125 ,  126 ,  133 ,  137 ,  138 ]. However, whether ABCB1 affects the cellular 
disposition of nilotinib still remains a controversial issue [ 103 ,  130 ,  139 – 141 ]. 
Interestingly, current reports suggest that neither ABCB1 nor ABCG2 is capable of 
actively transporting bosutinib and the function of these transporters does not confer 
cellular bosutinib resistance [ 103 ,  141 ,  142 ]. Therefore, bosutinib might also be 
effi cient in the targeting and elimination of transporter-expressing multidrug resis-
tant cancer cells or cancer stem cells. 

 The second generation Bcr-Abl inhibitors were also probed regarding their abil-
ity to block the MDR-ABC transporter function. When administered at higher con-
centrations, nilotinib, dasatinib, and bosutinib could all inhibit the transport of 
MDR-ABC substrates such as calcein-AM, rhodamine 123, and Hoechst 33342 
[ 103 ,  125 ,  133 ]. Effi cient reversal of transporter-dependent cellular resistance to 
conventional chemotherapeutics, like mitoxantrone, doxorubicin, colchicine, vin-
cristine, and paclitaxel, by nilotinib has been described as well [ 143 ,  144 ]. Moreover, 
an increased anticancer effect by treatment with nilotinib in combination with ima-
tinib has been observed [ 145 ]. This synergy was at least partly explained by an 
increase in the intracellular accumulation and retention of nilotinib through 
imatinib- mediated blockade of the MDR-ABC transporter function [ 146 ]. These 
fi ndings highlight that co-treatment with multiple TKIs might be a promising treat-
ment option also for overcoming MDR-ABC transporter-mediated drug resistance. 
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 Emerging novel inhibitors of Bcr-Abl are now in clinical trials, such as ponatinib, 
danusertib, and saracatinib, and have also been shown to interact with ABCB1 and 
ABCG2. Ponatinib and danusertib have been suggested to be MDR-ABC substrates 
[ 147 ,  148 ], while all of these three compounds were shown to effi ciently inhibit 
transporter function and to overcome transporter-dependent resistance to various 
conventional chemotherapeutic agents [ 147 – 149 ].  

9.6.2     In Vitro Interaction of MDR-ABC 
Transporters with EGFR Inhibitors 

 Similarly to imatinib, the fi rst successful EGFR inhibitor gefi tinib was subject to 
extensive studies concerning its in vitro interaction profi les with MDR-ABC trans-
porters. In the fi rst studies addressing this issue, stimulation of both the ABCB1 and 
the ABCG2 ATPase activities by gefi tinib was shown, thus implying the interaction 
of this drug with the proteins [ 122 ,  150 ,  151 ]; however, there was no consensus 
whether gefi tinib is a substrate or an inhibitor of these transporters [ 150 – 154 ]. 
Subsequent studies confi rmed active transport of gefi tinib by ABCB1 and ABCG2 
and also demonstrated the emergence of gefi tinib resistance in cells expressing 
MDR-ABC transport proteins which could be reverted by simultaneous administra-
tion of specifi c transporter inhibitors [ 115 ,  151 ,  152 ,  155 – 157 ]. These fi ndings fur-
ther confi rmed that the MDR-ABC transporter function can effi ciently reduce 
gefi tinib concentrations below the intracellular drug effi cacy threshold and prevent 
cellular toxicity by limiting drug access to the target kinase EGFR [ 115 ,  151 ]. 
Notably, the active transport of gefi tinib by MDR-ABC transporters proved to be 
strictly concentration-dependent, and higher doses of gefi tinib rather inhibited 
ABCB1 and ABCG2 transport functions [ 115 ,  122 ,  153 ], resulting in the restoration 
of cellular mitoxantrone, topotecan, SN-38, and paclitaxel, and docetaxel sensitivities 
[ 122 ,  150 ,  152 ,  153 ]. 

 Several representatives of the new generation of EGFR inhibitors (some of them 
also acting on multiple kinase targets), such as erlotinib, lapatinib, pelitinib, nera-
tinib, and vandetanib, have already been shown to interact with MDR-ABC trans-
porters. Although some controversies still exist regarding the ability of MDR-ABC 
transporters to transport and confer resistance against these drugs, the currently 
available literature data agree that relatively higher concentrations of all of these 
TKIs can antagonize the function of ABCB1 and ABCG2 [ 107 ,  115 ,  156 ,  158 – 165 ]. 
Therefore, in MDR-ABC transporter expressing cells, these TKIs can enhance the 
cytotoxic effect of various drugs, such as vincristine, vinorelbine, docetaxel, pacli-
taxel, mitoxantrone, fl avopiridol, doxorubicin, SN-38, and topotecan [ 160 – 164 , 
 166 ,  167 ]. If effi ciently recognized by MDR-ABC transporters, these TKIs are 
presumably only transported only in a narrow concentration range, which could 
account for the current discrepancies between the thus far published results.  
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9.6.3     In Vitro Interaction of MDR-ABC Transporters 
with Other Clinically Relevant TKIs 

 Novel TKI molecules with various target spectra are currently emerging and repre-
sent potential therapeutic approaches. Continuous interest has produced a large set 
of in vitro experimental data about the MDR-ABC transporter interaction profi les of 
several novel TKIs. For example, the multikinase (c-Kit/FLT3/PDGFR/VEGFR) 
inhibitors sunitinib and sorafenib [ 113 ,  139 ,  168 – 170 ], as well as the VEGFR inhib-
itors apatinib [ 53 ,  171 ], telatinib [ 172 ], and axitinib [ 173 ]; the FLT3 inhibitor tan-
dutinib [ 56 ] and quizartinib [ 174 ]; or the BRAF inhibitor vemurafenib [ 175 – 177 ] 
have been investigated in this regard, by similar experimental approaches as detailed 
in the previous sections. Collectively, all of the abovementioned agents have been 
implicated to interact with at least one of the MDR-ABC proteins, and therefore can 
be transported by and/or can inhibit these transporters. Notably, rather than display-
ing decreased cellular toxicity, quizartinib showed an enhanced toxic effect in K562 
cells expressing ABCB1 or ABCG2 [ 174 ]. Although the molecular background of 
the collateral sensitivity of the transporter-expressing cells to quizartinib remains to 
be explored, quizartinib might be a promising agent which selectively targets and 
exploits MDR-ABC transporter overexpression of cancer cells [ 83 ,  178 – 180 ].  

9.6.4     In Vivo Relevance of the Interaction of MDR-ABC 
Transporters with Clinically Applied TKIs 

 As detailed in the previous sections, numerous in vitro data support that clinically 
relevant TKI molecules interact with MDR-ABC transporters. Various genetic 
knockout animal models have been generated to assess whether MDR-ABC trans-
porter functions also have signifi cant in vivo impact on the tissue distribution and 
anticancer effect of TKIs. Chemical knockout mice, in which the transporter func-
tion was blocked by administration of specifi c pharmacological transporter inhibi-
tors, have also been utilized for experiments studying the in vivo interactions 
between MDR-ABC transporters and TKIs. 

 In mice, both ABCB1 and ABCG2 were shown to affect the bioavailability, espe-
cially the brain penetration of several TKIs including the Bcr-Abl inhibitors imatinib 
[ 181 – 187 ], dasatinib [ 188 – 191 ]; the EGFR inhibitors gefi tinib [ 157 ,  192 ], erlotinib 
[ 158 ,  193 ,  194 ], lapatinib [ 159 ,  195 ], and vandetanib [ 165 ]; the multikinase inhibi-
tors sunitinib and sorafenib [ 168 ,  169 ,  190 ]; and the BRAF inhibitor vemurafenib 
[ 175 ,  176 ]. 

 In vitro data suggest that TKI molecules can inhibit the transport of simultane-
ously applied MDR-ABC substrates and therefore can signifi cantly modify their 
pharmacokinetic and effi cacy profi les. Indeed, numerous TKIs have been reported 
to alter the in vivo tissue distribution and anticancer effi ciency of conventional 
chemotherapeutics. Gefi tinib was reported to enhance the oral bioavailability and 
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antitumor activity of irinotecan [ 152 ,  154 ], increased the bioavailability and 
decreased the clearance of topotecan [ 155 ], and also enhanced topotecan penetration 
of gliomas in mice [ 196 ]. The antitumor activity of topotecan in rhabdomyosarcoma 
cell xenografts was shown to be highly potentiated by imatinib [ 197 ]. Lapatinib was 
found to strongly enhance the antitumor effect of paclitaxel on ABCB1 overexpress-
ing KBv200 xenografts in mice [ 160 ], while co-administration with neratinib or 
apatinib signifi cantly increased the antitumor effect of paclitaxel in the same xeno-
graft model [ 53 ,  164 ]. Also, co-treatment of ABCG2 overexpressing xenografts in 
mice with telatinib and doxorubicin was reported to signifi cantly decrease the 
growth rate and size of the transporter-expressing tumors [ 172 ]. 

 The issue whether MDR-ABC transporters display a major impact on the biodis-
tribution and toxicity of TKIs in vivo in humans is usually addressed by investigating 
the genotype-specifi c infl uence of the transporters on these parameters. ABCB1 and 
ABCG2 polymorphic variants have been associated with altered pharmacokinetics 
of imatinib and were also shown to cause signifi cant differences in the clinical 
response during imatinib treatment [ 198 – 202 ]. The impact of the genetic variants of 
these MDR-ABC transporters on the plasma levels and toxicity of gefi tinib and 
sunitinib has also been suggested [ 156 ,  203 – 205 ].   

9.7     Regulation of MDR-ABC Transporters by TKIs 

9.7.1     Potentially Coordinated Regulation of Transporters 
and Drug Metabolizing Enzymes by TKIs 

 In addition to the above described direct interactions of TKIs with the MDR-ABC 
transporters, the hydrophobic xenobiotic-like TKI molecules may also signifi cantly 
modify the complex drug handling properties of the tumor cells. These effects may 
be treated within the conceptual framework of “chemoimmunity,” regarding the 
cellular defense mechanisms against xenobiotics as a complex network function 
[ 84 ]. In this system, the drug-metabolizing enzymes (Phase I and Phase II), the 
MDR-ABC transporters preventing the cellular entry of hydrophobic xenobiotics 
(Phase 0), and similar transporters promoting the extrusion of partially detoxifi ed 
compounds (Phase III) provide the effectors of chemodefense. A sensor system for 
this defense is provided by an array of nuclear receptors, and potentially other signal 
transduction pathways. This “chemoimmune network” is coordinately regulated, 
resembling in many aspects to the classical immune system [ 84 ,  206 ]. 

 TKI molecules are hydrophobic molecules and recognized as harmful chemicals 
similar to many hydrophobic xenobiotics. Thus, TKIs, similarly to other xenobiotics 
and drugs, may activate these complex cellular resistance mechanisms in many dif-
ferent ways depending on type and state of the cell they enter. As described above, 
numerous TKIs are directly recognized as transported substrates and their cellular 
accumulation is limited by MDR-ABC transporters. In other cases, TKIs may 
directly inhibit the transporters. 
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 After entering the cells, most of the TKIs are exposed to the action of drug 
metabolizing enzymes, oxidized by specifi c cytochrome P450 isoforms and conju-
gated by various glutathione-S transferases to yield a less toxic product [ 207 ,  208 ]. 
The transporters and metabolic enzymes share the common property of a promiscuous 
interaction with chemically diverse compounds. Although they exhibit overlapping 
substrate specifi cities, they also exhibit characteristic differences in substrate recog-
nition. For example, ABCB1 and CYP3A4 recognize large, hydrophobic, neutral or 
weakly positively charged compounds, whereas ABCC1 and CYP2C9 also recog-
nize negatively charged chemicals [ 209 ,  210 ]. The synthesis of these proteins is 
concomitantly regulated to overproduce those transporters and enzymes that are 
capable of the detoxifi cation of the given xenobiotics entering the cell. This regula-
tion is mainly provided by transcription factors that, together with the transporters 
and metabolic enzymes, form the cellular chemoimmune system [ 84 ,  208 ].  

9.7.2     Transcriptional Regulatory Pathways 
for Transporter and Metabolic Enzyme 
Expression: Role of Nuclear Receptors 

 The expressional regulation of transporters and metabolic enzymes includes both 
setting the amount and type of the chemoimmunity defense proteins. When the cell 
is exposed to a specifi c type of xenobiotic (e.g., a positively charged hydrophobic 
compound), it is advantageous if the levels of those transporters and enzymes 
increase that they are able to recognize and convert the toxic compound (e.g., 
ABCB1, CYP3A4 for detoxifying hydrophobic and positively charged compounds). 
The lipophilic xenobiotics are recognized in the cytoplasm by promiscuous 
transcriptions factors that translocate to the nucleus upon ligand binding and acti-
vate the transcription of the appropriate chemoimmune genes [ 207 ,  208 ]. Some of 
these transcription factors have been called orphan receptors as no physiological 
ligands were known to activate them. These proteins include the Aryl Hydrocarbon 
Receptor (AHR) and nuclear receptors such as the Pregnane X receptor (PXR) and 
the Constitutive Androstane Receptor (CAR) [ 211 ,  212 ]. 

 AHR, a basic helix-loop-helix transcription factor, is associated with chaperons 
and binds its ligands (small, planar hydrophobic drugs, such as Polycyclic aromatic 
hydrocarbons (PAHs)) in the cytoplasm [ 213 ]. Upon binding, it is translocated to 
the nucleus where the dissociation of chaperons is followed by dimerization with 
ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator). This heterodimer is 
able to bind AHR-, dioxin- or xenobiotic- responsive elements (AHRE, DRE, or 
XRE) in the promoter regions of target genes. The xenobiotic sensing nuclear recep-
tors (such as PXR and CAR) are members of the Type II nuclear receptor subfamily 
that bind ligands in the cytoplasm, enter the nucleus, where heterodimerization 
occurs with RXR (Retinoid X Receptor) [ 211 ]. The heterodimer activates genes 
with specifi c hormone response elements in their promoter region. The structural 
background of their multispecifi c recognition, which might exhibit similar molecular 
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features as MDR-ABC transporters and metabolic enzymes, has been extensively 
studied [ 212 ,  214 ,  215 ], but the details of this mechanism still remain to be 
elucidated. 

 The Aryl Hydrocarbon Receptor has been described to enhance the transcription 
of various ABC transporters. Several AHR agonists were reported to enhance the 
expression of ABCG2. Recently, this transcription induction has been shown to be 
directly coupled to AHR signaling by gene promoter analysis and experimental 
demonstration of an active dioxin-responsive element [ 216 ,  217 ]. The other AHR- 
regulated ABC protein is MRP4/ABCC4, which is upregulated by oxidative stress 
in cholestasis, as shown in human and animal models [ 218 ]. Bioinformatics analy-
sis revealed XRE and Maf response elements in the mrp4 promoter that was dem-
onstrated also by a luciferase reporter assay [ 218 ]. These results suggest an ABCC4 
regulation mediated by both AHR and Nrf2 and that the stimulation of these tran-
scription factors may have a positive effect on cholestasis. Interestingly, there is no 
known dioxin response element in the promoter of ABCB1, but its functional 
expression has been shown to be increased by dioxin in the blood–brain and blood- 
spinal cord barriers [ 219 ,  220 ]. 

 PXR and CAR have been the fi rst and main reported promiscuous nuclear recep-
tors shown to activate the transcription of MDR-ABC transporters [ 221 – 223 ]. 
A DR4 motif in the upstream enhancer at about −8 kbps from the PXR binding site 
was shown to be responsible for ABCB1 induction by rifampin [ 221 ]. It has also 
been demonstrated that    CAR can also affect ABCB1 transcription via binding to the 
same DR4 motif [ 224 ]. These nuclear receptors have not been shown to regulate 
ABCC1/MRP1, while they strongly infl uence the expression of the Phase III 
ABCC2/MRP2 transporter [ 225 ]. Recent reports indicate that PXR is also a regula-
tor of the ABCG2 transcription [ 226 ,  227 ]. 

 The transcriptional regulation of the MDR-ABC proteins is still largely unex-
plored in its complexity. These regulatory interactions exhibit strong tissue and cell 
type specifi city; thus the same MDR-ABC transporter may be regulated by different 
nuclear receptors in different tissues. For example, in contrast to PXR-dependent 
ABCG2 regulation in the blood–brain barrier [ 226 ], imatinib treatment of liver cells 
did not infl uence ABCG2 expression through neither CAR nor PXR [ 228 ]. In the 
latter study, Caco2 cells reacted immediately to imatinib exposure by inducing 
ABCG2, but the mRNA level of this MDR-ABC transporter decreased again when 
ABCB1 expression was increased. This observation suggests a coordinated regula-
tion of various chemoimmune during detoxifi cation. 

 Interestingly, recent studies indicate AHR regulation of ABCB1, ABCC2, and 
ABCG2 in both the blood–brain and blood-spinal cord barrier [ 220 ,  229 ], while no 
other reports indicate an AHR-dependent ABCB1 transcriptional activation. These 
studies employed the dioxin TCDD and suggested that it promotes ABCB1 pro-
moter activation through AHR. However, alternative dioxin responsive, AHR- 
independent pathways [ 230 ] could be responsible for this regulation. Moreover, 
AHR can act as an ubiquitin ligase and affect the degradation of other nuclear 
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receptors and transcription regulators, thus cross-talk with other signaling pathways 
[ 231 ,  232 ]. Other complex regulatory patterns can also be imagined such as a posi-
tive feedback of AHR activation increases the expression of ARNT that dimerize 
with Sp1 leading to enhanced expression of ABCB1 through Sp1-binding sites on 
its promoter [ 233 ]. 

 The exploration of the pathways is even more diffi cult because of species differ-
ences. It has been shown that while the human ABCG2 is regulated by AHR, the 
murine ABCG2 is not under AHR or PXR control [ 234 ]. Experiments, including 
high-throughput drug-screening studies, may be misleading when using nonhuman 
nuclear receptors as targets or recombinant human proteins in a nonhuman cell line 
or transgenic animal. In the latter cases, nonhuman coregulators may result in a 
completely different transporter expression pattern than in human cells. This phe-
nomenon highlights the role of coregulator proteins also in the xenobiotic signaling 
pathways and explains differences in expression patterns when the drug binds to the 
same nuclear receptor in different tissues or under different conditions. 

 Another challenge in understanding the regulation of the chemoimmune system is 
a potential xenobiotic activation of nuclear receptors with primary function in lipid 
sensing (e.g., PPAR, LXR, FXR) and their further activation of genes involved in 
upregulation of proteins involved in detoxifi cation [ 235 ]. The vitamin D receptor 
(VDR), although being more specifi c than CAR and PXR, still shares target genes 
such as that of ABCB1 with the two promiscuous nuclear receptors [ 236 ,  237 ]. 
Detoxifi cation function of VDR may be related to its ability to bind bile acids, thus 
mediate their elimination [ 238 ]. Interestingly, in tissue barriers with low CAR and 
PXR expression (e.g., the placenta), VDR can substitute the function of these nuclear 
receptors and activate ABCB1 and metabolic enzyme transcription [ 239 ,  240 ]. 

 Activation of these regulatory pathways by TKIs may have different features in 
different cell types and under different conditions. The ABCG2 substrate TKI, gefi -
tinib, has been reported not to increase ABCG2 expression in one study [ 241 ], 
while gefi tinib-resistant cell lines were reported to show increased ABCG2 expres-
sion [ 115 ,  242 ,  243 ]. One possible explanation for these observations is the trans-
location of EGFR to the nucleus where it may act as a transcription factor [ 244 ]. 

 The apparently nonspecifi c transcriptional activation of ABCG2 and other mul-
tidrug transporters by Nrf2 [ 245 – 247 ] suggests the possibility for a general stress 
response type activation of the xenobiotic response. In this scenario, the drugs accu-
mulating in the cell and oxidized by metabolic enzymes may result in an oxidative 
stress signal. Under normal conditions, Nrf2 is bound by Kelch like-ECH- associated 
protein 1 (Keap1) and Cullin 3 and degraded following ubiquitination [ 248 ]. 
Oxidative or electrophilic stress alters cysteine residues in Keap1 leading to abro-
gated ubiquitination and translocation to the nucleus to upregulate oxidative stress 
genes including multidrug transporters. According to these fi ndings, the fi rst xeno-
biotic defense activation signal involves promiscuous nuclear receptors in a rela-
tively specifi c manner, while the increased oxidized drug species may trigger a 
further response through the Nrf2 pathway.  
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9.7.3     Posttranslational Regulation of Transporter 
Activity by TKIs 

 In addition to transcriptional regulation, the function of multidrug transporters may 
be signifi cantly modulated by posttranslation modifi cations, traffi cking to the cell 
surface, or by modulation of their degradation. Detailed studies have been per-
formed in this regard for several MDR-ABC transporters including ABCB1/MDR1, 
ABCC2/MRP2, ABCB11/BSEP, etc. [ 249 ,  250 ]. Although the role of TKIs has 
been less conclusive in this regard, in the case of ABCB1 it has been convincingly 
demonstrated that substrate binding can signifi cantly increase the membrane traf-
fi cking and insertion of this protein [ 251 ]. In the case of ABCG2, ER-retained vari-
ants have been delivered to the plasma membrane when treated by a transported 
substrate, mitoxantrone [ 252 ]. These observations suggest that    MDR-ABC pro-
tein substrate TKIs can enhance the cell surface level of the MDR-ABC proteins 
acting as pharmacological chaperons, thus increasing their own clearance from 
the cell. 

 Recently, the Ser/Thr kinase Pim-1 has been shown to affect drug resistance 
mediated by ABCB1 and ABCG2 [ 253 – 255 ]. Both ABCB1 and ABCG2 were 
reported to contain Pim-1 phosphorylation sites. ABCG2 was demonstrated to be 
phosphorylated by Pim at Thr362, and exhibited impaired ABCG2 multimer forma-
tion resulting in the restoration of drug sensitivity in prostate cancer cells in which 
expression of the Pim-1 kinase was knocked-down [ 254 ]. Similarly, the cell surface 
expression of ABCB1 was suggested to be maintained by Pim-1 kinase activity 
[ 255 ]. In accordance, Pim-1 kinase inhibition by the small molecule Pim kinase 
inhibitor SGI-1776 resulted in decreased ABCG2 and ABCB1 expression [ 253 ]. 
It is important to note that even though SGI-1776 did not alter the expression of 
ABCB1 or ABCG2 in cells which do not express its target kinase Pim-1, it still 
enhanced the cellular uptake of ABCB1 or ABCG2 substrates in Pim-1-negative 
cells. This observation suggests that similarly to SGI-1776, TKI compounds might 
modulate drug resistance not only via affecting their specifi c kinase targets but also 
by interacting with and acting as “nonspecifi c” inhibitors of MDR-ABC proteins. 

 The plasma membrane localization of ABCG2 has also been suggested to be 
regulated by the PI3K/Akt signaling axis. Inhibition of Akt signaling was reported 
to provoke a rapid translocation of ABCG2 from the plasma membrane to intracel-
lular compartments in several cell types [ 256 – 261 ], a phenomenon which has also 
been associated with attenuated ABCG2 function [ 256 ,  258 ,  260 ,  261 ] and subse-
quent reversal of drug resistance caused by the transporter [ 260 ,  261 ]. Nevertheless, 
opposing results have also been published showing that inhibition of Akt signaling 
downregulated overall ABCG2 protein levels rather than affecting only its plasma 
membrane localization in human leukemia cells [ 132 ]. Involvement of the down-
stream mTOR kinase in regulating plasma membrane insertion of ABCG2 has also 
been controversial [ 258 ,  262 ]. In the above referenced studies, several pharmaco-
logical inhibitors of the PI3K and mTOR enzymes have been applied to manipulate 
cellular signal transduction, such as wortmannin, LY294002, and rapamycin. 
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Notably, LY294002 and rapamycin, inhibitors of the PI3K and the mTOR kinases, 
respectively, have recently been shown to interact with and inhibit the function of 
ABCG2, which could also account for the reversal of transporter-mediated cellular 
drug resistance irrespectively of alterations in PI3K/Akt/mTOR signaling and 
subsequent potential changes in functional ABCG2 protein levels [ 263 ,  264 ]. The 
versatile PI3K and ABCG2 inhibitory potential of LY294002 has also been pro-
posed to be exploited to design novel therapeutic strategies for the targeting of 
ABCG2- expressing drug resistant cancer cells or cancer stem cells which rely on 
Akt signaling for survival [ 265 ].   

9.8     Conclusions: Potential Solutions for Overcoming 
Clinical Drug Resistance 

 Several therapeutic approaches have been proposed to circumvent cancer multidrug 
resistance caused by the expression of MDR-ABC proteins. These include the 
administration of MDR-ABC inhibitors in order to allow enhanced intracellular 
accumulation and cytotoxic action of simultaneously applied MDR-ABC substrate 
molecules; the use of drugs that are not recognized by MDR-ABC transporters and 
therefore can bypass MDR-ABC-mediated effl ux, and also the application of drugs 
to which MDR-ABC transporter expressing tumor cells show hypersensitivity (col-
lateral sensitivity) [ 83 ]. 

 Multispecifi c MDR-ABC transporter inhibitors showing both in vitro and in vivo 
activity are already available, such as elacridar (GF120918) and tariquidar (XR- 9576) 
which inhibit ABCB1 and ABCG2; or cyclosporine A (CSA) and biricodar (VX-
710) which inhibit ABCB1, ABCC1, and ABCG2 [ 266 ]. Most of these multispe-
cifi c inhibitors have already had history as potential (ABCB1 mediated) MDR 
reversal agents applied in clinical trials, which unfortunately all ended with disap-
pointing results. Ineffi ciency and/or toxicity of the MDR-ABC inhibitors observed 
are currently believed to have resulted from insuffi cient dosing and previously 
unexpected pharmacokinetic interactions of the MDR-ABC inhibitors, from recruit-
ment of patient cohorts not biased for MDR-ABC transporter expression and also 
from interference with the physiological xenoprotective function of the targeted 
transporters [ 83 ,  266 ,  267 ]. Accumulating evidence suggests that most of the clini-
cally relevant TKI molecules can effi ciently block MDR-ABC transporter functions 
in a certain concentration range. Choosing a therapeutic window where off-the- 
shelf kinase inhibitors, with well-established safety and toxicity profi les, can paral-
lelly inhibit their specifi c kinase targets and also MDR-ABC proteins might lead to 
an enhanced anticancer effect of the kinase inhibitors themselves and also with 
simultaneously administered conventional chemotherapeutics (see Fig.  9.1 ).

   MDR-ABC transporters can recognize a wide array of chemically and target- 
wise unrelated compounds, although the molecular mechanism of the polyspecifi c 
drug binding is yet to be explored. As detailed in the previous sections, all of the 
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investigated clinically relevant TKI molecules can interact with at least one of the 
MDR-ABC proteins and can act as transporter substrates and/or inhibitors. TKI 
molecules which are not effi ciently transported and therefore evade the MDR-ABC- 
mediated effl ux can retain their intracellular kinase inhibitory action even in a 
multidrug resistant background. Such TKIs thus can also successfully target and 
eliminate kinase-addicted cancer cells with inherent or acquired MDR-ABC trans-
porter expression, as was suggested in the case of the Bcr-Abl inhibitor bosutinib 
[ 103 ,  141 ,  142 ]. 

 Recently, several compounds have been identifi ed to which drug-resistant cancer 
cells overexpressing ABCB1 showed an unexpected hypersensitivity (collateral 
sensitivity) [ 178 – 180 ]. Whether drugs that selectively kill ABCC1 or ABCG2- 
expressing cancer cells exist is yet to be elucidated. Nevertheless, novel promising 
therapeutic strategies seem to emerge that aim to selectively target and exploit 
MDR-ABC transporter overexpression of cancer cells. Molecules that show a 
 favorable inhibitory activity against certain kinases and in addition show signifi -
cantly enhanced specifi c toxicity in cancer cells which express MDR-ABC trans-
porters, as it was reported in the case of the FLT3 inhibitor quizartinib [ 174 ], might 
therefore also represent promising novel therapeutic options.     
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    Chapter 10   
 Nanotechnology to Combat Multidrug 
Resistance in Cancer 
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    Abstract     Multidrug resistance (MDR) in cancer is a prime obstacle toward 
 successful cancer chemotherapy which is the combination of the complicated mech-
anisms involving abnormal vasculature, localized area of hypoxia, upregulated 
ABC transporters, aerobic glycolysis, elevated apoptotic threshold, and increased 
interstitial fl uid pressure. Nanomedicines in targeted cancer chemotherapy hold 
great promise as an effective approach to prevail over MDR. Extensive research has 
been conducted to get success in development of Nanomedicines against MDR that 
introduced many of them as personalized medicine and in different clinical stages. 
Nanomedicines can be preferentially accumulated in tumor areas by EPR and by 
active targeting of upregulated processes such as ABC transporters of cancer cells. 
In this review, we aimed to discuss different nanomedicines that showed promises 
against MDR in cancer and improved the chemotherapeutic effi cacy in the last 
decade. Moreover, different cellular and physiological factors that underlie MDR in 
cancer will also be discussed.  
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10.1           Introduction 

 Cancer is possibly the most complex and challenging disease ever known to man-
kind and an unavoidable health concern of this millennium [ 1 ]. Even though many 
efforts have been made to cure cancer, it remains a challenging task. Besides sur-
gery, radiation therapy and chemotherapy are the frontline strategies for the treat-
ment of cancer [ 2 ]. However, development of multidrug resistance (MDR) poses a 
major obstruction to the successful outcome of chemotherapy. MDR is a state of 
resilience against structurally and mechanistically unrelated drugs with different 
targets and chemical structures [ 3 ,  4 ]. It mediates a process of inactivation of the 
drug or diverts it from the target tumor cells and causes a substantial obstacle for the 
treatment of cancer [ 5 ]. 

 It is anticipated that, annually, approximately fi ve million new cases of cancer 
will eventually exhibit the MDR phenotype. Such phenotype can either be acquired 
from drug treatment, be intrinsic or pre-existing in the cancer cells [ 6 ]. This defense 
mechanism can be responsible for therapeutic failure and tumor relapses in over 
90 % of patients [ 7 ]. Higher doses or dosing frequency of the chemotherapeutic 
agents is required to overcome MDR, which results in fatal adverse effects or toxici-
ties [ 8 ]. This is a complex process that can result from various mechanisms, which 
may be grouped into different categories viz. decreased drug infl ux, increased drug 
effl ux, activation of DNA repair, altered drug metabolism and detoxifi cation, sec-
ondary mutations in drug targets, and activation of downstream or parallel signal 
transduction pathways [ 9 ,  10 ]. In some drug resistant cancer cells, the intracellular 
pH gradient, altered rates of vesicular transport, exocytosis, higher interstitial fl uid 
pressure, low pH environment, hypoxic region in the tumor core, and irregular 
tumor vasculature are key factors regulating MDR [ 11 ]. 

 Even though numerous strategies which emerged over the past 30 years helped us 
to understand mechanisms of resistance in a great deal, there is still a need for an 
effective clinical tool to overcome resistance. Current strategies to overcome drug 
resistance include modifi cation of chemotherapeutic regimens, targeted inactivation 
of MDR-related mRNAs, use of monoclonal antibodies against an extracellular epit-
ope of an MDR effl ux transporter, development of new chemotherapeutics that are not 
recognized as transport substrates by MDR effl ux pumps, use of MDR chemosensi-
tizers or modulators, and development of targeted nanomedical approaches that evade 
MDR pumps and combination of two or more of the above approaches [ 12 – 17 ]. 

 From the perspective of drug delivery, MDR in cancer can be suppressed by 
improving delivery of chemotherapeutics to the tumor sites and reducing MDR- based 
drug effl ux. A rational way for effi cient cancer drug delivery is to amalgamate chemo-
therapeutic approaches with nanotechnology [ 18 ]. According to the US FDA, nano-
technology-based formulation refers to those that are at least one dimension in the 
length scale between 1 and 100 nm and show functional behavior in relation to their 
nanosized properties [ 19 ]. In the last few decades, the progression of nanotechnology 
has made it possible to synthesize drug delivery vehicles of nanoscale which are bio-
compatible and biodegradable in nature. Various types of nanocarriers including lipo-
somes, nanomicelles, polymeric nanoconjugates, nanoparticles, carbon nanotubes, 
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dendrimers, etc. have been established for delivery of a number of anticancer drugs 
[ 20 ,  21 ]. These nanocarriers have shed light on desirable drug delivery characteristics 
such as prolonged systemic circulation, reduced nonspecifi c cellular uptake, targeting 
potential, controlled drug release, and multidrug encapsulation for combinatorial 
treatment. In addition to passive targeting, nanomedicines also provide an alternative 
strategy to avoid MDR by active targeting through simultaneous encapsulation and 
attachment of multifunctional components like ligands, antibodies against MDR 
tumor cells, chemotherapeutic drugs, nucleic acid, and inhibitors of MDR-causing 
enzymes [ 5 ,  8 ,  12 ,  22 – 24 ]. 

 This chapter illustrates different contributors of MDR in cancer cells and shows 
the impetus of nanotechnology for the reversal of this challenging situation.  

10.2     MDR in Oncology 

 The specifi city of drug, tumor, and host, collectively, characterizes resistance to che-
motherapy which consequently results in the ineffectiveness of anticancer drugs in 
treating tumor without excessive toxicity [ 25 ]. Therefore, there is a special need for 
a cytotoxic agent that can cause selective destruction of neoplastic cells along with 
protecting the host cells and their functions. The two aspects that mark the necessary 
distinction between cancer chemotherapy and antibacterial chemotherapy consist of 
the resistance of human cancer to anticancer drugs and the lack of selectivity of anti-
cancer agents whilst the antibacterial chemotherapy is characterized by complete 
eradication of infection. The principal barrier to the effi cacy of anticancer therapy is 
the acquisition of natural (inherited) and acquired resistance [ 5 ,  9 ,  25 ]. Natural resis-
tance is the primary unresponsiveness of a tumor toward an antineoplastic drug 
whereas the acquired resistance is unresponsiveness of tumors that develop after con-
tinuous exposure to successful anticancer drug therapy. Importantly, the resistance to 
chemotherapy can be classifi ed as kinetic, biochemical, and pharmacological resis-
tance [ 12 ,  22 ,  25 ]. In kinetic resistance, only a few cells are in a plateau growth phase 
with a minor growth fraction which is frequently observed in many human tumors. 
The kinetic resistance can be overcome by minimizing the tumors bulk via surgery 
or radiotherapy, applying combinations of drugs that can infl uence the resting popu-
lations (G 0  cells), and scheduling of drugs in a way to avoid the phase escape or 
synchronizing cell populations and increasing tumor cell elimination. Unfortunately, 
the exact mechanism of biochemical resistance is not very clearly understood [ 5 ,  25 ]. 
However, the chief causes of biochemical resistance are supposed to be the incapa-
bility of the tumor to convert the drug into its active form and the upregulation of the 
tumor enzymatic repair systems that counteract the tumoricidal action. Moreover, 
biochemically resistant cells can reduce the uptake of drug, enhance the drug effl ux 
activity, alter the confi guration of the intracellular target, decrease intracellular acti-
vation, improve inactivation of the drug, or enhance the rate of repair of damaged 
DNA [ 22 – 25 ]. For instance, MDR termed as pleiotropic drug resistance is the devel-
opment of resistance during treatment with an anticancer agent that confers 
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resistance to that drug and other(s) of its class in addition to several other unrelated 
agents [ 12 ,  14 ,  25 ]. The third category of resistance, which is pharmacological resis-
tance, emerges from reduced tumor blood supply, erratic absorption, augmented 
excretion or catabolism, and drug interactions which eventually result in the ineffi -
cient systemic availability of the anticancer drugs [ 3 ,  5 ,  8 ,  12 ,  25 ]. Examples of 
pharmacologic resistance include inadequate transport of anticancer drugs into body 
tissues and tumor cells [ 12 ,  25 ]. In this context, an optimal concentration of an anti-
cancer agent in the brain tissue, which is effective against the tumor cell type, is 
essential to treat tumors of the central nervous system.  

10.3     Factors Accountable for MDR 

 Factors responsible for the MDR can be mainly divided into cellular factors and 
physiological factors [ 23 ]. Cellular factors include altered molecular targets, genetic 
defects like polymorphism and gene deletion, overexpression of effl ux pumps, 
reduced apoptosis, and increased drug metabolism. Physiological factors include 
cell–cell interaction, higher interstitial fl uid pressure, low pH environment, hypoxic 
region in the tumor core, irregular tumor vasculature, and the presence of cancer 
cells in areas diffi cult to penetrate [ 5 ,  8 ,  12 ,  22 – 25 ]. Most of these factors lead to 
the requirement of higher doses of chemotherapeutic agents, which demonstrate 
systemic toxicity [ 24 ]. 

10.3.1     Cellular Factors 

 Resistance to anticancer drugs can develop by several cellular mechanisms. The 
important contributing cellular factors include increased effl ux pumps activity, e.g., 
ATP-dependent transporters and/or reduced infl ux of drugs requiring intracellular 
carriers (or endocytosis). In cases where the infl ux/effl ux is unaffected, resistance 
can occur due to activation of detoxifying proteins like cytochrome P450 etc. 
Additionally, disruptions in the apoptotic machinery can also render cells resistant. 
Heterogeneity and mutations of cancer cells play an important role in all of these 
mechanisms [ 23 ]. Out of many possible mechanisms, those encountered frequently 
in the clinic and having a signifi cant impact on the outcome of chemotherapy are 
discussed below. 

10.3.1.1     ATP Binding Cassette (ABC) Transporters 

 The ABC transporter superfamily consists of several members subdivided into sev-
eral subfamilies based on their structure. ABC transporters are membrane proteins 
with a nucleotide binding domain (NBD) and a transmembrane domain (TBD) 
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which function to effl ux molecules out of cells against the concentration gradient by 
hydrolyzing ATP at the NBD [ 26 ,  27 ]. This leads to reduced intracellular concentra-
tion of a chemotherapeutic agent, thus requiring administration of higher doses 
[ 27 – 29 ]. Researchers have identifi ed various substrates for drug effl ux proteins of 
the ABC superfamily such as taxols, anthracyclines, mitoxantrone, topotecan, and 
etoposides [ 29 ,  30 ]. Among all the members of the ABC superfamily, ABCB1 
(MDR1), ABCC1 (MRP1), and ABCG2 (BCRP) are the most frequently overex-
pressed proteins in cancer cells and play a vital role in demonstrating the drug resis-
tant phenomenon [ 27 – 29 ,  31 ].  

10.3.1.2     Defective Apoptotic Machineries 

 Apoptosis is characterized by the process of development of cell membrane blebs, 
DNA condensation, and DNA fragmentation leading to cell death [ 32 ,  33 ]. Apoptosis 
plays a signifi cant role in the life of a cell and is mediated by proapoptotic and anti-
apoptotic molecules [ 34 ]. Two interlinked pathways have been identifi ed for apop-
tosis, i.e., the extrinsic pathway is activated by binding of ligands to cell surface 
receptors and the intrinsic pathway is activated by stimuli at mitochondria [ 35 ]. The 
extrinsic pathway is always caspase-dependent, whereas the intrinsic pathway may 
or may not be mediated by caspases. Due to the complex nature of the apoptotic 
machinery cancer cells have evolved several adaptations against apoptosis. Most 
common mechanisms include the upregulation of antiapoptotic proteins like Bcl-2, 
Bcl-XL, and Mcl-1 as well as the downregulation of Bcl-2 family proteins like bax 
all of which avoid apoptosis [ 36 ,  37 ]. Endogenously, the inhibitor of apoptosis 
(IAP) and the PI3K/Akt pathway are common mechanisms against apoptosis and 
leading to resistance. IAP is a family of proteins identifi ed as endogenous inhibitors 
of apoptosis whereas upregulation the PI3K/Akt pathway contributes to cell growth 
especially in breast cancer and non-small-cell lung cancer via NFκB upregulation 
and Bad downregulation [ 38 ]. Exogenously, upregulation of mutated death recep-
tors can also occur at the surface of resistant cancer cells. Apart from death recep-
tors, genetic mutation of the p53 genes and overexpression of p53 can also render 
cancer cells resistant to drugs like paclitaxel and cisplatin [ 39 ].  

10.3.1.3     Altered DNA Repair Pathways 

 There are numerous drugs, like alkylating agent, anthracycline analogues, and epi-
podophyllotoxin, which exert their anticancer action by causing direct or indirect 
DNA damage. Thus, DNA repair mechanisms serve as an important target for drug 
resistance. There are fi ve most common DNA repair mechanisms viz. reversion 
repair, base excision repair, nucleotide excision repair, mismatch repair, and double- 
strand break repair [ 40 ]. It is important to note that DNA damage caused by an 
alkylating agent is a direct substrate for reversion repair whereas the nucleotide 
excision repair is responsible for resistance to platinum-based compounds and 
alkylating agents [ 41 ].   
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10.3.2     Physiological Factors 

 The physiological factors that are primarily responsible for the MDR under investi-
gation are high interstitial fl uid pressure (IFP), hypoxia, and low extracellular pH 
(pHe) [ 42 ]. These factors are interrelated and considered to affect one another. 

10.3.2.1     Interstitial Fluid Pressure (IFP) 

 In normal tissue, pro-angiogenesis and anti-angiogenesis factors regulate the pro-
cess of blood vessel formation leading to effi cient vasculature which meets nutri-
tional and oxygen requirements. In case of tumor cells, this regulation of angiogenesis 
is lost and unorganized vasculature away from the cells is generated [ 43 ]. This fur-
ther causes leakage of protein from blood vessels into the interstitium leading to a 
rise in the interstitial fl uid pressure (IFP > 100 mm of Hg) [ 44 ]. The unorganized 
vasculature and high IFP obstruct the delivery of intravenously administered che-
motherapeutic agents [ 45 ]. The underlying mechanisms for obstruction to delivery 
of such drugs include decreased blood fl ow, transcapillary fl uid fl ow, and the con-
vective transport. Further, deep localization of cancer cells beyond blood vessels 
also makes it diffi cult for the delivery of drug to target cells [ 43 ].  

10.3.2.2     Hypoxia and Low Extracellular pH 

 Hypoxia is another important factor for drug resistance in cancer cells which occurs 
in more than 50 % of tumors [ 46 ]. As mentioned previously irregular blood vessels 
are formed in the cancer tissue which lack suffi cient oxygen supply whereas oxygen 
demand in cancer cells is more than normal cells, thus causing hypoxia. Hypoxia 
also develops due to deep localization of cancer cells. The mechanism of hypoxia 
can be classifi ed into three classes, i.e., perfusion limited oxygen delivery due to 
abnormality in microvessels, diffusion limited oxygen delivery due to altered diffu-
sion mechanism, and anemic hypoxia due to decline in oxygen carrying capacity of 
the blood [ 47 ]. Reduced oxygen availability at the cellular level in tumor tissue 
forces cells to rely on glycolysis for ATP supply. Furthermore, anaerobic respiration 
leads to production of high amounts of lactate and carbonic acid [ 48 ]. These acidic 
products accumulate in the tumor due to the absence of the lymphatic system and 
the decrease of extracellular pH to 5.8–7.2 [ 49 ]. Hypoxia-associated drug resistance 
can be categorized into four mechanisms. First, therapies that require oxygen to 
generate free radicals like reactive oxygen species (ROS), e.g., radiation therapy 
[ 50 ]. Second, drug that depend on partial pressure of oxygen, e.g., melphalan, bleo-
mycin, etoposide, etc. [ 51 ]. Third, induction of hypoxia-inducible factors (HIF1) 
resulting in the expression of vascular endothelial growth factor (VEGF), nitric 
oxide synthase (NOS), transforming growth factor beta (TGF-β), and interlukin-8 
and causing resistance to drugs, e.g., cisplatin and doxorubicin [ 52 ]. Under the 
harsh environment of anoxia, the cell cycle may get arrested in either the G1/G2 or 
the S phase as well as induces an increase in the DNA repair enzymes resulting in 
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resistance to the cycle-selective cytotoxic drugs (5-FU, paclitaxel) and to the 
 DNA- damaging agents (alkylating agents, cisplatin) [ 51 ]. Fourth, the most impor-
tant indirect effect of hypoxia is the induction of the ABC transporters described 
previously [ 53 ]. Additionally, the presence of acidic products of glycolysis also 
leads to a pH gradient which causes the “ion trapping” phenomenon, characterized 
by permeability difference between ionized and non-ionized forms of an anticancer 
drug. This mechanism is of particular importance for weakly basic drugs like doxo-
rubicin and vincristine which remain ionized and therefore trapped in the acidic 
extracellular environment [ 54 ]. This ion trapping is thus dependent on the pHe as 
well as the pKa of the drugs.   

10.3.3     Other Factors 

 Cancer cells have an extraordinary tendency to adapt to their environment, due to its 
survival and growth. Besides most commonly encountered phenomenon such as 
overexpression of effl ux transporter pumps and defective apoptotic machineries, 
numerous researches have shown other adaptive mechanisms responsible for the 
MDR. Recent fi nding demonstrated that overexpression of survivin was associated 
with increased tumor grade and its profound impact on inhibition of apoptosis 
makes it an interesting target to overcome the MDR phenomenon [ 55 ]. Further, 
mutations of folate transporters and tyrosine kinase have also been shown to be 
responsible for MDR [ 56 ,  57 ].   

10.4     Nanotechnology Overcome the Barrier of MDR 
in Cancer 

 In the current scenario, nanotechnology is explored profoundly in the active area of 
chemotherapeutics to overcome MDR and thereby improving drug delivery, toxicity 
profi le, and clinical effi cacy of anticancer drugs. The discovery of novel nanostruc-
tures leads to a better understanding of their potential as drug carriers. The patho-
physiology of tumor blood vessels is markedly different from that of normal 
blood vessels such that they exhibit rather a large fraction of proliferating endothe-
lial cells, augmented tortuosity, defi cit pericyte, and unusual basement membrane. 
Furthermore, lymphatic drainage is also impaired in tumors, which is attributable to 
a greater retention of extravasated macromolecules. Such a series of events is col-
lectively denoted as the “enhanced permeation and retention (EPR) effect” [ 12 ,  58 ]. 
Of interest, this effect favors the uptake of nanocarriers by accelerating the passive 
targeting in tumors. In contrast, active targeting implicates binding of nanocarriers 
to the receptors present on the surface of tumor cells or tumor blood vessels. In a 
noteworthy way, inconsistent tumor vasculature and impeded lymphatic fl ow gener-
ate a high interstitial fl uid pressure leading to an augmented hydrophilic ambience 
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that restricts the access of drugs to solid tumors [ 12 ]. In addition, the extracellular 
matrix of tumors, fi brillar collagen, and necrotic non-supporting regions are other 
signifi cant hindrances affecting the clinical effi cacy of anticancer agents [ 6 – 9 ]. 
In this regard, anti-angiogenics are considered to be promising agents for improving 
anticancer drug therapy by normalizing the blood fl ow in tumors and consequently 
minimizing the hypertensive interstitial condition [ 59 ]. More recently, the fi eld of 
nanoparticles is gaining a lot of consideration, essentially for its safety and effi cacy 
aspects. Therefore, different nano-delivery systems have been developed and evalu-
ated both in vitro and in vivo, as discussed herein. A variety of nanotechnology- 
based drug carriers (called as nanoparticles), which come from diverse classes based 
on their nature, have been investigated for chemotherapeutics delivery in MDR can-
cer. We illustrated them in family in Fig.  10.1  and a summary table (Table  10.1 ) is 
also given wherever in this article indicating the potential outcome researchers fi nd 
out while using nanoparticles for cancer targeting in MDR cases against free drug.

10.4.1        Vesicular Nanocarriers 

 Different vesicular nanocarriers like liposomes, micelles, and nanoemulsions have 
been utilized to overcome the MDR in cancer. These carriers have shown signifi cant 
contributions to overcome the limitations of tumor-associated MDR. 

  Fig. 10.1    Illustration showing different types of nanotechnology-based drug carriers (called as 
nanoparticles) that have been investigated for chemotherapeutics delivery in MDR cancer       
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10.4.1.1     Liposomes 

 Liposomes are vesicular structures having an aqueous core surrounded by a lipid 
bilayer shell. The basic method of their preparation comprises hydrating the mixture 
of natural or synthetic phospholipids, cholesterol, and tocopheryl acetate [ 1 ]. 
Liposomes encapsulate drugs either in an aqueous compartment or in the lipid 
bilayer depending on their nature. Passive targeting by the EPR effect is responsible 
for delivery of liposomes to cancer cells that necessitate leaky tumor vasculature 
[ 60 ]. Recently, many liposomal formulations and their advanced forms with target-
ing ligands, such as the mAb 2C5 with Doxorubicin and an anti-HER2 mAb with 
Paclitaxel, have been tested in the preclinical phase, while many others are undergo-
ing clinical trials [ 61 ,  62 ]. Additionally, long circulating liposomes are also being 
prepared by adding polyethylene glycol. Nevertheless, novel approaches of trig-
gered release of the drug once internalized have also been tried by investigators such 
as hyperthermia for example ThermoDOXO ®  which is currently in Phase III trials 
[ 60 ,  63 ,  64 ]. Interestingly, Mangala et al. developed a neutral DOPC (1,2-dioleoyl- 
sn-glycero-3-phosphatidylcholine) liposome-siRNA delivery system for siRNA-
dependent silencing of the cisplatin resistance transporter mRNA of ATP7B [ 65 ]. 
The fi ndings demonstrated this system to be highly effi cacious in vivo in reducing 
ATP7B expression, and thereby retarding tumor growth in conjunction with non-
encapsulated cisplatin. Such encouraging fi ndings favor the encapsulation of impor-
tant anticancer agents such as paclitaxel and Doxorubicin (DOXO) as DOPC 
liposome-siRNA delivery systems. Nevertheless, modulation of Pgp by liposomes 
marks another important mean of enhancing the therapeutic effi cacy of anticancer 
drugs. In this context, Riganti et al. designed an anionic liposomal formulation of 
DOXO (LipoDOX). The results indicated LipoDOX to be much more effective in 
resistant HT29-dx cells in comparison to free DOXO [ 66 ]. These authors suggested 
that the alteration in the normal functioning of P-gp by LipoDOX was attributable 
either to the interaction between liposomes and cell membrane that leads to a change 
in the composition of lipid and P-gp localization, or to the direct inhibition of 
ATPase activity. The multiple mechanisms of MDR demand the drug delivery sys-
tem to be effective through all possible MDR pathways. Therefore, Minko et al. 
formulated a multifaceted liposome system which comprised an anticancer agent- 
DOXO; an antisense oligonucleotides (ASOs) targeting MDR1 mRNA; and ASOs 
targeting BCL-2 mRNA [ 67 ]. It was demonstrated that the developed formulation 
was more toxic in vitro in resistant A2870/AD human ovarian carcinoma cells than 
free DOXO, DOXO liposomes, and DOXO liposomes with ASOs. Moreover, their 
study revealed that this complex liposomal formulation was internalized into the 
cancer cells both in vitro and in vivo and was able to penetrate deep inside the 
nucleus. Though the exact mechanisms were unidentifi ed, however, it was presumed 
that membrane fusion and endocytosis might be the possible mechanisms of inter-
nalization of the liposome into the tumor cells. Zhang et al. investigated a dual- 
functionalized liposome of mitoxantrone utilizing synthetic polymeric 
nano-biomaterial (Gal-P123) for their effi ciency in targeting cancer cells and rever-
sal of MDR in hepatocellular carcinoma (HCC) cells [ 68 ]. Their fi ndings 
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demonstrated a signifi cantly increased cytotoxicity by 2.3-fold in Huh-7 cells and 
14.9-fold enhanced intracellular accumulation in MDCKII/BCRP cells by means of 
mitoxantrone incorporated liposome (MX-LPG) in comparison to free mitoxan-
trone. The results of the pharmacokinetic study in rats confi rmed a markedly 
increased circulation time along with a signifi cantly improved bioavailability of 
mitoxantrone via the liposome. In addition to this, MX-LPG resulted in improved 
antitumor activity and enhanced selectivity in BALB/c mice bearing orthotopic 
HCC xenograft tumors. The above investigators suggested that a combined effect of 
active targeting and chemosensitization by Gal-P123 were the main contributors for 
the increased suppression of tumor growth by MX-LPG. In another study, 
Kobayashia et al. studied the potential of transferrin receptor (Tf-R)-targeted lipo-
somes in overcoming MDR by by-passing P-gp-mediated drug effl ux via delivery 
of DOXO into MDR cells (SBC-3/ADM) through Tf-R-mediated endocytosis [ 69 ]. 
They formulated four types of liposomes which include untargeted and Tf-R-
targeted using either egg- PC/cholesterol (EPC) or hydrogenated egg PC/choles-
terol. The results demonstrated signifi cant enhanced cytotoxicity by 3.5-fold via 
targeted EPC-liposome in comparison to free DOXO. In addition, there were 
increased intracellular and intranuclear DOXO concentration by targeted liposomes 
in both drug-sensitive and MDR cells. They hypothesized that the targeted lipo-
somes rapidly got internalized via Tf-R-mediated endocytosis following a subse-
quent release of their contents into the cytoplasm which was facilitated by the higher 
fl uidity of the EPC-based liposomes. It was concluded that Tf-R-targeted EPC-
liposomes possess a great potential as a drug delivery system to circumvent P-gp-
mediated MDR of tumors.  

10.4.1.2    Polymeric Micelles 

 The polymeric micelles represent a potential nanocarrier system for effi cient deliv-
ery of anticancer agents. In the early 1990s, Kataoka’s and associates designed 
doxorubicin-conjugated block copolymer micelles which resulted in benchmark 
outcomes and compelled a great deal of interest of researchers in this area [ 70 ,  71 ]. 
A polymeric micelle is principally formed when the hydrophobic part of a block 
copolymer is driven to the interior which can encapsulate a poorly soluble drug, 
whereas the hydrophilic portion of the block copolymer faces outward to form a 
shell. Currently, numerous modifi ed pendant polymeric micelles targeting antican-
cer agents are in preclinical and clinical phases of development. In one report, Yang 
et al. formulated folate-functionalized polymeric micelles from diblock copolymers 
of poly (ethylene glycol) (PEG) and biodegradable poly ( ε -caprolactone) (PCL), 
co-encapsulating FG020326 and vincristine. They tested this combination for P-gp 
blocking of the imidazole derivative, FG020326 and vincristine in resistant KB-V200 
cells [ 72 ]. The results demonstrated approximately fi vefold higher re- sensitization 
of KB-V200 cells in vitro by folate-functionalized FG020326-loaded micelles 
than their folate-free counterparts. Further, the prepared folate- functionalized 
micelles were shown to obstruct the P-gp dependent-rhodamine 123 effl uxes. 
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Further, Lee et al. co-administered human TNF-related apoptosis inducing 
ligand (Apo2L/TRAIL) and self-assembled micelles of DOXO with a cationic 
copolymer of poly{ N -methyldietheneaminesebacate)-co-[(cholesteryloxocarbonyl-
amido ethyl) methyl bis(ethylene) ammonium bromide]sebacate} (P(MDS-co- 
CES)) [ 73 ]. The co-administration of DOXO and TRAIL in P(MDS-co-CES) 
micelles resulted in increased cytotoxicity against resistant tumor cells.  

10.4.1.3    Nanoemulsion 

 Nanoemulsions are principally oil-in-water dispersion with fi ne oil droplets of 
10–200 nm diameter evenly distributed in a continuous aqueous phase which is 
stabilized with surfactants and co-surfactants. Many clinically important anticancer 
drugs such as taxanes (Paclitaxel, Docetaxel), etoposides, tamoxifen, and dacarba-
zine with highly lipophilic nature have been successfully delivered using nanoemul-
sions as carrier system [ 74 ]. 

 Ganta and Amiji conducted a study to investigate the effect of co-administration 
of paclitaxel and curcumin on overall therapeutic effi cacy. They selected curcumin 
as it inhibits NFκB and causes downregulation of ABC transporters in wild-type 
SKOV3 and resistant SKOV3 TR  human ovarian adenocarcinoma cells [ 75 ]. They 
formulated a nanoemulsion by incorporating paclitaxel and curcumin in fl axseed 
oil. Their fi ndings demonstrated an effi cient delivery of encapsulated drugs within 
SKOV3 and SKOV3 TR  cells. In addition, co-administration of curcumin resulted in 
inhibition of NFκB activity and downregulation of P-glycoprotein expression in 
resistant cells. It was concluded that the combined effect of paclitaxel and curcumin 
therapy exclusively by means of their nanoemulsion formulations signifi cantly 
improved the cytotoxicity in wild-type and resistant cells by stimulating apoptosis. 
Such skillful co-administration of therapeutic agents seems to be promising in 
future endeavors of curing refractory diseases particularly ovarian cancer.   

10.4.2     Particulate Nanocarriers 

 Various particulate nanocarriers such as polymeric nanoparticles, solid lipid nanopar-
ticles, inorganic nanoparticles, polymeric conjugates, carbon nanotubes, and den-
drimers have been widely explored to overcome the MDR in cancer. These carriers 
have been found to be very effi cacious to overcome the limitations of MDR in tumors. 

10.4.2.1    Polymeric Nanoparticles 

 Polymeric nanoparticles are extensively explored nowadays for their remarkable 
potential as a drug delivery system for anticancer compounds. They are prepared 
either by encapsulation, dissolution, and entrapment of the drug in biodegradable 
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polymers or by embedding the drug in polymeric matrix. The binding of drugs to 
hydrophilic polymers increases their circulation time and minimizes toxicity to nor-
mal tissues [ 15 ]. Therefore, long circulating nanoparticles are more frequently for-
mulated using PEG which avoids opsonization. Furthermore, advanced forms of 
nanoparticles are being developed with the use of targeting ligands and pH-sensitive 
or hypothermic polymer conjugates. Presently, polylactide and poly (lactideco- 
glycolide) (PLGA) are the most widely used biodegradable polymers for synthesis 
of FDA-approved nanomedicines, while many more are undergoing clinical trials 
[ 76 ]. Koziara et al. have investigated the in vivo effi cacy of paclitaxel (PAX) NPs in 
a PAX-resistant human colorectal tumor HCT-15 xenograft model [ 77 ]. Their fi nd-
ings revealed a marked inhibition of tumor growth in mice treated with PAX-NPs in 
contrast to free PAX by overcoming PAX resistance and the antiangiogenic effect. 
In another study, Yang et al. formulated chitosan NPs containing shRNA targeting 
MDR1 which showed signifi cant reversal of paclitaxel resistance in A2780/TS 
cells, in a time-dependent manner [ 78 ]. These NPs were not carrying the cytotoxic 
drug paclitaxel. Therefore, upcoming “future generation” of these chitosan NPs 
integrating paclitaxel may result in a synergistic antitumor activity. 

 Susa et al. have designed stearylamine-modifi ed dextran nanoparticles of DOXO 
which resulted in markedly increased accumulation of DOXO in the nucleus of 
resistant osteosarcoma cells in contrast to free DOXO [ 79 ]. The study demonstrated 
that fl uorescence of free DOXO was confi ned to the cytoplasm in resistant cells, 
whereas nanoparticle-loaded DOXO fl uorescence was in the nucleus of resistant 
cells. These fi ndings suggested that DOXO was able to get into the nucleus of resis-
tant cells via its incorporation into nanoparticle formulations. However the mecha-
nism behind this fi nding is not clearly understood; it was assumed that minimization 
of P-gp effl ux might be the reason for enhanced accumulation of DOXO nanopar-
ticles in resistant cells. In another study, Misra et al. developed PLGA nanoparticles 
by co-incorporating DOXO and curcumin [ 80 ]. The integration of curcumin in 
nanoparticles facilitated the retention of DOXO in the nucleus in addition to down-
regulating the expression of P-gp and BCL-2 in K562 cells. This co-incorporation 
of curcumin in nanoparticles formulations of DOXO resulted in better in vitro cyto-
toxicity in comparison to DOXO nanoparticles. Moreover, Lei formulated HER2 
antibody-conjugated DOXO-loaded PLGA nanoparticles and compared their cel-
lular uptake and cytotoxicity to free DOXO and non-targeted nanoparticles in resis-
tant ovarian SKOV-3 and uterine MES-SA/Dx5 cells [ 81 ]. The results revealed 
increased cellular uptake of targeted nanoparticles as compared to free DOXO and 
non-targeted nanoparticles in SKOV-3 cells. It was concluded that receptor- mediated 
endocytosis was the chief mechanism for the enhanced uptake of targeted PLGA 
NPs. Further, Shieh et al. designed a complex form of DOXO-loaded nanoparticles 
in which they co-encapsulated DOXO and a photosensitizer in 4-armedporphyrin- 
polylactide nanoparticles and coated the surface of these nanoparticles with  d -α- 
tocopheryl  polyethyleneglycol 1000 succinate (TPGS) which is a potential P-gp 
inhibitor [ 82 ]. The fi ndings indicated that such a combination of agents exhibited a 
marked synergistic effect that resulted in enhanced transport of DOXO to the 
nucleus in resistant MCF-7/ADR cells.  
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10.4.2.2    Dendrimers 

 Dendrimers represent ideal candidates that link molecular chemistry to polymer 
science [ 83 ]. They possess distinct structures characterized by a central core, an 
inner dendritic structure of highly branched polymers, and an outer surface of mul-
tivalent functional groups. The functional groups present on their surface can incor-
porate charged polar compounds by electrostatic interaction while their hydrophobic 
interior is able to effi ciently lodge uncharged, nonpolar compounds. Due to the 
presence of both hydrophobic and hydrophilic sections in their structures, a variety 
of drug molecules can be successfully encapsulated in dendrimers based on their 
solubility criterion. Nevertheless, the exterior functional groups enable modulated 
drug release which is governed by a specifi c pH, specifi c enzymes, or by targeting 
moieties, such as the RGD peptide or mAbs. In the area of chemotherapeutics, many 
hydrophobic drugs such as Doxorubicin and Paclitaxel are frequently targeted as 
dendrimers [ 84 ]. Several clinical trials are undergoing to deliver Paclitaxel using 
amphiphilic diblock copolymer forming micelles for treating breast, non-small-cell 
lung cancer and advanced pancreatic cancer [ 85 ]. Lee et al. designed DOXO den-
drimers through hydrazone linkage [ 86 ]. They demonstrated that DOXO-dendrimer 
exhibited a controlled drug-loading via multiple attachment sites, and modulated 
solubility profi le through PEGylation along with characteristic drug release which 
is infl uenced by pH-sensitive hydrazone dendrimer linkages. The developed polyes-
ter dendrimer–PEO–doxorubicin conjugate signifi cantly blocked the growth of 
DOXO-insensitive C-26 tumor. The cell culture studies indicated that DOXO- 
dendrimers were more than 10 times less toxic than free DOXO against C-26 colon 
carcinoma cells. Further, in vivo studies in tumor bearing mice, via intravenous 
delivery, showed ninefold higher uptake of DOXO-dendrimers by tumor cells in 
comparison to free DOXO with complete tumor regression.  

10.4.2.3    Cyclodextrin Nanoparticles 

 Qiu and coworkers developed advanced cyclodextrin-based formulation of DOXO 
(sPEL/CD) for which they reacted methoxy polyethylene glycol and poly lactic acid 
to obtain linear mPEG-PLA which entrenched like the arms of core β-cyclodextrin 
[ 87 ]. This delivery system was found to exhibit higher drug loading and entrapment 
effi ciency of 18 % and 84 %, respectively, attributable to the presence of poly lactic 
acid which increased the hydrophobic interaction between the polymer and DOXO 
along with allowing adequate lodging of DOXO by enlarging β-cyclodextrin inter 
spaces. Their fi ndings revealed that there was a threefold decrease in IC50 value by 
DOXO-loaded sPEL/CD as compared to free DOXO in resistant MCF-7/ADR cells. 
They concluded that the mPEG-PLA block segment of sPEL/CD complex was hav-
ing identical activities as pluronic in averting MDR in cancer cells owing to their 
contrasting structural resemblance [ 88 ]. Moreover, it was presumed that alteration 
of the normal functioning of P-gp by polymers might also be a probable mechanism 
of the reversal of MDR by sPEL/CD.  
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10.4.2.4    Gold Nanoparticles 

 Gold nanoparticles (Au-NPs) are being extensively implicated for biomedical imag-
ing and biosensing. Their biocompatibility, high stability, and tissue permeability 
made them a promising carrier system for effi cacious delivery of anticancer drugs. 
The anticancer agents can be formulated ad Au-NPs by physical adsorption, ionic 
bonding, and/or covalent bonding [ 89 ,  90 ]. Au-NPs can be also utilized for delivery 
of small molecules such as proteins, DNA, or RNA. The gold core of these NPs does 
not exhibit any toxicity. The photo-physical properties of Au-NPs are considered to 
infl uence the release of loaded drugs from the conjugate. In order to improve the 
stability and prolong the circulation time, PEG and/or other targeting moieties can be 
attached onto the surface of these metallic nanoparticles similar to polymeric 
nanoparticles [ 91 ]. More recently, TNFα-integrated colloidal gold is used for treat-
ing advanced solid tumors; for example, sarcomas and melanomas are under phase I 
clinical trials [ 92 ]. Gu et al. prepared Au-NPs of DOXO by integration of DOXO in 
PEGylated Au-NPs via a disulfi de bond (Au-PEG-SS-DOXO), which resulted in 
increased intracellular drug uptake in contrast to free DOXO in resistant HepG2-R 
cells, as shown by confocal imaging and plasma mass spectrometry (ICP-MS) [ 93 ]. 
Of interest, it was observed that DOXO uptake was confi ned to the cytoplasm only 
which refl ected that the cytotoxic activity of Au-PEG-SS-DOXO was not due to its 
interaction with nuclear DNA. The investigators hypothesized that NP caused an 
MDR reversal via alteration of cell membrane properties and by interrupting with the 
normal functioning of mitochondria resulting in cell apoptosis. Wang et al. designed 
DOXO Au-NPs using a hydrazone linker (DOXO-Au-Hyd-NPs). The study demon-
strated uptake of nanoparticles via active caveolae- and clathrin- mediated endocyto-
sis and subsequent release of DOXO from the nanoparticles to the cytoplasm and the 
nucleus [ 94 ]. The DOXO-Au-Hyd-NPs resulted in a markedly increased DOXO 
intracellular uptake and minimum effl ux, in addition to a signifi cantly enhanced 
cytotoxicity in comparison to free DOXO in resistant MCF-7/ADR cells.  

10.4.2.5    Magnetic Nanoparticle 

 The magnetic nanoparticles are formulated by either encapsulating drug into mag-
netic micro/nanosphere or implanting as a magnetically active disc. In magnetic 
targeting, a strong magnetic fi eld is applied in the tumor area and controls the release 
of drug in the blood circulation. Various magnetic materials with a wide range of 
magnetic properties are available such as magnetite, iron, nickel, cobalt, neodymium-
iron- boron, and samarium-cobalt. Moreover, there are liquids which get intensely 
magnetized in the presence of a magnetic fi eld known as ferrofl uids. Ferrofl uids 
are basically colloidal suspensions of nano-dimension ferromagnetic particles. 
At present, the most frequently applied magnetic NPs are of iron oxide owing to 
its biodegradability, biocompatibility, superparamagnetic effects, and ability to 
serve as a contrast agent in MRI. These nanoparticles, after getting internalized 
within the lysosomes of RES cells dissociate to ferritin and/or hemosiderin [ 95 ]. 
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Currently, superparamagnetic iron oxide (Fe3O4) nanoparticles which involve local 
hyperthermia or oscillation strategies to deliver conjugated drugs are being pro-
foundly investigated. Nevertheless magnetic fi elds can also be utilized for targeted 
delivery of drugs inside the body. However, due to the acute in vivo toxicity, their 
therapeutic potential is not explored to the fullest [ 96 ]. Though, they are compre-
hensively investigated in fi elds of imaging and theranostics. Chen et al. studied the 
role of Fe3O4 magnetic nanoparticles in Daunorubicin-mediated prevention of 
MDR in vitro, in sensitive and resistant K562 cells [ 97 ]. The coating of tetraheptyl-
ammonium (THA) on the NPs was purposely done to improve the interaction 
between NPs and lipid portion of cell membrane. The study fi ndings revealed the 
signifi cant interaction of THA-coated Fe3O4 NPs with the cell membrane and a 
substantial increment of the uptake of Daunorubicin in resistant K562 cells. The 
control formulation composed of comparable size of THA capped Ni magnetic 
nanoparticles did not have much infl uence on Daunorubicin cellular uptake in sensi-
tive and resistant cells, which suggests the exclusivity of THA-capped Fe3O4 
nanoparticles in accelerating the Daunorubicin uptake.  

10.4.2.6    Silica Nanoparticles 

 The use of inorganic carriers in nanoformulation for delivery of anticancer agents is 
expanding nowadays. One of the most important is silica which is well utilized as a 
nonmetallic inorganic carrier in chemotherapeutics. Huang et al. designed DOXO 
silica nanoparticles (MNSP) by covalently linking DOXO in mesoporous silica by 
hydrazone bonding (DOXO-Hyd-MNSP) [ 98 ]. The prepared DOXO-Hyd-MNSP 
revealed considerable apoptosis in vitro and in vivo in resistant MES-SA/Dx-5 cells 
in contrast to controls. They proposed that circumventing of the P-gp effl ux was the 
reason behind the enhanced intracellular uptake of MNSP through endocytosis. 
In another study, Meng et al. formulated MNSP by co-incorporating DOXO and 
MDR1 siRNA [ 99 ]. They activated MNSP surface with a phosphonate group which 
facilitated DOXO binding within the MNSP by electrostatic action and the coating 
of cationic polyethylenimine (PEI) on this functional group aided complexation 
with anionic MDR1 siRNA. The co-delivery of DOXO and MDR1 siRNA by means 
of MNSP notably improved intracellular and intranuclear DOXO uptakes than free 
DOXO or DOXO MNSP without siRNA in resistant KB-V1 cells. They hypothe-
sized that the release of DOXO from lysosomes was through a proton sponge mech-
anism as evident by inhibition of DOXO release and access to the nucleus by 
addition of NH 4 Cl. Further, Shen et al. also formulated DOXO MNSP which exhib-
ited remarkably eight times greater potency and signifi cantly increased intracellular 
and intranuclear concentrations of DOXO in comparison to free DOXO in vitro 
in resistant MCF-7/ADR cells [ 100 ]. Authors claimed that the fi ndings estab-
lished for the fi rst time that MNSP inhibited P-gp expression by itself owing to 
its capability of downregulating P-gp levels. It was proposed that intracellular 
uptake of MNSP was through micropinocytosis and after getting entrapped 
inside the cell, MNSP was able to circumvent P-gp due to its extremely large size. 
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In a more comprehensive study, Chen et al. co-engineered DOXO and BCL-2 
siRNA as MNSP by entrapment of DOXO inside MNSP pores and complexation 
of BCL-2 siRNA with modifi ed polyamidoamine dendrimers of MNSP [ 101 ]. 
The study fi ndings revealed an excellent 132-fold increase in cytotoxicity by 
MNSPs in contrast to free DOXO in resistant A2780/AD human ovarian cancer 
cells. It was suggested that suppression of BCL-2 mRNA and perinuclear localiza-
tion of DOXO by means of MNSP possibly resulted in such noticeably improved 
antitumor effi cacy.  

10.4.2.7    Carbon-Based Nanoparticles (Carbon Nanotube) 

 Carbon nanotubes are allotropes of carbon and members fullerenes family [ 102 ]. 
Fundamentally, they are thin sheets of benzene ring carbons evenly rolled to form a 
smooth, seamless rod-like tubular structure. They exhibit a characteristic feature of 
“needle-like penetration” while entering into the cells and subsequently delivering 
molecules into the cytoplasm. They possess very large surface area offering abundant 
attachment sites targeting ligands along with an interior void for incorporating thera-
peutic or diagnostic agents. Interestingly, these carbon nanotubes have electrical and 
thermal conductivity, which may be advantageous in chemotherapeutics for instance 
thermal ablations. The critical parameters in designing carbon nanotubes are their 
length and diameter which also infl uence infl ammogenic effect. Recent strategies in 
context of nanotubes comprise the integration of important anticancer drugs such as 
Doxorubicin and Paclitaxel, nucleic acids including antisense oligonucleotides and 
SiRNAs [ 103 ]. Li et al. have designed DOXO carbon nanotubes by linking a P-gp 
antibody onto functionalized carbon nanotubes by a diimide- activated amidation 
reaction followed by loading DOXO through physical adsorption [ 104 ]. This physi-
cal adsorption of DOXO in nanotubes kept the molecular integrity intact by prevent-
ing chemical bonding. Moreover, modifi ed DOXO release from nanotubes was 
observed while exposure of DOXO nanotubes was under near-infrared radiation. 
They suggested that the controlled and sustained release of DOXO via near-infrared 
radiation and specifi c P-gp targeting were major contributors in addressing MDR in 
resistant human leukemia K562R cells. Further, it was concluded that coupling of the 
P-gp antibody on nanotubes offers enormous stereo hindrance for P-gp recognition 
of DOXO which resulted in inhibition of its P-gp- mediated effl ux.  

10.4.2.8    Solid Lipid Nanoparticles (SLNs) 

 Currently, SLNs have gained huge notice for delivery of drugs, particularly poorly 
water soluble drug candidates. They offer improved properties by combining the 
benefi ts of liposomes, NPs, and fatty emulsions. They are usually prepared by 
 high- pressure homogenization or microemulsifi cation techniques whereby the drug 
is effi ciently entrapped in a lipid matrix [ 105 ]. SLNs overcome the general limita-
tions of polymeric systems by exhibiting low toxicity due to the presence of 
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biodegradable lipid, and their extremely small size which facilitate circumventing 
of the RES. Kang et al. formulated DOXO-loaded SLNs using glycerylcaprate 
(Capmul MCM C10) as the lipid phase, polyethylene glycol 660 hydroxystearate 
(Solutol HS15) as the surfactant, and curdlan as the shell forming material [ 105 ,  106 ]. 
The developed DOXO SLNs showed 17.1- and 21.6-fold increased cellular uptake 
at 1 h and 2 h, respectively. In addition, the was a higher apoptotic cell death as 
assayed by crystal violet staining, in comparison to free DOXO in resistant 
MCF-7/ADR cells. Moreover, the SLNs did not produce hemolysis in human 
erythrocytes which confi rmed their safety. They proposed that DOXO SLNs can 
potentially overcome MDR. In another study, Shuhendler et al. prepared a polymer-
lipid hybrid SLN by co-incorporating DOXO and mitomycin C using myristic 
acid, HPESO, pluronic F68, PEG100SA, and PEG40SA [ 107 ]. The developed 
SLNs showed 20- to 30-fold increased toxicity in resistant MB435/LCC6/MDR1 
cells than free DOXO.  

10.4.2.9    Polymeric Nanoconjugates 

 The hydrophilic polymers conjugated to proteins and anticancer drugs are one of the 
most extensively explored approaches for drug delivery which establishes polymer 
therapeutics as one of the fi rst classes of anticancer nanomedicine. The prospects of 
using more sophisticated polymer-based vectors in chemotherapeutics are expand-
ing day by day [ 108 ]. The protein drugs conjugation with synthetic polymers, pre-
dominantly PEG, by covalent linkage enhance their residence in plasma, decrease 
protein immunogenicity, and widen their therapeutic index. Nowadays, many 
PEGylated enzymes such as  L -asparaginase and cytokines that include interferon-α 
and granulocyte colony-stimulating factor are being utilized very frequently. 
Nevertheless, polymer conjugation plays a crucial role in anticancer drug delivery 
in terms of alteration of the biodistribution of low-molecular-weight drugs, facilita-
tion of tumor-specifi c targeting with minimization of toxicity by avoiding unspe-
cifi c passive delivery. Polymeric conjugates can be delivered either via passive 
targeting by the enhanced permeability for lysosomotropic delivery following the 
EPR effect or actively by binding cell-specifi c ligand for receptor-mediated target-
ing. One such example of polymeric conjugates in chemotherapeutics includes 
polyglutamic acid–paclitaxel which is undergoing phase III trials for non-small-cell 
lung cancer in females. At present, novel approaches in the fi eld of polymeric con-
jugates make it promising for drug delivery systems against new molecular targets 
(e.g., anti-angiogenics), and the co-delivery of polymer conjugates with low-
molecular- weight anticancer drugs, tailor-made prodrugs, or radiotherapy all of 
which have potential prospects for success. Furthermore, the polymeric conjugates 
expand therapeutic options for delivery of combination of drugs from a single car-
rier; for instance, the combination of endocrine therapy with chemotherapy in breast 
cancer demonstrated its great preclinical potential. The linear architecture of poly-
mers has been used clinically so far. The new hyperbranched dendrimers and den-
dritic polymer architectures are also being introduced with the emerging principles 
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for the engineering of polymer therapeutics. However, establishing the safety of 
new polymers, mainly in terms of general toxicity, immunogenicity, and metabolic 
fate before its clinical evaluation, is very crucial. In a study,   Sirova M     et al. investi-
gated the in vivo effi cacy and safety of HPMA-based copolymers of DOXO through 
a spacer containing pH-sensitive linkage in murine tumor models bearing T cell 
lymphoma EL4 or B cell lymphoma 38C13 [ 109 ]. Their fi ndings revealed that con-
jugates with 10–13 % weight of bound DOXO produced remarkable antitumor 
effects. However, free DOXO (4.6 % relative to total drug content) did not have any 
infl uence on the effi cacy of tumors and had acute toxicity. The results confi rmed 
complete cure of mice and development of specifi c antitumor resistance on regular 
treatment-dependent basis via conjugates. Further, there were no reports of myelo-
suppression or organ damage.   

10.4.3     pH-Sensitive Nanocarriers 

 Drug delivery via pH-sensitive nanocarriers represents an active targeting approach 
leading to higher accumulation of these vehicles in non-diseased cells attributable 
to basal expression of antigens, carbohydrates, and receptors. As the name suggests, 
these nanocarriers exhibit stimuli sensitive intracellular release of drug. In stimulus- 
responsive drug delivery, drug release is governed by stimuli such as pH. These 
nanocarriers are likely to have benefi tting outcomes in MDR reversal as well. 
An extensive work has been done in exploiting the mechanism to overcome effl ux- 
dependent MDR via acidic pH activation. The probable mechanisms as reported in 
this context include disruption of the endosomal membrane and burst release of 
nanocarrier-loaded drugs into the cytoplasm [ 110 ]. Thus, a pH difference between 
the extracellular (not < 5.7) and lysosomal milieus (not > 5.4) can be explored to 
design a specifi c pH-responsive drug release nanocarrier system targeting lyso-
somal instead of endosomal compartments, and thus avoiding undesirable drug 
release in the tumor stroma [ 111 ,  112 ]. Therefore, it is extremely important to 
design lysosomal pH-sensitive pKb of polymers sensitive to accomplish the precise 
pH-sensitive drug release. The stability of these nanocarriers in slightly acidic envi-
ronment such as the extracellular tumor stroma is also important. In order to trigger 
drug release, these nanocarriers should be suffi ciently sensitive to structural trans-
formations and solubility changes in the more acidic lysosomal compartments. 
Nevertheless, the pH-responsive polymers cause disruption of endosomal mem-
branes most probably by proton absorption and by interacting with these mem-
branes [ 113 ,  114 ]. The proton absorption leads to osmotic swelling and rupturing of 
the membranes. The interaction of nanocarriers with endosomal membranes gener-
ates defects in them by creating pores or channels in lipid membranes. For instance, 
in the acidic milieu of endosomes/lysosomes, Doxorubicin (DOXO) immediately 
got protonated and turned hydrophilic and positively charged. This water soluble 
charged DOXO was unable to get across the endosomal/lysosomal membrane, and 
thus became entrapped there. The similar phenomenon accounted for resistant 
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cancer cells which sequester cytosolic DOXO and formed the basis of the proposed 
protonation, sequestration, and secretion (PSS) model. The PSS model possibly 
explains the sensitivity of some tumor cells and resistance of MDR cells toward 
weakly basic chemotherapeutic drugs. Therefore, DOXO-incorporated nanoparti-
cles must escape the endosome/lysosome membranes by causing their intact 
disruption. 

   Lee ES     et al. engineered pH-sensitive polymeric micelles of Doxorubicin target-
ing resistant solid tumors [ 113 ]. The surface of these DOXO-loaded pH-sensitive 
micelles was coated with folate (PHSM/f). PHSM/f were designed using a mixture of 
two block copolymers of poly ( L -histidine)- b -PEG-folate (75 wt.%) and poly( L - lactic  
acid)- b -PEG-folate (25 wt.%). The results demonstrated greater than 90 % cytotox-
icity in DOXO resistant MCF-7 (MCF-7/DOXO R ) via PHSM/f. They presumed that 
a series of events lead to enhanced cytotoxicity including active internalization of 
PHSM/f through folate-receptor-mediated endocytosis, ionization of His residues 
resulting in micelle destabilization, and disruption of endosomal membranes. These 
were the possible reasons behind circumventing P-gp effl ux and sequestration of 
DOXO in acidic intracellular compartments which resulted in increased cytotoxic-
ity. Further, tumor regression evaluation in mice bearing s.c. MCF-7 or MCF-7/
DOXO R  xenografts demonstrated substantial reduction in tumor volumes of mice 
administered with PHSM/f in comparison to free DOXO or identical micelles for-
mulation without folate (PHSM). In addition, the accumulation of PHSM/f DOXO 
was 20 times greater in solid tumors as compared to free DOXO. The study con-
cluded that PHSM/f possesses potential as a carrier system for treating multidrug 
resistant tumors. Similarly,   He Q     et al. formulated pH-responsive nano- multidrug 
delivery systems via in situ co-self-assembly of DOXO, surfactant micelles-CTAB 
(chemosensitizer), and silica. They designated these drugs- surfactant micelles-
co-loaded mesoporous silica nanoparticles as  DOXO-CTAB- MSNs [ 115 ]. The 
developed nano-multidrug delivery systems DOXO-CTAB-MSNs showed extremely 
precise pH-responsive drug release both in vitro and in vivo and signifi cant anticancer 
and overcoming MDR. The mechanism of overcoming MDR was demonstrated to 
be a synergistic cell cycle arrest/apoptosis-inducing effect as a consequence of the 
chemosensitization property of the surfactant CTAB. The results showed nano-
multidrug delivery systems to be highly effective in overcoming MDR in cancer via 
a pH-responsive controlled drug release. 

 In another study,   Kim D     et al. have evaluated the DOXO-loaded second genera-
tion of pH-sensitive micelles composed of poly( L -histidine- co - L -phenylalanine 
(16 mol%))(MW: 5 K)- b -PEG(MW: 2 K) and poly( L -lactic acid)(MW: 3 K)- b - 
PEG (MW: 2 K)-folate (80/20 wt/wt%) for early endosomal pH targeting (pH 6.0) 
using in vivo MDR ovarian tumor-xenografted mouse models [ 116 ]. Their fi ndings 
demonstrated prolonged circulation of the drug carrier, higher tumor-selective accu-
mulation, as well as an increased intracellular drug delivery. Moreover, the prepared 
micelle formulation successfully suppressed the growth of existing MDR tumors in 
mice. They concluded that micelle formulation was better than its fi rst generation 
formulation targeting pH 6.8 and the folate receptor.   
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10.5     Future Outlook and Conclusive Remarks 

 Nanotechnology-based chemotherapeutic targeting approaches are gaining much 
interest in cancer drug therapy more particularly in multidrug resistant cases. Poorly 
vascularized tumor cells/tissues is one of the main noncellular factor for drug resis-
tance that easily can be overcome by passive targeting by cancer nanomedicines of 
sizes less than 200 nm and have the characteristics of long circulation. Doxil ® , a 
doxorubicin-loaded long circulating liposome used in clinical practice, is the proof 
of concept for this principle. Furthermore, the high concentration of chemothera-
peutics can be attained by the active mean of targeting or the combination of active 
and passive targeting simultaneously by functionalizing the nanocarrier of a size 
less than 200 nm for the overexpressed targets (e.g., P-gp effl ux transporter, drug- 
resistance proteins, HER2, Vasoactive intestinal peptide in breast cancer, etc.) in the 
cancerous cells. We have summarized diverse nanotechnology-based formulations 
in different stages of clinical development for cancer therapy, theranostics, and 
diagnostics in our recently published review [ 1 ]. Ongoing research and clinical sta-
tus clearly indicate that applying nanotechnology for therapeutic delivery in cancer 
is very benefi cial and has excellent future potential while dealing with MDR. 

 Recently, researchers are trying to explore multi-targeting nanosystems that may 
have four important components in one: (1) a selective targeting ligand, (2) a chemo-
sensitizer/effl ux pump inhibitor/siRNA oligonucleotide that can overcome drug resis-
tance including the suppression of resistance gene, (3) a small molecule or biological 
anticancer drug or self-therapeutic, and (4) an imaging probe that can facilitate tumor 
diagnostics along with chemotherapy. Such a complex nanosystem (we can say; tetra-
theranostic nanomedicines) could be an excellent nanoapproach for MDR-resistant 
cancer. However, the development, stability, reproducibility, and in vivo performance 
of such a complex system remain a concern. Our view is that for the effective and 
unidirectional irreversible killing of MDR cancer cells, nanotechnology should be 
more focused (along with the above established approaches) as follows:

    1.    Targeting the communication between cancer cells with their microenvironment 
and their supporting stroma and/or vasculature.   

   2.    In case of B-cells-based malignances which are in most of the cases unaffected 
by the therapy, targeting of the pathways between the malignant B-cells and their 
stroma is a good approach for therapy.   

   3.    Another important therapeutic interest is to target the cancer stem cells that have 
the property of self-renewal and initiation of tumor. These stem cells are nor-
mally resistant to chemotherapy and radiotherapy.     

 Overall, nanotechnology is in a distinguishing status to transform cancer chemo-
therapy and diagnosis to produce a new generation of cancer therapeutics/theranos-
tics (categorized as nanomedicines) with high sensitivity and precision for cancerous 
cells, and thus leading to overcome the MDR and reduce the conventional 
therapeutics- associated predictable toxicity.     
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    Chapter 11   
 Drugs Affecting Epigenetic Modifi cations 
of ABC Transporters for Drug Resistance 

                Kazuhiro     Satake     ,     Yu     Toyoda     , and     Hiroshi     Nakagawa    

    Abstract     Drug resistance in the cancer cells is a leading cause of mortality during 
the cancer treatment. ABC transporters expressed in the cancer cells have been 
found to extrude anticancer drugs from the inside of the cells to their outside for the 
protection of the cells from the drugs, resulting in the drug resistance. However, the 
mechanisms of how cancer cells acquire ABC transporter-mediated drug resistance 
have not yet been fully understood. Therefore, numerous strategies have been tested 
or proposed to control the functions and the expressions of ABC transporter genes 
so far. The fi rst strategy utilized to inhibit ABC transporter function relied on the 
identifi cation of nonchemotherapeutic agents as competitors. Other approaches 
have included the use of hammerhead ribozymes against the ABC transporter genes 
and the gene-targeted antisense oligonucleotides. On the other hand, recently, epi-
genetic modifi cations of the genes have been emerging as a part cause of ABC 
transporter-mediated drug resistance. In this chapter, therefore, epigenetic modifi -
cations of the ABC transporter genes are covered, where the outlines of the regula-
tory mechanisms and factors involved in the epigenetic modifi cations are described, 
focusing on the best known mechanisms in human such as DNA methylation/
demethylation and posttranslational modifi cations of histone proteins. Furthermore, 
drugs affecting epigenetic modifi cations are also introduced and described from a 
viewpoint of ABC transporter-mediated drug resistance in this chapter. We hope 
that this chapter can provide new insights into the understanding of cancer cells to 
acquire drug resistance, which could lead us to conquering the ABC transporter- 
mediated drug resistance.  
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  Abbreviations 

   ABC    Transporter   
  CpG    Cytosine guanine   
  DNMT    DNA methyltransferase   
  HAT    Histone acetyltransferase   
  HDAC    Histone deacetylase   
  5hmC    5-hydroxymethylcytosine   
  5mC    5-methylcytosine   
  MBD    Methyl-CpG binding domain   
  TET    Ten-eleven translocation   

11.1           Epigenetic Modifi cations of the Genome 
in Gene Expression 

    All the cells within an organism, including diversely differentiated somatic cells, 
differentiating cells, and undifferentiated cells such as stem cells, have basically 
identical genetic information in their genome. However, these cells neither neces-
sarily play the same role in the organisms nor exhibit the same pattern of gene 
expression. Even monozygotic twins, clones, or the cells from the same tissues or 
organs that share a common genotype are neither identical nor always show the 
same gene expression pattern [ 1 ]. 

 During the last 10–20 years, a new academic fi eld “Epigenetics” has been devel-
oped, where the heritable and age-related modifi cations of the genome, called “epi-
genetic modifi cations,” that occur without a change of the primary DNA sequence 
have been found to determine the gene expression patterns in the cells by changing 
the state of chromatin, the packaging of DNA with histone    proteins (Fig.  11.1 ). The 
epigenetic modifi cations which register, signal, or perpetuate altered activity states 
of genome [ 2 ] can allow the cells having identical genetic information to differently 
express genes and play different physiological roles. Thus, epigenetic modifi cations 
have important roles as major contributors to the regulation of gene transcription [ 3 ] 
and their regulation is crucial for maintenance of cell identity, proliferation, devel-
opment, and differentiation [ 4 – 6 ]. Since strict regulation of gene expression pat-
terns is crucial for the normal cell function, in particular during development and 
differentiation, inappropriate controls of epigenetic modifi cations are involved in 
many human diseases including neurological disorders [ 7 ] and cancer [ 3 ,  8 – 18 ].  

 In the cells, chromosomal DNAs are stored within their nucleus by forming a 
structure called “chromatin” together with histone proteins, where nucleosomes, the 
basic repeating units of chromatin, are formed by a histone octamer that is com-
posed of two copies of the four core histones (H2A, H2B, H3, and H4) around 
which 145–147 bp of DNA are wrapped [ 19 – 21 ]. Based on condensation level of 
DNA, the chromatins are classifi ed into euchromatin and heterochromatin, where 
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DNA is more loosely and more tightly packaged, respectively. Since these states of 
chromatins allow or prohibit transcription factors and RNA polymerase II to access 
their recognition sequences and transcription start sites, respectively, DNA in 
euchromatin and heterochromatin are actively and hardly transcribed, respectively. 
Furthermore, the chromatin states can also allow or prohibit regulatory proteins to 
bind their recognition sequences or proteins. 

  Fig. 11.1    Epigenetic gene regulations       
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 The condensation level of DNA in chromatin is widely acknowledged to be 
determined by both DNA methylation and histone modifi cations, one of the most 
characterized epigenetic modifi cations. Since these epigenetic modifi cations act in 
concert to regulate gene expression by controlling chromatin state, these modifi ca-
tions have been suggested to play major roles in the maintenance of cell identity, 
proliferation, development, and differentiation by maintaining differential patterns 
of gene expression [ 3 ,  22 ].  

11.2     DNA Methylation and Its Regulation 

 The chromosomal DNA methylation is an important epigenetic mark and one of the 
most characterized epigenetic modifi cations controlling gene expression and cell 
differentiation [ 23 ], where the transfer of a methyl group to the 5 position of a cyto-
sine is the key feature. The resulting 5-methylcytosine (5mC) typically occurs in a 
cytosine guanine (CpG) dinucleotide (Fig.  11.1 ), where 70–80 % of cytosine is 
methylated [ 24 – 27 ]. On the other hand, regions of high CpG dinucleotide density, 
called “CpG islands” that locate in 60–70 % of promoter region of genes, are usu-
ally free of methylation in normal cells [ 23 ,  24 ,  28 ,  29 ] and the hypermethylation of 
CpG islands located in the promoter regions of certain genes, such as most imprinted 
genes (with exclusive expression of the paternal or maternal allele) and the X chro-
mosome in normal (XX) females, has been shown to result in inactivation of the 
genes [ 30 ,  31 ]. Similarly, it has also been demonstrated that methylation of CpG 
islands in the promoter region of genes leads to suppression of transcriptional activ-
ity in normal and malignant cells [ 11 ,  28 ,  32 – 35 ]. Thus, DNA methylation in CpG 
islands is a well-established mechanism mediating epigenetic silencing of gene 
expression and is a prerequisite in vertebrate development and tissue-specifi c gene 
expression [ 28 ,  36 ]. 

 DNA methylation is catalyzed by enzymes known as DNA methyltransferases 
(DNMTs), where a methyl group from S-adenosyl- L -methionine is transferred to 
the cytosine. Five kinds of proteins—DNMT1, DNMT2, DNMT3a, DNMT3b, and 
DNMT3L—are major members of DNMT family [ 37 – 44 ]. The functions of DNMT 
in DNA methylation can be divided into maintenance and de novo methylations. 
DNMT1 is involved in maintenance methylation, which refers to the process of 
copying DNA methylation profi les to the daughter strands during DNA replication, 
whereas DNMTs 3a and 3b effect de novo DNA methylation [ 41 ]. As DNMT1 acts 
primarily on hemimethylated DNA, it is often associated with DNA replication 
machinery [ 40 ], whereas DNMTs 3a and 3b are primarily expressed during devel-
opment [ 37 ]. DNMT3L has no catalytic activity but can assist DNMTs 3a and 3b by 
improving their ability of binding to DNA and stimulating their activity [ 39 ,  43 ,  44 ]. 
Instead of methylating DNA, DNMT2 was shown to methylate the anticodon loop 
of aspartic acid transfer RNA at cytosine-38 [ 42 ]. 

 The main mechanism for the transcriptional repression that results in silencing of 
genes is believed to be the binding of methyl-CpG-binding domain (MBD) proteins 
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(MeCP2, MBD1, MBD2, MBD3, and MBD4) to the hypermethylated DNA to promote 
the recruitment of both histone-modifying enzymes and transcription repressors (e.g., 
SIN3A and EZH2) to the methylated genomic loci for the development of a repressive 
chromatin environment [ 45 – 53 ]. In mammals, these MBD proteins help DNMTs to 
recognize and bind to 5mCs in CpG islands [ 53 ] and recruit chromatin- remodeling 
enzymes, such as histone deacetylases and mSin3, to the DNA with their transcriptional 
repression domains, creating an inactive chromatin confi guration [ 45 – 47 ]. 

 In addition to 5mC, there exists another kind of methylated cytosine, 
5- hydroxymethylcytosine (5hmC), a product of the oxidation of 5mC by the 10–11 
translocation (TET)1, TET2, and TET3 proteins [ 54 – 56 ]. For example, the presence 
of 5hmC epigenetic marks in chromosomal DNA was demonstrated to positively 
correlate with gene expression in mouse embryonic stem cells [ 56 ]. In addition, it 
was also reported that the depletion of TET1 in mouse embryonic stem cells resulted 
in activation of 851 genes although that also resulted in repression of 556 genes 
[ 55 ]. Therefore, the conversion of 5mC to 5hmC is supposed to contribute to DNA 
demethylation that, in most cases, associates with gene activation.  

11.3     Histone Protein Modifi cations and Its Regulation 

 Histones H2A, H2B, H3, and H4 are the basic packaging units for chromosomal 
DNA and they undergo posttranslational modifi cations at the amino-terminal tails 
of them which unstructurally protrude from the nucleosome core. Histone-modifying 
enzymes have been identifi ed for acetylation, methylation, phosphorylation, ubiqui-
tination, sumoylation, ADP-ribosylation, deamination, and proline isomerization 
[ 57 – 64 ]. It is now well established that histones are acetylated at lysines, biotinyl-
ated at lysines, methylated at lysines or arginines, phosphorylated at serines and 
threonines, SUMOylated at lysines, and ubiquitinated at lysines [ 65 – 70 ]. These his-
tone modifi cations are considered to serve two main purposes. The fi rst purpose is 
to provide or remove recruitment signals for nonhistone proteins involved in tran-
scriptional activation and silencing. The second purpose is to change chromatin 
structure via alteration of charge that controls the physical interactions between 
histones and chromosomal DNA. Among these histone modifi cations, the ones 
which are involved in gene expression are called “histone code” [ 65 ]. Acetylation 
and methylation of histones are important and one of the most characterized histone 
codes controlling gene expression (Fig.  11.1 ) [ 67 ,  71 ]. 

 Normally, histone acetylation leads to an increased negative charge of the his-
tones and is thus believed to loosen the interaction between the histone and the 
negatively charged DNA, which is associated with euchromatin, a more open chro-
matin confi guration that is permissive for transcription [ 72 ]. Consequently, highly 
acetylated histones are associated with transcriptionally active sequences, where 
ε-amines of lysines on the  N -terminal tails of the core histones (H2A, H2B, H3, and 
H4) are acetylated [ 73 ]. On the other hand, deacetylation of histones in nucleosome 
is usually associated with heterochromatin and transcriptional repression. The acet-
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ylation states of histones that control chromatin condensation and result in altera-
tions of gene transcription as mentioned above are maintained by histone 
acetyltransferases (HATs) and histone deacetylases (HDACs) [ 74 ]. HATs are orga-
nized into families based on primary-structure homology, and the GNAT, the p300/
CBP, the MYST, and the Rtt109 families have been studied extensively among the 
families [ 75 – 77 ]. These HATs catalyze the transfer of an acetyl group from acetyl- 
CoA to lysine residues in histones for activation of gene expressions, whereas 
HDACs remove it to inactivate the gene expressions [ 78 – 80 ]. 

 In addition to histone acetylation, histone methylations are also occurred without 
changing the charge of itself, which can be normally occurred on all basic amino 
acid residues [ 81 – 86 ]. In fact, lysines can be monomethylated (me1) [ 81 ], dimethyl-
ated (me2), or trimethylated (me3) [ 82 ] on their ε-amine group. Arginines can be 
monomethylated (me1) [ 84 ], symmetrically dimethylated (me2s), or asymmetri-
cally dimethylated (me2a) on their guanidinyl group [ 85 ]. Histidines can be 
 monomethylated [ 83 ,  85 ]. Among these amino acid residues, in general, methyl-
ations of histone mainly occur on arginine and lysine residues [ 81 ,  82 ,  84 ,  87 – 89 ]. 
Since the fi rst report of histone methyltransferase, several protein families have 
been found to be able to catalyze the addition of methyl groups to histones using 
S-adenosylmethionine as a methyl donor [ 81 ,  90 ,  91 ]. The SET-domain-containing 
proteins and DOT1-like proteins have been shown to methylate lysines [ 90 ,  92 ], and 
members of the protein arginine  N -methyltransferase (PRMT) family have been 
shown to methylate arginines [ 93 ]. These histone methyltransferases have been 
shown to methylate histones that are incorporated into chromatin and also free his-
tones and nonhistone proteins [ 90 ,  94 ]. Histone lysine methylation has predomi-
nantly been found within the tails of histone H3 and H4, which include histone H3 
lysine 4 (H3K4), H3K9, H3K27, H3K36, H3K79, and H4K20, and histone H3 argi-
nine 2 (H3R2), H3R8, H3R17, H3R26, and H4R3. Methylations of H3K4, H3K36, 
and H3K79 found in regions with transcriptional activity are often associated with 
transcriptionally active euchromatin. By contrast, H3K9me2/me3, H4K20me3, and 
H3K27me2/me3 are considered to be associated with transcriptionally silenced het-
erochromatin. In particular, monomethylation of H3K9 (H3K9me1) has been 
reportedly implicated in heterochromatic gene expression whereas H3K9me2 and 
H3K9me3 have been implicated in euchromatic gene silencing [ 95 ], where a direct 
causal role for H3K9 di- and tri-methylations in euchromatic silencing has been 
demonstrated [ 96 – 101 ]. In addition, several studies have identifi ed that H3K9 meth-
ylation levels were dynamically regulated at some genes in response to activation 
stimuli [ 102 ,  103 ]. Furthermore, it has been reported that there is a very strong cor-
relation between the degree of H3K4me3 at the 5′ ends of genes and their transcrip-
tion rate, RNA polymerase II occupancy, and histone acetylation [ 68 ,  104 ,  105 ]. 
Thus, there is increasing evidence of cross talk between histone modifi cations in the 
regulation of gene transcription.  
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11.4     Interrelation Between DNA Methylation 
and Histone Modifi cation 

 A complex interplay of different combinations of epigenetic modifi cations (includ-
ing acetylation, methylation, ubiquitination, and ADP-ribosylation) has been estab-
lished to play signifi cant roles in determining the transcriptional status of a gene. It 
has recently become apparent that DNA methylation and histone modifi cation 
events are tightly interrelated and can be dependent on one another, and that this 
cross talk can be mediated by biochemical interactions between SET domain of 
histone methyltransferases and DNMTs [ 45 ,  50 ,  106 – 109 ]. In fact, it was indicated 
that histone modifi cations such as deacetylation promoted DNA condensation and 
contributed to DNA methylation [ 110 ], and that the establishment of the basic DNA 
methylation profi le during early development might be mediated through histone 
modifi cation [ 43 ]. It has also been reported that histone-modifying enzymes can 
also recruit DNMTs to the genomic loci bearing an epigenetic modifi cation. In turn, 
MBDs, which bind to methylated DNA sequences, have been demonstrated to 
recruit HDACs and histone methyltransferases to the hypermethylated loci, thus 
providing the opportunity for combined DNA/histone epigenetic marks to be estab-
lished [ 45 ,  50 ,  106 – 109 ]. On the other hand, contact between DNMT3L and the 
nucleosome is reportedly inhibited by all forms of methylated H3K4 while 
DNMT3L recruits the methyltransferases to DNA by binding to histone H3 in the 
nucleosome [ 43 ]. Furthermore, there is also evidence that DNA methylation inhibits 
H3K4 methylation [ 111 ,  112 ]. 

 Certain forms of histone methylation cause local formation of heterochromatin, 
which is readily reversible. In contrast, DNA methylation tends to be a more stable 
modifi cation than histone methylation, but it can undergo changes during embryo-
genesis and aging. The turnover rates of histone lysine acetylation and methylation 
are reportedly estimated to be 2–40 min and 0.3–4 days, respectively [ 113 ,  114 ].  

11.5     Epigenetics of Cancer/Tumor 

 It is widely recognized for many years that tumor initiation, development, and pro-
gression (tumorigenesis) are caused by genetic mutations, which result in aberrant 
patterns of gene expression, a key characteristic of many types of cancer. In recent 
years, on the other hand, it has become clear that tumorigenesis is also caused by 
epigenetic alteration and that a wide variety of epigenetic changes are prevalent in 
cancer [ 18 ]. In fact, cancers can display global DNA hypomethylation while exhibit-
ing hypermethylation of genomic regions responsible for the expression of tumor- 
suppressor genes at the same time. Therefore, the epigenetic alterations are considered 
to be an early event during tumorigenesis and one of the hallmarks of cancer, leading 
to the activation of oncogenes and the loss of function of tumor- suppressor genes 
[ 18 ,  115 ]. It was also shown that global histone modifi cation levels are predictive of 
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cancer recurrence [ 116 ]. On the other hand, exome sequencing studies of primary 
cancers have revealed that genes coding for chromatin-associated and epigenetic fac-
tors are frequently mutated in multiple types of cancer [ 117 ]. Thus, epigenetic altera-
tions have been fi rmly demonstrated to play a role in cancer. 

 While DNA methylation is essential for mammalian development [ 12 ], distor-
tion of the genome-wide DNA methylation profi le is responsible for aberrant meth-
ylation patterns that are generally marked by global hypomethylation and 
promoter-associated hypermethylation [ 13 ]. The distortion of the genome-wide 
DNA methylation profi le also causes silencing of tumor-suppressor genes, resulting 
in the loss of proliferation control in the cells and their genomic instability leading 
to tumorigenesis [ 3 ,  8 – 18 ]. In tumors, in recent years, it has been found that CpG 
islands are often hypermethylated, whereas other regions, such as centromeres and 
heterochromatin, generally exhibit hypomethylation during tumorigenesis [ 118 ]. 
The global hypomethylation but local hypermethylation in CpG islands and 
 consequent gene silencing in cancer/tumor have been found to be mediated by the 
deregulation and inappropriate activity of DNMTs, particularly DNMT1 and 
DNMT3a/b, which are responsible for maintenance and de novo methylations, 
respectively [ 119 ]. As well as in vivo and clinical experiments, there have also been 
evidences of overexpression of these enzymes in various cultured cancer cells [ 120 –
 123 ]. In animal experiments, furthermore, transgenic mice with 90 % decreased 
DNMTs reportedly develop widespread tumorigenesis and growth defects [ 124 ]. 
On the other hand, the mice injected TET-defi cient stem cells also reportedly form 
signifi cantly more aggressive teratomas than their wild-type counterparts [ 125 ], 
suggesting that 5hmC have an important role in cancer progression as functional 
component of the epigenetic machinery, distinct from the role of 5mC. 

 While many studies have shown that cancer cells are subject to abnormal de novo 
methylation compared with their normal counterparts, it has been suggested that 
this process may be linked to histone modifi cation [ 117 ,  126 ,  127 ]. In fact, HDAC1 
and 2 are reportedly overexpressed in a number of tumors, including breast, colon, 
esophageal, gastric, lung, and prostate cancers, and cervical, colorectal, and gastric 
cancers, respectively, where they correlate with reduced patient survival and likely 
contribute to tumorigenic gene silencing [ 128 – 136 ]. In addition, HDAC3 is report-
edly overexpressed in colorectal, gastric, and prostate cancers [ 137 ], and expression 
of HDAC11 is reportedly increased in rhabdomyosarcoma [ 79 ,  138 ,  139 ]. It has 
also been found that genes encoding epigenetic regulators were mutated in the high-
throughput sequencing projects, where mutations of HDAC2 and 4 have been iden-
tifi ed in human epithelial cancer cell lines and breast cancer samples, respectively 
[ 117 ,  126 ,  127 ]. Furthermore, overexpression of HDACs and alterations in histone 
acetylation patterns have often been found in many tumors [ 79 ,  128 – 134 ,  137 – 143 ]. 
Furthermore, it has also been reported that diffuse large B-cell lymphomas (DLBCL) 
and peripheral T-cell lymphomas exhibited the overexpressions of HDAC1, 2, and 
6 while Hodgkin’s lymphomas displayed increased expression levels of HDAC1, 2, 
and 3 [ 142 ,  143 ]. Therefore, decreased activities of HDACs are associated with sup-
pressed tumor cell development and growth as previously reported [ 144 ,  145 ]. On 
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the other hand, a considerable amount of researches have reported deregulations of 
histone lysine methylation in tumorigenesis [ 146 – 148 ]. 

 In breast, gastric, kidney, lung, pancreatic, and prostate cancers, altered genome- 
wide acetylation levels of H3K9, H3K18, H4K12, and H4K16 have been found 
[ 116 ,  149 – 151 ]. Among them, in particular, H3K18 acetylation was shown to be a 
prognostic factor in several studies, where high acetylation level of it reportedly 
correlated with better prognosis [ 151 ]. In contrast, a study involving non-small-cell 
lung cancer patients found that higher levels of H3K9 acetylation correlated with 
shorter survival [ 152 ]. These contrasting fi ndings suggest that acetylation on vari-
ous lysine residues may have different functions in different types of cancer.  

11.6     Epidrugs for Cancer Chemotherapy 

 DNMTs and histone-modifying enzymes can be drug targets for epigenetics therapy 
as inhibitors for DNMTs, HDACs, and histone methyl transferases have been the 
most extensively studied and a considerable number of small-molecule inhibitors of 
them have been identifi ed so far (Fig.  11.2 ) [ 72 ,  74 ,  153 – 170 ]. These compounds 
command serious attention as candidates for epigenetic drugs, so-called “epidrugs.” 
For example, several drugs which can inhibit the activity of DNA methyltransferase 
and cause genomic hypomethylation have been discovered so far [ 72 ]. The fi rst of 
these inhibitors was the cytidine analog 5-azacytidine (Vidaza) and 5-aza-2′-
deoxycytidine (Dacogen/Decitabine), which have been shown to effect demethyl-
ation in numerous cancer cell lines and already approved by the US Food and Drug 
Administration (FDA) for the treatment of acute myelogenous leukemia and myelo-
dysplastic syndromes [ 153 – 157 ,  166 ]. In addition, several HDAC inhibitors have 
also been tested in clinical trials and approved for the clinical use [ 72 ,  74 ,  169 ]. For 
example, trichostatin A, suberoylanilide hydroxamic acid (Vorinostat), and FK228 
(Nomifensine/Romidepsin) have been approved by the FDA for the treatment of 
relapsed and refractory cutaneous T-cell lymphoma (CTCL) [ 158 ,  159 ,  161 – 163 , 
 165 ,  168 ]. Also, the well-known antiepileptic and mood-stabilizing drug valproic 
acid has been approved for the treatment of leukemia, breast cancer, and ovarian 
cancer since its HDAC inhibitory activity has been discovered [ 167 ], and MS-275 
(Entinostat), isoform-selective inhibitor of HDAC I, has been recently approved for 
the treatment of breast cancer [ 160 ,  164 ,  170 ]. On the other hand, curcumin, a sub-
stance in turmeric, was discovered to inhibit histone H3 and histone H4 acetylation 
by p300/CBP [ 171 ]. Furthermore, several histone methyl transferase inhibitors have 
been discovered, where H3K9 methyl transferase G9a and H3K79 methyltransfer-
ase DOT1L have been shown to be inhibited by BIX-01294 and EPZ004777, 
respectively [ 172 ,  173 ]. These fi ndings suggest that the development of epidrugs to 
target specifi c epigenetic enzymes or epigenetics-related proteins is a promising and 
rapidly growing fi eld of modern pharmacology.   
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  Fig. 11.2    Structures of epidrugs. ( a ) DNA methylation inhibitors. ( b ) Histone acetylation inhibi-
tors. ( c ) Histone methylation inhibitors         
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11.7     Epigenetics and the Expression of ABC 
Transporter Genes  

 Epigenetic changes in tumors are associated not only with cancer development and 
progression, but also with resistance to chemotherapy. Aberrant DNA methylation 
at CpG islands and associated epigenetic gene silencing have been observed during 
the acquisition of drug resistance [ 174 – 176 ]. For example, Dai et al. have analyzed 
methylation changes associated with acquired cisplatin resistance in isogenic ovar-
ian cancer cell lines and showed that hypermethylation of CpG islands was preva-
lent during the acquisition of drug resistance [ 175 ]. Similarly, it has been found that 
global acetylation levels of histones were observed in drug-resistant MCF7-KCR 
and OV1/VCR multidrug-resistant ovarian carcinoma cells [ 174 ,  176 ]. 

 The MDR phenotype, the best known mechanism of acquired drug resistance 
and observed in various types of cancer, is mainly due to overexpression of the ABC 
transporters such as ABCB1 (MDR1), ABCC1 (MRP1), ABCC2 (MRP2), and 
ABCG2 (BCRP) that can extrude anticancer drugs from the cells [ 177 ]. Among 
these ABC transporters, the roles of ABCB1 and ABCG2 in MDR during chemo-
therapy have been extensively studied. ABCB1, a 1,280 amino-acid transmembrane 
protein encoded by the  MDR1  gene located on chromosome 7q21.1, is the fi rst 

Fig. 11.2 (continued)
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transporter which was identifi ed and characterized as a member of the ABC trans-
porter family [ 178 ]. ABCG2, also called breast cancer resistance protein (BCRP), is 
a 655 amino-acid transmembrane protein encoded by the gene located on chromo-
some 4q22.1, and forms a homodimer [ 179 ]. Since these ABC transporters are 
endogenously expressed in several normal tissues such as capillary endothelial cells 
in brain, gastrointestinal tract, kidney, liver, ovary, and testis [ 180 – 184 ], intrinsic 
transporter-mediated multidrug resistance in cancer is not surprising, generally 
associated with tissues that endogenously express them. However, ABCB1 expres-
sion in the absence of drug treatment has also been observed in various cancers such 
as acute and chronic leukemia, astrocytoma, chronic myelogenous leukemia in blast 
crisis, non-Hodgkin’s lymphoma, neuroblastoma, non-small-cell lung cancer with 
neuroendocrine properties, and sarcoma although normal cells of these cancer ori-
gins are not expressing ABCB1 [ 185 ]. 

 A growing number of studies have demonstrated that the expression of ABC 
transporters was clearly affected by changes in DNA methylation patterns that are 
characteristic of cancers/tumors [ 186 – 192 ]. In drug-resistant and -sensitive cancer/
tumor cells and samples from cancer patients, the density of  MDR1  promoter meth-
ylation has been found to be inversely correlated with the basal gene expression, and 
the methylation of  MDR1  promoter has been shown to transcriptionally silence basal 
ABCB1 expression in cell line models and clinical samples [ 186 – 190 ,  193 – 202 ]. 
Similarly, it has also been shown that expression of ABCG2 was regulated at least 
in part by promoter methylation both in cell lines and in plasma cells from patients 
[ 203 ]. In addition, the increased or acquired ABCB1 expression has been observed 
in a range of cell lines including leukemia (CCRF-CEM and HL60), epidermoid 
(KB3-1), and uterine sarcoma cells (MES-SA) during chemotherapy treatment due 
to the epigenetic modifi cations in its promoter [ 186 ,  188 ,  193 ,  204 ]. Furthermore, it 
was reported that ABCG2 was not expressed in human small-cell lung cancer PC-6 
cells but was overexpressed in the SN-38-resistant subline, PC-6/SN2-5H, which 
was selected from PC-6 cells by continuous exposure to SN-38 [ 205 ]. Therefore, it 
is strongly suggested that chemotherapeutic drugs may actively induce DNA meth-
ylation at the  MDR1  and the  ABCG2  promoters to mediate gene expression [ 189 , 
 190 ,  194 ,  200 ,  206 – 210 ]. For example, the  MDR1  promoter has been found to be 
progressively demethylated during the course of chemotherapy and was correlated 
with overexpression of ABCB1 [ 190 ,  206 ,  209 ]. Similarly, analysis of patient sam-
ples at diagnosis and relapse has showed that tumor cells predominantly contained 
a hypomethylated  MDR1  promoter after chemotherapy, which results in the activa-
tion of  MDR1  expression [ 189 ,  194 ,  200 ,  207 ]. Furthermore, the chemotherapeutic 
drug, doxorubicin, has shown to induce the expression of  MDR1  by downregulating 
DNMT1 activity [ 208 ,  210 ]. 

 Epigenetic process has been shown to be one of the mechanisms controlling 
ABC transporter expression [ 176 ,  188 – 190 ,  194 ,  200 ,  203 ,  211 – 222 ]. For example, 
several groups have demonstrated that basal expression of ABCB1 was mechanisti-
cally controlled at the chromatin level and that epigenetic modifi cations of DNA 
and histone have been shown to play a pivotal role in  ABCB1  gene expression in 
several tumor cell systems [ 188 – 190 ,  211 – 213 ]. In addition, the  MDR1  and the 
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 ABCG2  promoters have been shown to contain a potential CpG island, which may 
be regulated by methylation [ 193 ,  200 ,  203 ,  214 ,  220 ,  223 ,  224 ]. CpG dinucleotides 
within the  MDR1  promoter region in both HeLa and KB cells were reported to be 
hypermethylated, and concomitantly, the expression level of ABCB1 was low [ 225 ]. 
In addition, hypermethylation of the CpG dinucleotides within  ABCB1  and  ABCG2  
promoter regions has been reported to be reversed by treatment with a DNA meth-
ylation inhibitor, which induces re-expression and overexpression of ABCB1 [ 188 –
 190 ,  194 ,  200 ,  203 ,  214 ,  219 ,  220 ,  222 ]. For example, demethylation of  MDR1  
promoter following treatment with 5-aza-2′-deoxycytidine, a specifi c inhibitor of 
DNA methyltransferase, reportedly activates the gene, where the methylation pat-
tern of the promoter in the cells resembled that of the drug-resistant cells and the 
expression of MDR1 mRNA can be induced [ 188 ,  226 ]. In human multiple myeloma 
cell lines NCI-H929 that do not express ABCG2, similarly, a CpG island in the 
 ABCG2  promoter was reported to be heavily methylated and demethylation of the 
promoter using 5-aza-2′-deoxycytidine could induce the expression of ABCG2 
mRNA and protein [ 203 ]. In addition, melatonin also reportedly increased the meth-
ylation levels of the  ABCG2  promoter and its effects on ABCG2 expression and 
function were reportedly prevented by preincubation with 5-aza-2′-deoxycytidine 
[ 222 ]. Nakano et al. reported that 5-aza-2′-deoxycytidine dose-dependently 
 re- expressed ABCG2 in non-ABCG2-expressing PC-6 cells at the mRNA and 
 protein levels [ 219 ]. It has also been reported that human sporadic clear cell renal 
carcinoma cell lines UOK121 and UOK143, having a methylated  ABCG2  promoter, 
expressed a lower level of ABCG2 and were more sensitive to ABCG2 substrate 
drugs than the unmethylated cell line UOK181 [ 220 ]. Consistent with the role of 
DNA methylation in ABCG2 silencing, incubation of methylated cell lines UOK121 
and UOK143 with 5-aza-2′-deoxycytidine resulted in upregulation of ABCG2 
expression in a concentration-dependent manner [ 220 ]. These suggest that the 
methylation status of CpG islands at the  ABCB1  and the  ABCG2  promoter regions 
may be crucial for transcriptional regulation of these genes. On the other hand, the 
methyl-CpG-binding-protein-2 (MeCP2), a strong transcriptional repressor, was 
identifi ed to localize to hypermethylated  MDR1  chromatin in CEM-CCRF cells and 
to be associated with methylation-dependent gene silencing, where the DNA 
demethylation reportedly caused the release of MeCP2, leading to histone acetyla-
tion and activation of the  MDR1  gene in several human cancers and cell lines [ 190 ]. 

 The  MDR1  gene is reportedly transcribed from two promoters [ 227 ]. The major-
ity of the transcripts originate from the downstream promoter which is used by most 
cell lines and tissues expressing the  MDR1  gene [ 228 ], which is well characterized; 
several cis-regulatory elements and binding factors acting in positive or negative 
regulation of  MDR1  have been found [ 212 ,  213 ,  229 ]. In contrast, the upstream 
promoter, located 112 kb upstream of the former, is active in some but not all 
multidrug- resistant cells whereas it is not active in cell lines or healthy human tis-
sues [ 204 ,  227 ,  230 – 233 ]. For example, methylation of the −110 GC box within the 
 MDR1  downstream promoter appeared to activate  ABCB1  gene expression in 
colchicine- resistant KB-8-5 cells [ 194 ], which are known to produce transcript from 
the upstream promoter [ 230 ]. In contrast, demethylation of the −110 GC box within 

11 Drugs Affecting Epigenetic Modifi cations of ABC Transporters for Drug Resistance



286

the  MDR1  downstream promoter induced by 5-aza-2′-deoxycytidine treatment has 
been shown to decrease the expression of ABCB1 in adriamycin-resistant K562/
ADM and docetaxel-resistant MCF-7 cells [ 191 ,  234 ]. 

  MDR1  gene expression is also regulated by the modulation of histone acetylase 
and deacetylase activities, and the role of histone acetylation and deacetylation in the 
transcriptional regulation of  MDR1  has been established [ 200 ,  211 ,  221 ,  225 ,  235 ]. 
For example, the study using histone deacetylase inhibitors showed that  MDR1  gene 
transcription could be stimulated by the modulation of histone acetylase and deacety-
lase activities [ 211 ]. In addition, it has been reported that histones associated with the 
 MDR1  proximal promoter were acetylated in response to multiple inducers [ 200 ,  211 ]. 
This acetylation is reportedly dependent on the recruitment of p300/CREB-binding 
protein (CBP)-associated factor (PCAF), a histone acetyltransferase, to the  MDR1  
enhanceosome which can form on an inverted CCAAT box binding NF-Y and 
recruiting PCAF [ 211 ]. Co-transfection of HATs, p300, CBP, or PCAF has been 
reported to co-activate the downstream  MDR1  promoter- luciferase construct, where 
binding of HATs to the  MDR1  promoter has been determined [ 211 ,  221 ,  225 ,  235 ]. 
On the other hand, ABCG2 has been reported to be transcribed by a TATA boxless 
promoter with multiple Sp1 sites and a CCAAT box [ 224 ,  236 ]. Characterization of 
the  ABCG2  gene promoter revealed that it is a TATA-less promoter with several Sp1, 
AP1, and AP2 sites and a CCAAT box downstream from a putative CpG island. 
In addition, it was also identifi ed that HDAC1 and a corepressor, mSin3A, bind to 
the promoter region containing the CpG island, thereby suppressing ABCG2 
 transcription [ 220 ]. 

 Elevated levels of histone acetylation in the chromatin of the  MDR1  promoter in 
drug-resistant cells have also been described so far [ 200 ,  218 ,  221 ]. For example, 
Baker et al. mapped both temporal and spatial changes in histone H3 and H4 acety-
lation levels on the  MDR1  5′ region in response to chemotherapeutic drug treatment 
such as daunorubicin and etoposide [ 200 ]. Similarly, increased histone H3 and H4 
acetylation in the chromatin of the  MDR1  promoter was found in drug-resistant cell 
lines expressing elevated levels of ABCB1 [ 221 ]. In addition, increased acetylation 
of histone H3 at the  MDR1  upstream promoter was also reported in drug-resistant 
human sarcoma (MES-SA) cells, where the upstream promoter was activated [ 204 ]. 
When compared to a T-cell leukemia line, two cell lines expressing increased levels 
of MDR1 mRNA have showed 3- to 30-fold levels of acetylated H3 in the  MDR1  
promoter, fi rst exon and transcribed region [ 200 ,  218 ,  221 ]. Furthermore, it has been 
reported that the  MDR1  locus in CEM-bcl2 and SW620 cells was enriched with H3 
acetylation and MeH3K4 [ 200 ], consistent with other models of transcriptionally 
active genes or a transcriptionally permissive state of chromatin [ 237 – 240 ]. 

 On the other hand, HDAC inhibitor treatment has been reported to increase 
ABCB1 and ABCG2 expressions through dynamic changes in chromatin structure 
and transcription factor association within the promoter region [ 103 ,  176 ,  200 ,  211 , 
 215 – 218 ,  221 ,  225 ,  241 – 243 ]. For example, Huo et al. showed that trichostatin A 
induced H3K4me3 levels of the  MDR1  gene through its coding region [ 243 ]. In 
acute myeloid leukemia cells, trichostatin A treatment reportedly increased the 
expression not only of ABCB1 but also of genes encoding other drug transporters, 
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ABCG2 and ABCC11, thereby inducing a very broad drug resistance phenotype 
[ 242 ]. In addition, the histone deacetylase inhibitor phenylbutyrate was also shown 
to induce the expressions of ABCB1 and ABCG2 in acute myeloid leukemia KG-1a 
cells [ 242 ]. On the other hand, Kim et al. reported that HDAC inhibitor induced the 
expression of ABCB1 in HeLa, SiHa, and DLD-1 cells but not in A172, U87, or KB 
cells, indicating that HDAC inhibitor-induced ABCB1 expression is cell type selec-
tive [ 225 ]. In drug-sensitive cells, several studies have reported an increase in 
ABCB1 expression by HDAC inhibitors [ 176 ,  200 ,  211 ,  215 – 218 ,  221 ]. For 
instance, ABCB1 has been reported to be overexpressed in H69 human small-cell 
lung carcinoma, SW620 colon carcinoma, and CEM-Bcl2 cells exposed to tricho-
statin A, or KU812 and NB4 cells exposed to depsipeptide [ 200 ,  211 ,  216 ,  217 , 
 221 ]. On the other hand, several researchers have reported that trichostatin A 
induced ABCB1 expression in a drug-sensitive cell line but decreased it in the drug- 
resistant derivative lines [ 215 ,  218 ,  221 ]. Similarly, Toth et al. reported that tricho-
statin A did not induce  MDR1  expression in drug-resistant MCF7-KCR cells, but in 
drug-sensitive MCF7 cells [ 176 ]. These data suggest that trichostatin A can be a 
therapeutic candidate for multidrug-resistant cancers or those with altered histone 
acetylation. Toth et al. also revealed that acetylation of H3K9 is elevated by two 
orders of magnitude in the promoter and fi rst exon of the  MDR1  gene in a drug- 
resistant cell line, whereas H3K4, H3K14, H4K8, and H4K12 acetylations increased 
only mildly or not at all, compared to the drug-sensitive parental cell line [ 176 ]. 
Furthermore, other reports have showed that histone deacetylase inhibitors could 
induce specifi c increases in H3K4 methylation in many types of cells [ 103 ,  241 ]. 
Therefore these fi ndings suggest that the extent and temporal kinetics of H4 and H3 
acetylation at the  MDR1  promoter would be different among the cell lines. 

 It has been shown that trichostatin A treatment did not always induce  MDR1  
transcription although it resulted in a signifi cant increase in the level of acetylated 
histones at the  MDR1  promoter [ 190 ,  221 ], demonstrating that DNA methylation 
was a dominant MDR1-silencing mechanism. Robust MDR1 expression in CEM- 
CCRF cells was only obtained when demethylation induced by 5-azacytidine treat-
ment was accompanied with trichostatin A treatment [ 190 ]. In addition, it was also 
reported that  MDR1  activation was accompanied by increased methylation on 
H3K4, and the mixed lineage leukemia 1 (MLL1) protein, a histone methyltransfer-
ase specifi c for H3K4, was required for  MDR1  promoter methylation, where knock-
down of MLL1 resulted in a decrease in  MDR1  expression [ 243 ].  

11.8     Conclusions and Perspectives 

 Drug resistance in the cancer cells during chemotherapy is an obstacle and needs to 
be overcome. Epigenetic modifi cations such as DNA methylation/demethylation and 
posttranslational modifi cations of histone proteins have been reported to underlie the 
phenomenon of ABC transporter-mediated drug resistance. As the induced epigene-
tic alterations are observed more frequently than genetic events in acquired drug 
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resistance, epigenetic modifi cations must be of importance in the development of a 
novel type of anticancer drugs. Taking into account the strong involvement of epi-
genetic mechanism in the determination of the MDR phenotype, in addition, it is not 
surprising that this phenotype can be induced or reversed by epidrug. On the other 
hand, the precise molecular mechanisms for epigenetic regulation have not been 
established. Therefore much more information from biochemical, structural, and 
in vivo biological characterizations of the known small-molecule inhibitors is needed 
before the mechanisms behind and the role of epigenetics for drug resistance by ABC 
transporters can be understood. We hope that this chapter can help you take new 
insights into the understanding of cancer cells to acquire drug resistance.   
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