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Abstract. We address the problem of creating believable animations for
virtual humans that need to react to the body movements of a human
interaction partner in real-time. Our data-driven approach uses prere-
corded motion capture data of two interacting persons and performs
motion adaptation during the live human-agent interaction. Extending
the interaction mesh approach, our main contribution is a new scheme
for efficient identification of motions in the prerecorded animation data
that are similar to the live interaction. A global low-dimensional posture
space serves to select the most similar interaction example, while local,
more detail-rich posture spaces are used to identify poses closely match-
ing the human motion. Using the interaction mesh of the selected motion
example, an animation can then be synthesized that takes into account
both spatial and temporal similarities between the prerecorded and live
interactions.

Keywords: character animation, interaction mesh, virtual agent, inter-
active characters.

1 Introduction

Intelligent virtual agents have found widespread applications ranging from com-
puter games [1,2], to educational software [3,4], or even shopping assistants [5].
Advances in sensing and graphics technology have significantly affected the devel-
opment of avatars and their acceptance by users. An important example for this
development is the introduction of affordable, low-cost motion tracking cameras.
Instead of relying on artificial interfaces between humans and virtual agents, e.g.
graphical user interfaces or joysticks, we can now directly analyze the user’s body
movement and thereby allow for a much more natural interaction.
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Fig. 1. A virtual agent’s animation is calculated based on live human motion data. For
that we first analyze the user’s current and previous postures to select the interaction
he’s currently in. After matching temporal as well as spatial aspects we further optimize
the character’s response with interaction meshes. In this way, a virtual agent can react
to ongoing human motions for different interactions in real-time.

However, the ability to track human motion also introduces two key challenges
to the design of intelligent avatars: (1) recorded motion needs to be classified
and (2) adequate responses by the avatar need to be triggered. A prevalent
approach to solving this task is to use machine learning algorithms in order
to identify the semantics of a recorded movement and then trigger a recorded
movement or behavior as a response [6,7]. Such classification-based approaches
typically require the human movement to be seen entirely before a response can
be triggered. In addition, they often do not generalize to different variations of
the movement.

In this paper, we investigate a method for human-agent interaction which
allows a virtual agent to react to ongoing human motions interactively and in
real-time. Towards this end, we propose a data-driven approach to reactive mo-
tion generation based on motion capture data and multivariate time series anal-
ysis. First, human-human interactions are recorded in order to create a library
of appropriate responses. Then, during human-agent interactions, the user’s live
motion is analyzed in segmented low-dimensional spaces. In doing so, we iden-
tify suitable responses by aligning the observed motion to the templates in our
library. The resulting response is then optimized utilizing Interaction Meshes [8]
to allow for fine grade adaptation to the observed human motion. We extend
the Interaction Mesh approach by adding a context-aware decision layer that
allows multiple two-person interactions to be triggered. Temporal contexts are
embedded implicitly in the low-dimensional space which enable temporal drifts
and varying motion speeds.
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The remainder of the paper is organized as follows. In section 2, we review
existing techniques and outline key advantages of our approach. In section 3, we
introduce the concept of global and local posture spaces and describe the mo-
tion matching algorithm. Consequently, we present an algorithm for interactive
generation of responses for virtual characters. In section 4, we present different
experiments that were performed using an human-sized virtual character in an
immersive CAVE environment.

2 Related Work

Enabling a virtual human to engage in interactions with users that involve com-
plex motions has long been a goal of researchers. Towards that end different
example-based approaches have been proposed. In [9] for example the authors
propose a framework for online action recognition using histograms. In doing so,
they map live motions to existing motion capture datasets with a dynamic time-
warp implementation. The temporal context of postures is preserved by using
dynamic programming.

Camporesi et al. describe a data-driven method for virtual agent animation
based on demonstrated user motions [10]. For that several examples are recorded
using a motion capture system with a reduced set of markers. During runtime
character movements are computed by blending example motions to new situ-
ations. The underlying minimization problem is solved efficiently which allows
for real-time motion generation.

Naour et al. [11] propose a method based on Laplacian mesh editing [12],
which has proven to be well suited for animating close interactions. Here inter-
action meshes [13] are defined with respect to their temporal correlations in the
original animation. Motion optimization is achieved by solving two minimization
problems. The first penalizes deformations that results from Laplacian coordi-
nate manipulation and the second preserves the length of motion segments over
time.

The approaches presented so far allow interactive motion manipulation of a
virtual character, however, live human motions are usually not incorporated and,
thus human-agent interactions are not supported.

In contrast to that, Taubert et al. [14] presented an approach based on a
hierarchical probabilistic model (GP-LVMs with a GPDM on top) to capture
recorded motions for live human-agent interactions. During runtime different
emotional styles of movements can then be synthesized. However, due to the
computational expensive nature of the underlying probabilistic algorithm, model
learning is a time consuming process.

Ho et al. [8] propose a method based on two-person motion capture data
with a two stage process. First, the postures of the afterwards active interaction
partner, i.e the human, and the virtual agent are organized in a kd-tree. This
leads to a tree where each leaf stores pairs of poses that have been obtained in
the initial recording. Then, for live human-agent interactions the tree is queried
for postures that are similar to the current user pose. Here, Euclidean distances
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among 15-dimensional feature sets, in particular positions of both hands, feet and
the pelvis are used as similarity measure. The most similar pose leads then, to
the corresponding frame of the initial recording. After that, the characters pose
is morphed to match spatial constraints by solving a space-time optimization
problem with interaction meshes [13]. In doing so a virtual character can react
to an ongoing human interaction in real-time.

However, in their approach Ho et al. synthesize a character’s motion solely
based on a single user posture and the last neighbor search result. This limits
the temporal context of the response generation to two poses since long-range
temporal dependencies are not considered. In order to distinguish between in-
teractions that share similar segments, larger memories have to be taken into
account to animate the character in a believable/contextual manner. E.g., to-
wards the end of many interactions, one agent returns to the rest pose while the
other agent is following-through an interaction-specific finishing motion. To that
end, we propose the usage of an interaction memory as well as motion segments
rather then single postures to allow wider temporal coherences.

Also, during runtime Ho et al. use 15 dimensions corresponding to 5 Cartesian
positions, i.e. both hands, feet and the pelvis to match the current user posture
in their kd-tree. However, for complex motions like dancing elbows, knees and
the head are often a crucial part of the dance style. In our approach, we propose
low-dimensional posture spaces [15] which capture intrinsic information that
constitutes the essence of each interaction.

3 Methodology

The goal of this work is to provide a motion synthesis framework that allows vir-
tual characters to engage in two-person interactions with a human counterpart.
Our data-driven approach is based on the observation and generalization of a
recorded library of human-human interactions. We first record two-person inter-
actions with a motion capture system1. The recorded interactions encapsulate
information on how the movements of each person affect behavioral responses
from his partner. Leveraging this information, we propose an algorithm that
automatically identifies the appropriate reaction to be performed by a virtual
agent during human-agent interaction.

Our approach is based on the concept of low-dimensional posture spaces [15].
Low-dimensional posture spaces capture the intrinsic correlation among joint
positions during motor skill generation. As a result, they can be used to gener-
alize recorded movements to new, unobserved situations while at the same time
reducing model complexity. In this paper we show, that movements during two-
person interactions can also be captured by a low-dimensional posture space,
e.g. the joint movement lies on a low-dimensional manifold.

The proposed method uses dimensionality reduction to extract important cor-
relations during joint behavior. Figure 2 shows an overview of the approach.

1 In our experiments we use a A.R.T DTrack 2 motion capture system.
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Fig. 2. Overview of the proposed method. First, we record two-person interactions with
a motion capture system. Then the data is reduced in dimensionality leading to a global
posture space as well as a set of local posture spaces specific to each interaction. To
calculate a suitable character response during the online interaction, a reference frame
of the original motion has to be identified by first using the global posture space to
select an interaction and second by searching for similar motions in the corresponding
local posture space. This leads to a pair of poses, i.e. postures of both interactants
during the initial recording, which is then used to calculate an optimized posture for
the virtual character.

The following description provides a brief overview of the steps involved in our
method:

Posture Space Projection The user’s live motion is captured and projected
into the low-dimensional global posture space.

Selecting an Interaction Type Given the movements in the low-dimensional
global interaction space, we identify the interaction type that fits the obser-
vation best.

Identifying Matching Motions User postures are projected into the local
posture space of the active interaction type. Similarities between the pro-
jected trajectory and recorded movements from the library of training data
are calculated. The segment with the highest similarity, i.e., a motion with
similar postural changes is selected.

Extracting a Suitable Pose A cost matrix which captures distances to the
best fitting motion segment is calculated to identify a point, i.e., a pair of
poses of the initial recording, which satisfies postural as well as temporal
requirements.

Optimizing a Character’s Response Since the user’s motion will vary as
compared to the initial recording, we optimize selected character poses to
the new situation by using interaction meshes [13].
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Throughout the following sections we will focus on each step in detail. First,
we will introduce global and local posture spaces.

3.1 Creating Posture Spaces

It is known, that motion capture data can be treated as a multivariate time
series and is intrinsically based on low-dimensional manifolds [15]. Hence, one
can employ dimensionality reduction techniques such as Principal Component
Analysis (PCA) to strip off redundant information. When applied to motion
capture data, each point in the resulting low-dimensional space corresponds to a
posture and, hence, a trajectory to a motion when projected back to its original
dimension.

In the recorded interactions, one interaction partner assumes an active role,
while the other interactant has an reactive role. During the live human-agent in-
teraction, the human is the active partner. We apply PCA to the motion capture
data of the active interactant in the demonstrated interactions in several ways.
First, we concatenate all motion capture recordings of the active interactant and
project them into a single low-dimensional space, called Global Posture Space I.
Here all poses xI

i,n are reduced to k dimensions. Second, for each demonstrated
interaction i a l-dimensional Local Posture Space Pi is calculated to capture
small details in the user’s motion. To select a suitable amount of principal com-
ponents k and l respectively we only select Eigenvectors that encode an entropy
above 1 percent [15]. Hence, each posture space has a different dimensionality
ensuring that enough dimensions are used to preserve small details of motions
while at the same time reducing computational costs.

However, if we would consider the motion as a whole, alternations in the
relationship of latent variables would not be taken into account [16]. Therefore,
we split each interaction type in j segments, using Hotelling’s T 2 statistics, which
tries to capture changes of the underlying correlation structure. It does so, by
minimizing the variance over a segment Si,j and, consequently, concatenating
temporal consecutive postures to motion segments in low-dimensional space.
The cost function can be formalized as follows.

Si,j := {xi,n=a, xi,n=a+1, . . . , xi,n=b} (1a)

costT 2(Si,j) =
1

b− a+ 1

bi∑

j=ai

T 2
i,j T 2

i,j = xT
i,nxi,n (1b)

The segmented global posture space is now used to select an interaction tem-
plate in a ongoing human-agent interaction.

3.2 Selecting an Interaction Template

To classify an ongoing human agent interaction the user’s posture yH is pro-
jected into the global posture space I leading to a new point yI . The Euclidean
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distances di between this point and the closest segment centroid of each inter-
action i are calculated and added to a so called interaction memory D. This is
done for the current time step t and the previous q time steps.

D = (d1 d2 . . . di . . . dm) , di =
(
dti d

t−1
i . . . dt−q

i

)T
(2a)

di = min(‖yI − centroid(SI
i,j)‖) , i ∈ N : [1,m] (2b)

Every column i captures the distances to the closest centroid of interaction i.
Each row stores the distances of a single time step for all interactions. The
interaction with the smallest mean value over all q rows identifies an interaction
template.

3.3 Identifying Matching Motions

For believable human agent interactions a character’s response highly depends
on temporal features of the interaction. In a dance motion for example, it is
crucial to be in strict time whereas for a high five movement the interactants’
hands have to meet at the right time. In order to allow a virtual character to
engage in such interactions past user poses have to be utilized. For that, a set of
previous poses is projected into the local posture space of the active interaction,
leading to a new motion trajectory yPi

o .
Then, a similarity value sPCA is calculated for each neighboring posture space

segment. By only including the neighborhood, we restrict possible character
responses to motions that contain postures similar to the ones obtained in the
initial recording. The comparative measurement is defined as the sum of angles
between each pair of sub principal components which can be formalized as [17]:

sPCA =
1

l

l∑

k=1

l∑

c=1

cos2Θkc =
1

l
trace(UT

k,lUc,lU
T
c,lUk,l) (3)

Here, l is the number of principal components for local comparison. Θkc de-
notes the angle between kth principal component (PC) of a segment and the cth

sub PC of the user motion. In order to calculate the similarity value efficiently,
the equation is reformulated in matrix form where Uk,l is the subspace defined
by the eigenvectors of the covariance matrix for segment k with dimension l.

In essence, the algorithm assigns high similarity values for segments with
PC axes pointing in the same direction. In other words, segments with similar
postural changes over time are assigned large similarity values. The segment j
that fits the last user motion best is now used for further optimization.

3.4 Extracting a Suitable Pose

Since segment lengths vary for different motion parts of an interaction the follow-
ing accumulated cost matrix is employed to identify a temporal matching pose of
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Fig. 3. The figure shows all required steps to identify a frame of the initial motion
recording for an ongoing human-agent interaction. First the live user movement is
projected into low-dimensional space leading to a new trajectory. After that, most
similar segments are labeled utilizing Hotelling’s T 2 statistics. Finally, the most similar
posture is extracted by evaluating a cost matrix.

the original recording [18]. In doing so, we evaluate distances in low-dimensional
space of live user poses yPi

o and template postures xPi

i,n.

Sn,o :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑b
n=a ‖yPi

1 − xPi

i,n‖ ∀n ∈ N : ]a, b], o = 1

‖yPi
o − xPi

i,a‖ ∀o ∈ N : ]1, O], n = a

min{Sn−1,o−1, Sn,o−1, Sn−1,o}
+‖yPi

o − xPi

i,n‖ ∀n ∈ N : ]a, b], o ∈ N : ]1, O]

(4)

To summarize, figure 3.3 shows required steps to select a frame of the ini-
tial recording that fits the motion context of the selected interaction template
while at the same time satisfying postural similarities. The resulting pose is now
subject to spatial optimization using interaction meshes.

3.5 Optimizing a Characters Response

In the previous step a frame of the initial recording has been identified that
represents the most similar user posture. However, the user’s movement will
differ from the original motion in form and size and, thus, further optimization is
required. To retain the characteristics of the prerecorded interaction, we optimize
the selected posture by using interaction meshes [13]. In doing so, we minimize
the Laplacian deformation energy [12] of a newly created mesh with regard to
the one created during the initial recording. Here, the Laplacian deformation
energy is defined as follows:

EL(V ) :=
∑

j

1

2
‖L(xj)− L(yj)‖2 (5)
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L is the operator to compute the Laplacian coordinates from given Cartesian
coordinates V = (p1, . . . , p2m)T . xj are vertex locations (motion capture mark-
ers) from the prerecorded motion capture data in the selected frame, whereas
yj are coordinates of markers from the live human-agent interaction. Laplacian
coordinates of a vertex are obtained as follows:

L(pj) = pj −
∑

l∈Nj

wj
l pl (6)

Nj is the one-ring neighborhood of vertex pj .
Since we want to react to an ongoing user motion, additional positional con-
straints have to be defined on the interaction mesh.

We treat the current user posture as a hard constraint in our optimization
problem. Additionally, we define soft constraints on the character vertices to
retain further desired aspects of the interaction, e.g. supporting foot contact
and body position. The resulting optimization problem subject to the soft and
hard constraints can be reformulated as system of linear equations (cf. [13]):

[MTM + FTWF CT

C 0

] [V
λ

]
=

[MTB + FTWf
h

]
(7)

where V and λ denote the vertices of the deformed interaction mesh and the La-
grange modifiers respectively. M is the Laplacian matrix of the original motion.
C is the matrix of all constraints which can be separated into the matrix F of soft
constraints, e.g. the virtual agent’s position constraints, and the vector h of hard
constraints, e.g. the user’s current posture. Each soft constraint f is weighted by
the weight matrix W . MTB denotes the transformation of the original vertex
positions B in Cartesian coordinates into Laplacian coordinates.

A solution of the system of linear equations is an interaction mesh V that
minimizes the Laplacian deformation energy while satisfying the different con-
straints. However, vertex locations cannot be transferred to a virtual character
without further post-processing, since not all joints correspond to a vertex. In
order to calculate rotations for each bone we utilize an inverse kinematics solver.

4 Evaluation

To evaluate our method we recorded two-person interactions, namely high five,
a hand clapping game, waving at each other and a jive dance. The corresponding
15 dimensional global posture space is illustrated for the first 3 principal com-
ponents in figure 4. In a live human-agent interaction a user was tasked to high
five the virtual agent. As expected its motion varied from the initial recording,
however, its trajectory in low-dimensional space stills followed the same direc-
tion. This is due to the fact that similar postures were adopted which in turn
lead to neighboring low-dimensional points.

On the right hand side of figure 4 the local posture space of the selected in-
teraction is visualized. Here the closest matching motion segment of the initial
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Fig. 4. In the figure on top the global as well as the selected local posture space is
shown. A user was tasked to high five the virtual agent. Below the mean activation in
our interaction memory is visualized. As can be seen, a recorded high five motion is
most similar to the executed user motion. However, one can also conclude that other
motions also exhibit similar poses especially around frame 50 to 60.

Fig. 5. The virtual agent’s postures are optimized for live human agent interactions.
In this example a user high fives a virtual character successfully. The agent adopts its
motion to meet the users hand at the right time and position.

recording is marked (black trajectory). As can be seen, the user motion (indi-
cated by the red trajectory) also follows the path of the closest segment. After
calculating the cost matrix, a matching point is selected and its associated in-
teraction mesh is optimized. The resulting character responses can be seen in
figure 5 for 3 frames.

In a second example we utilized the same global posture space to detect a on-
going jive dance motion. The projection of current and recent user postures into
the global local low-dimensional spaces are shown in figure 6 top left. As can be
seen, its motion matches the shape of the jive template which has been generated
from the initial recording. Additionally, the local posture space corresponding to
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Fig. 6. The global as well as the selected local posture space of a jive dance motion
are shown on top. The live user postures are highlighted red. The mean activation for
each interaction is outlined below.

Fig. 7. The motion of a virtual character is optimized in real-time using our interaction
learning method. As can be seen the agent successfully imitates the behavior shown in
the initial recording.

the selected interaction is shown. The most similar segment is highlighted. The
final character response can be seen in figure 7.

The similarities of the live user motion to recorded interaction examples are
in figure 6 bottom. The reason for the large similarities towards the end of the
interactions is that in all our recordings, the active participants returned to a
pose with both arms resting aside.

In a third example a hand clapping game is performed with a virtual charac-
ter. Here the same global posture space that has been created from the initial
recordings is used. As shown in figure 8 the projected user postures (highlighted
red) match the template created from a clapping game motion. However, as il-
lustrated below the selected interaction type has been a high five at first (see
frame 1 to 20) but changed later to the correct interaction. The reason for that
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Fig. 8. The figure shows the global posture space and projected live user postures
(highlighted red). On the right hand side the selected local posture space of a clapping
game motion is visualized with 10 previous user poses for motion matching. Addition-
ally, the similarities for each interaction type are illustrated below. As can be seen a
high five motion is selected at first but changed later to the correct clapping game.

Fig. 9. With our method a virtual character can respond to complex interactions like
a clapping game as shown in the figure for 4 key postures. Here the agent’s hand has
to meet the users palm at the right time and at the right position.

are similar postures that have been obtained in both motion capture recordings.
The final character responses are illustrated for 4 key postures in figure 9.

5 Discussion

The presented approach utilizes a so called interaction memory for hysteresis
effects and to allow a virtual agent to remain in an interaction. As a result it
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can potentially lock the agent in one interaction. The sliding window size of the
interaction memory obviously affects the overall latency of the system. In our
experiments a memory size q of 10 has been proven to be well suited. This leads
to memory length of approximately 0.5 seconds at 20 frames per second and to a
lag of 300ms on average on a modern Macbook Pro. Selecting a posture in global
posture space as well as motion matching in local posture spaces takes on average
0.008s whereas optimizing the interaction meshes itself takes 0.01 seconds. In our
current implementation, transforming the resulting vertex coordinates to joint
angles utilizing the inverse kinematics solver takes twice as long (0.029 seconds).

Currently, the proposed method does not allow for additional objects to be
included in two-person interactions as global as well as local posture spaces are
not sensitive to object ownerships. Furthermore, we currently do not track, and
thus cannot recreate the interactants’ hand shapes during interactions.

6 Conclusion

In this paper, we presented a new, data-driven method for generating real-time
responses of an interactive virtual human. Using training data acquired from
human-human interactions, we generate low-dimensional representations that al-
low for the generalization of the observed behavior to different variations thereof.
In doing so, crucial characteristics of an interaction as well as small details of
motions are preserved and used to animate a virtual agent. We extended the
approach presented by Ho et al. [8] to situations where the temporal context of
interactions plays an important role.

Experiments performed in an immersive virtual environment show that the
approach can be used for synthesizing context-aware responses in real-time. As
a result, a more natural interaction between a virtual agent and a human user
can be established.

As a possible extension of the approach, we are currently considering the im-
plementation of time-varying interaction meshes as well as a probability based
segmentation to allow for overlapping segments. In addition we are also inves-
tigating the use of the proposed approach in the generation of robot responses
during human-robot interaction.
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