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Abstract. We propose a model of cognitive process allowing virtual agents to 
exhibit anticipatory abilities. With user experiments, we show that this mechan-
ism brings about an improvement in the efficiency of the behavior generated, 
and check that external observers are able to perceive it. We also confirm that 
this improvement in efficiency leads, up to a point, to an improvement in belie-
vability as judged by human observers. Beyond this level of efficiency, believa-
bility reaches a plateau. 
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1 Introduction 

The field of virtual agents is particularly rich, and finds applications in various do-
mains. In this paper we address primarily applications to urban simulation, though our 
results are relevant to other domains. In urban simulation, one has to be able to deal 
with a large number of agents, in real-time, and in a rich environment. These con-
straints often lead toward using reactive agents which are known to have limitations 
in terms of believability [1] and are not adequate when the behaviors to simulate be-
come complex. For that reason, the idea of combining reactive and cognitive abilities 
in hybrid agent architectures is useful [4]. In this paper we tackle the issue of enrich-
ing the decision process of virtual agents with anticipatory abilities, one of the most 
important skills recognized as cognitive. Our claim is that these abilities increase the 
behaviors efficiency of the virtual agents, and consequently the believability (as per-
ceived by human observers) of these behaviors. We study this claim by integrating  
the corresponding module in a agent architecture [2] and by evaluating it with a  
user experiment focusing on the perceived efficiency and believability of the agent’s 
behaviors. 

We consider classically that believability is the capacity of an agent to “suspend 
the disbelief” of observers [3]. Over the last years, the role of anticipation has ap-
peared as an important feature in agent’s decision processes and in virtual agent’s 
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believability, to such an extent that [1] claimed: "only cognitive systems with antici-
pation mechanisms can be credible, adaptive, and successful in interaction with both 
the environment and other autonomous systems and humans". 

2 Anticipatory Module 

The anticipatory module proposed here takes some inspiration from [5]. Its goal is to 
provide agents with an ability to make predictions about themselves and their envi-
ronment, using predictive models. This module is based on an evaluation of future 
individual satisfaction levels rather than future states as often done in state anticipa-
tion. This leads to a better generality, because it is possible to provide the agents with 
their own model of satisfaction, largely independent from the environment used. 

Our anticipatory module uses predictive models. These include a model able to 
calculate a level of satisfaction based on the internal states of the agent. It also in-
cludes predictive models about the environment, the actions, and the internal states, 
which are traditionally used in anticipatory mechanisms. Additionally, a decision 
model is required to produce predictions on the future decisions of the agent. These 
models can come from several sources: they can be handcrafted by the agent designer, 
but they can also be learned. A third possibility is to assume that the anticipatory 
module is fully introspective: it can directly use the various models at work in the 
agent architecture to run them for predicting their future outputs. We made this sim-
plifying assumption in the experiments reported further below. 

We give below a synthetic algorithm of the anticipatory process proposed: 
StoppingCondition(A,t): is the stopping 
condition of the algorithm. 
PredictNextAction(A,t): predicts the action 
of A at time t. 
PredictEndOfAction(A,t): uses the action 
model to estimate the time remaining until 
the completion of the predicted action.  
PredictFutureState(A,t): uses the environ-
ment model to predict the changes occur-
ring in the environment.  
EvaluateFutureSatisfaction(A,t): uses the 
satisfaction model and the predicted situa-

tion to predict the satisfaction (S) at time t . 
SearchAnticipatoryPlan: attempts to find a plan that leads to a satisfaction (SP) high-
er than S. Each plan found by this method is called an anticipatory plan: a plan using 
prediction abilities to attempt to be more efficient. These plans have a grade attached 
Q, depending on both G the predicted gain in satisfaction, and C a confidence level. 
In this paper, we consider that the goal of the anticipatory module is only to propose 
these plans. 

Data: 
A is an agent; 
tc is the current time; 
Initialization: 
t = tc; 
while (StoppingCondition is 
false), repeat: 
PredictNextAction(A,t); 
PredictEndOfAction(A,t); 
PredictFutureState(A,t); 
EvaluateFutureSatisfaction(A,t); 
SearchAnticipatoryPlan(); 
end 
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