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Preface

In this volume, we present the proceedings of the 15th International Workshop on
Computational Logic in Multi-Agent Systems (CLIMA XV), held during August
18–19, 2014, in Prague, Czech Republic, and co-located with the 21st European
Conference on Artificial Intelligence (ECAI).

Multi-agent systems are systems of interacting autonomous agents or com-
ponents that can perceive and act upon their environment to achieve their in-
dividual goals as well as joint goals. Research on such systems integrates many
technologies and concepts in artificial intelligence and other areas of comput-
ing as well as other disciplines. Over recent years, the agent paradigm gained
popularity, due to its applicability to a full spectrum of domains, from search
engines to educational aids to electronic commerce and trade, e-procurement,
recommendation systems, simulation and routing, to mention only some.

Computational logic provides a well-defined, general, and rigorous framework
for studying syntax, semantics, and procedures for various tasks by individual
agents, as well as for interaction amongst agents in multi-agent systems, for
implementations, environments, tools, and standards, and for linking together
specification and verification of properties of individual agents and multi-agent
systems.

The purpose of the CLIMA workshops is to provide a forum for discussing
techniques, based on computational logic, for representing, programming and
reasoning about agents and multi agent systems in a formal way.

CLIMA XV closely followed the format established by its predecessors, with
regular proceedings and two special sessions: Logics for Games, Strategic Reason-
ing, and Social Choice, organized by Wojtek Jamroga, and Logics for Agreement
Technologies organized by Wamberto Vasconcelos.

Strategic reasoning occurs in many multi-agent scenarios. This is evident in
theoretical approaches to MAS, as well as in practical solutions used, for example,
in computer games, IT infrastructures for e-voting procedures, social network
services, etc. The Special Session on Logics for Games, Strategic Reasoning,
and Social Choice was intended to be a forum to discuss how formal logic can
contribute to our understanding, modeling, and analysis of strategic behavior,
and how the metaphors of game and social interaction can help in constructing
and using logical formalisms.

A growing number of computer systems are based on software agents, which
act on behalf of humans. These agents are becoming increasingly responsible for
complex tasks delegated to them, interacting with each other in sophisticated
ways so as to forge agreements in the interest of human users. The Special
Session on Logics for Agreement Technologies aimed at expanding the state-of-
the-art on logic-based approaches and technologies to enable different aspects of
many-party agreements and to support the lifecycle of such systems.



VI Preface

Former CLIMA editions have mostly been conducted in conjunction with
major computational logic and artificial intelligence events such as CL in 2000,
ICLP in 2001 and 2007, FLoC in 2002, LPNMR and AI-Math in 2004, JELIA
in 2004 and 2008, AAMAS in 2006, MATES in 2009, ECAI in 2010 and 2012,
IJCAI in 2011, and LPNMR in 2013. In 2005, CLIMA VI was organized as a
stand-alone event.

This 15th edition of CLIMA received a good number of submissions. The 12
papers presented at CLIMA XV were selected from 20 submissions, on average
of very high quality, resulting in a final acceptance rate of circa 60%, in line with
the standards of previous editions. Many of those involved in the revision and se-
lection process acknowledged the high quality of the program. In many instances
the authors expressed their satisfaction with very informative and constructive
reviews, for which CLIMA is renown.

The Program Committee consisted of 66 top-level researchers from 46 insti-
tutions located in five continents and 24 countries. Seven additional reviewers
helped in the process. The papers in this book have been authored by 50 re-
searchers worldwide.

Further information about CLIMA XV is available from the website
http://www-sop.inria.fr/members/Serena.Villata/climaXV.html.General
information about the workshop series, with links to past and future events, can
be found at http://centria.di.fct.unl.pt/~clima/, the CLIMA workshop
series home page.

We thank all the authors of papers submitted to CLIMA XV, the invited
speakers, the members of the Program Committee, and the additional reviewers,
for ensuring that CLIMA keeps up to its high standards.

August 2014 Nils Bulling
Leendert van der Torre

Serena Villata
Wojtek Jamroga

Wamberto Vasconcelos



Organization

Workshop Chairs

Nils Bulling Clausthal University of Technology, Germany
Leendert van der Torre University of Luxembourg, Luxembourg
Serena Villata Inria Sophia Antipolis, France

Special Session Organizers

Wojtek Jamroga University of Luxembourg, Luxembourg
Wamberto Vasconcelos University of Aberdeen, UK

Program Committee

Huib Aldewereld Delft University of Technology,
The Netherlands

Natasha Alechina University of Nottingham, UK
Jose Julio Alferes Universidade NOVA de Lisboa, Portugal
Katie Atkinson University of Liverpool, UK
Matteo Baldoni University of Turin, Italy
Tina Balke University of Surrey, UK
Pietro Baroni University of Brescia, Italy
Stefano Bistarelli Università di Perugia, Italy
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On the Complexity

of Two-Agent Justification Logic

Antonis Achilleos

The Graduate Center of CUNY, New York, USA
aachilleos@gc.cuny.edu

Abstract. Justification Logic provides a refined version of epistemic
modal logic in which the proofs/justifications are taken into account.
As a practical tool, Justification Logic has the ability to model argu-
mentation and track evidence in the full logic context, to measure the
complexity of the arguments, to keep the logical omniscience at bay, etc.
The complexity of single-agent justification logics has been well-studied
and shown to be generally lower than the complexity of their modal
counterparts. In this paper we investigate the complexity of two-agent
Justification Logic. We show that for most cases the upper complexity
bounds established for the single-agent cases are maintained: these logics’
derivability problem is in the second step of the polynomial hierarchy.
For certain logics, though, we discover a complexity jump to PSPACE-
completeness, which is a new phenomenon for Justification Logic.

1 Introduction

Justification Logic is a family of logics which models the way justifications inter-
act with statements and can be viewed as an explicit counterpart of epistemic
modal logic. It is often the case that we want to express statements of the form
“agent A knows/believes φ because of justification t” and Justification Logic
offers the means to formalize situation where either the distinction between dif-
ferent justifications is important, or a given claim is provided together with an
appropriate justification for it. This allows for a finer analysis than the one
provided by Modal Logic.

The first such system, the Logic of Proofs LP, which is the explicit counterpart
of modal logic S4, was introduced in 1995 by Artemov([4]). Since then, several
variations have been introduced (ex. [5,9]), which resulted in a wide class of
logics to model the interaction between belief, knowledge and justifications. For
a comprehensive review of Justification Logic, see [7,6].

Justification formulas are formed using propositional connectives and justifi-
cation terms: if φ is a formula and t a term, t : φ is a formula. An important
aspect of (and to the author an important motivation for) Justification Logic is
its complexity properties. Ladner showed in [19] that S4-satisfiability (and thus,
provability) is PSPACE-complete. Kuznets proved that LP-provability is in the
second level of the polynomial hierarchy and in particular in Πp

2 ([15]). Krup-
ski has shown that LP-provability for formulas of the form t : φ is in NP ([14]).

N. Bulling et al. (Eds.): CLIMA XV, LNAI 8624, pp. 1–18, 2014.
c© Springer International Publishing Switzerland 2014



2 A. Achilleos

Under certain reasonable assumptions about the justification terms, there is an
easily recognizable class of terms (say, T ), such that if a formula φ is provable
then t : φ is provable for some t ∈ T , while when t ∈ T , the provability of
t : φ is in P([8]). Of course, this does not simplify theoremhood of S4 (which
is PSPACE-complete), but it demonstrates the complexity-theoretic difference
between determining the provability of a modal statement and determining the
provability of a modal statement when given appropriate evidence.

We consider situations with multiple agents and also allow dependencies be-
tween agents’ justifications and beliefs. In particular, we allow that each agent
can be based on a different justification logic. We thus introduce and study two-
agent logics which are combinations of two different justification logics as a first
step towards a multi-agent justification logic. For some of these logics we dis-
cover a complexity jump to PSPACE-completeness. This is a different situation
from what is the case for all (pure) justification logics whose complexity has
been studied.

Contrary to what is usually the case in Modal Logic, PSPACE-hardness is not
achieved through some type of alternation, but by using a formula which forces
the satisfiability testing procedure we provide to simulate a polynomial space
Turing Machine, using (potentially) an exponential number of steps. In fact, the
methods we use have similarities to Fischer’s and Ladner’s proof in [12] that PDL
is EXP-hard, while the methods and results are nearly identical for diamond-free
(in negation normal form) modal formulas as studied in [2]. For corresponding
cases in full Modal Logic, Spaan ([23]) and Demri ([11]) have determined for
certain corresponding cases of Modal Logic a jump to EXP-hardness.

The systems we provide can describe settings of multiple (in this case two)
agents that receive information from different sources and somehow communicate
with each other. Within our formalization we are able to describe situations
where each agent can distinguish between different sources (justifications) of
information and can take into account how reliable they consider another agent’s
information.

Other multi-agent justification logics have already been introduced (for ex-
ample, see [10,22,24]). They present a different approach.

The main result of this paper is Theorem 1, which settles the complexity for
all two-agent logics we introduce and informally states that for most of the logics
that are presented, the complexity of provability remains in the second level of
the polynomial hierarchy. The exceptions for which we observe the complexity
jump to PSPACE-completeness are certain combinations of JD and a justification
logic which has the Positive Introspection or Factivity axiom, depending on the
way these are combined.

A more extensive version of this paper can be found as a technical report [3].

2 Syntax, Axioms, and Semantics

The proofs of some propositions that appear in this section are very similar to the
proofs of corresponding results for the single-agent logics and the reader can see
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[6,7] or [16] for an overview. The justification terms of the language L2 include
constants c1, c2, c3, . . . and variables x1, x2, x3, . . . and if t1 and t2 are terms,
then the following are also terms: [t1 + t2], [t1 · t2], !t1. The set of terms will be
referred to as Tm. We also use a set SLet of propositional variables, or sentence
letters. These will usually be p1, p2, . . .. Formulas of the language L2 include
all propositional variables and if φ, ψ are formulas, t is a term, and i ∈ {1, 2},
then the following are also formulas of L2: ⊥, φ → ψ, t :i φ. The remaining
propositional connectives, whenever needed, are treated as constructed from →
and ⊥ in the usual way: ¬a := a→ ⊥, a∨ b := ¬a→ b, and a∧ b := ¬(¬a∨¬b).

The function of the operators ·,+ and ! becomes clear below as described by
the axioms. Intuitively, · applies a justification s for a statement A → B to a
justification t for A and gives a justification [s · t] for B. Using + we can combine
two justifications and have a justification for anything that can be justified by
any of the two initial terms – much like the concatenation of two proofs. Finally,
! is a unary operator called the proof checker. Given a justification t for φ, it
gives another one, !t, for the fact that t is a justification for φ.

The logics use modus ponens as a derivation rule and share all of the following
axioms:

Propositional Axioms: Finitely many schemes from classical propositional
logic;

Application: s :i (φ→ ψ)→ (t :iφ→ [s · t] :iψ);
Concatenation: s :iφ→ [s+ t] :iφ, s :iφ→ [t+ s] :iφ.

where in the above, φ and ψ are formulas in L2, s, t are terms and i ∈ {1, 2}.
Depending on the reliability of agent i’s justifications, the logic can include

Factivity or Consistency for i, or neither:

Factivity: t :iφ→ φ;
Consistency: t :i⊥ → ⊥;
Positive Introspection: t :iφ→!t :i t :iφ,

where in the above, φ is a formulas in L2, t a term and i ∈ {1, 2}. If we consider
that agent i accepts only justifications that yield truth, then we would include
Factivity; if on the other hand i has justified beliefs that are not true, then the
agent may at least have justified beliefs that are consistent and in this case the
logic would include Consistency for i; when we consider an agent that can even
have inconsistent beliefs, then we would include neither of these axioms. If agent
i can verify (has a justification for) their own justifications, then the logic would
include Positive Introspection for i.

The following axioms give the interactions between the two agents’ justifica-
tions. As before, depending on the type of interactions we desire to include in
our logic, we would include a different set from these axioms.

12-Verification: t :1φ→!t :2 t :1φ;
21-Verification: t :2φ→!t :1 t :2φ;
12-Conversion: t :1φ→ t :2φ;
21-Conversion: t :2φ→ t :1φ,
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where in the above, φ is a formula in L2, t a term.
We would normally expect an agent to have justifications available for certain

formulas – at least for the axioms of the logic. These justifications are provided by
the constant specification and all agents are aware of these justifications through
the Axiom Necessitation axiom. A constant specification for a two-agent logic J
is any set

CS ⊆ {c :iA | c is a constant, A an axiom of J from above and i ∈ {1, 2}}.

We say that axiom A is justified by a constant c for agent i, when c :iA ∈ CS.
Axiom Necessitation: t :iφ,

where t :i φ ∈ CS, or φ = s :j ψ is an instance of Axiom Necessitation and
t =!s. Therefore, for i1, . . . , ik ∈ {1, 2} and c :i1A ∈ CS, all formulas of the form
!! · · ·!c :ik! · · ·!c :ik−1

· · · c :i1 A are instances of Axiom Necessitation.
We assume that a constant specification CS has the following properties: each

axiom (except for Axiom Necessitation) is justified by at least one constant for
every agent, every constant justifies only a certain number (possibly zero) of
schemes from the ones above (which implies that if c justifies A for i and B
results from A and substitution, then c justifies B for i), and CS ∈ P (i.e. there
is a polynomial time algorithm that given some t :i φ ∈ L2, decides whether
t :iφ ∈ CS).

Combining different logics gives rise to new phenomena, which makes them no-
table. We may consider situations where two agents are not equally reliable, or we
may even consider the two agents to model separate states of belief/knowledge.
For example, if agent 2 comes with factivity, s :2φ may indicate knowledge of φ,
while if 1 comes only with consistency, then t :1 ψ may indicate belief of ψ. If
knowing a fact implies belief of the fact, then 12-Conversion becomes a natural
axiom of the logic.

Example 1. An agent has somehow obtained two pieces of evidence, the first
being evidence for φ and the second for ¬φ. After an additional inquiry the agent
discovers that the second piece of evidence has been compromised whereas the
first was confirmed. On this basis, the agent attains the knowledge of φ. Lets
attempt to model this situation in Bi-modal and Two-agent Justification logic.
Bi-modal logic is insufficient to model this situation: we need to distinguish
between two types of belief: B and K, where K indicates knowledge and B
some kind of belief. Then, initially the agent would have the beliefs Bφ, B¬φ,
while the fact that the agent determines the first evidence as confirmed can
be formalized as K(Bχ → χ). We can already see that Modal logic’s language
presents difficulties in expressing the desired distinction between the two pieces
of evidence. From Bφ we can derive KBφ (we assume that the agent has at least
knowledge of the evidence they have obtained) and from K(Bφ → φ) we can
derive KBφ → Kφ; from the two we derive Kφ and then φ. Similarly we can
derive ¬φ and we reach an inconsistency.

We can formalize the scenario in a natural and intrinsically faithful way using
a two-agent justification logic from the above, where s :1 X stands for ‘s is
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an evidence for X ’ and t :2 X denotes ‘t is a conclusive/knowledge producing
evidence for X ’, equipped with 12-Verification. The situation can be formalized
by the set {u :1 φ, v :1 ¬φ, c :2 (u :1X → X)}. This set is consistent, which can
easily be satisfied in a model (defined later on). We can derive knowledge of φ
in the following way: u :1 φ →!u :2 u :1 φ is an instance of the 12-Verification
axiom and together with u :1 φ yields !u :2 u :1 φ and this in turn together with
c :2 (u :1φ→ φ) and the application axiom yield [c·!u] :2φ. Then, φ is known with
justification [c·!u].

The above scenario can also be reformulated as a situation of two agents,
where the second has more reliable sources than the first (enough to accept only
evidence that yield knowledge) and the first one reports to the second one the
two pieces of evidence for φ and ¬φ; the second agent would then have obtained
information about the reliability of the evidence that the first agent provides, i.e.
that the second piece of evidence is compromised, while the first one is confirmed.
The analysis would then be the same.1

Example 2. During a trial, two lawyers, A and B, present evidence to support
their case. A presents witness a who claims A’s client is right, while B presents
witness b who claims B’s client is right (and lets assume they both believe their
respective witnesses’ claims). Furthermore, A also presents document d that
strongly support that whoever is right is entitled to receive the sum of $10 from
the other. Both lawyers accept the document and their respective witness’ claims
as valid evidence, while they are aware of (and reject) each other’s beliefs on the
case. Similarly to the above, this scenario can be formalized by a two-agent
logic where both agents are equipped with Consistency and has 12-Verification
and 21-Verification. As above, we can see that Bi-modal logic cannot sufficiently
formalize the situation.

The axioms for each two-agent logic are provided in Figure 1. Each of the
Application, Concatenation, Factivity, Positive Introspection, and Consistency
axioms has a version for agent 1 and one for agent 2, depending on what we
substitute i for. We say agent 1 is based on logic J1 and agent 2 on logic J2 and
we choose the axioms’ versions for each agent that correspond to the logic the
agent is based on. For example, the logic (JT ×C JD4)CS is the logic with, the
Propositional Axioms axioms, Application, Concatenation, Axiom Necessitation,
Factivity for 1, Consistency and Positive Introspection for 2, and 12-Conversion.2

If we map each formula to a propositional formula by just removing all terms,
it is easy to see that each axiom is mapped to a propositional tautology and that
modus ponens preserves the mapping. Thus, we conclude that each of the logics
defined above is consistent.

The following proposition is a characteristic result in justification logic. It
demonstrates that Necessitation in Justification Logic is a derived rule.

1 Of course, we could also handle the situation in Modal Logic by using more modali-
ties. This treatment would not appropriately reflect the nature of the issue, though,
and it would be hard to apply the analysis in other similar situations.

2 The operators we use to combine justification logics are extensions of operators ⊕
and ⊕⊆ as defined in [23,11] for Modal Logic.
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Logic Ji is Contributes the Axioms:

For all Ji

Propositional Axioms: Finitely many schemes of classical proposi-
tional logic;
Application: s :i (φ → ψ) → (t :iφ → [s · t] :iψ);
Concatenation: s :iφ → [s+ t] :iφ, s :iφ → [t+ s] :iφ,
Axiom Necessitation

Ji = J No additional axioms

Ji = JD Consistency: t :i⊥ → ⊥
Ji = JT Factivity: t :iφ → φ

Ji = J4 Positive Introspection: t :iφ →!t :i t :iφ

Ji = JD4 Consistency and Positive Introspection

Ji = LP Factivity and Positive Introspection

×◦ is Contributes the Axioms:

× No additional axioms

×! 12-Verification: t :1φ →!t :2 t :1φ

×C 12-Conversion: t :1φ → t :2φ

×!! 12-Verification and 21-Verification: t :2φ →!t :1 t :2φ

×CC 12-Conversion and 21-Conversion: t :2φ → t :1φ

Fig. 1. The axioms for logic J = (J1×◦J2)CS , where J1,J2 ∈ {J, JD, JT, J4, JD4, LP},
×◦ ∈ {×,×!,×!!,×C ,×CC}

Proposition 1. If φ1, . . . , φk � φ, then for any i ∈ {1, 2}, there is some term t
depending on terms t1, . . . , tk, such that t1 :iφ1, . . . , tk :iφk � t :iφ.

Proof. By induction on the proof of φ: If φ is an axiom, then by the Axiom
Necessitation axiom, the proposition holds. Furthermore the proposition obvi-
ously holds for any φj , j ∈ {1, 2, . . . , k}. This covers the base cases. Using the
application axiom, if φ is the result of ψ → φ, ψ and modus ponens, since the
proposition holds for ψ → φ and ψ, then t1 :i φ1, . . . , tk :i φk � r :i (ψ → φ), s :i ψ
and thus for t = [r · s], t1 :i φ1, . . . , tk :i φk � t :i φ and this completes the induc-
tion. 	


We now introduce models for our logic. In the single-agent cases, M-models
(introduced in [18,20]) and F-models (introduced in [13,18,21]) are used and
they are both useful in the study of complexity issues. We only introduce F-
models, which are Kripke models equipped with an additional mechanism to
handle justification terms, called an admissible evidence function.

Definition 1. Let J = (J1×◦J2)CS , where J1,J2 ∈ {J, JD, JT, J4, JD4, LP} and
×◦ ∈ {×,×!,×!!,×C ,×CC}. An F-modelM for J is a tuple (W,R1, R2, E1, E2,V)
where W a nonempty set of states (occasionally referred to as worlds), for i ∈
{1, 2}, Ri ⊆ W 2 is a binary relation on W , Ei : (Tm × Ln) −→ 2W , and
V : SLet −→ 2W . Furthermore, E1, E2 will often be seen and referred to as
E : {1, 2} × Tm × L2 −→ 2W and E is called an admissible evidence function.
E1, E2 must satisfy the following natural closure conditions:
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Application closure: for any formulas φ, ψ and justification terms t, s,
Ei(s, φ→ ψ) ∩ Ei(t, φ) ⊆ Ei(s · t, ψ).

Sum closure: for any formula φ and justification terms t, s,
Ei(t, φ) ∪ Ei(s, φ) ⊆ Ei(t+ s, φ).

CS-closure: for any t :iφ ∈ cl2(CS), Ei(t, φ) =W.
Positive Introspection Closure: When Ji is among J4, JD4, and LP,

Ei(t, φ) ⊆ Ei(!t, t :iφ).
Distribution: When Ji is among J4, JD4, and LP, then for any formula φ,

justification term t, and a, b ∈W , if aRib and a ∈ Ei(t, φ), then b ∈ Ei(t, φ).
Verification Closure: When J has ij-Verification, Ei(t, φ) ⊆ Ej(!t, t :iφ).
Conversion Closure: When J has ij-Conversion, Ei(t, φ) ⊆ Ej(t, φ).
V -Distribution: If J includes ij-Verification, then for any formula φ, justifi-

cation term t, and a, b ∈ W , if aRjb and a ∈ Ei(t, φ), then b ∈ Ei(t, φ).

The accessibility relations, R1, R2, must satisfy the following conditions: for ev-
ery i ∈ {1, 2},
– If Ji ∈ {JT, LP}, then Ri must be reflexive.
– If Ji ∈ {JD, JD4}, then Ri must be serial (∀a ∈W ∃b ∈W aRib).
– If Ji ∈ {J4, JD4, LP}, then Ri must be transitive.
– If the logic includes ij-Verification, then for any a, b, c ∈ W , if aRjbRic, we

also have aRic.
– If the logic includes ij-Conversion, then Rj ⊆ Ri.

Truth in the model is defined in the following way:

– M,u �|= ⊥ and if p is a propositional variable, then M, u |= p iff u ∈ V(p).
– If φ, ψ are formulas, then M, u |= φ → ψ if and only if M,u |= ψ, or
M, u �|= φ.

– M, u |= t :iφ if and only if u ∈ Ei(t, φ) and for every v ∈W such that uRiv,
M, v |= φ.

(W,R1, R2) is called a frame for J . We say that M has the Strong Evidence
property when for every t :iφ ∈ L2, M, u |= t :iφ iff u ∈ Ei(t, φ).

Proposition 2 (Soundness and Completeness3). Let J = (J1 ×◦ J2)CS ,
where J1,J2 ∈ {J, JD, JT, J4, JD4, LP} and ×◦ ∈ {×,×!,×!!,×C ,×CC}. Then,
J is sound and complete with respect to its F-models. Furthermore, J is sound
and complete with respect to its F-models that have the Strong Evidence property.

The proof of Proposition 2 is by a canonical model construction (cf. [13]). By
a modification of the canonical model construction, we can prove a finite frame
property for the logics we presented. Although interesting on its own, the fol-
lowing corollary makes several results easier to prove.

Corollary 1. Let J be a two-agent justification logic as in the assumptions of
Proposition 2. If φ is J -satisfiable, then φ is satisfiable by an F-model for J of
at most 2|φ| states which has the strong evidence property.

3 If either J1 or J2 are JD or JD4, then the requirement that CS justifies all axioms
is necessary.
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The ∗-calculus
We introduce the ∗-calculus for logic J on frame F , an invaluable tool when
studying the complexity of justification logic.4 The calculus rules are given in
Figure 2. The ∗-calculus is a calculus on ∗-expressions prefixed by states from
F . ∗-expressions are expressions of the form ∗i(t, φ), where t :iφ ∈ L2.

∗CS(F) Axioms: w ∗i(t, φ), where w ∈ W
and t :iφ ∈ cln(CS)

∗App(F):

w ∗i (s, φ → ψ) w ∗i (t, φ)
w ∗i (s · t, ψ)

∗Sum(F):

w ∗i (t, φ)
w ∗i (s+ t, φ)

w ∗i (s, φ)
w ∗i (s+ t, φ)

∗Dis(F): If (a, b) ∈ Ri and Ji has Positive
Introspection,

a ∗i (t, φ)
b ∗i (t, φ)

∗V(F): If the logic has
ij-Verification,

w ∗i (t, φ)
w ∗j (!t, t :iφ)

∗C(F): If the logic has
ij-Conversion,

w ∗i (t, φ)
w ∗j (t, φ)

∗V-Dis(F): If (a, b) ∈ Rj and the
logic has ij-Verification,

a ∗i (t, φ)
b ∗i (t, φ)

Fig. 2. The ∗FCS(J )-calculus for (J1 ×◦ J2)CS includes the above axioms and rules, for
every i, j ∈ {1, 2}, w ∈ W , s, t terms, φ, ψ formulas, where F = (W,R1, R2)

Notice that the calculus rules correspond to the closure conditions of the
admissible evidence functions. In fact and because of this, given some frame
F = (W,R1, R2) and a set S of ∗-expressions prefixed by states of the frame,
the function E such that

Ei(t, φ) = {w ∈W | S �∗F
CS(J ) w ∗i (t, φ)}

is an admissible evidence function. Furthermore, if some admissible evidence
function E ′ is such that such that w ∗i (t, φ) ∈ S ⇒ w ∈ E ′i(t, φ), then for
every agent i, term t, and formula φ, Ei(t, φ) ⊆ E ′i(t, φ). When J , CS,F are clear
from the context, ∗FCS(J ) will be referred to as ∗.

If CS ∈ P, then deciding for some finite S and F if S �∗F
CS(J ) w ∗i (t, φ) is

in NP and here we sketch how to prove this. The nondeterministic algorithm
which decides derivability in the ∗-calculus, can first guess the derivation tree,
which is bounded in size by 2|t| · |F| and has ∗-expressions for nodes. A notable
difference of this procedure from the one in [16] is that rule ∗C(F) does not

4 The ∗-calculus was first introduced in [14], but its origins can be found in [20]. The
form on which the one in this section is based is from [16].
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increase the size of the term and can in theory be applied several consecutive
times; two or more consecutive applications of this rule contribute nothing to a
derivation, though and we can assume they never occur. Cycles in the frame can
be treated the same way. At this step the algorithm guesses and for every node
v ∗j (s, ψ) it fills in v, j, s, but not ψ. Then, the algorithm fills in these formulas
for the leaves of the tree by guessing an appropriate formula (or scheme), which
could either be an element of S, or in case s is of the form ! · · ·!c, where c a
constant, the formula (scheme in this case – CS is schematic) can be an axiom.
The algorithm then in turn and for each node unifies the formulas of its children
trying to result in a valid derivation of w ∗i (t, φ). If it succeeds, then it accepts;
otherwise it rejects.

3 Tableaux and Satisfiability - The Method and the Tools

To test the satisfiability of φ, we use a tableau procedure, which starts from
0 T φ and we apply tableau rules to gradually decompose the initial formula and
produce more formulas. Formulas used in the tableau are of the form 0.w S α,
where w ∈ {1, 2}∗ is the world prefix, S ∈ {T, F} the truth prefix and α either
a formula or a ∗-expression. When all applicable rules have been applied, then
we have a complete branch. If either w T ⊥ is in the branch, or there are some
w T a and w F a in the branch then the branch is propositionally closed. If it is
not propositionally closed, then W is the set of world-prefixes appearing in the
branch. Depending on the logic (and thus on the tableau rules), we can define
a frame. On this frame we can run the ∗-calculus to confirm that there is some
admissible evidence function E such that for every x T ∗i (t, ψ), x ∈ Ei(t, ψ) and
for every x T ∗i (t, ψ), x /∈ Ei(t, ψ).

As an example we give tableau rules for (JD× JD)CS :

w T φ→ ψ

w F φ | w T ψ

w F φ→ ψ

w T φ
w F ψ

w T t :iφ

w.i T φ
w T ∗i (t, φ)

w F t :iφ

w F ∗i (t, φ)

For these rules,

Ri = {(w,w.i) ∈W 2} ∪ {(w,w) ∈ W 2 | w.i /∈W}.

Then, F = (W,R1, R2) and V(p) = {w ∈ W | w T p appears in the branch}. Let
S = {w ∗i (t, ψ) | w T ∗i (t, ψ) appears in the branch} and E be the admissible
evidence function such that

Ei(t, φ) = {w ∈ W | S �∗F
CS(J ) w ∗i (t, φ)}.

M = (W,R1, R2, E1, E2,V) is a model, as R1, R2 are serial and E is an admissible
evidence function. It is not hard to see by induction on the structure of formulas
ψ, ψ′ that for every w T ψ and w F ψ′ in the branch,M, w |= ψ andM, w �|= ψ′,
as long as there is no prefixed ∗-expression w F ∗i (t, υ) appearing in the branch
that w ∈ Ei(t, υ). Thus we say the branch is accepting exactly when it is not
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propositionally closed and there is no prefixed ∗-expression w F e in the branch
such that S �∗ w e.

If there is an accepting branch, then from the above we see that φ is satisfiable.
On the other hand it is not hard to see how to construct an accepting branch for φ
given an F-model for φ that satisfies the Strong Evidence property: we map each
world prefix w to a world wM of the model such that 0M is a world satisfying φ
and w.i is mapped to a world accessible through Ri from wM. Then we ensure
that we only produce formulas w T ψ such that the world M, wM |= ψ and
formulas w F ψ such thatM, wM �|= ψ. Thus we ensure the branch is accepting.
That the number of formulas in the branch is polynomially bounded results from
the observation that the formulas prefixed by distinct world-prefixes are distinct
– assuming all subformulas of φ are distinct. This means that (JD × JD)CS-
satisfiability is in Σp

2 .
For the cases that follow we use a similar tableau procedure and arguments

for its correctness and complexity. We will only explain what changes for each
case as needed. The propositional rules (the first two) an the rule for w F t :iφ
(the last one) remain exactly the same for all logics – we only consider models
with the strong evidence property. Notice that to prove the Σp

2 upper bound for
a two-agent logic, it is enough to have a polynomial as a bound on the number
of the world-prefixes in a branch of its corresponding tableau. This in turn gives
a polynomial as an upper bound for the total size of a branch and thus the
time it takes to (nondeterministically) apply all the tableau rules, as each rule
increases the size of the branch. Since to decide satisfiability for a formula we
need to do just that (nondeterministically run the tableau) and at the end for
every prefixed ∗-expression w F e in the branch we need to determine whether
S �∗ w e, we already have a nondeterministic algorithm that runs in polynomial
time and uses an oracle from NP.

For several cases it is important to know Lemmata 1 and 2, as well as the
finite frame property of these logics, as established by Corollary 1. Lemma 1
describes the situation when the logic is a pair of logics with serial accessibility
relations and has both versions of the Verification axiom. On the other hand,
Lemma 2 is more general and, perhaps, more surprising. A similar result with a
similar proof appears in [1].

Lemma 1. If φ is (J1 ×!! J2)CS -satisfiable and J1,J2 ∈ {JD, JD4}, then there
is some (J1 ×!! J2)CS -model M = (W,R1, R2, E1, E2,V), where W = {u, a1, a2},
M, u |= φ, and for i ∈ {1, 2} Ri = {(x, ai) ∈W 2}.

Proof. Consider an F-model M = (W,R1, R2, E1, E2,V), having the strong evi-
dence property and such that W is finite (see Corollary 1) and some u ∈ W such
thatM, u |= φ. Let a0, b0 ∈W such that uR1a0 and a0R2b0. Then, for k ∈ N, let
ak+1, bk+1 ∈ W be such that bkR1ak+1R2bk+1. Then, for every l, k ∈ N such that
l < k, u, al, blR1ak and u, al, blR2bk. Since W is finite, there are some k, k′ ∈ N
such that k < k′ and ak = ak′ (and thus, ak, bkR1ak and ak, bkR2bk).

Let W ′ = {u, ak, bk}, R′
1 = {(a, ak) | a ∈ W ′}, R′

2 = {(a, bk) | a ∈ W ′}, and
V ′(p) = V(p)∩W ′. E ′i(t, ψ) = Ei(t, ψ)∩W ′ and E ′ is then an admissible evidence
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function. If not, it should violate one of its closure conditions, but it is not hard
to see that they are all satisfied.

Then,M′ = (W ′, R′
1, R

′
2, E ′,V ′) is a model and we can determine in a straight-

forward way that M′, u |= φ. 	


Lemma 2. Let J = (J1 ×◦ J2) and for some i ∈ {1, 2}, Ji = JD4.
IfM = (W,R1, R2, E1, E2,V) is a J -model andW is finite, then for every a ∈W ,
there is some b ∈ W , such that aRibRib and for every c ∈ W , if there is some
b′ ∈W for which c, bRib

′, then cRib.

Proof. Consider such an F-model for J ,M = (W,R1, R2, E1, E2,V). For that a ∈
W let a0 ∈ W such that aRia0. Let Sk = {x ∈ W | ∃y, akRix and not yRiak}
and let ak+1 ∈ Sk, if Sk �= ∅, and ak+1 = ak otherwise. Then, for every l, k ∈ N
such that l < k, a, alRiak and thus Sk ⊂ Sl. But since W is finite, there must
be some k ∈ N such that Sk = ∅. 	


4 Complexity Results

The results of this section are summed up by Theorem 1:

Theorem 1. Let J1,J2 ∈ {J, JD, JT, J4, JD4, LP}, ×◦ ∈ {×,×!,×!!,×C ,×CC},
and J = (J1 ×◦ J2)CS . If J2 = JD, J1 ∈ {J4, JD4, LP} and ×◦ = ×C, or
J2 = JD, J1 ∈ {JT, LP} and ×◦ = ×!, then J-satisfiability is PSPACE-complete.
In every other case, J-satisfiability is in Σp

2 .

We do not examine (J1 ×CC J2)CS , as it is essentially a single-agent logic: it is
not hard to see that t :1φ↔ t :2φ is a theorem of the logic.

4.1 No Interactions: ×◦ = ×.

Since there are no interactions we simply use the usual rule for w F t :i ψ that
gives w F ∗i (t, ψ) and one rule for each agent i depending on what Ji is. These
are given in Table 1 together with the corresponding Ji. The reasoning follows
the one for the case of (JD× JD)CS , except for the case when Ji = JD4, where
when we construct an accepting branch from a model (of finite states and with
the strong evidence property), we can use Lemma 2 and thus if we map w to a
we map w.i to some b such that aRibRib.

Of course, when we construct a model from an accepting branch we need to
provide a different accessibility relation to account for the different logics. In
particular, if Ji ∈ {J, J4}, then Ri = ∅; if Ji ∈ {JT, LP}, then Ri = {(w,w) ∈
W 2}; if Ji = JD, as in the case of (JD× JD)CS ,

Ri = {(w,w.i) ∈W 2} ∪ {(w,w) ∈ W 2 | w.i /∈W};

finally, if Ji = JD4, then

Ri = {(w,w.i) ∈W 2} ∪ {(w.i, w.i) ∈W 2} ∪ {(w,w) ∈ W 2 | w.i /∈W}.
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Table 1. Tableau rules for logics without interactions. We use two of these rules: the
ones that correspond to J1 and J2.

w T t :iφ

w T ∗i (t, φ) J
w T t :iφ

w.i T φ
w T ∗i (t, φ)

JD
w T t :iφ

w T φ
w T ∗i (t, φ)

JT

w T t :iφ

w T ∗i (t, φ)
J4

w T t :iφ

v.i T φ
w T ∗i (t, φ)

JD4

where if w of the form
w′.i, then v = w′ and oth-
erwise v = w

w T t :iφ

w T φ
w T ∗i (t, φ)

LP

4.2 Verification: ×◦ = ×!!.

When ×◦ = ×!! and J1, J2 are among JD, JT, JD4, and LP, Lemma 1 applies,
so we can base our rules on the three-world models it describes.5 Then, the
remaining argument remains the same as before, except when we define the
accessibility relations, depending on the logics, if Ji ∈ {JT, LP}, then Ri =
{(w,w) ∈ W 2} and otherwise, Ri = {(w, 0.i) ∈ W 2}. The rules are in Table 2.

Table 2. Tableau rules for when ×◦ = ×!!

w T t :iφ

0.i T φ
w T ∗i (t, φ)

JD,JD4
w T t :iφ

w T φ
w T ∗i (t, φ)

JT,LP

On the other hand if one of the two agents is based on J or J4, then we can
use the same rules and reasoning as for the case when ×◦ = ×.

4.3 Verification: ×◦ = ×!.

Like before, if one of the two agents is based on J or J4, then we can use the
same rules and reasoning as for the case when ×◦ = ×. Thus we only examine
the cases when J1,J2 ∈ {JD, JT, JD4, LP}. For these cases we can use the same
rules as in the case where ×◦ = × for J2 as well as one of the following two
rules for J1 (Table 3). The first should be used if J1 = JD, the second one if
J1 ∈ {JT, LP} and the third one should be used if J1 = JD4.

5 In fact if one of J1,J2 is JT or LP, then only up to two worlds are required in
the model, as these logics require reflexivity and not seriality of their accessibility
relation.
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Table 3. Tableau rules for ×◦ = ×!

w T t :1φ

w.s.1 T φ
w T ∗1 (t, φ)

JD
w T t :1φ

w.s T φ
w T ∗1 (t, φ)

JT,LP
w T t :1φ

v.1 T φ
w T ∗1 (t, φ)

JD4

where for the first two rules, s ∈ 2∗ and w.s has already appeared and for the
third one, either w of the form 0.a, where a ∈ 2∗ and v = w.s where s ∈ 2∗ and
w.s has already appeared, or w of the form 0.w1.1.w2 (and w1, w2 ∈ 2∗) and
v = 0.w1.

6

The argument for this case is similar to the ones that have already been
covered. Notice in all these cases that if in a frame, aR∗

2bR1c, then aR1c. To
justify the third rule, which is different from the ones we have encountered, we
gave Lemma 2. Then, when constructing a branch from a model, if w is mapped
to u, then we map w.1 to such a b ∈ W as indicated by Lemma 2, such that for
every c ∈ W , if there is some b′ ∈ W such that c, bR1b

′, then cR1b. When we
construct a model from an accepting branch, we can define W to be the set of
all world prefixes that appear in the branch as well as 0.s.1 for every s ∈ 2∗ such
that no world prefix 0.s.i where i ∈ {1, 2} appears. Then,

R1 = {(w,w.u.1) ∈ W 2} ∪ {(w.1.u, w.1) ∈W 2}.

For the first rule we can impose two extra restrictions (without affecting the
argument for correctness): we give this rule the lowest priority – it can only
be applied when there are other rules to apply – and when it introduces w.s.1,
then there must be no w.s.s′ already in the branch, where s′ not empty (i.e. w.s
must be maximal). Thus we ensure that for every w T t :iφ that appears in the
branch, the rule produces only one formula of the form w′ T φ; this condition
gives an upper bound of |φ| (where φ the initial formula) for the number of
world-prefixes. When we use the third rule (J1 = JD4), then notice that 1 can
only appear once in a prefix. Then, the number of prefixes of the form 0.2∗ is at
most |φ| and so is for any given w.1 the number of prefixes of the form w.1.2∗;
this gives an upper bound of O(|φ|2) on the total number of world-prefixes. The
exception is when J1 ∈ {JT, LP}; in that case, if J2 ∈ {JT, LP, JD4}, we still
have at most two prefixes, but (J1 ×! JD)CS-satisfiability is PSPACE-complete
(see the case of (JD4×C JD)CS in subsection 4.4, which is similar).

4.4 Conversion: ×◦ = ×C .

If J2 ∈ {JT, LP} then J � t :1 φ → φ. Thus we can use the tableau rules we
already used for ((J1 + Factivity) × J2) (but using the appropriate version of

6 2∗ is the set of strings that only use 2 as a symbol. If A is a binary relation, then A∗ is
its reflexive transitive closure. When A is a set (of symbols) and not a binary relation,
then A∗ is the set of strings that use A as their alphabet. 0.2∗ = {0.a | a ∈ 2∗}.
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the ∗-calculus) that only produce the world-prefix 0. The cases J1 ∈ {J, JD, JT}
or J2 ∈ {J, JT, JD4, J4, LP} are left to the reader and the only cases that will
interest us are the ones where J2 = JD and J1 ∈ {J4, JD4, LP}. In fact, for
these cases and in contrast to most cases we have studied, J-satisfiability is
PSPACE-complete.

We provide the tableau rules for (JD4 ×C JD)CS in Table 4, leaving to the
reader to complete the proof and to adjust these to the other cases.

Table 4. Tableau rules for (JD4×C JD)CS

w T t :2φ

w.2 T φ
w T ∗2 (t, φ)

w T t :1φ

w T ∗1 (t, φ)
w T �φ

w T � ∗1 (t, φ)

w T �α

w.2 T α
w.2 T �α

where w.2 has already ap-
peared

Informally, w T �α stands for v “satisfies” α for every wR1v and α either
a formula or a ∗-expression. When running the tableau we are not guaranteed
it will terminate, but we can artificially terminate it after a sufficient length
of prefixes is reached (exponential in |φ|, enough to know we have reached the
same set of expressions twice), or consider an infinite branch, closed under the
rules. When constructing a model from a branch, W is the collection of prefixes
(possibly infinite) and

R2 = {(w,w.2) ∈W 2} ∪ {(w,w) ∈W 2 | w.2 /∈W}

and R1 the transitive closure of R2:

R1 = {(w,w.u) ∈W 2 | u �= ε} ∪ {(w,w) ∈W 2 | w.2 /∈W}.

Notice that we can keep exactly one world-prefix in memory each time. The
only part of the process which is affected by the frame is the application of
rules ∗Dis(F) and ∗V-Dis(F) in the ∗-calculus, but these can only be applied to
some a ∗1 (t, ψ). Then, by induction on the calculus derivation we can push all
applications of ∗Dis(F) and ∗V-Dis(F) to the leaves of the ∗-calculus derivation,
where they are unnecessary, as we can see from the following rules. Furthermore,
since we can answer whether S �∗ w ∗i (t, ψ) in nondeterministic polynomial
time, we can also do that in (deterministic) polynomial space. Since all prefixes
are 0.2 . . . 2, we don’t even need to keep the prefix as is in memory, just its
length, which gives us a bound on the space we use.7

7 Notice that despite the notational differences (the use of � in and the incorporation
of ∗Dis(F) and ∗V-Dis(F) of the calculus in the tableau), the rules for (JD4×C JD)CS
and the ones for (LP×! JD)CS and (JT×C JD)CS are practically identical.
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We now prove PSPACE-hardness for (JD4 ×C JD)CS -satisfiability. The proof
is by reduction from a deterministic Turing machine of two tapes (input and
working tape) using polynomial space. It closely resembles the one in [12] and
has been used in [2] in a more general form to prove similar results. Let the
machine be (Q,Σ, δ, s), whereQ the set of states,Σ the alphabet, δ the transition
function and s the initial state. Let x = x1x2 · · ·x|x| be the input, where for
every i ∈ {1, 2, . . . , |x|}, xi ∈ Σ. Since the Turing machine uses polynomial
space, there is a polynomial p, such that the working tape only uses cells 1 to
p(|x|) for an input x. For the input tape, we only need cells 0 through |x| + 1,
because the head does not go any further and an output tape is not needed,
since we are interested only in decision problems. Therefore, there are Y,N ∈ Q,
the accepting and rejecting states respectively. Let r1 = {0, 1, 2, . . . , |x|+1} and
r2 = {1, 2, . . . , p(|x|)}.

– t1[i], t2[j], for every i ∈ r1, j ∈ r2; t1[i] will correspond to the head for the
first tape pointing at cell i and similarly for t2[j],

– σ1[a, i], σ2[a, j], for every a ∈ Σ, i ∈ r1, j ∈ r2; σ1[a, i] will correspond to
cell i in the first tape having the symbol a and similarly for σ2[a, j] and the
second tape,

– q[a], for every a ∈ Q; q[a] means the machine is currently in state a.

We need the following formulas. Intuitively, a state in a model for φ corresponds
to a configuration of our Turing machine. q ensures there is exactly one state at
every configuration; σ that there is exactly one symbol at every position of every
tape; t that for each tape the head is located at exactly one position; σ′ ensures
that the only symbols that can change from one configuration to the next are the
ones located in a position the head points at; ac ensures we never reach a rejecting
state (therefore the machine accepts); st starts the computation at the starting
configuration of the machine; finally, d ensures for each configuration that the
next one is given by the transition function. Then, if com = q∧σ∧ t∧σ′ ∧ac∧d,

φ = st ∧ com ∧ x :1 com

q =

⎛
⎝∨

a∈Q

q[a]

⎞
⎠ ∧ ∧

a,b∈Q,
a �=b

¬ (q[a] ∧ q[b])

σ =
∧

j∈{1,2},
i∈rj

⎡
⎢⎢⎣
( ∨

a∈Σ

σj [a, i]

)
∧

∧
a,b∈Σ,
a �=b

¬ (σj [a] ∧ σj [b])

⎤
⎥⎥⎦

t =
∧

j∈{1,2}

⎡
⎢⎢⎣
⎛
⎝∨

i∈rj

tj [i]

⎞
⎠ ∧ ∧

i,k∈rj
i�=k

¬ (tj [i] ∧ tj [k])

⎤
⎥⎥⎦
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σ′ =
∧

j∈{1,2},
i,i′∈rj ,

i�=i′,
a∈Σ

[(tj [i] ∧ σj [a, i′])→ x :2σj [a, i
′]]

ac = ¬q[N ],
st = φc0 , where φc0 describes the initial configuration of the machine,

d =
∧

(a,i1,i2)∈E×Σ×Σ,
j1∈r1,
j2∈r2

[
q[a] ∧ σ1[i1, j1] ∧ σ2[i2, j2] ∧ t1[j1] ∧ t2[j2] −→

x :2 (q[a1] ∧ σ2[k1, j2] ∧ t1[j1 +m1] ∧ t2[j2 +m2])

]

where (a1, k1,m1,m2) = δ(a, i1, i2).
For every configuration c of the Turing machine, there is a formula that de-

scribes it. This formula is the conjunction of the following and from now on
it will be denoted as φc: q[a], if a is the state of the machine in c; t1[i] and
t2[j], if the first tape’s head is on cell i and the second tape’s head is on cell j;
σ1[a1, i1], σ2[a2, i2], if i1 ∈ r1, i2 ∈ r2 and a1 is the symbol currently in cell i1 of
the first tape and a2 is the symbol currently in cell i2 of the second tape. Then,
st is φc0 , where c0 is the initial configuration for the machine on input x.

Claim: If for some model M, w |= φ and for some u, wR1u and u |= φc
and c1 is the next configuration from c, then there is some w, uR1u1, such that
u1 |= φc1 . From this claim, it immediately follows that if φ is satisfiable, then the
Turing machine accepts its input. We now prove the claim. Because of formulas
q, σ, t, in every state v, such that wR1v, there is exactly one φc satisfied. There
is some state u1, (because of seriality of R2) such that wR2u1 and if u1 |= φa,
then because of d, a will differ from c in all respects δ demands; furthermore,
because of σ′, a differs only in the ways δ demands. Therefore, a = c1.

On the other hand, assuming that the Turing machine accepts x, given its
computation path for x, we can construct model M = (W,R1, R2, E1, E2,V) for
φ.W is the set of configurations in the computation tree; let R2 be minimal such
that if a is a configuration and b its next configuration, then aR2b; let R1 be the
transitive closure of R1. Ei(t, ψ) = W for all i, t, ψ. V is defined to be such that
M, a |= φa (every φa is a conjunction of propositional variables). Then, it is not
hard to see that M, c0 |= φ. 	


Notice that it is crucial that the second logic in the pair is JD and not JD4, as
otherwise neither σ′ nor d would have the desired effect. What JD offers relative
to JD4 is the ability from every state to specify certain conditions (dictated by
σ′, d) that should hold at exactly every (the) next state. This could not happen if
instead of JD the logic was JD4. Lemma 2 demonstrated this even further, as we
can collapse all further states into one. On the other hand, it is necessary that
the first logic of the pair has positive introspection, as we need its accessibility
relation too be transitive. This way we can make statements that hold globally
(in every state we will eventually encounter if we follow an accessibility relation).
Other than that the logic can either have factivity, consistency, or neither: it
inherits consistency from JD anyway and factivity does not affect much – if
anything, it makes statements of the form s :1ψ even more globally true.
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Abstract. We consider the problem of decomposing a group norm into a set
of individual obligations for the agents comprising the group, such that if the
individual obligations are fulfilled, the group obligation is fulfilled. Such an as-
signment of tasks to agents is often subject to additional social or organisational
norms that specify permissible ways in which tasks can be assigned. An important
type of social norms are ‘fairness constraints’, that seek to distribute individual
responsibility for discharging the group norm in a ‘fair’ or ‘equitable’ way. We
propose a simple language for this kind of fairness constraints and analyse the
problem of computing a fair decomposition of a group obligation, both for non-
repeating and for repeating group obligations.

1 Introduction

Norms have been widely proposed as a means of achieving coordination and guaran-
teeing desirable system-level properties in multi-agent systems (MAS). Much of the
literature on normative MAS has focussed on obligations and prohibitions associated
with roles in an organisational structure or directed to individual agents (see for ex-
ample [12]). However, many norms apply to groups of agents rather than to an agent
enacting a role, or a particular agent in a MAS. For example, the members of the pro-
gramme committee for a workshop may have a collective obligation to review the papers
submitted to the workshop, or the occupants of a shared apartment may have an obli-
gation to keep the apartment clean (e.g., as part of the rental agreement). Such group
norms specify a sequence of actions that should be performed by members of the group,
leaving the details of how the norm is to be implemented to the members of the group
themselves. In general, there will be many possible implementations of a group norm,
i.e., assignments of agents to particular tasks. Each assignment gives rise to a set of
individual obligations that specify what each agent should do in order to discharge the
group obligation.

The assignment of agents to tasks specified by a group norm is often subject to addi-
tional social or organisational norms that specify permissible ways in which tasks can be
assigned. An important type of social norms are ‘fairness constraints’, that seek to dis-
tribute individual responsibility for discharging the group norm in a ‘fair’ or ‘equitable’
way. For example, there may be a constraint that no single agent should be required to
do all the work necessary to discharge the group norm, or that no agent should have to
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do a particular task more than once a week, etc. The social norms codifying what counts
as ‘fair’ vary from organisation to organisation. For example, in some computer science
departments, all members of academic staff may be assigned teaching duties, while in
other departments, more senior academics are not obliged to teach. A key problem in
normative MAS with group norms is determining whether a particular task allocation is
both effective (i.e., it discharges the group norm) and fair, in the sense of respecting the
social norms or fairness constraints in force within the organisation of which the group
is a part.

In this paper we make a first step towards defining the notion of a fair decomposition
of a group obligation into individual obligations for agents in the group. We consider
a group obligation to be a sequential or parallel composition of actions that have to be
performed by the agents in the group, either once or repeated indefinitely (for exam-
ple, the obligation to keep the household running involves repeated execution of the
same sequence of cleaning, cooking etc. actions). We show how to specify agents’ in-
dividual offers to contribute to a group norm, and analyse the problem of producing a
set of individual obligations for the agents in the group, such that if those individual
obligations are fulfilled, the group obligation is fulfilled. We propose a simple language
for fairness constraints and analyse the problem of computing a fair implementation
of a group obligation, for both non-repeating and repeating group obligations. We also
address the notion of minimality: an implementation should not unnecessarily demand
contributions from agents.

The structure of the paper is as follows. In section 2 we introduce the formal pre-
liminaries, such as the formal language we use to talk about group obligations and the
structures used to interpret the language. In section 3 we introduce the basic setting of
non-repeating group obligations and prove that the problem of whether an implemen-
tation exists is NP-complete. We also analyse the problem of the existence of minimal
and fair implementations. In section 4 we analyse similar problems for repeating group
obligations. We place our work in the context of existing research in section 5 and
discuss future work in section 6.

2 Formal Setting

Several approaches to norms have been proposed in the literature, including state-based
norms (where norms are defined in terms of states that should or should not occur), e.g.,
[18], and event or action-based norms (where norms are defined in terms of what agents
should or should not do), e.g., [14,10]. In this paper we take an action-based view of
norms, in which norms are interpreted as specifying a sequence of actions (possibly
containing gaps) that should occur, either once or repeatedly.1

We work in a propositional language of linear-time temporal logic. We assume that
we have a set of propositional variables Prop that in addition to ‘normal’ propositional

1 State-based norms require a state of affairs to be achieved rather than particular actions to be
executed. Grossi et al [15] argue that a complex action or plan may be seen as equivalent to
an action of the form achieve(τ ) where τ is a state of affairs. This means that action- and
state-based norms can be considered equivalent on the assumption that there is a single agreed
action or sequence of actions that achieves the desired state.
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variables such as c for ‘the room is clean’ contain a special kind of variables of the form
done(a, i) where a is a type of action from a set of actions Ac (where Ac includes the
no-op action skip) and i is the name of an agent coming from the set of agent names
Ag = {1, . . . n}. Intuitively, done(a, i) is true in a state if immediately before that
state, agent i has performed action a.

The syntax of Linear Time Temporal Logic (LTL), see, e.g., [21], is defined as fol-
lows:

φ, ψ := p | ¬φ | φ ∧ ψ | © φ | φUψ

where p ∈ Prop,© means next state, and U means until.

Definition 1. A transition system for a set Ag of n agents and a set Ac of actions is a
tuple 〈S,R, V, sI〉, where

– S is a non-empty set of states;
– R ⊆ Acn×S×S (for a = 〈a1, . . . , an〉 ∈ Acn, we will write (s, s′) ∈ Ra instead

of (a, s, s′) ∈ R);
– V : S × Prop → {true, false} assigns a truth value to each proposition in each

state;
– sI ∈ S is the initial state.

In addition, the following conditions are satisfied:

1. existence of successor: for each state there exists tuple of actions a such that
∃s′((s, s′) ∈ Ra)

2. individual determinacy: if (s′, s) ∈ Ra and (s′′, s) ∈ Rb then for all i, ai = bi
3. meaning of action propositions: V (s,done(ai, i)) = true iff ∃s′((s′, s) ∈

R〈a1,...,ai,...,an〉).

The first condition is a standard simplifying condition for temporal logics [21]. A tran-
sition system that does not satisfy it can easily be transformed into one where all states
with no outgoing transitions have a self-loop that can be interpreted as a no-op skip

action performed by each agent. (To be precise, to satisfy Condition (2), from the termi-
nal state we add a skip link to a new state which has a skip link to itself.) Conditions
(2) and (3) are related, and are imposed in order to be able to correctly interpret propo-
sitions of the form done(ai, i) which mean that agent i has just executed action ai. For
each state there should therefore be a unique tuple of actions by all agents that produces
it (note this is not the same as requiring that each state has a unique predecessor state).
This is also a standard condition in agent logics, for example [11], that need to be able
to express which action or event causes the current state. Again, it is easy to transform
any transition system into a system that satisfies conditions (2) and (3), by unravelling
it [5].

For example, consider the transition system on the left in Figure 1 (with a single
agent 1). This system violates all of the conditions (1)–(3). We can transform it to a
system on the right in Figure 1 that encodes the same information but has a successor
for every state and allows us to make an assignment to action propositions done(a, 1)
and done(b, 1). In this system, t1 and t2 have the same propositional assignment as s
apart from the action propositions, and t3 and t4 have the same assignment again apart
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sI s
a, b

tI

t2 t4

t1 t3

a

b

skip

skip

skip

skip

Fig. 1. A transition system that does not satisfy (1)-(3) (left) and the corresponding system that
satisfies (1)-(3) (right)

from satisfying the action proposition done(skip, 1) where skip stands for the no-op
action.

Given a transition system M = (S,R, V, sI), a path through M is a sequence
s0, s1, s2, . . . of states such that (si, si+1) ∈ Ra for i = 0, 1, 2, . . .. A fullpath is a
maximal path (where every element in the sequence has a successor) and a run of M is
a fullpath which starts from a state sI ∈ S. We denote runs by ρ, ρ′, . . . , and the state
at position i on ρ by ρ[i].

The truth definition for formulas is given relative to a model, a run ρ and the state at
position i on ρ:

M,ρ, i |= p iff V (ρ[i], p) = true
M, ρ, i |= ¬φ iff M,ρ, i �|= φ
M, ρ, i |= φ ∧ ψ iff M,ρ, i |= φ and M,ρ, i |= ψ
M, ρ, i |=©φ iff M,ρ, i+ 1 |= φ
M, ρ, i |= φUψ iff ∃j ≥ i such that M,ρ, j |= ψ and ∀k : i ≤ k < j, M,ρ, k |= φ

Other boolean connectives are defined as usual, for example φ → ψ := ¬(φ ∧ ¬ψ).
�φ (some time in the future) is defined as �Uφ, �φ (always in the future) is defined
as ¬�¬φ. We use©m, m ∈ �, to denote a sequence of© modalities of length m.

We say that a run ρ in a transition system M = (S,R, V, sI) satisfies φ (M,ρ |= φ)
if M,ρ, 0 |= φ. We say that M satisfies φ (M |= φ) if for all runs ρ in M , M,ρ |= φ.
A formula φ is valid if for all transition systems M , M |= φ. A set of formulas Γ
logically entails φ (Γ |= φ) if for every M and ρ, if M and ρ satisfy all formulas in Γ ,
then M,ρ |= φ.

3 Non-repeating Norms

In this setting, a group obligation specifies a sequence of actions that should be per-
formed collectively by a group of agents. Each step in the sequence specifies some
actions that must be performed in parallel by the agents in the group. We allow actions
that must be performed by more than one agent simultaneously, e.g., if two agents are
necessary to move a table. The obligation specifies what must be done, and in which
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order; however it does not specify which actions should be performed by each agent
in the group. For example a group of agents may be required to clean a room, where
‘cleaning the room’ is interpreted as “some agent has to vacuum the room and some
agent has to do the dusting”.

We assume that each agent in the group proposes one or more individual contri-
butions to implementing the group norm. Each contribution specifies a set of actions
the agent is prepared to perform in order to discharge the group norm. For example,
an agent may specify that it is prepared to vacuum but not to dust. Where the group
obligation specifies that the same action must be performed several times, we allow an
agent’s individual contribution to specify the maximum number of times the agent is
prepared to perform the action. For example, if a group obligation when spending a
week in a shared house involves cooking dinner each evening, an agent may specify
that it is prepared to cook dinner at most twice during the week.

Before giving formal definitions of group norms and individual contribution schemes,
we need some abbreviations. Let hapd(a1‖ . . . ‖am) (where {a1, . . . , am} is a multi-
set of actions) stand for actions ‘a1, . . . , am were executed in parallel’. This is definable
as

hapd(a1‖ . . . ‖am) =
∨

i1 �=···�=im

(done(a1, i1) ∧ . . . ∧ done(am, im))

If A = {a}, we write hapd(a) for hapd(A). Moreover, hapd(∅) is defined as true.
Let haps(A1; . . . ;AN ) where each Aj is a multiset of actions connected by ‖, stand

for a sequence of parallel executions of actions in multisets Aj . This is definable as

haps(A1; . . . ;AN ) = �(hapd(A1) ∧©(hapd(A2) ∧©(. . .© hapd(AN )) . . .))

where each Ai is in the scope of i nested© operators. In particular,

haps(A1;A2) = �(hapd(A1) ∧©hapd(A2))

Note that in this definition, the actions start ‘tomorrow’ rather than ‘now’, which is
more or less an arbitrary decision, made for convenience.

Definition 2 (Non-repeating group norms). Given N ∈ �, a group norm η is defined
as follows:

η := haps(A1; . . . ;AN )

Again, the obligation starts being executed ‘tomorrow’ rather than ‘at some point in
the future’. All formal results in the paper would hold if we used �haps(A1; . . . ;AN )
instead.

Example 1. Two flatmates need to decide who contributes in which way to the duties
of dusting (d), doing groceries (g), vacuum cleaning (v) and watering the plants (w) for
the next week:

η = haps(w‖g; d‖v; ∅;w; ∅; d; ∅)
That is, on Monday groceries and watering need to be done, on Tuesday, dusting and
vacuuming, on Thursday the plants need to be watered again, and on Saturday dusting
needs to be done. There are no constraints for Wednesday, Friday, and Sunday.
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Note that ∅ means that no actions are requireded to be performed, so the agents can
perform any action at this point in the sequence and still comply with the norm. In this
paper, we are only concerned with obligations, and not with prohibitions on executing
actions. We can extend the framework to prohibitions by using ¬done(a, i) expres-
sions. It is also straightforward to extend the syntax of group norms to express ‘twice a
week’ rather than ‘on Monday and on Thursday’ using disjunctions, but this increases
the complexity of the norm decomposition problem, so we only consider the current
(fixed order) setting. For the same reason, we do not consider conditional norms with
deadlines. These can be easily expressed, but again at the cost of increased complexity.

We will use do(a, i)m to indicate that i is prepared to perform a at most m times:

do(a, i)0 := �(¬done(a, i))

and
do(a, i)m+1 := �(done(a, i)→ �do(a, i)m)

Definition 3 (Individual contribution schemes). Given an agent i, an individual con-
tribution scheme Di is defined as

∨
Cj

i (with j ranging over disjuncts) where

Cj
i :=

∧
ak∈Ac

do(ak, i)
nj
k

We will refer to Cj
i as individual contribution offers or simply offers.

Sometimes we will treat Di as a set and write Cj
i ∈ Di to mean that Cj

i is a disjunct in
Di.

Each Ci specifies a possible combination of actions i is prepared to contribute and
does not refer to actions by other agents. For example, do(a, i)2 ∧ do(b, i)1 is an offer
by agent i to execute action a at most twice and action b at most once.

Example 2 (Example 1 ctd). Consider the following offers by the agents:

D1 = do(d, 1)1 ∧ do(g, 1)7 ∧ do(v, 1)1 ∧ do(w, 1)7

D2 = do(d, 2)0 ∧ do(g, 2)1 ∧ do(v, 2)0 ∧ do(w, 2)0 ∨
do(d, 2)1 ∧ do(g, 2)0 ∧ do(v, 2)0 ∧ do(w, 2)1

The constraint C1
1 = D1 expresses that agent 1 does not mind doing the groceries

and the watering, but is prepared to do the chores of dusting and vacuuming at most
once. Agent 2 (let us call his constraintsC1

2 ∨C2
2 ) is either (C1

2 ) willing to do groceries
once, or (C2

2 ) he is willing to do dusting once and watering once.

Note that there is a gap between a group norm and the offers of the agents, in the
sense that although the agents may offer to perform all the actions needed for the group
norm, in order for the group norm to be discharged, the agents need to synchronise and
commit to performing actions at particular times. An implementation of a group obli-
gation is a set of individual obligations that particular agents should perform a subset
of the actions specified in one of their individual contribution schemes (this is called
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a complete decomposition of the group obligation in [15]). Clearly an implementation
should be effective, that is, if the agents discharge their individual obligations, the group
norm is also discharged, and minimal, i.e., it should not create individual obligations
unecessarily.

We introduce two types of individual obligation Oi. The first kind of obligation
makes sense when an action that needs to be performed by an agent has to be performed
in any case, regardless of whether the preceding actions have been performed.

Definition 4 (Unconditional individual obligation). An unconditional obligation for
i is a formula of the form©jdone(a, i).

©jdone(a, i) is an obligation to perform a at step j (assuming steps are counted from
0).

The second kind of individual obligation is similar to those considered in [15]. They
make sense for actions whose preconditions are created by the preceding actions. For
example, where an agent is required to decorate a house and the action of decorating
can only be carried out if other agents build the house first. In this case, it does not make
sense to require the agent assigned to the decorating task to execute it unconditionally.

Definition 5 (Conditional individual obligation). A conditional obligation for i is a
formula of the form

haps(A1; . . . ;Am)→ �m+1done(a, i)

That is, i has an individual obligation to do a if the group obligationhaps(A1; . . . ;Am)
is discharged.

An individual obligation Oi for agent i is a conjunction of unconditional and condi-
tional individual obligations for i.

Given a tuple of individual obligations by agents in a group G (consisting of k
agents), OG = 〈O1, . . . , Ok〉, we will identify OG with the conjunction of those Oi’s.
We say thatOG respects the individual offerCj

i of agent i if OG∧Cj
i �|= ⊥. Essentially

this means that OG does not require i to perform each action a more than the maximal
number of times specified by Cj

i .

Definition 6 (Implementation of a norm). Given a group norm η, a set of agents
G ⊆ Ag and their individual contributions {Di | i ∈ G}, an implementation of η by
G is a conjunction OG of obligations Oi (i ∈ G)) such that

∀i ∈ G ∃Cj
i ∈ Di : OG respects Cj

i & |= OG → η

Note that the first actionA1 in any implementation of a group obligation haps(A1; . . . ;
AN ) can only have unconditional obligations corresponding to it. Note also that if OG

is an implementation of η, then OG is logically equivalent to a conjunction of uncondi-
tional obligations.

Example 3 (Examples 1 and 2 ctd.). There is no implementation that implements η
using the contributions C1

1 and C1
2 , because on Tuesday both the dusting and the vac-

uuming would have to be performed by the same agent 1, which is impossible given
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Definition 1 (condition 2): done(d, 1) and done(v, 1) cannot hold in the same state
since d and v are different actions. On the other hand, we can assign all individual ac-
tions to agents consistently using C1

1 and C2
2 : agent 1 is assigned g on Monday, v on

Tuesday, w on Thursday, and d on Saturday. This is consistent with its offer C1
1 . Agent

2 is assigned w on Monday and d on Tuesday; this is consistent with its offer C2
2 . The

individual obligation for agent 1 is

�done(g, 1) ∧ �2done(v, 1) ∧ �4done(w, 1) ∧ �6done(d, 1)

and for agent 2 �done(w, 2) ∧ �2done(d, 2). Together both obligations entail η.

In order to compute individual obligations and hence an implementation of a group
norm η, we also need an auxiliary notion of an assignment of agents to actions in η.

Definition 7 (Assignment). An assignment of agents in G ⊆ Ac to actions in η =
haps(A1; . . . ;AN ) is a function f that for every Aj in η assigns an agent i ∈ G and a
contribution Ci to every element a of Aj subject to the following constraints:

C1 if f(Aj , a) = (i, Ci) for k different j (in other words, the agent is assigned to k
different occurrences of a in η) then do(a, i)m for m ≥ k is a conjunct in Ci;

C2 if f(Aj , a) = (i, Ci) and f(Aj , b) = (k, Ck) and a �= b, then i �= k (only one
action can be executed by the agent i in a single transition); and

C3 if f(Aj , a) = (i, Ci) and f(Ak, b) = (i, C′
i), then Ci = C′

i (only one offer by i is
used by the assignment throughout).

The following theorem will be useful for analysing the implementation of a norm as
a computational problem.

Theorem 1. Every assignment of agents to actions in η satisfying the conditions of
Definition 7 gives rise to an implementation of η, and every implementation gives rise
to such an assignment.

Proof. Assume that we have an assignment f for a group norm η = haps(A1; . . . ;AN ).
By C3, for each agent i involved in the assignment, there is a single contribution Ci.
Given the assignment, generate Oi as

∧
f(Aj ,a)=(i,Ci)

©jdone(a, i). Clearly
∧
Oi re-

spects Ci by C1.
∧

i∈GOi is satisfiable by C2. Finally since f is an assignment, any
run that satisfies

∧
i∈GOi also satisfies η. Hence,

∧
iOi is an implementation.

Now assume that we have an implementation
∧

i∈GOi for η = haps(A1; . . . ;AN ).
We will show how to extract an assignment f for η from it. First of all, to satisfy C3, we
assign only one contributionCi with whichOi is consistent to every i ∈ G. Now we con-
struct f for each of A1, . . . , AN in turn. Since

∧
Oi |= η and η |= haps(A1), there are

enough conjuncts in
∧
Oi to make suredone(a, ij) holds for everya ∈ A1 and there are

enough different ij to for every occurrence of a in A1 (no agent is scheduled to perform
more than one action in parallel since

∧
Oi is satisfiable). We take some subset of those to

assign to f(A1, a). Similarly in order for
∧
Oi to entail haps(A1; . . . ;Am+1) provided

it entails haps(A1; . . . ;Am) there must be contributions in
∧
Oi of agents promising

to execute an action in Am+1 after haps(A1; . . . ;Am) (or in m + 1 timesteps uncon-
ditionally), and enough of them to entail haps(A1; . . . ; Am+1). Assign some subset of
those agents to actions in Am+1.
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Theorem 2. Given a group norm η, a group of agents G, and agent contributions Di

for i ∈ G, the problem of whether an implementation of η by G exists is NP-complete.

Proof. By Theorem 1, the problem of finding an implementation can be reduced to the
problem of finding an assignment. For membership of NP, observe that an assignment
can be guessed in time polynomial in the size of the group norm and checked that it
satisfies the conditions C1-C3 in time polynomial in the group norm and the set of
agents’ contributions. For NP-hardness, we reduce SAT to the problem of finding an
assignment of agents to actions in a group norm. Let φ be a propositional formula in
CNF containing n variables and k clauses. Without loss of generality, we assume that
each clause is unique and none of them contains both pi and ¬pi for some variable pi.
The corresponding group norm will be

ηφ = c1; . . . ; ck

where cj is an action corresponding to making the jth clause in φ true. Let G contain
n agents, one for each propositional variable pi in φ. Each agent i has two offers. In-
tuitively, the offer Ct

i corresponds to setting pi to true and the offer Cf
i corresponds to

setting pi to false.

Ct
i =

∧
pi∈cj

done(cj , i), Cf
i =

∧
¬pi∈cj

done(cj , i)

Since we assume that each clause is unique, the agents offer to make each cj true at
most once. Now assume that we have a function f that assigns to clauses pairs (i, Ct

i )

or (i, Cf
i ). By C3, only one of Ct

i or Cf
i is used for each i in this assignment. Hence

for each pi where i ∈ G (i was used in the assignment of agents), we can extract a
unique assignment of a truth value true or false to pi. Because of the way the offers
were defined, this assignments of truth values to pi for i ∈ G will make all the clauses
true.

3.1 Minimality

A natural and desirable property of an implementation of a group norm is that the agents
are not obliged to do more than the norm requires.

Definition 8 (Minimality). Let η be a group norm. Let O1, . . . , Ok be individual obli-
gations for agents in G, and I = O1 ∧ · · · ∧Ok.

– I is a minimal implementation of η if it is an implementation of η and there is no
implementation I ′ = O′

1 ∧ · · · ∧O′
k of η for which both I |= I ′ and I ′ �|= I .

– I is an i-minimal implementation of η if there is no obligation O′
i for i such that

(O1 ∧ · · · ∧ O′
i ∧ . . . Ok) is an implementation of η for which both Oi |= O′

i and
O′

i �|= Oi.
– I is an individually minimal implementation of η if it is an i-minimal implementa-

tion for every i ∈ G.

Clearly, a minimal implementation I of η is individually minimal. In our setting, the
opposite also holds:
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Theorem 3. Let I = O1 ∧ · · · ∧ Ok be an implementation of a group norm η =
haps(A1; . . . ;AN ) by G. Then I is a minimal implementation iff I is an individually
minimal implementation.

Proof. The left to right direction is obvious, so consider I = O1 ∧ · · · ∧ Ok. Since it
is an implementation of η, using Theorem 1 we can use an assignment f to write each
individual obligation Oi in the following normal form:

Oi = �(γi1 ∧ �(γi2 ∧ . . . �γiN ) . . . )

where each γik is of the form done(a, i) (i is required to do a at step k) or � (no
requirement for i at step k), and there is a contribution Ci so that the number of times
done(a, i) occurs for every a is consistent with Ci. Now let Γj =

∧
i≤n γik . It is not

difficult to see that I is equivalent to

O = �(Γ1 ∧ �(Γ2 ∧ . . . �ΓN ) . . . )

Now, if I is not minimal, there is a logically weaker implementation I ′ = �(Γ ′
1 ∧

�(Γ ′
2 ∧ . . . �Γ ′

N ) . . . ). However, since no done(a, i) entails any done(a′, i′) unless
a = a′ and i = i′, the implementation I ′ can only be weaker than I if there is some Γj

and Γ ′
j for which some Γj |= done(a, i) while Γ ′

j �|= done(b, i) for any action b (that
is, Γj requires i to do a at step j, while Γ ′

j does not impose a requirement on i at j).
But then, Oi is not minimal, since replacing done(a, i) by � in Oi would be a weaker
obligation for i, and hence I is not individually minimal.

Given the result above, it is clear that the problem of computing a minimal imple-
mentation is no harder than the problem of computing an implementation, since it is
possible to check if an implementation (or rather the corresponding assignment) is in-
dividually minimal in polynomial time.

3.2 Fairness

Now we arrive at the main concern of this paper, that is how to define a notion of group
norm implementation that agrees with the social norms accepted by the agents as a way
to regulate the fairness of task assignments.

Some implementations of a group norm may be better than others from the point of
view of the group’s or the wider organisation’s notion of fairness as captured in social
norms. For example, fairness may require that all agents should contribute equally to
the implementation of the group norm, or that agents with less experience are required
to contribute less. LTL offers a natural setting to consider fairness constraints on im-
plementations. By fairness constraints in this setting we do not mean just the notion of
fairness as defined for processes in computer science (e.g., every request will be eventu-
ally granted). Instead we mean some additional constraints on possible implementations
that reflect the organisation’s view of what is reasonable to require from the agents. For
example, it could be that the organisation does not consider it fair that the same agent
performs an action a (for example, a work shift) twice in a row:

�(
∧
i∈G

(done(a, i)→ �¬done(a, i)))
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Another example is that each agent gets a rest from all chores every seventh day:

�(
∧
i∈G

(¬χi ∨ �¬χi ∨ . . . ∨ �6¬χi))

where χi =
∨

a∈{d,g,v,w} done(a, i).

Definition 9 (Fair implementation). Let φ be an LTL formula expressing a fairness
constraint. An implementation of a group norm I is fair with respect to φ (or φ-fair) if
|= I → φ.

In other words, I is φ-fair if every run satisfying I also satisfies φ. Checking fairness
of an implementation can be done by checking whether I ∧¬φ is satisfiable. Note that,
since I essentially corresponds to a single finite run, it is possible to check whether it
satisfies φ in polynomial time (rather than PSPACE as in the general LTL satisfiability
problem).

If group norms are assumed to be fixed length sequences of actions, it arguably does
not make sense to consider arbitrary LTL formulas as fairness constraints. In fact, most
natural fairness constraints in human work allocation do not have the form ‘everyone
eventually gets a holiday’ but ‘everyone gets a holiday after working for n months’. For
this reason, we propose to restrict the syntax of fairness constraints to talk about fixed
finite patterns of actions.

Definition 10 (Fairness constraint). An LTL formula φ is a fairness constraint if it is
of the form �ψ, where ψ only contains �modalities.

Examples of fairness constraints �ψ are as follows, where N is a given number:
(1) no agent i performs an action a twice in the next N steps, without another agent i
performing it in between those occurrences; (2) agents i1, . . . , im take perfect turns in
all occurrences of action a; (3) if action a happens k times in the next N steps, then at
least m different agents should be involved in their execution; (4) agent i is allowed to
do something other than any of a1, . . . , ak at least once in every k steps; and (5) if i
does a then j does it within k steps.

4 Repeating Norms

In the previous section, we looked at group norms that correspond to performing some
group task/obligation once. In state-based terms, such norms correspond to achievement
goals: a sequence of actions that must be executed in order to achieve a certain desirable
state. In this section, we consider the case where a group norm relates, in state-based
terms, to a maintenance goal: some condition needs to be maintained in perpetuity. In
order to achieve this condition, some group task has to be executed periodically. For
example, every week the agents in a household need to execute some combination of
cleaning, shopping and cooking tasks: A1; . . . ;A7.

The norm itself requires them to iterate this sequence forever, which we write as
haps(A1; . . . ;A7)

∞. We will refer to the number of sequentially composed actions in
the repeated sequence in η as the cycle of η, c(η) (in the example above, c(η) = 7).
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An infinite repetition of a sequence A1; . . . ;AN can be defined in LTL as follows:

haps(A1; . . . ;AN )∞ = haps(A1; . . . ;AN )∧
�(haps(A1; . . . ;AN )→ �Nhaps(A1; . . . ;AN ))

Definition 11 (Repeating group norm with cycleN ). A repeating norm with cycle N
is an obligation to repeat A1; . . . ;AN infinitely often: η = haps(A1; . . . ;AN )∞

The syntax for agent’s individual contribution schemes is similar to Definition 3,
apart from the addition of the norm cycle N : do(a, i)m,N means that the agent offers
to perform a at most m times in every N = c(η). The most straightforward way to
define this in LTL is to rule out all patterns of length N where the agent performings
a more than m times, or, equivalently, to state that in every pattern of length N there
are at least N − m steps when the agent is not performing a. Let Km,N = {K ⊆
{1, . . .N} | |K| = N −m}. Intuitively, this defines all possible combinations of a-free
steps in a pattern of length N if the agent does a at most m times. Let notK(a, i) for
k ∈ Km,N stand for

∧
k∈K

�k¬done(a, i). This formula says that the agent does not
do a on each of the time steps in K . Then do(a, i)m,N =

∨
K∈Km,N notK(a, i) says

that the agent does a at most m times in N steps. Finally, to make this apply not just to
the first N steps but indefinitely, the offer is prefixed with a �:

Definition 12 (Individual contibution schemes for repeating norms). Given an agent
i, and a repeating norm η with cycle N , an individual contribution scheme Di for η is
defined as

∨
Ci where

Cj
i :=

∧
ak∈Ac

�do(ak, i)
nj
k,N

where nj
k ≤ N for all k.

An unconditional obligation for agent i in a repeating norm setting is an obligation
to perform an action a at step k in a cycle of length N .

Definition 13 (Unconditional individual obligation for repeating norms). Given an
agent i, and a repeating norm η with cycle N , an unconditional individual obligation
for i with respect to η is a formula of the form

©kdone(a, i) ∧ �(done(a, i)→©Ndone(a, i))

where k ≤ N .

A conditional obligation requires an agent to perform an action every time when the
other agents have performed some actions.

Definition 14 (Conditional individual obligation for repeating norms). Given an
agent i, and a repeating norm η with cycleN , a conditional obligation for i is a formula
of the form

�(haps(A1; . . . ;Am)→ �m+1done(a, i))

where m < N .
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An implementation of a repeating norm by a set of agents G is as before a conjunc-
tion of obligations I =

∧
Oi∈G such that |= I → η and I is consistent with agent

offers. A minimal implementation is defined as before, and the same type of fairness
constraints as in the previous section can be applied to repeating norms.

A single cycle assignment of agents to actions in η = haps(A1; . . . ;AN )∞ is de-
fined as an assignment for a non-repeating norm η′ = haps(A1; . . . ;AN ). Clearly
any single cycle assignment repeated every N steps gives rise to an implementation
for a repeating norm. However for repeating norms it makes sense to consider imple-
mentations obtained by ‘gluing’ several different assignments together and repeating
the resulting pattern. Repetition affects fairness in a non-trivial way. Considering the
example fairness constraints in the previous section, we can see that ‘gluing’ together
two (even identical) assignments satisfying fairness constraint (2) stated at the end of
Section 3 may make the resulting implementation unfair (if the last occurrence of a in
the implementation is done by ik with k < m), and also two unfair implementations
(not satisfying fairness constraint (5) in Section 3, for instance) may become fair when
glued together.

A consequence of this is that when solving the problem of finding a φ-fair imple-
mentation of a repeating obligation η, it is not sufficient to consider only single cycle
assignments. If none of those when repeated correspond to a fair implementation of
η, this does not mean that η has no fair implementation. We may need to consider a
combination of several assignments. For example, let φ = �(

∧
i∈G(done(a, i) →

�¬done(a, i))) and η = haps(a)∞. The cycle of η is 1. Suppose there are two pos-
sible one cycle assignments for η, one where agent 1 does a, and another where agent
2 does a. If either of them alone is repeated, the resulting implementation is not fair:
either all occurrences of action a are done by agent 1, or all of them are done by agent
2. Clearly, if we combine these two one cycle assignments or produce a one cycle as-
signment to an ‘unravelling’ of η of length two: η2 = haps(a; a)∞, we can produce
an assignment that gives rise to a fair implementation: for example, the first a is done
by agent 1 and the second by agent 2. However to solve the problem of finding a φ-fair
implementation of a repeating norm η (if it exists) we need to know how long such an
unravelling should get before we give up.

For η = haps(A1; . . . ;AN )∞, we will call

ηm = haps(A1; . . . ;AN ; . . . ;A1; . . . ;AN )∞ (m times)

an m-unravelling of η.

Theorem 4. Let η be a group obligation with cycle N that has k different one cycle
assignments S1, . . . , Sk, and φ be a fairness constraint of modal depth d. If a φ-fair
implementation of η exists, then there exists a φ-fair implementation of η based on the
a single cycle assignment to an m-unravelling of η, where m ≤ max(k, kd/N+1).

Proof. Let τ be an assignment corresponding to a fair implementation of η. Without
loss of generality, we can assume that τ corresponds to a (possibly infinite) sequence
of one cycle assignments for η, Si1 , . . . , Sit , . . .. Given τ , we are going to construct
a sequence of assignments of length m, that is, some sequence τ ′ = S′

1, . . . , S
′
m (a

single cycle assignment to ηm) that when repeated infinitely often, gives rise to a φ-fair
implementation of η.
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Note that τ (or any other assignment of agents to actions) corresponds to a description
of a run in terms of action propositions. Observe that a run violates φ if it has a pattern
of d consecutive states s1, . . . , sd that is a counterexample to φ. Clearly, τ desribes a run
that does not contain such a counterexample sequence of states (since it corresponds to a
fair implementation). Note also that none of single-cycle implementations of η that occur
in τ contain such a sequence of states (otherwise τ would not satisfy φ).

Let us first consider a simpler case when d < N . Then the only way a sequence
of single-cycle assignments Sj1 , . . . , Sjn would violate φ is when there is a sequence
on the ‘joint’ between two assignments Sjl and Sjl+1

that violates it. Let us build a
sequence of assignments of length at most k that does not have such a violating joint.
For convenience, let us say that Sjl and Sjl+1

compose if their concatenation does not
contain a subsequence violating φ. To start building our sequence of length at most k,
take the first assignments in τ , Sj1 . Clearly it composes with some other assignments,
since τ does not violate φ. If Sj1 composes with itself (there is a subsequence in τ that
has Sj1 ;Sj1 , we are done: τ ′ = Sj1 . Otherwise we consider the first two assignments
in τ , Sj1 ;Sj2 . If Sj2 composes with itself, we are done and τ ′ = Sj2 , or if it composes
with Sj1 , then τ ′ = Sj1 ;Sj2 . Otherwise we consider a 3-element prefix of τ . Note
that eventually we are going to encounter Sjf which composes with Sjf+1

that already
occurs in the prefix of the sequence (the maximal possible value for f is k, the total
number of single-cycle implementations). Then we set τ ′ to be the subsequence of
the current sequence that starts from the first occurrence of Sjf+1

and continues until
Sjf . Clearly, τ ′ has length at most k and nowhere in the ‘joints’ of the single cycle
implementations in τ ′ there is a counterexample to φ (including the joint of τ ′ to itself).

Now let d ≥ N . Then a counterexample sequence s1, . . . , sd can span multiple
single cycle assignments. Let d ≤ p · N (p iterations of N are required to produce a
counterexample to φ, so p ≤ (d/N) + 1). Then we make a set of ‘viable multi-cycle
assignments’ Z1, . . . , Zkp of all p-sequences of single-cycle assignments occurring in
τ . We treat them as we treated single cycle assignments Si before, as the building blocks
for τ ′. Similarly to the previous construction, we are bound to start to encounter the
same ‘viable multi-cycle assignments’ after kp steps. So τ ′ is of length at most kd/N+1.

This means that to construct a φ-fair implementation of η, we only need to consider
assignments to sequences of actions of length m ≤ max(k, kd/N+1). This gives us
an (exponential) algorithm for finding a φ-fair implementation of a repeating norm η
(generate all possible one cycle assignments and then check all concatenations of them
of length m for consistency with φ).

5 Related Work

Social laws have long been recognised as an important mechanism to facilitate coor-
dination in multi-agent systems [9], and there exists an extensive literature on formal
approaches to social laws and norms, for example [23,20,17,22,1,6,12,7,8,3]. Logics
for social laws often build upon dynamic or temporal logics such as LTL, CTL, ATL
and STIT. Most of this work specifies norms and their effects on the multi-agent system
semantically by labelling certain transitions as forbidden (in the case of prohibitions) or
labelling certain states as ‘green’ (good, or encouraged states) or ‘red’ (forbidden ones,
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see e.g. [19]). In this paper, we only model obligations (rather than prohibitions) and
specify obligations in the object language.

Group norms have been studied in for example [2,15]. Our definition of non-repeating
group norms is essentially the one from [15]. The emphasis of [15] is however on for-
malising synchronisation, and they abstract from the problem of computing individual
obligations for a group norm. In [2] group norms are considered at a much more abstract
level. In their framework, a group norm concerns making a state formula φ true, and the
set of agents responsible for carrying out (an abstract STIT-like) action to achieve φ and
the set of agents responsible for the violation are explicitly given as part of the norm.
Our approach is closer to [15] in that the notion of agents responsible for the violation
of a group norm given a particular implementation is definable from the set of individ-
ual obligations. An agent that does not fulfil an unconditional obligation is responsible
for a violation, and an agent with a conditional obligation the condition of which has
not been made true, is not responsible.

Team formation and coordination of joint actions has been extensively studied in
Artificial Intelligence, for example [13,16,24]. However the emphasis of that work is
on efficient and flexible team work rather than on fairness. An exception to this is the
work in [4], where the authors consider the problem of repeatedly choosing actions
(that could for example be actions of assigning jobs to people) in a fair way, where
fairness has a decision theoretic interpretation based on minimising loss for worse-off
beneficiaries of actions. The motivation of their work is very similar to our problem
of finding a fair implementation of a repeated norm, but they have a specific notion of
fairness and reduce the problem of fair selection of actions to an optimisation problem.

6 Conclusion

In this paper, we propose an approach to expressing and reasoning about implementa-
tions of group obligations and introduce the notion of fairness constraints. The approach
is a first step in formalising these notions, and has a number of limitations. We model
only obligations and do not consider prohibitions. In addition, the structure of group
obligations is quite rigid: we do not consider obligations to perform some action m
times during an interval of N days, instead we specify specific days on which those
m actions have to be performed. We also consider only a restricted class of fairness
constraints. Relaxing these limitations, and a more compact syntax for representing, for
example, individual offers, are the subject of future work.

Acknowledgements. We thank the anonymous CLIMA 2014 referees for their insigh-
ful comments that helped to improve the paper.
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Abstract. Artificial institutions have been proposed to regulate the acting of the
agents in open multi-agent systems (MAS). They are composed of abstractions
such as norms, roles, goals, etc. In this paper, we say that an artificial institution
is situated when the whole regulation that it performs is based on facts occur-
ring in the environment where agents act. The conceiving of situated institutions
is challenging as it requires to situate all abstractions possibly involved in the
MAS regulation considering their different natures, semantics, life cycles, etc.
This work introduces a conceptual model of a situated artificial institution (SAI),
structured along two axes: norms and constitutive rules. While norms are based
on status functions, the constitutive rules allow a SAI model to clearly state the
conditions for an element of the environment to carry a status function. From a
first version of a SAI specification language based on this conceptual model, we
discuss its features and illustrate its dynamics through examples.

Keywords: institutions, norms, status functions, constitutive rules, situatedness.

1 Introduction

Institutional abstractions, such as norms, roles, goals, missions, interaction scenes, etc,
are suitable to conciliate the autonomy of the agents and the achievement of global
goals in open and decentralized Multi-Agent Systems (MAS) where agents can act
deviating from the system expectations [4,5,18,12]. These abstractions are gathered in
the institutional dimension (or simply institution) that regulates the system, i.e., that
enforces the agents to comply to the system expectations. The facts occurring in the
environment affect the institutional regulation.1 For instance, a norm is violated when
some prohibited event takes place in the environment (e.g. a norm stating that one is
prohibited to go through a red traffic light is violated only when one in fact crosses
the red traffic light). Without such event, there is not violation. On the other hand, the

1 The literature usually considers environment as the set of non-autonomous elements that are
perceived and acted upon by the agents, where they act to achieve their goals [21,22,26]. We
consider the environment from the institutional perspective, being composed also of the agents
that act upon and perceive the non-autonomous elements.

N. Bulling et al. (Eds.): CLIMA XV, LNAI 8624, pp. 35–51, 2014.
c© Springer International Publishing Switzerland 2014
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environmental elements cannot ensure, themselves, the suitable behaviour of the agents.
The fact of a norm being violated when one goes through a red traffic light is not related
to the object traffic light itself. Rather, it is related to some institutional agreement or
decision associating the norm fulfilment and violation to that object.2

Most of the existing institutional approaches are not concerned about the connection
between facts in the environment and their consequences in the institution. Some of
them leave to the agents the responsibility of informing norms violations, role adop-
tions, goal achievements, etc [17]. In this paper, however, we look for situated institu-
tions, where the regulation is based on facts occurring in the environment so that it does
not depend on agents informing norm violations, goal achievements, role adoptions, etc.
A situated institution must have means to specify and to program how the environment
affects the different institutional abstractions. Having such a situated institution allows
the agents to reason about how to concretely act in the environment to comply with
institutional expectations [1] without to handle the institutional platform [6]. Besides, it
prevents that agents avoid institutional consequences of their actions [6].

Conceiving situated institutions is challenging as it requires to situate all abstractions
possibly involved in the MAS regulation considering their different natures, semantics,
life cycles, etc. For example, (i) if the institution contains norms, it is necessary to spec-
ify how the environmental elements affect norm activation, violation, fulfilment, etc,
or (ii) if the institution contains roles, it is necessary to specify how the environmen-
tal elements affect role assignments and revocations, etc. Some related works propose
to situate specific abstractions, such as norms in [9] or commitments in [10], ignoring
the remainder ones. In this case, the situatedness specification explicitly defines which
are the institutional abstractions affected by environmental facts. A drawback of this
approach, however, is that the agents can only reason about a limited set of situated
institutional abstractions. Other related works propose to link the environment to the
institutional platform taking no account of the institutional abstractions that are situ-
ated [7,19,6]. Although these approaches allow to situate any institutional abstraction,
they do not help the agents to reason about institutional consequences of their actions
because the situatedness language does not explicitly define which are the institutional
abstractions affected by the environment.

The difficulties related to linking environmental elements to different institutional
abstractions lead us to investigate the very nature of the situatedness problem. While
current related works, described in the Section 2, focus on the link between the environ-
ment and different institutional abstractions, this work aims to address the problem of
institutional situatedness dealing with the very conception of the institution. The main
contribution of this paper, described in the Section 3, is the proposal of a meta-model
(henceforth model) named Situated Artificial Institutions (SAI) whose abstractions are
conceived and arranged to allow the specification of institutions where the whole reg-
ulation is based on the environment. The name Artificial Institution is inspired by the
work of Fornara et al. that advocates that the social dimension of an MAS is composed

2 Although the behaviour of the agents may be regimented by the environmental elements (e.g.
instead of using a traffic light, a physical barrier could block a lane when cars should not
proceed), we are concerned with the cases where the compliance with the system expectations
is a decision of the agents.
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of other elements in addition to norms [13]. A language for specifying a SAI is pro-
posed in the Section 4. In this paper we focus on the conceptual level of the proposed
model, presenting its components and their arrangements. The dynamics of the model
is informally explained through examples. The section 5 presents some discussions and
perspectives based on this work.

2 Motivation

Institutional situatedness has been addressed by some related works in the multi-agent
domain. From the perspective of situated institutions, i.e. institutions where the whole
regulation is based on the environment, two important properties can be stated: institu-
tional semantics and institutional coverage. Institutional semantics refers to the use of
meaningful institutional concepts to specify situatedness. Models having institutional
semantics allow the agents to reason about institutional effects of facts from the en-
vironment. Institutional coverage is related to the set of institutional abstractions that
they can situate. Models having a wide institutional coverage allow to situate many (or
perhaps any) institutional abstractions.

The approaches of [10] and [9] have institutional semantics as they allow to specify
situatedness using institutional concepts. The model of [10] considers the specification
of how the messages exchanged among the agents affect the life cycle of commitments.
It uses concepts directly related to that abstraction, such as conditional commitment,
satisfied commitment, expired commitment, etc. For example, the code excerpt (cex1)
below specifies that (i) when an agent x sends an offer to y, a conditional commit-
ment (Cc) is created between x and y and (ii) when x sends a tell to y informing that
it has done q, then the commitment is satisfied (Cs). In [9] the proposed approach uses
count-as rules to specify that specific states of the environment affect the life cycle of
norms. In this case the situatedness specification is also done using meaningful institu-
tional concepts related to norms, as it is possible to specify, for example, that a certain
environmental state counts as a norm violation, which is a concept directly related to
norms. In such approaches, agents are thus able to understand and reason on this insti-
tutional semantics, knowing perfectly what to do at the environmental level to produce
effect at the institutional level. These approaches, however, have a limited institutional
coverage because they only define situatedness for a limited set of institutional abstrac-
tions. Thus, they allow the agents to only reason about environmental facts affecting
commitments [10] or norms [9].

1 : offer(x, y, p, q, d1, d2) =⇒cr Cc(x, y, p, q, d1, d2)

2 : tell(x, y, q) ∧ Cc(x, y, p, q, d1, d2) ∧ ¬d1 ∧ q =⇒cr Cs(x, y, p, q, d1, d2)
(cex1)

The approaches of [7,19,6] consider that a situatedness interface observes the en-
vironment and, by interpreting the situatedness specification, produces informations
about what should happen in the institution. It is assumed that the institutional plat-
form takes such informations and changes its own state accordingly. Contrasting to the
previously described works of [9,10], these models have a wide institutional coverage,
as the provided informations can refer to any institutional abstraction. They address
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situatedness as a problem of interoperability between components of environment and
institution. For example, the code (cex2) below, excerpted from [6], specifies that when
the environment has the property auction status(closed) the institution should have the
property play(Winner,Role). But that property does not have, in the situatedness spec-
ification, any institutional meaning. The property will have an institutional meaning
when latter interpreted by the institutional platform. In its specific application, the prop-
erty becomes true as soon as the platform detects that the agent Winner plays the role
Role. But the institutional abstraction role is not part of the situatedness model. Thus,
agents cannot reason about the institutional consequences of the situatedness specifi-
cation of this example. They cannot infer that when the environment has the property
auction status(closed), they will play a role, because play(Winner,Role) is just some in-
formation that will be sent to the institutional platform (which will then gives semantics
to play).3 As the consequence, if the property play(Winner,Role) is replaced by mean-
inglessProp(x,y), the rule remains syntactically and semantically correct but the agents
cannot say whether the rule still makes sense. Although these approaches have a wide
coverage, they do not consider the institutional semantic, as institutional concepts do
not belong to the situatedness model.

∗ auction status(closed)

count− as play(Winner, Role)

in currentWinner(Winner)& auction role(Art, Role).

(cex2)

While the previously described approaches consider situatedness as a functional
problem, where the environment affects the life cycle of the institution, the approach
of [1], in line with [14,15,2], considers it as an ontological problem where the main
concern is to relate the concepts used in the specification of norms to concrete elements
from the environment. Although considering situatedness of norms, this approach has
a wide institutional coverage as the use of similar rules could be applied to other in-
stitutional abstractions (e.g. roles, stating that the agent bob counts as a teacher). But
the approach lacks of institutional semantics because the environmental elements are
linked to the concepts in the norms but are not related to the semantics of such con-
cepts. For example, for a norm stating that “a is obliged to b”, it is possible to specify
that “j counts as a” and “k counts as b”. But it is possible also to specify that “j counts
as b” and “k counts as a”, that is wrong as a is an agent while b has a different nature.
The rule stating that “j counts as a” does not take into account the nature of the element
j that is linked to a.

We can observe that models that allow to specify situatedness using meaningful in-
stitutional concepts have a limited institutional coverage while models having a wide
institutional coverage lack of institutional semantics. Thus, the current body of work
in institutional situatedness does not allow to situate all institutional aspects relevant
to the regulation of an MAS through institutional programming, i.e. using meaning-
ful institutional concepts. Our work aims to contribute to fill this gap as it allows to
specify the whole expected behaviour of the agents through status functions that can be

3 Of course, if the agent also knows the institutional platform, it can infer the consequences of
the environmental facts.
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situated through constitutive rules. As status functions and constitutive rules are mean-
ingful concepts in the proposed model, the specification of situatedness is part of the
institutional specification.

3 Situated Artificial Institutions

As stated in the introduction, our Situated Artificial Institution (SAI) proposal aims to
support the whole regulation of MAS based on environmental elements. This section
presents our contribution, i.e. the SAI meta-model, describing it briefly in Section 3.1
and explaining its components in more details in Section 3.2. The dynamics of the
model are beyond the scope of this paper and are briefly and informally explained along
this section.

3.1 SAI Overview

A SAI is composed of norms, status functions and constitutive rules (Figure 1). Norms
specify the expected behaviour of the agents. A norm, however, does not provide itself
the situatedness of the institution because it does not refer directly to concrete environ-
mental elements. The elements composing a norm (defining who must accomplish it,
what must be achieved or avoided, etc) are status functions. The situatedness is achieved
when the status functions are assigned to environmental elements through constitutive
rules. For example, the norm “the winner of an auction is obliged to pay its offer, other-
wise it is fined” makes sense in the institutional specification of an auction. The norm,
however, does not specify aspects such as (i) what an agent should do to become the
winner of the auction, (ii) what an agent must do to perform the payment, or (iii) how
the fine is applied. In this scenario, winner, payment, and fine are all status functions:
they are meaningful functions in the institution that the environmental elements cannot
perform solely in virtue of their physical characteristics. Rather, the performing of the
functions is the result of assignments through constitutive rules stating, for example,
that a bank deposit counts as the payment of the offer. In a more concrete example,
supposing that the environment has an automatic teller machine implemented by an
artifact [21], an operation in such artifact could count as the payment.

The main inspiration for this idea is the social reality theory of John Searle [23,24].
According to that theory, the social reality where human people are immersed arises
from the concrete world (i.e. the environment) based on some elements including status
functions, norms and constitutive rules. Norms, referred by Searle as deontic powers,
define the expected behaviour of the people in the society; status functions are functions
that environmental elements perform independent of their physical virtues; constitutive
rules constitute the status functions from the environment. For example, a constitutive
rule can define that a small line of stones has the status function (or counts as) the
boundary of a private property. Due to such assignment of status function, people have
reasons to follow the norm that states that they are forbidden to get into the private
property even though they are physically able to cross the line of stones. The ideas
from Searle’s work have inspired other works dealing with institutional situatedness.
But those works take, in general, the idea that elements from the environment count
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Fig. 1. A SAI composed by norms, status functions and constitutive rules regulates the agents
acting in the environment

as elements in the institution without taking into account the conception of institution
proposed by Searle. Our model is inspired both by the notion of count as and by the
institutional view proposed by Searle.

3.2 SAI Meta-model

This section presents the conceptual meta-model of SAI, defining its fundamental ele-
ments and explaining their role in the model.

Definition 1. A SAI is a tuple 〈F ,N , C〉, where F is a set of status functions, N is a
set of norms, and C is a set of constitutive rules.

Figure 1 shows a layered view of the components of SAI – norms, status functions
and constitutive rules – that are explained in the sequel.

Status Functions in SAI Status functions are functions that the environmental ele-
ments may perform in the institution independent of their design aspects. Even if it is
not possible to say that they are the main element of the model, it is possible to consider
them as the central ones, and they are thus defined first since they are related to all the
other elements.4

Definition 2. In a SAI, F = AF ∪ EF ∪ SF , where (i) AF is the set of agent-status
functions, (ii) EF is the set of event-status functions, and (iii) SF is the set of state-status

4 A function, in the context of status functions, does not have the usual mathematical sense of
mapping elements from a domain to ones in a codomain. Rather, it is related to the performance
of a function by some element.
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functions. We consider that (i) agent-status functions are the status functions assignable
to agents, (ii) event-status functions are the status functions assignable to events, and
(iii) state-status functions are the status functions assignable to states.

We explicitly define the kind of elements that can carry a function considering the
kind of status function present in the norm elements (as explained later). Thus, status
functions can be assigned to:

– Agents: Agents may play functions in the institution that are not inherent to their
design characteristics. For example, in a certain institution, an agent may have the
function of auctioneer. But it has such function due to an institutional assignment.
The agent may be implemented with expertise to be an auctioneer and may intend
to be an auctioneer, but without the institutional assignment of the status function
auctioneer, it will not be considered at the institutional level as playing that func-
tion.

– Events: the agents produce events when they act over objects in the environment
and when they interact among themselves. These events may have a special mean-
ing in an institution. For instance, the event corresponding to the utterance of “I
offer $100,00” may have the status function of “bid” or “counter-proposal”, de-
pending on the institutional assignments.

– States: some states of the environment may get a meaning in the institution. For
example, the state where “more than twenty people are inside a room at Friday
10am” may mean, in the institution, the minimum quorum for an auction.

Before to introduce norms, we introduce the status-function-formulas (sf-formulas),
that are important to express the aims, conditions of applicability, consequences of non-
compliance and deadlines of norms, as we will see later. A sf-formula wF ∈ WF is a
logical formula whose syntax is given by:

wF ::= sF |eF |¬wF |wF ∨ wF |wF ∧ wF |x is f |⊥|�

The proper semantic of the sf-formulas is defined later. Informally, a sf-formula eF
holds when something is carrying the event-status function eF in the current state of the
institution. For instance, when the speech act offer($100) is counting as a bid, the sf-
formula bid is true (where bid ∈ EF ). The interpretation of sF in sf-formulas is similar.
Formulas using the operator is (e.g. bob is bidder) hold when something (bob) carries a
status functions (bidder).

Norms in SAI Norms specify the expected behaviour of the agents acting in the system,
by defining what they are obliged, prohibited, and permitted to do. Our definition of
norms is inspired by the ADIC/ADICO sentences [8].

Definition 3. A norm n ∈ N is a tuple 〈a, d, i, c, o, ρ〉 where:

– a ∈ AF is the attribute to whom the norm applies, i.e. it represents the agent that
is obliged, prohibited, or permitted to do something;

– d ∈ {obligation, prohibition, permission} is a deontic operator;
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– i ∈ WF is the aim, i.e. the formula that should be true (when d = obligation) or
false (when d = prohibition) to the norm be considered fulfilled;

– c ∈WF is a sf-formula conditioning the applicability of a norm;
– o ∈ WF is a sf-formula expressing what should become true when the norm is

violated;
– ρ ∈ WF is a sf-formula expressing the condition before which the norm should be

complied.

For example, when an auction is finished (c), the bidder (a) is obliged (d) to pay its
offer (i) within two days (ρ), otherwise it will be fined (o). While most of the elements
of norms are sf-formulas, the attribute a is an agent-status function because agents are
the only elements that can act in order to fulfil or violate a norm.

Although the operational semantics of the model is beyond the scope of this paper,
we informally explain how the elements of a norm are related to its dynamics: 5

– a norm is active when the condition c holds;
– an active obligation is fulfilled if the aim i holds before ρ;
– an active prohibition is fulfilled if the aim i does not hold before ρ;
– an active obligation is violated if the aim i does not hold after ρ;
– an active prohibition is violated if the aim i holds before ρ;
– the consequence of the non-compliance of a norm takes place when o holds.

The element o is optional because we consider that norms can be specified without
consequence for non-compliance.6 Although the ADICO sentences consider that the
Or-Else element must be backed by another norm [8], we consider that the consequence
of norm violation can be also some institutional feedback at environmental level (i.e.
the institution itself raises an event or a state change in the environment), as proposed
by Piunti et al [19].

The norms are specified through status functions and their dynamic and management
in the system is dependent on the assignments of status functions. These assignments
are specified through the constitutive rules, that are explained below.

Constitutive Rules in SAI. The constitutive rules link the environment to the status
functions. As status functions can be assigned to agents, events, and states from the
environment, it is needed to represent these environmental elements.

Definition 4. The elements of the environment that are relevant to the institutional reg-
ulation are represented by X = {AX , EX ,SX } where (i) AX is the set of agents possi-
bly acting in the system, (ii) EX is the set of events that may happen in the environment,
and (iii) SX is the set of possible properties used to describe the state of the environ-
ment.

5 We refer to an active norm whose deontic operator is an obligation as an active obligation. The
same applies to prohibitions.

6 An additional discussion about sanctions in norms can be found in [8].
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It is important to observe that the set X is just a representation of the elements of
the environment.7 For example, when a SAI specification contains an event eX ∈ EX ,
it does not mean that the event eX has happened in the environment. Rather, it means
that the designer of the institution assumes that eX may happen.

FromX we introduce also the environment-formulas (e-formulas), that are important
to express the conditions under which the constitutive rules perform the assignments of
status functions. An e-formula wX ∈ WX is a logical formula defined as:

wX ::= sX |eX |¬wX |wX ∨wX |wX ∧ wX |⊥|�
Informally, an e-formula eX holds when the event eX happens in the environment.

For instance, the e-formula offer($100) is true when the speech act offer($100) is per-
formed by an agent. The interpretation of sX in e-formulas is similar.

Having introduced the e-formulas, it is possible to define the constitutive rules.

Definition 5. C is the set of constitutive rules of a SAI. A constitutive rule c ∈ C is a
tuple 〈x, y, t,m〉meaning that x ∈ F∪X ∪{ε} counts as (i.e. x has the status function)
y ∈ F when the event t ∈ EF ∪EX ∪{ε} has happened and whilem ∈W holds (where
W = WF ∪WX ).8

While in Searle’s theory, the context of constitutive rules is true when generic cir-
cumstances c hold, we consider that the context is true (i) when some event t has
happened and (ii) whilem holds. A constitutive rule is read as x count-as y when
t while m. In the case of t = ε ∧ m = �, the constitutive rule is simply read as x
count-as y since y is assigned to x in any circumstance.

The count-as relation performs the constitution of the status function y as follows:

– Constitution by assignment of a status function y to an element x. This kind
of constitution applies to rules where x �= ε. In this case, the status function
y is assigned to an existing element x, that may be either a concrete element
belonging to the environment or another status function. For example the rule
< bob, bidder, offer(10), auction running > is an example of assignment of
status function to a concrete element: it means that the agent bob carries the sta-
tus function of bidder after having uttered its offer and while the auction is run-
ning. An example of assignment of status function to another status function is
the rule < bidder, auction participant, ε, ε >: it assigns the status function of
auction participant to the agents that have the status function of bidder.

– Creation of freestanding status function. This kind of constitution applies to rules
where x = ε. In this case, there is not an element that carries the status function.
Rather, the constitutive rules just state that the status function exists in a certain
context. For example the rule < ε, auction running, ε,¬auction finished) >
means that the property auction running holds in the institution when the prop-
erty auction finished does not hold. In this case, there is not any property in

7 It is beyond of the scope of this paper to deal in details with the environment. We just con-
sider the elements of X as existing outside the institution, being available thanks to reliable
interfaces.

8 ε represents that the element is not present in the constitutive rule.
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the environment that carries the status function of auction running. The idea of
elements that exists in the institution but do not have a corresponding in the envi-
ronment is recognized by Searle [23,24] and by other related authors [16,25,16].

Semantics of Formulas. While the previous sections just presents the sets WF and
WX of formulas, this section explains their semantics.

The set of status functions assignments (i.e. the grounding of the status functions in
the environment) is represented by G = {AG , EG ,SG} where (i) < aF , aX > belongs
to AG when the status function aF ∈ AF is assigned to an agent aX ∈ AX , (ii)
< eF , eX > belongs to EG when the status function eF ∈ EF is assigned to an event
eX ∈ EX , (iii) < sF , sX > belongs to SG when the status function sF ∈ SF is
assigned to a property sX ∈ SX , and (iv) < sF , ε > belongs to SG when sF ∈ SF is a
freestanding y existing in the institution.

Assuming that the history of a running system is given by a sequence of states, we
use Gt = {At

G , EtG ,St
G} to refer to the assignments of status functions in the tth state.

The truth-value of a formula wF , considering the assignments G at the tth state of the
execution of the system, is given by:

– Gt |= wF if wF ∈ SF ∧ ∃x :< wF , x >∈ St
G ;

– Gt |= wF if wF ∈ EF ∧ ∃x :< wF , x >∈ EtG ;
– Gt |= x is f if f ∈ AF ∧ < f, x >∈ At

G ;
– Gt |= x is f if f ∈ SF ∧ < f, x >∈ St

G ;
– Gt |= x is f if f ∈ EF ∧ < f, x >∈ EtG ;

The satisfaction of ⊥ (false), � (true), and boolean connectives runs as usual.

The evaluation of formulas in WX is based on environmental elements. Considering
Σt

e as the set of events occurring in the environment at the instant t and Σt
s as the state

of the environmental properties at the instant t, the truth value of wX at t is given by:

– Σt |= wX if wX ∈ SX ∧ wX ∈ Σt
s;

– Σt |= wX if wX ∈ EX ∧ wX ∈ Σt
e;

4 Language to Specify SAI

Besides the conceptual model presented in the Section 3, another contribution of this
work is a language to specify SAI. The specification of a SAI, using the elements pre-
viously introduced, has two parts. The first one is the normative specification, that de-
fines norms based on the status functions and state expressions, which are the elements
that can be specified regardless of the environment. The second one is the constitutive
specification, that defines the constitution of status functions from the environmental el-
ements through constitutive rules, providing situatedness to the SAI. This twofoldness
provides independence between normative and constitutive parts of the specification:
the constitution of the status function may change without changing the norms. The
opposite is also true: norms may change as long as the status functions stay the same.
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The normative specification is written based on the syntax given in Figure 2 and
defines the set of status functions (F ) and norms (N ) of the institution. The set F may
have agent-, event-, and state-status functions. Norms follow the Definition 3: when the
condition c is true, the norm becomes active and an agent carrying the status function
a must to achieve or avoid (accordingly to the deontic operator d) the aim i before the
deadline ρ, otherwise the consequence o becomes true.

normative spec ::= intitution id F N
institution id ::= institution id: inst name .

F ::= status functions: AF? EF? SF?

N ::= norms: norm+

AF ::= agents: aF (,aF ) ∗ .
EF ::= events: eF (,eF ) ∗ .
SF ::= states: sF (,sF ) ∗ .

norm ::= id: c: a d i (until ρ)? (else o)?.

c ::= wF
a ::= aF
d ::= obliged|prohibited|permitted
i ::= wF
ρ ::= wF
o ::= wF

inst name ::= atom

id ::= atom

wF ::= sF |eF |¬wF |wF ∨ wF |wF ∧ wF |x is f |⊥|�
aF ::= atom

eF ::= predicate

sF ::= predicate

Fig. 2. Grammar of the normative specification

The constitutive specification, written based on the syntax given in Figure 3, models
the set C of the constitutive rules of the SAI. In order to keep independence between
normative and constitutive specifications, a constitutive specification refers to the nor-
mative specification that it is constituting through the elementnormative id. Each con-
stitutive rule (const rule in the grammar) has an identifier (id). Besides, the rules have
the operator count-as, that performs the constitution of the status function identified
in the y. Notice that the elements related to the context of the constitutive rule (t andm)
are optional. Constitutive rules follow the Definition 5: the element x carries the status
function y after the happening of the event t while m holds.

4.1 Example

As the formal semantics of the aforedescribed language is beyond the scope of this
paper, we use an example to illustrate its dynamics. The Figure 4 shows a normative



46 M. De Brito, J.F. Hübner, and O. Boissier

const model ::= intra inst id C
normative id ::= institution id : instit id .

C ::= constitutive rules: const rule+

const rule ::= id : count as stat t? m?.

count as stat ::= ((aF |aX ) count-as aF ) |
((eF |eX ) count-as eF ) |
((sF |sX )? count-as sF )

t ::= when eF |eX
m ::= while w

instit id ::= atom

w ::= wX |wF
wX ::= sX |eX |¬wX |wX ∨ wX |wX ∧wX |⊥|�

Fig. 3. Grammar of the constitutive specification

specification of SAI related to an auction scenario. The lines 3-9 define the status func-
tions. Agents may have the function of auctioneer, bidder, current winner (the agent
that has placed the best offer before the finish of the auction) and winner. An agent may
have more than one status function (e.g. the winner is also a bidder). The following
event-status functions are defined for this scenario: (i) to pay, that refers to the payment
for an offer, (ii) to fine winner, that refers to the event of fining the winner when it
does not pay its offer and (iii) to bid, that refers to the performance of a bid. Finally,
the state-status functions auction running and auction finished are defined to represent
the two phases of an auction while the state-status function current value points to the
value of the best bid during the auction.

The normative specification defines three norms. The norm 1 states that when the
auction is finished, the winner is obliged to pay its offer and, otherwise, it is fined with
a fixed value. The norm 2 states that when the auction is running, bidders are permitted
to bid. The norm 3 states that when the event to fine winner happens, the winner is
obliged to pay its offer before a new auction starts.9 As explained before, the norms do
not refer to any specific environmental element: the sets of norms and status functions
do not specify what constitutes finished auction, winner, payment, bidder, etc.

The constitutive specification (Figure 5) defines the constitution for the scenario. We
explain here some rules of the constitutive specification. The rule 1 specifies that an
agent has the status function of auctioneer when it has uttered a propose for an auction
if there is not another auctioneer, and the agent keeps this function until the auction is
finished.10 By the rule 2, an auction is running until it is finished. By the rule 3 any agent
(except the auctioneer) is a bidder while the auction is running. The rule 4 specifies that
the auction is finished when the auctioneer says “The auction is finished”. Notice that
such phrase only finishes the auction if it is said by the agent that carries the status
function of auctioneer. If the phrase is said by another agent, there is not any change

9 Identifiers starting with an uppercase letter or the underscore ( ) are variables.
10 The negation is handled using the closed world assumption, where something that cannot be

proved as true is considered false[20].
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1 institution_id : auctionInst.
2
3 status_functions:
4 agents:
5 auctioneer, bidder, current_winner, winner.
6 events:
7 to_pay(Value), to_fine_winner(Value), to_bid.
8 states:
9 auction_running, auction_finished, current_value.
10 norms:
11 1: auction_finished:
12 winner obliged to_pay(current_value) else to_fine_winner(100).
13 2: auction_running:
14 bidder permitted to_bid .
15 3: to_fine_winner(Value):
16 winner obliged to_pay(Value) until auction_ready.

Fig. 4. Normative specification of the auction scenario

in the institutional state. The rule 5 specify that the utterance of an offer by an agent
having the status function of bidder means, in the institution, a bid. The rule 6 assigns
the status function current winner to the agent that says “I offer...” when the auction is
running, if the agent has the status function of bidder, and if the offered value is greater
than the last offered value. The rule 7 states that the value offered by a bidder becomes
the current value of the auction if it is greater that the last current value.

Discussion of the Example. The agents can use the specifications of the figures 4 and
5 to reason about how to act in the system. For example, by the constitutive rule 3, an
agent knows when it is considered a bidder and, thus, by the constitutive rule 5 and the
norm 2, it knows when it can to bid and how to act to perform the bid (i.e. uttering
an offer). Similarly, by the rule 8 the agents know what constitutes the winner, by the
constitutive rule 9, they know how the constituted winner must act to comply with the
norm 1.

The twofold specification provides independence between the normative specifica-
tion and the environment. The original constitutive specification could be, for instance,
replaced by another one where the bids are done through the operation doOffer of an
electronic artifact. In this case, the rules 5-7 of the Figure 5 would be replaced by the
ones of the Figure 6. Similarly, the bids could be done both through telling the offers
and through the electronic artifact. In this case, the rules 5-7 of the Figure 6 should be
added to the constitutive specification of the Figure 5.

The example of the Figure 5 shows, with rules 2 and 4, a status function assign-
ment of type “freestanding Y” [23]. In this case, a status function becomes true in the
institution, but there is not a concrete element that carries such function.

In the normative specification (Figure 4), the or-else element of the norm 1 is the
same event that activates the norm 3. There is here a norm attachment. When the norm
1 is violated, the institution expects that the event to fine winner is produced in the
environment. When such event happens, the norm 3 is activated. Notice that the norm
3 is activated when the event to fine winner occurs in the environment rather than
when institution detects the violation of the norm 1.
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1 institution_id : auctionInst.
2
3 constitutive rules:
4 1: Agent count-as auctioneer
5 when propose(Agent, auction)
6 while ((not _ is auctioneer) | (Agent is auctioneer)) &
7 not auction_finished
8 2: count-as auction_running
9 while not auction_finished.
10 3: Agent count-as bidder
11 while (not Agent is auctioneer) &
12 auction_running.
13 4: count-as auction_finished
14 when tell(Agent, "The auction is finished")
15 while Agent is auctioneer.
16 5: offer(Agent,Value) count-as to_bid
17 while auction_running & Agent is bidder.
18 6: Agent count-as current_winner
19 when offer(Agent,Value)
20 while Agent is bidder &
21 (not (Current is current_value & Current>Value))&
22 auction_running.
23 7: Value count-as current_value
24 when offer(Agent,Value)
25 while Agent is bidder &
26 (not (Current is current_value & Current>Value))&
27 auction_running.
28 8: Agent count-as winner
29 while Agent is current_winner &
30 auction_finished.
31 9: sendDepositRecipt count-as to_pay.
32 10: sendFineWarning(Agent,Value) count-as to_fine_winner(Value)
33 while Agent is winner.

Fig. 5. Constitutive specification of the auction scenario

1 institution_id : auctionInst.
2 ...
3 ...
4 ...
5 5: doOffer(Agent,Value) count-as to_bid
6 while auction_running.
7 6: Ag count-as current_winner
8 when doOffer(Agent,Value)
9 while Agent is bidder &
10 (not Current is current_value & Current>Value)&
11 auction_running.
12 7: Value count-as current_value
13 when doOffer(Agent,Value)
14 while Agent is bidder &
15 (not Current is current_value & Current>Value)&
16 auction_running.

Fig. 6. Constitutive rules for bid through electronic artifact
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5 Discussion and Future Work

The problem motivating this paper is the conceiving of institutions where the whole
regulation is based on environmental elements. Considering this problem, we propose
the conceptual meta-model of Situated Artificial Institution (SAI). A SAI is composed
of norms, status functions and constitutive rules. If the whole expected behaviour is de-
fined through norms and norms are composed of status functions, which are constituted
from the environment through constitutive rules, then the whole institutional regulation
is based on environmental elements. The main advantages of such conception are (i)
the possibility of to design an institution where situatedness is part of the model and
(ii) the possibility of the agents to reason about how to concretely act in compliance
with all institutional expectations. This conception is an adaptation, from a particular
point of view, of Searle’s theory, which claims that a system of status functions, norms
(or deontic powers), and constitutive rules supports the whole human social reality. In
human societies such system is (i) internal, as people have particular representations of
the social reality, i.e. they do not necessarily reason in terms of status functions, norms,
etc, and (ii) implicit, as it is built on top of people’s mental states (that believe, for in-
stance, that a certain man is the king). In the proposed model, status functions, norms
and constitutive rules compose a system (i) explicit, as it is properly specified through
institutional concepts and (ii) external, as it is persisted outside the agents mind.11

Norms and status functions allow to specify the expected behaviour of the agents
abstracting from concrete agents and other environmental elements that will compose
the system. This is important in open MAS, where these elements are not necessarily
known at design time [3,27]. Different from our proposal, other models consider differ-
ent abstractions to this high level representation of the MAS regulation. For example,
roles represent behaviour patterns for the agents, organizational goals represent actions
and states that agents should produce, interaction scenes define ordered actions to be
followed by the agents to achieve some goal, etc. Status functions, on their turn, are in
a different abstraction level, as they are just abstract representations to (i) agents that
act in the system, (ii) events occurring in the environment and (iii) states that hold in
the environment. Status functions can be viewed as an abstraction of the concrete en-
vironment on top which norms are specified. An investigation about how the system of
status functions and norms can support more complex social abstractions (roles, goals,
scenes, etc) is a future work.

While the system of status functions and norms allows to abstract all elements related
to the system regulation, the constitutive rules relate this abstract level to the environ-
ment. The use of status functions as a well defined and limited set of abstractions of el-
ements under institutional regulation enables someone to clearly define how the whole
institution is situated. Instead of situating a large (or even undefined) set of complex in-
stitutional abstractions, we situate just status functions. As the norms are composed of
status functions that are explicitly related to the environment, agents can use the insti-
tutional specification to reason about how their concrete actions lead to violations and
fulfilments of norms.

11 A discussion of explicitness and externality in institutional models is found in [11].
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The elements of SAI allow the specification of institutions in two phases. Firstly, the
norms that govern the institution are defined in terms of status functions. At this point of
the design, there is not relation between institution and environment. In a further step,
constitutive rules connect status functions to the environment, defining the concrete
elements that carry status functions and are present in the institutional norms. With this
arrangement, there is an independence between normative and constitutive elements
of the institution. This independence may seem conflicting to our initial assumption
that, in SAI, all basic elements are situated. But that assumption remains, as status
functions are conceived to be situated (or constituted) and a possible unsituated status
function is related to the particular specification of an institution rather than to the SAI
model. With proposed arrangement of SAI elements, the model has itself sufficient
elements to specify the constitution of institutional elements. This is coherent with our
concept of institution as a set of mechanisms regulating a system: the definition of the
constitution of the institutional elements is directly related to the regulating tasks. This
is also coherent with Searle’s view of institutions arising from the constitution of the
institutional elements.

This work addresses the theoretical aspects of SAI. As future work, we plan to ex-
plore additional theoretical aspects related to the model, such as (i) the operational se-
mantics of the proposed language, (ii) the verification of the consistency among norms,
status functions and constitutive rules, (iii) investigations about how other proposed in-
stitutional abstractions fit on SAI, and (iv) how the SAI regulation concretely affects the
environment. We plan also to address more practical points as (i) the implementation
of an interpreter for the normative and constitutive programs, (ii) the modelling of a
SAI based on a real institutional scenario, and (iii) the integration of SAI in an MAS
platform. A deeper work on agents reasoning about SAI is also planned to the future.
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7. Campos, J., López-Sánchez, M., Rodrı́guez-Aguilar, J.A., Esteva, M.: Formalising Situat-
edness and Adaptation in Electronic Iinstitutions. In: Hübner, J.F., Matson, E., Boissier, O.,
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13. Fornara, N., Viganò, F., Verdicchio, M., Colombetti, M.: Artificial institutions: a model of
institutional reality for open multiagent systems. Artificial Intelligence and Law 16(1) (2008)

14. Grossi, D., Aldewereld, H., Vázquez-Salceda, J., Dignum, F.: Ontological aspects of the im-
plementation of norms in agent-based electronic institutions. Computational & Mathematical
Organization Theory 12(2-3), 251–275 (2006)

15. Grossi, D., Meyer, J.-J.C., Dignum, F.: Counts-as: Classification or Constitution? An An-
swer Using Modal Logic. In: Goble, L., Meyer, J.-J.C. (eds.) DEON 2006. LNCS (LNAI),
vol. 4048, pp. 115–130. Springer, Heidelberg (2006)

16. Hindriks, F.: But where is the university? Dialectica 66(1), 93–113 (2012)
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Abstract. In open environments, agents need to reason with knowl-
edge from various sources, represented in different languages. Managed
Multi-Context Systems (mMCSs) allow for the integration of knowledge
from different heterogeneous sources in an effective and modular way,
where so-called bridge rules express how information flows between the
contexts. The problem is that mMCSs are essentially static as they were
not designed to run in a dynamic scenario. Some recent approaches,
among them evolving Multi-Context Systems (eMCSs), extend mMCSs
by allowing not only the ability to integrate knowledge represented in
heterogeneous KR formalisms, but at the same time to both react to,
and reason in the presence of commonly temporary dynamic observa-
tions, and evolve by incorporating new knowledge. These approaches,
however, only consider the dynamics of the knowledge bases, whereas
the dynamics of the bridge rules, i.e., the dynamics of how the informa-
tion flows, is neglected. In this paper, we fill this gap by building upon
the framework of eMCSs by further extending it with the ability to up-
date the bridge rules of each context taking into account an incoming
stream of observed bridge rules. We show that several desirable proper-
ties are satisfied in our framework, and that the important problem of
consistency management can be dealt with in our framework.

1 Introduction

In Open Multi-Agent Systems, the paradigm for knowledge representation and
reasoning (KRR) is rapidly changing from one where each agent has its own
monolithic knowledge base written in some language into one where each agent
has to deal with several external heterogeneous sources of knowledge, possibly
written in different languages (see, e.g.,[1,22,25] and references therein). These
sources of knowledge include the large number of available ontologies and rule
sets, as well as the norms and policies published by the institutions, the infor-
mation communicated by other agents, to name only a few.

Each agent needs to be able to deal with such distributed sources of knowledge,
taking into account the interactions and possible flows of information between
them. For example, the agent may use inferences drawn from some ontology to
justify the conclusions drawn from some rules in another knowledge base; or
the agent may use some piece of information published by some other agent
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to infer that some action it is about to undertake will not violate some norm
published by some institution. Unlike approaches that aim to integrate several
knowledge bases to obtain a common view of the system, our focus is on how a
particular agent can integrate several knowledge bases to obtain its own view of
the system. One consequence of our focus is that no coordination between agents
is involved since the way knowledge bases are combined, how they interact, and
how information flows between them, is internal, and ultimately private, to the
agent in question.

Two common ways of integrating heterogeneous knowledge exist, namely ei-
ther relying on hybrid languages (e.g., [20,27], and [24] with its reasoner NoHR
[23]), to which other languages can be translated, or modular approaches (e.g.,
[9,14]) in which different formalisms and knowledge bases are considered as mod-
ules, and means are provided to model the flow of information between them.
Among the latter, Multi-Context Systems (MCSs) [9,19,28] are particularly gen-
eral and have gained some attention by agent developers [7,12,29].

MCSs consist of a set of contexts, each of which is a knowledge base in some
KR formalism, such that each context can access information from other con-
texts using so-called bridge rules. Such non-monotonic bridge rules add their
head to the context’s knowledge base provided the queries (to other contexts)
in the bodies are successful. Managed Multi-Context Systems (mMCSs) were
introduced in [10] to extend MCSs by allowing operations, other than simple
addition, to appear in the heads of bridge rules. This allows mMCSs to properly
deal with the problem of consistency management within contexts.

A recent challenge for KR languages is the shift from static scenarios which
assume a one-shot computation, usually triggered by a user query, to open and
dynamic scenarios where there is a need to react and evolve in the presence
of incoming information. Examples include EVOLP [2], Reactive ASP [17,16],
C-SPARQL [6], Ontology Streams [26] and ETALIS [4], to name only a few.

Whereas mMCSs are quite general and flexible to address the problem of in-
tegration of different KR formalisms, they are essentially static in the sense that
the contexts do not evolve to incorporate the changes in the dynamic scenarios.
In such scenarios, new knowledge and information is dynamically produced, of-
ten from several different sources – for example a stream of raw data produced
by some sensors, new ontological axioms written by some user, newly found
exceptions to some general rule, etc.

To address this issue, two recent frameworks, evolving Multi-Context Systems
(eMCSs) [21] and reactive Multi-Context Systems (rMCSs) [8,15,11] have been
proposed sharing the broad motivation of designing general and flexible frame-
works inheriting from mMCSs the ability to integrate and manage knowledge
represented in heterogeneous KR formalisms, and at the same time be able to
incorporate knowledge obtained from dynamic observations.

Whereas some differences set eMCSs and rMCSs apart, namely regarding how
observations are handled, and the kind of state transitions that can be made,
both focus only on the dynamics of the context’s knowledge bases, thus not
allowing the bridge rules of the contexts to change. However, as the world evolves,
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it is also quite natural that the way in which information flows between contexts
be subject to change. For example, as bridge rules represent how contexts are
accessed, and their knowledge used, changes in the level of trust of these contexts
can lead to changes in the way their knowledge is used, i.e., changes in the bridge
rules that appeal to those contexts. Even if not triggered by issues such as trust,
we may simply want to change the bridge rules, e.g., by adding exceptions to
existing ones. To address this drawback, we should allow the initial set of bridge
rules to undergo change, at runtime, triggered by the observation of new bridge
rules, which act as updates to the previous ones. This update naturally needs to
go beyond the simple addition of the new rules since consistency between new
and previously existing bridge rules needs to be ensured.

In this paper we fill this gap by presenting an extension to eMCSs, called
bridge-rule evolving Multi-Context Systems (beMCSs), which combines the abil-
ity to both react to, and reason in the presence of commonly temporary dynamic
observations, and evolve by incorporating new knowledge, inherited from eMCS,
with the ability to update the bridge rules of each context, taking into account
an incoming stream of observed bridge rules. We show that our framework sat-
isfies several desirable properties and how the important problem of consistency
management can be dealt with.

The remainder of this paper is structured as follows. After introducing the
main concepts regarding mMCSs, we define beMCSs and prove some properties
of the framework. Then, we discuss consistency management. We conclude with
discussing related work and possible future directions.

Example 1 (Running example). Throughout this paper, we will illustrate some of
our concepts using the scenario of an airport, where there is an agent responsible
for its security.1 Such an agent should build its knowledge based on existing
knowledge distributed across several heterogeneous knowledge sources. First of
all, the agent should have access to an airport ontology, which describes airport
concepts, e.g., terminals, gates, etc., to avoid creating and maintaining its own.
Another important component is that of the security norms, usually published by
a national authority, that describe what is obligatory, permitted and forbidden
with respect to airport security. As in any true multi-agent system, the agent
should have a model of every other relevant agent, e.g., other security agents
working in cooperation. Here, such models are meant to be the idealization
the security agent has about the other agents based on observations about and
communication with them. In this scenario, the security agent will have to react
and evolve given incoming streams of information, e.g., provided by sensors (e.g.,
passengers arriving to the airport, images from cameras, etc.) or from other
agents, but it should also be able to change its specification regarding how all
this information flows between contexts and is combined.

1 This example is partially inspired by an example presented in [25].
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2 Preliminaries: Managed Multi-Context Systems

Following [9], a Multi-Context System (MCS) consists of a collection of compo-
nents, each of which contains knowledge represented in some logic, defined as
a triple L = 〈KB,BS,ACC〉 where KB is the set of well-formed knowledge
bases of L, BS is the set of possible belief sets, and ACC : KB → 2BS is a
function describing the semantics of L by assigning to each knowledge base a set
of acceptable belief sets. We assume that each element of KB and BS is a set,
and we define F = {s : s ∈ kb ∧ kb ∈ KB}.

In addition to the knowledge base in each component, bridge rules are used to
interconnect the components, specifying what knowledge to assert in one com-
ponent given certain beliefs held in the components of the MCS. Bridge rules
in MCSs only allow adding information to the knowledge base of their corre-
sponding context. In [10], an extension of MCSs, called managed Multi-Context
Systems (mMCSs), is introduced in order to allow other types of operations to
be performed on a knowledge base. For that purpose, each context of an mMCS
is associated with a management base, which is a set of operations that can be
applied to the possible knowledge bases of that context. Given a management
base OP and a logic L, let OF = {op(s) : op ∈ OP ∧ s ∈ F} be the set of oper-
ational formulas over OP and L. Each context of an mMCS gives semantics to
operations in its management base using a management function over a logic L
and a management base OP , mng : 2OF ×KB→ (2KB \ {∅}), i.e., mng(Op, kb)
is the (non-empty) set of possible knowledge bases that result from applying the
operations in Op to the knowledge base kb. We assume that mng(∅, kb) = {kb}.

Let L = 〈L1, . . . , Ln〉 be a sequence of logics and OPi a management base.
We denote by OFi the set of operational formulas over OPi and Li. Then a
bridge rule σ for Li and OPi over L, 1 ≤ i ≤ n, is a rule of the form op(s) ←
a1, . . . , ak,not ak+1, . . . ,not an, where op(s) ∈ OFi, and, for each 1 ≤ i ≤ n,
ai is of the form (r :b) where r ∈ {1, . . . , n} and b is a belief formula of Lr.
Given a bridge rule σ of the above form, the head and the body of σ are defined
as H(σ) = op(s) and B(σ) = {a1, . . . , ak,not ak+1, . . . ,not an}, respectively.
As we will specify below, intuitively, the operational formula in the head will
be applied to the knowledge base using mng if all elements in the body are in
accordance with the beliefs held in the corresponding contexts r.

Putting all the above together, a managed Multi-Context System (mMCS) is a
sequenceM = 〈C1, . . . , Cn〉, where each Ci, 1 ≤ i ≤ n, called a managed context,
is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where
– Li = 〈KBi,BSi,ACCi〉 is a logic
– kbi ∈ KBi

– OPi is a management base
– br i is a set of bridge rules for Li and OPi over 〈L1, . . . , Ln〉
– mngi is a management function over Li and OPi.

For the sake of readability, we consider a slightly restricted version of mMCSs
where each ACCi is a function and not a set of functions as for logic suites [10].
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Example 2 (Ctd.). We now briefly sketch an mMCS for the airport scenario as
outlined in Sect. 1. The idea is not to present a full detailed description of the
mMCS, but rather to describe parts of the example which will help us illustrat-
ing our approach. We present a simplified modeling of the airport security agent
using an mMCS with five contexts, one for each relevant entity: the airport ontol-
ogy, the normative entity, the security agent, and two other agents, agent A and
agent B, which work in cooperation with the security agent. The airport ontology
is a Description Logic (DL) [5] context, since DLs are well-suited for hierarchical
information. Both the normative institution and the security agent are modeled
by Logic Programming (LP) [18] contexts, since LP is well-suited to represent
rule-based languages. For simplicity, we also assume that the representation of
information the security agent has about the other two agents is modeled by a
context in classical logic. We now present part of the configuration of the knowl-
edge bases of the five contexts and refer for the (standard) definitions of their
logics to [13] and [10]. The knowledge base of the ontology context includes tax-
onomic information based on usual airport vocabulary, such as Onboard, Flight,
Passenger. The set of taxonomic axioms, usually denoted the TBox of the on-
tology, contains, for example, the axiom ∃ Onboard.� � Passenger, stating that
someone onboard is a passenger. Besides the hierarchical information in the
TBox, with a more static nature, the ontology can also have more dynamic data,
in this case about flights, airlines, etc., usually denoted the ABox of the ontology.
The ABox contains, for example, Flight(KM101) and Onboard(John,KM101).

The knowledge base of the normative context contains the LP rules:

TakeOffNotAllowed(f)← Flight(f), IntDest(f),Onboard(x,f),not HasPassport(x)

HasPassport(x)← Passenger(x),Passport(p),Carries(x,p)

The first rule states that an international flight is not allowed to take off if there
is someone onboard which is not known to carry a passport. The second rule
defines when a passenger has a passport.

The knowledge base of the security agent includes the rule

Investigate(f)← BoardingProblem(f),not UnderInvestigation(f)

stating that the agent should investigate a flight for which there is a boarding
problem and it is not known that the flight is already being investigated (by
another agent). The knowledge bases of agents A and B contain the formula
Investigating(f) whenever they are investigating flight f . Then, as we will see
later, UnderInvestigation(f) will be added to the knowledge base of the security
agent’s context via bridge rules whenever Investigating(f) is believed true in the
context of either agent A or agent B.

For an mMCS M = 〈C1, . . . , Cn〉, a belief state of M is a sequence S =
〈S1, . . . , Sn〉 such that each Si is an element of BSi. For a bridge literal (r : b),
S |= (r : b) if b ∈ Sr and S |= not (r : b) if b /∈ Sr; for a set of bridge literals B,
S |= B if S |= L for every L ∈ B. We say that a bridge rule σ of a context Ci

is applicable given a belief state S of M if S satisfies B(σ). We can then define
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appi(S), the set of heads of bridge rules of Ci which are applicable in S, by
setting appi(S) = {H(σ) : σ ∈ br i ∧ S |= B(σ)}.

Equilibria are belief states that simultaneously assign an acceptable belief set
to each context in the mMCS such that the applicable operational formulas in
bridge rule heads are taken into account. Let M = 〈C1, . . . , Cn〉 be an mMCS
and S = 〈S1, . . . , Sn〉 a belief state of M . Then, S is an equilibrium of M if, for
every 1 ≤ i ≤ n, we have Si ∈ ACCi(kb) for some kb ∈ mngi(appi(S), kbi).

3 Evolving Bridge Rules

Evolving Multi-Context Systems (eMCSs) [21] admit so-called observation con-
texts whose knowledge bases are constantly changing over time according to the
observations made, similar, e.g., to streams of data from sensors.2 As outlined in
Sect. 1, such eMCSs do not consider potential changes in the bridge rules that
may be the result of simple observations, a learning process of the agent itself or
indicated by the programmer at runtime. In this section, we introduce beMCSs,
that extend eMCSs by also allowing that each context receives an incoming
stream of sets of such bridge rules, which is meant to incrementally update the
set of bridge rules of the context. For that purpose, rather than first recalling
eMCSs and then presenting its extension beMCSs, we present the combined for-
malism beMCSs right away and point out concrete differences when discussing
the formalization of updating bridge rules.

Following [21], regarding the observations made by the observation contexts,
these will also affect the other contexts by means of the bridge rules. As we
will see, such effect can either be instantaneous and temporary, i.e., limited to
the current time instant, similar to (static) mMCSs, where the body of a bridge
rule is evaluated in a state that already includes the effects of the operation in
its head, or persistent, but only affecting the next time instant. To achieve the
latter, we extend the operational language with a unary meta-operation next
that can only be applied on top of operations.

Definition 1. The evolving operational language over a management base OP
and a logic L is defined as eOF = OF ∪ {next(op(s)) : op(s) ∈ OF}.

The idea of observation contexts is that each such context has a language
describing the set of possible observations of that context, along with its cur-
rent observation. The elements of the language of the observation contexts can
then be used in the body of bridge rules to allow contexts to access the observa-
tions. Formally, an observation context is a tuple O = 〈ΠO, π〉 where ΠO is the
observation language of O and π ⊆ ΠO is its current observation.

We can now adapt beMCSs from eMCSs.

Definition 2. A beMCS is a sequenceMe = 〈C1, . . . , Cn, O1, . . . , O�〉, such that
each Oj = 〈ΠOj , πj〉, j ∈ {1, . . . , �}, is an observation context, and each evolving
context Ci, i ∈ {1, . . . , n}, is defined as Ci = 〈Li, kbi, br i, OPi,mngi〉 where
2 For simplicity of presentation, discrete steps in time are considered.
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– Li = 〈KBi,BSi,ACCi〉 is a logic
– kbi ∈ KBi

– br i is a set of bridge rules of the form

H(σ)← a1, . . . , ak,not ak+1, . . . ,not an (1)
such that H(σ) ∈ eOFi, and each ai, i ∈ {1, . . . , n}, is either of the form
(r :b) with r ∈ {1, . . . , n} and b a belief formula of Lr, or of the form (r@o)
with r ∈ {1, . . . , �} and o ∈ ΠOr

– OPi is a management base
– mngi is a management function over Li and OPi.

We denote by BRi the set of possible bridge rules of the form (1) for Ci.
Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS. As for mMCSs, the notion of

belief state for Me is defined as a sequence S = 〈S1, . . . , Sn〉 such that, for each
1 ≤ i ≤ n, we have Si ∈ BSi.

The notion appi(S) of the set of heads of bridge rules of Ci which are applicable
in a belief state S = 〈S1, . . . , Sn〉, cannot be directly transferred from mMCSs
to beMCS since bridge rule bodies can now contain atoms of the form (r@o),
whose satisfaction depends on the current observation.

The satisfaction of bridge literals of the form (r :b) carries over from mMCSs.
The satisfaction of bridge literal of the form (r@b) depends on the current obser-
vations, i.e., we have that S |= (r@o) if o ∈ πr and S |= not (r@o) if o /∈ πr. As
before, for a set B of bridge literals, we have S |= B if S |= L for every L ∈ B.

We say that a bridge rule σ of a context Ci is applicable given a belief state S
for Me if S |= B(σ). Then, given a belief state S for Me and a set br of bridge
rules for Me, we can define app(S, br) = {H(σ) : σ ∈ br and S |= B(σ)}, the set
of heads of bridge rules in br which are applicable given S.

Recall that the heads of bridge rules in a beMCS are more expressive than
in an mMCS, since they may be of two types: those that contain next and
those that do not. As already mentioned, the former are to be applied to the
current knowledge base and not persist, whereas the latter are to be applied in
the next time instant and persist. Therefore, we distinguish these two subsets of
app(S, br) by setting:

Definition 3. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS, br a set of bridge
rules with br ⊆

⋃
iBRi, and S a belief state for Me. Then, consider the sets:

– appnext(S, br) = {op(s) : next(op(s)) ∈ app(S, br)}
– appnow(S, br) = {op(s) : op(s) ∈ app(S, br)}

This definition is a generalization of Def. 3 [21] to arbitrary sets of bridge rules.
Nevertheless, for the set of bridge rules of a context Ci, br i, we can use the nota-
tion appnexti (S) and appnowi (S) as in [21] to denote, respectively, appnext(S, br i)
and appnow(S, br i).

Note that we can easily model a scenario where we want an effect to be
instantaneous and persistent. This can be achieved using two bridge rules with
identical body, one with and one without next in the head.

Example 3 (Ctd.). We now sketch a beMCS modeling the airport security agent.
Let Me = 〈C1, C2, C3, C4, C5, O1〉 be composed of five evolving contexts C1, C2,



Evolving Bridge Rules in Evolving Multi-Context Systems 59

C3, C4 and C5, corresponding to the airport ontology, the normative entity,
the security agent, agent A, and agent B, respectively, whose knowledge bases
are partially given in Example 2. The observation context, O1, now models
incoming information arriving to the system, which allows each context, through
its bridge rules, to react and evolve given such observations. For simplicity, we
consider just one observation context, which is responsible for monitoring flight
gates, and omit here more sophisticated observations, e.g., readings of electronic
passports, images from cameras, etc. The language of O1 contains elements such
as enterPlane(John,1234), stating that John has just entered the plane with
identification 1234.

The ontology context C1 contains the following bridge rule:

next(add(Onboard(x,f)))←1@EnterPlane(x,p), 1:Assigned(p,f)

stating that if it is observed that a person enters a plane which is assigned to a
flight, then this person is onboard that flight. Note the use of next in the head
of the rule to guarantee that Onboard(x,f) is persistently added to the ontology.

The normative context C2 contains the following bridge rules, importing the
relevant information from the ontology context C1:

upd(Flight(f)←) ← 1:Flight(f)

upd(Onboard(x,f)←)← 1:Onboard(x,f)

Note that, to not duplicate information already in the ontology, the above rules
only import information temporarily to C2, without using the operator next.

The security agent context C3 has the following bridge rules:

upd(UnderInvestigation(f)←)← 4:Investigating(f)

upd(UnderInvestigation(f)←)← 5:Investigating(f)

stating that some flight is under investigation if some of the other agents is
already investigating it. Note that these rules are not meant to be persistent,
since whenever Investigating(f) does not hold for the other agents, UnderInves-
tigation(f) should immediately not hold for the security agent.

The context of agent A, C4, has an empty set of bridge rules, and the context
of agent B, C5, contains the following bridge rules:

add(goHelpSA) ← 3:NeedHelp

add(goHelpA) ← 4:NeedHelp

stating that agent B should help any of the other agents that asked for help.

Similar to equilibria in mMCS, the (static) equilibrium is defined to incorpo-
rate instantaneous effects based on appnowi (S) alone.

Definition 4. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS. A belief state
S = 〈S1, . . . , Sn〉 for Me is a static equilibrium of Me iff for each 1 ≤ i ≤ n,
there exists some kb ∈ mngi(appnowi (S), kbi) such that Si ∈ ACCi(kb).
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To assign meaning to a beMCS evolving over time we consider sequences of
belief states, evolving belief states, each referring to a subsequent time instant.

Definition 5. Let Me be a beMCS. An evolving belief state of size s for Me is
a sequence S = 〈S1, . . . , Ss〉 where each Sj, 1 ≤ j ≤ s, is a belief state for Me.

So far, apart from the generalization in Def. 3, the notions for eMCSs and
beMCSs coincide. Next, we discuss how to update a beMCS, which unlike for
eMCSs requires considering how to update bridge rules.

To be able to update the knowledge bases and the sets of bridge rules of the
evolving contexts, we need the following notation. Given an evolving context
Ci, a knowledge base k ∈ KBi and a set of bridge rules b ⊆ BRi, we denote
by Ci[k, b] the evolving context in which kbi and br i are replaced by k and b
respectively, i.e., Ci[k, b] = 〈Li, k, b, OPi,mngi〉. For an observation context Oi,
given a set π ⊆ ΠOi of observations for Oi, we denote by Oi[π] the observation
context in which its current observation is replaced by π, i.e., Oi[π] = 〈ΠOi , π〉.

To enable beMCSs to react to incoming observations and evolve, an observa-
tion sequence defined in the following has to be processed. The idea is that, at
each time instant, we have two types of observations. On the one hand, we have
a set of observations for each observation context Oi, which is meant to replace
its current observation. On the other hand, we have a set of bridge rules for each
evolving context Ci, which is meant to update the set of bridge rules br i of Ci.

Recall from the Introduction that there are two main motivations for updating
the set of bridge rules of a context. One the one hand, we may want to substitute
an existing rule with a more recent one, since, based for example on a change of
trust, we may want to change the sources of information in a rule. On the other
hand, we may want to add exceptions to existing rules. Given such motivations,
and since the bridge rules in a beMCS, as in the case of mMCSs, are similar to
logic programming rules, we build the updates of bridge rules upon the work done
in updates of logic programs, namely on Dynamic Logic Programs (DLP) [3]. In
this approach, the use of default negation in the head of rules is fundamental
to allow explicit rejection of rules and also the introduction of exceptions to
existing rules. Therefore, to update the set of bridge rules of a context Ci we
consider more expressive bridge rules, which allow default negation in the head.
Formally, for each 1 ≤ i ≤ n, we consider eBRi, the set of evolving bridge rules
for Ci, defined as eBRi = BRi ∪ {not H(σ)← B(σ) : σ ∈ BRi}.

We can now define the notion of observation sequence for a beMCS.

Definition 6. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS. An observation
sequence for Me is a sequence Obs = 〈O1, . . . ,Om〉, where, for each 1 ≤ j ≤
m, Oj = 〈oj , obr j〉, is an instant observation containing observations oj =
〈oj1, . . . , o

j
�〉 such that, for each 1 ≤ i ≤ �, oji ⊆ ΠOi , and observed bridge rules

obr j = 〈obr j1, . . . , obr jn〉 such that, for each 1 ≤ i ≤ n, obr ji ⊆ eBRi.

Our aim now is to show how, given an observation sequence O, the beMCS
Me is able to react and evolve. As mentioned before, the observation contexts
evolve by replacing their set of current observations according to the observation
sequence. We still need to define how the bridge rules of each evolving context are
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updated given an observation sequence. Our goal is to define for each context Ci

the set Upd(S, br , B) of possible updates of a set br ⊆ BRi of bridge rules by a
sequence B = 〈obr 1i , . . . , obrki 〉 of sets of evolving bridge rules with obr ji ⊆ eBRi

for 1 ≤ j ≤ k, given the belief state S for Me. The idea is to combine two
update mechanisms, both building upon the notion of rejected bridge rule: one
is based on the existence of an explicit conflict between an operation and its
default negation in the head of bridge rules; the other is based on an implicit
notion of inconsistency between operational formulas, which depends on each
context.

To define update operators based on conflicts which arise due to the use of
default negation in the head of rules we follow the ideas of DLP [3]. The intuition
is that a rule σ is rejected in state S if there is a more recent rule which is
applicable in S, and whose head is the default negation of the head of σ. Formally,
letMe be a beMCS, S a belief state forMe, and B = 〈obr 1i , . . . , obrki 〉 a sequence
of sets of evolving bridge rules of some evolving context Ci of Me, i.e., each
obr ji ⊆ eBRi. We can then define ExpRej(S, 〈obr 1i , . . . , obrki 〉), the sequence of
sets of bridge rules that result from B by removing the rules explicitly rejected
by a more recent rule, by setting ExpRej(S, 〈obr1i , . . . , obrki 〉) = 〈Br1, . . . , Brk〉
such that, for each 1 ≤ j ≤ k, we have Brj = (obr ji ∩BRi) \Rejj where

Rejj = {σ ∈ obr ji : there is σ′ ∈ obr j
′

i with j′ > j such that

H(σ′) = not H(σ) and S |= B(σ′)}.

Example 4 (Ctd.). Continuing the airport example, suppose that the security
agent no longer trusts agent A. In that case he wants to cancel the existing rule,
and still investigate a flight even though agent A is already investigating it. In
that case, he can update its set of bridge rules with the evolving bridge rule:

not upd(UnderInvestigation(f)←)← 4:Investigating(f)

In this case, whenever Investigating(f) is true in C4 this more recent bridge
rule rejects the initial one, and therefore the security agent does not update its
knowledge base with the LP fact UnderInvestigation(f)←.

We now focus on the notion of update of bridge rules based on a notion of
implicit inconsistency between operational formulas. This makes sense since the
language of the heads of bridge rules is so general and potentially quite ex-
pressive. Therefore, besides the explicit notion of rejected bridge rule mentioned
above, we also consider a notion of rejected bridge rule based on a notion of in-
consistency over operational formulas, which depends on each evolving context.
More precisely, we assume that, for each evolving context Ci of Me, there is a
relation Inci : BSi × 2OFi . The intuitive idea is that 〈Si, Op〉 ∈ Inci if Op is an
inconsistent set of operational formulas w.r.t. Si. This notion of inconsistent set
of operations depends on each context. Interesting examples include the case in
which there is a conflict between two contrary operations, for example adding
and removing, add(p) and rm(p). We can also have conflicts with the same oper-
ation, for example addition of two complementary literals, add(p) and add(¬p).
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Just as a last example, let Ci be a Classical Logic (CL) context and suppose
that OPi = {add} where add is simple addition. We could then define Inci based
on whether, for a set of operational formulas Op, the set {ϕ : add(ϕ) ∈ Op} is
consistent in CL. Given such definition, we have, for every Si, for example that
〈Si, {add(a⇒ b), add(a), add(¬b)}〉 ∈ Inci.

Note that, contrarily to the above examples, there are cases where conflicts
depend on the belief state. Take, for example, the case of Logic Programming
(LP). The notion of conflict between LP rules depends on the belief state.

We assume that the notion of operational inconsistency satisfies the following
natural condition. Given a belief state S, for all 1 ≤ i ≤ n, we assume that the
set IncSi = {Op : 〈Si, Op〉 ∈ Inci} is an upper set of the partially ordered set
〈2OFi ,⊆〉, i.e., if 〈Si, Op〉 ∈ Inci and Op ⊆ Op′, then 〈Si, Op

′〉 ∈ Inci.
Let br1 and br2 be two sets of bridge rules of a context Ci. Our aim is to

define the possible sets of bridge rules that result from updating br1 with br2.
For that, as we said, we define a notion of rejected rule based on operational
inconsistency. Given a belief state S of Me, we define Rej(S, br1, br2), the set
of sets of rejected bridge rules, as:

Rej(S, br1, br2) = {b ⊆ br1 : appnow(S, b ∪ br2) ∈ IncSi or

appnext(S, b ∪ br2) ∈ IncSi }.

When updating a set of rules br1 by a set of rules br2 we are interested
in minimizing the set of rejected rules of br1. Therefore, we consider the set
MinRej(S, br1, br2) of all minimal elements of Rej(S, br1, br2).

Using the set of minimal set of rejected bridge rules, we can define, for a belief
state S of Me, the set of sets of acceptable bridge rules given S as:

Acpt(S, br1, br2) = {b ⊆ br1 : b′ �⊆ b s.t. ∀b′ ∈MinRej(S, br1, br 2)}.

The set Acpt(S, br1, br 2) is the set of all subsets of br1 which can be consis-
tently added to br2 in the context of state S. As usual, when updating a set of
rules br1 by a set of rules br2 we are interested in maximizing the set of elements
of br1 in the final result. Therefore, we define MaxAcpt(S, br 1, br2) as the set of
maximal elements of Acpt(S, br1, br2), i.e., those b ∈ Acpt(S, br 1, br2) for which
there is no b′ ∈ Acpt(S, br 1, br2) such that b ⊂ b′.

Example 5 (Ctd.). Recall that the context of agent B, C5, has two bridge rules,
denoted here by σ1 and σ2, which are meant to react to the fact that the other
agents asked for help, and let br1 = {σ1, σ2}. Now imagine that, for some reason
(efficiency, design decision, etc.), agent B cannot help both agents at the same
time. For incorporating this information, he can consider an update of br1 by
the set br 2 = {add(¬(goHelpSA∧ goHelpA)) ← 3 : NeedHelp, 4 : NeedHelp}.
Suppose also that C5 has the following natural inconsistency relation: for every
belief state S, 〈S5, Op〉 ∈ Inc5 if the set {p : add(p) ∈ Op} is inconsistent in
CL. Then, taking Op = {add(goHelpSA), add(goHelpA), add(¬(goHelpSA ∧
goHelpA))} we have, for every S, that 〈S5, Op〉 ∈ Inc5. We can easily check
that MinRej(S, br1, br2) = {br1}. This implies that MaxAcpt(S, br 1, br2) =



Evolving Bridge Rules in Evolving Multi-Context Systems 63

{{σ1}, {σ2}}, meaning that the possible updates of br 1 by br 2 should contain
σ1 or σ2, but not both.

We now extend the notion of MaxAcpt to sequences of sets of bridge rules:

MaxAcpt(S, 〈br1, . . . , brk〉) = {brk : there exists 〈b1, . . . , bk〉 satisfying
− b1 = br1

− bj+1 = br j+1 ∪ b where b ∈MaxAcpt(S, br j , br j+1)}.

The following result states the connection between the set of all maximal sets
of accepted bridge rules and the set of all minimal sets of rejected rules.

Proposition 1. Let b ⊆ br1 such that b ∈MaxAcpt(S, br1, br2). Then we have
that br1 \ (

⋃
MinRej(S, br1, br2)) ⊆ b.

We can now define Upd(S, br , 〈br1, . . . , brk〉) the set of possible results of
updating the set br of bridge rules by the sequence S = 〈br1, . . . , brk〉 of sets
of evolving bridge rules. The idea is to combine the two update mechanisms
described above: rejection based on conflict between an operation and its default
negation, and rejection based on the operational inconsistency relation Inci.

Formally, given a set br of bridge rules of Ci, a sequence B = 〈br 1, . . . , brk〉
of sets of evolving bridge rules of Ci, and S a belief state of Me, we can define
the set Upd(S, br , B) of possible results of updating br by the sequence B as:

Upd(S, br , B) = MaxAcpt(S,ExpRej(S, 〈br , br1, . . . , brk〉)).

One basic property that we need to guarantee is that, when updating by a
sequence of sets of bridge rules, the most recent bridge rules are always contained
in every possible result of the update. The following result states this property,
taking into account that bridge rules with default negation in the head cannot
appear in the result of an update.

Proposition 2. Let S be a belief state of Me, br a set of bridge rules of Ci, and
B = 〈br 1i , . . . , brki 〉 a sequence of sets of evolving bridge rules of Ci. Then, for
every b ∈ Upd(S, br , B), we have that (brki ∩BRi) ⊆ b.

Now that we have defined how the observation contexts and the sets of bridge
rules evolve, we can define the notion of evolving equilibrium of a beMCS Me =
〈C1, . . . , Cn, O1, . . . , O�〉 given an observation sequence Obs = 〈O1, . . . ,Om〉 for
Me. The intuitive idea is that, given an evolving belief state S = 〈S1, . . . , Ss〉
for Me, in order to check if S is an evolving equilibrium, we need to consider
a sequence of beMCSs, M1, . . . ,M s, representing a possible evolution of Me

according to the observations in Obs, such that Sj is a static equilibrium of M j .
For each M j the sets of current observations of the observation contexts are
exactly their corresponding elements πj

i in Oj . For each of the evolving contexts
Ci, its knowledge base in M

j is obtained from the one in M j−1 by applying the
operations in appnexti (Sj−1). Moreover the set of bridge rules of each evolving

context is updated using Upd(Sj , br i, 〈obr 1i , . . . , obr
j
i 〉).
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Definition 7. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS, S = 〈S1, . . . , Ss〉
an evolving belief state of size s for Me, and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me such that m ≥ s. Then, S is an evolving equilibrium of size
s of Me given Obs iff, for each 1 ≤ j ≤ s, Sj is a static equilibrium of M j =
〈C1[k

j
1, b

j
1], . . . , Cn[k

j
n, b

j
n], O1[o

j
1], . . . , O�[o

j
� ]〉 where, for each 1 ≤ i ≤ n,

– bji ∈ Upd(Sj , bri, 〈obr 1i , . . . , obr
j
i 〉)

and kji is defined inductively as follows:

– k1i = kbi
– kj+1

i ∈ mngi(appnext(Sj , bji ), k
j
i ).

Note that the set of bridge rules of a context can change from one time
instant to the other even if no bridge rule of that context is observed. This
happens because the set of updates depends also on the current state. For a
simple example, let σ1 = (add(p)←) be a bridge rule of a context in a beMCS,
and suppose that at time 1 the rule σ2 = (not add(p) ← 1 :not q) is observed,
which can be seen as an exception for the original rule. Suppose that q is not
true in context C1 at time 1. Then, both rules are applicable and their heads
are conflicting, leading to the rejection of the first rule. Suppose that in the next
time instant no bridge rule is observed, but q is true. Then, since the second rule
is not applicable, the rules are not conflicting. Therefore, σ1 is not rejected and
it is now part of the set of bridge rules of C1.

We now prove some properties of the notion of evolving equilibrium. In Def. 7,
the size of the observation sequence is assumed to be greater or equal than the
size of the evolving belief state. The intuition is that an equilibrium may also
be defined for only a part of the observation sequence. As a consequence, any
subsequence of an evolving equilibrium is still an evolving equilibrium.

Proposition 3. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. If S = 〈S1, . . . , Ss〉 is an evolving equilibrium of size s of Me

given Obs, then, for each 1 ≤ j ≤ s, and every j ≤ k ≤ m, 〈S1, . . . , Sj〉 is an
evolving equilibrium of size j of Me given the observation sequence 〈O1, . . . ,Ok〉.

It is not hard to see that an mMCS is a particular case of a beMCS with no
observation context, the heads of bridge rules do not contain the operator next,
and there are no updates to the bridge rules.

Proposition 4. Let M = 〈C1, . . . , Cn〉 be an mMCS. Then, S = 〈S1, . . . , Sn〉
is an equilibrium of M iff S = 〈S〉 is an evolving equilibrium of size 1 of M
for some observation sequence Obs = 〈O1, . . . ,Om〉 for M with m ≥ 1 and such
that, for every 1 ≤ i ≤ n, we have that obr 1i = ∅.

4 Inconsistency Management

Inconsistency management is an important topic for frameworks that aim at
integrating knowledge from different sources and has been extensively studied
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for MCSs and mMCSs [13,10]. In [21], inconsistency management for eMCSs is
investigated, and it is shown that essential notions and results carry over from
static mMCSs to dynamic eMCSs. In this section, we adapt these results from
eMCSs to beMCSs and can confirm that the same favorable characteristics hold.

For the case of mMCSs, three forms of inconsistency are considered: nonex-
istence of equilibria, local inconsistency, and operator inconsistency [10]. The
first form has been extensively studied for MCSs [13] and is also termed global
inconsistency, while the second one deals with inconsistent belief sets potentially
occurring in an equilibrium provided the contexts in the considered mMCS ad-
mit such a notion. The third form aims at detecting conflicts between operations
in the heads of bridge rules.

We start by introducing the notion of (global) consistency.

Definition 8. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. Then, Me is consistent with respect to Obs if it has an evolving
equilibrium of size m given Obs.

From Prop. 3, we immediately obtain that if there is a subsequence of Obs such
that the considered beMCS is inconsistent, then the beMCS is also inconsistent
for the entire sequence (and vice-versa).

Corollary 1. LetMe be a beMCS and let Obs = 〈O1, . . . ,Om〉 be an observation
sequence for Me. Then, Me is consistent w.r.t. Obs iff Me is consistent w.r.t.
〈O1, . . . ,Oj〉 for every 1 ≤ j ≤ m.

We now focus on two notions that together are sufficient to ensure consis-
tency. The first one focuses on the existence of an acceptable belief set for each
knowledge base. Formally, an evolving context Ci in a beMCS Me is totally
coherent iff, for every kb ∈ KBi, ACCi(kb) �= ∅. The second notion focuses
on cycles between bridge rules. Let B = 〈b1, . . . , bn〉 a tuple of sets of evolving
bridge rules, one for each evolving context Ci of Me, i.e., each bi ⊆ eBRi. The
idea is to describe cycles between the bridge rules that essentially may cause
inconsistency. Formally we write refr(i, j) iff r is a bridge rule of bi and (j : b)
occurs in the body of r. Let r1, . . . , rk ∈

⋃
1≤i≤n bi, then we say that (r1, . . . , rk)

forms a cycle iff refr1(i1, i2), . . . , refrk−1
(ik−1, ik), and refrk(ik, i1) hold. Then

B = 〈b1, . . . , bn〉 is acyclic if no such cycles exist. We can show the following.

Proposition 5. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS and Obs =
〈O1, . . . ,Om〉 an observation sequence for Me. Then, if B = 〈b1, . . . , bn〉 is
acyclic, where, for each 1 ≤ i ≤ n, bi = br i ∪ (

⋃
j≤m obr ji ), then Me is con-

sistent with respect to Obs.

A similar property holds for mMCSs, indicating that the extension to beMCSs
as such does not decrease the likelihood of existence of evolving equilibria.

An adequate treatment of local inconsistency was one of the motivations for
the introduction of mMCSs, and this is also the case in beMCSs with incoming
observations that also should be subject to consistency management. As de-
scribed in [10], we need to assume that each context has a notion of inconsistent



66 R. Gonçalves, M. Knorr, and J. Leite

belief state, which usually exists or is easily definable. Assuming such notion, a
knowledge base kbi ∈ KBi of a context Ci is said to be consistent if ACCi(kbi)
does not contain an inconsistent belief set. A management function mngi of a
context Ci is said to be locally consistency preserving (lc-preserving), if for every
set Opi ⊆ OFi and consistent knowledge base kbi ∈ KBi, we have that every
element of mngi(Opi, kbi) is a consistent knowledge base.

Definition 9. Let Me be a beMCS and Obs = 〈O1, . . . ,Om〉 an observation
sequence for Me. Then, Me is said to be locally consistent with respect to Obs
if every evolving equilibrium S = 〈S1, . . . , Ss〉 of Me with respect to Obs is such
that, for each 1 ≤ j ≤ s, all belief sets in Sj are consistent.

Recall that observations are subject to consistency management in each con-
text. If the management functions are lc-preserving, then consistent observations
do not make a consistent beMCS inconsistent.

Proposition 6. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS such that, for
each Ci, kbi is consistent and mngi is lc-preserving. Then, for every observation
sequence Obs for Me, we have that Me is locally consistent with respect to Obs.

Since we are assuming the existence of a notion of inconsistent set of operators
for each context of a beMCS, we end this section by briefly studying this form
of inconsistency. We extend to sets of bridge rules the notion of inconsistent set
of operational formulas, as introduced in Sect. 3.

Definition 10. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS, and S a belief
state for Me. A set br ⊆ eBRi of evolving bridge rules of Ci is inconsistent with
respect to S if appnow(S, br) ∈ IncSi or appnext(S, br) ∈ IncSi . A set of bridge
rules is consistent with respect to S if it is not inconsistent with respect to S.

The following proposition guarantees the desirable property that a set of
bridge rules resulting from an update with respect to a sequence of consistent
sets of bridge rules is itself consistent.

Proposition 7. Let Me = 〈C1, . . . , Cn, O1, . . . , O�〉 be a beMCS, and Obs =
〈O1, . . . ,Om〉 an observation sequence for Me, and S = 〈S1, . . . , Ss〉 an evolving
equilibrium of Me given Obs. If each set of bridge rules in Obs is consistent
with respect to Ss then, for each 1 ≤ i ≤ n, we have that every element of
Upd(Ss, br i, 〈br1i , . . . , brsi 〉) is consistent with respect to Ss.

5 Related and Future Work

In this paper we introduced beMCS, and extension of evolving Multi-Context
Systems (eMCS) [21] to allow not only the evolution of the knowledge bases of
the contexts, but also of their sets of bridge rules. Closely related to eMCSs is
the framework of reactive Multi-Context Systems (rMCSs) [8,15,11] inasmuch
as both aim at extending mMCSs to cope with dynamic observations. The main
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difference between and eMCSs and rMCSs is that eMCSs have the meta operator
next that allows for a clear separation between persistent and non-persistent
effects, and also the specification of transitions based on the current state.

Another framework closely related to beMCSs is that of evolving logic pro-
grams EVOLP [2] which deals with updates of generalized logic programs, and
the two frameworks of reactive ASP, one implemented as a solver oclingo [17]
and one described in [8]. Whereas EVOLP employs an update predicate that is
similar in spirit to the next predicate of our beMCSs, and uses the update se-
mantics of Dynamic Logic Programming in a way that is similar to how conflicts
between bridge rules dealt with in beMCSs, it does not deal with distributed
heterogeneous knowledge, neither do both versions of Reactive ASP.

Regarding future work, an important non-trivial topic is the study of the no-
tion of minimal change within an evolving equilibrium. Whereas minimal change
may be desirable to obtain more coherent evolving equilibria, there are also argu-
ments against adopting a one-size-fits-all approach embedded in the semantics.
Different contexts, i.e., KR formalisms, may require different notions of mini-
mal change, or even require to avoid it – e.g., suppose we want to represent
some variable that can non-deterministically take one of two values at each time
instant: minimal change could force a constant value.

Also interesting is to study how to perform AGM style belief revision at the
(semantic) level of the equilibria, as in Wang et al [34], though different since
knowledge is not incorporated in the contexts.

Another important issue open for future work is a more fine-grained character-
ization of updating bridge rules (and knowledge bases) in light of the encountered
difficulties when updating rules [30,31,33] and the combination of updates over
various formalisms [31,32].

Finally, we may also consider the generalization of the notions of minimal
and grounded equilibria [9] to beMCSs to avoid, e.g., self-supporting cycles in-
troduced by bridge rules, or the use of preferences to deal with several evolving
equilibria a beMCS can have for the same observation sequence.

Acknowledgments. We would like to thank the referees for their comments,
which helped improve this paper considerably.MatthiasKnorr and João Leitewere
partially supportedbyFCTunder project “ERRO–EfficientReasoningwithRules
and Ontologies” (PTDC/EIA-CCO/121823/2010). Ricardo Gonçalves was sup-
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Abstract. We compare four different implementations of reasoning tools
dedicated to Abstract Argumentation Frameworks. These systems are
ArgTools, ASPARTIX, ConArg2, and Dung-O-Matic. They have been
tested over three different models of randomly-generated graph mod-
els, corresponding to the Erdős-Rényi model, the Kleinberg small-world
model, and the scale-free Barabasi-Albert model. This first comparison
is useful to study the behaviour of these reasoners over networks with
different topologies (including small-world ones): we scale the number
of arguments to check the limits of today’s systems. Such results can
be used to guide further improvements, specifically ConArg2, which we
recently developed, and tested for the first time in this work.

1 Introduction

Due to the widespread of multi-agent systems and Web 2.0, we can certainly
claim that Argumentation Theory is arising all around us. Almost all social
platforms support digital debate among the community members: everyday’s ex-
amples are social networks, e-commerce websites, digital fora/magazines, where
it is possible to debate about news, products, or just friends’ statements.

An Abstract Argumentation Framework (AAF ), or System, as introduced in
a seminal paper by Dung [13], is simply a pair 〈A,R〉 consisting of a set A whose
elements are called arguments and of a binary relation R on A, called “attack”
relation. An abstract argument is not assumed to have any specific structure
but, roughly speaking, an argument is anything that may attack or be attacked
by another argument. The sets of arguments (or extensions) to be considered
are then defined under different semantics, which are related to varying degrees
of scepticism or credulousness. Argumentation has become an important subject
of research in Artificial Intelligence and it is also of interest in several disciplines,
such as Logic, Philosophy and Communication Theory (see [5] and [24, Ch. 1]).
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One of the main issues for any theory of argumentation is the selection of
acceptable sets of arguments, based on the way arguments interact. Intuitively,
an acceptable set of arguments must be in some sense coherent (no attacks
among its arguments, i.e., conflict-free) and strong enough (for instance, able to
defend itself against all attacking arguments, i.e., admissible).

The main goal of this paper is to better understand how efficiently such se-
mantics can be computed at the state of the art of modern Abstract Argumen-
tation reasoners, in terms of argument networks with different properties and
size. Therefore, we test four tools whose main objective is the pure computation
of such semantics, i.e., ArgTools, ASPARTIX, ConArg2 (our tool, tested in this
paper for the first time), and Dung-O-Matic (see Sec 4.1). We consider three dif-
ferent randomly-generated graph models, thus assembling a variegate benchmark
for this kind of testing. These networks are respectively generated according to
Erdős-Rényi, Kleinberg, and Barabasi-Albert principles (see Sec. 4.2). We have
not considered interaction graphs from the “real-world” due to the current lack
of benchmarks extracted from real discussions. This will be part of the extensive
future work we plan to investigate by elaborating on our tool and these tests
(see Sec. 7). Note that we use three different random models in our testbed,
since a clear definition of the topological properties behind real AAFs is not yet
identified by the literature (see Sec. 7).

Existent and future applications exploiting AAFs need to efficiently behave
and scale over large networks of arguments. In fact, in non-trivial discussions
it is not hard to find 50-100 arguments at least, especially if we consider “hot
topics” automatically extracted from on-line fora, or discussion groups. When
we make these digital tribunes correspond to well-known social networks [20],
as Twitter1 [19] or Facebook2 [27], but also to more structured debate-friendly
tools, as DebateGraph3 orDebate.org4, then the number of arguments can further
increase.5 Obtaining a more efficient computation of AAF semantics will lead us
to have more performant higher-level reasoners on top of these tools, which can
in turn be used in broader applications related to, for instance, Law, Medicine
and e-Democracy [24, Ch. 3, Pt. 5].

This work extends [7] and it is organized as follows: in Sec. 2 we briefly
introduce AAFs, while in Sec. 3 we summarise the related work on reasoning
tools. In Sec. 4 we define our benchmark environment, by describing adopted
networks and tools. Afterwards, in Sec. 5 we show the results we obtained with
our tests, and we discuss the charts trying to give some general considerations
and guidelines. Section 6 shows the constraint-based models we have adopted to
implement some of the basic semantics, i.e., conflict-free, admissible, complete,
and stable. Finally, Sec. 7 presents ideas about future work.

1 http://twitter.com
2 http://www.facebook.com
3 http://debategraph.org
4 http://www.debate.org
5 As an example, the “Anthropogenic Climate Change” map in DebateGraph stores
1.190 arguments.

http://twitter.com
http://www.facebook.com
http://debategraph.org
http://www.debate.org
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2 Preliminaries

In this section we briefly summarise the background information related to classi-
cal AAFs [13]. We focus on the basic definitions of an AAF, and on the extension-
based semantics that will be tested in the comparison (see Sec 5).

Definition 1. An Abstract Argumentation Framework (AAF) is a pair F =
〈A,R〉 of a set A of arguments and a binary relation R ⊆ A × A, called the
attack relation. ∀a, b ∈ A, aR b (or, a � b) means that a attacks b. An AAF
may be represented by a directed graph (an interaction graph) whose nodes are
arguments and edges represent the attack relation. A set of arguments S ⊆ A
attacks an argument a, i.e., S � a, if a is attacked by an argument of S, i.e.,
∃b ∈ S.b � a.

The notion of defence [13] is fundamental to AAFs.

Definition 2. Given an AAF, F = 〈A,R〉, an argument a ∈ A is defended (in
F ) by a set S ⊆ A if for each b ∈ A, such that b � a, also S � b holds.
Moreover, for S ⊆ A, we denote by S+

R the set S ∪ {b | S � b}.

The “acceptability” of an argument [13], defined under different semantics,
depends on its membership to some sets, called extensions : such semantics char-
acterise a collective “acceptability”. In Def. 3 we report only those semantics of
interest in our study, i.e., that are implemented by all the compared tools (see
Sec. 4.1). Respectively, adm , com , stb, prf , ide, gde, and sem, stand for admissi-
ble, complete, stable, preferred, ideal, grounded, and semi-stable semantics. The
intuition behind these semantics is outside the scope of this work (e.g., see [24,
Ch. 3]).

Definition 3. Let F = 〈A,R〉 be an AAF. A set S ⊆ A is conflict-free (in F),
denoted S ∈ cf(F ), iff there are no a, b ∈ S, such that (a, b), (b, a) ∈ R. For
S ∈ cf(F ),it holds that

– S ∈ adm(F ), if each a ∈ S is defended by S;
– S ∈ com(F ), if S ∈ adm(F ) and for each a ∈ A defended by S, a ∈ S holds;
– S ∈ stb(F ), if foreach a ∈ A\S, S � a, i.e., S+

R = A;
– S ∈ prf (F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S ⊂ T ;
– S = ide(F ), if S ∈ X = {U | adm(U) ∧ ∀T ∈ prf (F ).U ⊆ T }, and S is

maximal w.r.t. set inclusion in X;
– S = gde(F ) if S ∈ com(F ) and there is no T ∈ com(F ) with T ⊂ S;
– S ∈ sem(F ), if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+

R ⊂ T+
R .

We recall that for each AAF, F , stb(F ) ⊆ sem(F ) ⊆ prf (F ) ⊆ com(F ) ⊆
adm(F ) holds, and that for each of the considered semantics σ (except stable)
σ(F ) �= ∅ holds. Moreover, in case an AAF has at least one stable extension,
its stable and semi-stable extensions coincide. Finally, gde(F ) and ide(F ) are
always unique, and gde(F ), ide(F ) ∈ com(F ).
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a b c d e

Fig. 1. An example of AAF

An argument a ∈ A is skeptically justified iff ∀E ∈ σ(F ).a ∈ E, and credu-
lously justified iff ∃E ∈ σ(F ).a ∈ E.

Consider the F = 〈A,R〉 in Fig. 1, with A = {a, b, c, d, e} and R = {(a, b), (c,
b), (c, d), (d, c), (d, e), (e, e)}. We have that stb(F ) = sem(F ) = {{a, d}}, and
gde(F ) = ide(F ) = {a}. The admissible sets of F are ∅, {a}, {c}, {d}, {a, c},
{a, d}, and prf (F ) = {{a, c}, {a, d}}. Complete extensions are {a}, {a, c}, {a, d}.

3 Related Work and Comparison

To the best of our knowledge, the performance results presented in [9,10,15,16]
are the first ones proposed on medium-large problems, and [9,10] are the first
ones using random networks showing small-world properties. Besides the tools
we compare in this paper (see Sec. 4.1 for their description), in this section
we report the other main systems in literature. We consider only the reasoners
whose main goal is the solution of extension-based semantics (see Sec. 2).

In [15,16] the authors randomly generate graphs ranging from 20 to 110 argu-
ments. They use two parameterized methods for generating the attack relation.
The first generates arbitrary graphs and inserts for any pair (a, b) an attack
from a to b with a given probability p (i.e., similarly to Erdős-Rényi). The other
method generates AAFs with a n×m grid structure. They consider two differ-
ent neighbourhoods, one connecting arguments vertically and horizontally, and
one that additionally connects the arguments diagonally. Such a connection is
a mutual attack with a given probability p and in only one direction otherwise.
The probability p is chosen between 0.1 and 0.4. The authors generate AAFs
with 60-200/25-500 arguments for a total of 4.800/2.948 tests; in addition, they
set a timeout of 300 seconds (we adopt the same timeout in our tests).

Two more tools are, i) the Counter-Example Guided Argumentation Reason-
ing Tool (for short, CEGARTIX ) [16], which relies on iterative calls to SAT a
solver (as Minisat6), and ii) the Dynamic Programming Argumentation Reason-
ing Tool (dynPARTIX ) [15], which is based on tree decompositions and dynamic
programming. Note that both CEGARTIX and dynPARTIX are oriented to the
solution of the skeptical and credulous acceptance under different semantics: this
is why they do not appear in our comparison, since we only consider tools able
to enumerate all the extensions under a given semantics.

One more mapping of AAFs to Constraint Satisfaction Problems (CSPs) [25]
(as we do in our implementation of ConArg2, see Sec. 4.1) is shown in [2], but
we are not aware of any available implementation.

6 http://minisat.se

http://minisat.se
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In this paper we extend the tests in [9,10], by using one more graph model,
i.e., Erdős-Rényi, and raising the number of arguments for all the three models,
in order to stress them up to the point there they are not able to solve any
problem instance within a given timeout of 300 seconds. In addition, we provide
for the first time a comparison among four independently-developed reasoners.
We adopt different graph models, while in [16,15] the tests are executed over
a single model, whose characteristics are not related to any social graph model
(we justify the study of social networks in Sec. 4.2).

4 Tools and Graphs

We organise the content into two subsections: Section 4.1 presents a description
of the four reasoning tools we used in our comparison, while Sec. 4.2 describes
the random graphs we generated as benchmark.

4.1 Tools

ArgTools7 is a very recent C++ collection of labelling-based algorithms [22]
for enumerating extensions of an AAF with recursive attacks (AFRA). In [22]
the authors present implemented algorithms for listing extensions by labelling
attacks along with arguments. Such algorithms are concerned with enumerating
all extensions of an AAF under different semantics: preferred, stable, complete,
semi stable, stage, ideal and grounded. Since an AAF is a special case of AFRA,
the developed algorithms also list extensions of an AAF. The input format ad-
heres to ASPARTIX.

The ASPARTIX8 system [17] is a tool for computing acceptable extensions
for a broad range of formalisations of Dung’s AFs and generalisations, such as
value-based AFs [4] or preference-based [1]. ASPARTIX relies on a fixed disjunc-
tive Datalog program which takes an instance of an argumentation framework
as input, and uses an Answer-Set solver for computing the type of extension
specified by the user. ASPARTIX is able to solve admissible, stable, complete,
grounded, preferred, semi-stable, ideal, stage, cf2, resolution-based grounded and
stage2 extensions. ASPARTIX has been improved with the metasp9 optimization
front-end for the ASP-package gringo/claspD10, which provides direct commands
to filter answer sets satisfying certain subset-minimality (or -maximality) con-
straints. We have included ASPARTIX in the comparison since it represents the
state of the art of ASP-based solvers [26].

ConArg211 [9,10] is a reasoner based on the Java Constraint Programming
solver12 (JaCoP), a Java library that provides a Finite Domain Constraint Pro-

7 http://sourceforge.net/projects/argtools/files/
8 http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
9 http://www.cs.uni-potsdam.de/wv/metasp/

10 http://potassco.sourceforge.net
11 http://www.dmi.unipg.it/bista/tt/conarg/
12 http://www.jacop.eu

http://sourceforge.net/projects/argtools/files/
http://www.dbai.tuwien.ac.at/proj/argumentation/systempage/
http://www.cs.uni-potsdam.de/wv/metasp/
http://potassco.sourceforge.net
http://www.dmi.unipg.it/bista/tt/conarg/
http://www.jacop.eu
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gramming paradigm [25]. The tool comes with a graphical interface, which visu-
ally shows all the obtained extensions for each problem. ConArg is able to solve
also the weighted and coalition-based problems presented in [8,11]. Moreover, it
can import/export AAFs with the same text format of ASPARTIX. Recently,
we have extended the tool to its second version, i.e., ConArg2 (freely download-
able from the same webpage of ConArg), in order to improve its performance:
we implemented all the models in Gecode13, which is an open, free, and efficient
C++ environment where to develop constraint-based applications. We have also
dropped the graphical interface, having a textual output only. So far, ConArg2
finds all conflict-free, admissible, complete, stable, grounded, preferred, semi-
stable and ideal extensions (see Def. 3).

Dung-O-Matic14 is an Abstract Argument computation engine implemented
by the javaDungAF class. Dung-O-Matic supports Dung’s Argumentation Frame-
works and several of their semantics, as admissible, complete, eager, grounded,
ideal, preferred, semi-stable, and, finally stable one. javaDungAF is currently just
a couple of java classes. Source code and documentation are available to download.
For each of the proposed extensions, the tool implements a different algorithmpre-
sented in the literature; for instance, the grounded semantics is computed with the
original algorithms presented by Dung in [13]. We have included Dung-O-Matic
in the comparison because all the implemented extensions come from ad-hoc algo-
rithms recently designed and proposed in the literature.

4.2 Graphs

Due to the lack of a well-established benchmark in the Argumentation literature,
we randomly generate directed-graphs that we let correspond to AAFs: nodes
are arguments, and directed edges are attacks.

To generate random graphs we adopted two different libraries. The first one is
the Java Universal Network/Graph Framework (JUNG15), which is a Java soft-
ware library for the modeling, generation, analysis and visualization of graphs.
With JUNG we generate Barabasi-Albert [3] and Kleinberg [21] graphs. The sec-
ond library we use is NetworkX 16, and it consists of a Python software package
for the creation, manipulation, and study of the structure, dynamics, and func-
tions of complex networks. With NetworkX we generate Erdős-Rényi [18] graphs.
We use two different libraries because with JUNG we are able to randomly gen-
erate directed Barabasi and Kleinberg graphs, while NetworkX does not cover
Kleinberg networks at all, and only provides undirected Barabasi graphs. On the
other side, NetworkX offers Erdős-Rényi networks (not present in JUNG).

In order to test tools over sensibly wide AAFs, our attention has mainly turned
to random networks with small-world features, as Kleinberg, or Barabasi-Albert
(which is also a scale-free model [3]). Big hub-nodes in scale-free networks are

13 http://www.gecode.org
14 http://www.arg.dundee.ac.uk/?page_id=279
15 http://jung.sourceforge.net
16 http://networkx.github.io

http://www.gecode.org
http://www.arg.dundee.ac.uk/?page_id=279
http://jung.sourceforge.net
http://networkx.github.io
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Fig. 2. An example of a) an Erdős-Rényi, b) a Kleinberg, and c) a Barabasi-Albert
graph, all with 40 nodes (Kleinberg with 36)

responsible for the so-called small-world phenomenon, where most nodes can be
reached from every other by a small number of hops. An example of each of these
graphs is represented in Fig. 2. At least three big hub-nodes are easily detectable
in the Barabasi-Albert graph in Fig. 2c. Figure 2b depicts the typical grid-like
structure of Kleinberg graphs, with few long-distance connections. At last, the
Erdős-Rényi model (see Fig. 2a) does not generate local clustering and does not
account for the formation of hubs: this model is the least indicated to represent
social patterns among the three models. Nevertheless, we have included it in this
study for the sake of completeness.

We are not aware of any study matching AAFs to a precise graph model
(or several models, depending on the kind of the discussion, e.g., persuasion or
negotiation-oriented). The justification behind using this kind of graphs is that
several works in the Argumentation literature investigate AAFs extracted from
social networks [20] as Facebook [27] and Twitter [19].

In the following we detail the three graph models. In the Erdős-Rényi
model [18] a graph is constructed by randomly connecting n nodes. Each edge
is included in the graph with probability p independent from every other edge.
Clearly, as p increases from 0 to 1, the model becomes more and more likely to in-
clude graphs with more edges. To create our benchmark we adopt p = c·log(n)/n
(with c empirically set to 2.5), which ensures the connectedness of such graphs.
We require all the graphs in the benchmark to be connected, since we suppose
a discussion to dynamically evolve by adding each time an argument in order to
challenge a different former argument.

Kleinberg [21] adds a number of directed long-range random links to an
n × n lattice network (vertices as nodes of a grid, undirected edges between
any two adjacent nodes). Links have a non-uniform distribution that favours
edges to close nodes over more distant ones. In the implementation provided
by JUNG, each node u has four local connections, one to each of its neighbors,
and in addition 1 or more long range connection to some node v, where v is
chosen randomly according to probability proportional to dθ where d is the lattice
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distance between u and v and θ is the clustering exponent. In our generation we
set θ = 0.9, in order to have a high clustering coefficient.

In the generation of Barabasi-Albert graphs [3] through the JUNG libraries,
at each time step a new vertex is created and connected to existing vertices
according to the principle of “preferential attachment” [3], whereby vertices with
higher degree have a higher probability of being selected for attachment. At a
given step, the probability p of creating an edge between an existing vertex v
and the newly added vertex is p = (degree(v) + 1)/(|E|+ |V |). |E| and |V | are,
respectively, the number of edges and vertices currently in the network. Thus,
p is not an input parameter. Scale-free networks are widely observed in natural
and human-made systems, including the Internet, the World Wide Web, citation
networks, and social networks.

5 Tests and Discussion

The results have been collected on an Intel(R) Core(TM) i7 CPU 970 @3.20GHz
(6 cores, 2 threads per core), and 16GB of RAM. For all the tools, the output has
been redirected to /dev/null, and the standard error to file. To test ASPARTIX
we used gringo 3.0.5 and claspD 1.1.4 (with metasp optimisation) on preferred
and semi-stable semantics, and DLV build “BEN/Dec 16 2012 gcc 4.6.1” on the
ideal semantics (since it is the only offered option). We used gringo/claspD (no
metasp optimisation, since the available ASPARTIX models do not work with
it) even with the admissible, complete, stable, and grounded semantics, but only
on Kleinberg and Erdős-Rényi models: the performance on the Barabasi-Albert
model seems not to benefit from this enhancement. To implement ConArg2 we
used Gecode 4.0, and for Dung-O-Matic we used Java “1.6.0 18” launched with
64Mbyte of stack and 4Gbyte of heap. We set a timeout of 300 seconds for all
the four systems. All the obtained extensions have been cross-checked to verify
the four systems find the same results.

From Fig. 3a to Fig. 5a we show the results for finding all the admissible, com-
plete, stable, preferred, ideal, grounded, and semi-stable extensions respectively.
Since ArgTools does not implement the admissible semantics, Fig 4a reports
a comparison only among the other four tools. The other six semantics are in
common with all the four considered tools. In each figure we report the results
over each of the three different random-graph models (see Sec. 4.2): the x axis
report the number of arguments (we test 100 graphs given each number of ar-
guments), on the left y axis we report the average (on 100 AAFs) CPU time
needed to compute the successful instances (i.e., considering only the extensions
found within the 300sec. timeout), and the right y axis shows the number of
unsolved instances.

For each tool we tested 2, 800 AAFs on the Barabasi-Albert model (400 AAFs
for each semantics), 3, 200 on Kleinberg (400 for stable, admissible, grounded,
ideal, 300 for complete, 600 for preferred, 700 for semi-stable), and 2, 800 AAFs
on the Erdős-Rényi model (400 AAFs for each semantics). Therefore, we exe-
cuted a total of 8, 800 tests for ASPARTIX, ConArg2, and Dung-O-Matic, and
8, 400 for ArgTools, since the admissible semantics is not implemented.
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Table 1. The best solvers on each graph and extension, with respect to the average
time performance (and number of unsuccessful search-instances) in Fig. 3, Fig. 4, and
Fig. 5: (A)SPARTIX, (C)onArg2, (D)ung-O-Matic, and Arg(T)ools

adm com stb prf ide gde sem

Barabasi-Albert C A/C A/C C/T C C C/T

Kleinberg C C C A T C/D/T C

Erdős-Rényi A/C A A/C A C A/D/T A

Table 1 summarises the tests showing the winner for each extension. Dung-
O-Matic (D) works well with the grounded semantics, meaning that the poly-
nomial algorithm is often better than representing the problem in a declarative
way. With all the other problems, however, Dung-O-Matic is often not able to
solve the instances within the timeout. For what concerns the other three tools,
we can see that ConArg2 (C) works very well with Barabasi-Albert networks,
being the best solver on all the semantics, together with ASPARTIX (A) on
complete and stable, and ArgTools (T) on preferred and semi-stable. ConArg2
also works efficiently on Kleinberg graphs, but worse than ASPARTIX on the
preferred semantics, and worse than ArgTools on the ideal one; on the grounded
semantics ConArg2, Dung-O-Matic, and ArgTool show similar performance. Fi-
nally, higher-level semantics in Erdős-Rényi graphs are usually solved better
by ASPARTIX, except the ideal one, where ConArg2 performs better, and the
admissible and stable semantics (where both solvers works similarly).

In the following we report some general considerations on the tests, not con-
sidering a specific reasoner:

– First, we would like to point out that the graph model sensitively impacts on
the performance of the tool: for instance, Barabasi-Albert networks are easier
to be solved (with ConArg2 in particular) since the number of nodes can be
raised to thousands still solving the problem. On the other end, it is possible
to only work with Kleinberg graphs with less than one hundred nodes (except
for grounded extensions). Erdős-Rényi stays in the middle. Therefore, it is
really important to discover the structure of real AAFs, before developing
the proper technology to work on them. This point represents the main result
of this paper: our goal is just to show that there is no absolute winner (Tab. 1
proves this), and each reasoner has its own advantages and disadvantages,
and, of course, margins of improvement. Tools could be also merged together
with the purpose to catch each one’s best results on different graph-models.

– A possible conjecture is that, among all the models shown in this paper,
some classical debate-schemes are more likely to resemble Barabasi-Albert
graphs: such evolving networks change as a function of time, similarly to a
debate where new arguments appear and attack previous ones.

Moreover, like other kinds of social or natural phenomena [3], Barabasi-
Albert’s preferential attachment explains big hubs receiving many attacks,
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(c) Stable

Fig. 3. ASPARTIX ( ), ConArg2 ( ), Dung-O-Matic ( ), ArgTools ( ),
and their respective number of unsolved instances within 300sec.: #Unsucc. ASPAR-

TIX ( ), ConArg2 ( ), Dung-O-Matic ( ), and ArgTools ( ).
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(c) Grounded

Fig. 4. ASPARTIX ( ), ConArg ( ), Dung-O-Matic ( ), ArgTools ( ),
and their respective number of unsolved instances within 300sec.: #Unsucc. ASPAR-

TIX ( ), ConArg2 ( ), Dung-O-Matic ( ), and ArgTools ( ).
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(a) Semi-Stable

Fig. 5. ASPARTIX ( ), ConArg ( ), Dung-O-Matic ( ), ArgTools ( ),
and their respective number of unsolved instances within 300sec.: #Unsucc. ASPAR-

TIX ( ), ConArg2 ( ), Dung-O-Matic ( ), and ArgTools ( ).

since they represent the most debatable arguments in the opponent’s rea-
soning. Other forms of topologies to be investigated in the future are plain
trees power-law trees17: this random-model follows the same preferential-
attachment law as the Barabasi-Albert model, the only difference is that it
generates trees instead of graphs, thus |R| = |A| − 1. Trees are frequently
used topologies in Argumentation: for instance, dynPARTIX [15] makes use
of the tree-width score of a graph, which measures the “tree-likeness” of a
graph.

6 Minizinc Models

In this section we give a few hints on how we developed ConArg2. At the be-
ginning, we used MiniZinc18, which is a medium-level constraint modelling lan-
guage. It is high-level enough to express most constraint problems easily, but
low-level enough that it can be mapped onto existing solvers easily and consis-
tently. FlatZinc is a low-level solver input language that is the target language
for MiniZinc. It is designed to be easy to translate into the form required by
a solver. Several existing solvers can be directly interfaced to Flatzinc, such
as The ECLiPSe Constraint Programming System, SICStus Prolog, the JaCoP
constraint solver, MinisatID, of course all the solvers in the (G12) MiniZinc
distribution, and Gecode.

In Fig. 6 we report the complete Minizinc code to find (and print on the
screen) all the conflict-free, admissible, complete, and stable extensions. The
adjacency matrix represents the attacks between any two arguments in the con-
sidered (directed) AAF. We are able automatically import this data structure
from a text file, in order to automate the tests. A solution is represented by

17 http://networkx.github.io/documentation/latest/reference/generated/

networkx.generators.random graphs.random powerlaw tree.html
18 http://www.minizinc.org

http://networkx.github.io/documentation/latest/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html
http://networkx.github.io/documentation/latest/reference/generated/networkx.generators.random_graphs.random_powerlaw_tree.html
http://www.minizinc.org
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the arguments array of boolean values, which assigns a values to all the ar-
guments in an AAF (i.e., [1..node]): a true value means that the assigned
argument belongs to a solution. Afterwards, in Fig. 6 we define two classes of
constraints (see [9] for a formal definition), expressing conflict-free and stable
properties in the solution. Their definition is quite straightforward: conflict-free
constraints state that, if a attacks b, then one of the two must not be taken in
a solution (i.e., arguments[a] == false ∨ arguments[b] = false). Admis-
sible constraints enforce an argument c to be defended from b by an argument
a, in case c is taken in an extension. Complete constraints are used in combi-
nation with admissible ones: the first one in Fig. 6 imposes that not-attacked
arguments (b) belong to a complete extension, while the following constraint
ensures that all defended arguments c that are not in conflict with any already
taken argument a (adjMatrix[a,c] != 1 ∧ adjMatrix[c,a] != 1), must be
part of any complete extension. Stable constraints force any not-taken b (i.e., not
arguments[b]) to be attacked by at least one argument a (i.e., arguments[a]).
This implementation has been formally given already in [9,2].

In Fig. 6 the solver is executed to find all the possible solutions, looking
across the entire search tree (i.e., complete search). With only solve satisfy;

instead, we search for one solution of the problem: this can be used to verify
the existence of at least one extension of a given semantics (see Sec. 2). The
first three parameters of bool search are i) the set of problem variables, ii)
the strategy of variable selection during search, and iii) the strategy of variable
assignment during search. Typically, finite domain solvers use depth-first search
and try to assign variables one by one, backtracking to a different value in case
of a partial solution violating some constraint.

Note that we can easily change the code in Fig. 6 in order to solve the credu-
lous or skeptical justification of an argument ai: by adding the line constraint

arguments[i]=true; we search for all the stable extensions containing ai. If we
use solve satisfy;, we can positively answer when ai is credulously accepted,
while if it does not return any solution, ai is not credulously accepted. Dually,
if we impose constraint arguments[i]=false;, in case a solution is returned
then ai is not skeptically accepted.

We have first formulated this model in Minizinc in order to have a general
support where to test different solvers in the future, e.g. SAT solvers, as Min-
isatID19. However, we passed to an implementation in native Gecode to look for
performance improvement. Even if these specific hard-problems are boolean, we
opt for a constraint solver, instead of a SAT solver, because we would like to
have a comprehensive framework where to also implement the weighted problems
presented in [8,14] (and already implemented in the JaCoP version of ConArg).
Moreover, labelling-based semantics in Argumentation [24, Ch. 1]), differently
from extension-based ones (see Def. 3), assign each argument to more that just
two yes/no labels, e.g., {in, out , undecided}.

19 http://dtai.cs.kuleuven.be/krr/software/minisatid

http://dtai.cs.kuleuven.be/krr/software/minisatid
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\% Dec lara t i on s and d e f i n i t i o n s
i n t : nnode ;
array [ 1 . . nnode , 1 . . nnode ] o f i n t : adjMatrix ;
s e t o f in t : argumentsRange = 1 . . nnode ;
array [ 1 . . nnode ] o f var bool : arguments ;

nnode =5;
adjMatrix = [ | 0 , 1 , 0 , 0 , 0

| 0 , 0 , 0 , 0 , 0
| 0 , 1 , 0 , 1 , 0
| 0 , 0 , 1 , 0 , 1
| 0 , 0 , 0 , 0 , 1 | ] ;

/∗ Uncomment Admiss ible = Admiss ible ex t ens ions
Uncomment Admiss ible + Complete = Complete ex t ens ion s
Uncomment Stabl e = Stabl e ext en s i ons ∗/

\% Conf l i ct−f r e e c on s t r a i n t s
c on s t r a i n t f o r a l l ( a , b in argumentsRange where adjMatrix [ a , b ] == 1)

( arguments [ a ] = f a l s e \/ arguments [ b ] = f a l s e ) ;

\% Admiss ible c on s t ra i n t s
\% cons t r a i n t f o r a l l (b , c in argumentsRange where adjMatrix [ b , c ] == 1)

( arguments [ c ] −> e x i s t s ( a in argumentsRange where adjMatrix [ a , b ]
== 1)( arguments [ a ] ) ) ;

\% Complete co n s t r a i n t s
\% cons t r a i n t f o r a l l (b in argumentsRange ) ( i f sum(a in argumentsRange where

adjMatrix [ a , b ] == 1)( adjMatrix [ a , b ] ) == 0 then arguments [ b ] e l s e
true end i f ) ;

\% cons t r a i n t f o r a l l ( a , b in argumentsRange where adjMatrix [ a , b ] == 1)
( arguments [ a ] −> f o r a l l ( c in argumentsRange where adjMatrix [ b , c ]

== 1 ) ( ( adjMatrix [ a , c ] != 1 /\ adjMatrix [ c , a ] != 1 /\
sum(d in argumentsRange where adjMatrix [ d , c ] == 1)

( adjMatrix [ d , c ] ) == 1) −> arguments [ c ] ) ) ;

\% Stable co n s t r a i n t s
\% cons t r a i n t f o r a l l (b in argumentsRange ) ( ( not arguments [ b ] ) −> e x i s t s

( a in argumentsRange where adjMatrix [ a , b ] == 1) ( arguments [ a ] ) ) ;

\% Search ( annotated )
s o lv e : : boo l s ea r ch ( arguments , input order , indomain max , complete )

s a t i s f y ;

\% Output format
output [ show( arguments [ a ] ) ++ ” ” | a in argumentsRange ] ;

Fig. 6. The complete Minizinc code to find all the extensions (following the conflict-
free, admissible, complete, or stable semantics) on the example in Fig. 1, represented
in adjMatrix. Since only conflict-free constraints are uncommented, as it is the above
code finds all conflict-free extensions. It is necessary to uncomment other lines to solve
different semantics.

However, after some preliminary tests using Minizinc and different underlying
solvers, we implemented ConArg2 by coding in native Gecode. The two main
reasons are that, to feed a solver with the Flatzinc representation of a Minizinc
model we need a further (delaying) translation step in the middle, and also due to
the opportunity to better tune the search algorithm and its heuristics. For lower-
order extensions, our Gecode models follow the Minizinc models in Fig. 6. With
higher-order extensions instead, which in this paper are preferred, ideal and semi-
stable extensions, we externally elaborate on the results provided by Gecode on
their lower counterpart. For instance, to find all preferred extensions we search
for all admissible extensions using the Gecode library, and then we scan them
to satisfy maximal inclusion. Therefore, since max/min inclusion property is not
represented with constraints at the moment, we reckon that ConArg2 has wide
margins of improvement (see also Sec. 7) for the performance shown in Fig. 4a
(preferred), Fig. 4b (ideal), Fig. 4c (grounded), and Fig. 5a (semi-stable): as we
can appreciate from Tab. 1, on Erdős-Rényi and Kleinberg, ConArg2 behaves
worse than the competitors.
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7 Future Work

The main goal of the paper is to provide a first comparative study on how effi-
ciently state-of-the-art reasoners on extension-based semantics behave, and how
much they can be stressed: this sets a current limit to the size of AAFs they
can be applied to. The testbed has been created by using three different random
graph-models. Due to the lack of certain AAF-topologies in the literature, we
have explored different models with the purpose to be as more objective as possi-
ble. Real argument-maps collected in DebateGraph seem to point towards graphs
with few outgoing edges for each node, and few hubs with many incoming attacks.
For this reason we believe that, at least in such scenario of community-oriented
debating platform, the Barabasi-Albert model (or power-law trees) proves to be
the more appropriate model. However, since DebateGraph maps are not simple
AAFs, but include different relationships among nodes, we leave such topology
study to successive works.

The results in Sec. 5 point us along several interesting lines. First of all, we
plan to extend ConArg2 to solve weighted problems [8], and the hard problems
implemented in CEGARTIX and dynPARTIX (e.g., the credulous or skeptical
acceptance of an argument in preferred extensions) in order to have a compari-
son with these tools. We have recently evaluated ConArg2 and dynPARTIX on
the stable semantics in [6]. To do so, we also plan to design and implement spe-
cific search-heuristics (using Gecode) in order to improve the performance with
higher-order extensions (e.g., preferred), so to better manage e.g. maximality
of set inclusion, and compare it to other solutions as the work in [12] or [23].
Note that these heuristics can be inspired by or tuned on a specific graph model.
Finally, we would like to test the tools over AAFs extracted from real debates,
for instance using [19]. Related, but on a different perspective, we would like
to study the topology of real AAFs, in order to match them to specific (social)
graph-models and improve the performance with real data.
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Abstract. We take a simple form of non-adversarial persuasion dialogue in
which one participant (the persuader) aims to convince the other (the respon-
der) to accept the topic of the dialogue by asserting sets of beliefs. The responder
replies honestly to indicate whether it finds the topic to be acceptable (we make
no prescription as to what formalism and semantics must be used for this, only
assuming some function for determining acceptable beliefs from a logical knowl-
edge base). Our persuader has a model of the responder, which assigns probabil-
ities to sets of beliefs, representing the likelihood that each set is the responder’s
actual beliefs. The beliefs the persuader chooses to assert and the order in which
it asserts them (i.e. its strategy) can impact on the success of the dialogue and the
success of a particular strategy cannot generally be guaranteed (because of the
uncertainty over the responder’s beliefs). We define our persuasion dialogue as a
classical planning problem, which can then be solved by an automated planner
to generate a strategy that maximises the chance of success given the persuader’s
model of the responder; this allows us to exploit the power of existing automated
planners, which have been shown to be efficient in many complex domains. We
provide preliminary results that demonstrate how the efficiency of our approach
scales with the number of beliefs.

1 Introduction

Argument dialogues are an established agreement technology; they provide a princi-
pled way of structuring rational interactions between participants (machine or human)
who argue about the validity of certain claims in order to resolve their conflicting infor-
mation, competing goals, incompatible intentions or opposing views of the world [16].
Such dialogues are typically defined by the moves that can be made and rules to deter-
mine which moves are permissible at any point in the dialogue. Much existing work in
the field focusses on defining argument dialogues that allow achievement of a partic-
ular goal; for example, to persuade the other participant to accept some belief [19] or
to agree on some action to achieve a shared goal [3]. However, successful achievement
of a participant’s dialogue goal normally depends on the strategy it employs to deter-
mine which of the permissible moves to make during the dialogue; the development of
effective argument dialogue strategies is thus an important area of active research [23].

We consider a simple non-adversarial persuasion dialogue in which the persuader
asserts beliefs with the aim of convincing the responder to accept the dialogue topic.
Success depends on the beliefs the persuader chooses to assert and the order in which it
asserts them (its strategy); this is informed by the persuader’s (uncertain) model of the
responder (i.e. its beliefs about the responder’s beliefs). Our proposal is general in that it
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allows for any logical formalism and semantics to be used to determine the acceptability
of claims; the beliefs asserted may be logical formulas or abstract arguments.

We define the persuader’s choice of beliefs to assert as a classical planning problem;
this allows us to use an automated planner to search for an optimal strategy given the
persuader’s model of the responder. Our preliminary results show that a planner can
find an optimal strategy for a problem where there are 8 beliefs the persuader can assert
and 28 possible sets of responder beliefs it considers in 70.22 seconds (32.54 seconds
to find the strategy, 37.68 seconds to prove it optimal). We discuss how we might adapt
our encoding of the planning problem and the search strategy of the planner to improve
the scalability.

2 Simple Persuasion Dialogues

In our simple persuasion dialogues, the persuader aims to convince the responder to
accept the topic of the dialogue by asserting beliefs. We make no prescription as to
which semantics the responder must use to reason about the acceptability of beliefs. We
assume only a finite logical language L and some function for determining the set of
acceptable claims given some knowledge base of L.

Definition 1. We assume a function Acceptable : ℘(L) → ℘(L) which, for a knowl-
edge base Φ ⊆ L, returns the set of acceptable claims of Φ such that:

Acceptable(Φ) = {α ∈ L | α is acceptable given Φ under the chosen acceptability
semantics}

The examples in our paper use a simple argumentation formalism with Dung’s
grounded semantics [5] to determine the acceptability of beliefs (which we define later).
There are, however, many formalisms and associated acceptability semantics that may
be used to instantiate Definition 1, some examples are: logic-based deductive argumen-
tation [2], abstract argumentation [5], assumption-based argumentation [6], defeasible
logic programming [9], ASPIC+ [15], classical logic.

Each dialogue participant has a set of beliefs, which is a subset ofL. We assume some
common knowledge, which is a subset of the intersection of the participants’ beliefs and
is known by the persuader to be part of the responder’s beliefs. The persuader has a
model of the responder, which is a function that assigns a probability to subsets of L,
representing how likely the persuader believes it is that the responder’s beliefs are that
set ([11] considers how such a model might be constructed). Our framework thus allows
for the case where the persuader believes the responder has beliefs the persuader itself
does not believe, but assumes that the persuader is aware of all the beliefs the responder
may hold.

This proposal allows us to capture situations where the persuader is an expert who
aims to convince the responder to accept a certain belief. For example, the persuader
may be a medical expert aiming to convince a patient that they ought to give up smok-
ing, where the common knowledge contains the patient-specific information such as
their age and medical history and the expert’s model of the patient captures the beliefs
it has about the patient’s preferences and values. Based on this model, the expert must
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select knowledge to assert to the patient that will convince them to accept that they
ought to give up smoking based on the information specific to their circumstances.

We define a simple persuasion situation by the persuader’s and responder’s beliefs,
the common knowledge, the persuader’s model of the responder and the topic of the
dialogue. The set of possible responder belief sets refers to those sets of beliefs that the
persuader believes may be the responder’s beliefs (each of which contain the common
knowledge, which is known by the persuader to be part of the responder’s beliefs). We
assume that the persuader’s model is accurate in the sense that it assigns a non-zero
probability to the responder’s actual set of beliefs.

Definition 2. A simple persuasion situation is a tuple 〈ΣP , ΣR, Ω,m, T 〉 where:

– ΣP ⊆ L is the persuader’s beliefs;
– ΣR ⊆ L is the responder’s beliefs;
– Ω ⊆ ΣP ∩ΣR is the common knowledge;
– m : ℘(L)→ [0, 1] is the persuader’s model of the responder such that

(a)
∑

Φ⊆Lm(Φ) = 1,
(b) for all Φ such that m(Φ) > 0, Ω ⊆ Φ, and
(c) m(ΣR) > 0;

– T ∈ L is the topic of the dialogue.

The possible responder belief sets given a particular model of the responder m is
denoted PossRespBels(m) where: PossRespBels(m) = {Φ | m(Φ) > 0}.

The two participants take it in turn to make moves to one another. The persuader
asserts subsets of its beliefs, not asserting beliefs it knows to be part of the common
knowledge and not repeating beliefs previously asserted. After each asserting move
made by the persuader, the responder replies honestly with a yes or no move, indicating
whether it finds the topic of the dialogue to be acceptable given the union of its beliefs
and those beliefs that the persuader has asserted thus far in the dialogue. If the responder
makes a yes move, then the dialogue terminates successfully. We thus define a well-
formed simple persuasion dialogue as follows.

Definition 3. A well-formed simple persuasion dialogue of a simple persuasion situ-
ation 〈ΣP , ΣR, Ω,m, T 〉 is a sequence of moves [P1, R1, . . . , Pn, Rn] such that:

1. P1 = {T },
2. for all i such that 1 < i ≤ n:

(a) Pi ⊆ ΣP \Ω,
(b) for all j such that 1 < j < i, Pj ∩ Pi = ∅;

3. for all i such that 1 ≤ i < n:
(a) Ri = no,
(b) T �∈ Acceptable(ΣR ∪ P2 ∪ . . . ∪ Pi);

4. Rn ∈ {yes, no},
5. Rn = yes iff T ∈ Acceptable(ΣR ∪ P2 ∪ . . . ∪ Pn).

If Rn = yes, the dialogue is successful. If Rn = no, the dialogue is unsuccessful.
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The persuader has a choice of beliefs it can assert at each point in the dialogue
(determined by its strategy), while the responder’s moves are determined by its beliefs
and those asserted by the persuader. A strategy for the persuader is simply a sequence
of non-intersecting subsets of its beliefs.

Definition 4. A strategy for a persuader with beliefs ΣP , for a dialogue with topic T
where the common knowledge is Ω is a sequence [P1, P2, . . . , Pn−1, Pn] such that:

1. P1 = {T },
2. for all i such that 1 < i ≤ n:

(a) Pi ⊆ ΣP \Ω,
(b) for all j such that 1 < j < i, Pj ∩ Pi = ∅.

A strategy thus corresponds to a sequence of persuader moves in a simple persuasion
dialogue. We give some examples in the following section.

2.1 Simple Persuasion Dialogue Examples

To illustrate our simple persuasion dialogues, we must first specify the acceptability
semantics with which we instantiate Definition 1; for this, we define an argumentation
formalism to which we apply the grounded semantics of Dung [5]. The argumentation
formalism we define allows us to concisely present some examples; we make no claims
about the appropriateness of its properties. Recall that any semantics for determining
the set of acceptable claims given some knowledge base of a logical language can be
used with our proposal; this is only one such example and the argumentation formalism
we present can be replaced with an established formalism (e.g. [2,5,6,9,15]).

We use a simple propositional language L that is constructed from a set of proposi-
tional atoms {a, b, c, . . .}; α is a strong literal iff α is an atom or of the form ¬β where
β is an atom and ¬ represents strong classical negation; α is a weak literal iff α is of
the form ∼ β where β is a strong literal and ∼ represents negation as failure; α is a wff
of L iff α is a strong literal or α takes the form of a rule φ1 ∧ . . . ∧ φn → ψ where ψ is
a strong literal and each φ1, . . . , φn is either a strong or weak literal.1

An argument constructed from a knowledge base of L has a support and a claim
such that: (1) the support is a subset of the knowledge base; (2) the claim is either a
strong literal that appears as the support or is the head of a rule in the support; (3) for
every rule in the support of the argument, every strong literal that appears in its body is
either the head of another rule in the support or is itself a member of the support; (4)
the support is consistent; and (5) the support is a minimal set satisfying (1-4).

Definition 5. An argument constructed from a knowledge baseΔ ⊆ L is a tuple (Γ, γ)
where Γ is the support and γ is the claim such that γ is a strong literal from L and:

1. Γ ⊆ Δ;
2. either Γ = {γ} or there exists φ1 ∧ . . . ∧ φn → γ ∈ Γ ;

1 Note that the symbols ∧ and → are not being used here to represent classical conjunction or
implication, but rather represent meta-relations between sets of literals.
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3. for every α1 ∧ . . .∧αn → β ∈ Γ , for every i ∈ {1, . . . , n} such that αi is a strong
literal, either αi ∈ Γ or there exists φ1 ∧ . . . ∧ φm → αi ∈ Γ ;

4. if Φ = ({ψ ∈ Γ | ψ is a strong literal}∪{β | there exists α1∧. . .∧αn → β ∈ Γ}),
then
(a) Φ ��⊥, and
(b) if there exists α1 ∧ . . . ∧ αn → β ∈ Γ such that ∼ ψ ∈ {α1, . . . , αn}, then

ψ �∈ Φ;
5. Γ is minimal under set inclusion.

We denote the set of all arguments that can be constructed from Δ as Args(Δ).

An argumentA1 attacks an argumentA2 if either: the claim of A1 is the negation of
the claim of A2, the claim of A1 is the negation of something that has been derived by
negation of failure to support A2, or the claim of A1 is the negation of something that
appears as the head of a rule that is part of the support of A2.

Definition 6. An argument (Γ1, γ1) attacks an argument (Γ2, γ2) iff either:

– γ1 = ¬γ2,
– there exists a rule α1 ∧ . . . ∧ αn → β ∈ Γ2 such that ∼ γ1 ∈ {α1, . . . , αn}, or
– there exists a rule α1 ∧ . . . ∧ αn → β ∈ Γ2 such that γ1 = ¬β.

The argument framework of a particular knowledge base represents the set of all
arguments that can be constructed and the attack relations between those arguments.

Definition 7. The argument framework of a knowledge baseΔ ⊆ L, denotedAF(Δ),
is the tuple (A,R) where:

1. A = Args(Δ),
2. R = {(A1, A2) | A1, A2 ∈ A and A1 attacks A2}.

We apply the grounded semantics [5] to determine the acceptable claims of an ar-
gument framework. To define the grounded semantics, we follow Caminada’s labelling
approach [4], which assigns exactly one label from {in, out, undecided} to each ar-
gument in an argument graph such that the reinstatement labelling conditions given in
the definition below hold. The grounded labelling is the unique labelling that meets the
reinstatement labelling conditions and minimises the number of arguments labelled as
in, which are those arguments that are acceptable under the grounded semantics.

Definition 8. Let (A,R) be an argument framework. A reinstatement labelling of
(A,R) is an assignment of exactly one label from {in, out, undecided} to each of
the arguments in A such that the following conditions hold.

1. An argument is labelled as in iff every argument that attacks it is labelled as out.
2. An argument is labelled as out iff there is no argument that attacks it and is labelled

as in.

The grounded labelling of an argument framework (A,R) is the reinstatement la-
belling of (A,R) that minimises the number of arguments labelled as in.
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a

in

b

in

c

in

d

in

a, d,
a ∧ d∧ ∼ e → t

out

c, c → e

in

b, c,
b ∧ c∧ ∼ f → t

out

a, a → f

in

d, d → f

in

Fig. 1. The argument framework constructed from the knowledge base given in Example 1. For
brevity, nodes are labelled only with the support of the argument they correspond to. The di-
rected edges represent the attacks between arguments and nodes are annotated with the grounded
labelling.

We can now define the acceptable claims of a particular knowledge base Δ as those
that appear as the claim of an argument that can be constructed fromΔ and are labelled
as in in the grounded labelling of the argument framework constructed from Δ.

Definition 9. Let Δ ⊆ L be a knowledge base such that AF(Δ) = (A,R). A wff
α ∈ L is acceptable given Δ iff there exists an argument (Φ, α) ∈ A such that (Φ, α)
is labelled in in the grounded labelling of (A,R).

Example 1. Consider the knowledge base Δ = {a, b, c, d, a ∧ d∧ ∼ e → t, b ∧ c∧ ∼
f → t, c→ e, a→ f, d→ f}. The argument framework AF(Δ) is shown in Figure 1.
Thus we see that Acceptable(Δ) = {a, b, c, d, e, f}.

Now we have defined a mechanism for determining the acceptable claims from some
knowledge base of L, we present some examples of well-formed persuasion dialogues
where Definition 1 is instantiated with the definition of acceptable claims from Defini-
tion 9.

Example 2. Consider a persuader with beliefs ΣP , common knowledge Ω, model of
the responder m, for a dialogue with topic t where:

– ΣP = {a, b, c} ∪Ω;
– Ω = {a ∧ d∧ ∼ e→ t, b ∧ c∧ ∼ f → t, c→ e, a→ f, d→ f};
– m({c} ∪ Ω) = m({d} ∪Ω) = 0.4, m({a, c} ∪Ω) = 0.2 and for all other Φ ⊆ L,

m(Φ) = 0.
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There are three possible responder belief sets to consider: {c}∪Ω, {d}∪Ω, {a, c}∪Ω.

– If ΣR = {c}∪Ω, some examples of well-formed simple persuasion dialogues are:
D1 = [{t}, no, {a, b}, no]; D2 = [{t}, no, {b}, yes].

– If ΣR = {d}∪Ω, some examples of well-formed simple persuasion dialogues are:
D3 = [{t}, no, {a, b}, yes]; D4 = [{t}, no, {b}, no, {a}, yes].

– If ΣR = {a, c} ∪ Ω, some examples of well-formed simple persuasion dialogues
are: D1 = [{t}, no, {a, b}, no]; D5 = [{t}, no, {b}, no, {a}, no].

We consider two corresponding strategies for this persuader: S1 = [{t}, {a, b}];
S2 = [{t}, {b}, {a}].

– If the persuader follows strategy S1 and ΣR = {c} ∪ Ω or ΣR = {a, c} ∪ Ω,
dialogue D1 will result; if ΣR = {d} ∪Ω, dialogue D3 will result.

– If the persuader follows strategy S2 and ΣR = {c} ∪ Ω, dialogue D2 will result;
if ΣR = {d} ∪Ω, dialogue D4 will result; if ΣR = {a, c} ∪Ω, dialogue D5 will
result.

If the persuader in Example 2 follows strategy S1, it will be successful if the respon-
der’s beliefs are {c} ∪ Ω but not if they are {d} ∪ Ω or {c, d} ∪ Ω. If the persuader
follows strategy S2, it will be successful if the responder’s beliefs are either {d}∪Ω (as
in dialogue D4) or {c} ∪Ω (in which case the responder would terminate the dialogue
successfully after the persuader moves {b}, as in dialogue D2). Thus the persuader
should prefer S2 over S1.

We see then that there may be multiple possible responder belief sets given which a
particular strategy will lead to success. We define the probability of success of a strategy
(given the persuader’s model of the responder) as the sum of the probabilities assigned
by the persuader’s model to each possible responder belief set under which that strategy
leads to success.

Definition 10. The probability of success of the strategy [P1, P2, . . . , Pn−1, Pn] for a
persuader whose model of the responder is m, for a dialogue with topic T and common
knowledge Ω is

∑
Ψ∈Φm(Ψ) where:

Φ = {ΣR | there exists m such that 1 ≤ m ≤ n and
[P1, no, P2, no, . . . , Pm−1, no, Pm, yes]

is a well-formed simple persuasion dialogue of 〈ΣP , ΣR, Ω,m, T 〉}

Example 3. Continuing Example 2, the probability of success of S1 is 0.4, the proba-
bility of success of S2 is 0.8.

An optimal strategy for a persuader (given its model of the responder) is one that
maximises the probability of success. In the next section we show how we can rep-
resent the persuader’s choice of moves to make in a simple persuasion dialogue as a
classical planning problem so that we can use an automated planner to search the space
of possible strategies to find one that maximises the probability of success.
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3 Representing Simple Persuasion Dialogues as a Planning
Problem

In this section we describe how the simple persuasion dialogue can be modelled as
a classical planning problem, which can then be solved by an automated planner to
generate a strategy for the persuader. A classical planning problem consists of four
components: an initial state, I , describing the current state of the world; a desired goal
condition,G; an optimisation metric M ; and the set of actions, A, which determine the
state transitions that can be made. Each action in A has preconditions, which must be
true in a state S for it to be applicable, and effects that occur when it is applied allowing
the generation of a new state S′. A solution to a planning problem is a plan: an ordered
sequence of actions (each of which is applicable in sequence) that transforms I into a
state that satisfies G.

We formally define our model of the planning problem later, but first we discuss
some high-level issues. The major challenge in representing our persuasion dialogue as
a classical planning problem is that the initial state is not known: that is, the persuader
does not know which of the possible responder belief sets hold. We might desire a plan
that will convince the responder regardless of which of the possible belief sets it holds;
in the planning literature such a plan is known as a conformant plan. Many approaches
to solving conformant planning problems have been proposed, the most closely related
to our work is that of compiling conformant planning into classical planning and then
using a classical planner to solve the problem [1].

Whilst conformant planning is sufficient in the case where there exists a sequence of
actions that will achieve the goal no matter which of the possible initial states actually
hold, this is not always the case in our simple persuasion dialogues (as we see in Ex-
ample 2 and later in our experimental analysis). Instead what we seek is the plan that
maximises the probability of success. In a sense we are seeking the ‘most conformant’
plan, the one that is most likely to result in the responder being convinced, but accept
that it is not possible to guarantee success. This problem is related to that considered
in [22]; whilst [22] considers a general solution to this type of planning problem, our
compilation is made more efficient by exploiting particular properties of this problem,
specifically that we do not need to consider possible initial states any further once the
responder is convinced from these states.

3.1 Overview of Model

To aid in understanding the formal model of our planning problem we give a brief
overview here, making use of a small example. The actions that the persuader can per-
form are to assert a belief or to pass the turn to the responder (we refer to this action
as responder-turn). We allow the persuader to make multiple assertions before the
responder makes a response; this is simply a way of modelling the fact that the per-
suader can assert multiple beliefs simultaneously. Since the first move the persuader
must make is fixed (it must assert the topic) a plan to determine the persuader’s strategy
always starts with a responder-turn (this action must be included since the persuader
does not know what move the responder will make); similarly a plan must always end
with a responder-turn.
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Example 4. Following from Example 2, the strategy S1 is captured by the plan

(responder-turn) (assert a) (assert b) (responder-turn)

and the strategy S2 is captured by the plan

(responder-turn) (assert b) (responder-turn) (assert a) (responder-turn)

At each state in a simple persuasion plan (i.e. after each action is made), we can
consider the formulas the responder is reasoning with to determine whether it finds the
topic acceptable, i.e. the union of its beliefs and the beliefs asserted so far by the per-
suader; we refer to this set as the responder’s reasoning set. Although the persuader
does not know what this set is in a particular state, since we assume that the respon-
der’s beliefs are one of the possible responder belief sets, the persuader does know that
the responder’s reasoning set is a member of the following set (where m is the per-
suader’s model of the responder): {Φ ∪ Ψ | Φ are the beliefs asserted so far and Ψ ∈
PossRespBels(m)}.

The general idea is to monitor in each state during planning, given the beliefs that
have been asserted so far and the persuader’s model of the responder: (a) the probability
that the responder’s reasoning set is each of the possible sets that may occur (i.e. {Φ∪Ψ |
Φ ⊆ ΣP and Ψ ∈ PossRespBels(m)}), and (b) the probability that the responder will
terminate the dialogue successfully either in the current state or some previous state of
the plan (i.e. the probability of success of the plan).

Table 1 shows how the two strategies discussed in Example 2 are evaluated by our
approach. We see that there are 12 possible sets that may occur as the responder’s rea-
soning set. Let us consider strategy S1. In the initial state, the responder’s reasoning set
is simply its beliefs (as the persuader has not yet asserted anything) and so (according
to the persuader’s model of the responder) there is a 0.4 probability that the responder’s
reasoning set is {c}∪Ω, a 0.4 probability that it is {d}∪Ω, and a 0.2 probability that it
is {a, c} ∪ Ω. Since none of these sets cause the responder to find the topic acceptable
(and so the responder is sure to make a no move), after the first (responder-turn)
action these probabilities stay the same.

After the (assert a) action, if the responder’s reasoning set had been {c} ∪ Ω or
{a, c}∪Ω in the previous state it would now be {a, c}∪Ω, thus the probability assigned
to {c} ∪ Ω is now 0 and the probability assigned to {a, c} ∪ Ω is now 0.6. If the
responder’s reasoning set had been {d} ∪ Ω in the previous state it would now be
{a, d} ∪ Ω, thus the probability assigned to {d} ∪ Ω is now 0 and the probability
assigned to {a, d} ∪Ω is 0.4.

After the (assert b) action, if the responder’s reasoning set had been {a, c} ∪ Ω
in the previous state it would now be {a, b, c} ∪ Ω, thus the probability assigned to
{a, c} ∪ Ω is now 0 and the probability assigned to {a, b, c} ∪ Ω is now 0.6. If the
responder’s reasoning set had been {a, d} ∪ Ω in the previous state it would now be
{a, b, d} ∪ Ω, thus the probability assigned to {a, d} ∪ Ω is now 0 and the probability
assigned to {a, b, d} ∪Ω is 0.4.

If the responder’s reasoning set is {a, b, d}∪Ω, then it will find the topic acceptable
and terminate the dialogue successfully, thus we increase the probability of success
in the state after the final (responder-turn) action by 0.4 (the probability that the
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Table 1. For Example 2, at each state during planning, shows the updates to: (a) the probabilities
assigned to the sets that may occur as the responder’s reasoning set and (b) the probability of
success

Probability responder’s reasoning set is: Probability
of success
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}∪

Ω

{d
}∪
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Strategy S1:
Initial state 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(responder-turn) 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(assert a) 0 0 0.6 0.4 0 0 0 0 0 0 0 0 0
(assert b) 0 0 0 0 0 0 0.6 0 0.4 0 0 0 0
(responder-turn) 0 0 0 0 0 0 0.6 0 0 0 0 0 0.4
Strategy S2:
Initial state 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(responder-turn) 0.4 0.4 0.2 0 0 0 0 0 0 0 0 0 0
(assert b) 0 0 0 0 0.4 0.4 0.2 0 0 0 0 0 0
(responder-turn) 0 0 0 0 0 0.4 0.2 0 0 0 0 0 0.4
(assert a) 0 0 0 0 0 0 0.2 0 0.4 0 0 0 0.4
(responder-turn) 0 0 0 0 0 0 0.2 0 0 0 0 0 0.8

responder’s reasoning set in the previous state was {a, b, d}∪Ω) and set the probability
assigned to {a, b, d} ∪ Ω to 0 (as, if the plan were to continue after this point, the
responder could no longer be reasoning with this set, as if it had been it would have
ended the dialogue successfully). The probability of success of the plan that captures
Strategy S1 is thus 0.4.

The effect of an asssert action is to update the probabilities assigned to the possi-
ble responder’s reasoning sets (i.e. those with a non-zero probability), as a consequence
of the asserted belief being added to these sets. The effect of a responder-turn move
is to update the probability of success assigned to the plan when a possible respon-
der reasoning set would cause the topic to be acceptable, and to assign the probability
associated with that set to zero. In the following section we formally define the condi-
tions and effects of these two actions and specify how a planning problem instance is
constructed from a simple persuasion situation.

3.2 Formal Model of the Simple Persuasion Planning Problem

To represent our simple persuasion dialogues as a planning problem, we use PDDL2.1
[8], a standard language for encoding the information required by automated planners
(i.e. the actions that can be performed, the initial situation, the goal and the optimisation
metric). PDDL2.1 allows the use of typed objects, predicates and functions to define
the preconditions and effects of actions. We define two types of object: the wff type
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Table 2. Predicates and functions used to define the actions assert and responder-turn

(can-assert ?w− wff) True if ?w is a persuader’s belief that has
not yet been asserted

(acceptable ?sow− setOfWffs) True if the topic is acceptable given ?sow

(add ?w− wff ?sow1 ?sow2− setOfWffs) True if the adding ?w to the set ?sow1
gives the new set ?sow2

(belief-asserted) Flag to ensure that the persuader asserts
at least one belief each turn

(initial-move) Flag to ensure the first action of a
plan is a (responder-turn)

(responder-moved) Flag to ensure the last action of a
plan is a (responder-turn)

(prob-resp-reasoning-with ?sow− setOfWffs) Function that assigns probabilities to the
sets that may occur as the responder’s
reasoning set

(prob-of-success) Function that updates the probability of
success of a plan

is used to capture wff of L; the setOfWffs type is used to capture sets of wff of L.
The predicates and functions used to define our actions are given in Table 2 (variables
in PDDL2.1 begin with a ? and are annotated with their type). Recall that we take the
initial state to be where the persuader has opened the dialogue by asserting the topic (as
all simple persuasion dialogues start in this manner), thus a plan must always start with
a (responder-move) action. A plan must also always end with a (responder-move)
action, to allow the persuader to consider the responder’s possible responses.

We now define how a planning problem instance is constructed for a simple persua-
sion situation; this determines the initial state that the planner must plan from.

Definition 11. For a persuader with beliefs ΣP , for a dialogue with common knowl-
edge Ω, topic T , where its model of the responder is m we construct a planning prob-
lem instance as follows:

– for every belief α ∈ ΣP , there is an equivalent wff object: α;
– for every set of beliefs Υ ∈ {Φ∪ Ψ | Φ ⊆ ΣP and Ψ ∈ PossRespBelSets(m)} (i.e.

for every set that may occur as the responder’s reasoning set), there is an equivalent
setOfWffs object: Υ ;

– for all α ∈ ΣP , (can-assert α) is true ;
– (acceptable Φ) is true if and only if T ∈ Acceptable(Φ);
– (belief-asserted) is true (since we assume we are in the state where the per-

suader has asserted the topic);
– (initial-move) is true;
– (responder-moved) is not true;
– for all Υ ∈ {Φ ∪ Ψ | Φ ⊆ ΣP and Ψ ∈ PossRespBelSets(m)}:

• if Υ ∈ PossRespBelSets(m),
(= (prob-resp-reasoning-with Υ ) x) where x = m(Υ );
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• otherwise
(= (prob-resp-reasoning-with Υ ) 0);

– (= (prob-of-success) 0) ;
– the goal is (responder-moved);
– the optimisation metric is to maximise (prob-of-success).

The PDDL2.1 definition of our actions is shown in Figure 2. The persuader can
assert a wff object ?w as long as it can assert ?w (i.e. it has not asserted it already)
and it is not the initial move. The main effect of an asssert action is to update the
probabilities assigned to the sets that can occur as the responder’s reasoning set. For
each set ?sow1 that was assigned a non-zero probability p in the previous state, asserting
the belief ?w has the effect of setting the probability assigned to ?sow1 to zero and
increasing the probability assigned to ?sow1 ∪ {?w} (i.e. ?sow2) by p (so that if ?w is
already a member of ?sow1, the probability assigned to ?sow1 does not change).

A responder-turn action can be made as long as a belief has been asserted (so
two or more responder-turn actions cannot occur in sequence). The main effect of
a responder-turn action is to update the probability of success assigned to the plan.
For each of the possible responder’s reasoning sets ?sow that was assigned a non-zero
probability p in the previous state, if that set causes the responder to find the topic
acceptable, responder-turn has the effect of increasing the probability of success by
p and setting the probability assigned to ?sow to zero.

Given this formal model of our planning problem, a planner can search for a plan
that maximises the probability of success. In the following section we present some
preliminary results that explore the efficiency of the automated planning process.

3.3 Experimental Results

We used the planner Metric-FF [12,13] to generate plans for our model. The combi-
nation of features required by the model means that this is the most appropriate plan-
ner: standard (‘STRIPS’) planners support only conjunctions in preconditions, whereas
we require quantification and conditional effects2. We also require numeric fluents,
the values of prob-resp-reasoning-with, and optimisation based on a metric func-
tion. In fact, because the updates to the values of prob-resp-reasoning-with and
prob-of-success are state-dependent, Metric-FF is not able to optimise our prob-
lem off-the-shelf; however, we implemented a simple wrapper which allows us to use
Metric-FF to perform the optimisation as follows3. The wrapper first calls Metric-FF to
solve the problem with the goal:

(and (responder-moved)
(> (prob-of-success) 0)

)

2 In theory it is possible to compile these away to create a STRIPS representation, with the
possibility of using different planners, we leave this to future work.

3 This wrapper, our formal model of the planning problem and some example problem instances
can be downloaded from http://www.inf.kcl.ac.uk/staff/lizblack/automated-planning-simple-
persuasion.html.
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If a plan exists to solve the problem (i.e. if there is a strategy that has a greater than 0
probability of success), Metric-FF will return some such plan. The wrapper then updates
the problem instance so that the goal is now

(and (responder-moved)
(> (prob-of-success) X)

)

where X is the probability of success of the plan returned by Metric-FF in the previous
step, and calls Metric-FF to solve the problem again with the new goal. This process
continues until the planner reports that the problem is unsolvable with a probability of
success higher than the last plan found; we know therefore that the previous plan found
by the planner is optimal.

For our experiments we generated problem instances with #beliefs possible be-
liefs that the persuader can assert. The possible responder belief sets are all the elements
of the power set of the persuader’s beliefs, to which we have assigned equal probability
(so we assume the persuader believes that the responder’s beliefs are some subset of
its own but has no a priori beliefs about which is more likely and is not aware of any
common knowledge). Each possible set of beliefs was randomly determined to make
the topic acceptable with probability θ. Our first set of experiments scaled #beliefs,
while keeping θ = 0.3. The second set of experiments set #beliefs to 8 and varied
θ. For each parameter setting we generated a single problem instance and recorded: the
time taken to find the optimal plan, the cumulative time taken to find the optimal plan
and prove it optimal, the number of runs of the planner required to find the optimal
plan and prove it optimal, the probability of success of the optimal plan. All experi-
ments were run on a 3GHz machine with a memory limit of 27GB. Results of both
experiments are shown in Table 3.

Note that what we are evaluating here is the time taken to find an optimal plan, not
the time taken to generate the problem instance. Generating the problem instance is
not trivial; in particular, determining the sets that make the topic acceptable is typically
costly (depending on the acceptability semantics chosen to instantiate Definition 1, an
existing implementation such as ASPARTIX [7] could be used for this). We expect
that the work done in generating the problem instance can be reused for other problem
instances, and will explore this in future work.

Our experiments show that we can optimally solve problems with up to 29 possible
responder belief sets; problems of this size are very difficult for humans to solve even
close to optimally, and this shows real benefits of automation. Scalability does remain
a challenge, however; in particular memory usage seems to be the bigger concern than
time. The size of the problem, and the search space, grows exponentially with the num-
ber of persuader beliefs that can be asserted; the number of possible responder belief
sets also grows exponentially with the number of persuader beliefs and reasoning about
all of these is challenging. We plan to work on more efficient encodings that will allow
significantly greater scalability. We also expect improved performance for problems
where there are fewer possible responder belief sets.

Our first experiment shows that planning gets more difficult as the space of possible
solutions increases, but the overall time remains reasonable for problems with up to 8
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Table 3. Shows: seconds to find the optimal plan (findOptPlan); seconds to find the optimal
plan and prove it optimal (proveOpt); number of runs of planner to prove plan optimal (#runs;
probability of success of the optimal plan (probSucc). Top part of table shows results for first
experiment (where we varied the number #beliefs of persuader beliefs and the probability
that a set causes the topic to be acceptable was fixed as 0.3); bottom part of table shows results
for second experiment (where we varied the probability that a set causes the topic to be accept-
able and the number #beliefs of persuader beliefs was fixed as 8) and gives the percentage
%acceptable of the 28 possible responder belief sets that were determined to make the topic
acceptable as we varied the probability θ that a set causes the topic to be acceptable.

#beliefs 1 2 3 4 5 6 7 8 9
findOptPlan < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 1.3 32.54 1220.09
proveOpt < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.16 2.46 70.22 2464.46
#runs 3 3 6 6 8 12 20 30 34

probSucc 1 1 1 0.81 1 0.94 0.80 0.94 0.97

%acceptable 49.6 25.8 23.1 17.6 15.6 13.3 11.3 9.4 4.3 3.5 2.7 1.2
findOptPlan 5.76 15.71 48.41 33.65 20.97 20.71 9.26 19.16 5.22 4.77 8.69 3.17
proveOpt 14.69 54.67 73.02 68.7 49.89 49.46 32.61 39.77 8.41 7.47 10.86 4.14
#runs 24 31 28 30 32 25 20 17 11 17 17 11

probSucc 1 0.85 0.72 0.82 0.79 0.80 0.76 0.75 0.24 0.23 0.23 0.26

persuader beliefs. In general the most time consuming step is the final run to prove the
solution optimal; finding the optimal solution often takes less than half as long as prov-
ing it optimal, a future direction is to scale to larger problems by finding solutions that
have a certain probability of success but are not necessarily optimal. The difficulty of
the problem clearly depends on which sets cause the topic to be acceptable; this is cur-
rently assigned randomly by our problem generator, we control only the proportion of
such sets. We intend to run experiments where acceptability status of sets is determined
from the underlying logic, to investigate whether this improves performance.

Results of our second experiment support what might be expected. If a large per-
centage of the possible sets make the topic acceptable then planning is relatively quick
because solutions are abundant; so, although the planner might run many times, it is rel-
atively easy to find a solution that improves on the previous one quickly. As the number
of belief sets that make the topic acceptable becomes low, it is harder to find solutions
to the planning problem as there are fewer, but (because the number is so low) search
space pruning is more powerful as the planner can recognise early during plan gener-
ation that a plan cannot lead to a better state and prune it without further exploring.
There is somewhat of a phase transition between these two extremes, at approximately
10-25% of belief sets acceptable, where neither of these advantages prevails. Varia-
tion in the results appears because of the random assignment of acceptable sets by our
problem generator, which impacts on the the difficulty of the problem.
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4 Related Work

Recent works on argument dialogue strategy [3,10,21] also use a model of the other
participant. The dialogue of [3] allows participants to agree on some action to achieve
a shared goal. The authors provide a strategy that requires a certain model of the other
participant’s preferences and depends on a particular argumentation formalism, whilst a
strategy generated by our approach maximises the chance of success taking into account
the uncertainty over the responder’s beliefs and we allow for any reasoning mechanism.

Different tactics for making concessions in argumentation-based negotiation are pre-
sented in [10], which use a model of the other participant’s (perhaps distinct) defeat
relation over the arguments that can be used to support or attack offers; here we instead
use a model of the responder’s beliefs, and assume its mechanism for determining the
acceptability of claims is known to the persuader. In case this mechanism is argument
based, our approach can account for the construction by the responder of new argu-
ments by combining its existing beliefs with those asserted by the persuader; this is not
possible in [10], which does not consider the structure of arguments.

In [21], a variation of the minimax algorithm is used with a recursive model of the
opponent to determine dialogue strategy in an adversarial abstract persuasion setting.
Uncertainty over the opponent model is also allowed for in [21]. The authors present
results regarding the effectiveness of their approach (i.e. whether the strategy leads
to success) but do not present results regarding the efficiency of their algorithm; we
consider the time taken to find a guaranteed optimal strategy (albeit in a simpler non-
adversarial setting). The experiments in [21] assume 10 arguments distributed between
the two agents, which is comparable to the size of problem we have shown our ap-
proach to be efficient for. Whilst we assume that the persuader is aware of all beliefs
the responder may believe, [21] uses virtual arguments to allow the for the case where
the responder has beliefs that the persuader is unaware of; this is something we will
consider adopting in our model.

The application of the minimax algorithm to dialogical argumentation is also con-
sidered in [14], which proposes a general framework for specifying argument dialogue
systems using propositional executable logic; this allows a finite state machine to be
generated, which represents all possible dialogues from a particular initial state. Such a
finite state machine can then be analysed with the minimax algorithm to determine an
optimal strategy for a participant, although this requires certain knowledge of the other
participant’s private state. Efficiency results are also given in [14]; these are better than
the results we achieve here but we are considering a set of possible initial states (i.e.
the different possible responder belief sets) while [14] considers a situation in which
the persuader and responder beliefs are known. It will be interesting to explore more
closely the relationship between our approach and [14].

In [17] and in [18], argument-based negotiation is considered as a planning problem.
Each of these proposals allow plans of arguments specific to negotiation to be generated,
where the arguments that can be generated are specified by the domain; our approach is
more general than this, since our domain does not depend on a particular argumentation
formalism, and so could also be used to determine a persuasive line of argument within
a negotiation context.
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Finally, [20] also considers the generation of a persuasive line of argument as a plan-
ning problem. The focus of that work is on generating natural language discourse; it
is concerned with eloquence and style of language, as well as the logical structure of
arguments, whilst we consider only the acceptability of logical formulas.

5 Discussion

Our proposal allows an automated planner to find an optimal strategy for a simple
persuasion dialogue; a key advantage is that it is general in the sense that it does
not prescribe the logical formalism and semantics for determining acceptability of
claims, allowing for both abstract and structured argumentation, as well as other non-
argumentation based formalisms. Our preliminary results show that the efficiency of the
planner does not scale well beyond 8 persuader beliefs; however, we expect a significant
improvement when we reduce the number of possible responder belief sets considered.

The major obstacle to scalability in our current approach is that we are not exploit-
ing any knowledge about the responder belief sets that we know are either not possible
or not likely. Whilst the current model allows reasoning with these as zero probabil-
ity states, it does not reduce the size of the task. We intend to explore more efficient
encodings of the planning problem to allow exploitation of such knowledge, and also
to consider exclusion of unlikely possible responder belief states to further improve
scalability. Better exploitation of the native ability of planners to handle sets, through
the explicit reasoning over beliefs as individual entities rather than as black-box sets,
is also an avenue to improve performance. Finally, we intend to investigate how the
search algorithms and heuristics of the planner itself can be modified to allow better
performance in this particular domain, or indeed what inspiration we can gain from this
problem for improving general planning strategies across different types of problems.

Our optimisation metric currently only considers the success of the dialogue. We
could also consider that the persuader may have some preferences regarding the beliefs
it shares with the responder. By assigning values to each belief that represent how will-
ing the persuader is to make it known to the responder, we could adapt our optimisation
metric to also take into account the beliefs the persuader has had to share.

We intend to model more complex types of argument dialogue as planning problems.
In particular, we are interested in the case where both participants are making assertions
with the aim of achieving their individual (and potentially conflicting) dialogue goals.
The dynamic and uncertain nature of these dialogues presents interesting challenges for
classical planning; nevertheless, we believe this work demonstrates the feasibility of
using automated planners to generate strategies for such dialogues.
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Abstract. Debating agents have often different areas of expertise and conflicting
opinions on the subjects under discussion. They are faced with the problem of
deciding how to contribute to the current state of the debate in order to satisfy
their personal goals. We focus on target sets, that specify minimal changes on the
current state of the debate allowing agents to satisfy their goals, where changes
are the addition and/or deletion of attacks among arguments. In this paper, we
experimentally test a number of strategies based on target sets, and we evaluate
them with respect to different criteria, as the length of the debate, the happiness
of the agents, and the rationality of the result.

1 Introduction

In recent years, the study of the collective aspects of argumentation (which can now be
increasingly experienced on-line [1]), has seen a surge of interest in AI. Such settings
raise new challenges for argumentation theory [2]. The object constructed by a group
of agents is a weighted argumentation system [3], where a natural interpretation of the
weights attached to an edge is that it reflects the number of agents who have committed
to a given attack, or the aggregated expertise of those agents [4], as we shall also assume
here. New semantics have been proposed to account for the social nature of argumenta-
tion and its specific use in a context where votes can be cast on top of arguments (and
relations among them), either sticking to the framework initially set up by Dung [5],
see e.g. [6], or departing from it [7,8].

Debates in online settings are incrementally built, with agents adding new arguments,
attacks, and casting new votes in response to the opinion voiced by others. In practice
such debates may be (more or less flexibly) regulated, to ensure that they remain fo-
cused, and that some fairness is guaranteed among the different agents. One thing that
is missing though is a study of the dynamics of debates regulated by such protocols: it
is not clear how strategies used by agents would change the outcome of debates. In [9]
a very simple dynamic is investigated, based on a direct notion of relevance inspired
by [10], and it is shown that in the absence of coordination and with a myopic behav-
ior, agents can actually play against their own interest, leading to undesirable results.
This justifies the fact that some “guidance” might be useful to agents, without assuming
though any sort of explicit coordination among agents. Recently, the notion of target
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sets has been proposed in the litterature [11,12]. Roughly speaking, a target set speci-
fies the minimal (sets of) moves which would achieve the argumentative goal of a given
side of the debate, provided the debate remains in its current state. The intuition is that
agents should be better off focusing their moves on target sets. One challenge though
is that target sets may prescribe more than one move for agents to play, and that it is
impossible to assume that agents will have the opportunity to completely “control” a
target set.

In this paper we experimentally investigate how well strategies based on target sets
behave. We study a number of dynamics, of increasing complexity, where the notion of
target set is thoroughly exploited. Our experimental results show in particular that the
use of these sophisticated strategies provides an advantage to the side using it, and that
it shortens the length of debates.

The rest of this paper is as follows. Section 2 provides the necessary background,
introducing the different elements composing the “gameboard” of the debate. Section 3
recalls the definition of target sets. Section 4 presents a protocol, and Section 5 presents
a study of different strategies of increasing complexity, based on this notion of target
sets. These strategies are experimentally compared in Section 6. Section 7 concludes.

2 Argumentative Debates Featuring Conflicting Expert Opinions

The aim of this work is to study argumentative debates among expert agents. We con-
sider an arbitrary number of participating agents, each of them having a private argu-
mentation system. For the sake of simplicity we assume that all agents have the same
set of arguments, but they can disagree on the validity of the attacks between those ar-
guments. Each argument concerns a finite set of topics, and the agents are experts on a
subset of these topics. The debate is about the status (wrt a given semantics) of a single
argument, called issue. The agents vote on the attacks involved in the computation of
the status of the issue, on a specific common system called Gameboard. The objective
of each agent is to have the status of the issue in his private argumentation system be
the same as the status of the issue on the Gameboard, at the end of the debate.

2.1 Modelling the Participants

A finite set of agents, denotedAg, take part in a debate. Each agent i ∈ Ag has a private
Dung argumentation system [5], where the exact structure of the arguments is unspeci-
fied. All agents share the same set of argumentsA, but they may disagree on the attacks
between them. For this reason we introduce the notion of master argumentation sys-
tem which contains all attacks on which the agents agree, as well as all attacks on which
they disagree. The attacks on which the agents agree are called fixed (or undeniable).
Private argumentations systems of agents inherit fixed attacks appearing in the master
AS. More formally:

Definition 1. An argumentation system (AS) is a pair 〈A,R〉 of a set A of arguments
and a binary relationR onA called the attack relation. ∀a, b ∈ A, aRb (or (a, b) ∈ R)
means that a attacks b.
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Given a master argumentation system AS = 〈A,R〉 and R� ⊆ R a set of fixed
attacks, an agent i ∈ Ag is equipped with a private argumentation system denoted
ASi = 〈A,Ri〉, such that Ri ⊆ R and R� ⊆ Ri. Attacks in R \R� are called debated
attacks.

In Dung’s framework, the acceptability of an argument depends on its membership
to some sets, called extensions. These extensions characterize collective acceptability.
Several semantics for acceptability have been defined in [5]. In what follows, we con-
centrate on the notion of grounded semantics, which can be defined as follows:

Definition 2. Let AS = 〈A,R〉 and C ⊆ A. The set C is conflict-free iff �a, b ∈ C
such that aRb. C defends an argument a iff ∀b ∈ A such that bRa, ∃c ∈ C such that
cRb.C is a grounded extension ofAS iff C is the least fixed point of the characteristic
function of AS (F : 2A → 2A with F (C) = {a | C defends a}).

Intuitively, a grounded extension contains all arguments which are not attacked, as
well as the arguments which are defended (directly or not) by non-attacked arguments.
There always exists a unique grounded extension which, however, might be the empty
set. Thus, all the debating agents know, at every time of the debate, which arguments
are accepted and which are not. We shall denote by Gr(AS) the grounded extension of
the system AS.

Example 1. Let a master system AS = 〈A,R〉, with A = {a, b, c, d}, R = {(a, b),
(b, c), (d, c)} and R� = {(b, c)}. This system can be represented as follows, where
fixed attacks are represented by thick arrows, and debated attacks by simple arrows.

cba d

Let three agents, such that AS1 = 〈A,R1〉, with R1 = {(a, b), (b, c)} ; AS2 =
〈A,R2〉, with R2 = {(b, c), (d, c)} and AS3 = 〈A,R3〉, with R3 = {(b, c)}. We
have Gr(AS1) = {a, c, d}, Gr(AS2) = {a, b, d} and Gr(AS3) = {a, b, d}.

Each argument is associated with a set of keywords specifying which topics this
argument is about. This is common practice in systems like the ones in [2,4]. We assume
that there is a fixed set of topics, denoted T , and every argument concerns a subset of
T .

Definition 3. Let T be the set of topics. The set of topics of an argument a ∈ A is
given by function top(a) ⊆ T . The set of topics of an attack (a, b) ∈ R is given by
function top(a, b) = top(a) ∪ top(b) ⊆ T . The expertise of agent i ∈ Ag is given by
exp(i) ⊆ T .

2.2 Modelling the Gameboard

Inspired from [9], we use a central structure called gameboard (GB in short). The game-
board stores all the opinions expressed by the agents during the debate and aggregates
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them, giving rise to a single argumentation system, which will allow us to draw the
debate’s conclusions. An essential element in the debates we consider, is that agents
may disagree on the existence of some attacks. Thus, an agent can vote either for, or
against the existence of an attack. The role of the GB is to gather and aggregate all the
votes cast during the debate. Moreover, the voters’ relevant expertise will play a crucial
role in determining the result of the aggregation. In the rest of the paper, we assume that
AS = 〈A,R〉 is a master argumentation system, R� is the set of fixed attacks, T a set
of topics, and Ag is a set of agents, such that ∀i ∈ Ag, ASi = 〈A,Ri〉.

Definition 4. A vote, also called a move, is a tuple 〈(a, b), s, i〉 where (a, b) ∈ R \R�

is the debated attack1 concerned by the vote, s ∈ {−1,+1} is the sign of the vote, and
i ∈ Ag is the voter.

A positive vote by an agent means that he supports that the attack does hold, while a
negative vote means that he supports the opposite.

Let (a, b) ∈ R \ R�, then eval(a, b) is the evaluation vector of (a, b). This vector
contains |top(a, b)| elements.

Definition 5. Let (a, b) ∈ R \R� with top(a, b) = {t1, . . . , tn}. The evaluation vector
of (a, b) is denoted eval(a, b) = 〈vt1 , . . . , vtn〉. The value vti ∈ Z, ∀ti ∈ top(a, b),
depends on the voters’ expertise in ti. Whenever a vote 〈(a, b), s, i〉 is cast by agent i,
then the vector eval(a, b) = 〈vt1 , . . . , vtn〉 is updated into:
〈vt1 + s× |{t1} ∩ exp(i)|, . . . , vtn + s× |{tn} ∩ exp(i)|〉.

Example 1, cont. Let T = {t1, t2, t3, t4}, with top(a) = {t1, t2, t3}, top(b) = {t2},
top(c) = {t2, t3}, top(d) = {t4}. Also, let exp(1) = {t1, t2}, exp(2) = {t2, t3} and
exp(3) = {t1, t4}. Initially, no votes have been cast on any attack belonging to the
master AS. Agent 1 votes for attack (a, b). We then have, as top(a, b) = {t1, t2, t3} and
exp(1) = {t1, t2}, that eval(a, b) = 〈1, 1, 0〉. Next, agent 2 votes against attack (a, b)
and for attack (d, c). We then have eval(a, b) = 〈1, 0,−1〉 and eval(d, c) = 〈1, 1, 0〉.
Finally, agent 3 votes also against (a, b). We have eval(a, b) = 〈0, 0,−1〉.

Given an evaluation vector eval(a, b), we can decide whether attack (a, b) should
be accepted or rejected. We underline that there exist various methods to obtain such a
verdict, given an evaluation vector. Here we use a simple method taking into account
all the elements of an evaluation vector and using a simple sum.

Definition 6. Let (a, b) ∈ R \R� and let eval(a, b) = 〈vt1 , . . . , vtn〉 be its evaluation
vector. The verdict on (a, b), denoted verdict(a, b) ∈ {true, false} is computed as

follows: verdict(a, b) = true iff
n∑

i=1

vti > 0, verdict(a, b) = false, otherwise.

In other words, the verdict on an attack is positive if the aggregated relevant exper-
tise of agents having voted for the attack is strictly greater than the aggregated relevant
expertise of agents having voted against it. Otherwise, the verdict on the attack is nega-
tive.

Let us now see how a gameboard is defined. Its main feature is a set containing the
evaluation vectors of all the possible attacks.

1 We assume that the agents cannot vote on the attacks which are fixed in the master system.
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Definition 7. A gameboard is a triplet GB = 〈A,R,Eval〉, where A is the set of
arguments shared by all agents, R is the set of attacks and Eval is the set of evaluation
vectors of R \R�.

LetASGB = 〈A,RGB〉 be the argumentation system of theGB, such thatRGB =
{(a, b) ∈ R \R� | verdict(a, b) = true} ∪R�.

Example 1, cont. Let the gameboard GB = 〈A,R,Eval〉 with the function Eval de-
fined as previously. We have verdict(a, b) = false and verdict(d, c) = true. This
gameboard can be represented as follows:

c {t2, t3}b {t2}a {t1, t2, t3} d {t4}

〈0, 0,−1〉 〈1, 1, 0〉

Fixed attacks are represented by thick arrows, attacks with true verdict by simple ar-
rows, and attacks with false verdict by dashed arrows. The argumentation system
ASGB = 〈A,RGB〉 contains thus only the fixed attacks and the debated attacks with
true verdict.

cba d

2.3 Merged System

When participating to the debate, agents are assumed truthful, and they cannot vote
for (resp. against) an attack if they think that it does not (resp. does) hold. Certainly,
absolute truthfulness is not often encountered in real-life debates, but it is an assumption
preventing the agents from stating anything that may help them in the debate. A more
refined approach, left for future work, would be to define a set of beliefs (in our case
attacks) upon which an agent is able to lie, if he considers it favorable at some point.
This kind of situation has already been studied by Rahwan et al [13]. In this work, they
introduced a formal argumentation theory, namely ArgMD, in which an agent may hide
an argument or lie about arguments.

On the other hand, we allow agents to not express their opinion on some attacks,
because that could harm their purpose, or make them disclose information they wish
to hide. This is related to the notion of dishonest arguments, that has been studied by
Caminada in [14] and by Sakama in [15]. We thus need a way to compare the results ob-
tained in our debates with a collective view of the argumentation systems of the agents.
We rely on two different notions. The first one is the notion of merged argumentation
system [16]. In the specific case we discuss here, it turns out that a meaningful way to
merge is to take the vote of all agents on all attacks in R \R�.

Definition 8. Let AS = 〈A,R〉 be a master AS and Ag be a set of agents. The merged
argumentation system is ASM

Ag = 〈A,RM ∪ R�〉 where RM ⊆ R and aRM b iff
verdict(a, b) = true when all the agents in Ag have voted on (a, b).
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Another notion which can be useful for analyzing the collective view of the debate
is the one of happiness: we could want to see a majority of agents satisfied at the end
of the debate, in the sense that they agree with the status of a specific argument, called
issue of the debate.

Definition 9. Let Ag be a set of agents and let, ∀i ∈ Ag, ASi denote i’s private
AS. Also, let c ∈ A be an argument called issue of the debate. The majority result
is denoted majIn(c) ⇔ |{i ∈ Ag | c ∈ Gr(ASi)}| ≥ |Ag|/2, and it is denoted
majOut(c)⇔ |{i ∈ Ag | c �∈ Gr(ASi)}| > |Ag|/2.

Note that ties for the majority are broken in favour of the agents who want to see the
issue in the grounded extension.

3 Focus on Minimal Changes

At this point we turn our attention to possible strategic considerations of agents in this
type of debates. What are the attacks of the gameboard on which the voting agents
should focus and try to add/remove? The aim of the analysis that follows is to provide
insight on how to vote in order to achieve a goal. We will focus on target sets [11,12],
which represent the minimal change on an argumentation system, achieving an argu-
mentative goal.

A target set is a minimal set of actions on an argumentation system allowing to
achieve a given goal. Please note beforehand that an action is not the same notion as
a vote on the gameboard: here we assume that an action changes the verdict of some
attacks, whereas a vote on the gameboard does not necessarily do the same (as an agent
does not always have a sufficiently high expertise). Thus, we focus, on the following
definition, on the verdict of the attacks in the gameboard, and not on the exact value of
the eval functions.

Definition 10. Let GB = 〈A,R,Eval〉 be the gameboard at a given time. An action
on GB is a set of atoms m = {((x, y), s) | (x, y) ∈ (R \R�), s ∈ {+,−}}, such that
∀((x, y),+) ∈ m, verdict(x, y) = false2, and ∀((x, y),−) ∈ m, verdict(x, y) =
true.

The resulting GB after playing an actionm, is denotedΔ(GB,m) = 〈A,R,Evalm〉,
such that ∀(x, y) ∈ R \R�:

1. verdictm(x, y) = true iff either verdict(x, y) = true and ((x, y),−) �∈ m, or
((x, y),+) ∈ m.

2. verdictm(x, y) = false iff either verdict(x, y) = false and ((x, y),+) �∈ m, or
((x, y),−) ∈ m.

Here is an example showing how an action modifies a system.
Example 1, cont. We take the same gameboardGB as defined previously. If we play the
actionm = {((a, b),+), ((d, c),−)} onGB, we obtain the following systemΔ(GB,m):

2 That is, Eval(x, y) is such that verdict(x, y) = false.
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c {t2, t3}b {t2}a {t1, t2, t3} d {t4}

In order to define the notion of target set, we first need to provide the definition of
the goal of a debate.

Definition 11. Let GB be a gameboard,ASGB = 〈A,RGB〉 be its system, and d ∈ A
be the issue. The goal g+d (resp. g−d ) is satisfied in GB iff d ∈ Gr(ASGB) (resp.
d �∈ Gr(ASGB)).

Definition 12. Let GB be a gameboard and let g be a goal. m is a successful action
on GB for goal g iff g is satisfied in the resulting gameboard Δ(GB,m). We denote
M(GB, g) the set of all successful actions on GB for goal g. m is a target set on GB
for goal g iff m is a minimal (w.r.t. ⊆) element of M(GB, g). We denote T(GB, g) the
set of all target sets on GB for goal g.

In [12] we studied the evolution of target sets when changes occur on a system (that
is, when an action is done). We have shown that if an agent plays an action which
does not contain any atom of any target set, then the target sets of the new gameboard
will “grow”, and it will become harder (or at least not easier) to satisfy the goal under
consideration. On the other hand, if an agent plays in a target set, then that target set
will “shrink”, regardless of what happens to other target sets. In that sense, at least one
“path” towards the satisfaction of the goal becomes shorter, while this is not the case if
we do not play on any target set.

However, as we will show in Section 5, at some point during a debate, an agent may
be better off playing a move outside target sets, as this may incite his opponents to play
a move which will backfire. We will also propose different strategies with which agents
can choose their moves, focusing on target sets, and we will experimentally test them.

4 A Debate Protocol

In this section we define a specific debate protocol. The agents focus on the status (under
the grounded semantics) of a single argument d ∈ A, which is the issue of the debate.
The goal of an agent i ∈ Ag is therefore to have the issue’s status be the same, on the
GB and in his private system, at the end of the debate. We can therefore distinguish
two groups of agents: the agents of the group PRO (resp. CON ) who have (resp. do
not have) the issue in the grounded extension of their systems. An advantage of using
grounded semantics is that the grounded extension is easy to calculate and it is always
unique. Therefore, every agent is either PRO orCON , and at every point of the debate
the issue is either accepted or rejected.

The protocol proceeds in timesteps. Let GBt = 〈A,R,Evalt〉 denote the game-
board at timestep t. At t = 0, we have GB0 = 〈A,R,Eval0〉, with ∀(a, b) ∈ R \ R�,
Eval0(a, b) = 〈0, . . . , 0〉. Recall that attacks in R� are fixed in the system, and can-
not be modified (so, they are not associated to any evaluation vector), whereas attacks
in any R′ ⊆ (A × A) \ R cannot be added. In order to ensure the termination of our
protocol, we assume that an agent cannot vote on the same attack twice. To account for
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this, each agent i ∈ Ag is equipped with a set HV t
i ⊆ R which contains all the attacks

agent i has voted on, until timestep t. The protocol is defined by the following:

– Participants: A finite set of agents Ag, each one being either PRO or CON ,
according to his opinion on the issue’s status.

– Turntaking: Round-robin. The token is given to each agent, in turn, and comes
back to the first agent once all agents have played.

– Permitted moves: Agent i at timestep t can either:
• Vote on 〈(a, b),+, i〉, if (a, b) ∈ Ri \R� and (a, b) �∈ HV t

i

• Vote on 〈(a, b),−, i〉, if (a, b) ∈ R \Ri and (a, b) �∈ HV t
i

• Play a pass move (giving the token to the next agent).
– Stopping condition: |Ag| pass moves have been played in a row.
– Winning condition: Once the debate has stopped, all PRO (resp. CON ) agents

win iff the issue belongs (resp. does not belong) to the grounded extension of the
argumentation system of ASGB .

5 Strategies

When having the token, an agent can vote on any of the attacks under discussion, but
which one should he choose? In general, a strategy states, for each agent, what move
should be uttered next in the course of the debate. When a strategy returns a single
move, we say it is deterministic. Depending on the information required to take this
decision, we can distinguish different kind of strategies:

– (k)-history-based strategies: the strategy selects moves based on the last k moves
uttered in the debate, noted h(k)-strategies. For instance:

“If someone just attacked argument a, I will try to defend it.”
– (k)-state-based strategies: the strategy selects moves based on the last k states of

the gameboard, noted s(k)-strategies. For instance:
“If a ∈ Gr(ASGB), then I will utter the attack (d, a).”

We say that a strategy s has a richer information basis than a strategy s′ (noted s� s′)
when it uses more information to select the next moves. Observe that, for a round t,
both h(t)-strategies and s(t)-strategies are fully expressive, since they can capture the
whole history of the debate so far. Note also that h(k)-strategies, based on

[GBt, GBt−1, GBt−2, . . . , GBt−k]

could as well be expressed as a strategy based on the single state GBt−k , together with
the k last moves. Also, when t > t′, a t-state-based strategy has a richer information
basis than a t′-history-based-strategy. Finally, for the same k, state-based and history-
based strategies are incomparable: for instance, a strategy based on the last state of the
gameboard may capture intuitively more information than a strategy based on the last
move, but it misses the information of what was the last move uttered.

In what follows, we study a natural class of s(1)-strategies, as we define strategies
based on the computation of the target sets of the lastGB. We also make the assumption
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that all agents from one side (PRO or CON) use the same strategy. This facilitates
the analysis, but constitutes of course a simplification. Moreover, we assume that the
agents cannot disclose their private argumentation systems. Thus, agents do not have
any knowledge on the other agents’ private systems. As said before, the analysis of
target sets and their properties leads us naturally to think that agents would profit from
focusing on attacks of target sets, as it is the fastest and most economical way to achieve
a goal.

5.1 Lack of Dominance and Equilibrium Guarantees

Dominance. One may wonder whether “playing within target sets” is a dominant strat-
egy, that is, whether agents can never be better off playing a different strategy, whatever
the strategy of the other party is. Note first that “playing within target sets” does not
constitute a single strategy, but instead a class of strategies, in fact a subclass of s(1)-
strategies. So when say “a dominant strategy”, we abuse language and mean any strat-
egy belonging to this class. This turns out to be a too demanding notion, because the
strategy of the other player can be of any kind, in particular, it may be such that moves
played outside a target set will precisely be the moves required to lead to a winning
result.

This may be illustrated in the following scenario:
Example 1, cont. Assume that we are in the beginning of the debate, and no moves have
been played yet. Let the gameboard be GB0 = 〈A,R,Eval0〉. We have eval(a, b) =
〈0, 0, 0〉, so verdict(a, b) = false, and eval(d, c) = 〈0, 0, 0〉, so verdict(d, c) =
false. Now, we add a new argument e in A (referring to topic t2), as well as the attack
(b, e) in R, with eval(b, e) = 〈0〉, so verdict(b, e) = false. This new gameboard is
represented as follows:

c {t2, t3}b {t2}

e {t2}

a {t1, t2, t3} d {t4}

〈0, 0, 0〉
〈0〉

〈0, 0, 0〉

Agent 1, who belongs to PRO, focuses on target set {((a, b),+)}, as adding (a, b)
will make c accepted. However, it is impossible for him alone to impose the attack
(a, b), as both agents 2 and 3 will disagree on its existence.

But now suppose that an agent of the CON team (eg. agent 2) is very picky on the
issue of the (new) argument e, and he has a strategy which says: “If e is attacked, then I
will defend e” 3. Of course this strategy is not directly focused on the topic of the debate
(which is c), but this kind of rhetorical move is common in real-life argumentation. In
this case, agent 1 has an incentive to play move ((b, e),+) (provided that he is able to),
and lure agent 2 in responding with ((a, b),+). This way, thus not focusing always on
target sets, agent 1 can eventually make c accepted and win the debate.

3 For the sake of simplicity, let us assume that here agent 2 may violate his truthfulness.
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Symmetric Equilibrum. The previous example showed that not focusing on target sets
may in some cases lure the other group to make a “bad” move. Of course this relies on
the rather artificial construction consisting of an agent playing a somewhat irrational
strategy. We may then ask whether a weaker property can be guaranteed: is it the case
that, if the other agent follows a strategy consisting of playing within target sets, then
agents of the other side will not have an incentive to play differently, ie. whether this
constitutes a symmetric equilibrium. The following example, shows that this is not the
case either.

Example 2. Four agents have the following argumentation systems (we assume for the
sake of simplicity that the arguments concern the same topic, and that all agents are
expert on this topic):

a b

c

d

agent 1
(CON)

a b

c

d

agent 2
(CON)

a b

c

d

agent 3
(PRO)

a b

c

d

agent 4
(PRO)

The dialogue’s issue is argument c. We have CON = {a1, a2}, PRO = {a3, a4}.
If both teams of agents play only in the targets sets, agents in PRO cannot win: at
the beginning of the debate, agents in CON have two target sets {((b, c),+)} and
{((a, c),+)}. If they vote on (a, c), agents in PRO will be able to remove that at-
tack (by voting twice if it is necessary). The remaining target set for CON will then
be {((b, c),+)}. Once CON agents vote on (b, c), agents in PRO will have two target
sets: {((b, c),−)} and {((a, b),+)}. Assume that a4 votes against (b, c). Then agents in
CON can vote again to reinstate it. Agents in PRO have then one remaining target set:
{((a, b),+)}. Once this vote is cast, the target set for CON is {((a, b),−)}. a2 votes
against (a, b), and the agents in PRO cannot do anything else. In this case, PRO agents
cannot win the debate.

Assume now that agents in PRO do not play only in the target sets. As previously,
at the beginning, agents in CON have two target sets, {((b, c),+)} and {((a, c),+)}.
Once again, they can vote on (a, c) but these votes will be removed by agents in PRO.
Once CON agents vote on (b, c), assume that a4 votes on (b, d). The target set for CON
is empty (as their goal is satisfied). a4, for the PRO team, can play once more, so he
chooses to add (d, c), and then to remove (b, c). The group CON has now two target
sets, {((a, b),+)} and {((b, c),+)}. Assume that a1 votes for (a, b). Agents in PRO
have now two target sets, {((a, b),−)} and {((d, c),−)}. If a3 votes against (d, c),
agents in CON will have one target set, {((a, b),−), ((b, c),+)}. Assume that a2 votes
against (a, b), and after everybody passes, he votes again for (b, c). a3 can now vote for
(a, b). Agents in CON cannot do anything else, as a2 has already voted against (a, b)
once. PRO wins the debate.

All in all, playing in target sets looks intuitively like a good strategy, but it seems
difficult to obtain theoretical guarantees. This leads us to study it experimentally.
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5.2 Strategies Based on Target Sets

Here we define 5 strategies, from the simpler to the more complex, mainly focusing on
target sets. Strategy 0 is the exception, as it is a random strategy, which will allow us to
assert that playing in the target sets is useful. We remind that, at any timestep, an agent
is winning (resp. losing) the debate if the status of a given issue is the same (resp. is not
the same) both in his private system and in the argumentation system associated to the
GB. Note that when there are no available moves for an agent (we remind that an agent
cannot vote on the same attack twice), that agent obligatorily passes.

Strategy 0: This is a random strategy, where (1) if the agent is winning, then he plays
pass. (2) otherwise, he votes randomly on an attack on the gameboard.

Strategy 1: The idea of this strategy is to allow only agents who are not satisfied by
the current state of the gameboard to vote. Moreover, these agents can only vote if
they can change the status of the issue (and thus, if they can change the verdict of
an attack belonging to a target set of cardinality 1).4 More precisely: (1) if the agent
is winning, then he plays pass. (2) otherwise, the agent can only vote on an attack
if this vote allows to change the status of the issue.

Strategy 2: This strategy improves the previous one by allowing agents to vote on a
target set of cardinality greater than 1: an agent can vote on an attack if he can
change its verdict, but this vote does not have to change the status of the issue.
More precisely: (1) if the agent is winning, then he plays pass. (2) otherwise, the
agent can only vote on an attack if this attack belongs to a target set, and if this vote
allows to change the verdict on this attack.

Strategy 3: This strategy allows an agent to vote on an attack belonging to a target
set, even if he cannot change the verdict on this attack. More precisely: (1) if the
agent is winning, then he plays pass. (2) otherwise, the agent can vote on any attack
belonging to a target set (towards changing the verdict).

Strategy 4: This strategy improves the previous one by allowing a winning agent to
play a move which renders the goal of the other team more difficult to be reached.
More precisely: (1) if the agent is winning, then he can vote on an attack which
belongs to a target set for the goal of the other team and “reinforce” it.5 (2) other-
wise, the agent can vote on any attack belonging to a target set (towards changing
the verdict).

As we can have several target sets, and several actions in a target set, an agent can
have several possible votes for each of these strategies. We thus introduce three heuris-
tics to help an agent to choose which vote to cast.

5.3 Heuristics

An agent can compute a set of possible votes, using any of the above strategies. Then,
he can either randomly choose a vote among them, or use a more subtle heuristic. We
have defined three heuristics which can be used for filtering the initial set of possible
votes.

4 Note that this strategy is the one studied in [9].
5 And thus making it more difficult for the other team to change the verdict on this attack.
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– Heuristics A: the agent randomly chooses a possible vote.
– Heuristics B: the agent filters out all possible votes on non-minimal (wrt. cardinal-

ity) target sets 6. Then, he randomly chooses a vote.
– Heuristics C: the agent filters out all possible votes on non-minimal (wrt. cardinal-

ity) target sets. If he can change the verdict of an attack among the remaining ones,
he filters-out all the attacks he cannot change. Then, he randomly chooses a vote.

5.4 Strategy and Debate Profiles

Coupling a strategy with a heuristics gives us a specific strategy profile. As Strategy 0
does not use target sets, it can not be coupled with any heuristics. Also, in Strategy 1 an
agent can only vote on an attack if it belongs to a target set of cardinality 1 and he can
change its verdict, so it does not make any sense to associate Strategy 1 with heuristics B
or C. In the same way, in Strategy 2 an agent can only vote on an attack if he can change
its verdict, so it does not make sense to couple Strategy 2 with heuristics C. We thus
have the following strategy profiles to consider (the number indicates the strategy type
and the capital letter the heuristics): SP = {0, 1, 2A, 2B, 3A, 3B, 3C, 4A, 4B, 4C}.

We assume that the agents of the same group (PRO or CON) are using the same
strategy profile during a debate. This is done in order to draw more easily conclusions
on how the strategy profiles fare against each other. We can thus introduce the no-
tion of debate profile. A debate profile is defined as a couple (SPPRO, SPCON ) with
SPPRO, SPCON ∈ SP . It indicates that all agents in the PRO (resp. CON) group are
using the strategy profile SPPRO (resp. SPCON ). Since there are 10 strategy profiles,
there exist 10 × 10 = 100 different debate profiles. In the following, we first examine
Strategy 0, and then we turn our attention to the 9 other strategy profiles which use
target sets (thus on their corresponding 9× 9 = 81 debate profiles).

6 Experimental Results - Discussion

We have implemented in Java the debate framework presented in the previous sections
and performed a number of experiments.

6.1 Generating Debate Configurations

In order to perform an important number of debates, our program is able to generate
different debate configurations. A configuration consists on three elements: the set of
all topics, a master argumentation system AS, and a set of agents with their private
systems and their expertise. In our experiments we made the following choices:

Topics: We have |T | = 6 topics.

6 For example, if an agent can vote on two attacks, the first being in a target set of cardinality 1,
and the second in a target set of cardinality 2, then he will filter out the second option.
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Master argumentation system: Every generated argumentation graph contains |A| =
20 arguments, each one randomly attached to one or two topics. The graph has a
density of attacks equal to 0.1. Among the attacks, 10 are debated, and thus belong
into R \R�.7 Finally, the issue is randomly chosen among the arguments in A.

Agents: Each debate involves 10 agents. Each of them is expert in one, two, or three
topics randomly chosen. The ASi of each agent includes all the attacks in R�,
whereas each debated attack in R \R� belongs to Ri with a 50% probability.

6.2 The Debates

A number of configurations were randomly generated, using the above parameter val-
ues. When the difference in the number of agents in groups PRO and CON was im-
portant, the debates were trivial, as the majority easily won. The impact of the groups’
size difference is now studied in more detail: we randomly generated 10 configurations
for each combination of PRO and CON cardinalities (so, 10 configurations with 9
PRO and 1 CON agents (denoted 9/1), then 10 configurations with 8 PRO and 2
CON agents (denoted 8/2), and so on (7/3, 6/4, 5/5, 4/6, 3/7, 2/8, 1/9)). This amounts
to 90 different configurations in total. Each configuration was tested with all 81 debate
profiles focusing on target sets (see Section 5.4), and for every debate profile, the debate
was repeated 10 times. 8 So in total we have 9x10x81x10=72900 debates focusing on
target sets.

The next histogram summarizes the percentage of agreement between the debates’
results and the majority results for each combination of PRO/CON agents.

As it can be seen, when a group contains the vast majority of the agents (8 or 9 out of
10), the debate’s result almost always agrees with the majority result. This is the reason
why we filtered out cases of near-unanimity, and we kept only the configurations where
the combination of PRO/CON agents was 3/7, 4/6, 5/5, 6/4 or 7/3. As a result, we
focused on 50 configurations. As previously stated, all 81 debate profiles were tested
for each configuration, and for every debate profile, the debate was repeated 10 times.

Another interesting element of the histogram is that the column of 7/3 (resp. 6/4)
is bigger than the column of 3/7 (resp. 4/6). Furthermore, the column of 5/5 is also
relatively big (in most debates, PRO wins 9). Apparently, the random configurations
for which balanced teams of agents were (randomly) generated, slightly favor the PRO
group, as far as winning the debate is concerned. This is verified in what follows, and it
merits a deeper study in the future.

6.3 Analysis of the Results

As said above, we shall first examine the behaviour of the random Strategy, and then
we shall focus on the remaining 81 debate profiles which focus on target sets.

7 We chose a small number of debated attacks, as this element causes an overhead in the com-
putations of target sets.

8 As the agents randomly choose their moves among a set of possible moves, the results of these
10 debates may still differ.

9 We remind that in case of 5/5, PRO is by default considered to be the majority.
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Fig. 1. Histogram showing the coincidence of the debates’ results with the majority results, for
configurations having different compositions of PRO/CON agents

For the analysis of the results and the evaluation of the strategies and debate profiles,
we considered three criteria:

– Debate length: the average number of rounds in the debate.
– Happiness: the percentage of coincidence between the debate’s result and the ma-

jority result. Its interest is better understood from the perspective of the debate’s
central authority. For example, if the central authority chooses a strategy profile for
both PRO and CON (eg. the same one), then it may wish to know which one
would help the majority, and which one would offer more chances to the minority.

– Rationality: the percentage of coincidence between the result of the debate and the
merged result.

We also want to find the “best” strategies, meaning the strategies which maximize a
group’s chances to win the debate.

The Random Strategy Profile. We begin our analysis with the random strategy profile.
As far as the maximization of a group’s winning chances are concerned, the random
strategy profile did not fare worse than the quite simple strategy profiles 1 and 2X. The
reason is that its drawback (the fact that agents playing random attacks could harm their
own group), was balanced by the drawback of profiles 1 and 2X, which can “block” a
group normally able to change an attack by casting two or more votes (because in 1 and
2X, the first voter will be prohibited from casting his vote).

On the other hand, we expected that the winning percentage of a group would in-
crease, if instead of the random profile, he used the elaborated profiles 3X and 4X. This
was indeed verified, as the winning percentage always increased, up to 25% in some
cases (although less in others). We also conjecture that the more attacks the GB has,
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the worse the results will be for the random profile, compared to 3X and 4X. It seems
logical to assume that the more attacks there are on the GB, the more harmful it is for a
group to randomly play attacks, some of which may backfire.

A key disadvantage of the random profile is that, if a group uses it, then the number
of rounds of the debate exploses. In most cases, when one group adopted the random
profile, the number of rounds increased by a factor of 10 (eg. from 25 rounds, into 250
rounds). Remember that in the profiles focusing on target sets, if an agent has no move
in a target set, he plays pass. This is not the case in the random profile, where a group
can play a lot of “dummy” moves before achieving its goal.

On a positive side, if a group uses the random strategy, then the percentage of agree-
ment with the merged outcome is quite high (in almost all cases we tested that percent-
age was bigger than 90%). Naturally, the reason behind this, is that that group using the
random profile will cast a lot more votes during the debate, and as a result, the GB will
resemble more to the merged system. This was even clearer when both groups used the
random profile, when that percentage went up to 97.6%.

Concluding, the fact that the number of rounds increases dramatically when a group
uses the random strategy, as well as the fact that it fares worse (as far as winning the
debate is concerned) than strategies 3X and 4X, lead us to not include the random profile
in the following tests, where we just compare the 9 strategy profiles focusing on target
sets.

Strategies Based on Target Sets. We now turn our attention to the 9 strategy profiles
focusing on target sets and their corrsponding 81 debate profiles.

Each of the four graphics contains information on all debate profiles focusing on
target sets. The top left shows the percentage of PRO wins (for every profile), the top
right shows the average number of rounds of the debates, the bottom left shows the
percentage of agreement between the results of the debates and the merged results, and
the bottom right shows the percentage of agreement between the results of the debates
and the majority results.

Let us first consider the criterion of debate length (top-right). The lowest number
of rounds is found when both agents use strategy 4. A small number of rounds is also
obtained in profiles (1,4X), (4X,1) (where X ∈ {A,B,C}) and (1,1). For the latter,
the reason is that there are cases where a group cannot vote on an attack because no
single agent can change it (and thus the debate stops). For profiles (4X,4Y) the reason
debates are short is that agents are not forced to play (useless) pass-moves, as they can
reinforce attacks on the GB while they are winning. This is not possible with profiles
(3X,3Y) which give the longest debates. Note that agents using the strategy profiles 4X
have incentive to give more information than with the other strategy profiles. That can
be seen as a disadvantage for agents who wish to hide information. A last remark on
debate length: If we concentrate only on rounds which do not contain pass moves (let
us call them no-pass rounds), then the results of strategy profiles 3X and 4X are in-
versed. Strategy profiles 4X lead to more no-pass rounds, than profiles 3X (eg. (4C,4C)
leads in average to 11.97 no-pass rounds, while (3C,3C) leads in average to 10.36 no-
pass rounds). We clearly see that when profiles 3X are used, many rounds involve pass
moves, and this is the reason why profiles 3X have the biggest total number of rounds.
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Fig. 2. Top-Left: Percentage of wins by PRO. Top-Right: Number of rounds of the debates.
Bottom-Left: Percentage of agreement with the merged result. Bottom-Right: Percentage of
agreement with the majority result. PRO strategies are shown on the left side, and CON strategies
on the right side of every graphic.

Let us now focus on rationality (bottom-left). The most “rational” outcomes (closer
to the results of the merged system) are obtained when both groups use one of the
strategies: 3A, 3B, 3C, 4A, 4B, 4C (the percentage of agreement being 0.88). The only
cases where the results of the debates are farther from the merged results are when a
group uses strategy profile 4X and the other group uses strategy profile 1 or 2X. So,
we pull away from the merged result when a group uses the most advanced strategy
(4X), while the other a simple one (1 or 2X). The smallest agreement is 0.66, at profile
(1,4X).

Similar results are obtained when we focus on happiness (bottom-right). Almost all
profiles give a similar value of agreement with the majority (about 0.85). However,
when PRO uses strategies 1, or 2X, and CON uses 4X, the debate’s result starts to move
away from the majority’s opinion (its minimum value is 0.7).

Regarding the strategy which is most likely to win a debate, the most elaborated
strategies 3 and 4 provide a clear advantage. PRO’s best chance to win is when the
profile (4X,1) is used (0.75 percentage of PRO winning). Similarly, CON’s best chance
to win is in profile (1,4X) (0.38 of PRO winning). In general, no matter what strategy
a group is using, the other group increases its winning percentage if it uses strategy 3
or 4, instead of the simpler 2 and 1 (1 being the worst choice). It is also quite clear, as
mentioned before, that PRO win more debates than CON, something apparently related
to the nature of the randomly generated master systems from which balanced PRO/CON
groups are generated.
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Finally, some remarks on the heuristics. Heuristics C which focuses on the smallest
target sets, and prefers moves able to add/remove an attack, was expected to lead to the
quickest debates. This was verified, although its results were not significantly better than
the results of the simpler heuristics B and A. For example, the debate profile (4C,4C)
lead to 23.88 rounds in average, while the profile (4A,4A) lead to 24.81. Also, the
debate profile (3C,3C) lead to 35.29 rounds in average, while the profile (3A,3A) lead
to 36.29. We conjecture that, when heuristics C is used instead of B or A, the decrease
in the number of rounds is small, due to the fact that the randomly generated systems do
not contain many target sets, and these target sets do not have great differences in size.
We expect that in the case of master systems with target sets of considerably different
sizes, heuristics C will lead to a more significant decrease in the number of rounds,
compared to heuristics B and A.

To conclude, a general observation is that the more sophisticated strategy profiles
(3X and 4X) are the best choices for the agents who want to win the debate. Their main
difference lies on the average number of rounds, and on the amount of information
disclosed during the debate. Surprisingly, the simpler strategy profiles (1 and 2X) offer
an interesting alternative, provided that the debate’s central authority can ensure that
both groups will use a simple strategy profile, and that no group will switch into using a
sophisticated one. It is worth noting that, in the above experiments, the probability that
the winner is the same, when either profile (1,1) or profile (3C,3C) is used, was almost
95%. Finally, the use of heuristics C shortens the length of the debates, though more
tests are needed in order to evaluate its impact.

7 Conclusion

We have presented a framework, where debating agents vote on attacks, focusing on a
single argument. The agents’ relevant expertise plays an important role on the aggrega-
tion of the votes. Some interesting properties of target sets, presented in [12], motivated
us to define debate strategies focusing on them. A number of strategies and heuristics
(of varying complexity) were proposed. We performed a number of experiments and
drew conclusions on the strategies, using as criteria the probability of winning, the de-
bate’s length, its rationality and the agents’ happiness. We also verified our intuition on
the best strategies and studied the heuristics’ contribution. There are many interesting
directions for future research: the relation between the master system (number of argu-
ments, debated attacks, cycles) and the debate’s results, as well as the relation between
different agent group compositions (eg. with low or high intra-group similarity) and the
debate’s results. Also, studying debates where the agents’ systems may change during
the debate looks promising, but challenging.
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Abstract. In this paper we analyze various derivation rules of input/output logic
in isolation and define the corresponding semantics. We develop fixed point char-
acterizations for input/output logic involving rules of cumulative transitivity and
present new completeness proofs. A toolbox to build input/output logic is there-
fore created. We use this toolbox to correct a hasty mistake appeared in the work
of applying input/output logic to constitutive norms.

Keywords: input/ouput logic, norms, fixed point, deontic logic.

1 Introduction

In the first volume of the handbook of deontic logic and normative systems [8], in-
put/output logic [14–16, 18] appears as one of the new achievement in deontic logic
in this century. Input/output logic takes its origin in the study of conditional norms.
It is now an established logical framewor to model conditionals, especially but not
exclusively in deontic logic. Unlike the modal logic framework [23], which usually
uses possible world semantics, input/output logic adopts mainly operational semantics:
a normative system is conceived in input/output logic as a deductive machine, like a
black box which produces normative statements as output, when we feed it descriptive
statements as input.

Such an operational treatment can be traced back to Alchourron and Bulygin [1].
Boella and van der Torre [3] extended input/output logic to reasoning about constitutive
norms. Tosatto et al. [6] adapted it to represent and reason about abstract normative
systems. For a comprehensive introduction to input/output logic, see Parent and van der
Torre [18].

The procedure of operational semantics is divided into three stages. In the first stage,
we have in hand a set of propositions (call it the input) as a description of the current
state. We then apply logical operators to this set, say close the set by logical conse-
quence. Then we pass this set to the deductive machine and we reach the second stage.
In the second stage, the machine accepts the input and produces a set of propositions as
output. In the third stage, we accept the output and apply logical operators to it.

On the proof-theoretical side, input/output logics are characterized by derivation
rules about norms, which are represented by an ordered pair of formulas. Given a set
of norms N , a derivation system is the smallest set of norms which extends N and is
closed under certain derivation rules.

One feature of the existing work of input/output logic is: the derivation rules always
work in bundles. For example in simple-minded input/output logic of Makinson and van
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der Torre [14], the derivation system is decided by three rules: strengthening the input
(SI), weakening the output (WO) and conjunction in the output (AND). When several
derivation rules work together, the corresponding operational semantics will be rather
complex, and insights of the machinery is therefore concealed. To achieve a deeper
understanding on input/output logic, it is helpful to isolate every single rule and study
them separately. This is the motivation of this paper.

In this paper we anatomize input/output logic. We take a close look at various rules in
isolation and define the corresponding semantics. Not surprisingly, as long as we have
semantics for single rules, we can use it as a toolbox to construct semantics for systems
decided by multiple rules.

The structure of this paper is the following: we first review input/output logic in
Section 2. Then we study a number of rules from Section 3 to 6. In Section 7 we use
the result of this paper to correct a mistake of Boella and van der Torre [3]. We then
discuss related work in Section 8. We conclude this paper with future work in Section
9. For the sake of readability, all complex proofs are given in the appendix.

2 Background

Let P = {p0, p1, . . .} be a countable set of propositional letters and L be the proposi-
tional language built upon P. Let N ⊆ L × L be a set of ordered pairs of formulas of
L. We call N a normative system. A pair (a, x) ∈ N , call it a norm, is read as “given
a, it ought to be x”. N can be viewed as a function from 2L to 2L such that for a set A
of formulas, N(A) = {x : (a, x) ∈ N for some a ∈ A}.

Makison and van der Torre define the operations from out1 to out4 as follows:

– out1(N,A) = Cn(N(Cn(A)))
– out2(N,A) =

⋂
{Cn(N(V )) : A ⊂ V, V is complete}

– out3(N,A) =
⋂
{Cn(N(B)) : A ⊆ B = Cn(B) ⊇ N(B)}

– out4(N,A) =
⋂
{Cn(N(V ) : A ⊆ V ⊇ N(V )), V is complete}

Here Cn is the classical consequence operator of propositional logic, and a set of for-
mulas is complete if it is either maxi-consistent or equal to L. For each of these four
operations, a throughput version that allows inputs to reappear as outputs is defined as
out+n (N,A) = out(Nid, A), where Nid = N ∪ {(a, a) | a ∈ L}.

Input/output logics are given a proof theoretic characterization. We say that an or-
dered pair of formulas is derivable from a set N iff (a, x) is in the least set that extends
N ∪ {(�,�)} and is closed under a number of rules. The following are the rules we
need to define out1 to out4:

– SI (strengthening the input): from (a, x) to (b, x) whenever b � a
– WO (weakening the output): from (a, x) to (a, y) whenever x � y
– AND (conjunction of output): from (a, x) and (a, y) to (a, x ∧ y)
– OR (disjunction of input): from (a, x) and (b, x) to (a ∨ b, x)
– CT (cumulative transitivity): from (a, x) and (a ∧ x, y) to (a, y)
– ID (identity): from nothing to (a, a), for every a ∈ L.
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The derivation system based on the rules SI, WO and AND is called deriv1. Adding OR
to deriv1 gives deriv2. Adding CT to deriv1 gives deriv3. The five rules together give
deriv4. Adding ID to derivi gives deriv+i for i ∈ {1, 2, 3, 4}. (a, x) ∈ deriv(N) is
used to denote the argument (a, x) is derivable fromN using rules of derivation system
deriv. In Makinson and van der Torre [14], the following soundness and completeness
theorems are given:

Theorem 1 ([14]). Given an arbitrary normative system N and a formula a,

– x ∈ outi(N, a) iff (a, x) ∈ derivi(N), for i ∈ {1, 2, 3, 4}
– x ∈ out+i (N, a) iff (a, x) ∈ deriv+i (N), for i ∈ {1, 2, 3, 4}

3 Rules of Input

In this section we investigate the following rules regulating the input:

– input equivalence (IEQ): from (a, x) and a !� b to (b, x). Here a !� b means a � b
and b � a.

– strengthening the input (SI): from (a, x) to (b, x) whenever b � a.
– disjunction of the input (OR): from (a, x) and (b, x) to (a ∨ b, x).
IEQ is a basic rule in the logic of constitutive norms [11]. SI is involved in all in-

put/output logics of Makinson and van der Torre. OR is valid in out2 and out4. OR
is called sure-thing reasoning in Horty [10]. It is heavily used in daily life and on the
technical side, it is the most interesting rule among those rules of input. The derivation
systems decided by rules of input are defined as follows:

Definition 1. Let Die(N) [Dsi(N), Dor(N)] be closure of N under the rule IEQ [SI,
OR]. 1

That is, Die(N) is the smallest set of norms such that N ⊆ Die(N) and Die(N) is
closed under the IEQ rule, and similarly for Dsi(N) and Dor(N).

Now our task is to construct the semantics corresponding to those derivation systems.
For the convenience of notation, we let Ce(A) = {b ∈ L|∃a ∈ A, a !� b}, for a
set A ⊆ L. Moreover, we call a set A disjunctive if it satisfies the following: for all
x ∨ y ∈ A, either x ∈ A or y ∈ A. The following is the definition of semantics
corresponding to the rules of input.

Definition 2. For a set of norms N and a formula a, we define Oie(N, a) = N(Ce

({a})), Osi(N, a) = N(Cn(a)), Oor(N, a) =
⋂
{N(B)|a ∈ B,B is disjunctive}.

Theorem 2

1. (a, x) ∈ Die(N) iff x ∈ Oie(N, a).
2. (a, x) ∈ Dsi(N) iff x ∈ Osi(N, a).
3. (a, x) ∈ Dor(N) iff x ∈ Oor(N, a).

Remark 1. The above result reveals that rules of input correspond to operations in the
first stage: SI means to close the input by logical consequence; IEQ means to close
the input by logical equivalence; OR ensures the input has to be extended to satisfy
disjunctive property.

1 The closure of a set X under a rule R (resp. a set of rules R) is the smallest superset Y of X
that is closed under R (resp. closed under R).
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4 Rules of Output

In this section we investigate the following rules regulating the output:

– output equivalence (OEQ): from (a, x) and x !� y to (a, y).
– weakening the output (WO): from (a, x) to (a, y) whenever x � y.
– conjunction of the output (AND): from (a, x) and (a, y) to (a, x ∧ y).

OEQ is a basic rule in the logic of constitutive norms [11]. WO and AND are in-
volved in all input/output logics of Makinson and van der Torre. The derivation systems
decided by rules of output are defined as follows:

Definition 3. Let Doe(N), [Dwo(N), Dan(N)] be closure of N under the rule OEQ
[WO,AND].

For a set of propositional formulas A ⊆ L, let Cs(A) = {b ∈ L|∃a ∈ A, a � b},
Ca(A) = {x ∈ L : there exist x1, . . . , xn ∈ A, x is x1∧ . . .∧xn}. The following is the
definition of semantics corresponding to the rules of output. For simplicity of notation,
N(a) is short for N({a}).

Definition 4. For every set of norms N and formula a, we define Ooe(N, a) =
Ce(N(a)), Owo(N, a) = Cs(N(a)), Oan(N, a) = Ca(N(a)).

Theorem 3.

1. (a, x) ∈ Doe(N) iff x ∈ Ooe(N, a).
2. (a, x) ∈ Dwo(N) iff x ∈ Owo(N, a).
3. (a, x) ∈ Dan(N) iff x ∈ Oan(N, a).

Proof. The proof is straightforward and left to readers.

Remark 2. The above result reveals that rules of output correspond to operations in
the third stage: WO means close the input by logical consequence;2 OEQ means close
the input by logical equivalence; AND ensures the output is closed under conjunction.

5 Rules of Normative System

While rules of input and output affect the first stage and the third stage respectively,
rules of normative system affect the second stage. We investigate three rules of the
normative system:

– zero premise (Z): from nothing to (�,�)
– identity (ID): from nothing to (a, a), for every a ∈ L.
– conditioning (CD) from nothing to (a, b), for every a, b ∈ L such that a � b

Definition 5. Dz(N) [Did(N), Dcd(N)] is the closure of N by the rule Z [ID, CD].

2 Here Owo(N, a) = Cs(N(a)), not Cn(N(a)). The readers can verify that the rules adequate
for Cn(N(a)) is WO+AND.
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Definition 6. For every set of norms N , let Nz = N ∪ {(�,�)}, Nid = N ∪ {(a, a) |
a ∈ L}, Ncd = N ∪ {(a, b) | a, b ∈ L, a � b}. We define Oz(N, a) = Nz(a),
Oid(N, a) = Nid(a), Ocd(N, a) = Ncd(a).

Theorem 4. For every set of norms N and a norm (a, x),

1. (a, x) ∈ Dz(N) iff x ∈ Oz(N, a).
2. (a, x) ∈ Did(N) iff x ∈ Oid(N, a).
3. (a, x) ∈ Dcd(N) iff x ∈ Ocd(N, a).

Proof. The proof is trivial and safely left to the readers.

6 Cross-Stage Rules

In this section we investigate cross-stage rules, which affect more than one stage. Such
rules typically have the form of transitivity. We discuss the following rules:

– plain transitivity (T): from (a, x) and (x, y) to (a, y)
– cumulative transitivity (CT): from (a, x),(a ∧ x, y) to (a, y)

– mediated cumulative transitivity (MCT): from (a, x′), x′ � x and (a∧x, y) to (a, y)
– aggregative cumulative transitivity (ACT): from (a, x),(a ∧ x, y) to (a, x ∧ y)

T is used in the input/output logic for constitutive norms [3]. CT is involved in deriv3
and deriv4. MCT and ACT are introduced by Stolpe [21] and Parent and van der Torre
[19] respectively.

Definition 7. Dt(N) is the closure of n under the T rule.

The corresponding semantics for Dt(N) is defined in an inductive manner.

Definition 8. For every set of norms N and formula a, we define Ot(N, a) =⋃∞
i=1N

i
t ({a}). Here for a set A, N i

t (A) is defined as follows:

– N1
t (A) = N(A)

– N i+1
t (A) = N(N i

t (A))

Theorem 5. (a, x) ∈ Dt(N) iff x ∈ Ot(N, a).

6.1 Fixed Point Approach

Concerning other cross-stage rules, on the one hand, it is difficult to define their cor-
responding semantics. On the other hand, we can use a fixed point approach to define
systems containing cross-stage rules together with other rules. We start by giving a
fixed point theoretic semantics for out3 and out+3 . Then we extend to Stople’s mediated
reusable input/output logic [21] and Parent and van der Torre’s aggregative input/output
logic [19].



128 X. Sun

Out3 and out+3 . Given a set N of norms and a set A of formulas, we define a function
fN
A : 2L → 2L such that fN

A (X) = Cn(A ∪ N(X)). It can be proved that fN
A is

monotonic with respect to the set theoretical ⊆ relation, and (2L,⊆) is a complete
lattice. Then by Tarski’s fixed point theorem [22] there exists a least fixed point of fN

A .
The following proposition shows that the least fixed point can be constructed in an
inductive manner.

Proposition 1. Let BN
A be the least fixed point of the function fN

A . Then BN
A =⋃∞

i=0 B
N
A,i, where BN

A,0 = Cn(A), BN
A,i+1 = Cn(A ∪N(BN

A,i)).

Using the least fixed point, the semantics of out3 and out+3 are reformulated as follows:

Theorem 6. For a set of norms N and a formula a,

1. (a, x) ∈ deriv3(N) iff x ∈ Cn(N(BN
a )).

2. (a, x) ∈ deriv+3 (N) iff x ∈ Cn(Nid(B
Nid
a )).

Mediated Reusable Input/Output Logic. Input/output logic containing the rule of
WO is not free from Ross paradox [20]. Stolpe [21] develops the mediated reusable in-
put/output logic such that Ross paradox is avoided without damaging the power of WO.
Stolpe achieve this by replacing WO and CT in deriv3 by OEQ and MCT respectively.

Definition 9. (Proof system of mediated reusable input/output logic [21]) Dmr(N)
is the smallest set of norms such that Nz ⊆ Dmr(N) and Dmr(N) is closed under the
following rules: SI, OEQ, AND and MCT.

The semantics of mediated reusable input/output logic is given by an inductive defini-
tion.

Definition 10. (Semantics of mediated reusable input/output logic [21]) For every
N ⊆ L× L, A ⊆ L, x ∈ Omr(N,A) iff x is equivalent to a subset of

⋃∞
i=0Ai where

– A0 = N(Cn(a)), and
– An+1 = An ∪N(Cn(An ∪ {a}))

Theorem 7. (Completeness of mediated reusable input/output logic [21]) (a, x) ∈
Dmr(N) iff x ∈ Omr(N, a).

Applying the fixed point approach and the previous result about the rule AND,
OEQ and Z , we have the following equivalence result:

Theorem 8. (a, x) ∈ Dmr(N) iff x ∈ C�
ae(Nz(B

Nz
a )). Here C�

ae(•) is a logical op-
erator called “contains � and closed under conjunction and equivalence ”. Formally,
for a set of formulas A, C�

ae(A) = {a ∈ L|a !� � or ∃b1, . . . , bn ∈ A such that a !�
b1 ∧ . . . ∧ bn}.

Proof. The proof is obtained by combining the proof of Theorem 4 and 6. Here we omit
the details.
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Aggregative Input/Output Logic. Parent and van der Torre [19] introduce aggregative
input/output logic based on the following ideas: on one hand, deontic detachment or
cumulative transitivity is fully in line with the tradition of deontic logic. For instance,
the Danielsson-Hansson-Lewis semantics [7, 9, 13] for conditional obligation validates
such a law. On the other hand, they also observe that potential counterexamples to
deontic detachment may be found in the literature. Parent and van der Torre illustrate
this with the following example, due to Broome [4, §7.4]:

You ought to exercise hard everyday
If you exercise hard everyday, you ought to eat heartily
?� You ought to eat heartily

Intuitively, the obligation to eat heartily no longer holds, if you take no exercise. Like
the others, Parent and van der Torre claim that this counterexample suggests an alterna-
tive form of detachment, which keeps track of what has been previously detached. They
therefore reject the CT rule, and they accept a weaker rule ACT. As a consequence WO
is no longer accepted.

Definition 11. (Proof system of aggregative input/output logic [19]) Dag(N) is the
smallest set of norms such thatN ⊆ Dag(N) andDag(N) is closed under the following
rules: SI, OEQ and ACT.

Definition 12. (Semantics of aggregative input/output logic [19]) For every N ⊆
L × L, A ⊆ L, x ∈ Oag(N,A) iff there is finite N ′ ⊆ N with N ′(A) �= ∅ such that
∀B = Cn(B), if A ∪N ′(B) ⊆ B then x !�

∧
N ′(B).

Parent and van der Torre define x ∈ Dag(N,A) iff there exist a1, . . . , an ∈ A such
that (a1 ∧ . . . ∧ an, x) ∈ Dag(N). The following completeness result is proved [19].

Theorem 9. (Completeness of aggregative input/output logic [19]) Given an arbi-
trary normative system N and a set A of formulas, Dag(N,A) = Oag(N,A).

Applying the fixed point approach, we reformulate the semantics of aggregative in-
put/output logic as follows:

Theorem 10. (a, x) ∈ Dag(N) iff there exists finite N ′ ⊆ N , such that N ′(A) �= ∅,
x !�

∧
N ′(BN ′

A ).

Proof. Having those lemmas on BN
a in the appendix (Lemma 4 to 8), the proof is

routine.

7 Application: Input/Output Logic for Constitutive Norms

Constitutive norms are one of the traditional developments of normative reasoning dis-
cussed in the handbook of deontic logic. Boella and van der Torre [3] use a weak in-
put/output logic, decided by rules of IEQ, OEQ, AND and T to reason about constitutive
norms. However, we discover the semantics defined by Boella and van der Torre [3] is
not sound with respect to the derivation system. In what follows, we first state the hasty
mistake of Boella and van der Torre [3], then we use the previous results in this paper
as a toolbox to build an alternative semantics which is a sound and complete.



130 X. Sun

Let DBT (N) be the smallest set of norms such that N ⊆ DBT (N), and DBT (N) is
closed under the rules of IEQ, OEQ, AND and T. In Boella and van der Torre [3], the
semantics for DBT (N) is defined as follows: given a set A of formulas, O(N,A) =
{∧Y |Y ⊆

⋃∞
i=0O

i(N,A)} is calculated as follows, assuming the replacements by
logical equivalence:

– O0(N,A) = ∅
– Oi+1(N,A) = Oi(N,A) ∪ {y | (∧X, y) ∈ N,X ⊆ Oi(N,A)}.

This semantics is not sound with respect to DBT (N).3 For an illustration, let N =
{(p, q)}, where p and q are distinct propositional letters. Then (p, q) ∈ DBT (N). Fol-
lowing the definition of O(N,A), we have O0(N, {p}) = ∅. O1(N, {p}) = ∅ ∪ {y |
(∧X ′, y) ∈ N,X ′ ⊆ ∅} = {y | (∧∅, y) ∈ N} = {y|(�, y) ∈ N} = ∅. And similarly,
O2(N, {p}) = O3(N, {p}) = . . . = ∅. Therefore O(N, {p}) = ∅ and q /∈ O(N, {p}).
This shows that the semantics O(N,A) is not sound for DBT (N). Using the results
of this paper, an alternative sound and complete semantics for DBT (N) is defined as
follows.

Definition 13. For every set of norms N and formula a, let OBT (N, a) =⋃∞
i=1N

i
BT ({a}). Here for a set of formulas A,

– N1
BT (A) = Cae(N(Ce(A)))

– N i+1
BT (A) = Cae(N

i
BT (A) ∪N(N i

BT (A))).

with Cae(A) = {b ∈ L | ∃a1, . . . , an ∈ A, a1 ∧ . . . ∧ an !� b}.

Cae, read as“closed under aggregation and equivalence”, is a combination of Ce

defined in Section 3 and Ca defined in Section 4. For convenience we will use N i
BT (a)

to represent N i({a}).

Theorem 11. (a, x) ∈ DBT (N) iff x ∈ OBT (N, a).

8 Related Work

Input/output logic is reformulated by Bochman [2] to model production and causal rea-
soning. Bochman uses bimodel, which is an order pair of logically closed and consistent
set of formulas, to interpret an ordered pair of formulas (a, x).4 A production semantics
is a set of bimodels. An ordered pair (a, x) is valid in a production semantics B iff for
all (U, V ) ∈ B, if a ∈ U then x ∈ V .

Restrictions are imposed to production semantics. A production semantics B is in-
clusive if for all (U, V ) ∈ B, V ⊆ U . B is a possible worlds semantics if for all
(U, V ) ∈ B, U, V are maximal consistent sets. For a set N of ordered pairs of for-
mulas which contains (�,�) and (⊥,⊥), Bochman’s production semantics is sound
and complete for deriv1(N), inclusive production semantics is sound and complete for
deriv3(N) and possible worlds semantics is sound and complete for deriv2(N).

3 A reviewer proved that a sound and complete semantics can be obtained by simply define
O0(N,A) = N(A). The proof is similar to the proof of Theorem 11.

4 Bochman uses a ⇒ x instead of (a, x). a ⇒ x is read as “If a is true, then x is caused”.
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All of Bochman’s production semantics validates at the same time IEQ, OEQ, SI,
WO, and AND. Using the technical results of this paper, we can anatomize production
semantics. For example, if we define a weak bimodel as a pair of consistent set of
formulas which is closed under logical equivalence, and a weak production semantics
is a set of weak bimodels. Then weak production semantics validates IEQ and OEQ,
but neither SI nor WO. Things will get interesting for the weak production semantics
which validate cross-stage rules. We leave this as a future work.

9 Conclusion and Future Work

In this paper we anatomize input/output logic. We analyze various derivation rules in
isolation and define the corresponding semantics. We thus create a toolbox to build in-
put/output logic. This toolbox is used to develop a new semantics for input/output logic
on constitutive norms. We further develop fixed point characterizations for input/output
logics involving rules of cumulative transitivity and present new completeness proofs.

Concerning future works, except the problem mentioned in the end of the related
work section, we consider the following:

– all the input/output logics in this paper are based on propositional logic. Parent et
al. [17] build input/output logic on intuitionistic logic. STIT logic is a tool preferred
by many deontic logicians [10, 12]. It is worthy studying how to build input/output
logic based on STIT logic.

– Norms, and more generally conditionals, can be interpreted using neighborhood se-
mantics [5, 11]. How to compare the operational semantics of this paper to neigh-
borhood semantics?

Acknowledgment. I thank Leender van der Torre and Xavier Parent for comments on
the early version of this paper. I am grateful to the four anonymous reviewers of the
CLIMA workshop for valuable comments.
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Appendix

Theorem 2

1. (a, x) ∈ Die(N) iff x ∈ Oie(N, a).
2. (a, x) ∈ Dsi(N) iff x ∈ Osi(N, a).
3. (a, x) ∈ Dor(N) iff x ∈ Oor(N, a).

Proof. The case for the first two items are easy and left to the reader. Here we focus on
the third item.

(left-to-right) Assume (a, x) ∈ Dor(N), then either (a, x) ∈ N or (a, x) is derived
by the OR rule. The first case is easy to prove. Here we focus on the second case. If
(a, x) is derived by the OR rule, then there exist(b, x) ∈ Dor(N), (c, x) ∈ Dor(N)
and a is b ∨ c. By induction hypothesis we know x ∈ Oor(N, b) and x ∈ Oor(N, c).
Now for every B∗ such that a ∈ B∗ and B∗ is disjunctive, we have b ∨ c ∈ B∗ since
a is b ∨ c. Note that B∗ is disjunctive, so we further have either b ∈ B∗ or c ∈ B∗.
If b ∈ B∗, then B∗ is a disjunctive set that contains b. So we have x ∈ Oor(N, b) =⋂
{N(B) : b ∈ B,B is a disjunctive set } ⊆ N(B∗). Hence x ∈ N(B∗). If c ∈ B∗,
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we can similarly deduce x ∈ N(B∗). Therefore no matter b ∈ B∗ or c ∈ B∗, we have
x ∈ N(B∗). Therefore x ∈ Oor(N, a).

(right-to-left)5 Suppose (a, x) /∈ Dor(N). We construct the set B = a0, . . . , an by
means of the following procedure (where a0 = a).

– i = 0
– while ai is of the form a1i ∨ a2i do

• if (a1i , x) /∈ Dor(N), let ai+1 := a1i , elseletai+1 := a2i
• i := i + 1

Clearly, the procedure terminates in view of the fact that a is a finite string. Note that
(‡) for each i ∈ {1, . . . , n}, (ai, x) /∈ Dor(N). For a0 this is so by our supposition.
Suppose it holds for i. In case ai+1 = a1i , trivially ai+1 /∈ Dor(N). Suppose thus
that ai+1 = a2i and thus that (a1i , x)2 ∈ Dor(N). If (ai+1, x) ∈ Dor(N) then by
(OR), (ai, x) ∈ Dor(N) which contradicts the induction hypothesis. Thus (ai+1, x) /∈
Dor(N).

Note also that by the construction B is a disjunctive set that contains a. By (‡),
x /∈ N(B) and thus x /∈ Oor(N, a). �

To prove the left to right direction of Theorem 5, we need the following lemmas:

Lemma 1. For all i ≥ 1, if A ⊆ B the N i
t (A) ⊆ N i

t (B).

Proof. This follows immediately by induction and the fact that N(A) ⊆ N(B) when-
ever A ⊆ B. �

Lemma 2. For all i, j ≥ 1, if x ∈ N i
t (a) and y ∈ N j

t (x), then y ∈ N i+j
t (a).

Proof. Suppose x ∈ N i
t (a) and y ∈ N j

t (x). Let k = i + j, then by the above lemma
we have y ∈ N j

t (N
i
t (a)) = N i+j

t (a). �

Lemma 3. For all i ≥ 1, if x ∈ N i
t (a) then (a, x) ∈ Dt(N).

Proof. We prove by induction. If i = 1, then from x ∈ N1
t (a) = N(a) we can deduce

(a, x) ∈ N ⊆ Dt(N). Now for i = k + 1, if x ∈ Nk+1
t (a), then x ∈ N(Nk

t (a)).
Therefore there exist y ∈ Nk

t (a), (y, x) ∈ N . By I.H. we have (a, y) ∈ Dt(N) and
then use the rule T we have (a, x) ∈ Dt(N). �

Theorem 5. (a, x) ∈ Dt(N) iff x ∈ Ot(N, a).

Proof. (left to right) Assume (a, x) ∈ Dt(N), then either (a, x) ∈ N or (a, x) is
derived by the T rule. The first case is easy to prove. Here we just focus on the second
case.

Assume (a, y) ∈ Dt(N) and it is deduced by the T rule. Then there exist (a, x) ∈
Dt(N) and (x, y) ∈ Dt(N). By induction hypothesis we have x ∈ Ot(N, a) and
y ∈ O(N, x). That is, x ∈

⋃∞
i=1N

i
t (a) and y ∈

⋃∞
i=1N

i
t (x). Therefore there exist

5 This proof is due to an anonymous reviewer. The original proof is much complex than the
current proof.
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some i, j such that x ∈ N i
t (a) and y ∈ N j

t (x). Therefore we have y ∈ N i+j
t (a) by the

Lemma 2. Hence y ∈
⋃∞

i=1N
i
t (a) and y ∈ Ot(N, a).

(right to left) Assume x ∈ Ot(N, a), then x ∈
⋃∞

i=1N
i
t (a). Then there exist some i,

x ∈ N i
t (a). Now by Lemma 3 below we have (a, x) ∈ Dt(N). �

Now we start the proof of Theorem 6.
Proposition 1. Let BN

A be the least fixed point of the function fN
A . Then BN

A =⋃∞
i=0 B

N
A,i, where BN

A,0 = Cn(A), BN
A,i+1 = Cn(A ∪N(BN

A,i)).

Proof. We first prove that
⋃∞

i=0B
N
A,i is a fixed point of fN

A . We prove by showing the
following:

1. A ⊆
⋃∞

i=0 B
N
A,i: this is because A ⊆ Cn(A) = BN

A,0 ⊆
⋃∞

i=0 B
N
A,i

2. N(
⋃∞

i=0 B
N
A,i) ⊆

⋃∞
i=0B

N
A,i: Let x ∈ N(

⋃∞
i=0B

N
A,i). Thus, there is an a ∈⋃∞

i=0 B
N
A,i such that (a, x) ∈ N . Hence there exist k ≥ 0 such that a ∈ BN

A,k,
which means that x ∈ N(BN

A,k) ⊆ BN
A,k+1 ⊆

⋃∞
i=0B

N
A,i.

3. Cn(
⋃∞

i=0B
N
A,i) =

⋃∞
i=0 B

N
A,i: the right-to-left direction is obvious; for the other

direction: assume x ∈ Cn(
⋃∞

i=0B
N
A,i), then there exist x1, . . . xn ∈

⋃∞
i=0B

N
A,i

such that x1 ∧ . . . ∧ xn � x. Therefore there exist k such that x1, . . . xn ∈ BN
A,k.

Hence x ∈ BN
A,k+1 ⊆

⋃∞
i=0 B

N
A,i.

With the above clauses in hand, we can prove that fN
A (

⋃∞
i=0 B

N
A,i) ⊆

⋃∞
i=0B

N
A,i. For

the other direction, we prove by induction on i that for every i,BN
A,i ⊆ fN

A (
⋃∞

i=0B
N
A,i).

Here we omit the details.
So we have proved that

⋃∞
i=0 B

N
A,i is a fixed point of fN

A . To prove that it is the least
fixed point, we can again prove by induction that for every i, BN

A,i ⊆ fN
A (B), where B

is a fixed point of fN
A . Here we omit the details. �

The following lemmas are needed to prove the left to right direction of Theorem 6.

Lemma 4. For every A ⊆ L,N ⊆ L× L, A ⊆ BN
A

Proof. By Proposition 1, the proof is trivial. �

Lemma 5. For every A ⊆ L,N ⊆ L× L, BN
A = Cn(BN

A ).

Proof. By the compactness of propositional logic and Proposition 1, the proof is easy.�

Lemma 6. For every a, b ∈ L,N ⊆ L×L, if a � b then BN
b ⊆ BN

a . Here BN
a is short

for BN
{a}.

Proof. We will prove that for every i, BN
b,i ⊆ BN

a,i.
We prove by induction on i.
If i = 0, then BN

b,0 = Cn(b) ⊆ Cn(a) ⊆ BN
a,0. Assume i = k + 1 and BN

b,k ⊆
BN

a,k. Then BN
b,k+1 = Cn({b} ∪N(BN

b,k)). From BN
b,k ⊆ BN

a,k we deduce N(BN
b,k) ⊆

N(BN
a,k). Now by the monotony of Cn(•) we know Cn({b}∪N(BN

b,k)) ⊆ Cn({a}∪
N(BN

a,k)). Hence BN
b,k+1 ⊆ BN

a,k+1.
So we have proved for every i, BN

b,i ⊆ BN
a,i. With this result in hand, we can easily

deduce that BN
b ⊆ BN

a . �
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Lemma 7. If x ∈ Cn(N(BN
a )), then x ∈ BN

a .

Proof. By Proposition 1, it is easy to verify that N(BN
a ) ⊆ BN

a and Cn(BN
a ) ⊆ BN

a

by Lemma 5. The result then follows. �

Lemma 8. If x ∈ Cn(N(BN
a )), then BN

a = BN
a∧x.

Proof. By Lemma 6, BN
a ⊆ BN

a∧x. For the other direction, we need to prove that for
every i, BN

a∧x,i ⊆ BN
a . We prove this by induction on i.

– Base step: Let i = 0, we then have BN
a∧x,i = Cn(a ∧ x). By Lemma 4 we have

a ∈ BN
a . By Lemma 7 we have x ∈ BN

a . Then by Lemma 5 we have a ∧ x ∈
Cn(BN

a ) = BN
a .

– Inductive step: Assume for i = k, BN
a∧x,k ⊆ BN

a . By I.H. and the monotonic-
ity of N , N(BN

a∧x,k) ⊆ N(BN
a ). Thus, by the monotonicity of Cn and since

BN
a∧x,k+1 = Cn({a ∧ x} ∪ N(BN

a∧x,k)) we have BN
a∧x,k+1 ⊆ Cn({a ∧ x} ∪

N(BN
a )). Since x ∈ Cn(N(BN

a )) also BN
a∧x,k+1 ⊆ Cn({a}∪N(BN

a )) = BN
a .�

Lemma 9. For all i, if b ∈ BN
a,i and (b, x) ∈ N , then (a, x) ∈ deriv3(N)

Proof. We prove by induction on i.

– Base step: Let i = 0. Then b ∈ BN
a,0 = Cn(a). Hence a � b. Therefore we can

apply SI to a � b and (b, x) to derive (a, x).
– Inductive step: Assume for i = k, if b ∈ BN

a,k and (b, x) ∈ N , then (a, x) ∈
deriv3(N). Now let b ∈ BN

a,k+1. Then b ∈ Cn({a} ∪ N(BN
a,k)), and there exist

b1 . . . bn ∈ N(BN
a,k) such that a ∧ b1 ∧ . . . ∧ bn � b. Then apply SI to (b, x) ∈ N

and a ∧ b1 ∧ . . . ∧ bn � b we have (a ∧ b1 ∧ . . . ∧ bn, x) ∈ deriv3(N). Note that
for each i ∈ {1, . . . , n}, from bi ∈ N(BN

a,k) we know there is ai ∈ BN
a,k such that

(ai, bi) ∈ N . Now by inductive hypothesis we have (a, bi) ∈ deriv3(N). Then
applying the AND rule we have (a, b1∧ . . .∧bn) ∈ deriv3(N). From (a, b1∧ . . .∧
bn) ∈ deriv3(N) and (a∧ b1 ∧ . . .∧ bn, x) ∈ deriv3(N) we can adopt the CT rule
to derive (a, x) ∈ deriv3(N). �

Theorem 6. For a set of norms N and a formula a,

1. (a, x) ∈ deriv3(N) iff x ∈ Cn(N(BN
a )).

2. (a, x) ∈ deriv+3 (N) iff x ∈ Cn(Nid(B
Nid

A )).

Proof. Here we focus on the case for deriv3, the other case is similar.
(left to right) We prove by induction that for all a ∈ L, (a, x) ∈ deriv3(N) implies
x ∈ Cn(N(BN

a )).

– (Base step) Assume (a, x) ∈ N , then by Lemma 4 we have a ∈ BN
a . Hence

x ∈ N(BN
a ) ⊆ Cn(N(BN

a )).
– Assume (b, x) ∈ deriv3(N) and it is derived at the last step by using SI from

(a, x) ∈ deriv3(N) and b � a. Then by inductive hypothesis we have x ∈
Cn(N(BN

a )). By Lemma 6 we know BN
a ⊆ BN

b . Therefore we further have
N(BN

a ) ⊆ N(BN
b ), Cn(N(BN

a )) ⊆ Cn(N(BN
b )). Hence x ∈ Cn(N(BN

b )).
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– Assume (a, x ∧ y) ∈ deriv3(N) and it is derived at the last step by using AND
from (a, x) and (a, y). Then by inductive hypothesis we have x ∈ Cn(N(BN

a ))
and y ∈ Cn(N(BN

a )). Therefore x ∧ y ∈ Cn(N(BN
a )).

– Assume (a, y) ∈ deriv3(N) and it is derived by using WO from (a, x) ∈ deriv3(N)
and x � y. Then by inductive hypothesis we have x ∈ Cn(N(BN

a )). Since x � y,
we can prove that y ∈ Cn(N(BN

a )).
– Assume (a, y) ∈ deriv3(N) and it is derived by using CT form (a, x) ∈ deriv3(N)

and (a∧x, y) ∈ deriv3(N). Then by inductive hypothesis we havex ∈ Cn(N(BN
a ))

and y ∈ Cn(N(BN
a∧x)). Then by Lemma 8 we have BN

a = BN
a∧x. Therefore

y ∈ Cn(N(BN
a )).

(right to left) Assume x ∈ Cn(N(BN
a )), then there exist x1, . . . , xn ∈ N(BN

a ) such
that x1 ∧ . . . ∧ xn � x. For each i ∈ {1, . . . , n}, from xi ∈ N(BN

a ) we know there
is ai ∈ BN

a such that (ai, xi) ∈ N . From ai ∈ BN
a we know there exists k such

that ai ∈ BN
a,k. Now by Lemma 9 we know (a, xi) ∈ deriv3(N). Then applying

the AND rule we have (a, x1 ∧ . . . xn) ∈ deriv3(N). Then by the WO rule we have
(a, x) ∈ deriv3(N). �

To prove the left to right direction of Theorem 11, we need the following lemmas:

Lemma 10. For all A, if i ≤ j then N i
BT (A) ⊆ N j

BT (A)

Proof. The proof is trivial and left to the readers. �

Lemma 11. For all i ≥ 1, if A ⊆ B the N i
BT (A) ⊆ N i

BT (B).

Proof. We prove by induction. We focus on the inductive step. Assume N i
BT (A) ⊆

N i
BT (B), consider N i+1

BT (A) and N i+1
BT (B). Note that N i+1

BT (A) = Cae(N
i
BT (A) ∪

N(N i
BT (A))). By I.H. we haveN i

BT (A) ⊆ N i
BT (B). By the monotonicity ofN(•) we

have N(N i
BT (A)) ⊆ N(N i

BT (B)). ThereforeN i
BT (A) ∪N(N i

BT (A)) ⊆ N i
BT (B) ∪

N(N i
BT (B)). ThereforeCae(N

i
BT (A)∪N(N i

BT (A))) ⊆ Cae(N
i
BT (B)∪N(N i

BT (B)))
by the monotonicity of Cae. That is, N i+1

BT (A) ⊆ N i+1
BT (B). �

Lemma 12. For all i, j ≥ 1, for all sets A, N i
BT (N

j
BT (A)) ⊆ N i+j

BT (A).

Proof. We prove by induction on i.
If i = 1, then N1

BT (N
j
BT (A)) = Cae(N(Ce(N

j
BT (A)))) = Cae(N(N j

BT (A))).
N1+j

BT (A) = Cae(N
j
BT (A) ∪ N(N j

BT (A))). By monotonicity of Cae we have that
Cae(N(N j

BT (A))) ⊆ Cae(N
j
BT (A) ∪ N(N j

BT (A))). Therefore N1
BT (N

j
BT (A)) ⊆

N1+j
BT (A).
Now for the inductive step. Consider N i+1

BT (N j
BT (A)) and N i+1+j

BT (A). Note that
N i+1

BT (N j
BT (A)) = Cae(N

i
BT (N

j
BT (A)) ∪ N(N i

BT (N
j(A)))). And N i+1+j

BT (A) =

Cae (N
i+j
BT (A)∪N(N i+j

BT (A))). By I.H. we have N i
BT (N

j
BT (A)) ⊆ N i+j

BT (A), and by
the monotonicity of N we have N(N i

BT (N
j
BT (A))) ⊆ N(N i+j

BT (A)). Then we have
Cae(N

i
BT (N

j
BT (A)) ∪ N(N i

BT (N
j
BT (A)))) ⊆ Cae(N

i+j
BT (A) ∪ N(N i+j

BT (A))). That
is, N i+1

BT (N j
BT (A)) ⊆ N i+1+j

BT (A). �
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Lemma 13. For all i, j ≥ 1, if x ∈ N i
BT (a) and y ∈ N j

BT (x), then there exists some
k such that y ∈ Nk

BT (a)

Proof. Assume x ∈ N i
BT (a) and y ∈ N j

BT (x), then by Lemma 11 we have y ∈
N j

BT (N
i
BT (a)). Now by the lemma above we have y ∈ N i+j

BT (a). �
Lemma 14. For all i ≥ 1, if x ∈ N i

BT (a) and y ∈ N i
BT (a), then x ∧ y ∈ N i

BT (a)

Proof. The result easily follows by the definition of Cae. Here we skip the details. �
To prove the right to left direction of Theorem 11, we need the following lemma.

Lemma 15. For all i ≥ 1, if x ∈ N i
BT (a) then (a, x) ∈ DBT (N).

Proof. We prove by induction. If i= 1, fromx ∈ N1
BT (a)we knowx ∈ Cae(N(Ce(a))).

Therefore there exist x1 . . . xm ∈ N(Ce(a)) such that x !� x1 ∧ . . . ∧ xm. From
x1 . . . xm ∈ N(Ce(a)) we can deduce that there exist (a1, x1), . . . , (an, xm) ∈ N such
that a1, . . . , am ∈ Ce(a). Therefore a !� a1, . . . , a !� am. Now by IEQ we have
(a, x1), . . . , (a, xm) ∈ DBT (N). And by AND rule finite times we have (a, x1 ∧ . . . ∧
xm) ∈ DBT (N). Then by OEQ we know (a, x) ∈ DBT (N).

Now for the inductive step. Assume x ∈ N i+1
BT (a),then x ∈ Cae(N

i
BT (a) ∪

N(N i
BT (A))). Therefore there exist x1, . . . , xm ∈ N i

BT (a) and y1, . . . , yn ∈
N(N i

BT (a)) such that x !� x1 ∧ . . . ∧ xm ∧ y1 ∧ . . . ∧ yn. By I.H. we can deduce
(a, x1), . . . , (a, xm) ∈ DBT (N) from x1, . . . , xm ∈ N i

BT (a). And from y1, . . . , yn ∈
N(N i

BT (a)) know there exist a1, . . . , an ∈ N i
BT (a) such that (a1, y1), . . . , (an, yn) ∈

N . By I.H. we can deduce (a, a1), . . . , (a, an) ∈ DBT (N) from a1, . . . , an ∈ N i
BT (a).

Now by using the T rulen times we have (a, y1), . . . , (a, yn) ∈ DBT (N). Then by using
the AND rule we have (a, x1 ∧ . . . ∧ xm ∧ y1 ∧ . . . yn) ∈ DBT (N). Then by OEQ we
have (a, x) ∈ DBT (N). �

Theorem 11. (a, x) ∈ DBT (N) iff x ∈ OBT (N, a).

Proof. (left to right) Assume (a, x) ∈ DBT (N), then either (a, x) ∈ N , or (a, x) is
derived by using at the last step one of the rules IEQ, OEQ, T and AND. Here we only
deal with the last two cases. The other cases are easy and left to the reader.

Assume (a, x) ∈ DBT (N) and it is deduced by the T rule at the last step. Then
there exist (a, y) ∈ DBT (N) and (y, x) ∈ DBT (N). By I.H. we have y ∈ OBT (N, a)
and x ∈ OBT (N, y). That is, y ∈

⋃∞
i=1N

i
BT (a) and x ∈

⋃∞
i=1N

i
BT (y). Therefore

there exist some i, j such that y ∈ N i
BT (a) and x ∈ N j

BT (y). Therefore we have
x ∈ Nk

BT (a) for some k by Lemma 13. Hence x ∈
⋃∞

i=1N
i
BT (a). x ∈ OBT (N).

Assume (a, x) ∈ DBT (N) and it is deduced by the AND rule at the last step. Then
there exist x1, x2 such that x is x1 ∧ x2 and (a, x1), (a, x2) ∈ DBT (N). By I.H. we
have x1 ∈

⋃∞
i=1N

i
BT (a) and x2 ∈

⋃∞
i=1N

i
BT (a). Therefore for some m,n we have

x1 ∈ Nm
BT (a) and x2 ∈ Nn

BT (a). Let k = max{m,n}, then by Lemma 10 we have
x1, x2 ∈ Nk

BT (a). Then by Lemma 14 we have x1 ∧ x2 ∈ Nk
BT (a). That is, x ∈

Nk
BT (a), x ∈

⋃∞
i=1N

i
BT (a) and x ∈ OBT (N, a).

(right to left) Assume x ∈ OBT (N, a), then x ∈
⋃∞

i=1N
i
BT (a). Then there exist

some k, x ∈ Nk
BT (a). Now by Lemma 15 we have (a, x) ∈ DBT (N). �
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Abstract. A framework for boolean-valued judgment aggregation is de-
scribed. The simple (im)possibility results in this paper highlight the role
of the set of truth values and its algebraic structure. In particular, it is
shown that central properties of aggregation rules can be formulated as
homomorphy or order-preservation conditions on the mapping between
the power-set algebra over the set of individuals and the algebra of truth
values. This is further evidence that the problems in aggregation theory
are driven by information loss, which in our framework is given by a
coarsening of the algebra of truth values.

1 Introduction and Motivation

One of the most elementary problems in multiagent systems is the problem of
aggregating the distributed information coming from different sources. For col-
lective decision making by autonomous software agents, the canonical version
of this problem (which will be used in the following for the illustration of the
more general aggregation framework) is, of course, the aggregation of the pref-
erences that the individual agents express over a given set of alternatives (see
e.g. [20], Chapter 12). In its almost ubiquitous form, this problem is given by
a set A of alternatives (e.g. candidates) which has to be ranked by a set I of
agents, based on the individual orderings of these alternatives. A preference is
then a binary relation P ⊂ A × A, which is typically assumed to be a linear
order, i.e. an anti-symmetric, transitive and complete binary relation on the set
of alternatives. For all alternatives x, y ∈ A, (x, y) ∈ P then denotes the strict
preference of x over y. Denoting by L(A) the set of all linear orders on A, the
problem of preference aggregation consists in finding a rule that assigns to each
product, or profile, of individual preferences 〈Pi〉i∈I ∈ L(A)I a collective prefer-
ence P ∈ L(A). As preference aggregation is the core problem of social choice
theory, namely the classical Arrovian aggregation problem of the (im)possibility
of constructing a social welfare function which assigns to each profile of individ-
ual preferences a collective preference relation and satisfies a set of normatively
desirable properties, the significance of social choice theory as a fundamental
tool for the study of multiagent systems has always been recognized [18], —
especially so since the incorporation of computational issues in the new field

N. Bulling et al. (Eds.): CLIMA XV, LNAI 8624, pp. 138–147, 2014.
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of computational social choice [4]. This significance of social choice theory has
greatly been increased by the recent generalization of the classical Arrovian ag-
gregation problem, culminating in the new field of judgment aggregation (for
a survey see [14]). An essential feature of this generalization is the extension
of the problem of aggregation from the aggregation of preferences to the ag-
gregation of arbitrary information represented by individual ”judgments” on a
set of logically interconnected propositions (the agenda) expressed in some for-
mal language (typically propositional logic), the truth values of which are to be
collectively determined.

Especially, in order to also exploit the expressive power of first-order logic,
it seems natural to use the potential of model theory which, broadly speaking,
studies the relation between abstract structures and statements about them
(for an introduction to model theory see [3]) and to analyse the problem of of
aggregating judgments as the problem of aggregating the models that satisfy
these judgments (see [11], following [13]). In a model theoretic perspective, the
aggregation problem as it underlies Arrovian impossibility results can be related
to the well known fact (see [1], p. 174) that a (direct) product of individual
models (e.g. a profile of individual preference relations) may not share the first-
order properties of its factor models (e.g. transitivity). For this reason the direct
product construction is often modified by using another boolean algebra than
2 = {0, 1} and in particular the power-set algebra over the index set as an algebra
of truth values (see e.g. [2]). This approach was first applied to social welfare
functions in [19] as one of the many attempts to overcome Arrow’s dictatorship
result and is here extended to the problem of aggregating judgments in first-order
logic. While the major body of the literature on judgment aggregation studies the
(in)consistency between properties of the aggregation rule and properties of the
agenda (for a survey see [6]), the significance of our simple (im)possibility results
consists in stressing the importance of the set of truth values and its algebraic
structure.1 This significance is closely related to a property of order preservation
of mappings between the power-set algebra over the set of individuals and the
algebra of truth values.

The theory of boolean algebras can be seen as the natural method to anal-
yse axiom systems in first-order predicate logic. The reason is that axiom sys-
tems under first-order predicate logic induce an algebraic structure on the set of
well-formed formulae: The axiom system combined with the deduction rules of
first-order logic induces a notion of provability, and the quotient of the set of
well-formed formulae with respect to the equivalence relation of provable equiv-
alence turns out to be a boolean algebra, called the Lindenbaum algebra.

1 Among the relatively few many-valued extensions of judgment aggregation [17], [7],
and [10] deserve to be noted. Closest in spirit to our (im)possibility results is, how-
ever, [8] which establishes a characterization of the possibility/impossibility bound-
ary in the framework of t-norms.
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2 Formal Framework and Results

Fix an arbitrary set A, and let L be a language consisting of constant symbols
for all elements a of A as well as (at most countably many) predicate symbols
Pn, n ∈ N. We shall denote the arity of Pn by δ(n) (for all n ∈ N).

In the case of preference aggregation, A is interpreted as the set of alternatives
and the (unique) binary predicate symbol P denotes strict preference.

Let S be the set of atomic formulae in L, and let T be the boolean closure of
S, i.e. the closure of S under the logical connectives ¬, ∧, ∨.

Obviously, in the case of preference aggregation, S = {P (x, y) : x, y ∈ A}.
The relational structure A = 〈A, 〈Rn : n ∈ N〉〉 is called a realisation of L

with domain A or an L-structure with domain A if and only if the arities of
the relations Rn correspond to the arities of the predicate symbols Pn and the
relations are evaluated in A, that is if Rn ⊆ Aδ(n) for each n.

An L-structure A is a model of the theory T if A |= ϕ for all ϕ ∈ T , i.e. if all
sentences of the theory hold true in A (with the usual Tarski definition of truth).

In the case of preference aggregation with linear preferences, T is the set of
L-sentences which axiomatize the class of linear orders, i.e.
∀x¬P (x, x) (irreflexivity),
∀x∀y∀z[(P (x, y) ∧ P (y, z))→ P (x, z)] (transitivity),
∀x∀y(P (x, y) ∨ P (y, x) ∨ x = y) (completeness).
A boolean-valued model for L is a mapping which assigns to each L-

formula λ a truth value ‖λ‖ in some arbitrary complete boolean algebra B =
〈B,
,	,∗ , 0B, 1B〉 in such a way that boolean connectives and logical connec-
tives commute:
‖¬λ‖ = ‖λ‖∗; ‖φ ∨ ϕ‖ = ‖φ‖ 
 ‖ϕ‖; ‖φ ∧ ϕ‖ = ‖φ‖ 	 ‖ϕ‖ (see [12]).

Boolean-valued models stand in a natural relation to products of models, like
they play a role in aggregation theory. Indeed, in a model theoretic framework,
a profile of individual judgments is nothing else than the direct product of the
individual (factor) models, and this makes the power-set algebra over the in-
dex set of individuals a natural choice for a modification of the direct product
construction and an alternative boolean valuation (see [1], p. 174f.)

Let Ω be the collection of models of T with domain A.
Let I be a (finite or infinite) set. Elements of I will be called individuals,

elements of ΩI will be called profiles and will be denoted by A := 〈A〉i∈I .
Thus, in the case of preference aggregation, ΩI represents the set of all logi-

cally possible profiles of preferences.
For simplicity, let us assume for our preference aggregation example that

I = {1, 2, 3}, A = {a, b, c}, and that the preferences of the individuals are given
by the classical configuration of the Condorcet paradox, respectively

A1 |= P (a, b) ∧ P (b, c) ∧ P (a, c)
A2 |= P (b, c) ∧ P (c, a) ∧ P (b, a)
A3 |= P (c, a) ∧ P (a, b) ∧ P (c, b).

Remark 1. Observe that any such profile A ∈ ΩI as a mapping I → Ω in-
duces a map from the set of L-formulae to the power-set algebra P (I) =
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〈
2I ,∪,∩, �,∅, I

〉
2, which maps every L-formula λ to the coalition of all indi-

viduals whose models satisfy λ, i.e. {i ∈ I : Ai |= λ}.

Thus, e.g. in our simple preference aggregation example {i ∈ I : Ai |=
P (a, c)} = {1} and {i ∈ I : Ai |= P (a, b)} = {1, 3}.

We now call a boolean-valued map f which assigns to each profile A ∈ ΩI and
each formula λ a truth value ‖λ‖Af in some arbitrary complete boolean algebra
B = 〈B,
,	,∗ , 0B, 1B〉 a boolean-valued aggregation rule (BVAR) if and

only if ‖¬λ‖Af =
(
‖λ‖Af

)∗
; ‖φ ∨ ϕ‖Af = ‖φ‖Af 
 ‖ϕ‖

A
f ; ‖φ ∧ ϕ‖

A
f = ‖φ‖Af 	 ‖ϕ‖

A
f

(see [12]).
If we now take for our preference aggregation example the power-set algebra

P (I) as an algebra of truth valuations,3 we obtain a boolean-valued map F
which assigns to each atomic formula the set of individuals in the models of
which it holds true. Thus, e.g. ‖P (a, b)‖AF = ‖¬P (b, a)‖AF = {1, 3}, whereas
‖P (a, b) ∧ P (b, c)‖AF = ‖P (a, c)‖AF = {1} and ‖P (a, b) ∨ P (b, c)‖AF = {1, 2, 3}.

The following properties are reformulations of standard conditions for judg-
ment aggregation rules in the framework of BVARs.

In particular, the non-dictatorship condition can be expressed in the following
way:

Definition 1. A BVAR f is non-dictatorial if there exists no individual i ∈ I
such that for every L-formula λ and every profile A ∈ ΩI

Ai |= λ⇒ ‖λ‖Af = 1B (where 1B the top element of the set of truth values).

Obviously, non-dictatorship is only relevant if the set I consists of at least
two individuals, which will be assumed throughout.

Intuitively, non-dictatorship in the framework of BVARs guarantees that there
exists no individual who can ensure for her judgments the highest truth degree.
On the other hand, the intuitively appealing Pareto principle requires that unan-
imous agreement be respected by a judgment aggregation rule:

2 Wherein �D = I \D for all D ⊆ I .
3 For another simple example which does not involve the power-set boolean algebra,
consider a set of three agents I = {1, 2, 3} facing a set of four different alternatives
A = {a, b, c, d}. Suppose each of them linearly ranks the alternatives according to
their own subjective preferences.

Let L be the first-order language consisting of four constants a, b, c, d and one
relation symbol P , and let T be the theory of linear orders. Let Ω be the set of
models of T with domain A. A profile is then simply a triple of linear orders on the
set {a, b, c, d}, i.e. an element of ΩI .

A particularly simple aggregation function is a map f : ΩI × L → 2 which maps
to each pair 〈A, λ〉 of a profile A ∈ ΩI and an L-formula λ the truth value which a
majority of the agents assigns. In other words, for all A ∈ ΩI and all L-formulae λ,

f(A, λ) =

{
1, #{i ∈ I : Ai |= λ} ≥ 2,
0, otherwise

Verifying that this is a paretian, systematic and non-dictatorial boolean-valued ag-
gregation function with values in {0, 1} is left as an exercise to the reader.
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Definition 2. A BVAR f is paretian if for every L-formula λ and every profile
A ∈ ΩI

{i ∈ I : Ai |= λ} = I ⇒ ‖λ‖Af = 1B.

Central to aggregation problems are independence conditions of various
strength:

Definition 3. A BVAR f is independent if for every L-formula λ and every
pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} = {i ∈ I : A′
i |= λ} ⇒ ‖λ‖Af = ‖λ‖A

′

f .

Definition 4. A BVAR f is neutral if for every L-formulae λ, λ′ and every
profile A ∈ ΩI

{i ∈ I : Ai |= λ} = {i ∈ I : Ai |= λ′} ⇒ ‖λ‖Af = ‖λ′‖Af .

Definition 5. A BVAR f is systematic if it is independent and neutral, i.e.
if for every pair of L-formulae λ, λ′ and every pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} = {i ∈ I : A′
i |= λ′} ⇒ ‖λ‖Af = ‖λ′‖A

′

f .

The property of systematicity might appear strong at first sight but it is well-
known in the literature on judgment aggregation that it is implied by the inde-
pendence property and a condition of logical richness known as total blockedness,
i.e. if every formula is related to every other one by a sequence of conditional
entailments.

The framework of BVARs allows to use the partial order structure 〈P (I),⊆〉
of the power-set algebra P (I) over the set of individuals (the “coalition alge-
bra”), respectively of the algebra of truth values 〈B,�〉 for the formulation of
conditions on aggregation rules.4 In particular, the monotonicity property can
be formulated in a natural way as such an order preservation property:

Definition 6. A BVAR f is monotonic if for every L-formula λ and every
pair of profiles A,A′ ∈ ΩI

{i ∈ I : Ai |= λ} � {i ∈ I : A′
i |= λ} ⇒ ‖λ‖Af � ‖λ‖

A′

f .

Monotonicity is known to be an important property of aggregation rules be-
cause it guarantees non-manipulability, i.e. the impossibility for any individual
to increase the collectively assigned truth value of a formula by signalling its
negation.

The conjunction of monotonicity and independence (known in the judgment
aggregation literature as monotone independence, see [16]) can now be formu-
lated as an order preservation property of the aggregation rule with respect to
the partial orders of the coalition algebra and the algebra of truth values.

4 Herein, � is the canonical partial order on the boolean algebra; it can be defined
algebraically, for all x, y ∈ B, by

x � y ⇔ x � y∗ = 0B

(or equivalently x � y ⇔ x � y = x).
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Proposition 1. A BVAR f satisfies monotone independence (i.e. is mono-
tonic and independent) if and only if for every pair of profiles A,A′ ∈ ΩI and
every formula λ ∈ T

{i ∈ I : Ai |= λ} ⊆ {i ∈ I : A′
i |= λ} ⇒ ‖λ‖Af � ‖λ‖

A′

f . (1)

A natural BVAR F can now be defined by assigning to every L-formula λ and
every profile A ∈ ΩI precisely the subset of individuals in whose models it holds
true, i.e. ‖λ‖AF = {i ∈ I : Ai |= λ}. Thus, the algebra of truth values is simply
identified with the coalition algebra.

This construction immediately leads to the following possibility result:

Theorem 1. The BVAR F is a neutral, paretian and non-dictatorial judgment
aggregation rule which satisfies monotone independence.

For a proof, see the Appendix; the easy verification for the case of our simple
preference aggregation example being left to the reader.

The main interest of this simple boolean-valued construction consists in high-
lighting the implications for the aggregation problem of the structure of the set
of truth values and the significance of the condition of order preservation with re-
spect to the power-set algebra over the set of individuals and the algebra of truth
values (for a deeper exploration of the relation between judgment aggregation
rules and boolean algebra homomorphisms see [9]).

This significance is closely related to a property of homomorphisms of boolean
algebras. 5 Note that systematicity (i.e. the conjunction of independence and
neutrality) permits a decomposition of every BVAR as h ◦ F . One can show
that this h is a homomorphism and thus order-preserving, whence neutrality
and independence already entail monotonicity.

By the agenda richness condition we mean that there are λ, μ ∈ S such
that T is consistent with each of λ ∧ μ, ¬λ ∧ μ and λ ∧ ¬μ.

In preference aggregation, this condition is satisfied if there are at least three
alternatives x, y, z ∈ A such that λ = P (x, y) and μ = P (y, z).

Theorem 2. Let the agenda richness condition be satisfied. A neutral and in-
dependent BVAR induces a homomorphism hf of the coalition algebra P (I) =
〈2I ,∪,∩, �,∅, I〉 to its co-domain, the boolean algebra of truth values B =
〈B,
,	,∗ , 0B, 1B〉

As we shall see presently, using the notion of the Lindenbaum algebra, The-
orem 2 can be reformulated as an algebraic factorization result. Let � be the
provability relation of classical first-order logic, let T ⊆ L be consistent (possi-
bly empty), and let ≡ denote provable equivalence given T (i.e., φ ≡ ψ if and

5 A homomorphism of a boolean algebra B into a boolean algebra B′ is a map h : B →
B′ which preserves the algebraic operations, i.e. such that for all x, y ∈ B, h(x�y) =
h(x)�h(y), h(x�y) = h(x)�h(y), h(x∗) = h(x)∗. A homomorphism is always order-
preserving with respect to the canonical partial orders of the corresponding boolean
algebras.
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only if both T ∪ {φ} � ψ and T ∪ {ψ} � φ). The set of equivalence classes of
L-formulae under ≡ is known as the Lindenbaum algebra and will be denoted
L/≡. It is obvious that for every BVAR f , the map

Hf : L/≡ ×ΩI → B, 〈[λ]≡,A〉 $→ ‖λ‖Af

is well-defined. It is also clear that for every A ∈ ΩI , Hf (·,A) is a homomor-
phism. Given any profile A ∈ ΩI , we then have the following commutative
diagram or factorization:

L/≡
HF (·,A)−→ P (I)

Hf (·,A) ↓ ↙hf

B

Hence, every boolean-valued aggregation rule can be, for an arbitrary fixed pro-
file, decomposed into a (a) a structure-preserving map from the set of L-formulae
(modulo provable equivalence) to the coalition algebra and (b) another structure-
preserving map from the coalition algebra to the actual algebra of truth values.
This latter step can be seen as a coarsening of the set of the algebra of truth
values at the social level compared to the richness of “social valuations” of the
formulae by the coalition algebra. The extreme case is the classical situation
where the truth values at the social level are just binary.

Now there is a connection between the homomorphy among boolean algebras
and the source of dictatorship in this classical case of binary social truth values,
viz. the existence of an ultrafilter on the set of individuals.

Recall that a non-empty subset F � B of a boolean algebra B is a (proper)
filter if and only if for all x, y ∈ F and any z ' x, both x 	 y ∈ F and z ∈ F
(meet closure and successor closure). A filter U � B is an ultrafilter if and only
if it is maximal in the sense that there exists no filter F with U � F � B.6 In the
case of the power-set boolean algebra 2I , a proper filter is a proper non-empty
subset of 2I which is closed under the intersection operation ∩ and the superset
relation ⊇; a proper filter U in 2I is an ultrafilter if and only for every set C ∈ 2I

either C or its complement �C = I \C is an element of U . It is well known that
every ultrafilter on a finite set is the collection of all supersets of a singleton —
the dictator —, and 2-valued homomorphisms have an ultrafilter as its shell (see
e.g. [3]):

Lemma 1. Let g : B′ → B be a homomorphism between boolean algebras. Then
the shell of g, i.e. the set {x ∈ B′ : g(x) = 1B} is a filter. If B is the two-valued
algebra 2 = {0, 1} of truth values, then the shell g−1{1B} of g is an ultrafilter.

With the help of such a purely algebraic result, we obtain in the BVAR frame-
work a typical Arrow-style dictatorship result, as a simple corollary of the pre-
vious theorem:

6 The maximality condition is equivalent to the so-called ultrafilter property : A filter
U is an ultrafilter if and only if for all x ∈ B, either x ∈ U or x∗ ∈ U .
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Corollary 1. Let f be a neutral BVAR which satisfies monotone independence
and has co-domain 2 = {0, 1}. If the set I of individuals is finite, then f is a
dictatorship.

It is thus the rigidity of the truth-value algebra at the social level which
forces dictatorship results. This finding confirms the intuition behind the recent
unification of probabilistic opinion pooling and judgment aggregation through
the overarching concept of propositional attitudes [5]. In the former case, there is
a continuum of possible propositional attitudes at the social level, allowing for a
beautiful possibility result in terms of linear opinion pools [15], and in the latter
case, only binary propositional attitudes are admissible, leading to dictatorial
impossibility results [17].

3 Conclusion

We have thus described a framework for boolean-valued judgment aggregation.
While the major body of the literature on judgment aggregation draws attention
to inconsistencies between properties of the agenda and properties of the aggre-
gation rule, the simple (im)possibility results in this paper highlight the role
of the set of truth values and its algebraic structure. In particular, it is shown
that central properties of aggregation rules can be formulated as homomorphy
or order-preservation conditions on the mapping between the power-set algebra
over the set of individuals and the algebra of truth values. This is further evi-
dence that the problems in aggregation theory are driven by information loss,
which in our framework is given by a coarsening of the algebra of truth values.

Appendix: Proofs

Proof (Proof of Proposition 1). (if part) a) Monotonicity of f can easily be
seen from the fact that the antecedent of the property in formula (1) is just a
weakening of the antecedent of the monotonicity property. b) Independence of
f follows from the fact that in case {i ∈ I : Ai |= λ} = {i ∈ I : A′

i |= λ},
formula (1) requires both ‖λ‖Af � ‖λ‖A

′

f and ‖λ‖A
′

f � ‖λ‖Af , and thus by the

antisymmetry of the partial order � on B, ‖λ‖Af = ‖λ‖A
′

f . (only if part) Suppose
f is monotonic and independent. If the antecedent in formula (1) is satisfied,
then either {i ∈ I : Ai |= λ} � {i ∈ I : A′

i |= λ} or {i ∈ I : Ai |= λ} = {i ∈ I :

A′
i |= λ}. In the former case, the monotonicity yields ‖λ‖Af � ‖λ‖

A′

f , and in the
latter case, so does the independence of f .

Proof (Proof of Theorem 1). By construction, F is neutral. Also, F satisfies
monotone independence, since the antecedent and the consequent in formula
(1) become identical if F is inserted for f . That F is both non-dictatorial and

paretian can be verified easily by noting that ‖λ‖AF = 1P (I) (= I) is tantamount
to {i ∈ I : Ai |= λ} = I (for every profile A ∈ ΩI and every formula λ).



146 D. Eckert and F. Herzberg

Proof (Proof of Theorem 2). By the agenda richness, it is easy to see that

for every D,E ⊆ I there is a profile D such that

D = {i ∈ I : Di |= λ} and E = {i ∈ I : Di |= μ}. (2)

Let hf (D) = ‖λ‖Df . Then, hf (henceforth h for brevity) is well-defined — in
the sense of being independent of the choice of D and λ — because whenever
{i ∈ I : Di |= λ} = D = {i ∈ I : D′

i |= λ′}, the independence and neutrality (i.e.,

systematicity) of h ensures that ‖λ‖Df = ‖λ‖D
′

f = ‖λ′‖D
′

f . Now, for every D ⊆ I,

one can find (by our above abservation (2), applied to �D instead of D) a profile

C such that �D = {i ∈ I : Ci |= λ} whence h(�D) = ‖λ‖Cf . Now by Tarski’s

definition of truth, {i ∈ I : Di |= ¬λ} = �D = {i ∈ I : Ci |= λ}. Since f is both

neutral and independent (hence systematic), this entails ‖¬λ‖Df = ‖λ‖Cf . By our

definition of a BVAR, this amounts to
(
‖λ‖Df

)∗
= ‖λ‖Cf , whence h(D)∗ = h(�D)

for arbitraryD ∈ 2I . In a similar vein, one can establish h(D)	h(E) = h (D ∩E)
for all D,E ⊆ I. Indeed, let D,E ⊆ I. Then there will (by (2)) be a profile D
such that

D = {i ∈ I : Di |= λ}
E = {i ∈ I : Di |= μ}

and (by the consistency of T ∪ {λ ∧ μ}) another profile C such that

D ∩ E = {i ∈ I : Ci |= λ ∧ μ},

whence

h(D ∩ E) = ‖λ ∧ μ‖Cf , h(D) = ‖λ‖Df , h(E) = ‖μ‖Df .

Now by Tarski’s definition of truth, {i ∈ I : Di |= λ ∧ μ} = D ∩ E = {i ∈ I :

Ci |= λ ∧ μ}. Since f is independent, this entails ‖λ ∧ μ‖Df = ‖λ ∧ μ‖Cf . By
our definition of a BVAR, this amounts to ‖λ‖Df 	 ‖μ‖

D
f = ‖λ ∧ μ‖Cf , whence

h(D)	h(E) = h(D∩E) for arbitraryD,E ∈ 2I . By De Morgan’s formulae in the
boolean algebras B and 2I as well as iterated application of the preservation of
meets and complements by h one can now deduce that h(D)
h(E) = h (D ∪E)
for arbitraryD,E ∈ 2I .7 So, h preserves joins, too, and thus is a homomorphism.

Acknowledgements. We wish to thank Achim Jung for helpful comments on
an earlier version of this paper.

7

h(D) � h(E) = (h(D)∗ � h(E)∗)∗ =
(
h(�D) � h(�E)

)∗
=

(
h
(
(�D) ∩ (�E)

)
)
)∗

= h
(
�
(
(�D) ∩ (�E)

)
)
)
= h (D ∪E) .
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Abstract. Starting from the seminal work introducing Alternating Tem-
poral Logic, formalisms for strategic reasoning have assumed a promi-
nent role in multi-agent systems verification. Among the others, Strategy
Logic (SL) allows to represent sophisticated solution concepts, by treat-
ing agent strategies as first-order objects.

A drawback from the high power of SL is to admit non-behavioral
strategies: a choice of an agent, at a given point of a play, may depend
on choices other agents can make in the future or in counterfactual plays.
As the latter moves are unpredictable, such strategies cannot be easily
implemented, making the use of the logic problematic in practice.

In this paper, we describe a hierarchy of SL fragments as syntactic
restrictions of the recently defined Boolean-Goal Strategy Logic (SL[bg]).
Specifically, we introduce Alternating-Goal Strategy Logic (SL[ag]) that,
by imposing a suitable alternation over the nesting of the Boolean con-
nectives in SL[bg], induces two dual chains of sets of formulas, the con-
junctive and disjunctive ones. A formula belongs to the level i of the
conjunctive chain if it just contains conjunctions of atomic goals together
with a unique formula belonging to the disjunctive chain of level i − 1.
The disjunctive chain is defined similarly. We formally prove that classic
and behavioral semantics for SL[ag] coincide. Additionally, we study the
related model-checking problem showing that it is 2ExpTime-complete.

1 Introduction

In the multi-agent system domain, formalisms for strategic reasoning have as-
sumed a prominent role in the specification, verification, and synthesis tasks [3,
12–17, 27, 29, 31]. A story of success in this field is Alternating Temporal Logic
(ATL

�, for short), introduced by Alur, Henzinger, and Kupferman [3]. Such a
logic has the ability to express cooperation and competition among teams of
agents in order to achieve robust temporal requirements, such as fairness, live-
ness, etc. This is made possible thanks to the fact that ATL

� formally comes
as a generalization of the well known branching-time temporal logic CTL

� [8],
where the existential and universal path quantifiers E and A are replaced with
strategic modalities of the form 〈〈A〉〉 and [[A]], for a generic set A of agents.
The simplicity of these modalities results in a “friendly-use” logic with an ele-
mentary complexity for the main related decision procedures. Indeed, both the

∗ Partially supported by the FP7 European Union project 600958-SHERPA, the Em-
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model-checking and the satisfiability problems are 2ExpTime-complete [3,28].
On the other hand, the use of strategic modalities in ATL

� is restricted in such
a way that the internal quantifications are just coupled in the strict ∃∀ and ∀∃
alternation. Moreover, and more important, agent strategies are only treated
implicitly through these modalities, so they cannot be explicitly associated with
any particular agent nor used by the same agent in different contexts. All these
aspects give to ATL

� a number of limitations when one tries to apply it to
multi-agent system reasoning and games [1, 9, 11, 20, 30].

To overcome these difficulties and, thus, be able to describe sophisticated
interactions among agent behaviors, new and more powerful logics have been
recently introduced [4,6,7,18,24,32]. Among the others, Strategy Logic (SL), as
it has been introduced in [23], allows to formalize important solution concepts
by treating agent strategies as first-order objects. Intuitively, SL unpacks the
ATL

� modalities, allowing to explicitly declare the strategy profiles. Notably,
strategies in SL represent general conditional plans that at each step prescribe
an action on the base of the previous history. Then, by means of a binding oper-
ator, they can be liked to specific agents. This allows to reuse strategies or share
them among different agents. With more details, SL makes use of the existential
〈〈x〉〉 and the universal [[x]] strategic quantifications, which stand for “there ex-
ists a strategy x” and “for all strategies x”, respectively. Furthermore, it uses the
binding operator (a, x) that allows to bind an agent a to the strategy associated
with a variable x. Using these operators, key game-theoretic properties such as
Nash equilibria and sub-game perfect equilibria, not expressible in ATL

�, can be
described in SL.

Apart from the expressive gain of SL with respect to ATL
�, the finer-grained

exploitation of agent strategies let to study and reveal intrinsic game-theoretic
properties of the logics for strategic reasonings, never grasped before. The most
important one is that SL allows to specify sentences that can be satisfied only
by agent strategies that are not behavioral [19, 21]. More specifically, in a deter-
mined history of a play, the value of a strategy may depend on what the other
strategies will prescribe in the future or in other counterfactual plays. This means
that, to choose an existential strategy, we need to know the entire structure of
all universal strategies previously quantified. But this is in general unpredictable,
as what we actually know is their value on the history of interest only. Clearly,
using logics that admit non-behavioral strategies makes problematic their adop-
tion in practical applications. Additionally, by allowing in SL such complicated
strategies, we lose important model-theoretic properties and incur an increased
complexity of related decision problems [19].

The quest for a behavioral semantics of SL has led to the definition of a settled
family of syntactic restrictions [19]. Among the others, Boolean-Goal Strategy
Logic (SL[bg], for short) encompasses sentences in a special prenex normal form
having only a Boolean combination of temporal goals to handle at a time. For
a goal, it is formally meant an SL formula of the form �ψ, where � is a binding
prefix of the type (a1, x1), . . . , (an, xn) containing all the involved agents and ψ
is a linear-time temporal logic formula, possibly expressed in LTL [26]. It has
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been shown that SL[bg] admits non-behavioral strategies and, to avoid this, it
is enough to limit the Boolean combination of goals just to a conjunction or
a disjunction of them [21]. The corresponding logics, named Conjunctive-Goal
Strategy Logic (SL[cg], for short) and Disjunctive-Goal Strategy Logic (SL[dg],
for short), respectively, are the maximal syntactic fragment of SL known so
far to admit a behavioral semantics and with a model-checking problem to be
2ExpTime-complete, as for ATL

�. On the other hand, it is worth recalling
that the exact complexity of the model-checking problem for SL[bg] is an open
question and the best existing algorithm requires non-elementary time.

The positive results regarding SL[cg] and SL[dg] have left us with a conjec-
ture in [21] that dealing with a fragment holding a behavioral semantics is a
sufficient condition to ensure an elementary procedure for the related model-
checking problem. This has stimulated us to introduce and study in this paper a
whole hierarchy of syntactic behavioral fragments of SL[bg] and effectively show
that the model-checking problem is elementary decidable. Precisely, we intro-
duce Alternating-Goal Strategy Logic (SL[ag], for short) that, by imposing an
opportune alternation over the nesting of Boolean connectives in SL[bg], induces
two dual chains of behavioral classes of sentences, called conjunctive-chain and
disjunctive-chain, of which SL[cg] and SL[dg] are just the base case. Analogously
to the definition of classic dual hierarchies, each level i in a given chain is built
recursively by making use of formulas at level i− 1 of the other one. With more
details, a matrix of a given level in these two chains has as form either φ∧

∧
i �iψi

or φ ∨
∨

i �iψi, where φ belongs to the level i − 1 of the dual chain. We grant
the usefulness of SL[ag] by providing along the paper an example that requires
a sentence belonging to the second level.

To give an idea of the shape that the internal matrix of an SL[ag] sentence can
have, consider its parsing-tree along the Boolean connectives over goals. Such
a tree has the property that, for each node, its labeling and the one of all its
children but one coincide. This means that there is at most one path in the
parsing-tree having an alternating interleaving of ∨ and ∧ (this also provides
an explanation for the name of the logic). Clearly, if such a path starts with ∧,
then the formula belongs to the conjunctive chain; otherwise, it belongs to the
disjunctive one. Also, the length of the path determines the alternation level k
of the class. Finally, observe that having in the parse-tree more than one node
labeled differently from its father may already induce a sentence with a non-
behavioral semantics [19, 21].

As a main result in this paper, we formally prove that classic and behavioral
semantics for SL[ag] coincide. Additionally, we study the related model-checking
problem showing that it is 2ExpTime-complete, thus not harder than that for
ATL

�. The latter result also keeps alive the conjecture mentioned above.
From a technical point of view, the specific restrictions imposed to SL[ag]

formulas allow to simplify the reasoning about strategies by reducing this to
a step-by-step analysis about which action to perform in each moment. With
this observation in mind, we reduce the the satisfiability checking of a generic
SL[ag] sentence over a given structure to that for a suitably One-Goal Strategy
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Logic (SL[1g], for short) sentence over an ad hoc built structure. SL[1g] is, as
expected from the name, a logic in which no Boolean combinations among goals
are allowed [19]. This logic has the benefit of sharing with ATL

� several positive
structural properties, as well as, it results to be the maximal fragment of SL
known so far to have a decidable satisfiability problem.

Due to space limit, most of the concepts related to SL and proofs are sketched.
We refer to [19, 20, 23] for more material, motivations, and examples. Also, for
recent works in strategic reasoning, one can see [1, 2, 4, 5, 7, 9, 25, 32].

2 Strategy Logic

In this section we introduce Strategy Logic [23]. Along the paper we use basic
notation that, being standard, we omit and refer to [19] for a formal definition.

2.1 Game Structure

We start formalizing the game-theoretic framework on which the proposed strate-
gic reasoning is performed. First, we introduce multi-agent concurrent arenas
that, roughly speaking, describe the game board and its moves, i.e., the physical
world where agents act. Formally, an arena is defined as follows.

Definition 1. Arena. - A multi-agent concurrent arena is a tuple A�〈Ag,Ac,
St, tr〉, where Ag is the finite set of agents, a.k.a. players, Ac is the set of actions,
a.k.a. moves, St is the non-empty sets of states, a.k.a. positions. Assume Dc�
Ag⇀Ac to be the set of decisions, i.e., partial functions describing the choices
of an action by some agent. Then, tr : Dc→ (St⇀ St) denotes the transition
function mapping every decision δ ∈ Dc to a partial function tr(δ) ⊆ St×St
representing a deterministic graph over the states.

Informally, an arena can be seen as a generic labeled transition graph, where
labels are agent decisions. However, in this work some conditions rule out how
the transition function maps partial decisions to transitions. We preliminary
introduce the set of decisions that trigger some transition in a given state s ∈ St:

dc(s) � {δ ∈ Dc : s ∈ dom(tr(δ))};

As first property, we require is absence of end-states, i.e., dc(s) �= ∅, for all s ∈ St.
Then, we need to provide a meaning to incomplete decisions. Roughly speaking,
agents not mentioned in a decision are non influential, that is (s1, s2) ∈ tr(δ)
means that, in case the agents in dom(δ) act as prescribed, the system goes
from s1 to s2, no matter what the other agents do. This requires the following
condition to be satisfied: for all s ∈ St and δ1, δ2 ∈ dc(s), there exists an agent
a ∈ dom(δ1) ∩ dom(δ2) such that δ1(a) �= δ2(a). Finally, we assume that, each
active agent in in a state s ∈ St is associated with a finite non-empty set of
actions and all possible deriving combinations trigger some transition. First, the
set of active agents in s and the relative associated actions are defined as follows:

ag(s) � {a ∈ Ag : ∃δ ∈ dc(s) . a ∈ dom(δ)},
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ac(s, a) � {δ(a) ∈ Ac : δ ∈ dc(s) ∧ a ∈ dom(δ)}.

Then, for all states s and decisions δ, if δ(a) ∈ ac(s, a), for all a ∈ ag(s), we have
that there is a decision δ′ ∈ dc(s) such that δ′ ⊆ δ (equivalently, δ�dom(δ′) = δ′).

An arenaA naturally induces a graph G(A)�〈St,Ed 〉, where the edge relation
Ed�

⋃
δ∈Dc tr(δ) is obtained by rubbing out all labels on the transitions. A path

π ∈ Pth in A is simply a path in G(A). Similarly, the order |A| � |G(A)| (resp.,
size ‖A‖ � ‖G(A)‖) of A is the order (resp., size) of its induced graph. Finite
paths also describe the possible evolutions of a play up to a certain point. For
this reason, they are also called in the game-theoretic jargon histories and the
corresponding set is denoted by Hst�{ρ∈Pth : |ρ|<ω}.

A strategy is a function σ ∈ Str�Hst→Ac prescribing which action has to
be performed given a certain history. Roughly speaking, a strategy is a generic
conditional plan which specifies “what to do” but not “who will do it”. We say
that a strategy σ is coherent w.r.t. an agent a (a-coherent) if in each possible
evolution of the game either a is not influential or the action that σ prescribes
is available to a. Formally, for each history ρ = s0 · · · sn, either a �∈ ag(sn) or
σ(ρ) ∈ ac(sn, a). A (strategy) profile ξ ∈Prf�Ag→Str specifies for each agent
a coherent strategy. Given a profile ξ and an agent a, ξ(a)(ρ) determines which
action an agent a has chosen to perform on a history ρ. To identify, instead, the
whole decision on ρ, we apply the flipping function ξ̂ : Hst→Dc.

A path π is coherent w.r.t. a profile ξ (ξ-coherent, for short) iff, for all i ∈
[1, |π|[, there exists a decision δ ∈ dc(πi−1) such that δ ⊆ ξ̂(π<i) (equivalently,

ξ̂(π<i)�dom(δ) = δ) and πi = tr(δ)(πi−1), i.e., πi is the successor of πi−1 produced

by the agent decision ξ̂(π<i) prescribed by the profile ξ on the history π<i. In
case π is infinite, we say that it is a ξ-play. Note that, given a state s, the
determinism of the arena ensures that there exists exactly one ξ-play π starting
in s. Such a play is called (ξ, s)-play and is denoted by play(ξ, s).

As final remark, an arena is turn-based in case that for all states s, |ag(s)| ≤ 1.
An arena corresponds in the jargon of Modal Logics to a frame representing

the “naked” structure of a model without any connection to the logic. Clearly,
to check formulas, we need to interpret the atomic propositions over the states
of the arena. We call a concurrent game structure the resulting structure.

Definition 2. Concurrent Game Structure. - A concurrent game structure is a
tuple G � 〈A,AP, ap, sI〉, where A�〈Ag,Ac, St, tr〉 is a multi agent concurrent
arena, AP is finite non-empty sets of atomic propositions, sI ∈ St is a designated
initial state, and ap : St → 2AP is a labeling function that maps each state to
the set of atomic propositions true in that state.

As a running example, consider the arena AS depicted in Figure 1. It repre-
sents a simple scheduler system in which two processes, P1 and P2, can require
the access to a shared resource and an arbiter A is used to solve all conflicts that
may arise. In particular, the arbiter can preempt a process owning the resource
to allow the other one to access to it. The processes have three actions to interact
with the system: r is used to request the resource from the system, when this is
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not yet owned, while f releases it, when this is not necessary anymore and d is
a “do-nothing” action in the case it does not want to change the present state.
The arbiter, from its side, has two actions to decide which process has to receive
the resource: 1 for P1 and 2 for P2.

I

1 2

A

P1P2 �→ dd

P1P1 �→ rd P1P2 �→ dr

P1P2 �→ rr

P
1
P
2
�→

d
d

P1P2 �→ fd

P1P2 �→fr

P1P2 �→ dr

P
1
P
2
�→

d
d

P1P2 �→ df

P1P2 �→rf

P1P2 �→ rd

A �→ 1 A �→ 2

Fig. 1. Scheduler Arena AS

The whole scheduler system
can reside in the following four
states: I, 1, 2, and A. The idle
state I indicates that both pro-
cesses do not own the resource,
while i, with i ∈ {1, 2}, denotes
that process Pi is using it. Finally,
the arbitrage state A represents
the situation in which an action
from the arbiter is required in or-
der to solve a conflict between
contending requests. For readabil-
ity reasons, a decision is graphi-
cally represented by an arrow $→
with a sequence of agents on left
hand side and the sequence of cor-
responding actions on right hand

side. Finally, the arena is extended to a CGS by using I as initial state and
atomic propositions c, a1, and a2 such that ap(A) = {c}, ap(1) = {a1} and
ap(2) = {a2}.

2.2 Syntax

Strategy Logic extends LTL by introducing two strategy quantifiers 〈〈x〉〉 and
[[x]], and an agent binding (a, x). Informally, these operators can be respectively
read as “there exists a strategy x”, “for all strategies x”, and “bind agent a to
the strategy associated with x”. More formally, for each agent a we consider a
countable set of dedicated variables Vra and with Vr we denote the union of all
such variables. Then, SL well formed formulas are defined as follows.

Definition 3. Syntax. - SL formulas are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ | ϕ Rϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (a, x)ϕ,
where in (a, x) we assume that x ∈ Vra.

The free agents/variables of a formula ϕ, free(ϕ), are the subset of Ag ∪
Vr containing (i) all agents a for which there is no binding (a, x) before the
occurrence of a temporal operator and (ii) all variables x for which there is a
binding (a, x) but no quantification 〈〈x〉〉 or [[x]]. A formula ϕ without free agents
(resp., variables), i.e., with free(ϕ) ∩ Ag = ∅ (resp., free(ϕ) ∩ Vr = ∅), is named
agent-closed (resp., variable-closed). If ϕ is both agent- and variable-closed, it
is named sentence. By snt(ϕ) we denote the set of all sentences that are sub
formulas of ϕ.
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2.3 Semantics

Similarly as in FOL, the interpretation of a formula makes use of an assignment
function which associates placeholders to some elements of the domain. In par-
ticular, an assignment is a (possibly partial) function χ ∈ Asg � (Vr∪Ag)⇀ Str
mapping variables and agents to strategies. An assignment χ is complete iff it
is defined on all agents, i.e., Ag ⊆ dom(χ). In this case, it directly identifies
the profile χ�Ag given by the restriction of χ to Ag. In addition, χ[e $→ σ],

with e ∈ Vr ∪ Ag and σ ∈ Str, is the assignment defined on dom(χ[e $→ σ]) �
dom(χ) ∪ {e} which differs from χ only in the fact that e is associated with σ.
Formally, χ[e $→ σ](e) = σ and χ[e $→ σ](e′) = χ(e′), for all e′ ∈ dom(χ) \ {e}.

The semantics of SL is defined as follows.

Definition 4. Semantics. - Given a CGS G, for all SL formulas ϕ, states s ∈
St, and an assignment χ ∈ Asg with free(ϕ) ⊆ dom(χ), the modeling relation
G, χ, s |= ϕ is inductively defined as follows.

1. G, χ, s |= p if p ∈ ap(s), with p ∈ AP.
2. Boolean operators are interpreted as usual.
3. For a variable x ∈ Vra, it holds that:

(a) G, χ, s |= 〈〈x〉〉ϕ if there exists an a-coherent strategy σ ∈ Str such that
G, χ[x $→ σ], s |= ϕ;

(b) G, χ, s |= [[x]]ϕ if for all a-coherent strategies σ ∈ Str it holds that
G, χ[x $→ σ], s |= ϕ.

4. G, χ, s |= (a, x)ϕ if χ(x) is coherent w.r.t. a and G, χ[a $→ χ(x)], s |= ϕ.
5. Finally, if the assignment χ is also complete, for all formulas ϕ, ϕ1, and ϕ2,

it holds that:
(a) G, χ, s |= Xϕ if play(χ�Ag, s) |=LTL Xϕ;
(b) G, χ, s |= ϕ1Uϕ2 if play(χ�Ag, s) |=LTL ϕ1Uϕ2;
(c) G, χ, s |= ϕ1Rϕ2 if, play(χ�Ag, s) |=LTL ϕ1Rϕ2.
where |=LTL denotes the usual LTL semantics over paths.

As the verification of a sentence ϕ does not depend on assignments, we omit
them and write G, s |= ϕ, for a generic s, and G |= ϕ when s is the initial state.

In the scheduler example, let ϕ = 〈〈x〉〉〈〈y1〉〉〈〈y2〉〉[[z]](φ1 ∧ φ2 ∧ φ3) where:
φ1 = (A, x)(P1, y1)(P2, z)G(c⇒ Fa1),

φ2 = (A, x)(P1, z)(P2, y2)G(c⇒ Fa2),

φ3 = [(A, x)(P1, y1)(P2, z)F(c⇒ Xa1) ∨ (A, x)(P1, z)(P2, y2)F(c⇒ Xa2)] .

Informally, the formula ϕ expresses that, whenever a conflict arises, A has a
strategy x to avoid that one of the processes jeopardizes the other one by pre-
venting the latter to access the resource. Moreover, it requires that a processes
will suddenly get the resource (i.e., a step after the conflict arises).

It is easy to see that ϕ is satisfied in I. Indeed, the arbiter strategy consists in
alternating the access to the resource between the two processes, while they have
to request it at most twice. Then, depending on an initial precedence, when the
first conflict arises one of the two processes obtains the resource in the next state.
Note that ϕ requires a unique strategy for the arbiter in order to coordinate with
both processes independently. Therefore, it cannot be expressed in ATL

�.
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2.4 Fragments

Strategy Logic allows to freely compose LTL operators, bindings and strategy
quantifiers. Such an expressiveness comes at a price of a NonElementaryTime

complexity for the model checking problem. Therefore, it has been natural to
investigate some syntactical fragments that can exhibit a better complexity.

A quantification prefix over a set V ⊆ Vr is a finite word ℘ ∈ {〈〈x〉〉, [[x]] :
x ∈ V}|V| of length |V| such that each variable x ∈ V occurs just once in ℘.
By Qn(V) we indicate the set of quantification prefixes over V, whereas 〈〈℘〉〉
(resp. [[℘]]) denote the set of variables occurring existentially (resp. universally)
quantified in ℘. Similarly, a binding prefix over V is a word � ∈ {(a, x) : a ∈
Ag ∧ x ∈ V ∩ Vra}|Ag| such that each agent in Ag occurs exactly once in �. By
Bn we indicate the set of all binding prefixes.

Definition 5. Fragments. - Boolean Goal SL (SL[bg] for short) is defined by
the following grammar:

ϕ ::= LTL(ϕ) | ℘ψ,

ψ ::= �ϕ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ,

where LTL(ϕ) stands for the usual LTL grammar and ℘ quantifies over all free
variables of ψ. The One Goal SL (SL[1g]), Conjunctive Goal SL (SL[cg]) and
Disjunctive Goal SL (SL[dg]) are obtained from SL[bg] by restricting ψ to a
single goal �ϕ, a conjunction of goals and a disjunction of goals, respectively.

The relevance of the Boolean Goal fragment derives from the fact that the ma-
jority of strategic notions (e.g. Nash and Dominant equilibria) resides in this
fragment. However, the precise complexity of the model checking problem is
still an open issue, whereas SL[1g], SL[cg] and SL[dg] have been proved to be
2ExpTime-complete w.r.t. the length of the formula and PTime-complete
w.r.t. the size of the model.

3 Behavioral Semantics

In this section we formalize the behavioral semantics. First of all, we provide an
intuition of the concept of behavioralness with an example.

Consider the 2-agent turn-based CGS in Figure 2, where square states are
ruled by agent α, while circle states by the opponent β. Note that each possible
play consists in a sequence alternating circle and square states. Moreover, α and
β are free to decide the truth value of p and q, respectively, in the next state.

Consider now the formula ϕ′ = 〈〈x〉〉[[y]]〈〈z〉〉((α, x)(β, y)Fq ←→ (α, z)(β, y)Xp).
Clearly, this formula can be satisfied as follows: if the binding (α, x)(β, y) deter-
mines a path that eventually makes q true, then in the first step the strategy z
has to choose the action 0, 1 otherwise. However, since β is free to decide whether
and when q will be true, the agent α cannot respond step by step but has, at
the beginning of the game, to guess about the future moves of β. In particular,
we say that ϕ′, even if satisfiable, is not behavioral.
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Roughly, a formula is behavioral if it can be satisfied by assigning strategies
that in all possible histories depend only on what the other strategies do on
the same history. Therefore, behavioralness establishes a locality principle in the
inter-dependence among strategies.

s0/∅

s1/p s2/∅

s3/q s4/∅ s5/q s6/∅

0 1

0 1 0 1

Fig. 2. A Critical Structure

Formally speaking, we need to introduce the
concept of dependence map which is analogous to
the Skolemization procedure in first order logic.
Then, we provide the notion of elementariness, a
general functional correspondent of what behav-
ioral means for strategies. Let ℘ ∈ Qn(V) be a
quantification prefix over a set V ⊆ Vr of vari-
ables. For each variable y ∈ 〈〈℘〉〉, we use Δ(℘, y) to
denote the set of universally quantified variables
x ∈ [[℘]] that precede y in ℘, that are the vari-
able on which y depends. A valuation of variables
over a set D is a partial function v : Vr⇀D. By
ValD(V) � V → D we denote the set of all valuation functions over D whose
domain is V.

A dependence map for ℘ over D is a function θ : ValD([[℘]]) → ValD(V)
satisfying the following properties: (i) θ(v)(x) = v(x), for all x ∈ [[℘]] and
(ii), for all v1, v2 ∈ ValD([[℘]]) and y ∈ 〈〈℘〉〉, if v1�Δ(℘,y) = v2�Δ(℘,y) then
θ(v1)(y)=θ(v2)(y), where v�Δ(℘,y) is the restriction of v to Δ(℘, y). By DMD(℘)
we denote the set of all dependence maps of ℘ over D. Intuitively, Item (i)
says that θ takes the same values of its argument w.r.t. the universal vari-
ables in ℘ and Item (ii) ensures that the value of θ w.r.t. an existential
variable y in ℘ only depends on variables in Δ(℘,y).

Due to the fundamental Skolem theorem reported in [19], for each SL formula
ϕ = ℘ψ and CGS G, we have that G |= ϕ iff there exists a dependence map θ ∈
DMStr(℘) such that G, θ(χ), s0 |= ψ, for all χ ∈ Asg such that [[℘]] ⊆ dom(χ). This
substantially characterizes SL semantics by means of the concept of dependence
map. Then, the behavioral semantics essentially constraints the set of dependence
maps that can be used to satisfy a formula by requiring them to be elementary.

Elementariness is a purely functional notion defined through the concept of
adjoint function. Let D, T, U, and V be four sets, and m : (T → D)U → (T →
D)V and m̃ : T → (DU → DV) two functions. Then, m̃ is the adjoint of m if
m̃(t)(ĝ(t))(x) = m(g)(x)(t), for all g ∈ (T → D)U, x ∈ V, and t ∈ T. Thus,
a function m transforming a map of kind (T → D)U into a new map of kind
(T → D)V has an adjoint m̃ if such a transformation can be done point wisely
w.r.t. the set T. Similarly, from an adjoint function it is possible to determine
the original function unambiguously. Hence, there is a one to one correspondence
between functions admitting an adjoint and the adjoint itself.

The formal meaning of the elementariness of a dependence map over generic
functions follows.

Definition 6. Elementary Dependence Maps. - Let ℘ ∈ Qn(V) be a quantifica-
tion prefix over a set V ⊆ Vr of variables, D and T two sets, and θ ∈ DMT→D(℘)



A Behavioral Hierarchy of Strategy Logic 157

a dependence map for ℘ over T→ D. Then, θ is elementary if it admits an ad-
joint function. EDMT→D(℘) denotes the set of all elementary dependence maps
for ℘ over T→ D.

At this point, as mentioned above, we introduce a notion of behavioral satis-
fiability, in symbols |=B, which requires the elementariness of dependence maps
over strategies.

Definition 7. Behavioral Semantics. - Let G be a CGS and ϕ = ℘ψ an SL

sentence where ψ is agent-closed and ℘ ∈ Qn(free(ψ)). Then, G, s |=B ϕ iff there
exists a dependence map θ ∈ EDMStr(℘) such that G, θ(χ), s |= ψ, for all χ ∈ Asg
such that [[℘]] ⊆ dom(χ).

Observe that, differently from the classic semantics, the quantifications in a
prefix are not treated individually but as an atomic block. This is due to the
necessity of having a strict correlation between the point-wise structure of the
quantified strategies.

4 Alternating-Goal Strategy Logic

We now introduce Alternating-Goal Strategy Logic (SL[ag], for short), which we
prove to have a behavioral semantics and an elementary model-checking problem.

4.1 Syntax

We start introducing the syntax of SL[ag], which extend both SL[cg] and SL[dg]

by allowing to nest the Boolean connectives through a right-linear grammar.

Definition 8 (SL[ag] Syntax). The syntax of SL[ag] is defined as follows:

ϕ ::= LTL(ϕ) | ℘φ,
φ ::= �ϕ | �ϕ ∧ φ | �ϕ ∨ φ,

where ℘ ∈ Qn(free(φ)).

A sentence is principal if it is of the form ℘φ, whereas it is basic in case the
matrix φ generated by the second rule does not contain any further quantification.
Also, with bnd(φ), we mean the set of all bindings occurring in φ.

The introduced logic SL[ag] allows to identify two dual chains of fragments,
called conjunctive-chain and disjunctive-chain, of which SL[cg] and SL[dg] are
the base case. To give an intuition, by using an analogy to the definition of
classic dual hierarchies, each level i in a chain is built recursively by making use
of formulas at level i− 1 of the other one. To make this concept formal, we first
need to introduce some notions that will be also useful in the following.

In the following, by alternating combination over a given set of elements E, we
simply mean a syntactic expression obtained by the grammar η := e | e∧η | e∨η,
where e ∈ E. The set of all these combinations is denoted by AC(E). In addition,
AC(E, k) ⊆ AC(E) indicates the subset of those combinations having the number
of alternation between the connectives ∧ and ∨ bounded by k ∈ N. Finally,
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sup : BC(E) → 2E is the function assigning to each combination η ∈ BC(E) its
support sup(η) ⊆ E, i.e., the set of elements on which it is built. Furthermore, by
means of its overloading sup : BC(E)×N→ 2E, we also denote the set sup(η, k) ⊆
sup(η) of elements occurring in η at level k ∈ N. As an example, consider the
combination η = e1 ∧ (e2 ∨ e3 ∨ (e4 ∧ e5)) ∈ AC(E, 3) over E = {ei : i ∈ N}. It is
immediate to see that sup(η) = {e1, e2, e3, e4, e5} and sup(η, 2) = {e2, e3}.

Observe that every matrix φ of an SL[ag] principal sentence ℘φ is an alter-
nating combination over the set of goals {�ϕ : � ∈ Bn ∧ ϕ ∈ SL[ag]}. From this
fact, we can easily derive the existence of a whole hierarchy of logics of which
SL[cg] and SL[dg] are just the base case. Indeed, for each k ∈ N, we can define
the logics SL[k-cg] and SL[k-dg] as the fragments of SL[ag] obtained by only
admitting matrices φ starting with a conjunction and a disjunction, respectively,
and having alternation level bounded by k. Note that the sentence used as an
example in Subsection 2.3 is a basic sentence of SL[2-cg].

4.2 Solution

We finally describe a polynomial reduction of the model-checking problem for
SL[ag] to the same problem for SL[1g]. This reduction provides us with both
a proof of the behavioral semantics and a decision procedure whose complex-
ity is not higher than the one for ATL

�, i.e., 2ExpTime in the length of the
specification and PTime in the size of the structure under analysis.

The reduction first consists of a conversion of the original CGS G, on which
we want to behaviorally verify the SL[ag] sentence ϕ = ℘φ, in a new one G�,
in which we can keep track at the same time of a group of plays induced by
ϕ, due to the different strategy bindings inside φ, that share a common history
up to the current moment. Then, we check on the obtained structure a suitable
SL[1g] sentence ϕ� that, within its unique induced play, simulates those ones
of the original sentence ϕ. In particular, every Boolean connective occurring
in φ is replaced by a corresponding fresh agent in the new structure and their
alternation is simply simulated by the one of the strategy quantifiers associated
with these agents by means of the unique binding inside ϕ�.

To better describe the whole reduction, the transformation from G to G� is
itself split in a conversion of the underlying arenas (see Construction 1) followed
by a conversion of the associated labelings and initial states (see Construction 2).

The high-level idea behind the first construction is to build a composed arena
A� in which each original state is paired with an alternating combination of
bindings representing the part of the matrix φ of the original sentence ϕ = ℘φ
to be still verified. The set of new agents is split into two components. First, we
have the free variables of φ, called variable agents, that simulate the behavior
of the original agents by choosing their actions between those of the original
structure. Then, we have a fresh set of agents, one for each alternation level
of the matrix, called numeric agents, that simulates the Boolean connective
occurring in φ. Every one of the latter can either choose to verify a binding
belonging to its own level or to pass the control to the successive agent. Finally,
the new transition function just combines what the original one does for the
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binding chosen by the last active numeric agent with the update of the current
combination. In particular, the latter is obtained by restricting the combination
to the set of all bindings that go together in the same determined direction.

Construction 1 (Arena Conversion). From an arena A = 〈Ag,Ac, St, tr〉
and a k-bounded alternating combination ηI ∈ AC(B, k) over a set of bindings
B ⊆ Bn(Ag) with k ∈ N, we build the composed arena A� � 〈Ag�,Ac�, St�, tr�〉
as follows:

– the new agents in Ag� � {x ∈ Vr : ∃� ∈ B .x ∈ rng(�)}∪ [1, k] are represented
by all variables bound by some binding and a range of numbers indicating all
possible levels of alternation in ηI ;

– the new actions in Ac� � Ac∪B∪{⊕} are split into the original actions used
by the variable agents and the bindings together with a fresh symbol used by
the numeric agents;

– the new states in St� � St × AC(B, k) are pairs of original states and k-
bounded alternating combinations over B indicating which parts of the initial
combination ηI have to be verified from those states on.

For each new state s� = (s, η) ∈ St�, we can describe its set of active new
decisions: for all δ� ∈ Dc�, it holds that δ� ∈ dc�(s�) iff there exists a number
i ∈ [1, k] such that

– the numeric agents from 0 to i are the only ones active on δ�, i.e., [1, i] ⊆
dom(δ�) and ]i, k] ∩ dom(δ�) = ∅;

– all numeric agents up to i − 1 decide to give the control on the bindings to
the successive agent, i.e., δ�(j) = ⊕, for all j ∈ [1, i[;

– the numeric agent i chooses a binding occurring in the alternating combina-
tion η at level i, i.e., δ�(i) ∈ sup(η, i);

– the original decision δ� ◦ δ�(i) obtained by the composition of the actions
chosen by the variable agents with the binding chosen by the numeric agent
i is active on the original state s, i.e., δ� ◦ δ�(i) ∈ dc(s).

To define the new transition function tr�, we first need to introduce the projection
function ↓ : AC(B, k)×2B → AC(B, k) that, given a combination η ∈ AC(B, k) and
a set of bindings B′ ⊆ B, returns a new combination η↓B′ obtained by deleting
from η all bindings not in B′. At this point, for each state s� = (s, η) ∈ St� and
decision δ� ∈ dc�(s�) with i � max(dom(δ�) ∩ [1, k]), we define the transition
function tr�(δ�)(s�) � (s′, η′) as follows:

– the original state s′ is obtained as the successor of s following the original
decision δ� ◦ δ�(i) obtained by functionally composing the new decision δ�

with the function from Ag to Vr derived from the binding δ�(i), i.e., s′ �
tr(δ� ◦ δ�(i))(s);

– the combination η′ is obtained from η by removing all bindings whose plays
do not pass through the original state s′, i.e., η′ � η↓{� ∈ sup(η) : s′ =
tr(δ� ◦ �)(s)}, where δ� ◦ � is the original decision obtained by composing the
new decision δ� with the function � : Ag→ Vr derived from the binding.
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To complete the conversion of G into the composed G�, we need to define
both the initial state and the labeling of the latter structure. Obviously, the
new initial state just ensures that all bindings are pointing to the original initial
state, since the corresponding plays have to start synchronously. This is done by
associating it with the original alternating combination. As the labeling concerns,
to distinguish the bindings that are active on a given new state from those that
are not, we further label it with the support of the associated combination.

Construction 2 (Structure Conversion). From a CGS G =〈A,AP, ap, sI〉
and a k-bounded alternating combination ηI ∈ AC(B, k) over a set of bindings
B ⊆ Bn(Ag) with k ∈N, we build the composed CGS G� � 〈A�,AP�, ap�, s�I〉
as follows:

– the arena A� is built as in Construction 1;
– the new atomic propositions in AP� � AP∪B are represented by the original

atomic propositions augmented with the bindings;
– the new labeling function ap� assigns to each new state s� = (s, η) ∈ St�

the set ap�(s�) � ap(s) ∪ sup(η) of original atomic propositions holding in s
together with the bindings in the support of the current combination η;

– the new initial state s�I � (sI , ηI) is constituted by the original initial state
extended with the combination ηI .

Finally, we need to introduce the SL[1g] sentence ϕ� = ℘���ψ� to verify on the
composed structure G�. Since this has to simulate the original SL[ag] sentence
ϕ = ℘φ, they have to share the same quantification prefix ℘. Moreover, we need
to suitably quantify the strategies to associate with the numeric agents, in order
to act in place of the Boolean connective inside φ. In the end, the LTL temporal
goal ψ� is directly obtained from φ by replacing all bindings occurring in it with
an apposite check of its presence in the current play.

Construction 3 (Sentence Conversion). From an SL[k-cg] (resp., SL[k-dg])
basic sentence ϕ = ℘φ, with k ∈ N, we obtain the SL[1g] basic sentence ϕ� �
℘���ψ� as follows:

– the new quantification prefix ℘� � ℘℘′ is the extension of the original one
℘ with the strategy quantifications of the numeric agents whose type depends
on the alternation level, i.e., ℘′ �

∏k
i=1 Qni, with Qni � 〈〈i〉〉, if i ≡ 0 (mod 2)

(resp., i �≡ 0 (mod 2)), and Qni � [[i]], otherwise;

– the new injective binding �� �
∏

x∈free(φ)(x, x) ·
∏k

i=1(i, i) simply associates
each variable quantified in ℘� with the new agent having the same name;

– the LTL formula ψ� is derived from φ by substituting each goal �ψ with either
G�∧ψ or G�→ ψ in dependence of the level in which it resides, i.e., ψ� � φ, 0,
where the translation function · : X× N→ LTL is defined as follows:
• �ψ, i�G�∧ψ, if i ≡ 0 (mod 2) (resp., i �≡ 0 (mod 2)), and �ψ, i�G�→ ψ,
otherwise, where � ∈ B, ψ ∈ LTL, and i ∈ N;

• Cnhφh, i � Cnhφh, i+ 1, where Cn ∈ {
∧
,
∨
}, φh ∈ X, and i ∈ N;

where X is the set of all matrices of SL[ag].
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We are now able to state the fundamental result about the reduction of the
verification problem for SL[ag]. In the following, we shall then show how to use
this reduction as a crucial building block on which to base the model-checking
procedure for this fragment of SL.

Theorem 1 (SL[ag] Reduction). Let G be a CGS and ϕ = ℘φ an SL[ag]

basic sentence. Also, let G� be the composed CGS built in Construction 2, where
ηI ∈ AC(bnd(φ)) is the alternating combination over the set of bindings occurring
in the matrix φ obtained by removing in the latter the LTL temporal part, and ϕ�

the SL[1g] basic sentence obtained in Construction 3. Then, G |=B ϕ iff G� |= ϕ�.

Proof. First observe that, once the if direction is proved, the only if direction
immediately follows. Indeed, suppose by contradiction that G |=B ϕ but G� �|= ϕ�.
Then, we have that G� |= ¬ϕ�, so, G� |= (¬ϕ)�.1 At this point, by the if direction,
we have G |=B ¬ϕ, but this is impossible.

To prove that G� |= ϕ� implies G |=B ϕ, we simply show how to construct an
elementary dependence map θ for the latter modeling relation starting from the
one θ� of the former. Obviously, to do this we make use of the fact that SL[1g]
is behavioral, i.e., G� |=B ϕ

�.
As first thing, we need a partial function ext : Hst ⇀ Hst�, which maps each

history in the original structure G used to verify the sentence ϕ to the corre-
sponding one in the composed structure G�, where the extension of the original
states with the alternating combinations is done coherently with the decision
chosen by the agents. Formally, we have that:

1. the original initial state sI is mapped to the new initial state (sI , ηI), i.e.,
sI ∈ dom(ext) and ext(sI) � (sI , ηI);

2. for each original history ρ ∈ dom(ext) already mapped to the new history
ρ� � ext(ρ) having s� = (s, η) � lst(ρ�) as last state and for all new decisions
δ� ∈ dc�(s�) having i � max(dom(δ�) ∩ N) as active numeric agent, it holds
that ρ · s′ ∈ dom(ext) and ext(ρ · s′) � ρ� · (s′, η′), where:
– the original state s′ is obtained as the successor of s following the original

decision δ� ◦ δ�(i), i.e., s′ � tr(δ� ◦ δ�(i))(s);
– the combination η′ is obtained from η by removing all bindings whose

plays do not pass through the the original state s′, i.e., η′ � η↓{� ∈ sup(η)
: s′ = tr(δ� ◦ �)(s)}.

Now, we can easily define the elementary dependence map θ by means of the
adjoint functions as follows: θ̂(ρ) � θ̂�(ext(ρ)), for all ρ ∈ dom(ext). Observe

that, we do not need to prescribe any constraint on the value θ̂(ρ), for ρ ∈
Hst\dom(ext), since these histories are not used in the verification of the sentence.

At this point, it just remains to prove that G, θ(χ), sI |= φ, for all χ ∈ Asg
such that dom(χ) = [[℘]]. We leave this as an exercise.

By exploiting the above result, we can derive that classic and behavioral
semantics for SL[ag] are equivalent, as stated in the following corollary.

1 By ¬φ, we actually mean the sentence in positive normal form equivalent to it.



162 F. Mogavero, A. Murano, and L. Sauro

Corollary 1 (SL[ag] Behavioral Semantics). Let G be a CGS and ϕ an
SL[ag] sentence. Then, G |= ϕ iff G |=B ϕ.

Proof. The proof simply proceeds by structural induction on the nesting of prin-
cipal sentences. Here, we just show the base case, where ϕ = ℘φ is a basic
sentence, and leave the easier inductive case to the reader. The if direction fol-
lows by definition of behavioral semantics. For the only if direction, we make
use of a reasoning similar to the one done we have done in the previous theorem.
Suppose by contradiction that G |= ϕ but G � |=B ϕ. Then, by Theorem 1, we have
that G� �|= ϕ�, so, G� |= ¬ϕ�, which in turn implies G� |= (¬ϕ)�. By using again
the previous theorem, we have G |=B ¬ϕ. Thus, by the if direction, we derive
that G |= ¬ϕ, which is impossible.

By inductively applying the reduction previously described on every principal
subsentence of a given sentence of interest, we can reduce the model-checking
problem of SL[ag] to a linear number of calls to the already known SL[1g] model-
checking procedure [19, 22, 23]. Observe that, at each call, the arena conversion
always applies to the original one. Instead, the structure conversion applies to a
CGS augmented with a fresh proposition for each subsentence already analyzed.
As for the CTL

� model-checking procedure, the extra propositions only cost a
linear factor in the computational complexity of the analyzed problem. From
this, the following result directly derives.

Theorem 2 (Alternating Goal Complexity). The model-checking problem
of SL[ag] is 2ExpTime-complete in the length of the specification and PTime-
complete in the size of the structure.

Proof. As the lower bounds concern, the related results derive directly from the
ATL

� ones. Indeed, SL[ag] subsumes SL[1g], which in turn subsumes ATL
�.

For the upper bound, consider a CGS G and an SL[ag] principal sentence
ϕ = ℘φ. If ϕ is basic, by exploiting the result of Theorem 1, we have that G |= ϕ
iff G� |= ϕ�. Therefore, the time complexity of the model-checking problem for ϕ
against G is the sum of the time required by the reduction plus that of the same
problem for ϕ� against G�. Both the time for building G� and its size are linear
in the size of G and exponential in the number of bindings occurring in ϕ. The
building of ϕ�, instead, is simply linear in the length of ϕ. The time complexity
of the model checking for SL[1g], is known to be 2ExpTime-complete in the
length of ϕ� and PTime-complete in the size of G� [19]. Thus, the thesis for
this case immediately follows.

If ϕ is not basic, we inductively solve the problem for all the immediate
principal subsentences. Then, we enrich the labeling of G with fresh atomic
propositions indicating whether a given subsentence holds in a certain state.
Finally, we apply the procedure for the previous case on the new basic sentence
ϕ′ obtained from ϕ by substituting each immediate principal subsentence with
the related atomic proposition. Hence, the thesis follows in this case too.
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5 Discussion

In a recent paper titled “What Makes ATL
� Decidable? A Decidable Fragment

of Strategy Logic” [19], it has been argued for the first time that ATL
� enjoys

several positive properties thanks to its intrinsic behavioral semantics. In effect,
several attempts of extending ATL

� suffer from the fact that a choice of a
strategy may depend on future strategies as well as on those over counterfactual
plays. This is the case for both versions of Strategy Logic introduced in [6, 7]
and [23].

As extensions of ATL
� like SL are indispensable to represent key game-

theoretic properties such as Nash equilibria and sub-game perfect equilibria2,
while the non-behavioral semantics is problematic to be implemented in prac-
tice, great effort has been devoted to find powerful fragments of SL for which
the behavioral semantics suffices to evaluate the truth value of a formula.

Chronologically, the Boolean-Goal (SL[bg]) and the One-Goal (SL[1g]) frag-
ments [19, 20], are the first two ones that have been investigated in this respect.
It has been shown that, while SL[1g] enjoys all the main theoretic-properties of
ATL

�, including the behavioralness, the subsuming fragment SL[bg] does not.
Notably, the model-checking problem for SL[1g] is 2ExpTime-complete (as
for ATL

�), while for SL[bg] the best existing algorithm requires non-elementary
time. This has borne out the conjecture that dealing with a fragment holding
a behavioral semantics is a sufficient condition to ensure an elementary proce-
dure for such a decision problem. To enforce this, in [21], the Conjunctive-Goal
(SL[cg]) and the Disjunctive-Goal (SL[dg]) fragments of SL[bg] have been intro-
duced. Indeed, it has been shown that these logics strictly subsume SL[1g], are
behavioral, and still retain a 2ExpTime-complete model-checking problem.

In this paper, we show that SL[cg] and SL[dg] are just at the bottom place
of a hierarchy of behavioral fragments strictly contained in SL[bg] and that the
conjecture still holds for all of them. Formally, we introduce Alternating-Goal
Strategy Logic (SL[ag]) that imposes a precise alternation over the nesting of the
Boolean connectives in SL[bg]. Precisely, in SL[ag], whenever there is a conjunc-
tion (disjunction), at most one of its conjunct (resp., disjunct) can be a disjunc-
tion (resp, conjunction). Note that allowing two instead of one conjunct/disjunct
in the above definition would fall in a non-behavioral semantics [19].

As a future work, there are two lines of research we would like to follow. One is
to prove the truth of the mentioned conjecture and possibly investigate whether
it is also a necessary condition. The other one (also related to the necessary
part of the conjecture) is to study the exact complexity of the model checking
question of SL[bg], left open for some years now.

Acknowledgments. We thank an anonymous referee of the workshop LAMAS
2014 for having inspired us to introduce SL[ag].

2 Note that sub-game perfect equilibria cannot be represented in the restricted turn-
based two-player Strategy Logic version of Chatterjee, Henzinger and Piterman [10].
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1. Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-Time Temporal Logics with
Irrevocable Strategies. In: TARK 2007, pp. 15–24 (2007)
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Abstract. We present a model checking algorithm for alternating-time
temporal logic (ATL) with imperfect information and imperfect recall.
This variant of ATL is arguably most appropriate when it comes to
modeling and specification of multi-agent systems. The related variant
of model checking is known to be theoretically hard (ΔP

2 - to PSPACE-
complete, depending on the assumptions), but virtually no practical at-
tempts at it have been proposed so far. Our algorithm searches through
the set of possible uniform strategies, utilizing a simple reduction tech-
nique. In consequence, it not only verifies existence of a suitable strategy
but also produces one (if it exists). We validate the algorithm experi-
mentally on a simple scalable class of models, with promising results.

Keywords: model checking, alternating-time logic, imperfect informa-
tion, strategy synthesis.

1 Introduction

There is a growing number of works that study syntactic and semantic vari-
ants of strategic logics, in particular the alternating-time temporal logic ATL.
Conceptually, the most interesting strand builds upon reasoning about temporal
patterns and outcomes strategic play, limited by information available to the
agents. The contributions are mainly theoretical, and include results concerning
the conceptual soundness of a given semantics of ability [20,1,12], meta-logical
properties [7], and the complexity of model checking [20,11,10]. However, there
is very little research on actual use of the logics, in particular on practical algo-
rithms for reasoning and/or verification.

This is somewhat easy to understand, since model checking of ATL variants
with imperfect information has been proved ΔP

2 - to PSPACE-complete for
agents playing positional (a.k.a. memoryless) strategies [20,11] and undecidable
for agents with perfect recall of the past [9]. Moreover, the imperfect information
semantics of ATL does not admit fixpoint equivalences [7], which makes incre-
mental synthesis of strategies impossible, or at least cumbersome. Still, some
other results [10,21] suggest that practical model checking of strategies with im-
perfect information might not be actually that harder than the standard perfect

N. Bulling et al. (Eds.): CLIMA XV, LNAI 8624, pp. 166–182, 2014.
c© Springer International Publishing Switzerland 2014



Synthesis and Verification of Uniform Strategies for Multi-agent Systems 167

information case, for which successful algorithms and model checkers already
exist [6,3,13,17,16]. Either way, we believe that the scientific approach requires
an extensive study of the practical hardness of the problem. This paper is our
first step in that direction.

We propose a novel model checking algorithm for a fragment of alternating-time
temporal logic with imperfect information and memoryless strategies (ATLir).
When model checking a formula of type 〈〈a〉〉γ, the algorithm tries to synthesize
an executable (i.e., uniform) strategy for agent a that would enforce property γ.
The task requires to search through exponentially many strategies in the worst
case; however, we build on some observations that lead to a reduction of the search
space for certain instances of the problem. In consequence, a significant decrease in
complexity is possible for many practical instances.

Our algorithm comes in two variants: one based on exhaustive search through
the space of all uniform strategies, and another one based on a simple con-
structive heuristic. The latter variant tries to construct the strategy by “blindly”
following a single path in the model. We evaluate both variants experimentally
on a simple scalable class of models. In terms of comparison to existing results
we have faced a difficult problem, since there are virtually no results to compare
with. The only existing tool for MAS that verifies existence of executable strate-
gies under imperfect information is an experimental version of MCMAS [19]. We
compare the performance of our algorithm to that version, with very promising
results. Moreover, some model checkers admit imperfect information models but
use perfect information (i.e., possibly non-executable) strategies in the seman-
tics [3,17,16]. We compare the performance of our algorithm to one of those tools
(the standard version of MCMAS [16]) in order to get a grip on how imperfect
information changes the practical verification complexity. The only other model
checking algorithm for ATLir that we know of [8] has been studied in [18], with
results that suggested bad performance.

2 Preliminaries

We begin by presenting the syntax and semantics of alternating-time temporal
logic, as well as defining the model checking problem formally.

2.1 ATL: What Agents Can Achieve

Alternating-time temporal logic (ATL) was proposed in [4,5] for reasoning about
abilities of agents in multi-agent systems. Intuitively, formula 〈〈A〉〉ϕ expresses
that the group of agents A has a collective strategy to enforce ϕ. The formal
syntax of ATL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉X ϕ | 〈〈A〉〉Gϕ | 〈〈A〉〉ϕU ϕ.

where p is an atomic proposition, A is a subset of agents, and the operators X ,
G , and U stand for “in the next state”, “always from now on”, and “strong until”,
respectively. Additional operator F (“eventually”) can be defined as F ϕ ≡ �U ϕ.
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Fig. 1. Robots and carriage: (a) concurrent game structure M1; (b) iCGS M2

ATL is interpreted in a variant of transition systems where transitions are
labeled with combinations of actions, one per agent. Formally, a concurrent game
structure is a tuple M = 〈Σ,Q,Π, π, d, δ〉, where: Σ = {1, . . . , k} is a finite
nonempty set of players (also called agents), Q is a finite nonempty set of states,
π : Q → 2Π is the labeling function. Moreover, for each player a ∈ {1, . . . , k}
and state q ∈ Q, da(q) ≥ 1 gives the number of moves available to a at q; we
identify the moves of a at q with the numbers 1, . . . , da(q). For each state q ∈ Q,
a move vector at q is a tuple 〈j1, . . . , jk〉 such that 1 ≤ ja ≤ da(q) for each
player a. Furthermore, D(q) denotes the set {1, . . . , d1(q)}× . . .×{1, . . . , dk(q)}
of move vectors. Finally, δ is the deterministic transition function that returns
a state q′ = δ(q, j1, . . . , jk) for each q ∈ Q and 〈j1, . . . , jk〉 ∈ D(q).

The meaning of ATL formulae is based on the notion of a strategy. A mem-
oryless strategy for player a ∈ Σ is a function sa : Q → N that maps every
state q in the model to an action label sa(q) ≤ da(q).1 A collective strategy for
agents A ⊆ Σ is simply a tuple of strategies, one per agent in A. Each collective
strategy SA induces a set of computations (paths, runs). Formally, by out(q, SA)
we will denote the set of infinite sequences of states that can occur from state q
on when the players in A follow strategy SA and the other players are free to do
any actions. The semantic relation for ATL is defined inductively as follows:

– M, q |= p, for proposition p ∈ Π , iff p ∈ π(q)
– M, q |= ¬ϕ iff M, q �|= ϕ
– M, q |= ϕ1 ∨ ϕ2 iff M, q |= ϕ1 or M, q |= ϕ2

– M, q |= 〈〈A〉〉Xϕ iff there exists a collective strategy SA such that for all
computations λ ∈ out(q, SA), we have M,λ[1] |= ϕ

– M, q |= 〈〈A〉〉Gϕ iff there exists a collective strategy SA such that for all
computations λ ∈ out(q, SA), and all positions i ≥ 0, we have M,λ[i] |= ϕ.

– M, q |= 〈〈A〉〉ϕ1Uϕ2 iff there exists SA such that for all λ ∈ out(q, SA) there
is i ≥ 0 with M,λ[i] |= ϕ2 and for all 0 ≤ j < i we have M,λ[j] |= ϕ1.

1 We depart from the assumption in [4,5] that agents have perfect recall of past
situations. Note that both types of strategies (memoryless and perfect recall) yield
equivalent semantics in case of standard ATL [5,20].
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Example 1. An example concurrent game structure is depicted in Figure 1a.
Some ATL formulae that hold in state q0 of the model are: 〈〈1, 2〉〉F pos1 (robots
1 and 2 have a collective strategy to make the carriage eventually reach position
1), ¬〈〈1〉〉F pos1 (robot 1 cannot bring about it on its own), 〈〈1〉〉G¬pos1 (on the
other hand, robot 1 can singlehandedly avoid position 1 forever).

2.2 Abilities under Imperfect Information

The assumption that agents know the entire state of the system at each step of its
execution is usually unrealistic; similarly, assuming perfect recall is not always
practical [20,1,12]. The tension between perfect and imperfect information, as
well as between perfect and imperfect recall, gives rise to the four “classical”
semantic variants of ATL from [20]. On the level of models, we extend concurrent
game structures to imperfect information concurrent game structures (iCGS) by
adding indistinguishability relations ∼a⊆ Q × Q, one per a ∈ Σ. Intuitively
q ∼a q

′ iff a cannot distinguish q from q′. Then, local states of agent a can be
defined as equivalence classes of the indistinguishability relation, denoted [q]∼a .

In this paper, we are interested in the imperfect information + imperfect recall
variant (ATLir), with the following semantics. First, we require strategies to be
uniform, i.e., to specify the same choices in indistinguishable states; formally: if
q ∼a q

′ then sa(q) = sa(q
′). This ensures that the choice of an action does not

depend on information that is inaccessible to the agent. Secondly, a collective
strategy is uniform iff it consists only of uniform individual strategies. Thirdly,
we update the semantic clauses from Section 2.1 by requiring all strategies to be
uniform. Note that this semantics differs slightly from the one in [20] in that it
looks only at the outcome paths starting from the current objective state of the
system. We refer the interested reader to [7,2] for the philosophical discussion,
and point out that it does not affect our performance results in Section 5, as
the models in the experiments have a relatively small number of global states
indistinguishable from the objective initial state. Moreover, model checking in
the “subjective” semantics from [20] can be easily simulated in our “objective”
semantics by having the environment agent inject nondeterminism on the first
transition. We omit further details for lack of space.

Example 2. An example iCGS is depicted in Figure 1b. Now, formula 〈〈1〉〉G¬pos1
does not hold in q0 anymore: in order to avoid state q1, robot 1 should wait in
q0 and push in q1, which is not allowed in a uniform strategy.

2.3 Model Checking Problem

The decision problem of local model checking is typically defined as follows.
Given a model M , an initial state q in the model, and a formula ϕ, determine
whether M, q |= ϕ. Model checking of ATL with perfect information is known
to be linear wrt the length of the formula and the number of global transi-
tions in the model [4,5]. Model checking of ATLir is much harder, namely ΔP

2 -
complete [20,11]. Moreover, for formulae with a single non-negated coalitional
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modality it becomes NP-complete [20]. This is mainly because fixpoint charac-
terizations of strategic modalities do not hold under imperfect information [7],
and hence purely incremental synthesis of winning strategies is not possible for
ATLir.

3 Towards ATLir Model Checking

As the starting point of our approach, we take the simple nondeterministic al-
gorithm from [20] that model-checks formula 〈〈A〉〉ϕ in M, q:

1. Guess nondeterministically a collective uniform strategy SA;
2. Perform CTL model checking of Aϕ (“for all paths ϕ”) in M † SA, q, where

M † SA denotes model M “trimmed” according to strategy SA.

For nested strategic modalities, the algorithm proceeds recursively (bottom-up).
In order to construct a working version of the algorithm, we need to determine

the order in which the space of solutions (i.e., strategies) will be searched. The
key to such determinization is a heuristic. With a good heuristic, we can hope
to achieve acceptable computation time at least for instances where a solution
exists. This has been experimentally observed for several classes of computation-
ally hard problems, most notably SAT. Our heuristic is based on three factors.
First, we reduce the search space by exploring some equivalences between strate-
gies. Secondly, we define a representation of strategies that minimizes the cost
of storing and processing a strategy, but even more importantly makes the al-
gorithm try simpler solutions first. Thirdly, we define a subclass of strategies
that are relatively simple to construct and verify – which yields an incomplete
but reasonably efficient variant of the model checking algorithm. We present the
ideas in detail in the remainder of this section.

3.1 Restricting the Search Space

In case of ATLir model checking, the solutions are strategies that a coalition can
use to enforce a property.2 Since the space of solutions is computationally large,
it is crucial for the algorithm to limit the search space as much as possible. We
limit the search space by identifying some equivalences between solutions.

Definition 1. For a modelM and strategy S for coalition A, we define a trimmed
model MS as a restriction of model M , where agents from coalition A have their
choices restricted by S. QS ⊆ Q will denote the set of states reachable in MS. We
will call QS the proper domain of strategy S in model M .

We also consider strategies that are not completely specified.

Definition 2. An incomplete strategy is a strategy represented by a partial
rather than total function, i.e., s : Q ⇀ N. As usual, the domain of s (dom(s))
is the subset of Q where the value of s is defined. The definitions of trimmed
model and proper domain can be easily extended to incomplete strategies.
2 From now on, when referring to strategies, we mean uniform memoryless strategies.
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In the naive approach, we can take the domain of a strategy to be the whole
Q. Note, however, that the assignment of actions for states in Q \QS does not
have any significance, because those states are never reached with strategy S.
We observe that strategies S1, S2 that assign identical actions in the same proper
domain QS1 = QS2 can be considered equivalent, regardless of actions assigned
in Q\QS1. The equivalence class can be represented by a partial function which
is only defined for the relevant states in Q, i.e., for states in QS .

Definition 3. An incomplete strategy s is proper iff dom(s) = Qs.

Since only proper strategies are worth considering, we can significantly limit
the searched strategy space by treating all strategies equivalent to S as a single
proper strategy. This single proper strategy can be viewed a representative of
an equivalence class of strategies. The size of each such equivalence class can be
described as ∏

a∈A

∏
[q]∼a∈[Q\QS]∼a

Act([q]∼a)

where Act([q]∼a) denotes the number of actions available for agent a in the
equivalence class of states [q]∼a .

3.2 Representation of Partial Strategies

Proper strategies are incomplete in the sense that they leave the actions at
unreachable states undefined. Still, in their proper domain, they are completely
deterministic. In many cases it is worth considering partial strategies that leave
some choices open, even in the reachable zone. The intuition is: in some states,
all choices work equally well, and thus it is not necessary to fix a deterministic
choice in those states.

Definition 4. A partial strategy for agent a in model M is a nondeterministic,
possibly incomplete strategy sa : Q ⇀ 2N such that, for each q ∈ dom(s), we have
either sa(q) = da(q) or sa is a singleton.

The explicit part of a partial strategy sa is the part of sa where sa(q) is
always a singleton. The implicit part of a partial strategy sa is the part of sa
where sa(q) = d(q). We will refer to the explicit and implicit parts of sa as
expl(sa) and impl(sa), respectively. Also, we will sometimes call dom(expl(s))
the explicit domain of s, and dom(impl(s)) the implicit domain of s.

Definition 5. We define the size of a strategy s as the number of indistin-
guishability classes of states contained in dom(s). A partial strategy s is empty
iff expl(s) has size 0. Conversely, s is fully determined iff impl(s) has size 0.

In a model M , the move function D determines the sets of actions available to
an agent in any state. A partial strategy can be seen as a possible restriction on
the function. An empty strategy is just a strategy that imposes no restriction. A
fully determined strategy, on the other hand, assigns a concrete action to every
relevant state. All other partial strategies have explicit assignments for some
states, and implicit for the others (according to the move function D).
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Example 3. Consider a model with 2 states Q = {color, noColor}, with a sin-
gle agent with 2 actions Act = {push, wait}. The move function in the model
permits the execution of both actions in both states.

An empty strategy ES is equivalent to the move function, i.e. it permits the
execution of both actions in both states as well. An example fully determined
strategy CS defined in the following way: CS(x) = {push if x = color, wait if x =
noColor} assigns a single action for all states in QS , leaving the implicit strategy
empty (of size 0). An example partial strategy PS defined in the explicit part
in the following way: PSexplicit(x) = {push if x = color} must have the implicit
domain cover the rest of states in QS, and therefore the implicit strategy is:
PSimplicit(x) = {{push, wait} if x = noColor}.

The above concepts are so far only specified for individual strategies. This
can be easily extended to coalitional strategies. A partial strategy for A ⊆ Σ is
simply a tuple of partial strategies for a ∈ A. It is empty iff all its components
are empty, fully determined iff all its components are determined, etc.

3.3 Looking for Strategies on a Path

As we will see in Section 5, restricting the search to proper strategies and starting
the synthesis from the empty partial strategy brings considerable computational
benefits. In many cases, however, the space of potential solutions is still huge.
In this section, we propose to consider a strict subclass of strategies that fix
deterministic choices on a single path only, and leave choices off the path open.
Our ultimate heuristic will be to look at such strategies only, which should work
well for models with a limited degree of nondeterminism.

Definition 6. We call a sequence of states (q1, . . . , qn) a line iff there is a tran-
sition in M between every qi and qi+1.

We call a line (q1, . . . , qn) a lasso in M iff there is a transition between qn
and some qi, 1 ≤ i ≤ n. Note that a lasso implicitly defines an infinite path that
starts with (q1, . . . , qn) and then cycles in the periodic part.

Definition 7. A partial strategy S is path-based iff dom(expl(S)) is a lasso in
MS. Moreover, S is bounded path-based iff dom(expl(S)) is a line in MS.

4 The SMC Model Checker

SMC (Strategic Model Checker)3 is a software tool designed for model checking
ATLir and synthesis of uniform strategies.

The current version of SMC can model-check ATLir formulae that contain at
most a single coalitional modality. More precisely, the following formulae classes
are supported:

3 SMC is available online at http://icr.uni.lu/wjamroga/smc.html

http://icr.uni.lu/wjamroga/smc.html
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– ϕ
– 〈〈A〉〉Gϕ
– 〈〈A〉〉Fϕ
– 〈〈A〉〉Xϕ
– 〈〈A〉〉ϕUϕ′

where ϕ, ϕ′ are boolean formulae. Extension to the full logic of ATLir is planned
as the next step. We note, however, that the importance of formulae with nested
modalities is rather limited. For instance, formula 〈〈A〉〉F 〈〈B〉〉G p refer to A’a
ability to enable some ability of B – in this case, to maintain p forever. These
kinds of properties are specified rather seldom; much more often, one wants to
make sure that some agents A can bring about a factual state of affairs p (e.g.,
by specifying and verifying formula 〈〈A〉〉F p).

In this section, we present the algorithm behind SMC. We start with a general
description, then provide a more detailed description of the most important step,
and eventually an in-depth description of that step.

4.1 High-Level Description of the Algorithm

The general structure of the algorithm is as follows:

1. For formula of type 〈〈C〉〉ϕ, synthesize a previously unverified strategy SC to
be verified;

2. Model-check the CTL formula Aϕ in the trimmed model M † SC ;
3. If step 2 returns true then terminate returning true together with the strat-

egy SC ;
4. If all strategies have been verified, return false and terminate;
5. Else, return to start.

Step 1 (strategy synthesis step) is the most significant, as step 2 can be per-
formed with the well-known fixpoint model checking algorithm for CTL, with
a slightly modified pre-image function that operates on iCGS’s. Points 3–5 are
simple binary decision steps. Thus, our next move is to elaborate on step 1:

1. Start with an empty partial strategy and with the initial state;
2. In a loop, generate potential partial strategies by fixing actions for newly dis-

covered states that do not have already fixed actions. These newly discovered
states are required to be reachable with the employment of this strategy;

3. Continue the above step until a successful strategy is found or all strategies
have been explored.

4.2 Low-Level Description of Strategy Synthesis

In order to implement the strategy synthesis step, we define the following struc-
tures. A strategy task ST = 〈F,U, S〉 consists of:

1. The set of fixed states F . For any state in F we have already assigned actions
for all agents in the explicit domain of the partial strategy S;
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2. The set of unchecked states U . States in U may have no explicit actions
assigned in S yet for some or all of the agents;

3. The partial strategy S.

A strategy tasks list STL is a list of strategy tasks. We will implement STL as
a sequential data structure (e.g. queue or stack) that stores the strategy tasks
to be processed in the future.
The list is initialized with STL0 = {〈∅, {initialState}, emptyPartialStrategy〉}.
The strategy synthesis algorithm proceeds as follows:

1. If STL = ∅, terminate with answer no strategy found. Otherwise remove a
strategy task from STL in order to process it. This current strategy task
will be referred to as CST = 〈F,U, S〉;

2. Fix a current state CS ∈ U and do F = F ∪ {CS}, U = U \ {CS};
3. Generate all possible children strategies for S, reachable by fixing a previ-

ously unfixed action for the current state CS. (Note: This step generates
strategies if at least one of the agents in the checked coalition has an unfixed
action in the current state CS. We do not fix actions for agents that already
have a fixed action in this state.)

4. If there were no new strategies generated in step 3, generate a new strategy
task 〈F,U, S〉. (Note: the strategy is still S, but we have changed F and U
in step 2.) Add this strategy task to STL if U �= ∅. Assume S as current
strategy;

5. If there were new strategies generated in step 3, process the first strategy as
the current strategy. Postpone processing all other strategies except the first
one by adding appropriate strategy tasks to STL. Do U = ∅ if path-centric
synthesis is enabled. Add to U the successors (states reachable in a single
step) of CS, that are not present in F ∪ U .

6. If only unbounded (complete) strategies verification is enabled, ignore this
step unless the current strategy is an unbounded (respectively, complete)
strategy. Otherwise, pass the current strategy to the verification step (done
by means of CTL fix-point model checking of the trimmed model M † S). If
the verification yields true result, terminate with answer strategy found and
return the current strategy as witness;

7. Return to step 1.

In order to ensure that the algorithm is well-understood, some further ex-
planations are needed. As stated in the high-level description, the crucial point
is that we extend partial strategies by adding a single entry into the explicit
domain of a partial strategy. For any agent in the checked coalition, we add a
single entry that fixes the action in this state, unless such an action is already
fixed. The possibility of this action being fixed in a previously unchecked global
state stems from the presence of imperfect information. While this global state
has certainly not been checked before, it might be indistinguishable for this par-
ticular agent with a state that has been checked before. In such a situation this
agent has an action for the equivalence class containing both those states al-
ready fixed. Step 4 describes a very special case of such an event, where we have
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a previously unchecked global state that has already fixed actions for all agents
in the coalition. Step 5 on the other hand describes a situation where at least one
of the agents has no fixed action for this current global state, therefore has the
possibility to extend his partial strategy by adding a new entry in the explicit
domain of the strategy.

In step 5, if path-centric synthesis is enabled, the algorithm only considers as
sources of strategy refinement states reachable from the current state (CS). This
is achieved by doing U = ∅. Essentially, always only one successor of the current
state CS is used to extend a strategy, then all other successors are forgotten.
This leads to path-centric strategies.

4.3 Discussion

Our approach enables the capability of constructing strategies of limited explicit
strategy size. To illustrate the idea that fully determined strategies with a large
domain are not always required, we present an example where a partial strategy
with the explicit domain size 1 is sufficient.

Example 4. Consider a model of a game of checkers with two players, a and
b. The formula is 〈〈a〉〉FplayerAHasLessPiecesThanCurrently. The meaning of this
formula is that agent a has a strategy to enforce himself having in the future at
least one piece less than he currently has. The initial state of the model is an
already started game where a move for a exists that forces b to capture a piece
in the next transition of the system. Therefore there exists a successful partial
strategy to satisfy the verified formula where the explicit domain of this strategy
has size 1. In other words, a successful partial strategy that just assigns a single
action in the initial state is possible to be constructed.

This example demonstrates that it is not necessary to build fully determined
nor unbounded strategies sometimes. The output of this example can be a
bounded path-based strategy of size 1, as the explicit part suffices as output.
On the other hand, generating a fully determined strategy could easily require
a domain size of 103 or more.

A proper partial strategy can be described by the explicit strategy part. This
part can often be of small size, what the example above illustrates. Example
benefits of smaller size of strategy domains are improved readability for humans
and reduced memory/processing requirements for computers.

4.4 Variants of the Algorithm

In the experiments, we will use three different versions of the SMC algorithm.
SMC with branching strategy search searches through all the proper strategies,
which usually requires fixing choices for multiple successors of a given state
(hence the “branching” moniker). SMC with path-based strategy search searches
only through path-based strategies, and SMC with bounded path-based strategy
search searches only through bounded path-based strategies.
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We call a variant of SMC sound iff SMC(M, q, 〈〈A〉〉ϕ) = true implies
M, q, 〈〈A〉〉 |= ϕ. Conversely, the variant of SMC is complete iff M, q, 〈〈A〉〉 |= ϕ
implies SMC(M, q, 〈〈A〉〉ϕ) = true. The following claims are straightforward:

Theorem 1. SMC with branching strategy search is sound and complete.

Theorem 2. SMC with (bounded or unbounded) path-based strategy search is
sound but not necessarily complete.

5 Experimental Results

In this section, we present experimental results obtained by running the SMC
model checker on a parameterized class of models. All the tests have been con-
ducted on a notebook with an Intel Core i7-3630QM CPU with dynamic clock
speed of 2.4 GHz up to 3.4 GHz. The clock speed observed in the conducted
tests was 3.2 GHz. The computer was equipped with 8 GB of RAM (two mod-
ules DDR3 PC3-12800, 800 MHz bus clock, effective data rate 1600 MT/s, in
dual-channel configuration).
The experiments with SMC were conducted on Windows 7 OS, the experiments
with MCMAS on Linux Ubuntu 12.04.2.

5.1 Working Example: Castles

For the experiments, we designed a simple scalable model called Castles. The
model consists of one agent called Environment that keeps track of the health
points of three castles, plus a number of agents called Workers each of whom
works for the benefit of a castle. Health points (HP, ranging from 0 to 3) represent
the current condition of the castle; 0 HP means that the castle is defeated.

Workers can execute the following actions:

1. attack a castle they do not work for,
2. defend the castle they do work for, or
3. do nothing.

Doing nothing is the only available action to a Worker of a defeated castle. No
agent can defend its castle twice in a row, it must wait one step before being
able to defend again. A castle gets damaged if the number of attackers is greater
than the number of defenders, and the damage is equal to the difference. For
example, if castle 3 is attacked by two agents, it loses 2 HP if not defended, or
1 HP if defended by a single agent. In the initial state, all the castles have 3 HP
and every Worker can engage in defending its castle.

The indistinguishability relations for Workers are defined as follows. Every
Worker knows if it can currently engage in defending its castle, and can observe
for each castle if it is defeated or not. This defines 4 observable (boolean) vari-
ables for the agent. Now, q ∼a q

′ iff q, q′ have the same values of the variables.
The model is parameterized by the number of agents and the allocation of

Workers. For example, an instance with 1 worker assigned to the first castle,
3 workers assigned to the second and 4 to the third castle will be denoted by
9 (1, 3, 4).
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5.2 Performance Results

We begin by presenting some performance results for the formula
ϕ1 ≡ 〈〈c12〉〉F castle3Defeated

saying that the agents working for castles 1 and 2 have a collective strategy
to defeat castle 3, no matter what the other agents do. Note that the formula
is true in all the models that we have tested. We used the SMC variant with
(unbounded) path-based strategy search. The timeout was set to 10 minutes.

N Total time (ms) 1st step (ms) 2nd step (ms) Peak memory (MB)
4 (1 1 1) 130 100 29 15
5 (1 1 2) 6 686 336 6 349 198
6 (2 1 2) 4 508 548 3 957 606
7 (2 2 2) 3 366 2 637 728 77
8 (3 2 2) 255 549 27 040 228 505 454

The table presents results for a sequence of models of various size. The columns
should be interpreted in the following way (from left to right):
1. The scalability factor N : the total number of agents (incl. Environment),

followed by the number of agents working for Castles 1, 2, 3 respectively;
2. Total “wall clock” time taken by the model checking algorithm in milliseconds

(excluding the input parsing time);
3. “Wall clock” time taken by the first step of the algorithm (strategy synthesis);
4. “Wall clock” time taken by the second step (CTL verification);
5. Peak memory usage observed during the execution of the program in

megabytes.4

5.3 Number of Generated Strategies

The table below presents the number of strategies processed by the algorithm,
which might be of an even greater interest than raw performance times. The SMC
variant, parameters of tests, and the formula are the same as in Section 5.2.

N Agents Potential strategies Proper strategies Tested strategies
4 (1 1 1) 2 4.3 ∗ 108 283 1
5 (1 1 2) 2 4.3 ∗ 108 229 4
6 (2 1 2) 3 8.9 ∗ 1012 3 507 3
7 (2 2 2) 4 1.8 ∗ 1017 4, 4 ∗ 105 1
8 (3 2 2) 5 3.8 ∗ 1021 not calculated 3

The columns are interpreted as follows (left to right):
1. The scalability factor N ;
2. The number of agents in the coalition for which a strategy is constructed;
3. The total number of potential strategies;
4. The total number of proper unbounded path-based strategies;
5. The number of strategies processed by the algorithm.
4 Note that the default Java Virtual Machine makes it hard to determine the real

maximum usage, as memory is freed nondeterministically.
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5.4 Comparison to MCMAS

The only tool for ATLir model checking that we are aware of is an experimental
version of MCMAS [19], not yet released publicly at the time of writing this
paper. Thanks to the authors of MCMAS who kindly provided us with the
experimental version, we could compare the output of both model checkers. All
the parameters of the experiments were like in Sections 5.2–5.3, except for the
timeout (set to 120 minutes). Moreover, we used the following two formulae:
ϕ1 ≡ 〈〈c12〉〉F castle3Defeated (same as before; true in the tested models)

ϕ2 ≡ 〈〈w12〉〉F allDefeated (false in the tested models)
Formula ϕ2 says that Workers 1 and 2 have a collective strategy to enforce that
all the castles become defeated, no matter what the other agents do. The tables
below compare the performance of both model checkers.

N Formula MCMAS execution time SMC execution time
4 (1 1 1) ϕ1 72 s 0.1 s
5 (2 1 1) ϕ1 > 120 mins. (interrupted) 0.2 s
4 (1 1 1) ϕ2 78 s 5.4 s
5 (2 1 1) ϕ2 error 51 s

N Formula MCMAS tested strategies SMC tested strategies
4 (1 1 1) ϕ1 ≈ 20 000 1
5 (2 1 1) ϕ1 > 2 ∗ 106 (interrupted) 1

4 (1 1 1) ϕ2 ≈ 20 000 283
5 (2 1 1) ϕ2 error 106

It is important to note that MCMAS and SMC implement slightly different
semantics of ATLir . While for SMC a strategy is successful if it succeeds on the
paths starting from the actual initial state, MCMAS requires the strategy to suc-
ceed also on all the paths starting from indistinguishable states. For coalitional
indistinguishability, MCMAS uses the “everybody knows” epistemic relation. A
quick calculation shows that the initial epistemic class of a Worker contains
33 ∗ 2W−1 states, where W is the number of Workers in the model. For a coali-
tion of two Workers, there are 27 ∗ 2W−1 + 27 ∗ 2W−1 − 27 ∗ 2W−2 = 81 ∗ 2W−2

indistinguishable states. Thus, MCMAS needs to check 162 times more paths
than SMC for N = 4(1 1 1), and 324 times more paths for N = 5(2 1 1).

5.5 Perfect vs. Imperfect Information Strategies

In this work, we also wanted to compare how model checking of abilities under
imperfect information compares to the standard ATL case. To this end, we have
compared the performance of SMC and the experimental version to the standard
version of MCMAS [16]. The table reports model checking times (in milliseconds)
for formula ϕ1 in various instances of the Castles class.
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N perfect info (MCMAS) imperfect info (SMC) imperfect info (MCMAS)
4 (1 1 1) 43 130 72 000
5 (1 1 2) 70 6 686 timeout
6 (2 1 2) 250 4 508 timeout
7 (2 2 2) 954 3 366 timeout
8 (3 2 2) 1 996 255 549 timeout

5.6 Path-Based vs. Branching Strategy Search

So far, we have only presented experimental results for the (sound but incom-
plete) SMC variant using path-based strategy search. Here, we compare its per-
formance to the complete variant, i.e., one that searches all the proper partial
strategies. The table below gives the model checking times (in milliseconds) for
formula ϕ1 in different instances of the class of models.

N Path-based strategy search Branching strategy search
4 (1 1 1) 130 769
5 (1 1 2) 6 686 13 630
6 (2 1 2) 4 508 72 419
7 (2 2 2) 3 366 261 704
8 (3 2 2) 255 549 timeout

5.7 Example Output of Strategy Synthesis

One of the most interesting features of SMC is that it not only verifies exis-
tence of a suitable strategy, but also returns the strategy. Thus, SMC can be
potentially used as a multi-agent planner. To conclude the section, we present
some strategies produced by SMC for our working example. We use the model
with N = 5(1, 1, 2) and the formula ϕ3 ≡ 〈〈c12〉〉F castle3Damaged which says
that Workers 1 and 2 have a collective strategy to decrease the HP of castle 3.
For presentation purposes we have shortened the representation of agents’ local
states, e.g., we write “FFF” instead of “Environment.castle1Defeated = false,
Environment.castle2Defeated = false, Environment.castle3Defeated = false”.

While performing verification with (unbounded) path-based strategy search,
the following solution was found after 2 attempts:

Agent Worker1 - Generated strategy:
(FFF, Worker1.canDefend = true): {defend}
(FFF, Worker1.canDefend = false): {attack3}
(TFT, Worker1.canDefend = true): {doNothing}

Agent Worker2 - Generated strategy:
(FFF, Worker2.canDefend = true): {attack3}
(TFF, Worker2.canDefend = true): {defend}
(TFT, Worker2.canDefend = true): {doNothing}
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We also performed verification with bounded path-based strategy search. The
following solution was found after 12 attempts:

Agent Worker1 - Generated strategy:
(FFF, Worker1.canDefend = true): {attack3}
Agent Worker2 - Generated strategy:
(FFF, Worker2.canDefend = true): {attack3}

6 Conclusions

Verification of strategic abilities under imperfect information has been exten-
sively studied theoretically, but at the same time ignored as far as practical al-
gorithms and tools are concerned. This paper reports our first step towards filling
the gap. We propose and implement an algorithm for model checking ATLir , i.e.,
the variant of alternating-time logic based on uniform positional strategies. The
experimental results are encouraging. In particular, our algorithm significantly
outperformed the only other existing tool (an experimental version of MCMAS),
despite the fact that MCMAS uses symbolic model checking techniques based
on OBDD’s, and our SMC operates purely on explicit representations of states.

Our algorithm enables speedup coming from two potential sources. First, it
considers only so called proper strategies which are in fact equivalence classes of
concrete strategies. A variant of SMC restricts the search even further by consid-
ering only so called path-based strategies. Secondly, strategies are sought incre-
mentally, starting from simplest ones. In many scenarios, whenever a successful
strategy exists, it can be found among the relatively simple ones. In those cases,
our algorithm finds a good strategy after a number of attempts vastly smaller
than the number of all proper strategies in the model. In the experiments, the
first kind of speedup yielded reductions of the search space by order of 106 times
up to 1012 times. The second kind of speedup yielded solutions after no more
than 10 attempts for problems where the number of proper strategies ranged
from order of 102 to 105. As a result, the strategy verification sub-routine was
called only around 100 = 1 times, yielding a speedup of the verification stage of
order of 102 up to 105.

Despite the promising experimental results, our tests showed also that the
problem itself is computationally difficult. We observed an overwhelming gap
in performance between verification of strategic abilities for perfect vs. imper-
fect information strategies. On the other hand, there is still much room for im-
provement. In particular, we plan to employ symbolic model checking techniques
(based on OBDD’s and/or translation to SAT solvers) as well as parallelization
using e.g. the DACFrame, Akka, or GridGain platforms for parallel computation
(cf. also [15]). Further future work includes extending the syntax accepted by
SMC to all ATLir formulae in negation normal form, more experiments with
various benchmark models and formulae, and an extensive case study on an ex-
ample of practical interest, e.g., verification of privacy and noninterference in
a voting protocol. For the last task, an appropriate abstraction will have to be
developed, possibly along the lines of [14].
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Partial Information and Uniform Strategies

Hans van Ditmarsch and Sophia Knight

LORIA, CNRS – Université de Lorraine, France

Abstract. We present an alternating-time temporal epistemic logic with
uniform strategies, interpreted in a novel way on transition systems for
modelling situations in which agents with partial information interact
to determine the way the system updates. This logic uATEL allows us
to model what properties agents can enforce when they act according to
strategies based on their knowledge. Apart from the usual memoryless
strategies, we distinguish state-based memory, where agents recall the
history of previous states, from perfect recall, where agents also recall
their actions. We show that this makes a difference. Our logic includes
three strategic operators for groups, representing the case where all the
agents in the group cooperate actively, but do not share their knowledge,
the case where some agents in the group may be passive, and the case
where all the agents in the group share their knowledge. We include a
detailed comparison to the literature on the subject.

1 Introduction

Linear temporal logic [15], Computation tree logic [6], and CTL* [7] are tempo-
ral logics for reasoning about distributed systems. LTL is concerned with infinite
histories of states representing possible computations, CTL can reason about the
branching structure of potential computations, and CTL* combines the expres-
sive capabilities of both LTL and CTL. While the distributed systems that these
logics model are implicitly understood to be systems consisting of many agents
acting individually, there is no explicit mention of these agents or their actions
in any of the above-mentioned temporal logics.

Alternating-time temporal logic [3] is a branching-time temporal logic for
distributed systems where the effects of agents’ actions are made explicit. In
ATL, a formula of the form 〈〈Γ 〉〉©ϕ, where Γ is a set of agents,© is the ‘next’
temporal modality, and ϕ is a state formula, signifies that the agents in the
group Γ can cooperate to ensure that the formula ϕ is true in next state of the
system, no matter what the agents who are not in Γ do. Thus, ATL provides a
natural and interesting way of analyzing the properties of multi-agent systems,
with the advantage of being able to analyse the effects of the actions of both
specific agents and groups of agents.

Epistemic logic [13], on the other hand, is a different kind of modal logic
which also models multi-agent systems, but only statically, without considering
changes in these systems over time. Instead, epistemic logic is concerned with
the agents’ knowledge — another crucial aspect of multi-agent systems.

N. Bulling et al. (Eds.): CLIMA XV, LNAI 8624, pp. 183–198, 2014.
c© Springer International Publishing Switzerland 2014
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Thus, ATL is concerned with agents’ abilities to control the outcomes of exe-
cutions of dynamic multi-agent systems, while epistemic logic is concerned with
agents’ knowledge in static multi-agent systems. It is clear that combining these
two focuses could yield a compelling and relevant logic for describing the in-
teraction between agents’ ability to act and their knowledge. Alternating-time
temporal epistemic logic was proposed by [10] to combine knowledge and agency.
Epistemic modalities are added to ATL, but the traditional semantics are used
for both modalities. This approach allows some interesting applications, but since
the original semantics are used for both modalities, the full interaction between
the agents’ knowledge and their actions is not captured. In particular, it is pos-
sible that an agent has different strategies in (epistemically) indistinguishable
states of the system. It is reasonable not to allow this, and to require strategies
to be uniform. For this, a strategy must correspond to what an agent knows.

Indeed, since [10] various proposals combining epistemic logic and ATL in a
way that captures the interplay between agents’ actions and their knowledge
have been made, such as [12,16,11,2,4]. We discuss the related work in detail at
the end of the paper, but we will point out some basic differences in our work
here. The most novel aspect of our logic is that we allow agents with different
memory abilities to interact in the same system. Many versions of epistemic
ATL, for example [12,16], consider both full memory and memoryless agents
(and implicitly, finite memory agents represented as memoryless agents). But
in these logics, every agent in the entire system is assumed to have the same
type of memory. It is interesting to consider systems where different agents have
different memory abilities. For example, a system could consist of some simple,
finite memory agents, interacting with other more sophisticated perfect memory
agents. Furthermore, in some settings there may be a group of “friendly” agents
with known memory capabilities, and a different group of adversarial agents
with unknown memory capabilities. By modelling the friendly agents as limited
memory agents and the adversaries as perfect memory agents, we can consider
the worst case scenario, and verify security properties of a system.

Besides allowing the combination of agents with different memory capabili-
ties, another novel aspect of our logic is that we allow agents to have arbitrary
equivalence relations on histories. Just as agents in epistemic Kripke models are
traditionally allowed to have any equivalence relations on the states of a system,
our systems allow agents to have any equivalence relation on the histories of the
system. For example, we can model an agent who has perfect recall, except she
always forgets when the system has been in a specific state. Or we could model
an agent who only remembers every other past state. Or an agent could remem-
ber everything, until the system enters a certain state, at which point the agent’s
memory is wiped out. Combined with the fact that different agents are allowed
to have different types of equivalence relations on histories, allowing them to
have arbitrary equivalence relations as well makes our systems quite general.
As far as we know, ours are the only ATL-type systems that allow arbitrary
equivalence relations on histories.
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The ATL tradition, wherein agents are modelled but not actions, views perfect
recall as remembering histories of states, whereas the PDL tradition [9], wherein
actions are modelled but not agents, views perfect recall as remembering histories
of actions. In our framework, these are available as different memory capabilities.
Our definition of perfect recall is therefore different from that in [12,16,2], as it
does not just consider past states, but also considers the agent’s own past actions.
We can also model what is elsewhere called perfect recall memory, but we call
it ‘state-based memory’ since it is not as strong as our concept of perfect recall
memory. Our definition of perfect recall models agents who remember all the
past states of the system, but also remember their own past actions, and can
reason about the effects of their actions.

In Section 2, we present epistemic concurrent games structures and we define
strategies. In Section 3 we present our alternating-time temporal epistemic logic
with uniform strategies. Section 4 compares our work to the tradition in ATL
with epistemic operators.

2 Epistemic Concurrent Game Structures

In this section, we present a variation on concurrent game structures. We intro-
duce an indistinguishability relation on the set of states for each agent, which
puts a new requirement on the transition relation. This model is appropriate in
our setting, because our goal is modelling agents with partial information about
the state of the system and the effects of their actions on the outcome. The
agents’ partial information about the current state is represented by their in-
distinguishability relations, while the actions they can choose reflect the agents’
limited information about the way the system updates.

Definition 1. An epistemic concurrent game structure (ECGS) is a tuple 〈Q,Π,
Σ,B,∼, π, Av, δ〉 where

– Q is a set of states,
– Π is a set of propositions,
– Σ = {a1, ..., an} is a finite set of agents.
– B is a finite set of actions.
– ∼: Σ → P(Q×Q) is an equivalence function associating to each agent ai

an equivalence relation ∼i.
– π : Q→ Π is the valuation function,
– Av : Q×Σ → P(B) is the availability function defining the available actions

for an agent in a state, with the requirement that for all q1, q2 ∈ Q and all
ai ∈ Σ: Av(q1, ai) �= ∅, and if q1 ∼i q2 then Av(q1, ai) = Av(q2, ai).

– δ : Q × Σ × B → P(Q) is the transition function, with the determinacy
requirement that for any q ∈ Q, for any (b1, ..., bn) ∈ Bn such that bi ∈
Av(q, ai) for i = 1, ..., n, it is required that

⋂n
i=1 δ(q, ai, bi) be a singleton.

The uniformity requirementAv(q1, ai) = Av(q2, ai) reflects the fact that an agent
is aware of what actions are available, so if two states are indistinguishable to
the agent, the same actions must be available.
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We now define strategies in this setting. The notion of a strategy is depen-
dent on an agent’s knowledge about the state of the system: if an agent cannot
distinguish two histories, then the agent cannot behave differently in those two
histories. Thus, the definition of a strategy for an agent is modular with respect
to the agent’s equivalence relation on histories. So we will begin by defining
strategies, and then we will define three interesting equivalence relations on his-
tories.

In order to define strategies, we must first define histories in ECGS’s. We
need a few subsidiary definitions first. The following assume an n-agent ECGS
〈Q,Π,Σ,B,∼, π, Av, δ〉.

Definition 2. We extend the notion of available actions to a vector of n actions.
For q ∈ Q, let Av(q) = {〈b1, b2, ..., bn〉 ∈ Bn | ∀ai ∈ Σ, bi ∈ Av(q, ai)}.

Definition 3. For q ∈ Q and b∗ ∈ Av(q), define the b∗-successor of q as follows:
Succ(q, b∗) = q′ iff

⋂n
i=1 δ(q, ai, bi) = {q′}.

Definition 4. In an ECGS L, suppose h = q0.b
∗
1.q1.b

∗
2.q2...qk−1.b

∗
k.qk, where

qj ∈ Q for j ∈ {0, ..., k} and b∗j ∈ Bn for j ∈ {1, ..., k}. Then h is a history for
L if qj = Succ(qj−1, b

∗
j ) for j ∈ {1, ..., k}. We denote the set of all histories for

L as Hist(L).

Note that all histories are finite, even though infinite executions are possible.
Finally we can define a strategy. For this definition, we extend the Av function

from state-agent pairs to history-agent pairs in the obvious way, as the set of
actions available at the last state in the history:Av(q0.b1.q1...qk, ai) = Av(qk, ai).

Definition 5. Given an ECGS L, let ≈i be an arbitrary equivalence relation on
Hist(L), and ai ∈ Σ. A ≈i uniform strategy for ai is a function fi : Hist(L)→
B satisfying the following requirements:

1. For all h ∈ Hist(L), fi(h) ∈ Av(h, ai).
2. If h1 ≈i h2 then f(h1) = f(h2).

Now that we have given the definition of a strategy with respect to a general
equivalence relation, we present several interesting equivalence relations giving
rise to different classes of strategies.

Definition 6. Histories h1 = q0...qk and h2 = r0...rj are memoryless equivalent
for agent ai iff qk ∼i rj . This is denoted h1 ∼m

i h2. If fi is a ∼m
i uniform strategy

for agent ai, then it is called a memoryless strategy for ai.

This equivalence relation describes agents who are only aware of the present
state but forget everything that has already happened. Next we define strategies
for agents who remember the past states of the system.

Definition 7. For h1, h2 ∈ H and ai ∈ Σ, h1 and h2 are state memory equiva-
lent, written h1 ∼s

i h2 iff h1 = q0.q1...qk and h2 = r0.r1...rk and for j = 0, ..., k,
qj ∼i rj. If fi is a ∼s

i uniform strategy for agent ai, then it is called a strategy
with state memory for ai.
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This equivalence relation and class of strategies describe agents who remember
all the past states of the system, but either do not remember their own actions, or
do not reason about the effects of their own actions. Next we give the equivalence
relations for agents who remember every state of the system, remember all their
own actions, and understand all the effects of their actions.

Definition 8. In an n-agent ECGS, histories h1 and h2 are perfect-recall equiv-
alent for agent i, written h1 ∼pr

i h2, iff either h1 = q1 and h2 = q2 (where q1, q2 ∈
Q) and q1 ∼i q2, or h1 = q0.b

∗
1.q1...qj−1.b

∗
j .qj and h2 = r0.c

∗
1.r1...rj−1.c

∗
j .rj and

all of the following conditions hold:

1. q0.b
∗
1.q1...qj−1 ∼pr

i r0.c
∗
1.r1...rj−1, and

2. qj ∼i rj , and
3. bi = ci where b

∗
j = 〈b1, ..., bn〉 and c∗j = 〈c1, ..., cn〉.

The intuition behind this definition is an agent who remembers its own ac-
tions, and can reason about their effects, rather than an agent who just remem-
bers the past states. The perfect recall agent does not observe or remember
other agents’ actions, however. State memory is often called perfect recall in
ATL, whereas our perfect recall is more like PDL perfect recall. In our setting
for epistemic ATL there is a real difference between the two. To motivate the
definition of perfect recall equivalence, and the differences between the three
types of memory we have discussed, consider the following single-agent example.

2.1 Example

A robot is in a simple maze made up of square spaces. The robot can only
perceive whether there are walls immediately in front of, behind and to each
side of it, and cannot perceive anything else about the state of the world. The
robot has an orientation, either north, south, east or west, and a position in
the maze, but the robot is not aware of its orientation and cannot perceive the
position, but only the walls around it. We consider the following simple maze:

In the following pictures, the arrow represents the robot: both its orientation
and its position in the maze. The state of the system consists of the position and
orientation of the robot. So, for example, the following three states are indistin-
guishable:
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s1 s2 s3

s4

s5

�� ∼
s1 s2 s3

s4

s5

�� ∼
s1 s2 s3

s4

s5

��

The following two states, however, are distinguishable, because in the first
one, the robot perceives that there is only a wall in front, while in the second
one it perceives that there are walls on either side:

s1 s2 s3

s4

s5

��
�∼

s1 s2 s3

s4

s5

��

Also, the following two states are distinguishable for the robot, because it can
distinguish between having an open space in front of it or behind it:

s1 s2 s3

s4

s5

�� �∼
s1 s2 s3

s4

s5

��

In the following, we denote the states of the system as pairs (s, o) where s
is the robot’s position in the system (s1 through s5), and o is its orientation
(n, s, e, or w).

So now we can state the full equivalence relation for the robot:

(s1, n) ∼ (s3, s) ∼ (s5, w) (s4, n) ∼ (s4, s) (s2, n)
(s1, e) ∼ (s3, w) ∼ (s5, n) (s4, e) ∼ (s4, w) (s2, e)
(s1, s) ∼ (s3, n) ∼ (s5, e) (s2, s)
(s1, w) ∼ (s3, e) ∼ (s5, s) (s2, w)

Those in the rightmost column are singleton equivalence classes, since the robot
can distinguish the single wall being on its left, right, in front of or behind it.

The robot’s actions are go left, go right, go forward or go back, denoted
(l, r, f, b). All of these actions are available at every state. The forward action
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does not change the robot’s orientation, but all of the other actions do. Further-
more, the actions change the robot’s position if there is space available where
the robot tries to go. However, if the robot for example goes left when there is
a wall to its left, it changes its orientation but not its position. The following
diagram shows the possible transitions between positions and orientations, the
combination of which gives the state of the system. The left hand side shows
the positions and the right hand side shows the orientations. The arrows in the
left hand side are unlabelled because the identity of the transition action be-
tween positions depends on the robot’s orientation in the starting position: for

example, (s4, n)
f−−→ (s2, n) whereas (s4, w)

r−−→ (s2, n).

s1
��

�� s2��
		 ��





s3�� ��

s4

��

��




s5

��



n��

b

��

f

��
r

��
l

����
��
��
��
�

e��
b

�� f��

r
��

l

��

w

r

��

f
��

l

���
��

��
��

��

s
r

��

f

��

l

�����������

For clarity, here is part of the transition relation only for position s1, for any
orientation:

f r b l
(s1, n) (s1, n) (s2, e) (s1, s) (s1, w)
(s1, e) (s2, e) (s1, s) (s1, w) (s1, n)
(s1, s) (s1, s) (s1, w) (s1, n) (s2, e)
(s1, w) (s1, w) (s1, n) (s2, e) (s1, s)

Now, suppose that the robot knows the structure of the maze, but is dropped
into a state without knowing its position or orientation. We want to investigate
what the robot can achieve by taking actions to explore the system, depending
on whether it is a memoryless, state memory, or perfect recall agent.

Suppose the robot starts out in state (s4, n). Consider the following three
sequences of actions.

1. (s4, n).b.(s5, n)
2. (s4, n).f.(s2, n).l.(s1, w)
3. (s4, n).f.(s2, n).r.(s3, e)

First of all, suppose the agent is memoryless. Then, the histories 1, 2, and 3
are all equivalent, since the last states are equivalent.

On the other hand, with state memory, the robot can distinguish 1 from 2.
In fact, it is easy to see that the robot can distinguish any history that starts in
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position s4 and ends in position s5 from any history that starts in s4 and ends
in s1. But the agent cannot distinguish 2 from 3. This is because the robot only
looks at the past states, and (s1, w) ∼ (s3, e), as do the first two states in the
histories. The robot does not consider its own past actions.

However, if the robot has perfect recall, it can also distinguish 2 and 3, since
the two histories have different sequences of actions. Thus, with perfect recall,
the agent is allowed to remember its own past actions and distinguish histories
based on this information, as well as information about the states.

3 The Logic uATEL

In this section we present a logic uATEL for alternating-time temporal epistemic
logic with uniform strategies.

Definition 9. The syntax of uATEL is as follows.

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kiϕ | 〈〈A〉〉� © ϕ | 〈〈A〉〉��ϕ | 〈〈A〉〉�ϕUϕ

where p ∈ Π, i ∈ Σ, A ⊆ Σ, and " is one of a, p and c.

For a single agent ai, we write 〈〈ai〉〉 rather than 〈〈{ai}〉〉. We also use ∧ and
→ in the usual way, defined in terms of ∨ and ¬. The subindices a, p, c for
the coalitional modalities stand for different semantics. Before we give these
semantics, we motivate the differences with some further examples.

Example 1. There are two agents, a1 and a2, and five states: s0, s1, s2, w, and l.
s0 ∼1 s1 and s1 ∼2 s2. There are three actions, b, c, and d, and two propositions,
which we also call w (for win) and l (for lose), with w |= w and l |= l. The
transitions are as follows:

s0 a1
b c d

a2

b w l l
c l l l
d l l l

s1 a1
b c d

a2

b l l l
c w l l
d l w l

s2 a1
b c d

a2

b l l l
c l l l
d l w l

Here is a picture of the system, where all the transitions are available at s0, s1,
and s2, and the ones not displayed go to l.

s0 s1 s2

w

a1 ������
a2 ������

(b,b)
���

��
��

��
�� (b,c)

(c,d)

�� (c,d)
����
��
��
��
�

The question is, in state s0, do the agents have a strategy to reach w? a2
knows the state is s0, so she will definitely do b. But a1 does not know whether
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the state is s0 or s1. If the state were s1, he would rationally want to do c, since
a2 would now know whether the state was s1 or s2, so a2 would do d to be safe.
So in s0, a1 wants to do b, but in s1 a1 wants to do c. The problem is that a1
cannot distinguish s0 and s1, so he has no strategy to be sure to get the system
to reach w. So our semantics must say that

s0 |= ¬〈〈{a1, a2}〉〉 © w.

Now observe that this reasoning does not hold in the case of the general knowl-
edge semantics, which only considers the union of equivalence relations for the
agents in the group, so that in this case from state s0 we only need to consider
that state and s1, but only with the common knowledge semantics, that it its
transitive closure, in this case, all three states s0, s1, s2. This is embodied in the
semantics for 〈〈{a1, as}〉〉a (where a stands for ‘active’).

Given are an ECGS L and q ∈ L. For Γ ⊆ Σ, ∼∗
Γ is the transitive reflexive

closure of
⋃

ai∈Γ ∼i. We use λ to denote an element of Q+ (where Q is the set
of states of L), and λ[i] denotes the ith state in the string λ, starting from 0,
e.g. if λ = q0.q1.q2 then λ[1] = q1. We also need to define a group strategy:

Definition 10. For a group of agents Γ ⊆ Σ, we say F = {fa | a ∈ Γ} is a
group strategy for Γ if for all ai ∈ Γ , fai is a uniform strategy for ai.

Now we can give a possible semantics for the “next” operator.

(L, q) |= 〈〈Γ 〉〉a © ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∼∗

Γ q, ∀λ ∈ out(q′, FΓ ), (L, λ[1]) |= ϕ

This active coalitional strategy semantics matches with the intuitive notion of a
group of agents having a strategy to reach a goal particularly in settings where
all the agents in the group are active in trying to reach the goal, but also have
other choices they could make which would prevent the goal from being reached.
It is less intuitive in situations where there are agents in the group whose actions
cannot affect the outcome of the system from a certain state, as we will see in
the following example.

Example 2. Consider a system with two agents a1 and a2 and states {s0, ..., s4},
where s0 ∼a1 s1 but not for a2, and all the other states can be distinguished
by both agents. There is one proposition p, only s2 |= p, and the transitions are
δ(s0, a1, e) = {s2, s3}, δ(s0, a2, b) = {s2}, δ(s0, a2, c) = {s3}, δ(s1, a1, e) = {s4},
δ(s1, a2, d) = {s4}. So, a1 has no effect on the execution of the system. At
both starting states she can only choose e. Agent a2, on the other hand, can
distinguish s0 and s1, and at s0, he can choose the b action to make p true, but
at s1, a2 has only one choice and p cannot become true no matter what either
agent does. So, we want that s0 |= 〈〈a2〉〉 © p but, s0 |= ¬〈〈{a1, a2}〉〉 © p.

Let us consider whether it is reasonable that the semantics tells us that s0 |=
¬〈〈{a1, a2}〉〉© p. On the one hand, it is strange to think that while the smaller
group consisting only of a2 can bring about©p, the larger group {a1, a2} cannot
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bring about ©p. In fact, this violates the property in traditional ATL that if
Γ1 ⊆ Γ2 then 〈〈Γ1〉〉 © ϕ → 〈〈Γ2〉〉 © ϕ [8]. On the other hand, if we think of a
group strategy as a strategy where all the agents in the group are active and
aware that their actions will reach the outcome, this outcome is less surprising.

In the 〈〈Γ 〉〉a semantics above we indeed get that s0 |= ¬〈〈{a1, a2}〉〉a © p.
We now propose an alternative 〈〈Γ 〉〉p semantics (p for ‘passive’) that achieves
s0 |= 〈〈{a1, a2}〉〉p© p.

(L, q) |= 〈〈Γ 〉〉p© ϕ iff there exists a group strategy FB for some B ⊆ Γ
such that ∀q′ ∼∗

B q, ∀λ ∈ out(q′, FB), (L, λ[1]) |= ϕ.

This is the passive coalitional strategy. In the active strategy operator, the strat-
egy works at all points that any agent considers possible, but in the passive
operator, there is a subset of agents who control the strategy, and it works at
all states they consider possible, but there are also passive agents in the group
whose actions and knowledge make no difference.

We propose a third strategic operator as well. In the active and passive coali-
tion operators the agents can coordinate their actions into a group strategy, but
they cannot coordinate or combine their knowledge prior to acting. We would
like to also analyze what a group of agents can achieve when they share all the
knowledge they possess, as well as acting strategically together. We can model
this situation simply by quantifying over the states that are equivalent to the
current state for all agents in the group (i.e., the accessibility relation for dis-
tributed knowledge among that group), rather than quantifying over the states
that are equivalent for at least one agent in the group, and recursively so (i.e., the
accessibility relation for common knowledge among that group), as in the above
semantics. We call this the communication strategy operator and annotate it
with a c.

(L, q) |= 〈〈Γ 〉〉c © ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∈ {r ∈ Q | r ∼i q ∀i ∈ Γ}, ∀λ ∈ out(q′, FΓ ), (L, λ[1]) |= ϕ.

When the agents share their knowledge, the issue of active and passive strategies
no longer arises, because they now coincide.

After these preparations, we now give the complete semantics of uATEL,
wherein we have only spelled out the � and U versions for one of the three
coalitional modalities (the other two are similar).

Definition 11 (Semantics of uATEL). Let an ECGS L and a state q in L be
given.

– for p ∈ Π, L, q |= p iff p ∈ π(q),
– L, q |= ¬ϕ iff L, q �|= ϕ,
– L, q |= ϕ1 ∨ ϕ2 iff L, q |= ϕ1 or L, q |= ϕ2,
– L, q |= Kiϕ iff for all q′ ∼i q, L, q

′ |= ϕ.
– L, q |= 〈〈Γ 〉〉a©ϕ iff there exists a group strategy FΓ for Γ such that ∀q′ ∼∗

Γ q,
∀λ ∈ out(q′, FΓ ), L, λ[1] |= ϕ,
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– L, q |= 〈〈Γ 〉〉a�ϕ iff there exists a group strategy FΓ for Γ such that ∀q′ ∼∗
Γ q,

∀λ ∈ out(q′, FΓ ), L, λ[n] |= ϕ for all n ≥ 0,
– L, q |= 〈〈Γ 〉〉aϕ1Uϕ2 iff there exists a group strategy FΓ for Γ such that
∀q′ ∼∗

Γ q, ∀λ ∈ out(q′, FΓ ), there exists m ∈ N such that L, λ[m] |= ϕ2 and
for all 0 ≤ n ≤ m, L, λ[n] |= ϕ1,

– L, q |= 〈〈Γ 〉〉p © ϕ iff there exists a group strategy FB for some B ⊆ Γ such
that ∀q′ ∼∗

B q, ∀λ ∈ out(q′, FB), L, λ[1] |= ϕ,
– L, q |= 〈〈Γ 〉〉c © ϕ iff there exists a group strategy FΓ for Γ such that
∀q′ ∈ {r ∈ Q | r ∼i q for all i ∈ Γ}, ∀λ ∈ out(q′, FΓ ), L, λ[1] |= ϕ,

If ϕ holds at all states in all EGCS’s, then we write |= ϕ (for ‘ϕ is valid’).

Some elementary results for this semantics are as follows.

Proposition 1. For all sets of agents Γ and for all formulas ϕ: |= 〈〈Γ 〉〉aϕ →
〈〈Γ 〉〉pϕ and |= 〈〈Γ 〉〉pϕ→ 〈〈Γ 〉〉cϕ.

Proposition 2. If Γ1 ⊆ Γ2, |= 〈〈Γ1〉〉pϕ→ 〈〈Γ2〉〉pϕ and |= 〈〈Γ1〉〉cϕ→ 〈〈Γ2〉〉cϕ.

Whereas this is false: “|= 〈〈Γ1〉〉aϕ → 〈〈Γ2〉〉aϕ implies |= 〈〈Γ1〉〉cϕ → 〈〈Γ2〉〉cϕ.”
An obvious embedding is the following. We use |=ATL for the ATL semantics,
and 〈〈Γ 〉〉 as the ATL coalitional operator. A perfect information system M is an
ECGS such that for all agents i, for all states q and q′, q ∼i q

′ iff q = q′.

Proposition 3. M, q |=ATL 〈〈Γ 〉〉ϕ if and only if M, q |= 〈〈Γ 〉〉aϕ.

3.1 Example

In this section, we present an extended example based on the following scenario.
Consider a game played by two agents using a deck of cards with all the face
cards (J ,Q,K,A) removed. The deck is shuffled and each agent is given one card.
Each agent sees their own card without revealing it to the other agent. Then
each agent has the choice of trading their card for a different one from the deck,
once, or keeping their card. The agents’ goal is for the sum of their cards to be
at least seven.

First we model this game as an ECGS. We model it as a three agent sys-
tem, where a1 and a2 represent the two agents playing the game and the third
agent, env represents the environment, resolving choices that would otherwise
be nondeterministic. We define the set of states as

Q = {(x, y, z) | x ∈ {i, f} and y, z ∈ {2, 3, ..., 10}},

where (i, y, z) represents an initial state where a1 has card y and a2 has card
z, and (f, y, z) represents a final state, after the agents have decided whether
to swap their cards, where a1 has card y and a2 has card z. The equivalence
relations are as follows:

(x1, y1, z1) ∼1 (x2, y2, z2) iff x1 = x2 and y1 = y2

(x1, y1, z1) ∼2 (x2, y2, z2) iff x1 = x2 and z1 = z2

(x1, y1, z1) ∼env (x2, y2, z2) iff x1 = x2 and y1 = y2 and z1 = z2
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The set of actions is B = {swap, stay}∪{(x, y) | x, y ∈ {2, ..., 10}}.The transition
relation is as follows:

δ((i, y, z), a1, stay) = {(f, y, z′) | z′ ∈ {2, ..., 10}}
δ((i, y, z), a1, swap) = {(f, y′, z′) | y′, z′ ∈ {2, ..., 10}}
δ((i, y, z), a2, stay) = {(f, y′, z) | y′ ∈ {2, ..., 10}}
δ((i, y, z), a2, swap) = {(f, y′, z′) | y′, z′ ∈ {2, ..., 10}}

δ((i, y, z), env, (y′, z′)) = {(f, y, z), (f, y, z′), (f, y′, z), (f, y′, z′)}
δ((f, y, z), a, stay) = {(f, y, z)} for all a ∈ Σ

Thus, in an initial state, each agent chooses whether to keep their card or
change it. If they change their card, the environment picks a new card for them.
Then, in a final state, all three agents only have one action available, stay, which
does not change the state (we only include this because our semantics require
infinite runs).

Finally, our only proposition will be w, representing that the agents win, and
π((x, y, z)) = {w} iff x = f and y + z ≥ 7. Otherwise π((x, y, z)) = ∅.

Now we will investigate which formulas are true at certain states in this sys-
tem. First, consider the state (i, 8, 1): the first agent has an 8 and the second
agent has 1. Intuitively, would we say that the group consisting of both agents
has a winning strategy from this state? Of course,

(i, 8, 1) |= ¬〈〈a2〉〉a© w,

because acting alone a2 has no strategy to ensure that they reach a winning
state, but

(i, 8, 1) |= 〈〈a1〉〉a© w,

because a1 can use the strategy of keeping his card and be sure to win. But
notice that

(i, 8, 1) |= ¬〈〈{a1, a2}〉〉a© w,

since, for example (i, 1, 1) ∼2 (i, 8, 1) and there is no strategy from (i, 1, 1) for
{a1, a2} to achieve w in the next state. However, it is true that

(i, 8, 1) |= 〈〈{a1, a2}〉〉p© w,

because {a1} ⊆ {a1, a2}, and no matter what a2 does, a1 has a winning strategy.
So there is a passive strategy for a1 and a2 to reach w at the next state, because
a2 has an active strategy for this goal, and nothing a1 does can interfere with
this accomplishment, so a1 passively brings about w at the next state. And of
course,

(i, 8, 1) |= 〈〈{a1, a2}〉〉c© w.

Intuitively, this is because the agents share their knowledge and then decide on
a strategy, so they both know that keeping their cards is a good strategy.

To highlight the differences between 〈〈Γ 〉〉c and the other two strategic oper-
ators, consider the state (i, 4, 5). Here, we have both
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(i, 4, 5) |= ¬〈〈{a1, a2}〉〉a© w, and (i, 4, 5) |= ¬〈〈{a1, a2}〉〉p© w.

Intuitively, this means that the agents do not have enough information about
their current state to have either an active or a passive group strategy to reach
a winning state. However, if the agents share all their information, they realize
that both of them keeping their cards is a good group strategy. Thus,

(i, 4, 5) |= 〈〈{a1, a2}〉〉c© w.

In terms of the semantics, this is because there are no other states that are
equivalent to (i, 4, 5) for both a1 and a2, so the group strategy only needs to
guarantee the desired outcome at this single state.

4 Related Work

Uniform strategies In this paper we have only considered uniform strategies,
since we are considering what agents are able to accomplish, and an agent must
choose their actions based on their own knowledge. Non-uniform strategies, how-
ever, may be useful sometimes, for example for analyzing worst-case scenarios
where agents could perhaps secretly communicate or otherwise gain unexpected
knowledge. Only [10], the first paper about ATEL, does not consider uniform
strategies. Interestingly, in the original paper on ATL there is a discussion of
ATL with incomplete information, and uniform strategies are defined [3, p.706–
710]. However, in their approach the agents’ equivalence relations are defined in
terms of propositions (i.e., valuations) rather than in terms of states, leading to
many restrictions on the expressible formulas and making the logic quite compli-
cated. It is well-known that in multi-agent Kripke models such an identification
of states with valuations is very restrictive for the expressivity of a logic.

De re or de dicto A second major aspect of ATEL-type logics is whether they
allow de dicto or de re strategies. A de re strategy to achieve something is a
uniform strategy that will succeed starting from any state the agent considers
possible. A de dicto strategy to achieve something, on the other hand, is a
uniform strategy that will succeed from the present state, but not from every
state the agent considers possible. So if an agent has a de re strategy to achieve
something, the agent knows that he has the strategy and knows what the strategy
is. But if the agent has a de dicto strategy, he does not know what the strategy
is. Note that a de dicto strategy is in general uniform- even though it does not
succeed from all the states the agent considers possible, it requires the agent to
take the same action in all states that are equivalent for him.

In the current paper, we only consider de re strategies, as we are concerned
with what agents can be sure to achieve based on their knowledge. While de dicto
strategies are interesting from an outside perspective, they are not useful to the
agents inside the system, trying to achieve certain goals. Like our logic, ATOL
[12] and ATL with perfect and imperfect information and recall [16] can only
express de re abilities, whereas other logics can only express de dicto abilities, for
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example Epistemic Coalition Logic in [2]. Some logics can express both de dicto
and de re abilities. For example, in Constructive Strategic Logic [11], the basic
group operator expresses de dicto ability, but combining this operator with a
special epistemic operator expresses de re ability. In [4], six variants of epistemic
ATL are considered, with both de dicto and de re abilities. It is shown that the
expressiveness of ATL with de re abilities (“subjective abilities”) and ATL with
de dicto abilities (“objective abilities”) are incomparable, both in the perfect
recall and imperfect recall cases. Similar results are shown for ATL∗ with de re
and de dicto abilities.

Coalitional operators In logics with uniform strategies the semantics for the
coalitional operator (followed by next) has the following generic form

L, q |= 〈〈Γ 〉〉 © ϕ iff there exists a group strategy FΓ such that ∀q′ ∼? q,
∀λ ∈ out(q′, FΓ ), L, λ[1] |= ϕ,

where the definition of ∼? is variable. Most often, the relation is either
⋃

a∈H ∼a

(general knowledge for group of agents H), as in [16], or it is (
⋃

a∈H ∼a)
∗, the

transitive closure of
⋃

a∈H ∼a (common knowledge for H). We have seen in
Example 1 that the former is not felicitous. Similarly, in [4], six varieties of ATL
and six varieties of ATL∗ are compared, and the semantics of the ability operators
in all the varieties of the logics are defined using the union of the equivalence
relations of the agents (i.e., general knowledge). It would be interesting to know if
defining the semantics in terms of the common knowledge relation would change
the results presented in that paper.

In ATOL [12] the semantics of the ability operator is much more subtle. The
operator is defined as follows, where A and Γ are groups of agents and K is
either C,E or D, for common knowledge, general knowledge and distributed
knowledge, respectively.

L, q |= 〈〈A〉〉K(Γ ) © ϕ iff there is a group strategy FA such that ∀q′ ∼K
Γ

q, ∀λ ∈ out(q′, SA), L, λ[1] |= ϕ.

The ability operator in this logic is very powerful: not only does it subsume
both the union relation semantics (which can be expressed as 〈〈A〉〉E(A)) and the
common knowledge semantics (which can be expressed as 〈〈A〉〉C(A)), it is even
possible to define the ability of one group of agents with respect to the knowledge
of another group of agents. We have the following correspondence with our logic.

Proposition 4. Consider a ECGS L with memoryless agents, and q ∈ L.
1. L, q |= 〈〈Γ 〉〉aϕ if and only if L, q |=ATOL 〈〈Γ 〉〉C(Γ )ϕ.
2. L, q |= 〈〈Γ 〉〉pϕ if and only if ∃Γ ′ ⊆ Γ such that L, q |=ATOL 〈〈Γ ′〉〉C(Γ ′)ϕ.
3. L, q |= 〈〈Γ 〉〉cϕ if and only if L, q |=ATOL 〈〈Γ 〉〉D(Γ )ϕ.

In item 2, since we consider a finite set of agents, it follows that L, q |= 〈〈Γ 〉〉pϕ
if and only if L, q |=ATOL

∨
Γ ′⊆Γ 〈〈Γ ′〉〉C(Γ ′)ϕ. So, for memoryless systems, our

logic can be translated into ATOL. However, our system can deal with non-
memoryless systems as well. Even for memoryless systems ATOL can express
properties that our logic cannot express, such as 〈〈Γ1〉〉E(Γ2)©ϕ, where Γ2 �⊆ Γ1.
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Memory Abilities Another difference among the various logics is whether they
allow perfect recall or not. Traditional ATL [3] allows agents to have perfect
recall, although it was shown in [4] that in the perfect information setting, for
ATL it does not matter whether agents have perfect recall or not — this only
matters in the case of ATL∗. In [10] only perfect recall agents are considered. In
[16], four different classes of operators are considered: IR for perfect information
and recall, iR for imperfect information and perfect recall, Ir for perfect infor-
mation and imperfect recall, and ir for imperfect information and recall. These
different levels of abilities determine which strategies are considered admissible.
Interestingly, in the logic of [16] it is possible to combine different ability op-
erators within the same formula, for example 〈〈A〉〉iR © 〈〈B〉〉Ir�ϕ means that
group A has an imperfect information perfect recall strategy so that at the next
state group B will have a perfect information imperfect recall strategy to make
ϕ always true. While being able to express such formulas is interesting, it is not
clear what the meaning of them is—for example, if some of the agents are in
both groups A and B in the above formula, it means that sometimes they are
being considered as memoryless agents and sometimes as perfect recall agents.
The logic ATOL [12] is mostly concerned with memoryless agents.

Combining memory abilities One of the new aspects of our work is the ability
to represent models with agents of different ability in the same system and in
the same logic. We do this by treating an agent’s memory abilities as part of the
underlying system rather than as an aspect of the semantics of the logic. This
is similar to the way that each agent’s knowledge is traditionally encoded in the
system as an arbitrary equivalence relation on states, but now we encode an
agent’s knowledge as an equivalence relation on histories rather than on states.
So, rather than being an aspect of the logic, the agent’s memory ability becomes
an aspect of the system. This makes it possible to discuss agents with different
memory abilities in the same formula, which is impossible in the other varieties
of epistemic ATL. For example, we can have a formula such as 〈〈ab〉〉�ϕ where a
is an agent with perfect recall and b is a memoryless agent. This formula is not
expressible in other logics.

5 Conclusion and Future Work

We have presented a logic for reasoning about the abilities of agents to cooperate
to achieve a goal when they are uncertain about the state of the world. Our
systems allow different agents to have different memory abilities. We presented
a new definition of perfect recall, which takes the history of states and the history
of actions into account.

We intend further to study the properties of this logic, such as decidability and
complexity. For example, in [5], it is proven that model checking is undecidable
for a variant of epistemic ATL with strategies based on common knowledge. We
also wish to be able to describe memory abilities in the logical language. We
are further contemplating dynamic operators for change of memory ability, and
other levels of cooperation than the three considered in this paper.
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Yet another future direction is that the logic uATEL may help to pave the
way to a coalitional event logic. Pauly’s game logic [14] corresponds to the next
temporal fragment of ATEL, and this game logic is subsumed by the coalitional
announcement logic (CAL) of [1]. Coalitional announcements are public events
enacted by coalitions.
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