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Abstract Multicast routing systems have the objective of simultaneously transfer-
ring data to multiple destination nodes while using a single “push” operation. This
leads to cost savings associated with reduced bandwidth utilization, which results
from a decrease in data duplication across network links. An important problem
on multicast networks, known as the delay constrained multicast routing problem
(DCMRP), asks for the determination of an optimal route for packet transfers
between members of a multicast group. Several heuristics have been proposed in the
last few years to solve the DCMRP, which is of great interest for telecommunication
engineers. In this paper we propose a novel, hybrid metaheuristic approach for the
DCMRP, where a greedy randomized adaptive search procedure is used along with
variable neighborhood search algorithm to find near optimal solutions. Compu-
tational experiments show that the proposed technique provides superior solution
quality, while it is also efficient in terms of the use of computational resources.

1 Introduction

Multicast services have been used in modern network applications to allow direct
communication between a source node and a set of receivers, referred to as multicast
destinations [2, 13]. In recent years, the number of applications of multicasting has
increased steadily, following the rapid advances in the availability and use of the
Internet as well as intranets in the corporate world. Multicast networks are known
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to provide robust and efficient data delivery for a wide spectrum of applications,
including video-on-demand, groupware, and data streaming, among others [14,22].

A number of algorithmic issues, however, remain as a major problem for the wide
adoption of multicasting networks. For example, routing is an issue that has not been
completely resolved on such systems due to the high computational cost of exact
algorithms. While for traditional unicast systems the routing problem can be solved
in polynomial time using well-known methods such as the Dijkstra’s algorithm [3],
multicast routing is better modeled by the Steiner tree problem, which is one of the
basic NP-hard problems [7, 17].

Given the inherent complexity of exact approaches to the DCMRP, a large
number of heuristics have been proposed to find good, if non-optimal, solutions
that can be calculated in polynomial time [2,6, 10, 11, 14]. However, many of these
local search methods proposed in the telecommunications engineering literature
suffer from a lack of optimality guarantees and may be easily trapped into local
optima [19-21,23]. As such, these methods are indicated only for application to
small- to medium-scale instances. On the other hand, applications of the DCMRP
become even more challenging for instances with a large number of multicast
members, since the efficient use of resources turns into a critical factor for the
success of such network implementations.

In this paper we propose a metaheuristic solution for the delay constrained
multicast routing problem. In particular, we propose a new method for computing
routing trees for multicast networks using a hybridization of greedy randomized
adaptive search procedure (GRASP) and variable neighborhood search (VNS). The
strategy here is to improve the performance of the algorithm by avoiding spending
too much time exploring suboptimal solutions and their solution spaces.

At the same time, our contribution may be extended to the general application
of a hybrid GRASP metaheuristic. By combining the general structure of GRASP
with VNS, the result is a novel search algorithm that may be used to produce fast
implementations for several related problems.

The paper is organized as follows. In the next section (Sect. 2), we provide
a detailed definition for the DCMRP, using graph theoretical concepts as well
as a mathematical programming model. Then, in Sect. 3 we develop a GRASP
metaheuristic for the DCMRP, followed by a description of the VNS strategy
employed. We present computational results for our approach in Sect. 4, and finally
some concluding remarks are provided in Sect. 5.

2 Delay-Constrained Multicast Routing

Multicast networks have been designed with the explicit goal of allowing fast data
transmission from a source node to a set of destinations, while using a single send
operation. This is made possible by sending data only once over a network link
whenever one or more destinations have requested the same content. A set of nodes
interested in a particular piece of data is called a multicast group. The main task



A Hybrid Metaheuristic for Routing on Multicast Networks 107

faced in the operation of a multicast network consists of delivering the requested
data to all members of a multicast group. To accomplish this goal, the system needs
to determine a set of routes connecting sources to destinations.

Let G = (V,E) be a graph where V is the set of nodes and E a set of
links connecting adjacent nodes. The source is denoted by s with destinations
D = {d,....d}, such that D C V. The cost function ¢ : E — Z represents
link costs and the delay function t : £ — Z returns the time t(e) elapsed when
traversing edge e € E. We also denote by c¢(E’) the cost associated with a set of
edges E' C E, thatis, ¢(E’) = >_,cp c(e). Similarly, we denote the time delay
forpath Z in G as t(Z) = )_,c» T(e).

The DCMRP asks for a set of edges E/ C E such that s is connected to every
noded € D on G’ = (V, E’), and the maximum acceptable delay A, at destination
d is a constant, i.e.,

Z t(e) < Ay, forevery destinationd € D,
e€Py

where £, is the path induced by E’ in G, connecting s to d. Moreover, we require
that the total cost ), c(e) of the subset £’ be minimum.

Additionally, real-world instances of the DCMRC problem frequently have
extra requirements on the kind of paths that can be used to connect sources and
destinations [2]. For example, the model may require that a minimum capacity be
available for each edge selected in the final solution. We will consider variations of
this problem in the next sections. First, let us define a formal MIP model for the
problem.

2.1 MIP Model for the DCMRP

A mixed integer programming (MIP) model for the DCMRP can be described as
follows. Let x; € {0, 1}, fori € {1...|E|}, be adecision variable that is 1 whenever
an edge is part of the routing tree and 0 otherwise. Then, the objective function can
be written as a minimization problem over the vector x, while considering the cost
of each edge:

min Z xic(e;),

¢, €EE

where ¢ : E — R is the cost function as described above. Then, we need a set of
constraints that guarantee the connectedness of the solution set {(u,v) € E : x;=1}:

> x =1 Vpartitons U Ws.t|(SUD)NU|is odd.

ei=(v,w)eUXV



108 C.A.S. Oliveira and P.M. Pardalos

That is, there is at least one link connecting each partition of IV where the number
of sources and destinations is different. Next, we have constraints that indicate the
boundedness of the delay.

Z yit(e) < A, forve D

e, €EE

where y; for e; € E is an indicator variable with value 1 whenever the edge e; is
part of a path from source to destination v € D. The variables y; can be 1 only if
link e; is part of the solution, so we also have

Vi =X foralle; € E.
Finally, we need to apply the standard integrality constraints to our model variables:
vi €{0,1} fore; € E

x; €{0,1} fore; € E

2.2 DCMRP and the Steiner Problem

The minimum routing cost problem as described above has close connections to
the minimum cost Steiner tree problem. In graph theory, a tree that connects a set
of required nodes, while using other nodes only if necessary, is called a Steiner
tree [8, 16]. Thus, we can restate the problem as that of finding a minimum cost
Steiner tree such that maximum delay restrictions are also satisfied.

In the Steiner problem, one is given a graph G = (V, E) together with a cost
function ¢ : E — Z4, and a set R C V of required nodes. The nodes in V' \ R
are called Steiner nodes. The objective is to find a tree T linking the nodes in D,
passing through Steiner nodes (V' \ R) if necessary, such that the cost >, c(e) is
minimized. The Steiner problem on graphs is well known to be NP-hard [7].

Consider the following transformation from instances of the Steiner problem to
the DCMRP. Given an instance of the minimum cost Steiner tree problem, let us
construct an instance of DCMRP using the same underlying graph. Select a node
among the required nodes to become the source and let the remaining required nodes
be destinations. Then, set A; <— oo, forall d € D. As can be easily confirmed, an
optimal solution to the transformed problem will also be a solution to the original
instance of the Steiner problem. Conversely, an optimal solution for the original
instance will give an optimal solution for the transformed instance. This argument
shows that the DCMRP is also NP-hard.

Given the computational complexity of the DCMREP, it is extremely difficult
to solve general large-scale instances of the problem. However, our goal is to
devise algorithms that can provide near optimal solutions for typical instances of
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Read instance data
Initialize GRASP data structures
S* <0
while termination criterion not satisfied do
S < new greedy randomized solution
S < LocalSearch(s)
if cost(S) < cost(S™) then
| S*<«§
end
end
return S*

Algorithm 1: Generic GRASP algorithm

the problem. Moreover, we want such algorithms to perform efficiently, returning
feasible solutions quickly and avoiding getting stuck in local optima.

3 GRASP Approach for DCMRP

Most modern metaheuristic techniques are based on finding solutions close to the
global optimum with the help of gradient methods combined with randomization
rules, which are designed to avoid local optima. Metaheuristics main contribution
is on the development of intelligent strategies for mixing existing non-optimal
techniques and algorithms. Such metaheuristics use similar principles in slightly
different ways. A conceivable goal for the algorithm designer is, therefore, to
borrow techniques from different metaheuristics, in order to create algorithms that
better reflect the characteristics of the problem at hand. In this paper we use some
of the techniques proposed by GRASP metaheuristic as well as by the variable
neighborhood search metaheuristic (VNS) to efficiently solve the DCMRP.

Greedy Randomized Adaptive Search Algorithm (GRASP), proposed by Feo and
Resende [4], aims at finding near optimal solutions for combinatorial optimization
problems. It is composed of a number of iterations, where a new solution is picked
from the available feasible set, using a greedy construction algorithm. The initial
solution is subsequently improved using some local search method. GRASP has
been very successful in a number of applications such as QAP [15], Frequency
Assignment [9], Satisfiability, and many others [5]. The steps of standard GRASP
are summarized in Algorithm 1.

The GRASP algorithm is a multi-start method, where a new solution is con-
structed, and subsequently improved. In the construction phase, at each iteration the
algorithm tries to add a new element using a randomized greedy strategy. The second
phase is concerned with improving the current solution. Its goal is to achieve a local
optimum state by performing a local search, which is usually based on a gradient
decent strategy. In the next sections, we describe the approach used in the GRASP
implementation for DCMRP.
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S<0

while solution s is not feasible do
Sort ey, ..., e using greedy function
Select a random «, such that 0 < o < k
R < {e,....eq}
e <— arbitrary selected element of R
S < SU{e}

end

return S*

Algorithm 2: Generic GRASP constructor

3.1 GRASP Constructor

The construction phase of the GRASP algorithm is responsible for creating a
new solution, using a greedy randomized strategy. The basic idea behind greedy
randomization is to add elements to the solution according to a greed criterion.
However, the element that is chosen at each step to compose the new solution is
not necessarily the best available element. Instead, the selection is taken randomly
from a subset of best available elements, which have been previously sorted using
a greedy objective. The general algorithm is displayed in Fig. 2. In the algorithm,
the subset of best elements is called a restricted candidate list (RCL). The RCL
is created and used to track the best elements available to be added to the current
solution.

3.2 Speeding Up the GRASP Constructor

To be effective as the construction phase in a GRASP algorithm, it is desirable that
the construction method be very fast. A construction algorithm that is not quick
enough may become a bottleneck for the whole algorithm, since it needs to be
executed every time a new solution is desired. While the traditional approach for
GRASP construction works well, it requires the maintenance of an additional data
structure, which needs time to build, and as a result it can waste computational
resources. Instead, we use the following observation proved in [14].

Observation 1 Let x1, ..., X, be an unordered sequence, and y1, ..., y, the corre-
sponding ordered sequence. Then, to find a random element among the y1, ..., Yq,
for 0 < a < n is on average equivalent to selecting the best of a random elements
of X1,..., Xn.

The observation above gives a very efficient way of implementing the RCL test,
which gives us, on average, the same results. Start with the full set C of candidate
elements. Then, at each step generate a value of «, and pick at random k = 1/«



A Hybrid Metaheuristic for Routing on Multicast Networks 111

Input: parameter «, instance size N
S« 0
while S is an incomplete solution do
o’ < uniform(0, )
k <= N/a;
¢ < 00 (—oo for maximization problems)
for j €{1,...,k}do
C; < set of candidates at this iteration
x < arbitrary element from C;
if c(x) < c then
¢ < c(x)
y <X
end
end

S« SU{y}
end

return S

Algorithm 3: Improved construction phase for GRASP

elements of C. From the picked elements, store only the one that is the best fit for
the greedy function. This method is shown in Algorithm 3.

A clear advantage in terms of computational complexity is achieved by the
proposed construction method for GRASP. The greatest advantage is that, while in
the original technique the candidate elements must be sorted, this is not necessary
in the proposed algorithm. Moreover, the complexity of traditional construction is
dependent on the number of candidate elements. In our method, the complexity is
constant for a fixed value of «. For example, if alpha is 7/2, then we need just two
iterations to find an element in the RCL, with high probability.

Theorem 1 ([14]). The complexity of selecting elements from the RCL in the
modified construction algorithm is n log n.

3.3 GRASP Construction Phase for DCMRC

We proceed to describe how to find a solution for the DCMRP that will be used
in the construction phase of the GRASP algorithm. The construction algorithm is
composed of several steps, in which we build a spanning tree that contains all the
nodes in the required set of sources and destinations, along with other nodes required
as intermediaries.

The first part of the construction phase is to compute paths connecting the source
to each of the destinations d € D. This is done using a randomized version of
Dijkstra’s algorithm, which finds shortest paths from a source to a single destination.
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S<0

while there is d € D that is unconnected in S do

& < randomized shortest path from s to d
S«<~Suz»

end

while the is at least one cycle in s do

e’ < argmax,ey c(e) s.t. e is contained in a cycle
e” < arg max,eg\ c(€) s.t. e is contained in a cycle
é < ¢’ with prob. p, otherwise ¢’

S« S\e

end
return S

Algorithm 4: GRASP construction for DCMRP

The adaptation necessary here is such that the shortest path is updated only with high
probability p. This guarantees that the solution found in any two executions of the
algorithm will be close to the optimum, but still with random differences that make
the result useful for our stochastic optimization methods. The randomized shortest
path is then used to create an initial solution as shown in Algorithm 4.

The first part of Algorithm 4 guarantees that the solution created is connected,
by finding a separate path from the source to each destination d € D. At the end
of this phase, we will have a solution where separate paths may result in cycles.
Therefore, the second phase of the construction algorithm aims at removing such
cycles. At each step, it finds the two highest cost edges contained in a cycle. Then,
the algorithm removes one of them in an arbitrary way. The goal is to reduce the cost
of the final solution, while at the same time allowing for randomized results. The
resulting solution is returned at the end of Algorithm 4 to be later used by GRASP.

3.4 Variable Neighborhood Search

Once a feasible solution has been created by GRASP, the next step of our algorithm
is to try to improve its quality using a local search procedure. Traditionally,
local search has been performed using gradient descent techniques, which try to
incrementally improve a solution until a local minimum is reached. The disad-
vantage of such methods, however, is that they can quickly become stuck in a
local neighborhood, hindering the computational effort employed during the search
phase. We try to avoid this behavior by using instead an alternative search technique
based on variable neighborhood search (VNS).

VNS is a metaheuristic programming technique that has be successfully used
to solve several combinatorial optimization problems [12]. Its main approach is
to perform local search using successively larger neighborhoods, until no more
improvements can be found by increasing the neighborhood size up to a given
parameter. The advantage of VNS is that it will not stop once the first local optimum
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Input: current solution S

S* < s /* initialize best solution  /

N <1/« set distance to 1%/

while N < K do

N« N+1

while improvement found in last § iterations do
u, v <— random pair or nodes in S such that dg(u,v) = N
& < randomized shortest path u = vin G
S’ <— § with & in place of path u — v
ifc(S") < c(S*) then

[ §* <5

end

end

end
return S

Algorithm 5: Variable neighborhood search

has been found. Instead, it will continue to build better solutions by reaching more
distant neighborhoods in a organized fashion, until it cannot find any additional
improvements. By reaching these more distant neighborhoods, VNS can more easily
avoid being trapped in the same optimal solution, therefore yielding better results
than standard local search.

The VNS algorithm for the DCMRP tries to replace existing sub-paths in the
current solution by using alternate paths that have the potential for improving the
objective function. This is done by arbitrarily selecting a pair of nodes occurring in
the existing solution and replacing its induced sub-path by a new path, found using
a shortest path algorithm. For this purpose, one can use a method such as Dijkstra’s
shortest-path procedure, which will hopefully provide a local improvement to the
existing solution.

It is also possible to use randomized shortest-paths, similarly to how these paths
are calculated in the GRASP constructor, where the best path is updated according
to a probability distribution, so that the best path is not always selected. In that
case, possible improvements will come from the exploration of the neighborhood
of the existing solution, although the local-optimality of this improvement is not
guaranteed in the same form as when using a completely greedy procedure.

The difference between VNS compared to other local search strategies resides in
the ability to change the underlying neighborhood structure as a new local minimum
is found. In our case, the neighborhood is changed by increasing a reach parameter,
so that larger subpaths are substituted by the algorithm. This kind of change will
happen until the maximum of N, defined by the parameter K, is reached. The
general approach used in our VNS implementation is provided in Algorithm 5.

The algorithm starts by defining the parameter N, which is interpreted as the
distance between nodes for which a new path will be searched. For the first iteration,
this parameter is set to value 1, and in this case only nodes that are neighbors in the
current solution are substituted by new paths. This process is repeated as long as
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we are able to perform improvements in the existing solution. A limit of § moves
without improvement is allowed before the inner part of the algorithm is interrupted.
Then, the parameter N is increased by one and the process restarts.

The search is completed only when N reaches the previously defined upper limit
K. At this point, the algorithm has systemically investigated all paths that might
improve the current solution by replacement of paths occurring between pairs of
nodes. When that happens, we return to the upper-level GRASP process the best
solution found during all iterations, which will be used as the new optimum solution.

3.5 Path Relinking

GRASP has the advantage of being easy to develop, since it is composed of
relatively independent procedures (the constructor and local search phases). It is
well suited for applications with existing heuristic algorithms, that can be combined
with GRASP to find a better solution.

However, one of the weaknesses of GRASP is its incapacity to integrate good
solutions found previously into the current search iteration. Since each iteration will
create a completely different solution, there is no information added to the system
when a good solution is found.

A method that has been used lately to overcome this problem is called path
relinking (PR) [1,18]. In PR, a subset of the best solutions found is kept in a separate
memory, called the elite set. At each iteration, one of the solutions s will be selected,
and a process of comparing the current solution with s will start. Each component
of the solution will be changed to the corresponding value on s, and after this a local
search will be initiated to check for local optimality.

The disadvantage of PR is the large time it takes to run, in comparison with
the rest of the GRASP algorithm. This, in practice, has been a restricting factor
in the use of PR on practical applications. Although PR brings a relative boost in
solution quality on each iteration, the effect can be negative since the number of
iterations may be reduced due to the added complexity. Therefore, we need to use
experimental data to determine the best trade-off between computational time and
quality of results produced by path relinking.

The path relinking implementation used to solve the DCMRP is described in
Algorithm 6. The first step of path relinking is to create a set of elite elements,
denoted by &. The maximum size of this set is given by e, therefore for the first
€ iterations we simply run the existing GRASP algorithm and add the resulting to
solution to the elite set.

When the elite set is complete, we start using it to perform improvements to
the solution generated by GRASP. This is depicted in the second while loop in
Algorithm 6. The termination criterion is usually based on number of iterations,
time, or the distance to a known lower bound. The first step of the loop is to create
a new solution using GRASP. Then, an element of & is arbitrarily selected and
subsequently used during the path relinking process. For each path &7 € s going
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<0
while |£| < € do
S < GRASP
&<« &U{S}
end
while termination criteria not satisfied do
S < GRASP
S’ <— arbitrary element of &
for each path & € S’ do
S«<~Suz»
while s has a cycle do
e < argmax, c¢(e) such that S \ e is connected
S« S\e
end
end
/+ Update Elite Set & /
y* < argmax,eg c(y)
if c(s) < c(y*) then
| &« (EU{s)\y*
end

end
return y*

Algorithm 6: Path relinking improvement phase

from source to destination, the algorithm will try to replace the edges of the existing
solutions with the edges of the same path in the elite solution. This is performed
in the following way: first, we calculate the union of the two edge sets. Then, we
proceed to remove redundant edges in a greedy fashion. That is, for each high cost
edge, we check if we can remove it while maintaining a connected solution. This
process continues until there are no cycles in the resulting solution.

The last step of the algorithm loop is to update the elite set. For this purpose, we
retrieve the worst solution y in the elite pool. If the current solution s improves on
the cost of y, then we replace y with s in the elite set. These steps are then performed
until a predefined termination criterion is satisfied.

4 Computational Results

To test the quality of the proposed metaheuristic, we designed a set of DCMRP
instances. The instances range in size from 40 to 100 nodes, which is representative
of medium-size problems occurring in large companies or in clusters of medium-
sized organizations. Edges have been added to these test networks with costs that are
uniformly distributed between 1 and 10. The distances are assumed to be Euclidian,
but can be easily adapted to other metrics such as Manhattan distances (Fig. 1).
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Fig. 1 Drawing of an instance with 40 nodes depicting node positions and costs between nodes

We run the proposed algorithm 10 times for each of the tested instances. We
report on the average of these executions, to account for random fluctuations
between different runs. The results are illustrated in Table 1. In this table, the
first two columns give the number of nodes and edges in the network. The next
three columns display the average best solution found by the GRASP without
enhancements, the GRASP plus VNS strategy, and finally the GRASP with VNS
enhanced with the PR method.

An area that we tested in the GRASP implementation just shown was the relative
contribution of having two improvement methods (traditional local search and VNS)
as components of the metaheuristic. As can be seen from the results, VNS is able
to improve the quality of results in most of the cases, which shows that the use of
multiple neighborhoods can provide a boost in efficiency for the algorithm.
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Table 1 Experimental results of the GRASP and VNS metaheuristic imple-

mentation for the DCMRC
Best Best Best

n |m GRASP | GRASP+4VNS | GRASP+VNS+PR | Time (s)
40 68 83 82 82 4.2
45 79 161 161 161 4.9
50 97 238 235 235 5.9
55 | 126 262 257 255 5.7
60 |153 385 376 373 7.2
65 | 189 823 814 814 7.5
70 213 647 644 641 8.9
75 252 743 741 740 9.3
80 | 346 722 709 709 10.4
85 |402 827 815 812 10.7
90 |522 823 808 804 12.5
95 693 | 1028 1016 1009 13.3

100 | 816 |1317 1311 1279 18.2

S Concluding Remarks

In this paper, we presented a metaheuristic approach to solve the DCMRP, a problem
arising on multicast routing systems, where the goal is to provide quick and accurate
routing services to a set of source and destination points. Due to its occurrence
in the design of telecommunication networks, the DCMRP has become the focus
of intense research in the last few years. Our main contribution is the use of a
fast construction algorithm along with an improvement method based on variable
neighborhood search. The VNS has been used to enhance GRASP results, making
it possible to explore existing solutions even faster.

The results of our experiments show that this method provides high quality
solutions for realistic instances of the problem. The elegance of the method used
also means that it can be easily incorporated to other algorithms for the DCMRP
and related problems. In future research, it would be interesting to investigate the
use of other intensification strategies for the proposed algorithm, such as improving
the basic path relinking scheme used in this paper.
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