
Leon Henkin and Cylindric Algebras

J. Donald Monk

Abstract This is a description of the contributions of Leon Henkin to the theory of cylin-
dric algebras.
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1 Introduction

Cylindric algebras are abstract algebras that stand in the same relationship to first-order
logic as Boolean algebras do to sentential logic. There are two ways of passing from logic
to cylindric algebras. For the first, we are given a first-order language L and a set Γ of
sentences in L. We assume that L has the sequence v0, v1, . . . of individual variables.
We define an equivalence relation ≡ on the set of formulas of L by defining ϕ ≡ ψ iff
Γ � ϕ ↔ ψ . Then it is easy to see that there are the following operations on the set A of
≡-classes:

[ϕ] + [ψ] = [ϕ ∨ ψ]; [ϕ] · [ψ] = [ϕ ∧ ψ];
− [ϕ] = [¬ϕ]; ci[ϕ] = [∃viϕ].

Then the following structure is a cylindric algebra:

〈
A,+, ·,−,

[¬(v0 = v0)
]
, [v0 = v0], ci , [vi = vj ]

〉
i,j∈ω

.

For the second method of obtaining a cylindric algebra, we suppose that a set A is given.
We consider the following unary operations Ci of cylindrification acting upon subsets of
ωA (the set of infinite sequences of elements of A):

CiX = {
a ∈ ωA : ∃b ∈ X[aj = bj for all j 	= i]}.

Then the following is a cylindric set algebra: 〈B,∪,∩,−,∅, ωA,Ci,Dij 〉i,j∈ω, where B

is a collection of subsets of ωA closed under the operations ∪, ∩, − (with −X = ωA\X
for any X ⊆ ωA), and with ∅, ωA, and Dij as members, where Dij = {a ∈ ωA : ai = aj }.

Tarski and his students F.B. Thompson and L.H. Chin introduced an abstract notion of
cylindric algebra that encompasses both of these cases. For any ordinal number α, a cylin-
dric algebra of dimension α is an algebra of the form A = (A,+, ·,−,0,1, cξ , dξη)ξ,η<α

such that the following conditions hold:
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(1) (A,+, ·,−,0,1) is a Boolean algebra.
(2) cξ 0 = 0.
(3) x + cξ x = cξ x.
(4) cξ (x · cξ y) = cξ x · cξ y.
(5) cξ cηx = cηcξ x.
(6) dξξ = 1.
(7) If ξ 	= η,ρ, then dηρ = cξ (dηξ · dξρ).
(8) If ξ 	= h, then cξ (dξη · x) · cξ (dξη · −x) = 0.

Historical remarks on the development of cylindric algebras up to the time of Henkin’s
work on them can be found in [5]. The development went via the relation algebras of
Tarski and the projective algebras of Everett and Ulam.

The work of Leon Henkin concerning cylindric algebra can be divided into these parts:
on the algebraic theory of them, the theory of set algebras, representation theorems, con-
struction of nonrepresentable algebra, and applications to logic. Many of the publications
of Henkin concerning cylindric algebras are devoted to exposition without proofs. De-
tailed proofs of most of his results are found in the two volumes [9] and [16], written
jointly with Monk and Tarski.

2 Algebraic Theory

The purely algebraic theory of cylindric algebras, exclusive of set algebras and repre-
sentation theory, is fully developed in [9]. The parts of this theory developed mainly by
Henkin are as follows.

If A is a CAα and Γ = {ξ(0), . . . , ξ(m − 1)} is a finite subset of α, then we define
c(Γ )a = cξ(0) · · · cξ(m−1)a. This does not depend on the order of ξ(0), . . . , ξ(m − 1), by
axiom (5). An element a is rectangular iff c(Γ )a · c(Δ)a = c(Γ ∩Δ)a for any finite subsets
Γ,Δ of α. This notion was first introduced in [3]. Elementary properties of the notion are
given in Sect. 1.10 of [9]. Their use in representation theory is described below.

The dimension set Δx of an element x of a CAα is the collection of all ξ < α such
that cξ x 	= x. The CAω obtained from first-order theories as above have the property
that the dimension sets are always finite. A CAα is locally finite iff Δx is always finite.
This notion is due to Tarski. Henkin introduced the following generalization. A CAα is
dimension complemented iff Δx 	= α for all x. Algebraic properties of these two notions
are worked on in Sect. 1.11 of [9]. Both notions are important in representation theory.
In [10], Henkin proved that every locally finite CAα is isomorphic to one of the cylindric
algebras described at the beginning of this article, an algebra of formulas modulo some
theory in the language.

If A is a CAα and a ∈ A, then the relativization of A to a is the structure

A|a = 〈
A

∣∣ a,+′, ·′,−′,0′,1′, c′
ξ , d

′
ξη

〉
ξ,η<α

,

where A|a = {x ∈ A : x ≤ a}, x +′ y = x + y, and x ·′ y = x · y for any x, y ∈ A|a,
−′x = a · −x for any x ∈ A|a, 0′ = 0, 1′ = a, c′

ξ x = cξ x · a for any x ∈ A|a and any
ξ < α, and d ′

ξη = dξη · a for any ξ, η < α. In general, the relativization is not itself a CAα .
Algebraic properties of relativizations are developed in Sect. 2.2 of [9]. This is a notion
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that Henkin worked on thoroughly. It is interesting in its own right and is also useful in
constructing nonrepresentable cylindric algebras. In [12], written jointly by Henkin and
his student Diane Resek, some simple equations are shown to characterize the class Cr2
of two-dimensional relativized cylindric algebras. It is also shown there that the class Cr3
is not closed under subalgebras. Additional results are stated without proof.

Given a CAα A and an ordinal β < α, we can associate the β-reduct of A, which is the
algebra 〈A,+, ·,−,0,1, cξ , dξη〉ξ,η<β . We say that B is neatly embedded in A, provided
that B is a subalgebra of the β-reduct of A, and cξ b = b for all b ∈ B and ξ ∈ [β,α).
Algebraic properties of reducts and neat embeddings are explored in Sect. 2.6 of [9]. Neat
embeddings play a prominent role in representation theory.

The duality theory of Boolean algebras can be adapted to cylindric algebras as fol-
lows. For a CAα A, we associate the following structure, called the canonical embedding
algebra EmA, where M is the collection of all maximal ideals of the Boolean part of A:

〈
P(M),∪,∩,−,∅,M, cξ , dξη

〉
ξ,η<α

,

where −x = M\x for any x ⊆ M , for any x ⊆ M and ξ < α, we define

cξ x = {
J ∈ M : c−1

ξ [J ] = ∅} ∪
⋃

I∈x

{
J ∈ M : c−1

ξ [J ] ⊆ I
}
,

and for any ξ, η < α, we define

dξη = {I ∈ M : dξη /∈ I }.
The canonical embedding function emA is defined by emA(a) = {I ∈ M : a /∈ I }. The
algebraic theory of canonical embedding algebras is developed in Sect. 2.7 of [9]. In
particular, EmA is always a CAα , and rmemA is an isomorphic embedding of A into
EmA. To show that EmA is a CAα , one of course has to check the axioms for a CAα . This
procedure can be generalized to Boolean algebras with operators, and this has been carried
out by Jónsson and Tarski. The question of extending equations valid in a Boolean algebra
with operators to its canonical embedding algebra is difficult. Henkin in [8] contributed
to answering this question.

Every CAα EmA is complete and atomic. This gives rise to another way of defin-
ing the class of cylindric algebras. A cylindric atom structure is a relational structure
〈B,Tξ ,Eξη〉ξ,η<α such that the following conditions hold:

(1) Tξ is an equivalence relation on B .
(2) T ξ |Tη = Tη|Tξ .
(3) Eξη = Tμ[Eξμ ∩ Eμη] if μ 	= ξ, η.
(4) If ξ 	= η and b, c ∈ Eξη, then bTξ c iff b = c.

Given a cylindric atom structure B = 〈B,Tξ ,Eξη〉ξ,η<α , we define its complex algebra
Cm(B) to be the algebra

〈
P(B),∪,∩,−,∅,B, cξ ,Eξη

〉
ξ,η<α

,

where −x = B\x for any x ⊆ B and cξ x = Tξ [x] for any ξ < α. Then Cm(B) is a com-
plete atomic CAα , and every complete and atomic CAα can be obtained in this way.
Hence, any CAα is a subalgebra of Cm(B) for some cylindric atom structure B . The
details of this correspondence are worked out in Sect. 2.7 of [9].
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3 Set Algebras

The notion of a cylindric set algebra given in the introduction can be generalized as fol-
lows. An algebra A is a cylindric-relativized set algebra of dimension α iff there is a
nonempty set U and a set V ⊆ αU such that A has the form

〈A,∪,∩,−,∅,V , cξ , dξη〉ξ,η<α,

where A is a collection of subsets of V closed under ∪, ∩, − (with −a = V \a), cξ , with

cξ a = {
y ∈ V : ∃x ∈ a[xη = yη for all η 	= ξ ]}

and with dξη ∈ A, where dξη = {y ∈ V : yξ = yη}.
In general, such algebras do not satisfy the axioms for cylindric algebras. However, the

following special cases do.
With V = αU , giving cylindric set algebras.
With V = ⋃

i∈I
αZi , where 〈Zi : i ∈ I 〉 is a system of nonempty pairwise disjoint sets,

giving generalized cylindric set algebras. These set algebras were first introduced in [1].
With V = αW(p), where p ∈ αU and αW(p) = {x ∈ αW : {ξ < α : xξ 	= pξ }} is finite,

giving weak cylindric set algebras.

With V = ⋃
i∈I

αW
(pi)
i with αW

(pi)
i ∩ αW

(pj )

j = ∅ for i 	= j , giving generalized weak
cylindric set algebras.

It turns out that generalized cylindric set algebras and generalized weak cylindric set
algebras are the natural algebras for representation theory; a CAα is representable iff it is
isomorphic to one of these. The theory of the various kinds of set algebras is described in
Sect. 3.1 of [16]; see also [14]. Some of the results were proved earlier in [11].

4 Representation Theorems

That every infinite-dimensional locally finite CAα is representable is due to Tarski. In
[16], this theorem is proved by an algebraic adaptation of Henkin’s proof of the com-
pleteness theorem for first-order logic. In fact, call an element x of a CAα ξ -thin iff there
is an η 	= ξ such that x · cξ (dξη · x) ≤ dξη and cξ x = 1 and call a CAα A rich iff for every
nonzero y ∈ A such that Δy ⊆ 1, there is a 0-thin element x such that x · c0y ≤ y. The
main technical lemma which implies the above representation theorem runs as follows:

If 2 ≤ α and A is a simple rich locally finite CAα satisfying the equality

cξ

(
x · y · cη(x · −y)

) · −cη(cξ x · −dξη) = 0

for all distinct ξ, η < α and all x, y ∈ A, then A is representable.

From this lemma, using algebraic results and facts about set algebras, one can derive
the following additional representation theorems due to Henkin:

For α ≥ 2, a CAα is representable iff it can be neatly embedded in a CAα+ω . This was
first stated, for finite α, in [3]. For arbitrary α, it was stated in [5].
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Every dimension-complemented CAα of infinite dimension is representable. This was first
stated without proof in [2].

By a direct proof given in [16] we have the following representation theorem of
Henkin, first stated in [3]:

For α ≥ 2, a CAα is representable iff it can be embedded in an atomic CAα in which all
atoms are rectangular.

A special representation theorem due to Henkin runs as follows.

Suppose that A is a CAα and the subalgebra of A generated by {dξ,η : ξ, η < α} is simple.
Suppose that there is a positive integer m such that

c0 · · · cm−1

( ∏

i,j<m

−dij

)
= 0.

Then A is representable.

It is easy to prove that all CA0 and CA1 are representable. This is no longer true for
CA2, but Henkin proved that one only needs to add two equations to obtain representabil-
ity:

A CA2 A is representable iff the following two equations hold in A:

c1
(
x · y · c0(x · −y)

) · −c0(c1x · −d01) = 0;
c0

(
x · y · c1(x · −y)

) · −c1(c0x · −d10) = 1.

Many of these representation theorems can be found in [17].

5 Nonrepresentable Cylindric Algebras

It turns out that not every cylindric algebra is representable. Henkin invented three meth-
ods of constructing nonrepresentable cylindric algebras, described in Sect. 3.2 of [16].

5.1 Permutation Models

Let U be a nonempty set, and consider the cylindric algebra A of all subsets of αU .
Every permutation f of U extends in a natural way to an automorphism f̃ of A. If H

is a subgroup of the group of all permutations of U , then one can consider the set {a ∈
A : f̃ (a) = a for all f ∈ H }. This set forms a subalgebra fixH (A) of A. By choosing U

and H suitably and taking a relativization of fixH (A) one can obtain a nonrepresentable
cylindric algebra. This is carried out in [16] to show that the following inequality (which
can be written as an equation) holds in every representable CAα with α ≥ 3 but fails in a
permutation model:

c0x · c1y · c2z ≤ c0c1c2
[
c2(c1x · c0y) · c1(c2x · c0z) · c0(c2y · c1z)

]
.
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5.2 Dilation

Whereas permutation models take a relativization of a subalgebra of some cylindric alge-
bra, dilation does the opposite: starting with an algebra, one adds atoms. More precisely,
let B = 〈B,Tξ ,Eξη〉ξ,η<α be a cylindric atom structure. Suppose that a ∈ αB satisfies the
following conditions:

[aξ ]Yη ∩ [aη]Tξ 	= 0 for all ξ, η < α.

aμ /∈ Eξη for distinct ordinals ξ, η,μ.

Suppose that u is some object not in B . Then we form a new relational structure B
′ =

〈B ′, T ′
ξ ,E

′
ξη〉ξ,η<α by setting

B ′ = B ∪ {u}.
For any ξ < α, T ′

ξ is an equivalence relation on B ′ such that T ′
ξ ∩ (B × B) = Tξ , and for

any b ∈ B , bT ′
ξ u iff bTξaξ .

E′
ξη = Eξη for distinct ξ, η < α, and Eξξ = B ′ for any ξ < α.

By a suitable choice of a one obtains in this way a cylindric atom structure whose associ-
ated cylindric algebra is nonrepresentable. This is done in [16] to show that the following
equation holds in every representable CAα with α ≥ 3 but fails in some dilation model:
x; (y; z) = (x;y); z, where, in general, u;v = c2(c1(d12 · c2u) · c0(d02 · c2v)).

5.3 Twisting

Roughly speaking, this method consists of selecting two members x, y of a cylindric atom
structure together with an index ξ < α and redefining the equivalence relation Eξ using
x and y. Formally, we are given a cylindric atom structure B = 〈B,Tξ ,Eξη〉ξ,η<α , two
elements x, y ∈ B , an index ξ < α such that not (xTξy), and two partitions [x]Tξ = X0 ∪
X1 and [y]Tξ = Y0 ∪Y1 such that the following conditions hold, where M = [x]Tξ ∪[y]Tξ :

(1) If η 	= ξ and (a, b) ∈ (M ×M)∩Tη and a 	= b, then (a, b) ∈ (X0 ×Y0)∪ (Y0 ×X0)∪
(X1 × Y1) ∪ (Y1 × X1).

(2) If η 	= ξ and a ∈ M , then there is a b ∈ M\{a} such that aTηb.
(3) If i ∈ {0,1} and η, ν < α, then Xi ∩ Eξη ∩ Eξν 	= 0 iff Yi ∩ Eξη ∩ Eξν 	= 0.

Then a new structure B
′ = 〈B,T ′

η,Eην〉η,ν<α is defined as follows: T ′
η = Tη if η 	= ξ ,

whereas Tξ is the equivalence relation on B with equivalence classes [z]Tξ for z /∈ M ,
along with X0 ∪ Y1 and X1 ∪ Y0.

It is shown in [16] that B
′

is a cylindric atom structure. This is used to show that the
following equation holds in every representable CAα but fails in some twisting model:

c2
(
d20 · c0

(
d01 · c1(d12 · x)

)) = c2
(
d21 · c1

(
d01 · c0(d02 · x)

))
.
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6 Applications to Logic

In [6], Henkin considers first-order logic with only finitely many variables. In the case of
just two variables x and y, he proves that the formula

∃x(x = y ∧ ∃yGxy) → ∀x(x = y → ∃yGxy)

is universally valid but not derivable from the natural axioms (restricted to two variables).
Here G is a binary relation symbol. The nonderivability is proved using a modified cylin-
dric set algebra. This example suggests adding all formulas of the following forms to the
axioms for two-variable logic:

∃x(x = y ∧ ϕ) → ∀x(x = y → ϕ),

∃y(x = y ∧ ϕ) → ∀y(x = y → ϕ).

Henkin shows, again using a modified cylindric set algebra, that this axiom system is also
incomplete; the following universally valid formula is not provable in the expanded axiom
system:

∃xFx ∧ ∀x∀y[Fx ∧ Fy → x = y] → [∃x(Fx ∧ Gxy) ↔ ∀x(Fx ↔ Gxy)
]
.

An analysis of this situation leads to adding the following formulas to the axioms:
∃x∀y(ϕ ↔ y = x) → [∃y(ϕ ∧ ψ) ↔ ∀y(ϕ → ψ)] with x not free in ϕ; ∃y∀x(ϕ ↔ x =
y) → [∃x(ϕ ∧ ψ) ↔ ∀y(ϕ → ψ)] with y not free in ϕ. But again the resulting axiom
system is not complete. By another modified cylindric set algebra Henkin shows that the
following formula is universally valid but not derivable in this axiom system:

∃xGxy ↔ ∃x(x = y ∧ ∃yGyx).

Finally, adding the following axioms results in a complete axiom system:

∃xϕ ↔ ∃x
(
x = y ∧ ∃yϕr

)
,

∃yϕ ↔ ∃y
(
y = x ∧ ∃yϕr

)
,

where ϕr is recursively defined by interchanging x and y if ϕ is atomic, with (¬ϕ)r =
¬ϕr , (ϕ ∨ ψ)r = ϕr ∨ ψr , (∃xϕ)r = ∃y(x = y ∧ ∃xϕ), and (∃yϕ)r = ∃x(x = y ∧ ∃yϕ).
The proof of completeness of the resulting axiom system is rather involved but is com-
pletely carried out.

It is shown that the above axioms do not suffice for logic with three variables.
In [7], Henkin translates the notion of relativization of a cylindric algebra, described

above, into a purely logical framework. Namely, given a first-order language L and a
formula π of L (with no restriction on the number of free variables of π ), one associates
with each formula ϕ of L its relativization ϕπ as follows: ϕπ = ϕ for ϕ atomic; (¬ϕ)π =
¬ϕπ ; (ϕ ∧ ψ)π = ϕπ ∧ ψπ , and (∃xϕ)π = ∃x(π ∧ ϕπ). The main theorem of [7] is
as follows. Consider first-order logic with variables in the list v0, . . . , vn, . . . with n < α,
where α ≤ ω. A natural set of axioms for logic with these variables is explicitly described.
Let π be a formula with free variables among v0, . . . , vn−1. Then a set Δ of formulas
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having to do with relativization are described, namely all formulas of one of the following
two forms:

∀v0 . . .∀vm

[
(∃vi∃vjϕ)π → (∃vj∃viϕ)π

]
,

where all free variables of ϕ are among v0, . . . , vm;

∀v0 . . .∀vm

(
π → π ′),

where there are i, j < α such that π ′ is obtained from π by replacing all free occur-
rences of vi in π by free occurrences of vj , and the free variables of π → π ′ are among
v0, . . . , vm.

The theorem is then that Γ � ϕ implies that Δ ∪ Γ � ϕπ .
This theorem is used, along with a suitable (ordinary) model to show that a certain

sentence involving only three variables cannot be proved from the logical axioms. The
sentence expresses that if a function has at most two elements in its domain, then it has at
most two elements in its range.
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