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Abstract The generalized models for higher-order logics introduced by Leon Henkin and
their multiple offspring over the years have become a standard tool in many areas of logic.
Even so, discussion has persisted about their technical status, and perhaps even their con-
ceptual legitimacy. This paper gives a systematic view of generalized model techniques,
discusses what they mean in mathematical and philosophical terms, and presents a few
technical themes and results about their role in algebraic representation, calibrating prov-
ability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic
absoluteness. We also show how thinking about Henkin’s approach to semantics of logical
systems in this generality can yield new results, dispelling the impression of adhocness.
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1 General Models for Second-Order Logic

In Henkin [46] general models were introduced for second-order logic and type theory
that restrict the ranges of available predicates to a designated family in the model. This
enlarged model class for higher-order logics supported perspicuous completeness proofs
for natural axiom systems on the pattern of the famous method in Henkin [45] for prov-
ing completeness for first-order logic. To fix the historical background for this paper,
we review the basic notions here, loosely following the exposition in van Benthem and
Doets [17].

The language of second-order logic has the usual vocabulary and syntactic construc-
tions of first-order logic, including quantifiers over individual objects, plus variables for
n-ary predicates, and a formation rule for existential and universal second-order quanti-
fiers ∃Xϕ,∀Xϕ. Standard models M = (D, I) for this language have a domain of objects
D and an interpretation map I for constant predicate symbols.1 Next, assignments s send
individual variables to objects in D, and predicate variables to real predicates over D,
viewed as sets of tuples of objects. Then we have the following standard truth condition:

M,s |= ∃Xϕ iff there is some predicate P of suitable arity with M,s[X := P ] |= ϕ.

This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while
also being an always open, modest, and encouraging colleague and friend.

1For simplicity only, we mostly omit individual constants and function terms in what follows.
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Now we take the control of available predicates in our own hands, instead of leaving
their supply to set theory. A general model is a tuple (M,V ) where M is a standard model
and V is some nonempty family of predicates on the domain D of M . There may be some
further constraints on what needs to be in the family, but we will look into this below.

Now interpretation on standard models is generalized as follows:

M,s |= ∃Xϕ iff for some predicate P in V of suitable arity: M,s[X := P ] |= ϕ.

Henkin [46] proved the following seminal result:

Theorem 1 Second-order logic is recursively axiomatizable over general models.

This can be shown by adapting a Henkin-style completeness proof for first-order logic.
However, another insightful road for obtaining Theorem 1 is via translation into many-

sorted first-order logic.2 Consider a first-order language with two sorts: “objects” and
“predicates,” each with their own set of variables. In addition, the domains are connected
by a special predicate Exp saying that object x belongs to predicate p. Now we can
translate the language of second-order logic into this two-sorted first-order language via
a straightforward map τ . The clauses for the logical operators are obvious, with ∃x go-
ing into the object domain, and ∃X into the predicate domain. At the atomic level, the
translation is as follows:

Xy goes to EyX.

In addition, we state one principle that makes predicates in the two-sorted first-order
language behave like real set-theoretic predicates in general models:

Extensionality(EXT ) ∀pq : (
p = q ↔ ∀x(Exp ↔ Exq)

)
.

Proposition 1 For all second-order formulas ϕ, ϕ is valid on all general models iff τ(ϕ)

follows from EXT on all models for the two-sorted first-order language.

The proof is obvious except for one observation. Interpretations for “predicate vari-
ables” p in two-sorted first-order models M can be arbitrary objects in the domain.
But Extensionality allows us to identify such objects p one-to-one with the sets {x |
Exp in M}.

As a result of this embedding, the validities of second-order logic over general mod-
els are axiomatizable, and by inspecting details, one can extract an actual axiomatization
close to that of two-sorted first-order logic. Moreover, this correspondence can be mod-
ulated. We can drop Extensionality if we want even more generalized models, where we
give up the last remnant of set theory: namely, that predicates are identified with their
set-theoretic extensions. This generalization fits well with intensional views of predicates
as concepts or procedures that occur occasionally in logic and more often in philosophy.

But more common in the logical literature is the opposite direction, an even stronger
form of set-theoretic influence, where we turn further second-order validities into con-
straints on general models. A major example is that one often requires the following
schema to hold in its two-sorted first-order version:

2In what follows in this section, merely for convenience, we shall deal with monadic second-order logic
only, where second-order quantifiers run only over unary predicates or sets.



Changing a Semantics: Opportunism or Courage? 309

Comprehension ∃X∀y(Xy ↔ ϕ) for arbitrary second-order formulas ϕ with X not free
in ϕ.

What this achieves in the above completeness proofs is enforcing the validity of what
many people find a very natural version of the logical law of existential instantiation:3

ϕ(ψ) → ∃Xϕ(X).

One can add many other constraints in this way without affecting completeness. One
example is the object dual to Extensionality, ∀xy(x = y ↔ ∀p(Exp ↔ Eyp)), which
expresses a sort of “Individuality” for objects in terms of available predicates.

How far are these first-order versions of second-order logic removed from the logic
over standard models? The distance can be measured by means of one standard formula,
as established by Montague [72].

Fact 2 A second-order formula is valid on standard models iff its first-order translation
τϕ follows from EXT plus the second-order formula ∀X∃p∀y(Xy ↔ Eyp).

The newly added axiom tells us that all set-theoretic predicates lie represented in the
first-order model. Amongst other things, this observation shows that, taking prenex forms,
the full complexity of second-order logic resides in its existential validities.

The preceding results turn out to extend to both classical and intensional type theories
(Gallin [36]) and other systems. For a modern treatment of the current range of general-
ized models for higher-order logics and related systems, we refer to Manzano [69, 70].4

2 Clearing the Ground: Some Objections and Rebuttals

Before going to concrete technical issues, we set the scene by listing some perspectives
on generalized models that can be heard occasionally in the logical community, if not read
in the literature.5 We do this mainly to clear away some rhetoric, before going to the real
issues. For instance, the very term “standard model” is already somewhat rhetorical since
it prejudges the issue of whether other models might also be natural, by depriving them
of a neutral name and making their pursuit “nonstandard” or “deviant.”6

General models are often considered an ad hoc device with little genuine content. This
objection can be elaborated in several ways. One may hold that the natural semantics for
second-order logic consists only of those models that have the full power set of the indi-
vidual domain for their unary predicates, and likewise for higher arities. General models

3Comprehension does make the strong philosophical assumption that logical constructions out of existing
predicates deliver available predicates, something that might be debated.
4There is much more to second-order logic than the general perspective given here. In particular, deep
results show that well-chosen fragments of second order logic, over well-chosen special classes of stan-
dard models, can have much lower complexity, and have surprising combinatorial content, for instance,
in terms of automata theory: cf. Grädel, Thomas, Wilke, eds. [42].
5In what follows, for brevity, we write “general models” instead of “generalized models”.
6Sometimes, a little dose of linguistics suffices to dispel this rhetoric, e.g., by calling ‘non-classical’ logics
‘modern’ logics, or ‘non-intended’ models ‘serendipitous’ models.
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are then a proof-generated device lacking independent motivation and yielding no new
insights about second-order logic. And there can be more specific objections as well. For
instance, imposing comprehension as a constraint on general models smacks of circular-
ity. In order to define the available predicates, we need to know what they are already,
in order to understand the range of the second-order quantifiers in the comprehension
principles. But objections can also run in another direction. The general model-based
completeness proof for second-order logic tells us nothing new beyond what we already
knew for first-order logic. In particular, one learns nothing that is specific to second-order
validity.7

Now there is something to these objections, but the question is how much. At least, one
will always do well to also hear the case for the opposition. Here are a few preliminary
considerations in favor of general models, and the proofs involving them.

First of all, it is just a fact that in many natural settings, we do not want the full range
of all set-theoretically available sets or predicates since it would trivialize what we want
to say. For instance, in natural language, when Russell wrote that “Napoleon had all the
properties of a great general,” he meant all relevant properties, not some trivial one like
being a great general. Likewise, when we grasp Leibniz’ principle that objects with the
same properties are identical, we do not mean the triviality that object x has the property
of being identical to object y, but rather think of significant properties. More generally,
while it is true that the intuitive notion of property or predicate comes with a set, its
extension, or range of application, it would be unwarranted set-theoretic imperialism to
convert this into the statement that every set is a property or predicate.8

The same consideration applies to mathematics: even there, set theory is not the norm.
In geometry, important shapes correspond to sets of points, but definitely not every set
of points is a natural geometrical shape. Hilbert 1899 mainly axiomatizes points, lines,
and planes, instead of points and sets of points, and that for excellent mathematical rea-
sons. Likewise, topology looks at open sets only, many theories of spatial objects use
only convex sets, and one can mention many similar restrictions. Also, at a more abstract
level, category theory does not say that all function spaces between objects must be full,
the definition of a category allows us control over the available morphisms between ob-
jects, and that is precisely the reason for the elegance and sweep of the category-theoretic
framework.

A third line of defense might be a counterattack, turning the table on some of the ear-
lier objections. Intended models for second-order logic provide us with a magical source
of predicates that we tend to accept without having enquired into how they got there,
and whether they should be there. Moreover, these entities also come with a magical
notion of truth and validity that seems to be there without us having to do any honest
work in terms of analyzing proof principles that would constrain the sort of entity that
we want. From this perspective, it is rather the general models that force us to be ex-
plicit about what we want and why. This point can be sharpened up. It is often thought

7Contrast this with the sense of achievement, based on innovative proof techniques, when axiomatizing
a piece of second-order logic on a class of intended models, such as the monadic second-order logics of
trees with successor relations as the “initial segment” relation in Rabin [79].
8One example that shows this is the discussion in philosophy of propositions viewed as sets of worlds.
Clearly, propositions correspond to sets of worlds where they are true, but it does not follow at all that
every set of worlds must be an extension of some proposition. We return to this theme at the end of Sect. 4.
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that general models decrease the interest of proofs establishing their properties, but as
we shall see later, this is a mistaken impression. There are also natural settings where
general models make logical proof analysis and technical results more, rather than less
sophisticated.

This introductory discussion is general and inconclusive. Moreover, in the process of
getting some ideological issues out of the way, we may even have introduced new ones.
For instance, despite appearances, our aim with this paper is not criticizing the use of set-
theoretic notions per se. But there is a distinction to be made. The set-theoretic language
is a lingua franca for much of logic and mathematics, and it facilitates formulation and
communication in a way similar to the role of academic English. What one should be
wary of, however, is the often implicit suggestion of a further commitment to very spe-
cific claims of set theory qua mathematical theory in our logical modeling.9 But where
the precise border line between set-theoretic language and “set theory” is located seems
a delicate matter and one where studying general models may in fact provide a better
perspective.

We will now look at more systematic motivations for the use of general models in
logic, Henkin-style and eventually also beyond, and assess their utility in more precise
technical terms.

3 Logical Perspectives on Controlling Predicates

For a start, we continue with the two themes introduced in the preceding section: control-
ling the available predicates and the fine-structure of reasoning.

3.1 Proof Theory

Logical analysis of an area of reasoning, even of mathematical proofs, seldom uses all
set-theoretically available predicates—but only ones that are definable in some way. And
such proofs are crucial: despite the claimed intuitive nature of standard models, we hardly
ever model-check assertions in them since these models are too complex and mysterious
for that. Instead, we prove that certain second-order formulas hold, say, in the natural
numbers, by means of a mathematical argument appealing to accepted general principles.
And these proofs will usually employ only very specific predicates, often ones that are
definable in some sense, witness a wide literature on formalizing mathematical theories
from Bishop [21] to reverse mathematics [83].10 A survey of predicative proof theories
with, for instance, highly restricted comprehension axioms, would go far beyond the con-
fines of this paper, whose main slant is semantic, but we submit that such systems embody
a reasoning practice that goes well with Henkin-style models.

9For this unwarranted commitment, consider the much more radical claim that using academic English
carries a commitment to “British” or “American values.”
10This is more delicate with nonconstructive principles like the axiom of choice, which we forego here.
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3.2 Definable Predicates

Restrictions to definable predicates are natural even in Henkin’s first-order completeness
proof itself that started our considerations. The Hilbert–Bernays completeness theorem
says that, in order to obtain counterexamples to nonvalid first-order formulas, models
on the natural numbers suffice where the interpreting predicates are Δ2

0. Even so, not
every restriction of predicates to some family of definable sets will be a good choice of
a general model class for completeness. For instance, Mostowski [73] showed that first-
order logic is not complete when we restrict the interpreting predicates in models to be
recursive, or even recursively enumerable. Vaught [90] considered the related problem of
complexity for the sentences true in all constructive models.11 Likewise, if we constrain
general models too much, say, to only contain predicates that are first-order definable in
the underlying first-order model, we may get harmful complexity. In particular, Lindström
[64] proved that, if second-order variables range over first-order definable predicates only,
the system is nonaxiomatizable. Thus, whereas a restriction to definable predicates may
be a motivation for using general models, there is no general guarantee that this move
lowers the complexity of axiomatizability for the logic. Having too many predicates gives
us second-order logic, and having too few can also lead to high complexity. We should be
in between, and where that lies precisely may differ from case to case.

3.3 New Structure: Dualities

Here is another mathematical consideration in favor of controlling predicates. Doing so
drastically may reveal important structure that we would not see otherwise. For instance,
consider the frequently rediscovered weak theory of objects and types in “Chu spaces”
(Barwise and Seligman [9], Pratt [76], Ganter and Wille [37]). This theory treats ob-
jects and types on a par, resulting in a very appealing duality between their behavior,12

constrained by a notion of structural equivalence capturing the basic categorial notion of
adjointness, which allows for model-theoretic analysis (van Benthem [14]). All this ele-
gant structure remains invisible to us in standard models for second-order logic. Similar
points hold in terms of algebraic logic, the topic of Sect. 4 below.

3.4 New Theorems: Dependence and Games

It may be thought from the above that working with general models will decrease proof
strength, so that, if anything, we lose theorems in this way. But the case of dualities was
an instance where we regained new theorems at a higher level that just do not hold for the
original version on standard models. Here is another example of this phenomenon, where
general models increase mathematical content.

11The related result that Peano arithmetic has no nonstandard recursive models is often called “Tennen-
baum’s theorem,” see, e.g., Kaye [60].
12For example, in Chu spaces, Extensionality for predicates is exactly Leibniz’ principle for objects.
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Consider so-called IF logic of branching quantifiers, introduced in Henkin [47] and
taken further by Hintikka as a general study of independence in logic (cf. Hintikka and
Sandu [54]).13 Enderton [32] and Walkoe [95] showed that branching quantifiers are the
existential functional fragment of second-order logic, having a very high complexity of
validity as we have seen in Sect. 1. In line with this, there has been little proof theory
of IF logic, leaving the precise nature of reasoning with independent quantification a bit
of a mystery. However, one can also start from a natural deduction analysis of dependent
and independent quantifiers (Lopez-Escobar [65]) and get an insightful proof system. The
natural complete semantics for this proof system turns out to be general models whose
available functions satisfy some simple closure conditions. But there is more: these mod-
els also represent a crucial move of independent interest.

As is well known, like first-order logic, IF logic has a semantics in terms of evaluation
games where truth amounts to existence of a winning strategy for the “verifier” in a game
with imperfect information of players about moves by others (Mann, Sandu, and Sevenster
[68]). This existential quantifier over strategies ranges over all set-theoretically available
strategies, viewed as arrays of Skolem functions. Now the general models correspond to
a restriction on available strategies, a very intuitive move in modeling games played by
real agents, and this can drastically change the structure of the game. In particular, what
can happen is that a game that is “determined” in the sense that one of the two players
has a winning strategy, now becomes nondetermined. But then a very natural mathemat-
ical language extension suggests itself. Nondetermined IF games still have probabilistic
solutions in mixed strategies by the basic theorems of von Neumann and Nash. And the
equilibrium theory of these new games is much richer than that of the original games.14

3.5 Conclusion

This concludes our first foray into concrete logical aspects of general models, showing
that they raise delicate issues of calibrating proof strength, levels of definability for predi-
cates, and new laws possibly involving attractive language extensions. What we see here is
that, with general models, weakness is at the same time wealth. We now turn to a number
of major technical perspectives that we will consider in more detail.

4 General Models and Algebraic Representation

Algebraic semantics is one of the oldest ways of modeling logic, going back to the semi-
nal work of Boole, de Morgan, and Schroeder. In this section, we investigate the relation
between algebraic models and general models, largely using one case study: the algebraic
semantics of modal logic. We identify a number of general issues, revolving around rep-
resentation and completeness, and toward the end, we show how the interplay of algebraic

13See Väänänen [88] for a parallel development of a rich system of “dependence logic.”
14Hintikka himself suggested a restriction to “definable strategies” for yet different reasons, but such a
restriction might be a case of the above over-simplicity inducing high complexity after all.
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semantics and general models is very much alive today. Thus, we find a motivation for
general models that is very different from the proof-theoretic concerns that were central
in earlier sections.15

4.1 Algebraic Completeness of Modal Logic

The algebraic semantics of modal logic is given by modal algebras (A,♦), with A a
Boolean algebra and ♦ a unary operation on A satisfying ♦0 = 0 and ♦(a∨b) = ♦a∨♦b.
Every modal logic L is complete with respect to the “Lindenbaum–Tarski algebra” of all
formulas quotiented by L.16 The Lindenbaum–Tarski algebra of a logic L validates all
and only the theorems of L, and hence every modal logic is complete with respect to a
natural corresponding class of modal algebras.17

4.2 General Models via Algebraic Representation and Categorial
Duality

Modal algebras are related to model-theoretic structures via natural representations. These
model theoretic structures, often called “general frames,” may be viewed as Henkin mod-
els for modal logic generalizing the original Kripke frames. A Kripke frame is a pair
(X,R) of a set X and a binary relation R. Each Kripke frame gives rise to a modal alge-
bra whose domain is the powerset P(X) of X with the Boolean operations ∩, ∪, ()c , plus
an operation ♦R on P(X) defined by setting ♦R(S) = {x ∈ X : ∃y ∈ S such that xRy}
for each S ⊆ X.

However, going in the opposite direction, modal algebras do not normally induce stan-
dard frames. However, here is a widely used representation method. Given a modal alge-
bra (A,♦), take the space XA of all ultrafilters on A and define a relation RA as follows;
xRAy iff a ∈ y implies ♦a ∈ x for each object a ∈ A. Moreover, let F(XA) = {ϕ(a) : a ∈
A}, where ϕ(a) = {x ∈ XA : a ∈ x}. The latter is a special family of “good subsets” of
the frame (XA,RA) satisfying a number of natural closure conditions: it forms a Boolean
algebra and is closed under the natural operation for the modality. This is an instance of
the following general notion. A general frame (X,R,F(X)) is a triple such that (X,R)

is Kripke frame and F(X) is a subset of P(X) closed under ♦R , that is, if S ∈ F(X),
then ♦R(S) ∈ F(X).18 General frames are natural models for a modal language since they

15In another context, namely in finite-variable fragments of first-order logic, Henkin [48] introduced
homomorphic images of the Lindenbaum–Tarski algebras as generalized models, and he explained why
and how they can be considered as models. In [49], Henkin calls these generalized models “algebraic
models.” He proves a completeness theorem and uses these algebraic models to show unprovability of a
given formula. So, the present section shows that the ideas originated from Henkin [48, 49] are alive and
flourishing.
16That is, two formulas ϕ and ψ are equivalent if L � ϕ ↔ ψ .
17More generally, there exists a lattice anti-isomorphism between the lattice of normal modal logics and
the lattice of equationally defined classes (varieties) of modal algebras: see [22, 26, 62] for details.
18In particular, (F(X),♦R) is a subalgebra of (P(X),♦R).
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provide denotations for all formulas—and of course, they are general models in Henkin’s
sense. Moreover, they are the right choice. A basic theorem by Jónsson and Tarski [59]
generalizes the Stone representation for Boolean algebras to the modal realm:

Theorem 3 Each modal algebra is isomorphic to the modal algebra induced by the gen-
eral frame of its ultrafilter representation.

But still more can be said. The general frames produced by the Jónsson–Tarski repre-
sentation satisfy a number of special conditions with a natural topological background.
They are descriptive in the sense that different points are separated by available sets,
nonaccessibility is witnessed in the available predicates, and a natural compactness or
“saturation” property holds for the available predicates. Whereas not all Kripke frames
are descriptive, the latter property does hold for many other model-theoretic structures.19

This is interesting as an example where a natural class of general models satisfies third-
order closure conditions different from the ones considered in the original Henkin models
for second-order logic.

The correspondence between modal algebras and descriptive frames can be extended
to a full correlation between two mathematical realms (see any of [22, 26, 62, 80, 93] for
details):

Theorem 4 There exists a categorical duality between (a) descriptive frames and defin-
able “p-morphisms” (the natural semantic morphisms between descriptive frames that
preserve modal theories) and (b) modal algebras and Boolean-modal homomorphisms.

Thus, well-chosen classes of general models support rich category-theoretic dualities.

4.3 Completeness and Incompleteness for Standard Relational Models

Whereas all this is true, standard frames do play a central role in a major area of modal
logic, its completeness theory. The basic completeness results of modal logic say that,
for well-known logics L, theoremhood coincides with validity in the standard frames
satisfying the axioms of L. For instance, a formula is a theorem of modal S4 iff it is valid
in all reflexive-transitive frames—and there are many results of this kind for many modal
logics in the literature. By contrast, via the above representation, algebraic completeness
would only match theoremhood with validity in the class of general frames for the logic,
which is restricted to valuations that take values in the admissible sets. What is going on
here?

Consider the Lindenbaum–Tarski algebra for any modal logic L. In general, the Kripke
frame underlying the general frame representation of this algebra (often called the “canon-
ical general frame” for the logic) need not be a model for the axioms of L under all valu-
ations. But in many special cases, it is. One general result of this form is the well-known
Sahlqvist theorem, which states that every modal logic that is axiomatized by “Sahlqvist

19For more details on descriptive frames, we refer to [22, 26, 62, 80].
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formulas”—having a special syntactic form whose details need not concern us here—is
complete with respect to a first-order definable class of standard frames.

Results like this are often seen as improving the automatic completeness provided by
general frames. But even so, they do not detract from the latter’s importance. The proof of
the Sahlqvist theorem depends essentially on showing that Sahlqvist formulas that hold
on the canonical general frame for the logic also hold in its underlying standard frame.
Thus, general models can be crucial as a vehicle for transfer to standard models.20

However, there are limits to the preceding phenomena. Completeness theorems on
frame classes are not always obtainable in modal logic. Famous “incompleteness theo-
rems” from the 1970s onward have shown that there are consistent modal logics L and
formulas ϕ such that L ∪ {ϕ} is consistent, but ϕ is not satisfiable on any Kripke frame
for L. Concrete examples are nontrivial, and several interesting ones may be found in
[10, 22, 26]. Incidentally, the consistency is usually proved by exhibiting a general frame
where the logic is valid.21 In fact, frame incompleteness is the norm among modal logics,
witness the remarkable classification results in [23], whereas a modern exposition can be
found in [26]. What all this says is that, despite appearances, it is completeness for general
frames that underlies deduction in modal logic, whereas Kripke-frame completeness is a
bonus in special cases.

4.4 Further Representation Methods

Our discussion may have suggested that the algebraic defense of general models depends
on one specific representation method for modal logic. But in fact, there is a much broader
theory where similar points can be made. For instance, there are more general representa-
tions for distributive lattices and Heyting algebras (Priestley [77, 78], Esakia [33], Davey
and Priestley [28], [26]), using prime filters instead of ultrafilters to analyze intuitionistic
logic and related systems. But new representation methods are appearing continuously.
One recent example is the categorical duality between the categories of “de Vries alge-
bras” (complete Boolean algebras with a special relation ≺ satisfying natural conditions)
and compact Hausdorff spaces: [18, 94]. Significantly, all our earlier modal themes return
in this much broader mathematical setting.

Going beyond this, there is also a flourishing representation theory for substructural
logics; cf. Dunn [29], Gehrke, Dunn, Palmigiano [30], Gehrke [38], Marra and Spada
[71], Galatos and Jipsen [35]. However, in this extended realm, it seems fair to say that

20There are also links here to modal correspondence theory where we study relational properties ex-
pressed by modal axioms on Kripke frames. Correspondence theory assumes a different shape on general
frames, though, for instance, many of its classical results still hold when we assume that the available
propositions in general frames are closed under first-order definability. We do not pursue this model-
theoretic theme in this paper, though it is definitely a case where introducing general models also poses
some challenges to existing theory on standard models of a logic.
21For a concrete example, consider the tense logic of [86], which has Löb’s axiom for the past, making
the relation transitive and well founded on Kripke frames, and the McKinsey axiom for the future, which
states that above every point, there is a reflexive endpoint. Taken together, these requirements are incon-
sistent, but they do hold on the general frame consisting of the natural numbers with only the finite and
cofinite sets as available propositions.
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major open problems remain such as finding “good” representation theorems for residu-
ated lattices. But the very fact that this is considered a serious mathematical open prob-
lem illustrates the importance attached to finding Henkin-style model-theoretic structures
matching the algebras.

The preceding themes are not exclusively mathematical concerns, they also play in-
side philosophy. For various conceptual reasons, Humberstone [57] and Holliday [56]
have proposed replacing the possible worlds semantics for modal languages by structures
of “possibilities” ordered by inclusion. To make this work, one adapts the usual truth def-
inition to clauses for Boolean operations with an intuitionistic flavor and interprets the
modality by means of a suitable relation or function among possibilities. This new frame-
work leads to an interesting theory that even improves some features of classical modal
logic, and it can be understood in terms of regular open sets in topological spaces; cf.
[16]. But of interest to us here is an issue of representation. Each standard possible worlds
frame naturally induces a possibilities model defined by extending a relation on a frame
into a function on its powerset [56] (this is similar to a coalgebraic perspective of modal
logic [93]). But conversely, it is not true that each possibilities frame can be represented
as coming from a Kripke frame in this manner. What is the proper comparison then be-
tween the two realms? The solution is again a move to general models: what should be
compared are possibilities models and generalized frames based on a Boolean algebra of
regular open sets of a topological space (see [56] and [16] for details of this construction).

4.5 Conclusion

Algebraic models for logical systems are a natural match with general models in Henkin’s
sense, or at least in Henkin’s style, where precise connections are provided by a large and
growing body of representation theorems. Of course, this is a special take on the genesis
and motivation for general models, which comes with many interesting features of its own.
For instance, we have drawn attention to special conditions on the general models pro-
duced by representation methods and to the ongoing challenges of representation theory,
whereas we have also shown how in this realm, standard models become an interesting
special case, which sometimes, but not always, suffices for completeness.

5 General Models, Lowering Complexity, and Core Calculi

Henkin’s general models lower the complexity of second-order logic to that of the recur-
sively axiomatizable first-order logic.22 Behind this move, we can discern a more general
theme, that of lowering complexity of given logical systems.23 And with that theme, there

22This is interesting historically since, initially, first-order logic was not the measure of all things. It was
proposed only in Hilbert and Ackermann [53] as a well-behaved fragment of higher-order logic, for which
Gödel [41] then provided the first completeness result.
23In [48], Henkin introduces generalized models for the finite-variable fragments Ln of first-order logic,
and he proves a completeness theorem with respect to these generalized models. This is also an example
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is no reason to stop at first-order logic, whose notion of validity is recursively enumerable
but undecidable. We will see (in Sect. 7) a similar lowering in complexity in connection
with models of computation. Continuing in what we see as Henkin’s spirit, though going
far beyond the basic semantic approach presented in Sect. 1, could there be generalized
models for first-order logic that make the system decidable?

This might sound like a purely technical interest, but one can add a deeper consid-
eration. Van Benthem [13] observes how many “standard” logical systems, despite their
entrenched status, embody a choice of modeling a phenomenon that combines basic fea-
tures with details of the particular formal framework chosen. For instance, first-order logic
wants to be a core calculus of Boolean connectives and quantification. But in order to do
this job, its semantics is couched in terms of set-theoretic notions. Are the latter a harm-
less medium (the “lingua franca” of our earlier discussion), or do these “wrappings” add
extraneous complexity? In particular, is the undecidability of first-order logic a logical
core feature of quantification, or a mathematical reflection of the set-theoretic modeling?
In order to answer such questions, again, we need a more general modeling for strategic
depth and a talent for sniffing out unwarranted second-order or otherwise over-specific
features. In this section, we present one line, so-called “general assignment models” for
first-order logic, as an instructive exercise in generalized model thinking.24

The core semantics of first-order logic works as follows.25 Models M = (D, I) consist
of a non-empty set of objects D plus an interpretation map I assigning predicates over D

to predicate symbols in the language. Semantic interpretation involves models M , formu-
las ϕ, and assignments s of objects in D to individual variables of the language. A typical
and basic example of the format is the truth condition for the existential quantifier:

M,s |= ∃xϕ iff there is some d in D with M,s[x := d] |= ϕ.

Whereas the underlying intuitive idea of existential quantification is uncontroversial,
this technical clause involves two noteworthy assumptions in terms of supporting machin-
ery. The auxiliary indices of evaluation are taken to be maps from variables to objects, and
it is assumed that each such function is available as an assignment. Thus, not in its predi-
cate structure, but in its supporting structure for interpretation, a first-order model comes
with a hidden standard second-order object, viz. the full function space DV AR .26

for lowering complexity since it is known that Ln cannot have a finitistic Hilbert-style strongly complete
proof system for the standard models (see, e.g., [51, Thm. 4.1.3]). Here is a further example of Henkin’s
positive thinking. Reacting to the negative result just quoted about Ln, he initiated jointly with Monk
in [50, Problem 1] the so-called finitization problem, which in turn fruited interesting and illuminating
results, for example, by Venema, Stebletsova, Sain, and Simon (for further details, we refer to [84]).
24The ideas in this section go back to Németi [74], Venema [91], van Benthem [13], and Andréka, van
Benthem, and Németi [6], to which we refer for details. Here, Németi’s work, couched in terms of “cylin-
dric relativized set algebras,” was inspired by remarks of Henkin about obtaining positive results in alge-
braic logic, rather than the wave of counterexamples in earlier stages of the theory. We note that inves-
tigating relativized cylindric algebras also originates from Leon Henkin; see, for example, Henkin and
Resek [52].
25As in Sect. 1, we will disregard individual constants and function symbols for convenience.
26Later on, we will see what it is more precisely that makes such spaces high-complexity inducing, viz.
their geometrical “confluence” or “gluing” properties: see Facts 6 and 7 below.
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5.1 A Modal Perspective

This choice is not entirely obvious intuitively, as the first-order language could be in-
terpreted just as well on an abstract universe of states s allowing for binary transitions
between indices, yielding a basic clause for modal logic:

M,s |= ∃xϕ iff there is some s′ with sRxs
′ such that M,s′ |= ϕ.

We can think of the state space here as some independent computational device that
regulates the mechanism of interpretation for our language, or its “access” to the model.
Of course, standard models are still around as a special case.

Treated in this modal way, first-order logic retains the essentials of its compositional
interpretation, but its core laws do not reflect any set-theoretic specifics of assignment
maps. Rather, they form the “minimal modal logic” K that already takes care of a large
slice of basic reasoning with quantifiers, including its ubiquitous monotonicity and distri-
bution laws.27

The minimal modal logic is decidable and perspicuous, whereas its metatheory closely
resembles that of first-order logic (Blackburn, de Rijke, and Venema [22]).

5.2 General Assignment Models

On top of this modal base system, the additional valid principles of first-order logic lie
in layers of more specific assumptions on the modal state machinery approaching the full
assignment spaces of standard models. Here is one basic level, using the set-theoretic view
of assignments as functions from variables to individual objects, but without the existence
assumption of having all functions around.

Definition 1 A general assignment model is a structure (M,V ) with M a standard first-
order model (D, I) and V a set of maps from individual variables to objects in D. In-
terpretation of first-order formulas in these models is standard except for the following
clause:

M,s |= ∃xϕ iff there is some d in D such that s[x := d] ∈ V and M,s[x := d] |= ϕ.

By itself, this is just a technical move, but again there is an interesting interpretation.
“Gaps” in the space of all assignments encode possible dependencies between variables.
Suppose that we have an assignment s and want to change the value of x. Perhaps, the
only variant that we have available for s in the special family V also changes its value
for y, tying the two variables x, y together. One can then think of the logic of general
assignment models as first-order logic freed from its usual independence assumptions.

Theorem 5 First-order logic over general assignment models is decidable.

27The modal character shows in that the quantifier ∃x is really a labeled modality 〈x〉 now.
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Things start changing with yet further axioms that express existence assumptions on
the assignments that must be present. Their content can be brought out by standard modal
frame correspondence techniques. We give one illustration, stated, for greater familiarity,
in terms of the earlier abstract modal models for first-order logic.

Fact 6 A modal frame satisfies the axiom ∃x∀ySxy → ∀y∃xSxy for all valuations (i.e.,
all interpretations of atomic formulas) iff its transition relations Rx , Ry for the variables
x, y satisfy the following Church–Rosser confluence property for all states s, t, u: if sRxt

and sRyu, then there is a v with tRyv and uRxv.

In general assignment models, the confluence property says that we can make the
corresponding changes of values for variables concretely step by step: say, with t =
s[x := d], u = s[y := e], and v = s[x := d][y := e]. This particular property is signifi-
cant:

Fact 7 Adding confluence to general assignment logic makes the logic undecidable.

The reason is that assignment models satisfying the stated property are rich, or rather,
regular, enough to run standard proofs of the undecidability of first-order logic through
its ability to encode undecidable tiling problems in a two-dimensional grid [44]. Stated
in another way, again we see that the undecidability has to do with mathematical, rather
than logical content of the modeling: its ability to express regular geometrical patterns.

5.3 Richer Languages

A striking new phenomenon that occurs with many forms of generalized semantics in
logic is that it suggests richer languages to interpret or, at least, more sophisticated ver-
sions of the original logical language over standard models.

A concrete case for general assignment models are polyadic quantifiers ∃xϕ where x

is a finite tuple of variables. In standard first-order logic, this is just short-hand for iterated
prefixes of quantifiers ∃x∃y . . . ϕ. On general assignment models, the natural interpreta-
tion for ∃xϕ is as existence of some available assignment in the model whose values on the
variables in x can differ, a sort of “simultaneous re-assignment.” This is not equivalent to
any stepwise iteration of single quantifiers. Nevertheless, the logic allows the following:

Theorem 8 First-order logic with added polyadic quantifiers is decidable over general
assignment models.

But language extensions can also increase complexity much more drastically. For in-
stance, the general assignment models over a given first-order model M form a natural
family under extension of their assignment sets. But this is an interesting structure in its
own right, and it makes sense to add a new extension modality interpreted as follows:

M,V, s |= ♦ϕ iff there is some V ′ ⊇ V with M,V ′, s |= ϕ.
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Now it is easy to see that standard first-order logic can be embedded in this richer
language by interpreting a standard first-order quantifier ∃x as a modal combination ♦∃x.

This shows that the new logic with a modality across assignment sets is undecidable.
We conjecture that this system is recursively enumerable, although we have not been able
to find a straightforward argument to this effect. However, may be our general point is
that generalized models do not just lower complexity or provide axiomatizations for fixed
logical formalisms. They may also change the whole design of languages and logics.

5.4 From General Models to Fragments

One proof of completeness and decidability for first-order logic over general assignment
models mentioned above proceeds by translation into the decidable “guarded fragment”
(GF) of first-order logic (Andréka, van Benthem, and Németi [6]). GF allows only quan-
tifications of the following syntactic type:28

∃y
(
G(x,y) ∧ ϕ(x, y)

)
, where x, y are tuples of variables, G is an atomic predicate,

and x, y are the only free variables occurring in ϕ(x, y).

Theorem 9 First-order logic over general assignment models can be translated faithfully
into the guarded fragment of first-order logic over standard models.

This is interesting since a full language interpreted over generalized models now gets
reduced to a syntactic fragment of that full language, interpreted over standard models.
There is also a converse result (van Benthem [15]) tightening the connection: the guarded
fragment can be reduced to first-order logic over general assignment models.

Thus, again we see that general assignment models are a laboratory for rethinking
what a generalized semantics means. Sometimes, a move to generalized models can also
be viewed entirely differently, as one from a full logical language to a sublanguage, where
new features of the generalized models show up as syntactic restrictions.

5.5 Conclusion

We have taken the spirit of general models one step further and applied it to another “stan-
dard feature” of the semantics of logical systems, its use of assignments sending variables
into the domain of objects. This method can be taken further than what we have shown
here since it applies to about any logical system.29 We have found a significant border line
between decidable core theories and complexity arising from using set-theoretic objects

28We omit existing decidable extensions to “loosely guarded,” “packed,” and, recently, “unary negation”
fragments.
29For instance, whereas the base system of “dependence logic” in [88] is undecidable and in fact of
higher-order complexity, one can again find a standard power set in the background, the set of all sets of
first-order assignments, and once this is tamed, the core dependence logic will become decidable again.
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such as full powersets. Moreover, as with algebraic representation, we found a number of
further general issues that emerge in this special realm, such as possible redesign of logi-
cal languages and the interplay between generalizing semantics and passing to fragments.

6 General Models and Absoluteness

In this section, we discuss yet another general perspective on general models, coming
from the classical foundations of set theory and logic itself—and motivated, to a certain
extent, by the desire to draw a principled border line between the two. As with our earlier
topics, we cannot give an extensive technical overview, so we merely present some basics
along the way that are needed for the points that we wish to make.30

6.1 Absoluteness and Nonabsoluteness

There is a sentence ϕCH of second-order logic (SOL) that expresses the continuum hypoth-
esis (CH) in the following sense: for every model M with cardinality at least continuum,
we have31

M |= ϕCH iff CH holds in our metatheory. (*)

Hence, ϕCH
32 is logically valid in SOL iff CH holds in the metalevel set theory “float-

ing above our heads.” Thus, when contemplating the logical validities of SOL, we have
to rely on the set theory we use for modeling/formalizing SOL, once more illustrating
the earlier-discussed phenomenon of “wrappings” versus “content.” Many authors have
agreed that the meaning of a formula ϕ in a model M should depend on ϕ and M (and
their parts) and not on the entire set theoretic hyperstructure of the whole universe con-
taining ϕ and M, let alone on deciding highly complex and mysterious assertions like the
continuum hypothesis (cf. [63]). And here is where absoluteness kicks in. Meaningfully
investigating these kinds of questions and trying to make tangible and precise definitions
and statements concerning phenomena such as the above lead to the theory of absolute
logics.

A set-theoretic formula ϕ is called ZF-absolute if its truth value does not change in
passing from any model V that satisfies the axioms of standard Zermelo–Fraenkel set
theory ZF to any transitive submodel V′ that satisfies those same axioms. Next, Kripke–
Platek set theory KP can be considered as an austere effective fragment of ZF where we
omit the axiom of infinity and restrict the replacement and collection schemes to bounded
FOL-formulas. KPU is a natural extension of KP where we also allow urelements; see [8,
pp. 10–12]. A set-theoretic formula is said to be absolute simpliciter if it is KPU-absolute.

30We thank Jouko Väänänen for sharing many useful corrections and insights concerning absoluteness,
only some of which we have been able to do justice to in this brief paper.
31Equivalently, CH holds in the “real world,” cf. [63, Sect. I.3, pp. 7–8].
32More precisely, a suitable variant of it taking into account the cardinality condition on M. For the
formula ϕCH, see Ebbinghaus et al. [31, pp. 141–142].
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A logic L = 〈Fm, |=〉 is called absolute if the set-theoretic formulas defining Fm and the
ternary satisfiability relation |= are both absolute.

Here are a few illustrations for concreteness. Typical absolute concepts are “being
an ordinal,” “being a finite ordinal,” “being the ω (i.e., an ordinal with each element a
successor ordinal, but itself not a successor ordinal),” “being the union of two sets (x =
y ∪ z),” etc. However, equally typically, the property “x is the powerset of y” is not ZF-
absolute, because whether a collection of elements of y is elevated to the rank of being a
set is independent from the ∈-structure of y.

Intuitively, absoluteness of a logic means that truth or falsity of the predicate M, s |= ϕ

should depend only on the ∈-structures of ϕ, M, and s, and not on the “context” that M,
ϕ, and s are living in (an example of such a context would be the powerset of M). Then
our (*) above shows that the logic SOL is not ZF-absolute.

Barwise and Feferman [7] initiated the study of absolute logics. The following theorem
elucidating the special attention to KPU-absoluteness and making a crucial link to first-
order logic is due to Kenneth Manders [67]; see also Akkanen [1], Theorem 9 of Feferman
[34], and Theorem 3.1.5 in [87, pp. 620–622]. Below, by Lωω we understand many-sorted
first-order logic (FOL) with equality. Also, logic L ′ is said to be stronger than L if every
class C of models defined by a sentence of L is also definable by a sentence of L ′.

Theorem 10 Lωω is the strongest logic among those absolute logics whose formulas
are hereditarily finite sets and whose structures M have domains consisting only of urele-
ments.

Here we allow urelements in KPU so that we can have a good variety of infinite models
built from urelements without forcing the existence of an infinite “pure set.”

6.2 General Models via Absolute Versions

If an important logic L turns out to be nonabsolute, then it seems useful to consider and
study an absolute version33 of L (besides L itself). Indeed, Henkin’s SOL is an absolute
version of SOL. Whereas SOL is not ZF-absolute, one can check that the satisfaction
relation of Henkin’s general models for second-order logic is absolute (and it even remains
so if we add a finite number of our favorite axioms valid in standard SOL). One can see
this by using Manders’ theorem, Theorem 10, and by recourse to the results in Sect. 1, in
particular, the close connection between SOL on Henkin models and many-sorted FOL.
In the light of Manders’ theorem, any absolute version of SOL must have the form of a
possibly many-sorted FOL theory.

There is a general method for obtaining absolute versions of given nonabsolute log-
ics L . We may assume that the nonabsoluteness of L originates from the set-theoretical
definition of the ternary satisfiability relation of L not being absolute. Hence, the set-
theoretic formula defining the ternary M, s |= ϕ contains quantifiers ranging over some
objects not in the transitive closures of M, ϕ, and s. Collect these “dangerous objects”
into an extra sort S. Consider the resulting extended models (M, S,∈). Similarly to the

33We use the expression “absolute version” in an intuitive way, not in the technical sense of [8].
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example of SOL and its Henkin models above, we arrive at a recursively axiomatizable
many-sorted FOL theory T whose “standard” models are the (M, S,∈)s. We regard T as
an absolute version of the original logic L . By fine-tuning the axioms of T, we can fine-
tune the absolute version we want to work with. The models of T that are not standard are
the nonstandard models of the absolute version T of L . So, an absolute version of a logic
always comes with a notion of a generalized model for L . Indeed, Henkin’s models for
SOL can be seen as having arisen from devising an absolute version of SOL, and later in
Sect. 8 we will see other examples where the notion of a generalized model for compu-
tation can be seen as devising an absolute version of a nonabsolute logic. Moreover, in
many cases a nonstandard model arising in this way can still be seen as a standard one
when viewed from another model of set theory.

If we encounter a logic with high computational complexity, the diagnosis may be
nonabsoluteness as the cause for high complexity. This is the case with SOL and with
first-order dynamic logic with standard semantics (see below). In all these cases, finding
absolute versions leads to natural notions of generalized models and to a lower computa-
tional complexity of the absolute version. So, the notions of the theory of absolute logics
shed light on generalized models and on lowering complexity.34

At this high level of generality, the style of analysis in this section applies very broadly.
One of these applications concerns logics of programs, or processes, cf. [4, 5]. Such logics
are usually ZF-absolute but not KPU-absolute. They cannot have decidable proof systems,
even if we select acceptably small sublanguages in them; see [4, Thm. 1]. The reason for
this is that standard semantics assumes programs/processes to run in standard time, that
is, along the finite ordinals. We will return to this theme in Sects. 7–8, where we consider
generalized semantics for recursion and computation in the setting of fixed-point logics.

6.3 Conclusion

Absoluteness as independence from set theory can be a desideratum motivating forms of
generalized semantics and, in fact, a powerful methodology for their design.

7 General Models for Recursion and Computation

Our final topic is an important phenomenon that has often presented challenges to simple-
minded semantic views of logical systems, the notion of computation, and in particular, its
characteristic nested structures of recursion and inductive reasoning. These logics tend to
be of very high complexity since treating computation explicitly often makes the natural
numbers definable by a formula of the logic, after which validity starts encoding truth in
second-order arithmetic.35

34Whereas absoluteness is meant to express independence from interpretations of set theory, its very
definition depends heavily on set theory—but this may be considered a beneficial case of “catching thieves
with thieves.”
35Likewise, so far, fixed-point logics of recursion, though very natural at first glance, have successfully
resisted Lindström-style analysis in abstract model theory.
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Intuitively, logics of computation are about processes unfolding over time, and hence
it is crucial how we represent time: as a standard set-theoretic object like the natural num-
bers or as a more flexible process parameter. We will start with this perspective and its gen-
eralized semantics. After that, we move to abstract fixed-point logics of computation and
generalized semantics that facilitate the analysis of deductive properties and complexity-
theoretic behavior. In a final discussion, we show how two perspectives are related.

7.1 Nonstandard Dynamic Logics

Consider logics of programs in the tradition of propositional dynamic logic PDL, based
on program expressions with the regular operations, where the key role is played by the
Kleene star, that is, transitive closure. Whereas this propositional system is an elegant de-
cidable modal logic, its natural first-order version with objects and predicates that applies
to more realistic programming languages is of highly intractable complexity. What causes
this, and how can this be remedied? We survey a few ideas from “nonstandard dynamic
logic” NDL36 [5, 27, 39, 40, 43, 75].

First-order dynamic logic cannot have a decidable proof system, even if we select a
small sublanguage, as is shown technically in [4]. The underlying reason is that standard
semantics assumes processes to run in standard time, that is, along the natural numbers.
If we make dependence on time explicit, however, we get a dynamic logic with an ex-
plicit time structure or, in other words, with a generalized semantics. In this nonstandard
dynamic logic NDL, we are not tied to the natural numbers as the only possible time struc-
ture, but we can still make as many explicit requirements (as axioms) about time as we
wish. As a consequence of this greater flexibility in models, NDL has a decidable proof
system; see [5].37

More concretely, NDL is a three-sorted classical first-order logic whose sorts are the
time scale T , the data domain D, and a sort I consisting of (not necessarily all) functions
from T into D. We think of the elements of I as objects changing in time (“intensions”).
Typically, the content of a machine register changes during an execution of a program,
and this register is modeled as an element of I . In standard models, T is the set of natural
numbers, and I is the set of all functions from T to D. In models of NDL, these do-
mains can be much more general, though we can impose basic reasoning principles about
computation such as induction axioms for I (over specified kinds of formulas talking
about time), comprehension axioms for intensions, and axioms about the time sort such
as successor axioms, order axioms, as well as Presburger arithmetic, or even full Peano
arithmetic. Also, special axioms about the data structure may be given according to the
concrete application at hand.

NDL talks about programs, processes, and actions, and it can express partial and total
correctness plus many other important properties such as concurrency, nondeterminism,
or fairness.38

36The nonstandard models for this dynamic logic were influenced by Henkin’s generalized models for
SOL. More positively, one might also call these systems “logics of general computation.”
37Here the proof system is decidable, not the set of validities: Sect. 8 has a question about this.
38NDL has been used for characterizing the “information content” of well-known program verification
methods, for comparing powers of program verification methods, as well as for generating new ones [5].
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7.2 Digression: Extensions to Space–Time

Similar methods have been applied to space–time theories, such as the relativity theory
of accelerated observers; see [66, 85]. There are good reasons for formalizing parts of
relativity theory in first-order logic FOL [3]. And then another standard structure for time
emerges.39 Physical processes happen in real time, where the world-line of an accelerated
observer is an intensional entity whose spatial location changes with time. It is custom-
ary to take the relevant time scale here to be the real number line. But this can again
be generalized: this time, to create a special relativity theory AccRel of accelerated ob-
servers where time structure becomes an explicit parameter subject to suitable physically
motivated axioms on the temporal order and the world lines of test particles. While this
is a “continuous” rather than a “discrete” temporal setting, many of our earlier points
apply. For instance, instead of induction on the natural numbers, one will now have ax-
ioms of Dedekind continuity expressing that, if a physical property changes from hold-
ing to not holding along a world-line, then there is a concrete point of time when the
change takes place.40 Furthermore, one uses comprehension axioms to ensure existence
of enough world-lines for physical purposes, for example, for being able to select the
inertial world-lines as those that locally maximize time.

We merely mention one striking outcome of this type of analysis with generalized mod-
els of time. The famous twin paradox of relativity theory predicts that one of two twins
who departs on a journey and undergoes acceleration will be younger upon her return than
the other twin who stayed put. From a logical perspective, deriving this result turns out to
involve having the real line as a time structure. Using our more general models, it can be
shown that the twin paradox cannot be derived by merely imposing temporal axioms; it is
also essential to know how physical processes are related to time in terms of induction or
continuity axioms about how properties of test particles change along time.

7.3 Modal Fixed-Point Logic on Generalized Models

Let us now move to a much more abstract view of induction and recursion over tempo-
ral or ordinal structures as embodied in modal fixed-point logics. In particular, consider
the common running example of the modal mu-calculus, which has become a powerful
mathematical paradigm for the foundational study of sequential computation.41

Consider the standard modal language enriched with a least fixed-point operator μx.ϕ

for all formulas ϕ, where x occurs under the scope of an even number of negations.42

By a general frame for fixed point logic we mean a general frame (X,R,F(X)) as in
Sect. 4 such that the family F(X) is closed under the fixed-point operators. More precisely,

39This kind of logical investigations of relativity theory were motivated by Henkin’s suggestion (to An-
dréka and Németi) for “leaving the logic ghetto,” that is, for applying logic in other areas of science.
40Cf. [12] for extensive model-theoretic discussion of such properties.
41The contrast with the earlier NDL approach may be understood in terms of moving from “operational”
semantics to “denotational” semantics of programs (cf. [75]), but we will not elaborate on this theme here.
42For simplicity, we disregard the greatest fixed-point operator, definable as νx.ϕ = ¬μx.¬ϕ.
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here, inductively, each positive formula ϕ induces a monotone map Fϕ : F(X) → F(X).43

Next, we take the intersection of all prefixed points of Fϕ from F(X), that is, we con-
sider

⋂{S ∈ F(X) | Fϕ(S) ⊆ S}. If this intersection belongs to F(X) for each ϕ, then
we call (X,R,F(X)) a general frame for modal fixed-point logic. This intersection is
then the least fixed-point of Fϕ , and it is in fact exactly the denotation of the fixed-point
formula μx.ϕ.

This generalized semantics provides a new way to interpret fixed-point operators. Of-
ten, say, in spatial logic, we need to restrict attention to some practically realizable subsets
of the plane, and fixed-point operators need to be computed with respect to these subsets
only. Note also that we lose nothing: if F(X) = P(X), then our generalized truth condi-
tion coincides with the standard semantics of the modal mu-calculus.

A major motivation for studying general-frame semantics for fixed-point logic is that,
via existing algebraic completeness and representation methods, every axiomatic system
in the language of the modal mu-calculus is complete with respect to its general frames.
Moreover, the powerful Sahlqvist completeness and correspondence results from Sect. 4
extend from modal logic to axiomatic systems in the modal mu-language for this seman-
tics; cf. [20]. To appreciate this, we note that completeness results for axiomatic systems
of modal fixed-point logic with respect to the standard semantics are very rare and require
highly complex machinery; see [61, 96] and also [25, 82].

As a further instance of the naturalness of these generalized models, we note a delicate
point of algebraic representation theory. Axiomatic systems of the modal “conjugated mu-
calculus” axiomatized by Sahlqvist formulas are closed under the well-known Dedekind–
MacNeille completions in the above general-frame semantics (cf. [19]), whereas no such
result holds for the standard semantics (cf. [81]).

Now, following the general line in Sect. 4, we will quickly overview the algebraic
semantics for the modal mu-calculus. A modal algebra (A,♦) is a modal mu-algebra if
for each formula ϕ positive in x, the meet in A of all the prefixed points of ϕ exists (see [2]
and [20] for details). This meet will be exactly the denotation of the fixed-point formula
μx.ϕ. Similarly to modal logic, the background for our earlier claims of completeness is
that axiomatic systems of the modal mu-calculus are complete with respect to modal mu-
algebras obtained via the Lindenbaum–Tarski construction; cf. [2, 20]. A modification of
the duality between modal algebras and general frames to modal mu-algebras leads to the
following notion. A descriptive general frame (X,R,F(X)) is called a descriptive mu-
frame if it is a general mu-frame. For each descriptive mu-frame (X,R,F(X)), the modal
algebra (F(XA),♦RA

) is a modal mu-algebra. Moreover, we have the following converse:
every modal mu-algebra (A,♦) is isomorphic to (F(XA),♦RA

) for some descriptive mu-
frame (X,R,F(X)).

The difference between the standard and general-frame semantics for fixed-point oper-
ators shows in the following example. Consider the frame (N ∪ {∞},R) drawn in Fig. 1.
We assume that F(N ∪ {∞}) = {all finite subsets of N and cofinite subsets containing the
point ∞}. The standard semantics of the formula ♦∗p is the set of points that “see points
in p with respect to the reflexive and transitive closure of the relation R.” Therefore, it is
easy to see that the semantics of ♦∗p is equal to the set N. Indeed, N is the least fixed-
point of the map S �→ {0} ∪ ♦R(S). However, if we are looking for a least fixed-point of
this map in general-frame semantics, then we see that this will be the set N ∪ {∞}. We

43Here for S ∈ F(X), we have that Fϕ(S) is the value of ϕ when the variable x is assigned to S.
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Fig. 1 Example

can say that the semantics of the formula ♦∗p with respect to the general-frame semantics
is the set of all points that “see points in p with respect to the ‘admissible’ reflexive and
transitive closure of the relation R.”44

Whereas all this seems to be a smooth extension from the basic modal case, there are
also some deficiencies of this generalized semantics. We do not yet have many convincing
concrete examples of general mu-frames and especially of descriptive mu-frames. Some
simple examples are general frames (X,R,F(X)), where F(X) is a complete lattice. For
instance, the lattice of regular open sets RO(X) in any topological space is a complete
lattice, so it allows interpretations of the least and greatest fixed-point operators. However,
the meets and joins in such structures RO(X) are not set-theoretic intersection and union,
and analyzing such concrete generalized models for their computational content seems to
deserve more scrutiny than it has received so far.

7.4 Digression: A Concrete Fixed-Point Logic for Recursive Programs

Modal fixed-point logics can be related to the earlier systems presented in this section.
Our three-sorted system NDL essentially described operational semantics for flow-charts,
whereas denotational semantics provides more structured meanings for programs than just
input/output relations. In particular, [75] extends the Henkin-style explicit-time semantics
of NDL to a Henkin-style denotational semantics for recursive programs (see also [40,
pp. 363–365]). The resulting system NLPrec is a two-sorted classical first-order logic with
one sort W for the set of states and another sort S for “admissible” binary relations over
W, perhaps subject to the extensionality and comprehension axioms. The semantics for
recursive programs p will now be a least admissible fixed-point in such a model.45 (More
details will be discussed in Sect. 8.)

7.5 Comparing Generalized Dynamic Logic and Henkin-Style Second
Order Logic

Both the logic NDL and fixed-point logic over general models as developed above are
strongly connected to Henkin-style SOL (HSOL). We discuss one aspect of this connec-
tion here, though a full discussion is beyond the scope of this paper.

In one direction, NDL may be viewed as a fragment of Henkin-style SOL:

44A similar operation is used in [92] for characterizing in dual terms the notion of subdirectly irreducible
modal algebras.
45For example, take a recursive program p computing factorial: p(x) := if x = 0 then 1 else x ·p(x −1).
The state-transition functional F associated with this program is F(R) := {〈0,1〉} ∪ {〈x, x · y〉 :
〈x − 1, y〉 ∈ R}.



Changing a Semantics: Opportunism or Courage? 329

Theorem 11 NDL admits a natural translation into the language of the Henkin-style
second-order logic.

Proof Idea We would like to interpret NDL (hence T ,D, I ) in HSOL. How can we define
the time-structure (T ,+,∗) of NDL from the concepts available in HSOL?46 Here comes
the trick: In our HSOL structure (D,V,E,E2,E3, . . .), we can talk about second-order
objects living in V . That is, we can talk about sets, binary and ternary relations. So we
reconstruct T as a pair of sets, H ⊆ D and f ⊆ D × D (i.e., f is a binary relation) with
f : D → D such that (H,f ) behaves as the natural numbers with the successor function.
For example, we can postulate that there is an object 0 ∈ H that generates the whole
of H via f . To see this, it is sufficient to note that for all H ′ ⊆ D, if 0 ∈ H ′ and H ′ is
closed under f , then H ′ ⊇ H . From the axioms of HSOL we can prove that this definition
is correct, that is, that (H,f ) is unique up to isomorphism. The latter property is again
expressible in HSOL. We skip the rest of the proof, which uses similar ideas. �

A general experience reflected by the literature is that all program properties expressed
in HSOL so far were found to be expressible in NDL. This motivates the following.

Conjecture 12 The program properties expressible in the language of Henkin style SOL
can also be expressed in NDL.

We leave a similar detailed comparative discussion of expressive power in generalized
frames for the mu-calculus to another occasion.

7.6 Conclusion

We have included logics for computation in this paper since these are often considered a
challenge to general model techniques in logic. Indeed, we found two existing approaches
to generalizing the semantics of logics with recursive definitions: one replacing standard
mathematical structures by a wider class of models for their theory, leading to “gener-
alized counting” on linear orders, the other modifying standard fixed-point semantics in
terms of available predicates for approximations. Whereas these generalized approaches
to modeling computation seem prima facie different from the earlier ones presented in
this paper, in the final analysis presented here, they seem to fall under the general Henkin
strategy after all.

46Here we need more than monadic HSOL: for example, binary or ternary relations for expressing ad-
dition + on T . Therefore, we need to simulate binary and ternary relations in many-sorted HSOL. We
simulate binary relations with a ternary “elementhood” relation E2 ⊆ D×D×V such that E2xyX means
that x, y are “objects,” X is a binary relation, and Xxy holds (or, in other words, 〈x, y〉 ∈ X). Similarly,
we use a four-place elementhood relation E3 for simulating ternary relations, etc. Thus, our HSOL model
in the general case is of the form (D,V,E,E2,E3, . . .), that is, a structure of the sort considered in
Sect. 1.
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8 Relating Different Perspectives on Generalized Semantics

We have discussed a number of general perspectives on Henkin’s general models and fur-
ther ways of generalizing semantics by defusing some of the invested set theory. Obvious
further questions arise when thinking about connections between the approaches that we
have discussed. We will only raise a few of these questions here, and our selection is
not very systematic. Even so, the following discussion may help reinforce the interest of
thinking about the phenomenon of generalized models in general terms.

8.1 Generalized Fixed-Point Semantics and Absoluteness

We have stated an objection of high complexity against prima facie attractive program
logics such as first-order dynamic logic on its standard models. However, another charge
would be lack of absoluteness. For a concrete example, consider the fixed-point logic of
recursive programs in Pasztor [75].

The meaning of a recursive program p in a model M is defined as the least fixed-point
of a functional F associated with p as a unary function over the set W of all possible states
for p in M, that is, over P(W × W). As an illustration for the idea, consider computing
the transitive closure of a relation R as the denotational semantics of a nondeterministic
recursive program

p(x) = y if either R(x, y) or else ∃z
[
p(x) = z ∧ R(z, y)

]
.

The functional F associated with this program is

F(X) = R ∪ (X ◦ R), where ◦ denotes relational composition.

It can be seen that the least fixed-point of the above F is defined by

Φ(x,y) ↔ ∃ sequence s whose domain is a finite ordinal n + 1 such that
(
x = s0, y = sn ∧ ∀i < n 〈si , si+1〉 ∈ R

)
.

This definition of transitive closure is ZF-absolute. If V,V′ are ZF-models with V′ a
transitive submodel of V, then V and V′ have the same finite ordinals since ω is ZF-
absolute and V′ has to have an ω by the axiom of infinity. However, the definition is not
KPU-absolute. Let V′,V |= KPU where V′ is a transitive submodel of V from which ω is
omitted. This is possible because there is no axiom of infinity in KPU as defined in [8,
pp. 10–12]. It may happen that V has more finite ordinals than V′. Hence, the sequence s

in Φ might exist in V but not in V′. Therefore, for some concrete x, y ∈ V′, we may have
Φ(x,y) in V but not in V′. This shows that Φ(x,y) is not a KPU-absolute formula.

Now Pasztor [75] describes an absolute version of this semantics, which is precisely the
logic NLPrec for recursive programs discussed earlier in Sect. 7. In particular, its choice of
“admissible transition relations” is entirely analogous to introducing a first-order sort for
predicates as we did in Sect. 1. As a result, NLPrec has a complete and decidable inference
system. A similar analysis shows how our earlier logic NDL can be viewed as the result
of making the semantics of first-order dynamic logic absolute in a principled manner.
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As a final issue in this connection, recall the earlier-mentioned feature that NDL is a
recursively axiomatizable but not a decidable theory. Can we make it truly decidable, in
line with constructive set theories such as those studied in [24], by merging its semantics
with the general assignment models of Sect. 5?47

A more general issue arising here is how our earlier motivations for decidable se-
mantics extend to the realm of computation. Our semantics of generalized counting still
imports a substantial first-order theory of data structures for the computation to work on
and seems an interesting matter for even closer scrutiny. For instance, in line with Sect. 5,
we could also define guarded fragments of second-order logic whose bounded quantifica-
tion patterns match restrictions on available assignments of denotations to individual and
predicate variables.48

8.2 Smoking Out Set Theory in Algebraic Representation

In Sect. 4, we used the case of modal logic to show how general models are completely
natural from the viewpoint of algebraic semantics for logical systems—and even the
only vehicle that will lead to insightful categorial dualities between algebras and model-
theoretic structures.

Even so, second-order logic can hide in unexpected places. For instance, note that the
standard Stone representation for Boolean algebra, on which the modal representation is
based, itself employs a nonabsolute standard set-theoretic object, viz. the set of all ul-
trafilters on a given algebra. This shows in various side effects. One is that the models
produced by this method tend to have overly large point sets as their domains. For in-
stance, to represent a countable Boolean algebra, one needs only countable many points
to make all necessary distinctions, whereas the Stone space will have uncountably many
points.49

But a further natural concern may be the heavy dependence of this representation
on set-theoretic assumptions like the existence of ultrafilters extending given filters (the
“prime ideal theorem”). Indeed, van Benthem [11] raised the question whether this fea-
ture can be eliminated and came up with what is essentially a new “possibility semantics”
for classical logic where representation takes place in the universe of all consistent sets,
by generalizing the semantics of the basic logical operations to the latter setting.50

This move suggests a further kind of generalized semantics, where we do not just
extend the model class, but where we must also radically generalize our understanding of
the meanings of basic expressions in our original language. One way of thinking about this
is as turning the tables, using generalized semantics on the very representation method that
is supposed to motivate generalized semantics. We leave this as an intriguing unexplored
avenue for now.

47A similar move toward creating decidable theories in physics might follow the lead of Sect. 7 in having
only specially designated “space–time trajectories” available in models for physics.
48Here guard atoms will now be syntactically “third-order” (though this term loses much of its force in
a many-sorted setting), while we must also allow names for designated objects and predicates. We leave
technical details of such more radical decidability perspectives for another occasion.
49To see that a countable structure suffices, take a countable elementary substructure of the Stone space.
50This theme will be resumed in the forthcoming study [16].
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8.3 Richer Languages for Generalized Models

We have seen that generalized assignment semantics supports richer first-order languages
with natural new operators. This phenomenon is well known from other areas of logic,
such as linear logic and other resource-conscious logics, where classical logical operators
“split” into several variants, whereas new operators emerge as well. Again, an immediate
test question is then whether the same happens in second-order logic, the realm where
Henkin started his analysis. Do generalized predicate models support natural extensions
of the usual second-order language?

We have not been able to find a good example that stays inside FOL. However, one can
add a new modality, as we did for general assignment models in Sect. 5, that says that the
matrix formula is true in some extension of the current predicate range. Interesting things
then become expressible, and the usual language of second-order logic gets embedded,
but we are not even sure what sort of higher-order logic this system would really be.

8.4 Trade-Offs Between Generalized Semantics and Language
Fragments

We have seen a close analogy between first-order logic with general assignment models
and the guarded fragment over standard models, as almost two sides of the same coin.
Now well-chosen fragments are of great logical interest, and we noted their importance
already in understanding how second-order logic works at deeper semantic and computa-
tional levels. What can we say about this in general? Can we reanalyze basic fragments
of second-order logic in terms of generalized semantics for the whole language?51

8.5 Coda: Nonstandard Truth Conditions

We conclude with one possibly more radical style of generalizing a semantics, by chang-
ing truth definitions, a theme that has come up occasionally in our earlier discussions, for
example, on constructivizing representation methods.

As a concrete instance, consider the general assignment semantics of Sect. 5 as em-
bodying our theme of “lowering complexity,” taking FOL from undecidable to decidable
by removing extraneous mathematics from the core definitions of the logical system. Can
we lower complexity even further, from decidable to “feasible” logics, whose satisfiabil-
ity or validity problem would be decidable in polynomial time? No such proposal seems
to exist, and it may be of interest to see where the difficulty lies. The complexity of decid-
ability for many logics has to do with the exponential combinatorial explosion associated
with disjunctions. Enlarging the model class does not seem to solve this, and what may
be needed is rather a change in the way in which we interpret disjunction.52

51As a related issue, could well-known key fragments of SOL be captured through their insensitivity in
passing between standard models and matching generalized models yet to be found?
52One such proposal from the folklore has been to read disjunction as linear combination.
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Generalized semantics by tinkering with the interpretations of logical operators can be
very powerful. One interesting example of lowering complexity while improving model-
theoretic behavior are modal “bisimulation quantifiers” (Hollenberg [55]) that step outside
of current models in their interpretation. A bisimulation quantifier is a modality 〈p〉ϕ
interpreted in pointed models (M, s) as saying that there exists a bisimulation, for the
whole language except for the propositional letter p, between (M, s) and some model
(N, t) such that ϕ is true in (N, t). One can think of this as a “tamed form” of second-
order quantification over the property p—and its effect is to leave modal logic decidable
and even preserves its striking model-theoretic properties such as uniform interpolation.53

A similar move would be possible for second-order logic, replacing bisimulation by
potential isomorphism, generalizing its semantics in very different ways from the above.
However, we will not pursue this more radical form of meaning-changing generalized
semantics here.

9 Conclusion

This paper started with an account of Henkin models for second-order logic. To some
people, this technique may look like a trick for lazy people, but we have shown how this
circle of ideas keeps returning in the field for good reasons. We surveyed some major
manifestations of generalized semantics ranging from set theory to algebra and computa-
tional logic, some close to Henkin’s models, others more remote—and explored the many
interesting technical and conceptual issues and results that these bring to light.54 Our main
suggestion has been that it is well-worth thinking about the phenomenon of generalized
semantics more generally, both in terms of general insights and concrete technical results
when their main features are out side by side. We feel that we have only scratched the
surface of what might be a deeper theoretical understanding of what is going on here.55

While we have proposed taking a critical look at unwarranted “set-theoretic impe-
rialism” and unquestioning acceptance of set-theoretic structures without a cost-benefit
analysis, we have not advocated doing away with set theory altogether since that would
mean abandoning a lingua franca that has served the field of logic so well. Likewise, we
have not proposed abandoning second-order logic: it is attractive to look at behavior on
standard models, and that attraction will not easily go away.56 Finally, our tolerance for
generalized semantics may seem almost all-embracing at times, but we certainly would

53Added to propositional dynamic logic, bisimulation quantifiers yield the modal mu-calculus.
54Even so, our survey is by no means complete. For example, Gabriel Sandu has suggested that the
“substitution account” for the meaning of first-order quantifiers would be another natural candidate for
our style of analysis.
55To mention just one more delicate point, it is argued in [58] that second-order logic with generalized
semantics is model-theoretically stronger than first-order logic because even weak comprehension in
the second-order part brings about “strong instability” in the model-theoretic sense. In another vein, [58]
compares second-order logic with generalized semantics (plus comprehension) to full second-order rather
than to first-order logic. What emerges then is that, by forcing one obtains model-theoretic results for full
second-order logic, but with generalized models one can eliminate forcing.
56We refer to [89] for a state-of-the-art discussion of set theory side by side with second-order logic.
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not advocate trying to make general sense of every auxiliary move by logicians. Some
practices in a field are just ad hoc, and nothing is gained by pretending otherwise.

Finally, however, we would like to emphasize the original motivation for writing this
paper once more. It is always worthwhile to think about the achievements of Leon Henkin
and what they mean in a broader perspective, and we have done so triggered by the various
references to his work in this paper. In addition, we hope that the free-thinking and some-
times playful way in which we have done so reflects something of Henkin’s open-minded
personality that one would do well to emulate.
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