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Abstract In this paper we discuss Henkin’s question concerning a formula that has been
described as expressing its own provability. We analyze Henkin’s formulation of the ques-
tion and the early responses by Kreisel and Löb and sketch how this discussion led to the
development of provability logic. We argue that, in addition to that, the question has philo-
sophical aspects that are still interesting.
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1 Henkin’s Question

In the problem section of the Journal of Symbolic Logic, Vol. 17, No. 2 (June 1952), on
p. 160, Leon Henkin posed the following problem

A problem concerning provability. If Σ is any standard formal system adequate for recursive
number theory, a formula (having a certain integer q as its Gödel number) can be constructed
which expresses the proposition that the formula with Gödel number q is provable in Σ . Is this
formula provable or independent in Σ? (Received February 28, 1952.)

There seems to be a certain naiveté about the question. There are many formal systems
adequate for recursive number theory. It is not just that we can vary the axioms, but
we can vary the proof system; we can even vary the setup of the syntax. Moreover, the
construction of Henkin’s sentence involves arithmetization, which can be implemented
in any number of ways. We can choose different Gödel numberings, but even with a
given Gödel numbering, we can encode the syntax in different ways as linear strings of
symbols, trees, or still something else. Once all these decisions have been made, one
needs to single out a formula for expressing provability. Once such a formula is fixed, one
can think of many constructions for obtaining a sentence with code q that says that the
sentence with Gödel number q is provable. Different choices at any stage will produce
a different sentence. Why should we expect that all these formulae share the same status
with respect to provability or independence?

Of course, one could insist that we simply fix one specific set of choices for all these
“parameters,” a set of choices that we intuitively recognize as being correct, straightfor-
ward or “natural.” But nobody seriously thinks that there is just one admissible way of
arithmetizing syntax, of picking a provability predicate, and so on. When contemplating
arithmetization, we always understand that a chosen implementation is just one of the
many ways, but that our results should be robust with respect to particular choices as long
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as they are “reasonable” or “natural” because we do not make use of “accidental” fea-
tures of our choices. This is by no means trivial. But in the case of Henkin’s problem and
similar problems, it was not to be expected in 1952 that a solution would be robust.1

Henkin’s way of posing the question differs significantly from those found in the more
recent literature. In the modern literature, Henkin’s question or Henkin’s problem is usu-
ally described as the question whether or not the sentence expressing its own provability
is provable [12, p. 148] or even as the question whether the sentence expressing its own
provability [. . . ] is true or false, and provable or not [37]. It is far from clear whether
these abbreviated forms are adequate renderings of Henkin’s original question or whether
they capture Henkin’s intention. Today Henkin’s Problem is used more like a proper name
for a family of logical questions and less as a description of the question asked by Henkin
in 1952. Here we would like to take a closer look at what Henkin’s did ask—and what he
did not ask.

In contrast to many modern accounts, Henkin did not make use of the notion of self-
reference in the formulation of his question. He did not describe the sentence as one that
says of itself that it is provable or the like. The usual catchphrases like self-reference
are strangely absent from Henkin’s question and also from the immediate replies and
discussions, even though Gödel had already described his own sentence as a sentence
stating its own unprovability [19, p. 175].

In the proof of Gödel’s First Incompleteness Theorem and many other results, the
notion of self-reference is not needed; The Gödel sentence γ only needs to be a fixed point
of nonprovability, that is, it must satisfy Σ � γ ↔ ¬Bew(�γ �); whether γ says something
about itself and what it says is irrelevant for the proof. But Henkin also did not ask whether
a fixed point of the provability predicate, that is, a sentence η with Σ � η ↔ Bew(�η�)

is provable or not. Any provable formula such as 0 = 0 clearly is a fixed point of any
formula that may be called a provability predicate; and these trivial fixed points are clearly
not what Henkin was after.

Henkin also did not ask whether the sentence obtained by applying a certain canonical
diagonal construction to the provability predicate is provable or not. As we shall see in
our discussion of Kreisel’s answer, this is not equivalent to Henkin’s requirement that the
formula with Gödel number q should “express[es] the proposition that the formula with
Gödel number q is provable,” as this may be achievable without applying the standard
Gödel diagonal construction to a given provability predicate.

Moreover, Henkin did not ask whether his sentence is refutable. He probably noted
that if Σ refutes this sentence, then Σ ipso facto proves its nonprovability. This, in its
turn, implies that Σ proves the consistency of Σ , thus contradicting the Second Incom-
pleteness Theorem—if we assume that Σ is consistent. To make such reasoning valid, the
provability predicate involved must have some of the properties usually ascribed to it.

Henkin employed intensional language in the question: the formula in question is sup-
posed to express the provability of a formula with a certain Gödel number. Is this use

1One may compare this with the truth-teller sentence that states its own Σ1-truth. The answer to the
question whether this sentence is provable, refutable, or independent depends on assumptions on the cod-
ing, the diagonalization method, and so on [27]. So Henkin’s question for Σ1-truth instead of provability
only admits an answer that is far less robust than Löb’s answer to Henkin’s original question, which is
extremely robust. Among the “Henkin-like” problems, the robustness of the answer to Henkin’s original
problem may be more the exception than the rule.
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of intensionality to be viewed as merely a façon de parler or does it carry some serious
weight? As we will see, Henkin’s review of Kreisel’s paper contains some evidence that
Henkin did indeed take that business of expressing something seriously.

One should view Henkin’s question as including the challenge to give a definite math-
ematical extensional meaning to Henkin’s intensional description of his sentence. Kreisel
and others took up the challenge by breaking it into two problems, once a formal system
Σ and a coding are fixed:2 First one needs to provide conditions that must be satisfied by
a formula to express provability. Then, in the second step, from that formula a sentence
with code q that ascribes to q the property of being provable must be constructed.

As we will see, both Kreisel and Löb developed criteria, albeit entirely different ones,
that must be satisfied by a formula to qualify as a provability predicate. Kreisel argued
that the answer to Henkin’s question depends on which provability is used and that differ-
ent provability predicates can be employed to obtain provable and even refutable Henkin
sentences. Hence, the burden on his conditions for expressing provability was heavier.
The provability predicates used in his examples need to be recognized as correct arithme-
tizations of provability. As we shall see, neither Henkin nor Löb agreed that his examples
were good examples of arithmetizations of provability.

Löb’s answer was positive: Henkin’s sentence is provable; and his answer was defini-
tive: all sentences of this kind are provable. Consequently, Löb needed only necessary
conditions on formulae for expressing provability. The set of formulae satisfying his con-
ditions only needs to include all predicates that we would recognize as good arithmeti-
zations of provability. It is perfectly all right if the conditions admit cases that we would
not recognize as good arithmetizations (as in fact they do). The same applies to the sec-
ond step. Löb’s result holds for all diagonal sentences, that is, sentences η satisfying
Σ � η ↔ Bew(�η�) for the chosen provability predicate Bew; and all formulae with code
q that express that the formula with q via the predicate Bew will be diagonal sentences.
That there are also other diagonal sentences merely shows that Löb’s result is stronger
than needed to answer Henkin’s question.

Henkin published his question in 1952. This is 21 years after the appearance of Gödel’s
paper Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I [19] and 13 years after the first publication of part II of Grundlagen der Mathe-
matik by Hilbert and Bernays [23], which contained a careful analysis of the proof of the
Second Incompleteness Theorem. It seems to us that all ingredients for Henkin’s question
were already present in Gödel’s 1931 paper. Even if you want to insist that a careful anal-
ysis of the proof of Gödel’s second theorem is needed as the background for the question,
then these were certainly available in the 1939 book by Hilbert and Bernays. So, why
was the question not asked earlier? A first point is that one should never underestimate
the size of the search space even for elementary questions. After all, the other question
(received 19 March 1952) asked by Henkin in the same list of questions is whether the Or-
dering Theorem is equivalent to the Axiom of Choice for classes of finite sets. This other
question also only involves concepts that were around for quite some time. Secondly, the
former question clearly was off the beaten track. It was not part of existing research lines.
It is an almost whimsical question posed in a playful mood. The question gives the reader
a feeling of contingency. It could as well never have been posed. Seeing all the exciting
developments that followed it, we may be glad that it actually was asked.

2In what follows, we somewhat neglect the problems involving the choice of the formal system Σ and a
coding of syntax. See [27] for some additional remarks.
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2 Kreisel’s Solution

In his 1953 paper [31], Georg Kreisel summarized his reply to Henkin as follows:

We shall show below that the answer to Henkin’s question depends on which formula is used to
‘express’ the notion of provability in Σ .

Thus, Kreisel’s reply precisely concerns the point where we said that Henkin’s question
had a certain naiveté. Note the scare quotes around express, which suggest that Kreisel
thought that the business of expressing should be taken cum grano salis. Kreisel gives the
following condition for expressing provability:

A formula P(a) is said to express provability in Σ if it satisfies the following condition: for
numerals a, P(a) can be proved in Σ if and only if the formula with number a can be proved
in Σ .

We can generalize Kreisel’s condition for provability to a more general condition for
expressing a property.

Kreisel’s Condition A formula ϕ(x) is said to express a property P in Σ if and only if,
for all numbers n, we have Σ � ϕ(n) iff n has property P .

In metamathematics, Kreisel’s Condition became the formal notion of weak repre-
sentability:3 A formula ϕ(x) is said to weakly represent a set S of numbers if and only if
Σ � ϕ(n) iff n ∈ S.

The main problem with Kreisel’s Condition is that it is counterintuitive on two scores.
First, according to it, for example, over Peano Arithmetic (PA), many predicates express
provability that intuitively do not. Examples of such predicates are Rosser provability,
Feferman provability, and the two notions of Kreisel–Henkin provability discussed below.
Secondly, consider some predicate Bew that we recognize as a good arithmetization of
provability in, say, Θ := PA + incon(PA). Then, by Kreisel’s condition, Bew does not
express provability-in-Θ . However, by the Friedman–Goldfarb–Harrington Theorem, we
may manufacture, by Rosser trickery, a predicate that does express provability in Θ by
the light of the Kreisel Condition.4 With some more effort, we may even build such a
predicate satisfying the Löb Conditions too.

We note that for Kreisel’s it depends answer, it is needed that all predicates admitted
by his Condition are indeed recognized as expressing provability. It does no harm when
some predicates not recognized by the condition do express provability. Thus, Kreisel’s
condition must be a sufficient condition. Conversely, for Löb, with his positive answer,
one wants that whatever is recognized as expressing provability should be admitted by
Löb’s condition. It does no harm when certain predicates admitted by Löb’s condition
are recognized as not representing provability. For instance, over PA, the predicate x = x

satisfies the Löb conditions. Nobody would think that this predicate expresses provability.
But, also, nobody would think this is a problem for Löb’s answer to Henkin’s question.
Thus, Löb’s condition needs to be necessary.

3Feferman [17] introduced and used the term “numerate” for “weakly represent.”
4See, for instance, [51] for a discussion.
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Kreisel constructed two sentences that are both supposed to satisfy Henkin’s Condi-
tion; one of them is provable, the other refutable. Let Basic be the Tarski–Mostowski–
Robinson theory R extended by the recursion equations for all primitive recursive func-
tions.

Kreisel’s Observation Let Σ be a consistent theory that extends Basic.5 Then the fol-
lowing hold:

a. There is a formula BewI (x) and a term t1 such that the following three conditions are
satisfied:

i. BewI weakly represents provability in Σ .
ii. Σ � t1 = �BewI (t1)�.
iii. Σ � BewI (t1).

b. Similarly, there is a provability predicate BewII(x) and a term t2 such that

i. BewII weakly represents provability in Σ .
ii. Σ � t2 = �BewII(t2)�.

iii. Σ � ¬BewII(t2).

The examples employed by Kreisel in the proof are of some interest. In particular, the
example for BewI (t1) foreshadows Kreisel’s [32] proof of Löb’s theorem, as was pointed
out by [44]. Henkin suggested simpler examples that are mentioned by [31] in footnotes.
We will use Henkin’s examples and refer the reader to Smoryński’s paper for an exposition
of Kreisel’s original examples.

Proof We start with a proof for the second part (b). Fix some predicate Bew(x) that
weakly represents Σ -provability in Σ . In case Σ is Σ1-sound, a standard arithmetization
of provability will do. In the unsound case, one uses the theorem that any recursively enu-
merable set is weakly representable in a consistent recursively enumerable extension of
the Tarski–Mostowski–Robinson theory R. This is a direct consequence of the Friedman–
Goldfarb–Harrington Theorem.6 Using the canonical diagonal construction (or any other
method), one obtains a term t2 satisfying the condition

Σ � t2 = �t2 �= t2 ∧ Bew(t2)� (1)

and defines BewII(x) as

x �= t2 ∧ Bew(x).

Condition b(ii), that is, Σ � t2 = �BewII(t2)�, is then obviously satisfied by the choice (1)
of t2. Since Σ refutes t2 �= t2 ∧ Bew(t2), item b(iii) is satisfied as well.

It remains to verify b(i), which is the claim that BewII(x) weakly represents Σ -
provability. In other words, we must establish the following equivalence for all formu-
lae ϕ:

Σ � ϕ iff Σ � BewII
(
�ϕ�

)
. (2)

5Kreisel asked that the theory be Σ1-sound, but that demand is superfluous.
6See, for instance, [51] for a discussion.
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If ϕ is different from t2 �= t2 ∧ Bew(t2), then this is obvious from the definition of
BewII(x), using the fact that Bew weakly represents provability in Σ . In the other case,
the left-hand side of the equivalence is refutable, and so is the right-hand side by (1). This
concludes the proof of part (b) of Kreisel’s Observation.

We turn to case (a). If we assume that our theory is Σ1-sound and sufficiently strong
(e.g., if it extends the arithmetical version of Buss’ theory S1

2), then the canonical prov-
ability predicate can be used as BewI (x), and t1 can be obtained in any way, including the
usual Gödel diagonal construction. Claim a(iii) follows then by Löb’s theorem. (See [35]
or, e.g., [12].)

Since Löb’s Theorem was not known, Henkin and Kreisel had to use a different con-
struction.7 Henkin suggested the following construction. He picked a term t1 such that

Σ � t1 = �t1 = t1 ∨ Bew(t1)�

and defines BewI (x) as

x = t1 ∨ Bew(x). �

Clearly, the provability predicates BewI and BewII are somewhat peculiar. Although
they satisfy Kreisel’s Condition, hardly anyone considers them to be proper provability
predicates. As we shall see soon, Henkin was the first to reject them and claim that the
sentences BewI (t1) and BewII(t2) do not fit the description in his question.

However, the alleged Henkin sentences BewI (t1) and BewII(t2) exhibit another pe-
culiarity that is neither discussed by Kreisel nor by Henkin:8 They are not obtained by
applying the usual diagonal construction to the respective provability predicates BewI

and BewII . Rather Kreisel finessed the predicates BewII in such a way that simply substi-
tuting the term t2 for the free variable in BewII produces a formula with Gödel number
q such that the value of t2 is q . So one can reasonably claim that BewII(t2) is “a formula
(having a certain integer q as its Gödel number) [. . . ] which expresses the proposition
that the formula with Gödel number q is provable in Σ” [24] if BewII is taken to express
provability. Similar remarks apply to BewI (t1) of course. So, with the possible exception
of the choice of the provability predicates, Kreisel provided a correct answer to Henkin’s
question.

However, one may wonder whether Kreisel answered the questions that are currently
called Henkin’s Problem. In other words, is BewII(t2) self-referential and does it state its
own provability? In particular, does BewII(t2) ascribe to itself the property expressed by
BewII(x)—whether it is a good provability predicate or not? Usually, when one considers
a sentence that says about itself that it has the property expressed by a formula ψ(x), one
often intends to talk about the sentence that is obtained from ψ(x) by the usual diagonal
construction or a variant thereof. What exactly the usual diagonal construction and its
variant are may be unclear, but BewII(t2) has not been obtained by anything that resembles
such a method.

This sheds a light on the usual reformulation of Henkin’s problem: It is often stated as
a problem about a formula that states its own provability or that says about itself that it

7Note also that the Kreisel–Henkin construction works in some very weak cases where it is not clear that
we have Löb’s theorem.
8It was first noted by Craig Smoryński in [42].
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is provable. Of course, one may speculate that Henkin intended to ask his question about
this formula and Kreisel tried to address the question understood in this sense. It also
seems that later authors understood Henkin’s question as being about sentences that state
their own provability. But the equivalence to the original formulation is not obvious.

At any rate, if the usual diagonal construction involving the substitution function is ap-
plied to BewII , one obtains a provable sentence. This follows easily from Löb’s theorem,
which of course was not known at the time Kreisel published his paper. If that sentence is
seen as the only sentence saying about itself that it has the property expressed by BewII ,
then Kreisel fails to provide a counterexample to the claim that the sentence stating its
own provability is provable—irrespective of whether BewII is a provability predicate or
not. So Kreisel was somewhat imprecise in summarizing his result: He had shown ‘that
the answer to Henkin’s question depends on which formula is used to “express” the notion
of provability in Σ ’—but also on how the formula with code q is obtained that ascribes
provability to q via this provability predicate.

However, after all, it can be shown that, if Kreisel’s Condition is adopted, it only de-
pends which provability predicate is chosen whether the Henkin sentence is provable or
not. We can even use the standard diagonal construction to obtain a refutable Henkin sen-
tence from the given provability predicate. For in [27] it has been shown that there still
another provability that yields a refutable Henkin sentence if the standard diagonal con-
struction is applied to it. Such a provability predicate can be obtained by tinkering with
the Kreisel–Henkin construction.

3 Henkin’s Review

In 1954 Leon Henkin responds to Kreisel’s paper in a review [25] in the Journal of Sym-
bolic Logic. Henkin’s main critical point is the following.

A clear explication of the concept of that which is expressed by a formula must be based on an
axiomatic treatment of this notion (perhaps along the lines of Church XVII 133). However, it seems
fair to say that in one sense, at least, neither formula P1(a) nor P2(a) expresses the propositional
function a is provable; but the former, for example, expresses the proposition a is provable or is
equal to q , which is a different proposition even though it has the same extension. The direct way
to express a is provable is, of course, by the formula (∃x)B(x, a). But the methods of the present
paper give no indication as to whether the formula (∃x)B(x, q) whose Gödel number is denoted
by q is provable.

The reference Church XVII 133 is to a review in JSL by Rulon Wells [53] of Church’s
paper A formulation of the logic of sense and denotation [15]. Regrettably, the desired
axiomatic explication of that which is expressed by a formula never materialized. The
remark about expressing underscores the fact that Henkin took the philosophical problem
of intensionality quite seriously—no scare quotes for him. The subsequent remarks about
P1 and P2 show that Henkin rejected Kreisel’s Condition as a sufficient condition for
expressing provability.

Finally, Henkin insisted that Kreisel did not solve the problem for the intended predi-
cate (∃x)B(x, q), where B(x, y) is, as Henkin put it in [25], the “standard formula such
that B(m,n) or its negation is provable according as m does or does not denote the number
of a formal proof of a formula whose Gödel number is denoted by n.” It is not completely
clear what the standard formula is, given that Henkin did not fix a formal system Σ ;
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but for systems like PA, the standard formulas can be thought of as those found in the
literature.

Henkin’s insistence on a less contrived provability predicate is at least consistent with
the fact that he asked in his original 1952 question whether his sentence is provable or in-
dependent. As remarked above, he may have reasoned that the refutability of the Henkin
sentence would imply consistency contradicting Gödel’s Second Incompleteness Theo-
rem. But this applies only if the consistency statement and the Henkin sentence are for-
mulated with a well-behaved provability predicate. The Second Incompleteness Theorem
fails for the Rosser provability predicate, for instance. For Kreisel’s predicate BewII , the
second incompleteness theorem holds; after all, it agrees with the standard one on all
sentences except for ¬BewII(t2). Kreisel’s provability predicate BewII , however, does not
satisfy Löb’s second derivability condition LC2 below. Of course, Henkin had published
his question and the review of Kreisel’s reply before Löb’s derivability conditions were
formulated, so Henkin could resort only to intensional properties of the provability pred-
icates and what they do or do not “express.”

At any rate concentration on the “standard” provability predicate led to the break-
through and the commonly accepted answer to Henkin’s question.

4 Löb’s Paper

We are again one year later. In his celebrated JSL paper [35], Martin Löb starts by echoing
Henkin’s review:

One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the
question whether the formula (∃x)B(x, a), with Gödel number a, is provable or not. Here B(x, y)

is the number-theoretic predicate which expresses the proposition that x is the number of a formal
proof of the formula with Gödel-number y.

So we see that Löb adhered to Henkin’s intensional phrasing of the question.
Let us write � for Σ � and �ϕ for Bew(�ϕ�). Then, we can state Löb’s conditions

like this:9

LC1 � ϕ ⇒ � �ϕ.
LC2 � �(ϕ → ψ) → (�ϕ → �ψ).
LC3 � �ϕ → ��ϕ.

Löb derives what is known as Löb’s Rule from his conditions. We have: if � �ϕ → ϕ,
then � ϕ.

The reasoning is as follows. Suppose (a) � �ϕ → ϕ. By Gödel’s Fixed Point Lemma,
we can find a sentence λ such that (b) � λ ↔ (�λ → ϕ). Now reason in Σ . Suppose
(c) �λ. Then, by LC3, (d) ��λ. By (b), (c), LC1, and LC2, we find: (e) �(�λ → ϕ).
Combining (d) and (e) using LC2, we may conclude �ϕ, and, hence, by (a): ϕ. Thus, by
canceling assumption (c), we have found (f) �λ → ϕ. By (b) and (f), we have (g) λ. We
have derived λ without assumptions, hence, by LC1, (h) �λ. Combining this with (f), we
may conclude ϕ.

9Actually, Löb mentions more conditions in his paper. However, upon analysis, we only need the ones
given here.
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Löb’s solution of Henkin’s Problem now follows immediately. Suppose � η ↔ �η.
Then, a fortiori, � �η → η, and, hence, by Löb’s Rule, � η.

In footnote 2, Löb states:

In a previous version of this note the method of proof was applied specifically to Henkin’s problem.
The present more general formulation of our result was suggested by the referee.

Albert Visser asked George Kreisel who he thought was the referee of Löb’s paper. Kreisel
answered that, of course, this must have been Henkin. Later Albert Visser asked Henkin
whether he was the referee, and Henkin confirmed that this was indeed the case.

Löb’s Principle is the formalized form of Löb’s Rule: � �(�ϕ → ϕ) → �ϕ. We
can derive Löb’s Principle by formalizing the reasoning leading to Löb’s Rule. How-
ever, we can also derive Löb’s Principle from Löb’s Rule. Reason in Σ . We suppose
that (i) �(�(�ϕ → ϕ) → �ϕ) and (ii) �(�ϕ → ϕ). From (ii) and LC3, we have
(iii) ��(�ϕ → ϕ). Combining (i) and (iii) using LC2, we find (iv) ��ϕ. From (ii) and
(iv), using LC2, we get: (v) �ϕ. By canceling assumptions (ii) and (i), we find:

(vi) �
(
�(�ϕ → ϕ) → �ϕ

) → (
�(�ϕ → ϕ) → �ϕ

)
.

Then, using Löb’s Rule, we find: �(�ϕ → ϕ) → �ϕ, as desired.
Conversely, both Löb’s Rule and LC3 follow from Löb’s Principle using only LC1 and

LC2.
To derive Löb’s Rule from Löb’s Principle, suppose that (A) � �ϕ → ϕ. Then, by

LC1, we find (B) � �(�ϕ → ϕ). Löb’s Principle then gives us (C) � �ϕ. By (A) and (C),
we have � ϕ.

The derivation of LC3 from Löb’s Principle is due to Dick de Jongh. It works as fol-
lows. Reason in Σ . Suppose (α) �ϕ. Then, we find (β) �(�(ϕ ∧ �ϕ) → (ϕ ∧ �ϕ)), by
LC1 and LC2. Hence, by Löb’s Principle, (γ ) �(ϕ ∧ �ϕ). We may conclude by LC1 and
LC2 that ��ϕ.

What do Löb’s answer to Henkin’s question and Gödel’s Second Incompleteness The-
orem have in common? Löb showed that any fixed point of Bew(x) is provably equiva-
lent to 0 = 0. Gödel showed that any fixed point of ¬Bew(x) is provably equivalent to
con(Σ). Thus, both fixed point equations have, modulo provable equivalence, a unique
solution with a self-reference free formulation. As we will see in the next section, the
proper framework to formulate, study, and generalize this insight is Provability Logic.

5 Provability Logic

The first to note the possibility of reading formal provability in a theory as a modal op-
erator was Kurt Gödel in his paper [20]. The main result of the paper is the translation
of intuitionistic propositional logic IPC in the modal system S4. At the end of the paper,
Gödel remarks:

Es ist zu bemerken, daß für den Begriff “beweisbar in einem bestimmten formalen System S”
die aus S beweisbaren Formeln nicht alle gelten. Es gilt z.B. für ihn B(Bp → p) niemals, d.h.
für kein System S, das die Arithmetik enthalt. Denn andernfalls wäre beispielsweise B(0 �= 0) →
0 �= 0 und daher auch ∼B(0 �= 0) in S beweisbar, d.h. die Widerspruchsfreiheit von S wäre in S

beweisbar.
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Here S is S4. In the English translation of the Collected Works, Gödel’s text becomes:

It is to be noted that for the notion “provable in a certain formal system S” not all of the formulas
provable in S hold. For example, B(Bp → p) never holds for that notion, that is, it holds for no
system S that contains arithmetic. For, otherwise, for example, B(0 �= 0) → 0 �= 0 and therefore
also ∼B(0 �= 0) would be provable in S, that is, the consistency of S would be provable in S.

In this paper, we will just look at that part of provability logic that is directly connected
to Henkin’s question: the study of fixed points. For a treatment of Gödel’s remarks that is
closely connected to Provability Logic, see [4].

Löb’s logic GL is a modal propositional logic that has, in addition to the axioms and
rules of propositional logic, the following principles:10

L1 � ϕ ⇒ � �ϕ.
L2 � �(ϕ → ψ) → (�ϕ → �ψ).
L3 � �ϕ → ��ϕ.
L4 � �(�ϕ → ϕ) → �ϕ.

The principles of GL correspond to the Löb Conditions plus Löb’s Theorem. Thus,
these principles are schematically valid for arithmetical interpretations where the � is
interpreted by Bew. We note that by the remarks of Sect. 4 the axiom L3 is superfluous.
We can prove that the following strengthened version of Löb’s Rule is admissible over
GL. Let �χ stand for χ ∧ �χ . We have:

SLR if �ψ0, . . . ,�ψn−1,�χ0, . . . ,�χk−1,�ϕ � ϕ, then

�ψ0, . . . ,�ψn−1,�χ0, . . . ,�χk−1 � ϕ

We have seen in Sect. 4 that both Gödel’s fixed point equation and Henkin’s fixed point
equation have unique self-reference free solutions. Provability Logic gives us the proper
context both to formulate and to generalize these results.

Let us say that ϕ is modalized in p if all occurrences of p in ϕ are in the scope of �.
A first observation is that, if ϕ is modalized in p, then ϕ has a unique fixed point (modulo
provable equivalence) w.r.t. p. The uniqueness of fixed points was proved independently
by Dick de Jongh (unpublished), Giovanni Sambin [39] and Claudio Bernardi in 1974
[10].

Let ϕp be modalized in p, and let q be a fresh propositional variable. Then we have:

GL � (
�(p ↔ ψp) ∧ �(q ↔ ψq)

) → (p ↔ q).

To see this, reason in GL. Suppose (a) �(p ↔ ψp), (b) �(q ↔ ψq), and (c) �(p ↔ q).
Since ϕp is modalized in p and ϕq is modalized in q , we find from (c): (d) ϕp ↔ ϕq .11

Ergo, by (a) and (b), (e) p ↔ q . By SLR, we may conclude p ↔ q without assumption (c).
We turn to the existence of explicit fixed points in the modal language. Suppose ϕp is

modalized in p. Then there is a formula χ , where the free variables of χ are included in
the free variables of ϕ minus p, such that GL � χ ↔ ϕχ .

10It would be more appropriate to call this logic simply L. Unfortunately, L also suggests language, so the
designation GL was preferred.
11The substitution principle used here can be proved by induction of ϕ.
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As is proper for great results, the theorem has many proofs. The existence of explicit
fixed points was first proved by Dick de Jongh in 1974 (unpublished). Dick provided both
a semantical and a syntactical proof. In 1976 another proof was given by Giovanni Sam-
bin [39]. Also in 1976, George Boolos found a proof of explicit definability using char-
acteristic formulas. In 1978, Craig Smoryński [41] proved explicit definability via Beth’s
Theorem.12 There is an improved version of Sambin’s approach by Giovanni Sambin and
Silvio Valentini [46] in 1982 and an improved version of Boolos’ proof by Zachary Gleit
and Warren Goldfarb [18] in 1990. Finally, in 1990 there is a proof by Lisa Reidhaar-
Olson [38] that is close to the proof of Sambin–Valentini. In 2009, Luca Alberucci and
Alessandro Facchini [3] provide a proof using the modal μ-calculus.

We give the proof that is due to Craig Smoryński. In the proof we will assume the
interpolation theorem for GL that can be proved both by semantic methods and by proof-
theoretical methods. We assume that ϕp is modalized in p and that q does not occur in
ϕp. We note that the uniqueness theorem gives us:

�(p ↔ ϕp) ∧ �(q ↔ ϕq) �GL � � (p ↔ ϕp) ∧ � � (q ↔ ϕq)

�GL �(p ↔ q)

�GL ϕp ↔ ϕq

It follows that

�(p ↔ ϕp) ∧ ϕp �GL �(q ↔ ϕq) → ϕq.

Let χ be an interpolant between �(p ↔ ϕp)∧ϕp and �(q ↔ ϕq) → ϕq . By substituting
χ for p and q we obtain:

�(χ ↔ ϕχ) ∧ ϕχ �GL χ �GL �(χ ↔ ϕχ) → ϕχ.

We may conclude that GL � �(χ ↔ ϕχ) → (χ ↔ ϕχ) and, hence, GL � χ ↔ ϕχ .
The story of the fixed points is not finished here. First, the uniqueness and explicit

definability results extend to interpretability logic as was shown in [16]. A Smoryński-
style proof of this result is provided in [2]. See also [26]. Secondly, the fixed points of
provability logic connect it to that other great modal logic of fixed points, the modal μ-
calculus. See [48, 52], and [3]. See also Giacomo Lenzi’s survey [33] of results concerning
the μ-calculus.

The world looks different when the Löb conditions fail. The uniqueness/non-unique-
ness of the Rosser fixed points was studied by David Guaspari and Robert Solovay [22].
Their answer is a laconic it depends. Interestingly, Kreisel never found their work con-
vincing. His experience with his own it depends led him to hope for a missing natural
condition . . . .

What happens in case of the Feferman provability predicate was studied by Albert
Visser [50], by Craig Smoryński [43], and by Volodya Shavrukov [40]. Visser shows
that there are infinitely many pair-wise nonequivalent Henkin fixed points for Feferman
provability. Smoryński shows that under rather natural assumptions the Gödel fixed point

12In her paper [36], Larisa Maksimova shows that, conversely, Beth’s theorem follows from the existence
of explicit fixed points. See also [26].
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for the Feferman predicate is unique. Shavrukov gives a beautiful modal derivation of the
same result.

Of course, there is much more to provability logic than the treatment of fixed points.
For example, there is Solovay’s celebrated arithmetical completeness theorem ([45]).
However, this further story is outside of the scope of this paper. We just provide some
pointers to the further literature.

The history of the mathematical modality provability in a certain formal system has
been described in the paper [13]. This paper is warmly recommended to the reader. The
systematic content of provability logic can be found in the textbooks [12] and [42]. It is
worth looking at both books since they offer a somewhat different perspective. For more
recent treatments, containing also new material, see also [1, 14, 30, 34, 47].

We have seen that from Henkin’s question and Löb’s work, the field of Provability
Logic emerged. Provability Logic, apart from being a beautiful subject, has some appli-
cation outside of its own domain.

• Michael Beeson employed fp-realizability, a form of realizability based on provability
to prove the independence of the Myhill–Shepherdson theorem and of the Kreisel–
Lacombe–Schoenfield theorem from Heyting arithmetic. See [5] and [49]. Beeson’s
result uses Löb’s principle.

• Research on the Provability Logic of Heyting Arithmetic inspired an axiomatization of
the admissible rules of the intuitionistic propositional calculus. See [28].

• S.N. Goryachev connects in his work [21] Provability Logic and reflection principles.
His results are used by Lev Beklemishev for the analysis of reflection principles. See
[6] and [8].

• Japaridze’s polymodal logic [29] is used by Lev Beklemishev to study ordinal nota-
tions. See [7, 9, 11].

6 Concluding Remarks

The question of what it means for a formula to express a property like provability has
fallen from grace since the success of Löb’s work. First, the question seems rather hope-
less, and second, Löb showed that, at least for some important results, we can successfully
get by without an answer to the question. Does this mean that the question has for once
and for all been laid to rest? We do not think so. First, even if, perhaps, the question is
mathematically less important, then it is still relevant philosophically. If we say, for ex-
ample, that Peano arithmetic does not prove its own consistency, is this merely a façon
de parler—to be paraphrased away by a more mathematical pronouncement, or does it
really mean what it seems to mean?

Can we tell a better story about arithmetical ventriloquism? Such a story should at
least take into account that content ascriptions like the formula Bew expresses provability
in Σ are heavily contextual. For instance, the ascription only makes sense against the
background of some Gödel numbering. Perhaps, we need, as Henkin thought, to have
a theory of content as a prolegomemon. But, maybe, the task is rather to describe on
the basis of our everyday understanding of how formulas express properties, to explain
how formulas that are obviously about something else (like numbers), still manage to
express properties of sentences against the background of conventional choices relating,
for example, numbers and formulas.
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We think that there is reason to have hope for progress. In a sense, we have all the
needed information concerning what is going on. After all, the good cases where we
think that we really construct a formula Bew expressing provability are open for detailed
inspection. All there is, is here. Also we have lots of deviant examples where we could
have doubts like the nonstandard Gödel numberings with in-built self-reference. What is
lacking is an articulated analysis bringing to the fore what is good and what is bad.

As we have seen, Henkin’s playful question led to the development of Provability
Logic. Moreover, it touches immediately upon philosophical questions concerning in-
tensionality in mathematics. Voltaire said “Il est encore plus facile de juger de l’esprit
d’un homme par ses questions que par ses réponses” (it is easier to judge a man by his
questions than by his answers). Clearly, Leon Henkin is doing very well on Voltaire’s
criterion.

Acknowledgements We thank Volodya Shavrukov for his comments on the penultimate version.
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41. Smoryński, C.: Beth’s theorem and self-referential sentences. In: Macintyre, A., Pacholski, L., Paris,

J. (eds.) Logic Colloquium ’77. Studies in Logic. North-Holland, Amsterdam (1978)
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