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Abstract The λδ-calculus is the λ-calculus augmented with a discriminator which dis-
tinguishes terms. We consider the simply typed λδ-calculus over one atomic type variable
augmented additionally with an existential quantifier and a description operator, all of
lowest type. First we provide a proof of a folklore result which states that a function in
the full type structure of [n] is λδ-definable from the description operator and existential
quantifier if and only if it is symmetric, that is, fixed under the group action of the sym-
metric group of n elements. This proof uses only elementary facts from algebra and a way
to reduce arbitrary functions to functions of lowest type via a theorem of Henkin. Then
we prove a necessary and sufficient condition for a function on [n] to be λδ-definable
without the description operator or existential quantifier, which requires a stronger notion
of symmetry.

Keywords Lambda calculus · Lambda delta calculus · Types · Typed lambda calculus ·
Simply typed lambda calculus · Type theory · Classical type theory · First-order logic ·
Henkin semantics · Typed lambda calculus semantics · Delta discriminator · Description
operator

1 Introduction

Let M n be the full type structure over a ground domain of size n. It is folklore that a
member of M n is symmetric if and only if it is definable in type theory. The origin of
this theorem is murky. It is safe to say that it was not known to Newton. Robin Gandy
told the senior author that he knew it in the 1940s. It is not unlikely it was known to
Church before this. It occurred to the senior author as a student in the 1970s after reading
Andrews [1] and Lauchli [5]. There are not many proofs in the literature. A proof appears
in Van Benthem [8] in the 1990s, but it is incomplete. A proof follows immediately from
an observation due to Leon Henkin [4].

In this note, we intend to do two things. First, we shall generalize the folklore theorem
to Church’s λδ-calculus [3] for the M n, and also to the “profinite” model which is the
“limit” of the M n. Second, we shall provide a straightforward proof of the folklore theo-
rem itself using only simple facts about the symmetric group and its action on equivalence
relations.
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2 Preliminaries

We first do a review of the lambda calculus, simple types, Henkin-style semantics, and
extending simple typed lambda calculus to type theory.

2.1 Lambda Calculus

Untyped Lambda Calculus

The untyped lambda calculus serves as the underlying language of our more disciplined
systems. We give a quick reminder.

Definition 1 Fix some countable set of variables V = {x1, x2, . . .}. We define the set of
λ-terms, which we denote by Λ inductively:

Variables V ⊆ Λ

Abstraction If x ∈ V and M ∈ Λ, then (λx.M) ∈ Λ

Application If M,N ∈ Λ, then (MN) ∈ Λ.

We will always identify terms that are the same up to a renaming of bound variables (α
equivalence). Moreover, we define a notion of convertibility =βη formed by the reduction
rules

(λx.M)N →β M[x := N ]
(λx.Mx) →η M variable x does not appear free in M

Using this notion of reduction, a term M is in βη normal form if there is no term N

such that M →βη N .
We write Λ∅ for the set of all closed terms, that is, terms with no free variables.

Remark 1 (Notational Conventions for Terms) We will follow all ordinary conventions
when writing terms. When parentheses are omitted, we will associate terms to the left, so
that MNP is parsed as (MN)P . The symbol . which is “Church’s dot notation” will be
used for binders to remind the reader that we are binding in the largest scope possible; so
in λx.MN the x is bound by the λ in both M and N . We write λ-terms with uppercase
Latin letters, like F,G,M,N .

What follows are a few useful closed terms that we will use throughout the paper:

S := λxyz.xz(yz)

K = True := λxy.x
K∗ = False := λxy.y

And := λmn.λxy.m(nxy)y

Not := λm.λxy.myx
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Simple Types

Here, we will put a typing discipline on Λ.

Definition 2 On Λ we define the simple typing system in the style of Church, which we
notate λ→. We will have only one type constant, which we denote 0. The set of types, T ,
is inductively defined as the smallest set containing 0 and closed under arrows, that is,
if α and β are types, then α → β is a type. We will use lower case Greek letters at the
beginning of the alphabet for types, such as α,β, γ .

For the terms of the system, we mimic what we did the untyped case, but with restric-
tions. We defined the set Λ→(α), the set of typed terms of type α, by induction:

Variables If x ∈ V and α is a type, then xα ∈ Λ→(α).
Abstraction If M ∈ Λ→(β) and x ∈ V , then

(
λxα.M) ∈ Λ→(α → β)

Application If M ∈ Λ→(α → β) and N ∈ Λ→(α) then

MN ∈ Λ→(β)

We write Λ∅→(α) for the set of closed terms of type α. We write Λ→ for
⋃

α Λ→(α).
Similarly for Λ∅→. Instead of writing M ∈ Λ→(α), we will usually write M : α, which we
read “M has type α” or “M is in α.”

Example 1 The closed terms we had previously defined are all typeable. For example,
one can see both True and False have types 0 → (0 → 0).

Definition 3 (Long Normal Form) We define the long (βη) normal form of a term M : α
by induction on the type α. If M : 0, then M is in long normal form if and only if it is
of the form xM1 . . .Mm where each Mi is in long normal form. If M : α → β , then M is
in long normal form if M is of the form λf α.N , where N is in long normal form. Every
term has a unique long normal form, which one can obtain by η expansions.

Example 2 The long normal form of the term λx0.f 0→(0→0)x is

λx0λy0.(f 0→(0→0)x
)
y

Remark 2 (Notational Conventions for Types) We will associate types the right to facil-
itate Currying; therefore α → β → γ is parsed as α → (β → γ ). We will tend to not
decorate variables with types when it is otherwise deducible from context what type the
variable is.

We will use the notation αn → β to stand for (α → (α → ·· · (α → β) · · · )). That is, a
term of this type expects n-many inputs of type α and returns an output of type β . Also
to improve readability, we will write the type for booleans α → α → α as Boolα .
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2.2 Semantics

In this section, we will define a set-theoretic framework for which we can interpret typed
lambda terms. We first give some more general definitions because we will later introduce
different semantics.

Definition 4 Suppose we have an indexed family of sets M (α) for each type α. Let ·α,β

be a map from M (α → β) × M (α) → M (β). We say that this is a typed applicative
structure if it is extensional; that is, for every f,g ∈ M (α → β), if we know for every
n ∈ M (α) f ·α,β n = g ·α,β n, then f = g.

Definition 5 Fix a natural number n. We define a model M n as follows, by induction on
the type α:

M n(0) := {1, . . . , n}
M n(α → β) := {

f | f : M n(α) → M n(β)
}

That is, we interpret the type 0 to be the set [n], the first n natural numbers, and the type
α → β is the function space of objects of type α to objects of type β . Note that this is
clearly a typed applicative structure where · is just function application. This particular
typed applicative structure is called the full type structure over [n].

We will write these set-theoretic functions as lowercase Latin letters like f,g,h.

Now that we have a framework which to interpret types, we can make an evaluation of
the terms into this framework.

Definition 6 Fix a natural number n and a function ϕ mapping typed variables xα to
members of M n(α). Then we define the evaluation of term with respect to ϕ by induction
on the term:

�x�n
ϕ = ϕ(x)

�λx.M�n
ϕ = λf .�M�n

ϕ[x:=f ]
�MN �n

ϕ = �M�n
ϕ

(
�N �n

ϕ

)

2.3 Type Theory

To begin a path from simply typed lambda calculus to a type theory, we need an equality
symbol, which we shall call δ. Following the example of Andrews [1], such an addition
for all types would lead us to the study of higher order logic. For our purposes, we will
just be dealing with first order (classical) logic, and our equality symbol is only for ground
type 0.

To add equality, we augment our language with a new constant symbol δ. For the
typing rules, we just say that δ is a term of type 0 → 0 → Bool0, defined by the following
axiom:

(x = y =⇒ δxyuv = u) ∧ (¬(x = y) =⇒ δxyuv = v
)
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In Statman [7] it was proven that under βη conversion, the equational consequences of
this axiom are exactly the same as from these rules:

δMMUV = U (Reflexivity)

δMNUU = U (Identity)

δXYUV = δYXV U (Symmetry)

δXYXY = Y (Hypothesis)

P(δMN) = δMN(P True)(P False) (Monotonicity)

δMN(δMNUV )W = δMNUW (Stutter)

δMNU(δMNWV ) = δMNUV (Stammer)

In the previous section on the untyped lambda calculus, we define closed terms rep-
resenting the booleans of True and False, as well as And and Not. For first-order type
theory we must add a first-order quantifier, ∃ : (0 → Bool0) → Bool0 with the rule

∃M =
{

True if Mn = True for some n : 0

False otherwise

and a description operator ι of type (0 → Bool0) → 0 → 0 with the rule

ιMm =
{

n if Mn = True and n is unique such

m otherwise

Also, we can extend our semantics to handle the terms involving δ,∃, and ι in the
obvious way; for example, for the equality operator, �δ�n

ϕ is the characteristic function
of equality. The following shows that the semantics provided by M (n) is sound and
complete for βηδ.

Theorem 1 (Soundness and Completeness) Let M and N be terms of type α.

1. (Soundness) If M =βηδ N , then for every n ∈ N and every ϕ, we have �M�n
ϕ = �N �n

ϕ

2. (Completeness) If M 
=βηδ N , then there are some n ∈ N and ϕ such that �M�n
ϕ 
= �N �n

ϕ

Proof Proof in Statman [7]. �

3 Henkin’s Theorem

We would like to be able to say that every finite function in the above semantics can be
represented in some way in the λδ-calculus.

Theorem 2 (Henkin’s Theorem) Fix an assignment of variables to types ϕ, a natural
number n, and a type α.
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• There is a δα : 0n → α → α → Boolα such that for every f,g,h, j ∈ M n(α),

(
�δα �n

ϕ1 · · ·n)
fghj =

{
h if f = g

j if f 
= g

• If f ∈ M n(α), then there is F : 0n → α such that

(
�F �n

ϕ1 · · ·n) = f

Proof Go by induction on the type α.
If α = 0, then define

δ0 = λx1 . . . xn.δ
If f ∈ M n(0), then f ∈ [n], so f = i for some 1 ≤ i ≤ n. Then we can just F be the

ith projection:

λx1 . . . xn.xi

Suppose α = β → γ . We have δβ and δγ , closed terms of types β and γ , respectively,
that have the desired property. Enumerate all elements of M n(β), {m1,m2, . . . ,mk}. By
induction hypothesis we know that these are representable; that is, there are closed terms
M1, . . . ,Mk such that �Mi �n

ϕ1 . . . n = mi for every i. So define

δβ→γ = λx̄FG.
δγ x̄

(
F(M1x̄)

)(
G(M1x̄)

) ∧ δγ x̄
(
F(M2x̄)

)(
G(M2x̄)

)

∧ · · · ∧ δγ x̄
(
F(Mkx̄)

)(
G(Mkx̄)

)

where x̄ is shorthand for x1 . . . xn, and M ∧ N is And(M)(N). One can easily verify this
as desired.

Let f be a function in M n(β → γ ). Note that f (mi) ∈ M n(γ ) by the definition of
the semantics. Therefore, set pi = f (mi). By induction hypothesis, there are closed terms
Pi for every 1 ≤ i ≤ k such that (�Pi �n

ϕ1 . . . n) = pi . We define F by doing cases on what
our input is:

F = λx̄m.If δβ x̄(m)(M1x̄) then (P1x̄) else

If δβ x̄(m)(M2x̄) then (P2x̄) else

· · ·
If δβ x̄(m)(Mk−1x̄) then (Pk−1x̄) else (Pkx̄)

where “If M then N else P ” is “shorthand” for (MN)P . Similarly, this is easily shown
to be as claimed. �

The following is an easy corollary to the completeness result stated above and Henkin’s
theorem.
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Corollary 1 Take M,N : α1 → α2 → ·· · → αk → 0 with all free variables having
type 0. If M 
=βηδ N , then there are some n and closed terms Fi : 0n → αi such that

M(F1x̄) · · · (Fkx̄) 
=βηδ N(F1x̄) · · · (Fkx̄)

where x̄ includes all variables free in both M and N .

Proof By soundness, for some ϕ and n, we have �M�n
ϕ 
= �N �n

ϕ . Take x̄ to be a sequence
of length n of free variables of type 0, containing all the free variables of M and N . Then
clearly �λx̄.M�n

ϕ 
= �λx̄.N �n
ϕ .

These are set-theoretic functions, therefore there are f1 ∈ M n(α1), . . . , fk ∈ M n(αk)

such that (�λx̄.M�n
ϕ1 . . . n)f1 . . . fk 
= (�λx̄.N �n

ϕ1 . . . n)f1 . . . fk . By Henkin, all these fi

have closed terms of type 0n → αi representing them; denote those closed terms Fi .
Therefore, by completeness, the result follows. �

Consider for each type α the set Λδ→(α), that is, the set of terms of λδ→ of type α.
Define the set T (α) by

T (α) := Λδ→(α)/ =βηδ

That is, all properly typed terms of type α, modulo βηδ conversion. As a consequence
to the above theorem, we have that T is an typed applicative structure. For each natural
number n, we consider the set of n free variables X := {x1, x2, . . . , xn} of type 0. We can
then take the set of all terms M in T that are λ-definable from this set (and δ).

This is not necessarily a typed applicative structure. For we may have two terms M1
and M2 that are not extensionally equal, but are with respect to all terms λ-definable
from X ∪ {δ}. That is, none of the witnesses that M1 and M2 are different are λ-definable
from X ∪ {δ}. Therefore, we consider only the equivalence classes formed by equality
under δ restricted only to the ground set X. So, if we have M1 and M2 as above, we
collapse them. We call the resulting model Gandy hull of X ∪ {δ} in T . This is a typed
applicative structure, which we will denote by T n. For more information on the Gandy
hull construction, see [2].

One can see that there is a natural relationship between T n and M n. There is a natural
homomorphism from T n to M n, which is completely determined by a mapping of X

to [n]. Further, we can look at some infinite models. For instance, we can define M ω to
be the full type structure over the natural numbers; so M ω(0) = {1,2,3, . . .}. We can then
take the Gandy hull of {1,2,3, . . .} ∪ δ in this model and get a model M .

This model could be obtained another way. Fix a bijection from free variables of type 0
and ω. Then one can build a corresponding homomorphism from T to M ω. The image
is exactly M . These models are discussed further in Statman [6].

4 Folklore Theorem

Definition 7 The symmetric group on n elements, which we denote as Sn, is the subset
of M n(0 → 0) that are bijections. These form a group with the operation of composition.
We call members of the group permutations. We shall use lower case Greek letters in the
middle of the alphabet to stand for permutations, for example, π,ρ,σ, τ .
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Of course, members of Sn act canonically of type 0 by application. But, we can lift this
action to higher types. Consider π ∈ Sn. We define πα ∈ M n(α → α) by induction on α.
If α = 0, then we just take π0(n) = π(n). If α = β → γ , then we define

πα(f ) = πγ ◦ f ◦ π−1
β

Therefore, we have an action of Sn on our entire model M n, where π acts on f : α

by πα(f ). For this action, we will write π · f .
If f ∈ M n, then we denote the stabilizer of f under this action St(f ); that is, St(f ) is

the set of all permutations that fix f .

St(f ) := {π ∈ Sn | π · f = f }

We call an f ∈ M n symmetric if St(f ) = Sn, that is, f is fixed under the action of all
permutations.

Remark 3 We can say that Sn acts on T n as well. Any permutation of the free variables
elicits an automorphism on the entire set T n. The converse, however, is false; there are
automorphisms of T n that do not come from permutations of the variables. Therefore,
when we call F ∈ T n symmetric, we mean preserved under all automorphisms, not just
the “inner” automorphisms arising from permutations of variables.

Theorem 3 (Folklore Theorem) f ∈ M n is symmetric if and only if it is λ-definable
from δ, ι,∃.

Proof The right-to-left direction is straightforward. For δ, ι, and ∃ are all symmetric, as
are combinators S and K . S and K form a basis for all λ terms, and λ-definable objects are
closed under application. Thus, we have that all λ-definable objects are indeed symmetric.

The left-to-right direction will constitute the rest of this section of the paper.

Definition 8 For each function f : 0n → α, we associate a functional f + : (0 → 0) → α

such that

f +π = f (π1)(π2) . . . (πn)

A function f is said to be regular if for every g ∈ M n(0 → 0) where g /∈ Sn, we have
f +g = g(1).

For the present moment, we will restrict our attention only on functions f : 0n → 0.

Remark 4 Note that the action π · f in this case is the following:

π · f = λx̄.π(
f

(
π−1x1

)
. . .

(
π−1xn

))

This and that St(f ) is a subgroup implies that π ∈ St(f ) if and only if

λx̄.π−1(f (πx1) . . . (πxn)
) = f



Reflections on a Theorem of Henkin 211

Definition 9 Fix an f : 0n → 0 regular. We define a relation ∼f on Sn by

π ∼f σ ⇐⇒ π−1(f
(
π(1)

)
. . .

(
π(n)

)) = σ−1(f
(
σ(1)

)
. . .

(
σ(n)

))

We restrict this relation to be a right congruence by taking its right congruence hull, which
we denote ∼∗

f and define by

π ∼∗
f σ ⇐⇒ ∀ρ ∈ Sn.πρ−1 ∼f σρ−1

Lemma 1 For f : 0n → 0 regular and π ∈ Sn, the following are equivalent:

1. π ∈ St(f ).
2. For all ρ ∈ Sn, we have πρ ∼f ρ.
3. π ∼∗

f id.

Proof ((1) ⇒ (2)). Take π ∈ St(f ). By remark we have

λx̄.π−1(f (πx1) . . . (πxn)
) = f

Fix ρ ∈ Sn. Apply ρ(1), ρ(2), . . . , ρ(n) to the left:

π−1(f
(
πρ(1)

)
. . .

(
πρ(n)

)) = f
(
ρ(1)

)
. . .

(
ρ(n)

)

which gives us

ρ−1(π−1(f
(
πρ(1)

)
. . .

(
πρ(n)

))) = ρ−1(f
(
ρ(1)

)
. . .

(
ρ(n)

))

which implies that πρ ∼f ρ.
((2) ⇒ (3)). Take ρ ∈ Sn. We want to show that πρ−1 ∼f idρ−1. The right-hand side

is of course just ρ−1; therefore, this follows immediately from (2).
((3) ⇒ (1)). We want to show that

λx̄.π−1(f (πx1) . . . (πxn)
) = f

By extensionality, it suffices to show that the above holds after an arbitrary application.
Moreover, let us fix an arbitrary g : 0 → 0 (not necessarily in Sn). The application of g(1)

to the left of both sides, followed by g(2), etc., up to g(n), is an arbitrary application as g

is arbitrary; thus, it suffices to show

π−1(f
(
πg(1)

)
. . .

(
πg(n)

)) = f
(
g(1)

)
. . .

(
g(n)

)

If g /∈ Sn, then by regularly of f , both sides are exactly g(1). Otherwise, call ρ := g

is a member of Sn. By (3) (using the right congruence property on ρ−1), we have that
πρ ∼f ρ. This means that

ρ−1π−1(f π
(
ρ(1)

)
. . . π

(
ρ(n)

)) = ρ−1(f
(
ρ(1) . . . ρ(n)

))

which is exactly what we wanted. �
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From the above one sees that ∼∗
f partitions Sn into equivalence classes, where St(f )

is the class that contains id. All other classes can be written as unions of right cosets of
the stabilizer, by property (2).

Let B be the set of equivalence classes. For each B ∈ B, let χB : 0n → Bool0 denote
its characteristic function. That is,

χ+
B (π) =

{
True if π ∈ B

False otherwise

By the definition of the equivalence relation, if π and σ are in a block B , then
π−1(f +π) = σ−1(f +σ) =: i. So when f is given inputs corresponding to a permutation
in B , f is just the ith projection function. Thus, to define f , we need only know which
block the given input it in. Therefore, f itself is λδ-definable from the set {χB | B ∈ B}
via the function

F = λx1 . . . xn.If χB1x1 . . . xn then (xi1) else

If χB2x1 . . . xn then (xi2) else

· · ·
If χBj

x1 . . . xn then (xij ) else (x1)

where {B1, . . .Bj } = B, and ik is the coordinate that f projects on block Bk .

Lemma 2 If f is regular, symmetric of type 0n → 0, then f is λδ-definable.

Proof Since f is symmetric, by (1), there is only one block of the equivalence class
formed by ∼∗

f . Since f is λδ-definable from the set of blocks, we have that f is λδ-
definable outright. �

Now, consider arbitrary symmetric f : α1 → α2 → ·· · → αk → 0. It suffices, given
the above, to show that f is definable from regular, symmetric functions of type 0n → 0.
Consider the set of lists

L = Λδ→(α1) × · · · × Λδ→(αk) = {〈f1, f2, . . . , fk〉 | fi : αi

}

For each list L = 〈f1, . . . , fk〉 in L , we define a function cL : 0n → 0, which we call the
Lth coordinate function defined by

cL = λx1 . . . xn.
{

f (F1x1 . . . xn) . . . (Fkx1 . . . xn) if x1, . . . , xk distinct

x1 otherwise

where the Fi : 0n → αi are the terms from Henkin’s theorem corresponding to fi . Each
coordinate function is regular (by the cases defining it) and also symmetric (as f is). So,
each cL is λδ-definable. Thus, we need only show that f is definable from its coordinate
functions; f is not definable outright, but we need to use ι and ∃. We begin by the remark
that the function alldiff : 0n → Bool0, which returns True if all the first n inputs are
different, and False otherwise is λδ-definable.

alldiff := λx1 · · ·xn.δ(x1)(x2)(False)
(· · · δ(xn−1)(xn)(False)(True) · · · )
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Now, we can define f :

f = λx1 . . . xk.ι
(

λz.∃y1 . . . yn.(alldiffy1 . . . yn)∧
∨

L∈L
L=〈F1,...,Fk〉

(
δ(x1)(F1y1 . . . yn) ∧ . . . ∧ δ(xk)(Fky1 . . . yn)

∧ (cLy1 . . . ynx1 . . . xk)(z)
))

Therefore, we have that f is definable if each of the cL is definable; the cL are regular
functions of type 0n, which are therefore definable if they are symmetric. It is easy to see
that if f is symmetric, then so are its coordinate functions. Therefore, if f is symmet-
ric, then we can substitute the λδ-definition of cL into each of the cL above and get a
λδ-definition of f (using ∃ and ι). �

Moreover, we can prove the following strengthening:

Theorem 4 Fix a function f ∈ M n and A ⊆ M n. Then if (
⋂

g∈A St(g)) ⊆ St(f ), then f

is λδ-definable from functions in A along with ι,∃.

Proof It is easy to see that St(f ) = ⋂
St(cL), where the cL are the coordinate functions

of f ; for since f and its coordinate functions are definable from each other, any permu-
tation that fixes f must fix its coordinate functions, and any that fixes all its coordinate
functions fixes the function.

Therefore, it suffices that we prove the theorem only for f : 0n → 0 and, similarly, as-
sume all g ∈ A be of type 0n → 0. We suppose that (

⋂
g∈A St(g)) ⊆ St(f ). By Lemma 1,

since St(g) is exactly the block of the equivalence relation ∼∗
g containing id, it follows

that the set of left cosets of
⋂

g∈A St(g) is a finer partition of Sn than the set of left cosets
of St(f ), which are exactly the blocks of ∼∗

f .
Therefore, on any left coset of

⋂
g∈A St(g) we have that f behaves like a projection op-

erator since the coset is entirely contained in a block of ∼∗
f , which in turn is contained in

a block of ∼f . Thus, for any permutations π , we can identify the left coset of
⋂

g∈A St(g)

that π is in. f acts uniformly on that block as a projection function, so we can make a
definition similar to the above definition of f by its blocks in ∼f . �

5 Definability and Symmetry

Let us return our attention to the term model T , where members are terms with possible
free variables among x1, x2, . . . . We first state the following result of Lauchli [5].

Proposition 1 (Lauchli) There is a closed term F ∈ Λ∅
δ (α) if and only if there is an

F ∈ T (α) symmetric (recall: for terms in T (α), symmetric means fixed under all auto-
morphisms).

Proof In Lauchli [5], it is stated and proved in terms of intuitionist logic: �I α if and only
if there is an “invariant” function of type α. �
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Theorem 5 Any F ∈ T is λδ-definable if and only if it is symmetric.

Proof It is easy to see that every element of T that is λδ-definable is symmetric since it
is βηδ equal to a closed term, which is fixed under all automorphisms. We will just prove
the converse.

Let F ∈ T by symmetric; consider F to be of type α1 → ·· · → αk → 0. Write F

as Gx1 . . . xn, where G is closed and free variables of F are among x1, . . . , xn. By the
proposition above, we can get a closed term H : α1 → ·· · → αk → 0, which has the
following form in long normal form:

λy1 . . . yk.H ′

where H ′ has type 0 and free variables only among y1, . . . yk . Consider

GH ′ . . .H ′
︸ ︷︷ ︸
n times

This is a term of type α1 → ·· · → αk → 0, which has free variables only among y1, . . . yk .
Thus, the term

M := λy1 . . . yk.GH ′ . . .H ′
︸ ︷︷ ︸
n many

y1 . . . yk : α1 → ·· · → αk → 0

is closed.
Recall that F is symmetric. Therefore,

F = Gx1 . . . xn =βηδ Gy1 . . . yn

for any variables yi : 0. Thus, by a substitution, we have that F =βηδ GY1 . . . Yn for any
Yi : 0. Therefore, M =βηδ F and is closed, thus is a λδ-definition of F . �

Corollary 2 Let h : T → M be defined as xi �→ i. This is called the canonical homo-
morphism. A function f ∈ M is λδ-definable if and only if there is F ∈ h−1(f ) symmet-
ric.

Proof Once again the forward direction is straightforward. For the backward direction,
we just apply the last theorem. By the last theorem, if F ∈ h−1(f ) is symmetric, then it is
λδ-definable by some closed term G. Since h(G) = f and G is closed, G is also a good
λδ-definition for f . �

Definition 10 We call a homomorphism h : T n → M m canonical if xi �→ i for all 1 ≤
i ≤ m.

We say that an F ∈ T n is supersymmetric if for every homomorphism ϕ : T n → T n,
ϕ(F ) is symmetric.

Theorem 6 f ∈ M m is λδ-definable if and only if there is some n > m and F ∈ T n

supersymmetric such that for all canonical homomorphisms h : T n → M m, we have
h(F ) = f .
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Proof The left to right direction is trivial since f being λδ-definable gives us a closed
term that will satisfy all the requirements.

For the other direction, fix f ∈ M m of type α1 → α2 → ·· · → αk → 0. Suppose that
n > m and F ∈ T n is supersymmetric where for all homomorphisms h : T n → M m,
have h(F ) = f . Write F = F ′x1 . . . xj where F ′ is a closed term.

The idea is as follows: we will do induction on the number of free variables on F , j .
We will construct a new term M that has j − 1 free variables and still has the property
that it is supersymmetric and is sent to f under all canonical homomorphisms. At the end
of our construction, we will have eliminated all free variables and will have constructed
a closed term M that is sent to f under all canonical homomorphisms. But, since M will
be closed, M is a λδ-definition for f .

To start the induction, if j = 1, then F = F ′x1. As n > m ≥ 1, we know n > 1, so that
xn 
= x1. F is supersymmetric, and therefore it is symmetric, so under the automorphism
sending x1 to xn, we know F ′x1 = F ′xn. As n > m, we have freedom with our canonical
homomorphism to send xn anywhere; in particular, for any 1 ≤ s ≤ m, we can define
canonical homomorphism h where h(xn) = s. Therefore, f = F ′s for all s. Therefore,
we may replace x1 in F by anything of type 0, and it would still be sent to f through any
canonical homomorphism.

By Lauchli [5], there is a closed term G of type α1 → ·· ·αk → 0. We can write F

as λz1 . . . zk.F ′x1z1 . . . zk by doing η expansions. Then, replacing x1 to form the term
λz1 . . . zk.F ′(Gz1 . . . zk)z1 . . . zk , we have a closed λδ term equal to f .

If j > 1, then we wish to eliminate the variable xj . If j > m, then we already have
freedom to send xj to any number in a canonical homomorphism h. Therefore, for every
1 ≤ s ≤ m, by picking a canonical homomorphism that sends xj to s we have

f = h
(
F ′x1 . . . xj

) = F ′1 . . . n
(
h(n + 1)

)
. . .

(
h(j − 1)

)
s

Since s is unrestricted, we can replace xj with anything of type 0, and the above is still
preserved. In particular, doing an η expansion of F gives us F = λz1 . . . zk.F ′x1 . . . xj z1

. . . zk , and then replacing xj , we get:

f = h
(
λz1 . . . zk.F ′x1 . . . xj−1

(
F ′x1 . . . x1z1 . . . zk

)
z1 . . . zk

︸ ︷︷ ︸
M

)

M has only j − 1 free variables. It remains to show that M is supersymmetric. This,
however, is not hard to see. Under the map xi �→ x1 for all 1 ≤ i ≤ j , we have that,
since F is supersymmetric, F ′x1 . . . x1 is symmetric and therefore preserved under all
automorphisms. Therefore, for any homomorphism ϕ : T n → T n, we will have ϕ(M)

symmetric since ϕ(F ) was symmetric and M is just F with a free variable replaced by a
symmetric term.

If 1 < j ≤ m < n, we have by the symmetry of F by the automorphism switching xj

and xn that

F = F ′x1 . . . xj−1xn

Now, we have the freedom to send xn anywhere under any canonical homomorphism, and
thus we can repeat what we did above to eliminate xn. �
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