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Preface

Leon Henkin (1921–2006) was an extraordinary logician and an excellent teacher. His
writings became influential from the very start of his career with his doctoral thesis, The
completeness of formal systems, defended in 1947 under the direction of Alonzo Church.
He then published two papers in the Journal of Symbolic Logic, the first, on complete-
ness for first order logic, in 1949, and the second devoted to completeness in type the-
ory, in 1950. He applied the same basic idea to a generalization of ω-consistency and
ω-completeness; by similar methods he proved a completeness theorem using Craig’s in-
terpolation lemma. Not only Henkin extended his method to other logics, it has become a
standard procedure thereafter in all kinds of logics, not just the classical ones.

His main interests were logic and algebra. In particular, Henkin devoted a large portion
of his research to algebraic logic. The theory of Cylindric Algebras was studied by Leon
Henkin, Alfred Tarski, and Donald Monk during an extended period, and their discoveries
provided a class of models which are to first-order logic what Boolean algebras are to
sentential logic. Further research was taken up by Istvan Németi and Hajnal Andréka.

In some of his publications Henkin went into the philosophy of mathematics, taking a
nominalistic position. Another issue with an ample historical precedent is the search for a
system that takes the identity relation as the sole primitive constant. He also constructed
a special theory of propositional types having lambda and equality as the only primitive
signs and proved the completeness of that logic.

Several of his publications, dealing with elementary concepts, fall under the category
of mathematical education; we believe that his work On mathematical induction was the
result of his devotion to mathematical education. Between 1957 and 1972, Henkin di-
vided his time between his mathematical research work and enquiries into the teaching of
mathematics.

Answering an invitation from Alfred Tarski, Henkin joined the Mathematics Depart-
ment in Berkeley (University of California) in 1953. When Tarski and Henkin were able
to assemble a number of logicians from the Department of Mathematics and Philoso-
phy, they created an interdepartmental agency, the very famous Group in Logic and the
Methodology of Science. He stayed with the Department until 1991, when he retired and
became an Emeritus Professor.

Henkin was often described as a social activist, he labored much of his career to boost
the number of women and underrepresented minorities in the upper echelons of mathe-
matics. He was also very aware that we are beings immersed in the crucible of history
from which we find it hard to escape.
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The editors felt that it was about time for a comprehensive book on the The Life and
Work of Leon Henkin and we sent a proposal to Springer Basel to be published in Studies
on Universal Logic. We are grateful to the Series Editor Jean-Yves Béziau for accepting
our proposal. It seems that the Logic community shared a similar feeling and the response
to our call was incredible. We wish to thank all the contributors for their interesting pa-
pers, including personal and historical material. We are sure their contributions provide a
foundational logic perspective on Henkin’s work.

This book is dedicated to Leon Henkin, a creative and influential logician who has
changed the landscape of logic, while also being a highly principled, generous and humble
human being. He was and continues to be our mentor.

Henkin’s Investigations and Beyond

Two parts of this book are devoted to Henkin’s work, where we include chapters on:

Algebraic Logic by Donald Monk, Leon Henkin and Cylindric Algebras. Cylindric al-
gebras are abstract algebras which stand in the same relationship to first-order logic as
Boolean algebras do to sentential logic. Monk analyzes Henkin’s contributions on the
subject and also includes a section on Publications of Henkin Concerning Cylindric Al-
gebras. Henkin devoted a large portion of his works to this theory, many of them having
Tarski and/or Monk as coautors.

Completeness Two chapters are directly devoted to this issue, Henkin on Complete-
ness and Henkin’s Theorem in Textbooks, by María Manzano and Enrique Alonso. In the
first one, four of his completeness proofs are analyzed—namely, for first-order logic, type
theory, propositional type theory and first-order logic using interpolation—as well as the
proofs Henkin used to explain in class; the paper ends with two expository works that
Henkin devoted to the same issue (Truth and Provability and Completeness). The aim in
the second paper is to examine the incorporation and acceptance of Henkin’s complete-
ness proof in some textbooks on classical logic. All of these textbooks come from the
Anglo-Saxon tradition and were published before the beginning of the 1980s.

General Models Changing a Sematics: Opportunism or Courage? by Hajnal Andréka,
Johan van Benthem, Nick Bezhaishvili, and Ístvan Németi. This paper gives a system-
atic view of generalized model techniques, discusses what they mean in mathematical
and philosophical terms, and presents a few technical themes and results about their role
in algebraic representation, calibrating provability, lowering complexity, understanding
fixed-point logics, and achieving set-theoretic absoluteness. It is also shown how thinking
about Henkin’s approach to semantics of logical systems in this generality can yield new
results, dispelling the impression of ad-hocness.

Propositional Type Theory Peter Andrews wrote A Bit of History Related to Equality
as a Logical Primitive. This historical note illuminates how Leon Henkin’s work influ-
enced that of the author. It focuses on Henkin’s development of a formulation of type
theory based on equality, A Theory of Propositional Types, and the significance of this
contribution.
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A Problem Concerning Provability is the title of a problem posed by Henkin in
1952—in the Problem Section of the JSL. Volker Halbach and Albert Visser contributed
to this volume with The Henkin Sentence. They discuss Henkin’s question concerning a
formula that has been described as expressing its own provability. They analyze Henkin’s
formulation of the question and the early responses by Kreisel and Löb, and sketch how
this discussion led to the development of Provability Logic.

Beyond Henkin’s Method The chapter by Robert Goldblatt, The Countable Henkin
Principle, presents a general result about the existence of finitely consistent theories which
encapsulates a key aspect of the “Henkin method”. The countable version of the principle
is applied here to derive a variety of theorems, including omitting-types theorems, and to
strong completeness proofs for first-order logic, omega-logic, countable fragments of lan-
guages with infinite conjunctions, and a propositional logic with probabilistic modalities.
The paper concludes with a topological approach to the countable principle.

Henkin’s Method The chapter by Franco Parlamento, Henkin’s Completeness Proof
and Glivenko’s Theorem, also deals with Henkin’s method. The author observes that
Henkin’s argument for the completeness theorem yields also a classical semantic proof
of Glivenko’s theorem and leads in a straightforward way to the weakest intermediate
logic for which that theorem still holds. He also outlines and comments on its application
to the logic of partial terms, when “existence” is formulated as equality with a (bound)
variable.

Finite Type Theory William Gunther and Richard Statman contributed with Reflections
on a Theorem of Henkin. In a full type structure with a finite ground domain, say M n,
it is folklore that a member of M n is symmetric if and only if it is definable in type
theory. A proof follows immediately from an observation due to Leon Henkin in A Theory
of Propositional Types. In this note the authors generalize the folklore theorem to other
calculi and also they provide a straightforward proof of that theorem itself using only
simple facts about the symmetric group and its action on equivalence relations.

Extending Completeness in the Theory of Types to Fuzzy Type Theory Vilém
Novák contributed with From Classical to Fuzzy Type Theory. Mathematical fuzzy logic
is a special many-valued logic whose goal is to provide tools for capturing the vagueness
phenomenon via degrees. Both propositional and first-order fuzzy logic were proved to be
complete, but only in 2005. Also, higher-order fuzzy logic (called the Fuzzy Type Theory,
FTT) was developed and its completeness with respect to general models was proved. The
proof is based on the ideas of the Henkin’s completeness proof for TT.

Many-Sorted Logic In the chapter April the 19th, María Manzano credits most of the
ideas involved in her translation of a variety of logics into a many-sorted framework to
Henkin’s paper of 1950 Completeness in the Theory of Types and to his paper of 1953,
Banishing the Rule of Substitution for Functional Variables. April the 19th, 1996, was
Henkin’s 75 birthdate, but also the date when María was going to give a talk in Berkeley
to explain how the ideas of Henkin were applied in her book Extensions of First-Order
Logic.
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Applying Henkin’s Method to Hybrid Logic In Henkin and Hybrid Logic, by Patrick
Blackburn, Antonia Huertas, María Manzano and Klaus Frovin Jørgensen, the authors ex-
plain why Henkin’s techniques are so important in hybrid logic, an extension of orthodox
modal logic in which special proposition symbols are used to name worlds. These sym-
bols, called nominals, allow Henkin’s witnessing technique to be applied in modal logic.
As a result, in higher-order settings the use of general interpretations and the construction
of type hierarchies can be (almost) pure Henkin. The paper ends with the words: ‘Hybrid
logic? It’s a suggestive name. But it could without exaggeration be called: Henkin-style
modal logic’.

Reviews for The Journal of Symbolic Logic Concepción Martínez Vidal and José
Pedro Úbeda Rives contribute with Leon Henkin The Reviewer. In this chapter they look
at the minor, though abundant, works by Henkin; namely his reviews—a total of forty
six—and other minor papers. They sort the reviews into four categories and provide a
brief summary as well as an analysis of each of them. This analysis reveals Henkin’s
personal views on some of the most important results and influential books in his time.
Finally, they relate these reviews and minor works to Henkin’s major contributions.

Mathematics Education Nitsa Movshovitz-Hadar contributes with Pairing Logical
and Pedagogical Foundations for the Theory of Positive Rational Numbers. Five differ-
ent ways of “founding” the mathematical theory of positive rational numbers for further
logical development are presented. This is done as Leon Henkin outlined in 1979 in the
form of notes for a future paper, suggesting that pairing them up with five representation
models could possibly lead to further pedagogical development. His wish was to explore
how varying modes of deductive development can be mirrored in varying classroom treat-
ments rooted in children’s experience and activities. This dream of Henkin never came to
full fruition.

Leon Henkin Up Close and Personally

Some of the contributions to this volume fall under the category of very personal writ-
ings, describing the relationship the authors have maintained with Leon Henkin. We also
include a biographical chapter on Henkin’s life and work with some suggestions on future
research.

Arithmetization of Metamathematics Solomon Feferman contributes with a very per-
sonal paper, A Fortuitous Year with Leon Henkin, in which he tells us how his doctoral
thesis changed when his advisor Tarski went on sabbatical leave and Henkin acted as su-
pervisor. ‘What if Henkin had not been in Berkeley to act in his place? In fact, none of the
“what ifs” held and I am eternally grateful to Leon Henkin for his being there for me at
the right place at the right time’.

Henkin and the Suit Albert Visser tell us a funny story concerning a young obedient
respectful student (himself) during a short visit Leon and Ginette paid to Amsterdam. The
story ends with these words: ‘This is all well and good, but what does the story teach us
about the Henkins? The story makes clear that the Henkins were very open and friendly
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people. They easily gained someone’s trust. The fact that I told them the story during the
dinner is the best possible testimony of that.’

Lessons from Leon Diane Resek, one of his doctoral students, describes Leon as a
human being. In her words, ‘Leon was the least intimidating of the professors I met at
Berkeley’. She highlights his love for good writing and his strength as a lecturer, and she
concludes saying: ‘In general, Leon’s recognition of values in life beyond pushing for the
best and strongest theorems set him apart from many mathematicians at Berkeley.’

Tracing Back ‘Logic in Wonderland’ to My Work with Leon Henkin Nitsa
Movshovitz-Hadar describes in her personal relationship with Leon, who was her the-
sis advisor, defended in 1975. She ends the contribution with these words: ‘I feel very
fortunate to have been his graduate student as I learned from him much more than logic.
It is his humanity that conquered my heart.’

Leon Henkin and a Life of Service The contribution by Benjamin Wells is entirely
of biographical character. The author includes several letters from Henkin and some per-
sonal communications held between them. He analizes some historical events surround-
ing some classical discoveries, including the controversy around some of the Mal’tsev’s
contributions.

Biographical Note Leon Henkin, by Maria Manzano and Enrique Alonso, provides
some key biographical notes to Henkin’s life. It guides readers through Henkin’s for-
mative period and his most outstanding logical contributions, but also discusses his other
interests, most notably his dedication to mathematical pedagogy and minority-group ed-
ucation.

María Manzano
Enrique Alonso

Ildikó Sain

Salamanca, Spain
Madrid, Spain
Budapest, Hungary
July 2014
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Biographical Studies



Leon Henkin

María Manzano and Enrique Alonso

Abstract Leon Henkin was born in 1921 in Brooklyn, New York, in the heart of a Jewish
family that originally came from Russia. He died at the beginning of November in 2006.
He was an extraordinary logician, an excellent teacher, a dedicated professor, and an ex-
ceptional person overall. He had a huge heart and he was passionately devoted to his ideas
of pacifism and socialism (in the sense of belonging to the left). He not only believed in
equality, but also worked actively to see that it was brought about.

Keywords History of logic · Biographical studies of mathematicians · Foundational
studies in logic · Henkin

1 Life1

Leon Henkin was born in 1921 in Brooklyn, one of the five boroughs of New York City,
in the heart of a Jewish family that originally came from Russia. His second name was
Albert, but he never used it in publications. In a footnote to one of his biographical papers,
The Discovery of my Completeness Proofs, Henkin tells the story of his middle name:2

In fact, he (father) had shown his high expectations for me at the time of my birth by choosing my
middle name to be “Albert”. He once told me that at that time (April 1921) the New York Times
had run a series of articles publicizing Einstein’s revolutionary theory of relativity, so my father
decided to borrow Einstein’s first name for his newborn son.

Leon’s oldest uncle Abraham was the first in the family to emigrate from Gomel, in
White Russia, and became a doctor in the USA. After saving some money, he was able
to bring Leon’s father to the States and later he brought Leon’s grandmother and aunts as
well.

In 2009, during a short visit to California, I (María Manzano) had the happy oppor-
tunity to interview Ginette Henkin, Leon’s wife. Steve Givant and I visited her at her
Oakland apartment and she drove us to a restaurant where we had lunch. Ginette told us
that Leon belongs to a very close-knit family: in the first place because they belong to
a tradition where family relationships were important, but also because they were immi-
grants and the new families they formed were also related by family links, as two brothers

1Information for writing this section was mainly provided by Leon’s family: his wife Ginette, his oldest
son Paul, and his youngest son Julian. Unfortunately, Ginette passed away in June 2012. Other sources
are [1] and [39].
2In [29, p. 150, footnote 30].
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married three sisters. Leon’s oldest uncle married one sister and Leon’s father married
another sister; when Leon’s mother passed away, his father married a third sister. These
women were also immigrants from White Russia whose father was a doctor. In Leon’s son
Paul words [32] ‘Perhaps all these doctors explain his lifelong fascination with health and
dentistry. Well into his eighties, he would exercise. . .’.

He lost his mother shortly after the birth of her daughter Estelle, almost five years
younger than him. Leon was very close to his cousins, they lived nearby, and grew up
together in Brooklyn. There are several stories in the memorial documents ([32] and [10])
referring to playing in the streets with other kids. His son Paul told us [32], that ‘In Brook-
lyn, he was nearly run over by a milk truck while playing stickball in the street.’ Most of
his early education was in the NY public schools; he went to Lincoln High School, which
produced a lot of mathematicians that year.

Leon’s family was socialist, they were all supporters of Norman Thomas, an American
minister who achieved fame as a socialist, pacifist, and six-time presidential candidate
for the Socialist Party of America. The family was not religious, and even the grandfather
(who was a Hebrew scholar) was not very observant, but they strongly kept the Jewish tra-
dition. It seems that the family rigorously observed the Passover Seder, probably because
the Seder is conducted in the family home, while other Jewish holidays revolve around
the synagogue. On such occasions, it is customary to invite guests, in particular strangers
and the needy.

In the aforementioned interview, Ginette gave us a nice headline concerning how she
met Leon the first time: Two couples met at same weekend. The two couples were Leon
and Ginette Henkin and Harold and Estelle Kuhn. The story goes like this: Leon and Es-
telle travelled to Montreal for the September Labor Day weekend (1948); Leon was driv-
ing a friend (Harold Kuhn) from gradschool who wanted a lift and so he introduced Harold
to Estelle. The three of them and Maurice L’Abbé went to Montreal; during their stay there
Leon met Ginette. Estelle, L’Abbé, Ginette, Leon and several others had dinner together
and went dancing afterwards. In December that year, Ginette took a first plane ride to NY
(Leon invited her) and she stayed in father’s and Estelle’s place. Ginette was 25 when they
married in 1950; she was a Catholic with a western style education. According to David
Gale [10], a colleague and co-student at Princeton University, ‘In graduate school he was
well known for being “anti-marriage”. “I oppose it in all forms” he told me when I asked
him about his views on the subject.’ However, after the mentioned trip to Montreal he had
a life changing experience. ‘One day shortly after returning to Princeton we were talking
about this and then to my surprise Leon said “Maybe I’ll get married and see what that
looks like”. As we know, he did and from all indicators it turned out to look pretty good!’
Ginette was a wonderful person and an excellent cook, as we can attest. Ginette and Leon
had two adopted sons, Paul and Julian, in 1957 and 1959. Julian said: ‘I would character-
ize my father as the most supportive parents and persons I have known. [. . .] My father
was a very good driver. He could handle long driving shifts on family trips.’ Julian also
said that Leon forced them to learn, as he always was in a teacher role, thus ‘It would not
surprise me to know that all of his students have that Leon-instilled confidence’ [10].

On several occasions Leon attended his children’s school to ‘introduce us six-year-olds
to negative numbers’ or ‘subtraction by addition’. One classmate of Leon’s son Julian told
us: ‘The first thing Mr. Henkin asked was whether it was difficult for us to remember to
carry a number in addition and to borrow a number in subtraction. We second graders,
responded, “Yes”. Mr. Henkin went on to say that we should not worry about that because
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he was going to teach us a way to do subtraction without borrowing. It was doing subtrac-
tion by addition.’ Henkin’s enthusiasm and understanding of just how much to challenge
younger age groups was a rare gift.

Paul, in his Proposed Memorial Oration, also told us about a terrible experience the
family had to face: ‘In 1969, I had a brain tumor removed and all sorts of complica-
tions, and barely survived, but my parents poured time, resources and energy into my
care. Meanwhile, my mother supported my father’s career in all sorts of ways, from giv-
ing dinners and parties for academics and students alike to working on faculty groups
distributing supplies to foreign and minority students.’3

When Leon had his own family, they used to celebrate Passover. Bill Henkin (Jr.),
his first cousin once removed said: ‘I actually learned a great deal about the purpose
of religion from his approach to Pesach because his attention at this holiday was not on
a capital G—God—of any sort, his concern was clearly for the people around him at
those times, as well as for people who could not be present, and he enrolled us all in
his approach and thoughts as he enrolled students in mathematics in his other, better-
known roles as an educator.’ According to Cliff Kuhn, Leon’s nephew, the eldest son of
his sister Estelle, ‘He was THE central bridge in our family, reaching across continents
and generations to make and strengthen family connections, and serving as custodian of
the family’s history.’ In Nicholas Kuhn’s, the middle son of Estelle, words: ‘I own two
books given to me by my uncle Leon. The first is “Geometric Algebra” by Emil Artin.
[. . .] The second book is “The Apted Book of Country Dances”.4

Leon and Ginette were always happy to invite students and colleagues to their home.
Their broad interests in politics, education, and arts, plus good wine and excellent cuisine
always made the stay a memorable one. They first lived in an apartment on Virginia Street
and later on moved to a house on Maybeck Twin Dr. in Berkeley. As some colleagues
attested:‘[. . .] in 1955, the Henkins were among the first people in the math department
to invite us to their home [. . .]. I was much impressed with the all-white décor of their
livingroom and diningroom, and with the charm and sophistication of Leon and Ginette.’
I (María Manzano) was invited on two unforgettable occasions to his simple, vanguard,
and minimalist home in Berkeley Hills, decorated with exquisite objects d’art, among
which those from American Indian cultures were outstanding. The view from his liv-
ing room was breathtaking, with a gorgeous sight of the Golden Gate of San Francisco.
Henkin actually died in Oakland, since some years previously he had to move there with
his wife Ginette, leaving behind his beautiful home.

I could also appreciate the couple’s good taste during the preparation of their visit to
Barcelona. The Hotel Colón was chosen by me as a venue and the couple agreed to this
since Ginette and Leon preferred a local touch: ‘Both of us share your preference for a
place with distinctive Spanish character, rather than the ugly, commonplace international
style that infects big cities’.

Leon’s fondness for dancing, both ballroom and modern, is well known. According to
Ginette, Leon was extremely shy when he was young. At that time boys and girls only
met on weekends to dance; as there were more girls than boys, he was forced to dance.
When he connected music and steps he became a dance lover and remained one all his

3See [32]. The Faculty wives equipment loan center is a very useful organization. In 1977, when María
Manzano was in Berkeley with a Fulbright grant, she was able to loan dishes and sheets from them.
4In this paragraph, all the quotes are taken from [10].
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life. In some of the anecdotes compiled at his death, Many views of Leon Henkin, some
people refer to this. His son Paul ended his Proposed Memorial Oration with these words:
‘In closing, I must make mention of his love of dance. Music too. One of my last memories
of him was his feet trying to dance under the covers.’

Ginette told us ‘He used to go solo camping for a week, started this around age 60.
But one year he got lost around Mammoth Lakes and he never went solo camping again
after that.’

Henkin was also interested in literature. In 1983, in a personal letter to me, in reply to
me praising the novel Rabbit is Rich by the newly awarded Pullitzer Prize winner John
Updike, Henkin writes: ‘I am glad you enjoyed the language of Updike’s writing. I took
a volume of his stories on my camping trip last summer, and I admired his writing very
much. I still have my school-boy dream of becoming a story writer, but I’m aware I could
never achieve such a master style as Updike.’ Ginette gave me a short story written by
Leon, A Walk, in which a fifteen-year old Leon takes a memorable walk for the first time
in his life. ‘So far as he remembered he had never done such a thing before. Until the
age of twelve, he had played in the street, after school, with the other boys.’ During the
walk he saw three girls, the blonde hair intrigued him, she and the picture of a certain
tree remained in his mind. ‘No, he did not sleep. He lay in bed, with his eyes wide open,
thinking, staring, far into the night.’

Leon was always on the chess team in high school and college. He avoided games of
chance, preferring to encourage thinking. He liked blindfold chess, go, and scrabble. He
had speech trouble with r , so while he was at Columbia the family sent him to speech ther-
apy. The difficulty disappeared, but he had a slow and peculiar pronunciation. Anyway,
he was such an eloquent, creative, and persuasive teacher that this slight oddity became
unnoticeable as soon as he went on talking.

Henkin was a politically committed person, he was passionately devoted to his ideas
of pacifism and socialism (in the sense of belonging to the left). Paul told us that early in
the fifties he was participating in political groups: ‘Next year, he became a professor of
math at USC, and he stayed in California thereafter. There, he also became involved in a
political club where he was beaten for president by Jess Unruh, the future Speaker of the
Assembly.’5

Henkin did not wish to visit Spain during the Franco era, but after November of
1975 this was fortunately no longer the situation. His first trip was in 1982 and he vis-
ited several Spanish Universities, such as Barcelona, Madrid and Seville. He wished to
know all about Spain, especially its social and political developments, and in 1982 he
commented: ‘Yes, we too were very pleased with the clear and strong victory of the
Socialist Party in Spain. [. . .] we were worried about the role of the military, and re-
lieved that they did not interfere’. In turn, I (María) was always informed about the de-
velopments in his country: ‘Our own election in California was a disaster, with a new
Governor and Senator, each more conservative than the other. The State is in a fis-
cal crisis and I’m afraid the University will be in for a rough time. . .’. He bewailed
the absence of international news in the American press and in July 1984 he wrote:
‘I recall your Spanish election in the week following our visit in 1982. I hope that
your new government is working out well. . . we get little news of Spain in our jour-
nals.’ In the same letter, he told me that for the first time in American history a woman

5See [32].
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had been nominated as Vice-President of the Democratic Party. However, he was sad-
dened by the fact that Reagan might win the election again, as in fact happened. To-
day he would possibly have been thrilled by the role played by Barack Obama and
Hillary Clinton.

According to Ginette, Leon’s life was the university, it was his baby. In fact, when
he died he left some money to the university. Ginette also said that he wanted to be an
academic early in his life, partially because he didn’t want to think about money.

He died at the beginning of November in 2006, as we are told by mutual friends, from
the same cause as the great mathematician Eratosthenes of Cyrene.

In the obituary in the San Francisco Chronicle (Monday, November 20, 2006 [6]), the
logician J.W. Addison, at that time an emeritus professor in the same department of the
University of California at Berkeley, we read: ‘You could say he was an academic triple
threat—very strong in teaching, very strong in research, very strong in administration.’

What kind of effect did Leon Henkin have on the world? That was the main question
we asked ourselves. To answer it, we have investigated not only his research, but also his
teaching, as well as his contribution to the development of logic in a broader sense. He
made great efforts to disseminate mathematics and logic to a wider circle of students. As
far as we are beings immersed in history, we have tried to reproduce his mathematical and
social environment in order to contextualize his contributions.

In the following sections we discuss Henkin’s academic life as well as his social ac-
tivism.

2 Graduate Studies at Columbia University

Between 1937 and 1941, Henkin pursued his undergraduate studies at Columbia College
in New York City obtaining a diploma in mathematics and philosophy. His father then
moved uptown because he didn’t want Leon to commute. Henkin lived in this new home
for four years before going to Princeton, and it was during that time when he became
interested in logic. Let us quote the first two paragraphs of his 1962 paper, Are Logic and
Mathematics Identical?, which won the prestigious Chauvenet Prize in 1964.

It was 24 years ago that I entered Columbia College as a freshman and discovered the subject of
logic. I can recall the particular circumstance which led to this discovery.
One day I was browsing in the library and came across a little volume by Bertrand Russell entitled
Mysticism and Logic. At that time, barely 16, I fancied myself something of a mystic.
[. . .]
Having heard that Russell was a logician I inferred from the title of his work that his purpose was
to contrast mysticism with logic in order to exalt the latter at the expense of the former, and I
determined to read the essay in order to refute it.6

While at Columbia, Henkin took a course in logic with Ernest Nagel in the Dept.
of Philosophy, and this led him to become interested in the field to the point where he
even read Russell’s Principles of Mathematics. It was in that book that he first have read
about the axiom of choice, and he tells us that he was impressed by the amusing and
intimate way Russell used to explain it, contrasting how easy is to choose a shoe from
an infinite collection of pairs of shoes, with how difficult it is to choose a sock from an

6See [21].
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infinite collection of pairs of socks. Russell’s book inspired him to read the Principia
Mathematica of Russell and Whitehead [38], and he became infatuated with the theory
of types and the axiom of reducibility. He then took another course on logic with Nagel,
during which he read an article by Quine, containing a proof of the completeness theorem
for propositional logic. Let us quote him:7 ‘As to the concept of completeness which was
the focus of Quine’s paper, it did not get through to me. I simply noted that the aim of
the paper was to show that every tautology had a formal proof [. . .] the result was that I
failed to get “the idea of the proof”, the essential ingredient needed for discovery.’

He also had the chance to listen to a lecture by Tarski concerning Gödel’s work on un-
decidable propositions in type theory. (Tarski travelled to America in August of 1939 to
attend the Unity of Science Congress being held at Harvard that year. The German inva-
sion of Poland on September 1 prevented him from returning home.) However, Henkin’s
first deeper contact with the work of Gödel arose from a sort of reading seminar he took
with F.J. Murray—a collaborator of von Neumann—to study Gödel’s results on the con-
sistency of the continuum hypothesis. Henkin said:8 ‘As far as I can recall, Murray and I
had one or two meetings to discuss the scope and the beginning of the work, and then he
found himself too busy with other projects and I was left to work through Gödel’s mono-
graph on my own.’ At that time, Henkin had still not graduated from Columbia, but he
was the only student who seemed to be interested in these issues, and who was prepared
to invest time and energy to study them.

Upon finishing his studies at Columbia, he applied for admission to several univer-
sities where logic was well established: Harvard (where Quine was), Princeton (where
Church was) and Columbia. Nevertheless, as he stated during an interview held much
later (on May 18, 1984) in Berkeley.

Those are the places [Harvard, Princeton, and Columbia] to which I made application. I was ac-
cepted at all places, but Harvard did not offer any financial help. Both Princeton and Columbia did.
My Columbia professor said, “Well, you’ve been around here. You know, you’ve learned from us.
Here is this exceptional logician, Alonzo Church, at Princeton. Why don’t you go there?” So I did.
Happily ever after, as they say.9

3 Doctorate Studies with Alonzo Church

The Completeness of Formal Systems10 is the title of the doctoral dissertation that Henkin
wrote at Princeton in 1947 under the direction of Alonzo Church. Chapter “Henkin on
Completeness” of this book is devoted to this topic, so we will limit ourselves here to a
discussion of his previous training in logic under the supervision of Church.

It was at Princeton University that Henkin followed his master’s and doctorate studies,
although between the two, he worked on the famous Manhattan project, an initiative of
the United States government with the collaboration of Canada and the United Kingdom.

7In [29, pp. 129–130].
8In [29, p. 131].
9See [36].
10The thesis was never published, but the results were published in several papers; the more directly
related are [11], and [12].
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During his initial term at Princeton, he followed a course in logic given by Church
in which both propositional and first-order calculi were studied and normal form and
completeness theorems were proved for them, and the Löwenheim–Skolem results were
analyzed. The completeness proof was that of Gödel (Henkin’s, obviously, still did not
exist) and the reductive nature of the proof was remarked on—namely, that the problem
of completeness for first-order logic was reduced to that of completeness for sentential
logic using Skolem’s normal form. During the second semester, a second-order language
was studied and, in particular, Peano Arithmetic was introduced in great detail, and the
results of incompleteness were proved, both for arithmetic and second-order logic. To
prove incompleteness, recursive functions were introduced, although only the primitive
ones. General recursive functions were not studied, but the role they play in the proof
of certain results of undecidability was mentioned. Henkin tells the reader in [29] that
although the content of the course was not, in the least surprising, what was striking was
the style of Church, the way he had of transmitting his conception of logic. It appears that
he would make frequent halts in his discourse to clarify the idea that he was following the
“logistic method”: clearly delimiting what was language and what was metalanguage;
stressing how the formal language should be established in a completely effective way,
and why the metalanguage (English, in his case) should be limited. One can gain an idea
of Church’s style by reading his book Introduction to Mathematical Logic, vol I.11

The Frege theory about the notions of sense and denotation12 were the topic of a
seminar that Henkin followed with Church when he (Henkin) returned from his four years
of service. Henkin affirms that in that seminar Church convincingly defended the notion
that in addition to the formal language and the universe of mathematical objects in which
we interpret the formulae of the language, there is a third dimension of abstract objects,
namely concepts or senses. A sentence expresses a proposition but also names a truth-
value. Henkin writes: ‘Under this theory a symbolic expression functioning as a name
denotes an object of the universe of discourse, and expresses some sense of that object;
a sentence is construed as a name of its truth value, and the sense it expresses is called a
proposition.’13

3.1 The Princeton Mathematics Community in the 1930s

In an interview from the series entitled “The Princeton Mathematics Community in the
1930s” [36], Henkin recounts an amusing anecdote about his years at Princeton. Professor
Alfred Tucker asked him to create a sort of disturbance on the last day of the academic
year: ‘Like every great teacher he wanted some dramatic incident to imprint the course
on the minds of the young students.”

So Henkin started dancing around and contorting himself before his classmates, whose
eyes bulged because they were unaware of the theatrical nature of the event and were

11The second volume, whose index appears in the first, was never published, although some of its chapters
were circulated among his students.
12Probably Church explained in class what was to become his paper [5] on that subject.
13See [29, p. 142].
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unable to understand his lack of respect towards his teacher. He ended up by removing
his waistcoat without taking off his jacket!

There are other interesting anecdotes in these interviews ([36] and [37]). Here is one
that had to do with a conflict he felt about two different approaches to teaching: presenting
the topics clearly to students or forcing them to make an effort: ‘That effortless way in
which the ideas came made them too easy to slip away. I probably learned more densely
packed material from what we called the “baby seminar”, in point set topology conducted
by Arthur Stone. I learned more because he made us do all the work.’

In relation to that same seminar, he describes the following exchange with Professor
Lefschetz, which reveals how self-confident Henkin was, even as a graduate student:

I was giving my solution to one of the problems that Arthur Stone has set to me before, and being
a logician I wanted to make all the details very clear and Lefschetz became impatient. As I got into
some of those details he said, “Well, that’s all obvious. Just go on toward the end.” I was a very
brash young man. I said, “Professor Lefschetz, it may be obvious to you, but I have come from an
environment where a proof requires us to give all the details.” And I just went ahead.

3.2 The Second World War

In an interview from the above mentioned series, Henkin recounts how the atmosphere
of relative calm with respect to WWII changed radically towards the end of 1941, when
America entered the conflict after the bombing of Pearl Harbor on December 7, 1941.
He tells us that he came upon Mrs Eisenhart in the street, and we learn that in their
conversation she said: ‘We must all do our duty and get on with it.’

Henkin says that very soon everybody was expressing similar opinions. He also men-
tions that his professor, Herman Weyl, decided not to change his work schedule and that
he (Henkin) was positively impressed by this:

I also remember that I had a lecture by Hermann Weyl that same morning, Monday the 8th. It was
9:00. He said, “I know that all of you are very excited and upset and cannot let go of these great
world events that have engulfed us”. But, he said, “I’ve learned from my experience that in the
most tempestuous of times, there is a great value in giving some of your attention and your energy
to your continuing work”. Therefore, he said, “I am just going to give the regular lecture now that
I planned with you last week.” So he did, and I think there is something of real value in those
opening remarks.14

Like many scientists, Henkin felt that he had to be committed and he worked for four
years on the Manhattan project. The project gathered together a large number of emi-
nent scientists—including exiled Jews, pacifists and people on the Left—, many of whom
joined the cause against fascism and contributed to the mission of developing an atomic
bomb before the Germans. As he tells us: ‘During the period May, 1942–March, 1946,
I worked as a mathematician, first on radar problems and then, beginning January 1943,
on the design of a plan to separate uranium isotopes. Most of my work involved numerical
analysis to obtain solutions of certain partial-differential equations.’15

14See [36].
15In [29, p. 132, footnote 11].
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4 Service to the Department and to the University

Tarski arranged for Henkin to be offered a tenured position in the Mathematics Depart-
ment of the University of California at Berkeley in 1952, but Henkin refused the offer
because of the controversial loyalty oath that was required of all professors at the Univer-
sity of California at that time.16 When the oath was no longer required in 1953, Henkin
accepted Tarski’s offer and went to Berkeley. He valued the role of Tarski very highly as
regards his own decision to come to Berkeley. On 30 October 1983, in a personal commu-
nication to María Manzano he wrote: ‘I write to tell you that Alfred Tarski, who came to
Berkeley in 1942 and founded our great center for the study of logic and foundations, died
Wednesday night (Oct. 26), at age 82. All through this year he has been getting weaker;
his wife Maria worked heroically to comfort and protect him, but finally he gave up his
life [. . .] It was he who brought me to Berkeley in 1953, so I owe much to him personally
as well as scientifically.’

Feferman [7] explains how Tarski’s general conception of logic, as the quintessential
interdisciplinary subject, urged him to campaign on behalf of it from his base at the Uni-
versity of California in Berkeley.

The first order of business was to build up a school in logic bridging the university’s Mathematics
and Philosophy Departments, and the opening wedge in that was the hiring of Leon Henkin as
Professor of Mathematics in 1953. From then on, Henkin was Tarski’s right-hand man in the logic
campaigns, locally, nationally and internationally, but he had other allies, both in Mathematics
and in Philosophy. The first goal was to increase the proportion of logicians on the mathematics
faculty to 10 % of the whole; that took a number of years, eventually achieved with the appointment
of Addison, Vaught, Solovay, Scott, Silver, Harrington and McKenzie. Through his influence in
Philosophy, he succeeded in recruiting Myhill, Craig, Chihara and Sluga.17

Assembling together a number of logicians, mathematicians, and philosophers from
the departments of mathematics and philosophy, Tarski and Henkin created an interdisci-
plinary group called the Group in Logic and the Methodology of Science. In 1957, they
initiated a pioneering interdisciplinary graduate program leading to the degree of Ph.D.
in Logic and the Methodology of Science. They were able to organize several very im-
portant meetings on logic in the Bay Area: the conference on The Axiomatic Method in
Mathematics and Physics at U.C. Berkeley in 1957; the First International Congress for
Logic, Methodology and Philosophy of Science that Tarski presided over at Stanford Uni-
versity, in 1960; and the very important Theory of Models conference at Berkeley in 1963.
Henkin was the driving force behind the organization of the Tarski Symposium at Berke-
ley in 1971, honoring Tarski on the occasion of his 70th birthday. In 1983, a meeting of
the Association of Symbolic Logic was held at Berkeley, and Alonzo Church gave an
invited talk on intensional logic: ‘a subject he was beginning to study as I was finishing
my studies with him in Princeton, some 35 years ago’, Henkin told María Manzano in a
private letter. Feferman says: ‘In a sense the Logic and Methodology congresses are an
intellectual descendant of the Unity of Science movement, but now with logic at the cen-
ter stage, very much in tune with Tarski’s conception of logic as a common basis for the
whole of human knowledge’.

16In his contribution to this volume (Chap. “A Fortuitous Year with Leon Henkin”), Solomon Feferman
explains a little bit The Loyalty Oath, whose main requirement was to force people to declare they were
not members of the Communist Party.
17See [7, pp. 5–6].
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Henkin was chairman or acting chairman of the Department of Mathematics at the
University of California at Berkeley on at least two occasions: during 1966–1968 and
during 1983–1985. Although it seems strange, the second period was more complicated
than the first, in 1983 he wrote:18 ‘It is much harder now than when I served during
66–68. One big difference is that the University budget has suffered greatly through a
combination of political and economic conditions. [. . .] I send a clipping from our student
newspaper—on the first day of our academic year—describing some of the problems. (The
Dean was unhappy, but the Chancellor gave us $20,000 more to open 2 new courses!).’

In that clipping from the The Daily Californian [35], the situation is explained and
the writer tells us that Henkin and the Vice-Dean David Goldschmidt had sent a letter to
the Republican Governor George Deukmeijian in which they set forth their demands. The
situation deteriorated to the extent that a year and a half later Henkin said he wanted to
resign, although he was eventually convinced to carry one for a further year.

5 His Research

Leon Henkin has left behind as his heritage an important collection of papers, filled with
exciting results and very original methods. One example is the paper containing his inno-
vative and highly versatile method for proving the completeness theorem—both for the
theory of types and for first-order logic—a method that was applied later to many other
logics, even non-classical ones. For some of his results we know the process of discov-
ery,19 what observed facts he was trying to explain, and why he ended up discovering
things that were not originally the target of his enquiries. In these cases we do not have to
engage in risky business of trying to explain the origins of his ideas merely on the basis of
the final scientific papers that presented them. It is well known that the logic of discovery
is often hidden in the final exposition of our research through their different propositions,
lemmas, theorems and corollaries.

5.1 Completeness

If you take a look at the list of publications Leon Henkin left us (Appendix of this book),
the first published paper, The completeness of first order logic [11], corresponds to his
well known result, while the last, The discovery of my completeness proof [29], is an
extremely interesting autobiographical one, the two papers forming a sort of fascinating
loop around his career.

For a countable first-order language the completeness proof proceeds in two steps.
First, every consistent set of formulas is extended to a maximal consistent set with wit-
nesses. Second, once we have the maximal consistent set with witnesses, we use it as
a guide to build the precise model that the formulas of this set are describing; the uni-
verse of the model being the set of witnesses or a set of equivalent classes. According to
Monk [33]: ‘He also used the above basic idea to a generalization ofω-consistency [15]

18Personal letter to María Manzano.
19Explained in his [29].
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and ω-completeness [18], to results concerning the interpolation theorem [23], and the
representation theorems for cylindric algebras [17]’.

Several chapters of this book deal with Henkin’s completeness theorems (Chaps.
“Henkin’s Theorem in Textbooks” and “Henkin on Completeness”) and its extensions
to different logical systems (Chaps. “Henkin’s Completeness Proof and Glivenko’s Theo-
rem”, “From Classical to Fuzzy Type Theory” and “Henkin and Hybrid Logic”). Henkin’s
method, as well as an abstract setting of Henkin’s proof, are also treated in this book
(Chaps. “The Countable Henkin Principle” and “Changing a Semantics: Opportunism
or Courage?”).

5.2 Algebraic Logic

Henkin devoted a large portion of his research to algebraic logic. Tarski and Henkin be-
lieved that logic investigation was interesting in and of itself, since it could provide uni-
fying principles for mathematics, ‘In fact we would go so far as to venture a prediction
that through logical research there may emerge important unifying principles which will
help to give coherence to a mathematics which sometimes seems in danger of becoming
infinitely divisible.’20 The promotion of research in logic (algebraic logic in particular)
also had the aim of attracting the interesting of mathematicians. Let us quote Feferman
[7] ‘I believe that it was because Tarski thought that formal syntax and metamathematics
were principal obstacles to mathematicians’ appreciation of, and interest in, logic that he
was led to work on the algebraic reformulations of logic in terms of Boolean algebras, re-
lation algebras and, finally and most extensively, cylindric algebras.’ Feferman also cites
other interesting quotes ‘from a 1955 letter that Tarski wrote, with Leon Henkin, to the
committee for summer institutes of the American Mathematical Society urging support of
the 1957 Cornell Institute in Symbolic Logic.’

In particular, Feferman includes the following quote from a letter in which Tarski and
Henkin identify the source of mathematicians’ disaffection with logic as being its philo-
sophical flavor: ‘[many] mathematicians have the feeling that logic is concerned exclu-
sively with those foundation problems which originally gave impetus to the subject; they
feel that logic is isolated from the main body of mathematics, perhaps even classify it as
principally philosophical in character.’21

Algebraic notions are to be found in logic from the very beginning, starting with the
work of Boole. This tendency to establish relationships between certain fields of mathe-
matics and algebra, which increased with time, proved particularly fruitful in the case of
propositional logic. We know that every Boolean algebra is isomorphic to a quotient alge-
bra of formulae. By the Stone Representation Theorem we also know that every Boolean
algebra is isomorphic to an algebra of sets. The theory of cylindric algebras [31] provides
a class of algebras that are to first-order logic what Boolean algebra is to sentential logic.
The subject was extensively developed by Leon Henkin, Alfred Tarski and Donald Monk
over an extended period. Further research in this area was carried out by Istvan Németi
and Hajnal Andréka. Henkin’s contributions to this field of cylindric algebras are treated

20Feferman in [7, pp. 5–6], cites this 1955 letter that Tarski wrote, with Leon Henkin.
21See [7, pp. 5–6].
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in this book (Chaps. “Leon Henkin and Cylindric Algebras” and “Changing a Semantics:
Opportunism or Courage?”).

5.3 Identity

The search for a system of logic that takes the identity relation as the sole primitive con-
stant has an ample historical precedent. Henkin studied this matter in depth in at least two
of his contributions, namely, in “A theory of Propositional Types” [24] and in “Identity as
a Logical Primitive” [26]. Two chapters of this book deal with his definition of a theory
of propositional types based on identity, and in which all types are finite (Chaps. “A Bit of
History Related to Logic Based on Equality” and “Reflections on a Theorem of Henkin”).

5.4 Nominalism

The work of Henkin that is most directly related to philosophy is an article entitled: “Some
Notes on Nominalism” [14] which appeared in the Journal of Symbolic Logic in 1953 and
to which there was to be a sequel, in 1955, in the form of a lecture [16]. As Henkin
himself was eager to clarify, this was a reply to two papers that appeared in that journal
over a short period of time in 1947. The first, “On universals” [34] was written by Quine
and the second one, “Steps toward a constructive nominalism” [8], by Quine and Nel-
son Goodman jointly. These works, including that of Henkin, are part of a foundations
sensitive tradition that is perhaps not as popular today. In this book there are no chapters
directly devoted to this topic, but in Chap. “Henkin on Completeness” we highlight that
the models he builds in all his completeness proofs are in accordance with a nominalistic
position.

5.5 Mathematical Induction

We believe that his work on mathematical induction was the result of his devotion to math-
ematical education. We will comment later on the film about this subject that was part of
the Mathematics Today series. He also wrote a paper, On mathematical induction [19] that
he liked very much: ‘[. . .] but my little paper on induction models from 1960, which has
always been my favorite among my expository papers’.22 In it, the relationship between
the induction axiom and recursive definitions was studied in depth. Henkin defined induc-
tion models as the ones in which the induction axiom holds, and he was able to prove that
not all recursive operations can be defined in these models. For instance, exponentiation
fails. Induction models are straightforward mathematical structures; there is the standard
model that is isomorphic to the natural numbers, and there are non-standard models. The
latter fall into two categories: cycles—namely the integers modulo a natural number n—
and what Henkin termed “spoons”, having a cycle and a handle. The reason there are two
categories of non-standard models is that the induction axiom by itself always implies the
validity of either the first or the second of Peano’s axioms for arithmetic.

22Personal communication to María Manzano.
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5.6 Mathematical Education

Several of his publications, dealing with elementary concepts, fall under mathematical
education ([20, 22, 25] and [27]). Between 1957 and 1972, Henkin shared his work in
research into mathematics with enquiries into its teaching. As from 1972, he devoted him-
self mainly to investigating the teaching of the subject. In fact, in 1979, with a Fulbright
fellowship, he spent time in Israel devoted to looking into the teaching of mathematics.
He was then at the Department of Education in Science at Technion University in Haifa.
On this occasion he also visited two universities in Egypt.

5.7 A Problem Concerning Provability

Henkin was also very good at posing problems.23 Chapter “The Henkin Sentence” in this
book is devoted to the most famous one, A problem concerning provability. The problem
deals with a formula similar to the one Gödel used in his incompleteness results but this
formula is expressing its own provability while Gödel’s expressed of its own truth. The
question Henkin posed was whether the formula is provable or not. Halbach and Visser
analyze ‘Henkin’s formulation of the question and the early responses by Kreisel and Löb
and sketch how this discussion led to the development of Provability Logic.’

5.8 Language with Only a Finite Number of Variables

To finish this section, let us tell you an interesting story Wilfrid Hodges told María:

First, if my memory is accurate, Henkin played a role you might not know about in computer
science logic. I think it was in 1970 or 1971 that he came to Bedford College London and gave a
talk to Kneebone’s seminar. He talked about proofs in which only some finite number of variables
occur, and reported some results of Don Monk in that area. At the end of the talk I asked him
whether there is a first-order sentence with no function symbols and only two variables that has
models but no finite ones. He said he didn’t know. Alex Wilkie remembered the question and
passed it on a year or so later to my student Mike Mortimer, who proved that the answer was
no. After he’d proved that, we found that Dana Scott had already published the result; but Scott’s
proof relied on a dubious theorem of Gödel which is now known to be false. So Mortimer has the
theorem, and Mortimer’s Theorem is the first in a line of theorems about what can be said using
only a fixed number of variables.24

6 Henkin the Teacher

The story behind this is that of María Manzano, who during the academic year 1977–1978
attended his classes in Algebra for students in the first years of the degree course, and of

23The whole reference of these problems is included in the Appendix Curriculum vitae of this book.
24Personal e-mail to María Manzano.
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Metamathematics (225A) for doctorate students. According to her impression during that
year, Henkin was an extraordinary insightful professor in the clarity of his expositions
and was well loved by his students, who on his last day of class in the academic years
would applaud his efforts with great emotion. Indeed, Henkin always wondered whether
his classes should be easy to follow or whether they should force his students to make
important efforts. In the above-commented interview [37] he stresses that things learned
with effort are less easy to forget.

Proof of this internal debate are the following words that formed part of the summary
of his course on Metamathematics.

Many bright students find my lectures a little slow, and they consider my concern with the ma-
chinery of logic (as distinct from the results) as pedantic. Concerning the first of these judgments,
it is valid, but since many of the students are as slow-thinking as I, and the quick-thinking ones
can always skip lectures and study the references, the pace as a whole is not bad—and indeed,
the poorly-prepared students may find themselves struggling a bit to keep up. Concerning the sec-
ond charge, however, I think it can be at least partially turned aside by adverting to pedagogical
principles—which I am quite willing to explicate and discuss in office hours, or even in class if
demand warrants.

Many of us who knew him believe that he reached a perfect balance and that he would
never be obscure on purpose.

The textbook used in the algebra course Birkhoff and Mac Lane’s, A Survey of Modern
Algebra, but we did not follow the order of the book. The topics were the usual ones in an
algebra course: Rings, Fields, Polynomials, Homomorphisms, Vector Spaces, etc. Before
each class Henkin would give us a text of some 4–5 pages that summarized what was to
be addressed in the class. The texts were in purple ink, printed with the old multicopiers
that we called “Vietnamese copiers” and that were so often used to (illegally) print pam-
phlets in our revolutionary days in Spain. Before starting the sessions, and handing out the
printed texts with the topics to be addressed, he would give us a sheet explaining the tasks
of the week: revision of class notes and of the corresponding sections of the book (indeed,
exactly which ones), and some 8 problems to solve. In addition to giving us back the ex-
ercises corrected, he would give us a copy with exercises containing problems solved by
him. Detailed information of everything about the course that might be of interest to us
was announced a long time before strictly necessary: the dates for handing in the various
tasks, the dates of our exams (to be done in class with our books and notes), and his tu-
torial schedule. In the courses given in the first years of the degree, he was always very
enthusiastic, even jovial, in class and he transmitted a feeling of confidence. His tutorials
were always well attended.

In the summary of the metamathematics course Henkin defined metamathematics as
the mathematical theory of mathematical theories, and he introduces the latter as the study
of structures and their interrelations. ‘In metamathematics, we study three classes of struc-
tures and their close interrelations: formal grammars, deductive calculus, and interpreted
languages.’ The languages of sentential logic, of first-order and equational logic, and of
many-sorted logic and higher-order logic were dealt with in a unified way in the course.
In Henkin’s words, ‘we may attempt to deal comprehensively with all of these classes
through the study of many-sorted grammars.’ In each case, we studied the relationship be-
tween the semantic notion of consequence and the syntactical notion of derivability, with
proofs of the soundness and completeness theorems.

It is surprising that the first-order completeness proof that Henkin explained in class
was not his own, but was developed by using Herbrand’s theorem and the completeness of
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propositional logic. Another completeness proof he also developed in class was his result
based on Craig’s interpolation theorem.25

The issue of implicit and explicit definability was addressed in detail and the
Beth/Padoa theorems relating them, as well as the interpolation theorems of Craig and
Lyndon were proved. The Löwenheim–Skolem and compactness theorems were proved
and commented upon. Naturally, the notions of universal algebra were introduced to re-
late structures: substructures, homomorphisms, direct products and also ultraproducts.
In particular, the ultraproduct construction was used to prove compactness. Henkin did
not forget classic themes such as quantifier elimination and categoricity. The theory of
types and Gödel’s incompleteness theorem were important parts of the course; indeed,
they accounted for 2/5th of the whole. The language of the theory of types introduced by
Henkin was that based on identity, very similar to that in his works ([24] and [26]), which
contained a selector operator that allows the axiom of choice to be expressed. The recur-
sive functions, the arithmetization of formal language, the Gödelization and self-reference
inevitably led to Gödel’s theorems of incompleteness. The last topic was that of general
recursive functions and relations.

Even though the topics of this course were more or less standard, the whole organi-
zation of the material and the presentation of each were highly original. We agree with
Steve Givant statement that:26 ‘Henkin never seemed to teach a “standard” course, but
rather he presented what one can only describe as his own creations.’

7 The Roles of Action and Thought in Mathematics Education

Henkin was often described as a social activist. He labored much of his career to boost the
number of women and underrepresented minorities in the upper echelons of mathematics.
He was also very aware that we are beings immersed in the crucible of history from which
we find it hard to escape. This is in fact reflected in what he wrote in the beginning of his
interesting article about the teaching of mathematics [28]:

Waves of history wash over our nation, stirring up our society and our institutions. Soon we see
changes in the way that all of us do things, including our mathematics and our teaching. These
changes form themselves into rivulets and streams that merge at various angles with those arising
in parts of our society quite different from education, mathematics, or science. Rivers are formed,
contributing powerful currents that will produce future waves of history.
The Great Depression and World War II formed the background of my years of study; the Cold
War and the Civil Rights Movement were the backdrop against which I began my career as a
research mathematicians, and later began to involve myself with mathematics education.27

In that paper, Henkin explains how during the first 15 years of his career the path
of his research trajectory and his mathematics education path ‘had only trivial points of
contact (i.e. in my teaching). [. . .] Then, around 1972/73, there was a change. Something
new entered my educational work: First, I began to incorporate a few basic elements

25In this book we have devoted the chapter Henkin on Completeness to this issue. Therein, we include a
section on the completeness proofs Henkin told us in class.
26Personal communication to María Manzano.
27See [28, p. 3].
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of the methodology I employed in doing mathematics; second, I even found that I could
employ results! [. . .] Best of all, it has allowed me to integrate somehow two streams of my
mathematical experience, deepening the satisfaction I derive from both. [. . .] Now another
wave of history is welling up in the tide of our country’s mathematicians, leading many
of them to consider taking some work in mathematics education beyond the teaching of
courses [. . .].

In this paper he gave both a short outline of the variety of educational programs he
created and/or participated in, and very interesting details of some of them; in particular,
of the following six:

1. 1957–1959, NSF SUMMER INSTITUTES. Henkin relates this initiative to historical
facts: ‘The launching of Sputnik demonstrated superiority in space travel, and our
country responded in a variety of ways to improve capacity for scientific and technical
developments’. These programs were directed at improving high school and college
mathematics instruction and addressed math teachers. As a result of his teaching on
the axiomatic foundations of number systems, he collaborated at a book, Retracing
elementary mathematics [20].

2. 1959–1963, MAA MATH FILMS. At that time internet resources were not available, so
movies were produced. ‘Sensing a potential infusion of technology into mathematics
instruction, MAA set up a committee to make a few experimental films. [. . .] the com-
mittee approached me in 1959–1960 with a request to make a filmed lecture on math-
ematical induction which could be shown at the high-school-senior/college-freshman
level. I readily agreed.’ The film was part of the Mathematics Today series, and was
shown on public television in New York City and in high schools. A 20 page manual to
supplement the film was also published, containing two parts, one appendix, and some
problems. Therein Henkin asks: ‘Of what good is this principle anyhow? you may ask.
[. . .] there are very few direct applications of mathematical induction [. . .] And yet, to
me, the true significance of mathematical induction does not lie in its importance for
practical applications. Rather I see it as a creation of man’s intellect which symbolizes
his ability to transcend the confines of his environment.’

3. 1961–1964 CUPM. The Committee on the Undergraduate Program in Mathematics
proposed courses to be taken by elementary teachers. ‘Some of my colleagues and I
began, for the first time, to have classroom contact with prospective elementary teach-
ers, and that led, in turn, to in-service programs for current teachers. I learned a great
deal from teaching teachers-students; I hope they learned at least half as much as I!’

4. 1964–. ACTIVITIES TO BROADEN OPPORTUNITY. In the sixties, Berkeley students
were taken energic actions against segregation in Southeastern USA as well as against
military actions in Vietnam. ‘In the midst of this turmoil I joined in forming two com-
mittees at Berkeley which enlarged the opportunity of minority ethnic groups for study-
ing mathematics and related subjects. [. . .] We noted that while there was a substantial
black population in Berkeley and the surrounding Bay Area, our own university student
body was almost “lily white” and the plan to undertake action through the Senate was
initiated’. The committee recruited promising student and offered them summer pro-
grams to study math and English. If they persisted in the program, they were offered
special scholarships. Henkin also collaborated with Bill Johntz, a very engaging and
efficient Berkeley High School math teacher, ‘He asked if I could steer university math
students to him who might be interested in working in parallel classes of elementary
students’. Over the years, many graduated students participated, together with faculty
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spouses who had studied mathematics in college, and also some engineers, for several
hours a week. The program was called Project SEED—Special Elementary Education
for the Disadvantaged.

5. 1960–1968. TEACHING TEACHERS, TEACHING KIDS. Therein Henkin described
several Conferences on School Mathematics as well as several projects and courses
he was involved in. The following paragraph caught my eye: ‘After I began visiting el-
ementary school classes in connection with CTFO, I came to believe that the emotional
response of the teachers to mathematics was of more importance to the learning pro-
cess of the students than the teacher’s ability to relate the algorithms of arithmetic to
the axioms of ring theory’. The National Council of Teachers of Mathematics (NCTM)
invited Henkin to participate in the elaboration of several films, and accompanying
text, dealing with Whole-Number Systems as well as Rational-Number Systems.

6. 1968–1970. OPEN SESAME: THE LAWRENCE HALL OF SCIENCE. The Lawrence
Hall of Science, created in honor of and named after the Nobel prize winner, was orig-
inally a science museum in Berkeley. In 1968 Alan Portis transformed the museum
into a live center of science and mathematics education when he was appointed as
new director. He gathered a group of faculty members from a variety of science de-
partments interested in science education. ‘These faculty members proposed a new,
interdisciplinary Ph.D program under the acronym SESAME—Special Excellence in
Science and Mathematics Education. Entering students were required to have a mas-
ters degree in mathematics or in one of the sciences. Courses and seminars in theories
of learning, cognitive science, and experimental design were either identified in vari-
ous departments, or created’. Nitsa Hadar, a student from the Technion in Israel, was
admitted in the SESAME program; she has contributed for this volume Chaps. “Trac-
ing Back “Logic in Wonderland” to My Work with Leon Henkin” and “Pairing Logical
and Pedagogical Foundations for the Theory of Positive Rational Numbers—Henkin’s
Unfinished Work”.

8 The Never Ending Story

Leon Henkin has been one of the most original and brilliant minds in the history of Logic.
One of those that beyond solving problems posed by others, open new ways to keep
looking for the truth. What better way to finish than to talk about some hot historical
issues concerning The Life and Work of Leon Henkin?

8.1 Bertrand Russell’s Request

On April 1, 1963, Henkin received a very interesting letter from Bertrand Russell. In it,
Russell thanks Henkin for ‘your letter of March 26 and for the very interesting paper
which you enclosed.’ He is talking about Henkin’s paper entitled Are Logic and Mathe-
matics Identical?

Right at the beginning Russell declares ‘It is fifty years since I worked seriously at
mathematical logic and almost the only work that I have read since that date is Gödel’s.
I realized, of course, that Gödel’s work is of fundamental importance, but I was puzzled
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by it. It made me glad that I was no longer working at mathematical logic.’ It seems that
Russell understood Gödel’s theorem as implying the inconsistency of Principia: ‘If a given
set of axioms leads to a contradiction, it is clear that at least one of the axioms must be
false. Does this apply to school-boys’ arithmetic, and, if so, can we believe anything that
we are taught in youth? Are we to think that 2+ 2 is not 4, but 4.001?’28 He then goes on
explaining his ‘state of mind’ while Whitehead and him were writing the Principia.

What I was attempting to prove was, not the truth of the propositions demonstrated, but their
deducibility from the axioms. And, apart from proofs, what struck us as important was the defini-
tions.
You note that we were indifferent to attempts to prove that our axioms could not lead to contradic-
tions. In this Gödel showed that we had been mistaken.
[. . .]
Both Whitehead and I were dissapointed that the Principia was almost wholly considered in con-
nection with the question whether mathematics is logic.29

Russell ended the letter with a request: ‘If you can spare the time, I should like to
know, roughly, how, in your opinion, ordinary mathematics—or, indeed, any deductive
system—is affected by Gödel’s work.’30

Unfortunately, Leon’s answer did not freed Russell of his misunderstanding, as
Grattan-Guinness affirms that ‘Russell was still struggling with the theorem at the end
of his life.’31

According to Annellis: ‘Henkin replied to Russell at length with an explanation of
Gödel’s incompleteness results, in a letter of 17 July 1963, specifically explaining that
Gödel showed, not the inconsistency, but the incompleteness, of the [Principia] system.’32

8.2 Henkin’s Boolean Models: Peter Andrews’ Proposed Homework

In 1975 Henkin published a paper with the title Identity as a logical primitive [26]. This
paper is included in a volume of Philosophia. Philosophical Quarterly of Israel, com-
pletely devoted to identity. As Peter Andrews pointed out to us by e-mail: ‘This expos-
itory paper concludes with a brief discussion of Boolean-valued (B-valued) models for
type theory, and ends with a footnote which says, “Proofs for the results on B-models will
be given in a forthcoming paper. [. . .] Boolean models of type theory were described in my
paper ‘Models of Type Theory’ at the Symposium on Theory of Models held in Berkeley in
1963, but the paper was not published. (Cf. The Theory of Models, North-Holland, 1965,
p. vii).”’ In his e-mail Peter asked: ‘Did Henkin ever publish his paper on Boolean-valued
Models of Type Theory? If so, it should be added to the bibliography page. If not, I wonder
if his heirs have a manuscript which would be worth publishing even if it does not contain
everything that Henkin wanted to include in it. If this were the case, perhaps it would be
appropriate to publish it in the volume you are preparing.’

28See [9, p. 592].
29See [9, pp. 592–593].
30See [9, p. 593].
31See [9, p. 593].
32See [2, p. 89, footnote 3]. See also Anellis [3].
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Knowing that The Bancroft Library, UC Berkeley, contains important documents of
Leon Henkin, we contacted them.33 The reply was that the collection record is unarranged
and therefore unavailable for use.
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Lessons from Leon

Diane Resek

Abstract This paper describes some lesson learned from Leon Henkin while the au-
thor wrote a dissertation on Cylindric Algebras and collaborated with Henkin on several
projects in math education. The lessons were about writing, lecturing, relating to admin-
istrators, and making decisions.

Keywords Algebraic logic

Leon Henkin was one of my professors in my first semester of graduate school at Berke-
ley in Fall 1962. I came to Berkeley from a small women’s college and was overwhelmed
by the faculty and other students in the Mathematics Department. During my entire time
in graduate school, I never spoke out in class. If I had a question, I would have the male
(and it always was a male) next to me, ask the question. Leon was the least intimidating
of the professors I met at Berkeley. So, when it came time to ask someone to work with
me on a thesis, he was the first one I approached (and also the last). I worked (and did
not work) on my thesis for nine years. During that time, I was involved in various mathe-
matics education projects. In most of those projects, I also worked with Leon. He was the
principal investigator, and I was the director. I learned a great deal from Leon in a number
of areas in those years. One important lesson I learned from Leon was the role of being a
professor, in particular, how a professor should relate to administrators. Once when I was
admiring his technique, he said “But they are only administrators. WE are professors.
They should be supporting us.” Before that university administrators intimidated me. But
after that exchange, I looked at them as people who should be facilitating my work. In
part to avoid working on my thesis, I submitted grant proposals with Leon in the area
of mathematics education. A perceptive dean wrote to Leon about my lack of progress
toward completing my Ph.D.: “Can you suggest any reason why Ms. Resek should not be
given a termination for lack of progress? I am afraid that you have done nothing to deter
her from yielding to a situation that is likely to generate long-range handicaps for her.”

From one of the letters I saved, Leon’s artful response was:

It is quite true that Diane’s interest in and work at a variety of projects in mathematics education
during the last few years is largely responsible for the delay in completing her doctoral work.
I plead guilty to having encouraged her natural inclinations in this direction. I believe that she
is laying the groundwork for an extremely fruitful career which will combine her mathematical
training with her experience in schools and other educational centers (such as LHS). In these times
when our traditionally trained mathematics Ph.D.’s are finding rough going in the marketplace, it
seems to me that we on the faculty should particularly seek new realms wherein mathematics
training can make a substantial contribution to the basic aims of society.
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Needless to say, Leon’s response bought me a few more years. Leon was an elegant
writer. I loved reading his mathematical writings. One of the most important lessons I
learned from him was in the area of writing. Alas! I never became an elegant writer, but
I did become a clear and concise one—at least I improved in those aspects under Leon’s
harsh tutelage. His method of instruction was for me to first submit drafts. Then, to my
embarrassment, no matter how hard I had tried to do good work, he totally covered my
page with red marks. Most of those marks were rewritings of my work. This instruction
occurred not only with my mathematical writing, but also with proposals and reports for
the math education projects. Besides the rewritings, Leon gave me some specific tips. I
do not remember them all since it was almost 50 years ago, but a few have been indelibly
imprinted on my memory. The one that stands out most clearly was not to use symbols
where they could be avoided in writing mathematics. For example, Leon thought that
instead of writing

∀x∃y(y > x)
one should write something like:

For every x, we can find a y such that y is greater than x.

His reasoning was that no matter how familiar readers were with the symbols, they
needed to use a tiny part of their brain to translate the symbols into words. A writer should
want his or her readers to be able to apply every bit of their brainpower to processing the
ideas being written rather than to the interpretation of symbols.

Another writing principle was “Do not add in superfluous phrases.” One should get to
the point. For example, I remember writing something like “I think ...”, and Leon saying,
you are writing this, your reader knows that you think what you are saying is true. You do
not have to spend time telling them that, just say it! Leon was very exact in his writing,
and he delighted in using mathematical or technical terms in ordinary discourse. I recall
him telling his wife on the phone “I will meet you at 6 pm in the canonical place.” In
a letter to a dean on my behalf, he stated: “Your letter of October 26 deals with several
related questions to which I shall address myself seriatum.” I was a heavy smoker at that
time, which Leon hated. Once coming into my office, I remember him shaking his head
and saying: “Diane, you are going to asphyxiate your students.”

Leon impressed me with the importance of working hard on the exposition of any
writing to try to make it as elegant as possible. It did not work well with my dissertation,
but he kept pushing. I never could find the silver bullet to make my thesis sparkle, but at
each meeting he would have new mathematical tacks for me to try: congruence relations?
ultra products?

Another strength of Leon was as a lecturer. Part of his magic was his elegant expres-
sion of the mathematics, but he also worked hard to engage his audience in conjecturing
and seeing the next step or in being surprised by it. He certainly captured the interest of
his audiences. At one point, he entranced a group of elementary school teachers with a
discussion on whether two people could have the same number of hairs on their head.

Leon was committed to work toward equity in society. He was able to see that profes-
sional mathematicians could make a difference, particularly regarding racial inequities in
the United States. He was one of the first people to say that one thing holding back racial
minorities and poorer people in America was their low participation rates in math/science
careers. He believed that there were ways of teaching and new programs that could correct
this problem.
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I joined other math graduate students at Berkeley, who needed little encouragement
to work with him in these endeavors. At that time, the drive to be a change agent in
American society was strong among young people in the United States and particularly
around Berkeley. Leon gave us a means to use our training to make a real difference. It
was his expertise in working with administrators, and his eloquence as an expositor that
established programs to support our work.

Leon was a leader in establishing special summer programs for minority high school
students to prepare them for work at the university. He was the leader in setting up sup-
port for minority and women students in calculus courses to allow them not only to pass
courses, but also to excel. A major coup of Leon was to persuade the Berkeley mathe-
matics faculty to allow mathematics graduate students financial support for working in
elementary school mathematics classrooms equal to what they received as teaching as-
sistants in university classes. And he was able to establish this program statewide in the
University of California.

In general, Leon’s recognition of values in life beyond pushing for the best and
strongest theorems set him apart from many mathematicians at Berkeley. After finish-
ing my degree, I was deciding which job to accept: a tenure track position with a reduced
course load at a research institution in Chicago or a lectureship with a four course teach-
ing load at a State University in San Francisco. Leon told me that there were many roads
to happiness, not just one right one. But when I decided to stay in San Francisco, I felt
he would be disappointed because I did not choose the research position. However, he
smiled and said that Chicago was no fit place to live.

Of course, I learned much more from Leon than I recounted here, but these are the
easiest for me to articulate.

D. Resek (B)
Department of Mathematics, San Francisco State University, Thornton Hall 937, 1600 Holloway
Ave, San Francisco, CA 94132, USA
e-mail: resek@sfsu.edu
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Tracing Back “Logic in Wonderland”
to My Work with Leon Henkin

Nitsa Movshovitz-Hadar

Abstract The book Logic in Wonderland, I co-authored with Atara Shriki, was published
in early 2013, about 40 years after I started my Ph.D. thesis with Leon Henkin. The time
gap did not diminish his influence. A few anecdotes from my early days with Leon and
two sample tasks from the book recently published illustrate it.

Keywords Leon Henkin · Thesis advisor · Mathematical humor · Logic in Wonderland ·
The teaching and learning of logic

1 How Did I End Up Having Leon for a Thesis Advisor?

In the early 1970s, I decided to go to the US for graduate studies in mathematics education
because there was none available at this time in Israel. I sent letters to about 20 universities
asking for information. Shlomo Libeskind, who was then a visiting scholar at Technion—
Israel Institute of Technology, said to me: “If you are admitted to Berkeley—go there.”
It was quite surprising that the very first reply I received was from Berkeley. Professor
Fred Reif, then the chairman of a fairly new interdisciplinary program called SESAME,
referred me to Prof. Leon Henkin as a potential supervisor. Leon and I carried out an
intensive exchange for several months in which he clarified all the difficulties involved in
becoming a foreign student at SESAME. All his letters were carefully typed; later on I
understood that they were dictated to his faithful secretary. But the last letter, dated June
2nd, 1972, was handwritten and personal. He said: “. . . I should say that I don’t expect
ours to be a normal student–teacher relation. I’ve already confessed to you that I’m quite
an amateur in mathematics education—but you are a professional! I expect to learn at
least as much from you as you from me. Perhaps most accurate: We’ll explore the field
together as fellow students, or co-workers. . . ” This is what a distinguished logician, who
had already contributed a lot to mathematics education, wrote to an Israeli high school
teacher, 20 years younger than him, who wished to pursue Doctoral studies with him.
Needless to say, I was astounded.

2 Leon the Tactful Advisor

In my first meeting with Leon at Berkeley, he took me around to see the campus to make
me feel “at home.” His kindness was striking. I was unable to express my gratitude since
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my English was very poor. He said that we would meet once a week and I was supposed
to come the next week with a list of courses I wanted to take for the first semester. The
following week I came with a list of 12 courses. He looked at my list, and then straight
in my eyes examining the naive student sitting there, and said in a fatherly tone “three
or four courses are the maximum in our quarter system.” He then started to cross off
those courses he thought I should not take. The last one was a lab in English for foreign
students. He said: “You don’t need it. I’ll be your English teacher.” Indeed he was. The
course load was heavy, and in addition I had to cope with the adjustment of my family to
the new circumstances. Towards the end of the first quarter, I was very close to giving up.
I had a nightly dream of going back home to Israel and waked up at Berkeley to attend
classes, submit homework, take care of my children (then of age 3 and 8) and deal with
our family survival on a limited budget (as my husband was an attorney unlicensed to
work In California, who took a leave of absence from his permanent job for my sake). As
I entered Leon’s office, he asked me, as usual, how I was. That was too difficult to answer
casually, and I burst in tears. Leon did not patronize, did not push. He very quietly got up
of his chair, slowly went to the door and left the room, letting me come back to myself.
After five minutes he entered with a cup of tea, and I felt it was the noblest way of dealing
with my embarrassing behavior.

3 Hanukah at 9 Maybeck Twin Drive

Living away of home was a daily struggle. There was no e-mail in those days, of course,
and international phone calls were pretty expensive. I found comfort in writing long de-
tailed letters to my parents twice a week. Weekends were more difficult than weekdays.
Thanksgiving Day and Christmas had no meaning for us. But then came Hanukah, the
first time for us to be away of home on a traditionally celebrated holiday. We felt very
lonely. Leon invited me with my family for dinner in his house. He was careful to give
me directions. Driving up to 9 Maybeck Twin Drive was an unforgettable experience.
The view from the living room was breathtaking, and the table was elegantly set. Leon
poured wine, and we had a lovely Hanukah celebration. The food was delicious, Julian
and Paul were marvelous with my kids, and I felt so deeply grateful for everything. Then
it was Ginette Henkin, Leon’s faithful wife, always thoughtful, who really surprised us by
giving the kids chocolate coins for Hanukah Gelt. We went back to the married students’
residency at Albany village heart warmed.

4 Leon—A Logician in Every Way

Leon and I had weekly meetings to discuss my progress. One day he stopped the dis-
cussion and asked me to write his name in Hebrew on the office blackboard. With full
confidence I stood up and wrote HENKIN in Hebrew. As soon as I put the chalk down,
he said: This can’t be right. I was astonished. Here I am, a native Israeli, with Hebrew as
my mother tongue, and he is telling me I was wrong. How come?—I asked him. “Well”
he said “in my name, there are two identical consonants n, and I cannot see two identi-
cal letters in your Hebrew spelling of my name.” I was amused by the logical argument,
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and he was happy to accept the resolution that in Hebrew there are two different ways of
writing this consonant, the ordinary one and the other one for a suffix.

5 Leon’s Mathematical Humor and Warm Correspondence

Since I got my Ph.D. in 1975, Leon and I corresponded occasionally. I visited the Henkins
almost every summer, and they traveled to Israel as well.

His letters were always cheerful. Here are a few quotes:

22 Aug 1995:
Dear Nitsa, Your message indicates that I should not reply because you’ll seldom get to e-mail
before your return home on Sept 16, but I can’t wait.
The urgency of my desire to communicate with you arises from a combination of personal impulse
and social obligation. . . both of which are operative concerning two communications. I only hesi-
tate because I see no way to select one of these messages to put first. The mathematical solution to
this dilemma is to repeat both messages alternately in a doubly infinite sequence (i.e., one having
neither first nor last elements):

..., x^-(n+1), x^-n, ..., x^0, ..., x^n, x^(n+1), ...

for all positive integers n.
With this understanding, here are the messages {x^even} and {x^odd} that I wish to convey
without further delay.
{x^even} = hearty congratulations on your receipt of the Lester Ford award,
{x^odd} = thank you VERY much for the weighty photographic memory.

Tue, 8 Oct 1996
Subject: Re: Your new papers
So what do you think, Nitsa—shall we form a Partnership for Mutual Admiration?
Love, Leon

From: henkin@math.berkeley.edu (Leon Henkin)
Date: Wed, 16 Oct 1996
To: nitsa@techunix.technion.ac.il
Well OF COURSE I don’t mind your sending (copies of) my two papers to colleagues, Nitsa. . .
Mind? I’m DELIGHTED!
After all, when someone publishes an article (or book), (s)he wants people to read it!
Anyway, THANKS for sharing my papers with others.
And I’m glad I made you laugh the other day just before you went to give that talk about which
you were tense. . . . I’ve been tense for some weeks, and will be tense for a few more, about a talk I
have to give in Montreal on Nov 5. Part of the aging process for me has been an increasing concern
about whether I can produce writing, talks, or teaching, at a level that will satisfy me.
Well, it will take you quite a while to start aging, so don’t start worrying now!
Leon

6 Tracing Back Logic in Wonderland to My Ph.D. Studies Days

Years of experience in teaching a course in introductory Logic and Set Theory yield re-
peated frustration about prospective elementary school teachers’ attitudes towards these
topics. These student teachers regularly regard the course as not useful, dry, uninteresting
(if not awfully boring), and definitely not directly applicable to the school curricula. Over
and again, as school year starts we wonder—How can the teaching of logic and set theory

mailto:henkin@math.berkeley.edu
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Fig. 1 From [1, p. 96]

be made more “juicy”? Is there an intriguing way to expose students to “the game” of
drawing conclusions? to the set-theoretical symbolic language? It occurred to us that it
might be useful to employ Lewis Carroll’s masterpiece for this purpose. After all, he was
a logician and surely could not ignore it while writing his beautiful stories. In a paper pub-
lished in 2006 with my former student and present colleague Atara Shriki, we described
the process of developing such a program and its outlines. Indeed, we found 75 places
along the book which we were able to use as leverage for teaching sentential logic and
some first-order logic too. During the whole process, I found myself listening to Leon’s
voice echoing in my mind while I was working on Childern’s Conditional Reasoning for
my dissertation under his supervision. Here are two sample handouts from the book enti-
tled Logic in Wonderland recently published (in Hebrew; English version is in progress).

6.1 Sample Handout 1

Based upon the quote from Alice in Fig. 1, answer the questions below:

1. List all the expressions in the text that describe a stipulation. Do they have a common
structure?

2. Consider Alice’s decision to drink from the bottle. What was it based upon? Would
you approve of it? Why?

6.2 Sample Handout 2

During her walk in Wonderland, Alice met a cat. Alice asked for the cat’s assistance.
A part of their conversation appears in Fig. 2.

Consider again the conversation between Alice and the Cat. Which of the following
statements summarizes the Cat’s claim:

1. In order to be mad, it is necessary to come to Wonderland;
2. In order to be mad, it is sufficient to come to Wonderland;
3. In order to come to Wonderland, it is necessary to be mad;
4. In order to come to Wonderland, it is sufficient to be mad.
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Fig. 2 From [1, p. 99]

7 In Summary

Leon was one of the most serious logicians of the 20th century. His work is mentioned
in many places, but my favorite one is the way Hofstater describes it in his famous book:
Gödel, Escher, Bach (pp. 541–543, 709). I feel very fortunate to have been his graduate
student since I learned from him much more than logic. It is his humanity that conquered
my heart. I always wish I am not less kind to my graduate students and no less eager to
follow their professional growth after graduation than he was to me.
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Henkin and the Suit

Albert Visser

The events described here took place in 1979.
At this time, I was a Ph.D. student in Utrecht under Dirk van Dalen. I was working on a

thesis concerning Diagonalization & Provability. To put the story into context, the reader
must imagine that I was a person who was not much concerned with clothing. I had long
hair and always wore an old sweater and old trousers.

At a given moment, my promotor Dirk van Dalen called me to him speaking the words
By the way, Albert . . . . These words are not translated from Dutch, Dirk actually spoke
them in English, including the pronunciation of my name. These words usually signaled
that either Dirk was going to utter some point of criticism or had some assignment for
me. In the case at hand, it was both. Dirk told me (in Dutch) that the famous Leon Henkin
was visiting but that he, Dirk, and his wife Dokie would be abroad at the moment Henkin
and his wife would arrive. Would I function as his replacement to be the host as long
as he, Dirk, was away? Of course, I would. It was an honor to do this. I should real-
ize, Dirk continued, that Leon Henkin was an old-fashioned man, a professor of the old
school. He was used to being received by someone properly dressed, more specifically by
someone wearing a suit with a tie. So would I be so good to wear a suit when receiving
Henkin?

Well, I could hardly say no, but there was a difficulty. I did not possess anything even
remotely resembling a suit, and I had no idea how to select a good one. Fortunately, a
solution was easily found: A female friend of impeccable taste volunteered to help me
find a suit. We went to a number of shops, and, following her advice, I bought a truly
splendid grey suit with accompanying tie. Additionally, I had my hair cut by a high quality
hairdresser.

So when the Henkins arrived, I met them in proper attire. Everything went well, and
Henkin’s visit proceeded without a wrinkle.

At the end of the visit, there was a farewell dinner at which I sat opposite Henkin and
his wife. We immediately engaged in companionable conversation. The Henkins were
very easy to talk to, so before I knew it, I told them the prequel concerning the suit. Mrs.
Henkin looked properly amused. She told me: Well, after you received us wearing that
suit, I said to Leon that apparently they are quite formal here. So, the next days you better
wear a suit. And, thus, Leon Henkin appeared each day wearing a suit.

This is all well and good, but what does the story teach us about the Henkins? The
story makes clear that the Henkins were very open and friendly people. They easily gained
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someone’s trust. The fact that I told them the story during the dinner is the best possible
testimony of that.

A. Visser (B)
Philosophy, Faculty of Humanities, Utrecht University, Janskerkhof 13, 3512BL Utrecht,
The Netherlands
e-mail: a.visser@uu.nl
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A Fortuitous Year with Leon Henkin

Solomon Feferman

Abstract This is a personal reminiscence about the work I did under the direction of Leon
Henkin during the last year of my graduate studies, work that proved to be fortuitous in
the absence of Alfred Tarski, my thesis advisor.

Keywords Completeness of predicate calculus · Henkin’s proof of completeness ·
Incompleteness theorems · Formal consistency statements · Arithmetization of
metamathematics · Interpretability of theories

In September 1955, I returned from a two-year stint in the US Army to continue and hope-
fully complete my graduate studies in mathematics at UC Berkeley. When I was drafted
in 1953, I had been working on a thesis with Alfred Tarski under considerable strain and
with only partial results. As it happened, Tarski was on sabbatical in Europe the year I
returned, and he had asked Leon Henkin to act as my supervisor in his absence, to which
Henkin agreed. This would prove to be crucial in helping me bring my doctoral work
to a successful conclusion. Unlike my often late night discussions with Tarski, Henkin
requested that we meet every Thursday afternoon for an hour or so, easy enough to do
and even enjoy; I recall standing at the blackboard with him in his light-filled office in
Dwinelle Hall. He also said that he wanted to hear something new from me each time;
that was more challenging and a powerful constant prod. And finally, Henkin readily ac-
cepted my proposal for a major change in my thesis topic, a change that Tarski might well
have resisted. So all that proved to be fortuitous, but there were also deeper connections
with Henkin’s own work.

I first met Leon Henkin in 1952 when he came to Berkeley to consider an offer for a
tenured position in the Mathematics Department. He was then teaching in Los Angeles
at the University of Southern California (USC), where he was working in comparative
isolation in the field of logic. One reason for the offer was that he had made some of
the earliest applications of model theory to algebra, a direction that had great appeal to
Tarski. In those days, model theory, set theory, and algebraic logic were the main topics
of research in the group of students and faculty surrounding Tarski. Being part of such a
center of activity had great appeal to Henkin, but he refused to come while the infamous
Loyalty Oath was still in force. This special and quite controversial oath was a requirement
that had been laid down in 1950 by the Board of Regents for employees of the University
of California system. It declared that one was not a member of the Communist Party or
any other organization dedicated to the overthrow of the United States government. With
it the university had aimed to forestall the McCarthy-era threats of investigation by such
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entities as the House Un-American Activities Committee. The institution of the Loyalty
Oath had thrown the faculty into an uproar, among other things on the grounds that one
already had to swear to uphold the US Constitution and that it was a clear violation of
academic freedom. A number of distinguished faculty members who refused to sign on
reasons of principle were fired, some left, while others stayed on but objected strenuously.
Despite the great attractions of the Berkeley offer, Henkin sided with those who opposed
the Loyalty Oath, and he decided to bide his time while the matter played out in the courts.

When the oath requirement was overturned in 1953, Henkin accepted the offer and
came to Berkeley. By then I had already left for the army, but the personal contact I had
made with him in 1952 laid the ground for our later work together. In fact, our encounter
during his initial visit had been very friendly, and Leon had encouraged me to get in
touch with him if I happened to be in Los Angeles. On the next occasion when my wife,
Anita, and I were there visiting family and friends, I did just that, and he and his wife,
Ginette, invited us to a casual dinner at their small apartment and made us feel at ease.
With a difference in age of seven years, Leon was much closer to me than Tarski, and our
similar ethnic and cultural backgrounds—both of us descendants of Eastern European
Jewish immigrants—was a common touchstone that was understood without needing to
be discussed. Also, he had grown up in Brooklyn, whereas I had grown up in the Bronx
before my family moved to Los Angeles in the latter part of the 1930s.

Though at the height of the Cold War, my period of service, 1953–1955, in the US
Army fortunately fell between the hot wars of Korea and Vietnam. And thanks to my
mathematical background, I ended up being stationed in a Signal Corps research lab at Ft.
Monmouth, New Jersey, where we mainly spent the time calculating “kill” probabilities
of defensive Nike missile batteries; that did not exclude one from being assigned KP
(“Kitchen Police”) or night guard duty from time to time. I lived off base with my wife in
a tiny house where our first daughter was born; finances were more than tight, and there
was much to do at home to help out. Still I managed to keep my logical studies alive
(when sleep deprivation and breathing space allowed) by reading Kleene’s Introduction
to Metamathematics (see [14]) in order to get a better understanding of recursion theory
and Gödel’s theorems than I had obtained in my Berkeley courses. As it happened, out
of the blue one day when I was well advanced in that work, I received a postcard from
Alonzo Church asking if I would review for The Journal of Symbolic Logic an article
by Hao Wang [22] on the arithmetization of the completeness theorem for the classical
first-order predicate calculus. (I can still visualize what turned out to be the characteristic
card from Church, meticulously handwritten in multicolored ink with wavy, straight, and
double-straight underlines.) I do not know what led Church to me, since we had had no
previous contact, and I was not known for expertise in that area; perhaps my name had
been recommended to him by Dana Scott, who had left Berkeley to study with Church in
Princeton. Quite fortuitously, my work on that review led me directly down the path to my
dissertation. I have described that in some detail in an article “My route to arithmetization”
(see [6]) and so will only give an idea of some of the main points here.

The completeness theorem for the first-order predicate calculus is a simple conse-
quence of the statement that if a sentence ϕ is consistent, then it has a model and in fact
a countable one. Actually, Gödel had shown that this holds for any set of sentences T ,
from which the compactness theorem follows directly. A theorem due to Paul Bernays
in Hilbert and Bernays [13] tells us that any sentence ϕ can be formally modeled in the
natural numbers if one adjoins the statement of the consistency of ϕ to PA, the Peano
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Axioms; in other words, ϕ is interpretable1 in PA+Con(�ϕ�), where �ϕ� is the numeral
corresponding to the Gödel number of ϕ, and Con(�ϕ�) expresses the logical consistency
of ϕ. Wang generalized this to the statement that if T is any recursive set of sentences,
then T is interpretable in PA+ConT , where ConT expresses the logical consistency of T
in arithmetic. Wang’s somewhat sketchy proof more or less followed the lines of Gödel’s
original proof of the completeness theorem. In my review, I noted that his argument could
be simplified considerably by following Henkin’s proof (see [11]) instead, by then much
preferred in expositions.2 But in addition I criticized Wang’s statement on the grounds
that it contained an essential ambiguity. Namely, there is no canonical number theoreti-
cal statement expressing the consistency of an infinite recursive set of sentences T since
there are infinitely many ways τ(x) in which membership in T (or more precisely, the
set of Gödel numbers of sentences in T ) can be defined in arithmetic, and the associated
statements Conτ of consistency of T need not be equivalent. So that led me to ask what
conditions should be placed on the way that the formula τ defines T in PA in order to
obtain a precise version of Wang’s theorem. Moreover, the same question could be raised
about formulations of Gödel’s second incompleteness theorem for arbitrary recursive the-
ories T . By the time I was ready to return to Berkeley, I was determined to strike out on
my own and deal with these issues as the subject of my thesis. There are several reasons
why this would have been a problem if Tarski were not away that year.

My dissertation efforts under Tarski’s direction prior to 1953 had been decidedly
mixed. He had been sufficiently impressed with me in my course and seminar work with
him to make me an assistant in graduate courses on metamathematics and set theory and
then a research assistant on several of his projects. I had demonstrated that I could meet
his exacting standards of rigor and clarity of presentation. When I came to him for a re-
search topic for a thesis, he proposed that I establish his conjecture that the first-order
theory of ordinals under addition is decidable. This would strengthen his earlier result
with Mostowski that the theory of the simply ordered structure of ordinals is decidable.
Moreover, it would be best possible since adjunction of multiplication would lead to an
undecidable theory. I worked long and hard on this problem without arriving at the desired
result, but I was able to show that the decidability of the theory of ordinals under addition
was reducible to that of the weak second-order theory of the ordered structure of ordinals,
using a new notion of generalized powers of structures. This was definite progress, but
not by itself enough for a thesis.3

Meanwhile, Tarski proposed another problem to me, namely to demonstrate the repre-
sentation theorem for locally finite cylindric algebras, in other words, that every nontrivial
such algebra is isomorphically embeddable in the cylindric algebra of essentially finitary
relations on an infinite set. That is an algebraic version of the completeness theorem for

1Throughout, I use “interpretable” here to mean relatively interpretable in the sense of Tarski, Mostowski,
and Robinson; see [20].
2Actually, a further simplification of Henkin’s argument due to Hasenjaeger (see [10]) became the pre-
ferred mode of presentation.
3I was pleased to learn in 1957 that Andrzej Ehrenfeucht obtained the sought-for decidability results; he
applied back-and-forth methods rather than the elimination of quantifier methods that Tarski had expected.
And, as it later turned out, the basic idea of generalized powers that I had introduced to reduce the decision
problem could be combined in a fruitful way with the work of my fellow student Bob Vaught on sentences
preserved under Cartesian products, leading to the paper Feferman and Vaught [7] on generalized products
of theories.
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first-order logic. And that led me to establish the desired representation theorem by trans-
forming Henkin’s proof of the completeness theorem into algebraic terms. I proposed to
Tarski that I combine this with my reductive work on the theory of ordinals to constitute
a thesis in two parts. But Tarski was not satisfied with my proof of the representation
theorem; he wanted something that was more intrinsically algebraic.4 My prospects of
making further substantial improvements on either topic did not look promising, nor did
they any longer hold any appeal to me, so I decided to tackle something new. Tarski might
have resisted my choice to work on the problem of arithmetization of the completeness
and incompleteness theorems rather than on a problem that he had proposed because it
related instead to questions that basically went back to the work of Gödel, his chief rival
for the honorific, “most important logician of the 20th century.”5

On the other hand, Henkin was sympathetic because he had already raised another
problem concerning arithmetization in “A problem concerning provability” (see [12]),
namely whether or not the sentence ψ that expresses of itself that it is provable in PA,
that is, for which PA �ψ←→ ProvPA(�ψ�) is provable in PA. This was by contrast with
Gödel’s sentence γ that expresses of itself that it is not provable in PA in the sense of
PA � γ ←→¬ProvPA(�γ �). In the latter case, all we need to know about the formula
ProvPA(x) used to state this is that it numeralwise defines the set of provable sentences
of arithmetic in PA. However, Kreisel [15] showed that the same condition is not suffi-
cient to give a definite answer to Henkin’s question: under one choice of the numeralwise
representation of provability, the associated sentence ψ is provable in PA, whereas under
another choice, it is not provable in PA.6

In my thesis work with Henkin I decided to move as closely as possible to canonical
arithmetization by taking Provτ (x) to express in a standard way that x is the number of
a sentence that is provable in the first-order predicate calculus from the set of sentences
represented by τ(x). But even so I was able to show that that is not determinative. On the
one hand, by taking Conτ to be the negation of the sentence Provτ (�0 = 1�), I was able
to obtain a precise generalization of Gödel’s second incompleteness theorem to arbitrary
recursively enumerable consistent extensions T of PA.7 Namely, if T is represented in PA
by an RE (i.e., Σ1) formula τ(x), then Conτ is not provable in T . In particular, for the
standard (bi-)numeration π of PA in PA, Conπ is not provable in PA. But, on the other
hand, I was able to construct a bi-numeration π∗ of PA in PA for which Conπ∗ is provable
in PA; π∗(x) expresses that x belongs to the “longest” consistent initial segment of the
axioms of PA.

These results turned out to have novel consequences for the relation of interpretability
between theories. On the one hand, my generalization of Gödel’s second incompleteness
theorem could be further strengthened to show that if T is a recursively enumerable con-
sistent extension of PA and τ(x) is any RE formula numeralwise representing T in PA

4Years later, I learned from Steve Givant that this was the standard route for proving the representation
theorem, but I have not checked the literature to see exactly how it is usually presented.
5Tarski told John Corcoran that he considered himself to be “the greatest living sane logician”; cf. [1,
p. 5]. My frustrations working with Tarski as a student were by no means unique as is testified to in the
many stories in that biography.
6See Halbach and Visser [9]. Löb [18] proved that for the standard formalization of the provability pred-
icate, the Henkin sentence is provable in PA.
7As is well known nowadays, this can be improved to arbitrary recursively enumerable extensions of the
fragment Σ1-IA of PA and even weaker theories.
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then T + Conτ is not interpretable in T . On the other hand, I obtained a precise general
version of the Bernays–Wang arithmetized completeness theorem in the following form:
if τ(x) is any formula that numeralwise represents T in PA, then T is interpretable in
PA+Conτ . Moreover, it turned out by use of the formula π ′(x)= π∗(x)∨x = �¬Conπ�
that one has PA � Conπ ′ , so PA+ (¬Conπ ) is interpretable in PA. This “interpretability
of inconsistency” is thus a foil to the “noninterpretability of consistency.”8 With further
related results obtained during that crucial year (1955–1956), Henkin was satisfied that
I had enough for a thesis, and he enthusiastically recommended that to Tarski, who was
still my principal advisor. But it was only when Tarski obtained a further corroboration
from Andrzej Mostowski that he eventually agreed to accept it for such.

To cap off my fortuitous year with Leon Henkin, he heard from Patrick Suppes of an
opening for an instructorship at Stanford to teach logic and mathematics. The subject of
logic was there based in the Philosophy Department since Mathematics was a bastion of
classical analysis in those days. After a personal visit to meet Suppes, an appointment
with a joint position in Mathematics and Philosophy was made, and I came to Stanford
in 1956; I have been there ever since, except for a number of fellowships and visiting
positions elsewhere over the years.9

1 Coda

The results of my thesis were published in the paper “Arithmetization of metamathemat-
ics in a general setting” (see [3]), which has been cited frequently for that subject in
the subsequent literature.10 I also made use there of a further result due to Steven Orey,
who realized that nonstandard representations like π∗ could be used to arithmetize the
compactness theorem. The following is a special case of Orey’s theorem: If T is a re-
cursively enumerable theory and each finite subset of T is interpretable in PA, then T is
interpretable in PA.11 One extensive direction of work that was fruitfully opened up by
the 1960 paper but that I did not myself pursue any further concerned the general lattice
structure of the interpretability relationship between theories; cf., e.g., Hájek and Pudlák
[8, Chap. III.4], Lindström [16] and [17], and Visser [23]. However, I did go on to use
RE representations in an essential systematic way in Feferman [4] to obtain a precise uni-
form formulation of the transfinite iteration of consistency statements that allowed me to
extend the results of Turing [21]. And that, at the important suggestion of Georg Kreisel,
opened the way for me to go on to characterize predicative provability in analysis via an
autonomous progression of theories; see [5]. The rest, as they say, is history.

8See Visser [24] for a full exploration of the phenomenon of interpretability of inconsistency.
9I spent the first year at Stanford writing up my thesis (see [2]) and received the Ph.D. at UC Berkeley
in 1957.
10Cf., e.g., Hájek and Pudlák [8, p. 2]. Incidentally, see Feferman [6, p. 177] for an explanation of why
the ongoing plans to combine my thesis work with that of my fellow student, Richard Montague, in the
form of a monograph were never completed.
11Orey had heard me talk about my thesis work at the Institute for Symbolic Logic held at Cornell in the
summer of 1957, and that led him to his theorem, which he kindly let me include in my 1960 publication;
cf. also Orey [19].
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I am not in general one for “what ifs,” but here goes. What if my work with Tarski
prior to 1953 on the problems he proposed had been successful? What if I had not been
drafted? What if I had not been asked by Church to review the Wang paper? What if Tarski
had not been away the year I had returned from the Army? What if Henkin had not been
in Berkeley to act in his place? In fact, none of the “what ifs” held, and I am eternally
grateful to Leon Henkin for his being there for me at the right place at the right time.

Acknowledgements I wish to thank Anita Burdman Feferman and Albert Visser for their helpful com-
ments on a draft of this article.
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Leon Henkin and a Life of Service

Benjamin Wells

Abstract For 45 years, Leon Henkin provided dedicated, unstinting service to people
learning mathematics. During most of that time, the author had personal contact with
him. Henkin’s seminars, projects, letters, and advice influenced the author’s career path
on many control points.

Keywords Henkin · Logic · Mathematics education · Service · Personal recollection

1 Seminars in Berkeley and Montreal with Leon Henkin

My first impressions of Leon Henkin were permanent. He had little hair, slightly impeded
speech, and constant good cheer signaled by an instant yet lasting smile—indeed, he
beamed. Even when serious or taking one to task, he conveyed sympathy, warmth, and
genuine interest. Although our relationship was neither social nor personal, there was
great fondness and appreciation on both sides.

In 1962, I began graduate work at the University of California in Berkeley having com-
pleted three courses in topology (and audited two more) and two courses in logic at MIT
as an undergraduate. All of these except the first topology course were listed as gradu-
ate courses. At Berkeley, I enrolled in Metamathematics from John Addison, Topological
Groups from Gerhard Hochschild, General Algebraic Systems from Alfred Tarski, and a
seminar on Algebraic Geometry from Claude Chevalley. I considered topology at the top
of the list, but there were no advisors in the field, so I chose Shiing-Shen Chern’s geometry
listing as the closest thing. He remained unfailingly interested in whatever I was doing for
decades after advising me that first year. I signed up for Tarski’s course because of a partial
knowledge of and fascination with the Banach–Tarski paradox; I wanted to meet him.

I also audited (not for credit) a seminar on Metamathematics and Field Theory jointly
offered by Leon Henkin and Tarski. Although Henkin and Tarski played equal roles in
the conversation of the seminar, Henkin was the structural leader. He made the sched-
ule of talks and kept the course organized. This would be the pattern in future Henkin–
Tarski seminars I attended. I never took a course lectured by Leon, but I read cover to
cover his printed notes for the undergraduate course in mathematical logic and found
them lucid beyond measure. This was also my assessment of his talks in seminars and
conferences.
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Wells was a Ph.D. student in our Department and I first got to know him in 1962, when he enrolled
in a seminar on the metamathematics of field theory which Alfred Tarski and I conducted jointly.
In the next two years I saw him in action in further seminars on universal algebra and on cylindric
algebras, and he also worked in a seminar on equational logic with Tarski in 1965.1

For the 1963–1964 Henkin–Tarski seminar on algebraic logic, Henkin suggested I
try to rewrite the Daigneault–Monk proof of the representability of infinite-dimensional
polyadic algebras “in the style of the seminar.” He outlined the approach, and I painstak-
ingly worked through the conversion. But there was a snag, reported in [19, p. 228]. I
still think Henkin’s impression of the possibility and worthiness of this alternate proof are
correct, but it was not mine to give.

In spring 1966, Henkin and Tarski offered a seminar on metamathematics and algebra.
Both were happy that I was willing to translate and discuss Yuri Yershov’s result on the
decidability of the elementary theory of p-adic fields. That summer in Montreal, at an
institute sponsored by Séminaire de Mathématiques Supérieures, I presented Paul Cohen’s
sketch of a simplified proof of that result to Simon Kochen, coauthor with James Ax of a
published independent and lengthy proof of this and much more.

Tarski and I considered him a very promising student, and were well pleased with the seminar
talks that he gave. As a result, we appointed him to work on an NSF research project in metamath-
ematics and foundations; he served as a Research Assistant and Postgraduate Research Associate
during 1965–1967, and again in 1971. Between 1967 and 1971 Wells visited Poland as a Stanford
Exchange Fellow. This visit came about because Wells met the world-famous logician Andrzej
Mostowski at a Séminaire de Mathématique Supérieure that was held in Montreal for a period
of several weeks in Summer, 1966; I gave a series of talks there, subsequently published as a
monograph [5], and Wells’s dissertation is related to some of those ideas.2

Leon’s lectures introduced predicate logic with a finite number of variables. This novel
development raised many issues that were solved collaboratively in and beyond class.
More than any other seminar that summer, his talks stimulated a continuous interactive
discussion. My dissertation [18] studied equational logic with finite numbers of vari-
ables, based on an issue arising from my translation of a Mal’tsev paper appearing as
[15, Chap. 29]. Equational theories are constructed that are not recursive despite every
fragment with a bounded finite number of variables being recursive. Although unrelated
in substance, I have often mused how this was foreshadowed in tone by Henkin’s topic in
Montreal.

Leon correctly recalls that my wish to visit Poland arose from my meeting Mostowski
(and his student Janusz Onyszkiewicz, later to be the foreign press spokesman for Solidar-
ity) in Montreal. A corrective outcome from our first encounter is related in [22, p. 422].

2 Leon Henkin’s Help with a Visit to Poland

Both Henkin and Mostowski were consulted in Montreal about whether it made sense for
me to visit Warsaw in 1966–1967. Both were encouraging. Next, I wrote Tarski for his
view.

1See [9].
2See [9].
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July 23, 1966

Dear sir,
Montréal has proved to be a delightful experience: mathematically, culturally, gastronomically,

and a bit socially. I have been writing lecture notes for Kochen. He is speaking on the relations
among completeness proofs by model completeness, elimination of quantifiers, and ultraproducts.
Unfortunately he will not get to talk about p-adic fields in class, but we are discussing such prob-
lems on the sly. Also I have written the Mal’cev review and clarified some of my work relating to
it—and some new problems. I have also been reading and thinking about the recursive real num-
bers and trying to write up an explanation of Cohen’s p-adic number decision procedure. There
are fine restaurants and beautiful girls.

I want to go to Warsaw this fall. Before you count me totally mad, read on, please.
(1) The situation in Berkeley. [. . . ] I have committed myself to a parttime RA appointment as

you know. Mr. Henkin says that as far as he is concerned I would not be bound to it if you too
released me. [. . . ] At this point let me state that while I do want to convince you of the wisdom
of this project, I do not intend to undertake it without your blessing and am prepared to consider
alternatives with an open mind. Roughly speaking then, there are no strong reasons of an “admin-
istrative” sort why I could not be away from Berkeley for at least 6–9 months.

(2) The situation in Poland. [. . . ] A seminar will be given throughout the year on model theory
for infinitary logics. Mr. Mostowski assures me that I will be well-received. I am already making
plans to go climbing in the Tatra.

(3) The wider context. [. . . ] If I stay in Berkeley I may or may not finish, and if not it will be
another two years (from now) before I can go anywhere. The last few months in Berkeley were
very bad; there are too many diversions; I tried to shut myself off from the world, but could not.
Even though it may seem paradoxical, I think the change of scene would stimulate my mathematics
rather than my procrastination. In evidence of this I might point to the situation here—while not
great it must be seen in the context of 10–15 lectures per week, weekends often elsewhere, and
mild climate. And yet here I can sit down and work steadily for hours. In Berkeley it happens, but
it’s difficult to control. [. . . ]

(4) The arrangements. I have discussed this matter with Mostowski and Henkin. [. . . ] I have
asked Dana Scott to get Stanford to send me information on the exchange program. [. . . ] As far
as finances go, I have talked to Mostowski’s student Janusz Onyszkiewicz, and he thinks one can
live well on about $50/month. [. . . ] University rules permitting, Henkin thinks I could hold my
RA in Warsaw, if, of course, you both approve. [. . . ] The prospect of spending a fruitful season in
Warsaw is an exciting one. But a year in Berkeley is not without hope and promise. [. . . ]

Here is Tarski’s response in a letter imperfectly recalled in [3, p. 325] and not redis-
covered until after that book was published. Part of it appeared in [21].

July 29, 1966
Mr. Benjamin F. Wells III, c/o Seminaire de Mathematiques Superieures, Universite de Montreal,
Montreal 3, Quebec CANADA

Dear Pete,
I must say frankly that your letters have caught me somewhat by surprise. My reaction to their

contents is rather mixed.
First let me say that there is certainly no “administrative” obstacle to your desire to go to

Warsaw for the next year. I am ready to release you from your commitment. The only thing I wish
is that you inform me of your final decision as soon as feasible so that we can appoint somebody
else in your place. As regards the possibility of your retaining the research assistantship and the
connected salary for the period of your studies in Poland the matter seems to me rather dubious.
[. . . ] Also the idea could not be realized without an explicit agreement on the part of the National
Science Foundation. I shall discuss this matter with Professor Henkin on his return to Berkeley.

You will certainly have inspiring scientific contacts in Warsaw. Let me say however that you
really could have had more such contacts in the Bay Area than you actually had if you tried hard
enough.

This brings us to the heart of the whole problem. Both you and I realize and have realized for
a long time that your greatest weakness is the lack of ability to “shut yourself off from the world”,
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to resist diversions and distractions coming from outside. This single factor probably accounts
for the insignificant progress which you have made so far in your work on the thesis. I wonder
whether you will find in Warsaw a more favorable atmosphere from this point of view. I have
learned from your letter with interest that there are fine restaurants and beautiful girls in Montreal.
This information may be quite important for me if I ever get an invitation to teach there. I can
assure you however that Warsaw is not a monastery and at any rate not a nunnery. There are fine
restaurants there [. . . ] and as regards the amount of beautiful girls Warsaw claims to be second to
none among the cities of the world. If after your return from Warsaw you do not lend wholehearted
support to this claim you will hurt my deepest feelings.

To speak now seriously, if I am to evaluate the problem from a purely rational point of view I
do not see much point in your going to Warsaw, at any rate not at this stage of the game. I might
feel differently about this matter if you had now just finished the work on your thesis or at least
were very close to its completion. I know however that reactions of human beings are usually not
rational and that their actions are not motivated by rational factors. People in that part of the world
are claimed to have various secret weapons. Maybe they will make some of them available to you
and you will learn how to beat down the intrusion of the outside world.

As you see this letter is something less than blessing but I am equally far from wishing to keep
you by force in Berkeley. If the decision were entirely up to me I would probably suppress all my
misgivings and have you go to Warsaw, treating the whole venture as a calculated risk. [. . . ]

Sincerely, Alfred Tarski

In fact, I did not visit Poland until 1967–1968, and then indeed as a Stanford Exchange
Student. In the meantime, I learned some Polish and worked as a Research Assistant in
the Group in Logic and the Methodology of Science (L&M) for the Tarski–Henkin NSF
project as planned. Because my NSF Graduate Fellowship was not renewed, I also taught
several UC Berkeley undergraduate math sections, including a Fortran class that would
ultimately lead me to Meher Baba and India on my return from Europe.

In Warsaw, Leon’s student Diane Resek and I shared an office in the Palace of Culture
and Science, Stalin’s wedding-cake building given to the Polish people. It dominated the
Warsaw skyline. According to Dana Scott [17], S.C. Kleene was very pleased to tell this
story about the Palace. When Adlai Stevenson visited Warsaw, he was shown the Palace
and asked how he liked it. He replied: “Small, but in perfect style.” Diane and I had many
conversations about mathematics and life with our thesis advisors. Our paths crossed often
after that.

3 Some Conferences; the Political Situation in Poland

In 1963, Addison, Henkin, and Tarski organized the very important International Sympo-
sium on the Theory of Models at Berkeley. The focus on model-theoretic applications in
algebra and set theory was innovative and trend-setting. The three organizers edited the
proceedings [2].

In 1968, the third International Congress for Logic, Methodology, and Philosophy of
Science was held in Amsterdam shortly after I arrived in Poland. Mostowski and several
of his students, including me, came from Warsaw. The proceedings do not list Henkin as
an organizer or speaker, but I have a sense that he was there. He is not mentioned as a
participant, and neither am I.

During my stay in Poland, there was much political unrest. There was an anti-Soviet at-
mosphere, but also government-stimulated antisemitism. In fall 1967, protesting students
were arrested after the banning and closing of an anti-Soviet production of Mickiewicz’s
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anti-Russian play “Dziady”; I was among them. Student demonstrations led to beatings
by police and mass arrests at the University of Warsaw starting on 8 March 1968. Protests
and strikes followed, accompanied by governmental claims that Zionists were the fo-
menters. Official promotion of antisemitism increased. There were consequent coerced
departures—call them exiles—from Poland of many Jews during the spring and summer.

For summer 1968, Mostowski organized a Conference on the Construction of Models
for Axiomatic Systems in Warsaw. In spring 1968, Leon wrote Abraham Robinson, then
president of the Association for Symbolic Logic (ASL), expressing dismay at the Polish
government’s behavior and requesting ASL to consider withdrawing sponsorship of the
meeting—according to Robinson’s reply [16] to Leon.

ASSOCIATION FOR SYMBOLIC LOGIC

ABRAHAM ROBINSON
President

DEPARTMENT OF MATHEMATICS
YALE UNIVERSITY

NEW HAVEN, CONNECTICUT 06520

May 14, 1968
Professor Leon Henkin, Department of Mathematics University of California Berkeley, California
94720

Dear Leon:
Thank you very much for your letter of May 7.
I wrote to Mostowski about a month ago telling him that I had decided not to attend the Warsaw

meeting. I offered to give my reasons for doing so but have not heard from him since. Of course it
did not escape me that if several people in this country came to the same decision, the phenomenon
might be noticed in Poland. At the same time I did not want to harm our friends there.

However, the question of taking official action in this matter on behalf of the Association for
Symbolic Logic is of an entirely different nature. To withdraw our sponsorship at this date would
as far as I know be without precedent and might in the long run work against the return of sanity
to Poland rather than for it. Although I agree that the behavior of the Polish authorities is quite
obnoxious, many other governments make mistakes now and then, and I think that official bodies
like the ASL have to react more prudently than individuals in such cases.

The situation will be changed if it appears that the Polish authorities actually refuse to admit
prospective participants in the meeting for reasons of race, creed, etc. If such cases come to my
knowledge I should consider it my duty to take action.

Yours sincerely,
Abraham Robinson
c.c. Prof. Martin Davis Prof. Dana Scott Prof. Alfred Tarski

I was planning to revisit Warsaw for this meeting. As I hitchhiked with a friend to
the Austrian–Czechoslovakian border on my way to Prague to pick up a visa and then
Warsaw, we learned that the Soviet Union had invaded Czechoslovakia the night before.
Austrian border guards let us pass, and we met confused, worried, scared Czech guards in
the buffer zone. They turned us back. Our attempt to cross was shown on national Austrian
television that night. By the time I could return to Warsaw, the conference had ended, and
there were no direct observations of any effects from the political situation or this letter.
After a final interview with Mostowski, I left Poland for 33 years.

I have learned [17] that there were other cancelations besides Robinson’s (and pre-
sumably Henkin’s). Mostowski’s feelings were very hurt by people’s reactions. He said
“Why me?” to Dana Scott after he canceled, meaning that people were somehow blaming
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Mostowski or making him partly guilty. According to Dana, he meant that his whole his-
tory before, during, and after the war had nothing to do with anti-Jewish actions in Poland.
And he also suffered under communism very much. So Robinson’s sensitivity did not out-
weigh the insensitivity and the pain that Mostowski felt and some who canceled continue
to feel. I choose to read courage on both sides.

The next (and last) time I would see Mostowski would be at the 1971 Tarski Sympo-
sium that celebrated Alfred’s 70th birthday. Henkin participated, offering a talk and paper
on cylindric algebras jointly with Don Monk. He is also listed as the principal editor of
the published proceedings [11]. He and John Addison hired me as translator of Yershov’s
contribution and technical copy editor for several other chapters. But his major work was
behind the scenes in the organization of this complex conference with visitors from seven
countries and many states.

4 The Mal’tsev Book

One of the aftermaths of Wells’s sojourn in Europe was his translation of A.I. Malcev’s papers on
the metamathematics of algebraic systems, from Russian. Published in the prestigious Studies in
Logic series, the volume represents an important contribution by Wells to research on the border
between algebra and logic.3

The story of how Mostowski guided me to translate and compile this book is recounted
in [22, p. 426]. The first three chapters of the Mal’tsev book [15] are of particular in-
terest here because of controversy raised by the joint Henkin–Mostowski review [13]
of the original papers in Russian for the second and third chapters and their historical
note on the German paper [14] I translated as the first chapter. The controversy involves
whether Henkin (and Mostowski) treated the Mal’tsev papers fairly and even whether
Henkin should have given more, and more appropriate, credit to Mal’tsev for a compact-
ness theorem anticipating in some sense his own completeness result in his dissertation.
Here are some recent comments [23] I wrote to Sol Feferman on this matter.

Dear Sol,
It seems there are three issues: (1) Did Henkin fail to give credit (or at least acknowledgment)

to Mal’tsev? (2) Did Henkin have an on-the-face conflict of interest in the joint Henkin–Mostowski
JSL review? (3) Did that bias the review? My Mal’tsev translation of the 1936 German “Unter-
suchungen” paper ([14] and Chapter 1 of the Mal’tsev book) reveals nothing relevant and merely
states there are issues with Skolemization, deferring to the 1959 Henkin–Mostowski review, which
is NOT a review of the 1936 paper but two later ones—translated as my Chapters 2, 3. But it in-
cludes a historical note dealing with the early paper. (There is also a 1937 JSL review by Rosser
of the 1936 paper.) I’m not sure Henkin should be commenting (and that, strongly) on 1936, but
he was not reviewing it, very strictly speaking. On the other hand, I am disturbed that he sends the
readers to his own proof (or A. Robinson’s) for a “satisfactory proof.” Maybe one could say that
was Mostowski’s voice.

In an email exchange with you before the publication of ATL&L [3], you sent me an early
version of this passage on p. 306:

A student of Kolmogorov’s in Moscow during the 1930s, Mal’cev had done pioneering
work on the applications of logic to algebra. His 1941 paper (in Russian) made use of a
compactness theorem for first-order languages allowing uncountably many symbols, which

3See [9].
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anticipated much that was done after the war by Leon Henkin and Abraham Robinson. This
work was largely unknown in the West until the 1950s; and only in 1971 would Mal’cev’s
papers become widely available with the publication of a volume of English translations by
Tarski’s student, Benjamin (“Pete”) Wells.

In response, I wrote:

I have reread my note (2) on page 14 of my book [15] and I have reread my notes and
corrections written on the reviews of the 1936 German paper [15, Chap. 1] by Rosser and
of the 1941 and 1956 papers [15, Chaps. 2, 3] by Henkin and Mostowski. First, Rosser is
plain wrong: he misunderstood “equivalent.” I think it is clear that Henkin and Mostowski
are giving a generous (and not unjustified) interpretation when they reflect on the nearness
of proof in 1936 but I think they are being picky when they say it is not formulated there. It
takes no great leap to put results of Section 4 and Theorem 1 together, as I point out in the
note (2). They don’t flat out deny that Mal’cev proved compactness with arbitrary symbol
sets in 1936, but they refer the reader to a “satisfactory” proof in Henkin or Robinson. My
own introduction by Tarski to reviewing for JSL (and further experience) tells me there is a
little turfing going on here. Who cares?

My impression is that Tarski thought a compactness result was there in Mal’cev. My
note (2) refers to “some difficulty” and specifically two types of difficulty. I gather from my
notes on the Henkin–Mostowski review that that was my understanding of why the stronger
unstated/unproved form of the SNF was required.

[. . . ] —— cites the footnote in Henkin’s 1950 JSL article [4, p. 90] on “Completeness in the
Theory of Types”:

A similar result for formulations of arithmetic within the first order functional calculus was
established by A. Malcev [14]. Malcev’s method of proof bears a certain resemblance to
the method used above. I am indebted to Professor Church for bringing this paper to my
attention. (Added February 14, 1950.)

as if that means he knew about the 1936 paper in advance of his thesis. Of course he knew about
it in advance of his 1996 historical article [10] on completeness. [. . . ] Apparently it does not
mention Mal’tsev, and that seems to be where the most definite finger can be pointed—given his
1950 footnote and his 1959 review, Leon should have said SOMETHING about the Mal’tsev result
in a 30-page paper.

It is worth noting that the Rosser review antedates everything but its subject, Mal’tsev’s paper.
Although German would be more generally readable, the paper appeared in a Russian journal. But
here is a very early reference in JSL. It may be that this review (or more probably arranging it)
alerted Church, who was of course reviews editor from 1936 to 1979. [. . . ]

Henkin was a friend, an incredibly valuable and valued advisor on several matters, and a politi-
cian. I am surprised to learn that his behavior is questioned so boldly [. . . ], but I cannot defend
him specifically on this matter. I do not recall if we ever discussed the Mal’tsev 1936 paper and
the reviews, but I am sure Alfred and I did and maybe I spoke to Leon. I am sure I was alerted to
the joint review by someone other than my own digging, although I did dig up all reviews (and all
other translations) of papers in the book. Unfortunately, that sheds no light on these issues.

My initial answers to the questions above are: (1) Yes, but did he owe credit? In the dissertation
probably not, but in the history paper, he should have offered recognition of Mal’tsev’s work if only
to say he felt it was too flawed to count. Even if he felt that had been clearly put in the joint review,
it should have been revisited. (2) Yes. (3) Maybe, but it may still all be true and all in accord with
Mostowski’s views.

This may contribute to resolving the controversy, but it is not a solution. With the
passing of the players, that may prove unsolvable.
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5 Mathematics Education and Leon Henkin

Leon spent over 45 years supporting and improving mathematics education through a va-
riety of initiatives, organizations, courses, and projects. My own involvement with Project
SEED and Project APT (Alternatives through Peer Teaching) stemmed from a letter Leon
wrote graduate students in February 1971.

DEPARTMENT OF MATHEMATICS University of California, Berkeley

TO: Selected graduate students
FROM: Leon Henkin
RE: Part-time positions teaching mathematics in the schools

I am writing to call to your attention the existence of four programs which from time to time have
available part-time positions for which graduate students in the mathematical sciences are eligible.
All of these positions involve teaching mathematics to pre-college students.

Most graduate students recall their early mathematics training as dull, and perhaps even painful.
I think it is fair to say that this widespread feeling, together with the slow pace of mathematics
learning in the early grades, is at least in large part due to the fact that teachers in the early grades
know very little mathematics, and often dislike—sometimes even fear—grappling with this part
of their teaching duties. On the other hand, there is every reason to believe that during those early
years school children have an enormous capacity to learn, and can easily be interested in mathe-
matical ideas when presented enthusiastically by competent people. In an attempt to apply these
observations, the following programs have been developed to provide supplemental mathemat-
ics education for pre-college students at various grade levels by specialized mathematics teachers,
over and above the normal mathematics courses for those grade levels taught by the regular teacher.

(1) Project SEED. This program operates in various school districts throughout California (and
in a few other states). Instructors must have the equivalent of an A.B. degree with a major in
mathematics or a closely related field. Instructors currently earn about $2,000 for teaching one
class 40 minutes per day 5 days a week through the school year. Often two classes are available.
Most job opportunities start in September, with applicants chosen in the spring or summer; a few
jobs open up during the year. Instructors are employees of individual school districts, but beginning
March 1, 1971, will be recommended through a University office.

This program was developed by William Johntz . . . Instruction is by the so-called “discovery
method”, wherein no text or syllabus is prescribed, but education proceeds by oral questions and
answers. After visiting such a class several times, a potential instructor is invited to try his hand at
it. It is normally limited to grades 2–6 (ages 7–12). [. . . ]

(3) The Peer Teaching Program. [Alternatives through Peer Teaching, or Project APT] This
has developed on a very small scale as an offshoot of Project SEED; the NSF has just funded a
project to begin next fall on the Berkeley campus, through the Special Scholarship Committee of
the Academic Senate. Louis Schell [. . . ] will be the Director.

In this program school students normally in the junior high school grades (7–9) are given
small-group and individual help to bring them to the point where they can teach mathematics by
the discovery method to a group of students either at their own grade level or perhaps one or two
years younger. Instructors for this program require qualifications similar to that of Project SEED;
they can earn up to $ 5,000 during the next academic year, although a heavier commitment of time
is called for. Each instructor will work with 8 “peer teachers” of junior high school age, who will
be divided into two groups of 4. The instructor will meet each group for one period each day, and
will have to put in a certain amount of additional time with individual peer teachers. Instructors
who have not had experience in using the group discovery method of instruction (as in Project
SEED) will be required to gain a limited amount of such experience this spring, before they can
be employed in this project.4

4See [6].
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I immediately requested interview appointments for both of these positions. Louis
Schell conducted the two interviews as one. I began training that spring and was hired
for both projects, based on observations of my teaching and reports I wrote. It is likely
that Henkin played a role in the hiring, especially with Project SEED. It is worth noting
that the Special Opportunity Scholarships office, which was the first home of APT at UC
Berkeley, administered a program that served as a model for the federal Upward Bound
Program launched a year or so after Henkin founded the former [1].

I taught with Project SEED for a year and with Project APT for nine years.

At this point in his career, Wells suddenly turned his interest from mathematical research to math-
ematics education. He was employed on a university project, directed by Louis Schell, which
involved him in training ninth-grade “peer teachers” to conduct a complete mathematics class
of seventh-grade students twice a week. This project was funded by the NSF [National Science
Foundation] during 1971–1973, and then there was a follow-up evaluation year funded by NIE
[National Institute of Education]; I was the Principal Investigator for both projects and know that
Wells did fine work, and gained invaluable experience, through his involvement. I was then teach-
ing a course in our Department for prospective elementary-school teachers, and I several times
asked Wells to bring a peer-teacher and a group of seventh-graders to the University, so that my
students—the future teachers—could gain some appreciation for the potential of this unusual mode
of instruction.5

In particular, Leon was PI for the NIE study [12] on the effectiveness of our peer-
teaching program. This showed that under numerous measures, there was no significant
loss of performance when 8th and 9th grade peer teachers took over entire scheduled 7th
or 8th grade math classes for two of five periods per week. In many of the experiments,
there was significant gain. This is why Leon was enthusiastic about showing the method to
the future teachers in his classes. He was also a frequent visitor to our peer-teacher-taught
classes in the junior high schools.

In an effort to communicate across the entire peer-teaching project, we invited all peer
teachers and trainers to a day at UC Berkeley, with a talk by Leon on logic and a swim
at Strawberry Canyon. It is interesting that the peer teachers found Leon to be a clear and
eloquent explainer but could not grasp why he did not ask more questions, the basis of
their own teaching style. I would frequently recall this later in my own college classes
when I talked more than I asked. Leon stayed in touch with the program after the first two
years of federal support as the school district picked up the funding.

6 Leon’s Help with University Administrations

Leon Henkin eagerly provided graduate students his advice and help with administrative
issues. When it came to getting anything done, it was always Leon who wrote the letters.
For a number of years, he documented that graduate assistants did not need to pay income
taxes because he affirmed that their services were those expected of all degree candidates
(US income tax guidelines specifically exclude this reasoning now). He held the post
of NSF project co-PI and administrator, first chair of L&M, chair of the Department of
Mathematics, and president of Association for Symbolic Logic (ASL) at various times.

5See [9].
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Not only was he a great help with university administrations, he was himself a great
administrator.

Leon was the chair or cochair for fifteen students awarded Ph.D.s. Of these, he was
sole dissertation committee chair for only two Ph.D. students in mathematics and one in
mathematics education, three women named Carol Karp, Diane Resek, and Nitsa Hadar.

From about 1976, without slackening his work with school mathematics, Wells began to resume
work on his doctoral dissertation with Professor Tarski. This is an enormously difficult thing to
do—I’ve seen many dozens of advanced mathematical students drop out of a Ph.D. program with
the intent of completing their research while doing other kinds of work, but I know only one other,
besides Wells, who succeeded.6

Leon and Alfred served as joint chairs for Haragauri Narayan Gupta’s dissertation
committee. He is not the other successful returnee, because he finished quickly and con-
tinuously, but he may be one of the strongest examples of Tarski’s tendency to overwork
students. Wanda Szmielew’s student Zenon Piesyk was also researching geometry based
on Tarski’s axioms. Tarski and Szmielew drove their two students crazy by repeatedly
telling them that one had surpassed the other’s results. The consequence was that Gupta’s
thesis approached a ream in length, well over 400 pages.

In the fall of 1981 his [Wells’s] research was largely completed, and I attended a presentation of
his work that he made at our Logic Colloquium. I was very well impressed, both with the quality
of his mathematical ideas and findings, and with his very clear and able presentation.7

The colloquium date was actually 8 May 1981. After the talk, Henkin thanked me, and
Bob Solovay told me that it was very good work. I said I wished Tarski saw it that way,
but he wanted much more. Bob said, “I would give you a Ph.D. for your first theorem.” I
was astounded, grateful, encouraged, and somewhat tempted to jump ship to the Solovay
fleet.

By fall 1981, the thesis was coming along but had a way to go yet. In addition, there
were several bureaucratic obstacles, primarily the lapsing of my candidacy for the doc-
toral degree. When the Department tried to have me reinstated, Dean Geoghegan refused,
saying I needed to take the oral qualifying exams plus two language tests again. Alfred’s
attitude was: “I don’t see why it is a difficulty to recertify the qualifying exams. I see no
need for you to be present.” At about the same time, I mentioned my relief that Berkeley
did not require oral thesis defenses. Tarski said, “I always liked oral defenses. I will be
happy to arrange one for you . . . if you like.”

In spring 1982, Dean Geoghagen went on leave, and Leon joined the fray by engaging
his replacement, Dean Simmons.

May 17, 1982
Benjamin Wells September 1, 2014 9:08 PM
TO: Dean William Simmons, Graduate Division

At your suggestion, I am following up our phone conversation concerning the reinstatement of Mr.
Wells into candidacy for the Ph.D. degree. He was last a registered student in 1967. About one
year ago, Professors McKenzie and Lam of this Department wrote to Dean Geoghegan to request
reinstatement of Mr. Wells. I enclose a copy of their letter. Subsequently, Dean Geoghegan replied

6See [9].
7See [9].
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to Mr. Lam, declining to reinstate Mr. Wells. He stated that it would be necessary for Wells to take
new qualifying exams, have his languages recertified, and file a new advancement to candidacy.

In our conversation, I inquired as to the reason for requiring the (former) student, and a group of
faculty examiners, to undertake the time and effort necessary to follow through the steps outlined
by Dean Geoghegan. You replied that the purpose was to ensure that the candidate is still as
knowledgeable and capable mathematically as he was at the time of his original examination. I
then pointed out that the letter from McKenzie and Lam gave strong evidence, in the form of a list
of the continuing mathematical activities and publications by Mr. Wells, to show that his earlier
level of attainment had not fallen into neglect. However, Dean Geoghegan’s letter continued with
the sentence, “No matter what Mr. Wells has been doing in the interim, sixteen years is just too
much.” As I pointed out, this statement is not consistent with the explanation you gave for requiring
a former student to retake examinations.

Mr. Wells’ dissertation adviser is Professor Emeritus Alfred Tarski, whose exacting standards
are well-known in our Department. Professor Tarski has informed me that during the year Wells
continued to make further improvements on his dissertation, and Tarski now considers that it is
completely in order and deserving of the degree. For this reason, we are anxious to proceed to
have the degree issued as expeditiously as possible.8

On 28 May, Simmons reinstated my candidacy, thanks wholly to Leon’s intervention.
The candidacy was valid until the fall thesis-filing deadline of 12 November 1982. Ge-
oghegan returned to duty in fall 1982, so it became clear that this deadline was indeed
drop dead. Simmons required me to register for fall classes, and although Tarski reluc-
tantly supported a filing-fee waiver of registration on 30 September, Louise Kerr in the
Graduate Division office pointed out that Geoghegan would have to approve it, so if I was
smart I would register. That bought me 12 units of credit, which I asked Manuel Blum
of Computer Science to grant me for time served on Turing machines. Manuel had been
a fellow student in a topology course at MIT. He agreed; he was about to become much
more involved.

The Logic and Methodology of Science Group as well as those associated with logic
in the Department of Philosophy and the Department of Mathematics participated en-
thusiastically in the annual Logic Picnic held at a Berkeley or regional park, frequently
Codornices Park across Euclid Avenue from Berkeley’s Rose Garden. Leon was usually a
gregarious host at this communal affair. It was at the picnic in fall 1982 that I learned Bill
Craig was on sabbatical in England, possibly from Leon. That was a big surprise because
Craig was the “outside” member of my dissertation committee, and he was due to get a
near-final draft in a few days. I knew how to reconstitute the committee because I had
just arranged for Ralph McKenzie to replace Gerhard Hochschild, who had no memory
of even being on it after 18 years. I wrote Tarski on 3 October, developed a short list of
candidates, reviewed it with him, and happily agreed with his proposal of Manuel Blum,
who joined the reformed committee!

Leon was involved in many of these adjustments. His greatest gift came with the filing
of the dissertation and is discussed in the next section.

During my three sabbatical leaves from the University of San Francisco, I was a Vis-
iting Scholar in Mathematics at UC Berkeley (1989–1991, 1997–1998, 2004–2006). In
each case, Leon served as the official sponsor or as a supporter of the appointment. The
first sabbatical spanned an ASL meeting at UC Berkeley. As usual, Leon helped with
the organization of the conference. He also attended my talk there, “Infinity on Purpose.”

8See [7].
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He thought it was humorous, a need at such meetings. I thought both judgments were
positive.

Around that time he served on the dissertation committee for Art Quaife, chaired by
John Addison. Quaife had arrived at UC Berkeley the year after John and I did. He quickly
acquired a pet lion and then wrote a theorem prover for Stephen Cook. He soon dropped
out in favor of joining the cryonics growth industry. Many years later, he consulted Addi-
son on the state of automated theorem proving, suggesting he could start a prover on the
Goldbach Hypothesis, be on ice for several centuries, and have the proof after a reconsti-
tution. Addison guided him discreetly and indirectly toward doctoral-level results. John
made a point of telling me at the ASL conference’s social event, “Your record of taking
nearly 20 years to finish your doctorate is broken. Art Quaife has completed a thesis to
my satisfaction. I’m telling you before I tell him, because he has taken 26 years!”

I was Alfred Tarski’s last student, in the sense that my dissertation was the last he
signed. He did not write me a reference letter largely because of scientific projects he
devoted his waning energy to completing before his death.

Professor Tarski, his dissertation supervisor, was known as a teacher who holds his students to
the very highest standards. Despite his expressed satisfaction with Wells’s work [in spring 1982],
he asked Wells to polish some of the writing, and try to resolve one or two related questions for
inclusion in the final dissertation. When this was completed to specifications, the degree was finally
awarded in December 1982. Meanwhile, Professor Tarski’s health began to weaken seriously and
he passed away in October 1983. Throughout the previous year he had great difficulty in speaking
with people, or in writing. For this reason, he was unable to write on behalf of Wells, as I know he
would otherwise have done.9

Leon wrote me many letters, and this one, substituting for the traditional Professor’s
Letter, was the kindest.

7 The Henkin Plan and the Dissertation

Henkin’s most critical, most helpful contribution to my scientific life was what came to
be called the Henkin Plan for completing my degree requirements by filing a dissertation.

11 November 1982
To: Dean, Graduate Division
Fr: Leon Henkin
Re: Benjamin F. Wells, III.

Mr. Wells is a candidate for the Ph.D. degree in this Department. His work, and he as an individual,
are well known to me.

His dissertation supervisor is Professor Emeritus Alfred Tarski. The latter told me, as long ago
as last summer, that he was satisfied with Wells’s dissertation and its writing, although he had
asked the candidate to make small changes in the Introduction and in the Abstract. This Wells did,
approximately two months ago. However, Professor Tarski has not been able to look at the work he
requested of Wells, or to sign the title page of the dissertation. The reason is that Professor Tarski
is desperately ill.

I use the word “desperately” advisedly. In mid-September, just before leaving for Europe, I
visited Tarski and found him very frail. At that time his wife told me that he found it impossible

9See [9].
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to sleep, except for dozing in a chair for 20 minutes at a time, several times in each 24 hours.
Since my return from Europe 10 days ago I have learned that Tarski was hospitalized for 2 days
in October and 4 days last week, because in addition to being unable to sleep, he has the greatest
difficulty in eating. I have tried to talk to him on the phone each day since my return, but each time
his wife returns to tell me that he feels too weak to speak on the phone.

Under these circumstances, I recommend that Mr. Wells’s Ph.D. Committee be re-constituted,
so as to replace Prof. Tarski. Indubitably the person most appropriate to serve as Chairman would
be Professor Ralph McKenzie, already a member of the Committee. Other members of the De-
partment who are familiar with Wells’s work and could serve on the Committee include Professor
Julia Robinson, and myself. Tomorrow is the last day before Wells’s candidacy lapses, and I feel
that in the light of all the circumstances of his case, it would be grossly unfair to delay his degree
because of Professor Tarski’s illness.10

Only changes in the abstract and introduction needed to be verified, but Tarski had
delayed this for weeks. Leon had recently returned from Yugoslavia. He was outraged to
hear how Tarski was dragging this out toward the deadline of my candidacy lapse, Friday,
12 November 1982. On Wednesday, 10 November, he proposed what I called the Henkin
Plan: (1) he would personally urge Alfred to sign the dissertation immediately; (2) if
Tarski were too ill to consider that, then Henkin would sign Tarski’s name, initialed LH,
as long Tarski approved this; if both of these failed, then (3) Tarski would be removed as
a member of the committee, Ralph McKenzie would succeed as chair, and Julia Robinson
would join the committee, with Manuel Blum of Computer Science as outside member in
all cases. While changing the committee members required only an advisor’s signature,
changing the chair was more complex—hence the letter above. Adding Henkin to the
committee was not considered because Julia had already read a recent draft, and Leon’s
familiarity with the results dated from the Logic Colloquium talk in May 1981.

Before Julia would sign (3), she told me that I had to guarantee her that someone on
the new committee had read every page—she knew it had grown longer, and she said her
scientific reputation was at stake. I went straight to Ralph and told him that I had added
about 30 pages at Tarski’s direction and he must read them immediately, to make my
promise to Julia good. At first refusing, he reluctantly agreed to do it within three hours.
Later he said the material looked fine, but there were several typos—I never found them.

The next 24 hours are hard to relive. Some reference to them appears in [3, p. 375], but
the actual events were more bizarre than discernible there. The amazing story of Tarski’s
eventually signing the title page I brought to his house early on 12 November 1982, but
his writing the date as 11 November is recounted in [20]. One aspect was absent there. I
had Tarski’s signature at the last moment, but Blum had refused to sign until Tarski did,
a deference that did not extend to the pages with Leon’s “Alfred Tarski LH” or Ralph’s
signatures, which he gladly signed ahead of time. Manuel and Lenore were going to a
movie, and I asked him what I should do if Tarski signed and they had already left. I fol-
lowed Manuel’s advice (not part of the Henkin Plan), and—omitting details—it eventually
involved my headlight.

Louise Kerr at Graduate Division kept the office open past 5 pm till I could turn in
the completed dissertation and multiple copies. In fact, her building, California Hall, was
locked up, but one massive metal door was jogged out a quarter inch. I grabbed that edge,
prayed and pulled it open, and entered. By then I had signed dissertation title pages for

10See [8].
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all three committees, but of course only the first was used. Henkin’s plan had succeeded
in the best way!

It seemed to me very likely that Leon’s intercession at (1) was crucial, that essentially
and maybe solely because of Leon Henkin, Tarski signed on time. My gratitude to both
of them was boundless. But this impression is not final or complete. After all, the letter
above indicates Alfred would not take Leon’s earlier calls. My friend Jim, who advised
me and recommended implementation of the Henkin plan, said on 11 November, “We
have done all that is humanly possible.” I took it as a sign that greater assistance might be
needed. and might be given—it always may be, kindly, justly. How else to explain the 11
November dating?

The day after Alfred signed the thesis, he told Leon, “I did not know Wells had such a
strict deadline.” (I had told him often.) Tarski told Steve Givant then, “If I had felt better,
I would have made Wells work longer.”

8 Conclusion

Leon Henkin led a lifetime of loving service to mathematics and education, to students
and teachers. The Leon Henkin Citation for Distinguished Service is awarded by the Com-
mittee on Student Diversity and Academic Development of the Berkeley Division of the
Academic Senate. It is given in recognition of an “exceptional commitment to the educa-
tional development of students from groups who are underrepresented in the academy.”
This award was first given in 2000, and the first laureate was Leon Henkin [1].

The near decade I spent working in school programs created and shepherded by him
taught me the value of this contribution, beyond his staggering influence on mathematical
logic and algebraic logic. This review of connections with Henkin has shown me how
vital, how free, how generous was his help in so many ways for so many years.

Thousands of children, young college students, teachers in training, women, minority
members, doctoral candidates, and many others received opportunities for better educa-
tion and better mathematics education through Leon’s decades of effort—a magnificent
benefit!
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Leon Henkin and Cylindric Algebras

J. Donald Monk

Abstract This is a description of the contributions of Leon Henkin to the theory of cylin-
dric algebras.

Keywords Cylindric algebras · Permutation models · Dilation · Twisting

1 Introduction

Cylindric algebras are abstract algebras that stand in the same relationship to first-order
logic as Boolean algebras do to sentential logic. There are two ways of passing from logic
to cylindric algebras. For the first, we are given a first-order language L and a set Γ of
sentences in L. We assume that L has the sequence v0, v1, . . . of individual variables.
We define an equivalence relation ≡ on the set of formulas of L by defining ϕ ≡ ψ iff
Γ � ϕ↔ ψ . Then it is easy to see that there are the following operations on the set A of
≡-classes:

[ϕ] + [ψ] = [ϕ ∨ψ]; [ϕ] · [ψ] = [ϕ ∧ψ];
− [ϕ] = [¬ϕ]; ci[ϕ] = [∃viϕ].

Then the following structure is a cylindric algebra:

〈
A,+, ·,−, [¬(v0 = v0)

]
, [v0 = v0], ci , [vi = vj ]

〉
i,j∈ω.

For the second method of obtaining a cylindric algebra, we suppose that a set A is given.
We consider the following unary operations Ci of cylindrification acting upon subsets of
ωA (the set of infinite sequences of elements of A):

CiX = {
a ∈ ωA : ∃b ∈X[aj = bj for all j �= i]}.

Then the following is a cylindric set algebra: 〈B,∪,∩,−,∅, ωA,Ci,Dij 〉i,j∈ω, where B
is a collection of subsets of ωA closed under the operations ∪, ∩, − (with −X = ωA\X
for any X ⊆ ωA), and with ∅, ωA, and Dij as members, where Dij = {a ∈ ωA : ai = aj }.

Tarski and his students F.B. Thompson and L.H. Chin introduced an abstract notion of
cylindric algebra that encompasses both of these cases. For any ordinal number α, a cylin-
dric algebra of dimension α is an algebra of the form A= (A,+, ·,−,0,1, cξ , dξη)ξ,η<α
such that the following conditions hold:
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(1) (A,+, ·,−,0,1) is a Boolean algebra.
(2) cξ0= 0.
(3) x + cξ x = cξ x.
(4) cξ (x · cξ y)= cξ x · cξ y.
(5) cξ cηx = cηcξ x.
(6) dξξ = 1.
(7) If ξ �= η,ρ, then dηρ = cξ (dηξ · dξρ).
(8) If ξ �= h, then cξ (dξη · x) · cξ (dξη · −x)= 0.

Historical remarks on the development of cylindric algebras up to the time of Henkin’s
work on them can be found in [5]. The development went via the relation algebras of
Tarski and the projective algebras of Everett and Ulam.

The work of Leon Henkin concerning cylindric algebra can be divided into these parts:
on the algebraic theory of them, the theory of set algebras, representation theorems, con-
struction of nonrepresentable algebra, and applications to logic. Many of the publications
of Henkin concerning cylindric algebras are devoted to exposition without proofs. De-
tailed proofs of most of his results are found in the two volumes [9] and [16], written
jointly with Monk and Tarski.

2 Algebraic Theory

The purely algebraic theory of cylindric algebras, exclusive of set algebras and repre-
sentation theory, is fully developed in [9]. The parts of this theory developed mainly by
Henkin are as follows.

If A is a CAα and Γ = {ξ(0), . . . , ξ(m − 1)} is a finite subset of α, then we define
c(Γ )a = cξ(0) · · · cξ(m−1)a. This does not depend on the order of ξ(0), . . . , ξ(m− 1), by
axiom (5). An element a is rectangular iff c(Γ )a · c(Δ)a = c(Γ ∩Δ)a for any finite subsets
Γ,Δ of α. This notion was first introduced in [3]. Elementary properties of the notion are
given in Sect. 1.10 of [9]. Their use in representation theory is described below.

The dimension set Δx of an element x of a CAα is the collection of all ξ < α such
that cξ x �= x. The CAω obtained from first-order theories as above have the property
that the dimension sets are always finite. A CAα is locally finite iff Δx is always finite.
This notion is due to Tarski. Henkin introduced the following generalization. A CAα is
dimension complemented iff Δx �= α for all x. Algebraic properties of these two notions
are worked on in Sect. 1.11 of [9]. Both notions are important in representation theory.
In [10], Henkin proved that every locally finite CAα is isomorphic to one of the cylindric
algebras described at the beginning of this article, an algebra of formulas modulo some
theory in the language.

If A is a CAα and a ∈A, then the relativization of A to a is the structure

A|a = 〈
A

∣∣ a,+′, ·′,−′,0′,1′, c′ξ , d ′ξη
〉
ξ,η<α

,

where A|a = {x ∈ A : x ≤ a}, x +′ y = x + y, and x ·′ y = x · y for any x, y ∈ A|a,
−′x = a · −x for any x ∈ A|a, 0′ = 0, 1′ = a, c′ξ x = cξ x · a for any x ∈ A|a and any
ξ < α, and d ′ξη = dξη · a for any ξ, η < α. In general, the relativization is not itself a CAα .
Algebraic properties of relativizations are developed in Sect. 2.2 of [9]. This is a notion
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that Henkin worked on thoroughly. It is interesting in its own right and is also useful in
constructing nonrepresentable cylindric algebras. In [12], written jointly by Henkin and
his student Diane Resek, some simple equations are shown to characterize the class Cr2
of two-dimensional relativized cylindric algebras. It is also shown there that the class Cr3
is not closed under subalgebras. Additional results are stated without proof.

Given a CAα A and an ordinal β < α, we can associate the β-reduct of A, which is the
algebra 〈A,+, ·,−,0,1, cξ , dξη〉ξ,η<β . We say that B is neatly embedded in A, provided
that B is a subalgebra of the β-reduct of A, and cξ b = b for all b ∈ B and ξ ∈ [β,α).
Algebraic properties of reducts and neat embeddings are explored in Sect. 2.6 of [9]. Neat
embeddings play a prominent role in representation theory.

The duality theory of Boolean algebras can be adapted to cylindric algebras as fol-
lows. For a CAα A, we associate the following structure, called the canonical embedding
algebra EmA, where M is the collection of all maximal ideals of the Boolean part of A:

〈
P(M),∪,∩,−,∅,M, cξ , dξη

〉
ξ,η<α

,

where −x =M\x for any x ⊆M , for any x ⊆M and ξ < α, we define

cξ x =
{
J ∈M : c−1

ξ [J ] = ∅}∪
⋃

I∈x

{
J ∈M : c−1

ξ [J ] ⊆ I},

and for any ξ, η < α, we define

dξη = {I ∈M : dξη /∈ I }.
The canonical embedding function emA is defined by emA(a) = {I ∈M : a /∈ I }. The
algebraic theory of canonical embedding algebras is developed in Sect. 2.7 of [9]. In
particular, EmA is always a CAα , and rmemA is an isomorphic embedding of A into
EmA. To show that EmA is a CAα , one of course has to check the axioms for a CAα . This
procedure can be generalized to Boolean algebras with operators, and this has been carried
out by Jónsson and Tarski. The question of extending equations valid in a Boolean algebra
with operators to its canonical embedding algebra is difficult. Henkin in [8] contributed
to answering this question.

Every CAα EmA is complete and atomic. This gives rise to another way of defin-
ing the class of cylindric algebras. A cylindric atom structure is a relational structure
〈B,Tξ ,Eξη〉ξ,η<α such that the following conditions hold:

(1) Tξ is an equivalence relation on B .
(2) T ξ |Tη = Tη|Tξ .
(3) Eξη = Tμ[Eξμ ∩Eμη] if μ �= ξ, η.
(4) If ξ �= η and b, c ∈Eξη, then bTξ c iff b= c.
Given a cylindric atom structure B = 〈B,Tξ ,Eξη〉ξ,η<α , we define its complex algebra
Cm(B) to be the algebra

〈
P(B),∪,∩,−,∅,B, cξ ,Eξη

〉
ξ,η<α

,

where −x = B\x for any x ⊆ B and cξ x = Tξ [x] for any ξ < α. Then Cm(B) is a com-
plete atomic CAα , and every complete and atomic CAα can be obtained in this way.
Hence, any CAα is a subalgebra of Cm(B) for some cylindric atom structure B . The
details of this correspondence are worked out in Sect. 2.7 of [9].
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3 Set Algebras

The notion of a cylindric set algebra given in the introduction can be generalized as fol-
lows. An algebra A is a cylindric-relativized set algebra of dimension α iff there is a
nonempty set U and a set V ⊆ αU such that A has the form

〈A,∪,∩,−,∅,V , cξ , dξη〉ξ,η<α,
where A is a collection of subsets of V closed under ∪, ∩, − (with −a = V \a), cξ , with

cξ a =
{
y ∈ V : ∃x ∈ a[xη = yη for all η �= ξ ]}

and with dξη ∈A, where dξη = {y ∈ V : yξ = yη}.
In general, such algebras do not satisfy the axioms for cylindric algebras. However, the

following special cases do.
With V = αU , giving cylindric set algebras.
With V =⋃

i∈I αZi , where 〈Zi : i ∈ I 〉 is a system of nonempty pairwise disjoint sets,
giving generalized cylindric set algebras. These set algebras were first introduced in [1].

With V = αW(p), where p ∈ αU and αW(p) = {x ∈ αW : {ξ < α : xξ �= pξ }} is finite,
giving weak cylindric set algebras.

With V =⋃
i∈I αW

(pi)
i with αW(pi)

i ∩ αW(pj )

j = ∅ for i �= j , giving generalized weak
cylindric set algebras.

It turns out that generalized cylindric set algebras and generalized weak cylindric set
algebras are the natural algebras for representation theory; a CAα is representable iff it is
isomorphic to one of these. The theory of the various kinds of set algebras is described in
Sect. 3.1 of [16]; see also [14]. Some of the results were proved earlier in [11].

4 Representation Theorems

That every infinite-dimensional locally finite CAα is representable is due to Tarski. In
[16], this theorem is proved by an algebraic adaptation of Henkin’s proof of the com-
pleteness theorem for first-order logic. In fact, call an element x of a CAα ξ -thin iff there
is an η �= ξ such that x · cξ (dξη · x)≤ dξη and cξ x = 1 and call a CAα A rich iff for every
nonzero y ∈ A such that Δy ⊆ 1, there is a 0-thin element x such that x · c0y ≤ y. The
main technical lemma which implies the above representation theorem runs as follows:

If 2≤ α and A is a simple rich locally finite CAα satisfying the equality

cξ
(
x · y · cη(x · −y)

) · −cη(cξ x · −dξη)= 0

for all distinct ξ, η < α and all x, y ∈A, then A is representable.

From this lemma, using algebraic results and facts about set algebras, one can derive
the following additional representation theorems due to Henkin:

For α ≥ 2, a CAα is representable iff it can be neatly embedded in a CAα+ω . This was
first stated, for finite α, in [3]. For arbitrary α, it was stated in [5].
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Every dimension-complemented CAα of infinite dimension is representable. This was first
stated without proof in [2].

By a direct proof given in [16] we have the following representation theorem of
Henkin, first stated in [3]:

For α ≥ 2, a CAα is representable iff it can be embedded in an atomic CAα in which all
atoms are rectangular.

A special representation theorem due to Henkin runs as follows.

Suppose that A is a CAα and the subalgebra of A generated by {dξ,η : ξ, η < α} is simple.
Suppose that there is a positive integer m such that

c0 · · · cm−1

( ∏

i,j<m

−dij
)
= 0.

Then A is representable.

It is easy to prove that all CA0 and CA1 are representable. This is no longer true for
CA2, but Henkin proved that one only needs to add two equations to obtain representabil-
ity:

A CA2 A is representable iff the following two equations hold in A:

c1
(
x · y · c0(x · −y)

) · −c0(c1x · −d01)= 0;
c0
(
x · y · c1(x · −y)

) · −c1(c0x · −d10)= 1.

Many of these representation theorems can be found in [17].

5 Nonrepresentable Cylindric Algebras

It turns out that not every cylindric algebra is representable. Henkin invented three meth-
ods of constructing nonrepresentable cylindric algebras, described in Sect. 3.2 of [16].

5.1 Permutation Models

Let U be a nonempty set, and consider the cylindric algebra A of all subsets of αU .
Every permutation f of U extends in a natural way to an automorphism f̃ of A. If H
is a subgroup of the group of all permutations of U , then one can consider the set {a ∈
A : f̃ (a) = a for all f ∈H }. This set forms a subalgebra fixH (A) of A. By choosing U
and H suitably and taking a relativization of fixH (A) one can obtain a nonrepresentable
cylindric algebra. This is carried out in [16] to show that the following inequality (which
can be written as an equation) holds in every representable CAα with α ≥ 3 but fails in a
permutation model:

c0x · c1y · c2z≤ c0c1c2
[
c2(c1x · c0y) · c1(c2x · c0z) · c0(c2y · c1z)

]
.



64 J.D. Monk

5.2 Dilation

Whereas permutation models take a relativization of a subalgebra of some cylindric alge-
bra, dilation does the opposite: starting with an algebra, one adds atoms. More precisely,
let B = 〈B,Tξ ,Eξη〉ξ,η<α be a cylindric atom structure. Suppose that a ∈ αB satisfies the
following conditions:

[aξ ]Yη ∩ [aη]Tξ �= 0 for all ξ, η < α.

aμ /∈Eξη for distinct ordinals ξ, η,μ.

Suppose that u is some object not in B . Then we form a new relational structure B
′ =

〈B ′, T ′ξ ,E′ξη〉ξ,η<α by setting

B ′ = B ∪ {u}.
For any ξ < α, T ′ξ is an equivalence relation on B ′ such that T ′ξ ∩ (B × B)= Tξ , and for
any b ∈ B , bT ′ξ u iff bTξaξ .

E′ξη =Eξη for distinct ξ, η < α, and Eξξ = B ′ for any ξ < α.

By a suitable choice of a one obtains in this way a cylindric atom structure whose associ-
ated cylindric algebra is nonrepresentable. This is done in [16] to show that the following
equation holds in every representable CAα with α ≥ 3 but fails in some dilation model:
x; (y; z)= (x;y); z, where, in general, u;v = c2(c1(d12 · c2u) · c0(d02 · c2v)).

5.3 Twisting

Roughly speaking, this method consists of selecting two members x, y of a cylindric atom
structure together with an index ξ < α and redefining the equivalence relation Eξ using
x and y. Formally, we are given a cylindric atom structure B = 〈B,Tξ ,Eξη〉ξ,η<α , two
elements x, y ∈ B , an index ξ < α such that not (xTξy), and two partitions [x]Tξ =X0 ∪
X1 and [y]Tξ = Y0∪Y1 such that the following conditions hold, whereM = [x]Tξ ∪[y]Tξ :

(1) If η �= ξ and (a, b) ∈ (M×M)∩Tη and a �= b, then (a, b) ∈ (X0×Y0)∪ (Y0×X0)∪
(X1 × Y1)∪ (Y1 ×X1).

(2) If η �= ξ and a ∈M , then there is a b ∈M\{a} such that aTηb.
(3) If i ∈ {0,1} and η, ν < α, then Xi ∩Eξη ∩Eξν �= 0 iff Yi ∩Eξη ∩Eξν �= 0.

Then a new structure B
′ = 〈B,T ′η,Eην〉η,ν<α is defined as follows: T ′η = Tη if η �= ξ ,

whereas Tξ is the equivalence relation on B with equivalence classes [z]Tξ for z /∈M ,
along with X0 ∪ Y1 and X1 ∪ Y0.

It is shown in [16] that B
′

is a cylindric atom structure. This is used to show that the
following equation holds in every representable CAα but fails in some twisting model:

c2
(
d20 · c0

(
d01 · c1(d12 · x)

))= c2
(
d21 · c1

(
d01 · c0(d02 · x)

))
.
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6 Applications to Logic

In [6], Henkin considers first-order logic with only finitely many variables. In the case of
just two variables x and y, he proves that the formula

∃x(x = y ∧ ∃yGxy)→∀x(x = y→∃yGxy)
is universally valid but not derivable from the natural axioms (restricted to two variables).
Here G is a binary relation symbol. The nonderivability is proved using a modified cylin-
dric set algebra. This example suggests adding all formulas of the following forms to the
axioms for two-variable logic:

∃x(x = y ∧ ϕ)→∀x(x = y→ ϕ),

∃y(x = y ∧ ϕ)→∀y(x = y→ ϕ).

Henkin shows, again using a modified cylindric set algebra, that this axiom system is also
incomplete; the following universally valid formula is not provable in the expanded axiom
system:

∃xFx ∧ ∀x∀y[Fx ∧ Fy→ x = y]→ [∃x(Fx ∧Gxy)↔∀x(Fx↔Gxy)
]
.

An analysis of this situation leads to adding the following formulas to the axioms:
∃x∀y(ϕ↔ y = x)→ [∃y(ϕ ∧ ψ)↔∀y(ϕ→ ψ)] with x not free in ϕ; ∃y∀x(ϕ↔ x =
y)→ [∃x(ϕ ∧ ψ)↔ ∀y(ϕ→ ψ)] with y not free in ϕ. But again the resulting axiom
system is not complete. By another modified cylindric set algebra Henkin shows that the
following formula is universally valid but not derivable in this axiom system:

∃xGxy↔∃x(x = y ∧ ∃yGyx).
Finally, adding the following axioms results in a complete axiom system:

∃xϕ↔∃x(x = y ∧ ∃yϕr),
∃yϕ↔∃y(y = x ∧ ∃yϕr),

where ϕr is recursively defined by interchanging x and y if ϕ is atomic, with (¬ϕ)r =
¬ϕr , (ϕ ∨ψ)r = ϕr ∨ψr , (∃xϕ)r = ∃y(x = y ∧ ∃xϕ), and (∃yϕ)r = ∃x(x = y ∧ ∃yϕ).
The proof of completeness of the resulting axiom system is rather involved but is com-
pletely carried out.

It is shown that the above axioms do not suffice for logic with three variables.
In [7], Henkin translates the notion of relativization of a cylindric algebra, described

above, into a purely logical framework. Namely, given a first-order language L and a
formula π of L (with no restriction on the number of free variables of π ), one associates
with each formula ϕ of L its relativization ϕπ as follows: ϕπ = ϕ for ϕ atomic; (¬ϕ)π =
¬ϕπ ; (ϕ ∧ ψ)π = ϕπ ∧ ψπ , and (∃xϕ)π = ∃x(π ∧ ϕπ). The main theorem of [7] is
as follows. Consider first-order logic with variables in the list v0, . . . , vn, . . . with n < α,
where α ≤ ω. A natural set of axioms for logic with these variables is explicitly described.
Let π be a formula with free variables among v0, . . . , vn−1. Then a set Δ of formulas
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having to do with relativization are described, namely all formulas of one of the following
two forms:

∀v0 . . .∀vm
[
(∃vi∃vjϕ)π → (∃vj∃viϕ)π

]
,

where all free variables of ϕ are among v0, . . . , vm;

∀v0 . . .∀vm
(
π→ π ′

)
,

where there are i, j < α such that π ′ is obtained from π by replacing all free occur-
rences of vi in π by free occurrences of vj , and the free variables of π→ π ′ are among
v0, . . . , vm.

The theorem is then that Γ � ϕ implies that Δ∪ Γ � ϕπ .
This theorem is used, along with a suitable (ordinary) model to show that a certain

sentence involving only three variables cannot be proved from the logical axioms. The
sentence expresses that if a function has at most two elements in its domain, then it has at
most two elements in its range.
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A Bit of History Related to Logic Based on Equality

Peter B. Andrews

Abstract This historical note illuminates how Leon Henkin’s work influenced that of
the author. It focuses on Henkin’s development of a formulation of type theory based on
equality, and the significance of this contribution.

Keywords Type theory · Equality · Henkin · Axiom · Extensionality

Leon Henkin and I were both students of Alonzo Church, but he finished his Ph.D. thesis
in 1947, and I did not arrive at Princeton for graduate work until 1959. However, Henkin
was at the Institute for Advanced Study in Princeton on a Guggenheim Fellowship during
the 1961–1962 academic year. I was working on questions related to Church’s type theory
[8] and was familiar with Henkin’s groundbreaking paper [11], so I was delighted to have
the opportunity to get to know him. We both attended logic seminars, and we had a few
meetings. He was present at the seminars in which I discussed the gap in Herbrand’s proof
of Herbrand’s theorem1 in May 1962.

In February 1962, I copied the following material from [18, p. 350] (or perhaps from
[19, p. 17]) into my journal:

The preceding and other considerations led Wittgenstein to the view that mathematics does not
consist of tautologies, but of what he called ‘equations’, for which I would prefer to substitute
‘identities’. . . . (It) is interesting to see whether a theory of mathematics could not be constructed
with identities for its foundation. I have spent a lot of time developing such a theory, and found it
was faced with what seemed to me insuperable difficulties.

I was very interested in this problem, and about 9 April, I entered a note in my journal
showing how quantifiers and connectives could be defined in terms of equality and the
abstraction operator λ in the context of Church’s type theory. By June I had seen at least
a reference to Quine’s abstract [17], which shows how these things can be done, but I do
not remember whether I made the entry in my journal before seeing Quine’s solution to
the problem. My definition of conjunction was fundamentally different from that used by
Quine.

In June 1962, Henkin mentioned that he was finishing work on a paper (published the
following year as [12]) that gave a complete axiomatic treatment of type theory based on
equality and abstraction in the context of propositional types.2

1See [6, 9].
2In both propositional type theory and full type theory (as we shall use these terms), the types are gen-
erated inductively from basic types by the condition that if α and β are types, then (αβ) is the type of
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I told Henkin that I had seen some reference in the logical literature to defining quanti-
fiers as well as propositional connectives in terms of equality, though I no longer remem-
bered exactly where. Henkin was very interested to hear this, and together we searched
my card file of bibliographic references (which I happened to have with me at the mo-
ment) and found a note I had made about this on the card for Quine’s abstract [17]. Later
Henkin found the papers [16] and [15]. In his later paper [13], Henkin noted on p. 33
that Quine was the first to observe that quantifiers could be defined in this context. It is
clear that Henkin made this discovery independently, since his paper [12] was already
written when I brought Quine’s abstract to his attention. Quine described how to make
these definitions in the short final section of [16], but Henkin developed this topic much
further in [12], introducing an axiomatic system and establishing its soundness and com-
pleteness. Indeed, the decidability of Henkin’s axiomatic system for propositional types
follows directly from the results in his paper.

I was very interested in seeing Henkin’s paper, and he was very busy, so he agreed to
loan me his handwritten copy of the paper and the typed copy, which still did not have
the formulas written in, and I agreed to write in the formulas while I read the paper. We
were both doing some traveling, but by 13 July I was back in Princeton, and Henkin was
in California, and he sent me the paper.

The axioms of Henkin’s system, which are given below, were chosen to express basic
properties of equality. α and β stand for arbitrary type symbols; Aα,Bα , and Cα stand for
arbitrary formulas of type α; and Xβ stands for an arbitrary variable of type β . T nand Fn

are formulas that denote truth and falsehood, respectively.
Henkin’s axioms in [12]:

(H1) Aα ≡Aα .
(H2) (A0 ≡ T n)≡A0.
(H3) (T n ∧ Fn)≡ Fn.
(H4) (g00T

n ∧ g00F
n)≡ (∀X0(g00X0)).

(H5) (xβ ≡ yβ)→ .(fαβ ≡ gαβ)→ .(fαβxβ)≡ (gαβyβ).
(H6) (∀Xβ(fαβXβ ≡ gαβXβ))→ (fαβ ≡ gαβ).
(H7) ((λXβBα)Aβ)≡ Cα , where Cα is obtained from Bα by replacing each free occur-

rence of Xβ in Bα by an occurrence of Aβ (with a restriction).

A few days after I returned the manuscript to Henkin, I noticed that Axiom H3 was
derivable from the other axioms. Other simplifications of the axiom system followed in
the next two months, stimulated by many letters back and forth. We were both busy with
other matters, but we managed to exchange several letters every week, sometimes writing
two letters a day as we discussed new ideas. At one point, I remarked that the mere action
of putting a letter to Henkin in the mailbox seemed to stimulate new ideas. (Of course,
there was no email at that time.) Henkin started his letter of 8 August with the comment
“This two-letters-at-a-time is infectious!”. Bit by bit Axioms H1, H2, and H3 were all
eliminated, and H4, H5, and H6 were simplified somewhat. The result was that the axiom
system above was replaced by the following:

functions with arguments of type β and values of type α. In propositional type theory, the only basic type
is the type 0 of truth values, but in full type theory, the basic types are 0 and a type ι of individuals. Thus,
propositional type theory may be regarded as higher-order propositional calculus, while full type theory
includes nth-order logic for each positive integer n.
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Simplified axioms as presented in [1]:

(A1) (g00T
n ∧ g00F

n)≡ ∀x0(g00x0).
(A2) (fα0 ≡ gα0)→ (h0(α0)fα0 ≡ h0(α0)gα0).
(A3) (∀xβ(fαβxβ ≡ gαβxβ))≡ (fαβ ≡ gαβ).
(A4) ((λXβBα)Aβ)≡ Cα , where Cα is obtained from Bα by replacing each free occur-

rence of Xβ in Bα by an occurrence of Aβ (with a restriction).

Axiom schema A2 can be replaced by the superficially simpler schema

(A2′) (fβ ≡ gβ)→ (h0βfβ ≡ h0βgβ),

but the formulation of (A2) shows that one does not need to assume (A2′) for all type
symbols β .

On several occasions, I suggested to Henkin that he simply incorporate my proofs
into his paper, but he insisted that I publish a separate paper presenting these proofs, and
he wrote a very complimentary letter to Andrzej Mostowski (the editor of Fundamenta
Mathematicae) recommending that my paper be published immediately following his own
paper. He was very concerned that my paper be easy to read as well as technically correct,
and made a number of suggestions about it. After we had discussed a number of ideas
related to Axiom H2, Henkin found a way to derive it, but he did not want to write an
addendum to my addendum to his paper, so he told me to simply include his proof of
Axiom H2 in my paper.

The idea of formalizing type theory by using equality as a logical primitive can be
used for the full theory of types as well as for propositional types, but I was concerned
that some readers might not be sure of this and would therefore not understand the full
significance of Henkin’s paper. At my urging, Henkin added a discussion of this to the
end of his paper, including a discussion of the need for an Axiom of Descriptions for the
full theory of types.

As I think back to my interactions with Henkin, I realize how fortunate I was that he
was so kind, generous, helpful, and wise.

Henkin’s work played a decisive role in my life. Of course, like many other logicians,
every time I taught a logic course I benefited from his work on completeness [10, 11] and
his clarification of the notion of a nonstandard model. Questions about the nature of the
general models of [11] provided the impetus for my paper [4]. Henkin’s work developing
a formulation of Church’s type theory with equality (identity) as the sole logical primitive
was particularly important for me. I used such a formulation of full type theory, called
Q0, in my Ph.D. thesis [2] and the textbook [5].

As noted in [2], it is easy to see that Axioms A1, A3, and A4 are independent. Henkin
and I discussed the problem of proving the independence of Axiom A2 several times
in 1962, and I mentioned it regularly in my course on type theory, but this remained
an open problem until 2013, when Richard Statman showed that Axiom A2 is indeed
independent.3

It is important to realize the significance of Henkin’s contribution in developing a
formulation of type theory based on equality. It is a real improvement of the system
C discussed in [11], which has primitive constants for propositional connectives and
quantifiers, and in which the formula Qoαα for equality is defined in terms of these as

3The proof has not yet been published.
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[λxαλyα∀foα . foαxα ⊃ foαyα]. (Except for some axiomatic differences, C is the system
introduced by Church [8]). The formulation based on equality does far more than provide
a cute and elegant formulation of type theory; it cleans up a subtle semantic problem,
which we now explain.

As shown in [3], there is a nonstandard general model for C in which the Axiom
of Extensionality ∀xβ(fαβxβ = gαβxβ) ⊃ (fαβ = gαβ) is not valid, since the sets in this
model are so sparse that the denotation of the defined equality formula Qoαα is not the
actual equality relation. Thus, Theorem 2 of [11] (which asserts the completeness and
soundness of C ) is technically incorrect. The apparently trivial soundness assertion is
false.

However, this problem does not arise for the system Q0 of full type theory based on
equality, since in models ofQ0 the denotation of each equality symbol is the actual equal-
ity relation for that type in the model. (A detailed proof of the completeness and soundness
of Q0 may be found in [5].) Thus, in contexts where one wants to assume extensionality
and discuss general models, a formulation of full type theory based on equality such as
Q0 is more appropriate than C .
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Pairing Logical and Pedagogical Foundations
for the Theory of Positive Rational
Numbers—Henkin’s Unfinished Work

Nitsa Movshovitz-Hadar

Abstract Five different ways of “founding” the mathematical theory of positive rational
numbers for further logical development are presented as Leon Henkin outlined in 1979
in the form of notes for a future paper, suggesting that pairing them up with five represen-
tation models could possibly yield further pedagogical development. In turn, he thought
that this would indicate a large variety of ways in which this number system, as any other,
can be introduced in a classroom setting—many of them quite different from traditional
ways. His wish was to explore how varying modes of deductive development can be mir-
rored in varying classroom treatments rooted in children’s experience and activities. This
dream never came to full fruition. Preliminary ideas about corresponding pedagogical em-
bodiments for each logical development are briefly presented here for the next generation
of researchers in mathematics-education and curriculum developers to contemplate with,
bearing in mind that Henkin’s work itself may need additional polishing.

Keywords Logical foundation · Pedagogical foundation · Rational numbers · The
teaching and learning of rational numbers · Leon Henkin

1 Introduction

In education, as in other realms of human activity, we tend to do things the way they have
been done before. Teachers at one time were students at an earlier time, and hence inertial
component in teaching is far from negligible. Still, change does take place.

It is a mind-freeing exercise for us to ask ourselves, sometimes: “How would I teach
this subject if I were doing it for the first time, without any examples to follow?” A rea-
sonable way to arrive at an answer would be to ask ourselves first: “How could I teach this
subject?” That is, we could examine several different possible ways of approaching the
subject, trying to weigh advantages and disadvantages of each. In the end, being aware
of several alternatives, one might conclude that there is no “best” way. If that is the case,
then we would perhaps decide to try using different combinations of methods with various
students in varying circumstances. Of course, in devising such combinations, we must be
careful to avoid any that may confuse the student.

How, then, can we devise different methods of teaching a particular mathematical sub-
ject? One way is by looking at various logical structures within which we can formulate
that particular subject, trying to find corresponding pedagogical embodiments for each.
Further, we will explore this approach to find different ways to introduce the study of ra-
tional numbers. Traditionally, this is accomplished after several years of school work on
the whole numbers.
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At a certain point in the middle of the 20th century, it was suggested to start students
toward a consideration of the new kind of numbers by introducing the concept of “equiv-
alent number pairs,” referring to pairs of whole numbers such as (6,4) and (9,6). Such
a pedagogical approach already derives from a particular foundation for the deductive
theory of rational numbers. In this theory, two pairs (m,n) and (p, q) of whole numbers
m,n,p,q are defined to be equivalent if mq = np; and then a rational number is defined
to be a set of number pairs any two of which are equivalent, which contains all the pairs
equivalent to each of its members.

A development of the deductive theory, founded in this way, was published in Germany
in 1897 by the famous mathematician Edmund Georg Hermann Landau (1877–1938) and
achieved very wide use in German university courses, including those intended for sec-
ondary teachers. Landau’s book was later translated into English and published in 1951
in the U.S. under the title Foundations of Analysis.1 It served as the standard treatment in
American university courses throughout the first half of the 20th century. Small wonder,
then, that when American mathematicians began to influence the content of elementary-
school textbooks through the “new math” projects in the 1950s, Landau’s treatment per-
colated into the pedagogical presentation.

But this treatment of Landau is by no means the only correct way of founding the
deductive theory of rational numbers, and it was certainly not devised, originally to influ-
ence the elementary-school presentation of this part of mathematics; it only came to have
such an influence through events that we might term a “historical accident.” Thus, it seems
appropriate to examine other foundations for the deductive theory of rational numbers, in
order to see what they might suggest by way of alternative pedagogical foundations for
this basic part of school mathematics.

What, then, is a foundation for a deductive theory? They come in two kinds, defini-
tional foundations and axiomatic ones.

First there are definitional foundations, such as Landau’s, in which the set of rational
numbers, sum and product of such numbers, and ordering relation for such numbers are
defined in terms of the concepts of some prior theory (whole numbers), and then the basic
facts about the new concepts are proved as theorems that are logically derived from the
facts or theorems of the prior theory.

Second, there are axiomatic foundations, such as Euclid’s treatment of geometry.
In this kind of treatment, the basic concepts of the theory (e.g., point, line, plane, the
relation of betweenness) are taken as undefined, and the basic facts about them are log-
ically derived from axioms, which are sentences involving the undefined terms that are
stated without proof, along with the list of primitive (undefined) terms, at the beginning of
the theoretical development. Any deductive mathematical theory—whether it deals with
a number system or a geometric space—admits a variety of foundations of both of these
kinds.

In the case of a definitional foundation for a deductive theory, it is clear that some other
theory must be presupposed, namely, the prior theory in terms of which the concepts of
the new theory are defined, and whose theorems serve as the starting point for deriving

1Landau, Edmund. G.H. (1951, 3rd revised edition 2001): Foundations of Analysis; The Arithmetic of
Whole, Rational, Irrational, and Complex Numbers. A Supplement to Text-Books on the Differential and
Integral Calculus. English Translation by F. Steinhardt. AMS Chelsea Publications Co., N.Y. (The original
was published in German in 1948 under the title: Grundlangen der Analysis. ISBN-13: 978-0821826935.)
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theorems in the new theory. But even in an axiomatic foundation for a given theory, as
a rule, there are prior mathematical theories that are presupposed. For example, Euclid’s
axiomatic theory of geometry presupposes at least a rudimentary theory of whole num-
bers. We can see this, for example, in the definition of a polygon, which involves not only
such geometric concepts as points and lines, but refers also to an arbitrary natural number
(the number of sides or vertices of the polygon).

The only axiomatic theories in which no prior theory is presupposed are theories of
logic. Any other mathematical theory must presuppose logic since it is logic that supplies
the basic rules of sentence-formation and of derivation, and the basic vocabulary of words
such as “not”, “and”, “if”, “all”, which enter into axioms of geometry, number systems,
and other mathematical theories.

In all of the axiomatic and definitional foundations for the theory of rational num-
bers that will be further considered, we shall presuppose not only the basic parts of logic
referred to above, but also certain rudimentary parts of set theory. This is necessary be-
cause among the basic things we discuss in the theory of rational numbers, there are such
things as the operation of addition and the relation “less-than”; and the general notions of
operations and relations belong to the theory of sets.

In addition to logic and set theory, certain of our axiomatic foundations for the theory
of rational numbers will presuppose a theory of whole numbers, but others will not. Within
a theory of the later type, the development of the theory from its foundation must provide
for a definition of the whole numbers, as a special kind of rational numbers, in terms
of the primitive (undefined) concepts that enter into the foundation. When we pass from
such a foundation for the deductive theory to a corresponding pedagogical presentation
of rational numbers at the elementary-school level, we are dealing with a presentation
in which rational numbers are treated before whole numbers. Of course, this will seem
shocking, and indeed may even seem a priori to be impossible, when compared with the
traditional process by which school children are introduced to numbers. But it is possible,
at least in principle, as we further suggest.

And while we do not expect, or even advocate, that such a radical approach be rushed
into practice, we hope that the reader will agree that its consideration and comparison
with the other foundations to be further presented, provide a worthwhile perspective from
which ideas can be profitably borrowed by those developing elementary mathematics cur-
ricula.

One final word before we proceed to the five logical foundations. We have been speak-
ing before about a theory of rational numbers. In fact, the traditional school curriculum
most often begins the study of fractions before negative numbers are introduced. For this
reason and for simplicity, all five deductive foundations and their pedagogical counter-
parts are formulated in terms of a theory of positive rational numbers.

In the rest of this paper, five different ways of “founding” the mathematical theory
of positive rational numbers for further logical development are presented. These were
notes by Leon Henkin for a future paper. Some terms are used and not defined. Some
theorems do not follow from the axioms or definitions and need some tweaking. However,
the general directions of five different ways to ground positive rational numbers in logic
are sound, original, and interesting. The readers are invited to solidify the approaches that
need work.

Henkin’s wish (private communication 1979–1999) was that each of the five different
ways of “founding” the mathematical theory of positive rational numbers would be paired
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with a representation model of these numbers for further pedagogical development. He
stated the aim as twofold:

i. to indicate the large variety of ways in which this number system, as any other, can
be introduced in a classroom setting—many of them quite different from traditional
ways;

ii. to explore how varying modes of deductive development can be mirrored in varying
classroom treatments rooted in children’s experience and activities.

The author of this paper was Henkin’s graduate student in the 1970s (the first one
specializing in mathematics education) and afterwards kept corresponding with him reg-
ularly and visiting him occasionally. This topic was brought up over and over again, but it
never came to fruition, although several prominent mathematics educators (such as Pearla
Nesher and Diane Resek) found it challenging.

The five mathematical foundations Henkin outlined are each followed by a few ped-
agogical comments. In putting these together, I feel that I paid partial dues to Henkin’s
vision, as it is now at the hands of the mathematics educators’ community in collaboration
with the logicians’ community for in-depth analysis and consideration.

2 Five Pairs of Deductive-Didactical Presentations

The following holds for all five logical foundations.
Notation:

P = (P,+, ·,1)= system of positive integers;
Q= (Q,+Q, ·Q,1Q)= system of positive rationals.

Terminology: Whenever we consider a system of numbers with four components, we will
understand that the first component is a set, the last one is an element of the first, and the
remaining components are binary operations under which the first component is closed.

Proofs of the theorems stated below are left for the interested reader. Many of them
can be found in the literature.

2.1 Pair I: Axiomatic Method 1 and Pedagogical Comments

Axiomatic Method 1

Here we assume the system of positive integers with the regular binary operations of
addition and multiplication and develop the rationals with operations on them through
axioms based upon having an undefined set of numbers that includes a unit and two binary
operations on its elements.

Presupposed: Logic, Sets, Theory of P (system of positive integers).
Undefined: Set Q with binary operations +Q and ·Q and the element 1Q.
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1. Axioms:
i. The system Q= (Q,+Q, ·Q,1Q) is an extension of the system P = (P,+, ·,1).

This means that P ⊂Q, 1Q = 1, and for all a, b ∈ P , we have

a ·Q b= a · b and a +Q b= a + b.
ii. For all a ∈ P and x, y ∈Q, we have

(a ·Q x) ·Q y = a ·Q (x ·Q y).
(This is a special case of the associative law for ·Q in which the first element is
restricted to come from P . The general law can be inferred from this special case
as we see in 6.ii below.)

iii. For all a ∈ P and x, y ∈Q, we have

a ·Q (x +Q y)= (a ·Q x)+Q (a ·Q y).
(This is a special case of the distributive law.)

iv. For any a, b ∈ P , there is a unique x ∈Q such that a ·Q x = b.
(Solvability of multiplicative equations with coefficient in P .)

v. For any x ∈Q, there exist a, b ∈ P such that a ·Q x = b.
(This says that every element of Q is a solution of a multiplicative equation with
coefficient in P .)

2. Definition: For any a, b ∈ P , we let b/a be the unique x ∈Q such that a ·Q x = b.
Thus, a ·Q (b/a)= b.
(This definition introduces fractional notation for solutions of multiplicative equa-
tions.)

3. Theorem: For any a ∈ P , a/1= a and a/a = 1. (By Axiom 1.i we have 1Q = 1, so
we use the notation 1 for the unit element of Q.)

4. Theorem: For any a, b, c, d ∈ P , we have b/a = d/c iff (if and only if) b · c= d · a.
5. Theorem: For any a, b, c, d ∈ P , we have

(b/a) ·Q (d/c)= (b · d)/(a · c)
and

(b/a)+Q (d/c)= (a · d + b · c)/(a · c).
(These are the usual rules for adding and multiplying fractions. Note that they are
consequences of the axioms and Definition 2 and so do not have to be prescribed
independently.)

6. Theorems: For all x, y, z ∈Q,
i. x ·Q y = y ·Q x and x +Q y = y +Q x.

(These are the commutative laws.)
ii. x ·Q (y ·Q z)= (x ·Q y) ·Q z;
x +Q (y +Q z)= (x +Q y)+Q z.
(Extension of Axiom 1.ii in case of ·Q, whereas for +Q, this theorem is “new”.)

iii. x ·Q (y +Q z)= x ·Q y +Q x ·Q z.
(Distributive law, extension of Axiom 1.iii.)

iv. x ·Q 1= x.
(This expresses that 1, which by Axiom 1.i is the unit element ofQ, is an identity
element for ·Q.)
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v. x +Q y �= x.
(There is no identity element for +Q in Q.)

vi. If x ·Q z= y ·Q z, then x = y and similarly for +Q.
(Cancelation laws; the one for ·Q is true because we are only creating a theory of
positive numbers, no zero.)

7. Theorem: For all x, y ∈Q, there is one and only one z ∈Q such that x ·Q z= y.
(This strengthens Axiom 1.iv, showing that all multiplicative equations have unique
solutions.)

8. Definition: For any x, y ∈Q, let y//x be the unique z ∈Q such that x ·Q z= y; thus,
x ·Q (y//x)= y.
(Remark: // is an operation on Q that is an extension of the operation / introduced
in Definition 2. See terminology in Axiom 1.i.)

9. Theorem: For any x, y, z, t ∈Q,
i. x//y = x/y in case x, y ∈ P .

ii. (x//y) ·Q (z//t)= (x ·Q z)//(y ·Q t).
iii. (x//y)+Q (z//t)= (x ·Q t +Q y ·Q z)//(y ·Q t).
iv. x//x = 1, x//1= x, and (x ·Q z)//(y ·Q z)= x//y.
v. (x//z)+Q (y//z)= (x +Q y)//z and (x//y) ·Q (y//x)= 1.

10. Theorem: If G is any nonempty subset of Q that is closed under // and +Q, then
G=Q.
(This theorem can be viewed as a kind of induction principle.)

11. Metatheorem: IfQ andQ′ are any two systems each satisfying Axioms 1.i–1.v, then
Q is isomorphic to Q′.
(The significance of this meta-theorem is that it establishes the uniqueness of the
mathematical structure laid out by Axioms 1.i–1.v.)

Pedagogical Comments to Axiomatic Method 1

The essence of the above axiomatic approach is in extending P , the system of natural
numbers (positive whole numbers) toQ, the system of positive rational numbers, through
the requirement of closure under division. This is embedded in Axioms 1.iv and 1.v, where
the existence of a unique solution to any equation of the form a · x = b is assumed.

In conjunction with the logical presupposition of logic, set theory, and the theory of
natural numbers, it is assumed here that:

1. Children can use simple sentences to communicate about the natural numbers (and the
number zero).

2. They are familiar with the decimal notation for these numbers.
3. They are familiar with the computation of sums, products, and differences of these

numbers up to 1000 and with division by numbers from 1 to 9.
Furthermore,

4. Experience with a variety of simple applications of these concepts is presupposed.
5. Students having finished third grade at age about 10 are familiar with the use of a few

special fractions, say 1/2, 1/4, and 1/3 to deal with portions of objects or of sets of
objects.
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The fact that we attempt paralleling an axiomatic, rather than a definitional theory of
positive numbers means that there is no room for introducing a definition of the basic
concepts (numbers and operations) in class. Instead, we assume that it will seem intu-
itively natural to students to have numbers similar to, but other than, 1/2, 1/4, and 1/3
and to operate on these numbers with addition and multiplication as was previously done
with positive whole numbers. Thus, we focus our efforts on how to use the new numbers
and operate on them. In order to construct a pedagogical approach that is paired with the
above logical construct, a design of a didactic development should be carried out in such
a way that the principles embodied as axioms in the logical theory will seem believable to
the students at a fairly early stage, even though we never formulate the statements them-
selves as abstract, universal propositions. It remains at the hands of the potential user to
consider the suitability of the pedagogical approach suggested here to any specific target
audience.

One of the common pedagogical problems in beginning courses on rational numbers
is the multiplicity of names used to denote each rational number, although each rational
number has a “standard name” (in decimal notation), which plays an exclusive role. This
problem will be encountered when we try to get students to appreciate the uniqueness of
the x postulated to exist in Axiom 1.iv, whereas we want them to appreciate that the pairs
(a, b) whose existence we asserted in Axiom 1.v are not unique.

The basic means of dealing with this problem is to identify each rational number with
a fixed, single, physical object, displayed in the classroom, without a standard name (ex-
cept, of course, for the whole numbers), and to have a system for attaching names to these
objects in such a way that given names can be removed and replaced by others or that
several names can be viewed simultaneously.

The basic model proposed here is to identify the rational numbers with marked points
on a large fixed line. (A larger model can be printed on a strip of wood or plastic and
is to remain at the front of the classroom throughout this “unit” of instruction.) Above
equally spaced points that are marked on that line, the numerals 0,1, . . . ,12 should be
marked. Between each successive pair of the points thus numbered, there should be 120
marked points (equally spaced), unnumbered. (These 120 points will become useful in the
activities to be designed when a detailed curriculum is developed.) In addition to this fixed
number line, students can use clear plastic strips printed with various fractions having
denominator d , for d = 1,2,3,4,5,6,8,10,12,15,16,20; each of these strips may be
placed on pegs, by the large number line in such a way that the fractions indicate the
appropriate marked points on the large fixed number line. (For d = 1, . . . ,5, all fractions
up to 12d/d can be indicated; for d > 5, some regular selection of all fractions should be
made to avoid clutter. It is desirable that two (or possibly more) of these “naming strips”
can be simultaneously adjoined in such a way that two (or more) names for certain points
can be viewed together.) Figure 1 illustrates the basic fixed line and a few strips. A good
supply is needed of unmarked strips of various lengths that can be fitted (possibly into a
slot attached to the number line) in such a way that both of the strips lie opposite marked
points on the basic line. (Smaller models of some of this equipment should be available
in the form of kits for use by individual students).
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Fig. 1 Basic fixed number line and a few strips

2.2 Pair II: Axiomatic Method 2 and Pedagogical Comments

Axiomatic Method 2

Presupposed: Logic, sets, theory of P .
Undefined: Set Q, with binary operation /.

1. Axioms:
i. P ⊂Q, and / maps P × P into Q (i.e., Q is closed under /.)

ii. For all a ∈ P , a/1= a.
iii. For each x ∈Q, there exist a, b ∈ P such that x = a/b. (All elements of Q are in

the range of operation /.)
iv. For any a, b, c, d ∈ P , we have a/b= c/d iff a · d = b · c.

2. Lemma: If a, b, c, d, a′, b′, c′, d ′ ∈ P , b/a = b′/a′, and d/c = d ′/c′, then also (b ·
d)/(a · c)= (b′ · d ′)/(a′ · c′) and (b · c+ a · d)/(a · c)= (b′ · c′ + a′ · d ′)/(a′ · c′).
(This lemma is needed for the following definition. This point is clarified below.)

3. Definition: We define the binary operations +Q, and ·Q on Q by the rule that for any
x, y ∈Q, we find a, b, c, d ∈ P with x = b/a and y = d/c (by Axiom 1.iii) and set

x ·Q y = (b · d)/(a · c)
and

x +Q y = (b · c+ a · d)/(a · c),
which is justified by Lemma 2.
There is a difficulty with this definition. We could have x = b′/a′ and y = d ′/c′, as
well as having x = b/a and y = d/c, and could have a′ �= a, b′ �= b, c′ �= c, d ′ �= d .
What if we then found that (b′ ·d ′)/(a′ · c′) �= (b ·d)(a · c)? We would not know which
of these two different elements is supposed to be x ·Q y. Our Definition 3 would not be
logically satisfactory. How do we overcome this difficulty? Lemma 2 is the remedy.
Further, we set 1Q = 1, Q= (Q,+Q, ·Q,1Q).
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Fig. 2 A model reflecting the
4 axioms of Axiomatic
Method 2. Note: The origin is
at (1,1) to reflect Axiom 1.ii

4. Theorem: Q is an extension of P . (Cf. Pair I, Axiom 1a.) Let P ⊂ Q and for all
x, y ∈ P , x +Q y = x + y; x ·Q y = x · y (notice that this result was taken as Axiom
1a in Pair I, and in this pair, we can prove it).

5. Further development: We could demonstrate as theorems each of the laws ii–v that
were used as Axioms in Pair I. Thereafter, the development indicated in that the system
can naturally be copied in this one.

Pedagogical Comments to Axiomatic Method 2

The essence of Axiomatic Method 2 is a transformation of P ×P toQ. This has the most
significant bearing on the didactical approach proposed here.

In conjunction with the logical presupposition of logic, set theory, and the theory of P ,
it is assumed here that students are capable of:

a. Matching a point with an ordered pair of numbers in a right-angle coordinate system.
b. Adding of two natural numbers on the number line (climbing a ladder, translation).
c. Multiplication of two natural numbers on the number line (possibly by the model of

stretching).

We seek a pedagogical model in which all four axioms are reflected. Naturally, the
first quadrant comes to mind. However, we need the “origin” at (1,1) in order to reflect
properly Axiom 1.ii. (For all a ∈ P , a/1= a.) (See Fig. 2.)

2.3 Pair III: Axiomatic Method 3 and Pedagogical Comments

Axiomatics Method 3

This is a Radical Version of Axiomatic Method 2.

Presupposed: Logic, sets. (Theory of P not presupposed.)
Undefined: Nonempty set Q with operations +Q, ·Q.
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1. Axioms (partial list, completed in 7 below):
i. For all x, y, z ∈Q:

(x +Q y)+Q z= x +Q (y +Q z);
(x ·Q y) ·Q z= x ·Q (y ·Q z);
x ·Q (y +Q z)= (x ·Q y)+Q (x ·Q z); and

(y +Q z) ·Q x = (y ·Q x)+Q (z ·Q x).
(The latter two are the left and right distributive laws. Of course, we could get one
from the other by using the commutative law for ·Q, but we are not taking that law
as an axiom. We will get that law as a theorem (Theorem 8) but only by taking
both distributive laws as axioms.)

ii. For all x, y ∈Q, there exist u,v ∈Q such that x ·Q u= y and v ·Q x = y.

2. Theorem: There is one and only one u ∈Q such that u ·Q y = y for every y ∈Q; for
this u, also y ·Q u= y.

3. Definition: Let 1Q be the unique u of Theorem 2.
4. Theorem: For each x ∈Q, there is one and only one y ∈Q such that x ·Q y = 1Q;

for this y, we also have y ·Q x = 1Q.
5. Definition: For each x ∈Q, we let x−1 be the unique y of Theorem 4. For all x, z ∈
Q, we set x/z= x ·Q z−1.

6. Theorem: For all x, y, z ∈Q:
i. (x−1)−1 = x;

ii. (xy)− 1= y − 1x − 1;
iii. x/x = 1;
iv. (x/y)−1 = y/x;
v. (x ·Q z)/(y ·Q z)= x/y;

vi. (x/y) ·Q (y/z)= x/z;
vii. (x/z)+Q(y/z)= (x +Qy)/z.
The parts of this theorem express familiar rules for dealing with fractions. The last
one, for example, tells us how to add two fractions with the same denominator. But
where is the general rule for adding any two fractions? Answer: It cannot be proven
from the axioms so far given. At a later point we shall indicate how this can be shown.
We need further axioms.

7. Axioms (completed):
a. If G is any nonempty subset of Q that is closed under +Q and/, then G=Q.
b. Whenever x, y ∈Q and x +Q 1Q = y +Q 1Q, then x = y. (A special case of the

conclusion for +Q.)
c. There exist x, y ∈Q with x �= y. (That is, there exist at least two distinct elements

in our set Q.)

8. Theorem: For all x, y,u, v ∈Q:
i. x ·Q y = y ·Q x;

ii. (x/u) ·Q (y/v)= (x ·Q y)/(u ·Q v);
iii. (x/u)+Q (y/v)= (x ·Q v+Q u ·Q y)/u ·Q v; and x/u= y/v iff x ·Q v = u ·Q y.

Parts ii and iii give the general rules mentioned in the note following Theorem 6.
9. Theorem: Whenever x +Q z= y +Q z in Q, then also x = y.

10. Theorem: For all x, y ∈Q, x +Q y = y +Q x.
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11. Theorem: For all x, y ∈Q, x +Q y �= x.
(The general cancelation law, extending Axiom 7.b. This law expresses the fact that
there is no additive identity element—i.e., no number zero—in this number system.
The theorem allows us to define the order relation < in our system and to develop its
properties.)
Now we come to the definition of the set P of integers, which of course will be a
certain subset of Q.

12. Definition: A subset W of Q is called inductive iff
i. 1Q ∈W , and

ii. whenever x ∈W , then also x +Q 1Q ∈W .

We define P to be the intersection of all inductive sets, that is, for any x ∈Q, we put
x ∈ P iff we find that x ∈W for every inductive set W .

13. Theorem: P is itself inductive.
14. Theorem: P is closed under +Q and ·Q.
15. Definition: We take + and · to be the restrictions to P of +Q and .Q respectively.

We set 1= 1Q and P = (P,+, ·,1).
16. Theorem: For every x ∈Q, there exist a, b ∈ P with x = a/b.
17. Metatheorem: If (Q,+Q, ·Q) and (Q′,+Q′ , ·Q′) are any systems satisfying Axioms

1.i–1.ii and 7.a–7.c, then they are isomorphic.

Pedagogical Comments to Axiomatic Method 3

The essence of this Radical Version is that without presupposing P , we create Q through
five axioms as a field with an inductive minimal set P .

Presupposed knowledge: Logic & sets only.
Since the knowledge of natural numbers is not presupposed, one could consider teach-

ing this unit at a very early age (1st grade, for example) as a first introduction of numbers
in a more general mode of presentation than usually done. The following pedagogical
discussion is taking a different stand. A unit can be aimed at the 4th or 5th grade. That
is to say, when the children had already mastered the four operations in natural numbers
(+,−, ·,÷), and these will serve as a background knowledge. However, this knowledge
will not be directly used in the presentation of the positive rational numbers.

One can use the number line as a model for presenting the rational numbers. Here is a
suggestion as to how to place them on the number line, and how to present the operations
with those numbers, whose presentation was associated with the number line.

For placing the numbers on the line, an apparatus is to be built, comprised of the
following (see Fig. 3):

• Three identical number lines (the standard number-lines), in the following manner:
The x-scale which is horizontal; the y-scale which is perpendicular to the x-scale at
the starting point 0; and the U-scale which is perpendicular to the x-scale at a special
point U (later on to be known as 1);

• A movable pointer attached to the starting point 0, which will represent ·Qu (“multi-
plied by u”);

• A rectangular “reader” that will assist to read the corresponding numbers on the x-scale
and on the y-scale.
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Fig. 3 An apparatus for learning about the positive rational numbers via reflecting Axiomatic Method 3

Fig. 4 The two steps procedure for finding the product of a ·Q b

For every point x on the x-scale, we allocate y on the y-scale for which x · y = 1 using
the unit rectangle that is formed by drawing a line parallel to the unit line and the y-scale.
The diagonal of this rectangle crosses the unit line at the desired value of y (marked 1/x)
(see Fig. 3).

The same apparatus can be used to illustrate the product x.Qu= y. Figure 4 illustrates
the two-step procedure for finding c, the product of a ·Q b:

i. Find the point b on the U-scale and adjust the movable pointer to pass through b. (You
have thus received the presentation of ·Qb.)

ii. Take the rectangular reader and read, on the y-scale, the point that corresponds to
point a on the x-scale. This point is c such that a ·Q b= c.
For addition (+Q), two parallel number lines can be used, with identical scale, per-

forming translation of one of them in relation to the other, in order to arrive at the number
c that is the sum of any two numbers a and b (see Fig. 5).

Thus, the interpretation (reading) of the scheme x +Q y = z using this model will go
as follows: to add b to a, put scale II so that its 0 (starting point) will coincide with a.
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Fig. 5 Sliding identical scales for finding the sum of a +Q b

Then, read the sum on scale I as the dot that corresponds to b on scale II. This method
can be used for any x, y ∈Q.

2.4 Pair IV: Definitional Method 1 (Classical) and Pedagogical
Comments

Definitional Method 1

Outside of logic, sets, theory of P , there are no undefined terms in this theory of Q
since we shall define every term we need. That is why we call this a definitional method.
Undefined terms are needed when we give an axiomatic foundation for a theory.

Presupposed: Logic, sets, theory of P .

1. Definition: Let X be the set of all ordered pairs (a, b) such that a, b ∈ P . Let E be
the binary relation on X such that (a, b)E(c, d) iff a·d = b· c.

2. Lemma: E is an equivalence relation on X. (This equivalence relation E generates
the “equivalent number pairs.”)

3. Definition: For any (a, b) ∈ X, let a/b be the equivalence class of (a, b) under the
relation E.

Let Q be the set of all equivalence classes a/b.
Let 1Q be the element 1/1 of Q.

4. Lemma: Suppose that (a, b)E(a′, b′) and (c, d)E(c′, d ′). Then also (a· c, b·d)
E(a′· c′, b′·d ′) and (a·d + b· c, b·d)E(a′·d ′ + b′· c′, b′·d ′).

5. Definition: For any a/b and c/d of Q:

Let (a/b)·Q (c/d)= (a· c)/(b·d) and (a/b)+Q (c/d)= (a·d + b· c)/(b·d).
Let Q= (Q,+Q, ·Q ,1Q).

6. Theorem: For all x, y, z of Q:
i. x·Q y = y·Q x and x +Qy = y +Q x.

ii. Associative laws for +Q, and ·Q
iii. x·Q (y +Q z)= (x·Q y)+Q (x·Q z).
iv. x·Q 1Q = x.
v. x +Q y �= x.

vi. If x·Q z= y·Q z, then x = y, and similarly for +Q.

7. Theorem: For all x, y of Q, there is one and only one z of Q, such that

x·Q z= y.
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8. Definition: For any two equivalent classes x, y of Q, let y//x be the unique z of Q
such that x·Q z= y. Thus, x·Q (y//x)= y. (We thereby generate a new equivalence
class of pairs of elements of Q.)

9. Theorem: For any x, y, z, t ∈Q:
i. (x//y)·Q (z//t)= (x·Q z)//(y·Q t).

ii. (x//y)+Q (z//t)= (x·Q t +Q y·Q z)//(y·Q t).
iii. x//x = 1Q and x//1= x.
iv. (x·Q z)//(y·Q z)= x//y.
v. (x//z)+Q (y//z)= (x +Q y)//z.

vi. (x//y)·Q (y//x)= 1Q.

10. Theorem: If G is any nonempty subset of Q that is closed under // and +Q, then
G=Q.

11. Definition: Let h be the function mapping P into Q such that, for any a ∈ P ,
h(a)= a/1.
This definition and the theorems that follow are needed because unlike the situa-
tion in the axiomatic foundations of Pairs 1, 2, and 3, in this treatment, Q is not an
extension of P . In particular, P is not a subset of Q. The situation is more com-
plicated: Q has a subset that is an isomorphic copy of P . Thus, in Q, we have the
equivalence class of all pairs (x, x)—for all x ∈ P—representing the number 1. The
mathematician would say: “We ‘identify’ this equivalence class with the integer 1.”
To be precise, we are using the isomorphism h of Definition 11 as this “identifica-
tion” operation. In schoolrooms, the distinction between the integer 1 and the ratio-
nal number 1 is usually overlooked. This makes everything easier—even if, strictly
speaking, it is not logically correct in the Definitional Foundation of Pair IV. But it
is logically correct in the preceding axiomatic foundations, where the set P is lit-
erally a subset of Q, and the number system Q is an extension of the number sys-
tem P .

12. Theorem: h is an isomorphism of P intoQ, that is, h is one-one, h(l)= 1Q, and for
all a, b ∈ P , h(a·b)= h(a)·Q h(b) and h(a + b)= h(a)+Q h(b).

13. Theorem: For all a, b ∈ P , h(a)//h(b)= a/b.

Pedagogical Comments to Definitional Method 1

The classical definitional method is essentially based upon forming equivalence classes
of quotients in P , where quotients are ordered pairs of elements in P , including those
having 1 as “denominator”. In Definition 11, h is the function that identifies the positive
integers with the (positive) rationals possessing 1 as a denominator (and their equivalent-
rationals).

Cuisenaire Rods are suggested as the concrete materials to exemplify the notions of
ordered pairs. In many cases, students had previous experience with Rods while learn-
ing about P . An ordered pair of numbers can be defined following C. Gategno2 as the
arrangement of two Rods one on top of the other, end to end.

2For example, Molly Silha (1997) Learn Fractions with Cuisenaire Rods. http://teachertech.rice.
edu/Participants/silha/Lessons/teacher.html (retrieved June 2013).

http://teachertech.rice.edu/Participants/silha/Lessons/teacher.html
http://teachertech.rice.edu/Participants/silha/Lessons/teacher.html
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Fig. 6 A pair of rods can
exemplify a relation in which
the one on top in the pair is
measured in length in
comparison to the bottom one

Fig. 7 The relation “to be
twice the length of” can be
fulfilled by many pairs of rods

In order to distinguish between the two positions, one can assign different roles (and
names) to the different positions. Let the top position of the pair be “The measured Rod”
in that binary relation, and let the bottom position be “The Measure Rod,” and the pair
therein is (measured, Measure) or (m,M). The idea behind this naming is that one should
refer to that ordered pair as a relation. The two numbers (or rods) stand in some relation
to each other.

Thus, a pair of rods will exemplify a relation in which the one on top in the pair is
measured in length in comparison to the bottom one (see Fig. 6). Clearly, the order in
(m,M) must be maintained so that we know which one serves as a Measure, and which
one is going to be measured.

To reflect Definition 1, notice that the relation “to be twice the length of” can be ful-
filled by many pairs of rods, for example, see Fig. 7.

It is then interesting to find a decision rule that will help us see which ordered pairs
(a, b) fulfill “a is twice than b.” This will be of more interest for pairs in which we
cannot intuitively grasp the number that states the relation between the measured m and
the measureM as a whole number. For example, do (7,8) and (9,10) belong to the same
relation?

Let us return to the (a, b) relation
“a is twice the length of b” (I)
in contrast to (c, d), where the relation is
“c is three times the length of d” (II).
Students will be asked to provide numerical examples for ordered pairs (a, b) as de-

fined in (I) (Answers: (2,1), (12,6), (100,50), . . .) and also examples for ordered pairs
(c, d) as defined in (II) (answers: (3,1), (90,30), (12,4), . . .). This will reflect Lemma 2
(see above) since there are many ordered pairs that belong to a given relation. Students
need to realize that these are equivalent ordered pairs.

This also leads to an exemplification of Definition 3 for E as the binary relation on
X such that (a, b)E(c, d) iff ad = bc. Starting with two ordered pairs that are known to
belong to the same relation, for example, (3,1) and (6,2) or (3,1) and (12,4), students
can try to multiply The Measured of one pair with The Measure of the other pair and “see”
the equality (3× 2= 1× 6 or 1× 12= 3× 4). This can be generalized and demonstrated
(see Fig. 8): If two ordered pairs (m1M1) and (m2,M2) are equivalent, then they imply
the following equivalence: m1M2 =M1m2.
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Fig. 8 Rod demonstration of the statement: if two ordered pairs (m1,M1) and (m2,M2) are equivalent,
then they imply: m1M2 =M1m2

2.5 Pair V: Definitional Method 2 (Nonclassical) and Pedagogical
Comments

Definitional Method 2

Presupposed: Logic, sets, theory of P .

1. Definition: Let F (for Fractions) be the set of all ordered pairs (a, b) such that a, b ∈
P , b �= 1, and a, b are relatively prime. Let Q= P ∪ F .
Notation: We write a/b for (a, b) when the latter is in F .
Assumption: Our theory of P is such that P ∩ F = ∅.
This assumption may look strange. The point is that when we say that we are presup-
posing the theory of P , we mean that we assume knowledge of the correct mathemati-
cal statements in the theory of positive integers, such as commutative laws, 1+ 1= 2,
etc. But this does not tell us exactly what the elements of P are. If, in fact, we are pre-
supposing an axiomatic development of P , so that the elements of P are not defined
in that treatment. So, it is consistent with the theory that one element of P could be a
horse, another a building, and a third one could be the ordered pair of that horse and
that building. It is this that we wish to exclude by making this assumption.

2. Definition: Let a, b ∈ P . In case b is a factor of a, define red (a, b)= a ÷ b (“red” is
a shortcut for “reduced form of,” namely quotient). In case b is not a factor of a, let
g = gcd(a, b) and define red(a, b)= (a÷ g)(b÷ g). Thus, in all cases red(a, b) ∈Q.

3. Definition: We define operations ·Q and +Q on Q by the following rules (for any
a, b, c, d ∈ P ):



Pairing Logical and Pedagogical Foundations for the Theory of Positive Rational 89

i. a·Q c= a.c and a +Q c= a + c.
ii. a·Q (c/d)= (c/d)·Q a = red(a· c, d) and
a +Q (c/d)= (c/d)+Q a = red(a·d + c, d).

iii. (a/b)·Q (c/d)= red(a· c, b·d) and
iv. (a/b)+Q (c/d)= red(a·d + b· c, b·d)
v. Let 1Q be the element 1/1 in Q.

4. Theorem: For all x, y, z of Q,
i. x·Q y = y·Q x and x +Q y = y +Q x.

ii. Associative laws for +Q, and ·Q.
iii. x·Q (y +Q z)= (x·Q y)+Q (x·Q z).
vi. x·Q 1Q= x.
v. x +Q y �= x.

vi. If x·Q z= y·Q z, then x = y, and similarly for +Q.

5. Theorem: For all x, y of Q, there is one and only one z of Q such that

x·Q z= y.
6. Definition: For any two equivalent classes x, y of Q, let y//x be the unique z of Q

such that x·Q z = y. Thus, x·Q (y//x) = y. (We thereby generate a new equivalence
class of pairs of elements of Q.)

7. Theorem: For all x, y, z, t ∈Q,
i. (x//y)·Q (z//t)= (x·Q z)//(y·Q t).

ii. (x//y)+Q (z//t)= (x·Q t +Q y·Q z)//(y·Q t).
iii. x//x = 1Q and x//1= x.
iv. (x·Q z)//(y·Q z)= x//y.
v. (x//z)+Q (y//z)= (x +Q y)//z.

iv. (x//y)·Q (y//x)= 1Q.

8. Theorem: IfG is a nonempty subset ofQ that is closed under // and+Q, thenG=Q.
9. Theorem: a//b= a/b whenever (a, b) ∈ F .

Pedagogical Comments to Definitional Method 2

The difference between this logical foundation and the preceding one is that here we
separate order pairs with 1 as a second component from order pairs in which the two
components are relatively prime and the second component (later to become the denomi-
nator) �= 1. The union of the two sets of order pairs formQ (their intersection is presumed
to be empty). This deductive structure starts with a definition of a set F disjoint from the
presupposed set P (Definition 1). Objects for a pedagogical model should be chosen such
that they can reflect this structure. A possible choice is the unit-“pie” (unit-circle) model.
The theory of P is presupposed, and thus it is advisable to assume that students are fa-
miliar with adding whole unit-“pies” and multiplying unit-“pies” by a positive integer.
Sections of the unit-“pie” will represent ordered pairs in F where a = 1 and b is any
integer greater than 1. For example, we define the ordered pair (1,7) as one section of a
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Fig. 9 The ordered pair
(1,7) as one section of a
unit-“pie” cut into seven
equal parts

unit-“pie” that was cut into seven equal parts. The visual model is that of a full unit-circle
with a shaded section, the size of which is determined by b (see Fig. 9).

Ordered pairs (a, b) in F for which a �= 1 will be constructed through duplication of
the unit fractions; for example, (3,7) will be perceived as three unit-circles, each with a
marked section of (1,7) to reflect the 3 divided by 7 (see Fig. 10).

This is consistent with the definition of multiplication in the logical foundation (see
Definition 3ii), where 3·Q (1,7) = (3.1,7) = (3,7). Now, naming nonreduced fraction
can be taught through arithmetical considerations based upon the presupposition of full
knowledge of the theory of P . That is, for instance, the ordered pair (6,8) equals
(3,4) because previous knowledge shows that 2 is the g.c.d. of 6 and 8. Thus, (6,8) =
(6 ÷ 2,8 ÷ 2) (see Definition 2). This can also be demonstrated by the unit-pie model
using transparent (1,8) sections and superimposing six of them in three pairs on three
(1,4) sections. To demonstrate how (2,3) is multiplied by 4, one can duplicate four
times two (1,3) sections of a unit-pie. Obviously, there are eight pies each with a one
third section that is (8,3). A crucial point is the identification of (8,4) with 8 ÷ 4
(see Definition 2, first part). This should also be based upon the presupposed knowl-
edge of basic arithmetic, but it can very elegantly be demonstrated using the unit-“pie”
model, superimposing eight transparent (1,4) in two groups to form two full unit-“pies”
(circles).

Notice that full circles and sections are two disjoint sets (Definition 1 in the mathemat-
ical model), which are combined into the set Q.

As for addition, 3 + (4,7) = (3 × 7 + 4,7) = (25,7), a preparatory exercise should
include the transition from 3 to (3×7,7) through a decomposition procedure in a reversed
order to that described before for the case of (8,4).

Fig. 10 The ordered pair (3,7) can be perceived as three unitcircles, each with a marked section of (1,7)
to reflect 3 divided by 7



Pairing Logical and Pedagogical Foundations for the Theory of Positive Rational 91

3 Closing Remarks

Mathematicians organize mathematical knowledge into deductive theories. Educators or-
ganize it into grade curricula.

The proper relation between these two modes of organization is in dispute. Mathemati-
cians tend to ignore it, and in practice they follow the deductive structure in their college
teaching. Educators range from those who feel that curriculum should closely follow de-
ductive organization to those who feel, at least, with regards to the theory of positive
rational numbers, that recent curriculum development has been strongly popularized at
university level and then worked their way down to the secondary and elementary level.
What is not generally realized, either by mathematicians or educators, is that there is a
wide variety of ways of organizing the theory of positive rational numbers, some of them
very different from those familiar from the literature.

In this paper, five different foundations for this theory are mentioned, some definitional
and others axiomatic, with different “presupposed theories.” Then we consider their rele-
vance to possible ways of developing curricula at several levels.

Hopefully, by examining several ways of introducing ideas related to a given mathe-
matical theory teachers will acquire a basis for critically examining classroom textbooks.
This will allow them to separate out ideas that are often mixed together in such texts. Cur-
riculum developers can also benefit from it since clarifying the foundations and pairing
each way with pedagogical ideas provide curriculum developers with a rich background
and serve as an idea resource. Finally, mathematics educators and cognitive scientists who
do research in this area may be interested in assessing the worth of each of the five system-
pairs or any of their various potential combinations. But first of all let us not forget that
this paper is based upon an unfinished work by Leon Henkin and the pedagogical ideas
expressed in it should be subject to critical consideration and further elaboration by pro-
fessionals in both logic and mathematics-education. Undoubtedly, carrying on such work
would have given Leon Henkin an utmost pleasure.
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Leon Henkin the Reviewer

Concha Martínez Vidal and José Pedro Úbeda Rives

Abstract In this chapter, we intend to look at Henkin’s reviews, a total of forty-six. The
books and papers reviewed deal with a large variety of subjects that range from the al-
gebraic treatment of logical systems to issues concerning the philosophy of mathemat-
ics and, not surprisingly—given his active work in mathematical education—one on the
teaching of this subject. Most of them were published in The Journal of Symbolic Logic
and only one in the Bulletin of the American Mathematical Society. We will start by sort-
ing these works into subjects and continue by providing a brief summary of each of them
in order to point out those aspects that are originally from Henkin, and what we take to
be mistakes. This analysis should disclose Henkin’s personal views on some of the most
important results and influential books of his time; for instance, Gödel’s discovery of the
consistency of the Continuum Hypothesis with the axioms of set theory or Church’s In-
troduction to Logic. It should also provide insight into how various outstanding results in
logic and the foundations of mathematics were seen at the time. Finally, we will relate
Henkin’s reviews to Henkin’s major contributions.

Keywords Leon Henkin · Reviews · Logic systems · Type theory · Metalogic ·
Algebraic logic · Philosophy of logic and mathematics · Mathematical education

1 Introduction

Henkin, at the very least, wrote the 46 reviews we list in Sect. 7. In what follows, we
provide a brief abstract of each of those. The reviews have been organized according to
subjects, and in many cases, we explain the contributions of each of the reviews falling
under each of the epigraphs to the subject in question. In order to track which review
is being summarized where, we will write the number that corresponds to the review in
our Sect. 7 in boldface and the number of the review in the bibliography between square
brackets.

In order to track the relation between Henkin’s contributions and the subject of the re-
views he was given, we have looked at the works by Henkin himself that he quotes in his
reviews. We have also taken into account Monk’s description1 of Henkin’s scientific con-
tributions. And we have tried to catalogue the works reviewed according to contemporary
areas of knowledge.

1See J. Donald Monk [194].
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Note that the Reviews Section in the JSL started with the journal in 1936, and Church
was in charge.2 Henkin’s reviews are part of this project. Henkin was designated as “con-
sulting editor”; that means that he “could simply be assigned that publication which [he
was] obligated to review.” (H.B. Enderton [30, p. 174]) Henkin was consulting editor for
volumes 17 to 23 and 25 to 31, which is from 1952 to 1958 and from 1960 to 1966, re-
spectively. Besides, he was editor with A. Church and M. Black for volume 14, 1949, and
with A. Church, S.C. Kleene and A.A. Lazerowitz for volume 24 in 1959.

According to H.B. Enderton [30, p. 173], a work was to be reviewed if the work was
relevant to symbolic logic independently of its quality. H.B. Enderton quotes different
passages by A. Church in which he explains the reasons for his way of understanding the
Review Section and its role. According to those passages, Church thought that the situa-
tion in mathematical logic was such that results in logic frequently contained errors and
absurdities; hence, he thought that competent workers in the field should indicate which
works were valuable in order to prevent the field from falling into disrepute. Reviewers
were expected to provide an assessment of the work. Henkin’s reviews do satisfy this
requirement, as we shall see below.

All except Henkin’s review of Church’s Introduction to logic were published in The
Journal of Symbolic Logic; Henkin’s review of Church’s book was published in the Bul-
letin of the Mathematical Society. A plausible explanation for this exception could be that
since Alonzo Church was responsible for the Reviews Section in The Journal of Symbolic
Logic, he did not want to ask one of his consulting editors to assess his own work.

2 Logic Systems

Under this heading, we have included those reviews dealing with works on type theory
and metalogic.

2.1 Type theory:

1 (1942) Review [49] of: Maxwell Herman Alexander Newman and Alan Mathison
Turing, “A formal theorem in Church’s theory of types” (1942) [201].

5 (1949) Review [56] of: Stanislaw Jaśkowski, “Sur certains groupes formés de
classes d’ensembles et leur application aux définitions des nombres” (1948)
[149].

24 (1955) Review [81] of: Evert Willem Beth, “Sur le parallelisme logico-mathema-
tique” (1953) [8].

2.2 Metalogic:

4 (1949) Review [57] of: Stanislaw Jaśkowski, “Sur les variables propositionelles
dependantes” (1948) [150].

6 (1949) Review [55] of: Alfred Tarski, A Decision Method for Elementary Algebra
and Geometry (1948) [232].

15 (1952) Review [66] of: Alfred Tarski, A Decision Method for Elementary Algebra
and Geometry (1951) [233].

2See H.B. Enderton [30] for a detailed account of Church as a reviewer. All the information we include
about the issue is taken from Enderton’s work.
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18 (1953) Review [69] of: Burton Dreben, “On the completeness of quantification
theory” (1952) [28].

19 (1954) Review [74] of: Georg Kreisel, “On a problem of Henkin’s” (1953) [157].
23 (1955) Review [83] of: Helena Rasiowa and Roman Sikorski, “On existential

theorems in non-classical functional calculi” (1954) [209].
29 (1955) Review [82] of: Gunter Asser, “Eine semantische Charakterisierung

der deduktiv abgeschlossenen Mengen des Prädikatenkalküls der ersten Stufe”
(1955) [2].

30 (1956) Review [89] of: Jerzy Łoś, “The algebraic treatment of the methodology
of elementary deductive systems” (1955) [167].

31 (1956) Review [90] of: Juliusz Reichbach, “O pełności wȩższego rachunku
funkcyjnego”; Juliusz Reichbach, “O polnoté uzkogo funkcional’nogo isčisléniá”
(Russian translation); Juliusz Reichbach, “Completeness of the functional calcu-
lus of first-order” (English summary) (1955) [210].

2.1 Type Theory

Type theory was first introduced by Bertrand Russell as a solution to the paradoxes in set
theory.

Henkin’s contribution to the development of type theory consisted in his applying—to
the theory of types—the technique of introducing individual constants in order to elimi-
nate quantifiers and then construct a model3—the technique he developed in his proof of
the completeness theorem for first-order functional calculi.4

Moreover, in his “A theory of propositional types” [111], he studies the theory of types
whose only basic type is the propositional type and in which the rest of the types obtain
from this basic one by applying the clause that goes: if α and β are types, then so is
α→ β . He establishes certain constants from which all possible functions for each type
are definable. This work is connected to B. Russell’s logical system in The Principles
of Mathematics [217], with S. Leśniewski’s Protothetic [161] and “Introductory remarks
to the continuation of my article ‘Grundzuge eines neuens systems der Grundlagen der
Mathematik’ ” [162], and with Tarski’s paper “O wyrazie pierwotnym logistyki” [226].

Henkin wrote three reviews on type theory; one (1) [49] has to do with axioms of
infinity, and both the second (5) [56] and third (24) [81] with how to characterize mathe-
matical theories in simple type theory. Henkin’s review on axioms of infinity was his first
review [49]; it is a review of the paper published by M.H.A. Newman and A.M. Turing
1942 “A formal theorem in Church’s theory of types” [201]. Henkin wrote it in 1942, the
same year in which the paper was published. Henkin reports that Newman and Turing
present a result that builds on one by Church about his simple type theory [20]. In that
paper, Church introduces an axiom of “infinity” Yι for type ι and proves—using only ax-
ioms 1 to 8—that if the axiom of infinity Yα for type α holds, then the axiom of infinity
Y(αα)(αα) for type (αα)(αα) also holds; and he claims that Yα does not hold if α contains

3L. Henkin: “The completeness of the first-order functional calculus” [52].
4“Completeness in the theory of types” [59].
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only type ◦. Newman and Türing show, using axioms 1 to 10, that if α contains ι, then
Yα holds. Henkin explains the proof they give, clarifies some of the concepts they use,
mentions the notational simplifications used by the authors, and claims—mentioning a
model (in which axiom 10 holds for type (ιι) and Yα holds only if α is ι or contains type
(ιι))—that axioms 1 to 10 are not sufficient. Henkin raises two problems; namely, whether
axiom 9 and axiom 10 are needed in all types. Finally, he lists a number of errata.5

The other two works reported, though devoted to the same subject, show different wor-
ries. Thus, Henkin [56] reports that Jaśkowski’s “Sur certains groupes formés de classes
d’ensembles et leur application aux définitions des nombres” [149] demonstrates that nat-
ural and real numbers can be defined within the same type6 as functions that have certain
classes of individuals both as values and arguments. The basic concept is that of dual
group or family of classes of sets of individuals with both a negation and an addition op-
eration. The integer number n is the function that links each element of the dual group
with the element that obtains when that element is added n times (and ∅with those that are
not in the group). Proving Peano axioms is easy except for the axiom “zero is not the suc-
cessor of any number,” for which an infinity axiom is needed. By defining an order in each
dual group, rational and real numbers can be identified with certain functions that work
over a dual group with the same order as the continuum. Henkin reports that Jaśkowski
shows that “the continuous groups are those families that arise from a measure function
f defined over sets of individuals, the elements of the group consisting of classes made
up of all sets for which f has a given value [. . . ].” The measure functions f are additive,
but they are not of the usual kind: the whole space has measure zero, and complements
have measures with opposite signs. Henkin points out that in this way Euclides’ idea of
using ratios of line segments is expanded to trade with the reals.

According to Henkin [81], Beth starts his book chapter “Sur le parallelisme logico-
mathematique” [8] briefly describing type theory and then considers various mathematical
theories depending on the number of types needed to formalize them. Beth first consid-
ers the possibility of formalizing elemental geometry in a first-order language (Bernays
mentions in the discussion that the notion of polygon is not first-order formalizable).
He then compares Peano first-order systems with Peano second-order systems. He de-
scribes Henkin’s nonstandard models [59] and mentions that his construction follows
Mostowski’s ideas [197]. Beth also remarks that there is a tendency to substitute higher-
order mathematical theories for their first-order versions.

2.2 Metalogic

Metalogic can be defined as the study of syntactic and semantic properties of logical
systems. As is well known, major developments in the field took place during the first
decades of the 20th century, and Henkin himself made (at least) one major contribution to

5Note that in 1942 Henkin was Church’s student. This review has a strong technical character.
6Pre-existent definitions (the usual ones in the foundations of mathematics) placed natural num-
bers/integers in one type while real numbers were defined as “special sets of integers,” hence they/their
definition belonged in a higher functional type.



Leon Henkin the Reviewer 97

the development of the subject: he provided a proof of the completeness theorem for first-
order logic that resulted in the development of a new method of proof (see Henkin L., “The
completeness of the first-order functional calculus” [52]).7 It so happens that his proof,
not Gödel’s, has been used to teach students how to prove completeness since Henkin’s
proof is much easier to follow than that of Gödel.

As is well known, the search for new proofs for a given theorem is a common practice
in mathematics. The completeness theorem for first-order logic is a clear example of this
practice. Thus, Henkin himself reported in 1953 (18) [69] and 1956 (31) on two other
proofs of this result: Burton Dreben’s proof, published in 1952 “On the Completeness
of quantification theory” [28], and Juliusz Reichbach’s proof, published in 1955 “Com-
pleteness of the functional calculus of first-order” [210]. Reichbach tells us that his proof
comes after Gödel’s and Henkin’s proofs, though he claims it was obtained independently
of those by Robinson [213], Rasiowa and Sikorski [206], Beth [7], Rieger [211], and Łoś
[167]. Dreben’s proof shows, combining results by Herbrand [142] and Gödel [41], that
each quantificationally valid scheme in prenex normal form is provable by means of a
proof in Herbrand normal form. Henkin’s review ends by reporting on Dreben’s diagnosis
about why Herbrand did not draw from his theorem the conclusion that a formula that can-
not be derived in Herbrand normal form is not valid; Dreben claims that Herbrand did not
draw this conclusion because the deduction is nonconstructive. Reichbach uses a method
of proof in which the set of free variables is disjoint from the set of bound variables. This
is what Frege used in his [34] and [36]. Neither the author nor Henkin points out this cu-
riosity, plausibly because it is a curiosity of no consequence for the arguments involved.
Reichbach’s procedure constructs an interpretation for a nonprovable formula α, an inter-
pretation in which α is false. Henkin does not go into the details of this construction, but
gives only its general lines: a maximal set with certain properties is constructed, but the
steps in the construction are not accounted for.

Henkin reported (19) [74], on a paper by Kreisel “On a problem of Henkin’s” [157],
also closely related to completeness issues. Henkin himself [219] posed the problem that
Kreisel tried to solve: “If Σ is any standard formal system adequate for recursive number
theory, a formula (having a certain integer q as its Gödel number) can be constructed
that expresses the proposition that the formula with Gödel number q is provable in Σ . Is
this formula provable or independent in Σ?” Löb solved the problem and published the
solution in 1955 (see his [169]). According to Henkin, Kreisel’s contribution consisted of
showing that the concept that is expressed by the formula can be interpreted in various
ways, and depending on how it is interpreted, the answer to Henkin’s question will vary.
Henkin notes that “[a] clear explication of the concept of that which is expressed by a
formula must be based on an axiomatic treatment of this notion” and further suggests that
such treatment can be done by following what Church said in [22].8

7Works by Henkin that are contributions to the subject are: “Completeness in the theory of types” [59];
“On the primitive symbols of Quine’s ‘Mathematical Logic’ ” [68]; “A generalization of the concept of
ω-consistency” [73]; “On the definitions of ‘formal deduction’ ” (with R. Montague) [195]; “A gener-
alization of the concept of ω-completeness” [92]; “Some remarks on infinitely long formulas” [104];
“An extension of the Craig–Lyndon interpolation theorem” [107]; Logical Systems Containing Only a
Finite Number of Symbols [114], and “Relativization with respect to formulas and its use in proofs of
independence” [116].
8Note that Church wrote a second version of this paper, in which he revised this proposal. Moreover,
Church explains that along the years he doubted the viability of his initial proposal in his 1973 paper
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Henkin recapitulates four papers on another important metalogical issue, the decision
problem. Following Church [24, p. 100, n. 184], we understand the decision problem
“as a general name for problems to find an effective criterion (a decision procedure) for
something, and to distinguish different decision problems by means of qualifying adjec-
tives or phrases.” Hence, in relation to logical systems, we have the decision problem for
provability, the decision problem for validity, and the decision problem for satisfiability.

A solution for a particular decision problem is an algorithm that applied to a partic-
ular instance of the problem, results in a “yes” or “no” answer, depending whether the
specific instance of the considered decision problem has or fails to have the considered
property. For instance, an algorithm that decides about provability would be an algorithm
that results in a “yes” if the considered formula is a theorem or in a “no” if the consid-
ered formula is not a theorem. This algorithm is, of course, nothing but the definition of
a recursive or computable function whose value will be one if there is a solution for the
considered argument and zero otherwise.

Providing an algorithm that gives a yes or no answer for any instance of a problem—
whatever the decision problem is (whether it is the decision problem for provability, valid-
ity, satisfiability, etc.)—counts as a direct way of solving any of these decision problems.
Alternatively, a solution obtains if an algorithm is provided that transforms each instance
of a unsolved decision problem, into an instance of another decision problem for which
there is a known solution. Hence, “[a] reduction of the decision problem (of the pure first-
order functional calculus) consists in a special class Γ of wffs and an effective procedure
by which, when an arbitrary wff A is given, a corresponding wff AΓ of the class Γ can
be found such that A is a theorem if and only if a proof of AΓ is known” ([24, p. 270]).
Hence, in those cases for which there is no general solution, a clear way to go to is look
for some subset B of A for which there is a solution. In other words, logicians try to find
special cases for which there is a solution.

The four works accounted for by Henkin deal with the decision problem for one area
or another. In particular, the first, Jaśkowski, S. “Sur les variables propositionelles depen-
dantes” [150], offers a reduction to a particular case for first-order decidability. The sec-
ond and third, respectively the first and second editions of Tarski’s A Decision Method for
Elementary Algebra and Geometry [232], offer a procedure to decide whether a statement
of algebra and elementary geometry is or is not true by using the technique of quanti-
fier elimination. Finally, the fourth work by H. Rasiowa and R. Sikorski—“On existential
theorems in non-classical functional calculi” [209]—presents a reduction of the decision
problem for a set of statements of intuitionistic functional logic into the decision problem
for intuitionistic propositional logic.

Henkin (4) [57] summarizes Jaśkowski’s method to reduce the decidability problem
for first-order logic to the decidability problem for certain systems I and II when certain
conditions are obtained. Those conditions are that there are only three variables and a
propositional variable that play the role of a predicate with three arguments in those sys-
tems. Henkin points out that Jaśkowski’s results are obtained only if the theorems in I are
defined as the theorems that are obtained from theorems in the first-order calculus, but
not from formulas that are not first-order theorems. In this case, I and II are equivalent.

“Outline of a revised formulation of the logic of sense and denotation (Part I)” [25] what he takes to be
an adequate proposal. The next year, Church published the second part [26], and in 1993, he published an
alternative formulation [27].
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Henkin claims that if theorems in system I are obtained—as Jaśkowski sustains—from
homogeneous theorems9 in first-order logic, then a formula in system I is a theorem in I
if and only if a tautology is obtained when quantifiers are eliminated. But, in that case,
theorems in I would be decidable, contrary to what Jaśkowski claims when he says that
the decision problem for first-order logic reduces to the decision problem in I. That is why
Henkin modifies the definition in system I claiming that its theorems are obtainable from
theorems in first-order logic and that there is no first-order formula that is not a theorem
from which a formula in system I is obtained. We believe that Henkin is wrong. Take,
for instance, the formula ∃x0Px0 → ∀x0Px0 from which the formula ∃x0p→∀x0p is
obtained; the latter, according to Henkin’s criterion, would be a theorem in I because af-
ter removing quantifiers and variables a tautology, p→ p, is obtained. Henkin mentions
that the author defines other systems, one of which he intends to use for modal logic; but
Henkin considers this system, which is not really a logic since no effective criterion for
deducibility is given.

According to Henkin (6) [55] and (15) [66], Tarski’s very well edited book [232] pre-
cisely and profusely describes, and proves the validity of a decision method obtained by
Tarski himself in 1930. The decision method is applied to a system of elementary algebra:
its sentences are constructed with connectives and quantifiers from equations and inequa-
tions of polynomials in real variables whose coefficients are 1, −1, and 0. The method
decides whether a given statement expresses a proposition that is true according to its
standard interpretation. A method for axiomatizing the system is given, and it is related to
the decision method. Indications are provided about how to extend it to elemental theories
in Euclidean and projective geometry. He uses the method of quantifier elimination that
was introduced by Löwenheim [170]. The review of the first edition ends listing a number
of errata. The review for the second edition [233] reports that: (i) errata in the first edition
have been corrected; (ii) contents have been enlarged and applications expanded.

Henkin’s review (23) [83] of Rasiowa and Sikorski’s [209] “On existential theorems in
non-classical functional calculi” notes that they build on a previous result by McKinsey
and Tarski [189]; the latter proved a fact that Gödel had established though not proved
[43]. The fact is that if a disjunction σ ∨ τ is provable in an intuitionistic propositional
calculus S, then σ is provable in S or τ is provable in S. Rasiowa and Sikorski, using their
algebraic treatment of the notion of satisfaction [208] and McKinsey and Tarski’s line
of proof, extend the result showing that if ∃xσ is provable in a first-order intuitionistic
system S∗, then some formula σ ′—obtained from σ by substituting for all occurrences
of x occurrences of a free variable y—is also provable in S∗. They also establish that
a formula in S∗ without quantifiers is provable in S∗ if and only if it is an instance of
some theorem of S. Then, since there is a decision method for S, they infer that there is
a decision method for the class of formulas that can be put in prenex normal form. They
claim that this last result can be applied more generally to the class of formulas in which
no quantifier occurs under the scope of a negation or implication. Finally, Henkin claims
that analogous results are obtainable for positive, minimal, and Lewis’ calculus and also
for the rest of the calculi addressed by the authors in [208].10

9Homogeneous theorems are homogeneous formulas that are derivable from axioms using the inference
rules in the system, and a formula is homogeneous if only predicates with the same number of variables
and in the same order occur in it.
10This review could have also been included in Sect. 3.1 “Algebraic treatment of logic systems.”
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Finally, Henkin assesses two papers devoted to the analysis, at the abstract level, of
logical consequence operations: (29) [82] Asser’s “Eine semantische Charakterisierung
der deduktiv abgeschlossenen Mengen des Prädikatenkalküls der ersten Stufe” [2] and
(30) [89] Łoś’s “The algebraic treatment of the methodology of elementary deductive
systems” [167].

Asser analyzes the logical consequence formal relation that holds between sets of for-
mulas X and certain formulas H . Henkin remarks that Asser fails to quote other works
in which the same issue is dealt with (for instance, Henkin [58] and Rasiowa–Sikorski
[208]). The consequence relation, Abl, is such that XAblH complies with the following
conditions:

1. If H ∈X, then XAblH ;
2. If X1 ⊆X2, and X1AblH , then X2AblH ;
3. If Cn(X)= {H |XAblH } and Cn(X)AblH1, then XAblH1;
4. IfH1 is a substitution instance for bound variables, free individual variables, and pred-

icate variables in H and XAblH , then XAblH1.

Moreover, Asser considers a very general semantic interpretation for well-formed formu-
las. The models used by Asser for formulas H are formed by a set M of truth values, a
set M0 ⊂M of designated values, functions associated with connectives, functions that
assign an element in M for each subset of M associated with each quantifier, an arbitrary
set J over which individual variables range, and for each n-ary predicate nonempty set Bn
as a range for n-predicate variables whose elements are functions that assign an element
inM to each n-tuple of elements in J . The main result is that for each set of well-formed
formula X that is closed under the relation Abl, there exists a model μ such that X is
precisely the class of valid formulas with respect to μ. The construction of μ is one by
Lindenbaum.

Henkin says that Łoś provides “a comprehensive account of the principal results con-
cerning elementary deductive systems” since (1) he studies axiomatically the formal con-
sequence relation introducing it in Tarski’s way in [227] and [228]; (2) Łos proves Gödel’s
theorem [41]—each consistent set of formulas is simultaneously satisfiable—by means
of maximally O-consistent sets and forming the corresponding Lindenbaum algebra (see
Tarski [228]); (3) he extends this result to the first-order case by applying the quantifier
elimination method through introducing new functional signs (something that had pre-
viously been done by Skolem [221] and Hilbert and Bernays [146]); (4) by introducing
nondenumerable sets of constants (compare to Henkin [52]), Łos deduces Tarski’s gen-
eralization of the Skölem–Löwenheim theorem [220] and [222]; (5) using Robinson’s
“complete diagrams” [213] or the complete description of a model by means of constants
(Henkin [71]), he deals with the extension of models establishing that “each ordered set
can be extended to a densely ordered one”; (6) he introduces systems that consist of the
consequences of a set of universal statements whose models constitute what Tarski [235]
called a universal class and independently shows the theorem by Tarski “that . . . an arith-
metical class is universal if and only it is closed under formation of submodels”; (7) he
treats the notion of categoricity in power that he had previously studied in his [166] and
gives a proof of Vaught’s theorem [237]—a system without finite models that is categori-
cal in some (infinite) power has to be complete; (8) he proves Skolem’s result [222]—the
system of all true statements of elemental number theory is not categorical in ℵ0—and
constructs, by a process similar to Henkin’s [59], a nonstandard model pointing out that
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the order relation over this model is not well ordered (it is of type ω + (ω∗ + ω)η (see
Henkin [59]).

3 Algebraic Logic

According to what Andréka, Németi, and Sain11 say, we organize this section as follows.

3.1 Algebraic treatment of logic systems:

3 (1948) Review [50] of: John Charles Chenoweth McKinsey and Alfred Tarski,
“Some theorems about the sentential calculi of Lewis and Heyting” (1948) [189].

7 (1949) Review [54] of: Andre Chauvin, “Structures logiques” (1949) [19].
8 (1949) Review [53] of: Andre Chauvin, “Généralisation du théorème de Gödel”

(1949) [18].
9 (1950) Review [60] of: László Kalmár, “Une forme du théorème de Gödel

sous des hypothèses minimales” (1949) [153]; László Kalmár, “Quelques formes
générales du théorème de Gödel” (1949) [152].

17 (1953) Review [70] of: Helena Rasiowa, “Algebraic treatment of the functional
calculi of Heyting and Lewis” (1951, pub. 1952) [205].

22 (1955) Review [84] of: Helena Rasiowa and Roman Sikorski, “Algebraic treat-
ment of the notion of satisfiability” (1953) [208].

28 (1955) [85]: Ladislav Rieger, “On countable generalised σ -algebras, with a new
proof of Gödel’s completeness theorem” (1951) [211].

39 (1959) Review [99] of: Louis Nolin, “Sur l’algebre des predicats”; Andrzej
Mostowski, Jean Porte, Alfred Tarski, Jacques Riguet, “Interventions” (1958)
[202].

42 (1963) Review [110] of: Antonio Monteiro, “Matrices de Morgan caractéristiques
pour le calcul propositionnel classique” (1960) [196].

44 (1967) Review [115] of: Marshall Harvey Stone, “Free Boolean Rings and Alge-
bras” (1954) [223].

45 (1971) Review [118] of: Maurice L’Abbé, “Structures algébriques suggérées par
la logique mathématique” (1958) [158].

46 (1971) Review [117] of: Marc Krasner, “Les algèbres cylindriques” (1958) [156].

3.2 Applications of logic to algebra:

14 (1952) Review [65] of: Abraham Robinson, On the Metamathematics of Algebra
(1951) [213].

11“Algebraic logic can be divided into two main parts. Part I studies algebras which are relevant to
logic(s), e.g. algebras which were obtained from logics (one way or another). Since Part I studies al-
gebras, its methods are, basically, algebraic. One could say that Part I belongs to ‘Algebra Country’.
Continuing this metaphor, Part II deals with studying and building the bridge between Algebra Country
and Logic Country. Part II deals with the methodology of solving logic problems by (i) translating them
to algebra (the process of algebraization), (ii) solving the algebraic problem (this really belongs to Part I),
and (iii) translating the result back to logic. There is an emphasis here on step (iii), because without such
a methodological emphasis one could be tempted to play the ‘enjoyable games’ (i) and (ii), and then for-
get about the ‘boring duty’ of (iii). Of course, this bridge can also be used backwards, to solve algebraic
problems with logical methods.” (Hajnal Andréka, Istvan Németi, and Ildikó Sain [1, p. 133].)
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25 (1955) Review [79] of: Abraham Robinson, “Les rapports entre le calcul déductif
et l’interprétation sémantique d’un système axiomatique”; Evert Willem Beth,
Luitzen Egbertus Jan Brouwer, Abraham Robinson, “Discussion” (1953) [215].

27 (1955) Review [80] of: A. Chatelet, “Allocution d’ouverture” (1953); (3) Luitzen
Egbertus Jan Brouwer, “Discours final” (1953); (4) Abraham Robinson, “On ax-
iomatic systems which possess finite models” (1951) [212].

33 (1957) Review [94] of: Kaarlo Jaakko Hintikka, “An application of logic to alge-
bra” (1954) [147].

37 (with Andrzej Mostowski) (1959) Review [136] of: Anatolı̌ Ivanovič Mal’cév,
“Ob odnom obščém métodé polučéniá lokal’nyh téorém téorii grupp” (On a gen-
eral method for obtaining local theorems in group theory) (1941) [181]; Anatolı̌
Ivanovič Mal’cév, “O prédstavléniáh modéléj” (On representations of models)
(1956) [182].

3.1 Algebraic Treatment of Logic Systems

Henkin himself made major contributions to the development of the algebraic treatment
of logic systems. Namely, his results on cylindric algebras (see below) and his “The com-
pleteness of the first-order functional calculus” [52], “An algebraic characterization of
quantifiers” [58], “Completeness in the theory of types” [59], and “Some interconnec-
tions between modern algebra and mathematical logic” [71].

Henkin wrote thirteen reviews of various works in this field: three (3), (17), (22) about
works dealing with the algebraic treatment for intuitionistic calculus and modal calculi;
five on algebras related to classical logic (polyadic algebras (39); two on cylindric algebras
(45), (46); two on Boolean algebras (44), (28)); one on logical matrices (42), and three
approach algebraic structures suggested by Gödel’s incompleteness theorems (7), (8), (9).

“Over a period of three decades or so from the early 1930’s there evolved two kinds of
mathematical semantics for modal logic. Algebraic semantics interprets modal connec-
tives as operators on Boolean algebras. Relational semantics uses relational structures,
often called Kripke models” (R. Goldblatt [39, p. 1]).

The first substantial algebraic analysis of modalized statements was carried out by
Hugh MacColl, in a series of papers that appeared in Mind between 1880 and 1906 under
the title Symbolical Reasoning.12 Some time later, in 1938, the first topological interpre-
tations for modal and intuitionistic logics developed by Tsa-Chen Tang [225] and Tarski
[231], respectively, saw the light. The three works reported by Henkin we will summarize
next belong to this area.

In 1948 (3) [50], Henkin reviews a 1948 paper “Some theorems about the sentential
calculi of Lewis and Heyting” by McKinsey and Tarski [189]. In this paper, starting from
the syntactic similarity between the axioms in certain logics and the axioms in the theory
of point topology, the authors apply the techniques developed by them in [185–187],
and [188] to the analysis of logic S4 and its Lewis’ extensions (S5 among them) [164]
and to Heyting’s intuitionistic logic [145]. Henkin enhances the following results: a new
axiomatization for S4 without a substitution rule is given; a matrix with a designated

12See [171–177], and [178].
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element satisfies the axioms in S4 and modus ponens if and only if it is a closure algebra
with operations ·, −, and C corresponding, respectively, to ∧, ¬, and ♦, with 1 as a
designated element; if α is deducible in S4, so is ¬♦¬α (Gödel [43] just stated it without
proof). They also establish that there are extensions for S4—S5 for instance that satisfy
this property, whereas the characteristic matrix for those extensions that do not satisfy
the property is to have two designated elements; if �α ∨ �β is derivable in S4, then
either α or β is derivable in S4 (it does not hold in S5); they introduce the notion of
reducibility and prove that neither S4 nor S5 is reducible (they generalize a result by
Dugundji [29]); the class of matrices that satisfy the axioms in Heyting’s calculus and
detachment (logic I) and have just one designated element is the class of Brouwerian
algebras isomorphic to a system of closed sets of some topological space; logic I satisfies:
if α ∨ β is derivable, then so is α or β; there are infinite nonequivalent formulae that
contain a unique variable; and the logic is not reducible. Finally, they describe effective
applications f from intuitionistic formulas to formulas in S4 in such a way that a formula
ϕ is derivable in I if and only if f (ϕ) is derivable in S4. Henkin considers the paper to
be too condensed, without indications for proofs and with cumbersome symbolism. This
paper is a key for the next two reviewed by Henkin.

In 1953, Henkin reviews (17) [70] “Algebraic treatment of the functional cal-
culi of Heyting and Lewis” by Rasiowa [205]. In her paper, Rasiowa generalizes re-
sults obtained by McKinsey and Tarski [189] on modal and intuitionistic proposi-
tional logic, and she solves a problem posed by Mostowski [198]. Mostowski showed
that Heyting’s intuitionistic functional calculus [143] can be interpreted in a model
(I,B), where I is a set, and B is a complete Brouwerian lattice. Then, he asked
whether there is a particular model (I0,B0) in which all nonderivable formulas take
a value different from zero, while derivable ones take 0. This question has a posi-
tive answer for classical calculus as Gödel showed [41] and was partially answered
by Henkin [59]. But Rasiowa provides the definite answer for intuitionistic calculus
by using McKinsey and Tarski’s results [188], and MacNeille’s [179] and McKin-
sey’s [185] methods. She also shows that system S4 by Lewis and Langford [164]
is complete with relation to models (I,C), where C is a closure algebra. Henkin
ends the review pointing out that the relation between the modal calculus consid-
ered by Rasiowa and those considered by Barcan [3] and Carnap [16] is not clari-
fied.

Henkin (22) [84] comments on “Algebraic treatment of the notion of satisfiability” by
Rasiowa and Sikorski [208]. The authors study the algebraic interpretation for first-order
calculi proposed by Mostowski [198] as a generalization of the algebraic interpretation
of propositional calculus developed by Tarski and McKinsey [189]; part of this work
presents previous results by them [205, 206], and [207]. In it, they consider systems S∗
that obtain from adding axiom schema and quantification rules to a propositional calcu-
lus S, where S contains “positive logic” and, possibly, more connectives, and which is
closed under modus ponens and replacement. An algebraic structure or S-algebra that
includes an ordering relation (that corresponds to the conditional) is associated (as an
interpretation) with each system S, and, if the logic is complete in relation to the order
defined, then the algebra is called “S∗-algebra.” An S∗-algebra together with a set J of
“individuals” is a model for the system. The main result presented is that for systems S
that comply with property E (that is, systems that can be embedded in an S∗-algebra in
a way in which an arbitrarily given sequence of sums and products is preserved), the fol-
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lowing requisites on a formula α in S∗ are equivalent: α is provable in S∗; α is valid (it
takes as a value only the unit element of the S∗-algebra A for all interpretations (J,A));
α is valid for all interpretations (N,A); α is valid in the model (N,L∗), where L∗ is
any complete extension of the “Lindenbaum algebra” L of S∗. (Feferman in his revision
[31] of [206] claims that this name is not appropriate because it had been used previ-
ously by Tarski [228].) Later on, they apply all these results to the classical functional
calculus—as they had done in [206] and [207]—then to intuitionistic and Lewis’ logics
(analogously to what they had done in [205] but this time using Heyting algebras instead
of Brouwerian algebras). They end by describing a transformation ψ of intuitionistic for-
mulae into modal formulae; they also show that a formula α is provable if and only if
ψ(α) is provable (analogous to the result that Tarski and McKinsey [189] obtained for the
propositional calculus). Henkin considers the authors have given up a possible general-
ization without advantage; this can be seen after analyzing his treatment of implicational
logic [58]. Finally, Henkin poses an unresolved problem: do the S-algebras considered
by the authors satisfy condition E? Henkin believes that it will be a difficult question to
answer.

Henkin (39) [99] reviews in 1959 Nolin’s algebraic version of first-order logic [202]
“Sur l’algebre des predicats” (1958). Nolin introduces a calculus that is similar to Halmos’
polyadic algebras,13 except that it divides the universe of discourse into separate types and
uses nonindependent primitive notions.

Henkin devoted many of his works to the study of cylindric algebras;14 in fact, he
can be considered as one of the authors that contributed most to the development of the
field. These algebras, together with polyadic algebras, are to first-order logic like Boolean
algebras are to propositional logic.15

Henkin published two reviews of works on Cylindric Algebras in 1971: L’Abbé’s [158]
“Structures algébriques suggérées par la logique mathématique” and Krasner’s [156] “Les
algèbres cylindriques”.

According to Henkin (45) [118], because L’Abbé believes that “the two fundamental
instruments in mathematical logic” are the theory of recursive functions and modern alge-
bra, he describes various classes of algebraic structures whose characterization has come

13In his book Algebraic logic [47], Halmos publishes his 10 main papers on polyadic algebra.
14Cylindric algebras generalize Boolean algebras for each ordinal α by adding “distinguished elements”
(the so called “diagonal elements” dκ,λ where κ and λ are less than α) to the elements of the Boolean
algebra 0 and 1, and unary operations called “cylindrifications” (cκ where κ < α).
15A hopefully complete list of Henkin’s works on the subject is: “The representation theorem for cylindric
algebras” [78]; “La structure algébrique des théories mathématiques” [87]; “Cylindrical algebras” (with
A. Tarski) [140]; the abstract “Cylindrical algebras of dimension 2. Preliminary report” [91]; Cylindric
Algebras. Lectures presented at the 1961 Seminar of the Canadian Mathematical Congress [103]; “Cylin-
dric algebras” (with A. Tarski) [141]; Cylindric Algebras, Part I (1971 with J.D. Monk and A. Tarski)
[132]; “Cylindric algebras and related structures” (with J.D. Monk ) [131]; “Relativization of cylindric
algebras” (with D. Resek) [137]; “Cylindric set algebras and related structures” (with J.D. Monk and
A. Tarski) [133]; Cylindric Algebras, Part II (with J.D. Monk and A. Tarski) [134], and “Representable
cylindric algebras” (with J.D. Monk and A. Tarski) [135].
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from logical studies. He establishes the following correspondences:

Classical propositional logic Boolean algebras

Many-valued logics Post algebras

Intuitionistic logic Brouwerian and Heyting algebras

Modal logics Closure algebras

With a certain amount of detail, L’Abbé describes Boolean algebras that are relational,
projective and cylindric, and monadic algebras. Henkin mentions that L’Abbé gives a
wrong definition of cylindrification for cylindric set algebras. Henkin also points out that
L’Abbé quotes Lyndon [168] for supposedly having proved that the class of representable
relational algebras cannot be characterized by equational identities, but he does not quote
Tarski [235], who succeeded in proving just the opposite.

In his work “Les algèbres cylindriques” (1958), Krasner contends that the theory of
cylindric algebras does not start with Tarski’s 1945 work, as L’Abbé asserts [158], but
with several 1938 works about Galois theory, such as his own [155].16 Henkin reports (46)
[117], following Krasner, that in it, Krasner considers cylindric algebras whose Boolean
component is complete and that Krasner describes it in relation to two other works.

Henkin writes two reports of works on Boolean algebras. In 1967, in one of them,
he reports on a work by Stone [223] “Free Boolean rings and algebras,” in which free
Boolean algebras are generalized. The other was published in 1955 and deals with a work
by Rieger written in 1951 [211], “On countable generalised σ -algebras, with a new proof
of Gödel’s completeness theorem,” in which σ -algebras are generalized.

Henkin (44) [115] tells us that Stone ([223] “Free Boolean Rings and Algebras”
(1954)) obtains a class of algebraic structures of which free Boolean rings are a special
subclass. Stone obtains them by generalizing the notion of group-algebra A of a group
G over a field Φ . Henkin also notes that Stone gives a more classical description of free
Boolean rings, and that at the end of the paper, he outlines the significance of these rings
for propositional logic. He ends by pointing out that Stone follows Boole’s path [15] since
he, like Boole, uses algebraic methods to study logic. Henkin also remarks that Stone’s
presentation follows Tarski’ Systemenkalkül [228].

In 1955, Henkin reviews (28) [85] the work [211] “On countable generalised σ -
algebras, with a new proof of Gödel’s completeness theorem,” in which Rieger generalizes
σ -algebras by defining “Boolean algebras with marked sequences.” In these algebras, only
marked sequences have to have sums and products. Marked sequences constitute a set of
multiple sequences that contain all “constant” sequences, and the set is closed in relation
to some operations over sequences. This concept comes up when a certain model that de-
rives from considering first-order functional calculi of symbolic logic is examined. In par-
ticular, if we associate with each formula A, the set |A| of all formulas B such that A≡ B
is provable, then the class of all sets |A| is a Boolean algebra for the following operations:
−|A| = |¬A|, |A|+|B| = |A∨B|, and |A| · |B| = |A∧B|. With each formulaA and finite
sequence of integers j1, . . . , jn, we consider the sequence a of elements whose general
term ai1, . . . , ain is |B|, where B is obtained from A by replacing free occurrences of vari-
able xjk for free occurrences of xik for k = 1, . . . , n; in that case, Σa = |∃xj1 · · · ∃xjnA|,

16Krasner in [156] dates that work in 1958, not in 1938. Henkin does not provide the explicit reference
for [155].
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Πa = |∀xj1 · · · ∀xjnA| (see Mostowski [198], Henkin [58], and Rasiowa [167, 205]). The
set Φ of those sequences satisfies the axioms for marked sequences. Using the result by
Loomis [165]—according to which there are σ -algebras that are not σ -isomorphic to any
σ -field of sets, but such that each algebra can be σ -represented as the quotient algebra
of a σ -field of sets modulo an appropriate σ -ideal—he proves that each Boolean algebra
in a denumerable family of marked sequences is isomorphic to a field of sets in such a
way that the sums and products of marked sequences respectively become unions and
intersections. From this Gödel’s result follows: each formula of a first-order calculus is
either a theorem or false in the domain of the integers for an appropriate interpretation
for predicates. His result is related to Rasiowa and Sikorski’s proof [207] of Gödel’s theo-
rem. Moreover, the strongest form of Gödel’s completeness theorem [41]—each set Γ of
formally consistent closed formulas is simultaneously satisfiable—can be obtained by a
slight modification of Rieger’s argument. Rieger argues that it applies to calculi with a de-
numerable number of symbols, but other proofs apply also when the number of symbols
is nondenumerable (Henkin [52], Robinson [213], Rasiowa [207], and Beth [7]). Henkin
finishes by posing the problem of characterizing those Boolean algebras with marked se-
quences that are σ -isomorphic to Tarski–Lindenbaum algebras and listing a number of
errata.

In 1963, Henkin reviews (42) [110] a work by Monteiro [196] “Matrices de Morgan
caractéristiques pour le calcul propositionnel classique,” in which he describes an inter-
esting class of characteristic matrices for classical propositional logic (ccpl)17 that are
irregular18 and includes those described in Church [23]. When Church described such
matrices, he asked which other such matrices existed. De Morgan lattices are distributive
lattices with a monadic operation satisfying −(−x) = x and −(x ∨ y) = (−x) ∧ (−y).
They were studied by Bialynicki-Birula and Rasiowa [12] as quasi-Boolean algebras and
by Kalman [151] as i-lattices. Monteiro considers matrices (M,D)whereM is a De Mor-
gan lattice and D a proper filter of M , establishing that such a matrix is ccpl if and only
if (x ∨−x) ∈D for each x ∈M . And, a ccpl matrix is regular if and only if it is an in-
tersection of filters such that, for each x ∈M , it contains exactly one of the elements x or
−x. Monteiro constructs an irregular matrix with 12 elements not belonging to Church’s
class that consists of the subalgebras of direct products of linearly ordered De Morgan
matrices, each of which satisfies (x ∧−x)≤ (y ∨−y).

Also in 1963, Henkin gives a lecture at the Twenty-Eighth Annual Meeting of the
Association for Symbolic Logic; in this lecture, he presents a result that generalizes the
result of Monteiro.

Henkin reports in one of his 1949 reviews (7) [54] that Chauvin [19] “Structures
logiques” defines in an abstract way logical structures to which Gödel’s incompleteness
theorem applies. Chauvin characterizes deductive structures as those that are like the stan-
dard ones but for which no recursivity criteria are established; classical are those that add
certain elements in type theory; Peanian those that contain numerical variables, zero,
and successor, and Gödelian (in relation to a one-to-one application ϕ from symbols to
numbers) are those in which the necessary predicates (relative to formal derivability) for
Gödel’s construction can be represented.

17Each tautology adopts only designated values, while non-tautologies don’t.
18There are designated elements x and x→ y such that y is not a designated element.
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Henkin reports (8) [53] that Chauvin [18] “Généralisation du théorème de Gödel” uses
a one-to-one function ψ that assigns a value to each value of a function ϕ, where ϕ is
a one-to-one function that assigns to each formula its Gödel number. Then, if Δ is the
class of systems such that ψ and R(x, y) are representable, then R(ψx,ψy) is also rep-
resentable in those systems. For each Gödelian logic in respect to ϕ and belonging to
Δ, Chauvin gives a procedure to construct an undecidable proposition corresponding to
each ψ . He ends by proposing a program: to look for functions ψ such that the unde-
cidable proposition associated with it expresses unsolved conjectures in number theory.
He also asks whether each undecidable proposition can be constructed from such a ψ .
Henkin observes that the answer is negative as can be seen from the results obtained by
Kleene in 1943 [154].

Henkin reviews in 1950 (9) Kalmar’s “Une forme du théorème de Gödel sous des
hypothèses minimales” [153] and “Quelques formes générales du théorème de Gödel”
[152]). In those works, Kalmar presents formalizations of systems for which incomplete-
ness results in Gödel’s style [42] can be established that are more abstract than those by
Chauvin [19] and [18]. Henkin considers that both the works by Kalmar and those by
Chauvin lack any interest for logic; he argues that they raise neither interesting particular
new cases that are important in relation to Gödel’s theorems nor cases that are mathemat-
ically interesting given that no new methods of proof are needed.

3.2 Applications of Logic to Algebra

Henkin reviewed several works whose contents fall under this heading. The first (14) [65]
is a review of A. Robinson’s book [213] On the Metamathematics of Algebra, in which
he applies the techniques of symbolic logic to obtain different results in various algebraic
theories (groups, rings, and fields). Among them, Henkin points out the following: (i) for
each first-order formula ψ that is true in all fields of characteristic zero, there is a prime
number p such that ψ is true in all fields of characteristic greater than p; (ii) a formula
ψ true in all ordered non-Archimedean fields must be true in all Archimedean fields; and
(iii) a formula true in one algebraically closed field must be true in every algebraically
closed field of the same characteristic. Some of these results had already been obtained;
for instance, the first of them had been obtained by Tarski in 1946 and by Henkin in 1947
(in his Ph.D.), but they had not been published. These results can be obtained by applying
the theorem—closely connected to the completeness proof for first-order calculus—that
establishes that each formally consistent set of sentences has a model. Robinson’s proofs
use the techniques developed by Gödel [41] and Henkin [52] for calculi whose languages
may contain a nondenumerable number of primitive symbols (Mal’cév was the first to
apply the method to nondenumerable sets in 1936 [180]). Robinson uses infinite con-
junctions and disjunctions, though he does not describe them clearly. He also generalizes
several concepts; one of them reminds one of Tarski’s “relative systems” [230]. In relation
to those generalizations, Henkin asks whether generalizing provides a unified treatment
for pre-existent and independently developed theories and whether it leads to new and
deeper results than the original theory. Henkin thinks that Robinson’s book does not pro-
vide an affirmative answer to these questions. Nevertheless, his assessment of the book
is positive, though he also notices some errata and drawbacks. For instance, he mentions
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that the use by Robinson of predicates instead of the functions commonly used by mathe-
maticians makes the reading more difficult and that the logical theorem used by Robinson
also applies to calculi with function symbols (see Henkin [59]).

In 1955, Henkin reviews (25) [79] a work by Robinson [215] “Les rapports entre le
calcul déductif et l’interprétation sémantique d’un système axiomatique,” in which deals
essentially with the application to abstract algebra of the metatheorem according to which
a set of first-order sentences is satisfiable if each of its finite subsets is satisfiable. These
kinds of applications had been given before by Tarski [234], Henkin [71], and Robinson
himself [213, 214]. Now Robinson gives new and deeper applications. He ends his paper
with speculative passages, some of which show clearly, according to Henkin, that he is
confusing use and mention.

Also in 1955, Henkin (27) [80] speaks about another work by Robinson [212] “On
axiomatic systems which possess finite models,” in which the author deals with models for
first-order statement systems (he dealt with the same subject in his [213]). He establishes
a theorem about “arithmetic algebraic structures,” a concept defined by Tarski [234], for
which he establishes the existence of finite models. Henkin remarks that the application of
Robinson’s result would be maximized if it would establish a feature of those first-order
sentences that defined persistent arithmetical classes; Henkin then ends pointing out a
series of errata.

This is one of the three reviews Henkin signs in 1959 (37) [136], this time in col-
laboration with Mostowski. The review reports on Mal’cév [181] “On a general method
for obtaining local theorems in group theory” and [182] “On representations of models.”
Both papers deal with the theorem we nowadays call “compactness theorem” (if every
finite subset of a given, possibly nondenumerable, set of first-order sentences is satisfi-
able, then so is the whole set). The first paper by Mal’cév establishes without proof the so
called general local theorem: “If every finite subset of a given (possibly nondenumerable)
set of first-order sentences is satisfiable, then so is the whole set”; also, several applica-
tions of it “to special problems of group theory are made which do not properly fall within
the scope of this Journal.” The second is devoted to local properties of models (relational
structures)M = 〈A;O1,O2, . . .〉, where A is a set, andOi are ni -ary relations. He defines
the notion of “local property” as “a property which is necessarily possessed by M if it is
possessed by all its finite submodels,” the general notion of “representation” for a model,
and the more specific ones of prime and predicative representation. Then, he proves two
theorems that establish that if every finite submodel M∗ of M possesses a representation
of a given type (prime or predicative) in a model N∗ of a class K of models character-
ized for a set of first-order axioms, thenM possesses a representation (prime, predicative)
in a model N of K . A third theorem has to do with second-order properties of models.
Henkin and Mostowski believe that the papers have been written carelessly. The reviewers
point out that both the formulation and proof of the local general theorem is due to Gödel
[41] (denumerable case) and Mal’cév [180] (the nondenumerable case); the latter uses the
Skolem normal form in his proof, and because of that, his proof has been found unsat-
isfactory. They also note that there is a satisfactory proof by Henkin [52] and Robinson
[213].

Henkin reviews (33) [94] Hintikka’s work [147] “An application of logic to algebra.”
Henkin starts providing a panoramic view of the completeness theorem and its applica-
tions. Henkin tells us that in recent years the first-order completeness result by Gödel
[41] has been extended to systems with a nondenumerable number of symbols (Henkin



Leon Henkin the Reviewer 109

[52]) and that this result has been applied to establish theorems in algebra by Beth [7],
Henkin [71], Łos [167], Robinson [213] and [215], Tarski [234], and, before that, Mal’cév
[181]. In all cases, the theorem is used in order to establish that if every finite subset of
a set Γ of first-order sentences is satisfiable, then there exists a model that satisfies all
sentences in Γ . Hintikka uses a result by Dilworth (for which Henkin does not give the
bibliographic reference) and a process of completing by cuts by Birkhoff [13] to obtain a
result that, according to Henkin, could have been obtained by less sophisticated methods.

4 Philosophy of Logic and Mathematics

Both the philosophy of logic and mathematics underwent many interesting developments
in Henkin’s days; in Leon Horsten’ words, “. . . it has turned out that to some extent it is
possible to bring mathematical methods to bear on philosophical questions concerning
mathematics. The setting in which this has been done is that of mathematical logic when
it is broadly conceived as comprising proof theory, model theory, set theory, and com-
putability theory as subfields. Thus the twentieth century has witnessed the mathematical
investigation of the consequences of what are at bottom philosophical theories concerning
the nature of mathematics” [148].

Henkin does not quote any of his works when he reports on issues in the philosophy
of logic.19 Most probably, because his main contributions do not belong in this area.
Yet, he did write several papers dealing with diverse matters in the philosophy of logic:
namely, his “Identity as a logical primitive” [121], where he explores the possibility of
defining other logical expressions in terms of identity. Moreover, in his “The foundations
of Mathematics I” [95], he clearly introduces basic notions in the philosophy of logic such
as deduction, proof, consistency, and so forth.

Henkin also wrote a couple of works dealing with the relations between logic and math-
ematics “Are logic and mathematics identical?” [105], “Mathematics and logic” [108],
whereas his commitment to improve the teaching of mathematics was so strong that he
not only reviewed a paper on the issue but also made his own contribution to the subject.20

Henkin himself had a nominalist position in what is still one of the main issues in the
philosophy of mathematics: the ontology and epistemology of mathematical entities. In
fact, he at least wrote the following three works on the topic: “Some notes on nominalism”
[72], “Nominalistic analysis of mathematical language” [106], and “The nominalistic in-
terpretation of mathematical language” [77].

19Well, in fact, he quotes his other review of another work by Menger, when he discusses Menger’s book
Calculus. A Modern Approach.
20“On mathematical induction” [100]; with W.N. Smith, V.J. Varineau, and M.J. Walsh Retracing Ele-
mentary Mathematics [138]; “New directions in secondary school mathematics” [109]; “The axiomatic
method in mathematics courses at the secondary level” [113]; “Linguistic aspects of mathematical edu-
cation” [119]; “The logic of equality” [122]; with Nitsa Hadar “Children’s conditional reasoning, Part II:
Towards a Reliable Test of Conditional Reasoning Ability” [129]; with Robert B. Davis “Aspects of
mathematics learning that should be the subject of testing” [127]; with Robert B. Davis “Inadequately
tested aspects of mathematics learning” [128]; with Shmuel Avital “On equations that hold identically in
the system of real numbers” [126]; “The roles of action and of thought in mathematics education—One
mathematician’s passage” [123].
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Finally, Henkin published a series of reviews having to do with various problems in
these areas that we have systematized as follows.

4.1 Basic logical notions

20 (1954) Review [76] of: Karl Menger, “The ideas of variable and function” (1953)
[193].

21 (1954) Review [75] of: Karl Menger, Calculus. A Modern Approach (1953) [192].

4.2 Semantic notions and semantic issues in logic

10 (1951) Review [63] of: Heinrich Scholz, “Zur Erhellung des Verstehens” (1942)
[218].

13 (1951) Review [61] of: Hugues Leblanc, “On definitions” (1950) [160].

4.3 Alternative logics

26 (1955) Review [86] of: Paul Bernays, Evert Willem Beth, Luitzen Egbertus Jan
Brouwer, Jean-Louis Destouches, Robert Feys, “Discussion générale” (1953)
[6].21

35 (1958) Review [96] of: Arend Heyting, “Logique et intuitionnisme” (1954) [144].
40 (1960) Review [102] of: Jerome Rothstein, Communication, Organization and

Science with a foreword by C.A. Muses (1958) [216].
41 (1960) Review [101] of: Hilary Putnam, “Three-valued logic” (1957) [203]; Paul

Feyerabend, “Reichenbach’s interpretation of quantum-mechanics” (1958) [33];
Isaac Levi, “Putnam’s three truth values” (1959) [163].

4.4 The Foundations of mathematics

2 (1948) Review [51] of: Jean Cavailles, Transfini et continu (1947) [17].
11 (1951) Review [64] of: James Kern Feibleman, “Class-membership and the on-

tological problem” (1950) [32].
12 (1951) Review [62] of: Hugues Leblanc, “The semiotic function of predicates”

(1949) [159].
16 (1952) Review [67] of: Kurt Gödel, The Consistency of the Axiom of Choice and

the Generalized Continuum Hypothesis with the Axioms of Set Theory (1951)
[46].

32 (1956) Review [88] of: Andrzej Mostowski, Andrzej Grzegorczyk, Stanisław
Jaśkowski, Jerzy Łos, Stanisław Mazur, Helena Rasiowa, Roman Sikorski, The
Present State of Investigations on the Foundations of Mathematics (1955) [200].

38 (1959) Review [98] of: Andrzej Mostowski, “Quelques observations sur l’usage
des méthodes non finitistes dans la méta-mathématiques”; Daniel Lacombe, An-
drzej Mostowski, “Interventions” (1958) [199].

4.5 Mathematical education and the foundations of mathematics

36 (1958) Review [97] of: Evert Willem Beth, “Réflexions sur l’organisation et la
méthode de l’enseignement mathématique” (1955) [9].

21This is a really short review. Its text goes: “This is a brief discussion of the following questions. Should
semantics be considered as a part of, or as complementary to, symbolic logic? Does the formalization of
theoretical physics require the introduction of new logical systems?”
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4.1 Basic Logical Notions

The two works by Menger ([193] “The ideas of variable and function” and [192] Cal-
culus. A Modern Approach) Henkin reviews ((20) [76] and (21) [75]) try to get a better
understanding of the use of variables given both in logic and physics. In the second work,
Menger also addresses the problem of functional notation.

Henkin says [76] that in his paper “The ideas of variable and function” [193], Menger
distinguishes two different uses of the term “variable.” The logical use of the term in
which “variable” refers to the symbol employed in building sentences about a certain
set that is the range of the variable; the other type variables that he calls Weierstrass
variables refer—depending on the occasion—to pressure, weight, time, etc.; this second
use is typical in science. In this last case, there is a classΣ whose elements are observable,
and an equivalence relation ∼= is defined over Σ . Then, a variable v is a function defined
over Σ such that vσ1 = vσ2 if σ1 ∼= σ2. Henkin suggests an improvement over Menger’s
treatment when a law that involves variables in different domains occurs.

In his book, Menger [192] presents the theory of variable quantities (see [76]) and,
according to Henkin, it is the first book in which there is given an explicit analysis of
what is implicit when the theory of functions is applied to physics. Henkin considers
the book as written in a lively and thought-provoking style and remarks that Menger
distinguishes the notation for numbers from the notation for functions. A notation for
functions had been developed by Menger in two previous works, Algebra of analysis
[190] and “Are variables necessary in calculus?” [191], which Church—in his review of
Menger’s works—considers to follow the ideas in Schönfinkel–Curry combinatory logic.
Yet, Henkin comments that Menger does not apply the ideas of combinatory logic to
the end since those would have allowed him to do away with all variables occurring in
function names. Moreover, Henkin reports that the distinction between use and mention is
lacking, even though the author aims to use unambiguous notation. Moreover, an inappro-
priate use of the identity symbol is made in the common use of limθ I−2 =∞. The author
establishes a set of principles for a correct notation, but some of them are questionable;
for instance, “unnecessary symbols or names should not be created.”

4.2 Semantic Notions and Semantic Issues in Logic

The two earliest reviews by Henkin published in 1951 deal with notions such as interpre-
tation, understanding, and definition.

In the first one (10) [63], Henkin reports that Scholz’ “Zur Erhellung des Verstehens”
[218] tries to explain how research in mathematical foundations can help clarify the notion
of “understanding” by considering a particular formal system and explaining how it can
be interpreted in two different ways. The system is the propositional calculus by Frege;
its connectives are ¬ and →, and its theorems are the tautologies. Henkin explains that,
following Frege [35] and [37], Scholz describes a proposition as the sense expressed by a
sentence. In the first interpretation, in the domain, there are arithmetical propositions, and
the notion of “satisfaction” is defined recursively à la Tarski [229]. In the second interpre-
tation, the elements of the domain are the numbers 0 and 1, and the satisfaction definition
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assigns the corresponding truth-tables to¬ and→. Henkin believes that Scholz’ presenta-
tion is correct, clear, appropriate, and illuminating. But he objects that Scholz should have
pointed out that the first interpretation ranging over the domain of mathematical proposi-
tions is not the usual one and that he should have clarified what the relation between both
interpretations is.

Leblanc’s project [160] is, according to Henkin (13) [61], completely mistaken. He
tells us that in “On definitions,” Leblanc introduces the notion of absolute definition in
order to explain synonymy. An absolute definition is, according to Leblanc, the kind of
definition for a term when there is a finite system of axioms that characterizes the term,
and the corresponding formula by means of which the term is defined is provable in the
system in question. Henkin mentions that the author acknowledges that there are some
shortcomings for the proposal, but Henkin thinks that the proposal is untenable given that
“even the most complete axiom system determines its models only to isomorphism, so
that no significant concept can ever be given an absolute definition!” Henkin considers
that the analysis of the problem should rather be done following Church [21].

4.3 Alternative Logics

In 1958, Henkin reviews (35) [96] a contribution by Heyting [144] “Logique et intuition-
nisme,” in which the author offers a challenging series of notes about the role of logic
from an intuitionistic viewpoint. According to Henkin, Heyting contends that logic does
not provide a criterion to decide on the validity of mathematical reasoning (mathematical
reasoning is acceptable only if it is “immediately clear”); Heyting believes that logical
laws have been used to justify reasoning because our language is not appropriate to ex-
press mental constructions. The problem is, Heyting claims, that mathematical language
lacks an adequate grammar for imperatives; thus, it proceeds as if doing mathematics
were about discovering facts, whereas doing mathematics is about constructing. Heyting
gives the intuitionistic meaning for some logical laws and claims that logic is a part of
mathematics and that its task is not to provide foundations for it since it is highly abstract;
rather, logic is “at the end of mathematics,” and it is as formal as any other part of math-
ematics. Finally, Heyting rejects the possibility of a unique formal system in which all
theorems in intuitionistic mathematics are obtainable.

Henkin assesses (40) [102] what seems to be quite strange in the book by Rothstein
[216]: Communication, Organization and Science. Most of the content of the book is
certainly nonstandard from our contemporary viewpoint. The author—as Henkin tells
us—intends to show that the notion of entropy can be used to give a unifying perspective
on many phenomena in the philosophy of science and language since measuring “may be
regarded as a form of communication between a scientist and the things he studies, and the
amount of information gained by a measurement may be indicated by a number expressed
as a quantity of entropy.” Henkin points out that discussed notions are not given in detail
by the author but just suggested and that a lot of what is claimed is based on analogy.
In one chapter, the rules for the calculus of classes are given, and it is discussed whether
they can be applied to empirical sciences. Henkin also reports that Rothstein mentions
the attempts to apply alternative logic to physical theory and suggests that they can be
adequate if it is necessary to consider things that are operationally undefined. He also sets



Leon Henkin the Reviewer 113

out the possibility of a universal language based in symbolic logic that allows for the use
of computers, but he does not analyze whether it is really possible. In the prologue, Muses
both criticizes and praises Rothstein’ work. Henkin mentions that Rothstein told him that
he did not hear of the prologue until the book was published. Henkin does not give any
personal assessment of the work in his review.

Henkin (41) [101] reviews three works on quantum logic. Henkin reports that Putnam
[203] proposes a three-valued interpretation for sentential connectives according to which
any sentence involving only the standard True and False values will obtain a standard
truth value. He says that Putnam suggests that truth values have to do with the verifica-
tion status of the sentence; hence, the nonclassical values for logical expressions might be
useful in domains in which there are sentences that cannot be verified or falsified. Putnam
also draws an analogy between logic and geometry to conclude that classical logic cannot
have a privileged position any more than Euclidean geometry does. He also argues that the
laws of classical logic cannot be those that underlie physics since, when two-valued logic
is used, “the laws of quantum mechanics are incompatible with the principle of contact
action.” Henkin reports Feyeraberd [33] as disagreeing about this last argument because it
“would violate one of the most fundamental principles of scientific methodology, namely,
the principle to take refutations seriously.” He says that Feyerabend also criticizes Rei-
chenbach’s proposal in favor of three-valued logic by claiming that “while statements
expressing anomaly should have truth-value indeterminate, laws of quantum-mechanics
should have only values T or F ,” but Feyerabend lists a number of quantum laws he
contends can only be indeterminate. Feyerabend also considers the Copenhagen interpre-
tation for quantum physics to reject Reichenbach’s and Putnam’s arguments against it.
Levi [163] argues that “three-valued logic has a dim future” on the basis of Putnam’s
contention, according to which to ask for an interpretation of the third value lacks any
sense; Putnam asking for an interpretation for the third value is tantamount to asking for
a translation of the sentences of three-valued logic into sentences of two-valued logic.

Levi counterargues: (a) that not providing a translation makes sense if statements in
one language have greater expressive power than those in the other, but he claims that
this does not apply in our case; (b) that if an analogy between geometry and logic is to
be established, as Putnam contends, then it is relevant to say that Euclidean geometry and
Lobachevskian geometry are intertranslatable. (c) Finally, Levi also considers Reichen-
bach’s possible interpretations for quantum mechanics to conclude “that a formulation in
terms of three-valued logic should be intertranslatable with the two-valued formulation
which admits ‘causal anomalies’ ” (Henkin points out that Levi thinks it would not be
intertranslatable if we contemplate the two-valued interpretations that consider that some
sentences are meaningless.) Henkin ends his review with some critical comments: (1) He
paraphrases Putnam as claiming that three-valued logic should not be applied to ordi-
nary discourse because “if a sentence is ever shown to be verified or falsified, the claim
that it has “middle” value will be shown to be unfounded” (Henkin’s literal restatement
of Putnam’s view). Henkin objects to it, because “it would be ‘dangerous’ to make any
statement of empirical content whatever!” But it seems to us that Henkin is not getting
Putnam right. Putnam is some kind of a realist at this point; hence, he intends truth-values
for sentences to obtain independently of us. That is why—we take—he contemplates as
possible a third-value for quantum physics but not for ordinary discourse; that third inde-
terminate value in quantum physics is obtained independently of us, whereas our failure
to establish the truth value of a statement, like in the example Henkin gives, is dependent
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of us, it is epistemic. (2) He rejects Feyerabend’s use of the contention that a theory from
which a false prediction follows must be modified. Henkin assumes a wholist structure
for justification to sustain that a theory can be changed while leaving logical axioms un-
touched. (3) He rejects Levi’s arguments for the dimness of three-valued logic because he
takes them to depend on the assumption that the translation of the theory has to be into
the two-valued theory that admits “causal anomalies,” and he considers this assumption
has not been argued for.

4.4 The Foundations of Mathematics

Henkin reviewed papers dealing with the hottest issues at the time; namely, problems
in the philosophy of set theory (such as the consistency of the axiom of choice and the
generalized continuum hypothesis) and in the foundations of mathematics. Henkin also
reviews two papers in which the ontological status of the entities to which expressions in
a logical language refer is discussed.

Henkin published his review (2) [51] of Cavailles’ posthumous book [17] Transfini et
Continu in 1948, six years after the publication of Henkin’s first review in 1942. Henkin
did not publish anything during these six years. This five-years void, 1942–1947, is due
to the fact that he was first working on his Ph.D. (he presented it in 1947 under Church’s
supervision) and then, during World War II, on the Manhattan Project (Monk [194]).22

Cavaillès book was written in 1940 or 1941, but, so Henkin goes, its publication at the
time was forbidden by occupation authorities; hence, it was not published until 1947, well
after Cavaillès was put to death in 1944. Henkin reports that the author presents the fol-
lowing topics dynamically and quite accurately: a discussion of the role of the axiom of
choice and the continuum hypothesis, Gödel’s proof of their relative consistency (of the
preliminary version of the proof [44], not its final version [46]), Gentzen’s proof of the
consistency of arithmetic—though he does not mention Gentzen’s proof in [38] but that
of Bernay—and the theory of recursive functions and the theory of constructible ordinals
by Kleene and Church. Henkin comments on Cavaillès’ discussion of the proof of the
relative consistency of the axiom of choice and of the generalized continuum hypothesis
because he thinks that Cavaillès is wrong when he claims that Gódel’s proof is intuition-
istically acceptable, arguing that it does not use impredicative definitions. The rejection
of impredicative definitions would be the defining feature of intuitionism, according to

22The Manhattan project was a US government project that produced the first atomic bombs. According
to the obituary published on the web page of the University of Berkeley (http://www.berkeley.edu/news/
media/releases/2006/11/09_henkin.shtml), “During World War II, he worked in industry for the Manhat-
tan project, first as a mathematician for the Signal Corps Radar Laboratory in Belmar, New Jersey; then
in New York City on the design of an isotope diffusion plant; and finally as head of the separation perfor-
mance group at Union Carbide and Carbon Corp. in Oak Ridge, Tenn.” In fact, Henkin himself explains
the circumstances in [124, pp. 133–134, note 11]:

“During the period May 1942–March 1946 I worked as a mathematician, first on radar problems
and then, beginning January 1943, on the design of a plant to separate uranium isotopes. Most of
my work involved numerical analysis to obtain solutions of certain partial difference-differential
equations. During this period I neither read, nor thought about, logic.”

http://www.berkeley.edu/news/media/releases/2006/11/09_henkin.shtml
http://www.berkeley.edu/news/media/releases/2006/11/09_henkin.shtml
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Cavaillès. Henkin also notes that Cavaillès and Gödel [45] differ in their interpretation of
the role Gödel’s hypothesis (all sets are constructible) plays in general set theory. Henkin
also claims that Cavaillès’ “doubts as to whether the Cantor–Dedekind program to elimi-
nate the geometric from mathematical reasoning by means of the notion of set” succeeds
seems to confuse the use of geometrical intuition with its use as a criterion of correctness.

In his “Class-membership and the ontological problem” [32], Feibleman criticizes
Quine’s [204] and Quine–Goodman’s [40] nominalist position in relation to logic and,
as Henkin (11) [64] thinks, introduces a series of unsupported views about the develop-
ment and future of symbolic logic. Henkin claims that the author’s attack on Quine relies
on a lack of understanding of Quine’s ideas, in particular, given that the author believes
that extensional logic is nominalistic and that “the consistent nominalist must eschew all
words except names of particular concrete individuals.”

Leblanc’s paper “The semiotic function of predicates” [159], as Henkin narrates (12)
[62], describes three ways of seeing the role of predicates in a symbolic language. Ac-
cording to the Platonic interpretation, predicates denote abstract classes; the nominalist
contends that they are not names but that they “combine with names of concrete objects
to form sentences that express assertions about those objects.” And finally, according to
the Aristotelian interpretation of their role, predicates denote “components” of particu-
lar entities (Henkin points out that the author does not either justify the attribution of
this view to Aristotle or explain the view clearly). Henkin stresses that the author agrees
with Quine that any of the three above-mentioned interpretations works if no quantifi-
cation over predicates is involved. Otherwise, a nominalist interpretation is not possi-
ble.

Henkin reports (16) [67] on Gödel’s second edition of the 1951 paper The Consistency
of the Axiom of Choice and the Generalized Continuum-Hypothesis with the Axioms of Set
Theory [46]. The first edition was reviewed by Paul Bernays [5]. This review is radically
different from the one above on the same subject (Cavaillès’) in that it is a technical
review and it contains no philosophical discussion. Because Henkin’s review is a review
of the second edition of the work, he concentrates on the added material, namely, the 10
notes added by Gödel. In particular, Henkin emphasizes three of them. The first goes that
V = L implies the existence of a well-ordering of the reals that has as its graph in the
Euclidean plane a projective set of points (the well-ordering is formalizable by means of
a formula whose quantifiers range only over the real numbers). The eighth note states that
the notion of “normality” is extensional. And finally, note 10 claims that the proof can be
extended to systems with strong infinity axioms.

In 1956, Henkin publishes a review (32) [88] of the work by Mostowski et al. [200]
The Present State of Investigations on the Foundations of Mathematics. In this work, a
unified view of the foundational developments obtained by the Polish school, in particu-
lar, by Mostowski and his collaborators, is given. According to the authors, Henkin states,
there are two main problems at the root of these: (A) to come to a better understanding
of the nature of mathematical notions in the sense of clarifying whether mathematical
notions are the result of human construction or forced upon us and also to explain how it
is possible for us to get to know them; (B) to elucidate the nature of mathematical proofs
and to provide criteria that allow us to distinguish between correct and “false” proofs.23

23Mostowski himself uses the word “false” applied to proofs, but “incorrect” seems to be the right word
to use; it is sentences, statements, or propositions that are true or false, and hence the conclusion of an
intended proof can be false but not the proof itself.
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The authors admit, though Henkin does not report on that, that these are not purely math-
ematical problems, but also philosophical. They seem to contend that two lines of work
in foundations have contributed to answer the first problem. The development of the ax-
iomatic method, A1, and the study of the a priori operations needed in order to account for
mathematics, A2, have contributed to a better understanding of the first, while the axiom-
atization of logic and the completeness proofs for nonclassical logics, B1, and decision
problems, B2—especially essentially undecidable systems (a notion due to Tarski) and
Kleene’s hierarchy—seem to have helped clarify the second. In relation to the axiomatic
method A1, they explain that systems are classified into elementary and nonelementary.
Concerning elementary systems, they mention their applications to abstract algebra, the
characterization of special types of arithmetic classes and multivalued systems. Concern-
ing nonelementary ones, they remark that their interpretation is ambiguous because it
depends on the underlying set theory; they also mention the fact that their models are
nonabsolute results in incompleteness. From these difficulties they conclude that the ax-
iomatic method does not provide an adequate foundation for mathematics. In relation to
problem A2, they point out that Gödel’s constructible sets are important. Finally, they
mention what then were two new lines of work: the theory of recursive functions and the
increasing association with algebra. The paper contains a broad bibliography (108 items)
and their philosophical conception of mathematics. With regards to the latter, Henkin
quotes the authors: “negative results obtained by the mathematical method confirm the as-
sertion of materialistic philosophy that mathematics is in the last resort a natural science,
that its notions and methods are rooted in experience, and that attempts at establishing the
foundations of mathematics without taking into account its originating in natural sciences
are bound to fail.”

Mostowski [199] “Quelques observations sur l’usage des méthodes non finitistes dans
la méta-mathématiques” analyzes several metamathematical results obtained by using
nonfinitistic techniques. Note that, at the time, the use of finitistic methods was preva-
lent due to Hilbert’s authority and position on the issue. Some of the analyzed outcomes
are: the famous results by Löwenheim and Skolem, the proof of the undecidability of a
sentence Δ that says that there exists a certain class of models for axiomatic set theory,
and the construction of 2ℵ0 essentially different models for an arbitrary system that in-
cludes Peano arithmetic. The author also considers his work on automorphisms and on
generalized quantifiers. Henkin’s verdict on the paper (38) [98] is that even if many of
the results presented in it are not new, the paper is still valuable because the fact that all
these results are presented together allows us to see the relevance of nonfinitistic meth-
ods.

4.5 Mathematical Education and the Foundations of Mathematics

Henkin’s review (36) [97] of Beth’s “Réflexions sur l’organisation et la méthode de
l’enseignement mathématique” [9] is the second review he publishes in 1958. Henkin
tells us that Beth’s chapter tries to establish a connection between mathematical logic
and research in the foundations of mathematics with problems in the teaching of math-
ematics. Beth points out that almost all of the mathematics taught in secondary school
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is formalizable in first-order logic and that psychology has failed to contribute in a rele-
vant way to the teaching of mathematics; Henkin states that Beth nevertheless acknowl-
edges that psychology might contribute to a better understanding of how students learn
facts. Beth’s disputable claim (though Henkin remains neutral and just paraphrases Beth’s
views without further comment) has to do with what he takes to be the main purpose of
mathematical education: namely to make the student familiar with the deductive method.
And to that purpose, as Beth claims, the use of (meta)logical results should prove effec-
tive.

5 Manuals

Henkin reviews two logic manuals, one by his advisor, Church, and another by Beth.24

Henkin’s review (34) [93] of Church’s Introduction to Logic [24] was published in
1957. Henkin stresses the unusual features of the book: its sixty-eight pages introduc-
tion divided into 10 sections like the five other chapters in the book and its 590 foot-
notes, which are to be added to the historical notes in each chapter. However, the dis-
tinction between footnotes and historical notes is not sharp since many footnotes include
data with a historical interest. Among the strengths of the book, Henkin mentions that it
provides plenty of exercises with various levels of difficulty, which, contrary to what is
usually the case in symbolic logic manuals, can be of interest for the student of mathe-
matics. He also emphasizes that the introduction provides a conceptual frame for a gen-
eral theory of linguistic systems with an analysis of Frege’s distinction between sense
and reference. And that, in spite of its nonmathematical character, the introduction is of
interest for the mathematician since it illuminates many basic notions that are applica-
ble to mathematical language. For instance, when Church defines “logistic method,” he
explains how to use English as a metalanguage, emphasizing the convenience of con-
straining the use of English to the level that is “just sufficient to enable us to give general
directions for the manipulation of concrete physical objects,” in particular, “those addi-
tional portions of English are excluded which would be used in order to treat of infinite
classes,” advice that, according to Henkin, the author himself does not follow and one
that Henkin doubts can be followed. The first chapter deals with a particular propositional
system and includes the deduction theorem, the decision problem, duality, consistency,
completeness, and independence. In the second chapter, the author introduces up to 40
different propositional systems, something that Henkin does not welcome because he
thinks that it can have the wrong effect on beginners. Chapters 3 and 4 present many
systems for first-order functional calculus, substitution rules, prenex and Skolem nor-
mal forms are studied in detail, and so are Gödel’s completeness theorem, Löwenheim–
Skölem’s result and decision problems (solution for special classes and reductions for
the general problem). Henkin objects that Church’s presentation of first-order calculi

24Henkin quotes none of his works in these reviews of the two manuals mentioned. In his review of
Church’s manual, he quotes no other work, whereas in his review of Beth’s, he quotes Beth’s work “The
Foundations of Mathematics. A Study of the Philosophy of Science” [10].



118 C. Martínez Vidal and J.P. Úbeda Rives

does not include systems that have operational symbols in addition to functional ones
(relational, as we would say); he believes that this is important because functional sym-
bols are really adequate for the formalization of many mathematical theories. The last
chapter deals with predicative and ramified second-order calculi establishing Henkin’s
completeness theorem for the former; it also includes the study of the infinity axioms
and well-ordering. Other topics are mentioned, and Church informs that they are to be
included in a second volume; the topics Church intended to present in a second vol-
ume are: higher-order functional calculi, second-order arithmetic, Gödel’s incompleteness
theorems, recursive arithmetic, simple type theory, axiomatic set theory, and mathemat-
ical intuitionism. According to Henkin, “[t]he appearance of this volume promises to
complete a work of great usefulness both for students and scholars, and it is so hoped
that a way can be found to shorten its publication in time.” As is well known, it never
was.

Beth’s book [11] Formal Methods. An Introduction to Symbolic Logic and to the Study
of Effective Operations in Arithmetic and Logic is a book in which Beth, as Henkin
says (43) [112], tries to explain the principles, foundations, and methods of contem-
porary logic “with contemporary theoretic insight. . . .” Henkin believes that it includes
unusual topics for an introductory manual and that Beth’s style might discourage the
beginner. Henkin claims that it should be useful as a manual if the teacher is ready to
provide additional material and that professional logicians will find it interesting “for its
wide-ranging and provocative comments as well as for the new ways of presenting fa-
miliar material.” Beth presents from three different perspectives, deductive, semantic (he
includes his semantic tableaux [10]), and axiomatic, a propositional logic system with
a single connective, the conditional; he then extends it to complete propositional logic,
quantificational logic, and a system with functional symbols. He presents consistency and
completeness proofs and, according to Henkin, uses the name strong completeness theo-
rem for results that do not deserve the adjective “strong” since they apply only to finite
sets of formulas. Other topics he deals with are: the formalization of arithmetic (based
on the notions zero, successor, addition, multiplication, and exponentiation), Church’s
thesis, the theory of definition, a description of Padoa’s method, incompleteness, and to
close the chapter, “On machines which prove theorems.” The appendix is a potpourri of
subjects.

6 Conclusion

Leon Henkin’s scientific production starts in 1942 with his review of M.H.A. Newman and
A.M. Turing, “A formal theorem in Church’s theory of types” [201] and ends in 1995 with
the paper “The discovery of my completeness proofs” [124]. This wide period includes
fifteen years during which Henkin was “unproductive.”25 His scientific results include the

25The period from 1943 to 1947 in which he worked in his Ph.D. and in the Manhattan project (see note
22 above), years 1969, 1982, 1984, 1987, 1988, and the period from 1990 to 1994.
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edition of four congress proceedings,26 seven books,27 54 papers,28 46 reviews,29 and 17
minor works.

Table 1 contains a synopsis of his production, and Table 2 summarizes the results in
Table 1. It is easy to see that 1955 is his most productive year and that more than half his
production was produced between 1950 and 1960.

Table 3 shows the time elapsed between the publication of the reviewed work and
the review. It is worth noting that Henkin published more than half of his reviews only
one year after the corresponding work had seen the light. This clearly shows Henkin’s
commitment to Church’s endeavor. It is also salient that most of the works reviewed by
Henkin have to do with logical systems and algebraic logic—no doubt, the subjects to
which he contributed most (see Table 4). His expertise in these matters is also shown in
the fact that the number of papers and books he quotes in his reviews of publications on
these subjects is larger than the number of works he quotes in his reviews of publications
on other topics.

There is a close correspondence between Henkin’s areas of expertise and the topics of
the works reviewed by Henkin. Hence, according to Mathematics Subject Classification
2010,30 the area of mathematical logic and foundations divides into: philosophical aspects
of logic and foundations, general logic, model theory, computability and recursion theory,
set theory, proof theory and constructive mathematics, algebraic logic, and nonstandard
models. Practically, all of Henkin’s reviews fall into three of these areas: philosophical
aspects of logic and foundations, general logic, and algebraic logic. He does not report
on any works on computability and recursion theory, most plausibly because Church,
Kleene, McKinsey, Vaughan, and Ribeiro, among others, were in charge. He appraises
only two works in set theory Transfini et Continu by Cavailles and the second edition

26The Axiomatic Method [139] with P. Suppes and A. Tarski; The Theory of Models [125] with J.W. Ad-
dison and A. Tarski; Logic, Methodology and Philosophy of Science IV [224] with P. Suppes, A. Joja, and
Gr.C. Moisil; and Proceedings of the Tarski Symposium [120].
27La structure algébrique des theories mathématiques [87]; Cylindric Algebras. Lectures presented at the
1961 Seminar of the Canadian Mathematical Congress [103]; Retracing Elementary Mathematics [138]
with W.N. Smith, V.J. Varineau, and M.J. Walsh; Logical Systems Containing Only a Finite Number of
Symbols [114]; Cylindric Algebras, Part I [132] with J.D. Monk and A. Tarski; Cylindric Algebras, Part II
[134] with J.D. Monk and A. Tarski; and Mathematics-Report of the Project 2061 Phase I Mathematics
Panel [14] with D. Blackwell.
2812 of those papers were written in cooperation with someone else: “On the definition of ‘formal de-
duction’ ” [195] with R. Montague; “Cylindrical Algebras” [140] and “Cylindric Algebras” [141] with
A. Tarski; “Cylindric algebras and related structures” [131] with J.D. Monk; “Relativization of cylin-
dric algebras” [137] with D. Resek; “A Euclidean construction?” [130] with W. Leonard; “Children’s
conditional reasoning, Part II: Towards a reliable test of conditional reasoning ability” [129] with Nitsa
Hadar; “Aspects of mathematics learning that should be the subject of testing” [127] and “Inadequately
tested aspects of mathematics learning” [128] with Robert B. Davis; “Cylindric set algebras and related
structures” [133] and “Representable cylindric algebras” [135] with J.D. Monk and A. Tarski; and “On
equations that hold identically in the system of real numbers” [126] with Shmuel Avital.
29See Appendix.
30This classification coincides with that provided in 2000. Barwise’s [4, p. vii] “Mathematical logic is
traditionally divided into four parts: model theory, set theory, recursion theory, and proof theory” is not
that complete.
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Table 1 Under the column “Minor,” we write the number of reviews Henkin wrote in that year, and, in
the same column, after the “+” symbol, we write the number of minor works published in that year that
are not reviews. Under “Major,” we include the number of books, papers, and so forth. After “+” and
under “major,” we indicate the number of books edited

Year Minor Major Total

1942 1 1

1948 2+ 1 3

1949 5 2 7

1950 1 3 4

1951 4 4

1952 3+ 2 5

1953 2 4 6

1954 3+ 3 2 8

1955 8+ 1 5 14

1956 3+ 2 3 8

1957 2 3 5

1958 2 1 3

1959 3 +1 4

1960 2+ 1 1 4

1961 3 3

1962 4 4

1963 1+ 1 4 6

1964 +1 1

1965 1 +1 2

1966 +1 1 2

Year Minor Major Total

1967 1 2 3

1968 +1 1 2

1970 1 1

1971 2 2 4

1972 1 1

1973 1+ 1 2

1974 1+ 1 2

1975 2 2

1977 2 2

1978 2 2

1979 2 2

1980 +1 1

1981 2 2

1983 +2 2

1985 1 1

1986 1 1

1989 1 1

1995 2 2

1996 1 1

Total 46+ 17 61+ 4 128

Table 2 Synopsis of the
results in Table 1

Period Reviews Minors Majors Editor Total %

1955 8 1 5 0 14 10.94

1954–1956 14 6 10 0 30 23.44

1953–1957 18 6 17 0 41 32.03

1952–1958 23 8 18 1 49 38.28

1951–1959 30 9 18 0 57 44.53

1950–1960 32 9 22 0 65 50.78

1949–1961 37 9 27 0 75 58.59

1948–1962 39 10 31 0 82 64.06

1948–1963 40 11 35 0 88 68.75

of The Consistency of the Axiom of Choice and the Generalized Continuum Hypothesis
with the Axioms of Set Theory by Gödel, and only one in proof theory and constructive
mathematics, Kreisel’s “On a problem of Henkin’s”.



Leon Henkin the Reviewer 121

Table 3 The columns called “Δ” indicate the years passed between the year of publication of the re-
viewed work and the year of publication of the review, and the columns called “No.” denote the number
of works revised. The total number of works examined by Henkin is 49, even though he published only
46 reviews. This is because some of the published reviews include revisions of more than one work

Δ No. Δ No.

0 5 4 2

1 23 9 1

2 8 13 3

3 6 18 1

Table 4 In the third column, we can see the number of reviews made by Henkin, whereas the fourth
gives the average number of quotes in the different reviews

Topic Subtopic No. Quotes

Logic systems 12 3.16

Type theory 3 1.00

Metalogic 9 3.89

Algebraic logic 17 4.12

Algebraic treatment of logic 12 4.08

Applications of logic to algebra 5 4.20

Philosophy of logic & math. 15 0.93

Basic logical notions 2 1.50

Semantic notions 2 2.00

Alternative logics 4 0.00

The foundations of mathematics 6 1.47

Mathematical education 1 0

Manuals 2 0.50

Finally, he gives an account of only one paper on mathematical education, even though
he published up to 10 major works on the topic,31 one of his dearest.

7 Reviews by Leon Henkin

The list that follows comprises the papers and books reviewed by Henkin; they have
been put in order according to year of publication; we have also included the subjects

31“The roles of action and of thought in mathematics education—One mathematician’s passage” [77];
with W.N. Smith, V.J. Varineau and M.J. Walsh Retracing Elementary Mathematics [138]; “New direc-
tions in secondary school mathematics” [109]; “The axiomatic method in mathematics courses at the
secondary level” [113]; “Linguistic aspects of mathematical education” [119]; with Nitsa Hadar “Chil-
dren’s conditional reasoning, Part II: Towards a Reliable Test of Conditional Reasoning Ability” [129];
with Robert B. Davis “Aspects of mathematics learning that should be the subject of testing” [127];
with Robert B. Davis “Inadequately tested aspects of mathematics learning” [128]; with D. Blackwell
Mathematics-Report of the Project 2061 Phase I Mathematics Panel [14] and “The roles of action and of
thought in mathematics education—One mathematician’s passage” [123].
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under which they were listed in the Journal of Symbolic Logic (JSL from now on)—
volumes 26 (1961) and 45 (1985)—whereas our own classification goes in bold type. The
classification in the JSL was elaborated by Church.32

Complete references of the works reviewed by Henkin are provided in the bibliog-
raphy. Our listing of the reviews includes the cross-referencing system that was used in
the JSL: “The reviews used a system of cross-referencing by volume number (in roman
numerals) and page number (in arabic numerals). For example, Turing’s classic paper on
computability was II 42—it was reviewed in volume 2, beginning on p. 42” (Enderton
[30, p. 175]). Moreover, we have added the publication year and, in square brackets, the
number of the corresponding reference in this chapter. Also in square brackets, but after
the title of the reviewed work, we include the number for that reviewed work in Sect. 7.

List of Reviews

1. VII 122(1) (1942) [49]: Maxwell Herman Alexander Newman and Alan Mathison
Turing, “A formal theorem in Church’s theory of types” (1942) [201].

2. XIII 143(1) (1948) [51]: Jean Cavailles, Transfini et Continu (1947) [17].
3. XIII 171(2) (1948) [50]: John Charles Chenoweth McKinsey and Alfred Tarski,

“Some theorems about the sentential calculi of Lewis and Heyting” (1948) [189].
4. XIV 65(1) (1949) [57]: Stanislaw Jaśkowski, “Sur les variables propositionelles

dépendantes” (1948) [150].
5. XIV 66(1) (1949) [56]: Stanislaw Jaśkowski, “Sur certains groupes formés de classes

d’ensembles et leur application aux définitions des nombres” (1948) [149].
6. XIV 188(1) (1949) [55]: Alfred Tarski, A Decision Method for Elementary Algebra

and Geometry (1948) [232].
7. XIV 193(1) (1949) [54]: Andre Chauvin, “Structures logiques” (1949) [19].
8. XIV 193(2) (1949) [53]: Andre Chauvin, “Généralisation du théorème de Gödel”

(1949) [18].
9. XV 230(1) (1950) [60]: László Kalmár, “Une forme du théorème de Godel sous des

hypothèses minimales” (1949) [153]; László Kalmár, “Quelques formes générales du
théorème de Gödel” (1949) [152].

10. XVI 53(1) (1951) [63]: Heinrich Scholz, “Zur Erhellung des Verstehens” (1942)
[218].

11. XVI 213(1) (1951) [64]: James Kern Feibleman, “Class-membership and the onto-
logical problem” (1950) [32].

12. XVI 213(2) (1951) [62]: Hugues Leblanc, “The semiotic function of predicates”
(1949) [159].

13. XVI 213(3) (1951) [61]: Hugues Leblanc, “On definitions” (1950) [160].
14. XVII 205(2) (1952) [65]: Abraham Robinson, On the Metamathematics of Algebra

(1951) [213].
15. XVII 207(1) (1952) [66]: Alfred Tarski, A Decision Method for Elementary Algebra

and Geometry (1951) [233].
16. XVII 207(2) (1952) [67]: Kurt Gödel, The Consistency of the Axiom of Choice and

the Generalized Continuum Hypothesis with the Axioms of Set Theory (1951) [46].

32See Enderton [30].
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17. XVIII 72(2) (1953) [70]: Helena Rasiowa, “Algebraic treatment of the functional
calculi of Heyting and Lewis” (1951, pub. 1952) [205].

18. XVIII 339(3) (1953) [69]: Burton Dreben, “On the completeness of quantification
theory” (1952) [28].

19. XIX 219 (1954) [74]: Georg Kreisel, “On a problem of Henkin’s” (1953) [157].
20. XIX 227(1) (1954) [76]: Karl Menger, “The ideas of variable and function” (1953)

[193].
21. XIX 227(2) (1954) [75]: Karl Menger, Calculus. A modern Approach (1953) [192].
22. XX 78(2) (1955) [84]: Helena Rasiowa and Roman Sikorski, “Algebraic treatment of

the notion of satisfiability” (1953) [208].
23. XX 80(1) (1955) [83]: Helena Rasiowa and Roman Sikorski, “On existential theo-

rems in non-classical functional calculi” (1954) [209].
24. XX 184(2) (1955) [81]: Evert Willem Beth, “Sur le parallelisme logico-mathe-

matique” (1953) [8].
25. XX 185 (1955) [79]: Abraham Robinson, “Les rapports entre le calcul déductif et

l’interprétation sémantique d’un système axiomatique”; Evert Willem Beth, Luitzen
Egbertus Jan Brouwer, and Abraham Robinson, “Discussion” (1953) [215].

26. XX 186(1) (1955) [86]: Paul Bernays, Evert Willem Beth, Luitzen Egbertus Jan
Brouwer, Jean-Louis Destouches, and Robert Feys, “Discussion générale” (1953)
[6].33

27. XX 186(2) (1955) [80]: A. Chatelet, “Allocution d’ouverture” (1953); (3) Luitzen Eg-
bertus Jan Brouwer, “Discours final” (1953); (4) Abraham Robinson, “On axiomatic
systems which possess finite models” (1951) [212].34

28. XX 281(1) (1955) [85]: Ladislav Rieger, “On countable generalised σ -algebras, with
a new proof of Gödel’s completeness theorem” (1951) [211].

29. XX 282(1) (1955) [82]: Gunter Asser, “Eine semantische Charakterisierung der de-
duktiv abgeschlossenen Mengen des Prädikatenkalküls der ersten Stufe” (1955) [2].

30. XXI 193(4) (1956) [89]: Jerzy Łoś, “The algebraic treatment of the methodology of
elementary deductive systems” (1955) [167].

31. XXI 194(1) (1956) [90]: Juliusz Reichbach, “O pełności wȩższego rachunku
funkcyjnego”; Juliusz Reichbach, “O polnoté uzkogo funkcional’nogo isčisléniá”
(Russian translation); Juliusz Reichbach, “Completeness of the functional calculus
of first-order” (English summary) (1955) [210].

32. XXI 372(2) (1956) [88]: Andrzej Mostowski, Andrzej Grzegorczyk, Stanisław
Jaśkowski, Jerzy Łos, Stanisław Mazur, Helena Rasiowa, and Roman Sikorski, Der
gegenwartige Stand der Grundlagenforschung in der Mathematik (1955); Andrzej
Mostowski, Andrzej Grzegorczyk, Stanisław Jaśkowski, Jerzy Łos, Stanisław Mazur,
Helena Rasiowa, and Roman Sikorski, The Present State of Investigations on the
Foundations of Mathematics (1955); Andrzej Mostowski, Andrzej Grzegorczyk,
Stanisław Jaśkowski, Jerzy Łos, Stanisław Mazur, Helena Rasiowa, and Roman Siko-
rski, Sovréménnoé sostoánié isslédovanij po osnovaniám matématiki (1954) [200].

33This is a really short review. Its text goes: “This is a brief discussion of the following questions. Should
semantics be considered as a part of, or as complementary to, symbolic logic? Does the formalization of
theoretical physics require the introduction of new logical systems?”
34In fact, Henkin lists the three works, but he only reviews Robinson’s.
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33. XXII 216 (1957) [94]: Kaarlo Jaakko Hintikka, “An application of logic to algebra”
(1954) [147].

34. (1957) [93]: Alonzo Church, Introduction to Mathematical Logic, Vol. I (1956) [24].
35. XXIII 33(2) (1958) [96]: Arend Heyting, “Logique et intuitionnisme” (1954) [144].
36. XXIII 34(1) (1958) [97]: Evert Willem Beth, “Réflexions sur l’organisation et la

méthode de l’enseignement mathématique” (1955) [9].
37. XXIV 55 (with Andrzej Mostowski) (1959) [136]: Anatolı̌ Ivanovič Mal’cév, “Ob

odnom obščém métodé polučéniá lokal’nyh téorém téorii grupp” (On a general
method for obtaining local theorems in group theory) (1941) [181]; Anatolı̌ Ivanovič
Mal’cév, “O prédstavléniáh modéléj” (On representations of models) (1956) [182].

38. XXIV 234(2) (1959) [98]: Andrzej Mostowski, “Quelques observations sur l’usage
des méthodes non finitistes dans la méta-mathématiques”; Daniel Lacombe and An-
drzej Mostowski, “Interventions” (1958) [199].

39. XXIV 235 (1959) [99]: Louis Nolin, “Sur l’algebre des predicats”; Andrzej Mostowski,
Jean Porte, Alfred Tarski, and Jacques Riguet, “Interventions” (1958) [202].

40. XXV 256(1) (1960) [102]: Jerome Rothstein, Communication, Organization and Sci-
ence with a foreword by C.A. Muses (1958) [216].

41. XXV 289 (1960) [101]: Hilary Putnam, “Three-valued logic” (1957) [203]; Paul Fey-
erabend, “Reichenbach’s interpretation of quantum-mechanics” (1958) [33]; Isaac
Levi, “Putnam’s three truth values” (1959) [163].

42. XXVIII 174(3) (1963) [110]: Antonio Monteiro, “Matrices de Morgan caractéris-
tiques pour le calcul propositionnel classique” (1960) [196].

43. XXX 235 (1965) [112]: Evert Willem Beth, Formal Methods. An Introduction to
Symbolic Logic and to the Study of Effective Operations in Arithmetic and Logic
(1962) [11].

44. XXXII 415(1) (1967) [115]: Marshall Harvey Stone, “Free Boolean rings and alge-
bras” (1954) [223].

45. XXXVI 337(1) (1971) [118]: Maurice L’Abbé, “Structures algébriques suggérées par
la logique mathématique” (1958) [158].

46. XXXVI 337(2) (1971) [117]: Marc Krasner, “Les algèbres cylindriques” (1958)
[156].
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Henkin’s Theorem in Textbooks

Enrique Alonso

Abstract Our aim in this paper is to examine the incorporation and acceptance of
Henkin’s completeness proof in some textbooks on classical logic. The first conclusion
of this paper is that the inclusion of Henkin’s completeness proof into the standards of
Logic was neither quick nor easy. Surprising as it may seem today, most of the textbooks
published in the 1950s did not include a section for this proof, nor presented it in any way.
A question we should try to answer is at what moment does Henkin’s proof of complete-
ness for first order logic begin to be considered as a part of the standards of elementary
logic. This point brings us to a discussion on the way in which the specific gains of
Henkin’s proof have been assessed in literature. The possibility of using Henkin’s meth-
ods in a wide variety of formal systems made completeness a general property belonging
to foundations of logic, leaving the realm of model theory for quantification languages
where it was previously located.

Keywords History of logic · Case studies in history of mathematics · Completeness in
elementary logic

1 Logic Textbooks

The study of the textbooks of a certain discipline is one of the best ways to understand
what is at stake at every moment in a field, in this case, the field of contemporary logic.
Our aim in this paper is to examine the incorporation and acceptance of Henkin’s com-
pleteness proof in some textbooks on classical logic. We have carried out a critical anal-
ysis of some 34 works1 that can be considered classical by logicians from almost every
country or tradition. All of these textbooks come from the Anglo-Saxon tradition which
dominated the development of logic in the twentieth century. We have thus explicitly
ignored works, many of which are of great value, belonging to local traditions in com-
munities that could be considered as peripheral.2 All the works considered in this paper
were published before the beginning of the 1980s. We consider that contemporary logic
reaches maturity in the late 1970s. As a result, we believe that subsequent textbooks only
add minor updates on previously existing material and approaches. In Table 1, we show
the distribution of the material over the decades.

1The list is featured prominently in Sect. 8.
2For details on the dissemination of logic in Spain, see [2].
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Table 1 Works analyzed Period Number of works analyzed

1950–1960 9

1960–1970 18

1970–1980 7

Table 2 Textbooks by title Terms Number of works including the term in the title

Mathematical 17

Symbolic 8

Formal 2

Others 9

The choice of the works analyzed here has been made based on an expert assessment
of their influence at the time. We do not claim the list to be neither objective nor exhaus-
tive. The evaluation of the influence of a work depends too much on the context of each
reader so that any claim of objectivity could be considered pretentious. We have made our
selection by focusing on works whose title makes reference to some of the several ways
to name contemporary logic. Terms such as mathematical logic, the symbolic logic, or
formal logic are common. The distribution found in our list is shown in Table 2.

As can be seen from the list, the term “mathematical” is most frequently used. Nev-
ertheless, many of the textbooks including this term in their title do not cover the kind
of content we could expect today. In some cases, we only find what could be taken as a
promising introduction to the topic.

Another factor that must be considered is the origin of many of these manuals. In many
cases, the textbooks originate from previous works published in other languages. We can
identify at least five translations from German, but we also have translations from French,
Polish, and Russian original works. This usually is the result of the invitations handed
out to various European teachers to visit American institutions to offer courses on logic.
The notes used often gave rise to a manual that was then published. In other cases, the
text came from the translation of a work or notes used in these researchers’ universities of
origin.

Finally, we must emphasize the interest in the field of logic shown by certain scien-
tific publishing companies during the late 1960s. Reidel, Springer, North-Holland, and
Dover are amongst the most relevant publishing houses in this period of consolidation
of the discipline. In the previous period, we observe a greater dispersion of publishers.
Sometimes, we find general publishers giving a growing discipline an opportunity, but it
is more common to find university companies publishing the research of its scholars.

2 Church and Kleene Textbooks

The first conclusion of this paper is that the inclusion of Henkin’s completeness proof into
the standards of logic was neither quick nor easy. The first mention of this result appears
in [8] and [22]. From this we might deduce that it was accepted without hesitation and
included immediately in the manuals of the time. However, this was certainly not the case.
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As is well known, Church had been Henkin’s mentor at Princeton since the arrival
of the latter in 1941. In fact, Henkin chose to study at Princeton because of Church’s
presence at that university.3

During the course on logic that Church included in his doctoral program and that
spanned over two semesters, Gödel’s completeness theorem was analyzed. The course
looked at the theorem’s reductive character; that is, the use of techniques—normal forms
and quantifier elimination—to reduce general problems to simpler and better known situ-
ations. The same approach is adopted in Sect. 44 of [8], where a detailed proof of Gödel’s
original result is exposed. This work by Church was one of the first textbooks to include
detailed comments in the English language of this complex proof. Paradoxically, the first
official translation of Gödel’s original paper on completeness published in German in the
Monatshefte für Mathematik und Physik4 in 1930 appears some years later in the classi-
cal work by Van Heijenoort From Frege to Gödel in 1967.5 It is therefore quite possible
that Gödel’s proof was known by a number of English logicians through Church’s work
and not directly through Gödel’s. This may partly explain Church’s reluctance to adopt
Henkin’s proof in his manual. The first time Henkin’s proof is mentioned in Church’s text-
book is in Sect. 49, entitled Historical Notes. In this section the content of the preceding
section is explained from a historical point of view. Church says that:

The first proof of completeness in the latter sense is that of Gödel, which is reproduced in Sect. 44.
Another proof of completeness of the functional calculus of first order is due to Leon Henkin and
is reproduced in Sect. 45 (see further Sect. 54).6

If we analyze Sect. 45 in detail, we can see the use of the general technique ideated
by Henkin in his proof, but no explicit reference to the author is made. The first explicit
mention to Henkin appears in the historic section, Sect. 49, which comes obviously some
pages later. It is also relevant that Sect. 45 is entitled Löwenheim’s theorem and Skolem’s
generalization and not, as it could be expected, something making mention to Henkin. The
reason is that Church employs Henkin’s theorem7—without mentioning the author—to
show that it is possible to obtain both the Gödel completeness theorem and Löwenheim–
Skolem theorem as mere corollaries.8 The section explicitly including the name of Henkin
in its title is devoted to the completeness proof for second-order logic, the result that
constitutes the core of his doctoral thesis.

It is true however that in a footnote Church clarifies that:

The method which is used in this section to prove a weak completeness theorem for the functional
calculus of second order is due to Leon Henkin (in his dissertation, Princeton University, 1947).
It is essentially the same as the method used in Sect. 45 (also due to Henkin, cf. footnote 465) to
prove Gödel’s completeness theorem for the functional calculus of first order.9

3See [16, p. 132].
4See [12].
5The translation was elaborated on that occasion by Professor Stefan Bauer-Mengelberg (see [35, p. 593])
and was reviewed and approved by Gödel himself.
6See [8, p. 291].
7Sometimes the term Henkin completeness theorem is used to make reference to any formulation of the
type “every consistent set of formulas of first-order logic is satisfiable, that is, has some model.” This
time, Church specifies that this consistent set is satisfiable in a model of cardinal enumerable.
8See [8, pp. 244–245].
9See [8, p. 307, nt. 510].



138 E. Alonso

If we gather these data about the presence of Henkin’s completeness theorem for first-
order logic in the work of Church, then what is actually observed is the attempt to locate its
commentary in those places that really represent significative improvements with respect
to Gödel’s proof. This is really what could be expected from someone who knew the work
of Henkin in its true value.

Thus, it is not so strange that Church reserves the term Henkin’s theorem to refer to the
result for second-order logic. Church knew very well that the completeness theorem for
second order was obtained previously and that the techniques developed to obtain it were
then used by Henkin to extend the result to first-order logic. Moreover, he is aware that
the undoubted advantage of the method developed by Henkin over Gödel’s proof relies on
the ability to handle models of any cardinal. In this context, the connection of Henkin’s
proof with the Löwenheim–Skolem theorem seems obvious.

Kleene’s work, although published before the Church’s one, had surely less diffusion,
inter alia because Church’s work had circulated as lecture notes for a long time previously.
Kleene is quite explicit with respect to the value of Henkin’s proof when he asserts that:

Henkin 1949 gave a proof employing a minimum of knowledge of the deductive properties of the
predicate calculus. We give a proof which is intermediate in this respect between Hilbert–Bernays’
and Henkin’s.10

However, the proof supplied in his book is basically a Gödel-like proof.

3 The Completeness Proof in Textbooks

Although these early works invite us to imagine that Henkin’s proof was included in
the standards of contemporary logic in a relatively seamless manner, the truth is that
this process took many years. In fact, the completeness theorem itself experienced some
difficulties to be finally considered a common topic in elementary textbooks. Surprising as
it may seem today, most of the textbooks published in the 1950s did not include a section
for this proof, nor presented it in any way. This also occurs in the following decade,
although during this period, there are already many works that include the proof in some
way. It is in the decade from 1970–1980 when the problem of the completeness for first-
order logic acquires enough importance as to deserve an entire section including a detailed
proof, the corresponding corollaries, and a commentary of the general implications of the
theorem. In fact, none of the textbooks analyzed in this period skipped a chapter or section
on completeness. Table 3 shows the specific figures.

Although it is surely inappropriate to talk in the 1950s of the survival of the logicist
paradigm, it is true that many of the manuals from that period had a certain logicist flavor.

Table 3 Textbooks including chapters or sections on “completeness”

Ages Including completeness Not including completeness

1950–1960 2 6

1960–1970 8 11

1970–1980 9 –

10See [22, p. 389].
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This fact is related to the lack of contents from the model theory. Nevertheless, this may
be simply because the model theory had not yet had the appropriate development and
dissemination. The concept of logic transmitted by works like Introduction to Symbolic
Logic and its Applications by Carnap, The Elements of Mathematical Logic by Rosen-
bloom, Logic for Mathematicians by Rosser, or Symbolic Logic by Lewis and Langford
is that logic is mainly concerned with the logical calculi. Logic is a tool to derive con-
clusions from given premises. In a more general sense, logic is mainly oriented toward
formalizing mathematical theories and analyzing the result of this formalization. So it is
not surprising at all that the definition of completeness offered in these manuals is that of
completeness of a theory and not completeness of a logical system.11 The instrumental
value of logic as a tool to analyze ordinary language is also present in many of these text-
books. Reichenbach [30] and Suppes [33] promote an interpretation of logic that would
eventually go on to be very popular in university faculties of humanities and philosophy.

In general, it can be said that in this period, there is little interest in the study of the
metatheoretical properties of formalisms. On the rare occasions that metatheoretical con-
tents are included and commented on, they are centered more on the decidability or inde-
pendence of certain axiomatizations of elementary logic. The emphasis is usually placed
on the rigor of the methods employed, the ability of formal languages to formalize well-
known informal axioms, or on the possibility to derive conclusions from a very small
number of axioms. The line of study originally opened up by Church and Kleene years
ago was not the one followed by most academics in the 1950s. The mainstream in logic
turned their attention toward some of the initial intuitions posed by Russell in the Principia
or Hilbert and Bernays in the Grundgesetze.

In the 1960s, the situation changes, bringing about an equilibrium between the man-
uals that do include comments on the completeness theorem for first-order logic in their
indexes and those that do not. In those cases in which the completeness theorem does not
appear in the subject index, we do find some kind of comment even if this does not lead to
a detailed proof. A distinctive feature in the 1960s is that a discussion of the completeness
theorem is not often found in an appropriate place. Sometimes it is included as part of
the discussion on foundations, and others within a section devoted to formal semantics.
In general, however, there is no clear idea of the correct location for this kind of content.

The manuals that discuss the topic often refer to other works for a detailed demon-
stration; usually, Church [8] and Hilbert and Ackermann [18] (the English translation of
the second German edition). References to Henkin’s proof are rare in this context, and in
general Gödel’s proof is mentioned as the first to establish this result for elementary logic.

Nevertheless, we still can find some manuals that do not make any mention to the
completeness of first-order logic; Lee [23] and Hackstaff [13] are good examples. These
textbooks exhibit a clear debt to the original ideas of logicism that somehow do not fully
disappear.

4 Henkin’s Theorem as a Part of the Received View

A question we should try to answer is at what moment does Henkin’s proof of complete-
ness for first-order logic begin to be considered as a part of the standards of elementary

11See [6, p. 173].
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logic. The answer is not an easy one to reach in any case. Rather than in a particular work
or a certain milestone, what we find is a series of handbooks that give form to what would
become the standards of formal logic in the next decade. In this sense, the Introduction to
Mathematical Logic by Mendelson, which was first published in 1964,12 deserves special
mention. Apart from a detailed discussion of Henkin’s proof, this study is of interest be-
cause of where it chooses to deal with the completeness theorem: it appears as a separate
section under a heading entitled Quantification Theory. We do not intend to argue at this
point where the right place is to show a proof of the completeness for FOL. What is of
interest to us is that completeness is understood from now on as part of the general study
of quantification theories. It is no longer a strange content that is difficult to locate, but
a proper part of the study of the most common formalisms. Also remarkable is the effort
made to disclose not the original version but the modification of it made by Hasenjaeger13

in 1953. This latter adaptation is now considered canonical.
A few years later, in 1971, at least two other books appear that follow the line of re-

search embarked upon by Mendelson. These studies are Mathematical Logic and Formal-
ized Theories by R. Rogers and Metalogic. An Introduction to the Metatheory Standard
First Order Logic by Hunter. Both preserve the location of the completeness for FOL
given in the textbook by Mendelson. In the first, an explicit reference to the Mendelson’s
work as the correct point of reference is made.

In all these cases (in Mendelson’s work and then in Rogers and Hunter), some classical
results in model theory are commented on with relation to the completeness theorem. The
Löwenheim–Skolem and compactness theorems are obvious results in this context, but
other topics such as categoricity or elementary equivalence begin to be included alongside
more typical contents.14 What becomes evident from these comments is that completeness
itself was seen for a long time as a proper content of model theory rather than as a basic
metatheoretical property of formal systems. The complexity of the existing proofs and the
notions involved probably contributed toward that view. Consider, for example, that the
use of nonconstructive resources was regarded as a kind of border between pure logic and
set theory.15

In short, it appears that it is during the final years of the 1960s and early 1970s that
completeness begins to take the leap from model theory into the standards of metatheory
of logic. We refer to these standards as the received view in the study of elementary logic.
This shift means abandoning the notion that completeness is a subdiscipline of logic,
model theory, and seeing it as a basic property in the study of any formalism.

5 The Gödel’s Damn

A common phenomenon in textbooks literature is the survival of certain denominations,
regardless of its content. Gödel’s name was and is still associated with the complete-
ness theorem of first-order logic even though the proof is not the original proof given by

12In 1979, a second edition appears.
13See [26, p. 67]. See also [14]. Later we will discuss this change in relation to alternative proofs.
14See, for example, [26].
15See Gödel’s apologize in [11, p. 63].
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Gödel. We frequently refer to Gödel’s completeness theorem in this context, partly as a
way of preserving relevant historical facts. And there is nothing wrong with this. It is true
that Gödel was the first to prove this fundamental result, and we had to wait a long time
until the method devised by Henkin furnished an essentially different proof. But is that
enough to warrant keeping Gödel’s name in the completeness theorem of FOL? Rather
than offering a verdict, I will discuss what is and what might be inappropriate and what
is perfectly admissible. I do not believe that there is any problem in using Gödel’s name
to refer to the completeness theorem for FOL when this is formulated in a completely
general manner. More than a way to grant an undisputed priority, we believe it is a good
way to preserve the true history of the discipline. What may be less suitable would be,
for example, associating Gödel with formulations that are more akin to those of Henkin.
It would be strange to speak of Gödel’s theorem in order to refer to the fact that every
consistent set of formulas has a model. This is simply not the original formulation of-
fered by Gödel, and it introduces notions that were not around when Gödel proved his
completeness theorem.

Much worse would be to go ahead and prove Gödel’s completeness theorem by adopt-
ing the Henkin’s technique without making this clear. To our surprise, we have identified
at least two works in which this phenomenon occurs: Introduction to Mathematical Logic
by H. Hermes and An Outline of Mathematical Logic by Grzegorzyk, which both offer this
misleading interpretation. In neither case can we ascribe this to ignorance, which makes
it even more interesting. I believe it responds to a common process in the construction of
the canon of a discipline. To obtain a fundamental result, we are supposed to use the best
available techniques at every moment. It is up to those interested in history to fix when
and how results were obtained, but the only important concern for textbooks is to fulfill
pedagogical and disciplinary targets in the best possible way. The dates on which these
works were published, in the mid-1970s, could however facilitate an undesirable confu-
sion, which fortunately does not seem to have spread amongst the scholarly community.

Some textbooks emphasize the difference between the statement of Gödel’s complete-
ness theorem and what is described as Henkin’s theorem. A possible solution to stress the
differences between both statements is that is adopted in A Course in Mathematical Logic
by Bell and Machover [3]. In this work, Gödel’s theorem is described as a weak com-
pleteness theorem, whilst Henkin’s theorem is considered a full and strong completeness
result. It is true that in Gödel 1929 and 1930, [11, 12], his completeness theorem is for-
mulated as every valid formula of the restricted functional calculus is provable, and it is
postulated that the method used does not lead to a strong completeness result, understood
without restrictions on the cardinal of the set of premises.16 This observation partially
justifies the decision taken by Bell and Machover but at the cost of a certain degree of ar-
tificiality. In the same work,17 the term Henkin’s theorem is openly used to refer to strong
completeness or to some of the formulations commonly associated with his property, that
is, all consistent set of formulas of a language L of first order is satisfiable in a model
of cardinal less than or equal to that of L. This approach is similar to that adopted by
Schoenfield in his Mathematical Logic and is the most common solution in cases where
some distinction is made between the proper contents of Gödel’s completeness theorem
and Henkin’s one.

16See [3, p. 117].
17See [3, p. 121].



142 E. Alonso

6 The Real Value of Henkin’s Completeness Theorem

This point brings us to a discussion on the way in which the specific gains of Henkin’s
proof have been assessed in literature. On some occasions, Henkin’s proof has been in-
troduced as a kind of simplification of Gödel’s original proof. Hermes’ manual responds
to this approach when he says that the proof that we shall consider is not Gödel’s origi-
nal proof, but a simpler proof due to Henkin.18 I am of the opinion that almost all those
familiar with introductory textbooks and courses in modern logic can recognize certain
success for this way of putting things. This is obviously not the most appropriate way of
setting the real value of Henkin’s theorem, simply because it can never be considered a
mere simplification of Gödel’s proof. It represents an entirely different way of facing the
problem of completeness in formal languages, one completely different from Gödel’s. In
any case, I do not think that this statement and others like it are down to ignorance or a
twisted interpretation of the contents of each of these results. It is more plausible to see
it just as a way of commenting on Gödel’s proof in a more verbose way, justifying its
replacement by another more accessible one to the nonspecialist. There would therefore
be a pedagogical intention behind this, rather than a focus on historical fact. Nevertheless,
this movement can result in a false impression with respect to the relationship between
both proofs.

However, Henkin’s theorem is most often introduced as an alternative result, based on
concepts and techniques quite different from Gödel’s. Mates, for example, perfectly sum-
marizes this point of view when he argues that Henkin’s proof is formulated in terms of
certain notions that possess interest even independently of their use in the present connec-
tion.19 Besides its use of concepts from model theory, Henkin’s proof is usually valued
for its relative independence from the limitations of language and the specific presenta-
tion of the system used to characterize derivability. Bell and Machover insist precisely on
assigning the name of Henkin’s theorem to the version that allows us to extend the result
to languages of any cardinality. But perhaps it is Enderton who exposes this point of view
more clearly when he says that Henkin’s proof unlike Gödel’s original proof generalizes
easily to languages of any cardinality.20 Kleene [22] notices the relative independence
of the method followed by Henkin with respect to the characterization of derivability:
Henkin [15] gave a proof employing a minimum of knowledge of the deductive properties
of the predicate calculus.21

I believe that one of the great contributions of the method followed by Henkin consists
of its ability to be extended to formal systems far from the realm of first-order logic and
quantification languages. For a long time, the community of logicians seemed to consider
completeness as a property of quantification formal systems and not as a general property
of any formalism. I think that the dependence of Gödel’s proof of specific resources of
quantificational vocabularies contributed decisively to set this impression. The easy ex-
tension of Henkin’s technique to some nonclassical logics and especially modal logics
based on Kripke semantics was certainly a key factor in understanding completeness as a

18See [31, p. 61].
19See [25, p. 136].
20See [10, p. 139].
21See [22, p. 389].
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fundamental property of all kinds of formalisms. However, this should be considered as
a mere hypothesis that would require an independent study that goes beyond our goals at
this time.

Another fact that requires some commentary is the tendency to see Henkin’s proof
as one amongst others stated during a very particular moment in time. Mendelson,22 for
example, states that:

The proof given here is due to Henkin [15], as simplified by Hasenjaeger [14]. The result was
originally proved by Gödel [12]. Other proofs have been published by Rasiowa-Sikorski [28, 29]
and Beth [4], using (Boolean) algebraic and topological methods, respectively. Still other proofs
may be found in Hintikka [19, 20] and in Beth [5].23

This commentary seems to respond to the idea that the method followed by Henkin
was a direct consequence of a wide and extensive comprehension of the meaning of the
completeness of formal systems by the scientific community at the time. It is true that
Henkin never had to dispute the primacy of his proof over those by Rasiowa–Sikorski or
Beth. But comments like those of Mendelson’s conveyed the impression that the under-
standing of the nature itself of logical completeness and the techniques needed to prove
this property in more diverse contexts was around during the late 1940s and early 1950s.

Perhaps as a result of this feeling, or simply an understanding of the flexibility of
the strategy followed by Henkin, a wide variety of proofs appeared based on minor—
or not so minor—changes. The so-called Hasenjaeger’s simplified proof might initially
had belonged to this category of alternative proofs to be later considered as the canonical
discussion of Henkin’s proof. In 1949’s paper, Henkin did not devise Lindenbaum’s con-
struction over the extended language, including in just one one step all the new constants
needed as witnesses to avoid ω-inconsistent first-order theories. Instead, Henkin consid-
ered a series of successive extensions, complicating the process and taking elegance away
from the whole proof. Hasenjaeger24 seems to be the first to change this aspect, including
all the new constants in one single step. Nevertheless, Church [8, p. 311, nt. 513], indi-
cates that it was Henkin himself who, in 1950, instilled in Church the desire to extend the
language in that single step.

Smullyan represents an entirely different case. In his First Order Logic, he openly
presents a methodology opposed to what he called the Henkin–Hasenjaeger complete-
ness proof.25 As is well known, the technique used by Smullyan is based on the analytic
tableaus developed by Beth.26 Although at the time this was a very interesting and visual
way to approach the issue of completeness, the fact is that this new development never
acquired the relevance Smullyan demanded. Perhaps less pretentious, but in the same line
of thinking, we find the development Schütte offers in his 1962’s Lecture Notes in Math-
ematical Logic. In his notes, Schütte develops an original proof that is not always easy to
follow, in which he exhibits his personal point of view with respect to logic. It is com-
monplace in this period to take advance of some topic (completeness in this case) to offer

22See also [24, p. 192].
23See [26, p. 67].
24See [14].
25See [32, p. viii].
26Ibid.
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strategies reflecting the philosophical views of the author. Smullyan or Schütte are mere
examples of this way in order to understand the contents and targets of textbooks.

A final point that deserves our attention is the commentary of nonconstructive steps in
the completeness proof for first-order logic. Most of the manuals analyzed pay little at-
tention to this point. Only those works sensitive to the history of logic or those interested
in the differences between finitary and nonfinitary proofs devote some lines to this mat-
ter. Church [8] and Kleene [22], probably share both components and expressly mention
this fundamental element of completeness proof although in relation to the original proof
by Gödel.27 Curry [9] also raises the question when pointing toward a potential conflict
between Church’s [7] undecidability theorem for first-order logic and the actual construc-
tion of models for any consistent set of formulas. If such thing were possible in a finitary
way for any set whatsoever, then we could invalidate any nonprovable formula by a finite
construction, thus making the logic itself decidable. Curiously, Curry does not offer more
direct evidence of the use of nonconstructive resources in the proof:

This is necessarily a nonconstructive result, because Church proved that HK* is recursively un-
decidable; and if there were a constructive method of deciding whether or not a proposition A is
valid in every model, then it would furnish a constructive decision method.28

Mendelson is much clearer when he directly refers to the actual proof by Henkin:

Notice that M is not necessarily effectively constructible. The interpretation of the predicate letters
depends upon the concept of provability and this, as was noted at the end of Lemma 2.11, may not
be effectively decidable.29

In this case, M is the model resulting from Lindenbaum’s construction. It is clear that,
in general, there is some reluctance in the manuals to indicate clearly the point at which
the Henkin’s proof includes a nonconstructive step. It is true that Gödel’s proof contains
a direct appeal to a nonconstructive use of the principle of excluded middle,30 a step
that is not present in Henkin’s proof. Lindenbaum’s construction, adopted by Henkin, to
extend a consistent set to a maximally consistent one is not in itself constructive or not.
If the derivability for FOL were a decidable relation between premises and conclusion,
the method could show a way to obtain a model from the initial given set. It is not easy
to understand the relative absence of more explicit comments on this fact in the textbooks
here analyzed. This may respond, as we have noted in other areas of our study, to the
intent not to confuse the reader with complex considerations in a proof that is not always
easy to follow in detail.

7 The Contribution of Henkin’s Theorem to the Received View

One of the conclusions to be drawn from this study is that the long way completeness
had to travel to gain the role now played in foundations of logic. To refer to the standards
and basic skills of contemporary logic, I will choose, following a well-stated tradition, the

27See [8, p. 235] and [22, p. 394].
28See [9, p. 354].
29See [26, p. 69].
30See [11, p. 63].
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term the received view of logic. For the received view, logic consists of the study of the
relation of consequence, that is, a relationship established between sets of formulas, the
premises, single formulas, and the conclusions. This abstract relationship can be defined
and analyzed in several ways. It can be understood under the standards of proof theory,
and then we talk of formal derivability, or from the point of view of the model theory, in
which case we deal with the relation of semantic consequence. Formal derivability and
semantic consequence define relationships that are not conceived as isolated. Obviously,
we expect that some equivalence result could be stated, but it is not, as all we know, a
direct consequence of definitions. Semantic and formal derivability relations are defined
in such different terms that nothing guarantees equivalence. This is one of the most ap-
preciated milestones of the received view, and nobody can feel any kind of surprise with
these words. Thomason [34], for example, says that:

The chapters dealing with this topic [completeness] discuss equivalences between syntactic and se-
mantic concepts and proceed to establish these equivalences as metatheorems. The metatheorems
are proved using the techniques developed by L. Henkin.31

And Hermes and Monk insist on the point stating that:

One of the substantial achievements of modern logic has been to show that the notion of conse-
quence can be replaced by a provably equivalent notion of derivability which is defined by means
of a calculus.32

Then we prove the completeness theorem, which shows the equivalence between the proof-
theoretic notion and the corresponding semantic notion.33

This way of dealing with the study of derivability and semantic consequence relation-
ships is a standard in introductory courses to logic in virtually any region or context.
Despite its virtues, it also has obvious problems that have been identified for a long time.
The first has to do with what we call the issue of syntax vs semantics priority.34 Why do
we talk about the soundness or completeness of a calculus and not of the models? Al-
though we speak of equivalence between syntactic and semantic notions, the fact is that
one of the terms of this equivalence is more valuable than the other: there is no unsound
calculus, although we accept incomplete logics with respect to the class of intended mod-
els for its language. I think that this specific point of the received view was decisively
put forward thanks to the effect that Henkin’s proof had on the assessment of complete-
ness. The possibility of using Henkin’s methods in a wide variety of formal systems made
completeness a general property belonging to foundations of logic, leaving the realm of
model theory for quantification languages where it was previously located. An example of
this tendency is given by Hunter [21], who offers an independent proof of completeness
for classical propositional logic using the method of Henkin. This strange decision seems
to be based on pedagogical criteria and is just a way of introducing the basic notions of
Henkin’s proof whilst avoiding the difficulties arising from quantificational languages.
Nevertheless, it conveys the impression that completeness makes sense in any possible
context, even in those in which we deal with decidable formal systems. This might be

31See [34, p. viii].
32See [17, Preface].
33See [27, p. 194].
34See [1, p. 80].
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an incorrect and misleading way to assess the relative importance of such properties as
decidability and completeness. A way that contrasts with the original idea Gödel had on
the importance of completeness as a metatheoretical property of logical systems. Suppes
fixes the point when he says that:

In one sense the existence of a decision procedure for truth-functional arguments trivializes the
subject. Fortunately or unfortunately, no such trivialization of the logic of quantification is possi-
ble.35

In general, the value of completeness only can be appreciated in the absence of a de-
cidability result for a given formal systems. In that case, a completeness proof guarantees
at least that we have a way to recursively enumerate the logical truths of this logic enu-
merating them as theorems of an appropriate calculus. Bell and Machover take time to
discuss this matter, stating that:

Another method of detecting logical validity is provided by the first-order predicate calculus. By
the completeness theorem, |� α iff � α. So, if we want to know whether α is logically valid, we
can search systematically for a first-order proof of α. If such a proof exists, we shall sooner or later
discover it.36

In any case, this is nothing new, but a way to interpret the value of completeness that
goes back to Gödel himself37 and one that was also picked up by Kleene in his comments
to Gödel’s completeness theorem included in Sect. 75 of Introduction to Metamathemat-
ics.38 From this point of view, completeness only has value to ensure some control over
the class of logical truths, a control fully guaranteed in a decidable logical system.

This is not, however, a conclusion that could be ascribed to Henkin himself, but rather
a direct consequence of the success of a proof that was able to remove the rank and
importance of a handful of metatheoretical properties and rearrange them in a new and
promising way.

8 Appendix: References by Period of Time

8.1 1950–1960

– Carnap, R. 1954. Introduction to Symbolic Logic and its Applications, New York: Dover
Pub.

– Church, A. 1956. Introduction to Mathematical Logic, Princeton: Princeton University
Press.

– Kleene, S.C. 1952. Introduction to Metamathematics, New York: D. Van Nostrand.
– Lewis, C.I. and Langford, C.H. 1959. Symbolic Logic, New York: Dover Publications.
– Quine, W.V. 1951. Mathematical Logic, Harvard Univ. Press. 2nd Edition.
– Reichenbach, H. 1947. Elements of Symbolic Logic, New York: The Free Press.
– Rosenblomm, P. 1950. The Elements of Mathematical Logic, New York: Dover Publi-

cations.

35See [33, p. 69].
36See [3, p. 123].
37See [12, p. 589].
38See [22, p. 423].
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– Rosser, J.B. 1953. Logic for Mathematicians, New York: McGraw-Hill.
– Suppes, P. 1957. Introduction to Logic, New York: D. van Nostrand Company.

8.2 1960–1970

– Ambrose, A. and Lazerowitz, M. 1962. Fundamentals of Symbolic Logic, New York:
Holt, Rinehart and Winston. 2nd Edition.

– Beth, E.W. 1962. Formal Methods. An Introduction to Symbolic Logic and to the Study
of Effective Operations in Arithmetic and Logic, Dordrecht: Reidel.

– Curry, H.B. 1963. Foundations of Mathematical Logic, New York: McGraw-Hill.
– Fraenkel, A.A. 1963. Set Theory and Logic, Reading: Addison-Wesley Publishing

Company.
– Hackstaff, L.H. 1966. Systems of Formal Logic, Dordrecht: Reidel.
– Kreisel, G. and Krivine, J.L. 1967. Elements of Mathematical Logic: Model Theory,

Amsterdam: North-Holland.
– Lee, H.N. 1962. Symbolic Logic, London: Routledge.
– Lorenzen, P. 1965. Formal Logic, Dordrecht: Reidel.
– Manicas, K. 1968. Workbook for Essentials of Logic, New York: American Book Com-

pany.
– Margaris, A. 1967. First Order Mathematical Logic, New York: Dover Publications.
– Mates, B. 1965. Elementary Logic, New York: Oxford University Press.
– Mendelson, E. 1972. Introduction to Mathematical Logic, New York: D. van Nostrand

Company. 2nd Edition.
– Nidditch, P.H. 1962. The Development of Mathematical Logic, London: Routledge.
– Prior, N. 1962. Formal Logic, Oxford: Clarendon Press. 2nd Edition.
– Rescher, N. 1968. Topics in Philosophical Logic, Dordrecht: Reidel.
– Schoenfield, J.R. 1967. Mathematical Logic, Reading: Addison-Wesley.
– Schütte, K. 1962. Lecture Notes in Mathematical Logic, Pennsylvania State University.
– Smullyan, R. 1968. First-Order Logic, New York: Springer-Verlag.

8.3 1970–1980

– Bell, J.L. and Machover, M. 1977. A Course in Mathematical Logic, Amsterdam:
North-Holland.

– Enderton, H.B. 1972. A Mathematical Introduction to Logic, New York: Academic
Press.

– Grzegorczyk, A. 1974. An Outline of Mathematical Logic, Dordrecht: Reidel.
– Hermes, H. 1973. Introduction to Mathematical Logic, Berlin: Springer-Verlag.
– Hunter, G. Metalogic. An Introduction to the Metatheory of Standard First Order Logic,

Berkeley: University of California Press.
– Manin, Y.I. 1974. A Course in Mathematical Logic, New York: Springer-Verlag.
– Monk, J.D. 1976. Mathematical Logic, New York: Springer-Verlag.
– Thomason, R.H. 1970. Symbolic Logic, London: The McMillan Company.
– Rogers, R. 1971. Mathematical Logic and Formalized Theories, Amsterdam: North-

Holland.
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Henkin on Completeness

María Manzano

Abstract The Completeness of Formal Systems is the title of the thesis that Henkin pre-
sented at Princeton in 1947 under the supervision of Alonzo Church. A few years after
the defense of his thesis, Henkin published two papers in the Journal of Symbolic Logic:
the first, on completeness for first-order logic (Henkin in J. Symb. Log. 14(3):159–166,
1949), and the second one, devoted to completeness in type theory (Henkin in J. Symb.
Log. 15(2):81–91, 1950). In 1963, Henkin published a completeness proof for propo-
sitional type theory (Henkin in J. Symb. Log. 28(3):201–216, 1963), where he devised
yet another method not directly based on his completeness proof for the whole theory of
types.

In this paper, these tree proofs are analyzed, trying to understand not just the result
itself but also the process of discovery, using the information provided by Henkin in Bull.
Symb. Log. 2(2):127–158, 1996.

In the third section, we present two completeness proofs that Henkin used to teach us
in class. It is surprising that the first-order proof of completeness that Henkin explained in
class was not his own but was developed by using Herbrand’s theorem and the complete-
ness of propositional logic. In 1963, Henkin published An extension of the Craig–Lyndon
interpolation theorem, where one can find a different completeness proof for first-order
logic; this is the other completeness proof Henkin told us about.

We conclude this paper, by introducing two expository papers on this subject. Henkin
was an extraordinary insightful professor, and in 1967, he published two works that are
very relevant for the subject addressed here: Truth and provability (Henkin in Philosophy
of Science Today, pp. 14–22, 1967) and Completeness (Henkin in Philosophy of Science
Today, pp. 23–35, 1967).

Keywords Henkin · Truth · Provability · Completeness · Type theory · First-order logic ·
Propositional type theory · Equality · Interpolation · Craig · Herbrand

1 Introduction

Henkin published two papers in the Journal of Symbolic Logic: the first, The completeness
of the first order functional calculus [6] in 1949, and the second, Completeness in type
theory [7] in 1950. A theory of propositional types [11] was published in Fundamenta
Mathematicae in 1963.
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In this paper, we analyze these three proofs, trying to understand not just the result itself
but also the process of discovery, using the information provided by Henkin in The dis-
covery of my completeness proofs [16], published in 1996 in Bulletin of Symbolic Logic.1

We begin our work by pointing out some of Henkin’s stated influences, especially three
of them: (1) Gödel’s completeness theorem, as well as his article on the consistency of the
axiom of choice (where he builds a constructible universe), (2) Russell’s theory of types
and his expository explanation of the axiom of choice, and (3) Church’s formulation of
the theory of types and the important role played by both the lambda operator and the
description operators in foundational issues.

The next section is devoted to Henkin’s three completeness theorems, mentioned
above, published in 1949, 1950 and 1963. In the first subsection, we focus on the un-
expected discovery process and the role played by the lambda operator and the particular
formulation of the axiom of choice. The model he builds is interpreted from a nominal-
istic point of view, following Henkin’s papers [8] and [10]. In the second subsection, we
see how the method used in the completeness proof for type theory is modified to obtain
a completeness result for first-order logic. Moreover, we compare his proof with what
today is referred to as Henkin’s method. In the last subsection, devoted to completeness
in propositional type theory, we try to answer several questions, among them: why was
Henkin interested in such a theory?, why a new method of proof? Can completeness for
propositional type theory be derived from the already known completeness proof for type
theory or for first-order logic also developed by Henkin? We show that in this proof, the
nominalistic position is more revealing than ever.

In the next section we address two completeness proofs that Henkin taught in class. The
story behind this is that of María Manzano, who during the academic year of 1977–1978
attended his class of metamathematics for doctorate students at Berkeley. It is surprising
that the first-order proof of completeness that Henkin explained in class was not his own
but was developed by using Herbrand’s theorem and the completeness of propositional
logic. In 1963, Henkin published the paper entitled An extension of the Craig–Lyndon
interpolation theorem [11], where one can find a different proof of completeness for first
order logic; this was the other completeness proof Henkin taught in class.

We conclude this paper introducing two expository papers on this subject. Henkin
was an extraordinary insightful professor as regards the clarity of his expositions, and he
devoted some effort to writing informative papers. In particular, in 1967, he published two
papers that are very relevant for the subject broached here: Truth and provability [13] and
Completeness [14].

2 Henkin’s Declared Influences

When Henkin was a student of Alonzo Church, the weak completeness theorem of first-
order logic had the formulation given by Gödel [4] and the method of proof was based on
a reduction to the propositional case.

1The paper was dedicated to his maestro Alonzo Church on the occasion of his 91 birthday; it was to be
a book chapter, but the book was never published.
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In the presentation of Gödel’s completeness proof, emphasis was given to its reductive character:
the provability of a logically valid formula is reduced first to the provability of its Skolem normal
form, an then to the provability of some tautology in a specific set of propositional formulas.
(Henkin [16, p. 132])

In Gödel, we also find a strong completeness result, which is obtained by using weak
completeness and compactness.

THEOREM IX. Every denumerably infinite set of formulae of the restricted functional calculus
either is satisfiable (that is, all formulae of the system are simultaneously satisfiable) or possesses
a finite subsystem whose logical product is refutable.
IX follows immediately from:
THEOREM X. For a denumerably infinite system of formulae to be satisfied it is necessary and
sufficient that every finite subsystem be satisfiable.
(Gödel [4, p. 119])

A very similar version of this theorem IX is directly proved by Henkin in his doctoral
thesis in 1947, both for type theory and for first-order logic. The method of proof is the
main contribution of Henkin’s thesis, and it relies on the effective building of a model
satisfying the formulas in the consistent set. In the completeness proof for type theory,
the clue lay in the lambda operator’s ability to define a constructible hierarchy, combined
with the description operator’s ability to provide formal beings. To this effect, the reading
of Gödel’s monograph on the consistency of the axiom of choice and the generalized
continuum hypothesis inspired Henkin.

I admired the metamathematical treatment whereby the comprehension schema of set formation is
obtained from finitely many axioms, and the sophisticated handling of inner-model constructions
by means of the notion of the ‘absoluteness’ of various set-theoretical notions. I was intrigued by
the creation of a universal choice function in the realm of constructible sets.
(Henkin [16, p. 131])

Gödel’s formulation of the theorem on the consistency of the axiom of choice has this
form.

THEOREM Let T be a system of axioms for set theory obtained from v. Neumann’s system S∗ by
leaving out the axiom of choice (Ax. III3*); then, if T is consistent, it remains so, if the following
propositions 1–4 are adjoined simultaneously as new axioms:
1. The axiom of choice (i.e., v. Neumann’s Ax. III3*)
2. The generalized Continuum-Hypothesis (i.e., the statement that 2ℵα =ℵα+1 holds for any ordi-
nal α)
[. . . ]
A corresponding theorem holds, if T denotes the system of Prin. Math. or Fraenkel’s system of
axioms for set theory, leaving out in both cases the axiom of choice but including the axiom of
infinity.
(Gödel [5, p. 556])

The model Gödel provides in this proof consists of ‘all “mathematically constructible”
sets, where the term “constructible” is to be understood in the semiintuitionistic sense
which excludes impredicative procedures. This means “constructible” sets are defined to
be those sets which can be obtained by Russell’s ramified hierarchy of types, if extended
to include transfinite orders’.2

Gödel also explains that the proposition “Every set is constructible”—formulated as
A—can be proved to be consistent with the axioms in T because is true in a model con-
sisting of the constructible sets. Not only that, but when added to T as an axiom ‘seems

2See [5, p. 556].
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to give a natural completion of the axioms of set theory, in so far it determines the vague
notion of an arbitrary infinite set in a definite way’.3 For Gödel, it is very important that
the consistency of A prevails even when inaccessible numbers are admitted. ‘Hence the
consistency of A seems to be absolute in some sense, although it is not possible in the
present state of affairs to give a precise meaning of this phrase’.4

Among the influences of his thesis director, we believe that the lambda abstractor was
philosopher’s stone not just for Alonzo Church5 but also for Henkin, as we will explain
later on.

Church created the lambda calculus using functions as the basic concept, and he made
a clear distinction between the value of a function for a given argument, F(x), and the
function itself, λxF(x). Functional abstraction allows the naming of functions in the lan-
guage. Definability was then a hot topic, but we should also keep in mind that Church’s
thesis, identifying effective calculable functions with those definable by the λ operator
had already been formulated, and Henkin was one of Church’s students.

Henkin was immensely attracted by Church’s language for the theory of types,6 in
particular, by the lambda operator of functional abstraction acting on types, λ.

The class of type symbols [. . . ] is the least class of symbols which contains the symbols ι and 0 and
is closed under the operation of forming the symbol (αβ) from the symbol α and β . [. . . ] 0 being
the type of propositions, ι the type of individuals, and (αβ) the type of functions of one variable
for which the range of independent variable comprises the type β and the range of the depended
variable is contained in the type α.
[. . . ]
Certain formulas are distinguished as being well-formed and as having a certain type, in accordance
with the following rules: (1) a formula consisting of a single proper symbol is a well-formed
formula and has the type indicated by the subscript; (2) if xβ is a variable with subscript β andMα
is a well formed formula of type α, then (λxβMα) is a well-formed formula of type αβ; (3) if Fαβ
and Aβ are well-formed formulas of types αβ and β , respectively, then (FαβAβ) is a well-formed
formula of type α.
(Church [2, pp. 56–57])

Another interesting operator of Church’s language was ιa(0a); these symbols were in-
troduced to play the role of selection operators whose interpretations should be choice
functions. The formula (ιaB0) is meant to be an abbreviation for (ιa(0a)(λxaB0)) and it
functions like the English word “the”. This operator provides a very succinct formulation
of both the axiom of descriptions

9a. f0axa ⊃ .
[
(ya)(f0aya ⊃ xa = ya)

]⊃ f0a(ιa(0a)f0a)

and the axiom of choice

11a. f0axa ⊃ f0a(ιa(0a)f0a)

that Henkin enjoyed very much. Not only choice and descriptions axioms are included in
the calculus, but also infinity and extensionality

10aβ . (xβ)[faβxβ = gaβxβ ] ⊃ faβ = faβ

3See [5, p. 557].
4See [5, p. 557].
5This idea is developed with some details in [19] and [21].
6As presented in [2].
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These axioms are added to the proper logical axioms in order to obtain classical math-
ematical theories: for elementary number theory, it is necessary to add the axioms of
description and infinity; to obtain real number theory (analysis), also extensionality and
choice are appended.7 We may wonder ‘what are they doing in this formal deductive sys-
tem? [. . . ] The answer is that Church wished to show how a logistic system can be applied
to provide a foundation of mathematics, or at least Peano arithmetic and real analysis’.8

In fact, a large section of Church’s paper is devoted to proving that Peano’s postulates of
arithmetic are theorems of this calculus. Eleven axioms and some rules are introduced for
this calculus; among its rules, the λ-conversion ones play the relevant role:

II. To replace any part ((λxβMα)Nβ) of a formula by the result of substituting Nβ for xβ through-
out Mα , provided that the bound variables of Mα are distinct both from xβ and from the free
variables of Nβ .
III. Where Aα is the result of substituting Nβ for xβ throughout Mα , to replace any part Aα of a
formula by ((λxβMα)Nβ), provided that the bound variables of Mα are distinct both from xβ and
from the free variables of Nβ .
(Church [2, p. 60])

At that time, type theory was a strong candidate for being a formal foundation for
logic and mathematics since Russell had eliminated the main paradoxes by identifying
the source of contradictions and then provided a language where the vicious circle is
avoided:

In all the above contradictions (which are merely a selection from an indefinite number) there is
a common characteristic, which we may describe as self-reference or reflexiveness. [. . . ] Thus all
our contradictions have in common the assumption of a totality such that, if it were legitimate, it
would at once be enlarged by new members defined in terms of itself.
(Russell [28, pp. 154–155])9

Henkin declares in [16] that in 1938, as a second year student in Columbia University,
in Russell’s book he found an exciting formulation of the axiom of choice:

[. . . ] let me to browse in Bertrand Russell’s Principles of Mathematics, [. . . ] It was in that book
that I first read about the principle of choice. I was enormously impressed by Russell’s example of
a shoe store with infinitely many pairs of shoes and socks: How easy is to specify one shoe from
each pair in the shop [. . . ] and how seemingly impossible is to specify one sock from each pair!
(Henkin [16, pp. 128–129])

3 Henkin’s Completeness Papers

As we have already mentioned, a few years after the defense of his thesis, Henkin pub-
lished two papers in the Journal of Symbolic Logic: the first, on completeness for first-
order logic [6] and the second devoted to completeness in type theory [7]. In the 1950
paper, completeness is formulated as ‘Theorem 1: If Λ is any consistent set of cwffs, there
is a general model (in which each domain Dα is denumerable) with respect to which Λ
is satisfiable’.10 In the 1949 paper, it has the following form (for a calculus without the

7As you can see in [2, p. 61].
8See [16, p. 146].
9These pages refer to the reprint [28].
10See [7, p. 85].
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equality symbol): THEOREM ‘If Λ is a set of formulas of S0 in which no member has
any occurrence of a free individual variable, and if Λ is consistent, then Λ is simultane-
ously satisfiable in a domain of individuals having the same cardinal number as the set of
primitive symbols of S0’.11

Having such a similar statement with Gödel’s formulation, we might wonder what is
new in Henkin’s completeness theorems. The obvious answer is that the method itself is
completely new, and the main difference is that Henkin built the model instead of reducing
the problem to the completeness of propositional logic via Skolem normal forms.

In the introduction to his 1949 paper, Henkin said:

[. . . ] the new method of proof which is the subject of this paper possesses two advantages. In
the first place an important property of formal systems which is associated with completeness can
now be generalized to systems containing a non-denumerable infinity of primitive symbols. While
this is not of especial interest when formal systems are considered as logics—i.e., as means of
analyzing the structures of languages—it leads to interesting applications in the field of abstract
algebra. In the second place the proof suggests a new approach to the problem of completeness for
functional calculi of higher order.
(Henkin [6, p. 159])

It is interesting to recall that the publication order is the reverse of the discovery of the
proofs. The completeness for first-order logic was accomplished when he realized that he
could modify the proof obtained for type theory in an appropriate way. We consider this to
be of great significance because the effort of abstraction needed for the first proof (that of
type theory) provided a broad perspective that allowed him to leave apart some prejudices
and to make the decisive changes needed to reach his second proof.

3.1 Completeness in the Theory of Types

The theorem of completeness establishes the correspondence between deductive calculus
and semantics. Gödel had solved it positively for first-order logic and negatively for any
logical system able to contain arithmetic. The lambda calculus for the theory of types, as
presented in [2], with the usual semantics over a standard hierarchy of types, was able
to express arithmetic and hence could only be incomplete. Henkin showed that if the
formulas were interpreted in a less rigid way, accepting other hierarchies of types that
did not necessarily have to contain all the functions but at least did contain the definable
ones, then it is easily seen that all consequences of a set of hypotheses are provable in
the calculus. The valid formulas with this new semantics, called general semantics, are
reduced to coincide with those generated by the calculus rules.

Henkin’s proof that every consistent set of formulas has a model is performed by a con-
structive building of the model. Surprisingly, the model uses the expressions themselves
as objects; in particular their elements are equivalence classes of closed expressions, the
equivalence relationship being that of formal derivability of equality. We shall approach
this construction while trying to figure out what Henkin had in mind and why he ended
up defining the general models. On the one hand, we know that Henkin defended a Nom-
inalistic position in several of his writings ([8] and [10]) well in harmony with his general

11See [6, p. 162].
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models, even though we are not sure whether he had maintained this Nominalistic position
early in the 1940s or whether instead it was his vision in the 1950s, as—so to speak—an
inspired afterthought. What is certain is that he was interested in the elements of the hi-
erarchy of types that possesses a name in type theory, as Henkin himself explained to us
in [16]. On the other hand, the axiom of choice played a crucial role in the discovery.

Steps Towards the Discovery

We are very lucky because Henkin wrote a very interesting paper [16] telling us of his
discovery process. We will like to concentrate on the hierarchy of types and on its in-
ner hierarchy of nameable types; the second hierarchy was the source of his discovery
and, apparently, it maintains a relationship with the former similar to the relationship of
Gödel’s constructible hierarchy with Zermelo’s hierarchy of sets. We shall pinpoint two
flashes that illuminated Henkin in the process of manipulating types inside the hierarchy.

Hierarchy of Types The types are structured in a hierarchy that has the following as
basic types: (1) Dι is a nonempty set; that of individuals of the hierarchy, (2) D0 is the
domain of truth values (since we are in binary logic, these values are reduced to T and F ).
The other domains are constructed from the basic types as follows: if Dα and Dβ have
already been constructed, we define D(αβ) as the domain formed by all the functions from
Dβ to Dα .

To talk about this hierarchy, Church’s formal language of [2] is introduced. Henkin
said: ‘I decided to try to see just which objects of the hierarchy of types did have names
in T ’.12 That is, he intended to mentally represent the functions in the hierarchy of types
that can be named by lambda expressions. To visualize this, he considered a hierarchy
of types with a universe given by the set of natural numbers and a language with two
constants: one as the name for the zero and another for the successor function. In the
universe of subsets of the universe of individuals, there will clearly be both objects with
and without a name because with a countable infinite universe of individuals the set of
subsets is uncountable but the sets with a name are countable.

Hierarchy of Nameable Types These peculiar elements of the hierarchy can be named
by closed expressions. For each type α, the set Dnα contains the nameable elements,

Dnα =
{
f ∈Dα : there is a Fα ∈ cwff s.t.  (Fα)= f

}

(where  stands for the interpretation of the formal language in the hierarchy of types).
Going up in the hierarchy, it is easy to see that the nameable domain Dn(αβ) of type

(αβ) is such that each f ∈Dn
(αβ)

allows a map from Dnβ to Dnα to be defined. Even though
each function in Dn(αβ) has Dα rather than Dnα as its range—that is, f :Dβ −→Dα—we
can see that the value of nameable elements in the domain Dnβ is also a nameable element
in the domain Dnα . The reason is as follows: for any f ∈ Dn(αβ), we know that there is
an Fαβ such that  (Fαβ)= f and this function provides any g ∈Dnβ a value f (g) in Dnα

12See [16, p. 146].
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(since g has the form of  (Gβ)= g and so f (g)=  (Fαβ)( (Gβ))=  (FαβGβ) ∈Dnα).
Therefore, we can replace each f ∈D(αβ) by the restriction of f to Dnβ :

Dn∗(αβ) =
{
f ∗ : f ∈Dn(αβ) and f ∗ = f �Dnβ

}
.

Henkin wanted to know if this restricted class itself formed a hierarchy: ‘There was, how-
ever, a problem with this idea: What if the hierarchy contracted under the proposed re-
duction of the domains of functions? In other words, could there be distinct functions f
and g in some Dn(αβ) such that f ∗ = g∗?’13

The answer to this question is no, simply because when f and g are in Dn(αβ), then
 (Fαβ)= f and  (Gαβ)= g for some cwff. Assume that f �= g. Let us take X0β as the
lambda expression λxβ ∼ (Fαβxβ = Gαβxβ) representing the set of elements that give
different values under the functions involved. By using the axiom of choice we see that if
f �= g, then  (X0β) �= ∅, and  (ιβ(0β)X0β) is an element y ∈Dβ such that f (y) �= g(y).
Therefore, f ∗ �= g∗.

The new hierarchy Dn∗α is isomorphic to the previous one Dnα . Moreover, the hierarchy
obeys the rules of lambda conversion because for a function f of type (αβ) named by a
lambda expression,  (λxβNα)= f , the value for a given argument  (Mβ)=m is

f (m) =  (λxβNα)
( (Mβ)

)

=  ((λxβNα)Mβ
)

and, by lambda conversion,

=  
(
Nα
Mβ

xβ

)
.

Flash Number One He then realized that he had crossed the bridge that separates the
world of semantical models from the world of syntactic deductive systems.

As I struggled to see the action of functions more clearly in this way, I was struck by the realization
that I have used λ-conversion, one of the formal rules of inference in Church’s deductive system
for the language of the Theory T . All my efforts had been directed toward interpretations of the
formal language, and now my attention was suddenly drawn to the fact that these were related to
the formal deductive system for that language.
(Henkin [16, p. 150])

Specifically, to identify objects named by both Mα and Nα , he made use of a criterion
based on the calculus, namely, the fact that � (Mα =Nα).

In particular, I saw that using the symbol � for formal provability (or derivability) as usual, we
can define for each type symbol α, a domain D′

α satisfying the following conditions: (i) Each cwff
(closed wff, without free variables) Mα denotes an element M ′

α of D′
α and each element of D′

α is
denoted by some cwff Mα ; (ii) for any cwff Fαβ , F ′αβ is a function mapping D′

β into D′
α ; and (iii)

for any cwffs Mα and Nα , M ′
α =N ′

α if, and only if, � (Mα =Nα).
(Henkin [16, pp. 150–151])

In other words, Henkin saw a way of defining a hierarchy of names modulo equiva-
lent classes in the deductive calculus. The definition of the universes D′

α was based on

13See [16, p. 149].
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recursion on types, and the building of D′
αb from D′

α and D′
b required the axiom of choice

working in parallel with the constants ια(0α) mentioned above. Fortunately, Henkin’s pre-
vious understanding of this operator was of great help. The construction seemed to work
smoothly, with the only exception of the universe of truth values, D′

0. ‘In particular, ifM0

is a Gödel sentence such that neither �M0 nor �∼M0, then (01 = 01)
′, (∼01 = 01)

′,
and M0′ are three distinct elements of D′

0’.14

Flash Number Two He then realized that to reduce the universe of objects named by
propositions (the truth values) to only two, the set of axioms had to be expanded until it
constituted a maximal consistent set.

As soon as I observed this, it occurred to me that if we were to add further cwffs of type 0 to the
list of formal axioms, this would have the effect of reducing the number of elements in D′

0 and that
ultimately, by taking a maximal consistent set of axioms, the number of elements in D′

0 would be
two. [. . . ] Immediately I realized that my discovery provided a kind of completeness proof for a
system very much like the system PM of type theory which Gödel had proved incomplete.
(Henkin [16, p. 151])

The Proof

Hierarchy of Equivalent Classes of Names On this occasion, equivalent classes of
closed formulas (cwffs) rather than proper objects are used to build the hierarchy. A max-
imal consistent set Γ is needed and the new equivalence relation is defined as: Two cwffs
Mα andNα of type α will be called equivalent if Γ �Mα =Nα . On p. 86 of Completeness
in the theory of types [7], Henkin says:

We now define by induction on α a frame of domains {Dα}, and simultaneously a one-one mapping
Φ of equivalent classes onto the domains Dα such that Φ([Aα]) is in Dα .
D0 is the set of two truth values and Φ([A0]) is T or F according as A0 or ∼A0 is in Γ
[. . . ]
Dι is simply the set of equivalence classes [Aι] of all cffs of type ι. And Φ([Aι]) is [Aι]
[. . . ]
Now suppose that Dα and Dβ have been defined, as well as the value of Φ for all equivalence
classes of formulas of type α and β and that every element of Dα , or Dβ , is the value of Φ for
some [Aα] or [Bβ ] respectively. Define Φ([Aαβ ]) to be the function whose value, for the element
Φ([Bβ ]) of Dβ is Φ([AαβBβ ]).
He has to show that Φ is a function on equivalent classes and does not depend on the

particular representative chosen, and also that the function is one-to-one. In the inductive
step, to prove that Φ([Aαβ ])=Φ([Bαβ ]) implies [Aαβ ] = [Bαβ ], he uses choice and ex-
tensionality in a similar way as he did when building the hierarchy of nameable types;
in particular, he uses the following theorem:

�Aαβ
(
ι(β(0β))

(
λxβ

(∼ (Aαβxβ = Bαβxβ)
)))

= Bαβ
(
ι(β(0β))

(
λxβ

(∼ (Aαβxβ = Bαβxβ)
)))⊃ .Aαβ = Bαβ

14See [16, p. 151]. In this paper, the type of individuals is 1, that is why he writes (01 = 01)
′ instead of

(0ι = 0ι)′.
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We might wonder what the elements ofDι are, since we do not have individual constants.
Of course, the selection operator ιβ(0β) acting on expressions of the appropriate type, say
X0β , produces elements of any type β .

Using this construction, Henkin was able to achieve his completeness result:

Theorem 1 (Henkin [7, p. 85]) ‘If Λ is any consistent set of cffs (sentences), there is a
general model (in which each domain Dα of M is denumerable) with respect to which Λ
is satisfiable’.

To prove this theorem, the set Λ is extended to a maximal consistent set Γ , which
serves both as an oracle and as building blocks for the model, the following lemma being
the relevant step.

Lemma 2 (Henkin [7, p. 87]) ‘For every φ and Bβ , we have Vφ(Bβ)=Φ([Bφβ ])’.
The Definition of General Model As we have seen, Henkin in his proof uses a hi-
erarchy with countable domains whose elements are equivalent classes of names, is it
legitimate?, what about the definition of general models? He introduces first the defini-
tion of a broader class of structures:15 ‘By a frame, we mean a family of domains, one for
each type symbol, as follows: Dι is an arbitrary set of individuals, D0 is the set of two
truth values, T and F , and Dαβ is some class of functions defined over Dβ with values
in Dα’.

Inside this class, the general models are placed: ‘A frame such that for every assignment
φ and wff Aα of type α, the value Vφ(Aα) given by the rules (i), (ii), and (iii) is an element
ofDα is called a general model’. Thus, general models are frames characterized by being
able to provide interpretations for any expression. However, is that a proper definition?
Henkin is aware of the fact that ‘Since this definition is impredicative, it is not immediately
clear that any non-standard models exist. However, they do exist [. . . ]’ but he does not
seem to mind too much because immediately afterwards he goes on to prove Theorem 1
above, where such a model is constructed. Moreover, right at the beginning of the 1950
paper, in a footnote, Henkin declares that in the second-order case, the universes must
be closed under certain operations and gives as examples that of complementation and
projection, but he does not give an algebraic definition.16

Nominalism The models he builds are in accordance with a Nominalistic position, as
Henkin himself affirms in On nominalism, published in 1953: ‘In fact, such an inter-
pretation is implicit in a recent paper discussing the problem of the completeness of the
higher-order functional calculi’.17 In 1955, Henkin gave a lecture at the Société Belge de
Logique et de Philosophie des Sciences, where he synthesized this position as follows:

[. . . ] the thesis of Nominalists that there is only one kind of objects—physical objects—and that no
kind of abstract object can reasonably be asserted to exist. The problem posed by this thesis is that
of reinterpreting familiar language, especially mathematical language, which under the ordinary
interpretation has reference to many kinds of abstract entities.
(Henkin [10, p. 137])

15The quotes in the following paragraph all belong to: Henkin [7, p. 85].
16Such a definition can be given; for type theory I gave one in [17] and it is also included in the book [18].
17See [9, p. 22].
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He proposes ‘a single realm of individuals’, but he is aware of the problem posed by the
so-called universals, ‘which have been variously interpreted as denoting Platonic ideas,
universal attributes or properties, and more recently simply classes’.18 The traditional
Nominalistic view is that these words are not names of anything but are used to specify
something about physical objects. In first-order logic, such a Nominalist position seems
to pose no problem to a Tarskinian interpretation of logical language. In second-order
logic, ‘it is natural to reinterpret class variables as symbols for which predicates can
be substituted’.19 ∀Xϕ is interpreted as being true for every replacement of X in ϕ by
a predicate; this predicates are provided by auxiliary languages. Since there are many
possible auxiliary languages, the interpretation is not unique. He also explains that there
are auxiliary languages that provide acceptable interpretations in the sense of being in
accordance with the rules of inference. ‘Furthermore we can show that the sentences
which are formally provable are precisely those sentences which are true under all the
proposed interpretations’.20 One of the problem such a nominalistic position must face is
the interpretation of the formula S

¬∃F∀G∃x∀y(Fxy↔Gy)

whose classical interpretation is that no one-to-one and onto function maps the totality of
individuals of a domain with the class of all sets of these individuals. Cantor proved that
the formula S is a theorem of classical mathematics; accordingly, it is also a theorem of a
second order logic21 and therefore should be true. For Quine and Goodman, this argument
seems to show up the difficulty involved in finding a Nominalist interpretation of the
theory of models of standard mathematics when this is limited to countable magnitudes.
Regarding this, Henkin’s position is the one expected today if we are using nonclassical
interpretation:

[. . . ] the difficulty is only illusory. For it is only under the classical interpretation that the sentence
S expresses the proposition that sets are more numerous than individuals. It may well happen that
under a nominalistic reinterpretation of the language the sentence S continues to be true but comes
to mean something else.
(Henkin [10, p. 139])

Currently, it is clear that we have to choose between expressive power or complete
calculus; in the latter case, the old ghost of Skolem’s paradox has returned and we obtain
nonstandard models of arithmetic, as Henkin explains at the end of his 1950 paper: ‘The
Peano axioms are generally thought to characterize the number-sequence fully in the
sense that they form a categorical axiom set any two models for which are isomorphic.
As Skolem points out, however, this condition obtains only if “set” is interpreted with its
standard meaning’.22,23

18See [10, p. 138].
19See [10, p. 139].
20See [10, p. 140].
21Recall that at that time logicians include in the logic a bunch of axioms that allow the formulation of
natural numbers and even real numbers.
22See [7, p. 89].
23In The little mermaid [20], we ended the paper, devoted to second order logic, saying:
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3.2 The Completeness of the First-Order Functional Calculus

It seems natural to think that Henkin’s completeness theorem for first-order logic was
proved before the completeness for type theory since often we obtain a result for a weaker
logic and then try to extend it to a stronger logic. Moreover, if we look at the publication
data of this theorem in the JSL, that is precisely the order. Additionally, Henkin himself
declares in his 1949 paper: ‘In the second place the proof suggests a new approach to the
problem of completeness for functional calculi of higher order’.24

Surprisingly, in his 1996 paper he states that he obtained the proof of completeness of
first-order logic by readapting the argument found for the theory of types, not the other
way around. Henkin declares that after proving completeness for type theory, he wished
to extend the previous method and applied it to prove completeness for first-order logic.
It was clear that to do so he had to get rid off the axiom of choice; in particular, Church’s
elegant formulation using the selector operator. As we have already explained, this axiom
plays a relevant role in the construction of the hierarchy.

But when I wrote down details of the proof [. . . ], I saw that the axiom of choice is needed there in a
more general way [. . . ] to show that whenever we have a wffM such that � (∃xb)M0, then we also
have � (λxbM0)(ιb(0b)(λxbM0)). The fact that this condition holds is a direct consequence of hav-
ing Axiom Schema 11b [. . . ], that schema is trivially equivalent to (∃xbf0bxb)⊃ f0b(ιb(0b)f0b).
It did not take me very long to notice that, in fact, the form of the wff following (λxbM0) played no
role in the completeness proof; it is only necessary to have some cwff Nb such that � (λxbM0)Nb
holds if � (∃xb)M0 holds.
(Henkin [16, p. 152])

That is why he extends the consistent set Λ not just to a maximal consistent set, but to
one containing witnesses.

It is easy to see that Γω possesses the following properties:

(i) Γω is a maximal consistent set of cwffs of Sω .
(ii) If a formula of the form (∃x)A is in Γω , then Γω also contains a formula A′ obtained from the

wff A by substituting some constant uij for each free occurrence of the variable x.

(Henkin [6, p. 163])

The model is built using the set Γω as an oracle. The universe of the model is the set
of constants, and the relation symbols are interpreted as n-ary relations on this universe,
according to what our oracle declares.

In fact we take as our domain I simply the set of individual constants of Sω and we assign to each
such constant (considered as a symbol in an interpreted system) itself (considered as an individual)
as denotation.
[. . . ]
Every propositional symbol, A, of S0 is a cwff of Sω ; we assign to it the value T or F according
as Γω � A or not. Let G be any functional symbol of degree n. We assign to it the class of those
n-tuples 〈a1, . . . , an〉 of individual constants such that Γω �G(a1, . . . , an).
(Henkin [6, p. 163])

It is clear that you can have both: expressive power plus good logical properties. You cannot be a
mermaid and have an immortal soul.
[. . . ]
And the little mermaid got two beautiful legs (with a lot of pain, as you might know). But even in
stories everything has a price; you know, the poor little mermaid lost her voice.

24In [6, p. 159].
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If we compare this proof with the one we use today, then the main difference is that in
Henkin’s original proof the extension of the language to one with enough witnesses is not
done at once—that is, in an infinite succession of steps—but in an infinite succession of
infinite steps.

In this paper, he also extends the result for a language with a set of primitive symbols
of any cardinality. He ends the paper introducing a language with equality and proving a
completeness theorem for it, using an equivalence relation on terms to build the universe.

Leaving aside the difference already mentioned, in the form of extending Γ to Γω, let
us analyze in some detail what the differences are between his proof in [6] and the standard
one we use nowadays, following what we usually identify as Henkin’s strategy. We accept
that the important issue is to be able to show that each consistent set of formulas has a
model, and hence, that syntactic consistency and semantical satisfiability are equivalent
(soundness assumed). For a countable language, the proof is performed in two steps:

1. Every consistent set of formulas is extended to a maximal consistent set with witnesses.
2. Once we have the maximal consistent set with witnesses, we use it as a guide to build

the precise model the formulas of this set are describing. This is possible because a
maximally consistent set is a very detailed description of a structure.

Completeness theorem is proved in its strong sense, Γ |= ϕ implies Γ � ϕ for any Γ ,
ϕ such that Γ ∪ {ϕ} ⊆ Sent(L). One prove completeness and its corollaries following the
path:

Lindenbaum’s lemma
+
Henkin’s lemma

⎫
⎪⎬

⎪⎭
→Henkin’s theorem

↓
Strong completeness

↓
Weak completeness

↗Compactness

↘Löwenheim–Skolem

These theorems are understood as follows:

• Lindenbaum lemma: If Γ ⊆ Sent(L) is consistent, then there exists Γ ∗ such that Γ ⊆
Γ ∗ ⊆ Sent(L∗), Γ ∗ is maximally consistent and contains witnesses.

• Henkin’s lemma: If Γ ∗ is a maximally consistent set of sentences and contains wit-
nesses, then Γ ∗ has a countable model.

• Henkin’s theorem: If Γ ⊆ Sent(L) is consistent, then Γ has a model whose domain is
countable.

• Strong completeness: If Γ |= ϕ, then Γ � ϕ for any Γ ∪ {ϕ} ⊆ Sent(L).
• Weak completeness: If |= ϕ, then � ϕ for any ϕ ∈ Sent(L).
• Compactness theorem: Γ has a model iff every finite subset of it has a model for any
Γ ⊆ Sent(L).

• Löwenheim–Skolem: If Γ has a model, then it has a countable model for any
Γ ⊆ Sent(L).

Of course, for a noncountable language the theorems are modified accordingly. Also,
the schema can be modified to be able to prove a similar result for open formulas, not just
for sentences.
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If we have a closer look at Henkin’s proof in [6], we see that, there, only one re-
sult is labeled “theorem”; there is also one lemma and two corollaries. His theorem is
what we have called here Henkin’s theorem, and the formulation is the one given here in
Sect. 3, p. 154; he never mentions neither proves what we call strong completeness, cer-
tainly a too easy corollary to be mentioned in the JSL. It seems that in his thesis, he used
this denomination strong completeness for what we are calling here Henkin’s theorem. In
the following argument, we can see why he adopted such a decision:

Gödel used completeness to prove the statement given in our Theorem I, which I have called
strong completeness. This nomenclature is justified because it is trivial to restate Theorem I in the
following form: If S is any set of L-sentences and r is any logical consequence of S (i.e., r is
satisfied in every L-structure that satisfies all sentences of S), then r is formally derivable from S

(using the formal axioms and rules of inference of L). When Theorem I is formulated in this way,
Corollary I becomes a special case of Theorem I (the case where S is empty), so if the corollary
expresses completeness, we can say that the theorem expresses strong completeness.
(Henkin [16, p. 135])

What we are calling here Henkin’s lemma has in his paper this form: ‘For each A cwff
of Sω the associated value is T or F according as Γω � A or not’.25 The content of the
two corollaries corresponds to what we are calling weak completeness and Löwenheim–
Skolem and Henkin’s denomination for them was completeness and Skolem–Löwenheim.
There is no mention of compactness theorem, even thought Henkin told us in [16] that it
was part of his thesis:

The remaining two corollaries of Theorem I are as follows. [. . . ] Corollary III: A set S of wffs
of L is simultaneously satisfied in some L-structure M if, and only if, each finite subset S1 of S is
satisfied in some L-structure M1. This result is now called the compactness property of first-order
logic, and has become one of the principal tools of model theory. The compactness property was
not part of Gödel’s dissertation [3], but was added in the version written for publication [4].
(Henkin [16, p. 135])26

3.3 A Theory of Propositional Types

In 1963, Henkin published A theory of propositional types [12], where he presented a
completeness proof for this theory. In this paper, he devised yet another method not di-
rectly based on his completeness proof for the whole theory of types.

Before we start giving a brief account of this proof, let us pose a few introductory
questions. First are the questions about the nature of propositional type theory and its
formal language, What types are there?, Which language is used to deal with them? The
second is why was Henkin interested in such a theory? The third is about this specific
completeness theorem, why a new method of proof? Couldn’t completeness for proposi-
tional type theory be derived from the already known completeness proof for type theory
or for first-order logic also developed by Henkin?

At the beginning of the paper, Henkin answers our last question:

25In [6, p. 163].
26Gödel papers are [3] and [4].
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The completeness of a theory of types in terms of non-standard models was proved in [7], but
this result does not seem to imply our present completeness theorem. It is true that by adding
suitably to the earlier proof the present result can be obtained, but such a proof would not have the
constructive character possessed by the usual completeness proofs for propositional logic, and we
have preferred therefore to indicate another method of proof which seems more appropriate for a
theory of types each of which is finite.
(Henkin [12, p. 324])

He also states what his motivation was:

Our interest was drawn to a theory of propositional types by the problem of constructing non-
standard models of a full theory of types. Since many problems of ordinary predicate logic can be
reduced to questions about propositional logic (as in Herbrand’s theorem, for example), our hope
has been that insight into the totality of models for a full theory of types could be obtained from a
study of all models of the much simpler propositional type theory.
(Henkin [12, pp. 324–325])

Henkin was certainly also interested in developing a logic with lambda and equality as
the sole primitives.

Henkin announces another paper we were unable to find: ‘We reserve for a future
paper, however, a discussion of the models of our present system other than the standard
model PT of propositional types’.27

To answer the first of our questions, we present the hierarchy of propositional types as
well as the language and its semantics.

Hierarchy of Propositional Types According to Henkin’s definition, PT is the least
class of sets containing D0 as an element, which is closed under passage from Dα and
Dβ to Dαβ . Here D0 is the two truth values set, D0 = {T ,F }, whereas Dαβ is the set of
all functions that map Dβ to Dα . To give some examples, D00 is the type of functions
from D0 to D0; one such a function is negation, the other three are the identity function,
the constant function with value F , and the constant function with value V . The binary
connectives are in D(00)0.

Equational Proposition Type Theory To build the theory of propositional types,
Henkin introduces a formal language with variables for each propositional type, the
lambda abstractor, λ, and a collection of equality constants, Q(0α)α , one for each type α.
To be more specific, expressions of this theory are either: (1) variables of any type Xα ,
(2) the constants Q(0α)α , (3) AαβBβ , or (4) λXβBα .

Interpretations of these on the hierarchy PT are defined recursively using assign-
ments g that give values to variables of all types. In particular, under a given inter-
pretation  = 〈PT, g〉, we have: (1)  (Xα) = g(Xα), (2)  (Q(0α)α) is the identity on
type α, (3)  (AαβBβ) is the value of the function  (Aαβ) for the argument  (Bβ) and
(4)  (λXβBα) is the function of Dαβ whose value for any x ∈Dβ is the element  x

Xβ
(Bα)

of Dα .28

In this language, Henkin was able to define all connectives and quantifiers, that is, using
only the biconditional Q(00)0 and λ, the remaining connectives and quantifiers ∀Xα—
for each propositional variable of any propositional type α—are presented as defined
operators.

27In [12, p. 325].
28Here  x

Xβ
= 〈PT, gx

Xβ
〉 where gx

Xβ
is an Xβ -variant of g.
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As we shall see, this language allows not only the aforementioned definition of all
logical constants, but is also able to provide a name for each object in the hierarchy. With
these names, Henkin offers an interesting completeness theorem, as we shall see in the
next section.

Identity as a logical primitive is the title of a paper published in 1975 by Henkin [15].
At the start he declares: ‘By the relation of identity we mean that binary relation which
holds between any object and itself, and which fails to hold between any two distinct
objects’.29 Owing to the central role this notion plays in logic, you can be interested either
in how to define it using other logical concepts or in the opposite scheme. In the first case,
one investigates what kind of logic is required. In the second one, one is interested in
the definition of the other logical concepts (connectives and quantifiers) in terms of the
identity relation, using also abstraction. In his expository paper, the following question is
posed and affirmatively answered: Can we define with only equality and abstraction the
remaining logical symbols?

Henkin explains that the idea of reducing the other concepts to identity is an old one,
which was tackled with some success in 1923 by Tarski [26], who solved the case for con-
nectors; three years later, Ramsey [25] raised the whole subject; it was Quine [24] who
introduced quantifiers in 1937. It was finally answered in 1963 by Henkin [12], where
he developed a system of propositional type theory (followed by Andrews’ improve-
ment [1]). Henkin’s 1975 paper is included in a volume of Philosophia. Philosophical
Quarterly of Israel, completely devoted to identity.

Let us introduce the basic definitions: connectives, quantifiers, and descriptor.

Definition 3 (Defined Operators) Truth and falsity, negation, conjunction and quantifiers
are defined operators.

1. T n ::= ((λX0X0)≡ (λX0X0)) is a sentence of type 0
2. Fn ::= ((λX0X0)≡ (λX0T

n)) is a sentence of type 0
3. ¬n ::= (λX0(F

n ≡X0)) of type (00)
4. ∧n ::= λX0(λY0(λf00(f00X0 ≡ Y0))≡ (λf00(f00T

n))) of type (00)0
5. ∀XαA0 := ((λXαA0)≡ (λXαT n)) is a sentence of type 0.

Description Operator In order to treat the description operator properly, one fixes one
element for each type; this element would serve as the denotation of improper descrip-
tions. The setting is done by induction on types: for type 0, we just take a0 = F ; for
type (αβ), we take the constant function fαβ with value aα for every element of Dβ ,
where aα is the element in Dα already chosen. Thus, fαβx= aα for each x ∈Dβ .

Now, using these elements, an election function t(α) can be defined for each type,

For any arbitrary type α let t(α) be the function of Dα(0α) such that, for any f ∈ D0α , (t(α)f) is
the unique element x ∈ Dα for which (fx) = T , in case there is such a unique element x, or else
(t(α)f) = aα if there is no x, or if there are more than one x, such that (fx) = T . We shall show
inductively that for each α there is a closed formula ια(0α) such that (ια(0α))d = t(α). Then for any
formula A0 and variable Xα , we shall set (jXαA0)= (ια(0α)(λXαA0)).
(Henkin [12, p. 328])

29In [15, p. 31].
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Completeness of Propositional Type Theory

Now we would like to explain the method Henkin developed in his beautiful proof. The
main idea is to use the theory just introduced to give a name to every object in PT;
since the theory of propositional types only uses λ and ≡,30 the names of all types in the
hierarchy are obtained using only lambda and equality. Henkin crosses the bridge between
objects of PT and formulas of the language in both directions: in one direction, for any
x ∈Dα , he introduces a closed expression of the formal language, termed xn, which acts
as a name of it; in the other direction, any closed expression Aα of type α denotes an
object (Aα)d of the domain Dα . As we shall see later, the very important result is that
every object x in PT receives as its name a closed expression xn of the theory whose
denotation is x—namely, (xn)d = x.

Nameability Theorem Names and denotations do match: ‘In particular, we shall asso-
ciate, which each element x of an arbitrary type Dα , a closed formula xn of type α such
that (xn)d = x’.31

This theorem is proved by induction on the construction on the hierarchy. Names for
the basic object T and F of type 0 are given in Definition 3. For type (αβ), assuming
that the theorem is proven for types α and β , we set a name for every function f that
maps every element of the finite type Dα , say Dα = {y1, . . . ,yq}, to the corresponding
f(yi ) in Dβ . To this effect, the names of the objects in Dα and Dβ (whose existence is
assumed by induction hypothesis) and the descriptor operator are used. To introduce fn,
we need to formalize the following: when variable Xα is just the name of object yi—that
is, Xα ≡ yni —the function f matches it to the unique Zβ naming f(yi )—that is, Zβ ≡
(f(yi ))n. In particular,

fn := λXα.jZβ.
[(
Xα ≡ (y1)

n
)∧ (

Zβ ≡ f(y1)
n
)]∨· · ·∨ [(

Xα ≡ (yq)n
)∧ (

Zβ ≡ f(yq)
n
)]
.

To be able to prove the nameability theorem the finiteness of the domains is a must as
well as the description operator introduced above.

Completeness For the theory of propositional types, Henkin offers a calculus based on
λ and equality rules.32 This calculus is complete. The important result from where the
completeness theorem easily follows has the amazing form:

Lemma 4 For any formula Aα and assignment g,

�Aα (g(Xβ1))
n · · · (g(Xβm))n

Xβ1 · · ·Xβm
≡ ( (Aα)

)n
,

where freeVar(Aα)= {Xβ1 . . .Xβm}, and  is the interpretation using PT and g—namely,
 = 〈PT, g〉.

30We would use the symbol ≡ instead of Q(0α)α for any α.
31See [12, p. 326].
32This calculus was improved by Andrews [1]. Please read the beautiful paper in this book where Andrews
himself tell us the whole personal business involved.
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In Henkin’s words: LEMMA. Let Aα be any formula and ϕ an assignment. Let A(ϕ)α be
the formula obtained from Aα by substituting, for each free occurrence of any variable
Xβ in Aα , the formula (ϕXβ)n. Then �A(ϕ)α ≡ (V (Aα,ϕ))n.33

The lemma is proved by induction on the length of Aα .
The obvious question we ask is how completeness theorem can be derived from this

lemma. That is, how can we prove that |=A0 implies �A0 for any formula of type 0?

Proposition 5 Lemma 4 implies completeness.

Proof If A0 is closed, then |= A0 implies  (A0) = T for any assignment g. Thus, the
lemma gives � A0 ≡ ( (A0))

n, which turns to be � A0 ≡ T n, where T n is the name of
the truth value true.

But using the calculus, in particular, Axiom 2—of the form, (A0 ≡ T n) ≡ A0—and
the rule of replacement R we obtain the desired result, �A0.

In the event of A0 being a valid formula but not a sentence, we pass from A0

to the sentence ∀Xγ1 . . .XγrA0—where freeVar(A0) = {Xγ1 . . .Xγr }. We know that
|= ∀Xγ1 . . .XγrA0, and using the previous argument, � ∀Xγ1 . . .XγrA0. Applying the
rules of the calculus, we obtain �A0. �

4 Completeness Proofs in Henkin’s Course

The story behind this is that of María Manzano, who during the academic year of
1977–1978 attended his class of metamathematics for doctorate students at Berkeley. Be-
fore each class, Henkin would give us a text of some 4–5 pages that summarized what
was to be addressed in the class.

4.1 Herbrand’s Theorem Yields Completeness

It is surprising that the first-order completeness proof that Henkin explained in class was
not his own but was developed by using Herbrand’s theorem and the completeness of
propositional logic. In what follows, I will summarize the proof, but I will also try to keep
close to the spirit of Henkin’s purple notes.

Theorem 6 (Herbrand’s Theorem) Herbrand’s Theorem provides an effective way to
associate with any first-order sentence A, a set (infinite) of sentences of propositional
logic Ψ such that: � A in FOL iff there is some H ∈ Ψ such that �PL H in PL (�PL

means that we just use sentential axioms and detachment).

The above result can be regarded as a special case of the following:

33See [12, p. 341].
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Theorem 7 Let L be a first-order language: We can extend L to L′ by adjoining a set C
of individual constants, and we can effectively endow a set Δ of sentences of L′ with the
following property: For any set of sentences Γ ∪ {A} ⊆ Sent(L),

Γ �A iff Γ ∪Δ �PL A.

Proof In the first place, we build a set Δ where

Δ=Δ1 ∪Δ2 ∪Δ3

where Δ1 consists of the sentences ∃xiB→ B(ci,B) (for each ∃xiB ∈ Sent(L′)). Δ2 con-
sists of various formal axioms for quantifiers (from first-order logic), and Δ3 consists of
various formal axioms for the equality symbol (if there is one in the language L, otherwise
it is ∅).

In the spirit of Herbrand’s theorem, an effective method of transforming any given
derivation of A from Γ ∪ Δ in PL into a formal derivation of A from Γ in FOL was
given, which solves half of the theorem.

Γ ∪Δ �PL A implies Γ �A.
As for the other half,

Γ �A implies Γ ∪Δ �PL A,

let us now assume that we do not have a proof of A from Γ ∪Δ in PL, Γ ∪Δ �LP A.
If we use the completeness of propositional logic, then Γ ∪Δ �|=PL A, and we conclude
that there is an assignment g for atoms of L′0 that extends to an interpretation  such that
 (Γ ∪Δ)= T but  (A)= F .

In order to prove the theorem, from this interpretation  we obtain a first-order struc-
ture A such that |=A Γ but �|=A A and hence Γ �|=A.

By soundness of first-order logic, Γ �A. �

Predicate Logic: Reduction to Sentential Logic Using the previous theorem, we ef-
fectively reduce the completeness problem for first-order logic to that of sentential logic.
To this effect, Henkin gave an argument to support the following statement.

Proposition 8 Theorem 7 and completeness of PL implies completeness of FOL.

Let us have a look of Henkin’s notes:

Note that a proof of the kind described above, provides a completeness proof for 1st order logic.
For the theorem shows that whenever not Γ � A in L then not Γ ∪Δ �s A, and the proof of the
theorem then shows that not Γ |= A (by furnishing A which satisfies Γ but not A); contraposi-
tively, whenever Γ |=A then Γ �A.
Since we use the completeness of sentential logic in our proof, we effectively reduce the complete-
ness problem for 1st order logic to that of sentential logic.
(Henkin, Math 225B Notes. 1/27/78)

He finished his class with two remarks:

Remark 3. The structure A described in the preceding remarks will have as its domain the set of
new constants adjoined to L in forming L′ (or possibly equivalence classes of such constants under
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a suitable equiv. rel’n). Hence we obtain as a corollary the downward Skolem–Löwenheim Thm: If
an infinite L-structure B satisfies Γ0, then a struct. A of cardinality= card(L0) satisfies Γ0.
Remark 4. We shall show that the theory defined by Γ ∪Δ in L′ is a conservative extension of
the theory defined by Γ in L: Whenever A ∈ L0 and Γ ∪Δ �A in L′, then Γ �A in L.
(Henkin, Math 225B Notes. 1/27/78)

Another completeness proof he also developed in class was his result based on Craig’s
interpolation theorem.

4.2 An Extension of the Craig–Lyndon Interpolation Theorem

In 1963, Henkin published the paper An extension of the Craig–Lyndon interpolation
theorem [11], where we can find a different proof of completeness for first order logic.
Craig had shown the following theorem:

Theorem 9 If A and C are any formulas of predicate logic such that A � C, then there
is a formula B such that (i) A � B and B � C, and (ii) each predicate symbol occurring
in B occurs both in A and in C.

Henkin recalls that due to the fact that the relations � and |= coincide in extension (by
soundness and strong completeness theorems), the above theorem is also valid if we re-
place the syntactic notion of derivability by the semantical notion of consequence. How-
ever, his idea was to obtain completeness from a slightly modified version of Craig’s
theorem.

Notice, however, that if we alter Craig’s theorem by replacing the symbol “�” with “|=” in the
hypothesis, but leaving “�” unchanged in condition (i) of the conclusion, then the resulting propo-
sition yields the completeness theorem as an immediate corollary.

The main theorem to be proved is:

Theorem 10 Let Γ and Δ any sets of nnfs (negation normal formula) such that Γ |=Δ.
There is a nnf B such that (i) Γ � B and B � Δ, and (ii) any predicate symbol with a
positive or negative occurrence in B has an occurrence of the same sign in some formula
of Γ and in some formula of Δ.

The strong completeness theorem is implied by the previous one.
The proof of the theorem is done by contraposition, and to arrive at the conclusion that

Γ �|= Δ, Henkin inductively builds two sets of sentences and defines a model based on
them using the technique he himself developed in his classical completeness proof [6].

5 Henkin’s Expository Papers on Completeness

Henkin was an extraordinary insightful professor in the clarity of his expositions, and he
devoted some effort to writing expository papers. In particular, in 1967, he published two
very relevant ones for the subject we are investigating here: Truth and provability and
Completeness, published in Philosophy of Science Today [23].
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5.1 Truth and Provability

In less than 10 pages, Henkin gives a very intuitive introduction to the concept of truth
and its counterpart, that of provability, in the same spirit of Tarski’s expository paper Truth
and proof [27]. The latter was published in Scientific American two years after Henkin’s
contribution. This not so surprising since Henkin had by then been working in Berkeley
with Tarski for about 15 years, and the theory of truth was Tarski’s contribution.

The main topics Henkin was able to introduce (or at least to touch upon) were the very
relevant ones, including: the use/mention distinction, the desire of languages with infi-
nite sentences and the need of a recursive definition of truth, the language/metalanguage
distinction, the need to avoid reflexive paradoxes, the concept of denotation for terms,
and the interpretation of quantified formulas. He also explains what an axiomatic the-
ory is and how it works in harmony with a deductive calculus; properties as decidability
and completeness/incompleteness of a theory are mentioned at the end. We admire the
way these concepts are introduced, with such élan, and the chain Henkin establishes: how
each concept is needed to support the next.

Henkin begins by restricting the scope of the suggestive word “true”: ‘we shall limit
ourselves to a much narrower concept of truth, namely, as an attribute of sentences: What
does it mean to say that a sentence is true?’34 He then goes on to introduce Tarski’s con-
ception; in first, he offers a very basic sentence as an example and a proposed specification
of its truth conditions that allows him to pinpoint how relevant it is to distinguish use and
mention (the name of an object and the object itself ); in the second place, he states that
for a language with just a finite number of sentences, the definition could work. ‘But the
most decisive point against it is our unwillingness to admit that there are only a finite
number of sentences’.35

The need of a recursive definition is clearly motivated as the only way of dealing with
an infinite set of sentences. He goes on to mention two major difficulties the definition
of true sentence must face; the first is the ambiguity and lack of precision of natural
languages, and the second is based on the liar’s paradox. In natural language, one can
formulate sentences that make assertions about themselves and this autoreflexive ability
is a source of paradoxes. Without explicitly using these words, Henkin identifies the prob-
lems that are associated with the lack of distinction between language and metalanguage.
The need for an artificial language is then justified, and Henkin goes on to say that Tarski
was able to give a ‘mathematically precise definition’ of the concept of ‘true sentence’,
such a definition having a recursive character and obeying general rules like the law of the
excluded middle. In this way, semantics acquires the citizenship it have been deprived off
before. Henkin also explains that ‘sentences are built up not only from shorter sentences
but from components coming from several grammatical categories. For this reason a re-
cursive definition of truth must deal simultaneously with other semantical notions, such as
denotation’.36 Finally, he substantiates Tarski’s treatment of expressions containing vari-
ables and his ‘notion of a sequence of objects (in our case integers) satisfying a formula’.
He finished this short presentation of the solutions offered by this mathematical definition

34See [13, p. 14].
35See [13, p. 15].
36See [13, p. 18].
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of true sentence (which includes denotation of terms and the definition of satisfiability
for quantified formulas) saying: ‘Tarski’s treatment of expressions containing variables is
often considered the key idea of his definition of truth’.37

He then emphasizes the fact that ‘the conditions under which S is true, does not furnish
the information as to whether S is in fact true’.38 The truth of empirical sentences is tested
by direct verification (something often hard) but for mathematical sentences the situation
is completely impractical. In this way he had created the climax to introduce the notion
of a calculus: ‘Fortunately, we have another method to establish the truth of a sentence,
S, quite different from direct verification. Namely, we may infer the truth of S from a
knowledge of the truth of certain other sentences, say T , U and V ’39 and to introduce its
basic ingredients; namely, deductions, hypothesis, conclusion and laws of logic. ‘These
laws (. . .) never lead from true sentences to a false one’.40

He then brings in the notion of an axiomatic theory, ‘We sometimes attempt to organize
our knowledge in a certain domain, say D, by seeking to infer all the true sentences
dealing with D from one fixed set of hypothesis’41 emphasizing the fact that even though
axiomatic theories had been known since Euclid, the laws of logic had not received the
requisite interest until the nineteenth century with Boole. ‘In this way the logicians created
a fully formalized axiomatic theory, called a formal deductive theory, by means of which
we could formulate and study the laws of logic with mathematical precision’.42

The mechanical character of proofs are praised ‘for if we did not have such a mechan-
ical means of testing proofs, we would be entitled to ask for a proof that any alleged proof
was indeed a proof!’43 He poses the important distinction between having a calculus and
having a decision procedure for theoremhood.

Finally, he addresses the concept of the completeness of a theory. First, he mentions
that ‘The artificial languages devised by mathematical logicians as a basis for their formal
deductive theories were precisely those languages to which Tarski had turned in develop-
ing his definition of truth’,44 and notes how important is to be able to prove that each
provable sentence is true. After this he says: ‘What is not at all clear, in general, is the
converse question: Is each true sentence a theorem? In other words, is there a proof for
every true sentence?’45 and adds that this is the problem of completeness.

The chapter ends with the incompleteness result, ‘The unexpected discovery, however,
was that in the case of languages dealing with certain domains, it is impossible to obtain
a complete deductive system!’46 which he explains in a very simple way by going back
to the method of avoiding liar’s paradox in formal languages ‘it must be impossible to

37See [13, p. 19].
38See [13, p. 19].
39See [13, p. 19].
40See [13, p. 19].
41See [13, p. 19].
42See [13, p. 19].
43See [13, p. 19].
44See [13, p. 21].
45See [13, p. 21].
46In [13, p. 22].
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express the concept of true sentence within that language itself’47 and seeing that for
provable sentence the situation differs:

No matter how we select axioms and rules of inference to obtain a formal deductive theory for
this language, the resulting notion of provable sentence can be expressed in the language itself.
[. . . ] It follows that no matter which formal deductive theory we select for such a language, the
resulting notion of provable sentence will differ from that of true sentence—since the former
can be expressed in the language itself while the latter cannot. Thus, all of these theories are
incomplete.
(Henkin [13, p. 22])

5.2 Completeness

In this short expository paper Henkin explores the complex landscape of the notions of
completeness. He introduces the notion of logical completeness—both weak and strong—
as an extension of the notion already introduced of completeness of an axiomatic theory.48

This presentation differs notably from the standard way these notions are introduced to-
day; usually, the completeness of the logic precedes the notion of completeness of a the-
ory and, often, to avoid misunderstandings we separate both concepts as much as pos-
sible, as if relating them were some sort of terrible mistake or even anathema. Gödel’s
incompleteness theorem49 is presented, as well as its negative impact on the search for
a complete calculus for higher-order logic. The paper ends with the introduction of his
own completeness result for higher-order logic with general semantics. The utilitarian
way Henkin uses to justify his general models as a way of sorting the provable sentences
from the unprovable ones in the class of valid sentences (in standard models) is very
peculiar.

As we have seen in the preceding section, completeness of a theory was described as:

The question of whether, conversely, every true sentence is provable is the problem of complete-
ness. We note, therefore, that the question of completeness always presupposes a given language,
a given interpretation of the language by means of which its sentences convey information about
some domain, and a given axiomatic theory formulated within the language.
(Henkin [14, pp. 23–24])

No doubt, he is talking about completeness of a theory since, a couple of pages later
(after defining what a model is) he adds: ‘As we have indicated above, our notion of
completeness for the theory J is relative to a given model’.50

The two first pages of the paper are devoted to praising the importance of the power
of abstraction provided by axiomatic theories in the realm of logic. Let us quote Henkin
describing the important transformation that the concept of an axiomatic theory has un-
dergone in a century: First, when the community of logicians became aware that the same
theory may have different interpretations or models:

47See [13, p. 22].
48In [22], we analyze the evolution of the completeness theorem from Gödel to Henkin in some detail.
49The previously mentioned anathema is even stronger when Gödel’s incompleteness result is mentioned.
50In [14, p. 25].
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This transformation came about through the realization that a given system of symbols and sen-
tences can be subjected to more than one interpretation, so that a single language can be employed
to refer simultaneously to many different domains. Although this possibility was implicit at least
as early as Descartes’s discovery of analytic geometry, its significance for axiomatic mathematics
was not appreciated until the invention of non-Euclidean geometry by Bolyai, Lobachevsky and
Gauss in the last century.
(Henkin [14, p. 24])

Secondly, when they realized that theorems in an axiomatic theory automatically be-
come true in any model for these axioms:

The realization that sentences proved in an axiomatic theory give information simultaneously for
a great many domains has had a revolutionary effect on both pure and applied mathematics. As
regards applications, it meant that by moving to a more abstract level one could achieve a great
economy of effort, handling problems from diverse domains by means of a single investigation.
(Henkin [14, p. 25])

We believe that it took a considerable degree of abstraction that includes, on the one
hand, the realization that the nature of the objects that constitute the universe of a struc-
ture is irrelevant and, on the other, that what matters are the relationships that hold these
objects together. Henkin did not mention this, but says that the new role played by the
formal language reverses the investigation in the area of pure mathematics: ‘Instead of
starting with a fixed domain and inquiring which sentences are true about it, one starts
with fixed sentences and seeks to analyze the totality of domains in which these are true’.51

Therefore, the crossing of the bridge between language and structures is not only in the
right-left direction—as when we define Th(A)—but also in the opposite—when we define
Mod(Γ ).

He then announces that he is going to introduce ‘an extension of the completeness
concept’. We believe that this presentation of completeness of a logic as an extension
of completeness of a theory is very relevant and historically well-founded, even thought
not many logicians are aware of this fact today. The first concept Henkin brings in to
develop this idea is that of model in terms that are very familiar to us today: ‘Let us use
the term “model” (for a given language L) to mean a domain of objects together with an
interpretation whereby the symbols of L are made to refer to this domain. Such a model
determines each sentence of L as true or false’.52

The first step in that extension of the notion of completeness is when we take a theory
J and investigate not just if this theory is complete for a single model M—namely, if
|=M ϕ implies J � ϕ—but also whether the theory is complete for a class C of models:
‘we say that a sentence of L is valid in C if it is true of every model in C. And we say that J
is complete for the class C if every sentence of L which is valid in C can be proved in J ’.53

The final leap between the notions of completeness of a theory and the completeness of a
logical calculus can be seen in the following quote:

In case the class E happens to contain a single model M, this notion of completeness reduces
to the earlier one. At the other extreme, the class E may contain all models for the language L.
A theory complete for this class is said to be logically complete.
(Henkin [14, p. 26])

51See [14, p. 25].
52See [14, p. 25].
53See [14, p. 26].
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Henkin also tells us a bit about the history of this new notion of completeness: ‘The
first explicit formulation and solution of a completeness problem is due to Emil Post’54

adding that decidability was a related issue in PL: ‘As a by product of his work, Post
obtained a decision procedure for the class of theorems of sentential logic—that is, a
completely automatic method which can be applied to any sentence of the system and
which indicates, after a finite number of steps, whether or not the sentence is provable’.55

and highlighting Gödel’s result on first-order logic: ‘Kurt Gödel, who was able to establish
similar completeness theorems for deductive theories based upon first-order predicate
logic’.56

Then, first-order logic is presented in some detail and some examples of particular
structures are given. At this point, not only weak completeness but also the strong com-
pleteness result for first order logic is presented:

Gödel completeness theorem applies to a wide class of axiomatic theories which are based on
first-order languages. For he showed that if one takes an arbitrary set of sentences as new axioms,
in addition to the logically valid axioms of the original deductive theory, and if one then considers
the class C of all those models for which each of the new axioms is true, then every formula which
is valid in C (that is, true for each model of C) will be provable in the enriched deductive system.
(Henkin [14, p. 28])

This new concept of completeness can also be understood as yet another extension of
the concept of the completeness of a theory in a class C of models, when this class is
precisely the models of a set of sentences, Mod(Γ )—namely, |=Mod(Γ ) ϕ implies Γ � ϕ.
Henkin does not state this, probably because the connection is too obvious. However,
he does mention other relevant issues related to completeness: the negative result of the
decidability of validity in the first-order case ‘Gödel’s proof of logical completeness [. . . ]
did not lead to a decision procedure for the class of logically valid first-order sentences’57

unlike the positive one when completeness of a theory in a single model is concerned:
‘[. . . ] the proof furnished a decision procedure for the class of provable sentences’.58

The theorem of compactness and some of its mathematical applications are mentioned,
as well as some of the many positive results on the completeness of particular mathemat-
ical theories obtained in the 1919–1930 period.

Henkin places Gödel’s incompleteness result in this context, saying that it ‘came as
a shock to the mathematical world’. He explains how the result originally dealt with the
theory of a single model—namely, the first-order theory of the model of natural language
N—but was extended to a higher-order theory G, where arithmetic can be axiomatized
up to isomorphism level. ‘Because these axioms exclude models that differ mathemati-
cally from N , it was generally felt that the theory G must be complete for N . Yet Gödel
showed that it was not’.59 Henkin devotes some paragraphs to explaining Gödel’s method
by highlighting: arithmetization, the ability to formulate the autoreflexive statement Q
saying of itself that is not provable in G, and the capability to prove that ‘the notion prov-

54See [14, p. 26].
55See [14, p. 26].
56In [14, p. 27].
57See [14, p. 28].
58See [14, p. 29].
59See [14, p. 31].



174 M. Manzano

able in G can be expressed in the language G itself’. Finally, Henkin explains how this
result can be expanded to any higher-order calculus: ‘Gödel was able to obtain a very
general incompleteness theorem. [. . . ] there cannot be a complete theory for the logically
valid sentences of a higher order language’.60

The paper ends by highlighting two very relevant problems raised for Gödel’s incom-
pleteness result that helps Henkin to introduce his own completeness proof for high-order
logic with general semantics. He mentions two problems; let us focus on the second one:

Second, when we have at hand a particular formal deductive system J , which is known to be
incomplete for a certain class C of models [. . . ] some sentences which are valid for C are provable
in J while others are not. Accordingly, we may seek general criteria for distinguishing these two
kinds of sentences.
(Henkin [14, p. 32])

When the logic concerned is first-order, the strong completeness result tells us that
whenever P is not a theorem of J , there is a model A of J which happens to be a coun-
termodel of P—since J � P implies �|=A P . But ‘if the language of J is of higher order,
the situation is generally different’.61 What we find more surprising is that he presents
his general models as a way of ‘sorting the provable from the unprovable’.62 In particu-
lar, for the above-mentioned theory G, it can be shown that there are generalized models
‘satisfying the axioms of the theory G whose structure is very different from that of N .
Furthermore, it can be shown that every sentence unprovable in G must be false for one
of these models [. . . ] G is complete for the class of all those generalized models which
satisfy all of its axioms’.63

The important outcome being that this result is not just a peculiarity of G, but ‘such
a completeness theorem can be established not only for G, but for arbitrary theories of
higher order’. Let us finish quoting his last paragraph:

The quest for general criteria by which to identify complete theories has led to several fruitful
new metamathematical concepts. And in seeking a means of characterizing the class of provable
sentences of an incomplete theory, we have been led to discover new mathematical structures and
new ways of interpreting the language of mathematics.
(Henkin [14, pp. 34–35])
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Part III
Extensions and Perspectives in Henkin’s Work



The Countable Henkin Principle

Robert Goldblatt

Abstract This is a revised and extended version of an article that encapsulates a key
aspect of the “Henkin method” in a general result about the existence of finitely consis-
tent theories satisfying prescribed closure conditions. This principle can be used to give
streamlined proofs of completeness for logical systems, in which inductive Henkin-style
constructions are replaced by a demonstration that a certain theory “respects” some class
of inference rules. The countable version of the principle has a special role and is ap-
plied here to omitting-types theorems, and to strong completeness proofs for first-order
logic, omega-logic, countable fragments of languages with infinite conjunctions, and a
propositional logic with probabilistic modalities. The paper concludes with a topological
approach to the countable principle, using the Baire Category Theorem.

Keywords Deducibility · Inference · Finitely consistent · Maximally consistent ·
Countable Henkin Principle · Lindenbaum’s Lemma · Completeness · Omitting types ·
Probabilistic modality · Archimedean inference · Baire Category Theorem

The Henkin method is the technique for constructing maximally consistent theories sat-
isfying prescribed closure conditions that was introduced by Leon Henkin in his 1947
doctoral dissertation. The method involves building up the desired theory by induction
along an enumeration of some relevant class of formulas, with choices being made at
each inductive step to include certain formulas, in such a way that when the induction is
finished, the theory has the properties desired. The character of this procedure is neatly
captured in a phrase of Sacks [20, p. 30], who attributes its importance to the fact that it
“takes into account the ultimate consequences of decisions made at intermediate stages of
the construction”.

Famously, Henkin used his method to give the first new proof of completeness of first-
order logic since the original 1929 proof of Gödel and to prove completeness of a theory
of types with respect to “general” models [12, 13]. He obtained the type theory result
first and thought it would be of greater interest, as he explained in the remarkable article
[16], in which he tells the story of his “accidental” discovery of these completeness proofs
while trying to solve a different problem. In fact logicians have paid more attention to the
first-order construction, which was eventually adapted to propositional and first-order ver-
sions of modal, temporal, intuitionistic and substructural logics. There are now numerous
kinds of logical formalism whose model-theoretical analysis owes something of its origin
to Henkin’s pioneering ideas.

In the present article the Henkin method is used to derive a general principle about
the existence of maximal theories closed under abstract “inference rules”. This principle
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may then be used to give alternative proofs of completeness theorems, proofs in which the
Henkin method is replaced by a demonstration that a certain theory “respects” a certain
class of inference rules. This alternative approach is illustrated by a re-working of the
completeness and omitting-types theorems for first-order logic and certain fragments of
L∞ω . Some of these involve a countability constraint, and that case of the approach has
a particularly direct form that we call the Countable Henkin Principle. It is used to ob-
tain general extension results about the existence of “rich” theories that are closed under
countably many inference rules. We apply those extension results to give a proof of strong
completeness of a propositional logic with probabilistic modalities, motivated by a recent
topological analysis in [17].

The proof of the Countable Henkin Principle itself helps to clarify why some com-
pleteness proofs work only under a countability constraint. The essential point is that
after building a denumerably long increasing sequence of consistent theories, one must
take the union of them to proceed to a further stage. But if the proof theory is non-finitary,
the union may not preserve consistency (but only the property of being finitely consistent),
and the construction cannot be iterated into the transfinite.

This paper is a revised and extended version of the article [6]. That had a previous re-
vision [8], which added applications to completeness for the Barcan formula in quantified
modal logic, and for propositional mono-modal logic with infinitary inference rules. Here
those modal applications are replaced by new Sects. 4–7, which include the formulation
of the Rich Extension theorems, their alternative topological proof using the Baire Cate-
gory Theorem, and the discussion of probabilistic modal logic. Also, the Sect. 3.2 on the
Omitting-Types Theorem has been rewritten from a more general standpoint, and a new
Sect. 3.3 added, which relates this to Henkin’s generalizations of ω-consistency [14] and
ω-completeness [15].

1 The Abstract Henkin Principle

Consider a formal language that includes a distinguished formula ⊥ and a unary connec-
tive ¬. Think of ⊥ as a constant false sentence, and ¬ as negation. Let Φ be any class
of formulas of this language such that ⊥ ∈ Φ and Φ is closed under application of the
connective ¬.

Let � be a subset of 2Φ ×Φ , that is, a binary relation from the powerset ofΦ toΦ . For
Γ ⊆Φ and ϕ ∈Φ , write Γ � ϕ if (Γ,ϕ) belongs to � and Γ � ϕ otherwise. The relation
� is called a deducibility relation on Φ if it satisfies

D1 If Γ � ϕ and Γ ⊆Δ, then Δ � ϕ;
D2 If ϕ ∈ Γ , then Γ � ϕ;
D3 If Γ � ϕ and Γ ∪ {ϕ} � ⊥, then Γ �⊥;
D4 Γ ∪ {¬ϕ} � ⊥ iff Γ � ϕ.

A subset Γ of Φ is called �-consistent if Γ � ⊥ and finitely �-consistent if each
finite subset of Γ is �-consistent in this sense. Γ is maximally �-consistent if it is
�-consistent but has no �-consistent proper extension in Φ . Replacing “�-consistent”
by “finitely �-consistent” in this last definition yields the notion of Γ being maximally
finitely �-consistent.

Now from D1 it follows that any �-consistent set is finitely �-consistent. The relation
� is called finitary if, conversely, it satisfies
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D5 Every finitely �-consistent set is �-consistent, that is, if Γ � ⊥, then for some finite
Γ0 ⊆ Γ , Γ0 �⊥.

If C is a collection of finitely �-consistent subsets of Φ that is linearly ordered by set
inclusion, that is, Γ ⊆Δ or Δ⊆ Γ for all Γ,Δ ∈ C , then the union

⋃
C of C is finitely

�-consistent. This follows immediately from the fact that any finite subset of
⋃

C is a
subset of some Γ ∈ C . Thus, if

P = {Δ⊆Φ : Γ ⊆Δ & Δ is finitely � -consistent},
then under the partial ordering of set inclusion P fulfills the hypothesis of Zorn’s Lemma.
From the latter we deduce the following:

Lindenbaum’s Lemma Every finitely �-consistent subset of Φ has a maximally finitely
�-consistent extension in Φ .

(Note that this result uses no properties of � other than the definitions of the concepts
referred to in the statement of the lemma.)

An ordered pair (Π,χ) with Π ⊆ Φ and χ ∈ Φ will be called an inference in Φ .
As motivation, the reader may care to think of Π as a set of “premises” and χ as a
“conclusion”, but the notion of inference is quite abstract and applies to any such pair.
A set Γ will be said to respect the inference (Π,χ) when

(Γ � ϕ, all ϕ ∈Π) implies Γ � χ.
Γ is closed under (Π,χ) if

Π ⊆ Γ implies χ ∈ Γ.
Γ respects (is closed under) a set I of inferences if it respects (is closed under) each
member of I .

The cardinality of a set X will be denoted cardX. If κ is a cardinal number, then X is
κ-finite if cardX < κ . A κ-finite extension of X is a set of the form X∪Y with Y κ-finite.
In other words, a κ-finite extension ofX is a set obtained by adding fewer than κ elements
to X.

Theorem 1 Let � be a finitary deducibility relation on Φ . If I is a set of inferences in
Φ of cardinality κ , and Γ is a �-consistent subset of Φ such that

every κ-finite extension of Γ respects I ,

then Γ has a maximally �-consistent extension in Φ that is closed under I .

This theorem will be established by first separating out that part of its content that does
not involve Lindenbaum’s Lemma. To do this requires a further concept: a set Γ ⊆Φ will
be said to decide (Π,χ) if

either χ ∈ Γ, or for some ϕ ∈Π, ¬ϕ ∈ Γ.
Γ decides a set of inferences if it decides each member of the set.

The following result holds for any deducibility relation.
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Lemma 1

(1) If Γ decides (Π,χ) and Γ ⊆Δ, then Δ decides (Π,χ).
(2) If Γ decides (Π,χ), then Γ respects (Π,χ).
(3) If Γ is finitely �-consistent, and Γ decides (Π,χ), then Γ is closed under (Π,χ).
(4) If Γ is �-consistent, and Γ respects (Π,χ), then for some ψ ∈ Φ , Γ ∪ {ψ} is �-

consistent and decides (Π,χ).

Proof (1) Immediate.
(2) Suppose Γ � ϕ for all ϕ ∈Π . Then if Γ � χ , by D2 χ �∈ Γ , so if Γ decides (Π,χ),

then ¬ψ ∈ Γ for some ψ ∈Π . But by assumption Γ �ψ , and so by D4 Γ ∪ {¬ψ} � ⊥,
that is, Γ �⊥. But then by D1, Γ ∪{¬χ} � ⊥, and so by D4 again, Γ � χ . Hence, Γ � χ .

(3) Suppose Γ decides (Π,χ), and Π ⊆ Γ . Then if χ �∈ Γ , then ¬ψ ∈ Γ for some
ψ ∈Π ⊆ Γ . Now by D2, {ψ} � ψ , and so by D4, {ψ,¬ψ} � ⊥. But {ψ,¬ψ} ⊆ Γ , so
then Γ is not finitely �-consistent.

(4) If Γ ∪ {¬ϕ} is �-consistent for some ϕ ∈Π , then the result follows with ψ =¬ϕ.
Otherwise, for all ϕ ∈Π , Γ ∪ {¬ϕ} � ⊥, and so by D4, Γ � ϕ. But Γ respects (Π,χ),
hence Γ � χ . Since Γ �⊥, D3 then implies that Γ ∪ {χ} �⊥, so the result follows with
ψ = χ . �

Abstract Henkin Principle Let � be a finitary deducibility relation on Φ . If I is a set
of inferences in Φ of cardinality κ , and Γ is a �-consistent subset of Φ such that

(∗) every κ-finite extension of Γ respects I ,

then Γ has a �-consistent extension Δ that decides I .

Note that by applying Lindenbaum’s Lemma to the �-consistent extension Δ given
by the conclusion of this result, an extension of Γ is obtained that is maximally �-
consistent (since � is finitary), decides I by Lemma 1(1), and hence is closed under
I by Lemma 1(3). This argument proves Theorem 1.

To prove the Abstract Henkin Principle, let {(Πα,χα) : α < κ} be an indexing of the
members of I by the ordinals less than κ . A sequence {Δα : α < κ} of extensions of Γ
is then defined such that

(i) Δα is �-consistent;
(ii) Δγ ⊆Δαwhenever γ < α;

(iii) card(Δα − Γ )≤ α, hence Δα is a κ-finite extension of Γ ;

and such that Δα+1 decides (Πα,χα). The definition proceeds by transfinite induction
on α.

Case 1: If α = 0, put Δα = Γ , so that Δα is �-consistent by assumption, and
card(Δα − Γ )= 0= α.

Case 2: Suppose α = β+1, and assume inductively thatΔβ has been defined such that
(i)–(iii) hold with β in place of α. Then since Δβ is a κ-finite extension of Γ , hypothesis
(∗) on Γ implies that Δβ respects (Πβ,χβ). Hence, by Lemma 1(4), there is a ψ ∈ Φ
such that Δβ ∪ {ψ} is �-consistent and decides (Πβ,χβ). Put Δα = Δβ ∪ {ψ}, so that
(i) holds for α. Since Δβ ⊆Δα , and γ < α iff γ ≤ β , (ii) follows readily. For (iii), since
Δα − Γ ⊆ (Δβ − Γ )∪ {ψ}, card(Δα − Γ )≤ card(Δβ − Γ )+ 1≤ β + 1= α.
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Case 3: Suppose α is a limit ordinal and that for all β < α, Δβ has been defined to
satisfy (i)–(iii). Put

Δα =
⋃

β<α

Δβ.

Then (ii) is immediate for α. For (i), observe that Δα is the union of a chain of �-
consistent, hence finitely �-consistent, sets Δβ , and so Δα is finitely �-consistent as in
the proof of Lindenbaum’s Lemma. But � is finitary, so Δα is then �-consistent. For (iii),
observe that

(Δα − Γ )=
⋃

β<α

(Δβ − Γ )

and note that by the inductive hypothesis, if β < α, then card(Δβ − Γ ) ≤ β < α. Thus,
(Δα − Γ ) is the union of a collection of at most cardα sets, each of which has at most
cardα members. Hence, card(Δα − Γ )≤ cardα ≤ α.

This completes the definition of Δα for all α < κ . Now put Δ =⋃
α<κ Δα . Then by

the argument of Case 3, Δ is a �-consistent extension of Γ . Moreover, for each β < α,
Δβ+1 decides (Πβ,χβ) by Case 2, and so Δ decides (Πβ,χβ) by Lemma 1(1).

2 The Countable Case

In the proof of the Abstract Henkin Principle, the assumption that � is finitary is used
only in Case 3, and in the final formation of Δ, to show that the union of an increasing
sequence of �-consistent sets is �-consistent. But if κ is countable, then Case 3 does not
arise. Case 2 is iterated countably many times, and then Δ is constructed as the union of
the Δα . Then if � is not finitary, Δ may not be �-consistent. However, it will at least be
finitely �-consistent, and this gives the following result.

Countable Henkin Principle Let � be any deducibility relation on Φ . If I is a count-
able set of inferences in Φ , and Γ is a �-consistent subset of Φ such that

(∗) Γ ∪Σ respects I for all finite Σ ⊆Φ,
then Γ has a finitely �-consistent extension that decides I .

The extension of Γ deciding I in this result can be taken to be maximally finitely
�-consistent, by applying Lindenbaum’s Lemma and Lemma 1(1). It is also closed under
I by Lemma 1(3).

The Countable Henkin Principle will be used below to give proofs of a number of
results, including an omitting-types theorem for countable first-order languages, and
(strong) completeness theorems for countable fragments of L∞ω and a probabilistic modal
logic. The analysis given here provides one way of “putting one’s finger” on the role of
countability restrictions in such applications.

If the ambient formal language has a conjunction connective, allowing the formation
of the conjunction

∧
Σ of any finite subset Σ of Φ , then a natural constraint on � would
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be to require that for all Γ ⊆Φ and all ϕ ∈Φ ,

Γ ∪Σ � ϕ iff Γ ∪
{∧

Σ
}
� ϕ.

A deducibility relation satisfying this condition will be called conjunctive. Thus, for a
conjunctive deducibility relation, hypothesis (∗) in the Countable Henkin Principle can
be weakened to

Γ ∪ {ψ} respects I for all ψ ∈Φ.

3 Classical Applications

3.1 Completeness for First-Order Logic

Let L be a set of relation, function, and individual-constant symbols, and Γ a set of sen-
tences in the first-order language of L that is consistent under the standard deducibility
relation of first-order logic.

The Completeness Theorem asserts that Γ has a model. To prove this, a new language
K = L ∪ C is formed by adding to L a set C of new individual constants of cardinality
κ , where κ is the maximum of card L and ℵ0. The usual construction of a model for Γ
involves two phases.

Phase 1: Γ is extended by the “Henkin method” to a maximally consistent set Γ ∗ of
K-sentences such that for each K-formula ϕ(x) with at most one variable (x) free,

(a) if ∃xϕ ∈ Γ ∗, then ϕ(c) ∈ Γ ∗ for some c ∈ C.

Phase 2: A model A∗ is defined based on the quotient set C/∼, where ∼ is the equiv-
alence relation

c∼ d iff (c= d) ∈ Γ ∗.

For each K-formula ψ(x1, . . . , xn), this model satisfies

(b) A∗ |=ψ[c1/∼, . . . , cn/∼] iff ψ(c1, . . . , cn) ∈ Γ ∗.

In particular, A∗ |= σ iff σ ∈ Γ ∗, where σ is any K-sentence, so since Γ ⊆ Γ ∗, A∗ |= Γ .
The Abstract Henkin Principle of this article may be used to give a succinct develop-

ment of Phase 1. For this, let Φ be the set of all first-order sentences of K, and � the
standard (finitary) first-order deducibility relation on Φ . Then Γ is �-consistent. The key
property of � that will be used is

(c) if Δ � ϕ(c), and the constant c does not occur in Δ or ϕ(x), then Δ � ∀xϕ(x).
Now the closure condition (a) on Γ ∗ in Phase 1 is equivalent to

if ϕ(c) ∈ Γ ∗ for all c ∈ C, then ∀xϕ(x) ∈ Γ ∗,

that is, to the closure of Γ ∗ under the inference

ϕC =
({
ϕ(c) : c ∈ C

} ∀xϕ(x)).
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Let I be the set of inferences ϕC for all first-order K-formulas ϕ with one free variable.
The number of such formulas is κ since card K = κ . Hence, cardI = κ . Thus, to prove
the existence of Γ ∗, it suffices to show that if Δ is a κ-finite subset of Φ , then

Γ ∪Δ respects I .

But if cardΔ< κ , then for any ϕ, card(Δ∪ {ϕ}) < κ since κ is infinite. Hence, fewer that
κ members of C appear in Δ∪ {ϕ}. But none of these constants appear in Γ . Thus, if

Γ ∪Δ � ϕ(c) for all c ∈ C,

then

Γ ∪Δ � ϕ(c) for some c not occurring in Γ ∪Δ∪ {ϕ},
and so by (c),

Γ ∪Δ � ∀xϕ(x).

3.2 Omitting Types

Let L be a countable language, and Fn the set of all first-order L-formulas all of whose
free variables are among x1, . . . , xn. A consistent subset of Fn will be called an n-type.
An L-structure A realises an n-type Σ if there are individuals a1, . . . , an in A such that

A |= ϕ[a1, . . . , an] for all ϕ ∈Σ.
A omitsΣ if it does not realiseΣ . If Γ is a consistent set of L-sentences, then an n-typeΣ
is isolated over Γ if there is some formula ψ ∈ Fn that is consistent with Γ (i.e. Γ ∪ {ψ}
is consistent) and has

Γ �ψ→ ϕ for all ϕ ∈Σ.
Such a ψ is said to isolateΣ over Γ . This means that Γ ∪{ψ} �⊥, whereas Γ ∪{ψ} � ϕ
for all ϕ ∈ Σ , that is, Γ ∪ {ψ} fails to respect the rule (Σ,⊥). Thus, Σ is not isolated
over Γ precisely when Γ ∪ {ψ} does respect the rule (Σ,⊥) for all ψ ∈ Fn.

The basic omitting-types theorem asserts that if a type Σ is not isolated over Γ , then
Γ has a (countable) model that omits Σ . This can be proven by a refinement of the proof
of the completeness theorem sketched in Sect. 3.1, and the required model is the structure
A∗ given there.

To simplify the exposition, let Σ be a 1-type. Since each individual of A∗ is of the
form c/∼ for some c ∈ C, to ensure that A∗ does not realise Σ , it suffices, by clause (b)
of the description of A∗, to show that for each c ∈ C, there is some formula ϕ(x1) ∈ Σ
such that ϕ(c) �∈ Γ ∗. Since ⊥ �∈ Γ ∗, this amounts to requiring, for each c ∈ C, that Γ ∗ be
closed under the inference

Σc =
({
ϕ(c) : ϕ ∈Σ}

,⊥)
.

Lemma 2 For any K-sentence σ , Γ ∪ {σ } respects Σc.
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Proof σ may contain members of C other than c. To simplify the notation again, let σ
contain just one C-constant d other than c.

Suppose that Γ ∪ {σ(c,d)} � ϕ(c), and hence Γ � σ(c,d)→ ϕ(c) for all ϕ(x1) ∈
Σ . Then as c and d do not occur in Γ , it follows by standard properties of first-order
deducibility that for all ϕ(x1) ∈Σ ,

Γ � ∃x2σ(x1, x2)→ ϕ(x1).

But the formula ∃x2σ(x1, x2) belongs to F1, and so since Σ is not isolated over Γ , it
follows that ∃x2σ(x1, x2) is not consistent with Γ . Hence, Γ � ¬∃x2σ(x1, x2), and so
Γ � ∀x1∀x2¬σ(x1, x2). This implies Γ �¬σ(c,d), and so Γ ∪ {σ(c,d)} � ⊥. �

Now since C is countable, there are countably many rules of the form Σc. Since the
standard deducibility relation of first-order logic is conjunctive, the lemma just proved
applies to the Countable Henkin Principle and yields, with Lindenbaum’s Lemma, a max-
imally �-consistent extension Γ ∗ of Γ that is closed under Σc for all c ∈ C. But K is
countable since L is countable, and so there are countably many inferences of the form ϕC

for ϕ a K-formula with at most one free variable. Hence, if the latter inferences are added
to the Σc, there are still only countably many inferences involved altogether, and so Γ ∗
can be taken to be closed under each ϕC as before.

In fact, the whole argument can begin with a countable number of types, not just one.
Each type will contribute a countable number of inferences of the form Σc, and so, since
a countable union of countable sets is countable, this will still involve only countably
many inferences altogether. Thus, with no extra work, other than these observations about
the sizes of sets of inferences, it may be concluded that any countable collection of non-
isolated types is simultaneously omitted by some model of Γ .

3.3 C-Completeness and C-Consistency

Let L be a countable language that includes a set C of individual constants. A C-model
is any L-structure in which each individual is the interpretation of some constant from C.
Thus an L-structure is a C-model iff it omits the 1-type

ΔC =
{¬(x = c) : c ∈ C

}
.

A set Γ of L-sentences is C-complete if it respects the inference

ϕC =
({
ϕ(c) : c ∈ C

}
, ∀xϕ(x))

for all L-formulas ϕ(x), where we continue to take � to be the standard first-order de-
ducibility relation. Now Γ � ∀xϕ iff Γ � ϕ since x is not free in Γ , so C-completeness
is equivalent to having Γ respect all the inferences ({ϕ(c) : c ∈ C}, ϕ).

The notion of C-completeness was introduced by Henkin in [15], where he showed
that

(i) if Γ is C-complete, then for any sentence σ that is consistent with Γ , there exists a
C-model of Γ ∪ {σ }.
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As a preliminary lemma, he proved that if a set of sentences Γ is C-complete, then so
is Γ ∪ {σ } for any sentence σ . This implies that (i) is reducible to the assertion

(ii) every consistent and C-complete set of sentences has a C-model.

Now (ii) can be inferred from the Omitting-Types Theorem, provided that we know
that any consistent and C-complete set does not have the type ΔC isolated over it. To
prove that, let Γ be consistent and C-complete. Suppose further that there is a formula
ψ(x) such that Γ � ψ →¬(x = c) for all c ∈ C. Then Γ � ∀x(ψ →¬(x = c)), hence
Γ � ψ(c)→¬(c = c), and so Γ � ¬ψ(c) for all c ∈ C. Since Γ is C-complete, this
yields Γ � ¬ψ , so ψ is not consistent with Γ and thus does not isolate ΔC over Γ . The
upshot is thatΔC is not isolated over Γ , so there is a model of Γ that omitsΔC and hence
is a C-model.

Henkin’s proof of (i) used his general completeness method and applied an earlier
result from his paper [14], which states that any strongly C-consistent set of sentences
has a C-model. Here strong C-consistency of Γ can be defined to mean that there is a
function assigning to each formula ϕ(x) with only x free a constant cϕ from C such that
every sentence of the form

(
ϕ1(cϕ1)→∀xϕ1

)∧ · · · ∧ (
ϕn(cϕn)→∀xϕn

)

is consistent with Γ . This implies that the setΔ of all sentences of the form ϕ(cϕ)→∀xϕ
is consistent with Γ , and so Γ ∪Δ has a maximally consistent extension Γ ∗. By the nature
of Δ, this Γ ∗ is closed under the rules ϕC for all ϕ(x), and the structure A∗ defined from
Γ ∗ as in Sect. 3.1 is a C-model of Γ .

Steven Orey [18] independently proved essentially the same result that a strongly C-
consistent set has a C-model, formulating this in the context that C is a collection of
constants denoting the natural numbers, in which case a C-model is called an ω-model,
and the result provides a completeness theorem for ω-logic, which adds to the standard
first-order axiomatization the general rule that

if Γ � ϕ(c) for all c, then Γ � ∀xϕ

(see [3, Proposition 2.2.13]). Both Henkin and Orey gave examples to show that strong C-
consistency of Γ is strictly stronger in general than C-consistency, which itself means that
there is no formula ϕ(x) such that Γ � ϕ(c) for all c ∈ C and Γ � ¬∀xϕ(x). For ω-logic,
this is the notion of ω-consistency introduced by Gödel in proving his incompleteness
theorems.

3.4 Completeness for Infinitary Conjunction

The infinitary logic L∞ω generated by a language L has a proper class of individual vari-
ables, and a proper class of formulas obtained by allowing, in addition to ¬ϕ and ∀vϕ,
formation of the conjunction

∧
Ψ of any set Ψ of formulas (disjunction being definable

by
∧

and ¬ as usual).
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The deducibility relation for infinitary logic has, in addition to the defining properties
of deducibility for first-order logic, the axiom schema

∧
Ψ → ϕ if ϕ ∈ Ψ,

and the rule of deduction that if

Γ �ψ→ ϕ for all ϕ ∈ Ψ,
then

Γ �ψ→
∧
Ψ.

This deducibility relation is not finitary because a set of the form Ψ ∪ {¬∧
Ψ } will not

be �-consistent, but all of its finite subsets could be.
Each formula involved in the following discussion will be assumed to have only a

finite number of free variables. This restriction is justified by the fact that it includes all
subformulas of infinitary sentences.

A fragment of L∞ω is a set LA of L∞ω-formulas that includes all first-order L-formulas
and is closed under ¬, ∀, finite conjunctions, subformulas, and substitution for variables
of terms each of whose variables appears in LA (cf. [2, p. 84]).

A “weak” completeness theorem [2, Sect. III.4] asserts that if LA is a countable frag-
ment of L∞ω and Γ is a set of LA-sentences that is consistent, then Γ has a model. To
prove this, let C be a denumerable set of new constants, K = L ∪ C, and KA the set of all
formulas obtained from formulas ϕ ∈ LA by replacing finitely many free variables by con-
stants c ∈ C. Then KA is countable and is the smallest fragment of K∞ω that contains LA.
A crucial point to note is that each member of KA contains only finitely many constants
from C.

Now let Φ be the (countable) set of sentences in KA, and � the restriction of the K∞ω-
deducibility relation to Φ . To obtain a Γ -model, Γ is to be extended to a subset Γ ∗ of
Φ for which the definition of the model A∗ can be carried through as for first-order logic
and for which the condition

(b) A∗ |=ψ[c1/∼, . . . , cn/∼] iff ψ(c1, . . . cn) ∈ Γ ∗

can be established for each formula ψ(x1, . . . , xn) that belongs to KA. Then A∗ will be a
Γ -model since Γ ⊆ Γ ∗.

In order for (b) to hold for all KA-formulas, it is sufficient (and necessary) that the
following hold.

(i) Γ ∗ is maximally finitely �-consistent: this is sufficient to ensure that A∗ is well
defined;¬ϕ ∈ Γ ∗ iff ϕ �∈ Γ ∗; ϕ→ψ ∈ Γ ∗ iff ϕ ∈ Γ ∗ impliesψ ∈ Γ ∗; if

∧
Ψ ∈ Γ ∗,

then ϕ ∈ Γ ∗ for all ϕ ∈ Γ ∗; and if ∀xϕ ∈ Γ ∗, then ϕ(c) ∈ Γ ∗ for all c ∈ C.
(ii) Γ ∗ is closed under the inference ϕC for each KA-formula ϕ with at most one free

variable.
(iii) If

∧
Ψ ∈ KA, and Ψ ⊆ Γ ∗, then

∧
Ψ ∈ Γ ∗, that is, if

∧
Ψ ∈ KA, then Γ ∗ is closed

under the inference (Ψ,
∧
Ψ ).

Since KA is countable, there are countably many inferences involved in fulfilling (ii) and
(iii). Hence, by the Countable Henkin Principle and Lindenbaum’s Lemma, it suffices to
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show that for all σ ∈ Φ , Γ ∪ {σ } respects each such inference. The proof that Γ ∪ {σ }
respects ϕC is just as for first-order logic since, as noted above, σ has only finitely many
constants from C, whereas Γ has no such constants.

For an inference of the form (Ψ,
∧
Ψ ), observe that if

Γ ∪ {σ } � ϕ for all ϕ ∈ Ψ,

then

Γ � σ → ϕ for all ϕ ∈ Ψ,
so

Γ � σ →
∧
Ψ,

and hence

Γ ∪ {σ } �
∧
Ψ.

It is left as an exercise for the reader to formulate and derive an omitting-types theorem
for countable fragments of L∞ω .

4 Richer Extension Theorems

In the application just discussed, a special role was played by maximally finitely consistent
sets that are closed under given inference rules. We now study conditions under which
every consistent set can be extended to one of these special sets.

Let I be a subset of 2Φ ×Φ , that is, a set of inferences. A set Δ of formulas will be
called (I ,�)-rich if

• Δ is maximally finitely �-consistent, and
• Δ is closed under I , that is, if (Π,χ) ∈I and Π ⊆Δ, then χ ∈Δ.

So we have already established the following via the Countable Henkin Principle and
Lindenbaum’s Lemma:

Theorem 2 (Rich Extension I) Let � be a deducibility relation onΦ , and I a countable
set of inferences in Φ . If Γ is a �-consistent subset of Φ such that Γ ∪Σ respects I for
all finite Σ ⊆Φ , then Γ has an (I ,�)-rich extension.

The relation � will itself be said to respect an inference (Π,χ) if every set of formulas
respects (Π,χ) under �, that is, if the condition

(Γ � ϕ, all ϕ ∈Π) implies Γ � χ

holds for every Γ ⊆ Φ . Also, � respects I if it respects each member of I . If this is
so, then in particular Γ ∪Σ will respect I for all �-consistent Γ and all finite Σ ⊆Φ .
Thus, Theorem 2 gives the following:
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Theorem 3 (Rich Extension II) Let � be a deducibility relation that respects all members
of a countable set I of inferences. Then every �-consistent set of formulas has an (I ,�)-
rich extension.

To refine this result further, we invoke the following property:

Cut Rule: If Γ � ϕ for all ϕ ∈Π , and Π � χ , then Γ � χ .

An inference (Π,χ) will be called �-deducible if Π � χ . The Cut Rule states that if
(Π,χ) is �-deducible, then � respects it. (The converse is always true: since Π � ϕ
for all ϕ ∈ Π , if � respects (Π,χ), then Π � χ follows.) Hence, Theorem 3 gives the
following:

Theorem 4 (Rich Extension III) Let � be a deducibility relation that satisfies the Cut
Rule, and let I be a countable set of �-deducible inferences. Then every �-consistent
set of formulas has an (I ,�)-rich extension.

5 Classical Deducibility

D1–D4 provided minimal assumptions from which to derive the Henkin Principle and
the Rich Extension theorems. But in what follows additional properties of � involving an
implication connective → will be needed. So from now on we assume that Φ is the class
of formulas of some language that includes all the classical truth-functional connectives.
We can take ⊥ and → as primitive, and the other connectives %, ¬, ∧, ∨ as defined from
them in the usual way.

Consider the following further properties of a relation � from 2Φ to Φ:

Assumption Rule: If ϕ ∈ Γ or ϕ is a tautology, then Γ � ϕ.
Detachment Rule: {ϕ,ϕ→ψ} �ψ .
Tautological Rule: If ϕ is a tautological consequence of Γ , then Γ � ϕ.
Deduction Rule: Γ ∪ {ϕ} �ψ implies Γ � ϕ→ψ .
Implication Rule: Γ �ψ implies (ϕ→ Γ ) � ϕ→ψ , where

(ϕ→ Γ )= {ϕ→ χ : χ ∈ Γ }.

Lemma 3 If � satisfies the Assumption, Detachment and Cut rules, then it satisfies the
Tautological Rule.

Proof From the stated rules it follows that the set {ϕ : Γ � ϕ} contains all members of Γ
and all tautologies, and is closed under Detachment. But by standard theory, any such set
contains every tautological consequence of Γ . �

Lemma 4 If � satisfies the Assumption, Detachment, Cut, and Deduction rules, then it
satisfies the Implication Rule and the converse of the Deduction Rule, that is,

Γ � ϕ→ψ implies Γ ∪ {ϕ} �ψ.
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Proof Suppose Γ �ψ . Since the Tautological Rule gives

(ϕ→ Γ )∪ {ϕ} � χ for all χ ∈ Γ,
it then follows by the Cut Rule that (ϕ→ Γ ) ∪ {ϕ} � ψ . Hence, by the Deduction Rule,
(ϕ→ Γ ) � ϕ→ψ , establishing the Implication Rule.

Next, suppose Γ � ϕ→ψ . Now by the Assumption Rule, Γ ∪ {ϕ} � χ for all χ ∈ Γ ,
so this yields Γ ∪{ϕ} � ϕ→ψ by the Cut Rule. But also Γ ∪{ϕ} � ϕ, so the Detachment
and Cut rules then give Γ ∪ {ϕ} �ψ . �

A relation � satisfying the Assumption, Detachment, Cut, and Deduction rules will be
called a classical deducibility relation. Conditions D1–D4 of Sect. 1 can be derived from
these rules, as the reader may verify. When ∅ � ϕ, where ∅ is the empty set of formulas,
we may write � ϕ and say that ϕ is �-deducible, Observe that in order for ϕ to have Γ � ϕ
for all Γ (e.g. when ϕ is a tautology), it is enough by D1 to have � ϕ.

We note some properties of a maximally finitely �-consistent setΔ that hold when � is
classical. Membership of Δ reflects the properties of the truth-functions, and Δ contains
all �-deducible formulas and is closed under the Detachment Rule, that is,

⊥ /∈Δ,
¬A ∈Δ iff A /∈Δ,
A→ B ∈Δ iff A /∈Δ or B ∈Δ,
�A implies A ∈Δ,

etc. Moreover, a finitely �-consistent set Γ is maximally finitely �-consistent iff it is
negation complete in the sense that for all ϕ ∈Φ , either ϕ ∈ Γ or ¬ϕ ∈ Γ . Such facts can
be shown by well-known arguments (or see [6, 8, 9] for details).

6 Probabilistic Modal Logic

The theory of rich sets of formulas will now be applied to a system of propositional logic,
originating with Aumann [1], that can express assertions of the type “the probability of
ϕ is at least r”. This assertion will be written symbolically as [r]ϕ. Here r can be any
rational number in the real unit interval [0,1]. The set of all such rationals will be denoted
Q

01, and the letters r, s, t, u are reserved to name them. We write R as usual for the set of
real numbers, and put R�0 = {x ∈R : x � 0}.

The symbol [r] itself is a unary modal connective, reminiscent of the “box” modal-
ity �. But those familiar with modal logic may care to note that [r] is not in general a
normal modality: the schemes

[r]ϕ ∧ [r]ψ→[r](ϕ ∧ψ),
[r](ϕ→ψ)→ ([r]ϕ→[r]ψ)

are not valid in the semantics defined below, unless r = 0 or 1. On the other hand,

[1](ϕ→ψ)→ ([r]ϕ→[r]ψ)
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is always valid, and if a formula ϕ is valid, then so is [r]ϕ. The modalities [1] and [0] are
both normal, with [0] being of the “Verum” type, that is, [0]ϕ is valid for every formula ϕ.

An algebra A on a non-empty set X is a non-empty collection of subsets of X that are
closed under complements and binary unions. A is a σ -algebra if it is also closed under
countable unions. Then (X,A ) is called a measurable space, and the members of A are
its measurable sets. A measurable function f : (X,A )→ (X′,A ′) between measurable
spaces is given by a set function f :X→X′ that pulls measurable sets back to measurable
sets, that is, f−1(Y ) ∈A for all Y ∈A ′. For this, it suffices that f−1(Y ) ∈A for all sets
Y in some generating subset of A ′.

A function μ : A → R
�0 on an algebra A is finitely additive if μ(Y1 ∪ Y2) =

μ(Y1) + μ(Y2) whenever Y1 and Y2 are disjoint members of A . μ is countably addi-
tive if μ(

⋃
n Yn)=

∑∞
0 μ(Yn) whenever {Yn | n < ω} is a sequence of pairwise disjoint

members of A whose union
⋃
n Yn belongs to A . A measure is a countably additive

function with μ(∅)= 0. It is a probability measure if also μ(X)= 1.
We need the following standard facts about an algebra A :

• Any measure μ on A is continuous from above, meaning that if Y0 ⊇ Y1 ⊇ · · · is
a non-increasing sequence of members of A whose intersection belongs to A , then
μ(

⋂
n<ω Yn)= limn→∞μ(Yn).

• A finitely additive μ : A → R
�0 is a measure if it is continuous at ∅, that is,

limn→∞μ(Yn) = 0 for any non-increasing sequence {Yn | n < ω} ⊆ A with
⋂
n Yn= ∅.

The set of all probability measures on a measurable space (X,A ) will be denoted
P(X,A ). It becomes a measurable space itself under the σ -algebra generated by the
sets {μ ∈P(A ) : μ(Y )� r} for all Y ∈A and r ∈Q01.

Now let Φ be the set of formulas generated from a countably infinite set of propo-
sitional variables by the classical truth-functional connectives and the modalities [r] for
all r ∈Q01. A formula [r0] · · · [rn−1]ϕ generated by iterating modalities will be written
more briefly as [r0 · · · rn−1]ϕ. In the case r = 0, this is just the formula ϕ. Notice that Φ
is countable since there are countably many variables and Q01 is countable.

A model M for this language is given by a measurable space (X,A ) together with a
measurable function f from (X,A ) to the space P(X,A ) of probability measures, and
a valuation that assigns a measurable set �p�M ∈ A to each propositional variable p.
We typically write μx for the measure f (x) assigned to x ∈ X by f . The valuation of
variables is extended inductively to all formulas, using the standard Boolean set operations
to interpret the truth-functional connectives by

�⊥�M = ∅, �ϕ→ψ�M = (
X− �ϕ�M )∪ �ψ�M ,

and for the modalities putting

�[r]ϕ�M = {
x ∈X : μx�ϕ�M � r

}= f−1{μ ∈P(A ) : μ�ϕ�M � r
}
.

The measurability of f ensures that if �ϕ�M is measurable, then so is �[r]ϕ�M . Hence,
inductively every formula ϕ is interpreted as a measurable set �ϕ�M , thought of as the set
of points in X that satisfy ϕ. By writing M , x |= ϕ to mean that x ∈ �ϕ�M , the following
properties of satisfaction are obtained:
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M , x �|= ⊥,
M , x |= ϕ→ψ iff M , x �|= ϕ or M , x |=ψ,
M , x |= [r]ϕ iff μx�ϕ�M � r.

Satisfaction of a set Γ of formulas is defined by putting M , x |= Γ iff for all ϕ ∈ Γ ,
M , x |= ϕ. A semantic consequence relation is then defined by putting Γ |= ϕ iff M , x |=
Γ implies M , x |= ϕ for all points x of all models M . In the case that Γ = ∅, the relation
∅ |= ϕ means that ϕ is valid, that is, satisfied at every point of every model.

A set Γ is unsatisfiable if M , x �|= Γ for all M and x. This is equivalent to having
Γ |= ⊥. The relation |= is not finitary: the set

Γs =
{[r]p : r < s}∪ {¬[s]p}

has each of its finite subsets satisfiable but is not itself satisfiable because of the
Archimedean property that the real number μx�p�M cannot be less than s but closer
to s than any rational r < s. Thus, Γs |= ⊥, but no finite Γ ′ ⊆ Γs has Γ ′ |= ⊥.

Our objective is to axiomatize the relation |= by constructing an abstract deducibility
relation � and showing that Γ � ϕ iff Γ |= ϕ. For this purpose, define an Archimedean
inference to be a pair of the form

ρ = ({[r0 · · · rn−1r]ϕ : r < s
}
, [r0 · · · rn−1s]ϕ

)
(1)

with s > 0. Such an inference is sound for the semantic consequence relation. In the case
n= 0, the relation

{[r]ϕ : r < s} |= [s]ϕ
holds just because of the Archimedean property described above, which is independent of
the properties of a measure. But when n > 0, the proof that

M , x |= {[r0 · · · rn−1r]ϕ : r < s
}

implies M , x |= [r0 · · · rn−1s]ϕ
depends on the measure μx being continuous from above [17].

Notice that the inference (1) is really only of interest when s > 0 because any formula
of the form [0]ϕ is valid, hence so is any of the form [r0 · · · rn−10]ϕ.

Let Ax be the set of all formulas that are instances of the following axioms:

A1 [1](ϕ→ψ)→ ([r]ϕ→[r]ψ).
A2 [0]⊥.
A3 [r]¬ϕ→¬[s]ϕ if r + s > 1.
A4 [r](ϕ ∧ψ)∧ [s](ϕ ∧¬ψ)→[r + s]ϕ if r + s � 1.
A5 ¬[r](ϕ)∧¬[s](ψ)→¬[r + s](ϕ ∨ψ) if r + s � 1.

These axioms are all valid, and the proof of validity requires only the finite additivity of a
probability measure.

Let R be the set of all Archimedean inferences (1). Then R is countable because each
such inference ρ is determined by its conclusion formula [r0 · · · rn−1s]ϕ and there are only
countably many formulas. We will abbreviate this conclusion of ρ to ϕρ(s), suppressing
the parameters r0, . . . , rn−1, and write each premise correspondingly as ϕρ(r). So ρ takes
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the form ({ϕρ(r) : r < s}, ϕρ(s)). Notice that the form of (1) ensures that R is closed
under application of the modalities, in the sense that for any u ∈Q01, the pair

[u]ρ = ({[u]ϕρ(r) : r < s
}
, [u]ϕρ(s)

)
(2)

is also an Archimedean inference.
Now let � be the smallest deducibility relation that is classical (i.e. satisfies the As-

sumption, Detachment, Cut, and Deduction rules) and has the following additional prop-
erties:

Axiom Deducibility: ϕ ∈ Ax implies � ϕ.
Almost Sure Rule: � ϕ implies � [1]ϕ.
Archimedean Rule: {ϕρ(r) : r < s} � ϕρ(s), for all ρ ∈R.

Lemma 5

(1) Monotone Rule: � ϕ→ψ implies � [r]ϕ→[r]ψ .
(2) � [r]%.
(3) � [0]ϕ.
(4) � ¬[r]⊥, if r > 0.
(5) � [s]ϕ→[r]ϕ, if r < s.
(6) � [r]ϕ→¬[s]ψ , if r + s > 1 and �¬(ϕ ∧ψ).
(7) [r]ϕ ∧ [s]ψ→[r + s](ϕ ∨ψ), if r + s � 1 and � ¬(ϕ ∧ψ).
(8) � ϕ implies � [r]ϕ.
(9) � [r0 · · · rn−10]ϕ.

Proof (Briefly) For (1), from ϕ→ ψ deduce [1](ϕ→ ψ) by the Almost Sure Rule, then
apply axiom A1 and the Detachment Rule. (2) comes directly by the Almost Sure Rule.
For (3), use the tautology ⊥→ ϕ and apply the Monotone Rule (1) and axiom A2.

(4)–(7) are shown as in Lemmas 4.6 and 4.7 of [10]. (8) follows by the Almost Sure
Rule and (5). (9) follows from (3) by repetition of (8). �

Theorem 5 (Soundness) If Γ � ϕ, then Γ |= ϕ.

Proof The rules defining � are all satisfied when � is replaced by |=. Since � is specified
to be the smallest relation satisfying these rules, the result follows. �

To prove the converse of this result (strong completeness), a canonical model will be
constructed whose points are the (R,�)-rich sets of formulas. This requires some proof-
theoretic preliminaries concerning the question of when a maximally finitely �-consistent
set Δ is closed under the rules from R. For Δ to be closed under a given rule ρ, with
conclusion ϕρ(s), it is enough that Δ decides ρ, that is, either ϕρ(s) ∈Δ or ¬ϕρ(r) ∈Δ
for some r < s. By properties of maximally finitely consistent sets, this is equivalent to
asking that for some r < s, (¬ϕρ(r)∨ϕρ(s)) ∈Δ, or equivalently, (ϕρ(r)∧¬ϕρ(s)) /∈Δ.
That provides some motivation for the next result, which uses the full strength of the
Archimedean Rule.
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Lemma 6 Let Δ be an (R,�)-rich set of formulas. For any rule ρ ∈R with conclusion
ϕρ(s), and any positive t ∈Q01, there exists an r < s with

[t](ϕρ(r)∧¬ϕρ(s)
)
/∈Δ.

Proof Let L = {u ∈Q01 : [u]ϕρ(s) ∈ Δ}. Then 0 ∈ L since the formula [0]ϕρ(s) is de-
ducible by Lemma 5(3) and so belongs to Δ. Thus, L is non-empty and must have a
supremum l � 1. Then in general,

[u]ϕρ(s) ∈Δ iff u� l. (3)

For if u � l and r < u, there must be a v ∈ L with r < v. But [v]ϕρ(s)→ [r]ϕρ(s) is
deducible (Lemma 5(5)) and so belongs to Δ, and this leads to [r]ϕρ(s) ∈Δ. Hence, we
have {[r]ϕρ(s) : r < u} ⊆Δ, which by R-closure of Δ implies [u]ϕρ(s) ∈Δ, giving (3).

Now take the case l = 1. Then [1]ϕρ(s) ∈Δ. But [t]¬ϕρ(s)→¬[1]ϕρ(s) is in Δ by
axiom A3, so this implies that [t]¬ϕρ(s) /∈Δ. Thus, we can pick any r < s and conclude
that [t](ϕρ(r)∧¬ϕρ(s)) /∈Δ with the help of the Monotone Rule.

Alternatively, l < 1. In that case, choose a u ∈ Q01 with l < u < l + t , and then a
v ∈Q01 with u− t � v � l. Since l < u, [u]ϕρ(s) /∈Δ. ButΔ is closed under the inference
[u]ρ (2), so there is some r < s with [u]ϕρ(r) /∈Δ. To complete the lemma, we need to
show that it is false that

[t](ϕρ(r)∧¬ϕρ(s)
) ∈Δ. (4)

Now ϕρ(s)→ ϕρ(r) is deducible, by Lemma 5(5) and the Monotone Rule. Hence,
[v]ϕρ(s)→[v](ϕρ(r)∧ϕρ(s)) is deducible by the Tautological and Monotone rules. But
[v]ϕρ(s) ∈Δ as v � l (3), so this implies

[v](ϕρ(r)∧ ϕρ(s)
) ∈Δ. (5)

Assume, for contradiction, that (4) is true. Then we must have v + t � 1 since otherwise
by Lemma 5(6), [v](ϕρ(r) ∧ ϕρ(s))→¬[t](ϕρ(r) ∧ ¬ϕρ(s)) is deducible, which is in-
compatible with (5) and (4) both holding. But now if v+ t � 1, axiom A4 combines with
(5) and (4) to give [v + t]ϕρ(r) ∈Δ. Since we already have [u]ϕρ(r) /∈Δ, this contradicts
the fact that u� v+ t .

Altogether, we have shown that (4) cannot be true, completing the proof. �

Next, let {ρ1, . . . , ρn, . . . } be an enumeration of R with

ρn =
({
ϕn(r) : r < sn

}
, ϕn(sn)

)
.

Fix an (R,�)-rich set Δ and a positive t ∈Q01. For each n� 1, define tn = t/2n. Then
by Lemma 6 there exists an rn < sn such that

[tn]ψn /∈Δ, (6)

where ψn = (ϕn(rn)∧¬ϕn(sn)).

Lemma 7 For all n� 1, [t](ψ1 ∨ · · · ∨ψn) /∈Δ.
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Proof Observe that t1 + · · · + tn =∑
i�n t/2

i < t � 1.
Now for all i � n, [ti]ψi /∈ Δ by (6), hence ¬[ti]ψi ∈ Δ. So from axiom A5 we get

¬[t1 + · · · + tn](∨i�n ψi) ∈ Δ, hence [t1 + · · · + tn](∨i�n ψi) /∈ Δ. The desired result
now follows as � [t](∨i�n ψi)→[t1 + · · · + tn](∨i�n ψi) by Lemma 5(5). �

For any set Γ of formulas, let
∧
ω Γ be the set of conjunctions of all finite subsets of

Γ , that is,
∧
ω Γ = {∧Σ :Σ ⊆ Γ and Σ is finite}, and for any r ∈Q01, let

[r]
∧

ω

Γ =
{
[r]χ : χ ∈

∧

ω

Γ
}
.

Lemma 8 For any positive t ∈Q01, if [t]∧ω Γ can be extended to a (R,�)-rich set,
then so can Γ .

Proof Assume that [t]∧ω Γ ⊆Δ for some (R,�)-rich Δ. Let

Θ0 = Γ ∪ {¬ψn : n� 1},
where the ψn are obtained from Δ as above and satisfy Lemma 7.

Now if Θ0 is finitely �-consistent, it must have a maximally finitely �-consistent ex-
tensionΘ . Then for each n� 1, the formula ψn = (ϕn(rn)∧¬ϕn(sn)) is not inΘ because
¬ψn ∈Θ . This, as explained above, ensures that ¬ϕn(rn) ∈Θ or ϕn(sn) ∈Θ , so Θ de-
cides ρn and therefore is closed under ρn. The upshot is that Θ is a maximally finitely
�-consistent extension of Γ that is R-closed and hence is (R,�)-rich, completing the
proof.

So it remains to show that Θ0 is finitely �-consistent. But if it were not, there would
be some finite Σ ⊆ Γ and some n such that

Σ ∪ {¬ψ1, . . . ,¬ψn} � ⊥.
That would lead to Σ �∨

i�n ψi and hence to �∧
Σ →∨

i�n ψi . By the Monotone
Rule it would follow that � [t]∧Σ → [t]∨i�n ψi . But [t]∧Σ belongs to Δ by as-
sumption, so this would imply that [t]∨i�n ψi ∈Δ, contradicting Lemma 7. �

We are now ready to construct the canonical model, to be denoted Mc. Let Xc be the
set of all (R,�)-rich sets of formulas. For each formula ϕ, let |ϕ| = {Δ ∈ Xc : ϕ ∈ Δ},
and put Ac = {|ϕ| : ϕ is a formula}. Then Ac is an algebra since X − |ϕ| = |¬ϕ| and
|ϕ| ∪ |ψ | = |ϕ ∨ψ |.

For Δ ∈Xc, define μΔ :Ac→[0,1] by putting

μΔ|ϕ| = sup
{
u ∈Q01 : [u]ϕ ∈Δ}

.

Thus, the number l defined at the beginning of the proof of Lemma 6 is μΔ|ϕρ(s)|. In
general, we have

μΔ|ϕ|� r iff [r]ϕ ∈Δ. (7)

For if μΔ|ϕ|� r , then for any s < r , by definition of μΔ|ϕ| as a supremum there is a u > s
with [u]ϕ ∈ Δ. Hence, [s]ϕ ∈ Δ by Lemma 5(5). Thus, {[s]ϕ : s < r} ⊆ Δ, implying
[r]ϕ ∈Δ because Δ is R-closed. The converse holds by definition.
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μΔ can be shown to be a well-defined finitely additive function as in [10, Theo-
rem 5.4]. By results (3) and (4) of Lemma 5, μΔ∅ = μΔ|⊥| = 0, and by result (2),
μΔXc = μΔ|%| = 1. Moreover, μΔ is continuous from above at ∅. To see why, suppose
that |ϕ0| ⊇ |ϕ1| ⊇ · · · is a nested sequence of members of Ac whose intersection is empty.
Then we want to show that limn→∞μΔ|ϕn| = 0. Now by finite additivity, the number se-
quence {μΔ|ϕn| : n < ω} is non-increasing. If this sequence did not converge to 0, there
would exist a positive rational t with μΔ|ϕn|� t for all n. Then if Γ = {ϕn : n < ω}, then
any ψ ∈∧

ω Γ has |ψ | = |ϕm| for some m since the |ϕn| are nested, hence μΔ(|ψ |)� t ,
so [t]ψ ∈ Δ by (7). This shows that [t](∧ω Γ ) is a subset of Δ. Our Lemma 8 then
implies that there is a Θ ∈ Xc with Γ ⊆ Θ . But then Θ ∈⋂

n<ω |ϕn|, contradicting the
assumption that this intersection is empty. Hence, {μΔ|ϕn| : n < ω} does converge to 0.

Thus, indeed μΔ is continuous from above at ∅ and so is countably additive and a
probability measure. Standard measure theory then tells us that it extends uniquely to
a probability measure on σ(Ac), the σ -algebra on Xc generated by Ac . We call this
extension μΔ as well. The map Δ '→ μΔ from (Xc,σ (Ac)) to its space of probability
measures P(Xc,σ (Ac)) is then a measurable map because each measurable set of the
form {μ : μ|ϕ|� r} in the space of measures pulls back along this map to the measurable
set |[r]A| ∈Ac , by (7).

The model Mc is now defined on the measurable space (Xc,σ (Ac)) by putting
�p�Mc = |p| for all propositional variables p.

Lemma 9 (Truth Lemma) Every formula ϕ has �ϕ�Mc = |ϕ|, that is, for all Δ ∈Xc,
Mc,Δ |= ϕ iff ϕ ∈Δ.

Proof By induction on the formation of ϕ, with the base case holding by the definition
of �p�Mc . The cases of the truth-functional connectives are standard, and the case of a
formula [r]ϕ, assuming the result for ϕ, is given by (7). �

Corollary 1

(1) Every (R,�)-rich set Δ is �-deductively closed, that is, Δ � ϕ implies ϕ ∈Δ, and is
maximally �-consistent.

(2) A set of formulas is �-consistent iff it has an (R,�)-rich extension.

Proof (1) By the Truth Lemma, every member of Δ is satisfied at the pointΔ in Mc, that
is, Mc,Δ |=Δ. Thus, if Δ � ϕ, then Δ |= ϕ by soundness, hence Mc,Δ |= ϕ, and so the
Truth Lemma gives ϕ ∈Δ.

It follows that Δ is �-consistent since if Δ � ⊥, then ⊥ ∈Δ, which would contradict
the finite �-consistency of Δ. But Δ has no proper �-consistent extensions since by the
definition of “rich” it has no proper finitely �-consistent extensions.

(2) From left to right holds by Rich Extension Theorem 4. Conversely, if Γ has an
(R,�)-rich extension Δ, then since ⊥ /∈Δ, we have Δ �⊥ by (1), hence Γ �⊥ by D1,
so Γ is �-consistent. �

Remark 1 A natural question here is whether this �-deductive closure of a rich set can be
shown proof-theoretically, rather than by a model-theoretic detour through the canonical
model. A strategy for this is to define the notion of a “theory” as being a set with suitable
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closure properties, including in this case closure under the Detachment Rule and under
R, and then to define a relation Γ �+ ϕ to mean that ϕ belongs to every theory that
includes Γ . In other words, the set {ϕ : Γ �+ ϕ} is the intersection of all theories that
include Γ , and will typically be a theory as well. Thus, if Γ itself is a theory, it will be
�+-deductively closed by definition. Moreover, rich sets will be theories, hence a rich set
is �+-deductively closed. One then shows that �+ satisfies all the rules that define �,
from which it follows that in general Γ � ϕ implies Γ �+ ϕ because � is specified to be
the smallest relation satisfying these rules. Now if Γ is rich and Γ � ϕ, we get Γ �+ ϕ,
and hence ϕ ∈ Γ because a rich set is �+-deductively closed.

This kind of analysis is applied to modal logic in [9], to dynamic/algorithmic logic in
[5], and to coalgebraic logic in [4, 10].

We turn now to our main goal for probabilistic modal logic:

Theorem 6 (Strong Completeness)

(1) Every �-consistent set of formulas is satisfiable.
(2) If Γ |= ϕ, then Γ � ϕ.

Proof (1) and (2) are equivalent. We prove (1) and infer (2).
For (1), if Γ is �-consistent, then by the Rich Extension Theorem 4 there is a Δ ∈Xc

with Γ ⊆Δ. By the Truth Lemma 9, Mc,Δ |=Δ, so Γ is satisfied atΔ in Mc. For (2), if
Γ � ϕ, then Γ ∪ {¬ϕ} is �-consistent by D4, so is satisfiable by (1), implying Γ �|= ϕ. �

Finally on this topic, here are some remarks on the background to the strong complete-
ness result. Heifetz and Mongin [11] gave a finitary axiomatization of the set {ϕ : ∅ |= ϕ}
of valid formulas, using a set of axioms similar to our A1–A5, and a special rule that
derives assertions about the probabilities of two finite sets of formulas that are equivalent
in a suitable sense. Zhou [21, 22] replaced this rule by the infinitary inference scheme

from � ϕ→[r]ψ for all r < s, infer � ϕ→[s]ψ
and showed that the resulting system was equivalent to that of [11]. He also gave an ex-
ample in [23] to show that the canonical measure associated with a maximally consistent
set for this system need not be countably additive.

The present author showed in [10] that the countable additivity of canonical measures
follows from the rule

Γ �⊥ implies [t]
∧

ω

Γ �⊥ (8)

for positive t and countable Γ . This is itself derivable from the rule

Γ � ϕ implies [t]
∧

ω

Γ � [t]ϕ (9)

by taking ϕ =⊥ and using � ¬[t]⊥ (Lemma 5(4)). For countable Γ , (9) is sound for the
present semantics (i.e. is true when � is replaced by |=), as can be shown using continuity
of a measure from above [10, Theorem 4.8]. The reference to countability of Γ was
required because some of the logics discussed in [10] have uncountably many formulas.
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In that situation a “rich extension” theorem is not always available, and the analysis of
μΔ given in [10] depended on � having the Lindenbaum property that every �-consistent
set has a maximally �-consistent extension. The semantic consequence relation |= has
this property since |=-consistency just means satisfiability, and if Γ is satisfied at x in
M , then {ϕ :M , x |= ϕ} is a maximally |=-consistent set extending Γ . It was shown that
|= is characterizable proof-theoretically as the smallest deducibility relation having the
Lindenbaum property [10, Theorem 5.17].

The striking insight that the set R of Archimedean inferences suffices to show that
μΔ is countably additive is due to the authors of [17]. Our Lemmas 6–8 are motivated
by the Stone duality constructions of Sect. VI of [17] and are intended to give a proof-
theoretic manifestation of that insight. Note the equivalence of Lemma 8 and the rule (8)
by Corollary 1(2). The countability of the language and of R ensures that the Henkin
method can be applied to show that sufficiently many R-rich extensions exist to prove
Strong Completeness.

7 The Baire Category Connection

The year after Henkin’s new first-order completeness proof appeared in print, Helena
Rasiowa and Roman Sikorski published another proof based on Boolean-algebraic and
topological ideas [19]. This introduced what became known as the Rasiowa–Sikorski
Lemma, stating that any non-unit element of a Boolean algebra belongs to a prime ideal
that preserves countably many prescribed joins. They proved this by using the fact that the
Stone space of a Boolean algebra satisfies the Baire Category Theorem: the intersection
of countably many open dense sets is dense.

There are intimate relationships between the Rasiowa–Sikorski Lemma, the Baire Cat-
egory Theorem for certain kinds of spaces, and the Countable Henkin Principle. These
are explored in [7]. Here we will illustrate the connection by giving a rapid version of a
topological proof of our Rich Extension Theorem 2. As will be evident, this is rather more
elaborate than the direct deducibility-theoretic proof.

Let Xm be the set of maximally finitely �-consistent sets of subsets of Φ , where �
is a classical deducibility relation. For each ϕ ∈ Φ , let |ϕ|m = {Δ ∈ Xm : ϕ ∈ Δ}. The
collection {|ϕ|m : ϕ ∈ Φ} is a basis for a compact Hausdorff topology on Xm, in which
each basic open |ϕ|m is also closed, because Xm − |ϕ|m = |¬ϕ|m.

Now let Γ be �-consistent. Define Γ � = {ϕ : Γ � ϕ}, and restrict Xm to the set XΓ =
{Δ ∈Xm : Γ � ⊆Δ}. Then XΓ =⋂{|ϕ|m : ϕ ∈ Γ �}, so XΓ is a closed subset of Xm and
hence becomes a compact Hausdorff space itself under the subspace topology. A basis for
this subspace topology is {|ϕ|Γ : ϕ ∈Φ}, where |ϕ|Γ = |ϕ|m ∩XΓ = {Δ ∈XΓ : ϕ ∈Δ}.

Note that Γ ⊆ Γ � by D2. Also, Γ � is closed under �-deducibility since if Γ � � χ ,
then Γ � χ by the Cut Rule. Consequently, Γ � is �-consistent because Γ is. Therefore,
by Lindenbaum’s Lemma, XΓ is non-empty. Moreover, using the Deduction Rule and its
converse, we get that in general

Γ ∪ {ψ} � ϕ iff Γ + ∪ {ψ} � ϕ iff (ψ→ ϕ) ∈ Γ +. (10)

Given an inference ρ = (Π,χ), define Uρ = {Δ ∈ XΓ : Δ is closed under ρ}. Since
members of XΓ are negation complete, a given Δ ∈ XΓ is closed under ρ iff it either
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contains χ or contains ¬ϕ for some ϕ ∈Π . Thus,

Uρ = |χ |Γ ∪
⋃{|¬ϕ|Γ : ϕ ∈Π

}
,

which shows that Uρ is open, being a union of (basic) open sets.

Lemma 10 If Γ ∪ {ψ} respects ρ for all ψ ∈ Φ , then the open set Uρ is dense in the
space XΓ .

Proof Let Γ ∪ {ψ} respect ρ for all ψ ∈ Φ . To prove density of Uρ , it suffices to show
that any non-empty basic open set |ψ |Γ intersects Uρ . So assume that |ψ |Γ �= ∅.

First, take the case that for some ϕ ∈Π , the set Γ � ∪ {ψ,¬ϕ} is �-consistent. Then
this set extends by Lindenbaum’s Lemma to a Δ ∈ XΓ that belongs to |ψ |Γ ∩ |¬ϕ|Γ ⊆
|ψ |Γ ∩Uρ , giving the desired result that |ψ |Γ ∩Uρ �= ∅.

The alternative case is that for all ϕ ∈Π , we have Γ � ∪ {ψ,¬ϕ} � ⊥; hence, Γ � ∪
{ψ} � ϕ by D4, so Γ ∪ {ψ} � ϕ by (10). But Γ ∪ {ψ} respects ρ, so then Γ ∪ {ψ} � χ .
Hence, (ψ→ χ) ∈ Γ � by (10).

By assumption there exists some Δ ∈ |ψ |Γ . Since Γ � ⊆Δ, we get (ψ→ χ) ∈Δ and
ψ ∈Δ, giving χ ∈Δ and thus Δ ∈ |ψ |Γ ∩ |χ |Γ ⊆ |ψ |Γ ∩Uρ . So again |ψ |Γ ∩Uρ �= ∅
as required. �

Now to prove the Rich Extension theorem, let I be a countable set of inferences such
that Γ ∪ {ψ} respects I for all ψ ∈Φ . Define UI =⋂{Uρ : ρ ∈I }. Then Uρ is the set
of all (I ,�)-rich extensions of Γ �. By the lemma just proved, UI is the intersection of
countably many open dense subsets of the space XΓ . Hence, UI is dense in XΓ since
the Baire Category Theorem holds for any compact Hausdorff space. Since XΓ �= ∅, it
follows that UI �= ∅. Any member of UI is an (I ,�)-rich extension of Γ fulfilling
Theorem 2.
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Reflections on a Theorem of Henkin

William Gunther and Richard Statman

Abstract The λδ-calculus is the λ-calculus augmented with a discriminator which dis-
tinguishes terms. We consider the simply typed λδ-calculus over one atomic type variable
augmented additionally with an existential quantifier and a description operator, all of
lowest type. First we provide a proof of a folklore result which states that a function in
the full type structure of [n] is λδ-definable from the description operator and existential
quantifier if and only if it is symmetric, that is, fixed under the group action of the sym-
metric group of n elements. This proof uses only elementary facts from algebra and a way
to reduce arbitrary functions to functions of lowest type via a theorem of Henkin. Then
we prove a necessary and sufficient condition for a function on [n] to be λδ-definable
without the description operator or existential quantifier, which requires a stronger notion
of symmetry.

Keywords Lambda calculus · Lambda delta calculus · Types · Typed lambda calculus ·
Simply typed lambda calculus · Type theory · Classical type theory · First-order logic ·
Henkin semantics · Typed lambda calculus semantics · Delta discriminator · Description
operator

1 Introduction

Let M n be the full type structure over a ground domain of size n. It is folklore that a
member of M n is symmetric if and only if it is definable in type theory. The origin of
this theorem is murky. It is safe to say that it was not known to Newton. Robin Gandy
told the senior author that he knew it in the 1940s. It is not unlikely it was known to
Church before this. It occurred to the senior author as a student in the 1970s after reading
Andrews [1] and Lauchli [5]. There are not many proofs in the literature. A proof appears
in Van Benthem [8] in the 1990s, but it is incomplete. A proof follows immediately from
an observation due to Leon Henkin [4].

In this note, we intend to do two things. First, we shall generalize the folklore theorem
to Church’s λδ-calculus [3] for the M n, and also to the “profinite” model which is the
“limit” of the M n. Second, we shall provide a straightforward proof of the folklore theo-
rem itself using only simple facts about the symmetric group and its action on equivalence
relations.
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2 Preliminaries

We first do a review of the lambda calculus, simple types, Henkin-style semantics, and
extending simple typed lambda calculus to type theory.

2.1 Lambda Calculus

Untyped Lambda Calculus

The untyped lambda calculus serves as the underlying language of our more disciplined
systems. We give a quick reminder.

Definition 1 Fix some countable set of variables V = {x1, x2, . . .}. We define the set of
λ-terms, which we denote by Λ inductively:

Variables V ⊆Λ
Abstraction If x ∈ V and M ∈Λ, then (λx.M) ∈Λ
Application If M,N ∈Λ, then (MN) ∈Λ.

We will always identify terms that are the same up to a renaming of bound variables (α
equivalence). Moreover, we define a notion of convertibility =βη formed by the reduction
rules

(λx.M)N→β M[x :=N ]
(λx.Mx)→η M variable x does not appear free inM

Using this notion of reduction, a term M is in βη normal form if there is no term N

such that M→βη N .
We write Λ∅ for the set of all closed terms, that is, terms with no free variables.

Remark 1 (Notational Conventions for Terms) We will follow all ordinary conventions
when writing terms. When parentheses are omitted, we will associate terms to the left, so
that MNP is parsed as (MN)P . The symbol . which is “Church’s dot notation” will be
used for binders to remind the reader that we are binding in the largest scope possible; so
in λx.MN the x is bound by the λ in both M and N . We write λ-terms with uppercase
Latin letters, like F,G,M,N .

What follows are a few useful closed terms that we will use throughout the paper:

S := λxyz.xz(yz)
K = True := λxy.x
K∗ = False := λxy.y

And := λmn.λxy.m(nxy)y
Not := λm.λxy.myx
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Simple Types

Here, we will put a typing discipline on Λ.

Definition 2 On Λ we define the simple typing system in the style of Church, which we
notate λ→. We will have only one type constant, which we denote 0. The set of types, T ,
is inductively defined as the smallest set containing 0 and closed under arrows, that is,
if α and β are types, then α→ β is a type. We will use lower case Greek letters at the
beginning of the alphabet for types, such as α,β, γ .

For the terms of the system, we mimic what we did the untyped case, but with restric-
tions. We defined the set Λ→(α), the set of typed terms of type α, by induction:

Variables If x ∈ V and α is a type, then xα ∈Λ→(α).
Abstraction If M ∈Λ→(β) and x ∈ V , then

(
λxα.M) ∈Λ→(α→ β)

Application If M ∈Λ→(α→ β) and N ∈Λ→(α) then

MN ∈Λ→(β)

We write Λ∅→(α) for the set of closed terms of type α. We write Λ→ for
⋃
α Λ→(α).

Similarly forΛ∅→. Instead of writingM ∈Λ→(α), we will usually writeM : α, which we
read “M has type α” or “M is in α.”

Example 1 The closed terms we had previously defined are all typeable. For example,
one can see both True and False have types 0→ (0→ 0).

Definition 3 (Long Normal Form) We define the long (βη) normal form of a term M : α
by induction on the type α. If M : 0, then M is in long normal form if and only if it is
of the form xM1 . . .Mm where each Mi is in long normal form. If M : α→ β , then M is
in long normal form if M is of the form λf α.N , where N is in long normal form. Every
term has a unique long normal form, which one can obtain by η expansions.

Example 2 The long normal form of the term λx0.f 0→(0→0)x is

λx0λy0.(f 0→(0→0)x
)
y

Remark 2 (Notational Conventions for Types) We will associate types the right to facil-
itate Currying; therefore α→ β → γ is parsed as α→ (β → γ ). We will tend to not
decorate variables with types when it is otherwise deducible from context what type the
variable is.

We will use the notation αn→ β to stand for (α→ (α→ ·· · (α→ β) · · · )). That is, a
term of this type expects n-many inputs of type α and returns an output of type β . Also
to improve readability, we will write the type for booleans α→ α→ α as Boolα .
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2.2 Semantics

In this section, we will define a set-theoretic framework for which we can interpret typed
lambda terms. We first give some more general definitions because we will later introduce
different semantics.

Definition 4 Suppose we have an indexed family of sets M (α) for each type α. Let ·α,β
be a map from M (α→ β) ×M (α)→ M (β). We say that this is a typed applicative
structure if it is extensional; that is, for every f,g ∈ M (α→ β), if we know for every
n ∈M (α) f ·α,β n= g ·α,β n, then f = g.

Definition 5 Fix a natural number n. We define a model M n as follows, by induction on
the type α:

M n(0) := {1, . . . , n}
M n(α→ β) := {

f | f :M n(α)→M n(β)
}

That is, we interpret the type 0 to be the set [n], the first n natural numbers, and the type
α→ β is the function space of objects of type α to objects of type β . Note that this is
clearly a typed applicative structure where · is just function application. This particular
typed applicative structure is called the full type structure over [n].

We will write these set-theoretic functions as lowercase Latin letters like f,g,h.

Now that we have a framework which to interpret types, we can make an evaluation of
the terms into this framework.

Definition 6 Fix a natural number n and a function ϕ mapping typed variables xα to
members of M n(α). Then we define the evaluation of term with respect to ϕ by induction
on the term:

�x�nϕ = ϕ(x)
�λx.M�nϕ = λf .�M�nϕ[x:=f ]

�MN�nϕ = �M�nϕ
(

�N�nϕ
)

2.3 Type Theory

To begin a path from simply typed lambda calculus to a type theory, we need an equality
symbol, which we shall call δ. Following the example of Andrews [1], such an addition
for all types would lead us to the study of higher order logic. For our purposes, we will
just be dealing with first order (classical) logic, and our equality symbol is only for ground
type 0.

To add equality, we augment our language with a new constant symbol δ. For the
typing rules, we just say that δ is a term of type 0→ 0→ Bool0, defined by the following
axiom:

(x = y =⇒ δxyuv = u)∧ (¬(x = y) =⇒ δxyuv = v)
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In Statman [7] it was proven that under βη conversion, the equational consequences of
this axiom are exactly the same as from these rules:

δMMUV = U (Reflexivity)

δMNUU = U (Identity)

δXYUV = δYXVU (Symmetry)

δXYXY = Y (Hypothesis)

P(δMN) = δMN(PTrue)(PFalse) (Monotonicity)

δMN(δMNUV )W = δMNUW (Stutter)

δMNU(δMNWV ) = δMNUV (Stammer)

In the previous section on the untyped lambda calculus, we define closed terms rep-
resenting the booleans of True and False, as well as And and Not. For first-order type
theory we must add a first-order quantifier, ∃ : (0→ Bool0)→ Bool0 with the rule

∃M =
{

True ifMn= True for some n : 0

False otherwise

and a description operator ι of type (0→ Bool0)→ 0→ 0 with the rule

ιMm=
{
n ifMn= True and n is unique such

m otherwise

Also, we can extend our semantics to handle the terms involving δ,∃, and ι in the
obvious way; for example, for the equality operator, �δ�nϕ is the characteristic function
of equality. The following shows that the semantics provided by M (n) is sound and
complete for βηδ.

Theorem 1 (Soundness and Completeness) Let M and N be terms of type α.

1. (Soundness) If M =βηδ N , then for every n ∈N and every ϕ, we have �M�nϕ = �N�nϕ
2. (Completeness) IfM �=βηδ N , then there are some n ∈N and ϕ such that �M�nϕ �= �N�nϕ

Proof Proof in Statman [7]. �

3 Henkin’s Theorem

We would like to be able to say that every finite function in the above semantics can be
represented in some way in the λδ-calculus.

Theorem 2 (Henkin’s Theorem) Fix an assignment of variables to types ϕ, a natural
number n, and a type α.
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• There is a δα : 0n→ α→ α→ Boolα such that for every f,g,h, j ∈M n(α),

(
�δα�nϕ1 · · ·n)fghj =

{
h if f = g
j if f �= g

• If f ∈M n(α), then there is F : 0n→ α such that

(
�F �nϕ1 · · ·n)= f

Proof Go by induction on the type α.
If α = 0, then define

δ0 = λx1 . . . xn.δ
If f ∈M n(0), then f ∈ [n], so f = i for some 1 ≤ i ≤ n. Then we can just F be the

ith projection:

λx1 . . . xn.xi
Suppose α = β→ γ . We have δβ and δγ , closed terms of types β and γ , respectively,

that have the desired property. Enumerate all elements of M n(β), {m1,m2, . . . ,mk}. By
induction hypothesis we know that these are representable; that is, there are closed terms
M1, . . . ,Mk such that �Mi�nϕ1 . . . n=mi for every i. So define

δβ→γ = λx̄FG.
δγ x̄

(
F(M1x̄)

)(
G(M1x̄)

)∧ δγ x̄
(
F(M2x̄)

)(
G(M2x̄)

)

∧ · · · ∧ δγ x̄
(
F(Mkx̄)

)(
G(Mkx̄)

)

where x̄ is shorthand for x1 . . . xn, and M ∧N is And(M)(N). One can easily verify this
as desired.

Let f be a function in M n(β→ γ ). Note that f (mi) ∈M n(γ ) by the definition of
the semantics. Therefore, set pi = f (mi). By induction hypothesis, there are closed terms
Pi for every 1≤ i ≤ k such that (�Pi�nϕ1 . . . n)= pi . We define F by doing cases on what
our input is:

F = λx̄m.If δβ x̄(m)(M1x̄) then (P1x̄) else

If δβ x̄(m)(M2x̄) then (P2x̄) else

· · ·
If δβ x̄(m)(Mk−1x̄) then (Pk−1x̄) else (Pkx̄)

where “If M then N else P ” is “shorthand” for (MN)P . Similarly, this is easily shown
to be as claimed. �

The following is an easy corollary to the completeness result stated above and Henkin’s
theorem.
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Corollary 1 Take M,N : α1 → α2 → ·· · → αk → 0 with all free variables having
type 0. If M �=βηδ N , then there are some n and closed terms Fi : 0n→ αi such that

M(F1x̄) · · · (Fkx̄) �=βηδ N(F1x̄) · · · (Fkx̄)
where x̄ includes all variables free in both M and N .

Proof By soundness, for some ϕ and n, we have �M�nϕ �= �N�nϕ . Take x̄ to be a sequence
of length n of free variables of type 0, containing all the free variables ofM and N . Then
clearly �λx̄.M�nϕ �= �λx̄.N�nϕ .

These are set-theoretic functions, therefore there are f1 ∈M n(α1), . . . , fk ∈M n(αk)

such that (�λx̄.M�nϕ1 . . . n)f1 . . . fk �= (�λx̄.N�nϕ1 . . . n)f1 . . . fk . By Henkin, all these fi
have closed terms of type 0n→ αi representing them; denote those closed terms Fi .

Therefore, by completeness, the result follows. �

Consider for each type α the set Λδ→(α), that is, the set of terms of λδ→ of type α.
Define the set T (α) by

T (α) :=Λδ→(α)/=βηδ
That is, all properly typed terms of type α, modulo βηδ conversion. As a consequence
to the above theorem, we have that T is an typed applicative structure. For each natural
number n, we consider the set of n free variables X := {x1, x2, . . . , xn} of type 0. We can
then take the set of all terms M in T that are λ-definable from this set (and δ).

This is not necessarily a typed applicative structure. For we may have two terms M1
and M2 that are not extensionally equal, but are with respect to all terms λ-definable
from X ∪ {δ}. That is, none of the witnesses thatM1 and M2 are different are λ-definable
from X ∪ {δ}. Therefore, we consider only the equivalence classes formed by equality
under δ restricted only to the ground set X. So, if we have M1 and M2 as above, we
collapse them. We call the resulting model Gandy hull of X ∪ {δ} in T . This is a typed
applicative structure, which we will denote by T n. For more information on the Gandy
hull construction, see [2].

One can see that there is a natural relationship between T n and M n. There is a natural
homomorphism from T n to M n, which is completely determined by a mapping of X
to [n]. Further, we can look at some infinite models. For instance, we can define M ω to
be the full type structure over the natural numbers; so M ω(0)= {1,2,3, . . .}. We can then
take the Gandy hull of {1,2,3, . . .} ∪ δ in this model and get a model M .

This model could be obtained another way. Fix a bijection from free variables of type 0
and ω. Then one can build a corresponding homomorphism from T to M ω. The image
is exactly M . These models are discussed further in Statman [6].

4 Folklore Theorem

Definition 7 The symmetric group on n elements, which we denote as Sn, is the subset
of M n(0→ 0) that are bijections. These form a group with the operation of composition.
We call members of the group permutations. We shall use lower case Greek letters in the
middle of the alphabet to stand for permutations, for example, π,ρ,σ, τ .
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Of course, members of Sn act canonically of type 0 by application. But, we can lift this
action to higher types. Consider π ∈ Sn. We define πα ∈M n(α→ α) by induction on α.
If α = 0, then we just take π0(n)= π(n). If α = β→ γ , then we define

πα(f )= πγ ◦ f ◦ π−1
β

Therefore, we have an action of Sn on our entire model M n, where π acts on f : α
by πα(f ). For this action, we will write π · f .

If f ∈M n, then we denote the stabilizer of f under this action St(f ); that is, St(f ) is
the set of all permutations that fix f .

St(f ) := {π ∈ Sn | π · f = f }

We call an f ∈ M n symmetric if St(f ) = Sn, that is, f is fixed under the action of all
permutations.

Remark 3 We can say that Sn acts on T n as well. Any permutation of the free variables
elicits an automorphism on the entire set T n. The converse, however, is false; there are
automorphisms of T n that do not come from permutations of the variables. Therefore,
when we call F ∈T n symmetric, we mean preserved under all automorphisms, not just
the “inner” automorphisms arising from permutations of variables.

Theorem 3 (Folklore Theorem) f ∈ M n is symmetric if and only if it is λ-definable
from δ, ι,∃.

Proof The right-to-left direction is straightforward. For δ, ι, and ∃ are all symmetric, as
are combinators S andK . S andK form a basis for all λ terms, and λ-definable objects are
closed under application. Thus, we have that all λ-definable objects are indeed symmetric.

The left-to-right direction will constitute the rest of this section of the paper.

Definition 8 For each function f : 0n→ α, we associate a functional f+ : (0→ 0)→ α

such that

f+π = f (π1)(π2) . . . (πn)

A function f is said to be regular if for every g ∈ M n(0 → 0) where g /∈ Sn, we have
f+g = g(1).

For the present moment, we will restrict our attention only on functions f : 0n→ 0.

Remark 4 Note that the action π · f in this case is the following:

π · f = λx̄.π(f (π−1x1
)
. . .

(
π−1xn

))

This and that St(f ) is a subgroup implies that π ∈ St(f ) if and only if

λx̄.π−1(f (πx1) . . . (πxn)
)= f
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Definition 9 Fix an f : 0n→ 0 regular. We define a relation ∼f on Sn by

π ∼f σ ⇐⇒ π−1(f
(
π(1)

)
. . .

(
π(n)

))= σ−1(f
(
σ(1)

)
. . .

(
σ(n)

))

We restrict this relation to be a right congruence by taking its right congruence hull, which
we denote ∼∗

f and define by

π ∼∗
f σ ⇐⇒ ∀ρ ∈ Sn.πρ−1 ∼f σρ−1

Lemma 1 For f : 0n→ 0 regular and π ∈ Sn, the following are equivalent:

1. π ∈ St(f ).
2. For all ρ ∈ Sn, we have πρ ∼f ρ.
3. π ∼∗

f id.

Proof ((1) ⇒ (2)). Take π ∈ St(f ). By remark we have

λx̄.π−1(f (πx1) . . . (πxn)
)= f

Fix ρ ∈ Sn. Apply ρ(1), ρ(2), . . . , ρ(n) to the left:

π−1(f
(
πρ(1)

)
. . .

(
πρ(n)

))= f (ρ(1)) . . . (ρ(n))

which gives us

ρ−1(π−1(f
(
πρ(1)

)
. . .

(
πρ(n)

)))= ρ−1(f
(
ρ(1)

)
. . .

(
ρ(n)

))

which implies that πρ ∼f ρ.
((2) ⇒ (3)). Take ρ ∈ Sn. We want to show that πρ−1 ∼f idρ−1. The right-hand side

is of course just ρ−1; therefore, this follows immediately from (2).
((3) ⇒ (1)). We want to show that

λx̄.π−1(f (πx1) . . . (πxn)
)= f

By extensionality, it suffices to show that the above holds after an arbitrary application.
Moreover, let us fix an arbitrary g : 0→ 0 (not necessarily in Sn). The application of g(1)
to the left of both sides, followed by g(2), etc., up to g(n), is an arbitrary application as g
is arbitrary; thus, it suffices to show

π−1(f
(
πg(1)

)
. . .

(
πg(n)

))= f (g(1)) . . . (g(n))

If g /∈ Sn, then by regularly of f , both sides are exactly g(1). Otherwise, call ρ := g
is a member of Sn. By (3) (using the right congruence property on ρ−1), we have that
πρ ∼f ρ. This means that

ρ−1π−1(fπ
(
ρ(1)

)
. . . π

(
ρ(n)

))= ρ−1(f
(
ρ(1) . . . ρ(n)

))

which is exactly what we wanted. �
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From the above one sees that ∼∗
f partitions Sn into equivalence classes, where St(f )

is the class that contains id. All other classes can be written as unions of right cosets of
the stabilizer, by property (2).

Let B be the set of equivalence classes. For each B ∈B, let χB : 0n→ Bool0 denote
its characteristic function. That is,

χ+B (π)=
{

True if π ∈ B
False otherwise

By the definition of the equivalence relation, if π and σ are in a block B , then
π−1(f+π)= σ−1(f+σ)=: i. So when f is given inputs corresponding to a permutation
in B , f is just the ith projection function. Thus, to define f , we need only know which
block the given input it in. Therefore, f itself is λδ-definable from the set {χB | B ∈B}
via the function

F = λx1 . . . xn.If χB1x1 . . . xn then (xi1) else

If χB2x1 . . . xn then (xi2) else

· · ·
If χBj x1 . . . xn then (xij ) else (x1)

where {B1, . . .Bj } =B, and ik is the coordinate that f projects on block Bk .

Lemma 2 If f is regular, symmetric of type 0n→ 0, then f is λδ-definable.

Proof Since f is symmetric, by (1), there is only one block of the equivalence class
formed by ∼∗

f . Since f is λδ-definable from the set of blocks, we have that f is λδ-
definable outright. �

Now, consider arbitrary symmetric f : α1 → α2 → ·· · → αk → 0. It suffices, given
the above, to show that f is definable from regular, symmetric functions of type 0n→ 0.
Consider the set of lists

L =Λδ→(α1)× · · · ×Λδ→(αk)=
{〈f1, f2, . . . , fk〉 | fi : αi

}

For each list L= 〈f1, . . . , fk〉 in L , we define a function cL : 0n→ 0, which we call the
Lth coordinate function defined by

cL = λx1 . . . xn.
{
f (F1x1 . . . xn) . . . (Fkx1 . . . xn) if x1, . . . , xk distinct

x1 otherwise

where the Fi : 0n→ αi are the terms from Henkin’s theorem corresponding to fi . Each
coordinate function is regular (by the cases defining it) and also symmetric (as f is). So,
each cL is λδ-definable. Thus, we need only show that f is definable from its coordinate
functions; f is not definable outright, but we need to use ι and ∃. We begin by the remark
that the function alldiff : 0n → Bool0, which returns True if all the first n inputs are
different, and False otherwise is λδ-definable.

alldiff := λx1 · · ·xn.δ(x1)(x2)(False)
(· · · δ(xn−1)(xn)(False)(True) · · · )
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Now, we can define f :

f = λx1 . . . xk.ι
(
λz.∃y1 . . . yn.(alldiffy1 . . . yn)∧

∨

L∈L
L=〈F1,...,Fk〉

(
δ(x1)(F1y1 . . . yn)∧ . . .∧ δ(xk)(Fky1 . . . yn)

∧ (cLy1 . . . ynx1 . . . xk)(z)
))

Therefore, we have that f is definable if each of the cL is definable; the cL are regular
functions of type 0n, which are therefore definable if they are symmetric. It is easy to see
that if f is symmetric, then so are its coordinate functions. Therefore, if f is symmet-
ric, then we can substitute the λδ-definition of cL into each of the cL above and get a
λδ-definition of f (using ∃ and ι). �

Moreover, we can prove the following strengthening:

Theorem 4 Fix a function f ∈M n and A⊆M n. Then if (
⋂
g∈A St(g))⊆ St(f ), then f

is λδ-definable from functions in A along with ι,∃.

Proof It is easy to see that St(f )=⋂
St(cL), where the cL are the coordinate functions

of f ; for since f and its coordinate functions are definable from each other, any permu-
tation that fixes f must fix its coordinate functions, and any that fixes all its coordinate
functions fixes the function.

Therefore, it suffices that we prove the theorem only for f : 0n→ 0 and, similarly, as-
sume all g ∈A be of type 0n→ 0. We suppose that (

⋂
g∈A St(g))⊆ St(f ). By Lemma 1,

since St(g) is exactly the block of the equivalence relation ∼∗
g containing id, it follows

that the set of left cosets of
⋂
g∈A St(g) is a finer partition of Sn than the set of left cosets

of St(f ), which are exactly the blocks of ∼∗
f .

Therefore, on any left coset of
⋂
g∈A St(g)we have that f behaves like a projection op-

erator since the coset is entirely contained in a block of ∼∗
f , which in turn is contained in

a block of ∼f . Thus, for any permutations π , we can identify the left coset of
⋂
g∈A St(g)

that π is in. f acts uniformly on that block as a projection function, so we can make a
definition similar to the above definition of f by its blocks in ∼f . �

5 Definability and Symmetry

Let us return our attention to the term model T , where members are terms with possible
free variables among x1, x2, . . . . We first state the following result of Lauchli [5].

Proposition 1 (Lauchli) There is a closed term F ∈ Λ∅
δ (α) if and only if there is an

F ∈ T (α) symmetric (recall: for terms in T (α), symmetric means fixed under all auto-
morphisms).

Proof In Lauchli [5], it is stated and proved in terms of intuitionist logic: �I α if and only
if there is an “invariant” function of type α. �
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Theorem 5 Any F ∈T is λδ-definable if and only if it is symmetric.

Proof It is easy to see that every element of T that is λδ-definable is symmetric since it
is βηδ equal to a closed term, which is fixed under all automorphisms. We will just prove
the converse.

Let F ∈ T by symmetric; consider F to be of type α1 → ·· · → αk → 0. Write F
as Gx1 . . . xn, where G is closed and free variables of F are among x1, . . . , xn. By the
proposition above, we can get a closed term H : α1 → ·· · → αk → 0, which has the
following form in long normal form:

λy1 . . . yk.H ′

where H ′ has type 0 and free variables only among y1, . . . yk . Consider

GH ′ . . .H ′
︸ ︷︷ ︸
n times

This is a term of type α1 → ·· ·→ αk→ 0, which has free variables only among y1, . . . yk .
Thus, the term

M := λy1 . . . yk.GH ′ . . .H ′
︸ ︷︷ ︸
n many

y1 . . . yk : α1 → ·· ·→ αk→ 0

is closed.
Recall that F is symmetric. Therefore,

F =Gx1 . . . xn =βηδ Gy1 . . . yn

for any variables yi : 0. Thus, by a substitution, we have that F =βηδ GY1 . . . Yn for any
Yi : 0. Therefore, M =βηδ F and is closed, thus is a λδ-definition of F . �

Corollary 2 Let h : T →M be defined as xi '→ i. This is called the canonical homo-
morphism. A function f ∈M is λδ-definable if and only if there is F ∈ h−1(f ) symmet-
ric.

Proof Once again the forward direction is straightforward. For the backward direction,
we just apply the last theorem. By the last theorem, if F ∈ h−1(f ) is symmetric, then it is
λδ-definable by some closed term G. Since h(G)= f and G is closed, G is also a good
λδ-definition for f . �

Definition 10 We call a homomorphism h : T n→Mm canonical if xi '→ i for all 1 ≤
i ≤m.

We say that an F ∈T n is supersymmetric if for every homomorphism ϕ :T n→T n,
ϕ(F ) is symmetric.

Theorem 6 f ∈ Mm is λδ-definable if and only if there is some n > m and F ∈ T n

supersymmetric such that for all canonical homomorphisms h : T n → Mm, we have
h(F )= f .
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Proof The left to right direction is trivial since f being λδ-definable gives us a closed
term that will satisfy all the requirements.

For the other direction, fix f ∈Mm of type α1 → α2 → ·· ·→ αk→ 0. Suppose that
n > m and F ∈ T n is supersymmetric where for all homomorphisms h : T n → Mm,
have h(F )= f . Write F = F ′x1 . . . xj where F ′ is a closed term.

The idea is as follows: we will do induction on the number of free variables on F , j .
We will construct a new term M that has j − 1 free variables and still has the property
that it is supersymmetric and is sent to f under all canonical homomorphisms. At the end
of our construction, we will have eliminated all free variables and will have constructed
a closed term M that is sent to f under all canonical homomorphisms. But, since M will
be closed, M is a λδ-definition for f .

To start the induction, if j = 1, then F = F ′x1. As n >m≥ 1, we know n > 1, so that
xn �= x1. F is supersymmetric, and therefore it is symmetric, so under the automorphism
sending x1 to xn, we know F ′x1 = F ′xn. As n >m, we have freedom with our canonical
homomorphism to send xn anywhere; in particular, for any 1 ≤ s ≤ m, we can define
canonical homomorphism h where h(xn) = s. Therefore, f = F ′s for all s. Therefore,
we may replace x1 in F by anything of type 0, and it would still be sent to f through any
canonical homomorphism.

By Lauchli [5], there is a closed term G of type α1 → ·· ·αk → 0. We can write F
as λz1 . . . zk.F ′x1z1 . . . zk by doing η expansions. Then, replacing x1 to form the term
λz1 . . . zk.F ′(Gz1 . . . zk)z1 . . . zk , we have a closed λδ term equal to f .

If j > 1, then we wish to eliminate the variable xj . If j > m, then we already have
freedom to send xj to any number in a canonical homomorphism h. Therefore, for every
1≤ s ≤m, by picking a canonical homomorphism that sends xj to s we have

f = h(F ′x1 . . . xj
)= F ′1 . . . n(h(n+ 1)

)
. . .

(
h(j − 1)

)
s

Since s is unrestricted, we can replace xj with anything of type 0, and the above is still
preserved. In particular, doing an η expansion of F gives us F = λz1 . . . zk.F ′x1 . . . xj z1

. . . zk , and then replacing xj , we get:

f = h(λz1 . . . zk.F ′x1 . . . xj−1
(
F ′x1 . . . x1z1 . . . zk

)
z1 . . . zk

︸ ︷︷ ︸
M

)

M has only j − 1 free variables. It remains to show that M is supersymmetric. This,
however, is not hard to see. Under the map xi '→ x1 for all 1 ≤ i ≤ j , we have that,
since F is supersymmetric, F ′x1 . . . x1 is symmetric and therefore preserved under all
automorphisms. Therefore, for any homomorphism ϕ : T n→ T n, we will have ϕ(M)
symmetric since ϕ(F ) was symmetric and M is just F with a free variable replaced by a
symmetric term.

If 1< j ≤m< n, we have by the symmetry of F by the automorphism switching xj
and xn that

F = F ′x1 . . . xj−1xn

Now, we have the freedom to send xn anywhere under any canonical homomorphism, and
thus we can repeat what we did above to eliminate xn. �
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Henkin’s Completeness Proof and Glivenko’s
Theorem

Franco Parlamento

Abstract We observe that Henkin’s argument for the completeness theorem yields also a
classical semantic proof of Glivenko’s theorem and leads in a straightforward way to the
weakest intermediate logic for which that theorem still holds. Some refinements of the
completeness theorem can also be obtained.

Keywords Consistency · Completeness · Intermediate logics

1 Introduction

Henkin’s argument for the completeness theorem consists of the proof that a consistent
set of sentences in first-order logic is satisfiable, from which, by a classical reduction ad
absurdum, one concludes that if F is a semantic consequence of a set of sentences Γ ,
then there must be a derivation in classical first-order logic of F from Γ . Given the non-
constructive character of Henkin’s proof, it is perhaps somewhat surprising that it offers
a way to obtain results concerning the relationship between intuitionistic logic and clas-
sical logic, such as Glivenko’s theorem for propositional logic, and a characterization of
the weakest extension of first-order intuitionistic logic for which that theorem holds with
respect to the full first-order language. It seems also remarkable that the proof under con-
sideration is the one that Henkin pointed out to Smullyan and can be found in Smullyan’s
celebrated book First Order Logic [6, p. 96], with the comment that “It is hard to imagine
a more direct completeness proof!” The crucial observation is that the proof directly en-
tails the following facts: (1) for a set of propositional formulae to be satisfiable, it suffices
its consistency with respect to intuitionistic logic; (2) for a set of first-order sentences to
be satisfiable, it suffices its consistency with respect to the extension of intuitionistic logic
obtained by allowing the inference of ¬¬∀xF from ∀x¬¬F ; (3) the latter strengthening
is not required if only ∀-free sentences are involved; (4) if, furthermore, they are also
→-free, even the ex-falso rule can be dispensed with. The latter two observations lead to
obtain directly refined forms of the completeness theorem.

2 Henkin’s Proof and Glivenko’s Theorem

In the following, we will adopt the natural deduction system with both ¬ and ⊥ taken
as primitive and denote by N the system that has only the introduction and elimination
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rules for each logical constant, namely the system for intuitionistic logic, and by NC the
system for classical logic, obtained by adding to N the classical reduction ad absurdum
rule ⊥c. For Γ a set of formulae, L (Γ ) denotes the set of all formulae built over the
symbols that occur in Γ , including ⊥ and ¬, even if they do not occur in Γ . Given
a set of formulae Σ and a formula F , Σ � F denotes the derivability relation of N;
more precisely, Σ � F means that there is a deduction D in N such that all the formulae
that occur in D belong to L (Γ ), the active assumption of D belongs to Σ , and the
conclusion of D is F . Similarly, Σ �c F denotes the derivability relation of NC. Np
and NCp denote the systems that are obtained from N and NC by excluding the rules
concerning quantifiers and the corresponding derivability relationsΣ�p F andΣ�cp F .
A purely propositional formula is a formula that contains only propositional parameters,
⊥, and propositional connectives. Since, assuming that every set can be well ordered, it
does not require any additional ado, we formulate Henkin’s argument with respect to an
arbitrary set of formulae, rather than to the countable ones as in [6].

Proposition 1 If Γ is a set of purely propositional formulae, and Γ � �p⊥, then Γ is
satisfiable in classical propositional logic.

Proof Let < be a well-ordering of L (Γ ) whose order type is a cardinal. By <-recursion,
for every F ∈L (Γ ), we define a set of formulae ΓF of L (Γ ) as follows:

ΓF =
{
Γ ∪⋃

G<F ΓG ∪ {F } if Γ ∪⋃
G<F ΓG ∪ {F } ��p⊥

Γ ∪⋃
G<F ΓG otherwise

Clearly, ΓF is defined for every F in L (Γ ), and if G ≤ F , then ΓG ⊆ ΓF . Since
the property Σ � �p⊥ is preserved under unions of increasing (under inclusion) chains
of sets, by <-induction it follows that for every F ∈ L (Γ ), ΓF � �p⊥. Hence, letting
Γ̄ =⋃

F∈F ΓF , for the same reason, we have that Γ̄ is consistent with respect to �p ,
namely:

(i) Γ̄ ��p⊥
Since Σ � �p⊥ is preserved under subsets, Γ̄ is maximal with respect to the property
Σ ��p⊥, namely, letting Γ̄ ,F denote Γ̄ ∪ {F }, we have:

(ii) if Γ̄ ,F ��p⊥, then F ∈ Γ̄
For, if Γ̄ ,F � �p⊥, then, by the definition of ΓF , we have that F ∈ ΓF and hence that
F ∈ Γ̄ by the definition of Γ̄ . As a consequence, we also have:

(iii) if Γ̄ �p H , then H ∈ Γ̄
In fact from Γ̄ �p H it follows that Γ̄ ,H � �p⊥, otherwise by the cut rule, namely the
possibility of composing deductions, we would get Γ̄ �p ⊥, against (iii). Hence, by (ii),
H ∈ Γ̄ . Notice that so far only the structural properties of weakening and cut of �p ,
satisfied also by classical as well as by minimal propositional logic, have been used. The
logical rules are needed to verify the following:

(1) ¬G ∈ Γ̄ if and only if G /∈ Γ̄
(2) G∧ H ∈ Γ̄ if and only if G ∈ Γ̄ and H ∈ Γ̄
(3) G∨H ∈ Γ̄ if and only if G ∈ Γ̄ or H ∈ Γ̄
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(4) G→H ∈ Γ̄ if and only if G /∈ Γ̄ or H ∈ Γ̄
More precisely: (1) is a consequence of (i) and the ¬-elimination rule in the only if

direction and of (ii), the ¬-introduction rule, and (iii) in the other. (2) is a consequence
of the ∧-elimination rules and (iii) in the only if direction and of the ∧-introduction
rules and (iii) in the other. As for (3), assuming that G ∨ H ∈ Γ̄ , we cannot have both
G /∈ Γ̄ and H /∈ Γ̄ since, otherwise, by (1), ¬G ∈ Γ̄ and ¬H ∈ Γ̄ , and by the ¬ and
∨-elimination rules we would have Γ̄ �p ⊥ against (i). Conversely, if G ∈ Γ̄ or H ∈ Γ̄ ,
then, by the appropriate ∨-introduction rule and (iii), we have thatG∨H ∈ Γ̄ . As for (4),
ifG→H ∈ Γ̄ andG ∈ Γ̄ , then by the→-elimination rule and (iii) it follows thatH ∈ Γ̄ ,
so that either G /∈ Γ̄ or H ∈ Γ̄ . Conversely, if G /∈ Γ̄ , then by (1), ¬G ∈ Γ̄ . Since, by the
¬-elimination, ex-falso, and the →-introduction rules, G→ H is deducible from ¬G,
by (ii) we have that G→ H ∈ Γ̄ . The same conclusion is reached if H ∈ Γ̄ since, by
the →-introduction rule, G→H follows from H . Thus, in both cases, G→H ∈ Γ̄ . On
the ground of (1)–(4), it is immediate to verify, by induction on the height of formulae,
that the assignment v that gives the value t to a propositional parameter P if and only
P ∈ Γ̄ assigns the value t to a (purely propositional) formula F if and only if F ∈ Γ̄ . In
particular, v satisfies all the formulae in Γ , showing that Γ is indeed satisfiable. �

Corollary 1 (Glivenko’s Theorem) If a purely propositional formula F is deducible in
NCp , then ¬¬F is deducible in Np .

Proof If F is deducible in NCp , then ¬F cannot be satisfied in classical propositional
semantics. By the previous proposition ¬F �p ⊥; hence, �p¬¬F by the ¬-introduction
rule. �

From the proof of Proposition 1 it is apparent that the availability in Np of the ex-
falso rule is needed only to establish condition (4) concerning →. Therefore, we have
also a proof that if a set of propositional formulae is →-free, namely it does not contain
occurrences of → and is consistent with respect to minimal propositional logic, then it is
satisfiable in classical propositional semantics, so that if a purely propositional formula
is →-free and is deducible in classical propositional logic, then its double negation is
deducible in minimal propositional logic.

3 Extension to First-Order Logic

In extending to the first-order language, the previous proof we will strictly follow the one
suggested by Henkin and reported in [6, p. 96]. Let us recall that a canonical interpretation
of L (Γ ) is an interpretation whose domain is the set of all closed terms of L (Γ ) and
in which function and constant symbols are given their canonical interpretation. Thus, a
canonical interpretation is completely determined by which atomic sentences of L (Γ )

are considered to be true. For C a set of constants, let L (Γ,C) be defined as L (Γ )

except that also constants in C are allowed.

Proposition 2 If Γ is a set of first-order sentences and Γ ��c⊥, then Γ is satisfiable in
a canonical interpretation of L (Γ,C) for any set C of constants not occurring in Γ of
cardinality not less than |L (Γ )|.
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Proof Let C be any set of constants not occurring in Γ of cardinality not less than
|L (Γ )|, F be the set of all sentences in L (Γ,C), and< be a well-ordering of F whose
order type is a cardinal. Let ΓF be defined by <-recursion as follows:

ΓF =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ ∪⋃
G<F ΓG ∪ {F } if Γ ∪⋃

G<F ΓG ∪ {F } ��c⊥
and F is neither of the form ∃xH
nor of the form ¬∀xH

Γ ∪⋃
G<F ΓG ∪ {F } ∪ {H {x/c}} if Γ ∪⋃

G<F ΓG ∪ {F } ��c⊥
and F is ∃xH

Γ ∪⋃
G<F ΓG ∪ {F } ∪ {¬H {x/c}} if Γ ∪⋃

G<F ΓG ∪ {F } ��c⊥
and F is ¬∀xH

Γ ∪⋃
G<F ΓG otherwise

where c is one of the constants in C not occurring in Γ ∪⋃
G<F ΓG ∪ {F }.

ΓF is defined for every F since in the second and third cases of the definition of
ΓF , which we name C∃ and C¬∀, there are always constants in C that do not belong
to Γ ∪⋃

G<F ΓG because of cardinality reasons. The rest of the proof proceeds as for
Proposition 1 except that we have to:

(a) check that also in cases C∃ and C¬∀, the underivability of ⊥ is preserved,
(b) complete the proof that the canonical interpretation of L (Γ,C) in which an atomic

sentence is considered to be true if and only if it belongs to Γ̄ satisfies a sentence F
if and only if F ∈ Γ̄ , by taking care also of existential and universal sentences.

As for (a), the underivability of ⊥ is not lost in the C∃ case since the ∃-elimination rule
ensures that if c does not occur in Σ,∃xH , then

(C′∃) if Σ,∃xH,H {x/c}�c ⊥ then Σ,∃xH �c ⊥.

For, given a deduction D of ⊥ fromΣ,∃xH,H {x/c}, it suffices to replace c by a variable
y not occurring in D , to obtain a deduction D{c/y} of ⊥ from Σ,∃xH,H {x/y}, from
which an application of the ∃-elimination rule yields a deduction of ⊥ from Σ,∃xH .
Dually, the ∀-introduction rule is needed in dealing with the C¬∀ case, but N is not strong
enough. NC certainly suffices since, assuming that c does not occur in Σ,¬∀xH , the
following holds:

(C′¬∀) if Σ,¬∀xH,¬H {x/c}�c ⊥ then Σ,¬∀xH �c ⊥.

In fact, if D is a deduction of ⊥ from Σ,¬∀xH,¬H {x/c} and y is a variable not
occurring in D , then the following is a deduction of ⊥ from Σ,¬∀xH :

Γ,¬∀xH, [¬H {x/y}]
D{c/y}
⊥

H {x/y} ⊥c

∀xH ¬∀xH
⊥
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As for (b), it suffices to check that:

(∃′) ∃xH ∈ Γ̄ if and only if for some closed term t in L (Γ,C), H {x/t} ∈ Γ̄ ;
(∀′) ∀xH ∈ Γ̄ if and only if for all closed term t in L (Γ,C), H {x/t} ∈ Γ̄ .

By (iii) and (1) in the proof of Proposition 1, the ∃-introduction rule and the ∀-
elimination rule ensure the if direction of (∃′) and the only if direction of (∀′), respec-
tively. The only if direction of ∃′ is a direct consequence of C∃. Finally, for the if direction
of ∀′, we note that if ∀xH /∈ Γ̄ , by (1) in the proof of Proposition 1, ¬∀xH ∈ Γ̄ , and
hence, by C¬∀, ¬H {x/c} ∈ Γ̄ for some constant c, contradicting, by (i) in the proof of
Proposition 1, the assumption that for every closed term t , H {x/t} ∈ Γ̄ . �

Since ⊥c is needed only to ensure that (C′¬∀) holds, taking into account the remark
concerning minimal propositional logic at the end of the previous section, the following
corollary is immediate.

Corollary 2

(a) If Γ is a set of ∀-free sentences and Γ � �⊥ in L (Γ ), then Γ is satisfiable in a
canonical interpretation of L (Γ,C) for any set C of constants not occurring in Γ of
cardinality not less than |L (Γ )|.

(b) If a ∀-free sentences is deducible in first-order logic, then its double negation is de-
ducible in intuitionistic first-order logic.

(c) If Γ is a set of {∀,→}-free sentences, consistent with respect to minimal logic, then
Γ is satisfiable in a canonical interpretation of L (Γ,C) for any set C of constants
not occurring in Γ of cardinality not less than |L (Γ )|.

(d) If a {∀,→}-free sentence is deducible in classical first-order logic, then its double
negation is deducible in first-order minimal logic.

While ⊥c suffices to establish C′¬∀, it is more than what is needed for that purpose. In
fact, to establish C′¬∀, we could use the following deduction:

Γ,¬∀xH, [¬H {x/y}]
D{x/y}
⊥

¬¬H {x/y}
∀x¬¬H
¬¬∀xH ¬∀xH

⊥
based on the rule that allows the inference of ¬¬∀xH from ∀x¬¬H . Thus, if, in accor-
dance with [2] and [1], we denote with MH the system that is obtained by adding to N
such a rule, to be called the double negation shift (DNS) rule, and let �mh stand for the
corresponding derivability relation, we have the following:

Corollary 3 If Γ is a set of sentences such that Γ ��mh⊥, then, for any setC of constants
not occurring in Γ̄ of cardinality not less than |L (Γ )|, Γ is satisfiable in a canonical
interpretation over L (Γ,C).
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Corollary 4 (Glivenko’s Theorem for MH) If a sentence F is deducible in NC, then
¬¬F is deducible in MH.

Furthermore, we have the following corollary which refines the completeness theorem.

Corollary 5 (Completeness Theorem) If for a set C of constants not occurring in Γ,F ,
of cardinality not less than |L (Γ )|, there is no canonical interpretation of L (Γ,F,C)

in which Γ is satisfied while F is not; a fortiori, if Γ |= F , then Γ �c F . Furthermore,
if the use of the DNS rule is allowed or Γ,F is ∀-free, then there is a deduction of F
from Γ that contains only one final application of ⊥c, and if Γ is both ∀ and →-free,
such a derivation, except for its final application of the ⊥c rule, can be taken to belong to
minimal logic.

That MH is indeed an optimal answer to the question of which logical strength is
needed to ensure that the consistency of a set of sentences implies the existence of a
classical structure in which it is satisfied can be seen as follows. Obviously, the DNS
rule is derivable from the corresponding DNS principle, namely the schema ∀x¬¬F →
¬¬∀xF . If L is strong enough to ensure that consistency implies existence, in the sense
just explained, then Glivenko’s theorem holds for L and double negations of formulae
that are classically valid are derivable in L. In particular, the double negations of the
formulae in the DNS principle are derivable in L. As it is easily seen, the formulae in the
DNS principle are equivalent in N to their double negations. Therefore, provided that L
includes intuitionistic logic, the DNS principle and, hence, also the DNS rule are derivable
in L, so that L must be at least as strong as MH.

Remark Other ways of introducing MH are considered in [2, 4, 7], and [5].

Remark The replacement of the constant c with a new variable in the proof of Propo-
sition 2 can be avoided, provided that we adopt first-order languages endowed with in-
dividual parameters together with truth-value semantics and the ∃-elimination and ∀-
introduction rules are extended by allowing individual parameters to occur in place of
their proper variables (see [3] for a brief outline). In that case, Proposition 2 extends to
formulae that do not contain free variables but may contain individual parameters, and for
the proof, the set C of new constants is replaced by a set of new individual parameters.
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From Classical to Fuzzy Type Theory

Vilém Novák

Abstract Higher-order logic—the type theory (TT)—is a powerful formal theory that
has various kinds of applications, for example, in linguistic semantics, computer science,
foundations of mathematics and elsewhere. It was proved to be incomplete with respect
to standard models. In fifties and sixties of the last century, L. Henkin proved that there
is an axiomatic system of TT that is complete if we relax the concept of model to the, so
called, generalized one. The difference is that domains of functions in generalized models
need not contain all possible functions but only subsets of them. Henkin then proved that
a formula of type o (truth value) of a special theory T of the theory of types is provable
iff it is true in all general models of T . Mathematical fuzzy logic is a special many-valued
logic whose goal is to provide tools for capturing the vagueness phenomenon via degrees.
It went through intensive development and many formal systems of both propositional as
well as first-order fuzzy logic were proved to be complete. This endeavor was crowned
in 2005 when also higher-order fuzzy logic (called the Fuzzy Type Theory, FTT) was
developed and its completeness with respect to general models was proved. The proof
is based on the ideas of the Henkin’s completeness proof for TT. This paper addresses
several complete formal systems of the fuzzy type theory. The systems differ from each
other by a chosen algebra of truth values. Namely, we focus on three systems: the Core
FTT based on a special algebra of truth values for fuzzy type theory—the EQ-algebra,
then IMTL-FTT based on IMTLΔ-algebra of truth values and finally the Ł-FTT based on
MVΔ-algebra of truth values.

Keywords Fuzzy type theory · EQ-algebra · Residuated lattice · IMTL-algebra ·
MV-algebra · Higher-order fuzzy logic · Mathematical fuzzy logic · Δ-operation

1 Introduction

Leon Henkin was a great logician of twentieth century who significantly contributed to
many areas of mathematical logic including the higher-order one. Recall that B. Russell
in [36] introduced the type theory as a general formal logic using which he wanted to
prevent paradoxes occurring in set theory. For a long time, however, higher-order logic
was taken as the system that is, unlike the predicate first-order logic, incomplete. The

The research was supported by the European Regional Development Fund in the IT4 Innovations Centre
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problem was in formulation of semantics of the former, namely, only standard models
containing all the possible elements for each type were taken into account. Henkin came
in the 1950s with ingenious idea to consider also general models, that is, sets of elements
of some (higher) types in these models may lack some elements (see [18]). As the basic
formal system, he chose elegant λ-calculus in the formulation of Church [3]. In 1963, he
simplified his theory and published second highly influential paper on this topic [19].

In parallel with these works, the development of many-valued logic was continued. Re-
call that this logic was founded by J. Łukasiewicz in the 1920s (see [21, 22]). A significant
step forward was the discovery of MV-algebras in [2]. Many-valued logic, however, was
not taken seriously as the real logic. The change came after introduction of the concept
of a fuzzy set by Zadeh [38]. The first deep analysis of the potential of logic based on the
latter concept was given by Goguen [14]. Since then, we speak about fuzzy logic. On the
basis of Goguen’s paper, Pavelka [35] introduced a propositional version of fuzzy logic
as a well-established constituent of mathematical logic. His logic was further extended by
the author of this paper to first-order one and concluded in the book [34] as the so-called
fuzzy logic with evaluated syntax.

In the 1990s, Hájek [16] initiated development of mathematical fuzzy logic (MFL) as
an extended formal system with many-valued semantics (we speak about fuzzy logic with
traditional syntax). He was followed by many authors (see, e.g., [7, 8, 15, 33]), so that
MFL became a highly sophisticated branch of mathematical logic. As a consequence of
this approach, there now exist many formal systems of fuzzy logic that differ in the chosen
structure of truth values. The latter then determines special properties of the given system
of MFL.

Let us remark that one of the main arguments in favor of MFL consists in its ability
to provide a working model of various manifestations of the vagueness phenomenon. The
latter is present in all kinds of human reasoning and is a distinguished feature of the
semantics of natural language.

The fact that fuzzy logic touched the vagueness phenomenon led to a large number of
its successful applications. Quite often, they rely on a simple model of the meaning of
some words of natural language (see, e.g., [25]). From linguistic point of view, however,
these applications are more or less naive. Moreover, since fuzzy logic has been developed
only up to the first order, these applications are rather limited. In the accepted linguistic
theory, an important role is played by intensional logic (see [9, 13, 37]), which is based on
the simple theory of types. This raises the question whether the latter can be generalized
also to fuzzy one. The positive answer is the fuzzy type theory (FTT). This theory was
formulated by V. Novák first in [26] and then fully elaborated in [27] in the style developed
for classical type theory by L. Henkin. Recall that a specific feature of the type theory is
the crucial role of equality among objects of the respective types.1 In fuzzy logic, the
equality is generalized to a many-valued (fuzzy) one, that is, there can exist not precisely
equal couples of objects.

In this chapter, we give an overview of the present state of FTT. Note that the basic
(but not sufficient) step in the development of FTT is to replace the first axiom of type
theory, stating that there are just two truth values by a sequence of axioms characterizing
a chosen algebra of truth values. FTT is proved to be complete in the sense of the original
Henkin’s proof of the completeness of type theory with respect to generalized models.

1In case of truth values, we speak about equivalence instead of equality.
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Two interesting problems occurred when developing FTT. The first one concerns the
classical axiom

(xα ≡ yα)⇒ (fβαxα ≡ fβαyα).
Interpretation of the equality formula ≡ in FTT is a fuzzy equality that is a binary fuzzy
relation. A truth value of m≡m′ laying between 0 and 1 means that the elements m,m′
are not fully equal; they can be only “similar” to each other in the given degree. The axiom
above, however, states that equality of arguments leads to equality of function values for
any function fβα . It turns out that this requirement cannot be fulfilled in the many-valued
case, unless the equality is just the classical one (i.e., crisp). The only way to overcome
this problem is to introduce in the language a special connective Δ whose interpretation
in an algebra of truth values is a function that puts the truth values smaller than 1 to 0.
This trick enables us to preserve elegance of the classical type theory.

Another problem is methodological. As will be seen below, if we consider a residuated
lattice2 as the structure of truth values, then one of the basic operations in it is the residua-
tion operation → that naturally interprets implication in fuzzy logic. But then equivalence
is interpreted by a derived operation of biresiduation defined by

a↔ b= (a→ b)∧ (b→ a)

(for all a, b). We thus encounter a methodological discrepancy for FTT: the basic connec-
tive is interpreted by a derived algebraic operation. This initiated the attempt to introduce
a special algebra for the fuzzy type theory in which fuzzy equality (equivalence) is ba-
sic while implication is derived. Such an algebra is called an EQ-algebra and is studied
in [29, 31].

The chapter consists of five sections. In Section 2, we give overview of the considered
algebras of truth values. Section 3 contains a description of the formal systems of FTT. In
Section 4, we mention some important properties of FTT. Finally, in Section 5, we discuss
the concept of FTT and outline some possibilities for its further development.

In this paper, we will freely use the following standard concepts: A fuzzy set is a
function A :M→E whereM is a universe and E a support of an algebra of truth values.
The kernel of A is the set Ker(A) = {m ∈M | A(m) = 1}. A fuzzy set A is normal if
Ker(A) �= ∅ and subnormal otherwise. The set of all normal fuzzy sets on M is denoted
by N F (M). An n-ary fuzzy relation R onM for some n≥ 0 is a fuzzy set R :Mn→E.

2 Truth Values in FTT

The first axiom of the classical type theory states that there are just two truth values. In
fuzzy type theory, this axiom is replaced by a sequence of axioms characterizing struc-
ture of the truth values that is an algebra with convenient properties (see [5, 11]). In this
section, we will overview some of the main ones.

2A residuated lattice is accepted as the fundamental algebra of truth values considered in most systems
of mathematical fuzzy logic.
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2.1 Residuated Lattices

According to the analysis done in mathematical fuzzy logic, the algebra of truth values
should be a residuated lattice with additional properties. More precisely, this should be an
integral, residuated, prelinear, lattice-ordered monoid

E = 〈E,∨,∧,⊗,→,0,1〉, (1)

where 〈E,∨,∧,0,1〉 is a complete lattice with the least element 0 and the greatest ele-
ment 1. The ⊗ is a multiplication operation such that 〈E,⊗,1〉 is a commutative monoid,
and → is a residuation operation. Both these operations fulfill the adjunction property

a⊗ b ≤ c ⇐⇒ a ≤ b→ c, a, b, c ∈E. (2)

The residuation operation is a natural interpretation of logical implication.

2.2 MTL and IMTL-Algebras

MTL-algebras are residuated lattices that are prelinear, that is, they fulfill also the equality

(a→ b)∨ (b→ a)= 1, a, b ∈E. (3)

Negation is the function ¬a = a→ 0. It is involutive if

¬¬a = a, a ∈E. (4)

The latter is also called the law of double negation. An MTL-algebra in which (4) holds
is called an IMTL-algebra.

We can define also the following additional operations in residuated lattices:

a ⊕ b=¬(¬a⊗¬b), (strong sum)

an = a⊗ · · · ⊗ a︸ ︷︷ ︸
n-times

, (n-fold strong power)

na = a⊕ · · · ⊕ a︸ ︷︷ ︸
n-times

, (n-fold strong sum)

a↔ b= (a→ b)∧ (b→ a) (biresiduation)

for all a, b ∈ L.

2.3 MV-Algebras

This is the class of the most important algebras of truth values. The concept of an MV-
algebra was introduced by Chang [2].
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An MV-algebra is an algebra

E = 〈L,⊕,⊗,¬,0,1〉 (5)

in which the following identities are valid:

a⊕ b= b⊕ a, a ⊗ b= b⊗ a, (6)

a ⊕ (b⊕ c)= (a ⊕ b)⊕ c, a⊗ (b⊗ c)= (a⊗ b)⊗ c, (7)

a⊕ 0= a, a⊗ 1= a, (8)

a⊕ 1= 1, a⊗ 0= 0, (9)

a⊕¬a = 1, a ⊗¬a = 0, (10)

¬(a⊕ b)=¬a⊗¬b, ¬(a⊗ b)=¬a⊕¬b, (11)

a =¬¬a, ¬0= 1, (12)

¬(¬a⊕ b)⊕ b=¬(¬b⊕ a)⊕ a. (13)

The lattice operations in MV-algebras can be introduced by

a ∨ b=¬(¬a⊕ b)⊕ b= (a⊗¬b)⊕ b, (14)

a ∧ b=¬(¬a ∨¬b)= (a ⊕¬b)⊗ b. (15)

Moreover, if we put a→ b=¬a ⊕ b, then it can be proved that → is a residuation w.r.t.
⊗ and that the prelinearity (3) also holds. Hence, we can prove that each MV-algebra is
an MTL-algebra. Important property is the following:

Theorem 16.1 A residuated lattice E is an MV-algebra iff

(a→ b)→ b= a ∨ b (16)

for all a, b ∈ L.

For many properties of all the above-introduced algebras, see [4, 16, 34].
Any residuated lattice with E = [0,1] is called standard. It is known that multiplica-

tion in the standard MTL-algebra is a so-called left-continuous t-norm (see [20]) that is
an operation generalizing the boolean conjunction operation (logical “AND”). It can be
easily verified that each boolean algebra is a special case of residuated lattice and it is at
the same time an MTL-algebra and an MV-algebra.

A natural interpretation of logical equivalence in fuzzy logic is the biresiduation oper-
ation ↔. This is a binary operation that is separated, that is, it has the property a↔ b= 1
iff a = b. Moreover, it is reflexive (a↔ a = 1), symmetric, and transitive in the following
sense:

(a↔ b)⊗ (b↔ c)≤ a↔ c

for all a, b, c ∈ L.
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In fuzzy type theory, we moreover need a unary operation of Δ : E→ E whose role
is to “extract” the boolean substructure from the given algebra of truth values. It is alge-
braically defined using the following axioms:

Δ1= 1, (17)

Δ(a ∨ b)≤Δa ∨Δb, (18)

Δa ≤ a, (19)

Δa ≤ΔΔa, (20)

Δ(a→ b)≤Δa→Δb, (21)

Δa ∨¬Δa = 1. (22)

If EΔ is linearly ordered, then Δ can be defined as

Δ(a)=
{

1 if a = 1,

0 otherwise.
(23)

To stress the presence of the Δ operation, we often speak about an MTLΔ-algebra or
an MVΔ-algebra.

2.4 Fundamental Examples

There are three fundamental examples of the standard MTL-algebra of truth values (i.e., it
is defined on the interval E = [0,1]) that play essential role in mathematical fuzzy logic:

Standard Gödel algebra Standard product algebra

a⊗ b = a ∧ b a⊗ b = a · b

a→ b =
{

1 if a ≤ b
b otherwise

a→ b =
{

1 if a ≤ b
b
a

otherwise

¬a =
{

1 if a = 0

0 otherwise
¬a =

{
1 if a = 0

0 otherwise

a↔ b =
{

1 if a = b
a ∧ b otherwise

a↔ b =
{

1 if a = b
a∧b
a∨b otherwise

Standard Łukasiewicz MV-algebra

a⊗ b= 0∨ (a + b− 1),

a→ b= 1∧ (1− a + b),
¬a = 1− a,

a↔ b= 1− |a − b|,
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where a, b ∈ [0,1]. The standard Łukasiewicz MV-algebra is the only standard residuated
lattice (up to isomorphism) whose residuation operation is continuous.

Note that the multiplication operation (i.e., a t-norm) in all three examples is contin-
uous but only the standard Łukasiewicz MV-algebra has also the continuous residuation.
The negation is involutive also only in the latter case. An example of a left-continuous
t-norm whose residuation generates an involutive negation is the nilpotent minimum de-
fined by

a⊗ b=
{
a ∧ b if a + b > 1,

0 otherwise.
(24)

Its residuum is defined by

a→ b=
{

1 if a ≤ b,
¬a ∨ b otherwise,

(25)

where ¬a = 1−a. Thus, the standard algebra with the multiplication (24) and residuation
(25) is an IMTL-algebra.

2.5 EQ-Algebras

As mentioned in Introduction, the methodological problem raising from the algebras con-
sidered above is that the basic connective in FTT is fuzzy equivalence and so implication
is derived, whereas in a residuated lattice, the biresiduation operation (see Section 2.2)
as interpretation of equivalence is derived from residuation. Therefore, we face an excit-
ing task to find some other typical algebra of truth values in which the fuzzy equivalence
is basic while the implication is derived. Such an algebra does exists and is called an
EQ-algebra (see [31]):

E = 〈E,∧,⊗,∼,0,1, 〉, (26)

where for all a, b, c, d ∈E:

(E1) 〈E,∧,1〉 is a commutative idempotent monoid (i.e., ∧-semilattice). We put a ≤ b
iff a ∧ b= a, as usual. Then 1 is the top and 0 the bottom element.

(E2) 〈E,⊗,1〉 is a monoid, ⊗ is isotone w.r.t. ≤.
(E3) a ∼ a = 1 (reflexivity).
(E4) ((a ∧ b)∼ c)⊗ (d ∼ a)≤ c∼ (d ∧ b) (substitution).
(E5) (a ∼ b)⊗ (c∼ d)≤ (a ∼ c)∼ (b∼ d) (congruence).
(E6) (a ∧ b ∧ c)∼ a ≤ (a ∧ b)∼ a (monotonicity).
(E7) a ⊗ b ≤ a ∼ b (boundedness).
(E8) a ∼ 1= a (goodness).

The operation ∧ is called meet (infimum), ⊗ is called multiplication, and ∼ is a fuzzy
equality. Note that the multiplication is, in general, noncommutative.

Axiom (E3) expresses reflexivity, (E4) is the substitution axiom, (E5) is the congruence
axiom, (E6) is a monotonicity axiom, and (E7) is the axiom of boundedness. Axiom (E8)
may not be included. If yes, then we call the EQ-algebra good.
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We define:

a→ b= (a ∧ b)∼ a, (27)

a ∨ b= (
(a→ b)→ b

)∧ (
(b→ a)→ a

)
. (28)

It should be emphasized that every residuated lattice is a good EQ-algebra with fuzzy
equality being the biresiduation (i.e., a ∼ b= (a→ b)∧ (b→ a)).

An example of a nonresiduated noncommutative EQ-algebra on [0,1] is the EQ-
algebra with multiplication defined as follows:

a ⊗ b=
{

0, 2a + b ≤ 1,

min{a, b}, 2a + b > 1,
a⊗̄b=

{
0, a + 2b ≤ 1,

min{a, b}, a + 2b > 1.

Both ⊗ and ⊗̄ are isotone monoidal operations on [0,1], but they are not commutative.
Furthermore, put

a ∼ b=

⎧
⎪⎪⎨

⎪⎪⎩

1, a = b,
max( 1

2 − a, b), a > b,

max( 1
2 − b, a), a < b.

Then E = 〈[0,1],∧,⊗,∼,1〉 and E ′ = 〈[0,1],∧, ⊗̄,∼,1〉 are noncommutative EQ-
algebras that are not residuated.

The delta operation Δ : E→ E in an EQ-algebra E is defined by the following ax-
ioms:

(i) Δ1= 1,
(ii) Δa ≤ a,

(iii) Δa ≤ΔΔa,
(iv) Δ(a ∼ b)≤Δa ∼Δb,
(v) Δ(a ∧ b)=Δa ∧Δb.

(vi) Δ(a ∨ b)≤Δa ∨Δb,
(vii) Δa ∨¬Δa = 1

(a, b ∈E). If E is linearly ordered, then the Δ operation can be defined as in (23).

2.6 Fuzzy Equality Between Arbitrary Objects and Weakly Extensional
Functions

In FTT, we must introduce also a fuzzy equality on an arbitrary set M .

Definition 16.1 Let E be an EQ-algebra with support E, and M a set. A fuzzy equality
	 on M is a binary fuzzy relation on M , that is, a function

	:M ×M→E
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such that the following holds for all m,m′,m′′ ∈M :3

(i) [m	m] = 1 (reflexivity)
(ii) [m	m′] = [m′ 	m] (symmetry)
(iii) [m	m′] ⊗ [m	m′] ≤ [m	m′] (⊗-transitivity).

We say that 	 is separated if
[
m	m′

]= 1 iff m=m′

for all m,m′ ∈M .
As a special case, objects of the set M can be functions. Then the fuzzy equality can

be induced in the sense of the following lemma.

Lemma 16.1 ([27]) LetM,N be sets, and 	N be a fuzzy equality on the set N . Then the
function 	NM :NM ×NM →E defined for every f,g ∈NM by

[f 	NM g] =
∧

m∈M

[
f (m)	N g(m)

]
(29)

is a fuzzy equality. If 	N is separated, then 	NM is also separated.

Finally, we need the following concept. Let f :M→ N be a function, and 	M,	N
be fuzzy equalities defined on M,N , respectively. We say that f is weakly extensional if
for all m,m′ ∈M ,

[
m	M m′

]= 1 implies that
[
f (m)	N f

(
m′

)]= 1. (30)

3 Fuzzy Type Theory

As mentioned, there are more fuzzy type theories that differ in the chosen algebra of truth
values. The latter determines the choice of logical axioms and also necessary definitions
of special formulas. Theoretical investigations show that there are many formal systems
of propositional fuzzy logics. For example, in [6], 69 various fuzzy logic systems are
analyzed that are based on residuated lattices. When considering EQ-algebras, this num-
ber can still be extended because EQ-algebras are more general than residuated lattices.
The EQ-logics based on nonresiduated EQ-algebras have already been formed (see [10]).
Moreover, each of these fuzzy logic systems is extended to a first-order one. Therefore,
we may expect that each fuzzy logic can be extended also to a higher-order one.

On the other hand, however, we doubt that this has any practical sense. Therefore, we
will confine only to few distinguished fuzzy type theories. Namely, we will consider in
this paper three of them: the Core FTT based on general non-commutative EQΔ-algebra
of truth values; this can be extended (by adding further axioms) to IMTL-FTT (IMTL
fuzzy type theory) whose algebra of truth values is an IMTLΔ-algebra; and finally, Ł-FTT
(Łukasiewicz fuzzy type theory) whose algebra of truth values is an MVΔ-algebra. All the
considered algebras must be linearly ordered.

3As usual, we write m	m′ instead of 	(m,m′). The symbol [m	m′] denotes an (arbitrary) truth value
of m	m′.
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3.1 Syntax

The basic syntactical objects of fuzzy type theories are classical (see [1]), namely the
concepts of type and formula. The atomic types are ε (elements) and o (truth degrees).
The set of types is the smallest set Types satisfying:

(i) ε, o ∈ Types,
(ii) if α,β ∈ Types, then (αβ) ∈ Types.

Recall that higher-order types represent functions.
A language J of FTT consists of variables xα, . . ., special constants cα, . . . where

α ∈ Types, auxiliary symbol λ, and brackets. A set of formulas4 over the language J is
the smallest set such that for each α,β ∈ Types, the following are specified:

(i) If xα ∈ J is a variable, α ∈ Types, then xα is a formula of type α.
(ii) If cα ∈ J is a constant, α ∈ Types, then cα is a formula of type α.

(iii) If Bβα is a formula of type βα and Aα a formula of type α, then (BβαAα) is a
formula of type β .

(iv) If Aβ is a formula of type β and xα ∈ J a variable of type α, then λxαAβ is a formula
of type βα.

The set of formulas of type α, α ∈ Types, is denoted by Formα . If A ∈ Formα is a
formula of type α ∈ Types, then we will often write Aα . This means that if α �= β , then
Aα and Aβ are different formulas. A set of all formulas of the language J is Form =⋃
α∈Types Formα .

Common Constants and Definitions

Specific constants always present in the language of FTT are the following.

(i) E(oα)α , α ∈ Types (fuzzy equality),
(ii) Doo (delta connective),

(iii) ιε(oε), ιo(oo) (description operators).

The fundamental connective in FTT is the fuzzy equality defined as follows:

(i) ≡(oα)α:= λxαλyα(E(oα)αyα)xα , α ∈ {o, ε},
(ii) ≡(o(βα))(βα):= λfβαλgβα(∀xα)(fβαxα ≡ gβαxα).

We will write fuzzy equality in the form (Aα ≡ Bα) and omit the type at “≡”. Note that
(Aα ≡ Bα) is a formula of type o. If α = o, then “≡” is the logical (fuzzy) equivalence.

Further basic formulas in FTT are the following:

(a) Representation of truth and falsity:

% := (λxoxo ≡ λxoxo), ⊥ := (λxoxo ≡ λxo%).

4In the present literature on classical type theory, especially that focused on computer science, the for-
mulas are often called lambda-terms. We will keep the original logical term introduced by A. Church and
L. Henkin to emphasize that we are developing the logic.
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(b) Delta:

Δ := λxoDooxo.
(c) Negation:

¬ := λxo(⊥≡ xo).
(d) Implication:

⇒:= λxoλyo
(
(xo ∧ yo)≡ xo

)
.

(e) General quantifier:

(∀xα)Ao := (λxαAo ≡ λxα%).
Further details can be found in [27, 29].

Fundamental Axioms

The following axioms are common for all kinds of FTT:

(Fund1) Δ(xα ≡ yα)⇒ (fβα xα ≡ fβαyα),
(Fund2) (∀xα)(fβαxα ≡ gβαxα)⇒ (fβα ≡ gβα),
(Fund3) (fβα ≡ gβα)⇒ (fβαxα ≡ gβαxα),
(Fund4) (λxαBβ)Aα ≡ Cβ ,

where Cβ is obtained from Bβ by replacing all free occurrences of xα in it by
Aα , provided that Aα is substitutable to Bβ for xα ,

(Fund5) ια(oα)(E(oα)α yα)≡ yα , α = o, ε,
(Fund6) (xo ≡%)≡ xo.

Notice that axioms (Fund1)–(Fund5) are practically the same as axioms (2)–(5)
from [1]. Axiom (Fund1) differs from the classical one by the connective Δ. The rea-
son lays in the assumption that all the considered equalities are fuzzy. Without using Δ,
however, this axiom would be too strong and enforce degeneration of the fuzzy equal-
ity just to the classical one. The Δ connective overcomes this inconvenience as follows:
each fuzzy equality is separated, and so, this axiom, in fact, says that all functions be-
have classically—classically equal arguments require equality of the functional values.
Since interpretation of Δ is a function Δ(a) assigning zero to all a < 1, interpretation of
(Fund1) gives always truth value 1. Consequently, this axiom imposes no restriction in
cases where (interpretation of) xo is equal to yo in some general degree only.

Axioms (Fund2) and (Fund3) characterize the considered functions. For formal rea-
sons, we had to split one axiom of classical type theory into two ones. Axiom (Fund4) is
an important axiom of lambda conversion. Axiom (Fund5) characterizes the description
operator in the same way as in classical TT. Finally, axiom (Fund6) is a general charac-
terization of the algebra of truth values that must be separated, that is, equality of truth
values in the degree 1 is the same as classical equality.
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Inference Rules and Provability in FTT

The following inference rules are common to all fuzzy type theories.

(R) Let Aα ≡ A′α ∈ Formo and Bo ∈ Formo be formulas. Then we infer from them a
formula B ′o that comes from Bo by replacing one occurrence of Aα by A′α , provided
that the occurrence of Aα in Bo is not an occurrence of a variable immediately
preceded by λ.

(N) Let Ao ∈ Formo be a formula. Then from Ao infer ΔAo.

The rule (R) is in unchanged form taken from [18] (or [1]). The rule (N) is the necessita-
tion rule first introduced in [16].

The concept of provability and proof are defined in the same way as in classical logic.
A theory T over FTT is a set of formulas of type o, that is, T ⊆ Formo. As usual, T is
determined by a set of its special axioms, which is again a subset of Formo. If T is a
theory, then its language will be written as J (T ).

Semantics

Interpretation of formulas in FTT is realized in a frame that is a tuple

M = 〈
(Mα,	α)α∈Types,EΔ, Io, Iε

〉
(31)

such that the following holds:

(i) The EΔ is an algebra of truth degrees. We put Mo = E and assume that each set
Moo ∪M(oo)o contains all the operations from EΔ.

(ii) =α: Mα × Mα → L is a fuzzy equality on Mα , that is, 	α∈ M(oα)α for every
α ∈ Types.

(iii) Io : N F (Mo)→ Mo, Iε : N F (Mε)→ Mε are functions interpreting the basic
description operators. We assume that Iα(A) ∈ Ker(A) for every normal fuzzy set
A ∈N F (Mα), α ∈ {o, ε}. If the given fuzzy set is subnormal, then the operations
Io, Iε are not defined.

Interpretation of a formula Aα , in general, is assignment of an element from the corre-
sponding set Mα to it. It is defined recurrently starting with an assignment p of elements
from Mα to variables (of the same type). Given the assignment p, we write interpreta-
tion of Aα in M as Mp(Aα) ∈Mα . If the assignment is not important, then we omit the
subscript p.

Let xα be a variable, and p,p′ ∈ Asg(M ) be two assignments such that p′(xα) �=
p(xα) and p′(yγ )= p(yγ ) for all yγ �= xα (i.e., p′ differs from p only in the variable xα).
In this case, we will write p′ = p\xα . Now we define:

(i) If xα is a variable, then Mp(xα)= p(xα).
(ii) If cα is a constant, then Mp(cα) is a specific element from Mα . If α �= o, ε, then
p(cα) is a weakly extensional function. As a special case:

(a) Mp(E(oα)α) :Mα ×Mα→ L is a fuzzy equality =α .
In more detail: if α = ε, then Mp(E(oε)ε) is a given fuzzy equality =ε; if α = o,
then Mp(E(oo)o) is either the operation ∼ of fuzzy equality in the EQ-algebra
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EΔ or it is the biresiduation ↔. Otherwise, Mp(E(oα)α) is the fuzzy equality =α
defined by (29).

(b) Mp(Doo) : L→ L is the delta operation

Mp(Doo)(a)=Δ(a)
for all a ∈ L.

(iii) An interpretation of a formula BβαAα of type β is

Mp(BβαAα)=Mp(Bβα)
(
Mp(Aα)

)
.

(iv) An interpretation of a formula (λxα Aβ) of type βα is a function

Mp(λxα Aβ)= F :Mα→Mβ,

which is weakly extensional w.r.t. “=α” and “=β”, and which assigns to each
mα ∈Mα the element F(mα)=Mp′(Aβ) determined by an assignment p′ such that
p′ = p\xα and p′(xα)=mα .

A model of a theory T is a general frame M for which Mp(Ao)= 1 for all axioms Ao
of T . Note that the definition of a general model corresponds to the definition of a safe
model introduced in [16]. A formula Ao is true in the theory T , T |=Ao, if it is true in the
degree 1 in all its models.

3.2 Special Fuzzy Type Theories

In this subsection, we will present three basic kinds of fuzzy type theories that differ from
each other by the algebra of truth values. From the syntactical point of view, this means
that the fuzzy type theories differ in definitions of some special formulas and in additional
logical axioms.

Core FTT

This is the basic fuzzy type theory whose truth values form a noncommutative good EQ-
algebra. The other type theories can be obtained from the Core FTT by adding further
logical axioms and adding or modifying some of the definitions.

The language J is extended by the following constants: C(oo)o (conjunction) and S(oo)o
(strong conjunction). Then, the following additional connectives and existential quantifier
are defined:

(i) Conjunction:

∧ := λxoλyo(C(oo)oyo)xo.
(ii) Strong conjunction (fusion):

& := λxoλyo(S(oo)oyo)xo.
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(iii) Disjunction:

∨ := λxoλyo
(
(xo⇒ yo)⇒ yo

)∧ (
(yo⇒ xo)⇒ xo

)
.

(iv) Existential quantifier: Let Ao ∈ Formo, xα be a variable of type α, and let yo do not
occur in Ao. Then we put:

(∃xα)Ao := (∀yo)
(
(∀xα)Δ(Ao⇒ yo)⇒ yo

)
(32)

(yo does not occur in Ao).

Logical axioms of the Core FTT are (Fund1)–(Fund6) plus the following:

Axiom of fuzzy equality

C-EQ1 (xε ≡ yε)&(yε ≡ zε)⇒ (xε ≡ zε).
Axioms of truth values

Let ©∈ {&,∧}.
C-Tv111 (xo ∧ yo)≡ (yo ∧ xo),
C-Tv212 (xo© yo)© zo ≡ xo© (yo© zo),
C-Tv313 (xo©%)≡ xo,
C-Tv414 (%&xo)≡ xo,
C-Tv515 (xo ∧ xo)≡ xo,
C-Tv616 ((xo ∧ yo)≡ zo)&(to ≡ xo)⇒ (zo ≡ (to ∧ yo)),
C-Tv717 (xo ≡ yo)&(zo ≡ to)⇒ (xo ≡ zo)≡ (yo ≡ to),
C-Tv818 (xo⇒ (yo ∧ zo))⇒ (xo⇒ yo),
C-Tv919 (xo⇒ yo)⇒ ((xo ∧ zo)⇒ yo),

(FT-tval10a) Δ(xo⇒ yo)⇒ (xo&zo⇒ yo&zo),
(FT-tval10b) Δ(xo⇒ yo)⇒ (zo&xo⇒ zo&yo),
C-Tv10110 ((xo⇒ yo)⇒ zo)⇒ ((yo⇒ xo)⇒ zo)⇒ zo.

Axioms of delta

(C-Delt11) (goo(Δxo)∧ goo(¬Δxo))≡ (∀yo)goo(Δyo),
(C-Delt22) Δ(xo ∧ yo)≡Δxo ∧Δyo,
(C-Delt33) Δ(xo ∨ yo)⇒Δxo ∨Δyo,
(C-Delt44) Δxo ∨¬Δxo.
Axioms of quantifiers

(C-qu1nt1) Δ(∀xα)(Ao⇒ Bo)⇒ (Ao⇒ (∀xα)Bo), xα is not free in Ao,
(C-qu2nt2) (∀xα)(Ao⇒ Bo)⇒ ((∃xα)Ao⇒ Bo), xα is not free in Bo,
(C-qu3nt3) (∀xα)(Ao ∨Bo)⇒ ((∀xα)Ao ∨Bo), xα is not free in Bo.

Semantics of the Core FTT

The structure EΔ of truth values is a linearly ordered good EQΔ-algebra (26) whose mul-
tiplication operation ⊗ is noncommutative.

Let M be a general frame (31). Then we define:

(i) M (C) := ∧.
(ii) M (S) := ⊗.
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(iii) M (E(oo)o) :=∼.
(iv) M (E(oε)ε) is a fuzzy equality due to Definition 16.1 given explicitly.
(v) Let f,f ′ ∈Mβα , where α,β ∈ Types. Then

M
(
f 	βα f ′

)=
∧

m∈Mα

(
Mβα(f )(m)	β Mβα

(
f ′

)
(m)

)
.

IMTL-FTT

The algebra of truth values EΔ of this fuzzy type theory is an IMTLΔ-algebra, that is,
(commutative) MTL-algebra with the law of double negation.

The language J is extended by the constant C(oo)o (conjunction) and the following
additional connectives and existential quantifier are defined:

(i) Conjunction:

∧ := λxoλyo(C(oo)oyo)xo.
(ii) Strong conjunction (fusion):

& := λxoλyo¬
(
(xo ∧¬yo)≡ xo

)
.

(iii) Disjunction:

∨ := λxoλyo
(
(xo⇒ yo)⇒ yo

)∧ (
(yo⇒ xo)⇒ xo

)
.

(iv) Strong disjunction:

. := λxoλyo.
(¬(¬xo&¬yo)

)
.

(v) Existential quantifier: Let Ao ∈ Formo, and xα be a variable of type α. Then we put:

(∃xα)Ao := ¬(∀xα)¬Ao. (33)

All the connectives will be written in infix form as usual.
As a special case, if A ∈ Formo, then we put

An :=A& · · ·&A︸ ︷︷ ︸
n-times

, (n-fold strong conjunction)

nA :=A. · · · .A︸ ︷︷ ︸
n-times

(n-fold strong disjunction).

Note that⊥,%, (∀xα)Ao, (∃xα)Ao ∈ Formo, ¬ ∈ Formoo and⇒,∨,&,.∈ Form(oo)o.
Logical axioms of IMTL-FTT are (Fund1)–(Fund6) plus the following:

Axiom of fuzzy equality

(I-EQ1) (xε ≡ yε)⇒ ((yε ≡ zε)⇒ (xε ≡ zε)).
Axioms of truth values

(I-Tv1l1) (xo ≡ yo)≡ ((xo⇒ yo)∧ (yo⇒ xo)),
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(I-Tv2l2) (xo⇒ yo)⇒ ((yo⇒ zo)⇒ (xo⇒ zo)),
(I-Tv3l3) (xo⇒ (yo⇒ zo))≡ (yo⇒ (xo⇒ zo)),
(I-Tv4l4) ((xo⇒ yo)⇒ zo)⇒ (((yo⇒ xo)⇒ zo)⇒ zo),
(I-Tv5l5) (¬yo⇒¬xo)≡ (xo⇒ yo),
(I-Tv6l6) xo ∧ yo ≡ yo ∧ xo,
(I-Tv7l7) xo ∧ yo⇒ xo,
(I-Tv8l8) (xo ∧ yo)∧ zo ≡ xo ∧ (yo ∧ zo).
Axioms of delta

(I-Delt11) (goo(Δxo)∧ goo(¬Δxo))≡ (∀yo)goo(Δyo),
(I-Delt22) Δ(xo ∧ yo)≡Δxo ∧Δyo,
(I-Delt33) Δ(xo ∨ yo)⇒Δxo ∨Δyo.
Axiom of quantifiers

(I-Qu1nt1) (∀xα)(Ao⇒ Bo)⇒ (Ao⇒ (∀xα)Bo), where xα is not free in Ao.

Semantics of the IMTL-FTT

The structure of truth values EΔ is a linearly ordered IMTLΔ-algebra.
Let M be a general frame (31). Then we define:

(i) M (C) := ∧.
(ii) M (E(oo)o) :=↔.

(iii) E(oε)ε is a fuzzy equality due to Definition 16.1 given explicitly.
(iv) Let f,f ′ ∈Mβα , where α,β ∈ Types. Then

M
(
f 	βα f ′

)=
∧

m∈Mα

(
Mβα(f )(m)	β Mβα

(
f ′

)
(m)

)
.

Łukasiewicz-FTT (Ł-FTT)

The algebra of truth values EΔ of this FTT is a linearly ordered MVΔ-algebra that can
be taken as a special case of IMTLΔ-algebra. Therefore, the language J of the Ł-FTT
is the same as the language of the IMTL-FTT. There is a difference in the definition of
disjunction:

∨ := λxoλyo
(
(xo⇒ yo)⇒ yo

)
.

The definitions of the other connectives and quantifiers are the same as for IMTL-FTT.
Logical axioms of Ł-FTT are (Fund1)–(Fund6) plus the following:

Axiom of fuzzy equality

(Ł-EQ1) (xε ≡ yε)⇒ ((yε ≡ zε)⇒ (xε ≡ zε)).
Axioms of truth values

Ł-Tv1l1 (xo ≡ yo)≡ ((xo⇒ yo)∧ (yo⇒ xo)),
Ł-Tv2l2 xo⇒ (yo⇒ xo),
Ł-Tv3l3 (xo⇒ yo)⇒ ((yo⇒ zo)⇒ (xo⇒ zo)),
Ł-Tv4l4 (¬yo⇒¬xo)≡ (xo⇒ yo),
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Ł-Tv5l5 (xo ∨ yo)≡ (yo ∨ xo),
Ł-Tv6l6 (xo ∧ yo)≡ xo&(xo⇒ yo).

Axioms of delta

(Ł-Delt11) (goo(Δxo)∧ goo(¬Δxo))≡ (∀yo)goo(Δyo),
(Ł-Delt22) Δ(xo ∧ yo)≡Δxo ∧Δyo,
(Ł-Delt33) Δ(xo ∨ yo)⇒Δxo ∨Δyo.
Axiom of quantifiers

(Ł-Qu1nt1) (∀xα)(Ao⇒ Bo)⇒ (Ao⇒ (∀xα)Bo) where xα is not free in Ao.

Semantics

The algebra EΔ of truth values of Ł-FTT is an MVΔ-algebra that is a special case
of an IMTLΔ-algebra. Therefore, the definition of frame is the same as in the case
of IMTL-FTT.

4 Properties of Fuzzy Type Theories

It should be noted that both IMTL-FTT and Ł-FTT can be obtained from the Core-FTT
by adding new axioms.

4.1 Extensions of Core-FTT

From Core-FTT to IMTL-FTT

The following axioms must be added:

(CI1) ((xo&yo)⇒ zo)≡ (xo⇒ (yo⇒ zo)).
(CI2) ¬¬xo ≡ xo.
(CI3) (xo&yo)≡¬(xo⇒¬yo).
(CI4) (∀xα)(Ao⇒ Bo)⇒ (Ao⇒ (∀xα)Bo), xα is not free in Ao.
(CI5) (∃xα)Ao ≡¬(∀xα)¬Ao.
Axiom (CI1) enforces residuation, Axiom (CI2) is the law of double negation, Axiom
(CI3) defines strong conjunction from implication, and, finally, axiom (CI4) is a stronger
version of Axiom (C-quant1). Finally, axiom (CI5) precisely relates the existential quan-
tifier with the general one.

From Core-FTT to Ł-FTT

We must add Axioms (CI1)–(CI5) plus the following:

(CŁ) (xo ∨ yo)≡ (xo⇒ yo)⇒ yo.

Note that due to this axiom, each IMTL-algebra of truth values in the frame must be the
MV-one (cf. Theorem 16.1).
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4.2 Few Basic Properties

Theorem 16.2 (Soundness) The fuzzy type theory is sound in the following sense: If
�Ao, then Mp(Ao)= 1 for every assignment p and every general model M .

The following version of the deduction theorem is important in the proof of the gen-
eralized completeness of FTT. Note the presence of the connective Δ. The theorem does
not hold in FTT without it.

Theorem 16.3 (Deduction Theorem) Let T be a theory of FTT, Ao ∈ Formo a closed
formula. Then

T ∪ {Ao} � Bo iff T �ΔAo⇒ Bo

for every formula Bo ∈ Formo.

Theorem 16.4 Let T be a theory of FTT.

(a) If T ∪ {Ao} �Co and T ∪ {Bo} � Co, then T ∪ {Ao ∨Bo} � Co. (Proof by cases)
(b) T ∪ {Ao⇒ Bo} �Co and T ∪ {Bo⇒Ao} � Co then T � Co. (Prelinearity property)

This theorem provides interesting technical tool for proving various properties of spe-
cial theories. Let us remark that these properties are specific for many systems of fuzzy
logic.

The following theorem is specific for FTT and characterizes equality between elements
of all types.

Theorem 16.5 (Equality Theorem)

�Δ(xβ ≡ yβ)⇒
(
Δ(fαβ ≡ gαβ)⇒ (fαβxβ ≡ gαβyβ)

)
. (34)

4.3 Canonical Model of FTT

In this subsection, we will describe construction of the canonical (general) model of a
consistent theory of FTT. The construction follows the method developed for classical
type theory by L. Henkin. The method uses syntactical material for the construction. For
each type α ∈ Types, we construct the corresponding set Mα . For elementary types, this
construction is straightforward, but for complex types βα, we have to construct sets Mβα
as sets of weakly extensional functions.

First, we will introduce several important concepts that are analogous to the classical
ones.

Definition 16.2 Let T be a theory. We say that:

(i) T is contradictory if T �⊥. Otherwise, it is consistent.
(ii) T is maximal consistent if each its extension T ′, T ′ ⊃ T , is inconsistent.
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(iii) T is linear5 if for every two formulas Ao,Bo,

T �Ao⇒ Bo or T � Bo⇒Ao.

(iv) T is extensionally complete if for every closed formula of the form Aβα ≡ Bβα ,
T �Aβα ≡ Bβα , it follows that there is a closed formula Cα such that T �AβαCα ≡
BβαCα .

The following somewhat tricky theorem makes it possible to prove the generalized
completeness of FTT.

Theorem 16.6

(a) Every consistent theory T can be extended to a maximally consistent linear theory.
(b) Every consistent theory T can be extended to an extensionally complete consistent

theory T .

Construction of the Good EQ-Algebra of Truth Values

First, we construct the set Mo of truth values and its appropriate algebraic structure. Let
T be a theory and define equivalence on the set of closed formulas from Formo by

Ao ≈ Bo iff T �Ao ≡ Bo. (35)

It can be verified that ≈ is the equivalence. The equivalence class of a formula Ao is
denoted by |Ao|, and we put Mo = Formo|≈.

Now we define the following operations on the set Mo:

|Ao| ∧T |Bo| = |Ao ∧Bo|, (36)

|Ao| ⊗T |Bo| = |Ao&Bo|, (37)

|Ao| ∼T |Bo| = |Ao ≡ Bo|, (38)

ΔT
(|Ao|

)= |ΔAo|, (39)

|Ao| ∨T |Bo| = |Ao ∨Bo|, (40)

1T = |%|, 0T = |⊥|. (41)

Note that we immediately obtain that |Ao| →T |Bo| = |(Ao ∧ Bo) ≡ Ao| = |(Ao| ∧T
|Bo|)∼T |Ao|.

By the straightforward syntactical proof we obtain the following theorem.

Theorem 16.7 Let T be a linear extensionally complete theory. Then the algebra

ET = 〈Mo,∧T ,⊗T ,∼T ,ΔT ,1T ,0T 〉 (42)

is a linearly ordered algebra of truth values that is either a good EQΔ algebra for the
Core-FTT, or an IMTLΔ-algebra for IMTL-FTT, or an MVΔ-algebra for Ł-FTT.

Let us remark that because of linearity of ET (this is the consequence of the linearity
of T ), the operation ΔT coincides with (23).

5Such a theory in [16] and also in [27] is called complete.
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4.4 Construction of the Canonical Frame

In this section, we will follow the basic ideas used by Henkin in his proof of the general-
ized completeness theorem for classical type theory (see [18, 19]; cf. also [1]).

Let T be a linear consistent extensionally complete theory. We will extend the equiva-
lence (35) to closed formulas of all types as follows:

Aα ∼ Bα iff T �Aα ≡ Bα (43)

(in the same way as in (35), we can verify that this is an equivalence). The equivalence
class of a formula Aα of type α is denoted by |Aα|.

We now need to define all the domains of the canonical frame that, in general, consist
of weakly extensional functions. Therefore, we define a special function V whose do-
main and range are formulas or their equivalence classes. Then we define the sets of the
canonical frame by

Mα =
{
V (Aα)

∣∣Aα ∈ Formα
}
, α ∈ Types. (44)

The construction proceeds inductively:

(CI1) If α = o, then V (Ao) = |Ao|, that is, Mo = Formo|≈. Furthermore, we put 	o
:=∼T , where ∼T is defined in (38).

(CI2) If α = ε, then V (Aε)= |Aε|, thats is, Mε = Formε|≈.
(CI3) If α = γβ , then we put V (Aγβ) ⊆Mβ ×Mγ , which is the relation consisting of

couples
〈
V (Bβ),V (AγβBβ)

〉

for all closed Bβ ∈ Formβ and Aγβ ∈ Formγβ .

The fuzzy equality in each set Mα , α �= o, is defined by

	α
(
V (Aα),V (Bα)

) := |Aα ≡ Bα|. (45)

It follows from (36)–(41) and this description that the operations from ET are included in
Moo ∪Mo(oo).

For complex types, we must also prove that definition (45) conforms with (29). This
can be done on the basis of Axioms (Fund2) and (Fund2) and also using the fact that the
theory T is extensionally complete. The latter also enables to prove that all the constructed
functions are weakly extensional.

After constructing the canonical frame, we must define interpretation of formulas in it.
Let p be an assignment of elements to variables, that is, p(xα) = V (Aα) ∈Mα for all
α ∈ Types. Then we put:

(CI1) If xα is a variable, then M T
p (xα)= p(xα).

(CI2) If cα , α �= o is a constant, then M T
p (cα)= V (cα) ∈Mα . Furthermore,

(a) M T
p (E(oα)α) is the fuzzy equality (45), α ∈ Types.

(b) Interpretation of the conjunction C(oo)o, strong conjunction S(oo)o, and D(oo)o
are the operations (36), (37), and (39), respectively.
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(CI3) Interpretation of the formula λxα Aβ of type βα is the function

M T
p (λxα Aβ) : V (Bα) '→ V

(
(λxα Aβ)Bα

)
(46)

for each assignment p′ = p\xα , where p′(xα)= V (Bα).
(CI4) Interpretation of the description operator is the function

M T
p (ια(oα)) : V (Aoα) '→ V (ια(oα)Aoα), α = o, ε. (47)

The construction of the canonical frame enables us to prove the generalized complete-
ness theorem for fuzzy type theory.

Theorem 16.8 ([27, 29])

(a) A theory T is consistent iff it has a general model M .
(b) For every theory T and a formula Ao,

T �Ao iff T |=Ao.

5 Discussion

The main goal of this chapter is to demonstrate that the ideas of L. Henkin enabled also
to develop a many-valued (fuzzy) type theory with complete syntax with respect to gen-
eralized (fuzzy) models. Similarly as in the case of propositional and first-order fuzzy
logic, there are more kinds of FTT depending on the chosen algebra of truth values. In
this chapter, we presented three kinds of FTT, namely Core-FTT based on EQΔ-algebras,
IMTL-FTT based on IMTLΔ-algebras, and Ł-FTT based on MV-algebras. Of course,
there are more convenient algebras of truth values, and so, more kinds of fuzzy type the-
ory can be introduced. Though not yet proved, we argue that each first-order fuzzy logic
can be extended to a higher-order one, that is, to the corresponding FTT.

Let us remark that FTT generalizes the classical type theory and is obtained by ex-
tension of its list of axioms. Thus, for example, both IMTL-FTT and Ł-FTT reduce6 to
classical simple type theory by adding the axiom

xo ∨¬xo.
This axiom introduces the law of excluded middle with respect to the ordinary disjunction
(interpreted by the lattice join operation). Note that the law of excluded middle holds in
fuzzy logic with respect to the strong disjunction., which is, in general, different from ∨.
Of course, in classical logic, both disjunctions coincide.

The reader may appreciate depth and originality of Henkin’s ideas. Though we needed
some special tricks in the construction of the canonical model, we demonstrated that the
basic Henkin construction can be applied in FTT, too.

6To be precise, the resulting type theory is isomorphic with the classical simple theory of types.
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Let us spare a thought about usefulness of FTT and various kinds of it. We argue
that FTT is a powerful formal tool using which we can solve various problems raised in
modeling of semantics of natural language and concepts (cf. [9]) caused by the presence of
vagueness. A typical manifestation of the latter is the sorites (heap) paradox. Using means
of Ł-FTT, we gave in [28] a simple and elegant solution of this paradox and demonstrated
that it is by no means paradoxical.

Another interesting problem is modeling of noncommutativity of conjunction. This oc-
curs quite often in natural language and commonsense reasoning. Therefore, if we want
to model the latter, then the formal logic must also capture noncommutativity. Note that
fuzzy logic including FTT has two different conjunctions. The first one is the ordinary
conjunction ∧ interpreted by the lattice meet ∧. This is always commutative. The second
one is the strong conjunction & interpreted by the multiplication operation ⊗. This con-
junction should be used for safe connection of two conjuncts with various truth values
if we do not know whether the meanings of both conjuncts are in some sense related or
not. In fuzzy logic based on residuated lattices, however, noncommutativity of the strong
conjunction enforces two implications (see [17]). This looks unnatural since we have no
interpretation for the second implication. In Core-FTT, on the other hand, the strong con-
junction is noncommutative, and still only one implication is sufficient.

Fuzzy type theory, namely the Ł-FTT, is used also as a metatheory for development
of the so-called fuzzy natural logic (FNL). This is a formal theory whose paradigm is to
develop a working mathematical model of the semantics of special natural language ex-
pressions including their vagueness and then to develop a mathematical model of special
natural (commonsense) human reasoning schemes that are language independent. The
first steps in FNL have already been done (cf. [30, 32]).

An open problem is modification of the syntax of FTT so that the general model can
also contain partial functions. In classical TT, this was solved Farmer [12]. Note that
this direction of research is motivated especially by the desire to model the meaning of
concepts (see [23, 24]). One of additional tasks is also the study of the complexity of
sets of tautologies of all FTTs. Let us also remark that our theory suggests interesting
philosophical questions concerning the role of (fuzzy) equality/equivalence in (fuzzy)
logic with respect to implication.
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The Henkin Sentence

Volker Halbach and Albert Visser

Abstract In this paper we discuss Henkin’s question concerning a formula that has been
described as expressing its own provability. We analyze Henkin’s formulation of the ques-
tion and the early responses by Kreisel and Löb and sketch how this discussion led to the
development of provability logic. We argue that, in addition to that, the question has philo-
sophical aspects that are still interesting.

Keywords Self-reference · Fixed Points · Second Incompleteness Theorem · Provability
Logic

1 Henkin’s Question

In the problem section of the Journal of Symbolic Logic, Vol. 17, No. 2 (June 1952), on
p. 160, Leon Henkin posed the following problem

A problem concerning provability. If Σ is any standard formal system adequate for recursive
number theory, a formula (having a certain integer q as its Gödel number) can be constructed
which expresses the proposition that the formula with Gödel number q is provable in Σ . Is this
formula provable or independent in Σ? (Received February 28, 1952.)

There seems to be a certain naiveté about the question. There are many formal systems
adequate for recursive number theory. It is not just that we can vary the axioms, but
we can vary the proof system; we can even vary the setup of the syntax. Moreover, the
construction of Henkin’s sentence involves arithmetization, which can be implemented
in any number of ways. We can choose different Gödel numberings, but even with a
given Gödel numbering, we can encode the syntax in different ways as linear strings of
symbols, trees, or still something else. Once all these decisions have been made, one
needs to single out a formula for expressing provability. Once such a formula is fixed, one
can think of many constructions for obtaining a sentence with code q that says that the
sentence with Gödel number q is provable. Different choices at any stage will produce
a different sentence. Why should we expect that all these formulae share the same status
with respect to provability or independence?

Of course, one could insist that we simply fix one specific set of choices for all these
“parameters,” a set of choices that we intuitively recognize as being correct, straightfor-
ward or “natural.” But nobody seriously thinks that there is just one admissible way of
arithmetizing syntax, of picking a provability predicate, and so on. When contemplating
arithmetization, we always understand that a chosen implementation is just one of the
many ways, but that our results should be robust with respect to particular choices as long
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as they are “reasonable” or “natural” because we do not make use of “accidental” fea-
tures of our choices. This is by no means trivial. But in the case of Henkin’s problem and
similar problems, it was not to be expected in 1952 that a solution would be robust.1

Henkin’s way of posing the question differs significantly from those found in the more
recent literature. In the modern literature, Henkin’s question or Henkin’s problem is usu-
ally described as the question whether or not the sentence expressing its own provability
is provable [12, p. 148] or even as the question whether the sentence expressing its own
provability [. . . ] is true or false, and provable or not [37]. It is far from clear whether
these abbreviated forms are adequate renderings of Henkin’s original question or whether
they capture Henkin’s intention. Today Henkin’s Problem is used more like a proper name
for a family of logical questions and less as a description of the question asked by Henkin
in 1952. Here we would like to take a closer look at what Henkin’s did ask—and what he
did not ask.

In contrast to many modern accounts, Henkin did not make use of the notion of self-
reference in the formulation of his question. He did not describe the sentence as one that
says of itself that it is provable or the like. The usual catchphrases like self-reference
are strangely absent from Henkin’s question and also from the immediate replies and
discussions, even though Gödel had already described his own sentence as a sentence
stating its own unprovability [19, p. 175].

In the proof of Gödel’s First Incompleteness Theorem and many other results, the
notion of self-reference is not needed; The Gödel sentence γ only needs to be a fixed point
of nonprovability, that is, it must satisfyΣ � γ ↔¬Bew(�γ �); whether γ says something
about itself and what it says is irrelevant for the proof. But Henkin also did not ask whether
a fixed point of the provability predicate, that is, a sentence η with Σ � η↔ Bew(�η�)
is provable or not. Any provable formula such as 0 = 0 clearly is a fixed point of any
formula that may be called a provability predicate; and these trivial fixed points are clearly
not what Henkin was after.

Henkin also did not ask whether the sentence obtained by applying a certain canonical
diagonal construction to the provability predicate is provable or not. As we shall see in
our discussion of Kreisel’s answer, this is not equivalent to Henkin’s requirement that the
formula with Gödel number q should “express[es] the proposition that the formula with
Gödel number q is provable,” as this may be achievable without applying the standard
Gödel diagonal construction to a given provability predicate.

Moreover, Henkin did not ask whether his sentence is refutable. He probably noted
that if Σ refutes this sentence, then Σ ipso facto proves its nonprovability. This, in its
turn, implies that Σ proves the consistency of Σ , thus contradicting the Second Incom-
pleteness Theorem—if we assume thatΣ is consistent. To make such reasoning valid, the
provability predicate involved must have some of the properties usually ascribed to it.

Henkin employed intensional language in the question: the formula in question is sup-
posed to express the provability of a formula with a certain Gödel number. Is this use

1One may compare this with the truth-teller sentence that states its own Σ1-truth. The answer to the
question whether this sentence is provable, refutable, or independent depends on assumptions on the cod-
ing, the diagonalization method, and so on [27]. So Henkin’s question for Σ1-truth instead of provability
only admits an answer that is far less robust than Löb’s answer to Henkin’s original question, which is
extremely robust. Among the “Henkin-like” problems, the robustness of the answer to Henkin’s original
problem may be more the exception than the rule.
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of intensionality to be viewed as merely a façon de parler or does it carry some serious
weight? As we will see, Henkin’s review of Kreisel’s paper contains some evidence that
Henkin did indeed take that business of expressing something seriously.

One should view Henkin’s question as including the challenge to give a definite math-
ematical extensional meaning to Henkin’s intensional description of his sentence. Kreisel
and others took up the challenge by breaking it into two problems, once a formal system
Σ and a coding are fixed:2 First one needs to provide conditions that must be satisfied by
a formula to express provability. Then, in the second step, from that formula a sentence
with code q that ascribes to q the property of being provable must be constructed.

As we will see, both Kreisel and Löb developed criteria, albeit entirely different ones,
that must be satisfied by a formula to qualify as a provability predicate. Kreisel argued
that the answer to Henkin’s question depends on which provability is used and that differ-
ent provability predicates can be employed to obtain provable and even refutable Henkin
sentences. Hence, the burden on his conditions for expressing provability was heavier.
The provability predicates used in his examples need to be recognized as correct arithme-
tizations of provability. As we shall see, neither Henkin nor Löb agreed that his examples
were good examples of arithmetizations of provability.

Löb’s answer was positive: Henkin’s sentence is provable; and his answer was defini-
tive: all sentences of this kind are provable. Consequently, Löb needed only necessary
conditions on formulae for expressing provability. The set of formulae satisfying his con-
ditions only needs to include all predicates that we would recognize as good arithmeti-
zations of provability. It is perfectly all right if the conditions admit cases that we would
not recognize as good arithmetizations (as in fact they do). The same applies to the sec-
ond step. Löb’s result holds for all diagonal sentences, that is, sentences η satisfying
Σ � η↔ Bew(�η�) for the chosen provability predicate Bew; and all formulae with code
q that express that the formula with q via the predicate Bew will be diagonal sentences.
That there are also other diagonal sentences merely shows that Löb’s result is stronger
than needed to answer Henkin’s question.

Henkin published his question in 1952. This is 21 years after the appearance of Gödel’s
paper Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I [19] and 13 years after the first publication of part II of Grundlagen der Mathe-
matik by Hilbert and Bernays [23], which contained a careful analysis of the proof of the
Second Incompleteness Theorem. It seems to us that all ingredients for Henkin’s question
were already present in Gödel’s 1931 paper. Even if you want to insist that a careful anal-
ysis of the proof of Gödel’s second theorem is needed as the background for the question,
then these were certainly available in the 1939 book by Hilbert and Bernays. So, why
was the question not asked earlier? A first point is that one should never underestimate
the size of the search space even for elementary questions. After all, the other question
(received 19 March 1952) asked by Henkin in the same list of questions is whether the Or-
dering Theorem is equivalent to the Axiom of Choice for classes of finite sets. This other
question also only involves concepts that were around for quite some time. Secondly, the
former question clearly was off the beaten track. It was not part of existing research lines.
It is an almost whimsical question posed in a playful mood. The question gives the reader
a feeling of contingency. It could as well never have been posed. Seeing all the exciting
developments that followed it, we may be glad that it actually was asked.

2In what follows, we somewhat neglect the problems involving the choice of the formal system Σ and a
coding of syntax. See [27] for some additional remarks.
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2 Kreisel’s Solution

In his 1953 paper [31], Georg Kreisel summarized his reply to Henkin as follows:

We shall show below that the answer to Henkin’s question depends on which formula is used to
‘express’ the notion of provability in Σ .

Thus, Kreisel’s reply precisely concerns the point where we said that Henkin’s question
had a certain naiveté. Note the scare quotes around express, which suggest that Kreisel
thought that the business of expressing should be taken cum grano salis. Kreisel gives the
following condition for expressing provability:

A formula P(a) is said to express provability in Σ if it satisfies the following condition: for
numerals a, P(a) can be proved in Σ if and only if the formula with number a can be proved
in Σ .

We can generalize Kreisel’s condition for provability to a more general condition for
expressing a property.

Kreisel’s Condition A formula ϕ(x) is said to express a property P in Σ if and only if,
for all numbers n, we have Σ � ϕ(n) iff n has property P .

In metamathematics, Kreisel’s Condition became the formal notion of weak repre-
sentability:3 A formula ϕ(x) is said to weakly represent a set S of numbers if and only if
Σ � ϕ(n) iff n ∈ S.

The main problem with Kreisel’s Condition is that it is counterintuitive on two scores.
First, according to it, for example, over Peano Arithmetic (PA), many predicates express
provability that intuitively do not. Examples of such predicates are Rosser provability,
Feferman provability, and the two notions of Kreisel–Henkin provability discussed below.
Secondly, consider some predicate Bew that we recognize as a good arithmetization of
provability in, say, Θ := PA + incon(PA). Then, by Kreisel’s condition, Bew does not
express provability-in-Θ . However, by the Friedman–Goldfarb–Harrington Theorem, we
may manufacture, by Rosser trickery, a predicate that does express provability in Θ by
the light of the Kreisel Condition.4 With some more effort, we may even build such a
predicate satisfying the Löb Conditions too.

We note that for Kreisel’s it depends answer, it is needed that all predicates admitted
by his Condition are indeed recognized as expressing provability. It does no harm when
some predicates not recognized by the condition do express provability. Thus, Kreisel’s
condition must be a sufficient condition. Conversely, for Löb, with his positive answer,
one wants that whatever is recognized as expressing provability should be admitted by
Löb’s condition. It does no harm when certain predicates admitted by Löb’s condition
are recognized as not representing provability. For instance, over PA, the predicate x = x
satisfies the Löb conditions. Nobody would think that this predicate expresses provability.
But, also, nobody would think this is a problem for Löb’s answer to Henkin’s question.
Thus, Löb’s condition needs to be necessary.

3Feferman [17] introduced and used the term “numerate” for “weakly represent.”
4See, for instance, [51] for a discussion.
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Kreisel constructed two sentences that are both supposed to satisfy Henkin’s Condi-
tion; one of them is provable, the other refutable. Let Basic be the Tarski–Mostowski–
Robinson theory R extended by the recursion equations for all primitive recursive func-
tions.

Kreisel’s Observation Let Σ be a consistent theory that extends Basic.5 Then the fol-
lowing hold:

a. There is a formula BewI (x) and a term t1 such that the following three conditions are
satisfied:

i. BewI weakly represents provability in Σ .
ii. Σ � t1 = �BewI (t1)�.
iii. Σ � BewI (t1).

b. Similarly, there is a provability predicate BewII(x) and a term t2 such that

i. BewII weakly represents provability in Σ .
ii. Σ � t2 = �BewII(t2)�.

iii. Σ � ¬BewII(t2).

The examples employed by Kreisel in the proof are of some interest. In particular, the
example for BewI (t1) foreshadows Kreisel’s [32] proof of Löb’s theorem, as was pointed
out by [44]. Henkin suggested simpler examples that are mentioned by [31] in footnotes.
We will use Henkin’s examples and refer the reader to Smoryński’s paper for an exposition
of Kreisel’s original examples.

Proof We start with a proof for the second part (b). Fix some predicate Bew(x) that
weakly represents Σ -provability in Σ . In case Σ is Σ1-sound, a standard arithmetization
of provability will do. In the unsound case, one uses the theorem that any recursively enu-
merable set is weakly representable in a consistent recursively enumerable extension of
the Tarski–Mostowski–Robinson theory R. This is a direct consequence of the Friedman–
Goldfarb–Harrington Theorem.6 Using the canonical diagonal construction (or any other
method), one obtains a term t2 satisfying the condition

Σ � t2 = �t2 �= t2 ∧ Bew(t2)� (1)

and defines BewII(x) as

x �= t2 ∧ Bew(x).

Condition b(ii), that is,Σ � t2 = �BewII(t2)�, is then obviously satisfied by the choice (1)
of t2. Since Σ refutes t2 �= t2 ∧ Bew(t2), item b(iii) is satisfied as well.

It remains to verify b(i), which is the claim that BewII(x) weakly represents Σ -
provability. In other words, we must establish the following equivalence for all formu-
lae ϕ:

Σ � ϕ iff Σ � BewII
(
�ϕ�

)
. (2)

5Kreisel asked that the theory be Σ1-sound, but that demand is superfluous.
6See, for instance, [51] for a discussion.
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If ϕ is different from t2 �= t2 ∧ Bew(t2), then this is obvious from the definition of
BewII(x), using the fact that Bew weakly represents provability in Σ . In the other case,
the left-hand side of the equivalence is refutable, and so is the right-hand side by (1). This
concludes the proof of part (b) of Kreisel’s Observation.

We turn to case (a). If we assume that our theory is Σ1-sound and sufficiently strong
(e.g., if it extends the arithmetical version of Buss’ theory S1

2), then the canonical prov-
ability predicate can be used as BewI (x), and t1 can be obtained in any way, including the
usual Gödel diagonal construction. Claim a(iii) follows then by Löb’s theorem. (See [35]
or, e.g., [12].)

Since Löb’s Theorem was not known, Henkin and Kreisel had to use a different con-
struction.7 Henkin suggested the following construction. He picked a term t1 such that

Σ � t1 = �t1 = t1 ∨ Bew(t1)�

and defines BewI (x) as

x = t1 ∨ Bew(x). �

Clearly, the provability predicates BewI and BewII are somewhat peculiar. Although
they satisfy Kreisel’s Condition, hardly anyone considers them to be proper provability
predicates. As we shall see soon, Henkin was the first to reject them and claim that the
sentences BewI (t1) and BewII(t2) do not fit the description in his question.

However, the alleged Henkin sentences BewI (t1) and BewII(t2) exhibit another pe-
culiarity that is neither discussed by Kreisel nor by Henkin:8 They are not obtained by
applying the usual diagonal construction to the respective provability predicates BewI
and BewII . Rather Kreisel finessed the predicates BewII in such a way that simply substi-
tuting the term t2 for the free variable in BewII produces a formula with Gödel number
q such that the value of t2 is q . So one can reasonably claim that BewII(t2) is “a formula
(having a certain integer q as its Gödel number) [. . . ] which expresses the proposition
that the formula with Gödel number q is provable in Σ” [24] if BewII is taken to express
provability. Similar remarks apply to BewI (t1) of course. So, with the possible exception
of the choice of the provability predicates, Kreisel provided a correct answer to Henkin’s
question.

However, one may wonder whether Kreisel answered the questions that are currently
called Henkin’s Problem. In other words, is BewII(t2) self-referential and does it state its
own provability? In particular, does BewII(t2) ascribe to itself the property expressed by
BewII(x)—whether it is a good provability predicate or not? Usually, when one considers
a sentence that says about itself that it has the property expressed by a formula ψ(x), one
often intends to talk about the sentence that is obtained from ψ(x) by the usual diagonal
construction or a variant thereof. What exactly the usual diagonal construction and its
variant are may be unclear, but BewII(t2) has not been obtained by anything that resembles
such a method.

This sheds a light on the usual reformulation of Henkin’s problem: It is often stated as
a problem about a formula that states its own provability or that says about itself that it

7Note also that the Kreisel–Henkin construction works in some very weak cases where it is not clear that
we have Löb’s theorem.
8It was first noted by Craig Smoryński in [42].
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is provable. Of course, one may speculate that Henkin intended to ask his question about
this formula and Kreisel tried to address the question understood in this sense. It also
seems that later authors understood Henkin’s question as being about sentences that state
their own provability. But the equivalence to the original formulation is not obvious.

At any rate, if the usual diagonal construction involving the substitution function is ap-
plied to BewII , one obtains a provable sentence. This follows easily from Löb’s theorem,
which of course was not known at the time Kreisel published his paper. If that sentence is
seen as the only sentence saying about itself that it has the property expressed by BewII ,
then Kreisel fails to provide a counterexample to the claim that the sentence stating its
own provability is provable—irrespective of whether BewII is a provability predicate or
not. So Kreisel was somewhat imprecise in summarizing his result: He had shown ‘that
the answer to Henkin’s question depends on which formula is used to “express” the notion
of provability in Σ ’—but also on how the formula with code q is obtained that ascribes
provability to q via this provability predicate.

However, after all, it can be shown that, if Kreisel’s Condition is adopted, it only de-
pends which provability predicate is chosen whether the Henkin sentence is provable or
not. We can even use the standard diagonal construction to obtain a refutable Henkin sen-
tence from the given provability predicate. For in [27] it has been shown that there still
another provability that yields a refutable Henkin sentence if the standard diagonal con-
struction is applied to it. Such a provability predicate can be obtained by tinkering with
the Kreisel–Henkin construction.

3 Henkin’s Review

In 1954 Leon Henkin responds to Kreisel’s paper in a review [25] in the Journal of Sym-
bolic Logic. Henkin’s main critical point is the following.

A clear explication of the concept of that which is expressed by a formula must be based on an
axiomatic treatment of this notion (perhaps along the lines of Church XVII 133). However, it seems
fair to say that in one sense, at least, neither formula P1(a) nor P2(a) expresses the propositional
function a is provable; but the former, for example, expresses the proposition a is provable or is
equal to q , which is a different proposition even though it has the same extension. The direct way
to express a is provable is, of course, by the formula (∃x)B(x, a). But the methods of the present
paper give no indication as to whether the formula (∃x)B(x, q) whose Gödel number is denoted
by q is provable.

The reference Church XVII 133 is to a review in JSL by Rulon Wells [53] of Church’s
paper A formulation of the logic of sense and denotation [15]. Regrettably, the desired
axiomatic explication of that which is expressed by a formula never materialized. The
remark about expressing underscores the fact that Henkin took the philosophical problem
of intensionality quite seriously—no scare quotes for him. The subsequent remarks about
P1 and P2 show that Henkin rejected Kreisel’s Condition as a sufficient condition for
expressing provability.

Finally, Henkin insisted that Kreisel did not solve the problem for the intended predi-
cate (∃x)B(x, q), where B(x, y) is, as Henkin put it in [25], the “standard formula such
that B(m,n) or its negation is provable according asm does or does not denote the number
of a formal proof of a formula whose Gödel number is denoted by n.” It is not completely
clear what the standard formula is, given that Henkin did not fix a formal system Σ ;
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but for systems like PA, the standard formulas can be thought of as those found in the
literature.

Henkin’s insistence on a less contrived provability predicate is at least consistent with
the fact that he asked in his original 1952 question whether his sentence is provable or in-
dependent. As remarked above, he may have reasoned that the refutability of the Henkin
sentence would imply consistency contradicting Gödel’s Second Incompleteness Theo-
rem. But this applies only if the consistency statement and the Henkin sentence are for-
mulated with a well-behaved provability predicate. The Second Incompleteness Theorem
fails for the Rosser provability predicate, for instance. For Kreisel’s predicate BewII , the
second incompleteness theorem holds; after all, it agrees with the standard one on all
sentences except for ¬BewII(t2). Kreisel’s provability predicate BewII , however, does not
satisfy Löb’s second derivability condition LC2 below. Of course, Henkin had published
his question and the review of Kreisel’s reply before Löb’s derivability conditions were
formulated, so Henkin could resort only to intensional properties of the provability pred-
icates and what they do or do not “express.”

At any rate concentration on the “standard” provability predicate led to the break-
through and the commonly accepted answer to Henkin’s question.

4 Löb’s Paper

We are again one year later. In his celebrated JSL paper [35], Martin Löb starts by echoing
Henkin’s review:

One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the
question whether the formula (∃x)B(x, a), with Gödel number a, is provable or not. Here B(x, y)
is the number-theoretic predicate which expresses the proposition that x is the number of a formal
proof of the formula with Gödel-number y.

So we see that Löb adhered to Henkin’s intensional phrasing of the question.
Let us write � for Σ � and �ϕ for Bew(�ϕ�). Then, we can state Löb’s conditions

like this:9

LC1 � ϕ ⇒ ��ϕ.
LC2 ��(ϕ→ψ)→ (�ϕ→�ψ).
LC3 ��ϕ→��ϕ.

Löb derives what is known as Löb’s Rule from his conditions. We have: if ��ϕ→ ϕ,
then � ϕ.

The reasoning is as follows. Suppose (a) ��ϕ→ ϕ. By Gödel’s Fixed Point Lemma,
we can find a sentence λ such that (b) � λ↔ (�λ→ ϕ). Now reason in Σ . Suppose
(c) �λ. Then, by LC3, (d) ��λ. By (b), (c), LC1, and LC2, we find: (e) �(�λ→ ϕ).
Combining (d) and (e) using LC2, we may conclude �ϕ, and, hence, by (a): ϕ. Thus, by
canceling assumption (c), we have found (f) �λ→ ϕ. By (b) and (f), we have (g) λ. We
have derived λ without assumptions, hence, by LC1, (h) �λ. Combining this with (f), we
may conclude ϕ.

9Actually, Löb mentions more conditions in his paper. However, upon analysis, we only need the ones
given here.
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Löb’s solution of Henkin’s Problem now follows immediately. Suppose � η↔ �η.
Then, a fortiori, ��η→ η, and, hence, by Löb’s Rule, � η.

In footnote 2, Löb states:

In a previous version of this note the method of proof was applied specifically to Henkin’s problem.
The present more general formulation of our result was suggested by the referee.

Albert Visser asked George Kreisel who he thought was the referee of Löb’s paper. Kreisel
answered that, of course, this must have been Henkin. Later Albert Visser asked Henkin
whether he was the referee, and Henkin confirmed that this was indeed the case.

Löb’s Principle is the formalized form of Löb’s Rule: � �(�ϕ → ϕ)→ �ϕ. We
can derive Löb’s Principle by formalizing the reasoning leading to Löb’s Rule. How-
ever, we can also derive Löb’s Principle from Löb’s Rule. Reason in Σ . We suppose
that (i) �(�(�ϕ → ϕ) → �ϕ) and (ii) �(�ϕ → ϕ). From (ii) and LC3, we have
(iii) ��(�ϕ→ ϕ). Combining (i) and (iii) using LC2, we find (iv) ��ϕ. From (ii) and
(iv), using LC2, we get: (v) �ϕ. By canceling assumptions (ii) and (i), we find:

(vi) �
(
�(�ϕ→ ϕ)→�ϕ

)→ (
�(�ϕ→ ϕ)→�ϕ

)
.

Then, using Löb’s Rule, we find: �(�ϕ→ ϕ)→�ϕ, as desired.
Conversely, both Löb’s Rule and LC3 follow from Löb’s Principle using only LC1 and

LC2.
To derive Löb’s Rule from Löb’s Principle, suppose that (A) � �ϕ→ ϕ. Then, by

LC1, we find (B) ��(�ϕ→ ϕ). Löb’s Principle then gives us (C) ��ϕ. By (A) and (C),
we have � ϕ.

The derivation of LC3 from Löb’s Principle is due to Dick de Jongh. It works as fol-
lows. Reason in Σ . Suppose (α) �ϕ. Then, we find (β) �(�(ϕ ∧�ϕ)→ (ϕ ∧�ϕ)), by
LC1 and LC2. Hence, by Löb’s Principle, (γ ) �(ϕ ∧�ϕ). We may conclude by LC1 and
LC2 that ��ϕ.

What do Löb’s answer to Henkin’s question and Gödel’s Second Incompleteness The-
orem have in common? Löb showed that any fixed point of Bew(x) is provably equiva-
lent to 0 = 0. Gödel showed that any fixed point of ¬Bew(x) is provably equivalent to
con(Σ). Thus, both fixed point equations have, modulo provable equivalence, a unique
solution with a self-reference free formulation. As we will see in the next section, the
proper framework to formulate, study, and generalize this insight is Provability Logic.

5 Provability Logic

The first to note the possibility of reading formal provability in a theory as a modal op-
erator was Kurt Gödel in his paper [20]. The main result of the paper is the translation
of intuitionistic propositional logic IPC in the modal system S4. At the end of the paper,
Gödel remarks:

Es ist zu bemerken, daß für den Begriff “beweisbar in einem bestimmten formalen System S”
die aus S beweisbaren Formeln nicht alle gelten. Es gilt z.B. für ihn B(Bp→ p) niemals, d.h.
für kein System S, das die Arithmetik enthalt. Denn andernfalls wäre beispielsweise B(0 �= 0)→
0 �= 0 und daher auch ∼B(0 �= 0) in S beweisbar, d.h. die Widerspruchsfreiheit von S wäre in S
beweisbar.
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Here S is S4. In the English translation of the Collected Works, Gödel’s text becomes:

It is to be noted that for the notion “provable in a certain formal system S” not all of the formulas
provable in S hold. For example, B(Bp→ p) never holds for that notion, that is, it holds for no
system S that contains arithmetic. For, otherwise, for example, B(0 �= 0)→ 0 �= 0 and therefore
also ∼B(0 �= 0) would be provable in S, that is, the consistency of S would be provable in S.

In this paper, we will just look at that part of provability logic that is directly connected
to Henkin’s question: the study of fixed points. For a treatment of Gödel’s remarks that is
closely connected to Provability Logic, see [4].

Löb’s logic GL is a modal propositional logic that has, in addition to the axioms and
rules of propositional logic, the following principles:10

L1 � ϕ ⇒ ��ϕ.
L2 ��(ϕ→ψ)→ (�ϕ→�ψ).
L3 ��ϕ→��ϕ.
L4 ��(�ϕ→ ϕ)→�ϕ.

The principles of GL correspond to the Löb Conditions plus Löb’s Theorem. Thus,
these principles are schematically valid for arithmetical interpretations where the � is
interpreted by Bew. We note that by the remarks of Sect. 4 the axiom L3 is superfluous.
We can prove that the following strengthened version of Löb’s Rule is admissible over
GL. Let 
χ stand for χ ∧�χ . We have:

SLR if �ψ0, . . . ,�ψn−1,
χ0, . . . ,
χk−1,�ϕ � ϕ, then

�ψ0, . . . ,�ψn−1,
χ0, . . . ,
χk−1 � ϕ
We have seen in Sect. 4 that both Gödel’s fixed point equation and Henkin’s fixed point

equation have unique self-reference free solutions. Provability Logic gives us the proper
context both to formulate and to generalize these results.

Let us say that ϕ is modalized in p if all occurrences of p in ϕ are in the scope of �.
A first observation is that, if ϕ is modalized in p, then ϕ has a unique fixed point (modulo
provable equivalence) w.r.t. p. The uniqueness of fixed points was proved independently
by Dick de Jongh (unpublished), Giovanni Sambin [39] and Claudio Bernardi in 1974
[10].

Let ϕp be modalized in p, and let q be a fresh propositional variable. Then we have:

GL � (

(p↔ψp)∧
(q↔ψq)

)→ (p↔ q).

To see this, reason in GL. Suppose (a) 
(p↔ ψp), (b) 
(q↔ ψq), and (c) �(p↔ q).
Since ϕp is modalized in p and ϕq is modalized in q , we find from (c): (d) ϕp↔ ϕq .11

Ergo, by (a) and (b), (e) p↔ q . By SLR, we may conclude p↔ q without assumption (c).
We turn to the existence of explicit fixed points in the modal language. Suppose ϕp is

modalized in p. Then there is a formula χ , where the free variables of χ are included in
the free variables of ϕ minus p, such that GL � χ↔ ϕχ .

10It would be more appropriate to call this logic simply L. Unfortunately, L also suggests language, so the
designation GL was preferred.
11The substitution principle used here can be proved by induction of ϕ.
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As is proper for great results, the theorem has many proofs. The existence of explicit
fixed points was first proved by Dick de Jongh in 1974 (unpublished). Dick provided both
a semantical and a syntactical proof. In 1976 another proof was given by Giovanni Sam-
bin [39]. Also in 1976, George Boolos found a proof of explicit definability using char-
acteristic formulas. In 1978, Craig Smoryński [41] proved explicit definability via Beth’s
Theorem.12 There is an improved version of Sambin’s approach by Giovanni Sambin and
Silvio Valentini [46] in 1982 and an improved version of Boolos’ proof by Zachary Gleit
and Warren Goldfarb [18] in 1990. Finally, in 1990 there is a proof by Lisa Reidhaar-
Olson [38] that is close to the proof of Sambin–Valentini. In 2009, Luca Alberucci and
Alessandro Facchini [3] provide a proof using the modal μ-calculus.

We give the proof that is due to Craig Smoryński. In the proof we will assume the
interpolation theorem for GL that can be proved both by semantic methods and by proof-
theoretical methods. We assume that ϕp is modalized in p and that q does not occur in
ϕp. We note that the uniqueness theorem gives us:

�(p↔ ϕp)∧�(q↔ ϕq) �GL �
 (p↔ ϕp)∧�
 (q↔ ϕq)

�GL �(p↔ q)

�GL ϕp↔ ϕq

It follows that

�(p↔ ϕp)∧ ϕp �GL �(q↔ ϕq)→ ϕq.

Let χ be an interpolant between �(p↔ ϕp)∧ϕp and �(q↔ ϕq)→ ϕq . By substituting
χ for p and q we obtain:

�(χ↔ ϕχ)∧ ϕχ �GL χ �GL �(χ↔ ϕχ)→ ϕχ.

We may conclude that GL ��(χ↔ ϕχ)→ (χ↔ ϕχ) and, hence, GL � χ↔ ϕχ .
The story of the fixed points is not finished here. First, the uniqueness and explicit

definability results extend to interpretability logic as was shown in [16]. A Smoryński-
style proof of this result is provided in [2]. See also [26]. Secondly, the fixed points of
provability logic connect it to that other great modal logic of fixed points, the modal μ-
calculus. See [48, 52], and [3]. See also Giacomo Lenzi’s survey [33] of results concerning
the μ-calculus.

The world looks different when the Löb conditions fail. The uniqueness/non-unique-
ness of the Rosser fixed points was studied by David Guaspari and Robert Solovay [22].
Their answer is a laconic it depends. Interestingly, Kreisel never found their work con-
vincing. His experience with his own it depends led him to hope for a missing natural
condition . . . .

What happens in case of the Feferman provability predicate was studied by Albert
Visser [50], by Craig Smoryński [43], and by Volodya Shavrukov [40]. Visser shows
that there are infinitely many pair-wise nonequivalent Henkin fixed points for Feferman
provability. Smoryński shows that under rather natural assumptions the Gödel fixed point

12In her paper [36], Larisa Maksimova shows that, conversely, Beth’s theorem follows from the existence
of explicit fixed points. See also [26].
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for the Feferman predicate is unique. Shavrukov gives a beautiful modal derivation of the
same result.

Of course, there is much more to provability logic than the treatment of fixed points.
For example, there is Solovay’s celebrated arithmetical completeness theorem ([45]).
However, this further story is outside of the scope of this paper. We just provide some
pointers to the further literature.

The history of the mathematical modality provability in a certain formal system has
been described in the paper [13]. This paper is warmly recommended to the reader. The
systematic content of provability logic can be found in the textbooks [12] and [42]. It is
worth looking at both books since they offer a somewhat different perspective. For more
recent treatments, containing also new material, see also [1, 14, 30, 34, 47].

We have seen that from Henkin’s question and Löb’s work, the field of Provability
Logic emerged. Provability Logic, apart from being a beautiful subject, has some appli-
cation outside of its own domain.

• Michael Beeson employed fp-realizability, a form of realizability based on provability
to prove the independence of the Myhill–Shepherdson theorem and of the Kreisel–
Lacombe–Schoenfield theorem from Heyting arithmetic. See [5] and [49]. Beeson’s
result uses Löb’s principle.

• Research on the Provability Logic of Heyting Arithmetic inspired an axiomatization of
the admissible rules of the intuitionistic propositional calculus. See [28].

• S.N. Goryachev connects in his work [21] Provability Logic and reflection principles.
His results are used by Lev Beklemishev for the analysis of reflection principles. See
[6] and [8].

• Japaridze’s polymodal logic [29] is used by Lev Beklemishev to study ordinal nota-
tions. See [7, 9, 11].

6 Concluding Remarks

The question of what it means for a formula to express a property like provability has
fallen from grace since the success of Löb’s work. First, the question seems rather hope-
less, and second, Löb showed that, at least for some important results, we can successfully
get by without an answer to the question. Does this mean that the question has for once
and for all been laid to rest? We do not think so. First, even if, perhaps, the question is
mathematically less important, then it is still relevant philosophically. If we say, for ex-
ample, that Peano arithmetic does not prove its own consistency, is this merely a façon
de parler—to be paraphrased away by a more mathematical pronouncement, or does it
really mean what it seems to mean?

Can we tell a better story about arithmetical ventriloquism? Such a story should at
least take into account that content ascriptions like the formula Bew expresses provability
in Σ are heavily contextual. For instance, the ascription only makes sense against the
background of some Gödel numbering. Perhaps, we need, as Henkin thought, to have
a theory of content as a prolegomemon. But, maybe, the task is rather to describe on
the basis of our everyday understanding of how formulas express properties, to explain
how formulas that are obviously about something else (like numbers), still manage to
express properties of sentences against the background of conventional choices relating,
for example, numbers and formulas.
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We think that there is reason to have hope for progress. In a sense, we have all the
needed information concerning what is going on. After all, the good cases where we
think that we really construct a formula Bew expressing provability are open for detailed
inspection. All there is, is here. Also we have lots of deviant examples where we could
have doubts like the nonstandard Gödel numberings with in-built self-reference. What is
lacking is an articulated analysis bringing to the fore what is good and what is bad.

As we have seen, Henkin’s playful question led to the development of Provability
Logic. Moreover, it touches immediately upon philosophical questions concerning in-
tensionality in mathematics. Voltaire said “Il est encore plus facile de juger de l’esprit
d’un homme par ses questions que par ses réponses” (it is easier to judge a man by his
questions than by his answers). Clearly, Leon Henkin is doing very well on Voltaire’s
criterion.

Acknowledgements We thank Volodya Shavrukov for his comments on the penultimate version.
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April the 19th

María Manzano

Abstract This paper is about my book (Manzano, Extensions of first-order logic, 1996),
published by Cambridge University Press in 1996. The main purpose of it being to pin-
point Henkin’s influence concerning the translation technique proposed in the book.

Several extensions of first order logic are introduced in Extensions, while trying to
pursue the thesis that most reasonably logical systems can be naturally translated into
many-sorted first order logic. I did credit most of the ideas involved in my translation to
Henkin’s papers (Completeness in the theory of types, 1950, and Banishing the rule of
substitution for functional variables, 1953).

Keywords Henkin · Translations · Correspondence theory · Many-sorted logic ·
Extensions of first-order logic · Type theory · General models · Comprehension schema ·
Rule of substitution

1 April 19, 1996

On April the 19th, 1996, I was invited by The Group in Logic and the Methodology of
Science (University of California, Berkeley) to give a talk at the Berkeley Logic Collo-
quium—which was followed by the so called Logic Tea. A very special date indeed, as
we were to celebrate Henkin’s 75 birthday. Unfortunately, I was unable to attend since
while I was in Stanford walking to the meeting point where some colleagues were to pick
me and my 10-year son Ulises up, we were both run over on a pedestrian crossing. The
accident was not as bad as it could have been—our left arms broken—but we were still
unable to congratulate Leon Henkin on occasion of his 75th birthday.

A couple of weeks later, I did give the talk, its main purpose being to underscore
Henkin’s influence on my book, Extensions of First Order Logic, published by Cambridge
University Press that year.

In 1994 I sent Henkin the manuscript of that book and he replied in a beautiful letter in
which he suggested that I should give the talk during my forthcoming visit to the States:

And now, when I begin really to look in detail at what have you put into the book, I am very
excited to see the presentation of some of my early ideas that you have incorporated beautifully
in the work [. . . ] not only the completeness of second-order logic in the sense of non-standard
models, but my little paper on induction models from 1960, which has always been my favorite
among my expository papers!
Most amazing to me is that this book will appear in the Cambridge Tracts on Theoretical Computer
Science [. . . ] for there was no such field as computer science when I wrote these papers!
[. . . ]
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I am very grateful that you’ve written these works, Mara, and very grateful that you have sent me
copies. If you wish to mention how our ideas came together when you came to work in Berkeley,
“my cup (of joy) will overflow”.
Henkin, August 12, 1994. Personal letter to María Manzano.

After my talk, Henkin seemed to be pleased with what I said and he insisted that I
had taken his ideas further than he ever dreamed; needless to say that I was happy and
honoured, even though I was able to recognize his kind disposition as the main basis of
his public comments. A few months later, he sent me a printed copy of his The Discovery
of my Completeness Proofs [9] with this autograph: ‘To Mara Manzano, who made great
use of the ideas that I wrote about, bringing them beyond where I imagined they might
go.’

2 Two of Henkin’s Papers

2.1 Completeness in the Theory of Types [6]

Henkin’s completeness theorems are the main content of his doctoral thesis, The com-
pleteness of formal systems,1 defended in 1947 under the direction of Alonzo Church.
He published two papers in the Journal of Symbolic Logic: the first, on completeness for
first-order logic [5], in 1949, and the second devoted to completeness in type theory [6],
in 1950. It is interesting to recall that the publication order is the reverse of the actual
discovery of the proofs.

At the beginning of Completeness in the Theory of Types, the author makes reference
to Gödel’s results, both on completeness and incompleteness. Regarding completeness
for first-order logic, we read: ‘each formula of the calculus is a formal theorem which
becomes a true sentence under every one of a certain intended class of interpretations of
the formal system’,2 and regarding incompleteness for second-order logic, Henkin says:
‘[. . .] no matter what (recursive) set of axioms are chosen, the system will contain a for-
mula which is valid but not a formal theorem’.3

Of course, the latter result is obtained allowing only standard models: ‘[. . .] the indi-
vidual variables are interpreted as ranging over an (arbitrary) domain of elements while
the functional variables of degree n range over all sets of ordered n-tuples of individu-
als’.4 It is in this context that he announces that the incompleteness problem is solvable
if ‘a wider class of models’ (non-standard models) is allowed:

If we redefine the notion of valid formula to mean one which expresses a true proposition with
respect to every one of theses models, we can then prove that the usual axiom system for the
second-order calculus is complete: a formula is valid if and only if it is a formal theorem.
(Henkin [6, pp. 81–82])

1In [9] Henkin said that the dissertation has never been published.
2In [6, p. 81].
3In [6, p. 81].
4In [6, p. 81].
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In the aforementioned paper Henkin introduces three different interpretations for type
theory: (1) standard models, (2) frames and (3) general models. The later matches the
calculus, since a completeness result for Church’s calculus [1] is proved in [6]. Let us
quote him:

By a standard model, we mean a family of domains, one for each type-symbol, as follows: Dι is
an arbitrary set of elements called individuals, Do is the set consisting of the two truth values, T
and F , and Dαβ is the set of all functions defined over Dβ with values in Dα .
[. . . ]
By a frame, we mean a family of domains, one for each type symbol, as follows: Dι is an arbitrary
set of individuals, Do is the set of two truth values, T and F , and Dαβ is some class of functions
defined over Dβ with values in Dα .
[. . . ]
A frame such that for every assignment φ and wff Aα of type α, the value Vφ(Aα) given by the
rules (i), (ii), and (iii) is an element of Dα is called a general model.
(Henkin [6, pp. 83–85])

The last interpretation yields the well-known Henkin’s completeness result for type
theory:

Now we define a valid formula in the general sense as a formula Ao such that Vφ(Ao) is T for
every assignment φ with respect to any general model. We shall prove a completeness theorem for
the formal system by showing that Ao is valid in the general sense if and only if �Ao .
(Henkin [6, p. 85])

To achieve such a result he proves: ‘If Λ is any consistent set of cwffs, there is a general
model (in which each domainDα is denumerable) with respect to whichΛ is satisfiable.’5

2.2 Banishing the Rule of Substitution for Functional Variables [7]

Henkin published this paper in 1953, and its main result was the introduction of
substitution-free calculi for classical logics to replace Church’s. At that time it was com-
mon to use axiomatic calculi with a finite number of axioms instead of scheme axioms,
and the substitution rule was necessary even for the propositional calculus. When first-
order or second-order calculi were introduced, new and even more difficult substitution
rules were added; a look at Church’s book Introduction to Mathematical Logic [2] suffices
to glimpse what I am saying. Nevertheless, in that book Church proposed other calculi for
propositional and first-order logics, where the objectionable rules are reduced to a mini-
mum. The difficult substitution rules appear in Church’s second-order calculus.

From this point of departure, and knowing Henkin’s devotion to pedagogy, it is easy to
identify Henkin’s main purpose as a pedagogical one:

Thus the beginning student who is introduced to the calculi through such a formulation is forced
to cope from the outset with details which have proved treacherous even to the initiate. For this
reason it is desirable to seek for alternative formulations of the functional calculi in which this
type of substitution is not mentioned.
(Henkin [7, p. 201])

As Henkin points out, for first-order logic Church defines the system F 1 where the
substitution rule is only for quantifier elimination:

5In [6, p. 85].
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[. . . ] F 1 takes as axioms all instances of the following two schemata:
(i) (a)(A⊃B)⊃ (A⊃ (a)B), where a is any individual variable not free in A

(ii) (a)A⊃ S′a
b
A|, where b is any individual variable such that no free occurrence of a in A is in a

part of A of the form (b)C.
(Henkin [7, p. 202])

Henkin mentions that the natural extension of this calculus to the second-order case,
which he calls F ∗—namely, extending the quantifier rules to deal with the new predicate
variables—is not a complete one: ‘Unfortunately the system F ∗ is woefully incomplete,
for even a simple formula as

(∃x)(∃G)G(x)
easily seen to be valid under the standard interpretation of the second-order calculus, is
not a formal theorem of F ∗.’6

No doubt he has in mind not just the classical higher-order interpretation but also the
general interpretation introduced by himself in his pioneering paper [6].

To solve the incompleteness situation, he defines two equivalent calculi, F 2 and F ∗∗,
and mentions the completeness result of his 1950 paper [6]:

[. . . ] we construct a system F 2 which is like F ∗ except that we include the additional axiom
schema
(iii) (a)A⊃ Sc(a1,...,an)

B A|
[. . . ] F 2 contains all of the theorems of the usual second order functional calculus, and indeed can
be shown to be complete (in a certain sense).
(Henkin [7, p. 202])

The problem with calculus F 2 is that it includes “the troublesome notion of substitution
for functional variables”. That is why Henkin proposed the calculus F ∗∗ whose advantage
is that it takes comprehension schema as an axiom:

F ∗∗ is obtained from F ∗ by adding the axiom schema
(iv) (∃c)(a1) . . . (an)(c(a1, . . . ,an)≡B),
where B is any wff, a1, . . . ,an are any distinct individual variables, and c is any n-adic functional
variable not occurring freely in B.
(Henkin [7, p. 203])

For the most part of this paper, Henkin concentrates in proving the equivalence be-
tween F 2 and F ∗∗. However, the relevant part for the translation technique concerning
my own work is mentioned at the end of the paper:

[. . . ] there is another advantage which we would claim for this system, namely, that it calls atten-
tion to the subsystem F ∗.
[. . . ]
By a model let us here understand a sequence (K0,K1, . . . ,Kn) such that K0 is an arbitrary (non-
empty) set, K1 is an arbitrary (non-empty) class of subsets of K0, and for n > 1 Kn is an arbitrary
(non-empty) class of n-ary relations on K0.
[. . . ]
The formal theorems of the system F ∗ consist precisely of those formulas which are completely
valid with respect to every model, as can be shown by the method of [6].
[. . . ]
This observation suggests in a natural way consideration of certain subsystems of F ∗∗ containing
F ∗, which can be defined by weakening axiom schema (iv).
(Henkin [7, pp. 206–207])

6See [7, p. 202].



April the 19th 269

As I shall explain in what follows, F ∗ could be taken as a many-sorted first-order
calculus and the calculi between F ∗ and the second-order F ∗∗ could be obtained in most
cases by restricting comprehension to formulas that are translations of a variety of logics
into the many-sorted framework.

3 Translations

Currently, the proliferation of logical systems used in mathematics, computer science, phi-
losophy, and linguistics makes their relationships between them and their possible transla-
tions into one another pressing issues. Translations between logics have been formulated
as an ambitious paradigm whose tools would serve for handling the existing multiplicity
of logics.

1. From a proof-theoretical point of view, the style of comparing logics will rest upon
morphisms between calculi. The “labelled deductive systems” of Gabbay emerge.7

2. From a model-theoretical perspective, one will presumably compare logics by defining
morphisms between the structures those logics are attempting to describe, as in the
correspondence theory of van Benthem.8

3. From a suprastructural point of view, we define morphisms between categories.
Among the most abstract approaches to logic, we should highlight the “general logics”
of Meseguer.9

It is worth noting that in the three cases we ended up with classical logic. The paradigm
of logical translation assumed in my book belongs to the model-theoretical tradition men-
tioned in item 2 and the target logic is many-sorted logic (MSL).

Why MSL? you might ask.
In itself, MSL is a natural logic for reasoning about more than one type of objects, very

flexible. Many-sorted or heterogeneous logic is not only natural for reasoning about more
than one type of objects, but it is also efficient, since its proof theory is well developed (it
has a sound and complete calculus). Moreover, MSL can be used as a unifier framework
in which to place other logics.

3.1 Extensions of First Order Logic [10]

In that book I consider various extensions of first-order logic which have applications in
philosophy, computer science, mathematics, linguistics, and artificial intelligence. I give
a detailed and elaborated treatment of the following useful systems: Second-order logic
(SOL), type theory (TT), modal logic (PML, FOML–S5), dynamic logic (PDL), and
many-sorted logic (MSL).

7See [3] and [4].
8See [13] and [14].
9See [12] and [11].
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The second goal of the book is to work out the thesis that most reasonable logical
systems can be naturally translated into many-sorted first-order logic. This thesis is main-
tained throughout the book, but only appears openly and explicitly in the last chapter. At
that point, all the logics addressed in the book are placed in direct correspondence with
MSL because this logic offers a unifying framework in which to place other logics.

From my point of view, the appeal of the approach is that it is so intuitive and easy that
only common sense is needed to understand the construction. Furthermore, as the basic
ingredients change, the recipe can be adapted to cook different dishes. It is difficult to
trace the development of this approach because almost all non-classical logics have found
their standard counterparts at birth. Nevertheless, I like to credit most of the ideas of this
translation impulse to the aforementioned papers of Henkin.

However, I do not wish to be misleading. In his 1950 paper we do not find translations
of formulas or the overt appearance of a many-sorted calculus. Regarding higher-order
logic, something close to a many-sorted calculus was introduced in the paper of 1953, but
many-sorted logic was still not mentioned and neither were translations between logical
systems. As I have already stated, in this paper Henkin proposes the comprehension ax-
iom as a way to avoid the troublesome rule of substitution of the previous higher-order
calculus. Leaving aside the differences between formal languages, MSL calculus is SOL
calculus without comprehension. Moreover, this new calculus allows us to isolate calculi
between the MSL calculus and the higher-order ones, by weakening comprehension. This
idea is used both in modal logic and in dynamic logic.

Lessons from Completeness in the Theory of Types When one has a logic, one often
has a set of formulas and two ways of selecting formulas from this set; the rules of the
calculus, selecting the logical theorems, and the semantics, choosing the validities.

Are these sets the same? When all the logical theorems are valid we say that the cal-
culus is sound, and when the reverse inclusion is true, we say that it is complete. Unfor-
tunately, for higher-order logic, the latter is not true, since there are valid formulas that
cannot be derived in any possible calculus. We learn from Gödel’s result that the set of
valid formulas is too big, indeed unapproachable. Therefore, with the standard semantics,
the set of valid formulas of SOL will never be generated by a finite deductive calculus.
The standard semantics is being determined by structures A = 〈A, 〈An〉n∈N, . . .〉 where
A1=℘A, A2 = ℘(A×A), etc. Here, the concept of a subset is taken from the metatheory
of sets, in the same sense as we usually take the concept of identity in first-order logic
from metatheory. With this I mean that we do not include it in the structure, but that it is
taken as a logical or primitive concept.

However, even knowing that no deductive calculus is able to select as theorems all
valid formulas in standard semantics (i.e., there are no complete calculi for SOL), we can
define sound ones. The idea is very simple: The set of valid formulas is so big because
the concept of a standard structure is far too restrictive. However, if we leave open, de-
finable by each structure, the concept of a subset, the situation changes radically. If we
also accept as structures for SOL the non-standard ones (i.e., those where An ⊆ ℘An, but
not necessarily equals), the set of valid formulas reduces. Nevertheless, if the selection of
what is put into An is left completely arbitrary, the comprehension axiom might fail; that
is, some sets defined by formulas of the language may have been left out. To make the
calculus SOL sound and complete, we need general Henkin structures where the domains
are closed under definability. As we have already seen, this is exactly what Henkin did in
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his paper of 1950 when he defined frames and general models. The classes of standard
structures, general structures and frames are ordered by set inclusion

SS⊆GS⊆ F

and accordingly the sets of validities in each class obey the reverse order

|=F ⊆|=GS⊆ |=SS

In fact, the inclusion is strict:

|=F ⊂ |=GS ⊂ |=SS

since there are sentences true in all general structures that fail in some frames as well as
sentences true in standard structures that fail in some general structures. The Comprehen-
sion axiom

∃X∀u(Xu↔ ϕ)

is an example of a sentence not necessarily true in frames but valid in general structures.
There are also sentences true in standard structures that fail in some general structures.
As an example, let us take the sentence

π1 ∧ π2 ∧ π3 → γ

where π1, π2 and π3 are the second-order categorical Peano axioms for arithmetic, and
γ is the well-known Gödel formula asserting of itself that it is not a theorem of Peano
arithmetic.

From Henkin’s paper we learn that a modification of the semantics can adapt validities
(in the new semantics) to logical theorems.10 To obtain the completeness theorem, non-
standard semantics is required; that is, validities in general structures and logical theorems
in second-order calculus are the same:

|=GS =�SOL

Even though the move to general structures is a very convenient one, we believe that
it is not an ad hoc construction lacking mathematical or philosophical inspiration. In fact,
these structures could be connected with the philosophical position of Nominalism on the
one hand and with the constructible universe on the other hand.11

Lessons from Banishing the Rule of Substitution for Functional Variables As we
have already mentioned, in this paper Henkin introduces two calculi F ∗ and F ∗∗. Both
calculi are incomplete with standard semantics: namely, the set �F ∗ of theorems of F ∗

10In [10] this idea is used in connection with dynamic logic where non-standard models are also intro-
duced. In DL the non standard character came from the fact that the loop operator is not taken as the least
reflexive and transitive closure of a given relation, but as the least in the structure.
11See [8, p. 22].
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is a proper subset of the set |=SS of validities in standard structures, and so is the set of
�F ∗∗ of theorems of F ∗∗:

�F ∗ ⊂ |=SS and �F ∗∗ ⊂ |=SS

We have already seen that the second-order calculus is complete with the general seman-
tics. Henkin mentioned that we can obtain a completeness result for the F ∗ calculus with
the frame semantics: ‘The formal theorems of the system F ∗ consist precisely of those
formulas which are completely valid with respect to every model, as can be shown by the
method of [6]’.12 In fact,

|=F =�F ∗
Henkin does not mention it, but we could prove completeness for F ∗∗ with general

semantics simply by using completeness of F ∗. The advantage here is that the property
of being a general structure can be axiomatized using comprehension. Thus,

|=GS ϕ ⇐⇒ Δ |=F ϕ

(where Δ contains all comprehension axioms as well as extensionality axiom and the
disjoint universes requirement).13

There is another idea, appearing explicitly in the 1953 paper, which is also useful. The
idea is the following: If we weaken comprehension (for instance, for first-order formulas,
or for translations of dynamic or modal formulas, or any other recursive set), then we
obtain a calculus between F ∗ and F ∗∗. And it is easy to find a semantics for the logic
thus defined. Of course, this class of structures is placed between F and GS. The new
logic, call it XL, will also be complete. The reason is that this class of models is again
axiomatizable. In the book, this idea is exploited both in propositional modal logic and
propositional dynamic logic. There, instead of using the calculus F ∗ with the frame se-
mantics, we move directly to many-sorted logic.

Using this philosophy, in the book, I introduce a many-sorted language MSL, with a
higher-order appearance, which will be used as a target language into which to translate
a variety of languages. In the first place, the logic we wish to translate into MSL is SOL
(supplemented with the general semantics of Henkin) and well-known calculi are defined.
The two second-order calculi with a “pedigree” are called MSL and SOL. MSL is a simple
extension of a calculus for FOL obtained by extending the quantification rules to cover
all the new quantified formulas. SOL is obtained by adding the comprehension schema to
MSL.

4 Reducing Other Logics to Many-Sorted Logic

It is argued in [10] that MSL would be the target logic in translation issues, owing to its
efficient proof theory, flexibility, naturalness, and versatility to adapt to reasoning about
more than one type of object. As we shall show in what follows, it is indeed the perfect

12In [7, p. 207].
13See [10, p. 285].
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candidate to act as a unifying framework in which we may situate and compare most of
the many logics available to us.

Now I am going to explain the general idea14 while putting the example of PML
(propositional modal logic).15

4.1 Representation Theorems

The general plan is as follows.
The signature of the logic being studied (call it XL) is transformed into a many-sorted

signature; the expressions of the logic XL are translated into MSL, and the structures of the
logic XL are converted into many-sorted structures. Thus, we need to define a recursive
function, Trans, to do the translation and a direct conversion of structures, Conv1.

A possible approach is to add to the many-sorted structures new universes containing
all the categories of mathematical objects we wish to talk about (and we are able to talk
to) in the logic XL. Thus, we can put into Conv1(A) universes containing the sets and
relations defined in the original structure, A, by the constructs of XL. As a consequence,
we seem to be shifting to SOL instead of MSL. However, we already know how to avoid
using SOL explicitly by using MSL instead; that is, we can have many-sorted universes,
but we have to add membership relations and extensionality.

With the direct conversion of structures we wish to obtain as a result the equivalence of
the validity in the original structures for XL, let us call them simply Str(XL), with validity
of a certain class of many-sorted formulas (the translations) in the class S∗ of converted
structures (where S∗ = Conv1Str(XL)).

Our first goal is to state and prove the following proposition.

Proposition 1 For every sentence ϕ of the XL logic,

|=Str(XL) ϕ in XL iff |=S∗ Trans(ϕ) in MSL.

Of course, the first question to ask is whether or not S∗ can be replaced by the models
of a set Δ of many-sorted formulas. Thus, the key to both definitions, Trans and Conv1, is
to simplify the proof of the semantic equivalence, and in this respect the relevance of the
results obtained depends strongly on the possibility of axiomatizing S∗.

Our first goal is to prove a representation theorem:

Theorem 2 (Representation Theorem) There is a recursive set of L∗-sentences Δ, with
S∗ ⊆Mod(Δ), such that

|=Str(XL) ϕ in XL iff Δ |=Str(MXL∗) ∀Trans(ϕ) in MSL

for every sentence ϕ of the XL logic.

14For a detailed exposition of this technique, see [10, pp. 263–276].
15See [10, pp. 312–332].
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From this theorem, the enumerability for the logic XL follows. Thus, we learn that a
calculus for XL is a natural demand, but we also learn that in MSL we can simulate such
a calculus and that we can then use the theorem prover of MSL, if any.

The Representation Theorem in Propositional Modal Logic

As an example, let us see the case where we reduce PML into a particular many-sorted
language MSL∗. This many-sorted language contains: ⊥, ¬, →, the unary relation sym-
bols P0, P1, P2, . . . the binary relation symbol S, a membership sign and two equalities:
for individuals and for sets. The variables are also of two kinds, individuals and sets. We
use the well-known standard translations, where we write formulas stating in first-order
logic the semantic truth conditions for the modal formulas. Namely,

Trans(⊥)[u] := u �= u
Trans(¬ϕ)[u] := ¬Trans(ϕ)[u]

Trans(ϕ→ψ)[u] := Trans(ϕ)[u]→ Trans(ψ)[u]
Trans(�ϕ)[u] =: ∀v(Suv→ Trans(ϕ)[v])

It is easy to see that the translation of both axiom K and Df♦ expresses evident prop-
erties of quantification, and so these formulas can be proved in MSL as logic theorems. On
the other hand, the translation of axioms T and 4 are formulas needing certain hypothesis
to be proved. Which ones, we wonder?

Let us see the translation of �ϕ→ ϕ

Trans(T )[u] := ∀v(Suv→ Trans(ϕ)[v])→ Trans(ϕ)[u]
and of �ϕ→��ϕ

Trans(4)[u] := ∀v(Suv→ Trans(ϕ)[v])→∀v(Suv→∀w(
Svw→ Trans(ϕ)[w]))

The many-sorted structures we shall use are obtained from the modal structures by
adding a universe containing sets of states or worlds. The intuition behind this construc-
tion is that we wish to have all the sets that can be defined by modal formulas represented
explicitly.

Given a modal structure A

A= 〈
W,R,

〈
PA〉

P∈ATOM.PROP

〉

we build a frame by adding a universe of sets, W′. We say that AF is a frame built on A
iff

AF = 〈
W,W′,R,

〈
PA〉

P∈ATOM.PROP

〉

where:

1. W′ ⊆ ℘W
2. PA ∈W′, for all P ∈ ATOM.PROP.
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A very special class of frames is that of general structures built on modal structures. To
build a general structure, we include in W′ the set DEF of algebraically defined subsets
of W (that is, DEF ⊆W′) plus all the singletons, and all the sets of points accessible from
a given one. DEF contains the empty set, ∅, the whole W, and the interpretations of all
the atomic formulas. DEF is closed under Boolean operations

∀T (T ,S ∈DEF ⇒ T ∪ S ∈DEF&W− T ∈DEF)

and under the operation

∀T (T ∈DEF ⇒Dom
(
R ∩ (W× T )) ∈DEF

)

Out of DEF, but in W′, we have the singletons of all elements of W. W′ also obeys
this rule

∀w(
w ∈W⇒ Rec

(
R ∩ ({w} ×W

)) ∈W′)

Let us use F to refer to the class of all frames built on modal structures and G to refer
to the class of all general structures built on modal structures defined as above.

We can prove that G is contained in the class of frames built on modal structures whose
universe W′ contains the sets defined by modal formulas in its own modal structures. Also,
it can be proved that a modal formula ϕ defines in a modal structure A the same set its
translation defines in any general structure built on A, AG:

AG = 〈
W,W′,R,

〈
PA〉

P∈ATOM.PROP

〉

That is,

AG
(
λuTrans(ϕ)[u])=A(ϕ)

Finally, we prove that validity in PML is equivalent to validity of the universal closure
of the translation in the class G. That is,

|= ϕ in PML ⇐⇒ |=G ∀uTrans(ϕ)[u]
Now the question is, can we give axioms for G?
The answer is yes, since we define the MODO theory having as axioms comprehen-

sion sentences for translations of modal formulas, for atomic formulas with equality, and
for atoms using the binary predicate S, representing the accessibility relation, and the
membership relation ε:

∀∃X∀u(εuX↔ ϕ) where ϕ ∈ Trans(PML)∪ I ∪Σ
I contains all the formulas of the form u= v, and Σ contains all the formulas of the

form, Suv. We also add extensionality because we want to simulate second-order logic in
many-sorted logic.

Now we can prove the following:

Mod(MODO)=G

Using these results, we obtain a representation theorem for the minimal modal
logic, K :

|= ϕ in PML ⇐⇒ MODO |=F ∀uTrans(ϕ)[u] in MSL
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Remark 3 The representation theorem proves enumerability for the logic PML.

Now that we have a representation theorem for the logic K , we look forward a rep-
resentation theorem for the logic S4. Let us use MODO(S4) to refer to the many-sorted
theory obtained by adding to MODO the ‘second-order’ abstract conditions for the modal
formulas T and 4—call them MS(T ) and MS(4).

MS(T ) := ∀uY (∀v(Suv→ ε1vY )→ ε1uY
)

MS(4) := ∀uY (∀v(Suv→ ε1vY )→∀v(Suv→∀w(Svw→ ε1wY)
))

Let D denote the class of reflexive and transitive Kripke structures. The representation
theorem for S4 has the form

|=D ϕ in PML ⇐⇒ MODO(S4) |=F ∀uTrans(ϕ)[u] in MSL

This result is obtained easily because, in the many-sorted calculus, we can prove that
the usual first-order formulations of reflexivity and transitivity are equivalent to MS(T )
and MS(4) modulo the MODO theory.

Remark 4 This situation is better than the one encountered in PML with the semantics of
models. There, a reflexive Kripke structure is a model of T , a transitive one is a model of 4,
etc. But there are irreflexive models of T and intransitive ones of 4. Thus, if we think that
the modal axioms are trying to define their accessibility relation, this could be considered
as a kind of failure. Instead, we can recourse to the so called semantics of frames for
PML. I propose to go just to this environment (the general structures as defined here),
which offers the characterization of the semantic properties of the accessibility relation,
but without losing a calculus.

4.2 The Main Theorem

Now we leave the example for a moment and ask ourselves what else can be done. Is the
representation theorem our top (maximum) goal?

When the XL logic under scrutiny has a concept of logical consequence, we may try to
prove the main theorem; that is, that a consequence in XL is equivalent to the consequence
of its translation in MSL, modulo the theory Δ.

Theorem 5 (Main Theorem) There is a recursive set Δ⊆ Sent (L∗) with S∗ ⊆Mod(Δ),
such that

Π |=Str(XL) ϕ iff Trans(Π)∪Δ |=Str(MXL∗) Trans(ϕ)

for all Π ∪ {ϕ} ⊆ Sent (XL).

To prove the main theorem, a reverse conversion of structures should be defined; our
goal in defining it is to prove that starting from a model of Δ, say, B, and formula ϕ,

|=Conv2(B) ϕ iff |=B ∀Trans(ϕ)
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Remark 6 From theorem 5 it is possible to prove Compactness and Löwenheim–Skolem
for XL. Therefore, the logic under investigation could have a strong complete calculus.

Example 7 (The Main Theorem in PML) In PML the reverse conversion is only the
inverse of the direct conversion (we need only to erase the universe W′), and we ob-
tain easily the main theorem. By using it, we obtain the theorems of compactness and
Löwenheim-Skolem for the logicsK and S4 for free. The proof of the main theorem also
uses the following crucial fact

MODO �MS(T )↔ Reflexivity

MODO �MS(4)↔ Transitivity

4.3 Deductive Correspondence

When the XL logic also has a deductive calculus, we can try to use the machinery of
correspondence to prove, if possible, soundness and completeness for XL.

Since we already have the main theorem and completeness and soundness in MSL, we
would like to complete this picture by proving the double arrow in the bottom line.

Trans(Π)∪Δ |=Str(MSL) Trans(ϕ) ⇐⇒ Π |=Str(XL) ϕ

0
Trans(Π)∪Δ �MSL Trans(ϕ) ⇐⇒ Π �XL ϕ

The left arrow is usually very easy because you can add the required axioms to Δ. In
some cases it is better to use the canonical model construction.

Example 8 (Testing the Modal Calculus K and S4) In the case of the logic K , the left
arrow is obtained easily because the translations of both K and Df♦ express obvious
properties of quantification. The rule of necessitation is also preserved under transla-
tions. As far as the logic S4 is concerned, using comprehension and MS(T ) as well as
MS(4), we obtain the desired translation of any given occurrence of T or 4 as theorems
of Trans(Π)∪Δ.

In modal logic, given a logic, say B , there is the canonical model, BB , whose universe
W contains all maximal B-consistent sets and whose accessibility relation is defined as

{〈x, y〉 : {ϕ :�ϕ ∈ x} ∈ y}

From this model, by direct conversion, we obtain the canonical general structure,

BBG.

For the logicK , this structure is not only a model of MODO, but we can also prove that
the translation of a modal formula ϕ is true at a point t of the canonical general structure
if and only if, in that point, the formula is in t

|=BBG[t] Trans(ϕ)[u] ⇐⇒ ϕ ∈ t
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We can now prove

|=BBG ∀uTrans(ϕ)[u] =⇒ �K ϕ
Finally, we have

MODO �MSL ∀uTrans(ϕ)[u] ⇐⇒ �K ϕ
Using these results we finally arrive at the completeness and soundness of the minimal

modal logic, K , of PML. We have avoided making a direct proof; we just dragged these
properties from MSL.

For the logic S4 a similar result is also obtained:

MODO(S4) �MSL ∀uTrans(ϕ)[u] ⇐⇒ �S4 ϕ

Thus, a soundness and completeness result is now easily accomplished.

Remark 9 If somebody ask us what have been achieved, the answer is that we now have
a bunch of logics in our net.
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Henkin and Hybrid Logic

Patrick Blackburn, Antonia Huertas, María Manzano, and Klaus Frovin Jørgensen

Abstract Leon Henkin was not a modal logician, but there is a branch of modal logic that
has been deeply influenced by his work. That branch is hybrid logic, a family of logics
that extend orthodox modal logic with special propositional symbols (called nominals)
that name worlds. This paper explains why Henkin’s techniques are so important in hy-
brid logic. We do so by proving a completeness result for a hybrid type theory called HTT,
probably the strongest hybrid logic that has yet been explored. Our completeness result
builds on earlier work with a system called BHTT, or basic hybrid type theory, and draws
heavily on Henkin’s work. We prove our Lindenbaum Lemma using a Henkin-inspired
strategy, witnessing ♦-prefixed expressions with nominals. Our use of general interpre-
tations and the construction of the type hierarchy is (almost) pure Henkin. Finally, the
generality of our completeness result is due to the first-order perspective, which lies at the
heart of both Henkin’s best known work and hybrid logic.

Keywords Hybrid logic · Modal logic · Higher-order logic · Rigidity · Henkin
constants · Henkin models · Bounded fragment

1 Introduction

Leon Henkin was not a modal logician, but there is a branch of modal logic that has
been deeply influenced by his work. That branch is hybrid logic, a family of logics that
extends orthodox modal logic with special propositional symbols (called nominals) that
name worlds. This paper explains why Henkin’s influence on hybrid logic runs so deep,
and we do so by proving a completeness result for a hybrid type theory that we call HTT.
But before diving into higher-order logic, let us informally introduce the two central ideas
of basic hybrid logic.

The first idea is to add special propositional symbols called nominals to an orthodox
modal language and to insist that in every model, nominals are true at precisely one world.
Nominals name worlds by being true there and there only. Consider the following exam-
ple:

¬♦i.
Here i is a nominal (nominals are conventionally written i, j , and k). Suppose we are
working in a model in which the nominal i names the world w. Then this expression
will be true at w if and only if w is not accessible from itself via R, the usual modal
accessibility relation between worlds.
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The second idea is to add modalities of the form @i , where i can be any nominal.
The intended semantics is written into the notation: a formula of the form @iϕ is true at
a world w if and only if ϕ is true at the world w′ named by the nominal i. Note that a
formula of the form @iϕ is either true at all worlds or false at all worlds: if ϕ is true at the
world named by i, then @iϕ is true at all worlds w; otherwise, it is (everywhere) false.
To put it another way, @i is a rigidifying operator. In any model, the world w where we
evaluate @iϕ is irrelevant: this expression always returns the truth value that ϕ has at the
world named i.

The basic propositional hybrid language has been intensively investigated. It is decid-
able, indeed PSPACE-complete, just like orthodox propositional modal logic (see [2]),
and it extends the expressive power of orthodox propositional modal logic (see [3] for
a useful survey and [9] for a detailed account). Most relevantly for this paper, its com-
pleteness theory is well understood; simple and general results covering many important
classes of models are known ([4], Chap. 7.3, and [7] are good starting points, and [9]
is close to definitive). These results lift to first-order hybrid logic in full generality, and
in [1] they were lifted to higher-order logic with the completeness proof for BHTT, basic
hybrid type theory.

The BHTT system is an almost direct combination of Henkin-style type theory with
basic propositional hybrid logic. But the “almost” is important since in a higher-order
setting it is natural to interpret @ as a rigidifier that can be applied not merely to formulas,
but to expressions of arbitrary type. That is, suppose αa is an expression of type a. In
BHTT, when we evaluate @iαa at a world w, it rigidly returns the value of αa at the world
named i. This interpretation of @ is conceptually and technically appealing, and we use
@ as a general rigidifier in this paper too.

HTT, the higher-order logic we work with in this paper, is BHTT enriched with the ↓
binder. Consider again the expression ¬♦i. When working with ↓, we are free to replace
nominals with state variables (typically written s and t) and to use ↓ to bind the result. So
we can form:

↓s(¬♦s).
So syntactically, ↓ binds out nominals.1 But what is its semantic effect?

The ↓ binder works locally: it binds state variables to the world of evaluation. That
is, when we evaluate an expression of the form ↓sϕ at a world w, the state variable s is
bound tow, and all occurrences of s within the scope of ↓s are interpreted as names forw.
Consider ↓s(¬♦s) again. When we evaluate it at w, s is bound to w, and this means that
the s in ¬♦s is to be interpreted as a name for w. Hence, ¬♦s is true at w if and only if w
is not accessible from itself via R. So there is an important difference between ¬♦i and
↓s(¬♦s). In any model, the nominal i is a fixed name for a world; hence, ¬♦i only tests
for irreflexivity when evaluated at the unique world named i. But ↓s(¬♦s) binds the state
variable s to the world of evaluation; hence, it is an expression that tests for irreflexivity
at every world in a model.

Basic propositional hybrid logic enriched with ↓ has also been intensively investigated.
It is undecidable (see [5]), and elegant model-theoretically (see [2] and [9]). Moreover, its
completeness theory is well understood, and we will build on what is known in this paper.

1Some authors bind nominals directly, forming expressions like ↓i(¬♦i). There is nothing wrong with
this, but it seems neater to draw a syntactic distinction between state variables (which are open to binding)
and nominals (which are not).
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We proceed as follows. In Sect. 2 we define the syntax and semantics of HTT; we illus-
trate a common pattern of interaction between @ and ↓ and define substitution in detail.
In Sect. 3 we axiomatize HTT over the class of all models. We discuss three variant ax-
iomatizations; thinking about their differences will help us see why (and where) Henkin’s
techniques are important in hybrid logic. In Sect. 4 we prove completeness, building on
the earlier proof for BHTT. As we shall see, the Lindenbaum construction for BHTT does
not need to be modified; ↓ is handled automatically. In Sect. 5 we lift a general result
from propositional hybrid logic to HTT; we show that we can add certain hybrid theories
as additional axioms and automatically gain completeness and show that these axioms
are equivalent in expressive power to the bounded fragment of first-order logic. In Sect. 6
we conclude by asking where Henkin’s influence is most important in hybrid logic. We
answer the question by looking more closely at a key proof rule in one of our axiomatiza-
tions.

2 Syntax and Semantics of HTT

In this section we introduce the syntax and (standard and general) semantics for HTT.
Our definitions are those given for BHTT in [1] extended with the clauses for ↓ and state
variables (the nominal-like variables that ↓ binds). After our preliminary work, we discuss
substitution and rigidity.

2.1 Syntax

Definition 1 (Syntax of HTT) Types. Let t and e be two fixed objects. We define the set
TYPES of types of HTT to be

TYPES ::= t | e | 〈a, b〉 with a, b ∈ TYPES and a �= t.

Meaningful Expressions The set MEa of meaningful expressions of type a consists of
the basic and complex expressions of type a we now define.

Basic Expressions For each type a �= t , we have a denumerably infinite set CONa of
nonlogical constants cn,a , where n is a natural number. Constants of type t are truth and
falsity, that is, CONt = {%,⊥}, and we define CON to be

⋃
a CONa . For each type a �= t ,

we have a denumerably infinite set VARa of variables vn,a , where n is a natural number,
and we define VAR to be

⋃
a VARa . Finally, for type t , we have a denumerably infinite set

NOM of nominals in and a denumerably infinite set SVAR of state variables sn, where n
is a natural number. We define HYB to be NOM∪ SVAR.

Summarizing, for each natural number n, we have:

in ∈MEt | sn ∈MEt | cn,a ∈MEa | vn,a ∈MEa with a �= t.

Complex Expressions These are generated as follows:
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(γ〈b,a〉βb) ∈MEa | (λubαa) ∈ME〈b,a〉 | (@iαa) ∈MEa | (@sαa) ∈MEa
{(
αa = α′a

)
, (¬ϕt ), (ϕt ∧ψt), (∀ubϕt ), (�ϕt ), (↓sϕt )

}⊆MEt ,

where αa,α′a ∈ MEa , βb ∈ MEb, γ〈b,a〉 ∈ ME〈b,a〉, ub ∈ VARb , i ∈ NOM, s ∈ SVAR, and
ϕt ,ψt ∈MEt . As this notation illustrates, we sometimes explicitly give the type of a mean-
ingful expression (writing, for example, αa as we just did) to emphasize that α ∈ MEa .
The remaining booleans, the quantifier ∃ and the diamond ♦, are defined in the famil-
iar way. We routinely drop outermost brackets and drop others when this will not result
in ambiguity. Given a set of expressions Δ, we define CON(Δ), NOM(Δ), VAR(Δ), and
SVAR(Δ) to be (respectively) the sets of constants, nominals, variables, and state vari-
ables occurring in expressions in Δ. We often call expressions of type t formulas.

For those unfamiliar with propositional or first-order hybrid logic, the following point
should be stressed: nominals can occur in two distinct syntactic positions, and state vari-
ables can occur in three. To give some simple examples, the following expressions are
meaningful expressions of type t in which the nominal i and the state variable s occur in
formula position:

i s i ∨¬i �(s→ i)→ (�s→�i) ♦♦s→ ♦s.

The following are also meaningful expressions of type t , but here we see the nominal
i and the state variable s also occurring in operator position, that is, in expressions of the
forms @i and @s , respectively:

@i i @i s @s(i ∨¬i) @i (s→ i)→ (@i s→@i i) @s(♦♦s→ ♦s).

Finally, here are three examples in which state variables occur in binding position, that is,
in patterns like ↓s and ↓t :

↓s(¬♦s) ↓s(♦♦s→ ♦s) ↓s��↓t@s♦t.

In these examples, all occurrences of the state variables s and t—whether in formula,
operator, or binder position—have been bound by the ↓ binder. Now, there are two other
binders in our language, namely the familiar ∀ and λ binders that bind ordinary variables,
so before going further, let us be precise about the concepts of freedom and bondage for
the three binders of HTT.

Definition 2 (Freedom and Bondage) Given a meaningful expression α, the set of free
variables occurring in αa (notation FREE(α)) is given by:

FREE(v)= {v} for v ∈ VAR

FREE(τ )= ∅ for τ ∈ CON∪NOM∪ SVAR

FREE(α = β)= FREE(αβ)= FREE(α ∧ β)= FREE(α)∪ FREE(β)

FREE(¬α)= FREE(�α)= FREE(α)

FREE(@iα)= FREE(@sα)= FREE(↓sα)= FREE(α)

FREE(∀uα)= FREE(λuα)= FREE(α)\{u}.
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Given a meaningful expression α, the set of free state variables occurring in αa (notation
SFREE(α)) is defined as follows:

SFREE(s)= {s} for s ∈ SVAR

SFREE(τ )= ∅ for τ ∈ CON∪NOM∪ VAR

SFREE(α = β)= SFREE(αβ)= SFREE(α ∧ β)= SFREE(α)∪ SFREE(β)

SFREE(¬α)= SFREE(�α)= SFREE(α)

SFREE(∀uα)= SFREE(λuα)= SFREE(α)

SFREE(@iα)= SFREE(α)

SFREE(@sα)= SFREE(α)∪ {s}
SFREE(↓sα)= SFREE(α)\{s}.

If a variable v is free in a meaningful expression α, then it is bound in both ∀vα and
λvα. Similarly, if a state variable s is free in a meaningful expression α, then it is bound
in ↓sα. A meaningful expression αt of type t is called a sentence if and only if all the
variables and state variables it contains are bound, that is, if and only if FREE(αt ) ∪
SFREE(αt )= ∅.

Summing up, variable binding and state variable binding are distinct. Ordinary vari-
ables can only be bound by ∀ or λ, whereas state variables can only be bound by the ↓
binder. Moreover, it should be clear (at least syntactically) that state variables are essen-
tially nominals open to ↓ binding, so we could have stated the syntactic clauses for nom-
inals and state variables more compactly by stipulating that for all hn ∈ HYB, hn ∈ MEt ,
and @hαa ∈MEa .

Nominals and @i operators are the tools characteristic of basic hybrid logic, and the
BHTT system defined in [1] is built over them. The ↓ binder takes us to a richer hybrid
logic, and the HTT of this paper differs from BHTT precisely by its addition. Nominals
and expressions of the form @iαa (where i is any nominal) will play the central role in the
completeness result for HTT: models will be built Henkin-style out of equivalence classes
of witness nominals, and expressions of the form @iαa will specify how information is to
be distributed. Indeed, as far as our fundamental completeness result is concerned, state
variables and the ↓ binder play a rather passive role: HTT can be axiomatized by adding a
single axiom schema to the axiomatization of BHTT. The ↓ binder will make its presence
felt when we strengthen our fundamental completeness result.

2.2 Semantics

Definition 3 (HTT Models) A standard structure (or standard model) for HTT is a pair
M = 〈S ,F〉 such that

1. S = 〈〈Da〉a∈TYPES,W,R〉 is a standard skeleton, where:
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a. 〈Da〉a∈TYPES, the standard type hierarchy, is defined as follows:

Dt = {T ,F } is the set of truth values,

De �= ∅ is the set of individuals,

D〈a,b〉 = DDa
b is the set of all functions from Da into Db

for a, b ∈ TYPES, a �= t.
b. W �= ∅ is the set of worlds.
c. R ⊆W ×W is the accessibility relation.
d. The pair 〈W,R〉 is called a frame; when working with a given model M , we some-

times talk about its underlying frame.

2. The denotation function F assigns to each nonlogical constant a function from W to
elements of appropriate type and assigns to each nominal a function fromW to the set
of truth values. More precisely:

a. For any constant cn,a , we define F(cn,a) : W −→ Da . Moreover, (F(%))(w) = T
and (F(⊥))(w)= F for any world w ∈W .

b. F(i) :W −→ {T ,F } such that (F(i))(v) = T for a unique v ∈W . To simplify no-
tation, we sometimes write F(i) = {v} and say that v is the denotation of i or the
world named by i.

Note that we are working with a constant domain semantics: we have a fixed type hi-
erarchy 〈Da〉a ∈ TYPES, and F interprets all constants on this fixed domain. Furthermore,
recall that a central idea of propositional hybrid logic is to use propositions as names.
Because nominals are true at precisely one world in any model, they can be thought of
as naming that world by being true there and there only. Our interpretation of nominals
in type theory imports this basic idea to the richer setting: the interpretational constraint
ensures that nominals act as world names.

We interpret ordinary variables and state variables via assignments:

Definition 4 An assignment g is a function with domain VAR ∪ SVAR such that for any
variable vn,a , we have g(vn,a) ∈ Da , and for any state variable s, we have g(s) ∈W .

An assignment g′ is a v-variant of g if and only if it coincides with g on all values
except, perhaps, on the value assigned to the variable v. We use gθv to denote the v-variant
of g whose value for v ∈ VARa is θ ∈ Da . Similarly, g′ is an s-variant of g if and only
if it coincides with g on all values except, perhaps, on the value assigned to the state
variable s. We use gws to denote the s-variant of g whose value for s is w ∈W .

There are two things to note about this definition. First, it treats ordinary variables
in the manner familiar from Henkin’s work. Second, it treats state variables as syntactic
entities that name worlds. An ordinary nominal is true at a unique world. An assignment
maps a state variables to a unique world. State variables are essentially nominals open to
binding by the ↓ binder.

Definition 5 (HTT Interpretations) A standard interpretation is a pair 〈M , g〉, where M
is a standard structure for HTT, and g is a variable assignment on M . Given a standard
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structure M = 〈〈〈Da〉a∈TYPES,W,R〉,F〉 and an assignment g, we recursively define, for
any meaningful expression α, the standard interpretation of α with respect to the model
M and the assignment g, at the world w, denoted by �α�M ,w,g , as follows:

1. �τ�M ,w,g = (F(τ ))(w) for τ ∈ CON∪NOM.

2. �vn,a�M ,w,g = g(vn,a) for vn,a ∈ VARa .

3. �s�M ,w,g = T if g(s)=w and F if g(s) �=w for s ∈ SVAR.

4. �λubαa�M ,w,g = f , where, for any θ ∈ Db, f : Db −→ Da is the function defined by

f (θ)= �αa�
M ,w,gθub .

5. �α〈b,a〉βb�M ,w,g = �α〈b,a〉�M ,w,g(�βb�M ,w,g).

6. �αa = βa�M ,w,g = T iff �α�M ,w,g = �β�M ,w,g .

7. �¬ϕt�M ,w,g = T iff �ϕt�M ,w,g = F .

8. �ϕt ∧ψt�M ,w,g = T iff �ϕt�M ,w,g = T and �ψt�M ,w,g = T .

9. �∀xaϕt�M ,w,g = T iff for all θ ∈ Da , �ϕ�M ,w,gθxa = T .

10. ��ϕt�M ,w,g = T iff for all v ∈W such that 〈w,v〉 ∈R, �ϕt�M ,v,g = T .

11. �@iαa�M ,w,g = �αa�M ,v,g , where {v} = F(i).

12. �@sαa�M ,w,g = �αa�M ,v,g , where v = g(s).
13. �↓sϕt�M ,w,g = T iff �ϕt�M ,w,gws = T .

Some remarks on the clauses covering nominal and state variables. Consider Clause 1
when τ is a nominal. This covers occurrences of i in formula position, and in such cases,
i should be true at precisely the world it denotes. Because of the constraint on the interpre-
tation of nominals, this is what Clause 1 gives us. Next consider Clause 11, which covers
occurrences of i in operator position. We want @iα to be an expression (of the same type
as α) that rigidly yields the value of α at the world named by i. Clause 11 gives us this.

Now for state variables. Clause 3 covers occurrences of s in formula position. State
variables are assigned a unique world, the world they name. As they are expression of type
t , they should be true at that world and at that world only, which is what Clause 3 insists
upon. Clause 12 deals with s in operator position and says that @sαa is true at a world w
if and only if αa is true at v, the world named by s. This mirrors the clause for nominals
in operator position, and indeed we could collapse Clauses 11 and 12 together by stating
that for all h ∈ HYB, �@hαa�M ,w,g is �αa�M ,v,g , where v is the world named by h.

But state variables were only introduced to support the ↓ binder that distinguishes HTT
from BHTT, so Clause 13 is the real novelty. This says that ↓sϕ binds s to the world of
evaluation and that all occurrences of s in ϕ within its scope are to be interpreted as names
for this world. So to speak, ↓s creates a temporary name s for the world of evaluation.
Consider again the expression ↓s(¬♦s) we discussed in the introduction. As we said
there, ↓ binds s to the world of evaluation. The semantics just defined guarantees that if
we evaluate this expression at any world w in any model, it will be true precisely when w
is not accessible (via R) from itself.

Let us look at a second example, which illustrates a common theme: ↓ binding a state
variable occurring in an @ operator under its scope. Let Woman be an expression of type
〈e, t〉 that picks out the women in each possible world, and let Potus be an expression of
type e that picks out the President of the United States in each possible world. Suppose
that an American voter murmurs: The President of the United Sates might be a woman.
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We shall consider three readings of this sentence. The first is that the voter is thinking
about a possible world in which Barack Obama is a woman:

↓s♦(Woman(@sPotus)
)
.

This expression is correctly typed: Potus is of type e, hence so is @sPotus, hence Woman
can be applied to it yielding the type t expression Woman(@sPotus). Prefixing this with
↓s♦ yields the above sentence. This expresses the first reading of the utterance: s is bound
to the utterance world, which means that the embedded expression @sPotus must be
evaluated at the utterance world too, yielding the value Obama. So the voter is musing
about what it might be like in a possible world in which Obama is a woman.

On the other hand, maybe our voter simply meant this:

♦(Woman Potus).

That is, perhaps our voter merely meant that there was some possible world in which the
president in that world (whoever she may be) is a woman. Well, perhaps. Indeed, if our
voter had lived in (say) 1950, this reading may have been all that the voter considered
possible.

But it is also possible (indeed, nowadays more likely) that our voter is musing about the
growing number of powerful American woman politicians and means that: The President
of the United Sates might be a woman existing in the utterance world. We can express this
by

↓s♦((@sWoman) Potus
)
.

This is also correctly typed: Woman is of type 〈e, t〉, hence so is @sWoman, and so this
can be applied to the type e expression Potus. This yields an expression of type t , and, as
before, prefixing ↓s♦ gives us a sentence. But note the difference: the bound state variable
s forces Woman to be evaluated at the utterance world, hence the sentence is true if and
only if there is an individual in some accessible possible world who is president there and
a woman in the utterance world.

This example illustrates an important point: @ and ↓ are a powerful team. The @
operator is a rigidifying operator for all types: it universalizes a local value. The ↓ binder
enables us to force evaluation of state variable at the current world: it is a localizing binder.
And when, as in the Potus example, an occurrence of ↓s is used to “store” a value for s
which is later “retrieved” by occurrences of @s under its scope, we are able to shift the
evaluation of embedded expressions to the world named s and hence to draw interesting
distinctions.

2.3 General Semantics

The standard semantics for higher-order logic is strong: if we define validity as truth in
all standard structures, then the set of validities cannot be axiomatized. In 1950 Henkin
proposed a weaker notion of interpretation for higher-order logic (see Henkin [13, 14]).
As he showed, defining validity with respect to general interpretations lowers the logical
complexity of validity (since there are more generalized structures than standard ones,
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it becomes easier to falsify a formula, so there are fewer validities), and this new notion
of validity can be axiomatized in a natural way. We follow Henkin’s approach and prove
our completeness results with respect to general interpretations.

Definition 6 (HTT Skeletons and Structures) A type hierarchy is a family 〈Da〉a∈TYPES of
sets defined recursively as follows:

De �= ∅,
Dt = {T ,F },

D〈a,b〉 ⊆ DDa
b for a, b ∈ TYPES, a �= t.

A skeleton S = 〈〈Da〉a∈TYPES,W,R〉 is a triple satisfying all the conditions of a
standard skeleton except that 〈Da〉a∈TYPES is a (not necessarily standard) type hierarchy.
A structure (or model) is a pair M = 〈S ,F〉 where S is a skeleton and F is a denotation
function.

This definition encapsulates the idea that we do not need all the functions from Da
to Db to interpret expressions of type 〈a, b〉. However, we do need enough functions to
interpret all the expressions of our language, which motivates the following:

Definition 7 (General Interpretation) A general interpretation is a pair 〈M , g〉 where
M is a structure, g a variable assignment, and for any meaningful expression in MEa , its
interpretation (as given by Definition 5) is in Da .

That is, from now on, given a (not necessarily standard) model M , an assignment g,
and an expression α, we will interpret α in M using the clauses given in Definition 5.

We can now define consequence and validity. Note that these definitions really do gen-
eralize the standard ones since every standard interpretation is a generalized interpretation
(but not conversely).

Definition 8 (Consequence and Validity) Let Γ ∪ {ϕ} ⊆MEt , and M be a structure. We
define consequence and validity as follows:

Consequence: We say that ϕ is a consequence of Γ , written Γ |= ϕ, if and only if for
all general interpretations 〈M , g〉 and all w ∈W , if �γ �M ,w,g = T for all γ ∈ Γ , then
�ϕ�M ,w,g = T .

Validity: We say that ϕ is valid, written |= ϕ, if and only if ϕ is a consequence of the
empty set (that is ∅ |= ϕ).

A useful way of thinking about generalized interpretation is as a mechanism that re-
duces higher-order logic to first-order logic, or (perhaps better) as a mechanism that picks
out the higher-order validities that are essentially first-order from the rich space of stan-
dard higher-order validities; for useful discussions, see [16] and [15]. We mention this
because we are going to use Henkin’s method of constants to prove a completeness result,
Theorem 7, that covers a wide range of frame classes. From an orthodox modal perspec-
tive, this result is atypically general. But when viewed from the first-order perspective that
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underpins Henkin’s work, its generality is natural since, as we shall see in Sect. 5, the hy-
brid machinery used in this paper is essentially first-order. Indeed, the pure nominal-free
sentential fragment we shall discuss there is essentially hybrid notation for the bounded
fragment of the first-order language of frames.

2.4 Substitution and Rigidity

To conclude this section, some syntactic lemmas concerning substitution and rigidity.
Our first lemma is Lemma 9 from [1] extended to cover state variables. It is proved by
induction on the structure of terms, and we leave it to the reader. The inductive steps for
λ and ∀ can be found in [1].

Lemma 1 (Agreement for Variables and State Variables) Let g and h be assignments
that agree on the values assigned to the free variables and state variables of α; that is,
f and g agree on the values they assign to all the elements of FREE(αa) ∪ SFREE(αa).
Let 〈M , g〉 and 〈M , h〉 be general interpretations. Then for any world w, we have that
�αa�M ,w,g = �αa�M ,w,h.

We now define substitution. We first deal with substitution for state variables. This is
simpler than ordinary variable substitution since the only expressions substitutable for
a free state variable are nominals and state variables, that is, elements h of HYB. Any
such h is a basic expression, and since neither nominals nor state variables can be bound
by λ or ∀, we do not have to worry about accidental binding from these sources. So we
need merely specify how any h ∈ HYB should be substituted into formula, operator, and
binding positions.

Definition 9 (State Variable Substitution) Let h ∈ HYB. We define, for all αa ∈MEa , the
substitution of h for a state variable s in αa , written αa(hs ), as follows:

1. τ

(
h

s

)
:= τ for τ ∈ CON∪ VAR∪NOM.

2. s′
(
h

s

)
:=

{
h if s′ = s,
s′ if s′ �= s.

3. (λupβb)

(
h

s

)
:= λup

(
βb

(
h

s

))
.

4. (β〈b,a〉δb)
(
h

s

)
:= β〈b,a〉

(
h

s

)
δb

(
h

s

) ∣∣∣∣ (βb = δb)
(
h

s

)
:= βb

(
h

s

)
= δb

(
h

s

)
.

5. (¬ϕ)
(
h

s

)
:= ¬

(
ϕ

(
h

s

)) ∣∣∣∣ (ϕ ∧ψ)
(
h

s

)
:= ϕ

(
h

s

)
∧ψ

(
h

s

)
.

6. (∀upβb)
(
h

s

)
:= ∀up

(
βb

(
h

s

))
.
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7. (�ψ)
(
h

s

)
:=�

(
ψ

(
h

s

))
.

8. (@iβb)

(
h

s

)
:=@i

(
βb

(
h

s

))
.

9. (@s′βb)

(
h

s

)
:=

{
@h(βb(

h
s
)) if s′ = s,

@s′(βb(
h
s
)) if s′ �= s.

10.
(↓s′βb

)(h
s

)
:=

⎧
⎨

⎩

↓s′βb if s /∈ SFREE(↓s′βb),
↓s′βb if s ∈ SFREE(↓s′βb) and h= s′,
↓s′(βb(hs )) if s ∈ SFREE(↓s′βb) and h �= s′.

With state variable substitution (h
s
) at our disposal, we can define ordinary variable

substitution ( γc
vc
), the substitution of a (possibly complex) expression γc for a free variable

of type c. Since γc may be complex, accidental binding is an issue. However, it is a
well understood issue. The following definition is (for the most part) standard: it uses the
usual type-theoretic definitions that prevent accidental binding of ordinary variables by λ
and ∀. Only the ↓ clause requires comment. As we know, we can freely substitute ordinary
variables under the scope of the ↓ binder; accidental binding of ordinary variables in γc
by ↓ is impossible. But γc may contain free occurrences of the state variable s, and we
must prevent ↓s from accidentally binding these. But this is easily done: we need merely
make use of state variable substitution (h

s
) as just defined.

Definition 10 (Variable Substitution) For all αa ∈ MEa , the substitution of γc for a vari-
able vc in αa , written αa(

γc
vc
), is defined as follows:

1. τ

(
γc

vc

)
:= τ for τ ∈ CON∪NOM∪ SVAR.

2. va

(
γc

vc

)
:=

{
γc if va = vc,
va if va �= vc.

3. (λupβb)

(
γc

vc

)
:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λupβb if vc /∈ FREE(λupβb),

λup(βb(
γc
vc
)) if vc ∈ FREE(λupβb), up /∈ FREE(γc),

(λxp(βb
xp
up
))(

γc
vc
) if vc ∈ FREE(λupβb), up ∈ FREE(γc),

xp new.

4.
(
β〈b,a〉δb

)(γc
vc

)
:= β〈b,a〉

(
γc

vc

)
δb

(
γc

vc

) ∣∣∣∣

(
βb = δb

)(
γc

vc

)
:= βb

(
γc

vc

)
= δb

(
γc

vc

)
.

5. (¬ϕ)
(
γc

vc

)
:= ¬

(
ϕ

(
γc

vc

)) ∣∣∣∣ (ϕ ∧ψ)
(
γc

vc

)
:= ϕ

(
γc

vc

)
∧ψ

(
γc

vc

)
.

6. (∀upψ)
(
γc

vc

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

∀upψ if vc /∈ FREE(∀upψ),
∀up(ψ(γcvc )) if vc ∈ FREE(∀upψ), up /∈ FREE(γc),

(∀xp(ψ xp
up
))(

γc
vc
) if vc ∈ FREE(∀upψ), up ∈ FREE(γc),

xp new.
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7. (�ψ)
(
γc

vc

)
:=�

(
ψ

(
γc

vc

))
.

8. (@iβb)

(
γc

vc

)
:=@i

(
βb

(
γc

vc

))
.

9. (@sβb)

(
γc

vc

)
:=@s

(
βb

(
γc

vc

))
.

10. (↓sψ)
(
γc

vc

)
:=

⎧
⎨

⎩

↓sψ if vc /∈ FREE(↓sψ),
↓sψ(γc

vc
) if vc ∈ FREE(↓sψ), s /∈ SFREE(γc),

(↓t (ψ t
s
))(

γc
vc
) if vc ∈ FREE(↓sψ), s ∈ SFREE(γc), t new.

We now define rigid expressions. These are expressions that have the same value at
all worlds. They play an important role in our axiomatization, and equivalence classes of
rigid expressions are the Lego bricks of the Henkin-style type hierarchy construction we
use in the completeness proof.

The following definition is Definition 11 of [1] extended to cover state variables in
both formula and operator position.

Definition 11 (Rigid Expressions) The set RIGIDS, consisting of rigid meaningful ex-
pressions, is defined as follows:

RIGIDS ::= ⊥ | % | h | va |@hθa | λvbαa | γ〈b,a〉βb | αb = βb | ¬ϕt | ϕt ∧ψt | ∀vaϕt ,

where h ∈ HYB, θa ∈MEa , and αa , βb , γ〈b,a〉, ϕt , ψt ∈ RIGIDS. We say that α ∈ RIGIDSa
if α is rigid and of type a, that is, if α ∈ RIGIDS∩MEa .

Unsurprisingly, ↓ is conspicuous by its absence since ↓ does not rigidify. As a sim-
ple example, consider the sentence ↓s(♦s). In any model containing both reflexive and
irreflexive worlds, this sentence is true at all the reflexive worlds and false at the rest.

Lemma 2 Let 〈M , g〉 be a general interpretation. Then for any γ ∈ RIGIDS, we have
that �γ �M ,w,g = �γ �M ,v,g for all w,v ∈W .

Proof By induction on the construction of rigid expressions. The steps for λvbαa and
∀vaϕ can be found in the proof of Lemma 12 in [1]. �

Rigid expressions behave straightforwardly with respect to substitution:

Lemma 3 (Rigid Substitution) Let 〈M , g〉 be a general interpretation. Then for all
worlds w, all αa ∈MEa , all h ∈ HYB, and all state variables s,

�

αa

(
h

s

)�M ,w,g

= �αa�M ,w,ghs ,

where h is an abbreviation for �h�M ,w,g , that is, it is the world named by h.
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Furthermore, for all worlds w, all αa ∈MEa , all meaningful expressions γc of type c,
and all variables vc ∈ VARc,

�

αa

(
γc

vc

)�M ,w,g

= �αa�M ,w,g
γc
vc ,

where γc is an abbreviation for �γc�M ,w,g .

Proof By induction on the construction of expressions. Use Lemma 1. �

3 Axiomatizing HTT

We shall now axiomatize HTT by adding a single axiom schema to the BHTT axiomatiza-
tion of [1]. We call this axiomatization K1. At the end of this section we note two more
axiomatizations, K2 and K3.2 The differences between these systems are unimportant as
far as our technical results are concerned, but at the end of the paper we will discuss what
K2 tells us about Henkin’s influence in hybrid logic.

3.1 Axioms

As axioms we take all HTT instances of propositional tautologies together with all HTT
instances of the following schemas; we use h and h′ as metavariables over elements of
HYB.

1. Distributivity schemas:

a. �-distributivity: ��(ϕ→ψ)→ (�ϕ→�ψ).
b. @-distributivity: �@h(ϕ→ψ)→ (@hϕ→@hψ).
c. ∀-distributivity: � ∀xb(ϕ→ψ)→ (∀xbϕ→∀xbψ).

2. Quantifier schemas:

a. ∀-elimination: For βb rigid, � ∀xbϕ→ ϕ(
βb
xb
).

b. Vacuous: � ϕ→∀yaϕ, where ya does not occur free in ϕ.

3. Equality schemas:

a. Reflexivity: � αa = αa .
b. Substitution: For αa , βa rigid, � αa = βa→ (δc(

αa
va
)= δc(βava )).

4. Functional schemas:

a. Extensionality: � ∀vb(γ〈b,a〉vb = δ〈b,a〉vb)→ γ〈b,a〉 = δ〈b,a〉, where vb does not oc-
cur free in γ〈b,a〉 or δ〈b,a〉.

2In modal logic, the basic proof system is usually called K in honor of Saul Kripke. The three axiomati-
zations considered here are alternative ways of providing a basic proof system for HTT.
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b. β-conversion: For rigid βb , � (λxbαa)βb = αa(βbxb ).
c. η-conversion: � (λxbγ〈b,a〉xb)= γ〈b,a〉, where xb is not free in γ〈b,a〉.

5. Basic hybrid schemas:

a. Selfdual: �@hϕ↔¬@h¬ϕ.
b. Intro: � h→ (ϕ↔@hϕ).
c. Back: � ♦@hϕ→@hϕ.
d. Ref : �@hh.
e. Agree: �@h′@hαa =@hαa .

6. Domain schema:

a. Hybrid Barcan: � ∀xb@hϕ↔@h∀xbϕ.

7. Basic hybrid type theory schemas:

a. Equality-at-named-worlds: �@h(βb = δb)= (@hβb =@hδb).
b. Rigid function application: �@h(γ〈b,a〉βb)= (@hγ〈b,a〉)(@hβb).
c. Rigids are rigid: If αa is rigid, then �@hαa = αa .

8. Downarrow schema:

a. DA: �@i (↓sϕ↔ ϕ( i
s
)).

The first seven groups of schemas are those used in [1] to axiomatize BHTT. In the
present paper, these schemas range over HTT expressions (not merely BHTT expressions),
and operators of the form @i and @j have been replaced by operators of the form @h

and @h′ to reflect the addition of state variables, but otherwise the systems are identical.
Moreover, with the exception of the Basic hybrid type theory schemas, which were intro-
duced in [1], these schemas are familiar from either higher-order logic or hybrid logic.

Now, to move from BHTT to HTT, we need only add the DA schema. Readers familiar
with hybrid logic will recognize this as a standard schema used to prove completeness
when ↓ is added to basic (propositional or first-order) hybrid logic. The DA schema spells
out the locality of ↓ with admirable precision: when we are working at a world named i,
we are free (reading the ↔ in the left to right direction) to eliminate ↓ by substituting i
for bound occurrences of s, or (reading it in the right to left direction) to use ↓s to bind
out occurrences of i. Because this schema captures the local semantics of ↓ so cleanly,
the completeness proof for BHTT needs only relatively minor modifications to extend it
to HTT.

3.2 Rules of Proof

1. Modus Ponens: If � ϕ and � ϕ→ψ , then �ψ .
2. Generalizations:

a. Gen�: If � ϕ, then ��ϕ.
b. Gen@: If � ϕ, then �@hϕ.
c. Gen∀: If � ϕ, then � ∀xaϕ.

3. Rigid replacement: If � ϕ, then � ϕ′, where ϕ′ is obtained from ϕ by:
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a. Uniformly replacing expressions h ∈ HYB by expressions h′ ∈ HYB.
b. Uniformly replacing free variables of type a by rigid expressions of type a.

4. Name: If �@hϕ and h does not occur in ϕ, then � ϕ.
5. Bounded Generalization: If �@h♦j →@j ϕ, j �= h, and j does not occur in ϕ, then
�@h�ϕ.

These are standard rules from hybrid and classical logic. The restriction in the rigid
replacement rule (that only nominals and state variables can replace nominals and state
variables) reflects the fact that nominals and state variables are names for worlds, and
replacement must respect this. The additional restriction (that variables can only be freely
replaced by rigid terms) reflects the fact that assignment functions interpret variables
rigidly, and replacement must respect this too. We shall discuss Name and Bounded Gen-
eralization shortly when we consider alternative axiomatizations.

Definition 12 A proof of ϕ is a finite sequence α1, . . . , αn of expressions such that
αn := ϕ and for every 1≤ i ≤ n− 1, either αi is an axiom, or αi is obtained from previ-
ous expressions in the sequence using the rules of proof. We write � ϕ whenever we have
such a sequence and say that ϕ is an HTT-theorem.

Definition 13 If Γ ∪{ϕ} is a set of meaningful expressions of type t , a proof of ϕ from Γ
is a proof of � γ1 ∧ · · · ∧ γn→ ϕ where {γ1, . . . , γn} ⊆ Γ . A meaningful expression ϕ of
type t is provable from a set of expressions Γ , written Γ � ϕ, if and only if there is a proof
of ϕ from Γ . We call Γ inconsistent if and only if for all formulas ϕ, Γ � ϕ. Otherwise,
Γ is consistent.

Theorem 1 (Soundness) For all ϕ ∈MEt , we have that � ϕ implies |= ϕ.

Proof Straightforward but tedious. �

That was K1, simply the BHTT axiomatization enriched with the DA schema. But more
should be said about the Name and Bounded Generalization rules. Neither is an orthodox
modal rule of proof. However, both draw on familiar ideas from classical logic; indeed,
both rules can be viewed as (axiomatic simulations of) natural deduction rules. Consider
Name. This can be read as saying:

If ϕ can be proved to hold at an arbitrary world h not mentioned in ϕ, then we can (so to speak)
discharge the @h and prove ϕ.

And Bounded Generalization can be read similarly:

If ϕ can be proved to hold at some arbitrary successor world j of h, which is not mentioned
in ϕ, then we can (so to speak) discharge the @h♦j assumption and prove that ϕ occurs at all
successors of h.

Natural deduction systems for hybrid logic have been intensively studied (for a mono-
graph-length treatment, see [8]), and the ideas just sketched are central to many such
proof systems.

And this leads us to K2. This is the axiomatization obtained by discarding Bounded
Generalization and replacing it with the Paste rule (note that j must be new):

�@i♦j ∧@j ϕ→ θ

�@i♦ϕ→ θ
.
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That is, we replace one nonorthodox rule by another (note: we retain Name). The Paste
rule is interesting for two reasons. Firstly, as we shall see when we discuss the Linden-
baum construction, this is the rule that most directly licenses the use of Henkin-style
witness nominals. Secondly, as we shall discuss at the end of the paper, Paste is essen-
tially a lightly disguised tableau rule. But let us defer further discussion of the second
option and turn to the third.

We obtain K3 when we discard both Name and Paste and replace them with the fol-
lowing axioms and rules:

Gen↓: if � ϕ then � ↓sϕ.
Name↓: � ↓s(s→ ϕ)→ ϕ, where s does not occur in ϕ.
Bounded Generalization↓: �@i�↓s@i♦s.

This approach (due to Balder ten Cate) is elegant. The new rule is orthodox; indeed, it
mirrors our other Gen rules. And the two new axioms show that when we have ↓ in our
language, the proof-theoretic effect of the Name and Bounded Generalization rules can
be captured by axioms.3

4 Completeness

We now prove the completeness of our axiomatization(s). This involves only minor mod-
ifications of the completeness proof for BHTT. We sketch what is required, highlighting
issues involving the ↓ binder.

4.1 The Lindenbaum Construction

As with any Henkin proof, we shall build our model out of the expressions contained in a
maximal consistent set of formulas, that is, out of the items in some Δ⊆MEt . Moreover,
we are going to build the maximal consistent sets we require using a Henkin-style strategy.
That means that each ∃-formula will be witnessed by a constant of appropriate type, and
we will build the functional hierarchy out of equivalence classes of these elements; this
part of our proof follows Henkin’s recipe almost to the letter. But working Henkin-style in
hybrid logic also means that we are going to use our hybrid machinery to imitate Henkin’s
strategy in the modal part of the language: each ♦-formula will be witnessed by a nominal,
and the worlds will be built out of equivalence classes of witness nominals. This motivates
the following definition.

3These three approaches have a common evolutionary history. The earliest was the Paste plus Name
combination found in K2. This was introduced in [7] in the setting of propositional tense logic with ↓
and used to prove analogs of Theorems 5 and 7 of this paper. The Bounded Generalization plus Name
combination used in K1 was designed to provide a natural deduction style counterpart to the tableau
style Paste rule. Balder ten Cate then showed how this combination could be refined (when ↓ is in the
language) with the rules and axioms used in K3. For detailed explorations of the Bounded Generalization
plus Name option and their simplifications with ↓, see [6] and [9]. Another nonorthodox hybrid proof
rule (one which is useful even if we do not have @ in our language) is the COV rule of [11].
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Definition 14 Let Σ be a set of meaningful expressions.

1. Σ is named iff one of its elements is a nominal.
2. Σ is ♦-saturated iff for all expressions @i♦ϕ ∈Σ , there is a witness nominal; that is,

a nominal j ∈ NOM such that @i♦j ∈Σ and @jϕ ∈Σ .
3. Σ is ∃-saturated iff for all expressions @i∃xaϕ ∈Σ , there is a witness constant, that

is, a constant ca ∈ CONa such that @iϕ(
@i ca
xa
) ∈Σ .

So far so good—but what about the ↓ binder? If ∃ requires witness constants, does not
the ↓ binder, like ♦, require witness nominals? Don’t we also need our maximal consistent
sets to be ↓-saturated? The answer is: yes, we do, but this is given to us automatically,
courtesy of the DA schema.

Lemma 4 Let Δ be maximal consistent, and let i be any nominal such that i ∈Δ. Then
we have that @i↓sϕ ∈Δ iff @iϕ(

i
s
) ∈Δ.

Proof Recall that DA is � @i (↓sϕ↔ ϕ( i
s
)). Hence, if @i↓sϕ ∈Δ, then by the left-to-

right direction we have that � @iϕ(
i
s
) ∈ Δ. Conversely, if � @iϕ(

i
s
) ∈ Δ, then by the

right-to-left direction we have that @i↓sϕ ∈Δ. �

The ↓ operator, though expressively powerful, is deductively straightforward because
of its locality. Unlike ∃ and ♦, which need new witness constants and nominals, we can
specify in advance the witnesses that ↓ needs, and DA does this. It tells us that, at a world
named i, we are free to use i as a ↓ witness, and furthermore, that we can also use ↓
to bind out i. Because of this, the Lindenbaum construction for HTT is identical to the
construction for BHTT, as we do not need to modify the construction to cope with the ↓
binder.

Lemma 5 (Lindenbaum) LetΣ be a consistent set of formulas. ThenΣ can be extended
to a maximal consistent set Σω that is named, ♦-saturated, and ∃-saturated.

Proof Let {in}n∈ω be an enumeration of a countably infinite set of new nominals,
{cn,a}n∈ω an enumeration of a countably infinite set of new constants of type a, and
{ϕn}n∈ω an enumeration of the formulas of the extended language. We will build {Σn}n∈ω,
a family of subsets of MEt , by induction:

• Σ0 =Σ ∪ {i0}.
• Assume that Σn has already been built. To define Σn+1, we distinguish four cases:

1. Σn+1 =Σn if Σn ∪ {ϕn} is inconsistent.
2. Σn+1 =Σn ∪ {ϕn} if Σn ∪ {ϕn} is consistent and ϕn is not of the form @i♦ψ or

@i∃xaψ .
3. Σn+1 = Σn ∪ {ϕn,@i♦im,@imψ}if Σn ∪ {ϕn} is consistent, ϕn has the form

@i♦ψ , and im is the first nominal not in Σn or ϕn.
4. Σn+1 =Σn∪{ϕn,@iψ

@i cm,a
xa

} ifΣn∪{ϕn} is consistent, ϕn has the form @i∃xaψ ,
and cm,a is the first constant of type a not in Σn or ϕn.
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Now, let Σω =⋃
n∈ω Σn. Then Σω is named, ♦-saturated, ∃-saturated, and maximal

consistent. The proof is the same as that given in [1]. We use Name to prove the consis-
tency of Σ0. We use Paste to show the consistency of Case 3; this rule gives us exactly
what is required. Paste is a primitive rule in K2 and a derived rule in both K1 and K3.

Case 4 introduces a small (but significant) deviation from Henkin’s recipe for the quan-
tifiers. We do not simply witness the ∃ quantifier with a new constant cm,a , rather we use
the rigidified constant @icm,a , where i names the world where the existential formula
is to be evaluated. Note that @icm,a , like cm,a , is of type a. The change does not effect
consistency, and the proof is essentially the standard one; see [1] for details. �

4.2 Building Hybrid Henkin Structures

We come to the core construction. Recall that a structure M is a pair of the form 〈S ,F〉,
where S = 〈〈Da〉a∈TYPES,W,R〉, and F is a denotation function. So we have two tasks.
The first is to define the type hierarchy 〈Da〉a∈TYPES, and the second is to define 〈W,R〉
and F. Let us deal with the first task.

Definition 15 Let Δ be a named, ♦-saturated, and ∃-saturated maximal consistent set.
Then:

• For all αa , βa ∈ RIGIDSa : αa ≈Δ βa iff αa = βa ∈ Δ for every a ∈ TYPES−{t}. The
rigidity equivalence class of αa , denoted [αa]Δ, is the set {βa | αa ≈Δ βa}.

• For ϕ, ψ ∈ MEt : ϕ ≈Δ ψ iff ϕ = ψ ∈ Δ. The truth equivalence class of ϕ, denoted
[ϕ]Δ, is the set {ψ | ϕ ≈Δ ψ}.

When Δ is clear from context, we will usually write ≈ instead of ≈Δ and [α] instead
of [α]Δ. It is straightforward to check that both rigidity equivalence and truth equivalence
are equivalence relations.

This leads to the key result: all the equivalence classes needed when building the type
hierarchy can be represented by rigidified constants.

Theorem 2 (Rigid Representatives) Let Δ be a maximal consistent set that is named,
♦-saturated, and ∃-saturated.

1. Let h ∈ HYB and α ∈MEt . Then [α] = [@h⊥] or [α] = [@h%].
2. Let h ∈ HYB and αa ∈ RIGIDSa such that a �= t . Then there is a constant ca ∈ CON

such that [αa] = [@hca].

Proof The proof is by induction on type structure. We give the proof for type t expressions
since state variables are of type t . The case for type e expressions and the inductive step
can be found in [1].

Let h ∈ HYB and α ∈ MEt . Assume that α ∈ Δ. But α→ (α = %) ∈ Δ by proposi-
tional logic. Thus, α =%∈Δ and α =@h%∈Δ by Axiom 7c and maximal consistency.
Hence, [α] = [@h%]. On the other hand, if we assume that α /∈Δ, both ¬α and ¬α→
(α =⊥) ∈Δ, and similar reasoning lets us conclude that [α] = [@h⊥]. A remark: since
for any h ∈ HYB, we have that �@h⊥=⊥ and �@h%=%, by Axiom 7c [@h⊥] = [⊥]
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and [@h%] = [%]. So the choice of h is irrelevant; there are only two truth equivalence
classes. �

Theorem 3 (Hierarchy Theorem) Given a maximal consistent set Δ that is named,
♦-saturated, and ∃-saturated, there are a family of domains 〈Da〉a∈TYPES and a function
Φ such that:

1. Φ is a bijection from BB (Building Blocks) to
⋃
a∈TYPES Da , where

BB=
⋃

a∈TYPES\{t}

{[αa]
∣∣ αa ∈ RIGIDSa

}∪ {[ϕ] ∣∣ ϕ ∈MEt
}
.

2. Dt = {Φ([ϕ]) | ϕ ∈MEt } and Da = {Φ([αa]) | αa ∈ RIGIDSa} for a �= t .

Proof The proof is essentially Henkin’s; we refer the reader to [1] for full details.
However, we will give the case for type t expressions since we want to be explicit
about how state variables are handled. We define Dt to be the two elements set Dt =
{[@j⊥], [@j%]}, and for every ϕ ∈MEt , we define:

Φ
([ϕ])=

{ [@j%] iff ϕ ∈Δ,
[@j⊥] iff ¬ϕ ∈Δ,

where the nominal j is arbitrary. It is immediate by the first part of the rigid representa-
tives theorem that Φ is well defined, one-to-one, and onto. Note that the definition of Φ
covers state variables since they are of type t . We will need to use the definition of Φ([s])
when we prove Theorem 4. �

Now for the second task, defining 〈W,R〉 and F. We first define an equivalence relation
over elements of HYB.

Definition 16 Let Δ be a maximal consistent set. For h,h′ ∈ HYB, we shall define
h≈N h′ to hold if and only if @hh

′ ∈Δ. Clearly, if h≈N h′, then it means that h and h′
name the same world, and it is easy to show that ≈N is an equivalence relation on HYB.
For any h ∈ HYB, we shall define [h]N to be {h′ ∈ HYB : h≈N h′}.

Definition 17 (Hybrid Henkin Structures) Let Δ be a maximal consistent set that is
named, ♦-saturated, and ∃-saturated. The hybrid Henkin structure M = 〈S ,F〉 over Δ
is made up of:

1. The skeleton S = 〈〈Da〉a∈TYPES,W,R〉 defined by:

a. 〈Da〉a∈TYPES, as given by the hierarchy theorem,
b. W = {[i]N | i is a nominal},
c. R = {〈[i]N, [j ]N 〉 |@i♦j ∈Δ}.

2. F is a function with domain NOM∪CON defined by:

a. For cn,a ∈ CON, F(cn,a) is a function from W to Da such that F(cn,a)([i]N) =
Φ([@icn,a]).

b. For i ∈ NOM, F(i) is a function from W to Dt = {[@i%], [@i⊥]} such that
(F(i))([j ]N)= [@i%] iff i ∈ [j ]N .
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We need to check that hybrid Henkin structures are indeed well-defined structures, but
this is straightforward. Further details can be found in [1].

4.3 General Interpretation and Completeness

One last detail remains: defining our variable assignment. The following definition ex-
tends the definition in [1] to cover state variables. We remind the reader that Φ is the
bijection defined in the proof of the hierarchy theorem and that for any state variable s,
[s]N is the equivalence class of elements of HYB that name the same world as s.

Definition 18 The hybrid Henkin assignment on M is the function g defined as follows.
For every va ∈ VARa , we have

g(va)=Φ
([va]

)
,

and for every state variable s ∈ SVAR, we have

g(s)= [s]N .

Theorem 4 Let M be a hybrid Henkin structure, and g its hybrid Henkin assignment.
For all meaningful expressions βb and for all i ∈ NOM, we have

�βb�M ,[i]N ,g =Φ([@iβb]
)
.

Proof By induction on the formation of meaningful expressions. A proof covering most
steps is given in [1]. Here we give the steps for state variables in formula position and the
↓ binder.

So suppose that βb is a state variable s. We want to show, for any nominal i,
that �s�M ,[i]N ,g = Φ([@i s]). Now, in the hybrid Henkin structure, T = [@j%] and
F = [@j⊥], where j is an arbitrary nominal. So by the semantic definition for state
variables in formula position, the fact that g(s)= [s]N , and Definition 16 we have that

�s�M ,[i]N ,g =
{ [@j%] iff g(s)= [i]N iff [s]N = [i]N iff @i s ∈Δ,
[@j⊥] iff g(s) �= [i]N iff [s]N �= [i]N iff @i s /∈Δ.

This immediately gives us the equivalence we require since by the definition of Φ given
in the proof of the hierarchy theorem and maximal consistency,

Φ
([@i s]

)=
{ [@j%] iff @i s ∈Δ,
[@j⊥] iff ¬@i s ∈Δ iff @i s /∈Δ.

This establishes the case for state variables in formula position.
So suppose that βb is ↓sϕ. We now show that �↓sϕ�M ,[i]N ,g = Φ([@i↓sϕ]). Pre-

dictably, this is where we use the DA schema:
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�↓sϕ�M ,[i]N ,g = �ϕ�M ,[i]N ,g [i]N
s Semantic definition

=
�

ϕ

(
i

s

)�M ,[i]N ,g
Lemma 3

=Φ
([

@i

(
ϕ

(
i

s

))])
Inductive hypothesis

=Φ([@i↓sϕ]
)

DA.

The only other novel case is for expressions of the form @sϕ, and this is straightforward
by the induction hypothesis. �

Corollary 1 A pair 〈M , g〉 where M is a hybrid Henkin structure, and g is its Henkin
assignment in a general interpretation.

Proof The induction underlying the proof of the previous theorem shows that every ex-
pression has an interpretation in the appropriate domain of the hierarchy, and this is pre-
cisely what we require of general interpretations. �

Theorem 5 (Henkin Theorem) Every consistent set of meaningful expressions of type t
has a general interpretation satisfying it.

Proof Let Γ be a consistent set of meaningful expressions of type t . By the Lindenbaum
Lemma there is a maximal consistent extension Δ of Γ that is named, ♦-saturated, and
∃-saturated. BecauseΔ is named, there is a nominal k inΔ. By Theorem 4 and Corollary 1
there is a general interpretation 〈M , g〉 such that, for all βt ∈MEt , we have that

�βt�M ,[k]N ,g =Φ([@kβt ]
)
.

Let ϕ ∈ Γ . Hence, @kϕ ∈ Δ. But this means that Φ([@kϕ]) = [@k%]. Hence,
�ϕ�M ,[k]N ,g = [@k%]. That is, ϕ is true in this model at the world [k]N . �

Theorem 6 (Completeness) For all Γ ⊆MEt and ϕ ∈MEt , the following holds: Γ |= ϕ
implies Γ � ϕ.

Proof Standard. �

5 The Bounded Fragment

When logicians talk about completeness for first-order logic, they typically talk about the
completeness theorem, singular, the result first proved by Gödel in his 1929 Ph.D. the-
sis and proved in the now standard fashion by Henkin in his celebrated 1949 paper [12].
Modal logicians, on the other hand, typically talk of completeness theorems, plural. Even
readers with only passing acquaintance with modal logic may well have heard of modal
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logics boasting such names as K, T, S4, S5, S4.3, and many many more. Why this differ-
ence in perspective?

The reasons are partly historical. Modal logic began as a largely syntactic attempt to
pin down such concepts as strict implication, necessity, and possibility, and many systems
were considered. Although algebraic methods were sometimes used, it was not until the
introduction of possible world semantics in the late 1950s, by pioneers such as Kripke,
Hintikka, Kanger, that light was shed on this proliferation of logics. For example, it be-
came clear—indeed, easy to see—that S4 is the set of formulas valid on preordered frames
〈W,R〉, that is, frames where R is reflexive and transitive. Modal completeness results of
the early 1960s typically attempted to show that particular axioms of interest had simple
semantic characterizations. There were successful attempts to prove more general com-
pleteness results, the best known being Sahlqvist’s theorem, but such results tended to be
complex. And in the early 1970s, incompleteness results were proved in the (seemingly
simple) setting of propositional modal logic. All in all, thinking in terms of logics is prob-
ably the most natural way of coping with this complex landscape of results and partial
results.

In first-order logic, thanks to the strength and simplicity of the completeness theorem,
the situation is more straightforward. Instead of thinking in terms of different first-order
logics, we tend to think in terms of theories. For example, if we want to work with partial
orders (that is, antisymmetric preorders), then we would form the theory consisting of the
following sentences:

∀xRxx ∀x∀y(Rxy ∧Ryx→ x = y) ∀x∀y∀z(Rxy ∧Ryz→Rxz).

The first-order completeness theorem guarantees that the consequences of these sentences
are precisely the first-order formulas valid on partial orders. Of course, we can, and often
do, talk of “the first-order logic of partial orders.” Nonetheless, the simplicity and gener-
ality of the completeness theorem makes it natural to think in terms of theories, in a way
that is uncommon in modal logic.

As its name suggests, hybrid logic lives somewhere in the middle. We shall now prove
a completeness result that covers many useful hybrid theories of frame structure. The
results discussed below are all standard in (propositional and first-order) hybrid logic; the
point of our discussion is to show how straightforwardly they lift to HTT. Indeed, stronger
results are known in the hybrid literature, and many of them lift with similar ease to HTT.
But we have selected the result below because it is simple and elegant and showcases the
locality of the ↓ binder, a recurrent theme in this paper.

Let us start with an example. Suppose we are working with HTT but wish to work with
partially ordered frames. Then we simply form the following theory:

↓s(♦s) ↓s�(♦s→ s) ↓s��↓t@s♦t.

These sentences pin down reflexivity, antisymmetry, and transitivity, respectively. Note
that the transitivity sentence makes use of the store and retrieve interplay between ↓
and @. This sentence says: starting from a point that we have temporally labelled s, if
we label t any point that is modally accessible from s in two steps (the ��), then at s we
can modally access t in one step (the ♦t). It is not difficult to see that this formula will be
true at all the worlds in an HTT model if and only if the frame of the model is transitive.
That is, this hybrid sentence defines transitivity.
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Another example. If we want to work with models whose frames are strict partial
orders (that is, irreflexive, asymmetric and transitive), then we could work with the fol-
lowing sentential theory:

↓s(♦¬s) ↓s(�¬♦s) ↓s��↓t@s♦t.

Again these expressions define the conditions we are interested in. And this leads to
the first question that will occupy us: if we add such sentences as extra axioms, do we
automatically have completeness? Is the completeness result we have proved for HTT
like the completeness theorem for first-order logic, in that it supports thinking in terms
of theories rather than logics? It is, but to prove this, we must first be precise about the
axioms we intend to use.

As axioms, we allow pure nominal-free sentences. The “pure” means that they contain
no constants; “nominal free” and “sentences” are self-explanatory. To put it another way,
we generate pure nominal-free expressions as follows. As basic expressions, we only have
state variables, and complex expressions can only have the following form:

¬ϕ | ϕ ∧ψ |�ϕ |@sϕ |↓ sϕ.
This is a small fragment of HTT, containing only expressions of type t . But it is also
a well-studied fragment of propositional hybrid logic. Don’t be fooled by its apparent
simplicity: this fragment is undecidable (see [2]) and capable of defining many important
frame classes. The axioms we will work with are the sentences of this fragment. The
above examples are all sentences of this kind (we define the additional booleans and ♦ in
the usual way).

Most of the information in a model M = 〈〈〈Da〉a∈TYPES,W,R〉,F〉 and an assignment
g is irrelevant for pure nominal-free expressions. Indeed, all that is relevant is the frame
〈W,R〉 and the assignment that g makes to the state variables. Thus, for expressions ϕ in
this fragment, we are simply looking at interpretations at some world w ∈W with respect
to an assignment g:

�ϕ�〈W,R〉,w,g.

This leads us to frame validity. We say that a pure nominal-free expression is valid
on a frame 〈W,R〉 if and only if for all w ∈ W and all assignments g, we have that
�ϕ�〈W,R〉,w,g = T . We write �ϕ�〈W,R〉 when ϕ is valid on 〈W,R〉.

And now for completeness. We want to use pure nominal-free sentences as additional
axioms in HTT. And we want to prove a completeness result that tells us: if we add as extra
axioms (for example) the hybrid theory of strict partial orders given above, then for any
consistent set of type t expressions, we can always build a verifying model over a strictly
partially ordered frame. How can we do so? As we have seen, Theorem 5 will indeed
give us a model for consistent sets of expressions, and if we have added extra axioms,
then the hybrid Henkin structure will make them all true too. But that is not enough: we
need to show that the axioms are valid on the underlying frame. But for pure nominal-free
sentences, this is easy.

Lemma 6 Let ϕ be a pure nominal-free sentence, let 〈W,R〉 be a frame, and let g
be a fixed but arbitrary assignment on 〈W,R〉. Suppose that for all w ∈ W , we have
�ϕ�〈W,R〉,w,g = T . Then �ϕ�〈W,R〉, that is, ϕ is valid on 〈W,R〉.



302 P. Blackburn et al.

Proof Suppose that for some assignment g and all worlds w ∈ W , we have that
�ϕ�〈W,R〉,w,g = T . But ϕ is a sentence, so the choice of assignment is irrelevant. That
is, at any w ∈W , for any assignment g′, we have that �ϕ�〈W,R〉,w,g′ = T . So ϕ is valid on
〈W,R〉 as claimed. �

Definition 19 Let ϕ be a pure nominal-free sentence. Then Fr(ϕ) is the class of frames
〈W,R〉 such that �ϕ�〈W,R〉. That is, Fr(ϕ) is the class of all frames that validate ϕ. A sen-
tential theory Th is a set of pure nominal-free sentences; note that all such sets are count-
able. Then Fr(Th) is the class of frames 〈W,R〉 such that for all ϕ ∈ Th, 〈W,R〉 belongs
to Fr(ϕ). That is, Fr(Th) is the class of frames that validate all sentences in the theory Th.

By a pure nominal-free sentential extension of our axiomatization(s), we mean the
addition as extra axioms of all the pure nominal-free sentences in such a theory Th. A set
of type t expressions Γ is Th-consistent if and only it is consistent in this enriched system.

Theorem 7 (Extended Henkin Theorem) Let Th be a set of pure nominal-free sentences.
Every Th-consistent set Γ of meaningful expressions of type t has a general interpretation
〈M , g〉 that satisfies it, such that the frame 〈W,R〉 underlying M belongs to Fr(Th).

Proof For the first claim, we proceed as in the proof of Theorem 5. Let Γ be a Th-
consistent set of meaningful expressions of type t . We use our Lindenbaum construction
to obtain a maximal consistent extension Δ of Γ that is ♦-saturated, ∃-saturated, and
named by some nominal k. By Theorem 4 and Corollary 1 there is a general interpretation
〈M , g〉 such that, for all βt ∈MEt ,

�βt�M ,[k]N ,g =Φ([@kβt ]
)
.

As we saw, this shows that all expressions in Δ (and hence Γ ) are true in this general
interpretation at the world [k]N . Note that this includes all the sentences in Th since as Γ
is Th-consistent, every sentence in Th will be added toΔ at some stage of the Lindenbaum
construction.

But for the second part of the theorem, we need to show that all axioms in Th are
valid on the frame underlying M , not merely that they are true. We do so as follows. Let
ϕ ∈ Th. Since ϕ is an axiom, then for all nominals i, by @-generalization we have that
� @iϕ. So by maximal consistency, all these expressions belong to Δ. But every world
in the hybrid Henkin structure is an equivalence class of nominals. So (here we use the
displayed equality again) at every world [i]N we have that �ϕ�M ,[i]N ,g = T . But ϕ is a
pure nominal-free sentence, so by Lemma 6 it is valid on 〈W,R〉. But ϕ was an arbitrary
element of Th, so all sentences in Th are valid on 〈W,R〉. Hence, 〈W,R〉 is in Fr(Th),
which is what we wanted to prove. �

What frame classes are covered by this result? Here is a syntactic answer. At the start
of this section we gave the three axioms characteristic of partial orders in a first-order
language of frames. It was a simple first-order language: a two-place relation R plus the
equality symbol. Here we define the bounded fragment of this first-order frame language.
We will use s, t , and so on—that is, the symbols we typically use for state variables—as
first-order variables. We generate its bounded fragment as follows:

Rst | s = t | ¬ϕ | ϕ ∧ψ | ∃t (Rst ∧ ϕ), where s �= t.
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Now, all pure nominal-free expressions translate into the bounded fragment:

STs(t)= (s = t) for all state variables t,

STs(¬ϕ)=¬STs(ϕ),

STs(ϕ ∧ψ)= STs(ϕ)∧ STs(ϕ),

STs(♦ϕ)= ∃t(Rst ∧ ST t (ϕ)
)
,

STs(@t ϕ)= ST t (ϕ),

STs(↓tϕ)=
(
STs(ϕ)

)( s
t

)
.

In the translation clause for ↓ we have used ( s
t
) to indicate the substitution of the (first-

order) variable s for free occurrences of the (first-order) variable t . This translation uses
the relevant clauses of the standard translation, which is widely used in orthodox modal
logic and hybrid logic; see [4] or [3] for more detailed accounts. Note that STs translates
every pure nominal-free sentence into a bounded formula with s as its sole free variable.
It follows by induction that for all sentences ϕ, frames 〈W,R〉, and w ∈W ,

�ϕ�〈W,R〉,w iff 〈W,R〉 |= STs(ϕ)[s←w].
Here 〈W,R〉 |= STs(ϕ)[s ← w] means first-order satisfaction, with the unique free

variable s in STs(ϕ) being assigned w as value. Note that we have written �ϕ�〈W,R〉,w
rather than �ϕ�〈W,R〉,w,g because, as ϕ is a sentence, the choice of variable assignment
is irrelevant. Summing up, all pure nominal-free sentences define frame conditions ex-
pressible in the bounded fragment with one free variable s. Hence, a pure nominal-free
sentence ϕ is valid on a frame 〈W,R〉 if and only if 〈W,R〉 |= ∀sϕ, where |= indicates
first-order truth in 〈W,R〉. So every frame condition expressible by a pure nominal-free
sentence can be expressed by a bounded sentence.

And the converse also holds since we can translate the bounded fragment into the pure
nominal-free expression as follows:

HT(s = t)=@s t,

HT(Rst)=@s♦t,
HT(¬ϕ)=¬HT(ϕ),

HT(ϕ ∧ψ)=HT(ϕ)∧HT(ψ),

HT
(∃t (Rst ∧ ϕ))=@s♦↓t

(
HT(ϕ)

)
.

Again, we can show by induction that for every frame 〈W,R〉, if we translate a bounded
first-order formula θ with s as its only free variable, then

〈W,R〉 |= θ [s←w] iff
�↓sHT (θ)�〈W,R〉,w

.

Taken together, these two results show that if we restrict attention to bounded formulas
containing at most one free variable, pure nominal-free sentences are a hybrid notation
for capturing bounded frame conditions.
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The bounded fragment is interesting because it is a local fragment of first-order logic: it
only lets us quantify over accessible entities. Feferman was the first to consider bounded
fragments (see [10]); he did so in set theory, using ∈ rather than R as his accessibility
predicate. The link between bounded fragments and hybrid logic was first explored in [2];
more can be said, here we have only noted the bare essentials. For a start, there are elegant
semantic characterizations: roughly speaking, pure nominal-free sentences allow us to
talk about frame classes that are both closed under and reflect point generated subframes.
Moreover, Theorem 7 can be extended to allow free state variables (or nominals) in the
axioms. But for further discussion, we refer the reader to [9], the authoritative source.
Here we shall return to Henkin.

We remarked that Henkin’s work fits well with hybrid logic because of the first-order
perspective that underlies his best known work. In this section we have been explicit
about the first-order character of our hybrid technology. As we have previously remarked,
Theorem 7 is atypical in its generality, at least when viewed from orthodox modal logic.
But there is no puzzle here: it is the first-order character of key hybrid tools that makes
such results possible, and it is the use of Henkin models that makes them easy to prove.

6 It’s Henkin, All the Way Down

In this paper we proved a general completeness theorem for a hybrid type theory called
HTT, probably the strongest hybrid logic that has yet been explored. The result built upon
earlier work on a system called BHTT, which only used the basic hybrid tools of nominals
and the @ operator. The ↓ binder is the tool that differentiates HTT from the earlier sys-
tem, and it is ↓ that allows us to capture the bounded fragment. The influence of Henkin’s
work throughout this paper should be obvious. For a start, we used Henkins’s methods
of constants to allow ♦-prefixed expressions to be witnessed by nominals. Secondly, our
use of general interpretations and the construction of the type hierarchy in the complete-
ness proof are (pretty much) one hundred percent Henkin. Thirdly, the first-order nature
of pure nominal-free sentences allowed us to extend our K-style completeness result(s)
to cover a wide class of hybrid theories, and the proof of Theorem 7 was straightforward
because we were working with a hybrid Henkin structure: as each world is named in such
structures, it was easy to verify the validity of the additional axioms.

But to close this paper, we want to claim that the most profound impact of Henkin’s
work on hybrid logic occurs neither at the level of type theory, nor even at the level of
first-order hybrid logic, but at the level of propositional hybrid logic, and indeed, right
down at the level of basic hybrid logic, where the only hybrid tools at our disposal are
@ and nominals. To put it another way, a recurring theme in the development of hybrid
completeness has been that richer languages hitch a free ride on the underlying basic
hybrid logic. This is certainly the case for first-order hybrid logic, and the completeness
results for HTT and BHTT repeat this pattern.

Let us look closer. Consider first the role of @. For a start, it drives much of the model
construction process. Because it lets us rigidify arbitrary type, it lets us state rigidity
restrictions on axioms, prove the rigid representatives theorem, and specify an appropriate
world for every formula in a suitably saturated maximal consistent set of sentences (these
points are made in more detail in [1], where BHTT was proved complete). Moreover, we
have seen that two of our axiomatizations, K1 and K2, pretty much reduce ↓ to a spectator
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role as far as axiomatics is concerned. The crucial DA schema is a local schema: it tells
us how to deal with ↓ at a named world, but we rely on @ to distribute this schema to all
named worlds, and the logic of @ is captured in basic hybrid logic. The K3 axiomatization
eliminates the nonorthodox basic rules and shows how ↓ can play a more active role in the
axiomatization. But here we also rely on @ to insist that DA holds at all named worlds.

And this mention of nonorthodox rules brings us to the heart of our claim. Such rules
are not nonorthodox in any interesting sense. Our earlier remarks on the link between the
Name and Bounded Generalization rules and natural deduction hinted at this, but to close
this paper, we turn to the K2 axiomatization, which uses the basic hybrid logic rule Paste.
The following remarks draw on and elaborate the discussion on pp. 445–447 of [4].

Here is the Paste rule (again, j must be new):

�@i♦j ∧@jϕ→ θ

�@i♦ϕ→ θ
.

As we saw in the proof of our Lindenbaum Lemma, this directly licenses the use of
witness nominals. And if we read this rule from bottom-to-top, then we see that it boils
down to the following tableau rule:

@i♦ϕ
@i♦j, j new

@j ϕ

That is, if in the course of a tableau proof we encounter @i♦ϕ, then we are free to de-
compose this into the near-atomic formula @i♦j (where j is new) and the simpler @j ϕ.
This directly embodies the idea of Henkin-style nominal witnessing and in one form or
another is the basis for most tableau systems for hybrid logic. Deductively, at least, what
makes hybrid logic better behaved than orthodox modal logic is the possibility of elimi-
nating ♦ in this way. Tableau rules for the other connectives are easy to define, dealing
with ♦ is the tricky part. This is the rule that opens the door to usable (nonaxiomatic)
proof procedures.

But why should we call this rule orthodox? The answer takes us back (yet again) to
first-order logic and the world of Henkin. Consider the following table. This uses the
standard translation (recall Sect. 5) to show the content of the tableau rule, viewed from
the perspective of the first-order frame language (enriched with a first-order constant i for
every nominal i):

Hybrid Logic First-Order Frame Language

@i♦ϕ ∃s(Ris ∧ STs (ϕ))
Rij ∧ STj (ϕ)

@i♦j Rij

@j ϕ STj (ϕ)

The translation of the tableau rule is a fragment of a first-order tableau proof. Moreover,
it makes clear that (from a first-order perspective) all that is going on is a skolemisation
(that is, a witnessing) of the existential quantifier, followed by a conjunction reduction.
First-order orthodoxy reigns.
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Ultimately, this is why Henkin’s work is so important to hybrid logic. Diamond wit-
nessing is the central idea that has driven the development of hybrid deduction and com-
pleteness theory. But in hybrid logic, Henkin’s use of witnesses is put to work in a simple,
decidable propositional language, namely basic hybrid logic. This gives stability and gen-
erality to completeness results for basic hybrid logic and enables them to support com-
pleteness in richer hybrid systems (for example, hybrid logics containing the ↓ binder)
and combinations of hybrid logic with first-order logic and type theory. Hybrid logic?
It is a suggestive name. But it could without exaggeration be called Henkin-style modal
logic.
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Changing a Semantics: Opportunism or Courage?

Hajnal Andréka, Johan van Benthem, Nick Bezhanishvili, and István Németi

Abstract The generalized models for higher-order logics introduced by Leon Henkin and
their multiple offspring over the years have become a standard tool in many areas of logic.
Even so, discussion has persisted about their technical status, and perhaps even their con-
ceptual legitimacy. This paper gives a systematic view of generalized model techniques,
discusses what they mean in mathematical and philosophical terms, and presents a few
technical themes and results about their role in algebraic representation, calibrating prov-
ability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic
absoluteness. We also show how thinking about Henkin’s approach to semantics of logical
systems in this generality can yield new results, dispelling the impression of adhocness.

Keywords Henkin models · Definable predicates · General frames · Absoluteness ·
General models for recursion and computation

1 General Models for Second-Order Logic

In Henkin [46] general models were introduced for second-order logic and type theory
that restrict the ranges of available predicates to a designated family in the model. This
enlarged model class for higher-order logics supported perspicuous completeness proofs
for natural axiom systems on the pattern of the famous method in Henkin [45] for prov-
ing completeness for first-order logic. To fix the historical background for this paper,
we review the basic notions here, loosely following the exposition in van Benthem and
Doets [17].

The language of second-order logic has the usual vocabulary and syntactic construc-
tions of first-order logic, including quantifiers over individual objects, plus variables for
n-ary predicates, and a formation rule for existential and universal second-order quanti-
fiers ∃Xϕ,∀Xϕ. Standard modelsM = (D, I) for this language have a domain of objects
D and an interpretation map I for constant predicate symbols.1 Next, assignments s send
individual variables to objects in D, and predicate variables to real predicates over D,
viewed as sets of tuples of objects. Then we have the following standard truth condition:

M,s |= ∃Xϕ iff there is some predicate P of suitable arity withM,s[X := P ] |= ϕ.

This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while
also being an always open, modest, and encouraging colleague and friend.

1For simplicity only, we mostly omit individual constants and function terms in what follows.
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Now we take the control of available predicates in our own hands, instead of leaving
their supply to set theory. A general model is a tuple (M,V ) whereM is a standard model
and V is some nonempty family of predicates on the domainD ofM . There may be some
further constraints on what needs to be in the family, but we will look into this below.

Now interpretation on standard models is generalized as follows:

M,s |= ∃Xϕ iff for some predicate P in V of suitable arity:M,s[X := P ] |= ϕ.
Henkin [46] proved the following seminal result:

Theorem 1 Second-order logic is recursively axiomatizable over general models.

This can be shown by adapting a Henkin-style completeness proof for first-order logic.
However, another insightful road for obtaining Theorem 1 is via translation into many-

sorted first-order logic.2 Consider a first-order language with two sorts: “objects” and
“predicates,” each with their own set of variables. In addition, the domains are connected
by a special predicate Exp saying that object x belongs to predicate p. Now we can
translate the language of second-order logic into this two-sorted first-order language via
a straightforward map τ . The clauses for the logical operators are obvious, with ∃x go-
ing into the object domain, and ∃X into the predicate domain. At the atomic level, the
translation is as follows:

Xy goes to EyX.

In addition, we state one principle that makes predicates in the two-sorted first-order
language behave like real set-theoretic predicates in general models:

Extensionality(EXT ) ∀pq : (
p = q↔∀x(Exp↔Exq)

)
.

Proposition 1 For all second-order formulas ϕ, ϕ is valid on all general models iff τ(ϕ)
follows from EXT on all models for the two-sorted first-order language.

The proof is obvious except for one observation. Interpretations for “predicate vari-
ables” p in two-sorted first-order models M can be arbitrary objects in the domain.
But Extensionality allows us to identify such objects p one-to-one with the sets {x |
Exp inM}.

As a result of this embedding, the validities of second-order logic over general mod-
els are axiomatizable, and by inspecting details, one can extract an actual axiomatization
close to that of two-sorted first-order logic. Moreover, this correspondence can be mod-
ulated. We can drop Extensionality if we want even more generalized models, where we
give up the last remnant of set theory: namely, that predicates are identified with their
set-theoretic extensions. This generalization fits well with intensional views of predicates
as concepts or procedures that occur occasionally in logic and more often in philosophy.

But more common in the logical literature is the opposite direction, an even stronger
form of set-theoretic influence, where we turn further second-order validities into con-
straints on general models. A major example is that one often requires the following
schema to hold in its two-sorted first-order version:

2In what follows in this section, merely for convenience, we shall deal with monadic second-order logic
only, where second-order quantifiers run only over unary predicates or sets.
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Comprehension ∃X∀y(Xy↔ ϕ) for arbitrary second-order formulas ϕ with X not free
in ϕ.

What this achieves in the above completeness proofs is enforcing the validity of what
many people find a very natural version of the logical law of existential instantiation:3

ϕ(ψ)→∃Xϕ(X).
One can add many other constraints in this way without affecting completeness. One

example is the object dual to Extensionality, ∀xy(x = y ↔ ∀p(Exp↔ Eyp)), which
expresses a sort of “Individuality” for objects in terms of available predicates.

How far are these first-order versions of second-order logic removed from the logic
over standard models? The distance can be measured by means of one standard formula,
as established by Montague [72].

Fact 2 A second-order formula is valid on standard models iff its first-order translation
τϕ follows from EXT plus the second-order formula ∀X∃p∀y(Xy↔Eyp).

The newly added axiom tells us that all set-theoretic predicates lie represented in the
first-order model. Amongst other things, this observation shows that, taking prenex forms,
the full complexity of second-order logic resides in its existential validities.

The preceding results turn out to extend to both classical and intensional type theories
(Gallin [36]) and other systems. For a modern treatment of the current range of general-
ized models for higher-order logics and related systems, we refer to Manzano [69, 70].4

2 Clearing the Ground: Some Objections and Rebuttals

Before going to concrete technical issues, we set the scene by listing some perspectives
on generalized models that can be heard occasionally in the logical community, if not read
in the literature.5 We do this mainly to clear away some rhetoric, before going to the real
issues. For instance, the very term “standard model” is already somewhat rhetorical since
it prejudges the issue of whether other models might also be natural, by depriving them
of a neutral name and making their pursuit “nonstandard” or “deviant.”6

General models are often considered an ad hoc device with little genuine content. This
objection can be elaborated in several ways. One may hold that the natural semantics for
second-order logic consists only of those models that have the full power set of the indi-
vidual domain for their unary predicates, and likewise for higher arities. General models

3Comprehension does make the strong philosophical assumption that logical constructions out of existing
predicates deliver available predicates, something that might be debated.
4There is much more to second-order logic than the general perspective given here. In particular, deep
results show that well-chosen fragments of second order logic, over well-chosen special classes of stan-
dard models, can have much lower complexity, and have surprising combinatorial content, for instance,
in terms of automata theory: cf. Grädel, Thomas, Wilke, eds. [42].
5In what follows, for brevity, we write “general models” instead of “generalized models”.
6Sometimes, a little dose of linguistics suffices to dispel this rhetoric, e.g., by calling ‘non-classical’ logics
‘modern’ logics, or ‘non-intended’ models ‘serendipitous’ models.
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are then a proof-generated device lacking independent motivation and yielding no new
insights about second-order logic. And there can be more specific objections as well. For
instance, imposing comprehension as a constraint on general models smacks of circular-
ity. In order to define the available predicates, we need to know what they are already,
in order to understand the range of the second-order quantifiers in the comprehension
principles. But objections can also run in another direction. The general model-based
completeness proof for second-order logic tells us nothing new beyond what we already
knew for first-order logic. In particular, one learns nothing that is specific to second-order
validity.7

Now there is something to these objections, but the question is how much. At least, one
will always do well to also hear the case for the opposition. Here are a few preliminary
considerations in favor of general models, and the proofs involving them.

First of all, it is just a fact that in many natural settings, we do not want the full range
of all set-theoretically available sets or predicates since it would trivialize what we want
to say. For instance, in natural language, when Russell wrote that “Napoleon had all the
properties of a great general,” he meant all relevant properties, not some trivial one like
being a great general. Likewise, when we grasp Leibniz’ principle that objects with the
same properties are identical, we do not mean the triviality that object x has the property
of being identical to object y, but rather think of significant properties. More generally,
while it is true that the intuitive notion of property or predicate comes with a set, its
extension, or range of application, it would be unwarranted set-theoretic imperialism to
convert this into the statement that every set is a property or predicate.8

The same consideration applies to mathematics: even there, set theory is not the norm.
In geometry, important shapes correspond to sets of points, but definitely not every set
of points is a natural geometrical shape. Hilbert 1899 mainly axiomatizes points, lines,
and planes, instead of points and sets of points, and that for excellent mathematical rea-
sons. Likewise, topology looks at open sets only, many theories of spatial objects use
only convex sets, and one can mention many similar restrictions. Also, at a more abstract
level, category theory does not say that all function spaces between objects must be full,
the definition of a category allows us control over the available morphisms between ob-
jects, and that is precisely the reason for the elegance and sweep of the category-theoretic
framework.

A third line of defense might be a counterattack, turning the table on some of the ear-
lier objections. Intended models for second-order logic provide us with a magical source
of predicates that we tend to accept without having enquired into how they got there,
and whether they should be there. Moreover, these entities also come with a magical
notion of truth and validity that seems to be there without us having to do any honest
work in terms of analyzing proof principles that would constrain the sort of entity that
we want. From this perspective, it is rather the general models that force us to be ex-
plicit about what we want and why. This point can be sharpened up. It is often thought

7Contrast this with the sense of achievement, based on innovative proof techniques, when axiomatizing
a piece of second-order logic on a class of intended models, such as the monadic second-order logics of
trees with successor relations as the “initial segment” relation in Rabin [79].
8One example that shows this is the discussion in philosophy of propositions viewed as sets of worlds.
Clearly, propositions correspond to sets of worlds where they are true, but it does not follow at all that
every set of worlds must be an extension of some proposition. We return to this theme at the end of Sect. 4.
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that general models decrease the interest of proofs establishing their properties, but as
we shall see later, this is a mistaken impression. There are also natural settings where
general models make logical proof analysis and technical results more, rather than less
sophisticated.

This introductory discussion is general and inconclusive. Moreover, in the process of
getting some ideological issues out of the way, we may even have introduced new ones.
For instance, despite appearances, our aim with this paper is not criticizing the use of set-
theoretic notions per se. But there is a distinction to be made. The set-theoretic language
is a lingua franca for much of logic and mathematics, and it facilitates formulation and
communication in a way similar to the role of academic English. What one should be
wary of, however, is the often implicit suggestion of a further commitment to very spe-
cific claims of set theory qua mathematical theory in our logical modeling.9 But where
the precise border line between set-theoretic language and “set theory” is located seems
a delicate matter and one where studying general models may in fact provide a better
perspective.

We will now look at more systematic motivations for the use of general models in
logic, Henkin-style and eventually also beyond, and assess their utility in more precise
technical terms.

3 Logical Perspectives on Controlling Predicates

For a start, we continue with the two themes introduced in the preceding section: control-
ling the available predicates and the fine-structure of reasoning.

3.1 Proof Theory

Logical analysis of an area of reasoning, even of mathematical proofs, seldom uses all
set-theoretically available predicates—but only ones that are definable in some way. And
such proofs are crucial: despite the claimed intuitive nature of standard models, we hardly
ever model-check assertions in them since these models are too complex and mysterious
for that. Instead, we prove that certain second-order formulas hold, say, in the natural
numbers, by means of a mathematical argument appealing to accepted general principles.
And these proofs will usually employ only very specific predicates, often ones that are
definable in some sense, witness a wide literature on formalizing mathematical theories
from Bishop [21] to reverse mathematics [83].10 A survey of predicative proof theories
with, for instance, highly restricted comprehension axioms, would go far beyond the con-
fines of this paper, whose main slant is semantic, but we submit that such systems embody
a reasoning practice that goes well with Henkin-style models.

9For this unwarranted commitment, consider the much more radical claim that using academic English
carries a commitment to “British” or “American values.”
10This is more delicate with nonconstructive principles like the axiom of choice, which we forego here.
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3.2 Definable Predicates

Restrictions to definable predicates are natural even in Henkin’s first-order completeness
proof itself that started our considerations. The Hilbert–Bernays completeness theorem
says that, in order to obtain counterexamples to nonvalid first-order formulas, models
on the natural numbers suffice where the interpreting predicates are Δ2

0. Even so, not
every restriction of predicates to some family of definable sets will be a good choice of
a general model class for completeness. For instance, Mostowski [73] showed that first-
order logic is not complete when we restrict the interpreting predicates in models to be
recursive, or even recursively enumerable. Vaught [90] considered the related problem of
complexity for the sentences true in all constructive models.11 Likewise, if we constrain
general models too much, say, to only contain predicates that are first-order definable in
the underlying first-order model, we may get harmful complexity. In particular, Lindström
[64] proved that, if second-order variables range over first-order definable predicates only,
the system is nonaxiomatizable. Thus, whereas a restriction to definable predicates may
be a motivation for using general models, there is no general guarantee that this move
lowers the complexity of axiomatizability for the logic. Having too many predicates gives
us second-order logic, and having too few can also lead to high complexity. We should be
in between, and where that lies precisely may differ from case to case.

3.3 New Structure: Dualities

Here is another mathematical consideration in favor of controlling predicates. Doing so
drastically may reveal important structure that we would not see otherwise. For instance,
consider the frequently rediscovered weak theory of objects and types in “Chu spaces”
(Barwise and Seligman [9], Pratt [76], Ganter and Wille [37]). This theory treats ob-
jects and types on a par, resulting in a very appealing duality between their behavior,12

constrained by a notion of structural equivalence capturing the basic categorial notion of
adjointness, which allows for model-theoretic analysis (van Benthem [14]). All this ele-
gant structure remains invisible to us in standard models for second-order logic. Similar
points hold in terms of algebraic logic, the topic of Sect. 4 below.

3.4 New Theorems: Dependence and Games

It may be thought from the above that working with general models will decrease proof
strength, so that, if anything, we lose theorems in this way. But the case of dualities was
an instance where we regained new theorems at a higher level that just do not hold for the
original version on standard models. Here is another example of this phenomenon, where
general models increase mathematical content.

11The related result that Peano arithmetic has no nonstandard recursive models is often called “Tennen-
baum’s theorem,” see, e.g., Kaye [60].
12For example, in Chu spaces, Extensionality for predicates is exactly Leibniz’ principle for objects.
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Consider so-called IF logic of branching quantifiers, introduced in Henkin [47] and
taken further by Hintikka as a general study of independence in logic (cf. Hintikka and
Sandu [54]).13 Enderton [32] and Walkoe [95] showed that branching quantifiers are the
existential functional fragment of second-order logic, having a very high complexity of
validity as we have seen in Sect. 1. In line with this, there has been little proof theory
of IF logic, leaving the precise nature of reasoning with independent quantification a bit
of a mystery. However, one can also start from a natural deduction analysis of dependent
and independent quantifiers (Lopez-Escobar [65]) and get an insightful proof system. The
natural complete semantics for this proof system turns out to be general models whose
available functions satisfy some simple closure conditions. But there is more: these mod-
els also represent a crucial move of independent interest.

As is well known, like first-order logic, IF logic has a semantics in terms of evaluation
games where truth amounts to existence of a winning strategy for the “verifier” in a game
with imperfect information of players about moves by others (Mann, Sandu, and Sevenster
[68]). This existential quantifier over strategies ranges over all set-theoretically available
strategies, viewed as arrays of Skolem functions. Now the general models correspond to
a restriction on available strategies, a very intuitive move in modeling games played by
real agents, and this can drastically change the structure of the game. In particular, what
can happen is that a game that is “determined” in the sense that one of the two players
has a winning strategy, now becomes nondetermined. But then a very natural mathemat-
ical language extension suggests itself. Nondetermined IF games still have probabilistic
solutions in mixed strategies by the basic theorems of von Neumann and Nash. And the
equilibrium theory of these new games is much richer than that of the original games.14

3.5 Conclusion

This concludes our first foray into concrete logical aspects of general models, showing
that they raise delicate issues of calibrating proof strength, levels of definability for predi-
cates, and new laws possibly involving attractive language extensions. What we see here is
that, with general models, weakness is at the same time wealth. We now turn to a number
of major technical perspectives that we will consider in more detail.

4 General Models and Algebraic Representation

Algebraic semantics is one of the oldest ways of modeling logic, going back to the semi-
nal work of Boole, de Morgan, and Schroeder. In this section, we investigate the relation
between algebraic models and general models, largely using one case study: the algebraic
semantics of modal logic. We identify a number of general issues, revolving around rep-
resentation and completeness, and toward the end, we show how the interplay of algebraic

13See Väänänen [88] for a parallel development of a rich system of “dependence logic.”
14Hintikka himself suggested a restriction to “definable strategies” for yet different reasons, but such a
restriction might be a case of the above over-simplicity inducing high complexity after all.
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semantics and general models is very much alive today. Thus, we find a motivation for
general models that is very different from the proof-theoretic concerns that were central
in earlier sections.15

4.1 Algebraic Completeness of Modal Logic

The algebraic semantics of modal logic is given by modal algebras (A,♦), with A a
Boolean algebra and ♦ a unary operation onA satisfying ♦0= 0 and ♦(a∨b)= ♦a∨♦b.
Every modal logic L is complete with respect to the “Lindenbaum–Tarski algebra” of all
formulas quotiented by L.16 The Lindenbaum–Tarski algebra of a logic L validates all
and only the theorems of L, and hence every modal logic is complete with respect to a
natural corresponding class of modal algebras.17

4.2 General Models via Algebraic Representation and Categorial
Duality

Modal algebras are related to model-theoretic structures via natural representations. These
model theoretic structures, often called “general frames,” may be viewed as Henkin mod-
els for modal logic generalizing the original Kripke frames. A Kripke frame is a pair
(X,R) of a set X and a binary relation R. Each Kripke frame gives rise to a modal alge-
bra whose domain is the powerset P(X) of X with the Boolean operations ∩, ∪, ()c , plus
an operation ♦R on P(X) defined by setting ♦R(S) = {x ∈ X : ∃y ∈ S such that xRy}
for each S ⊆X.

However, going in the opposite direction, modal algebras do not normally induce stan-
dard frames. However, here is a widely used representation method. Given a modal alge-
bra (A,♦), take the space XA of all ultrafilters on A and define a relation RA as follows;
xRAy iff a ∈ y implies ♦a ∈ x for each object a ∈A. Moreover, let F(XA)= {ϕ(a) : a ∈
A}, where ϕ(a) = {x ∈ XA : a ∈ x}. The latter is a special family of “good subsets” of
the frame (XA,RA) satisfying a number of natural closure conditions: it forms a Boolean
algebra and is closed under the natural operation for the modality. This is an instance of
the following general notion. A general frame (X,R,F(X)) is a triple such that (X,R)
is Kripke frame and F(X) is a subset of P(X) closed under ♦R , that is, if S ∈ F(X),
then ♦R(S) ∈ F(X).18 General frames are natural models for a modal language since they

15In another context, namely in finite-variable fragments of first-order logic, Henkin [48] introduced
homomorphic images of the Lindenbaum–Tarski algebras as generalized models, and he explained why
and how they can be considered as models. In [49], Henkin calls these generalized models “algebraic
models.” He proves a completeness theorem and uses these algebraic models to show unprovability of a
given formula. So, the present section shows that the ideas originated from Henkin [48, 49] are alive and
flourishing.
16That is, two formulas ϕ and ψ are equivalent if L � ϕ↔ψ .
17More generally, there exists a lattice anti-isomorphism between the lattice of normal modal logics and
the lattice of equationally defined classes (varieties) of modal algebras: see [22, 26, 62] for details.
18In particular, (F(X),♦R) is a subalgebra of (P(X),♦R).
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provide denotations for all formulas—and of course, they are general models in Henkin’s
sense. Moreover, they are the right choice. A basic theorem by Jónsson and Tarski [59]
generalizes the Stone representation for Boolean algebras to the modal realm:

Theorem 3 Each modal algebra is isomorphic to the modal algebra induced by the gen-
eral frame of its ultrafilter representation.

But still more can be said. The general frames produced by the Jónsson–Tarski repre-
sentation satisfy a number of special conditions with a natural topological background.
They are descriptive in the sense that different points are separated by available sets,
nonaccessibility is witnessed in the available predicates, and a natural compactness or
“saturation” property holds for the available predicates. Whereas not all Kripke frames
are descriptive, the latter property does hold for many other model-theoretic structures.19

This is interesting as an example where a natural class of general models satisfies third-
order closure conditions different from the ones considered in the original Henkin models
for second-order logic.

The correspondence between modal algebras and descriptive frames can be extended
to a full correlation between two mathematical realms (see any of [22, 26, 62, 80, 93] for
details):

Theorem 4 There exists a categorical duality between (a) descriptive frames and defin-
able “p-morphisms” (the natural semantic morphisms between descriptive frames that
preserve modal theories) and (b) modal algebras and Boolean-modal homomorphisms.

Thus, well-chosen classes of general models support rich category-theoretic dualities.

4.3 Completeness and Incompleteness for Standard Relational Models

Whereas all this is true, standard frames do play a central role in a major area of modal
logic, its completeness theory. The basic completeness results of modal logic say that,
for well-known logics L, theoremhood coincides with validity in the standard frames
satisfying the axioms of L. For instance, a formula is a theorem of modal S4 iff it is valid
in all reflexive-transitive frames—and there are many results of this kind for many modal
logics in the literature. By contrast, via the above representation, algebraic completeness
would only match theoremhood with validity in the class of general frames for the logic,
which is restricted to valuations that take values in the admissible sets. What is going on
here?

Consider the Lindenbaum–Tarski algebra for any modal logic L. In general, the Kripke
frame underlying the general frame representation of this algebra (often called the “canon-
ical general frame” for the logic) need not be a model for the axioms of L under all valu-
ations. But in many special cases, it is. One general result of this form is the well-known
Sahlqvist theorem, which states that every modal logic that is axiomatized by “Sahlqvist

19For more details on descriptive frames, we refer to [22, 26, 62, 80].
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formulas”—having a special syntactic form whose details need not concern us here—is
complete with respect to a first-order definable class of standard frames.

Results like this are often seen as improving the automatic completeness provided by
general frames. But even so, they do not detract from the latter’s importance. The proof of
the Sahlqvist theorem depends essentially on showing that Sahlqvist formulas that hold
on the canonical general frame for the logic also hold in its underlying standard frame.
Thus, general models can be crucial as a vehicle for transfer to standard models.20

However, there are limits to the preceding phenomena. Completeness theorems on
frame classes are not always obtainable in modal logic. Famous “incompleteness theo-
rems” from the 1970s onward have shown that there are consistent modal logics L and
formulas ϕ such that L ∪ {ϕ} is consistent, but ϕ is not satisfiable on any Kripke frame
for L. Concrete examples are nontrivial, and several interesting ones may be found in
[10, 22, 26]. Incidentally, the consistency is usually proved by exhibiting a general frame
where the logic is valid.21 In fact, frame incompleteness is the norm among modal logics,
witness the remarkable classification results in [23], whereas a modern exposition can be
found in [26]. What all this says is that, despite appearances, it is completeness for general
frames that underlies deduction in modal logic, whereas Kripke-frame completeness is a
bonus in special cases.

4.4 Further Representation Methods

Our discussion may have suggested that the algebraic defense of general models depends
on one specific representation method for modal logic. But in fact, there is a much broader
theory where similar points can be made. For instance, there are more general representa-
tions for distributive lattices and Heyting algebras (Priestley [77, 78], Esakia [33], Davey
and Priestley [28], [26]), using prime filters instead of ultrafilters to analyze intuitionistic
logic and related systems. But new representation methods are appearing continuously.
One recent example is the categorical duality between the categories of “de Vries alge-
bras” (complete Boolean algebras with a special relation ≺ satisfying natural conditions)
and compact Hausdorff spaces: [18, 94]. Significantly, all our earlier modal themes return
in this much broader mathematical setting.

Going beyond this, there is also a flourishing representation theory for substructural
logics; cf. Dunn [29], Gehrke, Dunn, Palmigiano [30], Gehrke [38], Marra and Spada
[71], Galatos and Jipsen [35]. However, in this extended realm, it seems fair to say that

20There are also links here to modal correspondence theory where we study relational properties ex-
pressed by modal axioms on Kripke frames. Correspondence theory assumes a different shape on general
frames, though, for instance, many of its classical results still hold when we assume that the available
propositions in general frames are closed under first-order definability. We do not pursue this model-
theoretic theme in this paper, though it is definitely a case where introducing general models also poses
some challenges to existing theory on standard models of a logic.
21For a concrete example, consider the tense logic of [86], which has Löb’s axiom for the past, making
the relation transitive and well founded on Kripke frames, and the McKinsey axiom for the future, which
states that above every point, there is a reflexive endpoint. Taken together, these requirements are incon-
sistent, but they do hold on the general frame consisting of the natural numbers with only the finite and
cofinite sets as available propositions.
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major open problems remain such as finding “good” representation theorems for residu-
ated lattices. But the very fact that this is considered a serious mathematical open prob-
lem illustrates the importance attached to finding Henkin-style model-theoretic structures
matching the algebras.

The preceding themes are not exclusively mathematical concerns, they also play in-
side philosophy. For various conceptual reasons, Humberstone [57] and Holliday [56]
have proposed replacing the possible worlds semantics for modal languages by structures
of “possibilities” ordered by inclusion. To make this work, one adapts the usual truth def-
inition to clauses for Boolean operations with an intuitionistic flavor and interprets the
modality by means of a suitable relation or function among possibilities. This new frame-
work leads to an interesting theory that even improves some features of classical modal
logic, and it can be understood in terms of regular open sets in topological spaces; cf.
[16]. But of interest to us here is an issue of representation. Each standard possible worlds
frame naturally induces a possibilities model defined by extending a relation on a frame
into a function on its powerset [56] (this is similar to a coalgebraic perspective of modal
logic [93]). But conversely, it is not true that each possibilities frame can be represented
as coming from a Kripke frame in this manner. What is the proper comparison then be-
tween the two realms? The solution is again a move to general models: what should be
compared are possibilities models and generalized frames based on a Boolean algebra of
regular open sets of a topological space (see [56] and [16] for details of this construction).

4.5 Conclusion

Algebraic models for logical systems are a natural match with general models in Henkin’s
sense, or at least in Henkin’s style, where precise connections are provided by a large and
growing body of representation theorems. Of course, this is a special take on the genesis
and motivation for general models, which comes with many interesting features of its own.
For instance, we have drawn attention to special conditions on the general models pro-
duced by representation methods and to the ongoing challenges of representation theory,
whereas we have also shown how in this realm, standard models become an interesting
special case, which sometimes, but not always, suffices for completeness.

5 General Models, Lowering Complexity, and Core Calculi

Henkin’s general models lower the complexity of second-order logic to that of the recur-
sively axiomatizable first-order logic.22 Behind this move, we can discern a more general
theme, that of lowering complexity of given logical systems.23 And with that theme, there

22This is interesting historically since, initially, first-order logic was not the measure of all things. It was
proposed only in Hilbert and Ackermann [53] as a well-behaved fragment of higher-order logic, for which
Gödel [41] then provided the first completeness result.
23In [48], Henkin introduces generalized models for the finite-variable fragments Ln of first-order logic,
and he proves a completeness theorem with respect to these generalized models. This is also an example



318 H. Andréka et al.

is no reason to stop at first-order logic, whose notion of validity is recursively enumerable
but undecidable. We will see (in Sect. 7) a similar lowering in complexity in connection
with models of computation. Continuing in what we see as Henkin’s spirit, though going
far beyond the basic semantic approach presented in Sect. 1, could there be generalized
models for first-order logic that make the system decidable?

This might sound like a purely technical interest, but one can add a deeper consid-
eration. Van Benthem [13] observes how many “standard” logical systems, despite their
entrenched status, embody a choice of modeling a phenomenon that combines basic fea-
tures with details of the particular formal framework chosen. For instance, first-order logic
wants to be a core calculus of Boolean connectives and quantification. But in order to do
this job, its semantics is couched in terms of set-theoretic notions. Are the latter a harm-
less medium (the “lingua franca” of our earlier discussion), or do these “wrappings” add
extraneous complexity? In particular, is the undecidability of first-order logic a logical
core feature of quantification, or a mathematical reflection of the set-theoretic modeling?
In order to answer such questions, again, we need a more general modeling for strategic
depth and a talent for sniffing out unwarranted second-order or otherwise over-specific
features. In this section, we present one line, so-called “general assignment models” for
first-order logic, as an instructive exercise in generalized model thinking.24

The core semantics of first-order logic works as follows.25 ModelsM = (D, I) consist
of a non-empty set of objects D plus an interpretation map I assigning predicates over D
to predicate symbols in the language. Semantic interpretation involves modelsM , formu-
las ϕ, and assignments s of objects in D to individual variables of the language. A typical
and basic example of the format is the truth condition for the existential quantifier:

M,s |= ∃xϕ iff there is some d in D withM,s[x := d] |= ϕ.

Whereas the underlying intuitive idea of existential quantification is uncontroversial,
this technical clause involves two noteworthy assumptions in terms of supporting machin-
ery. The auxiliary indices of evaluation are taken to be maps from variables to objects, and
it is assumed that each such function is available as an assignment. Thus, not in its predi-
cate structure, but in its supporting structure for interpretation, a first-order model comes
with a hidden standard second-order object, viz. the full function space DVAR .26

for lowering complexity since it is known that Ln cannot have a finitistic Hilbert-style strongly complete
proof system for the standard models (see, e.g., [51, Thm. 4.1.3]). Here is a further example of Henkin’s
positive thinking. Reacting to the negative result just quoted about Ln, he initiated jointly with Monk
in [50, Problem 1] the so-called finitization problem, which in turn fruited interesting and illuminating
results, for example, by Venema, Stebletsova, Sain, and Simon (for further details, we refer to [84]).
24The ideas in this section go back to Németi [74], Venema [91], van Benthem [13], and Andréka, van
Benthem, and Németi [6], to which we refer for details. Here, Németi’s work, couched in terms of “cylin-
dric relativized set algebras,” was inspired by remarks of Henkin about obtaining positive results in alge-
braic logic, rather than the wave of counterexamples in earlier stages of the theory. We note that inves-
tigating relativized cylindric algebras also originates from Leon Henkin; see, for example, Henkin and
Resek [52].
25As in Sect. 1, we will disregard individual constants and function symbols for convenience.
26Later on, we will see what it is more precisely that makes such spaces high-complexity inducing, viz.
their geometrical “confluence” or “gluing” properties: see Facts 6 and 7 below.
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5.1 A Modal Perspective

This choice is not entirely obvious intuitively, as the first-order language could be in-
terpreted just as well on an abstract universe of states s allowing for binary transitions
between indices, yielding a basic clause for modal logic:

M,s |= ∃xϕ iff there is some s′ with sRxs
′ such thatM,s′ |= ϕ.

We can think of the state space here as some independent computational device that
regulates the mechanism of interpretation for our language, or its “access” to the model.
Of course, standard models are still around as a special case.

Treated in this modal way, first-order logic retains the essentials of its compositional
interpretation, but its core laws do not reflect any set-theoretic specifics of assignment
maps. Rather, they form the “minimal modal logic” K that already takes care of a large
slice of basic reasoning with quantifiers, including its ubiquitous monotonicity and distri-
bution laws.27

The minimal modal logic is decidable and perspicuous, whereas its metatheory closely
resembles that of first-order logic (Blackburn, de Rijke, and Venema [22]).

5.2 General Assignment Models

On top of this modal base system, the additional valid principles of first-order logic lie
in layers of more specific assumptions on the modal state machinery approaching the full
assignment spaces of standard models. Here is one basic level, using the set-theoretic view
of assignments as functions from variables to individual objects, but without the existence
assumption of having all functions around.

Definition 1 A general assignment model is a structure (M,V ) with M a standard first-
order model (D, I) and V a set of maps from individual variables to objects in D. In-
terpretation of first-order formulas in these models is standard except for the following
clause:

M,s |= ∃xϕ iff there is some d in D such that s[x := d] ∈ V andM,s[x := d] |= ϕ.

By itself, this is just a technical move, but again there is an interesting interpretation.
“Gaps” in the space of all assignments encode possible dependencies between variables.
Suppose that we have an assignment s and want to change the value of x. Perhaps, the
only variant that we have available for s in the special family V also changes its value
for y, tying the two variables x, y together. One can then think of the logic of general
assignment models as first-order logic freed from its usual independence assumptions.

Theorem 5 First-order logic over general assignment models is decidable.

27The modal character shows in that the quantifier ∃x is really a labeled modality 〈x〉 now.
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Things start changing with yet further axioms that express existence assumptions on
the assignments that must be present. Their content can be brought out by standard modal
frame correspondence techniques. We give one illustration, stated, for greater familiarity,
in terms of the earlier abstract modal models for first-order logic.

Fact 6 A modal frame satisfies the axiom ∃x∀ySxy→∀y∃xSxy for all valuations (i.e.,
all interpretations of atomic formulas) iff its transition relations Rx , Ry for the variables
x, y satisfy the following Church–Rosser confluence property for all states s, t, u: if sRxt
and sRyu, then there is a v with tRyv and uRxv.

In general assignment models, the confluence property says that we can make the
corresponding changes of values for variables concretely step by step: say, with t =
s[x := d], u = s[y := e], and v = s[x := d][y := e]. This particular property is signifi-
cant:

Fact 7 Adding confluence to general assignment logic makes the logic undecidable.

The reason is that assignment models satisfying the stated property are rich, or rather,
regular, enough to run standard proofs of the undecidability of first-order logic through
its ability to encode undecidable tiling problems in a two-dimensional grid [44]. Stated
in another way, again we see that the undecidability has to do with mathematical, rather
than logical content of the modeling: its ability to express regular geometrical patterns.

5.3 Richer Languages

A striking new phenomenon that occurs with many forms of generalized semantics in
logic is that it suggests richer languages to interpret or, at least, more sophisticated ver-
sions of the original logical language over standard models.

A concrete case for general assignment models are polyadic quantifiers ∃xϕ where x
is a finite tuple of variables. In standard first-order logic, this is just short-hand for iterated
prefixes of quantifiers ∃x∃y . . . ϕ. On general assignment models, the natural interpreta-
tion for ∃xϕ is as existence of some available assignment in the model whose values on the
variables in x can differ, a sort of “simultaneous re-assignment.” This is not equivalent to
any stepwise iteration of single quantifiers. Nevertheless, the logic allows the following:

Theorem 8 First-order logic with added polyadic quantifiers is decidable over general
assignment models.

But language extensions can also increase complexity much more drastically. For in-
stance, the general assignment models over a given first-order model M form a natural
family under extension of their assignment sets. But this is an interesting structure in its
own right, and it makes sense to add a new extension modality interpreted as follows:

M,V, s |= ♦ϕ iff there is some V ′ ⊇ V withM,V ′, s |= ϕ.
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Now it is easy to see that standard first-order logic can be embedded in this richer
language by interpreting a standard first-order quantifier ∃x as a modal combination ♦∃x.

This shows that the new logic with a modality across assignment sets is undecidable.
We conjecture that this system is recursively enumerable, although we have not been able
to find a straightforward argument to this effect. However, may be our general point is
that generalized models do not just lower complexity or provide axiomatizations for fixed
logical formalisms. They may also change the whole design of languages and logics.

5.4 From General Models to Fragments

One proof of completeness and decidability for first-order logic over general assignment
models mentioned above proceeds by translation into the decidable “guarded fragment”
(GF) of first-order logic (Andréka, van Benthem, and Németi [6]). GF allows only quan-
tifications of the following syntactic type:28

∃y(G(x,y)∧ ϕ(x, y)), where x, y are tuples of variables, G is an atomic predicate,
and x, y are the only free variables occurring in ϕ(x, y).

Theorem 9 First-order logic over general assignment models can be translated faithfully
into the guarded fragment of first-order logic over standard models.

This is interesting since a full language interpreted over generalized models now gets
reduced to a syntactic fragment of that full language, interpreted over standard models.
There is also a converse result (van Benthem [15]) tightening the connection: the guarded
fragment can be reduced to first-order logic over general assignment models.

Thus, again we see that general assignment models are a laboratory for rethinking
what a generalized semantics means. Sometimes, a move to generalized models can also
be viewed entirely differently, as one from a full logical language to a sublanguage, where
new features of the generalized models show up as syntactic restrictions.

5.5 Conclusion

We have taken the spirit of general models one step further and applied it to another “stan-
dard feature” of the semantics of logical systems, its use of assignments sending variables
into the domain of objects. This method can be taken further than what we have shown
here since it applies to about any logical system.29 We have found a significant border line
between decidable core theories and complexity arising from using set-theoretic objects

28We omit existing decidable extensions to “loosely guarded,” “packed,” and, recently, “unary negation”
fragments.
29For instance, whereas the base system of “dependence logic” in [88] is undecidable and in fact of
higher-order complexity, one can again find a standard power set in the background, the set of all sets of
first-order assignments, and once this is tamed, the core dependence logic will become decidable again.
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such as full powersets. Moreover, as with algebraic representation, we found a number of
further general issues that emerge in this special realm, such as possible redesign of logi-
cal languages and the interplay between generalizing semantics and passing to fragments.

6 General Models and Absoluteness

In this section, we discuss yet another general perspective on general models, coming
from the classical foundations of set theory and logic itself—and motivated, to a certain
extent, by the desire to draw a principled border line between the two. As with our earlier
topics, we cannot give an extensive technical overview, so we merely present some basics
along the way that are needed for the points that we wish to make.30

6.1 Absoluteness and Nonabsoluteness

There is a sentence ϕCH of second-order logic (SOL) that expresses the continuum hypoth-
esis (CH) in the following sense: for every model M with cardinality at least continuum,
we have31

M |= ϕCH iff CH holds in our metatheory. (*)

Hence, ϕCH
32 is logically valid in SOL iff CH holds in the metalevel set theory “float-

ing above our heads.” Thus, when contemplating the logical validities of SOL, we have
to rely on the set theory we use for modeling/formalizing SOL, once more illustrating
the earlier-discussed phenomenon of “wrappings” versus “content.” Many authors have
agreed that the meaning of a formula ϕ in a model M should depend on ϕ and M (and
their parts) and not on the entire set theoretic hyperstructure of the whole universe con-
taining ϕ and M, let alone on deciding highly complex and mysterious assertions like the
continuum hypothesis (cf. [63]). And here is where absoluteness kicks in. Meaningfully
investigating these kinds of questions and trying to make tangible and precise definitions
and statements concerning phenomena such as the above lead to the theory of absolute
logics.

A set-theoretic formula ϕ is called ZF-absolute if its truth value does not change in
passing from any model V that satisfies the axioms of standard Zermelo–Fraenkel set
theory ZF to any transitive submodel V′ that satisfies those same axioms. Next, Kripke–
Platek set theory KP can be considered as an austere effective fragment of ZF where we
omit the axiom of infinity and restrict the replacement and collection schemes to bounded
FOL-formulas. KPU is a natural extension of KP where we also allow urelements; see [8,
pp. 10–12]. A set-theoretic formula is said to be absolute simpliciter if it is KPU-absolute.

30We thank Jouko Väänänen for sharing many useful corrections and insights concerning absoluteness,
only some of which we have been able to do justice to in this brief paper.
31Equivalently, CH holds in the “real world,” cf. [63, Sect. I.3, pp. 7–8].
32More precisely, a suitable variant of it taking into account the cardinality condition on M. For the
formula ϕCH, see Ebbinghaus et al. [31, pp. 141–142].
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A logic L = 〈Fm, |=〉 is called absolute if the set-theoretic formulas defining Fm and the
ternary satisfiability relation |= are both absolute.

Here are a few illustrations for concreteness. Typical absolute concepts are “being
an ordinal,” “being a finite ordinal,” “being the ω (i.e., an ordinal with each element a
successor ordinal, but itself not a successor ordinal),” “being the union of two sets (x =
y ∪ z),” etc. However, equally typically, the property “x is the powerset of y” is not ZF-
absolute, because whether a collection of elements of y is elevated to the rank of being a
set is independent from the ∈-structure of y.

Intuitively, absoluteness of a logic means that truth or falsity of the predicate M, s |= ϕ
should depend only on the ∈-structures of ϕ, M, and s, and not on the “context” that M,
ϕ, and s are living in (an example of such a context would be the powerset of M). Then
our (*) above shows that the logic SOL is not ZF-absolute.

Barwise and Feferman [7] initiated the study of absolute logics. The following theorem
elucidating the special attention to KPU-absoluteness and making a crucial link to first-
order logic is due to Kenneth Manders [67]; see also Akkanen [1], Theorem 9 of Feferman
[34], and Theorem 3.1.5 in [87, pp. 620–622]. Below, by Lωω we understand many-sorted
first-order logic (FOL) with equality. Also, logic L ′ is said to be stronger than L if every
class C of models defined by a sentence of L is also definable by a sentence of L ′.

Theorem 10 Lωω is the strongest logic among those absolute logics whose formulas
are hereditarily finite sets and whose structures M have domains consisting only of urele-
ments.

Here we allow urelements in KPU so that we can have a good variety of infinite models
built from urelements without forcing the existence of an infinite “pure set.”

6.2 General Models via Absolute Versions

If an important logic L turns out to be nonabsolute, then it seems useful to consider and
study an absolute version33 of L (besides L itself). Indeed, Henkin’s SOL is an absolute
version of SOL. Whereas SOL is not ZF-absolute, one can check that the satisfaction
relation of Henkin’s general models for second-order logic is absolute (and it even remains
so if we add a finite number of our favorite axioms valid in standard SOL). One can see
this by using Manders’ theorem, Theorem 10, and by recourse to the results in Sect. 1, in
particular, the close connection between SOL on Henkin models and many-sorted FOL.
In the light of Manders’ theorem, any absolute version of SOL must have the form of a
possibly many-sorted FOL theory.

There is a general method for obtaining absolute versions of given nonabsolute log-
ics L . We may assume that the nonabsoluteness of L originates from the set-theoretical
definition of the ternary satisfiability relation of L not being absolute. Hence, the set-
theoretic formula defining the ternary M, s |= ϕ contains quantifiers ranging over some
objects not in the transitive closures of M, ϕ, and s. Collect these “dangerous objects”
into an extra sort S. Consider the resulting extended models (M, S,∈). Similarly to the

33We use the expression “absolute version” in an intuitive way, not in the technical sense of [8].
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example of SOL and its Henkin models above, we arrive at a recursively axiomatizable
many-sorted FOL theory T whose “standard” models are the (M, S,∈)s. We regard T as
an absolute version of the original logic L . By fine-tuning the axioms of T, we can fine-
tune the absolute version we want to work with. The models of T that are not standard are
the nonstandard models of the absolute version T of L . So, an absolute version of a logic
always comes with a notion of a generalized model for L . Indeed, Henkin’s models for
SOL can be seen as having arisen from devising an absolute version of SOL, and later in
Sect. 8 we will see other examples where the notion of a generalized model for compu-
tation can be seen as devising an absolute version of a nonabsolute logic. Moreover, in
many cases a nonstandard model arising in this way can still be seen as a standard one
when viewed from another model of set theory.

If we encounter a logic with high computational complexity, the diagnosis may be
nonabsoluteness as the cause for high complexity. This is the case with SOL and with
first-order dynamic logic with standard semantics (see below). In all these cases, finding
absolute versions leads to natural notions of generalized models and to a lower computa-
tional complexity of the absolute version. So, the notions of the theory of absolute logics
shed light on generalized models and on lowering complexity.34

At this high level of generality, the style of analysis in this section applies very broadly.
One of these applications concerns logics of programs, or processes, cf. [4, 5]. Such logics
are usually ZF-absolute but not KPU-absolute. They cannot have decidable proof systems,
even if we select acceptably small sublanguages in them; see [4, Thm. 1]. The reason for
this is that standard semantics assumes programs/processes to run in standard time, that
is, along the finite ordinals. We will return to this theme in Sects. 7–8, where we consider
generalized semantics for recursion and computation in the setting of fixed-point logics.

6.3 Conclusion

Absoluteness as independence from set theory can be a desideratum motivating forms of
generalized semantics and, in fact, a powerful methodology for their design.

7 General Models for Recursion and Computation

Our final topic is an important phenomenon that has often presented challenges to simple-
minded semantic views of logical systems, the notion of computation, and in particular, its
characteristic nested structures of recursion and inductive reasoning. These logics tend to
be of very high complexity since treating computation explicitly often makes the natural
numbers definable by a formula of the logic, after which validity starts encoding truth in
second-order arithmetic.35

34Whereas absoluteness is meant to express independence from interpretations of set theory, its very
definition depends heavily on set theory—but this may be considered a beneficial case of “catching thieves
with thieves.”
35Likewise, so far, fixed-point logics of recursion, though very natural at first glance, have successfully
resisted Lindström-style analysis in abstract model theory.
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Intuitively, logics of computation are about processes unfolding over time, and hence
it is crucial how we represent time: as a standard set-theoretic object like the natural num-
bers or as a more flexible process parameter. We will start with this perspective and its gen-
eralized semantics. After that, we move to abstract fixed-point logics of computation and
generalized semantics that facilitate the analysis of deductive properties and complexity-
theoretic behavior. In a final discussion, we show how two perspectives are related.

7.1 Nonstandard Dynamic Logics

Consider logics of programs in the tradition of propositional dynamic logic PDL, based
on program expressions with the regular operations, where the key role is played by the
Kleene star, that is, transitive closure. Whereas this propositional system is an elegant de-
cidable modal logic, its natural first-order version with objects and predicates that applies
to more realistic programming languages is of highly intractable complexity. What causes
this, and how can this be remedied? We survey a few ideas from “nonstandard dynamic
logic” NDL36 [5, 27, 39, 40, 43, 75].

First-order dynamic logic cannot have a decidable proof system, even if we select a
small sublanguage, as is shown technically in [4]. The underlying reason is that standard
semantics assumes processes to run in standard time, that is, along the natural numbers.
If we make dependence on time explicit, however, we get a dynamic logic with an ex-
plicit time structure or, in other words, with a generalized semantics. In this nonstandard
dynamic logic NDL, we are not tied to the natural numbers as the only possible time struc-
ture, but we can still make as many explicit requirements (as axioms) about time as we
wish. As a consequence of this greater flexibility in models, NDL has a decidable proof
system; see [5].37

More concretely, NDL is a three-sorted classical first-order logic whose sorts are the
time scale T , the data domain D, and a sort I consisting of (not necessarily all) functions
from T into D. We think of the elements of I as objects changing in time (“intensions”).
Typically, the content of a machine register changes during an execution of a program,
and this register is modeled as an element of I . In standard models, T is the set of natural
numbers, and I is the set of all functions from T to D. In models of NDL, these do-
mains can be much more general, though we can impose basic reasoning principles about
computation such as induction axioms for I (over specified kinds of formulas talking
about time), comprehension axioms for intensions, and axioms about the time sort such
as successor axioms, order axioms, as well as Presburger arithmetic, or even full Peano
arithmetic. Also, special axioms about the data structure may be given according to the
concrete application at hand.

NDL talks about programs, processes, and actions, and it can express partial and total
correctness plus many other important properties such as concurrency, nondeterminism,
or fairness.38

36The nonstandard models for this dynamic logic were influenced by Henkin’s generalized models for
SOL. More positively, one might also call these systems “logics of general computation.”
37Here the proof system is decidable, not the set of validities: Sect. 8 has a question about this.
38NDL has been used for characterizing the “information content” of well-known program verification
methods, for comparing powers of program verification methods, as well as for generating new ones [5].
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7.2 Digression: Extensions to Space–Time

Similar methods have been applied to space–time theories, such as the relativity theory
of accelerated observers; see [66, 85]. There are good reasons for formalizing parts of
relativity theory in first-order logic FOL [3]. And then another standard structure for time
emerges.39 Physical processes happen in real time, where the world-line of an accelerated
observer is an intensional entity whose spatial location changes with time. It is custom-
ary to take the relevant time scale here to be the real number line. But this can again
be generalized: this time, to create a special relativity theory AccRel of accelerated ob-
servers where time structure becomes an explicit parameter subject to suitable physically
motivated axioms on the temporal order and the world lines of test particles. While this
is a “continuous” rather than a “discrete” temporal setting, many of our earlier points
apply. For instance, instead of induction on the natural numbers, one will now have ax-
ioms of Dedekind continuity expressing that, if a physical property changes from hold-
ing to not holding along a world-line, then there is a concrete point of time when the
change takes place.40 Furthermore, one uses comprehension axioms to ensure existence
of enough world-lines for physical purposes, for example, for being able to select the
inertial world-lines as those that locally maximize time.

We merely mention one striking outcome of this type of analysis with generalized mod-
els of time. The famous twin paradox of relativity theory predicts that one of two twins
who departs on a journey and undergoes acceleration will be younger upon her return than
the other twin who stayed put. From a logical perspective, deriving this result turns out to
involve having the real line as a time structure. Using our more general models, it can be
shown that the twin paradox cannot be derived by merely imposing temporal axioms; it is
also essential to know how physical processes are related to time in terms of induction or
continuity axioms about how properties of test particles change along time.

7.3 Modal Fixed-Point Logic on Generalized Models

Let us now move to a much more abstract view of induction and recursion over tempo-
ral or ordinal structures as embodied in modal fixed-point logics. In particular, consider
the common running example of the modal mu-calculus, which has become a powerful
mathematical paradigm for the foundational study of sequential computation.41

Consider the standard modal language enriched with a least fixed-point operator μx.ϕ
for all formulas ϕ, where x occurs under the scope of an even number of negations.42

By a general frame for fixed point logic we mean a general frame (X,R,F(X)) as in
Sect. 4 such that the family F(X) is closed under the fixed-point operators. More precisely,

39This kind of logical investigations of relativity theory were motivated by Henkin’s suggestion (to An-
dréka and Németi) for “leaving the logic ghetto,” that is, for applying logic in other areas of science.
40Cf. [12] for extensive model-theoretic discussion of such properties.
41The contrast with the earlier NDL approach may be understood in terms of moving from “operational”
semantics to “denotational” semantics of programs (cf. [75]), but we will not elaborate on this theme here.
42For simplicity, we disregard the greatest fixed-point operator, definable as νx.ϕ =¬μx.¬ϕ.
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here, inductively, each positive formula ϕ induces a monotone map Fϕ : F(X)→ F(X).43

Next, we take the intersection of all prefixed points of Fϕ from F(X), that is, we con-
sider

⋂{S ∈ F(X) | Fϕ(S) ⊆ S}. If this intersection belongs to F(X) for each ϕ, then
we call (X,R,F(X)) a general frame for modal fixed-point logic. This intersection is
then the least fixed-point of Fϕ , and it is in fact exactly the denotation of the fixed-point
formula μx.ϕ.

This generalized semantics provides a new way to interpret fixed-point operators. Of-
ten, say, in spatial logic, we need to restrict attention to some practically realizable subsets
of the plane, and fixed-point operators need to be computed with respect to these subsets
only. Note also that we lose nothing: if F(X)=P(X), then our generalized truth condi-
tion coincides with the standard semantics of the modal mu-calculus.

A major motivation for studying general-frame semantics for fixed-point logic is that,
via existing algebraic completeness and representation methods, every axiomatic system
in the language of the modal mu-calculus is complete with respect to its general frames.
Moreover, the powerful Sahlqvist completeness and correspondence results from Sect. 4
extend from modal logic to axiomatic systems in the modal mu-language for this seman-
tics; cf. [20]. To appreciate this, we note that completeness results for axiomatic systems
of modal fixed-point logic with respect to the standard semantics are very rare and require
highly complex machinery; see [61, 96] and also [25, 82].

As a further instance of the naturalness of these generalized models, we note a delicate
point of algebraic representation theory. Axiomatic systems of the modal “conjugated mu-
calculus” axiomatized by Sahlqvist formulas are closed under the well-known Dedekind–
MacNeille completions in the above general-frame semantics (cf. [19]), whereas no such
result holds for the standard semantics (cf. [81]).

Now, following the general line in Sect. 4, we will quickly overview the algebraic
semantics for the modal mu-calculus. A modal algebra (A,♦) is a modal mu-algebra if
for each formula ϕ positive in x, the meet inA of all the prefixed points of ϕ exists (see [2]
and [20] for details). This meet will be exactly the denotation of the fixed-point formula
μx.ϕ. Similarly to modal logic, the background for our earlier claims of completeness is
that axiomatic systems of the modal mu-calculus are complete with respect to modal mu-
algebras obtained via the Lindenbaum–Tarski construction; cf. [2, 20]. A modification of
the duality between modal algebras and general frames to modal mu-algebras leads to the
following notion. A descriptive general frame (X,R,F(X)) is called a descriptive mu-
frame if it is a general mu-frame. For each descriptive mu-frame (X,R,F(X)), the modal
algebra (F(XA),♦RA) is a modal mu-algebra. Moreover, we have the following converse:
every modal mu-algebra (A,♦) is isomorphic to (F(XA),♦RA) for some descriptive mu-
frame (X,R,F(X)).

The difference between the standard and general-frame semantics for fixed-point oper-
ators shows in the following example. Consider the frame (N ∪ {∞},R) drawn in Fig. 1.
We assume that F(N ∪ {∞})= {all finite subsets of N and cofinite subsets containing the
point ∞}. The standard semantics of the formula ♦∗p is the set of points that “see points
in p with respect to the reflexive and transitive closure of the relation R.” Therefore, it is
easy to see that the semantics of ♦∗p is equal to the set N. Indeed, N is the least fixed-
point of the map S '→ {0} ∪ ♦R(S). However, if we are looking for a least fixed-point of
this map in general-frame semantics, then we see that this will be the set N ∪ {∞}. We

43Here for S ∈ F(X), we have that Fϕ(S) is the value of ϕ when the variable x is assigned to S.



328 H. Andréka et al.

Fig. 1 Example

can say that the semantics of the formula ♦∗p with respect to the general-frame semantics
is the set of all points that “see points in p with respect to the ‘admissible’ reflexive and
transitive closure of the relation R.”44

Whereas all this seems to be a smooth extension from the basic modal case, there are
also some deficiencies of this generalized semantics. We do not yet have many convincing
concrete examples of general mu-frames and especially of descriptive mu-frames. Some
simple examples are general frames (X,R,F(X)), where F(X) is a complete lattice. For
instance, the lattice of regular open sets RO(X) in any topological space is a complete
lattice, so it allows interpretations of the least and greatest fixed-point operators. However,
the meets and joins in such structures RO(X) are not set-theoretic intersection and union,
and analyzing such concrete generalized models for their computational content seems to
deserve more scrutiny than it has received so far.

7.4 Digression: A Concrete Fixed-Point Logic for Recursive Programs

Modal fixed-point logics can be related to the earlier systems presented in this section.
Our three-sorted system NDL essentially described operational semantics for flow-charts,
whereas denotational semantics provides more structured meanings for programs than just
input/output relations. In particular, [75] extends the Henkin-style explicit-time semantics
of NDL to a Henkin-style denotational semantics for recursive programs (see also [40,
pp. 363–365]). The resulting system NLPrec is a two-sorted classical first-order logic with
one sort W for the set of states and another sort S for “admissible” binary relations over
W, perhaps subject to the extensionality and comprehension axioms. The semantics for
recursive programs p will now be a least admissible fixed-point in such a model.45 (More
details will be discussed in Sect. 8.)

7.5 Comparing Generalized Dynamic Logic and Henkin-Style Second
Order Logic

Both the logic NDL and fixed-point logic over general models as developed above are
strongly connected to Henkin-style SOL (HSOL). We discuss one aspect of this connec-
tion here, though a full discussion is beyond the scope of this paper.

In one direction, NDL may be viewed as a fragment of Henkin-style SOL:

44A similar operation is used in [92] for characterizing in dual terms the notion of subdirectly irreducible
modal algebras.
45For example, take a recursive program p computing factorial: p(x) := if x = 0 then 1 else x ·p(x−1).
The state-transition functional F associated with this program is F(R) := {〈0,1〉} ∪ {〈x, x · y〉 :
〈x − 1, y〉 ∈R}.
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Theorem 11 NDL admits a natural translation into the language of the Henkin-style
second-order logic.

Proof Idea We would like to interpret NDL (hence T ,D, I ) in HSOL. How can we define
the time-structure (T ,+,∗) of NDL from the concepts available in HSOL?46 Here comes
the trick: In our HSOL structure (D,V,E,E2,E3, . . .), we can talk about second-order
objects living in V . That is, we can talk about sets, binary and ternary relations. So we
reconstruct T as a pair of sets, H ⊆D and f ⊆D ×D (i.e., f is a binary relation) with
f :D→D such that (H,f ) behaves as the natural numbers with the successor function.
For example, we can postulate that there is an object 0 ∈ H that generates the whole
of H via f . To see this, it is sufficient to note that for all H ′ ⊆ D, if 0 ∈ H ′ and H ′ is
closed under f , thenH ′ ⊇H . From the axioms of HSOL we can prove that this definition
is correct, that is, that (H,f ) is unique up to isomorphism. The latter property is again
expressible in HSOL. We skip the rest of the proof, which uses similar ideas. �

A general experience reflected by the literature is that all program properties expressed
in HSOL so far were found to be expressible in NDL. This motivates the following.

Conjecture 12 The program properties expressible in the language of Henkin style SOL
can also be expressed in NDL.

We leave a similar detailed comparative discussion of expressive power in generalized
frames for the mu-calculus to another occasion.

7.6 Conclusion

We have included logics for computation in this paper since these are often considered a
challenge to general model techniques in logic. Indeed, we found two existing approaches
to generalizing the semantics of logics with recursive definitions: one replacing standard
mathematical structures by a wider class of models for their theory, leading to “gener-
alized counting” on linear orders, the other modifying standard fixed-point semantics in
terms of available predicates for approximations. Whereas these generalized approaches
to modeling computation seem prima facie different from the earlier ones presented in
this paper, in the final analysis presented here, they seem to fall under the general Henkin
strategy after all.

46Here we need more than monadic HSOL: for example, binary or ternary relations for expressing ad-
dition + on T . Therefore, we need to simulate binary and ternary relations in many-sorted HSOL. We
simulate binary relations with a ternary “elementhood” relationE2 ⊆D×D×V such thatE2xyX means
that x, y are “objects,” X is a binary relation, and Xxy holds (or, in other words, 〈x, y〉 ∈X). Similarly,
we use a four-place elementhood relation E3 for simulating ternary relations, etc. Thus, our HSOL model
in the general case is of the form (D,V,E,E2,E3, . . .), that is, a structure of the sort considered in
Sect. 1.
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8 Relating Different Perspectives on Generalized Semantics

We have discussed a number of general perspectives on Henkin’s general models and fur-
ther ways of generalizing semantics by defusing some of the invested set theory. Obvious
further questions arise when thinking about connections between the approaches that we
have discussed. We will only raise a few of these questions here, and our selection is
not very systematic. Even so, the following discussion may help reinforce the interest of
thinking about the phenomenon of generalized models in general terms.

8.1 Generalized Fixed-Point Semantics and Absoluteness

We have stated an objection of high complexity against prima facie attractive program
logics such as first-order dynamic logic on its standard models. However, another charge
would be lack of absoluteness. For a concrete example, consider the fixed-point logic of
recursive programs in Pasztor [75].

The meaning of a recursive program p in a model M is defined as the least fixed-point
of a functional F associated with p as a unary function over the setW of all possible states
for p in M, that is, over P(W ×W). As an illustration for the idea, consider computing
the transitive closure of a relation R as the denotational semantics of a nondeterministic
recursive program

p(x)= y if either R(x, y) or else ∃z[p(x)= z∧R(z, y)].
The functional F associated with this program is

F(X)=R ∪ (X ◦R), where ◦ denotes relational composition.

It can be seen that the least fixed-point of the above F is defined by

Φ(x,y)↔∃ sequence s whose domain is a finite ordinal n+ 1 such that
(
x = s0, y = sn ∧ ∀i < n 〈si , si+1〉 ∈R

)
.

This definition of transitive closure is ZF-absolute. If V,V′ are ZF-models with V′ a
transitive submodel of V, then V and V′ have the same finite ordinals since ω is ZF-
absolute and V′ has to have an ω by the axiom of infinity. However, the definition is not
KPU-absolute. Let V′,V |= KPU where V′ is a transitive submodel of V from which ω is
omitted. This is possible because there is no axiom of infinity in KPU as defined in [8,
pp. 10–12]. It may happen that V has more finite ordinals than V′. Hence, the sequence s
in Φ might exist in V but not in V′. Therefore, for some concrete x, y ∈V′, we may have
Φ(x,y) in V but not in V′. This shows that Φ(x,y) is not a KPU-absolute formula.

Now Pasztor [75] describes an absolute version of this semantics, which is precisely the
logic NLPrec for recursive programs discussed earlier in Sect. 7. In particular, its choice of
“admissible transition relations” is entirely analogous to introducing a first-order sort for
predicates as we did in Sect. 1. As a result, NLPrec has a complete and decidable inference
system. A similar analysis shows how our earlier logic NDL can be viewed as the result
of making the semantics of first-order dynamic logic absolute in a principled manner.
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As a final issue in this connection, recall the earlier-mentioned feature that NDL is a
recursively axiomatizable but not a decidable theory. Can we make it truly decidable, in
line with constructive set theories such as those studied in [24], by merging its semantics
with the general assignment models of Sect. 5?47

A more general issue arising here is how our earlier motivations for decidable se-
mantics extend to the realm of computation. Our semantics of generalized counting still
imports a substantial first-order theory of data structures for the computation to work on
and seems an interesting matter for even closer scrutiny. For instance, in line with Sect. 5,
we could also define guarded fragments of second-order logic whose bounded quantifica-
tion patterns match restrictions on available assignments of denotations to individual and
predicate variables.48

8.2 Smoking Out Set Theory in Algebraic Representation

In Sect. 4, we used the case of modal logic to show how general models are completely
natural from the viewpoint of algebraic semantics for logical systems—and even the
only vehicle that will lead to insightful categorial dualities between algebras and model-
theoretic structures.

Even so, second-order logic can hide in unexpected places. For instance, note that the
standard Stone representation for Boolean algebra, on which the modal representation is
based, itself employs a nonabsolute standard set-theoretic object, viz. the set of all ul-
trafilters on a given algebra. This shows in various side effects. One is that the models
produced by this method tend to have overly large point sets as their domains. For in-
stance, to represent a countable Boolean algebra, one needs only countable many points
to make all necessary distinctions, whereas the Stone space will have uncountably many
points.49

But a further natural concern may be the heavy dependence of this representation
on set-theoretic assumptions like the existence of ultrafilters extending given filters (the
“prime ideal theorem”). Indeed, van Benthem [11] raised the question whether this fea-
ture can be eliminated and came up with what is essentially a new “possibility semantics”
for classical logic where representation takes place in the universe of all consistent sets,
by generalizing the semantics of the basic logical operations to the latter setting.50

This move suggests a further kind of generalized semantics, where we do not just
extend the model class, but where we must also radically generalize our understanding of
the meanings of basic expressions in our original language. One way of thinking about this
is as turning the tables, using generalized semantics on the very representation method that
is supposed to motivate generalized semantics. We leave this as an intriguing unexplored
avenue for now.

47A similar move toward creating decidable theories in physics might follow the lead of Sect. 7 in having
only specially designated “space–time trajectories” available in models for physics.
48Here guard atoms will now be syntactically “third-order” (though this term loses much of its force in
a many-sorted setting), while we must also allow names for designated objects and predicates. We leave
technical details of such more radical decidability perspectives for another occasion.
49To see that a countable structure suffices, take a countable elementary substructure of the Stone space.
50This theme will be resumed in the forthcoming study [16].
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8.3 Richer Languages for Generalized Models

We have seen that generalized assignment semantics supports richer first-order languages
with natural new operators. This phenomenon is well known from other areas of logic,
such as linear logic and other resource-conscious logics, where classical logical operators
“split” into several variants, whereas new operators emerge as well. Again, an immediate
test question is then whether the same happens in second-order logic, the realm where
Henkin started his analysis. Do generalized predicate models support natural extensions
of the usual second-order language?

We have not been able to find a good example that stays inside FOL. However, one can
add a new modality, as we did for general assignment models in Sect. 5, that says that the
matrix formula is true in some extension of the current predicate range. Interesting things
then become expressible, and the usual language of second-order logic gets embedded,
but we are not even sure what sort of higher-order logic this system would really be.

8.4 Trade-Offs Between Generalized Semantics and Language
Fragments

We have seen a close analogy between first-order logic with general assignment models
and the guarded fragment over standard models, as almost two sides of the same coin.
Now well-chosen fragments are of great logical interest, and we noted their importance
already in understanding how second-order logic works at deeper semantic and computa-
tional levels. What can we say about this in general? Can we reanalyze basic fragments
of second-order logic in terms of generalized semantics for the whole language?51

8.5 Coda: Nonstandard Truth Conditions

We conclude with one possibly more radical style of generalizing a semantics, by chang-
ing truth definitions, a theme that has come up occasionally in our earlier discussions, for
example, on constructivizing representation methods.

As a concrete instance, consider the general assignment semantics of Sect. 5 as em-
bodying our theme of “lowering complexity,” taking FOL from undecidable to decidable
by removing extraneous mathematics from the core definitions of the logical system. Can
we lower complexity even further, from decidable to “feasible” logics, whose satisfiabil-
ity or validity problem would be decidable in polynomial time? No such proposal seems
to exist, and it may be of interest to see where the difficulty lies. The complexity of decid-
ability for many logics has to do with the exponential combinatorial explosion associated
with disjunctions. Enlarging the model class does not seem to solve this, and what may
be needed is rather a change in the way in which we interpret disjunction.52

51As a related issue, could well-known key fragments of SOL be captured through their insensitivity in
passing between standard models and matching generalized models yet to be found?
52One such proposal from the folklore has been to read disjunction as linear combination.
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Generalized semantics by tinkering with the interpretations of logical operators can be
very powerful. One interesting example of lowering complexity while improving model-
theoretic behavior are modal “bisimulation quantifiers” (Hollenberg [55]) that step outside
of current models in their interpretation. A bisimulation quantifier is a modality 〈p〉ϕ
interpreted in pointed models (M, s) as saying that there exists a bisimulation, for the
whole language except for the propositional letter p, between (M, s) and some model
(N, t) such that ϕ is true in (N, t). One can think of this as a “tamed form” of second-
order quantification over the property p—and its effect is to leave modal logic decidable
and even preserves its striking model-theoretic properties such as uniform interpolation.53

A similar move would be possible for second-order logic, replacing bisimulation by
potential isomorphism, generalizing its semantics in very different ways from the above.
However, we will not pursue this more radical form of meaning-changing generalized
semantics here.

9 Conclusion

This paper started with an account of Henkin models for second-order logic. To some
people, this technique may look like a trick for lazy people, but we have shown how this
circle of ideas keeps returning in the field for good reasons. We surveyed some major
manifestations of generalized semantics ranging from set theory to algebra and computa-
tional logic, some close to Henkin’s models, others more remote—and explored the many
interesting technical and conceptual issues and results that these bring to light.54 Our main
suggestion has been that it is well-worth thinking about the phenomenon of generalized
semantics more generally, both in terms of general insights and concrete technical results
when their main features are out side by side. We feel that we have only scratched the
surface of what might be a deeper theoretical understanding of what is going on here.55

While we have proposed taking a critical look at unwarranted “set-theoretic impe-
rialism” and unquestioning acceptance of set-theoretic structures without a cost-benefit
analysis, we have not advocated doing away with set theory altogether since that would
mean abandoning a lingua franca that has served the field of logic so well. Likewise, we
have not proposed abandoning second-order logic: it is attractive to look at behavior on
standard models, and that attraction will not easily go away.56 Finally, our tolerance for
generalized semantics may seem almost all-embracing at times, but we certainly would

53Added to propositional dynamic logic, bisimulation quantifiers yield the modal mu-calculus.
54Even so, our survey is by no means complete. For example, Gabriel Sandu has suggested that the
“substitution account” for the meaning of first-order quantifiers would be another natural candidate for
our style of analysis.
55To mention just one more delicate point, it is argued in [58] that second-order logic with generalized
semantics is model-theoretically stronger than first-order logic because even weak comprehension in
the second-order part brings about “strong instability” in the model-theoretic sense. In another vein, [58]
compares second-order logic with generalized semantics (plus comprehension) to full second-order rather
than to first-order logic. What emerges then is that, by forcing one obtains model-theoretic results for full
second-order logic, but with generalized models one can eliminate forcing.
56We refer to [89] for a state-of-the-art discussion of set theory side by side with second-order logic.
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not advocate trying to make general sense of every auxiliary move by logicians. Some
practices in a field are just ad hoc, and nothing is gained by pretending otherwise.

Finally, however, we would like to emphasize the original motivation for writing this
paper once more. It is always worthwhile to think about the achievements of Leon Henkin
and what they mean in a broader perspective, and we have done so triggered by the various
references to his work in this paper. In addition, we hope that the free-thinking and some-
times playful way in which we have done so reflects something of Henkin’s open-minded
personality that one would do well to emulate.
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Appendix
Curriculum Vitae: Leon Henkin

1 Academic Career

The information to elaborate this section was provided by Professor Emeritus of Mathe-
matics John Addison (Department of Mathematics UC Berkeley), in 2009, during a short
visit of María Manzano.

1.1 Formation

Leon Henkin went to Lincoln High school, graduated at 16, and went to Columbia Col-
lege, receiving a B.A. degree in Mathematics and Philosophy in 1941. In 1942 he obtained
a M.A. in Mathematics at Princeton, and 5 years later he received a Ph.D. at the same uni-
versity, under the supervision of Alonzo Church.

1.2 Academic Positions

His beginnings in higher-education lecturing and teaching took place in University of
Southern California as Assistant Professor of Mathematics in the period 1949–1953. In
1953 he moved at Berkeley with the same category, obtaining the position of Professor
Emeritus in 1991. From 1991 onwards, he was at Mills College, where he collaborated
to start the Summer Math Institute at Mills, which aim was to prepare mathematically
talented undergraduate women students (nationally) for graduate school in mathematics.

Although his academic life was always linked to teaching at Berkeley, Henkin on many
occasions traveled abroad with scholarships and grants from various institutions. He had
two Fulbright Research Grants, one during 1954–1955 in Amsterdam and another in 1979
in Haifa, Israel. During 1960–1961, he was in Dartmouth College, and during 1968–1969
in Souls College (Oxford), in both cases as a Visiting Professor. These visits led him to
establish a permanent contact with the Netherlands, Belgique, United Kingdom, Israel,
Spain, Portugal, Hungary, and France.
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1.3 Service to the Department and to the University

Henkin accepted the responsibility as the chairman or acting chairman of the Department
of Mathematics in four occasions but always for short periods of time. He was chairman
of the Group in Logic and Methodology of Science on a couple of occasions, a research
group with which he felt a strong commitment during his career. It is specially relevant
the Mathematics Opportunity Committee to which he joined in forming: his membership
began in 1970, not leaving it until the early 1980s. There Henkin assumed responsibili-
ties as Chairman on several occasions. From 1981 he began to collaborate with Berkeley
SESAME program, an interdisciplinary academic unit dedicated to advance the under-
standing and practice of learning and teaching in science, engineering, and mathematics.

1.4 Collaboration with US Administration Projects

His collaboration with the American administration began in the time of war when serving
first in Belmar NJ, 1942–1943, then in the Manhattan District Project in NY, 1943–1945,
and finally 1945–1946 in the headquarters of Union Carbide, acquiring some responsibil-
ity within the Separation Performance Group.

During 1958–1959, he acted as a consultant for the Air Force Research Group, and
during 1960–1963, he was an adviser of the Office of Naval Research.

Along his life, Henkin took part in a large number of committees connected one way
or another with federal projects. The interest for minorities and education was in many
cases an outstanding reason to accept such responsibilities.

1.5 Editorial Boards

Henkin took part in various editorial committees of relevant periodical publications.
Among this work, the one he did in the Transactions of the American Mathematical So-
ciety deserves special attention, where he held various positions between 1955 and 1967.
He also had a long-term collaboration with the Journal of Symbolic Logic, which extends
from 1953 to 1960, and acted as a referee in numerous publications during the 1960s.
A whole chapter of this book, Leon Henkin the Reviewer, is devoted to that contribution
of Henkin.

1.6 Scientific Associations and Committees

Henkin’s dedication to the promotion of scientific activity through various associations
was extensive and consistent throughout his career. He devoted careful attention to what
could be considered “top level scientific associations,” as well as to open doors to women
and minorities in his field. It is worth mentioning his role in the Association for Symbolic
Logic, of which he was President during the period 1962–1964 and vice-president from
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1952 to 1954. Additionally, it is noteworthy his participation both in the National Science
Foundation (NSF), as an adviser and consultant, and in the National Academy of Sciences.
He was also a member of the Mathematical Association of America, where he was part
of the Committee on Educational Media, in accordance with his interest in the media and
the dissemination of science, especially mathematics.

Regarding the committees and institutions to promote equality among minorities to
which he belonged, the list is long. Perhaps the most relevant along time is the Committee
on Special Scholarships to which he adhered in 1963 and was linked till the end of his
academic career. He was president in 1969–1970 of the Berkeley Chapter of the Ameri-
can Association of University Professors, and from 1970 onwards he was a member of the
Community Teaching Fellowship Program, a statewide program operating from the Uni-
versity Office of the President. Henkin’s interest in promoting equality between women
and ethnic minorities is particularly manifest through his collaboration with the Academic
Senate Committee on Special on Status for Women and Ethnic Minorities.

Finally, his concern with purely didactic aspects of mathematics and logic was also a
constant in his career. For instance, since 1980 he served as Chair on the U.S. Commis-
sion on Mathematics Instruction, until at least 1984. He also participated in the organiza-
tion of several conferences centered on education and teaching, such as the International
Congress on Mathematics Education held in 1979–1980 and the National Conference on
Mathematics Education.

1.7 Invited Conferences

Henkin’s local and international recognition arrived relatively early, and hence the number
of invited lectures in which he participated throughout his career was relatively large.
It is remarkable that those lectures were initially focused on topics such as cylindrical
algebras or algebraic logic, later evolving to aspects related to education as well as to
logic foundation of mathematics.

The academic year of 1954–1955 was especially prolific in conferences focused on
cylindrical algebras given in Europe, especially in various universities in the Netherlands,
Belgium, Norway, and Denmark. His address at the Symposium on Theory of Models
organized in Amsterdam, “A representation theorem for cylindrical algebras”, was par-
ticularly relevant. In the summer of 1957 he was section leader—and gave lectures—at
the NSF Institute on Logic, at Cornell University, the first of a cavalcade of large-scale
meetings devoted to logic.

His vocation for educational aspects of mathematics and the history of logic emerged
in the early 1960s with talks as “New directions in secondary school mathematics”, taught
at Dartmouth College in 1961–1962, “Survey of mathematical logic” and “Mathemati-
cal logic in perspective”. By that time he also presented his work on propositional type
theory, “A theory of propositional types”, and on interpolation theorem, “An interpola-
tion theorem of mathematical logic”, and he began his first collaborations with broadcast
companies with an interview entitled “Scholarship at the Institute for Advanced Study”.

In the 1970s he continued presenting his work on algebraic logic and mathematical
education. From that period, two invited talks should be highlighted: “Induction models”
and “Copernican revolution in mathematics and the idea of the impossible”. Later, in
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the 1980s, he developed an intense international activity at many European universities:
Belgrade, Kragujevac, Novi-Sad, Madrid, Seville, Barcelona, Lisbon.

1.8 Regular Courses Taught

Henkin never gave up on teaching activity, which he combined with an intense activ-
ity as a researcher. One of his first official courses, “Calculus with Analytic Geometry”,
seems to correspond to the typical responsibilities of a young teacher, but even in this
initial period, it can appreciated an attempt to pay attention to his real interests. Dur-
ing 1964–1965, he taught “Metamathematics”—two semesters, and the following year
“Mathematical Logic”—two semesters; he alternated both courses practically throughout
his whole teaching career. In the late 1960s, he began to offer “Concepts of Mathematics
for Elementary School Teachers”, which he taught until the mid 1970s. Other constant
along his teaching was a seminar on “Theory of Cylindric Algebras” offered during the
1980s. Apart from these items, the rest of his teaching was diverse: “Abstract Algebra”,
“Algebra and Trigonometry”, “Finite Mathematics”, “Foundations of Geometry”, “In-
troduction to the Theory of Sets” are some of the courses offered by Henkin along his
career. Henkin seems to have had no tendency to settle in the area of his main interest ac-
cepting, even at the end of his career, subjects that were not strictly related to his research
or direct interests. He was always able to switch from a topic into another, showing in
every case his potential as a teacher, and his ability to explain complex stuff to every kind
of people.

1.9 Doctorate Supervision

The list of Ph.D. students under the supervision of Henkin contains a total nine students,
eight of which belong to Berkeley—Hadar Nitsa and Diane Resek, collaborating in this
volume are among them—and one to Southern California. It is noteworthy that the last
four Ph.D. at Berkeley have to do with aspects of teaching mathematics or the integration
of minorities in this type of research.

1. Carol Ruth Karp (1959) Languages with expressions of infinite length.
2. Daniel Demaree (1970) Studies in algebraic logic (advisor 2. Dana Stewart Scott, un-

official advisor J.D. Monk)
3. Daniel Gallin (1972) (advisor 2. Dana Stewart Scott) Intensional and higher-order

modal logic.
4. Diane Resek (1974) Some results on relativized cylindric algebras.
5. Nitsa Hadar (1975) Children’s conditional reasoning.
6. David Lawrence Ferguson (1980) The language of mathematics—how calculus stu-

dents cope with it.
7. Hadas Rin (1982) Linguistic barriers to students’ understanding of definitions in a

college mathematics course.
8. Francoise Tourniaire (1984) Proportional reasoning in grades three, four, and five.
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9. Philip Treisman (1985) A study of the mathematics performance of black students at
the University of California, Berkeley.

There is an additional list of six other students for whom Henkin was the official chair-
man or co-chairman of the dissertation committee but for whom the actual chairman was
outside the Department. It is relevant to note that in these cases the topics are strictly
formal.

1. Charles Malone Howard (1965) (co-chairman with William Craig; unofficial co-
advisor J.D. Monk) An approach to algebraic logic.

2. Edgar G.K. Lopez-Escobar (1965) (co-chairman with Dana Scott) Infinitely long for-
mulas with countable quantifier degrees.

3. Peter Krauss (1966) (co-chairman with Dana Scott) Probability logic.
4. Michel Jean (1968) (co-chairman with William Craig) Pure structures.
5. Mohamed Amer (1969) (co-chairman with William Porter Hanf) Boolean algebras of

sentences of first-order logic.
6. Leonard Lipner (1970) (co-chairman with William Craig) Some aspects of generalized

quantifiers.

There are at least four other students Henkin supervised during their postdoctoral stays:
Newton da Costa (Brazil), H.D. Ebbinghaus (Germany), Irineu Bicudo (Brazil), Maria
Manzano (Spain). Some of these researchers came from countries without a strong logical
tradition, as a result of which Henkin became a reference for the development of logical
research in these places; such effect was specially notable in Spain or Brazil.

1.10 Awards

Henkin was awarded the Chauvenet Prize in 1964 for his paper “Are Logic and Mathe-
matics Identical?”—Mathematical Association of America [32] award to the author of an
outstanding expository article on a mathematical topic by a member of the Association.

In 1972, his paper “Mathematical Foundations for Mathematics” [52] granted the
Lester R. Ford Award, which recognizes authors of articles of expository excellence pub-
lished in The American Mathematical Monthly or Mathematics Magazine.

In the last years of his career, he was laureate several times in recognition of his work
for mathematics education for minorities. He received the Mathematics Sciences Educa-
tion Board for Contributions to Making Work outstanding Minorities, and the Mathemat-
ics Undergraduate Student Association Distinguished Teaching Award, both in 1990; in
the same year, he was the first recipient of the Gung and Hu Award for Distinguished
Service to Mathematics.

In 1991, Henkin received the Berkeley Citation, in recognition to his entire career at
that university, and in 1998, he received the Presidential Award for Excellence in Science,
Mathematics, and Engineering. Finally, the Berkeley campus established a prize inspired
by Henkin’s life and work, the Leon Henkin Citation for Distinguished Service, devoted to
recognize the “exceptional commitment to the educational development of students from
groups who are underrepresented in the academy”.
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