
Chapter 9
Differential Entropy Dynamics: A Possible
Cause of Coherence Resonance

Juhi Rajhans and A.N. Sekar Iyengar

Abstract Coherence resonance can be explained using differential entropy and
mutual information. This theory explores the role of external noise in stabilising
chaotic circuits such as the uni-junction transistor relaxation oscillator. The phe-
nomenon of coherence resonance maximizes differential entropy and mutual
information. Thus most natural chaotic oscillators show coherence resonance in the
presence of an external driving noise.
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9.1 Introduction

Electronic circuits form the most elegant and simplest models to study synchroni-
sation in chaotic oscillator systems. One of the most primitive models is the uni-
junction transistor in the threshold voltage limit. A uni-junction transistor (UJT) is a
bar of n-type semiconductor with a pinch of p-type semiconductor in the middle. It is
a two base one emitter transistor with current flowing in the base2-emitter-base1
direction. Thus the CRO shows the voltage peaks in the emitter-base1 and emitter-
base2 junctions of opposite polarity. Time dependent external stochastic perturba-
tion leads to large amplitude limit-cycle oscillations in the emitter of the uni-junction
transistor. According to Nurrujaman et al. (2009), thermal noise and negative
resistance across the emitter and one of the bases makes it a non-linear relaxation
oscillator. The phenomenon of conductivity modulation in the emitter-base1 region
is responsible for the negative resistance of the emitter-base1 junction.
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The central theme of this paper is to explain coherence resonance in period-one
limit cycle oscillator like the UJT. The study shows that synchronisation of noisy
semiconductor circuits in the presence of external white Gaussian noise is
inevitable.

9.2 Theory and Calculations

9.2.1 UJT Characteristics Without External Noise

The crucial point is the onset of negative resistance characteristics. Negative
resistance occurs at zero frequency when dV

dI \0. The conductivity of a semicon-
ductor can be altered by the injection or extraction of carriers. Nishi (1962) shows
in his work that negative resistance under D.C voltage can be obtained under two
conditions—

1. In one model the electrons and holes in the emitter-base1 junction show
Brownian motion with drift and no recombination (of electrons and holes) and
in the other

2. where the lifetime of the drifting electrons and holes increases with increasing
carrier density (Fig. 9.1).

Calculating the values of peak and valley voltages in terms of the power supply
voltages, and then calculating the time required to discharge to these voltages, we
obtain a set of equations.

dV
dt

¼ V0

ðRCÞ ð1� exp
�t
RC

Þ if t�RCð1þ 3iÞ
dV
dt

¼ � V0

RC
expð� tx

RC
Þ if 2iRC\t� 3iRC

i ¼ 0; 1; 2; 3; 4; . . .; 1\x\2:

The biasing voltage determines the dynamics at the emitter- base1 junction. The
dynamics in this region is null till the threshold voltage is crossed following which
limit-cycle relaxation oscillations set in. This suggests the formation of a saddle-node
bifurcation which leads to the formation of a stable and an unstable fixed point. In
order to study the dynamics, one has to consider a 1-D graph with similar charac-
teristics. The simplest such graph is the map governed by the following relation.

xnþ1 ¼ axn for 0� xn � 1
2

xnþ1 ¼ að1� xnÞ for
1
2
� xn � 1
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Thus, according to the graph the limit cycle occurs for a certain value of the
parameter and then the attractor goes through rapid period doubling into chaos.
The brief window of parameter values which sustains the limit cycle is when the
stable fixed point exists. The limit cycle collapses when the unstable fixed point
meets the stable manifold leading to internal crisis.

9.2.2 UJT Characteristics with External Noise

9.2.2.1 Stable Oscillations Due to AWGN Resonance

It has been proposed that conductivity modulation generates a Johnson-Nyquist
noise in the semiconductor base. This implies that the thermal noise generated due
to mobile electrons is additive white Gaussian (AWGN) in nature, (Wong 2011).

The internal Johnson-Nyquist noise and external stochastic AWGN fed into the
emitter through a capacitor, interfere and generate another white Gaussian noise.
Xi ¼ Nð0; n1Þ is a Gaussian with zero mean and variance n1. Yi ¼ Nð0; nÞ is another
Gaussian noise. Thus, from the theorem of addition of two probability distribution
functions, Zi ¼ Xi þ Yi is also a white Gaussian noise. The addition of external
Gaussian noise acts as a perturbation and throws the system into the stable limit
cycle, and the amplitude increases due to differential entropy and mutual information
maximisation. Following is a proof of the above statement (Reza 1961, 1994).

The differential entropy of a Gaussian is given by

hðXÞ ¼ �
Zþ1

�1
fXðxÞ logðfXðxÞÞ

¼ �E½logðfXðxÞ�

Fig. 9.1 The I-V characteristics of the UJT and the circuit (UJT relaxation oscillator)
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Now, we choose to maximize the differential entropy.Z
pðxÞdx ¼ 1Z
xpðxÞdx ¼ lZ

ðx� lÞ2pðxÞdx ¼ r2

Using the Lagrangian multiplier one finds the following functional—

F ¼�
Z

pðxÞ ln pðxÞdxþ k1ð
Z

pðxÞdx� 1Þ þ k2ð
Z

xpðxÞdx� lÞ þ k3Z
ðx� lÞ2pðxÞdx� r2Þ

From the calculus of variations,

pðxÞ ¼ expð�1þ k1 þ k2xþ k3ðx� lÞ2Þ

pðxÞ ¼ 1
2pr2

1
2

exp �ðx� lÞ2
r

2 !
:

The value of the maximum entropy-

H xð Þ ¼ 1
2
ð1þ lnð2pr2ÞÞ

Similarly, the mutual information can be written down in the following form-

I½x; y� ¼
Z Z

pðx; yÞ lnðpðxÞpðyÞ
pðx; yÞ Þdxdy

One could also show that the mutual information is maximised when p(x), p(y)
is a Gaussian.

I½x; y� ¼ H½x� � H½xjy� ¼ H½y� � H½yjx�

Thus maximizing the mutual information is equivalent to maximizing H[y]. The
previous calculations show that this is possible only when y is circularly symmetric
complex Gaussian or white Gaussian (Telatar 1999) and this happens when x is
circularly symmetric complex Gaussian. The maximal mutual information is given
by the following-
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I½x : y� ¼ log detðI þ HQHyÞ ¼ log detðI þ QHHyÞ

where the equality follows from the determinant identity log detðI þ ABÞ ¼
log detðI þ ABÞ. H is a matrix relating the signals x and y. Q is the covariance of
x and y.

Mutual information is the reduction in uncertainty about x given a value of y or
vice versa. One can interpret the reduction in uncertainty in the second signal
as onset of periodicity of the signal after superposition with the external noise.
(Sigman 2007)

However, the question still remains as to why limit cycle oscillations should
begin at a particular amplitude of the external noise and not at lower amplitudes.
Silvia de Monte (Silvia de Monte, Francesco d’Ovidio, Erik Mosekilde, Noise-
induced macroscopic bifurcations in populations of globally coupled maps, arXiv:
cond-mat/030 1056) shows in her work that low amplitude of noise to a system at a
stable fixed point or very close to it leads to bifurcation. The system traverses the
entire phase space before returning back to the fixed point when the noise amplitude
is equal to the emitter voltage at no noise-relaxation-oscillations.

9.3 Coupled UJTs in the Presence of External
Noise-Coherence Resonance

The differential entropy analysis can be extended similarly with two or more UJTs
coupled to each other in the presence of an external white Gaussian noise. The
differential entropy of each such oscillator is maximum in the resonance regime.

I½x; y; z� ¼ H½x� þ H½y� þ H½z� � H½xjy� � H½yjz� � H½zjx�

where one of the signals is the external noise and the other two are the oscillator
signals. It is obvious that I[x;y;z] is maximum when H[x], H[y], H[z] is maximum,
i.e., each of them generates a circularly symmetric complex signal. This would
generate a shifted Arnold tongue diagram which can be tested through experiments.

9.4 Conclusions

Thus, the algebra of differential entropy and mutual information can be extended to
coupled oscillator systems in the presence of an external noise. Numerous studies
show that noise-induced resonance is observed in various biological oscillators. The
explanation through differential entropy can be directly extended for more number
of oscillators and the Arnold tongue diagram would suggest different mode-locked
orbits in presence of the noise. We conclude by saying that the evolution of
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differential entropy and mutual information in chaotic oscillators are clearly sug-
gestive of emerging patterns in complex systems. We also extend our heartfelt
thanks to Dr. S.K. Dana whose valuable insights and discussions at Indian Institute
of Chemical Biology gave us a crucial paradigm to understand synchronisation in a
chaotic system like the UJT.
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