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Abstract. Let ψ denote the square root of the golden ratio,

ψ =
√

(
√
5− 1)/2. A golden triangle is any right triangle with legs of

lengths a, b where a/b = ψ. We consider tilings of the plane by two golden
triangles: that with legs 1, ψ and that with legs ψ,ψ2. Under some nat-
ural constrains all such tilings are aperiodic.

1 Introduction

1.1 Golden Triangles

The altitude of every right triangle cuts it into two similar triangles. Are there
other polygons P that can be divided into two polygons each of which is similar
to P? Any parallelogram whose width is

√
2 times bigger than its length has

this property: its median cuts it into two equal such parallelograms. A more
interesting example is the so called Ammann hexagon1:
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Here ψ stands for the square root of the golden ratio (ψ4 + ψ2 = 1). It turns
out that that there are no other such hexagons. This was conjectured by Scherer
in [6] and proved by Schmerl in [7].

� The work was in part supported by the RFBR grant 14-01-93107.
1 This hexagon is attributed to Robert Ammann in [8]. Independently the hexagon
was discovered by Scherer [6] who called it the Golden Bee.
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Let us go back to the right triangle, whose altitude cuts it into two similar
triangles. Assume that its hypotenuse and legs are proportional to 1, ψ and ψ2,
respectively, so that Pythagorean theorem hold:

ψ

1ψ2

Call any such triangle a golden triangle. The altitude of the golden triangle cuts
it into a large and small golden triangles, labeled by letters “L” and “S”:
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The ratio between the sizes of the initial triangle and its large part is equal to
the ratio between the sizes of its large and small parts (hence the name).

1.2 Standard Tilings

Let us start with a golden triangle and cut it by its altitude into two smaller
golden triangles. Then cut the larger of the resulting triangles into two triangles.
We obtain one small triangle and two large triangles. Then again cut both large
resulting triangles, then again and again . . . . We get the following tilings:

. . .
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On each step we obtain a tiling of the original golden triangle by golden triangles
of two sizes. We will call such tilings standard. The number of steps needed to
obtain a standard tiling from the original golden triangle is called its depth. For
example, the depth of the last tiling in the last picture is 4.

We can start from any golden triangle, so for each n and each d we can obtain a
standard tiling of depth n consisting of triangles of sizes d and ψd. In this paper,
we study tilings of the plane (or its parts) by golden triangles of two sizes d and
ψd (where d is a fixed number, say, 1) that look locally like standard tilings. This
means that for any circular window (of any diameter D) every pattern that we
can observe in that tiling through such a window can be observed also in some
standard tiling. Of course the depth of that tiling may depend on the diameter
of the window. The larger the window is the larger the depth of the tiling may
be. We will call such tilings locally standard, LS. In other words, a tiling is LS if
each its finite subset is a subset of a standard tiling. (Throughout the paper we
consider tiling as sets of triangles.)

Do locally standard tiling of the plane exist? This can be shown by well known
arguments (used in the literature, for instance, for Berger’s tilings [2]). Moreover,
like Berger’s tilings, all locally standard tilings of the plane are aperiodic.

Assume now that we bound the size of the window by some constant D.
That is, consider only patterns of diameter at most D. Our Theorem 2 states
that for any D there are finitely many patterns of diameter at most D that can
be observed in standard tilings. (When counting patterns, we identify isometric
ones.)

More specifically, we say that a finite tiling T is a pattern of a tiling T ′ if T is
a subset of T ′. For example, every standard tiling is a pattern of every standard
tiling of larger depth, but not the other way around. A pattern is standard if
it is a pattern of a standard tiling. Thus a tiling is LS iff all its patterns are
standard. The diameter of a pattern is the maximal distance between two points
lying in triangles of that pattern. Theorem 2 states that for every D there are
finitely many standard patterns of diameter at most D.

Theorem 1 gives a hope to describe locally standard tilings by a finite number
of patterns. This would be possible if there were D with the following property:
if all patterns of diameter at most D of a tiling T are standard then T is locally
standard (that is, all patterns of T are standard).

The main result of the paper, Theorem 3, states that this is not the case. In
other words, for every D there is a tiling of the plane by golden triangles that
is not LS and yet all its patterns of diameter at most D are standard. Speaking
informally, locally standard tilings cannot be finitely presented, they cannot be
defined by a finite set of local rules.

This result shows a crucial difference between tilings by Ammann hexagons
and golden triangles. Recall that Ammann hexagon of size d can be also cut
into two Ammann hexagons of sizes ψd and ψ2d (see the picture on the first
page). In the similar way one can define Ammann standard tilings, Ammann
locally standard tilings etc. However, this time there is D such an Ammann
tiling of the plane is locally standard iff all its patterns of diameter at most D
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are standard [3]. Moreover, an Ammann tiling is locally standard iff all its pairs
of adjacent hexagons form a standard pattern!

Let us return to tilings by golden triangles. There is yet another way to define
what means that a tiling of a plane “looks like standard tilings”. Let us call
the operation used to define standard tiling the refinement. The refinement of
a tiling T is the tiling obtained from T by cutting each large triangle from T
by its altitude (and keeping all small triangles intact). It is not hard to see that
different tilings have different refinements. Hence a reverse partial operation is
well defined. That partial operation is called the coarsening. (Not every tiling
has a coarsening: for example, a tiling consisting of one small triangle has no
coarsening.) If a tiling admits n successive coarsenings, we call it n-coarsenable.
For instance, any standard tiling of depth n is n+ 1-coarsenable but not n+ 2-
coarsenable. If a tiling is n-coarsenable for all n we call it infinitely coarsenable,
IC. One can show that every LS tiling is IC, but not the other way around. An
example of IC tiling which is not LS will be given later. From this example it will
be clear that the class of LS tilings is a more adequate formalization of tilings
that “look like standard tilings” than the class of IC tilings.

Our main result applies to the class of IC tilings as well: IC tilings cannot
be defined by a finite set of local rules. More specifically, for any D there is a
non-IC tiling whose all patterns of diameter at most D are standard (and hence
appear in an IC tiling, namely, in any LS tiling of the plane).

One can wonder if the class of locally standard tilings is “sofic”. We say that
a class C of tilings is sofic if the following holds. There are D, a finite set of
colors and a finite set of patterns P of diameter at most D where each pattern
consists of colored triangles (each triangle bears only one color) such that
(1) in every tiling from C each triangle can be colored so that all patterns of
diameter at most D of the resulting colored tiling belong to P , and the other
way around:
(2) if every pattern of diameter at most D in a tiling of the plane by colored
triangles belongs to P , then after removing colors the resulting tiling belongs C.

We do not know whether the families of LS tilings and of IC tilings are sofic.
The Goodman-Strauss theorem [5], or its proof, might provide a positive answer
to this question. The statement of that theorem itself does not imply the answer,
as its conditions are not satisfied for the family of LS (or IC) tilings. The same
applies to Fernique – Ollinger generalization of Goodman-Strauss theorem [4].

2 Preliminaries

The letter ψ denotes the square root of the golden ratio, ψ =
√
(
√
5− 1)/2.

A golden triangle is any right triangle similar to that shown on the picture on
page 30 (all points inside the triangle are considered as belonging to it). The size
of a golden triangle is the length of its hypotenuse. A d-tiling is a non-empty set
of golden triangles that pair wise have no common interior points and each of
them is either of size d (such triangles are called large), or of size dψ (those are
called small).
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A tiling is a d-tiling for some d. A tiling T tiles A (where A is a subset of the
plane), if A equals the union of all triangles in T . A tiling T is called periodic,
if there is a nonzero vector v (called a period) such the result of transition of
every triangle H in T by vector v belongs to T . Otherwise the tiling is called
aperiodic.

The refinement of a d-tiling T is the ψd-tiling obtained from T by cutting
each large triangle from T by its altitude. All small triangles remain intact and
become large triangles of the refinement. It is easy to verify that the refinement
is an injective operation. The reverse partial operation is called the coarsening.
The k-refinement of a tiling is the result of applying k successive refinements to
it. The partial operation of k-coarsening is defined in a similar way. If a tiling
admits k successive coarsenings, that is, it is a k-refinement of some tiling, we
call it k-coarsenable. If a tiling is k-coarsenable for all k we call it infinitely
coarsenable.

A standard d-tiling of depth n is a d-tiling obtained from a single golden
triangle H of size dψ−n by n successive refinements.

A finite tiling P is a pattern of a tiling T if P is a subset of T . A finite tiling
is a standard pattern if it is a subset of a standard tiling. A tiling T is locally
standard all its patterns are standard, i.e. for all finite W ⊂ T there is a standard
tiling T ′ with W ⊂ T ′.

The diameter of a finite tiling is the maximal distance between two points
lying in triangles of that tiling. A tiling is called D-locally standard if all its
patterns of diameter at most D are standard.

3 Results

Theorem 1. (a) There are locally standard tilings of the plane. (b) Every locally
standard tiling of the plane is infinitely coarsenable. (c) The converse is not true.
(d) Every infinitely coarsenable tiling of the plane is aperiodic.

Proof. (a) Let Stn denote the standard 1-tiling of depth n. Observe that St7 has
a large triangle that is located strictly inside the part of the plane tiled by St7:

This implies that we can draw St0 and St7 on the plane so that St0 is a subset
of St7 and, moreover, the triangle forming St0 is strictly inside the part of the
plane tiled by St7. Similarly, we can draw St14 on the plane so that St14 includes
St7 as a subset and the part of the plane tiled by St7 is strictly inside the part
of the plane tiled by St14.
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In this way we can construct a sequence of tilings St0, St7, St14, . . . such that
St7n is a standard tiling of depth 7n, St7n is a subset of St7n+7 and the union
T =

⋃∞
n=0 St7n tiles the entire plane. On the other hand, the tiling T is locally

standard by construction.
(c) In the same way as in item (a), we can construct a sequence of tilings

St0, St8, St16, . . . such that the union T =
⋃∞

n=0 St8n tiles a half-plane. This is
because the tiling St8

has a large triangle L such that the hypotenuse of L lies on the hypotenuse of
the triangle tiled by St8 and both legs of L are strictly inside the triangle tiled
by St8.

Let T̃ be the tiling obtained from T by applying the axial symmetry with
the axis equal to the edge of the half plane tiled by T . Both T and T̃ are IS by
construction. Then shift T̃ by a very small amount along the edge of the half
plane. The shifted T̃ is IC as well. Hence the union of T and shifted T̃ is also
IC. On the other hand, it is not LS, as all patterns along the edge of the half
plane become non-standard after the shift.

(b) We will say that a small triangle S and a large triangle L form a couple
if they are located as shown on the second picture on page 30. It is easy to see
that in any standard tiling for any small triangle S there is a large triangle L
forming a couple with S.

Consider any small triangle S in a locally standard d-tiling T of the plane.
As T is locally standard, there is a large triangle L ∈ T forming a couple with
S. Replace in T the triangles L and S by their union L ∪ S, for every small
triangle S. We obtain a ψ−1d-tiling T ′, whose refinement equals T . Thus T is
coarsenable.

Let us show that T ′ is LS. Let W ′ be any finite subset of T ′. We have to show
that W ′ is a subset of a standard tiling. Let W stand for the refinement of W ′.
Then W is a subset of T . Since T is LS, W is a subset of a standard tiling, say,
Stn. If n = 0 then W ′ is a small triangle and we are done. Otherwise W ′ is a
subset Stn−1.

(d) Assume that an IC tiling T has a non-zero period v. Then v is also a
period of the coarsening T ′ of T . Indeed, the refinement of T ′+ v is equal to the
tiling T +v, which equals T by the assumption; thus T ′+v and T ′ have the same
refinement and hence coincide. Similarly, v is a period of the coarsening T ′′ of
T ′ and so on. Note that the coarsening increases the sizes of triangles. Thus, on
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some step, v becomes smaller then the lengths of all sides of triangles and we
get a contradiction.

Theorem 2. For any D, d the family of patterns of diameter at most D of
standard d-tilings is finite. (When counting patterns we identify isometric ones.)

Proof. Call a tiling P a simple pattern of a tiling T if there is a node K of some
triangle from T (called the center of the pattern) such that P consists of all the
triangles from T whom K belongs to.

A simple standard pattern is a simple pattern of a standard tiling. An example
of a simple standard pattern P is shown on the following picture (P consists of
all triangles intersecting the circle, the center of the pattern is inside the circle):

The proof is based on the following two lemmas.

Lemma 1. Assume that a 1-tiling T tiles a convex set U . Assume further that
S is a subset of U of diameter less than a certain positive constant ε. Then T
has a simple pattern P that covers S.

Lemma 2. For every d the family of all simple patterns of d-tilings is finite and
their number does not depend on d. (We identify here isometric patterns.)

Both lemmas are quite technical and will be proved in the Appendix. Now
we finish the proof of the theorem assuming the lemmas. Fix D and d. W.l.o.g.
assume that d = 1. Consider a standard 1-tiling Stn of some depth n. Let W
be any pattern of diameter at most D of the tiling Stn. We claim that there are
a number k bounded by a function of D and a simple pattern P of a standard
(1/ψ)k-tiling such that k-refinement of P includes W .

Let k be the minimal integer such that ψkD is less that the constant ε from
Lemma 1. If it happens that k > n then let k = n. Let Stn−k denote the k-
coarsening of the tiling Stn. If k = n we are done, as we can let P = Tn−k.
Otherwise, ψkD < ε and hence the diameter of W measured in units (1/ψ)k is
less than ε. By Lemma 1 W is covered by a simple pattern P of Tn−k. Hence
the k-refinement of P includes W .

By Lemma 2 the number of simple patterns of Tn−k is bounded by a constant
and k is bounded by a function of D. For each k and each simple pattern P the
number of subsets of the k-refinement of P is finite. This completes the proof of
the theorem modulo the lemmas.

Theorem 1 gives a hope to describe LS tilings by a finite number of patterns.
This would be possible if there were D such that every D-locally standard tiling
is LS. The main result of this paper states that this is not the case.



36 N. Vereshchagin

Theorem 3. For every D there is a D-locally standard tiling which is not locally
standard and even not infinitely coarsenable.

Proof. The proof of this theorem is fairly simple (but hard to find). Consider the
following periodic 1-tiling U of the plane (the first configuration on the picture):

All its simple patterns are standard: they appear in the standard tiling of depth
6 (the second configuration on the picture).

Fix any D. Let ε be the constant from Lemma 1. Choose i so that Dψi < ε
and let Ui be the i-refinement of tiling U . Then Ui is the sought tiling.

Indeed, by Lemma 1 for every pattern of Ui of diameter less than D there is
a simple pattern P of U such that W is a subset of the i-refinement of P . As we
have seen, all simple patterns of U are standard and so does P . Hence W is a
standard pattern as well.

On the other hand, being periodic, the tiling Ui is not infinitely coarsenable
(actually, it admits only i+ 2 coarsenings).

Acknowledgments. The author is sincerely grateful to Alexander Shen,
Andrey Romashchenko and Thomas Fernique for useful comments.
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A Proof of the Lemma 1

Assume that ε is small enough (in the end we will see how small it should be).
Let S denote the convex closure of W . Then U includes S. As convex closure

has the same diameter as the set itself, the diameter of S is at most ε. Assuming
that ε is less than the lengths of all sides of triangles from T we conclude that
S has at most one node of a triangle from T . If it has such a node then let K
be that (unique) node. In this case the simple pattern P of T with the center K
covers S (and hence W ). Indeed, if ε is less than the altitude of a small triangle
then all the points of all the triangles from the simple pattern P are at the
distance at least ε > D from K. As the diameter of S is at most D, this implies
all the points of S are at distance at most D from K and are thus covered by
the pattern.

Assume now that S has no node of a triangle from T . If S covered by only
one triangle we are done — any its node can be taken as the center of the sought
simple pattern.

Otherwise S has no nodes of triangles from T and cannot be covered by one
triangle from T . Let A be any triangle intersecting S, say in point C, and let
D be any point from S \A. Consider the segment [C,D]. At some point E that
segment leaves the triangle A. The points of [E,D] that lie very close to E belong
to S and hence to some triangle B from T . That triangle includes the point E.

If E is close to a node of A or a node of B we can let K be that node. Indeed,
all points in S are close to E and E is close to K. Hence all points from S are
close to K and are thus covered by the simple pattern with center K. Otherwise
E is the internal node of a leg of A and an internal node of a leg of B and thus
A and B share a common segment. All nodes of A and B are far from E and
hence from S. This implies that S is covered by A∪B. It remains to notice that
A and B belong to a simple pattern of T : indeed, both ends of the line segment
shared by A,B can be chosen as the center of that simple pattern.

A calculation shows that ε equal to the half of altitude of the small triangle
times ψ2 will do.

B Proof of the Lemma 2

The second statement of the theorem (the number of simple patterns of standard
d-tilings does not depend on d) is obvious. So we will assume that d = 1.

Consider standard 1-tilings of depth 9 and 10 (Fig. 1). A careful examination
reveals that every simple pattern of the second tiling is isometric to a simple
pattern of the first tiling. This implies that every simple pattern of standard
1-tiling of depth 11 is isometric to a simple pattern of the standard 1-tilings of
depth 10. Indeed, let K be a node of a triangle of St11 and P the simple pattern
of St11 with center K.

Assume first that K is also a node of a triangle from the coarsening St10 of
St11 (an “old” node). Let P ′ be the simple pattern of St10 with center K. Then
P is a subset of the refinement of P ′.
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As every simple pattern of St10 is isomorphic to a simple pattern of St9, so
does P ′. Let Q′ be the simple pattern of St9 that is isomorphic to P ′ and L
its center. Then the set of all triangles in St10 that include the point L forms a
simple pattern of St10 isomorphic to P .

OtherwiseK is a “new node”, it is not a node of a triangle from the coarsening
St10 of St11. Distinguish two cases (1) K is on the border of the area tiled by
St11 and (2) K is an inner node of the area tiled by St11 (examples of such nodes
are inside two circles on Fig. 1). The fist case is easy, as there are plenty such
simple patterns of St10.

The second case is more delicate. We claim that in this case K is always the
center of a simple pattern isomorphic to that whose center lies inside the circle
on Fig. 1. It is enough to prove that claim, as there are plenty such patterns in
St10.

Any new inner node K lies of the hypotenuse of a large triangle of St10, say A,
and also belongs to a triangle B, adjacent to A. Therefore we have to analyze the
standard patterns consisting of two adjacent triangles. It turns out that there
are 10 such patterns and we are going to find all of them.

Let T be a standard pattern consisting of adjacent triangles A,B. Let n be
the minimal n such that T is a subset of a standard tiling Stn. Call such n the
index of T . Let us show first that any pattern of index n > 1 is a subset of the
refinement of a pattern of index n− 1.

For n = 2 this is easily verified ad hoc. Assume that n > 2. Then Stn is
a disjoint union of two standard tilings Tn−1 and Tn−2. Let I stand for the
common segment of indexes of A,B. Coarsen Tn−1 and Tn−2 and denote the
resulting tilings by T ′

n−2 and T ′
n−3, respectively. Let A

′, B′ be the triangles from
T ′
n−2, T

′
n−1 including A,B. Then A′.B′ also share the segment I and hence form

a pattern of a smaller index than n.
This observation allows to find all standard patterns consisting of two adjacent

triangles in the order of increasing its indexes. The only such pattern of index 1
is the pair of small and large triangles that is obtained by refining T0 (a couple
of a small and large triangles). All patterns of index 2 are subsets of T2. There
is only one such pattern (a large triangle whose large leg is the hypotenuse of a
small triangle, see the third picture on page 30). All patterns of index 3 (or less)
are subsets of the refinement of this pattern. As one can see on the third picture
on page 30 the only pattern of index 3 is the pair of large triangles sharing the
hypotenuse. All patterns of index 4 (or less) are subsets of the refinement of this
pattern. Again on the third picture on page 30 we can see that there are two new
different patterns of index 4 (two large triangles sharing a small part of their
large legs and a small triangle whose small leg is a part of the large leg of a large
triangle). Each of the patterns of index 4 produces one pattern of index 5:
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Thus we have two patterns of index 5: two large triangles sharing parts of their
hypotenuses and a large triangle whose small leg is a part of the hypotenuse of
a large triangle). The second pattern produces now new patterns. The first on
one produces one pattern of index 6 (two small triangles sharing the small leg):

This pattern produces one pattern (two large triangles sharing the small leg) of
index 7:

This pattern produces one pattern (two small triangles sharing the hypotenuse)
of index 8:

Finally, this pattern produces no new patterns:
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Now we can see that the only standard pair of adjacent triangles whose refine-
ment yields a new inner node is the pattern of index 3 (the pair of large triangles
sharing the hypotenuse). And both new inner nodes are centers of simple pat-
terns isomorphic to that on Fig. 1.

Fig. 1. Standard tilings of depths 9 and 10
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In the similar way we can show that every simple pattern of standard 1-tiling
of depth 12 is isometric to a simple pattern of the standard 1-tilings of depth
11 etc. Thus any simple pattern of any standard 1-tiling is isometric to a simple
pattern of St9.
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