
Positive and Negative Proofs for Circuits

and Branching Programs

Olga Dorzweiler, Thomas Flamm, Andreas Krebs, and Michael Ludwig

WSI - University of Tübingen, Germany, Sand 13, 72076 Tübingen, Germany
{dorzweiler,flamm,krebs,ludwigm}@informatik.uni-tuebingen.de

Abstract. We extend the # operator in a natural way and derive a new
type of counting complexity. While #C classes (where C is some circuit-
based class like NC1) only count proofs for acceptance of some input
in circuits, one can also count proofs for rejection. The here proposed
Zap-C complexity classes implement this idea. We show that Zap-C lies
between #C and Gap-C. In particular we consider Zap-NC1 and poly-
nomial size branching programs of bounded and unbounded width. We
find connections to planar branching programs since the duality of posi-
tive and negative proofs can be found again in the duality of graphs and
their co-graphs. This links to possible applications of our contribution,
like closure properties of complexity classes.

1 Introduction

Besides Turing machines, circuits are a well studied model of computation for the
study of low level complexity classes. Measures of complexity in circuits include
depth and the number of gates which are roughly speaking an analogue to time
and space complexity in Turing machines. When regarding parallels between
Turing machines and circuits, a natural question is, what the counterpart to
non-determinism in circuits is. A non-deterministic Turing machine can have
more than one accepting computation on some input. In fact, the counterpart
to the presence of multiple accepting computations is the presence of proof trees
in circuits. A proof tree is a sub-tree of the tree unfolding of a circuit, which
is a witness for acceptance of some input word. When looking at the circuit-
based characterization of, say NP, one can observe that the number of accepting
computations and the number of proof trees coincide [Ven92].

How can we calculate the number of proof trees in a circuit? It can be verified
easily that if we move to an arithmetic interpretation of the circuit, it computes
the number of proof trees [VT89]. I.e. we interpret And as × and Or as +. Since
we cannot treat negation in this setting directly, we assume w.l.o.g. the circuit
to be monotone. If we want to address functions counting proof trees in circuits
(or equivalently arithmetic circuits) of some complexity bound, say NC1, we
write #NC1.

It is an open question whether #C functions are closed under subtraction.
Here, the case we are most interested in is C = NC1. This motivated another
type of counting complexity: Gap. Where #C functions range over non-negative

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 270–281, 2014.
c© Springer International Publishing Switzerland 2014



Positive and Negative Proofs for Circuits and Branching Programs 271

integers, Gap-C functions range over integers. Gap-C functions are realized by
arithmetic circuits with gates of types {+,−,×}. By [FFK94, All04] we know
that Gap-C = #C − #C, what motivated its naming. That means that each
Gap function can be computed by an arithmetic circuit only having a single
subtraction gate.

Boolean circuits can also compute arithmetic functions. Such a circuit has as
many output gates as necessary to display the result integer in binary represen-
tation. Hence one can ask e.g. if NC1 = #NC1 or even NC1 = Gap-NC1.
By Jung [Jun85] we know, that those classes lie extremely close, but it is still
unknown if they coincide.

At this point our contribution comes into play. We propose a new type of
counting complexity which fits in between #C and Gap-C very naturally. The
starting point for our definition is the observation that we can extend the notion
of a proof tree. A (now called positive) proof tree is a witness for a word being
accepted. If a word is rejected, there are also witnesses: negative proof trees.
To our knowledge, negative proof trees haven’t been considered before even
though the duality of positive and negative proofs is appealing. We call1 our
new counting complexity classes Zap-C. Zap-C functions are of the form Σ∗ →
Z \ {0}. The image is positive iff there are positive proof trees and negative in
the case of the existence of negative proof trees.

Providing the base of the Zap definition we show an arithmetic interpretation
of circuits which then calculate the corresponding Zap-C function. By the nature
of Zap, we are not restricted to monotone circuits any more in contrast to the #
case. The second interesting result is that in the case of C ∈ {NCi,ACi|i ≥ 0}
the Zap-C functions can be written as differences of #C functions with the
restriction that the result must not be 0. This uses the fact that each circuit can
be transformed in a way that each input has exactly either one negative or one
positive proof tree. Those two results place Zap-C right between #C and Gap-C.
So Zap might give us new possibilities to examine the differences between #C
and Gap-C.

Zap circuits are the one major topic of this work. The other one is (non-
deterministic) Zap branching programs (BP). Starting point is the celebrated
work of Barrington which showed that bounded width polynomial size branching
programs (BWBP) are equally powerful as NC1 circuits. In the case of BPs we
are also interested in counting. In BPs a witness for acceptance is a path from
source to target. By [CMTV98] we have that the task of counting paths can be
expressed as matrix multiplication which is possible in #NC1. However we do
not know if counting proof trees in NC1 circuits is possible in #BWBP hence

#NC1 ?
= #BWBP is an open question.

We extend the Zap idea to BPs. To do so, we need an analogon to the negative
proof trees known from circuits. We found this in the notion of cuts. A cut in
our sense is a partition of the BP’s nodes in two, so that source and target are
separated and no undesired edge goes between the two parts. From this it is
clear that given a BP and some input there is a path iff there is no cut. In the

1 The naming is motivated by the set of integers Z and Gap.



272 O. Dorzweiler et al.

case of circuits, positive and negative proofs are dual by negating the circuit.
This in a way is inherited by BPs. If we have a planar BP, the counter part to
negation is moving to the dual graph. The number of paths becomes the number
of cuts and vice versa, so we have switched the sign of the function. We show
how Zap BPs are related to Zap-NC1. We have a construction to simulate
Zap-NC1 functions with BPs. The BPs generated that way are planar but not
bounded. This raises questions concerning boundedness and planarity in BPs

and Zap-NC1 whose answers could give insights in the #NC1 ?
= #BWBP

problem.
The paper is structured as follows: We begin with a Preliminaries section

providing all definitions necessary concerning computational complexity, circuits,
arithmetic circuits and BPs. The following section, Results, summarizes and
states our results. In the subsequent sections we give proofs for the theorems.
In the end we give an overview and outlook. Two proofs can be found in the
Appendix to comply with the length constraint.

We thank the anonymous referees for their helpful comments.

2 Preliminaries

In this paper words are always built from the alphabet Σ = {0, 1}. By Z we
denote integers and by N the non-negative integers. We assume the reader to
be acquainted with Turing Machines and elementary complexity classes like L,
NL, P and NP. See e.g. [Pap94] for basics in computational complexity.

A Turing machine M accepts a word w, if there is a computation on the input
resulting in an accepting state. For non-deterministic machines, there can be
more than one. We denote the number of accepting computations by #accM (w).
The set of functions #accM : Σ∗ → N for Turing machines M in the bound of
some complexity class, say NP, is denoted by #P. Similarly we get #L from
NL.

A circuit C is a connected acyclic graph with a designated output node and n
input nodes, where n in the in-degree of the circuit. All other nodes are assigned
Boolean functions like And, Or and Negation. There are also other gates, e.g.
threshold gates or modulo gates, but those are not in the scope of this work.

A word is accepted by a circuit if the computation results to 1. Since a circuit
can only treat words of some constant length, we need to speak about circuit
families: (Cn)n∈N. If such a family is computable in the limits of some complexity
class, we speak of a uniform circuit family, e.g. Dlogtime-uniformity. If we
bound circuit families in the number of gates, depth or fan-in, we get circuit based
complexity classes like AC0, ACC0, TC0 and NC1. The latter one corresponds
to circuits of logarithmic depth, polynomial size and a limit of the fan-in of gates
of two. Check e.g. [Vol99] for basics in circuit complexity.

Circuits made up of And and Or gates can be transformed in a negation
normal form. We duplicate the input nodes, so that each one has a negated
twin. By repeated application of DeMorgan’s law, we get a monotone circuit
computationally equivalent to the original one, i.e. without negation gates (only
negated input gates may be present).



Positive and Negative Proofs for Circuits and Branching Programs 273

If we take a monotone circuit and replace And by × and Or by +, then
we have arithmetized the circuit, i.e. a circuit which operates over the semi-ring
(N,+,×, 0, 1). It now computes a function Σn → N. The set of functions Σ∗ → N

generated by the arithmetic interpretation circuit families in some complexity
class C is denoted as #C. This way we get e.g. #AC0 and #NC1. Due to [Ven92]
we know that this is consistent with counting complexity as it is defined for
Turing machines: If we take the monotone circuit characterization of NP, then
counting accepting computations is the same as arithmetizing the corresponding
circuits. It is noteworthy that this is not the only way to arithmetize. In [Bei93],
Beigel surveys different possibilities.

Also, we know by [VT89] that arithmetic circuits count proofs trees, which
can be seen as levels of acceptance in circuits. Unfortunately this tells us nothing
about the efficiency of a circuit since the absence of many proof trees does not
imply the absence of redundancy in the circuit structure [Fla12]. Given a circuit
C, we can unfold it by iteratively treating gates with fan-out greater than one. If
g is such a gate with fan-out k > 1, let A be the sub-circuit of C, whose output
gate is the output of g. By adding k − 1 more duplicates of A, we can build an
equivalent circuit, where g and its duplicates only have fan-out one. Finally we
get an equivalent circuit which is a tree. The number of sub-trees whose root is
the circuit’s output gate and which result to 1 is the number of proof trees.

In # classes the closure under (modified) subtraction is unknown which mo-
tivated another type of arithmetic class. If we consider arithmetic circuits over
Z with gates of types in {+,−,×}, we get Gap complexity classes [FFK94]. A
function f is in Gap-C iff there are g, h ∈ #C so that f = g − h.

If we want to compare # and Gap classes, we do this on non-negative output
values. We can even compare those counting classes with Boolean classes. In this
case the Boolean circuit has to have several outputs computing the bits of the
binary representation of the resulting integer. For a survey on arithmetic circuit
complexity, see the survey of Allender [All04].

Another model of computation are non-deterministic branching programs
(BP). Note that counting in deterministic BPs is trivial. BPs are directed acyclic
layered edge-labeled multi-graphs. A graph is layered if the set of vertices V =

V1

·∪ V2

·∪ · · · ·∪ Vk so that edges only exist between adjacent layers Vi and
Vi+1. Further we set V1 = {s} and Vk = {t}. A BP gets input words from Σn.
Labels are elements from the set {x1, . . . , xn, x1, . . . , xn}. A word w is accepted
by some BP if there is a path from s to t so that the labels are consistent with
the input. I.e. if wi = 1 then no label xi must be read and if wi = 0 vice versa.
A label is inconsistent with the input if it is not consistent. Since BPs are a
computation model which receives words of constant length, we need to consider
families of BPs as well. The set of languages which are accepted by some family
of polynomial-size BPs is written in bold face: BP. By [Raz91] and [RA97], we
know that BP = NL/poly = UL/poly. Thus BP is closed under complement.

To restrict some BP’s computational power, one can make constraints. A
major one is the restriction of the width of a BP, i.e. the size of the largest
layer. We call polynomial-size BPs of bounded (constant) width BWBP. An



274 O. Dorzweiler et al.

important result is that BWBP = NC1 [Bar89]. As a by-product, we know,
that width 5 is always sufficient in the bounded width case. Another restriction
is planarity which gives us - in combination with boundedness - the classes PBP
and PBWBP. By [Han08] and [BLMS98] we know that planar bounded-width
BPs are related to AC0 and ACC0.

Counting classes have already been defined for Turing machines and circuits.
By counting the number of paths from s to t being consistent with the input
word, we get BP counting classes: #BP, #BWBP, #PBP and #PBWBP.
We know that #BWBP ⊆ #NC1 [CMTV98] but we do not know if the inclu-
sion is strict. But then again, we know that Gap-NC1 functions are differences
of #BWBP functions, so Gap-NC1 = Gap-BWBP [CMTV98].

3 Results

In this section, we define Zap counting complexity and show how it embeds in
the context of #C andGap-C. We will also have a look at Zap-NC1 in particular
and BPs. The justification of our results is given in later sections.

In the context of #C we spoke of proof trees. We now call these proof trees
positive, since we consider the case that a word is accepted by a circuit. But now
imagine a circuit C rejects some input. Let C′ be the negation2 of C. If a word is
rejected, we have, as many proofs for rejection in C as for acceptance in C′. So,
analogously we define negative proof trees which are sub-trees of the unfolded
circuit which show that the input is rejected. Obviously, there are positive proof
trees iff there are no negative ones.

Given a family of circuits C, by #acc+C : Σ∗ → N we denote the function
which gives us the number of positive proof trees for some input. #acc−C is the
function for the negative proof trees. Further let

#accC := #acc+C −#acc−C ,

i.e. we subtract the number of negative proof trees from the number of positive
proof trees, which gives the number of negative proof trees a negative sign.

The notion of negative proof trees allows us to define the Zap operator which
gives us new counting complexity classes.

Definition 1. Let C be some circuit-based complexity class. Then Zap-C is the
set of all functions counting proof trees (positive and negative) in circuits in the
limits of C, i.e. all functions of the form #accC for some C ∈ C.

Zap-C functions are always of the form Σ∗ → Z \ {0}. In the #C case it
turned out that counting proof trees is equivalent to the computation arithmetic
circuits perform. But this only holds within circuits in negation normal form
because negation gates are not directly treatable. The absence of the notion of
negative proof trees limits one to monotone circuits. In the Zap case we can also
arithmetize - and this not only in monotone circuits.

2 Insert a negation gate after the output node and make this negation gate the new
output.



Positive and Negative Proofs for Circuits and Branching Programs 275

Theorem 1. For a circuit family C, the function #accC ∈ Zap-C can be calcu-
lated by an arithmetic circuit based on C resulting from the following interpre-
tation of the gates:

– Negation inverts the sign of its input: x �→ −x.
– An And gate with inputs x1, . . . , xk gets assigned the function

x1, . . . , xk �→
k∏

i=1

max{0, xi}+
k∑

i=1

min{0, xi}

– An Or gate with inputs x1, . . . , xk gets assigned the function

x1, . . . , xk �→
k∑

i=1

max{0, xi} −
k∏

i=1

max{0,−xi}

– Input gates now hold values in {−1, 1}; in particular the Boolean 0 becomes
−1 and 1 stays the same.

As one can see, if an And gate receives only true/positive inputs, then the
values are multiplied. If there are negative inputs, those are added. The case Or
gates is symmetric.

This lemma gives us an analogue to the #C correspondence between positive
proof trees and arithmetic circuits. The next theorem provides an analogy to the
fact that Gap-C functions are differences of #C functions.

Theorem 2. Let C be in {ACi,NCi|i ≥ 0}. A function f is in Zap-C iff there
are functions g and h in #C, so that g(w) = 0 ⇔ h(w) 	= 0 for all inputs w and
f = g − h.

Theorem 1 shows Zap-C to be a generalization of #C and theorem 2 a restric-
tion of Gap-C. That means Zap-C lies between #C and Gap-C and suggests
that we have a natural definition at hand.

Next we consider NC1 and BPs. First we need to define what a Zap BP is;
especially we need a counterpart to negative proof trees in circuits. This part of
the paper is based on [Dor13]. Positive proof trees coincide with paths from s to t
in BPs. If some input is rejected, there are negative proof trees in the circuit and
no path in the BP from s to t being consistent with the input word. If there is no
path, then source and target are separated, i.e. there is a cut. So, we discovered
that counting cuts gives us exactly what we need. Formally, a cut is a partition
of the vertices V in two sets Vs and Vt, so that s ∈ Vs, t ∈ Vt and all edges
between those sets go from Vs to Vt and are inconsistently labeled with respect
to the input. #pathsB : Σ∗ → N is the number of paths and #cutsB : Σ∗ → N

the number of cuts some input generates.
Based on that we define Zap for BPs.

Definition 2. Let B be a BP-based complexity class. Then Zap-B is the set of
all functions counting paths and cuts of some input in a BP B which is in the
bounds of B, i.e. all functions of the form #accB := #pathsB −#cutsB.



276 O. Dorzweiler et al.

By this definition we get i.e. BP as well as BWBP, PBP, and PBWBP.
Obviously such functions are of the desired form Σ∗ → Z \ {0} because a path
exists iff no cut exists. Our goal is to find relations between Zap circuits and
Zap BPs.

We find upper and lower bounds for NC1 in BPs, which are similar to the #
case.

Theorem 3. Zap-BWBP ⊆ Zap-NC1 ⊆ Zap-PBP

The first inclusion holds because we can use the idea for counting paths by
matrix multiplication to count cuts. For the second inclusion we have a procedure
so transform an circuit into a BP. The idea is that And gates correspond to serial
computation in BPs and Or gates to parallel computation. We then use the
observation that this construction results in planar graphs. This is convenient,
since paths and cuts are dual in taking the dual graph which makes each face to
an vertex and draws edges between adjacent faces. Paths and cuts switch places
in the dual graph. This shows us that cuts are really the counterpart to negative
proof trees. This gives us the following:

Corollary 1. Zap-PBP is closed under inversion3 and Zap-PBWBP stays
planar under inversion.

If we apply the construction of theorem 3 on arbitrary BPs, then we see, that
we can make a BP planar by admitting it quasi-polynomial size.

s t

¬x1

x2

x3

x5

x4

x6

¬x7

(a)

s

x1

¬x3

¬x4

¬x6

t

¬x2

x7

¬x5

(b)

s

t

(c)

x1

¬x3
¬x6

1
¬x4¬x2

1

x7

¬x5

Fig. 1. Inversion in BPs. (a) is the original BP. (b) is the dual graph of (a), hence its
inversion. (c) is the layered version of (b).

Figure 1 visualizes inversion in planar BPs. It remains a very interesting
question how boundedness and planarity are related exactly and how to catch
Zap-NC1 in terms of BPs.

3 Inversion means multiplication with −1. That some circuit (or BP) is the inversion
of some other circuit (BP) is a stronger requirement than that it is the negation.



Positive and Negative Proofs for Circuits and Branching Programs 277

4 Proofs

In this section we will provide the proofs for the theorems stated in the results
section.

Proof (Theorem 1: Zap and arithmetic circuits). We show the result by induc-
tion on the gates of the circuit. For input gates, we have one positive proof tree
if the input is 1 and one negative proof tree if it is 0. Negation gates obviously
realize an inversion of the sign. Now consider And gates. Let g be some And
gate and assume that the inputs x1, . . . xk already transport the right value. If
the inputs are all true, g will output one and have a positive number of proof
trees. In this case all input values have to be multiplied and this is what happens
in this case. If one of the outputs is false, g must be assigned a negative number
of proof trees by adding all negative inputs. The construction assures this. The
Or case is shown analogously. �

The next Lemma allows us to split Zap-C functions into a positive and a negative
part. For a function f , we define f+ = max{f, 0} and f− = min{f, 0}.
Lemma 1. In the case of C ∈ {NCi,ACi|i ≥ 0}, it holds that if f ∈ Zap-C,
then f+ and −f− are in #C.
Proof. Let C be a family of circuits so that #accC = f . We can assume that C
is in negation normal form, since any negations can be pushed up to input level
which does not change the arithmetic interpretation of the circuit. Calculating
the number of positive proofs in a monotone circuit is exactly # counting as
we know it, i.e. f+ ∈ #C. The (positive) number of negative proofs is −f−. In
this case we use C and attach a negation gate after the output gate and push
it to input level to get an equivalent negation normal form whose arithmetic
interpretation counts negative proofs. So we get −f− ∈ #C. �

The next result is the following lemma which states that circuits can be trans-
formed in such a way that the realized Zap function only takes absolute value
1. We use the regular definition for the sign function.

Definition 3. The sign function sgn : Z → {−1, 0, 1} maps negative values to
−1, positive ones to 1 and 0 to itself.

Now we prove that Zap-C functions are closed under application of the sign
function. This is the only way we know to reduce the absolute value. The lemma
originates in [Fla12] and a related construction can be found in [Lan93].

Lemma 2. If f is in Zap-C, then sgn ◦ f is also.

Proof. Assume an arithmetic circuit C which computes f for some fixed input
length. We inductively transform it into a circuit which computes sgn ◦ f .
Input nodes by definition only take values in {−1, 1}. Negation gates leave
values in this set. Now consider an Or gate v with inputs x1, . . . , xk and assume



278 O. Dorzweiler et al.

inductively all inputs to only take values in {−1, 1}. For each input we insert a
Negation gate negi and an And gate andi. We make the following connections
for all i (The construction is also pictured in following figure):

– xi to negi
– xi to andi
– andi to v
– negi to andj for j > i

∨

x1 x2 x3

x1 x2 x3

neg3neg1 neg2

and1 and2 and3

∨

Construction of sgn in the case of Or with
fan-in 3.

Now v only outputs values in {−1, 1}: Assume all xi take value −1. Then all
andi output −1 and so does v. If there is at least one input which takes value
1, then let xl be the one of those with smallest index l. In the construction only
andl will take the value 1 and hence v will output 1.
The construction for the case when v is an And gate is easily adapted.
To stay in some complexity class, we need to note that this construction enlarges
the circuit by a constant factor in depth as well as in size. �
An interesting interpretation of the previous lemma is that counting proof trees
tells us nothing about efficiency of a circuit as one’s intuition may suggest. In
particular we made the circuit larger and the result is that we only get minimal
numbers of proof trees: −1 and 1.

Next, we prove theorem 2, which gave us the relation to Gap-C.
g h sgn ◦ h

∨
⊕

Fig. 2. Construction for the Zap
circuit computing g − h

Proof (Theorem 2: Zap-C functions as dif-
ference of #C functions). For a function f ∈
Zap-C we choose g = f+ and h = −f−.
By Lemma 1, we know that g, h ∈ #C and
g(x) = 0 ⇔ h(x) 	= 0.

For the opposite direction, we are given g
and h in #C so that g(x) = 0 ⇔ h(x) 	=
0. We construct a circuit whose arithmetic
interpretation computes g − h. Let Cg and
Ch be the corresponding monotonic Boolean
circuits, whose arithmetization results in g
respectively h. We construct a new Boolean
circuit C in the way described in figure 2. The construction first adds the values
of g and h using an Or gate. We show, that the construction using sgn and Xor
ensures that the output’s sign is inverted if h(x) > 0. Let φ be the sub-circuit
Cg∨Ch (here and in the following we abuse notation by pretending we are dealing
with formulas) and ψ be sgn ◦ h. So the arithmetic interpretation of φ⊕ψ gives
us the end result. For the result we rewrite: φ ⊕ ψ = (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ). The
first case is g(x) > 0. That means (φ∧¬ψ)(x) = g(x) and (¬φ∧ψ)(x) < 0, hence
the result is g(x). The second case is h(x) > 0, so we get (φ ∧ ¬ψ)(x) = −1 and



Positive and Negative Proofs for Circuits and Branching Programs 279

(¬φ ∧ ψ)(x) = −h(x). By applying the arithmetic semantic of the Or gate, we
get −h(x) as the desired result. Hence in arithmetic interpretation the circuit
computes g − h. �

Proof (Theorem 3). We will only prove the first part of the theorem.
(Zap-BWBP ⊆ Zap-NC1). Let B be a BWBP. To prove the result, we have
to show that #pathsB and #cutsB are in #NC1. By application of theorem 2,
we have the desired result. #pathsB however is trivially in #NC1 because that
is how counting is defined in BPs and #BWBP ⊆ #NC1.

We are left proving that counting cuts is possible in #NC1. To do this we
modify the construction for counting paths in #NC1 which we will explain
briefly. In the construction one defines matrices for each layer Ai. We can assume
that the BP is not only layered but rasterized, i.e. layered also horizontally. If
the BWBP is bounded by k then each node is addressable by the layer i and
the position in the layer j for 1 ≤ j ≤ k as (i, j). Here we let s = (1, 1) and
t = (p(n), 1). p(n) is the polynomial bound for the number of layers. Now each
matrix codes the edges between the layers. If we have a vector vi which tells
us in layer i how many paths are there from s to each node, then viAi+1 =
vi+1. It is v1 = (1, 0, . . . , 0). Consider the matrix Ai = (apq)1≤p,q≤k. We then
have that apq is the sum of all labels for edges from (i − 1, p) to (i, q). The
first element of the vector v1A2 . . . Ap(n) is then the number of paths between
s and t. Calculating this is possible in #NC1, since multiplying two constant-
sized matrices is possible in constant depth and if we multiply p(n) many such
matrices, we need a circuit if depth O(log n), i.e. #cutsB is calculable in #NC1.

a1

a2

a3

b1

b2

b3

x1

x2

x3

x4

x5

Vi−1 Vi

Mi =

∅ b1 b2 b3 b1b2 b1b3 b2b3 b1b2b3
∅ 1 0 0 0 0 0 0 0
a1 x̄1x̄2 x̄2 0 0 0 0 0 0
a2 x̄3x̄4 0 0 0 0 0 0 0
a3 x̄5 0 0 0 0 0 0 0
a1a2 x̄1x̄2x̄3x̄4 x̄2x̄3x̄4 x̄1x̄4 0 x̄4 0 0 0
a1a3 x̄1x̄2x̄5 0 x̄2x̄5 0 0 0 0 0
a2a3 x̄3x̄4x̄5 0 0 x̄3 0 0 0 0

a1a2a3 x̄1x̄2x̄3x̄4x̄5 x̄2x̄3x̄4x̄5 x̄1x̄4x̄5 x̄1x̄2x̄3 x̄3x̄5 x̄2x̄3 x̄1 1

Fig. 3. Example for the construction of the cut-counting matrix Mi for layer i

Back to counting cuts: We do the same as in the path calculation, so that the
first element of the vector v1A2 . . . Ap(n) holds the desired value. Here we also

calculate from layer to layer but this time we have matrices of size 2k × 2k. The
reason is that we must regard the power-set of nodes in a layer. Recall that a cut
is a partition of the vertices which separates s and t and so that the only edges
between the two sets are inconsistent ones from Vs to Vt. An entry in a vector vi
corresponds to a set of nodes X in the layer i. The value is the number of cuts
separating s from layers beyond i, so that X ⊆ Vs and X ∩ Vs = ∅. By applying



280 O. Dorzweiler et al.

Ai = (apq)1≤p,q≤2k we get this vector for the next layer. Say apq corresponds to
sets X1 and X2. Then apq codes the possibility of extending a cut containing
X1 from the layer i to a cut containing X2. If there are edges from X1 to X2

then apq = 0 and else apq is the product of all negated labels of edges going from
X1 to X2. If there are no such edges at all then apq = 1. Figure 3 shows the
construction.

We sketch the proof for the correctness of this construction based on a in-
duction upon the layers of the BP. Let v1 be the initial vector for the first layer
which only includes s and let vi = vi−1Ai. Each component in such a vector
stands for a subset X of nodes in a layer and we want to show that it holds
the value how many cuts there are, so that exactly the nodes X in this layer
belong to Vs. We assume inductively that this calculation is correct for layer
i, i.e. v1A1 . . . Ai has the right values for each subset. Then v1A1 . . . AiAi+1 is
correct for layer i + 1. Each subset Y in layer i + 1 can become part of Vs if
there is an extendable subset X from the previous layer. That means there are
no edges going from Vt to Vs. The number of cuts with Y ⊆ Vs is the sum of
cuts of all subsets of the previous layer having no forbidden edges. Whether a
forbidden edge occurs is dependent on the input; the matrix holds exactly the
required constraints to the input so that a cut with some subset in layer i can
be extended using exactly some subset in layer i+1. One can verify that this is
exactly what happens of vi is multiplied with Ai+1. �

5 Discussion and Future Work

In this work we introduced a meaningful counterpart to (positive) proofs trees
in circuits, which are negative proof trees. Counting positive and negative proofs
seems to be a natural thing to do. Based on some complexity class C, Zap-C is
the class of functions counting positive and negative proofs. We were also able
to adapt our notion of negative proofs to branching programs. We were able to
prove that Zap-BWBP ⊆ Zap-NC1 ⊆ Zap-PBP.

We think the notion of negative proofs is a neglected aspect of counting. We
will outline possible applications.

The first one is the question whether #BWBP equals #NC1. By looking
at Zap-NC1, we know that f is in Zap-NC1 iff f+ and −f− are in #NC1. It
seems rather unlikely that this also holds for BWBPs. If one proved that cuts
in BWBPs cannot be counted in #BWBP then #BWBP would be separated
from #NC1.

Another possible application is the well-known fact that NL is closed under
complement. If we look at NL/poly which is equal to BP then we have the
following implication: If Zap-BP is closed under inversion then NL/poly is
closed under complement. Note that we could formulate such an implication also
using #BP, but this seems less promising because of the absence of information
concerning rejection of some input. As a first step one could try to re-prove the
complement closure of NL/poly using our approach. Also NL/poly = UL/poly
[RA97] could be a candidate to be re-proved. New proofs to those theorems
would naturally give us new insights.



Positive and Negative Proofs for Circuits and Branching Programs 281

References

[All04] Allender, E.: Arithmetic circuits and counting complexity classes. In: Kra-
jek, J. (ed.) In Complexity of Computations and Proofs. Quaderni di
Matematica (2004)

[Bar89] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1),
150–164 (1989)

[Bei93] Beigel, R.: The polynomial method in circuit complexity. In: Structure
in Complexity Theory Conference, pp. 82–95. IEEE Computer Society
(1993)

[BLMS98] Barrington, D.A.M., Lu, C.-J., Miltersen, P.B., Skyum, S.: Searching con-
stant width mazes captures the AC0 hierarchy. In: Meinel, C., Morvan,
M., Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 73–83. Springer,
Heidelberg (1998)

[CMTV98] Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic
NC1 computation. J. Comput. Syst. Sci. 57(2), 200–212 (1998)

[Dor13] Dorzweiler, O.: Zap-Klassen für Schaltkreise und Branching Programs.
Masterarbeit, Universität Tübingen (2013)

[FFK94] Fenner, S.A., Fortnow, L., Kurtz, S.A.: Gap-definable counting classes. J.
Comput. Syst. Sci. 48(1), 116–148 (1994)

[Fla12] Flamm, T.: Zap-C Schaltkreise. Diplomarbeit, Universität Tübingen
(2012)

[Han08] Hansen, K.A.: Constant width planar branching programs characterize
ACC0 in quasipolynomial size. In: IEEE Conference on Computational
Complexity, pp. 92–99. IEEE Computer Society (2008)

[Jun85] Jung, H.: Depth efficient transformations of arithmetic into boolean cir-
cuits. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 167–174.
Springer, Heidelberg (1985)

[Lan93] Lange, K.-J.: Unambiguity of circuits. Theor. Comput. Sci. 107(1), 77–94
(1993)

[Pap94] Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
[RA97] Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. In:

FOCS, pp. 244–253. IEEE Computer Society (1997)
[Raz91] Razborov, A.A.: Lower bounds for deterministic and nondeterministic

branching programs. In: Budach, L. (ed.) FCT 1991. LNCS, vol. 529, pp.
47–60. Springer, Heidelberg (1991)

[Ven92] Venkateswaran, H.: Circuit definitions of nondeterministic complexity
classes. SIAM J. Comput. 21(4), 655–670 (1992)

[Vol99] Vollmer, H.: Introduction to circuit complexity - a uniform approach.
Texts in theoretical computer science. Springer (1999)

[VT89] Venkateswaran, H., Tompa, M.: A new pebble game that characterizes
parallel complexity classes. SIAM J. Comput. 18(3), 533–549 (1989)


	Positive and Negative Proofs for Circuits
and Branching Programs

	1 Introduction
	2 Preliminaries
	3 Results
	4 Proofs
	5 Discussion and Future Work
	References




