Small Universal Non-deterministic Petri Nets
with Inhibitor Arcs

Sergiu Ivanov, Elisabeth Pelz, and Sergey Verlan

Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est
61, av. du gén. de Gaulle, 94010 Créteil, France
{sergiu.ivanov,pelz,verlan}@u-pec.fr

Abstract. This paper investigates the universality problem for Petri
nets with inhibitor arcs. Four descriptional complexity parameters are
considered: the number of places, transitions, inhibitor arcs, and the
maximal degree of a transition. Each of these parameters is aimed to
be minimized, a special attention being given to the number of places.
Four constructions are presented having the following values of param-
eters (listed in the above order): (5,877,1022,729), (5,1024, 1316, 379),
(4,668,778, 555), and (4,780, 1002, 299). The decrease of the number of
places with respect to previous work is primarily due to the considera-
tion of non-deterministic computations in Petri nets. Using equivalencies
between models our results can be translated to multiset rewriting with
forbidding conditions, or to P systems with inhibitors.

1 Introduction

The research of small universal computing devices is an amazing and continu-
ous research topic since many decades. It started by A. Turing proposal of an
universal (Turing) machine [17] capable of simulating the computation of any
other (Turing) machine. This universal machine takes as input a description of
the machine to simulate, the contents of its input tape, and computes the result
of its execution on the given input.

More generally, the universality problem for a class of computing devices (or
functions) € consists in finding a fixed element M of € able to simulate the
computation of any element M’ of € using an appropriate fixed encoding. More
precisely, if M’ computes y on an input z (we will write this as M'(z) = y),
then M'(z) = f(M(g(M’), h(z))), where h and f are the encoding and decoding
functions, respectively, and g is the function retrieving the number of M’ in some
fixed enumeration of €. Although general recursive functions may be used for
encoding and decoding, we would prefer to see the computing device, and not the
encoders and decoders, do most of the work. Hence we prefer computationally
very simple encoding and decoding functions [18], like the typically used f(x) =
log,(x) and h(x) = 2°.

In what follows, we will keep to the terminology considered by Korec [6] and
call the element M (weakly) universal for €. We shall call M strongly universal
(for @) if the encoding and decoding functions are identities.

H. Jiirgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 186-197, 2014.
© Springer International Publishing Switzerland 2014

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 187

Some authors [7,6] implicitly consider only the strong notion of universality
as the encoding and decoding functions can perform quite complicated transfor-
mations, which are not necessarily doable in the original devices. For example,
Minsky’s proof of (weak) universality of register machines with two counters [11]
makes use of exponential (resp. logarithmic) encoding (resp. decoding) functions,
while it is known that such functions cannot be computed directly (without en-
coding) on these machines [2,16]. We refer to [6] for a detailed discussion of dif-
ferent variants of the universality and to [8] for a survey on this topic. Generally,
the class of all partially recursive functions is considered as €, but it is possible
to have a narrower class, e.g. the class of all primitive recursive functions, which
is known to admit a universal generally recursive function [7]. We remark that
in the case of devices not working with integers directly, some natural coding of
integers should be used in order to consider the above notions.

Small universal devices have mostly theoretical importance as they demon-
strate the minimal ingredients needed to achieve a complex (universal) compu-
tation. Their construction is a long-standing and fascinating challenge involving
a lot of interconnections between different models, constructions, and encodings.

In [1] a small universal maximally parallel multiset rewriting system is con-
structed. Due to equivalences between Petri nets and multiset rewriting systems,
this result can be seen as a universal Petri net working with max step seman-
tics. For the traditional class of Petri nets there were no known universality
constructions for a long time. Recently, Zaitsev has investigated the universality
of Petri nets with inhibitor arcs and priorities [20] and has constructed a small
universal net with 14 places and 29 transitions (for nets without priorities the
same author obtained a universal net with 500 places and 500 transitions [19]).
We remark that inhibitor arcs and priorities are equivalent extensions for Petri
nets in terms of computational power, so using both concepts together is not
necessary for universality constructions.

In [4], a series of small strongly and weakly universal Petri nets was con-
structed and compared to Zaitsev’ results. The cited paper only focuses on Petri
nets with deterministic evolution, however. The present article considers a natu-
ral question of whether allowing non-deterministic evolution may be exploited to
further minimize certain parameters. We show some trade-offs: trying to reduce
the number of places of a universal Petri net seems to imply an increase in the
other parameters, e.g., the maximal transition degree. We also show how linear
programming could be used to minimize this degree while keeping the number
of places small.

Quite importantly, due to the equivalence between Petri nets, multiset rewrit-
ing, and asynchronous P systems [13], the results from this paper can be imme-
diately translated to corresponding universality statements for these models.

2 Preliminaries

In this section we only recall some basic notions and notations; see [15] for further
details. An alphabet is a finite non-empty set of symbols. Given an alphabet V,
we designate by V* the set of all strings over V, including the empty string,

188 S. Ivanov, E. Pelz, and S. Verlan

A. For each z € V* and a € V, |z|, denotes the number of occurrences of the
symbol a in x. A finite multiset over V is a mapping X : V — N, where N
denotes the set of non-negative integers. X (a) is said to be the multiplicity of a
in X.

2.1 Register Machines

A deterministic register machine is defined as a 5-tuple M = (Q, R, qo, gy, P),
where @ is a set of states, R = {Ry,..., Ry} is the set of registers, gy € @ is the
initial state, g € @ is the final state and P is a set of instructions (called also
rules) of the following form:

1. (Increment) (p, RiP,q) € P, p,q € Q,p # q,R; € R (being in state p,
increment register R; and go to state q).

2. (Decrement) (p, RiM,q) € P, p,q € Q,p # ¢,R; € R (being in state p,
decrement register R; and go to state q).

3. (Zero check) (p, Ri,q,s) € P, p,q,s € Q,R; € R (being in state p, go to ¢ if
register R; is not zero or to s otherwise).

4. (Zero test and decrement) (p, RiZM,q,s) € P, p,q,s € Q, R; € R (being in
state p, decrement register R; and go to ¢ if successful or to s otherwise).

5. (Stop) (q5, STOP) (may be associated only to the final state ¢y).

Note that a R¢Z M instruction can be used to simulate both a RiM instruction
and a Ri instruction.

A configuration of a register machine is given by (g, n1,...,nx), where ¢ € Q
and n; € N,1 < ¢ < k, describe the current state of the machine as well as
the contents of all registers. A transition of the register machine consists in
updating/checking the value of a register according to an instruction of one of
the types above and in changing the current state to another one. We say that
the machine stops if it reaches the state g¢. We say that M computes a value
y € N on the input x1,...,2,, x; € N, 1 < i < n < k, if, starting from the
initial configuration (qo,z1,...,%n,0,...,0), it reaches the final configuration
(ar,9,0,...,0).

It is well-known that register machines compute all partial recursive functions
and only them [11]. Therefore, every register machine M with n registers can
be associated with the function it computes: an m-ary partial recursive function

7, where m < n. Let @y, ®1,P,, ..., be a fixed enumeration of the set of unary
partial recursive functions. Then, a register machine M is said to be strongly
universal [6] if there exists a recursive function g such that @, (y) = &3,(g(x),v)
holds for all z,y € N. A register machine M is said to be (weakly) universal if
there exist recursive functions f, g, h such that @,(y) = f(®3,(g(x), h(y))) holds
for all z,y € N. We remark that here the meaning of the term weakly universal
is different from the Turing machines case, where it is commonly used to denote
a universal machine working on a tape that has an infinite initial configuration
with one constant word repeated to the right, of and another to the left of the
input [9].

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 189

2.2 Petri Nets

A Place-Transition-net or for short, PT-net, with inhibitor arcs is a construct
N = (P,T,W, My) where P is a finite set of places, T is a finite set of transitions,
with PNT =0, W : (P xT)U(T x P) - NU{—1} is the weight function and
My is a multiset over P called the initial marking.

PT-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares annotated with their location, and a directed
arc (z,y) is added between z and y if W (x,y) > 1. These arcs are then annotated
with their weight if this one is 2 or more. Arcs having the weight -1 are called
inhibitor arcs and are drawn such that the arcs end with a small circle on the
side of the transition.

The degree of a transition ¢ is defined as the sum of the weights of the incoming
and outgoing arcs involved with it plus the number of inhibitor arcs:

degree(t) = Z (W (p,t)| + |W(t,p)].
peEP

Note that the degree is not the number of valuated arcs adjacent to the transition,
but rather the number of single arcs they represent.

Given a PT-net N, the pre- and post-multiset of a transition ¢ are respectively
the multiset prey ;) and the multiset post ;) such that, for all p € P, for which
W(p,t) > 0, prex)(p) = Wip,t) and posty)(p) = W(t,p). A state of N,
which is called a marking, is a multiset M over P; in particular, for every p € P,
M (p) represents the number of tokens present inside place p. A transition ¢ is
enabled at a marking M if the multiset prey() is contained in the multiset
M and all inhibitor places p (such that W(p,t) = —1) are empty. An enabled
transition ¢ at marking M can fire and produce a new marking M’ such that
M =M — pren() + posty((i-e., for every place p € P, the firing transition
t consumes prey ;) (p) tokens and produces post y () (p) tokens). We denote this
as M - M.

For the purposes of this paper, we have to define which kind of PT-nets can
execute computations (e.g. compute partially recursive functions). In such a net
some distinguished places i1, .. .,ik, k > 0 from P are called input places (which
are normally different from the places marked in M, containing the control
tokens) and one other, ig € P, is called the output place. The computation of
the net N on the input vector (nq,...,ny) starts with the initial marking M
such that M{(i;) = n; and M{(x) = My(z), for all x # i;, 1 < j < k. This net
will evolve by firing transitions until deadlock in some marking My, i.e. in My
no transition is enabled. Thus we have M) — M; and there are no M 4 and

t € T such that My N MJQ The result of the computation of N on the vector
(ni,...,nx), denoted by &% (n1,...,ny), is defined as My (ip), i.e. the number
of tokens in place (ig) in the final state. Since in the general case Petri nets are
non-deterministic, the function (Pf\, could compute a set of numbers.

If, for any reachable marking M, there is at most one transition ¢ and one

marking M’ such that M SV ' the Petri net is called deterministic. This

190 S. Ivanov, E. Pelz, and S. Verlan

corresponds to labeled deterministic Petri nets in which all transitions are labeled
with the same symbol [14]. Otherwise the Petri net is called non-deterministic,
and it is this kind of nets that we will focus on in this paper.

The size of a Petri net is the vector (p, t, h, d) where p is the number of places,
t is the number of transitions, h is the number of inhibitor arcs, and d is the
maximal degree of a transition. These parameters of the Petri net provide the
fundamental information about its structure and can be further used to reason
about its other features (e.g., the average number of inhibitor arcs per transi-
tion). Moreover, each of these parameters has a direct equivalent in the multiset
rewriting interpretation of Petri nets as the cardinality of the alphabet, number
of rules, inhibitors and maximal rule size. Remember that, when counting the
degree of a transition, we take into account the weights of the arcs it involves,
even though the degree is often considered to be the sum of the number of input
and output places of the transition.

3 Universal Register Machines with Few Registers

A rather well-known result on the computational power of register machines is
that there exists a strongly universal machine with 3 registers and a weakly
universal machine with 2 registers only [10]. Since it seems natural to represent
registers as places [4], we have special interest in machines with a small number
of registers, and, for the purposes of this paper, we have actually constructed
a strongly universal 3-register machine Us and a weakly universal 2-register
machine Us following the ideas proposed in [10].

Roughly, the construction is based on exponential coding of the configuration
of an arbitrary register machine and simulating increments and decrements as
multiplications and divisions. Two registers are enough for these purposes, and
a third one is required for exponentiation of the input and computing of the
logarithm to retrieve the output. To construct the weakly universal Us, we sim-
ulate the 20-state 8-register weakly universal register machine Uy described in
[6]. The 2-register machine obtained in this way has 112 decrement and 165 in-
crement instructions: 278 states all in all (including a final state). Simulating the
22-state 8-register machine Uss described in the same paper, and further adding
exponentiation and logarithm, allows building the strongly universal 3-register
machine Us with 147 decrement and 217 increment instructions: 365 states in
total.

Clearly, Uy and Us simulate the corresponding machines from [6] with expo-
nential slowdown. However, the machines by Korec simulate partial recursive
functions with exponential slowdown, too (cf. Theorem 4.2 in [6]). This means
that the slowdown of the machines U; and Us with respect to the (indirectly)
simulated partial recursive functions is doubly exponential.

Both register machines use the register Ry to store the exponentially-coded
values of the simulated register machine, and the register Ry to keep the inter-
mediate results. The input of Us should thus be provided in coded form in Rj.
The register machine Us, on the other hand, reads its input from and produces
its output in the third register, Rs.

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 191

An important remark with regard to the strong universality of Us is due
here: since we use one register for input, we are only able to directly simulate
unary partial recursive functions. Nevertheless, Section 9 of [6] describes a way
to construct register machines simulating n-ary partial recursive functions; the
machines use a coding to store the values of the n arguments in one of the
working registers. This approach can be pretty naturally adapted to the register
machine Uj to obtain strongly universal register machines with n input registers,
read by successive decrements at the start of the computation, and which only
have two working registers. Such register machines can be translated into Petri
nets by the same techniques as the ones we will show for U, and Us in the coming
sections.

Section 2 of [5] describes the construction of a universal three-register machine
with 130 states. However, in that paper compound instructions are assigned
to single states (e.g., any increment of a register by m is treated as a single
instruction). Writing out the corresponding construction in terms of elementary
register machine commands as we use in U and Us, would yield more than 450
instructions.

4 Non-deterministic Simulation of Register Machines by
Petri Nets

In this section we will show that a register machine with n registers can be sim-
ulated by a non-deterministic Petri net with only n + 2 places. We recall that
in the non-deterministic semantics, we only consider those branches of compu-
tation which halt. The basic idea is representing a state number of a register
machine in unary encoding as the number of tokens in a (single) place of the
Petri net, and then using another place to assure that the transformations of
state numbers happen correctly.

g4

ROP] [STOP]

Fig. 1. The toy register machine S

Consider the following register machine S = (Q,R,q1,q4,P), where
Q={q1,¢2,93,q94}, R = {Ro, R1, Ro} and the set of instructions P is defined as
P ={(q1,R1M,q2,q3), (g2, ROP, q1), (g3, R2P, q4), (g4, STOP)}. This machine is
depicted on Figure 1 using a standard flow-chart notation.

192 S. Ivanov, E. Pelz, and S. Verlan

This machine adds the contents of the register 1 to the register g, eventually
sets 1 to zero, and increments ry once. The corresponding non-deterministic
Petri net N is shown in Figure 2. This Petri net uses a place to store the value
of each register, and two more places to store state numbers and validate state
transitions. Note that we do not need to represent the final state g4 in the Petri
net. It suffices that N carries out the operation associated with ¢3 and halts.

Fig. 2. The non-deterministic Petri net N simulating S

The Petri net N starts with one token in the state place (g, which corresponds
to the number of the initial state ¢; of S. The simulation of an arc in the graph
of the register machine S is carried out in two phases. In the first phase, the
current state is read from the place Qg, the corresponding registers are checked
and/or modified, and the number of the next state is put into the state place
Q1. The first phase of the simulation is carried out by the transitions Ty through
T3. The goal of the second phase is checking that state places are always read
completely, i.e., that every transition which fires consumes all the tokens from
Qo or Q1. The second phase corresponds to the firing of one of the transitions
Ty or Ts.

Transitions Ty and 737 simulate state g; of S in the following way. If Ry is
nonempty, the transition Ty can fire, consuming one token from the place R
and putting two tokens into)1, which corresponds to moving into state gs.
If, however, R; is empty, transition 7 fires and places three tokens into @1,
which corresponds to moving into state ¢s. Similarly, transition 75 simulates the
behavior of S in state ¢, and transition T3 corresponds to the state ¢3. Note
that T3 only empties @y and adds nothing to @1, moreover, Q1 should be empty
in order for T3 to fire. Therefore, after T3 fires, no more transitions can fire and
N halts.

The goal of transitions T, and T3 is moving the number of the next state to
simulate from Q)7 to (Jo. At the same time, the two transitions verify that the

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 193

correct instruction has just been carried out. Indeed, suppose that @y contains
two tokens and R; is empty. Then both transition Ty and T5 can fire. However,
if Ty fires, it will place two tokens into (1, and one token will still be left in
Q0. In this case transitions Ty through T5 will be blocked, and the only enabled
transitions Ts and T7 will make the net loop forever. Similarly, if transition T5
fires when Q1 contains more than one token, N will never halt. Therefore, in
a halting computation of N, either the place Qg or (1 contains tokens, but
not both at the same time, which assures the correct simulation of the register
machine S.

We remark that the number of places in the above simulation does not depend
on the number of states of the simulated machine. Hence, it should be rather
clear that the same reasoning can be repeated for the 3-register universal machine
Us to obtain a 5-place strongly universal non-deterministic Petri net N;. It will
have 511 transitions simulating the activity of Us, 364 more transitions moving
the code of the next state from @1 to Qp, and two loops; 877 transitions all in
all. Tt will also have 1022 inhibitor arcs and the maximal transition degree will
be 729. In an analogous fashion we can build a 4-place weakly universal Petri
net No with 668 transitions of maximal degree 555 and with 778 inhibitor arcs.

5 Decreasing the Transition Degree

In this section we will show that it is possible to almost halve the maximal
transition degree of the transitions in the strongly universal non-deterministic
Petri net N7 at the cost of a slight increase in the number of transitions.

First of all, remark that the maximal transition degree in the Petri net Ny
is largely determined by the transitions moving tokens from @ to Qp: since
Us contains 365 states including a final one, N7 must have a transition moving
364 tokens from Q)1 to Qg, which, together with the inhibitor arc coming from
Qo, results in degree 729. Remember that we try to be precise from the graph-
theoretic point of view and count the weights of the arcs as well, while in many
Petri-net-related works the degree of such transitions would be considered 3, as
they have only one input and two output places.

On the other hand, the transitions actually simulating the activity of Us need
not be this large: it is possible to code states in such a way that these transitions
have an input degree which is much smaller than the output degree or vice versa.
The idea therefore is as follows: mirror the transitions which simulate the activity
of Us, so that the simulation happens both when tokens are moved from Qg to
Q1 and when tokens are moved from @ to QQy. In the case of our toy register
machine S, this will result in the Petri net shown in Figure 3. Observe that the
transition 7} simulates the same instruction of S as T; does.

In the case of this net, maximal transition degree is determined solely by
the way in which the states are represented. Namely, consider a transition T
which corresponds to the move from state g; to state ¢; in the simulated register
machine. The way in which states are encoded will be given by the function
¢ : Q — N, where @ is the set of states. Then, the degree of T is c(g;) +

194 S. Ivanov, E. Pelz, and S. Verlan

Fig. 3. A mirrored non-deterministic Petri net simulating S

c(g;) + 2, where we add 2 because all transitions read and/or modify a register
and are inhibited by either Qo or Q1. We can now define the mapping ¢ via a
minimization problem, keeping in mind the goal to minimize the worst transition
degree.

We start by remarking that ¢ takes values in the interval 1 through |Q] — 1
(we do not need to code the final state). In the optimization problem, we use
the following family of variables:

Cii =

)

{1, if o(qi) = ',

0, otherwise,

with the following normalization conditions:

Vg € Q : Z cii =1 andVlSi’§|Q\—1:Zci7i/:1,

1<i’<[Q|-1 % E€EQ

which require that every state have exactly one code and that each code be
picked exactly once.

The family of variables ¢; ; can be used to express the cost ¢(g;) + ¢(g;) for a
transition from state ¢; to ¢; in the following way:

c(q) + clg;) = Z i i + Z i e

1<i'<|Q|—1 1<5'<|Q|-1

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 195

For convenience, we will also define the set of pairs of states between which there
exists an arc in the graph of the register machine:

or (¢;, RkP,q;,s) € P, or (¢;, RkP, s,q;) € P}.

We can now write the linear programming problem optimizing the cost of the
“worst” transition:

Minimize C'

Subject to Z i’ e+ Z i ey < C(ai,q5) € B,

1<ir<|Q|—-1 1<5'<1Q|-1
Vg € Q : Z ciir =1,
1< <|Q| -1
Vi<i' <|Q—1: ZCWZL
%ER

To attack the instances of this linear programming for Us and Us, we used the
Gurobi Optimizer [12]. The problem itself was formulated in the AMPL model
description language [3].

Remark that the number of variables in this linear programming problem
is \Q|2 + 1, which results in rather large linear programming models in the
case of the universal 3- and 2-register machines. Us, for example, has 364 non-
final states, which means 132496 variables. Furthermore, the first line in the
definition of the linear programming problem introduces 511 constraints, each
constraint being a linear combination of 729 variables. Finally, the last two lines
introduce 728 more constraints involving 364 variables each. This amounts to
1239 constraints involving either 364 or 729 variables.

Due to limited computing resources, we were not able to find the optimal
solutions for Us and Us until now. Nevertheless, we managed to obtain some
reasonably good solutions which allow reducing the maximal transition degree
to 379 in the case of Us and to 277 for U,. Thus, we obtained a 5-place strongly
universal non-deterministic Petri net N3 with 1024 transitions of maximal degree
379 and 1316 inhibitor arcs, and a 4-place weakly universal non-deterministic
Petri net N, with 780 transitions of maximal degree 299 and 1002 inhibitor arcs.

6 Main Results
To summarize the results concerned with strong universality, we formulate the
following statement.

Theorem 1. There exist strongly universal non-deterministic Petri nets of sizes
(5,877,1022,729) and (5,1024,1316, 379).

Similarly we can state the following with respect to weakly universal non-
deterministic Petri nets:

Theorem 2. There exist weakly universal non-deterministic Petri nets of sizes
(4,668, 778,555) and (4,780,1002,299).

196 S. Ivanov, E. Pelz, and S. Verlan

7 Conclusion

In this paper we constructed two strongly universal and two weakly universal
non-deterministic Petri nets. We have shown that dropping the restriction of a
deterministic evolution allows a dramatic minimization of the number of places,
but produces an important increase in the values of the other parameters.

We remark that, while the strong universality results obtained in this paper
implicitly suppose that corresponding Petri nets have a single input (thus com-
puting unary functions), it is possible to generalize them to an n-ary input using
the ideas from [6]. Corresponding nets will have n+2 places and a linear increase
in the number of inhibitors and maximal transition degree.

While our main goal was to minimize the number of places, we did also show
that a trade-off still existed between the maximal transition degree on the one
side and the number of transitions and inhibitor arcs on the other. It could be
interesting to look for other similar trade-offs.

It might be possible to achieve strong universality with 4 places, because the
input/output register of Us is only modified during the initial and final phases
of execution of the machine, when input is read and output is produced [10].
We conjecture that 3 places or less are insufficient to achieve strong universality,
however. On the other hand, it may be possible to reduce the values of some
other parameters, while keeping the number of states at 5.

In Section 3, we have cited a universal 3-register machine from [5] and said
that, if only elementary increments and decrements with zero check are allowed
as instructions, this machine would have more instruction than Us. However,
compound instructions do map naturally on Petri net transitions: multiple incre-
ments can be carried out in one step by an arc with multiplicity greater than 1.
Therefore, the register machine from [5] could be simulated directly, thus re-
ducing the number of transitions, and of inhibitor arcs, but also increasing the
maximal transition degree. Constructing the corresponding Petri net might be a
worthwhile task that could potentially lead to a better maximal degree measure.

The universality results shown in this paper indirectly rely on exponential
coding, which imposes operations of considerable time complexity. A different
approach could be used to reduce simulation time, but this would almost cer-
tainly result in an increase in the size of the Petri nets.

Finally, we would like to stress that the results we give in this paper can be
straightforwardly translated to the domain of P systems [13] and, more generally,
multiset rewriting [1].

References

1. Alhazov, A., Verlan, S.: Minimization strategies for maximally parallel multiset
rewriting systems. Theoretical Computer Science 412(17), 1581-1591 (2011)

2. Barzdin, I.M.: Ob odnom klasse machin Turinga (machiny Minskogo), russian.
Algebra i Logika 1, 42-51 (1963)

3. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathe-
matical Programming, 2nd edn. Duxbury Press, Brooks/Cole Publishing Company
(2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Small Universal Non-deterministic Petri Nets with Inhibitor Arcs 197

Ivanov, S., Pelz, E., Verlan, S.: Small universal Petri nets with inhibitor arcs. In:
Computability in Europe (2014)

Koiran, P., Moore, C.: Closed-form analytic maps in one and two dimensions can
simulate universal turing machines. Theor. Comput. Sci. 210(1), 217-223 (1999)
Korec, I.: Small universal register machines. Theoretical Computer Science 168(2),
267-301 (1996)

Malcev, A.L: Algorithms and Recursive Functions. Wolters-Noordhoff Pub. Co.,
Groningen (1970)

Margenstern, M.: Frontier between decidability and undecidability: A survey. The-
oretical Computer Science 231(2), 217-251 (2000)

Margenstern, M.: An algorithm for buiding inrinsically universal automata in hy-
perbolic spaces. In: Arabnia, H.R., Murgin, M. (eds.) FCS, pp. 3-9. CSREA Press
(2006)

Minsky, M.: Size and structure of universal Turing machines using tag systems.
In: Recursive Function Theory: Proceedings, Symposium in Pure Mathematics,
Provelence, vol. 5, pp. 229-238 (1962)

Minsky, M.: Computations: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffts (1967)

Gurobi Optimization, Inc. Gurobi optimizer reference manual (2014)

Paun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

Pelz, E.: Closure properties of deterministic Petri nets. In: Brandenburg, F.J.,
Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 371-382.
Springer, Heidelberg (1987)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.
Springer (1997)

Schroeppel, R.: A two counter machine cannot calculate 2N. In: AT Memos. MIT
AT Lab (1972)

Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42(2), 230-265
(1936)

Woods, D., Neary, T.: The complexity of small universal Turing machines: A survey.
Theor. Comput. Sci. 410(4-5), 443-450 (2009)

Zaitsev, D.A.: Universal Petri net. Cybernetics and Systems Analysis 48(4), 498—
511 (2012)

Zaitsev, D.A.: A small universal Petri net. EPTCS 128, 190-202 (2013); In Proceed-
ings of Machines, Computations and Universality (MCU 2013), arXiv:1309.1043

	Small Universal Non-deterministic Petri Nets
with Inhibitor Arcs

	1 Introduction
	2 Preliminaries
	2.1 Register Machines
	2.2 Petri Nets

	3 Universal Register Machines with Few Registers
	4 Non-deterministic Simulation of Register Machines by Petri Nets
	5 Decreasing the Transition Degree
	6 MainResults
	7 Conclusion
	References

