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Abstract. We give a method for specifying ultrafilter equations and
identify their projections on the set of profinite words. Let B be the set
of languages captured by first-order sentences using unary predicates for
each letter, arbitrary uniform unary numerical predicates and a predicate
for the length of a word. We illustrate our methods by giving profinite
equations characterizing B ∩Reg via ultrafilter equations satisfied by B.
This suffices to establish the decidability of the membership problem for
B ∩Reg.

In two earlier papers, Gehrke, Grigorieff, and Pin proved the following results:

Result 1. [5] Any Boolean algebra of regular languages can be defined by a set
of equations of the form u = v, where u and v are profinite words.1

Result 2. [6] Any Boolean algebra of languages can be defined by a set of equa-
tions of the form u = v, where u and v are ultrafilters on the set of words.

These two results can be summarized by saying that Boolean algebras of lan-
guages can be defined by ultrafilter equations and by profinite equations in the
regular case. Restricted instances of Result 1 have proved to be very successful
long before the result was stated in full generality. It is in particular a powerful
tool for characterizing classes of regular languages or for determining the ex-
pressive power of various fragments of logic, see the book of Almeida [2] or the
survey [9] for more information.

Result 2 however is still awaiting convincing applications and even an idea
of how to apply it in a concrete situation. The main problem in putting it into
practice is to cope with ultrafilters, a difficulty nicely illustrated by Jan van Mill,
who cooked up the nickname three headed monster for the set of ultrafilters on N.
Facing this obstacle, the authors thought of using Results 1 and 2 simultaneously
to obtain a new proof of the equality

FO[N ] ∩ Reg = � (xω−1y)ω+1 = (xω−1y)ω

for x, y words of the same length � (1)

� Work supported by the project ANR 2010 BLAN 0202 02 FREC.
1 In [5], these were denoted by u ↔ v.
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This formula gives the profinite equations characterizing the regular languages
captured by FO[N ], the first order logic using arbitrary numerical predicates
and the usual letter predicates. This result follows from the work of Barrington,
Straubing and Thérien [3] and Straubing [10] and is strongly related to circuit
complexity. Indeed its proof makes use of the equality between FO[N ] and AC0,
the class of languages accepted by unbounded fan-in, polynomial size, constant-
depth Boolean circuits [11, Theorem IX.2.1, p. 161]. See also [7] for similar results
and problems.

However, before attacking this problem in earnest we have to tackle the fol-
lowing questions: how does one get hold of an ultrafilter equation given the
non-constructibility of each one of them (save the trivial ones given by pairs of
words)? In particular, how does one generalize the powerful use in the regular
setting of xω? And how does one project such ultrafilter equations to the regu-
lar fragment? In answering these questions and facing these challenges, we have
chosen to consider a smaller and simpler logic fragment first. Our choice was
dictated by two parameters: we wanted to be able to handle the corresponding
ultrafilters and we wished to obtain a reasonably understandable list of profinite
equations. Finally, we opted for FO[N0,N u

1 ], the restriction of FO[N ] to con-
stant numerical predicates and to uniform unary numerical predicates. Here we
obtain the following result (Theorem 4.7)

FO[N0,N u
1 ] ∩Reg = �(xω−1s)(xω−1t) = (xω−1t)(xω−1s),

(xω−1s)2 = (xω−1s) for x, s, t words of the same length � (2)

which shows in particular that membership in FO[N0,N u
1 ] is decidable for reg-

ular languages.
Although this result is of interest in itself, we claim that our proof method

is more important than the result. Indeed, this case study demonstrates for the
first time the workability of the ultrafilter approach.

This method can be summarized as follows. First we find a set of ultrafil-
ter equations satisfied by FO[N0,N u

1 ] (Theorem 3.2). These equations do not
necessarily suffice to characterize FO[N0,N u

1 ]
2, but projecting ultrafilters onto

profinite words, we convert our ultrafilter equations to profinite equations for
FO[N0,N u

1 ] ∩ Reg (Theorems 3.3 and 3.4). The last step consists in verify-
ing that the set of profinite equations thus obtained suffices to characterize
FO[N0,N u

1 ] ∩Reg (Theorem 4.7).
Now, a closer look at our proof shows that we are far from making use of

the potential power of ultrafilters. For instance, difficult combinatorial results
like Szemeredi’s theorem on arithmetic progressions can be formulated in terms
of ultrafilters. Thus it is quite possible that more sophisticated arguments are
required to extend our results to larger fragments of logic, including FO[N ].

2 We recently proved that these equations actually do suffice to characterize
FO[N0,N u

1 ], but this will be the topic of another paper.
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1 Stone Duality and Equations

In this paper, we denote by Sc the complement of a subset S of a set E.

1.1 Stone Duality

Let A be a finite alphabet. A Boolean algebra of languages is a set B of languages
of A∗ closed under finite unions, finite intersections and complement. It is closed
under quotients if, for each L ∈ B and u ∈ A∗, the languages u−1L and Lu−1 are
also in B. Recall that u−1L = {x ∈ A∗ | ux ∈ L} and Lu−1 = {x ∈ A∗ | xu ∈ L}.

Let B be a Boolean algebra of languages of A∗. An ultrafilter of B is a non-
empty subset γ of B such that:

(1) the empty set does not belong to γ,

(2) if K ∈ γ and K ⊆ L, then L ∈ γ (closure under extension)3,

(3) if K,L ∈ γ, then K ∩ L ∈ γ (closure under intersection),

(4) for every L ∈ B, either L ∈ γ or Lc ∈ γ (ultrafilter condition).

Stone duality tells us that B has an associated compact Hausdorff space S(B),
called its Stone space. This space is given by the set of ultrafilters of B with the
topology generated by the basis of clopen sets of the form {γ ∈ S(B) | L ∈ γ},
where L ∈ B.

Two Stone spaces are of special interest for this paper. The first one is the
Stone space of the Boolean algebra of all the subsets of a setX . It is known as the
Stone-Čech compactification of X and is usually denoted by βX . An important
property is that every map f : X → Y has a unique continuous extension
βf : βX → βY defined by L ∈ βf(γ) if and only if f−1(L) ∈ γ for each subset L
of Y . Moreover, the map sending an element x of X to the principal ultrafilter
generated by x defines an injective map from X into βX .

Our second example is the Stone space of the Boolean algebra Reg of all regular
subsets of A∗. It was proved by Almeida [1] to be equal to the topological space

underlying the free profinite monoid on A, denoted by ̂A∗. We refer to [2,8,9] for
more information on this space, but it can be seen as the completion of A∗ for
the profinite metric d defined as follows. A finite monoid M separates two words
u and v of A∗ if there is a monoid morphism ϕ : A∗ → M such that ϕ(u) �= ϕ(v).
We set

r(u, v) = min
{|M | | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted
by ̂A∗. The product on A∗ can be extended by continuity to ̂A∗, making ̂A∗
a compact topological monoid, called the free profinite monoid. Its elements
are called profinite words. We will only use two types of profinite words in this
paper. In a compact monoid, the smallest closed subsemigroup containing a given

3 In other words, γ is an upset.
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element x has a unique idempotent, denoted by xω . Thus if x is a (profinite)
word, so is xω. In fact, one can show that xω is the limit of the converging
sequence xn!. Moreover, the sequence xn!−1 is also converging to an element
denoted by xω−1. More details can be found in [2,8,9].

1.2 Equations

Assigning to a Boolean algebra its Stone space is a contravariant functor: if B′ is
a subalgebra of B, then S(B′) is a quotient of S(B). More precisely, the function
which maps an ultrafilter of B onto its trace on B′ induces a surjective continuous
map π : S(B) → S(B′).

This leads to the notion of equation relative to B or B-equation. Let γ1, γ2
be two ultrafilters on B and let L ∈ B. We say that L satisfies the B-equation
γ1 = γ2 provided

L ∈ γ1 ⇐⇒ L ∈ γ2. (3)

By extension, we say that B′ satisfies the B-equation γ1 = γ2 provided (3) holds
for all L ∈ B′, or equivalently π(γ1) = π(γ2). Note that if B′ is generated as a
Boolean algebra by a subset C, then B′ satisfies a B-equation as soon as each
L ∈ C does. Finally, we say that B′ is defined by a set E of B-equations if for each
L ∈ B, L ∈ B′ if and only if L satisfies all the B-equations in E. The following
result is an immediate consequence of Stone duality.

Theorem 1.1. Every subalgebra of a Boolean algebra B can be defined by a set
of B-equations.
Specializing this result to B = Reg and to B = P(A∗) yields Results 1 and 2
of the introduction. Another case of interest for this paper is to take B = Reg
and for B′ a Boolean algebra closed under quotients. In this case, it is easier
to reformulate Result 1 in terms of syntactic morphisms. Let L be a regular
language and η : A∗ → M be its syntactic morphism. We say that η satisfies the
profinite equation u = v or that L syntactically satisfies the profinite equation
u = v if η̂(u) = η̂(v), where η̂ : ̂A∗ → M is the unique continuous extension of η

to ̂A∗. It is easy to see that a regular language syntactically satisfies a profinite
equation if and only if all of its quotients satisfy this equation. Therefore we have

Result 3. Any Boolean algebra of regular languages closed under quotients can
be syntactically defined by a set of profinite equations.

When working with ultrafilter equations, the following two observations will be
helpful. Let us denote by K�L the symmetric difference of the sets K and L.

Proposition 1.2. Let γ be an ultrafilter of B and let K,L ∈ B. Then the fol-
lowing statements are equivalent:

(1) K ∈ γ if and only if L ∈ γ,

(2) K�L �∈ γ.

Proposition 1.3. Let f : X → Y be a map and let L be a subset of Y . If
f−1(L) satisfies u = v for some u, v ∈ βX, then L satisfies βf(u) = βf(v).
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2 A Boolean Algebra and Its Logical Description

For each word u = a0 . . . an−1 where a0, . . . , an−1 ∈ A and each letter a ∈ A, let
au = {i ∈ Dom(u) | ai = a}. For instance, if u = aabcbaba, then au = {0, 1, 5, 7},
bu = {2, 4, 6}, and cu = {3}. The length of u is denoted by |u|.

For each letter a in A and for each subset P of N, let
LP = {u ∈ A+ | |u| − 1 ∈ P} and La,P = {u ∈ A+ | au ⊆ P}.

In this paper, we are interested in the Boolean algebra B generated by the
languages LP and La,P for P ⊆ N and a ∈ A. A little combinatorics on words
leads to the following result:

Proposition 2.1. The Boolean algebras B and B ∩ Reg are closed under quo-
tients and under the operations L → uL for each word u ∈ A∗.

Let us turn to the logical description of B. Let u = a0 . . . an−1 be a nonempty
word where a0, . . . , an−1 are letters of the alphabet A. Then umay be viewed as a
first-order model whose domain is the set Dom(u) = {0, . . . , |u|−1}, carrying, for
each letter a ∈ A, the unary predicate au as defined above. For each subset P of
N, we also define two predicates: a 0-ary predicate which is true on u if and only
if |u|−1 ∈ P and a unary uniform predicate4 defined by P (n) = P ∩{0, ..., n−1}.
Its interpretation on a word u is the subset P (|u|) of {0, ..., |u| − 1}.

We denote by FO[N0,N u
1 ] the set of first-order formulas built on these pred-

icates. Note that we do not consider = as a logical symbol so that each formula
is equivalent to one of quantifier depth one. The language defined by a sentence
ϕ is the set5

L(ϕ) = {u ∈ A+ | u satisfies ϕ}
For instance if ϕ = ∃x ax, then L(ϕ) = A∗aA∗. Let P be a subset of N. If P is
considered as a 0-ary numerical relation, then L(P ) = LP . If P is interpreted as
a unary uniform numerical relation, then the formula ∀x (ax → Px) defines the
language La,P since P is interpreted as P (|u|). This proves one direction of the
following logical description of B.
Theorem 2.2. A language L of A+ belongs to B if and only it can be defined
by a sentence of FO[N0,N u

1 ].

3 Some Equations of B
For 1 � i � k, let πi : A

∗×N
k → N be the map defined by πi(u, n1, . . . , nk) = ni.

The following proposition shows that the classes of equations we will define
subsequently contain at least one non-trivial equation for each α ∈ βN− N.

4 Following the terminology of [11], a unary numerical relation R associates to each
n > 0 a subset R(n) of {0, ..., n − 1}. It is uniform if there exists a subset P of N
such that, for all n > 0, R(n) = P ∩ {0, . . . , n− 1}. Not every numerical relation is
uniform: for instance, the unary numerical relation R defined by R(n) = {n− 1} is
not uniform.

5 The empty word is excluded to avoid any problem related to empty models.
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Proposition 3.1. Let γ ∈ β(A∗ × N
k) with k � 1. Then, for each α ∈ βN, the

following conditions are equivalent:

(1) βπi(γ) = α for each i ∈ {1, . . . , k};
(2) {A∗ × P k | P ∈ α} ⊆ γ.

Furthermore, these conditions hold for γ with respect to some α if and only if

(3) For each partition {P1, . . . , Pn} of N, we have
⋃n

j=1(A
∗ × P k

j ) ∈ γ.

Proof. (1) implies (2) since A∗ ×P k =
⋂k

i=1 π
−1
i (P ) and γ is closed under finite

intersections.
(2) implies (1). Let P ∈ α and i ∈ {1, . . . , k}. Then by (2), A∗ × P k ∈ γ and

thus π−1
i (πi(A

∗ × P k)) ∈ γ so that P = πi(A
∗ × P k) ∈ βπi(γ). It follows that

α ⊆ βπi(γ) and thus α = βπi(γ) since ultrafilters are maximal.
For the second assertion, suppose there is an α ∈ βN such that (1) and (2)

hold and {P1, . . . , Pn} is a partition of N. Then
⋃n

j=1 Pj = N implies P� ∈ α for

some � and thus A∗ × P k
� ∈ γ by (2). Since γ is an upset, condition (3) holds.

Suppose now that γ satisfies (3) and let α = {P | A∗ × P k ∈ γ}. Then α is
an upset closed under intersection. Furthermore, for each P ⊆ N, the partition
{P, P c} forces A∗×P k ∈ γ or A∗×(P c)k ∈ γ so that α is an ultrafilter. It follows
by the equivalence of (1) and (2) that βπi(γ) = α for each i ∈ {1, . . . , k}. ��
We are now ready to introduce the first class of equations pertinent to the
languages treated in this paper. For this purpose, given u, s, t ∈ A∗, where
u = u0 · · ·un−1 with each uk ∈ A and |s| = |t| = �, and i, j ∈ N, define

u(s@i, t@j) =

{
u0 . . . ui−1sui+� . . . uj−1tuj+� . . . un−1 if i+ � � j and j + � � n

u otherwise

Informally, we put s at position i and t at position j.

u0 · · · ui−1 ui · · · ui+�−1 ui+� · · · uj−1 uj · · · uj+�−1 uj+� · · · un−1︸ ︷︷ ︸
↑ ↑

︸ ︷︷ ︸
s t

For each pair (s, t) of words of the same length, let fs,t : A
∗ × N

2 → A∗ be the
function defined by fs,t(u, i, j) = u(s@i, t@j).

Theorem 3.2. Let s, t ∈ A∗ with |s| = |t|. If γ ∈ β(A∗ × N
2) and βπ1(γ) =

βπ2(γ), then B satisfies the equation

βfs,t(γ) = βft,s(γ). (4)

Proof. Let a ∈ A and P ⊆ N. We show that La,P and LP satisfy the equations
(4). First we have

La,P ∈ βf(γ) ⇐⇒ f−1(La,P ) ∈ γ.
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Thus (4) holds for La,P if and only if

f−1
s,t (La,P ) ∈ γ ⇐⇒ f−1

t,s (La,P ) ∈ γ

and by Proposition 1.2 this is equivalent to S /∈ γ, where

S = f−1
s,t (La,P )� f−1

t,s (La,P ).

Let � be the common length of s and t. If an element (u, n1, n2) ∈ A∗ ×N
2 is in

S then n1+2� � n2+ � � |u| since otherwise fs,t(u, n1, n2) = ft,s(u, n1, n2) = u.
Suppose that (u, n1, n2) ∈ f−1

s,t (La,P ) \ f−1
t,s (La,P ), that is, fs,t(u, n1, n2) ∈ La,P

and ft,s(u, n1, n2) /∈ La,P . Then all the positions of a in fs,t(u, n1, n2) are in
P and some position of a in ft,s(u, n1, n2) is not in P . This latter position
necessarily occurs inside one of the factors s or t of fs,t(u, n1, n2). Consequently,
there is an i ∈ {0, . . . , � − 1} such that one of the two following possibilities
occurs:

(1) the letter in position n1 + i in ft,s(u, n1, n2) is an a but n1 + i /∈ P ,

(2) the letter in position n2 + i in ft,s(u, n1, n2) is an a but n2 + i /∈ P .

Now, in the first case, the letter in position n2 + i in fs,t(u, n1, n2) is an a. Thus
n2 + i ∈ P since fs,t(u, n1, n2) ∈ La,P . Similarly, we conclude that n1 + i ∈ P
in the second case. In summary, we have either n1 + i /∈ P and n2 + i ∈ P (first
case) or n1+ i ∈ P and n2+ i /∈ P (second case). In both cases we conclude that

(u, n1, n2) ∈
�−1
⋃

i=0

(

π−1
1 (P − i)�π−1

2 (P − i)
)

.

The case (u, n1, n2) ∈ f−1
t,s (La,P ) \ f−1

s,t (La,P ) leads to the same conclusion and
thus we have shown that

S ⊆
�−1
⋃

i=0

(

π−1
1 (P − i)�π−1

2 (P − i)
)

.

If S ∈ γ, then
⋃�−1

i=0

(

π−1
1 (P − i)�π−1

2 (P − i)
)

∈ γ and since γ is an ultrafilter,

π−1
1 (P − i)� π−1

2 (P − i) ∈ γ for some i ∈ {0, . . . , �− 1}. We complete the proof
that S �∈ γ by showing that, for every Q ⊆ N we have π−1

1 (Q)� π−1
2 (Q) /∈ γ,

or equivalently, (π−1
1 (Q)� π−1

2 (Q))c ∈ γ. But this is a direct consequence of
Proposition 3.1(3) since

(π−1
1 (Q)�π−1

2 (Q))c = A∗ × (

(Q×Q) ∪ (Qc ×Qc)
)

.

Thus S /∈ γ and La,P satisfies the equation βfs,t(γ) = βft,s(γ).
By the same argument as applied above, LP satisfies the equations (4) if and

only if f−1
s,t (LP )� f−1

t,s (LP ) /∈ γ. However, since |fs,t(u, n1, n2)| = |ft,s(u, n1, n2)|
and since x ∈ LP implies y ∈ LP if |y| = |x|, we have f−1

s,t (LP ) = f−1
t,s (LP ) and

thus f−1
s,t (LP )� f−1

s,t (LP ) = ∅ and therefore it does not belong to γ. ��
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We now consider the projection of the equations introduced above on the Stone
space of the regular fragment of the Boolean algebra B.
Theorem 3.3. Let x, s, t,∈ A∗ with |s| = |t| = |x|. Then B ∩ Reg satisfies the
profinite equation xω−1sxω−1t = xω−1txω−1s.

Proof. It suffices to show that there is a γ ∈ β(A∗ × N
2) with βπ1(γ) = βπ2(γ)

such that the projection πReg : βA∗ → ̂A∗ defined by

πReg(γ) = γ ∩Reg

maps βfs,t(γ) to xω−1sxω−1t and βft,s(γ) to xω−1txω−1s.
Proposition 3.1 shows that in order for γ to satisfy βπ1(γ) = βπ2(γ), we just

need γ to contain the down-directed filter base

{
n
⋃

j=1

(A∗ × P 2
j ) | {P1, . . . , Pn} is a partition of N

}

.

We now show that for � = |x|, adding the sets WN = {(xm!, (k!−1)�, (m!−1)�) |
N � k < m} for each N ∈ N to this filter base still yields a filter base. To this
end we just need to show that for each partition {P1, . . . , Pn} of N and N ∈ N,
the set

WN ∩ (

n
⋃

j=1

(A∗ × P 2
j ))

is non-empty. But since {P1, . . . , Pn} is a partition of N, there is j ∈ {1, . . . , n}
with Pj ∩ {(k!− 1)� | k � N} infinite. It readily follows that WN ∩ (A∗ × P 2

j ) is

infinite and thus the bigger set WN ∩ (
⋃n

j=1(A
∗ × P 2

j )) is non-empty.

Let γ ∈ β(A∗×N
2) be an ultrafilter containing the extended filter base. Then

clearly βπ1(γ) = βπ2(γ) so that, by Theorem 3.2, the Boolean algebra B satisfies
the equation βfs,t(γ) = βft,s(γ).

Now let L ∈ βfs,t(γ) ∩ Reg. Then f−1
s,t (L) ∈ γ. Also, since WN ∈ γ for each

N ∈ N, it follows that f−1
s,t (L) ∩ W1 is infinite, or equivalently L ∩ fs,t(W1) is

infinite. But
fs,t(W1) = {xn!−1sx(m!−n!)−1t | 1 � n < m}

and m!− n! = (m!/n!− 1)n! where (m!/n!− 1) � 1. Since any sequence in this

set with n → ∞ converges to xω−1sxω−1t in ̂A∗, and since L ∩ fs,t(W1) ⊆ ̂L

with the latter closed, we must have xω−1sxω−1t ∈ ̂L. But as ̂A∗ is Hausdorff,
⋂

{̂L | L ∈ βfs,t(γ) and L ∈ Reg} = πReg(βfs,t(γ))

so xω−1sxω−1t = πReg(βfs,t(γ)). Similarly xω−1txω−1s = πReg(βft,s(γ)). ��
A similar argument using the ultrafilter equations βftss(γ) = βftts(γ) with
βπ1(γ) = βπ2(γ) = βπ3(γ) and projecting yields the profinite equation

(xω−1t)(xω−1s)(xω−1s) = (xω−1t)(xω−1t)(xω−1s).
Specializing to x = t we get (xω−1s)(xω−1s) = (xω−1s), which proves the fol-
lowing result.
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Theorem 3.4. Let x, s ∈ A∗ with |s| = |x|. Then B ∩Reg satisfies the profinite
equation (xω−1s)(xω−1s) = (xω−1s).

Applications of the ultrafilter equations introduced in this section are not limited
to the interplay with regular languages and they can also be used to prove separa-
tion results for nonregular languages. For instance, it is easy to find an ultrafilter
equation of B not satisfied by the language {uav | u, v ∈ {a, b}∗ and |u| = |v|}.

4 The Regular Case

Consider the two profinite equations introduced in the previous sections, where
x, s and t are words of the same length

(xω−1s)(xω−1t) = (xω−1t)(xω−1s) (5)

(xω−1s)(xω−1s) = (xω−1s) (6)

We will show that the regular languages of our class B are exactly the languages
whose syntactic morphism satisfies the equations (5) and (6) for all words x, s
and t of the same length. Before we do this, it is useful to introduce some further
notation.

Let k, r, d ∈ N with d > 0. Given a word u = a0 · · · an ∈ A∗ where ai ∈ A, let
pk(u) = a0 · · · ak−1 be the prefix of length k of u and let

Cd,r(u) = {ai | i � d and i ≡ r mod d}
be the content of u at r modulo d. For instance, if u = ccbbacabac, then p5(u) =
ccbba, C3,0 = {a, b, c}, C3,1 = {a, b} and C3,2 = {a, c}.

For each positive integer d, let ∼d be the equivalence on A∗ defined as follows.
Given u, v ∈ A∗, u ∼d v if and only if the three following conditions are satisfied:

(1) for 0 < k � d, pk(u) = pk(v),

(2) |u| ≡ |v| mod d,

(3) for 0 � r < d, Cd,r(u) = Cd,r(v).

Proposition 4.1. The relation ∼d is a congruence of finite index on A∗.

We now consider a regular language L and we denote by η : A∗ → M its
syntactic morphism. We also let d = |M |!. It is well known that, for each x ∈ M ,
xd is idempotent, that is, x2d = xd. For the remainder of the paper, we use
the notation u =η v for η(u) = η(v), and, for any r ∈ N, we denote by [r] the
remainder after division of r by d. We will need a small combinatorial lemma:

Lemma 4.2. Let u be a word of length at least |M |. Then there exist a prefix p
of u of length lesser than |M | and a word x of length |M |! such that px =η p.

Proof. For each k � 0, let sk = η(pk(u)). If s0, . . . , s|M|−1 are all distinct, one of

them, say si, is idempotent. Then p = pi(u) and x = p|M|!/(i+1) give the result.
On the other hand, if si = sj with i < j < |M |, then p = pi(u) and x = z|M|!/|z|

where pj(u) = pz yield the result. ��
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Let BReg be the Boolean algebra generated by the languages LP or La,P where
P is a regular subset of N, that is, a finite union of languages of the form r+ dN
for r, d ∈ N. Clearly BReg ⊆ B ∩ Reg. Our aim is to show that if η satisfies the
equations (5) and (6), then L is a union of ∼d-classes. In view of the following
proposition, it then follows that L ∈ BReg.

Proposition 4.3. For every d � 1, every ∼d-class is a language of BReg.

We now suppose that η satisfies equations (5) and (6) for all words x, s and
t of the same length.

Lemma 4.4. Let a0, a1, . . . , ar be letters and let p and x be two words such
that |x| = d and px =η p. Setting x = b0 · · · bd−1 where b0, b1, . . . , bd−1 are
letters, we have pa0 · · · ar =η pa0 · · ·ar(b[r+1] · · · bd−1b0 · · · b[r])d.
Proof. We prove the result by induction on the length of the word a0a1 · · · ar. If
the length is 0, the result simply follows from the relation px =η p. Suppose by
induction that the result holds for a word of length � r, that is

pa0 · · · ar−1 =η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])
d (7)

Then we get by (7)

pa0 · · ·ar−1ar(b[r+1] · · · bd−1b0 · · · b[r])d
=η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])

dar(b[r+1] · · · bd−1b0 · · · b[r])d
=η pa0 · · · ar−1b[r](b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r−1]ar

︸ ︷︷ ︸

s

(b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r]
︸ ︷︷ ︸

t

Equation (5) allows one to swap s and t and consequently we obtain

pa0 · · ·ar(b[r+1] · · · bd−1b0 · · · b[r])d
=η pa0 · · · ar−1b[r](b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r]

︸ ︷︷ ︸

t

(b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r−1]ar
︸ ︷︷ ︸

s

=η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])
2dar =η pa0 · · · ar−1ar by (7),

which concludes the induction step. ��
Lemma 4.5. Let a0, a1, . . . , ar be letters and let p and x = b0 · · · bd−1 be two
words such that px =η p. Setting for each k � 0

zk = b0b1 · · · b[k−1]a[k]b[k+1] · · · bd−1

the following relation holds

pa0 · · · ar =η pxd−1z0x
d−1z1 · · ·xd−1z[r]x

d−1b0 · · · b[r] (8)
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Proof. Applying Lemma 4.4 repeatedly yields the formula

pa0 · · ·ar =η p(b0 · · · bd−1)
da0(b1 · · · bd−1b0)

da1 · · ·
(b[r] · · · bd−1b0 · · · b[r−1])

dar(b[r+1] · · · bd−1b0 · · · b[r])d (9)

It suffices now to observe that the right hand sides of (9) and of (8) are the same
word. ��
Proposition 4.6. If u ∼d v, then u =η v.

Proof. Let u ∈ L and let v be a word such that u ∼d v. We claim that u =η v.
If |u| < d or |v| < d, then u = v and the result is trivial. Thus we may assume
that |u|, |v| � d and by the definition of ∼d, pd(u) = pd(v).

Let p and x = b0b1 · · · bd−1 be the words given by Proposition 4.2. Then p is
a common prefix of length < |M | of u and v and x is a word of length d such
that px =η p.

Let u = pa0 · · ·am and v = pc0 · · · cn. Since u ∼d v, |u| ≡ |v| mod d and thus
[n] = [m]. Setting

yk = b0b1 · · · b[k−1]a[k]b[k+1] · · · bd−1

zk = b0b1 · · · b[k−1]c[k]b[k+1] · · · bd−1

we get by Lemma 4.5

u =η pxd−1y0x
d−1y1 · · ·xd−1y[m]x

d−1b0 · · · b[m]

v =η pxd−1z0x
d−1z1 · · ·xd−1z[n]x

d−1b0 · · · b[n]
Since L satisfies the equations (5) and (6), one has for each i, j

xd−1yix
d−1yi =η xd−1yi xd−1zix

d−1zi =η xd−1zi

xd−1yix
d−1yj =η xd−1yjx

d−1yi xd−1zix
d−1zj =η xd−1zjx

d−1zi

We can now conclude the proof of Proposition 4.6. Since u ∼d v, for each i � d
there is a j such that j ≡ i mod d and ai = cj . Therefore, for each i there is a j
such that yi = zj. Similarly, for each j there is an i such that zj = yi. It follows
that u =η v. ��
We are now ready to prove the main result of this section.

Theorem 4.7. Let L be regular language, let η : A∗ → M be its syntactic
morphism and let d = |M |!. Then the following conditions are equivalent:

(1) η satisfies the profinite equations (5) and (6) for all words x, s and t of
the same length,

(2) L is a finite union of ∼d-classes,

(3) L ∈ BReg,

(4) L ∈ B ∩Reg.
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Proof. Proposition 4.6 proves that (1) implies (2). Proposition 4.3 shows that (2)
implies (3), (3) implies (4) is trivial and (4) implies (1) follows from Theorems
3.3 and 3.4. ��
Corollary 4.8. One can effectively decide whether or not a given a regular lan-
guage belongs to B.
Coming back to logic, one could derive the following characterization, in which
=c stands for the set of unary predicates of the form {c}, for c ∈ N and MOD
stands for the set of modulo predicates, as defined in [4].

Theorem 4.9. A language belongs to B∩Reg if and only if it can be defined by
a sentence of FO[MOD, = c].
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