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Abstract. Reaction systems are a recent formal model inspired by the
chemical reactions that happen inside cells and possess many different
dynamical behaviours. In this work we continue a recent investigation
of the complexity of detecting some interesting dynamical behaviours in
reaction system. We prove that detecting global behaviours such as the
presence of global attractors is PSPACE-complete. Deciding the presence
of cycles in the dynamics and many other related problems are also
PSPACE-complete. Deciding bijectivity is, on the other hand, a coNP-
complete problem.

1 Introduction

This paper completes the investigations started in [7], in which we studied the
complexity of a collection of problems related to finding fixed points and local
fixed points attractors in reaction systems (RS). Here we study the complexity
of determining the existence of cycles and global attractors (either fixed points
or cycles) in the dynamics of RS. In the first half of this investigation [7], the
problems studied were either NP, coNP, or at most ΠP

2 -complete. We show that
moving from fixed points to cycles and from local to global attractors pushes
the complexity to PSPACE in the majority of the cases. Recall that RS are
a computational model, inspired by chemical reactions, recently introduced by
Ehrenfeucht and Rozenberg [6]. After its introduction, many different aspects
of the model were investigated [4,5,2,13]. Indeed, the success of these systems is
essentially due to the fact that they can be used to study practical problems [3]
and, at the same time, they are clean and formal enough to allow formal inves-
tigations. Roughly speaking, a reaction system is made of some finite set and
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a list of generating rules. The finite set consists of entities, or chemical species,
that are used as reactants, inhibitor and products. Finally, a generation rule is
activated if the reactants are present and if the inhibitors are not present and
then it replaces the current set with the set of products.

The study of the dynamical behaviour of RS is one of the current trends in
this domain. For example, in [5], the authors analysed the dynamical behaviour
that can be obtained under the constraint of limited resources. In [4], the author
considered some particular state as a death state (the empty set in this case)
and computed the probability of a system to reach the death state.

Notice that, from a certain point of view, the dynamics of reaction systems are
pretty well-known. Indeed, these are finite systems and hence their dynamics is
always ultimately periodic. However, there are very interesting questions which
are both useful for practical applications and highly non-trivial. For example,
one can ask if a particular product will appear at a certain point of the dynamics
or not [15,14]. The present paper follows this trend by greatly extending the first
results on complexity proved in [6,15,14], where the idea that RS can be used
to evaluate Boolean formulae was introduced. In particular, we investigate the
complexity of establishing if a RS admits a fixed point global attractor (PSPACE-
complete). We also study the complexity of finding if two RS share all fixed points
that are global attractors (PSPACE-complete). This is in some sense a concept
of equivalence w.r.t. global attractors. We also explore the difficulty of finding
if a state is part of cycle, a local attractor cycle, or a global attractor cycle,
resulting in all cases in PSPACE-completeness. On the other hand, deciding if a
RS admits a local attractor cycle is NP-complete. The other decision problems
studied are about finding if two RS share one or all of their local attractor cycles
(both PSPACE-complete).

The paper is structured as follows. Section 2 provides the basic notions on RS
and two lemmata that will be used in the remaining part of the paper. Section 3
gives a description in logical terms of the problems we consider. The decision
problems regarding global fixed points attractors are presented in Section 4. The
decision problems regarding cycles are investigated in Section 5. A summary of
the results and a hint at possible future developments is given in Section 6.

2 Basic Notions

This section provides a brief recollection of all the basic notions of RS and
of dynamical systems necessary for the rest of the paper. Notations are taken
from [6]. First of all, we recall the definitions of reaction, reaction system, and
of their dynamics.

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Ra, Ia, Pa) of subsets of S. The set Ra is the set
of reactants, Ia the set of inhibitors, and Pa is the set of products. The set of
all reactions over S is denoted by rac(S).

Definition 2. A reaction system A is a pair (S,A) where S is a finite set, called
the background set, and A ⊆ rac(S).
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Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2

S → 2S of a, where 2S denotes the
power set of S, is defined as

resa(T ) =

{
Pa if a is enabled in T

∅ otherwise.

The definition of resa naturally extends to sets of reactions. Indeed, given T ⊆ S
and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result function resA of a

RS A = (S,A) is resA, i.e., it is the result function on the whole set of reactions.

Example 1 (NAND gate). To implement a NAND gate using a RS we use as
background set S = {0a, 1a, 0b, 1b, 0out, 1out}. The first four elements represent
the two inputs (denoted by the subscripts a and b), the last two, on the other
hand, denote the two possible outputs. The reactions used to model a NAND gate
are the followings: ({0a, 0b},∅, {1out}), ({0a, 1b},∅, {1out}), ({1a, 0b},∅, {1out}),
and ({1a, 1b},∅, {0out}). Similarly to NAND gates, others gates can be simulated
and it is possible to build circuits with gates of limited fan-in using only a number
of entities and reactions that is linear in the size of the modeled circuit.

After this brief introduction of RS, the reader may notice that there exist
different bio-inspired models that are, in some sense, similar or related to RS.
The most prominent are membrane systems [12], chemical reaction networks [17],
and Boolean automata networks (BAN) [10,16]. In the first two cases the object
of the evolution is a multiset of symbols. In the last case one can show that, for
each RS, there exists a BAN which simulates it and which is polynomial in the
size of the given RS. However, an RS simulating a BAN may be exponentially
larger than the original BAN [7].

We can now proceed by recalling the necessary definitions of the dynamical
properties investigated in this work. Given a set T ⊆ S, the set of states visited
by T is (T, resA(T ), res2A(T ), . . .), that is, the sequence of resiA(T ) for i ∈ N.
Since 2S is finite, every sequence of states is ultimately periodic, i.e., there
exists h, k ∈ N such that for all t ∈ N, resh+kt

A (T ) = resh+k
A (T ). The integer h is

usually called the length of the transient and k the length of the period. A state
T ⊆ S is in a cycle if there exists k ∈ N such that reskA(T ) = T . The smallest
such k is the length of the cycle. If T is in a cycle of length 1 we say that T is a
fixed point.

The notion of attractor is a central concept in the study of dynamical systems.
Recall that an invariant set for A is a set of states U with

⋃
U∈U{resA(U)} = U .

For RS all invariant sets consist of cycles. A local attractor in a RS is an invariant
set U such that there exists T /∈ U with resA(T ) ∈ U . Intuitively, a local attractor
is a set of states U from which the dynamics never escapes and such that there
exists at least one external state whose dynamics ends up in U . A global attractor
for an RS A is an invariant set of states U such that for all T ∈ 2S there exists
t ∈ N such that restA(T ) ∈ U . A global attractor U a global fixed-point attractor
if U = {T } and hence, necessarily, T is a fixed point. Similarly, we call U a global
attractor cycle if all the states in U belong to the same cycle.
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2.1 Counters and Turing Machines

We conclude this section with two technical results that are useful in the sequel.
The first one tells us that it is always possible to build a RS containing a cycle
of a given period. In the constructions that will follow, this cycle will be used
as a kind of internal counter. This construction is inspired by Brijder et al. [2].
The second lemma ensures that it is possible to simulate a Turing machine (TM)
with a family of RS and fixes the bounds for some simulation parameters. For an
introduction, basic results, and notation on Turing machines we refer the reader
to [8].

Lemma 1. For every integer k ≥ 1 there exists a RS Ck = (S,A) with back-
ground set of cardinality n = |S| = �log2 k� having a cycle of period k reachable
from any initial configuration after at most 2n − k steps, i.e.,, Ck is a binary
counter of n bits overflowing at k ≤ n.

Proof. Let S = {b0, . . . , bn−1}. A subset B of S is interpreted as an n-bit integer
m defined as

∑
bi∈B 2i, i.e., the i-th bit of m is 1 iff bi ∈ B. Let Bm be the subset

of S representing the integer m. We shall design the reactions in A in order to
obtain the following result function

resCk
(Bm) =

{
B(m+1)modk if m < k

B(m+1)mod2n if m ≥ k
(1)

where (xmod y) is the remainder of the integer division of x and y. The RS can
thus be seen as a binary counter overflowing at k; if the state instead represents
a number larger than k − 1, the counter is increased normally until it overflows
at 2n.

The set A contains the following reactions:

({bi} ∪ {b�}, {bj}, {bi}) for 0 ≤ i < n, 0 ≤ j < i, b� /∈ Bk−1 (2)

({bi}, {bj} ∪ {b�}, {bi}) for 0 ≤ i < n, 0 ≤ j < i, b� ∈ Bk−1 (3)

({b0, . . . , bi−1} ∪ {b�}, {bi}, {bi}) for 0 ≤ i < n, b� /∈ Bk−1 (4)

({b0, . . . , bi−1}, {bi} ∪ {b�}, {bi}) for 0 ≤ i < n, b� ∈ Bk−1. (5)

Reactions of types (2) and (3) preserve the bits set to 1 if there is a less significant
bit set to 0, since they are not going to be modified by the increment operation.
Reactions of types (4) and (5) set a currently null bit to 1 when all the less
significant bits are 1. Notice that the empty state (corresponding to a null value
of the counter) is mapped to state {b0} by the reactions of type (5) having no
reactants. By construction, none of these reactions are enabled when the current
state of Ck is Bk−1, because reactions of types (2) and (4) require the missing b�,
and those of types (3) and (5) are inhibited by b� occurring in Bk−1.

Hence, the RS Ck defines the result function of Equation 1, and has a cycle
of period k with a pre-period of at most 2n − k < k steps. ��

It is important to remark that the RS Ck of Lemma 1 can be constructed in
polynomial time from the binary encoding of the integer k.
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Theorem 1. Let M be a Turing machine, x ∈ {0, 1}�, and m ≥ |x| an integer.
Then, there exists a RS M = MM,m = (S,A) and a state X ⊆ S such that M
reaches its final state qF in t steps on input x, using at most m tape cells if and
only if restM(X) = {qF}.
Proof. Let M be a Turing machine (Q,Σ, Γ, δ, qI, qF), where Q is the set of
states, Σ = {0, 1} is the input alphabet, Γ = Σ ∪ {�} is the tape alphabet,
qI, qF ∈ Q are the initial and final states, respectively (we assume qI 
= qF), and
the transition function is δ : (Q−{qF})×Γ → Q×Γ ×{−1, 0,+1}. Without loss
of generality, we assume that M accepts by final state and rejects by diverging
and that the tape is delimited on the left by �, a symbol that is never written
or overwritten by M , and that forces the tape head to move to the right.

The RS M has S = {qi : q ∈ Q−{qF},−1 ≤ i ≤ m}∪{qF}∪{w0, . . . , wm−1}
as its set of entities. A configuration ofM is encoded as a subset of S as follows: qi
is present when the machine is in state q and the head is positioned on the i-th
tape cell (the final state qF has no subscript); the presence (resp., the absence)
of wi indicates that the i-th tape cell of M contains the symbol 1 (resp., the
symbol 0). The state of the Turing machine tape in the RS is preserved by means
of reactions which rewrite the entities wi into themselves when there is no object
qi, (i.e., the head of the Turing machine is not on the i-th tape cell). The entity
qi rewrite itself by looking at the presence or absence of the entity wi (i.e., by
reading the tape) and according to the transition function of the Turing machine.

A transition δ(q, σ) = (r, τ, d) ofM not entering the final state is implemented
by the following reactions

({qi}, {wi, qF}, {ri+d}) for 0 ≤ i < m, if σ = 0, τ = 0, r 
= qF

({qi, wi}, {qF}, {ri+d}) for 0 ≤ i < m, if σ = 1, τ = 0, r 
= qF

({qi}, {wi, qF}, {ri+d, wi}) for 0 ≤ i < m, if σ = 0, τ = 1, r 
= qF

({qi, wi}, {qF}, {ri+d, wi}) for 0 ≤ i < m, if σ = 1, τ = 1, r 
= qF.

If the transition enters the final state, we produce the symbol qF with no
subscript, e.g., δ(q, 0) = (qF, 1,−1) is simulated by ({qi}, {wi, qF}, {qF, wi})
for 0 ≤ i < m. If the tape head exceeds the space constraint of m cells (i.e., we
have an item of the form qm), we do not generate any other state, effectively
halting the simulation.

If the tape head reaches the � symbol (cell −1) in state q, the RS simulates
the subsequent transition δ(q, �) = (r, �,+1) as ({q−1}, {qF}, {r0}).

Finally, in order to preserve the portion of tape not currently scanned by M
we use the reactions ({wi}, Qi, {wi}) for 0 ≤ i < m, where Qi = {qi : q ∈ Q}.

Now let X = {qI,0} ∪ {wi : xi = 1}, where x = x1 · · ·xn is the input string
for M . Each iteration of resM starting from X simulates a computation step
of M , as long as M does not exceed m tape cells; if this happens, the simulation
stops at a fixed point state not containing qF. The statement follows. ��

Notice that the RS M of Theorem 1 can be built in polynomial time w.r.t.
the size of the description of the Turing machine M , the length of the input x,
and the integer m.
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3 Logical Description

This section recalls a logical description of RS and formulae related to their
dynamics (see [7] for its first introduction) that will be used in the rest of the
paper. This description (or a slight adaptation) will usually be sufficient for
proving membership in many complexity classes. For the background notions of
logic and descriptive complexity we refer the reader to the classical book of Neil
Immerman [9].

We describe a RS A = (S,A) where the background set is S ⊆ {0, . . . , n− 1}
and |A| ≤ n by the vocabulary (S,RA, IA,PA), where S is a unary relation symbol
and RA, IA, and PA are binary relation symbols. The symbols have the following
intended meaning: the background set is S = {i : S(i)} and each of reaction
aj = (Rj , Ij , Pj) ∈ A is described by the three sets Rj = {i ∈ S : RA(i, j)},
Ij = {i ∈ S : IA(i, j)}, and Pj = {i ∈ S : PA(i, j)}.

We will also use some additional vocabularies: (S,RA, IA,PA,T), where T
is a unary relation that represents a subset of S, (S,RA, IA,PA,T1,T2) with
two additional unary relations that represent sets, and (S,RA, IA,PA,RB, IB,PB)
that denotes two RS having the same background set. The following formulae
describe basic properties of A. The first is true if a reaction aj is enabled in T :
enA(j, T ) ≡ ∀i(S(i) ⇒ (RA(i, j) ⇒ T (j)) ∧ (IA(i, j) ⇒ ¬T (j))) the latter is:
resA(T1, T2) ≡ ∀i(S(i) ⇒ (T2(i) ⇔ ∃j(enA(j, T1) ∧ PA(i, j))) and it is verified
if resA(T1) = T2 for T1, T2 ⊆ S. Notice that enA and resA are both first-order
(FO) formulae.

Since FO logic is insufficient for our purposes, we will formulate some prob-
lems using stronger logics: existential second order logic SO∃ characterising NP
(Fagin’s theorem); universally quantified second order logic SO∀ giving coNP;
second order logic with a transitive closure operator (SO(TC), characterizing
PSPACE). We denote the transitive closure of a formula ϕ(X,Y ) with two free
second-order variables by ϕ�(X,Y ). We define the bounded second order quan-
tifiers (∀X ⊆ Y )ϕ and (∃X ⊆ Y )ϕ as shorthands for ∀X(∀i(X(i) ⇒ Y (i)) ⇒ ϕ)
and ∃X(∀i(X(i) ⇒ Y (i)) ∧ ϕ), respectively. We say that a formula is SO∃ or
SO∀ if it is logically equivalent to a formula in the required prenex normal form.

4 Global Attractors

The study of fixed points that are global attractors is closely related to the
analysis of local fixed point attractors presented in [7]. However, the difficulty of
the corresponding decision problems appears to be higher since we require that
any point eventually evolves to the fixed point. Using SO(TC), one can define
a formula pathA(T1, T2) ≡ res�A(T1, T2) to denote the existence of a (possibly
empty) path in A from state T1 to T2. A formula expressing that T is a global
fixed point attractor of A is globA(T ) ≡ fixA(T ) ∧ (∀U ⊆ S) pathA(U, T ),
where fixA(T ) ≡ resA(T, T ).

The following theorem tells us that deciding if a given point is a global fixed
point attractor is PSPACE-complete since it is possible to design a RS that
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simulates a polynomial-space bounded Turing machine such that the dynamics
of the system ends in fixed point iff the Turing machine halts.

Theorem 2. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is a global attractor of A.

Proof. The problem is in PSPACE, since globA(T ) is a SO(TC) formula. In
order to show PSPACE-hardness we perform a reduction from the PSPACE-
complete [11] problem

L = {(M,x, 1m) : M is a TM halting on x ∈ {0, 1}� in space m ≥ |x|}.
Given (M,x, 1m), there are |Q| ≥ 2 states of M , m+1 possible head positions

(including cell −1 containing the left delimiter �), and 2m possible strings on
the tape, for a total of k = |Q| × (m+ 1)× 2m potential configurations.

We use a variant of the RS Ck = (SC , AC) of Lemma 1 to count the configu-
rations of M , which is simulated by means of a RS M = (SM, AM), a modified
version of that of Theorem 1. Denote by A = (S,A) the resulting RS.

We want the counter implemented by Ck to stop if and when the Turing ma-
chine simulated by M enters its final state qF. Hence, we add qF as an inhibitor
to all reactions of Ck.

Let � /∈ SCk
∪SM be a new entity. The entity � is used to reset the simulation

of M to the initial configuration if the counter implemented by Ck reaches k− 1
(i.e., if the configuration of M are exhausted and the machine has entered a
loop). To this purpose, � is added as an inhibitor to all reactions of M, and
we define the reaction (Bk−2, (SC −Bk−2) ∪ {qF}, {�}), which is enabled when
the state of A restricted to SCk

is Bk−2, i.e., the representation of k − 2 (see
Lemma 1), and produces � when the counter reaches k − 1. When � appears,
it causes the restoration of the initial state of M by means of the reaction
({�}, {qF}, X), where X = {qI,0} ∪ {wi : xi = 1} is the initial configuration
of M on input x = x1 · · ·xn. One more reaction is needed to preserve the final
state of M : ({qF},∅, {qF}). This is the only reaction enabled when the state
of A contains qF, ensuring that {qF} is a fixed point.

Notice that {qF} is the only fixed point, since in the absence of qF, reactions
incrementing the binary counter are always enabled (ensuring that the next state
is different); on the other hand, if T contains qF together with other entities it
is never a fixed point, since resA(T ) = {qF} 
= T for all T � {qF}.

When the initial state of A is exactly X (hence, the binary counter is null)
and M halts on x in spacem, then, by Theorem 1, the RS reaches the state {qF};
on the other hand, if M does not halt or uses more than m tape cells, the binary
counter eventually reaches k − 1, resetting the configuration of A to X in the
next step.

Any other initial state ofA either reaches {qF} before the counter reaches k−1
(this requires less than 2k steps, depending on the initial value of the counter as
in Lemma 1), or the counter reaches k − 1 and the state of A is set to X , once
again eventually reaching {qF} iff M halts on x in space m.

The mapping (M,x, 1m) �→ (A, {qF}) can be carried out in polynomial time
and the PSPACE-hardness of the problem follows. ��
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By slightly tuning the proof of Theorem 2, it is possible to establish that
determining if there exists a global fixed point attractor in a RS or if two RS
share the same global fixed-point attractor are both PSPACE-complete problems.
Furthermore, it follows directly from the previous proof that the reachability
problem for RS is PSPACE-complete.

Corollary 1. Given a RS A = (S,A) and two states T1, T2 ⊆ S, it is PSPACE-
complete to decide whether T2 is reachable from T1, i.e., pathA(T1, T2) ��
Corollary 2. Given a RS A = (S,A), it is PSPACE-complete to decide whether
A has a global fixed point attractor.

Proof. The problem lies in PSPACE, since (∃T ⊆ S) globA(T ) is a SO(TC)
formula. The reduction (M,x, 1m) �→ (A, {qF}) in the proof of Theorem 2 can
be modified to obtain a reduction (M,x, 1m) �→ A. Notice that if A has a global
fixed point attractor it is {qF}. Hence the PSPACE-hardness follows. ��
Corollary 3. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share a global fixed-point attractor.

Proof. The problem lies in PSPACE since (∃T ⊆ S)(globA(T ) ∧ globB(T ))
is a SO(TC) formula. The reduction (M,x, 1m) �→ (A, {qF}) in the proof of
Theorem 2 can be adapted to a reduction (M,x, 1m) �→ (A,B) where B is the
RS having (∅,∅, {qF}) as its only reaction, i.e., B has {qF} as global attractor.
The two RS share {qF} as a global attractor iff {qF} is a global attractor also
for A, that is to say, iff M accepts x in space m; Hence, the PSPACE-hardness
follows. ��

5 Cycles

We now turn our attention to the only other possible behaviour of RS, namely
having cycles of length greater than 1. Notice that, while we only need to analyse
the application of the result function when checking properties related to fixed
points, dealing with cycles essentially involves reachability problems. This shifts
the complexity of most of the decision problems to PSPACE.

Theorem 3. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is part of a cycle, i.e., whether restA(T ) = T for some t ∈ N.

Proof. The problem lies in PSPACE, since it can be expressed by the follow-
ing SO(TC) formula: cycleA(T ) ≡ ∃U(resA(T, U) ∧ pathA(U, T )). The re-
duction (M,x, 1m) �→ (A, {qF}) of Theorem 2 can be adapted to a reduc-
tion (M,x, 1m) �→ (A, X), where X is the encoding of the initial state of the
Turing machine. If M accepts x using space m, then the dynamics of X eventu-
ally reaches the fixed point {qF}, and X is not in a cycle; conversely, the state
is eventually rewritten into X , i.e., X belongs to a cycle. This proves that the
problem is PSPACE-hard. Since the complement of a PSPACE-complete problem
is also PSPACE-complete, the statement follows. ��
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Since every RS is finite, a cycle always exists. Therefore, in this case, it turn
out to be much more interesting to study comparison problems between RS.
That is, if they share one (resp., every) cycle.

Theorem 4. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share a common cycle.

Proof. The problem lies in PSPACE since it can be expressed as a SO(TC) for-
mula. Let resA,B(T, U) ≡ resA(T, U) ∧ resB(T, U) be the formula denoting
the fact that T has the same image U under both resA and resB. From it we
define pathA,B(T, U) ≡ res�A,B(T, U) to denote that the same path leads from
T to U in A and B. We then express the fact that T belongs to a shared cycle
by means of the formula cycleA,B(T ) ≡ ∃U(resA,B(T, U) ∧ pathA,B(U, T )).
Finally, (∃T ⊆ S) cycleA,B(T ) is a SO(TC) formula denoting the existence of a
shared cycle between A and B.

Consider the reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2, this can be
transformed into a reduction (M,x, 1m) �→ (A,B), where B is equal to A ex-
cept that the reaction ({qF},∅, {qF}) is replaced by ({qF},∅, X), in which X
represents the initial configuration of M on input x. The two RS behave as
follows:

– If M halts on x within space m, then A has only the fixed point {qF} as a
cycle, while B has a cycle going from X to {qF} and immediately back to X .

– Otherwise, A has two cycles: the fixed point {qF} and the cycle starting
from X and going back to X (when the binary counter overflows). The
latter also exists in B, since the behaviours of the two systems only differ
w.r.t. states containing qF.

Hence, A and B share a cycle if and only if M does not halt on input x within
space m. Hence, the PSPACE-hardness of the problem follows. ��
Theorem 5. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share all their cycles.

Proof. The problem is in PSPACE, since it can be expressed by the following
SO(TC) formula: (∀T ⊆ S)(cycleA(T ) ∨ cycleB(T ) ⇒ cycleA,B(T )).

The reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2 can be transformed into
the reduction (M,x, 1m) �→ (A,B), where B is the RS having (∅,∅, {qF}) as
its only reaction. The fixed point {qF} is the only cycle of B, and it is shared
by both systems. Remark that {qF} is the only cycle of A only if M halts on x
within space m. This reduction establishes the PSPACE-hardness. ��
Theorem 6. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is part of a local attractor cycle.

Proof. Since attcA(T ) ≡ cycleA(T )∧(∃U ⊆ S)(pathA(U, T )∧¬pathA(T, U))
is a SO(TC) formula, the problem lies in PSPACE.

We can transform the reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2 into
the reduction (M,x, 1m) �→ (A, X), where X is the encoding of the initial state



Cycles and Global Attractors of Reaction Systems 123

of the Turing machine. Notice that if X belongs to a cycle then this cycle is an
attractor. Irrespective of the behaviour of M , state X has at least two preimages,
namely {�} and Bk−1 ∪ {�} (notice that Bk−1 
= ∅ since k ≥ 2). Finally, if
(and only if) M does not halt on x in space m, starting from the state X we
eventually reach X again when the binary counter overflows. This shows that
the problem is PSPACE-hard. ��
Theorem 7. Given a RS A = (S,A), deciding if resA is a bijection is coNP-
complete.

Proof. It is possible to express bijectivity with the following SO∀ formula:

bijA ≡ (∀T ⊆ S)(∀U ⊆ S)(∀V ⊆ S)(resA(T, V ) ∧ resA(U, V ) ⇒ eq(T, U))

where eq(T, U) ≡ ∀i(S(i) ⇒ (T (i) ⇔ U(i))). Hence the problem is in coNP.
We reduce TAUTOLOGY [6] (also known as VALIDITY [11]) to this problem.

Let ϕ be a Boolean formula in DNF (i.e., ϕ = ϕ1 ∨ . . .∨ϕm, where each ϕj , for
1 ≤ j ≤ m, is a conjunctive clause) over the variables V = {x1, . . . , xn}.

Let C2n = (V,A′) be the RS of Lemma 1, implementing a binary counter
ranging over the set {0, . . . , 2n − 1}, with the entities b0, . . . , bn−1 renamed
as x1, . . . , xn. Let A be a RS with S = V ∪ {♥} and having all the reactions
of A′ plus the following ones:

(pos(ϕj) ∪ {♥}, neg(ϕj), {♥}) for 1 ≤ j ≤ m (6)

where pos(ϕj) and neg(ϕj) denote the variables appearing, respectively, as posi-
tive and negative literals in ϕj . A set Xi ⊆ V represents both the integer i, as in
the proof of Lemma 1, and a truth assignment of ϕ, where the variables having
a true value are those in Xi. If the state of A has the form Xi ∪ {♥}, then ϕ
is evaluated under Xi, preserving ♥ if satisfied, by reaction (6); in any case,
the subset of the state representing i is incremented modulo 2n by the reactions
in A′. Hence, the result function of A is

resA(T ) =

{
{♥} ∪X(i+1)mod 2n if T = {♥} ∪Xi and Xi � ϕ

X(i+1)mod2n if T = Xi or if T = {♥} ∪Xi and Xi � ϕ.

If ϕ is not a tautology, then there exists an assignment Xi such that Xi � ϕ,
thus resA(Xi) is equal to resA(Xi ∪ {♥}), i.e., resA is not bijective. On the
other hand, if ϕ is a tautology, then ♥ is always preserved when present, and
the dynamics of A consists of two disjoint cycles, namely (X0, . . . , X2n−1) and
(X0∪{♥}, . . . , X2n−1∪{♥}), i.e., resA is a bijection. Since the mapping ϕ �→ A
is computable in polynomial time, the problem is coNP-hard. ��
Corollary 4. Given a RS A = (S,A), it is NP-complete to decide whether A
has a local attractor cycle.

Proof. A finite system has an attractor cycle if and only if the next-state function
is not a bijection. Hence, this is the complement of the coNP-complete problem
of Theorem 7. ��
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Theorem 8. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether A and B have a common local attractor
cycle.

Proof. The problem is in PSPACE since (∃T ⊆ S) attcA,B(T ) is a SO(TC)
formula, where

attcA,B(T ) ≡ cycleA,B(T ) ∧ (∃U ⊆ S)(pathA(U, T ) ∧ ¬pathA(T, U)) ∧
(∃V ⊆ S)(pathB(V, T ) ∧ ¬pathB(T, V )).

Consider the reduction (M,x, 1m) �→ (A,B) of Theorem 4, and notice thatX , the
state encoding the initial configuration of M , has at least two distinct preimages
(see the proof of Theorem 6). Hence, when A and B share a common cycle, it is
always an attractor cycle. The PSPACE-hardness follows. ��
Theorem 9. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether A and B share all their local attractor cycles.

Proof. The problem is in PSPACE since it can be expressed by the following
SO(TC) formula: (∀T ⊆ S)(attcA(T ) ∨ attcB(T ) ⇒ attcA,B(T )).

Consider the reduction (M,x, 1m) �→ (A,B) of the proof of Theorem 5; both
RS share the fixed point {qF}, which is an attractor since every state contain-
ing qF is mapped to {qF}. When M does not halt on x in space m, A has another
cycle containing X , which is an attractor as shown in the proof of Theorem 6.
This is enough to establish the PSPACE-hardness. ��

Since a global attractor state is a special case of global attractor cycle, and
the corresponding decision problems remain in PSPACE, we immediately have
the following statement:

Corollary 5. Given two RS A and B over the same background set S and a
state T ⊆ S, it is PSPACE-complete to decide if (i) T is a part of a global
attractor cycle in A, (ii) A has a global attractor cycle, (iii) A and B have a
common global attractor cycle. ��

6 Conclusions

In this paper we have studied the complexity of checking the presence of many
different dynamical behaviours of a RS, extending the work started in [7]. When
global fixed point attractors are considered, all problems are PSPACE-complete,
differently from the case of local fixed points attractors, where all the problems
lied in the polynomial hierarchy. We proved that PSPACE-completeness remains
the most common complexity class for the decision problems regarding cycles
that we analysed. While some PSPACE-completeness results are known for more
expressive or different computational models [1], it is interesting that, even if
they are quite simple, RS exhibit difficult decision problems.
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The paper, while closing some open question, still discloses many interesting
research directions. In particular, we have only studied deterministic RS, i.e., the
next-state is uniquely determined. However many significant modelling questions
involve non-deterministic RS where at every time step an external device inserts
some entities in the state of the RS (these kind of RS are called RS with context
in the literature). It is interesting to understand how the complexity of decision
problems about dynamics behaves in this case. Does everything shift to PSPACE?
Is PSPACE the upper bound?
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