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Preface

The 16th International Workshop on Descriptional Complexity of Formal Sys-
tems (DCFS 2014) was organized by the research center on Fundamentals of
Computing and Discrete Mathematics (FUNDIM) at the Department of Math-
ematics and Statistics of the University of Turku (Turku, Finland). The subject
of the workshop is the size of mathematical models of computation, which serves
as a theoretical representation of such things as the engineering complexity of
computer software and hardware. It also models similar complexity phenom-
ena in other areas of computer science, including unconventional computing and
bioinformatics.

The DCFS workshop series is a result of merging together two workshop se-
ries: Descriptional Complexity of Automata, Grammars and Related Structures
(DCAGRS) and Formal Descriptions and Software Reliability (FDSR). These
precursor workshops were DCAGRS 1999 in Magdeburg, Germany, DCAGRS
2000 in London, Ontario, Canada, and DCAGRS 2001 in Vienna, Austria, as well
as FSDR 1998 in Paderborn, Germany, FSDR 1999 in Boca Raton, Florida, USA,
and FSDR 2000 in San Jose, California, USA. These workshops were merged in
DCFS 2002 in London, Ontario, Canada, which is regarded as the 4th DCFS.
Since then, DCFS workshops were held in Budapest, Hungary (2003), in London,
Ontario, Canada (2004), in Como, Italy (2005), in Las Cruces, New Mexico, USA
(2006), in Nový Smokovec, Slovakia (2007), in Charlottetown, Canada (2008),
in Magdeburg, Germany (2009), in Saskatoon, Canada (2010), in Limburg, Ger-
many (2011), in Braga, Portugal (2012), and again in London, Ontario, Canada
(2013).

In 2014, the DCFS workshop was for the first time held in Finland, in the
city of Turku. The new location attracted a record number of submissions, more
than any DCFS in the past. This volume contains extended abstracts of four
invited talks and 27 contributed talks presented at the workshop. The latter
were selected from the submissions by the Program Committee on the basis of
at least three reviews per submission.

This workshop is a result of combined efforts of many people, to whom
we wish to express our gratitude. In particular, we are indebted to our in-
vited speakers—Andris Ambainis, Oscar Ibarra, Manfred Kufleitner, and Nikolay
Vereshchagin—and to all the speakers and participants of the workshop. We are
grateful to all our Program Committee members and to all reviewers for their
work on selecting the workshop program, which was carried out using the Easy-
Chair conference management system. Thanks are due to the members of our
Organizing Committee, Mikhail Barash and Markus Whiteland, for taking care
of all local matters, and to the staff of the University of Turku for administrative
assistance. We gratefully acknowledge the financial support from our sponsors:
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– The Federation of Finnish Learned Societies
– The Finnish Academy of Science and Letters (mathematics foundation)
– The Turku University Foundation
– The City of Turku

Finally, we wish to thank the editorial team at Springer, and personally
Alfred Hofmann, Anna Kramer and Ingrid Beyer, for efficient production of this
volume.

June 2014 Alexander Okhotin
Helmut Jürgensen
Juhani Karhumäki
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Daniel Goč and Kai Salomaa

Boundary Sets of Regular and Context-Free Languages . . . . . . . . . . . . . . . 162
Markus Holzer and Sebastian Jakobi

Biclique Coverings, Rectifier Networks and the Cost of ε-Removal . . . . . . 174
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Recent Developments in Quantum Algorithms

and Complexity

Andris Ambainis�

Faculty of Computing, University of Latvia, Raina bulv. 19, Riga, LV-1586, Latvia
andris.ambainis@lu.lv

Abstract. We survey several recent developments in quantum algo-
rithms and complexity:

– Reichardt’s characterization of quantum query algorithms via span
programs [15];

– New bounds on the number of queries that are necessary for simulat-
ing a quantum algorithm that makes a very small number of queries
[2];

– Exact quantum algorithms with superlinear advantage over the best
classical algorithm [4].

1 Introduction

Quantum computing (and, more broadly, quantum information science) is a
new area at the boundary of computer science and physics. Quantum computers
compute by encoding information into a quantum state and performing quantum
transformations on it. For certain problems, quantum computers can be expo-
nentially faster than conventional (classical) computers, due to a larger space of
states and transformations that they can use.

The field of quantum computing was shaped by two major quantum algo-
rithms discovered in mid-1990s: Shor’s algorithm and Grover’s algorithm.

Shor’s algorithm [19] solves two very hard number theoretic problems: factoring
and discrete logarithm. Both of those problems are thought to require exponen-
tial time classically. In contrast, Shor’s algorithm solves them in polynomial time
quantumly. This indicates that quantum computers may be exponentially faster
than classical. (Another indication of that is the oracle result of Simon [18] who
constructed a problem that can be solved in polynomial time given an oracle A
but provably requires exponential time classically, given the same oracle A.)

Grover’s quantum algorithm solves a generic exhaustive search problem with
N possible solutions in time O(

√
N). This provides a quadratic quantum speedup

for a range of search problems, from ones that are solvable in polynomial time
classically to NP-complete ones.

� Supported by FP7 FET projects QALGO and RAQUEL and ERC Advanced Grant
MQC.

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 1–4, 2014.
c© Springer International Publishing Switzerland 2014



2 A. Ambainis

2 Recent Results

A number of developments (both new quantum algorithms and complexity-
theoretic results about the power of quantum algorithms) have followed after
those two discoveries. In this talk, I will survey 3 recent developments in quan-
tum complexity theory that have happened over the last 6 years:

1. Characterization of Quantum Query Algorithms
Most of quantum algorithms (including Grover’s algorithm and quantum
part of Shor’s algorithm) can be analyzed in a query model where the input
data x1, . . . , xN are given by a black box that answers queries about the
values of input bits xi and the complexity of the algorithm is measured
by the number of queries to the black box that it makes. This model is a
quantum generalization of the classical decision tree model of computation
and has been studied in detail [10].

Let Q2(f) be the quantum query complexity of f(x1, . . . , xN ) (the small-
est number of queries for a quantum algorithm that computes f). Recently,
Reichardt [15,16] discovered that Q2(f) can be characterized (up to a con-
stant factor) by a semidefinite program (SDP). This is a very interesting
result because no similar characterization is known for its classical counter-
part, the decision tree complexity D(f). As a result, there are many f for
which we know Q2(f) up to a constant factor but determining D(f) is still
open. (For example, this is true for the iterated majority function studied in
[14].)

Reichardt’s work was a culmination of two lines of work: quantum algo-
rithms for formula evaluation and span programs [11,7,17] and “quantum
adversary” lower bound method [3,13]. It turns out that Reichardt’s is equal
(again, up to a constant factor) to both the complexity of the best span
program based quantum algorithm and the best lower bound provable by
the most general form of “quantum adversary” method. Thus, we have both
a universal algorithmic method for quantum query algorithms (span pro-
grams) and a universal lower bound method (“quantum adversary”). Again,
no similar characterizations are known classically.

Currently, one of challenges in quantum algorithm is using Reichardt’s
characterization to develop new quantum algorithms. Here, most interesting
results have been obtained using learning graphs, an easy to use framework
for quantum algorithms developed by Belovs [8,9] which is a special case of
Reichardt’s SDP.

2. Power of Quantum Algorithms with a Very Small Number of
Queries
Some quantum query algorithms achieve very big advantages over the clas-
sical algorithms. For example, Shor’s algorithm for factoring is based on
a query problem called period-finding in which we have to find a period
of a sequence x1, . . . , xN , given a promise that the period is of the order
O(
√
N). Many instances of period finding can be solved with O(1) quan-

tum queries. At the same time, period-finding can be shown to require
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Ω(N1/4) queries classically. This leads to a question: if a computational
problem f(x1, . . . , xN ) can be solved with a constant number of queries k
quantumly, how many queries can it require classically?

We have shown [2] that the “Forrelation” problem of Aaronson [1] (in
which x1, . . . , xN describe two vectors and one has to check whether the
Fourier transform of the second vector is similar to the first vector) is solvable
with 1 query quantumly but requires Ω(

√
N) queries classically. This is tight:

by a random sampling argument, we can also show that O(
√
N) classical

queries are enough to simulate any 1-query quantum algorithm on input data
of size N . More generally, O(N1−1/2k) classical queries suffice to simulate
any k-query quantum algorithm on input data of size N .

3. Exact Quantum Algorithms
A quantum algorithm is exact if, on any input data, it outputs the correct
answer with certainty (probability 1). While many quantum algorithms are
known for the bounded-error model (where the algorithm is allowed to out-
put an incorrect answer with a small probability), only a small number of
exact quantum algorithms are known. Until recently, in the query model,
for computing total functions f(x1, . . . , xN ), the biggest advantage for exact
quantum algorithms was just a factor of 2: N queries classically vs. N/2 for
an exact quantum algorithm.

In [4], we presented the first example of a Boolean function f(x1, ..., xN )
for which exact quantum algorithms have superlinear advantage over deter-
ministic algorithms. Any deterministic algorithm that computes our function
must use N queries but an exact quantum algorithm can compute it with
O(N0.8675...) queries. We have also discovered a number of other exact algo-
rithms that are better than classical algorithms [5,6]. This shows that the
advantages for exact algorithms are more common than previously thought.
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Automata with Reversal-Bounded Counters:

A Survey

Oscar H. Ibarra

Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu

Abstract. We survey the properties of automata augmented with
reversal-bounded counters. In particular, we discuss the closure/non-
closure properties of the languages accepted by these machines as well as
the decidability/undecidability of decision problems concerning these de-
vices. We also give applications to several problems in automata theory
and formal languages.

Keywords: finite automaton, pushdown automaton, visibly pushdown
automaton, transducer, context-free grammar, reversal-bounded coun-
ters, semilinear set, finitely-ambiguous, finite-valued, decidable, unde-
cidable.

1 Introduction

A counter is an integer variable that can be incremented by 1, decremented by
1, and tested for zero. It starts at zero and can only store nonnegative integer
values. Thus, one can think of a counter as a pushdown stack with a unary
alphabet, in addition to the bottom of the stack symbol which is never altered.

An automaton (DFA, NFA, DPDA, NPDA, etc.) can be augmented with
multiple counters, where the “move” of the machine also now depends on the
status (zero or non-zero) of the counters, and the move can update the counters.
See [27] for formal definitions.

It is well known that a DFA augmented with two counters is equivalent to
a Turing machine (TM) [39]. However, when we restrict the operation of the
counters so that during the computation, the number of times each counter
alternates between nondecreasing mode and nonincreasing mode is at most some
fixed number r (such a counter is called reversal-bounded), the computational
power of a DFA (and even an NPDA) augmented with reversal-bounded counters
is significantly weaker than a TM. When r = 1, we refer to the counters as 1-
reversal (thus, once a counter decrements, it can no longer incerement). Note that
a counter that makes r reversals can be simulated by � r+1

2 � 1-reversal counters.
A k-NCM (resp., k-DCM, k-NPCM, k-DPCM) is an NFA (resp., DFA, NPDA,

DPDA) augmented with k reversal-bounded counters. For machines with two-
way input head operating on an input with left and right end markers, we use
the notation k-2NCM, k-2NPCM, etc. When the number of counters is not

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 5–22, 2014.
c© Springer International Publishing Switzerland 2014



6 O.H. Ibarra

specified, we just write NCM, NPCM, etc. So, e.g., a 2NPCM is a two-way
NPDA augmented with some number of reversal-bounded counters.

Automata with reversal-bounded counters were first studied in [4,27], where
closure and decision properties were investigated. For example, in [27], it was
shown that the class of languages accepted by DCMs is effectively closed under
union, intersection, and complementation (closure under the first two operations
also hold for NCMs), and emptiness, finiteness, disjointness, containment, and
equivalence problems are decidable.

NCMs and NPCMs and their two-way versions have been extensively stud-
ied. Many generalizations have been introduced, see, e.g., [15,5,7,8]. They
have found applications in areas like timed-automata [12,10,11,6], transducers
[21,23,2,3,16,38,29], membrane computing [33], DNA computing [30], verification
[12,37,31,11,13,46,5,24], and Diophantine equations [22,14,32,45].

Here, we give a survey of important results concerning machines augmented
with reversal-bounded counters and summarize some recent developments in-
volving the use of these machines for solving problems in automata theory and
formal languages.

2 Decidability of the Emptiness and Infiniteness
Problems

Let N be the set of nonnegative integers and m be a positive integer. A subset
Q of Nm is a linear set if there exist vectors v0,v1, . . . ,vn ∈ Nm such that
Q = {v0 + i1v1 + · · · invn | i1, . . . , in ∈ N}. The vectors v0 (referred to as the
constant) and v1, . . . ,vn (referred to as periods) are called the generators of the
linear set Q. A finite union of linear sets is called a semilinear set. Every finite
subset of Nm (including the empty set ∅) is semilinear – it is just a finite union
of linear sets with no periods.

Let Σ = {a1, . . . , am}. For a word w over Σ and a letter a ∈ Σ, we denote
by |w|a the number of occurrences of a’s in w. The Parikh map of w is the
m-dimensional vector φ(w) = (|w|a1 , . . . , |w|am). The Parikh map of a language
L ⊆ Σ∗ is defined as φ(L) = {φ(w) | w ∈ L}. (The reader is assumed to be
familiar with basic notions in formal languages and automata theory; see, e.g.,
[26].)

The following fundamental result was first shown in 1978 [27]:

Theorem 1. The emptiness and infiniteness problems for NPCMs are decid-
able.

Proof. We briefly sketch the proof given in [27]. LetM be a k-NPCM with input
alphabet Σ = {a1, . . . , am}. We may assume that each counter is 1-reversal and
acceptance is when the machine enters an accepting state when all the counters
are zero. We construct an NPDA (without counters) M ′ over alphabet Σ ∪Δ,
where Δ = {(i,+1), (i,−1) | 1 ≤ i ≤ k}. The symbol (i,+1) (resp. (i,−1))
encodes the possible action of counter i in one step of the computation, i.e.,
encountering (i,+1) (resp., (i,−1)) on the input represents incrementing (resp.,
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decrementing) counter i. If w is an input to M , then an input to M ′ would be
a string w′ which would consist of w shuffled with some string z in Δ∗, where
for each i, all the (i,+1)’s appear before all the (i,−1)’s. M ′ simulates M and
whenever counter i increments (resp., decrements), M ′ checks that its input
head is on symbol (i,+1) (resp., (i,−1)) before moving right. M ′ accepts w′

if M accepts w. Since M is an NPDA, the Parikh map of L(M ′) is an effec-
tively computable semilinear set Q1 ⊆ Nm+2k, where the first m coordinates
correspond to the symbols in Σ and the last 2k coordinates correspond to the
symbols in Δ (in the order: all the (i,+1)’s followed by all the (i,−1)’s). Let
Q2 = {(i1, . . . , im, j1, . . . , jk, j1, . . . , jk) | ir ≥ 0 for 1 ≤ r ≤ m, js ≥ 0 for
1 ≤ s ≤ k}. Clearly, Q2 is semilinear. Hence, Q3 = Q1 ∩ Q2 is semilinear, since
semilinear sets are closed under intersection. Semilinear sets are also closed un-
der projection; hence, we can obtain the semilinear set Q ⊆ Nm corresponding
to the Parikh map of L(M) by deleting the last 2k coordinates in Q3. The result
follows, since the emptiness and infiniteness problems for semilinear sets are de-
cidable [18]. ��

When the number k of counters and the bound r on the counter reversals are
fixed, an upper bound of NPTIME for the nonemptiness decision procedure was
shown by Filiot et al at MFCS 2010 [16]. Their proof consisted of a careful
analysis of the procedure in [27] (which is briefly described in the proof above)
for showing that the Parikh map of the language accepted by an NPCMM whose
counters are 1-reversal counters is semilinear and then appealing to two results in
[41]: constructing an existential Presburger formula for representing the Parikh
map of the language accepted by the NPCM M can be accomplished in O(|M |)
time, and satisfiability of existential Presburger formula is in NPTIME.

In the above improvement, k and r are assumed to be fixed; otherwise, the
procedure would be in NEXP. However, recently, the complexity of the empti-
ness problem has been improved. In their CAV 2012 paper, Hague et al [24]
showed that the emptiness problem for NPCMs (thus the number of counters
and the bound r on reversals are not fixed, but r is assumed to be written in
unary) is NP-complete, even when the counters can be compared against and in-
cremented/decremented by constants that are given in binary. The construction
in [24] used a direct polynomial-time reduction to satisfaction over existential
Presburger formulas.

For the case of NCMs, the following was shown in [20]:

Theorem 2. For fixed k and r, the emptiness problem for k-NCMs whose coun-
ters are r-reversal is in NLOGSPACE (hence, also in PTIME).

For the machine models studied in the rest of the paper, we will just show
the decidability of emptiness and infiniteness, and not discuss their complexity.
However, one should be able to obtain lower and upper bounds on the complexity
of the emptiness problems using the results and techniques in [20,24].

A 2NCM is finite-crossing if there is an integer c such that the input head
crosses the boundary between any two adjacent input symbols at most c times.
The following was shown in [20]:
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Theorem 3. Every finite-crossing 2NCM can effectively be converted to an equiv-
alent NCM. Hence, the emptiness and infiniteness problems for finite-crossing
2NCMs are also decidable.

Finite-crossing 2NCMs are quite powerful. For example, they can accept lan-
guages that are not context-free. However, from Theorem 3, every NCM can be
converted to an NCM (i.e., one-way). By using the result of Baker and Book [4]
that every NCM can converted to one that runs in linear time, it is easy to show
that the context-free language L = {x#xr | x ∈ (a + b)+} cannot be accepted
by an NCM and, hence, cannot be accepted by a finite-crossing 2NCM.

Theorems 1 and 3 can be generalized. Define a 3-phase finite-crossing 2NPCM
M which operates in three phases: In the first phase, M operates as a finite-
crossing 2NCM without using the stack. In the second phase, with the configu-
ration (state, input head position, and counter values) the first phase left off, M
operates as an NPCM where the head can only move right on the input. Finally,
in the third phase with the configuration (state, head position, counter values
but not the stack) the second phase left off,M operates again as a finite-crossing
2NCM without using the stack. It is possible that the machine has only one or
two phases. So, e.g., M can accept with only Phase 1, or with only Phases 1 and
2. A 3-phase finite-crossing 2DPCM is one in which all phases are deterministic.
The following was shown in [38]:

Theorem 4. The emptiness and infiniteness problems for 3-phase finite-crossing
2NPCMs are decidable.

Theorem 4 seems to be the strongest result that we can prove in the sense
that we cannot generalize the NPCM in the second phase to be a finite-crossing
2NPCM. In fact, it can be shown that a 2DPDA which makes only 3 reversals
on the stack and 2-turns on the input has an undecidable emptiness problem.

An automaton M is over a letter-bounded language (resp., word-bounded
language) if L(M) ⊆ a∗1 · · · a∗k for some k ≥ 1 and distinct letters a1, . . . , ak
(resp., L(M) ⊆ w∗

1 · · ·w∗
k for some k ≥ 1 and not-necessarily distinct words

w1, . . . , wk).
The following result appeared in [38]:

Theorem 5. The emptiness and infiniteness problems for finite-crossing
2DPCMs over word-bounded languages are decidable.

When we remove the “finite-crossing” condition in Theorem 3, we get the
following:

Theorem 6. 1. The emptiness problem for 2DFAs (even over letter-bounded
languages) with two reversal-bounded counters is undecidable. [27].

2. The emptiness problem for 2DFAs with one reversal-bounded counter is de-
cidable [34].

3. The emptiness problem for 2NFAs with one reversal-bounded counter over
word-bounded languages is decidable [14].
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2DFAs and 2NFAs augmented with one reversal-bounded counter are rather
powerful. For example the non-semilinear language L = {amibi | i,m ≥ 1} can
be accepted by a 2DFA with one counter that only reverses once. Applications of
the decidability of the emptiness problem for these machine (over word-bounded
languages for the nondeterministic case) to decision problems in verification and
Diophantine equations, etc. can be found in [22,32,45].
Open: Is emptiness decidable for 2NFAs with one reversal-bounded counters
(i.e., the inputs are unrestricted)?

Theorem 3 does not hold for 2DPDAs, even when they have no reversal-
bounded counters and the input head only makes 1 turn on the input: a left-
to-right sweep of the input followed by a right-to-left sweep. In fact, we can
even restrict the stack to make only one reversal. Consider, e.g., the language
L = {a1#a2#a3# · · ·#an−1#an# | n ≥ 1}. As shown in [36], one can construct
a 2DPDA M which makes only 1-turn on the input and one reversal on the
stack to accept L. This language can be accepted also by a 2DCA (two-way
deterministic one-counter automaton) which makes only 1-turn on the input.

3 VPDAs with Reversal-Bounded Counters

The model of a visibly pushdown automaton (VPDA) was first introduced and
studied in [1]. It is an NPDA where the input symbol determines the (push/stack)
operation of the stack. The input alphabet Σ is partitioned into three disjoint
alphabets: Σc, Σr, Σint. The machine pushes a specified symbol on the stack if it
reads a call symbol in Σc on the input; it pops a specified symbol (if the specified
symbol is at top of the stack) if it reads a return symbol in Σr on the input; it
does not use the (top symbol of) the stack and can only change state if it reads
an internal symbol in Σint on the input. The machine has no ε-moves, i.e, it reads
an input at every step. An input x ∈ Σ∗ is accepted if the machine, starting
from one of a designated set of initial states with a distinguished symbol ⊥ at
bottom of the stack (which is never altered), eventually enters an accepting sate
after processing all symbols in x. For details, see [1]. In this paper, we assume
without loss of generality, that the VPDA has only one initial state.

Recall that a 1-ambiguous NPDA is one where every input is accepted in at
most one accepting computation. A 1-ambiguous NPDA is more powerful than
a visibly pushdown automaton (VPDA) since the former can accept languages,
like L1 = {x#xR | x ∈ (a + b)+} and L2 = {akbak | k ≥ 1}, that cannot be
accepted by the latter. There are languages accepted by 1-ambiguous NPDAs
that are not deterministic context-free languages (DCFLs), whereas languages
accepted by VPDAs are DCFLs [1]. Note also that a 1-ambiguous NPDA can
have ε-moves.

Now consider a VPDA augmented with k reversal-bounded counters. We allow
the machine to have ε-moves, but in such moves, the stack is not used, only the
state and counters are used and updated. Acceptance of an input string is when
machine eventually falls off the right end of the input in an accepting state.
Thus, a VPDA M with k reversal-bounded counters operates like a VPDA but
can now use reversal-bounded counters as auxiliary memory.
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Consider the language L1 = {w | w = xy for some x ∈ (a+b)+, y ∈ (0+1)+, x
when a, b are mapped to 0, 1, respectively, is the reverse of y}. Clearly, L1 can
be accepted by a VPDA M1. However, the language L2 = {w | w ∈ L1, the
number of a’s + number of 0’s in w = the number of b’s + number of 1’s in w}
cannot be accepted by a VPDA. But L2 can be accepted by a VPDA M2 with
two 1-reversal counters C1 and C2 as follows: On a given input w, M2 simulates
M1, and stores the number of a’s and 0’s (resp., the number of b’s and 1’s) it sees
on the input in counters C1 and C2, respectively. Then when M1 accepts, M2

(on ε-moves) decreases the counters simultaneously and accepts if the counters
become zero at the same time.

Denote a VPDA with k reversal-bounded counters by k-VPCM, and by VPCM
if the number of reversal-bounded counters is not specified. Clearly, VPCMs are
a special case of NPCMs. Hence, from Theorem 1, we have:

Theorem 7. The emptiness and infiniteness problems for VPCMs are decid-
able.

Theorem 8. The class of languages accepted by VPCMs is closed under union,
intersection, renaming, concatenation, Kleene-*.

Proof. The constructions are similar to the those for VPDAs without reversal-
bounded counters in [1]. For example, for intersection, suppose M1 and M2 are
two VPCMs with k1 and k2 reversal-bounded counters. We construct a VPCM
with k1 + k2 reversal-bounded counters to simulate M1 and M2 in parallel.
However, since the machines can have ε-transitions (which do not involve the
stack), whenever one machine, say M1, wants to make an ε-move but the other
machine M2 wants to make a non-ε-move, the simulation of M2 is suspended
temporarily until M1 decides to make a non-ε-move, at which time the parallel
simulation of both machine can be resumed. ��

With respect to complementation, unlike for VPDAs, we have:

Theorem 9. The class of languages accepted by VPCMs is not closed under
complementation.

Proof. Consider the language L = {x#y | x, y ∈ (a + b)+, x �= y}. Clearly, L
can be accepted by a VPCM (where a, b,# are internal inputs) that does not
use the stack, but uses a reversal-bounded counter to verify if an input string
is in L. Suppose the complement, Lc, of L, can be accepted by a VPCM. Let
L1 = (a+b)+#(a+b)+. Since L1 is regular it can be accepted by a VPDA. Then,
by Theorem 8, L2 = Lc ∩ L1 = {x#xR | x ∈ (a + b)+} can be accepted by a
VPCM M2. Since the symbols a, b,# are internal, the stack is not used by M2 in
its computation, and it only uses reversal-bounded counters. Thus we can remove
the stack from M2, and it becomes an NCM. From [4], M2 can be converted to
an equivalent NCM M3 that runs in linear time. We get a contradiction, since
it is easy to show (by a simple counting argument) that L2 cannot be accepted
by M3. ��
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Every VPDA can be converted to an equivalent deterministic VPDA [1]. In
contrast, from Theorem 9, we have:

Corollary 1. There are VPCMs that cannot be converted to equivalent deter-
ministic VPCMs.

We can define a deterministic VPCM (DVPCM) in the obvious way: The
machine has at most one choice of move at each step. In particular, if there is
a transition on ε, there is no transition on any a ∈ Σ. We also assume that the
machine always halts. Thus a DVPCM is a deterministic VPDA with reversal-
bounded counters. (Note that a VPDA has no ε-transitions.) Since a VPDA
can always be made deterministic, it follows that DVPCMs are strictly more
powerful than deterministic VPDAs.

The first part of the next result is obvious. The second part follows from the
first using Theorem 7.

Corollary 2

1. The class of languages accepted by DVPCMs is closed under Boolean opera-
tions.

2. The containment and equivalence problems for DVPCMs are decidable.

The second part of the above corollary does not hold for VPCMs, since the
universe problem (does a given transducer accept all strings?) is already unde-
cidable even for an NFA augmented with just one 1-reversal counter [4].

4 Applications

In this section we discuss some applications of the decidability of the emptiness
and infinite problems for machines augmented with reversal-bounded counters.

4.1 Multiple Morphism Equivalence on Context-Free Languages

A morphism g is a mapping fromΣ∗ → Δ∗ such that g(ε) = ε, and g(a1 · · · an) =
g(a1) · · · g(an) for n ≥ 1, a1, . . . , an ∈ Σ. The multiple morphism problem on
CFLs is defined as follows: Given k pairs of morphisms (g1, h1), . . . , (gk, hk) and
a CFL L ⊆ Σ∗, is it the case that for every w ∈ L, there exists an i such that
gi(w) = hi(w)?

The following theorem was shown in [25]. We include a proof using the decid-
ability of the emptiness problem for finite-crossing 3-phase 2NPCM.

Theorem 10. The multiple morphism equivalence problem on CFLs is decid-
able.

Proof. Let L be a language accepted by an NPDAM and (g1, h1), . . . , (gk, hk) be
k pairs of morphisms. We construct a finite-crossing 3-phase 2NPCM M ′ with
2k counters, C1, . . . , Ck, D1, . . . Dk. M

′, when given input w = a1 · · ·an, first
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makes 2k sweeps of the input without using the stack. On sweep 1 ≤ i ≤ k, M ′

applies morphism gi on w without recording the gi(w) but nondeterministically
guessing some position pi on the input and storing this position in counter Ci and
the symbol api in the state. Then on the next k sweeps, M ′ applies morphism
hi on w and again nondeterministically guessing some position qi on the input
and storing this position in counter Di and the symbol aqi in the state. Next,
M checks that for each 1 ≤ i ≤ k, the values of Ci and Di are the same (this
can be done by simultaneously decrementing the counters and confirm that they
become zero at the same time), but that api �= aqi . Finally, M

′ makes one last
sweep of the input simulating the NPDA M on w (now using the stack) and
accepts if M accepts. Clearly, L(M ′) �= ∅ if and only if there is a w ∈ L such
that gi(w) �= hi(w) for all 1 ≤ i ≤ k. The result follows, since the emptiness
problem for finite-crossing 3-phase 2NPCMs is decidable (Theorem 4). ��
Clearly, the above theorem still holds when the NPDA M is replaced by an
NPCM (i.e., NPDA with reversal-bounded counters). Variations of the problem
above can also be shown decidable. For example, it is decidable if L′ = {w | w ∈
L, there is no i such that gi(w) = hi(w)} is infinite, since the infiniteness problem
for 3-phase 2NPCMs is decidable (Theorem 4).

4.2 Finite-Valuedness in Transducers

A transducer T is an acceptor with outputs. For example, an NPDT is a non-
deterministic pushdown automaton with outputs. So the transitions are rules of
the form:

(q, a, Z)→ (p, x, y)
where q, p are states, a is an input symbol or ε, Z is the top of the stack symbol,
x is a (possibly null) string of stack symbols, and y is an output string (possibly
ε). In this transition, T in state q, reads a, ‘pops’ Z and writes x on the stack,
outputs string y, and enters state p.

We say that (u, v) is a transduction accepted by T if, when started in the
initial state q0, with input u, and the stack contains only the initial stack symbol
Z0, T enters an accepting state after reading u and producing v. The set of
transductions accepted by T is denoted by R(T ). An NPCMT is an NPCM with
outputs. Similarly, An NCMT, NFT, etc., is an NCM, NFA, etc. with outputs.

A transducer T is k-ambiguous (k ≥ 1) if T with outputs ignored is a k-
ambiguous acceptor. (Note that 1-ambiguous is the same as unambiguous). T is
k-valued (k ≥ 1) if for every u, there are at most k distinct strings v such that
(u, v) is in R(T ). T is finite-valued if T is k-valued for some k.

The following result was recently shown in [29]. We include the proof in [29]
to illustrate the reduction of the problem to the emptiness problem for NPCMs
(which is decidable by Theorem 1).

Theorem 11. The k-valuedness problem for 1-ambiguous NPCMT T is decid-
able.

Proof. Consider the case k = 1, Given T with m reversal-bounded counters, we
construct an NPCM M with two additional 1-reversal counters C12 and C21.
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Hence, M will have m+ 2 reversal-bounded counters. M on input x, simulates
T suppressing the outputs and accepts x if it finds two outputs y1 and y2 such
that y1 and y2 disagree in some position p and x is accepted by T . In order to
do this, during the simulation, M uses C12 and C21 to record the positions i
and j (chosen nondeterministically) in y1 and y2, respectively, and the symbols
a and b in these positions, such that i = j and a �= b. Clearly, a and b can
be remembered in the state. Storing i and j need only increment C12 and C21

during the simulation. To check that i = j, after the simulation, M decrements
C12 and C21 simultaneously and verifies that they reach zero at the same time.
Note that since T is 1-ambiguous, M ’s accepting computation on x (except
for the outputs) is unique and therefore the procedure just described can be
accomplished by M on a single accepting run on the input. Clearly, T is 1-
valued if and only if L(M) = ∅, which is decidable, since emptiness of NPCMs
is decidable (by Theorem 1).

The above construction generalizes for any k ≥ 1. Now M on input x, checks
that there are at least k + 1 distinct outputs y1, . . . , yk+1. M uses k × (k + 1)
additional 1-reversal counters (so now M will have m + k × (k + 1) reversal-
bounded counters.) In the simulation, for 1 ≤ i ≤ k+1, M nondeterministically
selects k positions pi1, . . . , pi(i−1), pi(i+1), . . . , pi(k+1) in output yi and records
these positions in counters Ci1, . . . , Ci(i−1), Ci(i+1), . . . , Ci(k+1) and the symbols
at these positions in the state. At the end of the simulation, M accepts x if for
all 1 ≤ i, j ≤ k + 1 such that i �= j, the symbol in position pij is different from
the symbol in position pji and the value of counter Cij is the same as the value
of Cji. ��

The construction in the proof above does not work when T is k-ambiguous for
any k ≥ 2. This is because the computation of T on an input x may not be
unique, so it is possible, e.g., that one accepting run on x produces output y1
and a different accepting run on x produces output y2. So to determine if y1 �= y2,
we need to simulate two runs on input x, i.e., M will no longer be one-way. In
fact, the following was shown in [29]:

Theorem 12. For any k ≥ 1, it is undecidable, given a (k + 1)-ambiguous
1-reversal NPDT T (i.e., its stack makes only one reversal), whether T is k-
valued.

4.3 VPDTs with Reversal-Bounded Counters

Visibly pushdown transducers (VPDT)were introduced in [40], where ε-transitions
that can produce outputs were allowed. Allowing such transitions makes some de-
cision problems (e.g., single-valuedness) undecidable. Later, in [16], VPDTs that
do not allow ε-transitions were investigated, where it was shown that the
k-valuedness problem for VPDTs is decidable.

We can generalize the result above for VPDTs with reversal-bounded counters.
A VPCMT T is a VPCM with outputs. Since a VPCM is allowed ε-transitions
(where the stack is not used), we assume that on an ε-transition, the VPCMT
can only output ε.
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Theorem 13. The k-valuedness problem for VPCMTs is decidable.

4.4 Context-Free Transducers

A context-free transducer (CFT) T is a CFG with outputs, i.e., the rules are of
the form A → (α, y), where α is a string of terminals and nonterminals, and y
is an output string (possibly ε). We assume that the underlying CFG G of T ,
i.e., the grammar obtained by deleting the outputs, has no ε-rules (i.e., rules of
the form A→ ε ) and unit-rules (i.e., rules of the form A→ B), where A,B are
nonterminals). We also assume that all nonterminals are useful, i.e., reachable
from the start nonterminal S and can reach a terminal string.

We consider only leftmost derivations in T , i.e., at each step, the leftmost
nonterminal is expanded). Thus T generates transductions (u, v) (where u is a
terminal string and v is an output string) derived in a sequence of rule applica-
tions in a leftmost derivation: (S, ε) ⇒+ (u, v)

A nonterminal A in the underlying CFG of a CFT is self-embedding if there
is some leftmost derivation A ⇒+ αAβ where α, β are strings of terminals and
nonterminals. (Note that |αβ| > 0, since there are no ε-rules and unit-rules.)

The notions of ambiguous and finite-valuedness can also be defined for context-
free grammars (CFGs) with outputs.

A CFT T is k-ambiguous for a given k (resp., finitely-ambiguous) if its un-
derlying CFG is k-ambiguous (resp., finitely-ambiguous).

The next three lemmas were recently shown in [29]. We sketch the proofs
given in [29] for completeness.

Lemma 1. Let T be a finitely-ambiguous CFT with terminal and nonterminal
alphabets Σ and N , respectively. Let G be its underlying finitely-ambiguous CFG.
Let A be a nonterminal such that A⇒+ αAβ, where α, β ∈ (Σ ∪N)∗. Then this
derivation (of αAβ) is unique.

Proof. It is straightforward to show that if two distinct derivations A ⇒+ αAβ
exist, then A would not be finitely-ambiguous. ��

Lemma 2. It is decidable, given a finitely-ambiguous CFT T , whether there
exist a nonterminal A and a leftmost derivation A ⇒+ αAβ for some α, β ∈
(Σ ∪ N)∗ (note that αβ| > 0), such that there are at least two distinct outputs
generated in the derivation.

Proof. Let A be a nonterminal and L = {w | w = αAβ, for some α, β ∈ (Σ∪N)∗

such that |αβ| > 0, and A ⇒+ αAβ produces at least two distinct outputs}.
(Thus L ⊆ (Σ ∪N)∗.)

We construct an NPCM M to accept L. M , when given input w, tries to
simulate a leftmost derivation A ⇒+ αAβ (which, if it exists, is unique by
Lemma 1) and checks that there are at least two distinct outputs generated in
the derivation. Initially, A is the only symbol on the stack. Each derivation step
is of the form B → xϕ, where x is in Σ∗ and ϕ is in N(Σ ∪ N)∗ ∪ {ε}. If B
is the top of the stack, M simulates the step by popping B, checking that the
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remaining input segment to be read has prefix x (if x �= ε), and pushing ϕ on
the pushdown stack (if ϕ �= ε). It uses two 1-reversal counters C1 and C2 to
check that there is a discrepancy in the outputs corresponding to the derivation
A⇒+ αAβ. Since the derivation A⇒+ αAβ is unique, this can be done in the
same manner as described in the proof of Theorem 11.

At some point in the derivation, M guesses that the stack contains a string of
the form z = γ1Aγ2, where γ1, γ2 ∈ (Σ∪N)∗. M then pops the stack and checks
that the remaining input yet to be read is γ1Aγ2 and accepts if there were two
distinct outputs generated in the derivation.

It is easily verified that L(M) = L. The result follows since the emptiness
problem for NPCMs is decidable by Theorem 1. ��

Lemma 3. Let T be a finitely-ambiguous CFT and G be its underlying CFG.
Suppose for some nonterminal A, there is a leftmost derivation A ⇒+ αAβ for
some α, β ∈ (Σ ∪ N)∗, with |αβ| > 0 such that there are at least two distinct
outputs generated in the derivation. Then T is not finite-valued.

Proof. Suppose there is a self-embedding nonterminal A and a derivation A⇒+

αAβ, where |αβ| > 0 and there are at least two distinct strings y1 and y2 that
are outputted in the derivation. Since all nonterminals are useful, we have in G,
S ⇒∗ wAx ⇒+ wαAβx ⇒∗ wαkAβkx ⇒+ wukzvkx for some terminal strings
w, u, z, v, x, for all k ≥ 1. Let y0, y3, y4, y5 be the outputs in the derivations
S ⇒∗ wAx, α ⇒∗ u, A ⇒+ z, and β ⇒∗ v, respectively. There are two cases:
Case 1. |y1| = |y2| but y1 �= y2, and Case 2. |y1| �= |y2|. In both cases, the CFT
T can be shown to be finite-valued. ��

4.4.1 Linear Context-Free Transducers
A linear context-free transducer (LCFT) is a CFT whose underlying grammar
is a linear CFG (LCFG). Thus, the rules are of the form A → (uBv, y) or
A→ (u, y), where A,B are nonterminals, u, v are terminal strings with |uv| > 0,
and y is an output string. The following converse of Lemma 3 was shown in [29]:

Lemma 4. Let T be a finitely-ambiguous LCFT and G be its underlying LCFG.
Suppose there is no nonterminal A for which there is a leftmost derivation A⇒+

uAv for some u, v ∈ Σ∗, with |uv| > 0 such that there are at least two distinct
outputs generated in the derivation. Then T is finite-valued.

From Lemmas 2, 3, and 4:

Theorem 14. It is decidable, given a finitely-ambiguous LCFT T , whether it is
finite-valued.

When the LCFT is not finitely-ambiguous, Theorem 14 does not hold:

Theorem 15. It is undecidable, given a LCFT T , whether it is finite-valued.

Proof. In [44], it was shown that there is a class of LCFGs for which every
grammar in the class is either unambiguous or unboundedly ambiguous, but
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determining which is the case is undecidable. Let G be a LCFG in this class.
Number the rules in G and construct a LCFT T which outputs the rule number
corresponding to each rule. The result then follows. ��

Lemmas 1, 2, and 3 were proved for finitely-ambiguous CFTs. However, Lemma
4 does not hold for finitely-ambiguous CFTs. For consider the 1-ambiguous CFT:
S → (SA, 0) | (a, 0), A→ (a, {0, 1}), where S,A are nonterminals, a is a terminal
symbol, and 0, 1 are output symbols. This CFT satisfies the hypothesis of Lemma
4, but it is not finite-valued.

4.4.2 Left-Derivation-Bounded Context-Free Transducers
A CFG is left-derivation-bounded (LDBCFT) if there is an s ≥ 1 such that
for any nonterminal A, every sentential form derivable from A when restricted
to leftmost derivation has at most s nonterminals [42]. If the derivation is not
restricted to leftmost derivation, the grammar is called derivation-bounded [17].
If the upper bound s must hold for all derivations of the sentential form, the
CFG is called non-terminal bounded. Clearly, every nonterminal-bounded CFG
is left-derivation-bounded, which, in turn, is derivation-bounded. It was shown in
[42] that the language classes defined by these grammars form a strict hierarchy.

The following was proved in [29]:

Theorem 16. It is decidable, given a finitely-ambiguous LDBCFT T , whether
it is finite-valued.

4.4.3 Context-Free Transducers
Let T be a CFT and G be its underlying CFG. For A ∈ N and α ∈ (Σ ∪N)∗,
let NT (A,α) be the number of A’s in α. Let # be a symbol not in the terminal
alphabet of G. Let LA = {α#d | S ⇒+ α,NT (A,α) ≥ d}. Clearly, G is left-
derivation-bounded if and only if there is a nonterminalA such that LA is infinite.
Call such an A an abundant nonterminal.

The proofs of Lemma 5 and Corollary 3 below use the decidability of the
infiniteness problem for NPCMs (Theorem 1).

Lemma 5. It is decidable, given a CFG G and a nonterminal A, whether A is
abundant. Hence, it is decidable whether G is left-derivation-bounded.

The above lemma generalizes to:

Corollary 3. It is decidable, given a CFG G and distinct nonterminals A1, . . . ,
Ak, whether L(A1,...,Ak) = {α#d | S ⇒+ α,NT (A1, α) ≥ d, . . . , NT (Ak, α) ≥ d}
is infinite.

We now assume that the CFT is 1-ambiguous.

Theorem 17. It is decidable, given a 1-ambiguous CFT T , whether it is finite-
valued.
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Proof. (Sketch) Let G be the underlying (1-ambiguous) CFG of T . If G is left-
derivation-bounded (which is decidable by Lemma 5), then we can decide if T
is finite-valued (by Theorem 16).

If G is not left-derivation-bounded, let A be an abundant nonterminal. De-
termine if there is a string of terminals and nonterminals β such that A ⇒+ β
and in this derivation, there are at least two distinct output strings. Call such a
nonterminal multi-valued. Since G is 1-ambiguous, this property can be decided
by a construction similar to those in the proofs of Theorem 11 and Lemma 2.
[NOTE: This is the part where we need T (hence G) to be 1-ambiguous, since
this is unlike a self-embedding derivation for which Lemma 2 applies, where the
derivation is unique if T is finitely ambiguous.]

Clearly, if G has an abundant multi-valued nonterminal, then T is not finite-
valued. Now suppose G does not have any abundant multi-valued nonterminal.
We consider two cases:
Case 1. G has a self-embedding nonterminal B such that B ⇒+ γ1Bγ2 for some
γ1, γ2 and in this derivation, there are at least two distinct outputs. Then T is
not finite-valued (by Lemma 3).
Case 2. Assume G does not have a self-embedding nonterminal as described in
case 1. We can show that T is finite-valued. We omit the proof.
From (1) and 2(a) and 2(b), it follows that T is finite-valued. ��

4.5 Containment and Equivalence Problems for Transducers

It is known that the equivalence problem for two-way deterministic finite trans-
ducers (2DFTs) is decidable [21]. However, if nondeterminism is allowed, the
problem becomes undecidable even for one-way nondeterministic finite transduc-
ers (NFTs) [19]. The undecidability holds even for NFTs operating on a unary
input (or output) alphabet [28]. For single-valued (i.e., 1-valued) NFTs, the
problem becomes decidable [23], and the decidability result was later extended
to finite-valued NFTs in [9]. The complexity of the problem was subsequently
derived in [43].

In [38], we generalized the result of [21] for some models of two-way trans-
ducers (with input end markers # and $) augmented with reversal-bounded
counters. Call the nondeterministic (resp., deterministic) version 2NCMT (resp.,
2DCMT). The relation defined by such a transducer T is R(T ) = {(x, y) | T ,
when started in its initial state on the left end marker of #x$, outputs y and falls
off the right end marker in an accepting state}. The transducer is finite-crossing
if there is some fixed k such that in every accepting computation on any input
#x$, the number of times the input head crosses the boundary between any
two adjacent symbols of #x$ is at most k. Note that the number of turns (i.e.,
changes in direction from left-to-right and right-to-left and vice-versa) the input
head makes on the input may be unbounded. Also note that the requirement is
only for accepting computations. So if R(T ) = ∅, then T is finite-crossing and,
in fact, k-crossing for any k. We assume that when we are given a finite-crossing
machine, the integer k for which the machine is k-crossing is also specified.
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Clearly, every 2DFT is finite-crossing because, by definition, a valid computa-
tion must always fall off the right end marker in an accepting state. So no input
cell can be visited twice in the same state; otherwise, the machine will never
fall off the right end marker. Hence, a 2DFT is a special case of finite-crossing
2DCMT. But the latter is more powerful. Consider the relation R = {(xdk, y) |
x ∈ Σ+, k > 0, |x| ≥ 2k, x = x1x2x3, |x1| = |x3| = k, y = x3x2x1}, where d is
a symbol not in alphabet Σ. R can be implemented on a finite-crossing 2DCMT
using two reversal-bounded counters (in fact, the head need only make finite-
turn on the input tape), but cannot be implemented on a 2DFT. On the other
hand, for 2NFT, we can no longer say it is finite-crossing since the machine can
always decide to fall off the right end marker, even though a cell has been visited
more than once in the same state; e.g., {(x, xn)|x ∈ Σ+, n > 0} can be imple-
mented on a 2NFT. However, a finite-crossing 2NCMT is more powerful than
a finite-crossing 2NFT, as R cannot also be implemented on a finite-crossing
2NFT.

It was shown in [38] that the following problems are decidable:

1. Given a finite-crossing 2NCMT T1 and a finite-crossing 2DCMT T2, is R(T1)
⊆ R(T2)? Hence, equivalence of finite-crossing 2DCMTs is decidable.

2. Given a one-way nondeterministic pushdown transducer with reversal-
bounded counters (NPCMT) T1 and a finite-crossing 2DCMT T2, is R(T1) ⊆
R(T2)?

3. Given a finite-crossing 2NCMT T1 and a DPCMT T2 (the deterministic
version of NPCMT), is R(T1) ⊆ R(T2)?

4. Given a finite-crossing 2DCMT T1 and a DPCMT T2, is R(T1) = R(T2)?

In the above results, the “finite-crossing” assumption is necessary, since it can
be shown that when the two-way input is unrestricted, the equivalence problem
becomes undecidable. Also, the NPCMT and DPCMT in (2), (3) and (4) above
cannot be generalized to be two-way, since it can be shown that it is undecidable
to determine, given a 2DPCMT T , whether R(T ) = ∅, even when T makes only
two turns on the input. However, the following was proved in [38]:

5. It is decidable to determine, given two finite-crossing 2DPCMTs whose in-
puts come from a bounded language (i.e., from w∗

1 · · ·w∗
k for some non-null

strings w1, . . . , wk) T1 and T2, whether R(T1) ⊆ R(T2). (Hence, equivalence
is also decidable.)

The proofs for the results above use the decidability of the emptiness problems
in Section 2, in particular, the decidability of emptiness for 3-phase finite-crossing
2NPCMs.

The containment and equivalence between single-valued finite-crossing two-
way nondeterministic finite transducers (2NFTs) and various finite-crossing two-
way transducers with reversal-bounded counters were investigated in [38], where
the following problems were shown to be decidable:

6. Given a finite-crossing 2NCMT (or an NPCMT) T1 and a single-valued finite-
crossing 2NFT T2, is R(T1) ⊆ R(T2)?
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7. Given a single-valued finite-crossing 2NFT T1 and a finite-crossing 2DCMT
(or a DPCMT) T2, is R(T1) ⊆ R(T2)?

8. Given a single-valued finite-crossing 2NFT T1 and a finite-crossing 2DCMT
(or a DPCMT) T2, is R(T1) = R(T2)?

In [2,3], deterministic and nondeterministic versions of streaming string trans-
ducers (SSTs, for short) were investigated. An SST uses a finite set of variables
ranging over strings from the output alphabet in the process of making a single
pass through the input string to produce the output string. It was shown in [2]
that deterministic SSTs and two-way deterministic finite transducers (2DFTs)
are equally expressive. For nondeterministic SSTs, they are incomparable with 2-
way nondeterministic finite transducers (2NFTs) in terms of the expressiveness,
although they are more expressive than 1-way nondeterministic finite transduc-
ers (NFTs).

As “variables” used in SSTs can be regarded as a form of auxiliary mem-
ory, it would be of interest to further investigate the relationship between two-
way (finite-crossing) transducers augmented with auxiliary memory and SSTs
with respect to the expressiveness as well as various decision problems. As was
pointed out earlier, the relation T = {(xdk, y) | x ∈ Σ+, k > 0, |x| ≥ 2k, x =
x1x2x3, |x1| = |x3| = k, y = x3x2x1}, where d is a symbol not in alphabet Σ
can be implemented on a finite-crossing 2DCMT, but cannot be implemented on
a 2DFT. Hence, finite-crossing 2DCMTs are more expressive than deterministic
SSTs, as the latter are equivalent to 2DFTs. The relationship between nonde-
terministic SSTs and various 2-way (finite-crossing) transducers with auxiliary
memory remains unknown.

Finally, we consider the containment and equivalence problems for VPCMTs
and DVPCMTs. As we mentioned earlier, the containment and equivalence prob-
lems for NFTs is undecidable. Hence these problems are also undecidable for
VPCMTs. However, we can prove:

Theorem 18. The following problems are decidable:

1. Given a VPCMT T1 and a DVPCMT T2, is R(T1) ⊆ R(T2)?
2. Given two DVPCMTs T1 and T2, is R(T1) = R(T2)?

Proof. Clearly, we only need to prove (1). Let M1 be the underlying VPCM of
T1 and M2 be the underlying DVPCM of T2. Thus, L(M1) = domain(R(T1))
and L(M2) = domain(R(T2)).

First we determine if L(M1) ⊆ L(M2). This is decidable, since from Theorem
2, we can construct a DVPCM M3 to accept the complement of L(M2). Then
from Theorem 8 we can construct a VPCMM4 to accept L(M1)∩L(M3). Clearly
L(M1) ⊆ L(M2) if and only if L(M4) = ∅, which is decidable by Theorem 7.

Obviously, if L(M1) � L(M2), then R(T1) � R(T2). Otherwise, R(T1) �

R(T2) if and only if there exists an x such that the following two conditions are
satisfied:

(a) For some y, (x, y) is in R(T1), and
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(b) x is in domain(R(T2)) and the only z such that (x, z) is in R(T2) is different
from y.

Given T1,M1, T2,M2, we construct a VPCM M such that L(M) �= ∅ if and only
if the conditions above are satisfied (we omit the construction here). The result
follows since we can decide if L(M) = ∅ by Theorem 7. ��
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Abstract. A celebrated result of Schützenberger says that a language
is star-free if and only if it is is recognized by a finite aperiodic monoid.
We give a new proof for this theorem using local divisors.

1 Introduction

The class of regular languages is built from the finite languages using union,
concatenation, and Kleene star. Kleene showed that a language over finite words
is definable by a regular expression if and only if it is accepted by some finite au-
tomaton [3]. In particular, regular languages are closed under complementation.
It is easy to see that a language is accepted by a finite automaton if and only if
it is recognized by a finite monoid. As an algebraic counterpart for the minimal
automaton of a language, Myhill introduced the syntactic monoid, cf. [6].

An extended regular expression is a term over finite languages using the op-
erations union, concatenation, complementation, and Kleene star. By Kleene’s
Theorem, a language is regular if and only if it is definable using an extended
regular expression. It is natural to ask whether some given regular language can
be defined by an extended regular expression with at most n nested iterations of
the Kleene star operation— in which case one says that the language has gen-
eralized star height n. The resulting decision problem is called the generalized
star height problem. Generalized star height zero means that no Kleene star op-
erations are allowed. Consequently, languages with generalized star height zero
are called star-free. Schützenberger showed that a language is star-free if and
only if its syntactic monoid is aperiodic [7]. Since aperiodicity of finite monoids
is decidable, this yields a decision procedure for generalized star height zero. To
date, it is unknown whether or not all regular languages have generalized star
height one.

In this paper, we give a proof of Schützenberger’s result based on local divisors.
In commutative algebra, local divisors have been introduced by Meyberg in 1972,
see [2,4]. In finite semigroup theory and formal languages, local divisors were first
used by Diekert and Gastin for showing that pure future local temporal logic is
expressively complete for free partially commutative monoids [1].
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2 Preliminaries

The set of finite words over an alphabet A is A∗. It is the free monoid generated
by A. The empty word is denoted by ε. The length |u| of a word u = a1 · · · an
with ai ∈ A is n, and the alphabet alph(u) of u is {a1, . . . , an} ⊆ A. A language
is a subset of A∗. The concatenation of two languages K,K ′ ⊆ A∗ is K ·K ′ =
{uv | u ∈ K, v ∈ K ′}, and the set difference of K by K ′ is written as K \ K ′.
Let A be a finite alphabet. The class of star-free languages SF(A∗) over the
alphabet A is defined as follows:

– A∗ ∈ SF(A∗) and {a} ∈ SF(A∗) for every a ∈ A.

– If K,K ′ ∈ SF(A∗), then each of K ∪K ′, K \K ′, and K ·K ′ is in SF(A∗).
By Kleene’s Theorem, a language is regular if and only if it can be recognized by
a deterministic finite automaton [3]. In particular, regular languages are closed
under complementation and thus, every star-free language is regular.

Lemma 1. If B ⊆ A, then SF(B∗) ⊆ SF(A∗).

Proof. It suffices to show B∗ ∈ SF(A∗). We have B∗ = A∗ \
⋃

b�∈B A∗bA∗. ��

A monoid M is aperiodic if for every x ∈ M there exists a number n ∈ N such
that xn = xn+1.

Lemma 2. Let M be aperiodic. Then x1 · · ·xk = 1 in M if and only if xi = 1
for all i.

Proof. If xy = 1, then 1 = xy = xnyn = xn+1yn = x · 1 = x. ��

A monoid M recognizes a language L ⊆ A∗ if there exists a homomorphism
ϕ : A∗ →M with ϕ−1

(
ϕ(L)

)
= L. A consequence of Kleene’s Theorem is that a

language is regular if and only if it is recognizable by a finite monoid, see e.g. [5].
The class of aperiodic languages AP(A∗) contains all languages L ⊆ A∗ which
are recognized by some finite aperiodic monoid.

The syntactic congruence ≡L of a language L ⊆ A∗ is defined as follows. For
u, v ∈ A∗ we set u ≡L v if for all p, q ∈ A∗ we have puq ∈ L ⇔ pvq ∈ L.
The syntactic monoid Synt(L) of a language L ⊆ A∗ is the quotient A∗/ ≡L

consisting of the equivalence classes modulo ≡L. The syntactic homomorphism
μL : A∗ → Synt(L) with μL(u) = {v | u ≡L v} satisfies μ−1

L

(
μL(L)

)
= L. In

particular, Synt(L) recognizes L and it is the unique minimal monoid with this
property, see e.g. [5].

Let M be a monoid and c ∈ M . We introduce a new multiplication ◦ on
cM ∩Mc. For xc, cy ∈ cM ∩Mc we let

xc ◦ cy = xcy.

This operation is well-defined since x′c = xc and cy′ = cy implies x′cy′ = xcy′ =
xcy. For cx, cy ∈ Mc we have cx ◦ cy = cxy ∈ Mc. Thus, ◦ is associative
and c is the neutral element of the monoid Mc = (cM ∩Mc, ◦, c). Moreover,
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M ′ = {x ∈M | cx ∈Mc} is a submonoid of M such that M ′ → cM ∩Mc with
x �→ cx becomes a homomorphism. It is surjective and hence, Mc is a divisor of
(M, ·, 1) called the local divisor of M at c. Note that if c2 = c, then Mc is just
the local monoid (cMc, ·, c) at the idempotent c.

Lemma 3. If M is a finite aperiodic monoid and 1 �= c ∈ M , then Mc is
aperiodic and |Mc| < |M |.

Proof. If xn = xn+1 in M for cx ∈ Mc, then (cx)n = cxn = cxn+1 = (cx)n+1

where the first and the last power is in Mc. This shows that Mc is aperiodic. By
Lemma 2 we have 1 �∈ cM ∩Mc and thus |Mc| < |M |. ��

3 Schützenberger’s Theorem on Star-Free Languages

The following proposition establishes the more difficult inclusion of Schützen-
berger’s result SF(A∗) = AP(A∗). Its proof relies on local divisors.

Proposition 1. Let ϕ : A∗ → M be a homomorphism to a finite aperiodic
monoid M . Then for all p ∈M we have ϕ−1(p) ∈ SF(A∗).

Proof. We proceed by induction on (|M | , |A|) with lexicographic order. The
claim is obvious for A = ∅. For p = 1 we have ϕ−1(1) = {a ∈ A | ϕ(a) = 1}∗.
Here, the inclusion from left to right follows from Lemma 2 and the other in-
clusion is trivial. By Lemma 1, we conclude ϕ−1(1) ∈ SF(A∗). This also covers
both the case |M | = 1 and the situation where ϕ(a) = 1 for all a ∈ A.

Let now p �= 1 and let c ∈ A with ϕ(c) �= 1. We set B = A \ {c} and we let
ϕc : B

∗ →M be the restriction of ϕ to B∗. We have

ϕ−1(p) = ϕ−1
c (p) ∪

⋃
p = p1p2p3

ϕ−1
c (p1) ·

[
ϕ−1(p2) ∩ cA∗ ∩ A∗c

]
· ϕ−1

c (p3). (1)

The inclusion from right to left is trivial. The other inclusion can be seen as
follows: Every wordw with ϕ(w) = p either does not contain the letter c or we can
factorize w = w1w2w3 with c �∈ alph(w1w3) and w2 ∈ cA∗∩A∗c, i.e., we factorize
w at the first and the last occurrence of c. Equation (1) is established by setting
pi = ϕ(wi). By induction on the size of the alphabet, we have ϕ−1

c (pi) ∈ SF(B∗),
and thus ϕ−1

c (pi) ∈ SF(A∗) by Lemma 1.
Since SF(A∗) is closed under union and concatenation, it remains to show

ϕ−1(p) ∩ cA∗ ∩ A∗c ∈ SF(A∗) for p ∈ ϕ(c)M ∩Mϕ(c). Let

T = ϕc(B
∗).

The set T is a submonoid of M . In the remainder of this proof, we will use T as
a finite alphabet. We define a substitution

σ : (B∗ c)∗ → T ∗

v1c · · · vkc �→ ϕc(v1) · · ·ϕc(vk)
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for vi ∈ B∗. In addition, we define a homomorphism ψ : T ∗ → Mc with Mc =
(ϕ(c)M ∩Mϕ(c), ◦, ϕ(c)) by

ψ : T ∗ →Mc

ϕc(v) �→ ϕ(cvc)

for ϕc(v) ∈ T . Consider a word w = v1c · · · vkc with k ≥ 0 and vi ∈ B∗. Then

ψ
(
σ(w)

)
= ψ
(
ϕc(v1)ϕc(v2) · · ·ϕc(vk)

)
= ϕ(cv1c) ◦ ϕ(cv2c) ◦ · · · ◦ ϕ(cvkc)
= ϕ(cv1cv2 · · · cvkc) = ϕ(cw). (2)

Thus, we have cw ∈ ϕ−1(p) if and only if w ∈ σ−1
(
ψ−1(p)

)
. This shows ϕ−1(p)∩

cA∗ ∩ A∗c = c · σ−1
(
ψ−1(p)

)
for every p ∈ ϕ(c)M ∩ Mϕ(c). In particular,

it remains to show σ−1
(
ψ−1(p)

)
∈ SF(A∗). By Lemma 3, the monoid Mc is

aperiodic and |Mc| < |M |. Thus, by induction on the size of the monoid we
have ψ−1(p) ∈ SF(T ∗), and by induction on the size of the alphabet we have
ϕ−1
c (t) ∈ SF(B∗) ⊆ SF(A∗) for every t ∈ T . For t ∈ T and K,K ′ ∈ SF(T ∗) we

have

σ−1(T ∗) = A∗c ∪ {1}
σ−1(t) = ϕ−1

c (t) · c
σ−1(K ∪K ′) = σ−1(K) ∪ σ−1(K ′)

σ−1(K \K ′) = σ−1(K) \ σ−1(K ′)

σ−1(K ·K ′) = σ−1(K) · σ−1(K ′).

Only the last equality requires justification. The inclusion from right to left is
trivial. For the other inclusion, suppose w = v1c · · · vkc ∈ σ−1(K ·K ′) for k ≥ 0
and vi ∈ B∗. Then ϕc(v1) · · ·ϕc(vk) ∈ K · K ′, and thus ϕc(v1) · · ·ϕc(vi) ∈ K
and ϕc(vi+1) · · ·ϕc(vk) ∈ K ′ for some i ≥ 0. It follows v1c · · · vic ∈ σ−1(K) and
vi+1c · · · vkc ∈ K ′. This shows w ∈ σ−1(K) · σ−1(K ′).

We conclude that σ−1(K) ∈ SF(A∗) for every K ∈ SF(T ∗). In particular,
σ−1
(
ψ−1(p)

)
∈ SF(A∗). ��

Remark 1. A more algebraic viewpoint of the proof of Proposition 1 is the fol-
lowing. The mapping σ can be seen as a length-preserving homomorphism from
a submonoid of A∗—freely generated by the infinite set B∗ c—onto T ∗; and
this homomorphism is defined by σ(vc) = ϕc(v) for vc ∈ B∗c. The mapping
τ : Mϕ(c) ∪ {1} → Mc with τ(x) = ϕ(c) · x defines a homomorphism. Now, by
Equation (2) the following diagram commutes:

(B∗c)∗ T ∗

Mϕ(c) ∪ {1} Mc

σ

ϕ ψ

τ



Star-Free Languages and Local Divisors 27

The following lemma gives the remaining inclusion of SF(A∗) = AP(A∗). Its
proof is standard; it is presented here only to keep this paper self-contained.

Lemma 4. For every language L ∈ SF(A∗) there exists an integer n(L) ∈ N

such that for all words p, q, u, v ∈ A∗ we have

p un(L)q ∈ L ⇔ p un(L)+1q ∈ L.

Proof. For the languages A∗ and {a} with a ∈ A we define n(A∗) = 0 and
n({a}) = 2. Let now K,K ′ ∈ SF(A∗) such that n(K) and n(K ′) exist. We set

n(K ∪K ′) = n(K \K ′) = max
(
n(K), n(K ′)

)
,

n(K ·K ′) = n(K) + n(K ′) + 1.

The correctness of the first two choices is straightforward. For the last equation,
suppose p un(K)+n(K′)+2q ∈ K ·K ′. Then either p un(K)+1q′ ∈ K for some prefix
q′ of un(K

′)+1q or p′ un(K
′)+1q ∈ K ′ for some suffix p′ of pun(K)+1. By definition

of n(K) and n(K ′) we have p un(K)q′ ∈ K or p′ un(K
′)q ∈ K ′, respectively. Thus

p un(K)+n(K′)+1q ∈ K ·K ′. The other direction is similar: If p un(K)+n(K′)+1q ∈
K ·K ′, then p un(K)+n(K′)+2q ∈ K ·K ′. This completes the proof. ��

Theorem 1 (Schützenberger). Let A be a finite alphabet and let L ⊆ A∗.
The following conditions are equivalent:

1. L is star-free.

2. The syntactic monoid of L is finite and aperiodic.

3. L is recognized by a finite aperiodic monoid.

Proof. “1 ⇒ 2”: Every language L ∈ SF(A∗) is regular. Thus Synt(L) is finite,
cf. [5]. By Lemma 4, we see that Synt(L) is aperiodic. The implication “2⇒ 3”
is trivial. If ϕ−1

(
ϕ(L)

)
= L, then we can write L =

⋃
p∈ϕ(L) ϕ

−1(p). Therefore,
“3⇒ 1” follows by Proposition 1. ��

The syntactic monoid of a regular language (for instance, given by a non-
deterministic automaton) is effectively computable. Hence, from the equivalence
of conditions “1” and “2” in Theorem 1 it follows that star-freeness is a decidable
property of regular languages. The equivalence of “1” and “3” can be written as

SF(A∗) = AP(A∗).

The equivalence of “2” and “3” is rather trivial: The class of finite aperiodic
monoids is closed under division, and the syntactic monoid of L divides any
monoid that recognizes L, see e.g. [5].

Acknowlegdements. The author would like to thank Volker Diekert and
Benjamin Steinberg for many interesting discussions on the proof method for
Proposition 1.
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Aperiodic Tilings by Right Triangles�
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Abstract. Let ψ denote the square root of the golden ratio,

ψ =
√
(
√
5− 1)/2. A golden triangle is any right triangle with legs of

lengths a, b where a/b = ψ. We consider tilings of the plane by two golden
triangles: that with legs 1, ψ and that with legs ψ,ψ2. Under some nat-
ural constrains all such tilings are aperiodic.

1 Introduction

1.1 Golden Triangles

The altitude of every right triangle cuts it into two similar triangles. Are there
other polygons P that can be divided into two polygons each of which is similar
to P? Any parallelogram whose width is

√
2 times bigger than its length has

this property: its median cuts it into two equal such parallelograms. A more
interesting example is the so called Ammann hexagon1:

1

ψ

ψ2

ψ5

ψ4

ψ3

ψ4

ψ2

ψ5

ψ3

ψ7

ψ6

Here ψ stands for the square root of the golden ratio (ψ4 + ψ2 = 1). It turns
out that that there are no other such hexagons. This was conjectured by Scherer
in [6] and proved by Schmerl in [7].

� The work was in part supported by the RFBR grant 14-01-93107.
1 This hexagon is attributed to Robert Ammann in [8]. Independently the hexagon
was discovered by Scherer [6] who called it the Golden Bee.

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 29–41, 2014.
c© Springer International Publishing Switzerland 2014
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Let us go back to the right triangle, whose altitude cuts it into two similar
triangles. Assume that its hypotenuse and legs are proportional to 1, ψ and ψ2,
respectively, so that Pythagorean theorem hold:

ψ

1ψ2

Call any such triangle a golden triangle. The altitude of the golden triangle cuts
it into a large and small golden triangles, labeled by letters “L” and “S”:

ψ

ψ2

ψ4

ψ2

ψ3

S

L

The ratio between the sizes of the initial triangle and its large part is equal to
the ratio between the sizes of its large and small parts (hence the name).

1.2 Standard Tilings

Let us start with a golden triangle and cut it by its altitude into two smaller
golden triangles. Then cut the larger of the resulting triangles into two triangles.
We obtain one small triangle and two large triangles. Then again cut both large
resulting triangles, then again and again . . . . We get the following tilings:

. . .
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On each step we obtain a tiling of the original golden triangle by golden triangles
of two sizes. We will call such tilings standard. The number of steps needed to
obtain a standard tiling from the original golden triangle is called its depth. For
example, the depth of the last tiling in the last picture is 4.

We can start from any golden triangle, so for each n and each d we can obtain a
standard tiling of depth n consisting of triangles of sizes d and ψd. In this paper,
we study tilings of the plane (or its parts) by golden triangles of two sizes d and
ψd (where d is a fixed number, say, 1) that look locally like standard tilings. This
means that for any circular window (of any diameter D) every pattern that we
can observe in that tiling through such a window can be observed also in some
standard tiling. Of course the depth of that tiling may depend on the diameter
of the window. The larger the window is the larger the depth of the tiling may
be. We will call such tilings locally standard, LS. In other words, a tiling is LS if
each its finite subset is a subset of a standard tiling. (Throughout the paper we
consider tiling as sets of triangles.)

Do locally standard tiling of the plane exist? This can be shown by well known
arguments (used in the literature, for instance, for Berger’s tilings [2]). Moreover,
like Berger’s tilings, all locally standard tilings of the plane are aperiodic.

Assume now that we bound the size of the window by some constant D.
That is, consider only patterns of diameter at most D. Our Theorem 2 states
that for any D there are finitely many patterns of diameter at most D that can
be observed in standard tilings. (When counting patterns, we identify isometric
ones.)

More specifically, we say that a finite tiling T is a pattern of a tiling T ′ if T is
a subset of T ′. For example, every standard tiling is a pattern of every standard
tiling of larger depth, but not the other way around. A pattern is standard if
it is a pattern of a standard tiling. Thus a tiling is LS iff all its patterns are
standard. The diameter of a pattern is the maximal distance between two points
lying in triangles of that pattern. Theorem 2 states that for every D there are
finitely many standard patterns of diameter at most D.

Theorem 1 gives a hope to describe locally standard tilings by a finite number
of patterns. This would be possible if there were D with the following property:
if all patterns of diameter at most D of a tiling T are standard then T is locally
standard (that is, all patterns of T are standard).

The main result of the paper, Theorem 3, states that this is not the case. In
other words, for every D there is a tiling of the plane by golden triangles that
is not LS and yet all its patterns of diameter at most D are standard. Speaking
informally, locally standard tilings cannot be finitely presented, they cannot be
defined by a finite set of local rules.

This result shows a crucial difference between tilings by Ammann hexagons
and golden triangles. Recall that Ammann hexagon of size d can be also cut
into two Ammann hexagons of sizes ψd and ψ2d (see the picture on the first
page). In the similar way one can define Ammann standard tilings, Ammann
locally standard tilings etc. However, this time there is D such an Ammann
tiling of the plane is locally standard iff all its patterns of diameter at most D
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are standard [3]. Moreover, an Ammann tiling is locally standard iff all its pairs
of adjacent hexagons form a standard pattern!

Let us return to tilings by golden triangles. There is yet another way to define
what means that a tiling of a plane “looks like standard tilings”. Let us call
the operation used to define standard tiling the refinement. The refinement of
a tiling T is the tiling obtained from T by cutting each large triangle from T
by its altitude (and keeping all small triangles intact). It is not hard to see that
different tilings have different refinements. Hence a reverse partial operation is
well defined. That partial operation is called the coarsening. (Not every tiling
has a coarsening: for example, a tiling consisting of one small triangle has no
coarsening.) If a tiling admits n successive coarsenings, we call it n-coarsenable.
For instance, any standard tiling of depth n is n+ 1-coarsenable but not n+ 2-
coarsenable. If a tiling is n-coarsenable for all n we call it infinitely coarsenable,
IC. One can show that every LS tiling is IC, but not the other way around. An
example of IC tiling which is not LS will be given later. From this example it will
be clear that the class of LS tilings is a more adequate formalization of tilings
that “look like standard tilings” than the class of IC tilings.

Our main result applies to the class of IC tilings as well: IC tilings cannot
be defined by a finite set of local rules. More specifically, for any D there is a
non-IC tiling whose all patterns of diameter at most D are standard (and hence
appear in an IC tiling, namely, in any LS tiling of the plane).

One can wonder if the class of locally standard tilings is “sofic”. We say that
a class C of tilings is sofic if the following holds. There are D, a finite set of
colors and a finite set of patterns P of diameter at most D where each pattern
consists of colored triangles (each triangle bears only one color) such that
(1) in every tiling from C each triangle can be colored so that all patterns of
diameter at most D of the resulting colored tiling belong to P , and the other
way around:
(2) if every pattern of diameter at most D in a tiling of the plane by colored
triangles belongs to P , then after removing colors the resulting tiling belongs C.

We do not know whether the families of LS tilings and of IC tilings are sofic.
The Goodman-Strauss theorem [5], or its proof, might provide a positive answer
to this question. The statement of that theorem itself does not imply the answer,
as its conditions are not satisfied for the family of LS (or IC) tilings. The same
applies to Fernique – Ollinger generalization of Goodman-Strauss theorem [4].

2 Preliminaries

The letter ψ denotes the square root of the golden ratio, ψ =
√
(
√
5− 1)/2.

A golden triangle is any right triangle similar to that shown on the picture on
page 30 (all points inside the triangle are considered as belonging to it). The size
of a golden triangle is the length of its hypotenuse. A d-tiling is a non-empty set
of golden triangles that pair wise have no common interior points and each of
them is either of size d (such triangles are called large), or of size dψ (those are
called small).
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A tiling is a d-tiling for some d. A tiling T tiles A (where A is a subset of the
plane), if A equals the union of all triangles in T . A tiling T is called periodic,
if there is a nonzero vector v (called a period) such the result of transition of
every triangle H in T by vector v belongs to T . Otherwise the tiling is called
aperiodic.

The refinement of a d-tiling T is the ψd-tiling obtained from T by cutting
each large triangle from T by its altitude. All small triangles remain intact and
become large triangles of the refinement. It is easy to verify that the refinement
is an injective operation. The reverse partial operation is called the coarsening.
The k-refinement of a tiling is the result of applying k successive refinements to
it. The partial operation of k-coarsening is defined in a similar way. If a tiling
admits k successive coarsenings, that is, it is a k-refinement of some tiling, we
call it k-coarsenable. If a tiling is k-coarsenable for all k we call it infinitely
coarsenable.

A standard d-tiling of depth n is a d-tiling obtained from a single golden
triangle H of size dψ−n by n successive refinements.

A finite tiling P is a pattern of a tiling T if P is a subset of T . A finite tiling
is a standard pattern if it is a subset of a standard tiling. A tiling T is locally
standard all its patterns are standard, i.e. for all finiteW ⊂ T there is a standard
tiling T ′ with W ⊂ T ′.

The diameter of a finite tiling is the maximal distance between two points
lying in triangles of that tiling. A tiling is called D-locally standard if all its
patterns of diameter at most D are standard.

3 Results

Theorem 1. (a) There are locally standard tilings of the plane. (b) Every locally
standard tiling of the plane is infinitely coarsenable. (c) The converse is not true.
(d) Every infinitely coarsenable tiling of the plane is aperiodic.

Proof. (a) Let Stn denote the standard 1-tiling of depth n. Observe that St7 has
a large triangle that is located strictly inside the part of the plane tiled by St7:

This implies that we can draw St0 and St7 on the plane so that St0 is a subset
of St7 and, moreover, the triangle forming St0 is strictly inside the part of the
plane tiled by St7. Similarly, we can draw St14 on the plane so that St14 includes
St7 as a subset and the part of the plane tiled by St7 is strictly inside the part
of the plane tiled by St14.
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In this way we can construct a sequence of tilings St0, St7, St14, . . . such that
St7n is a standard tiling of depth 7n, St7n is a subset of St7n+7 and the union
T =

⋃∞
n=0 St7n tiles the entire plane. On the other hand, the tiling T is locally

standard by construction.
(c) In the same way as in item (a), we can construct a sequence of tilings

St0, St8, St16, . . . such that the union T =
⋃∞

n=0 St8n tiles a half-plane. This is
because the tiling St8

has a large triangle L such that the hypotenuse of L lies on the hypotenuse of
the triangle tiled by St8 and both legs of L are strictly inside the triangle tiled
by St8.

Let T̃ be the tiling obtained from T by applying the axial symmetry with
the axis equal to the edge of the half plane tiled by T . Both T and T̃ are IS by
construction. Then shift T̃ by a very small amount along the edge of the half
plane. The shifted T̃ is IC as well. Hence the union of T and shifted T̃ is also
IC. On the other hand, it is not LS, as all patterns along the edge of the half
plane become non-standard after the shift.

(b) We will say that a small triangle S and a large triangle L form a couple
if they are located as shown on the second picture on page 30. It is easy to see
that in any standard tiling for any small triangle S there is a large triangle L
forming a couple with S.

Consider any small triangle S in a locally standard d-tiling T of the plane.
As T is locally standard, there is a large triangle L ∈ T forming a couple with
S. Replace in T the triangles L and S by their union L ∪ S, for every small
triangle S. We obtain a ψ−1d-tiling T ′, whose refinement equals T . Thus T is
coarsenable.

Let us show that T ′ is LS. Let W ′ be any finite subset of T ′. We have to show
that W ′ is a subset of a standard tiling. Let W stand for the refinement of W ′.
Then W is a subset of T . Since T is LS, W is a subset of a standard tiling, say,
Stn. If n = 0 then W ′ is a small triangle and we are done. Otherwise W ′ is a
subset Stn−1.

(d) Assume that an IC tiling T has a non-zero period v. Then v is also a
period of the coarsening T ′ of T . Indeed, the refinement of T ′+ v is equal to the
tiling T +v, which equals T by the assumption; thus T ′+v and T ′ have the same
refinement and hence coincide. Similarly, v is a period of the coarsening T ′′ of
T ′ and so on. Note that the coarsening increases the sizes of triangles. Thus, on



Aperiodic Tilings by Right Triangles 35

some step, v becomes smaller then the lengths of all sides of triangles and we
get a contradiction.

Theorem 2. For any D, d the family of patterns of diameter at most D of
standard d-tilings is finite. (When counting patterns we identify isometric ones.)

Proof. Call a tiling P a simple pattern of a tiling T if there is a node K of some
triangle from T (called the center of the pattern) such that P consists of all the
triangles from T whom K belongs to.

A simple standard pattern is a simple pattern of a standard tiling. An example
of a simple standard pattern P is shown on the following picture (P consists of
all triangles intersecting the circle, the center of the pattern is inside the circle):

The proof is based on the following two lemmas.

Lemma 1. Assume that a 1-tiling T tiles a convex set U . Assume further that
S is a subset of U of diameter less than a certain positive constant ε. Then T
has a simple pattern P that covers S.

Lemma 2. For every d the family of all simple patterns of d-tilings is finite and
their number does not depend on d. (We identify here isometric patterns.)

Both lemmas are quite technical and will be proved in the Appendix. Now
we finish the proof of the theorem assuming the lemmas. Fix D and d. W.l.o.g.
assume that d = 1. Consider a standard 1-tiling Stn of some depth n. Let W
be any pattern of diameter at most D of the tiling Stn. We claim that there are
a number k bounded by a function of D and a simple pattern P of a standard
(1/ψ)k-tiling such that k-refinement of P includes W .

Let k be the minimal integer such that ψkD is less that the constant ε from
Lemma 1. If it happens that k > n then let k = n. Let Stn−k denote the k-
coarsening of the tiling Stn. If k = n we are done, as we can let P = Tn−k.
Otherwise, ψkD < ε and hence the diameter of W measured in units (1/ψ)k is
less than ε. By Lemma 1 W is covered by a simple pattern P of Tn−k. Hence
the k-refinement of P includes W .

By Lemma 2 the number of simple patterns of Tn−k is bounded by a constant
and k is bounded by a function of D. For each k and each simple pattern P the
number of subsets of the k-refinement of P is finite. This completes the proof of
the theorem modulo the lemmas.

Theorem 1 gives a hope to describe LS tilings by a finite number of patterns.
This would be possible if there were D such that every D-locally standard tiling
is LS. The main result of this paper states that this is not the case.
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Theorem 3. For every D there is a D-locally standard tiling which is not locally
standard and even not infinitely coarsenable.

Proof. The proof of this theorem is fairly simple (but hard to find). Consider the
following periodic 1-tiling U of the plane (the first configuration on the picture):

All its simple patterns are standard: they appear in the standard tiling of depth
6 (the second configuration on the picture).

Fix any D. Let ε be the constant from Lemma 1. Choose i so that Dψi < ε
and let Ui be the i-refinement of tiling U . Then Ui is the sought tiling.

Indeed, by Lemma 1 for every pattern of Ui of diameter less than D there is
a simple pattern P of U such that W is a subset of the i-refinement of P . As we
have seen, all simple patterns of U are standard and so does P . Hence W is a
standard pattern as well.

On the other hand, being periodic, the tiling Ui is not infinitely coarsenable
(actually, it admits only i+ 2 coarsenings).

Acknowledgments. The author is sincerely grateful to Alexander Shen,
Andrey Romashchenko and Thomas Fernique for useful comments.
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A Proof of the Lemma 1

Assume that ε is small enough (in the end we will see how small it should be).
Let S denote the convex closure of W . Then U includes S. As convex closure

has the same diameter as the set itself, the diameter of S is at most ε. Assuming
that ε is less than the lengths of all sides of triangles from T we conclude that
S has at most one node of a triangle from T . If it has such a node then let K
be that (unique) node. In this case the simple pattern P of T with the center K
covers S (and hence W ). Indeed, if ε is less than the altitude of a small triangle
then all the points of all the triangles from the simple pattern P are at the
distance at least ε > D from K. As the diameter of S is at most D, this implies
all the points of S are at distance at most D from K and are thus covered by
the pattern.

Assume now that S has no node of a triangle from T . If S covered by only
one triangle we are done — any its node can be taken as the center of the sought
simple pattern.

Otherwise S has no nodes of triangles from T and cannot be covered by one
triangle from T . Let A be any triangle intersecting S, say in point C, and let
D be any point from S \A. Consider the segment [C,D]. At some point E that
segment leaves the triangle A. The points of [E,D] that lie very close to E belong
to S and hence to some triangle B from T . That triangle includes the point E.

If E is close to a node of A or a node of B we can let K be that node. Indeed,
all points in S are close to E and E is close to K. Hence all points from S are
close to K and are thus covered by the simple pattern with center K. Otherwise
E is the internal node of a leg of A and an internal node of a leg of B and thus
A and B share a common segment. All nodes of A and B are far from E and
hence from S. This implies that S is covered by A∪B. It remains to notice that
A and B belong to a simple pattern of T : indeed, both ends of the line segment
shared by A,B can be chosen as the center of that simple pattern.

A calculation shows that ε equal to the half of altitude of the small triangle
times ψ2 will do.

B Proof of the Lemma 2

The second statement of the theorem (the number of simple patterns of standard
d-tilings does not depend on d) is obvious. So we will assume that d = 1.

Consider standard 1-tilings of depth 9 and 10 (Fig. 1). A careful examination
reveals that every simple pattern of the second tiling is isometric to a simple
pattern of the first tiling. This implies that every simple pattern of standard
1-tiling of depth 11 is isometric to a simple pattern of the standard 1-tilings of
depth 10. Indeed, let K be a node of a triangle of St11 and P the simple pattern
of St11 with center K.

Assume first that K is also a node of a triangle from the coarsening St10 of
St11 (an “old” node). Let P ′ be the simple pattern of St10 with center K. Then
P is a subset of the refinement of P ′.
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As every simple pattern of St10 is isomorphic to a simple pattern of St9, so
does P ′. Let Q′ be the simple pattern of St9 that is isomorphic to P ′ and L
its center. Then the set of all triangles in St10 that include the point L forms a
simple pattern of St10 isomorphic to P .

OtherwiseK is a “new node”, it is not a node of a triangle from the coarsening
St10 of St11. Distinguish two cases (1) K is on the border of the area tiled by
St11 and (2) K is an inner node of the area tiled by St11 (examples of such nodes
are inside two circles on Fig. 1). The fist case is easy, as there are plenty such
simple patterns of St10.

The second case is more delicate. We claim that in this case K is always the
center of a simple pattern isomorphic to that whose center lies inside the circle
on Fig. 1. It is enough to prove that claim, as there are plenty such patterns in
St10.

Any new inner node K lies of the hypotenuse of a large triangle of St10, say A,
and also belongs to a triangle B, adjacent to A. Therefore we have to analyze the
standard patterns consisting of two adjacent triangles. It turns out that there
are 10 such patterns and we are going to find all of them.

Let T be a standard pattern consisting of adjacent triangles A,B. Let n be
the minimal n such that T is a subset of a standard tiling Stn. Call such n the
index of T . Let us show first that any pattern of index n > 1 is a subset of the
refinement of a pattern of index n− 1.

For n = 2 this is easily verified ad hoc. Assume that n > 2. Then Stn is
a disjoint union of two standard tilings Tn−1 and Tn−2. Let I stand for the
common segment of indexes of A,B. Coarsen Tn−1 and Tn−2 and denote the
resulting tilings by T ′

n−2 and T ′
n−3, respectively. Let A

′, B′ be the triangles from
T ′
n−2, T

′
n−1 including A,B. Then A′.B′ also share the segment I and hence form

a pattern of a smaller index than n.
This observation allows to find all standard patterns consisting of two adjacent

triangles in the order of increasing its indexes. The only such pattern of index 1
is the pair of small and large triangles that is obtained by refining T0 (a couple
of a small and large triangles). All patterns of index 2 are subsets of T2. There
is only one such pattern (a large triangle whose large leg is the hypotenuse of a
small triangle, see the third picture on page 30). All patterns of index 3 (or less)
are subsets of the refinement of this pattern. As one can see on the third picture
on page 30 the only pattern of index 3 is the pair of large triangles sharing the
hypotenuse. All patterns of index 4 (or less) are subsets of the refinement of this
pattern. Again on the third picture on page 30 we can see that there are two new
different patterns of index 4 (two large triangles sharing a small part of their
large legs and a small triangle whose small leg is a part of the large leg of a large
triangle). Each of the patterns of index 4 produces one pattern of index 5:
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Thus we have two patterns of index 5: two large triangles sharing parts of their
hypotenuses and a large triangle whose small leg is a part of the hypotenuse of
a large triangle). The second pattern produces now new patterns. The first on
one produces one pattern of index 6 (two small triangles sharing the small leg):

This pattern produces one pattern (two large triangles sharing the small leg) of
index 7:

This pattern produces one pattern (two small triangles sharing the hypotenuse)
of index 8:

Finally, this pattern produces no new patterns:
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Now we can see that the only standard pair of adjacent triangles whose refine-
ment yields a new inner node is the pattern of index 3 (the pair of large triangles
sharing the hypotenuse). And both new inner nodes are centers of simple pat-
terns isomorphic to that on Fig. 1.

Fig. 1. Standard tilings of depths 9 and 10
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In the similar way we can show that every simple pattern of standard 1-tiling
of depth 12 is isometric to a simple pattern of the standard 1-tilings of depth
11 etc. Thus any simple pattern of any standard 1-tiling is isometric to a simple
pattern of St9.
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Abstract. We define the concept of a quantum hash generator and offer
a design, which allows one to build a large number of different quantum
hash functions. The construction is based on composition of a classical
ε-universal hash family and a given family of functions – quantum hash
generators.
In particular, using the relationship between ε-universal hash families

and Freivalds’ fingerprinting schemas we present explicit quantum hash
function and prove that this construction is optimal with respect to the
number of qubits needed for the construction.
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1 Introduction

Quantum computing is inherently a very mathematical subject, and the discus-
sions of how quantum computers can be more efficient than classical computers
in breaking encryption algorithms started since Shor invented his famous quan-
tum algorithm. The answer of the cryptography community is “Post-quantum
cryptography”, which refers to research on problems (usually public-key cryp-
tosystems) that are no more efficiently breakable using quantum computers than
by classical computer architectures. Currently post-quantum cryptography in-
cludes several approaches, in particular, hash-based signature schemes such as
Lamport signatures and Merkle signature schemes.

Hashing itself is an important basic concept for the organization transforma-
tion and reliable transmission of information. The concept known as “universal
hashing“ was invented by Carter and Wegman [7] in 1979. In 1994 a relationship
was discovered between ε-universal hash families and error-correcting codes [5].
In [16] Wigderson characterizes universal hashing as being a tool which “should
belong to the fundamental bag of tricks of every computer scientist”.

Gottesman and Chuang proposed a quantum digital system [9], based on quan-
tummechanics. Their results are based on quantum a fingerprinting technique and
add “quantum direction” for post-quantum cryptography. Quantum fingerprints
have been introduced by Buhrman, Cleve, Watrous and de Wolf in [6]. Gavinsky
and Ito [8] viewed quantum fingerprints as cryptographic primitives.
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In [2,3] we considered quantum fingerprinting as a construction for binary
hash functions and introduced a non-binary hash function. The quantum hashing
proposed a suitable one-way function for quantum digital signature protocol from
[9]. For more introductory information we refer to [2].

In this paper, we define the concept of a quantum hash generator and offer
a design, which allows one to build different quantum hash functions. The con-
struction is based on the composition of classical ε-universal hash family with a
given family of functions – quantum hash generator.

The construction proposed combines the properties of robust presentation
of information by classical error-correcting codes together with the possibility
of highly compressed presentation of information by quantum systems. In par-
ticular, using the relationship between ε-universal hash families and Freivalds’
fingerprinting schemas we present an explicit quantum hash function and prove
that this construction is optimal with respect to of number of qubits needed for
the construction.

1.1 Definitions and Notations

We begin by recalling some definitions of classical hash families from [13]. Given
a domain X, |X| = K, and a range Y, |Y| = M , (typically with K ≥M), a hash
function f is a map

f : X→ Y,

that hash long inputs to short outputs.
We let q to be a prime power and Fq be a finite field of order q. Let Σk be a

set of words of length k over a finite alphabet Σ. In the paper we let X = Σk,
or X = Fq, or X = (Fq)

k, and Y = Fq. A hash family is a set F = {f1, . . . , fN}
of hash functions fi : X→ Y.

ε universal hash family. A hash family F is called an ε-universal hash family
if for any two distinct elements w,w′ ∈ X, there exist at most εN functions
f ∈ F such that f(w) = f(w′). We will use the notation ε-U (N ;K,M) as an
abbreviation for ε-universal hash family.

Clearly we have, that if function the f is chosen uniformly at random from a
given ε-U (N ;K,M) hash family F , then the probability that any two distinct
words collide under f is at most ε.

The case of ε = 1/N is known as universal hashing.

Classical-quantum function. The notion of a quantum function was considered
in [11]. In this paper we use the following variant of a quantum function. First
recall that mathematically a qubit |ψ〉 is described as |ψ〉 = α|0〉 + β|1〉, where
α and β are complex numbers, satisfying |α|2 + |β|2 = 1. So, a qubit may be
presented as a unit vector in the two-dimensional Hilbert complex space H2. Let
s ≥ 1. Let (H2)⊗s be the 2s-dimensional Hilbert space, describing the states of
s qubits, i.e. (H2)⊗s is made up of s copies of a single qubit space H2

(H2)⊗s = H2 ⊗ . . .⊗H2 = H2s .
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For K = |X| and integer s ≥ 1 we define a (K; s) classical-quantum function
to be a map of the elements w ∈ X to quantum states |ψ(w)〉 ∈ (H2)⊗s

ψ : X→ (H2)⊗s. (1)

We will also use the notation ψ : w �→ |ψ(w)〉 for ψ.

2 Quantum Hashing

What we need to define for quantum hashing and what is implicitly assumed in
various papers (see for example [2] for more information) is a collision resistance
property. However, there is still no such notion as quantum collision. The rea-
son why we need to define it is the observation that in quantum hashing there
might be no collisions in the classical sense: since quantum hashes are quantum
states they can store an arbitrary amount of data and can be different for dif-
ferent messages. But the procedure of comparing those quantum states implies
measurement, which can lead to collision-type errors.

So, a quantum collision is a situation when a procedure that tests the equality
of quantum hashes and outputs “true”, while hashes are different. This proce-
dure can be a well-known SWAP-test (see for example [2] for more information
and citations) or something that is adapted for specific hashing function. Any-
way, it deals with the notion of distinguishability of quantum states. Since non-
orthogonal quantum states cannot be perfectly distinguished, we require them
to be “nearly orthogonal”.

– For δ ∈ (0, 1/2) we call a function

ψ : X→ (H2)⊗s

δ-resistant, if for any pair w,w′ of different elements,

|〈ψ(w) |ψ(w′)〉| ≤ δ.

Theorem 1. Let ψ : X→ (H2)⊗s be a δ-resistant function. Then

s ≥ log log |X| − log log
(
1 +
√
2/(1− δ)

)
− 1.

Proof. First we observe, that from the definition |||ψ〉|| =
√
〈ψ |ψ〉 of the norm

it follows that

|||ψ〉 − |ψ′〉||2 = |||ψ〉||2 + |||ψ′〉||2 − 2〈ψ |ψ′〉.

Hence for an arbitrary pair w,w′ of different elements from X we have that

|||ψ(w)〉 − |ψ(w′)〉|| ≥
√
2(1− δ).

We let Δ =
√
2(1− δ). For short we let (H2)⊗s = V in this proof. Consider

a set Φ = {|ψ(w)〉 : w ∈ X}. If we draw spheres of radius Δ/2 with centers
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|ψ〉 ∈ Φ then spheres do not pairwise intersect. All these K spheres are in a

large sphere of radius 1+Δ/2. The volume of a sphere of radius r in V is cr2
s+1

for the complex space V . The constant c depends on the metric of V . From this
we have, that the number K is bonded by the number of “small spheres” in the
“large sphere”

K ≤ c(1 +Δ/2)2
s+1

c(Δ/2)2s+1 .

Hence
s ≥ log logK − log log

(
1 +
√
2/(1− δ)

)
− 1.

�

The notion of δ-resistance naturally leads to the following notion of quantum
hash function.

Definition 1 (Quantum hash function). Let K, s be positive integers and
K = |X|. We call a map

ψ : X→ (H2)⊗s

an δ-resistant (K; s) quantum hash function if ψ is a δ-resistant function.
We use the notation δ-R (K; s) as an abbreviation for δ-resistant (K; s) quan-

tum hash functions.

3 Generator for Quantum Hash Functions

In this section we present two constructions of quantum hash functions and
define notion of quantum hash function generator, which generalizes these con-
structions.

3.1 Binary Quantum Hashing

One of the first explicit quantum hash functions was defined in [6]. Originally
the authors invented a construction called “quantum fingerprinting” for testing
the equality of two words for a quantum communication model. The crypto-
graphical aspects of quantum fingerprinting are presented in [8]. The quantum
fingerprinting technique is based on binary error-correcting codes. Later this con-
struction was adopted for cryptographic purposes. Here we present the quantum
fingerprinting construction from the quantum hashing point of view.

An (n, k, d) error-correcting code is a map

C : Σk → Σn

such that, for any two distinct words w,w′ ∈ Σk, the Hamming distance between
code words C(w) and C(w′) is at least d. The code is binary if Σ = {0, 1}.

The construction of a quantum hash function based on quantum fingerprinting
in as follows.
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– Let c > 1 and δ < 1. Let k be a positive integer and n > k. Let E : {0, 1}k →
{0, 1}n be an (n, k, d) binary error-correcting code with Hamming distance
d ≥ (1− δ)n.

– Define a family of functions FE = {E1, . . . , En}, where Ei : {0, 1}k → F2 is
defined by the rule: Ei(w) is the i-th bit of the code word E(w).

– Let s = logn + 1. Define the classical-quantum function ψFE : {0, 1}k →
(H2)⊗s, determined by a word w as

ψFE (w)=
1√
n

n∑
i=1

|i〉|Ei(w)〉=
1√
n

n∑
i=1

|i〉
(
cos

πEi(w)

2
|0〉+ sin

πEi(w)

2
|1〉
)
,

For s = logn + 1, the function ψFE is an δ-R (2k; s) quantum hash function,
that is, for two different words w,w′ we have

|〈ψFE (w) |ψFE (w
′)〉| ≤ δn/n = δ.

Observe, that the authors in [6] propose, for the first choice of such binary
codes, Justesen codes with n = ck, which give δ < 9/10+1/(15c) for any chosen
c > 2. Next we observe, that the above construction of a quantum hash function
needs logn+1 qubits for the fixed δ ≈ 9/10+ 1/(15c). This number of qubits is
good enough in the sense of the lower bound of Theorem 1.

A non-binary quantum hash function is presented in [2] and is based on the
construction from [1].

3.2 Non-binary Quantum Hashing

We present the non-binary quantum hash function from [2] in the following form.
For a field Fq, let B = {b1, . . . , bT } ⊆ Fq. For every bj ∈ B and w ∈ Fq, define a
function hj : Fq → Fq by the rule

hj(w) = bjw (mod q).

Let H = {h1, . . . hT } and t = logT . We define the classical-quantum function

ψH : Fq → (H2)⊗(t+1)

by the rule

|ψH(w)〉 = 1√
T

T∑
j=1

|j〉
(
cos

2πhj(w)

q
|0〉+ sin

2πhj(w)

q
|1〉
)
.

The following is proved in [2].

Theorem 2. Let q be a prime power and Fq be a field. Then, for arbitrary δ > 0,
there exists a set B = {b1, . . . , bT } ⊆ Fq (and, therefore, a corresponding family
H = {h1, . . . , hT } of functions) with T = �(2/δ2) ln(2q)�, such that the quantum
function ψH is a δ-R (q; t+ 1) quantum hash function.
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In the rest of the paper we use the notation Hδ,q to denote this family of
functions from Theorem 2 and the notation ψHδ,q

to denote the corresponding
quantum function.

Observe, that the above construction of the quantum hash function ψHδ,q

needs t + 1 ≤ log log 2q + 2 log 1/δ + 3 qubits. This number of qubits is good
enough in the sense of the lower bound of Theorem 1.

Numerical results on ψHδ,q
are presented in [2].

3.3 Quantum Hash Generator

The above two constructions of quantum hash functions are using certain con-
trolled rotations of target qubits. These transformations are generated by the
corresponding discrete functions from a specific family of functions (FE and Hδ,q

respectively).
These constructions lead to the following definition.

Definition 2 (Quantum hash generator). Let K = |X| and let G = {g1, . . . ,
gD} be a family of functions gj : X→ Fq. Let � ≥ 1 be an integer. For g ∈ G let
ψg be a classical-quantum function ψg : X→ (H2)⊗� determined by the rule

ψg : w �→ |ψg(w)〉 =
2�∑
i=1

αi(g(w))|i〉, (2)

where the amplitudes αi(g(w)), i ∈ {1, . . . , 2�}, of the state |ψg(w)〉 are deter-
mined by g(w). Let d = logD. We define a classical-quantum function ψG : X→
(H2)⊗(d+�) by the rule

ψG : w �→ |ψG(w)〉 =
1√
D

D∑
j=1

|j〉
∣∣ψgj (w)

〉
. (3)

We say that the family G generates the δ-R (K; d+�) quantum hash function ψG

and we call G a δ-R (K; d+ �) quantum hash generator, if ψG is a δ-R (K; d+ �)
quantum hash function.

According to Definition 2 the family FE = {E1, . . . , En} from Section 3.1 is a
δ-R (2k; logn+1) quantum hash generator and the family Hδ,q from Section 3.2
is δ-R (q; t+ 1) quantum hash generator.

4 Quantum Hashing via Classical ε-Universal Hashing
Constructions

In this section we present a construction of a quantum hash generator based
on the composition of an ε-universal hash family with a given quantum hash
generator. We begin with the definitions and notation that we use in the rest of
the paper.
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Let K = |X|, M = |Y|. Let F = {f1, . . . , fN} be a family of functions, where

fi : X → Y.

Let q be a prime power and Fq be a field. Let H = {h1, . . . , hT } be a family
of functions, where

hj : Y→ Fq.

For f ∈ F and h ∈ HB, define composition g = f ◦ h,

g : X→ Fq,

by the rule
g(w) = (f ◦ h)(w) = h(f(w)).

Define composition G = F ◦H of two families F and H as follows.

G = {gij = fi ◦ hj : i ∈ I, j ∈ J},

where I = {1, . . . , N}, J = {1, . . . , T }.

Theorem 3. Let F = {f1, . . . , fN} be an ε-U (N ;K,M) hash family. Let � ≥
1. Let H = {h1, . . . hT } be a δ-R (M ; logT + �) quantum hash generator. Let
logK > logN + logT + �.

Then the composition G = F ◦H is an Δ-R (K; s) quantum hash generator,
where

s = logN + logT + � (4)

and
Δ ≤ ε+ δ. (5)

The proof of Theorem 3 is presented in the next section.

4.1 Proof of Theorem 3

The δ-R (M ; logT +�) quantum hash generatorH generates the δ-R (M ; logT +
�) quantum hash function

ψH : v �→ 1√
T

∑
j∈J

|j〉
∣∣ψhj (v)

〉
. (6)

For s = logN + logT + �, using the family G, define the map

ψG : X→ (H2)⊗s

by the rule

|ψG(w)〉 =
1√
N

∑
i∈I

|i〉 ⊗ |ψH(fi(w))〉. (7)

We show the Δ resistance of ψG.
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Consider a pair w,w′ of different elements from X and their inner product
〈ψG(w) |ψG(w

′)〉. Using the linearity of the inner product we have that

〈ψG(w) |ψG(w
′)〉 = 1

N

∑
i∈I

〈ψH(fi(w)) |ψH(fi(w
′))〉.

We define two sets of indexes Ibad and Igood:

Ibad = {i ∈ I : fi(w) = fi(w
′)}, Igood = {i ∈ I : fi(w) �= fi(w

′)}.

Then we have

|〈ψG(w) |ψG(w
′)〉| ≤ 1

N

∑
i∈Ibad

|〈ψH(fi(w)) |ψH(fi(w
′))〉|

+
1

N

∑
i∈Igood

|〈ψH(fi(w)) |ψH(fi(w
′))〉|. (8)

The hash family F is ε-universal, hence

|Ibad| ≤ εN.

The quantum function ψH : Y→ (H2)log T+� is δ-resistant, hence for an arbitrary
pair v, v′ of different elements from Y one has

|〈ψH(v) |ψH(v′)〉| ≤ δ.

Finally from (8) and the above two inequalities we have that

|〈ψG(w) |ψG(w
′)〉| ≤ ε+

|Igood|
N

δ ≤ ε+ δ.

The last inequality proves Δ-resistance of ψG(w) (say for Δ = ε+ δ(Igood|)/N)
and proves the inequality (5).

To finish the proof of the theorem it remains to show that the function ψG

can be presented in the form displayed in (3). From (6) and (7) we have that

|ψG(w)〉 =
1√
N

∑
i∈I

|i〉 ⊗

⎛⎝ 1√
T

∑
j∈J

|j〉
∣∣ψhj (fi(w))

〉⎞⎠ .

Using the notation from (2) the above expression can be presented in the fol-
lowing form (3).

|ψG(w)〉 =
1√
NT

∑
i∈I,j∈J

|ij〉
∣∣ψgij (w)

〉
,

here |ij〉 denotes a basis quantum state, where ij is treated as a concatenation
of the binary representations of i and j.
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5 Constructions of Quantum Hashing Based on Classical
Universal Hashing

The following statement is a corollary of Theorem 3 and a basis for explicit
constructions of quantum hash functions in this section. Let q be a prime power
and Fq be a field. Let δ ∈ (0, 1). Let Hδ,q be the family of functions from
Theorem 2. Let |X| = K.

Theorem 4. Let F = {f1, . . . , fN} be an ε-U (N ;K, q) hash family, where fi :
X→ Fq. Then for arbitrary δ > 0, family G = F ◦Hδ,q is a Δ-R (K; s) quantum
hash generator, where

s ≤ logN + log log q + 2 log 1/δ + 3

and
Δ ≤ ε+ δ.

Proof. The family Hδ,q = {h1, . . . , hT }, where hi : Fq → Fq, T = �(2/δ2) ln(2q)�,
� = 1, and s = logT + 1 ≤ logn+ log log q + 2 log 1/δ + 3 is δ-R (q; s) quantum
hash generator. �

The next section presents an example of quantum hash functions based on
Freivalds’ fingerprinting construction.

5.1 Quantum Hashing Based on Freivalds’ Fingerprinting

For a fixed positive constant k let X = {0, 1}k. Let c > 1 be a positive integer
and let M = ck ln k. Let Y = {0, 1, . . . ,M − 1}.

For the i-th prime pi ∈ Y define a function (fingerprint)

fi : X→ Y

by the rule
fi(w) = w (mod pi).

Here we treat a word w = w0w1 . . . wk−1 also as an integer w = w0+w12+ · · ·+
wk−12

k−1. Consider the set

FM = {f1, . . . , fπ(M)}

of fingerprints. Here π(M) denotes the number of primes less than or equal to
M . Note that then π(M) ∼M/ lnM as M →∞. Moreover,

M

lnM
≤ π(M) ≤ 1.26

M

lnM
for M ≥ 17.

The following fact is based on a construction, “Freivalds’ fingerprinting
method”, due to Freivalds [10].
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Property 1. The set FM of fingerprints is a (1/c)-U (π(M); 2k,M) hash family.

Proof (sketch). For any pair w, w′ of distinct words from {0, 1}k the number
N(w,w′) = |{fi ∈ FM : fi(w) = fi(w

′)}| is bounded from above by k. Thus, if
we pick a prime pi (uniformly at random) from Y then

Pr[fi(w) = fi(w
′)] ≤ k

π(M)
≤ k lnM

M
.

Picking M = ck ln k for a constant c gives Pr[fi(w) = fi(w
′)] ≤ 1

c + o(1). �

Theorem 4 and Property 1 provide the following statement.

Theorem 5. Let c > 1 be a positive integer and let M = ck ln k. Let q ∈
{M, . . . , 2M} be a prime. Then, for arbitrary δ > 0, family G = FM ◦Hδ,q is a
Δ-R (2k; s) quantum hash generator, where

s ≤ log ck + log log k + log log q + 2 log 1/δ + 3

and

Δ ≤ 1

c
+ δ.

Proof. From Theorem 4 we have that

s ≤ log π(M) + log log q + 2 log 1/δ + 3.

From the choice of c above we have that M = ck ln k. Thus

s ≤ log ck + log log k + log log q + 2 log 1/δ + 3.

�

Remark 1. Note that from Theorem 1 we have

s ≥ log k + log log q − log log
(
1 +
√
2/(1− δ)

)
− 1.

This lower bound shows that the quantum hash function ψFM is good enough
in the sense of the number of qubits used for the construction.

Acknowledgement. We are grateful to Professor Helmut Jürgensen and anony-
mous referee for their valuable suggestions, that improved the presentation of
the paper.
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Abstract. In the paper we investigate a model for computing of Boolean
functions – Ordered Binary Decision Diagrams (OBDDs), which is a
restricted version of Branching Programs. We present several results on
the comparative complexity for several variants of OBDD models.
– We present some results on the comparative complexity of classical
and quantum OBDDs. We consider a partial function depending on
a parameter k such that for any k > 0 this function is computed by
an exact quantum OBDD of width 2, but any classical OBDD (de-
terministic or stable bounded-error probabilistic) needs width 2k+1.

– We consider quantum and classical nondeterminism. We show that
quantum nondeterminism can be more efficient than classical non-
determinism. In particular, an explicit function is presented which
is computed by a quantum nondeterministic OBDD with constant
width, but any classical nondeterministic OBDD for this function
needs non-constant width.

– We also present new hierarchies on widths of deterministic and non-
deterministic OBDDs. We focus both on small and large widths.

1 Introduction

Branching programs are one of the well known models of computation. These
models have been shown useful in a variety of domains, such as hardware ver-
ification, model checking, and other applications (see for example the book by
Wegener [20]). It is known that the class of Boolean functions computed by
polynomial size branching programs coincides with the class of functions com-
puted by non-uniform log-space machines. Moreover branching programs are a
convenient model for considering their various (natural) restrictive variants and
various complexity measures such as size (number of inner nodes), length, and
width.
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One important class of restrictive branching programs is that of oblivious read-
once branching programs, also known in applied computer science as Ordered
Binary Decision Diagrams (OBDD) [20]. Since the length of an OBDD is at most
linear (in the length of the input), the main complexity measure is “width”.

OBDDs can also be seen as nonuniform automata (see for example [2]). Dif-
ferent variants of OBDDs were considered, i.e. deterministic, nondeterministic,
probabilistic, and quantum, and many results have been proved on the compara-
tive power of deterministic, nondeterministic, and randomized OBDDs [20]. For
example, Ablayev and Karpinski [6] presented the first function that is polyno-
mially easy for randomized OBDDs and exponentially hard for deterministic and
even nondeterministic OBDDs. More specifically, it was proven that the OBDD
variants of coRP and NP are different.

In the last decade the quantum model of OBDD came into play [3],[14],[17].
It was proven that quantum OBDDs can be exponentially cheaper than classical
ones and it was shown that this bound is tight [5].

In this paper we present the first results on the comparative complexity for
classical and quantum OBDDs computing partial functions. Then, we focus on
the width complexity of deterministic and nondeterministic OBDDs, which have
been investigated in several papers (see for more information and citations [11],
[12]). Here we present very strict hierarchies for the classes of Boolean functions
computed by deterministic and nondeterministic OBDDs.

The paper is organized as follows. Section 2 contains the definitions and no-
tation used in the paper. In Section 3, we compare classical and exact quantum
OBDDs. We consider a partial function depending on a parameter k such that,
for any k > 0, this function is computed by an exact quantum OBDD of width 2
but deterministic or bounded-error probabilistic OBDDs need width 2k+1. Also
it is easy to show that nondeterministic OBDDs need width k + 1. In Section
4, we consider quantum and classical nondeterminism. We show that quantum
nondeterministic OBDDs can be more efficient than their classical counterparts.
We present an explicit function which is computed by a quantum nondeterminis-
tic OBDD with constant width, but any classical nondeterministic OBDD needs
non-constant width. Section 5 contains our results on hierarchies on the sublinear
(5.1) and larger (5.2) widths of deterministic and nondeterministic OBDDs.

The proofs of lower bound results (Theorem 2 and Lemma 3) are based on pi-
geonhole principle. The lower bound of Theorem 4 uses the technique of Markov
chains. For the full proofs see the full version of the paper [4].

2 Preliminaries

We refer to [20] for more information on branching programs. The main model
investigated throughout the paper is OBDD (Ordered Binary Decision Diagram),
a restricted version of branching programs.

In this paper we use the following notation for vectors. We use subscripts for
enumerating the elements of vectors and strings and superscripts for enumerating
vectors and strings. For a binary string ν, #1(ν) and #0(ν) are the numbers of
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1’s and 0’s in ν, respectively. We denote #k
0(ν) and #k

1(ν) to be the numbers of
1’s and 0’s in the first k elements of string ν, respectively.

For a given n > 0, a probabilistic OBDD Pn with width d, defined on {0, 1}n,
is a 4-tuple Pn = (T, v0, Accept, π), where

– T = {Tj : 1 ≤ j ≤ n} such that Tj = (Aj(0), Aj(1)) is an ordered pair
of (left) stochastic matrices representing the transitions, where, at the j-th
step, Aj(0) or Aj(1), determined by the corresponding input bit, is applied.

– v0 is a zero-one initial stochastic vector (initial state of Pn).
– Accept ⊆ {1, . . . , d} is the set of accepting nodes.
– π is a permutation of {1, . . . , n} defining the order of testing the input bits.

For any given input ν ∈ {0, 1}n, the computation of Pn on ν can be traced
by a stochastic vector which is initially v0. In each step j, 1 ≤ j ≤ n, the input
bit xπ(j) is tested and then the corresponding stochastic operator is applied:

vj = Aj(xπ(j))v
j−1,

where vj represents the probability distribution vector of nodes after the j-th
step, 1 ≤ j ≤ n. The accepting probability of Pn on ν is∑

i∈Accept

vni .

We say that a function f is computed by Pn with bounded error if there exists
an ε ∈ (0, 12 ] such that Pn accepts all inputs from f−1(1) with a probability at
least 1

2 + ε and Pn accepts all inputs from f−1(0) with a probability at most
1
2 − ε. We say that Pn computes f exactly if ε = 1/2.

A deterministic OBDD is a probabilistic OBDD restricted to use only 0-1
transition matrices. In other words, the system is always in a single node and,
from each node, there is exactly one outgoing transition for each tested input
bit.

A nondeterministic OBDD (NOBDD) can have the ability of making more
than one outgoing transition for each tested input bit from each node and so the
program can follow more than one computational path and if one of the path
ends with an accepting node, then the input is accepted (rejected, otherwise).

– An OBDD is called stable if each transition set Tj is identical for each level.
– An OBDD is called ID (ID-OBDD) if the input bits are tested in the order
π = (1, 2, . . . , n). If a stable ID-OBDD has a fixed width and transition rules
for each n, then it can be considered as a realtime finite automaton.

Quantum computation is a generalization of classical computation [19]. There-
fore, each quantum model can simulate its probabilistic counterparts. In some
cases, on the other hand, the quantum models are defined in a restricted way,
e.g., using only unitary operators during the computation followed by a single
measurement at the end, and so they may not simulate their probabilistic coun-
terparts. The literature on quantum automata contains many results of this kind
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such as [13,7,9]. A similar result was also given for OBDDs in [17], in which a
function with a small size of deterministic OBDD was given but the quantum
OBDD defined in a restricted way needs exponential size to solve this function.

Quantum OBDDs that are defined with the general quantum operators, i.e.
superoperator [18,19,22], followed by a measurement on the computational ba-
sis at the end can simulate their classical counterpart with the same size and
width. So we can always conclude that any quantum class contains its classical
counterpart.

A quantum OBDD is the same as a probabilistic OBDD with the following
modifications:

– The state set is represented by a d-dimensional Hilbert space over the field
of complex numbers. The initial state is |ψ〉0 = |q0〉 where q0 corresponds to
the initial node.

– Instead of a stochastic matrix, we apply a unitary matrix in each step. That
is, T = {Tj : 1 ≤ j ≤ n and Tj = (U0

j , U
1
j )}, where, at the j-th step, U0

j or

U1
j , determined by the corresponding input bit, is applied,

– At the end, we take a measurement on the computational basis.

The state of the system is updated as follows after the j-th step:

|ψ〉j = U
xπ(j)

j (|ψ〉j−1),

where |ψ〉j−1 and |ψ〉j represent the state of the system after the (j − 1)-th and
j-th steps, respectively, where 1 ≤ j ≤ n.

The accepting probability of the quantum program on ν is calculated from
|ψ〉n = (z1, . . . , zd) as ∑

i∈Accept

|zi|2.

3 Exact Quantum OBDDs

In [8], Ambainis and Yakaryılmaz defined a new family of unary promise prob-

lems: For any k > 0, Ak = (Ak
yes, A

k
no) such that Ak

yes = {a(2i)2k : i ≥ 0} and

Ak
no = {a(2i+1)2k : i ≥ 0}. They showed that each member of this family (Ak)

can be solved exactly by a 2-state realtime quantum finite automaton (QFA), but
any exact probabilistic finite automaton (PFA) needs at least 2k+1 states. Re-
cently, Rashid and Yakaryılmaz [16] showed that bounded-error realtime PFAs
also need at least 2k+1 states for solving Ak.1 Based on this promise problem,
we define a partial function:

PartialMODkn(ν) =

⎧⎨⎩1 , if #1(ν) = 0 (mod 2k+1),
0 , if #1(ν) = 2k (mod 2k+1),
∗ , otherwise,

1 The same result is also proved for two-way nondeterministic finite automata by
Geffert and Yakaryılmaz [10].
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where the function is not defined for the inputs mapping to “*”. We call the
inputs where the function takes the value of 1 (0) as yes-instances (no-instances).

Theorem 1. For any k ≥ 0, PartialMODkn can be solved by a stable quantum
ID-OBDD with width 2 exactly.

The OBDD can be constructed in the same way as a QFA, which solves
problem Ak [8].

We show that the width of deterministic or bounded-error stable probabilistic
OBDDs that solve PartialMODkn cannot be less than 2k+1.

Remark 1. Note that, the proof for deterministic OBDDs is not similar to the
proof for automata because potentially the nonstability can give profit. Also this
proof is different from proofs for total functions (for example,MODp) due to the
existence of incomparable inputs. Note that, classical one-way communication
complexity techniques also fail for partial functions (for example, it can be shown
that the communication complexity of PartialMODkn is 1), and we need to use a
more careful analysis in the proof.

A deterministic stable ID-OBDD with width 2k+1 for PartialMODkn can be eas-
ily constructed. We left open the case of bounded-error non-stable probabilistic
OBDDs.

Theorem 2. For any k ≥ 0, there are infinitely many n such that any deter-
ministic OBDD computing the partial function PartialMODkn has width at least
2k+1.

Proof. Let ν ∈ {0, 1}n, ν = σγ. We call γ valid for σ if ν ∈ (PartialMODkn)
−1(0)∪

(PartialMODkn)
−1(1). We call two substrings σ′ and σ′′ comparable if for all γ it

holds that γ is valid for σ′ iff γ is valid for σ′′. We call two substrings σ′ and σ′′

nonequivalent if they are comparable and there exists a valid substring γ such
that PartialMODkn(σ

′γ) �= PartialMODkn(σ
′′γ) .

Let P be a deterministic OBDD computing the partial function PartialMODkn.
Note that paths associated with nonequivalent strings must lead to different
nodes. Otherwise, if σ and σ′ are nonequivalent, there exists a valid string γ
such that PartialMODkn(σγ) �= PartialMODkn(σ

′γ) and computations on these
inputs lead to the same final node.

Let N = 2k and Γ = {γ : γ ∈ {0, 1}2N−1, γ = 0 · · · 01 · · ·1}. We will naturally
identify any string ν with the element a = #1(ν) (mod 2N) of the additive
group Z2N . We call two strings of the same length different if the numbers of
ones modulo 2N in them are different. We denote by ρ(γ1, γ2) = γ1 − γ2 the
distance between numbers γ1, γ2.

Let the width of P be t < 2N. At each step i (i = 1, 2, . . . ) of the proof we
will count the number of different strings, which lead to the same node (denote
this node vi). At the i-th step we consider the (2N − 1)i-th level of P .

Let i = 1. By the pigeonhole principle there exist two different strings σ1 and
σ2 from the set Γ such that the corresponding paths lead to the same node v1
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of the (2N − 1)-th level of P . Note that ρ(σ1, σ2) �= N, because in this case σ1

and σ2 are nonequivalent and cannot lead to the same node.
We will show by induction that in each step of the proof the number of different

strings which lead to the same node increases.
Step 2. By the pigeonhole principle there exist two different strings γ1 and γ2

from the set Γ such that corresponding paths from the node v1 lead to the same
node v2 of the (2N − 1)2-th level of P . In this case, the strings σ1γ1, σ2γ1, σ1γ2,
and σ2γ2 lead to the node v2. Note that ρ(γ

1, γ2) �= N, because in this case σ1γ1

and σ1γ2 are nonequivalent and cannot lead to the same node.
Adding the same number does not change the distance between the numbers,

so we have
ρ(σ1 + γ1, σ2 + γ1) = ρ(σ1, σ2)

and
ρ(σ1 + γ2, σ2 + γ2) = ρ(σ1, σ2).

Let γ2 > γ1. Denote Δ = γ2− γ1. Let us count the number of different numbers
among σ1 + γ1, σ2 + γ1, σ1 + γ1 +Δ, and σ2 + γ1 +Δ. Because σ1 and σ2 are
different and ρ(σ1, σ2) �= N , the numbers from the pair σ1 + γ1, and σ2 + γ1

coincide with corresponding numbers from the pair σ1+γ1+Δ and σ2+γ1+Δ
iff Δ = 0 (mod 2N). But Δ �= 0 (mod 2N) since the numbers γ1 and γ2 are
different and γ1, γ2 < 2N. The numbers σ1 + γ1 + Δ and σ2 + γ1 +Δ cannot
be a permutation of numbers σ1 + γ1 and σ2 + γ1 since ρ(γ1, γ2) �= N and
ρ(σ1, σ2) �= N . In this case, at least 3 numbers from σ1 + γ1, σ2 + γ1, σ1 + γ2,
and σ2 + γ2 are different.

Step of induction. Let the numbers σ1, . . . , σi be different on the step i − 1
and the corresponding paths lead to the same node vi−1 of the (2N−1)(i−1)-th
level of P .

By the pigeonhole principle there exist two different strings γ1 and γ2 from
the set Γ such that the corresponding paths from the node vi−1 lead to the same
node vi of the (2N−1)i-th level of P . So the paths σ1γ1, . . . , σiγ1, σ1γ2, . . . , σiγ2

lead to the same node vi. Let us estimate the number of different strings among
them. Note that ρ(γ1, γ2) �= N , because in this case the strings σ1γ1 and σ1γ2

are nonequivalent but lead to the same node.
The numbers σ1, . . . , σi are different and ρ(σl, σj) �= N for each pair (l, j)

such that l �= j. Let σ1 < · · · < σi. We will show that among σ1+γ1, . . . , σi+γ1

and σ1 + γ1 +Δ, . . . , σi + γ1 +Δ at least i+ 1 numbers are different.
The sequence of numbers σ1 + γ1, . . . , σi + γ1 coincides with the sequence

σ1 + γ1 +Δ, . . . , σi + γ1 +Δ iff Δ = 0 (mod 2N). But Δ �= 0 (mod 2N) since
γ1 and γ2 are different and γ1, γ2 < 2N.

Suppose that the sequence σ1+γ1+Δ, . . . , σi+γ1+Δ is a permutation of the
sequence σ1+γ1,. . . , σi+γ1. In this case, we have numbers a0, . . . , ar from Z2N

such that all aj are from the sequence σ1 + γ1,. . . , σi + γ1, a0 = ar = σ1 + γ1,
and aj = aj−1 + Δ, where j = 1, . . . , r. In this case, rΔ = 2Nm. Because
N = 2k, Δ < 2N , and Δ �= N we have that r is even. For z = r/2 we have
zΔ = Nm. Since all numbers from σ1 + γ1, . . . , σi + γ1 are different, we have
that ρ(a0, az) = N . So we have that a0 and az are nonequivalent, but the
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corresponding strings lead to the same node vi. So after the i-th step, we have
that at least i+ 1 different strings lead to the same node vi.

On the N -th step, we have that N +1 different strings lead to the same node
vN . Among these strings, there must be at least two nonequivalent strings. Thus
we can conclude that P cannot compute the function PartialMODkn correctly. ��

Theorem 3. For any k ≥ 0, there are infinitly many n such that any nondeter-
ministic OBDD computing the partial function PartialMODkn has width at least
k + 1.

The proof is based on the well-known correspondence between nondetermin-
istic and deterministic space complexity. That is, if the Boolean function f(X)
is computed by an NOBDD P of width d, then there is a deterministic OBDD
P ′ computing f which has width 2d. More precise lower bound for width of an
NOBDD computing PartialMODkn is presented in the full version of the paper
[4].

Theorem 4. For any k ≥ 0, there are infinitely many n such that any stable
probabilistic OBDD computing PartialMODkn with bounded error has width at
least 2k+1.

The proof of the Theorem is based on the technique of Markov chains and the
details are given in [4].

4 Nondeterministic Quantum and Classical OBDDs

In [21], Yakaryılmaz and Say showed that nondeterministic QFAs define a su-
perset of regular languages, called exclusive stochastic languages [15]. This class
contains the complements of some interesting languages: PAL = {w ∈ {0, 1}∗ :
w = wr}, where wr is the reverse of w, O = {w ∈ {0, 1}∗ : #1(w) = #0(w)},
SQUARE = {w ∈ {0, 1}∗ : #1(w) = (#0(w))

2}, and POWER = {w ∈ {0, 1}∗ :
#1(w) = 2#0(w)}.

Based on these languages, we define three symmetric functions for any input
ν ∈ {0, 1}n:

NotOn(ν) =

{
0 , if #0(ν) = #1(ν)
1 , otherwise

,

NotSQUAREn(ν) =

{
0 , if (#0(ν))

2 = #1(ν)
1 , otherwise

,

NotPOWERn(ν) =

{
0 , if 2#0(ν) = #1(ν)
1 , otherwise

.

Theorem 5. The Boolean functions NotOn, NotSQUAREn, and NotPOWERn can be
computed by a nondeterministic quantum OBDD with constant width.
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For each of these three functions, we can define a nondeterministic quantum
(stable ID-) OBDD with constant width based on nondeterministic QFAs for
the languages O, SQUARE, and POWER, respectively [21].

The complements of PAL,O, SQUARE and POWER cannot be recognized
by classical nondeterministic finite automata. But, for example, the function
version of the complement of PAL, NotPALn, which returns 1 only for the non-
palindrome inputs, is quite easy since it can be computed by a deterministic
OBDD with width 3. Note that the order of such an OBDD is not the natural
(1, . . . , n). However, as will be shown soon, this is not the case for the function
versions of the complements of the other three languages.

Theorem 6. There are infinitely many n such that any NOBDD Pn computing
NotOn has width at least �logn� − 1.

The proof of the theorem is based on the complexity properties of the Boolean
function NotOn. At first we will discuss complexity properties of this function in
Lemma 1. After that we will prove claim of the theorem.

Lemma 1. There are infinitely many n such that any OBDD computing NotOn
has width at least n/2 + 1. (For the proof see [4]).

Proof of Theorem 6. Let function NotOn be computed by NOBDD Pn of width
d, then in the same way as in the proof of Theorem 3 we have d ≥ log(n/2+1) >
logn− 1. �

In the same way we can show that there are infinitely many n such that any
NOBDD Pn computing the function NotSQUAREn has width at least Ω(log(n))
and any NOBDD P ′

n computing the function NotPOWERn has width at least
Ω(log log(n)).

5 Hierarchies for Deterministic and Nondeterministic
OBDDs

We denote OBDDd and NOBDDd to be the sets of Boolean functions that can be
computed by OBDDs and NOBDDs of width d = d(n), respectively, where n
is the number of variables. In this section, we present some width hierarchies for
OBDDd and NOBDDd. Moreover, we discuss relations between these classes. We
consider OBDDd and NOBDDd with small (sublinear) widths and large widths.

5.1 Hierarchies and Relations for Small Width OBDDs

We have the following width hierarchy for the deterministic and nondeterministic
models.

Theorem 7. For any integer n, d = d(n), and 1 < d ≤ n/2, we have

OBDDd−1 � OBDDd and (1)

NOBDDd−1 � NOBDDd. (2)
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Proof of Theorem 7. It is obvious that OBDDd−1 ⊆ OBDDd and NOBDDd−1 ⊆
NOBDDd. Let us show the inequalities of these classes. For this purpose we use
the complexity properties of the Boolean function MODkn.

Let k be a number such that 1 < k ≤ n/2. For any given input ν ∈ {0, 1}n,

MODkn(ν) =

{
1, if #1(ν) = 0 (mod k),
0, otherwise

.

Lemma 2. There is an OBDD (and so a NOBDD) Pn of width d which com-
putes the Boolean function MODkn and d = k.

Proof. At each level, Pn counts the number of 1’s by modulo k. Pn answers 1 iff
the number in the last step is zero. It is clear that the width of Pn is k. �

Lemma 3. Any OBDD and NOBDD computing MODkn has width at least k.

Proof. The proof is based on the pigeonhole principle. Let P be a deterministic
OBDD computing the function MODkn. For each input ν from (MODkn)

−1(1) there
must be exactly one path in P leading from source node to accepting node. Let
us consider k inputs {ν1, ν2, . . . , νk} from this set such that the last k bits in
νj(j = 1, . . . , k) contain exactly j 1’s and (k− j) 0’s. Let us consider the (n−k)-
th level of P . The acceptance paths for different inputs from {ν1, ν2, . . . , νk}
must pass trough different nodes of the (n − k)-th level of P . So the width of
the (n− k)-th level of P is at least k.

The proof for the nondeterministic case is similar to the deterministic one.
For each input from (MODkn)

−1(1) for the function MODkn there must be at least one
path in P leading from the source node to an accepting node labelling this input.
The accepting paths for different inputs from the set {ν1, ν2, . . . , νk} must go
through different nodes of the (n− k)-th level of P . �

Boolean function MODdn ∈ OBDDd and MODdn ∈ NOBDDd due to Lemma 2 and
Boolean function MODdn �∈ OBDDd−1 and MODdn �∈ NOBDDd−1 due to Lemma 3.
This completes the proof of the Theorem 7. ��
We have the following relationships between the deterministic and nondetermin-
istic models.

Theorem 8. For any integer n, d = d(n), and d′ = d′(n) such that d ≤ n/2
and O(log2 d log log d) < d′ ≤ d− 1, we have

NOBDD	log(d)
 � OBDDd and (3)

OBDDd and NOBDDd′ are not comparable. (4)

Proof of Theorem 8. We start with (3). In the same way as in the proof of
Theorem 3, we can show that NOBDD	log(d)
 ⊆ OBDDd and, from Lemma 3, we
know that MODdn /∈ NOBDD	log(d)
. Then we have OBDDd �= NOBDD	log(d)
.
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We continue with (4). Let k be even and 1 < k ≤ n. For any given input
ν ∈ {0, 1}n,

NotOkn(ν) =

{
0, if #k

0(ν) = #k
1(ν) = k/2,

1, otherwise.

Note that function NotOnn is identical to NotOn.

Lemma 4. Any OBDD computing NotOkn has width at least k/2 + 1.

Proof. The proof can be obtained by the same technique as given in the proof
of Lemma 1. �

Lemma 5. There is an NOBDD Pn of width d that computes the Boolean func-
tion NotOkn and d ≤ O(log2 k log log k). (For the proof see [4]).

Recall that O(log2 d log log d) ≤ d′ ≤ d − 1, and, by Lemma 2 and Lemma 3,
we have MODdn ∈ OBDDd and MODdn /∈ NOBDDd′ ; by Lemma 5, we have NotO2d−1

n ∈
NOBDDd′ ; and, by Lemma 4, we have NotO2d−1

n /∈ OBDDd. Therefore, we cannot
compare these classes and so we can conclude Theorem 8. ��

5.2 Hierarchies and Relations for Large Width OBDDs

In this section we consider OBDDs of large width. We obtain some hierarchies
which are different from the ones in the previous section (Theorem 7).

Theorem 9. For any integer n, d = d(n), 16 ≤ d ≤ 2n/4, we have

OBDD	d/8
−1 � OBDDd and (5)

NOBDD	d/8
−1 � NOBDDd, (6)

Proof of Theorem 9. It is obvious that OBDD	d/8
−1 ⊆ OBDDd and
NOBDD	d/8
−1 ⊆ NOBDDd.

We define the Boolean function EQSkn as a modification of the Boolean function
Shuffled Equality which was defined in [6] and [1]. The proofs of the inequalities
are based on the complexity properties of EQSkn.

Let k be a multiple of 4 such that 4 ≤ k ≤ 2n/4. The Boolean function EQSn
depends only on the first k bits.

For any given input ν ∈ {0, 1}n, we can define two binary strings α(ν) and
β(ν) in the following way. We call the odd bits of the input marker bits and
the even bits value bits. For any i satisfying 1 ≤ i ≤ k/2, the value bit ν2i
belongs to α(ν) if the corresponding marker bit ν2i−1 is 0, and ν2i belongs to
β(ν) otherwise.

EQSkn(ν) =

{
1, if α(ν) = β(ν)
0, otherwise

.

Lemma 6. There is an OBDD Pn of width 8 · 2k/4 − 5 which computes the
Boolean function EQSkn. (For the proof see [4]).
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Lemma 7. There are infinitely many n such that any OBDD and NOBDD Pn

computing EQSkn has width at least 2k/4. (For the proof see [4]).

Boolean function EQS
4�log(d+5)�−12
n ∈ OBDDd and EQS

4�log(d+5)�−12
n ∈ NOBDDd

due to Lemma 6.
Boolean function EQS

4�log(d+5)�−12
n �∈ OBDD	d/8
−1 and EQS

4�log(d+5)�−12
n �∈

NOBDD	d/8
−1 due to Lemma 7. So OBDD	d/8
−1 �= OBDDd and NOBDD	d/8
−1

�= NOBDDd. These inequalities prove Statements (5) and (6) and complete the
proof of Theorem 9. ��
In the following theorem, we present a relationship between the deterministic
and nondeterministic models.

Theorem 10. For any integer n, d = d(n), and d′ = d′(n) satisfying d ≤ 2n/4

and O(log4(d+ 1) log log(d+ 1)) < d′ < d/8− 1, we have

NOBDD	log(d)
 � OBDDd and (7)

OBDDd and NOBDDd′ are not comparable. (8)

Proof of Theorem 10. We start with (7). In the same way as in the proof of
Theorem 3, we can show that NOBDD	log(d)
 ⊆ OBDDd. By Lemma 7, we have

EQS
4�log(d+5)�−12
n /∈ NOBDD	log(d)
 which means OBDDd �= NOBDD	log(d)
.
Now we continue with (8). We use the complexity properties of the Boolean

function NotEQSkn, which is the negation of EQSkn.

Lemma 8. There are infinitely many n such that any OBDD Pn computing
NotEQSkn has width at least 2k/4.

Proof. We can prove it in the same way as Lemma 7. �

Lemma 9. There is a NOBDD Pn of width d computing the Boolean function
NotEQSkn where d ≤ O(k4 log k). (For the proof see [4]).

Recall that O(log4(d+1) log log(d+1)) ≤ d′ ≤ �d/8�−1, and, by Lemma 7 and

Lemma 6, we have EQS
4�log(d+5)�−12
n ∈ OBDDd and EQS

4�log(d+5)�−12
n /∈ NOBDDd′ ;

by Lemma 9, we have NotEQS
4�log(d)�+4
n ∈ NOBDDd′ ; and, by Lemma 8, we have

NotEQS
4�log(d)�+4
n /∈ OBDDd. Therefore we cannot compare these classes and so

we can conclude Theorem 10. ��
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Abstract. The concept of a matter object being annihilated when meet-
ing its corresponding anti-matter object is investigated in the context
of membrane systems, i.e., of (distributed) multiset rewriting systems
applying rules in the maximally parallel way. Computational complete-
ness can be obtained with using only non-cooperative rules besides these
matter/anti-matter annihilation rules if these annihilation rules have pri-
ority over the other rules. Without this priority condition, in addition
catalytic rules with one single catalyst are needed to get computational
completeness. Even deterministic systems are obtained in the accept-
ing case. Universal P systems with a rather small number of rules – 57
for computing systems, 59 for generating and 53 for accepting systems
– can be constructed when using non-cooperative rules together with
matter/anti-matter annihilation rules having weak priority.

1 Introduction

Membrane systems (usually called P systems) are distributed multiset rewriting
systems, where all objects – if possible – evolve in parallel in the membrane
regions and may be communicated through the membranes. Membrane systems
were introduced in [11] and since then have become an emerging research field.
Overviews can be found in the monograph [12] and the handbook of membrane
systems [13]; for actual news and results we refer to the P systems webpage [15].
Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with catalytic
rules (eventually) together with non-cooperative rules.

In this paper, we look for very weak forms of object interactions: for any
object a (matter), we consider its anti-object (anti-matter) a− as well as the
corresponding annihilation rule aa− → λ, which is assumed to exist in all mem-
branes; this annihilation rule could be assumed to remove a pair a, a− in zero
time, but here we use these annihilation rules as special non-cooperative rules
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having priority over all other rules in the sense of weak priority (e.g., see [1], i.e.,
other rules then also may be applied if objects cannot be bound by some anni-
hilation rule any more). The idea of anti-matter has already been considered in
another special variant of P systems with motivation coming from modeling neu-
ral activities, which are known as spiking neural P systems. For example, spiking
neural P systems with anti-matter (anti-spikes) were already investigated in [10].

As expected (for example, compare with the Geffert normal forms, see [14]),
the annihilation rules are rather powerful. Yet it is still surprising that using
matter/anti-matter annihilation rules as the only non-cooperative rules, with the
annihilation rules having priority, we already get computational completeness
without using any catalyst; without giving the annihilation rules priority, we
need one single catalyst. Even more surprising is the result that with priorities
we obtain deterministic systems in the case of accepting P systems. Finally, we
show how rather small universal P systems with anti-matter can be obtained
based on the universal register machine U32 constructed by Korec, see [8].

2 Prerequisites

The set of integers is denoted by Z, the set of non-negative integers by N. Given
an alphabet V , a finite non-empty set of abstract symbols, the free monoid gener-
ated by V under the operation of concatenation is denoted by V ∗. The elements
of V ∗ are called strings, the empty string is denoted by λ, and V ∗\{λ} is denoted
by V +. For an arbitrary alphabet {a1, . . . , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is
denoted by |x| = Σai |x|ai . The Parikh vector associated with x with respect to
a1, . . . , an is (|x|a1 , . . . , |x|an). The Parikh image of an arbitrary language L over
{a1, . . . , an} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in FL is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers are denoted by
NFL ( NdFL ).

A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}, is a mapping

f : V → N and can be represented by 〈af(a1)
1 , . . . , a

f(an)
n 〉 or by any string x

for which (|x|a1 , . . . , |x|an) = (f(a1), . . . , f(an)). In the following we will not
distinguish between a vector (m1, . . . ,mn), a multiset 〈am1

1 , . . . , amn
n 〉 or a string

x having (|x|a1 , . . . , |x|an) = (m1, . . . ,mn).
The family of regular and recursively enumerable string languages is denoted

by REG and RE, respectively. For more details of formal language theory the
reader is referred to the monographs and handbooks in this area as [3] and [14].

Register Machines. A register machine is a tuple M = (m,B, l0, lh, P ), where
m is the number of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B
is the final label, and P is the set of instructions bijectively labeled by elements
of B. The instructions of M can be of the following forms:
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• l1 : (ADD(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB(j), l2, l3), with l1 ∈ B\{lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction l0 of P , and terminate
with reaching the HALT-instruction lh.

3 P Systems

The basic ingredients of a (cell-like) P system are the membrane structure, the
multisets of objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes, in which
the space between a membrane and the immediately inner membranes defines a
region/compartment. The outermost membrane is called the skin membrane, the
region outside is the environment. Each membrane can be labeled, and the label
(from a set Lab) will identify both the membrane and its region; the skin mem-
brane is identified by (the label) 0. The membrane structure can be represented
by an expression of correctly nested labeled parentheses, and also by a rooted
tree (with the label of a membrane in each node and the skin in the root). The
multisets of objects are placed in the compartments of the membrane structure
and usually represented by strings of the form am1

1 . . . amn
n .

The evolution rules are multiset rewriting rules of the form u → v, where
u ∈ O∗ and v = (b1, tar1) . . . (bk, tark) with bi ∈ O∗ and tari ∈ {here, out, in}.
Using such a rule means “consuming” the objects of u and “producing” the
objects from b1, . . . , bk of v, where the target here means that the objects remain
in the same region where the rule is applied, out means that they are sent
out of the respective membrane (in this way, objects can also be sent to the
environment, when the rule is applied in the skin region), and in means that
they are sent to one of the immediately inner membranes, chosen in a non-
deterministic way; in general, the target indication here is omitted.

Formally, a (cell-like) P system is a construct

Π = (O, μ,w1, . . . , wm, R1, . . . , Rm, lin, lout)

where O is the alphabet of objects, μ is the membrane structure (with m mem-
branes), w1, . . . , wm are multisets of objects present in the m regions of μ at
the beginning of a computation, R1, . . . , Rm are finite sets of evolution rules,
associated with the regions of μ, lin is the label of the membrane region where
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the inputs are put at the beginning of a computation, and lout indicates the
region from which the outputs are taken; lout/lin being 0 indicates that the
output/input is taken from the environment.

If a rule u → v has |u| > 1, then it is called cooperative (abbreviated coo);
otherwise, it is called non-cooperative (abbreviated ncoo). In catalytic P systems
non-cooperative as well as catalytic rules of the form ca → cv are used, where
c is a catalyst – a special object that never evolves and never passes through a
membrane, but it just assists object a to evolve to the multiset v. In a purely
catalytic P system only catalytic rules are allowed. In both catalytic and purely
catalytic P systems, in their description O is replaced by O,C in order to specify
those objects from O that are the catalysts in the set C.

The evolution rules are used in the non-deterministic maximally parallel way,
i.e., in any computation step of Π a multiset of rules is chosen from the sets
R1, . . . , Rm in such a way that no further rule can be added to it so that the ob-
tained multiset would still be applicable to the existing objects in the membrane
regions 1, . . . ,m. A configuration of a system is given by the membranes and the
objects present in the compartments of the system. Starting from a given initial
configuration and applying evolution rules as described above, we get transitions
among configurations; a sequence of transitions forms a computation. A compu-
tation is halting if it reaches a configuration where no rule can be applied any
more.

In the generative case, a halting computation has associated a result, in the
form of the number of objects present in membrane lout in the halting configura-
tion (lin can be omitted). In the accepting case, for lin �= 0, we accept all (vectors
of) non-negative integers whose input, given as the corresponding numbers of
objects in membrane lin, leads to a halting computation (lout can be omitted).
For the input being taken from the environment, i.e., for lin = 0, we need an ad-
ditional target indication come; (a, come) means that the object a is taken into
the skin from the environment (all objects there are assumed to be available in
an unbounded number). The multiset of all objects taken from the environment
during a halting computation then is the multiset accepted by this accepting
P system, which in this case we shall call a P automaton, see [2]. The set of
non-negative integers and the set of (Parikh) vectors of non-negative integers
obtained as results of halting computations in Π in case α, α ∈ {gen, acc, aut},
are denoted by Nα(Π) and Psα(Π), respectively. A P system Π can also be con-
sidered as a system computing a partial recursive function (in the deterministic
case) or even a partial recursive relation (in the non-deterministic case), with
the input being given in a membrane region lin �= 0 as in the accepting case or
being taken from the environment as in the automaton case. The correspond-
ing functions/relations computed by halting computations in Π are denoted by
ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Computational completeness for (generating) catalytic P systems can be
achieved when using two catalysts or with three catalysts in purely catalytic
P systems, and the same number of catalysts is needed for P automata; in
accepting P systems, the number of catalysts increases with the number of
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components in the vectors of natural numbers to be analyzed, see [4]. It is a
long-time open problem how to characterize the families of sets of (vectors of)
natural numbers generated by (purely) catalytic P systems with only one (two)
catalysts. Using additional control mechanisms as, for example, priorities or pro-
moters/inhibitors, P systems with only one (two) catalyst(s) can be shown to
be computationally complete, e.g., see Chapter 4 in [13]. Last year several other
variants of control mechanism have been shown to lead to computational com-
pleteness in (purely) catalytic P systems using only one (two) catalyst(s), e.g.,
see [6], and [7]. In this paper we are going to investigate the power of using
matter/antimatter annihilation rules.

The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
P systems with at most m membranes and cooperative rules and with non-
cooperative rules is denoted by YδOPm (coo) and YδOPm (ncoo), respectively.
The family of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, computed by
(purely) catalytic P systems with at most m membranes and at most k catalysts
is denoted by YδOPm (catk) ( YδOPm (pcatk) ). It is well known that, for any
m ≥ 1 and any Y ∈ {N,Ps}, Y REG = YgenOPm (ncoo) ⊂ YgenOPm (coo) =
Y RE, as well as, for any m ≥ 1, d ≥ 1, δ ∈ {gen, aut},

PsaccOPm (catd+2) = PsaccOPm (pcatd+3) = NdRE;

PsδOPm (cat2) = PsδOPm (pcat3) = PsRE.

4 Using Matter and Anti-Matter

This concept to be used in (catalytic) P systems is a direct generalization of the
idea of anti-spikes from spiking neural P systems (see [10]): for each object a
we may introduce the anti-matter object a−. We here look at these anti-matter
objects a− as objects of their own. Both objects and anti-objects are handled by
usual evolution rules, but whenever related matter a and anti-matter a− meet,
they may annihilate each other by an application of the (non-context-free!) rule
aa− → λ. If all these annihilation rules are given weak priority over all other
rules, immediate annihilation is guaranteed.

We also consider catalytic P systems extended by allowing annihilation rules
aa− → λ, with these rules having weak priority over all other rules, i.e., other
rules can only be applied if no annihilation rule could still bind the corresponding
objects. The families of sets Yδ (Π), Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, and the
families of functions/relations ZYα (Π), Z ∈ {Fun,Rel}, α ∈ {acc, aut}, com-
puted by such extended P systems with at most m membranes and k catalysts
are denoted by YδOPm (cat(k), antim/pri) and ZYαOPm (cat(k), antim/pri); we
omit /pri for the families without priorities.

The matter/anti-matter annihilation rules, when having weak priority over
the non-cooperative rules, are so powerful that we do not need catalysts at all̇:
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Theorem 1. For any n ≥ 1, k ≥ 0, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim/pri) = YδOP1 (ncoo, antim/pri) = Y RE and
ZYαOPn (cat(k), antim/pri) = ZYαOP1 (ncoo, antim/pri) = ZY RE.

Proof. Let M = (m,B, l0, lh, P ) be a register machine. We now construct a
one-membrane P system Π = (O, [ ]1, l0, R1, lin, 1) which simulates M . The
contents of register r is represented by the number of copies of the object ar,
1 ≤ r ≤ m, and for each object ar we also consider the corresponding anti-object
ar

−; in sum, we take O = {ar, ar− | 1 ≤ r ≤ m} ∪ {l, l′ | l ∈ B} ∪ {#,#−}. The
instructions of M are simulated by rules in R1 as follows:

• l1 : (ADD (j) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Simulated by the rules l1 → arl2 and l1 → arl3.
For lin = 0, ar is replaced by (ar, come) in case r is an input register.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ r ≤ m.
As rules common for all simulations of SUB-instructions, we have ar

− → #−,
arar

− → λ, ##− → λ, #− → ##, and # → ## (which last two rules
lead the system into an infinite computation whenever a trap symbol is left
without being annihilated).
The zero test for instruction l1 is simulated by the rules l1 → l1

′ar− and
l1

′ → #l3: the symbol # generated by the second rule l1
′ → #l3 can only

be eliminated if the anti-matter ar
− generated by the first rule l1 → l1

′ar−

is not annihilated by ar, i.e., only if register r is empty.
The decrement case for instruction l1 is simulated by the rule l1 → l2ar

−: the
anti-matter ar

− either correctly annihilates one matter ar thus decrementing
the register r or else traps an incorrect guess by forcing the symbol ar

− to
evolve to #− and then to ## in the next two steps in case register r is
empty.

• lh : HALT . Simulated by lh → λ.
When the computation in M halts, the object lh is removed, and no further
rules can be applied provided the simulation has been carried out correctly,
i.e., if no trap symbols # are present in this situation. The remaining objects
in the system represent the result computed by M . ��

Without this priority of the annihilation rules, the construction does not work,
hence, a characterization of the families YδOPn (ncoo, antim) as well as
ZYαOPn (ncoo, antim) remains as an open problem. Yet using catalytic rules
with one catalyst again allows us to obtain computational completeness:

Theorem 2. For any n ≥ 1, k ≥ 1, Y ∈ {N,Ps}, δ ∈ {gen, acc, aut}, α ∈
{acc, aut}, and Z ∈ {Fun,Rel},

YδOPn (cat(k), antim) = Y RE and
ZYαOPn (cat(k), antim) = ZY RE.
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Proof. We again consider a register machineM = (m,B, l0, lh, P ) as in the previ-
ous proof, and construct the catalytic P system Π = (O, {c} , [ ]1, cl0, R1, lin, 1)
with the single catalyst c and with O = {ar, ar− | 1 ≤ r ≤ m}∪{l, l′, l′′ | l ∈ B}∪
{#,#−, d}. The results now are sent to the environment, in order not to have
to count the catalyst in the skin membrane; for that purpose, we simply use the
rule ai → (ai, out) for the output symbols ai (we assume that output registers
of M are only incremented).

For each ADD-instruction l1 : (ADD (j) , l2, l3) in P , we again take the rules
l1 → arl2 and l1 → arl3, and lh : HALT is simulated by lh → λ.

For each SUB-instruction l1 : (SUB (r) , l2, l3), we now consider the four rules
l1 → l2ar

−, l1 → l′′1dar−, l′′1 → l′1, and l′1 → #lk. As rules common for all SUB-
instructions, we again add the matter/antimatter annihilation rules arar

− → λ
and ##− → λ as well as the trap rules # → ## and #− → ##, but in
addition, also d → ## as well as the catalytic rules cd → c and car

− → c#−,
1 ≤ r ≤ m. The decrement case is simulated as in the previous proof, by using the
rule l1 → l2ar

− and then applying the annihilation rule arar
− → λ. The zero-

test now is initiated with the rule li → l′′i dar
−; the symbol d keeps the catalyst

busy for one step with cd → c, and only then, rule car
− → c#− produces a

symbol #− which afterwards annihilates the symbol # generated by the rule
l′i → #lk. ��

In the accepting case, with priorities, we can even simulate the actions of a
deterministic register machine in a deterministic way, i.e., for each configuration
of the system, there can be at most one multiset of rules applicable to it.

Theorem 3. For any n ≥ 1 and Y ∈ {N,Ps},

YdaccOPn (ncoo, antim/pri) = Y RE and
FunYdaccOPn (ncoo, antim/pri) = FunY RE.

Proof. We only show how the SUB-instructions of a register machine M =
(m,B′, l0, lh, P ) can be simulated in a deterministic way without introducing
a trap symbol and therefore causing infinite loops by them:

Let B = {l | l : (SUB (r) , l′, l′′) ∈ P} and, for every register r,

M̃r =
{
l̃ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̃r
− =

{
l̃− | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r =
{
l̂ | l : (SUB (r) , l′, l′′) ∈ P

}
,

M̂r
− =

{
l̂− | l : (SUB (r) , l′, l′′) ∈ P

}
.

Moreover, we take the rules ar
− → M̃r

−M̂r and the annihilation rules arar
− →

λ for every register r as well as l̂l̂− → λ and l̃l̃− → λ for all l ∈ B. Then a
SUB-instruction l1 : (SUB (r) , l2, l3), with l1 ∈ B, l2, l3 ∈ B′, 1 ≤ r ≤ m, is

simulated by the rules l1 → l̄1ar
−
, l̄1 → l̂1

−(M̃r \ {l̃1}), l̂1− → l2(M̃r
− \ {l̃1−}),

and l̃1
− → l3(M̂r

− \ {l̂1−}). The symbol l̂1
− generated by the second rule is

eliminated again and replaced by l̃1
− if ar

− is not annihilated (which indicates
that the register is empty). ��
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5 Small Universal P Systems with Anti-Matter

In [8], several variants of universal register machines were exploited. The main
interesting variant for the results presented in this paper is shown in Figure 1.
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Fig. 1. The universal register machine U32

In the diagram of the universal register machine U32 in Figure 1, the operations
used on the registers are: the zero-test on register i is indicated by a rhomboid
inclosing the encryption Ri, and in the case that the contents of register i is
zero, the next operation is the one to be reached with the arc labeled by z; the
increment operation is depicted by a rectangle with the encryption RiP , and the
decrement operation by a rectangle with the encryption RiM (as the decrement
operation RiM is always preceded by the corresponding zero-test, it can always
be carried out). The states are depicted directly at the corresponding operations;
q1 is the initial state, and the state where the U32 stops is indicated by STOP in
Figure 1. A thorough analysis of the universal register machine U32 shows that
when it halts not only register 2 as the output register, but also register 6 and
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register 1 (still containing the code of the register machine to be simulated) may
be non-empty; for more details we refer to [5].

In order to produce better descriptional complexity results with respect to
the number of rules than those we would immediately get when applying the
constructions given in the proof of Theorem 1, we introduce a generalization of
register machines or counter automata.

Generalized Counter Automata. For a register machineM = (m,B, l0, lh, P )
consider the more general type of instructions i : (q,M−, N,M+, q

′), where
q, q′ ∈ Q are states, N ⊆ R is a set of registers, and M−,M+ are multisets
of registers. Such a register machine applies instruction i as follows: first, multi-
setM− is subtracted from the register values (i.e., for each register j ∈ R,M−(j)
is subtracted from the contents of register j; if at least one resulting value would
be negative, the machine is blocked without producing any result); second, the
subset N of registers is checked to be zero (if at least one of them is found to
be non-zero, the machine is blocked without producing any result); third, the
multiset M+ is added to the register values (i.e., for each register j ∈ R, M+(j)
is added to the contents of register j), and finally the state changes to q′.

The work of such a register machine, now also called a generalized counter
automaton and written M = (m,B, l0, qh, P ), consists of derivation steps apply-
ing instructions, chosen in a non-deterministic way, associated with the current
state. The computation starts in the initial state q0, and we say that it halts if
the final state qh has been reached (which replaces the condition of reaching the
final HALT-instruction labeled by lh).

Theorem 4. There exist small universal P systems with non-cooperative rules
and matter/anti-matter annihilation rules – with 9 annihilation rules and, in
total, 53 rules in the accepting case, 59 rules in the generating case, and 57
rules in the computing case.

Proof. We start with a slightly changed variant of the P system from Theorem
4 in [5] (obtained from the universal register machine U32 machine in [8]). This
modified sequential antiport P system with forbidden contexts can be written
with the instructions of a generalized counter machine as follows:

1 : (q1, 〈1〉 , {}, 〈7〉 , q1), 10 : (q18),
〈
53
〉
, {}, 〈4〉 , q18),

2 : (q1, 〈〉 , {1}, 〈6〉 , q4), 11 : (q18, 〈〉 , {5, 3}, 〈0〉 , q1),
3 : (q4, 〈5〉 , {}, 〈6〉 , q4), 12 : (q18,

〈
52, 0

〉
, {5, 2}, 〈〉 , q1),

4 : (q4, 〈6〉 , {5}, 〈5〉 , q10), 13 : (q18,
〈
52, 2

〉
, {5}, 〈〉 , q1),

5 : (q10, 〈7, 6〉 , {}, 〈1, 5〉 , q10), 14 : (q18,
〈
52
〉
, {5, 2, 0}, 〈〉 , q1)

6 : (q10, 〈7〉 , {6}, 〈1〉 , q4), 15 : (q18, 〈3〉 , {5}, 〈〉 , q32),
7 : (q10, 〈〉 , {6, 7}, 〈〉 , q1), 16 : (q18, 〈5〉 , {5}, 〈2, 3〉 , q32),
8 : (q10, 〈6, 4〉 , {7}, 〈〉 , q1), 17 : (q32, 〈4〉 , {}, 〈〉 , q1),
9 : (q10, 〈6, 5〉 , {7, 4}, 〈〉 , q18), 18 : (q32, 〈〉 , {4}, 〈〉 , qh).

For a generalized counter automaton M = (m,B, l0, qh, P ), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).
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We consider the following rules (common for different instructions of M):

#− → #k, #→ #k, ##− → λ, ar → #−, ara−r → λ, r ∈ R.

Now we present the simulation of instruction i : (q,M−, N,M+, q
′) ∈ P . First we

consider the case when M− and N have no common elements, and moreover, we
also assume that M− does not overlap with M+ (otherwise such an instruction
can be split into two instructions; notice that this condition is already satisfied
in the rules given above).

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(
∏

r∈M−
ar

−)
∏

r∈M+

ar.

Indeed, the zero-test is successful if none of the objects a−r generated in the first
step annihilates with the corresponding register symbols ar; they have to change
into objects #− to annihilate with the same number of objects # produced
in the next step. The decrement is successful if all objects ar

− generated in
the second step annihilate with the corresponding register symbols ar. If either
decrement or zero-test fail, then at least either one # or one #− will be produced
without its annihilation partner, leading to producing objects # in a geometric
progression, ensuring that such computations do not produce any result (notice
that no objects # or #− are produced in the first step of the simulation of any
instruction).

If the zero-test set N is empty, then the first step is a simple renaming, and
thus can be combined with the second step, yielding just one rule

q → q′(
∏

r∈M−
ar

−)
∏

r∈M+

ar.

Clearly, if M− and N overlap, such an instruction can be broken down into
two subsequent instructions of the generalized counter automaton. However, a
more efficient solution with only three rules exists:

q → li
∏

r∈M−
ar

−, li → l′i
∏

r∈N
ar

−, l′i → q(
∏

r∈N
#−)

∏
r∈M+

ar.

The generalized counter automaton obtained by rewriting the sequential antiport
P system with inhibitors from [5] (with the modifications described above) has 18
instructions, out of which only 4 have overlaps between the decrement multiset
and the zero-test set, and other 5 have empty zero-test sets. Hence, applying
the constructions described above we get a universal P system with anti-matter
having (18× 2+4− 5)+8+2+ (8+1) = 54 rules, i.e., 45 non-cooperative rules
and 9 model-defined annihilation rules:

Π = (O, [ ]1, q1, R1, 1, 1) where

O = {l2, l4, l6, l7, l8, l9, l11, l12, l′12, l13, l′13, l14, l′14, l15, l16, l′16, l18}
∪ {q1, q4, q10, q18, q32, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R1 contains the following rules:
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q1 → q1a1
−a7,

q1 → l2a1
−, l2 → q4#a6,

q4 → q4a5
−a6,

q4 → l4a5
−, l4 → q10#a6

−a5,
q10 → q10a7

−a6−a1a5,
q10 → l6a6

−, l6 → q4#a7
−a1,

q10 → l7a6
−a7−, l7 → q1##,

q10 → l8a7
−, l8 → q1#a6

−a4−,
q10 → l9a7

−a4−, l9 → q18##a6
−a5−,

q18 → q18a5
−a5−a5−a4,

q18 → l11a5
−a3−, l11 → q1##a0,

q18 → l12a5
−a5−a−0 , l12 → l′12a5

−a2−, l′12 → q1##,
q18 → l13a5

−a5−a2−, l13 → l′13a5−, l′13 → q1#,
q18 → l14a5

−a5−, l14 → l′14a5
−a2−a0−, l′14 → q1###,

q18 → l15a5
−, l15 → q32#a3

−,
q18 → l16a5

−, l16 → l′16a5−, l′16 → q32#a2a3,
q32 → q1a4

−,
q32 → l18a4

−, l18 → qh#,
#− → #4, #→ #4, (##− → λ),
ar → #−, (arar

− → λ), 0 ≤ r ≤ 7.

As the rules with l7 and l′12 on the left side have the same right side, we
can replace l′12 by l7, thus decreasing the number of non-cooperative rules down
to 44. In sum, we finish with 53 rules in the accepting case. In the computing
case, we have to “clean” registers 1 and 6 (see Section 5) and add the following
four rules and the state q′h:

qh → qha1
−, qh → qha6

−, qh → q′ha1
−a6−, q′h → ##.

The P system now halts with the skin membrane only containing copies of the
symbol a2 representing the output value. Finally, in the generating case, we start
with the new initial state q0 and add the two rules q0 → a2q0 and q0 → q1, which
allows us to produce, in a non-deterministic way, an input for U32 simulating the
identity function on the domain of the set to be generated by the P system. ��

6 Conclusions

We have shown that only non-cooperative rules together with matter/anti-matter
annihilation rules are needed to obtain computational completeness in P systems
working in the maximally parallel derivation mode if annihilation rules have
weak priority; without priorities, one catalyst is needed. In the case of accepting
P systems we can even get deterministic systems.

There may be a lot of other interesting models of P systems allowing for in-
troducing anti-matter objects and matter/anti-matter annihilation rules. Several
problems remain open even for the models presented here, for example, can we
avoid both catalysts and priorities. Moreover, the number of rules needed for
universal P systems with anti-matter might still be reduced.
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4. Freund, R., Kari, L., Oswald, M., Sośık, P.: Computationally Universal P Sys-
tems without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Sci-
ence 330, 251–266 (2005)

5. Freund, R., Oswald, M.: A Small Universal Antiport P System with Forbidden
Context. In: Leung, H., Pighizzini, G. (eds.) 8th International Workshop on De-
scriptional Complexity of Formal Systems, DCFS 2006, June 21-23. Proceedings
DCFS, pp. 259–266. New Mexico State University, Las Cruces (2006)

6. Freund, R., Oswald, M.: Catalytic and Purely Catalytic P Automata: Control
Mechanisms for Obtaining Computational Completeness. In: Bensch, S., Drewes,
F., Freund, R., Otto, F. (eds.) Fifth Workshop on Non-Classical Models of Au-
tomata and Applications (NCMA 2013), pp. 133–150. OCG, Wien (2013)

7. Freund, R.: Gh. Păun: How to Obtain Computational Completeness in P Sys-
tems with One Catalyst. In: Proceedings Machines, Computations and Universal-
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11. Păun, G.: Computing with Membranes. Journal of Computer and System Sci-
ences 61(1), 108–143 (2000); (Turku Center for Computer Science-TUCS Report
208 (November 1998), www.tucs.fi)
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Abstract. For the deterministic context-free languages, we compare the
space and time complexity of their LR (1) parsers, constructed in two dif-
ferent ways: the classic method by Knuth [7] for BNF grammars, and the
recent one by the authors [2], which directly builds the parser from EBNF
grammars represented as transition networks. For the EBNF grammars,
the classic Knuth’s method is indirect as it needs to convert them to
BNF. We describe two parametric families of formal languages indexed
by the number of stars, which exhibit a linear growth of the parser size
(number of states) in passing from the classic to our novel direct meth-
ods. Experimental measurements of the number of parser states and of
the parsing speed for two real languages (Java and JSON ) confirm the
advantage of the new direct parser model for EBNF grammars.

Keywords: Extended BNF grammar, EBNF, LR (1), ELR (1), transi-
tion network, TN, shift-reduce, bottom-up parser, parsing performance.

1 Introduction

The grammars in Extended Backus-Naur Form (EBNF ), also known as gram-
mars with regular right parts, are more readable than the pure context-free
(BNF ) ones and are widely used for language specifications. An EBNF gram-
mar is a set of regular expressions (RE ), one per nonterminal. Since each RE
is recognizable by a deterministic finite-state automaton (DFA) or machine, the
grammar can be viewed as a set of machines, called a Transition Network (TN ),
e.g., pioneered in [3]. A TN may contain cycles, which correspond to the (Kleene)
stars in the RE ’s, instead absent in the DFA’s associated to a BNF grammar.

Given an EBNF grammar, we recap the classic method for constructing the
LR (1) language parser, to be abstractly viewed as a DPDA. First, the grammar
is transformed into an equivalent BNF one by converting every sub-RE into a
set of left- (or right-) recursive grammar rules; for that, new nonterminals are
needed. Second, the well known Knuth’s algorithm [7] is used to construct the
language parser. Provided conflicts (shift-reduce or reduce-reduce) do not occur,
the resulting PDA is deterministic. It is straightforward to adjust the Knuth’s
construction to let it work on the acyclic TN that represents a BNF grammar.

� Partially supported by PRIN “Automi e Linguaggi Formali” and by CNR - IEIIT.

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 77–89, 2014.
c© Springer International Publishing Switzerland 2014



78 A. Borsotti et al.

In contrast with the classic method, which is indirect, the new direct (or
ELR (1)) method recently presented in [2] (more details are in [4]), constructs the
graph of the DPDA directly from the TN. There, the new method is compared
with former unsatisfactory solutions, a formal simple condition for the parser
to be deterministic is stated and proved correct, but a quantitative analysis of
the classic vs direct method is missing. Our present work optimizes the direct
method of [2]. We add some static pre-computed information (so-called keys) to
the DPDA graph, to increase the parsing performance by a limited overhead.

Clearly, the (optimized) direct method has the advantage that any source
EBNF grammar or TN can be fed unchanged to the parser generator, whereas
the grammar transformations used by the classic generators, e.g., YACC or
Bison, are tedious and, what is more annoying, impose to maintain two different
grammars: one for language specification, the other for compiler implementation.

However, such advantages of the direct method would not suffice to qualify it
as a replacement of the classic method, which has a use record consolidated over
50 years, without a thorough realistic comparison of the size and performance
of classic and direct parsers. Such a comparison is the subject of this paper:
it is based on a formal analysis of the parser size for parametrized grammar
families, and on experiments and measurements of both size and speed for real
programming languages. To be convincing, the experimental comparison should
focus on real languages rather than on small formal languages, but the latter
help to understand the origin of size differences. Our benchmarks cover two
important cases, the Java and JSON languages. To generate parsers, we used
both our new parser generator E-Bison and the widespread GNU Bison tool.

To mention some results, we found the size of our new parser model is con-
sistently smaller for a parametrized language family, while it is comparable in
the experiments on real languages. Concerning the run-time performance of our
model, we achieve a better execution time by anticipating some computations at
parser generation-time and by storing them into the DPDA transition function.

There is little related work: in recent years, the research on deterministic
parsers has been rare, and to find examples of complexity studies for parsing
algorithms, one has to go back to when a limited memory capacity motivated
the invention of the LALR (1) and similar methods, e.g., Pager [8], that use
small parsing tables. In those years, also the size and speed of top-down LL (1)
parsers and bottom-up LR (1) parsers were compared. Since it is easy to directly
write LL (recursive descent) parsers for EBNF grammars, this has often been
put forward as a major advantage of top-down over bottom-up parsers. Despite
many attempts and suggestions to extend LR methods to EBNF grammars, no
proposal has gained consensus. The recent critical survey [6] says:

“It is a striking phenomenon that the ideas behind the recursive descent pars-
ing of ECFG’s [i.e., EBNF ] can be grasped and applied immediately, whereas
most literature on the LR-like parsing of RRPG’s [i.e., TN ] is very difficult to
access. Given the developments in computing power and software engineering,
and the practical importance of ECFG’s and RRPG’s, a uniform and coherent
treatment of the subject seems in order.”
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Our present work shows that now a direct construction method for ELR parsers
of EBNF grammars is available and competitive with the classic LR method.

Sect. 2 sets terminology and notation. Sect. 3 shows the unified construction
of the classic and direct parsers. Sect. 4 shows the quantitative analysis of simple
language families, reports experiments and discusses findings. Sect. 5 concludes.
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Fig. 1. Top: BNF and TN. Bottom: classic LR (1) pilot P with encircled final states.

2 Preliminaries

The terminal alphabet is Σ, the empty string is ε, the end-of-text is ‘ ’, and
Σ = Σ ∪ {  }. A context-free grammar G is a 4-tuple (Σ, V, P, S ), with V
the nonterminal alphabet (Σ ∩ V = ∅), P the set of rules and S ∈ V the axiom.
A grammar symbol is an element of the alphabet symbols = Σ ∪ V .

An EBNF grammar G = (Σ, V, P, S ) has exactly one rule A → α for each
nonterminal A ∈ V . The rule right part α is a regular expression (RE ) over the
alphabet symbols , and it may contain concatenation, union and star “ ∗ ” (or
cross “+”). The regular language, over the alphabet symbols , that is associated
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to A, is defined by the RE α of rule A→ α and is denoted RA or also R (α). A
BNF rule is an EBNF one where the rule right part α is a sequence of symbols,
or a finite union of such sequences if alternative BNF rules are grouped. It is
well known that EBNF and BNF grammars have the same generative capacity.

An immediate derivation is a relation such as uAv ⇒ uw v, where the strings
u, v and w are defined over the alphabet symbols , and it holds w ∈ RA. A
derivation is its reflexive and transitive closure, and is denoted

∗⇒. The reverse
relation of a derivation w

∗⇒ z is named reduction and is denoted z � w. The
context-free language generated by grammar G is L (G) =

{
x ∈ Σ∗ | S

∗⇒ x
}
.

We represent an EBNF rule A→ α as a deterministic FA (DFA) that recog-
nizes the language RA. Such a DFA is denoted MA and is called a machine. A
set M of machines for all the nonterminals represents an EBNF grammar and
is named a transition net (TN ), see Def. 1. Such a TN represents any other
equivalent grammar that has the same nonterminals and regular languages.

Definition 1. Let G be an EBNF grammar S → σ, A → α, . . . . The transi-
tion network M = {MS, MA, . . . } or TN, is a set of DFA’s (machines) that
accept the regular languages RS, RA, . . . To prevent confusion, the state set of
a machine MA is denoted QA = { 0A, . . . , qA, . . . }, with initial state 0A and
final state set FA ⊆ QA. The state set of M is Q =

⋃
MA∈MQA. The transition

function of M is denoted δ, with no clashes since all the machine state sets are
disjoint. Every machine is assumed to be non-reentrant, i.e., there is no edge
that enters its unique initial state (but the initial state may be final). The regu-
lar language over the grammar symbols accepted by a machine MA starting from
state qA and ending to some final state is denoted R (MA, qA). The context-free
language over the alphabet Σ defined by a machine MA starting from any state
qA is L (MA, qA) =

{
x ∈ Σ∗ | η ∈ R (MA, qA) ∧ η

∗⇒ x
}
�= ∅. It is simply

denoted L (qA) or L (q) if machine MA is understood or indifferent. ��

A path in the graph of a non-reentrant machine never revisits the initial state.
To simplify the parser reduction moves, any machine can be so normalized by
adding a new initial state and a few outgoing edges with a negligible overhead.

Example 2. Running example started.
Fig. 2, top, shows an EBNF grammar, which has only one nonterminal; its

only rule features two nested iterations. The equivalent TN is made of one
machine, the graph of which is cyclic. Fig. 1, top, shows the equivalent BNF
grammar, obtained by transforming the iterations into right-recursive rules; for
that, two nonterminals are needed. The equivalent TN consists of two machines,
the graphs of which are trees. The bottom parts of both figures contain the
control graphs of the related parsers, also called pilots, to be discussed later. ��

3 ELR (1) Parsers

The classic LR (1) theory is well known, for instance see [1,5]. Thus for brevity the
construction of the LR (1) parsers is not repeated here; instead, their application
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is shown on the running example 2. The acronyms LR (1) and ELR (1) refer to
the classic theory and to the present development for TN, respectively.

We use a TN instead of a grammar. Thus a dotted rule becomes a machine
state. For instance, in Fig. 1 the rule S → aB bS corresponds to (a path of)
machine MS , and the dotted rule S → a • B bS is encoded by the TN state 1S .

A classic LR (1) parser is a DPDA that uses the so-called item sets as push-
down stack symbols. Basically, an item consists of a state and a look-ahead. Next,
we define the item and the extended version needed by our parsers (Def. 3).

Definition 3. Item (and tuple).
An “item” is a 2-tuple 〈 q, λ 〉 ∈ Q×℘ (Σ ). The fields q and λ are the state

and the (non-empty) look-ahead set. Two or more items 〈 q, λi 〉 with the same
state q are written as the equivalent unified item 〈 q, λ1 ∪ . . . ∪ λk 〉 (1 ≤ i ≤ k).

An “item extended with a key” is a 3-tuple 〈 q, λ, k 〉, where the fields q and
λ are as before, and the field k is a key named PIK (predecessor item key) that
identifies another 3-tuple. The “nil” key value is denoted “⊥”. The key value i
that identifies a 3-tuple t is written as a prefix, in the format “ i : t ”. Two or
more 3-tuples with the same state q and PIK k are written unified as before.

A generic item (with key) is a “tuple”, and the set of all TN tuples is named
“tuples”. A tuple with q = 0S and λ = {  } (PIK = ⊥) is said “axiomatic”. ��

Specifying how to compute the keys is unnecessary, provided the keys of any two
tuples in the same set are distinct. For any TN, the set tuples is finite.
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Fig. 2. Top: EBNF and TN with cycles. Bottom: direct ELR (1) (key-less) pilot P ′.

Given a TN, the classic LR (1) parser generator builds the state transition
function ϑ of a DFA, originally named “recognizer of viable LR (1) prefixes” [7],
here renamed pilot for brevity. A pilot state is a set of tuples (Def. 3), and it is
named a macro-state (m-state) to avoid confusion with the states of the TN.
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The shift function [7] builds the pilot transitions between m-states for all the
three pilot types we have (Def. 6 and Alg. 7): the classic pilot P , the direct
(key-less) pilot P ′ already defined in [2], and the novel direct pilot with keys,
named P ′′. Here (Def. 4) shift is formulated for a TN, in such three versions.

Definition 4. Shift function (total).
For the pilot P ′′, function shift : ℘ (tuples) × symbols → ℘ (tuples) is specified
as follows, on a 3-tuple i : 〈 r, ρ, k 〉 with key i and a grammar symbol X:

shift
(
{ i : 〈 r, ρ, k 〉 } , X

)
=
{
〈 s, ρ, i 〉 arc

(
r

X∈symbols−−−−−−−→ s
)
∈ δ
}

(1)

For the two (key-less) pilots P and P ′, the shift function is defined as in (1)
but without item key and PIK field. Shift is extended to sets of items I, i.e.,
m-states, in the obvious way. If it holds shift ( I, X ) = ∅, i.e., no item of I
shifts, then the pilot transition from I by grammar symbol X is undefined. ��

The closure function [7] creates initial tuples. Here (Def. 5) it is formulated for
a TN, in the two versions (2) for tuples without/with key. For a language L over
the alphabet Σ, define the set First (L) = { a ∈ Σ | a x ∈ L  ∧ |x | ≥ 0 }.

Definition 5. Closure function (total).
Let Ibase be a tuple set to be closed and let 0X be a machine initial state. Function
close : ℘ (tuples)→ ℘ (tuples) computes the smallest set close (Ibase) such that:

close (Ibase) = Ibase ∪

⎧⎪⎨⎪⎩ 〈 0X , λ, ⊥〉
〈 q, ρ, k 〉 ∈ close (Ibase)

∧ arc
(
q

X∈V−−−−→ r
)
∈ δ

∧ λ = First
(
L (r) · ρ

)
⎫⎪⎬⎪⎭ (2)

All the initial 3-tuples created and added to Ibase have a field PIK = ⊥. For the
key-less pilots, the closure function is defined as in (2) without PIK field. ��

Definition 6. Pilot (i.e., parser control unit).
Given a TN, each of the three pilot models P, P ′ or P ′′ is a DFA defined

by a 4-tuple ( symbols , I, I0, ϑ ), where I = { Ii | i ≥ 0 ∧ Ii ⊆ tuples } is the
(finite) set of pilot m-states, I0 is the initial m-state, all the m-states are final,
and ϑ : I × symbols → I is the pilot transition function computed by Alg. 7. ��

Algorithm 7 Pilot; input: TN (i.e., Q and δ); output: I (= Ipilot ) and ϑ.

I0 := close
(
{ axiomatic tuple }

)
// pilot initial m-state

Ipilot := { I0 } Inew := { I0 } ϑ := ∅ // global initializations

repeat // loop till fixed point

Iadd := Inew Inew := ∅ // loop initializations

for each Iadd ∈ Iadd and X ∈ symbols do // scan m-states/sym.s

Ibase := shift ( Iadd , X ) // shift m-state by sym.

if Ibase �= ∅ then // if transition defined

Inew := close ( Ibase ) // close shifted m-state

ϑ := ϑ ∪
{
arc
(
Iadd

X−→ Inew
)}

// add to transition set

if Inew �∈ Ipilot then // if shifted m-state new
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Ipilot := Ipilot ∪ { Inew } // add to pilot m-states

Inew := Inew ∪ { Inew } // add to new m-states

until Inew = ∅ // no new m-states ��

Every m-state is divided into a base part created by shift and a part added by
close, with non-initial and initial tuples, respectively; the base of I0 is empty.

Example 8. Running example 2 continued.
Fig. 1, bottom, shows the classic pilot P . A m-state such as I5 consists of an

item set. The divider splits it into the base { 〈 4B, { b } 〉 } and the part added by
close { 〈 0B, { b } 〉 , 〈 0S, { c } 〉 }. The first and the third item have a final state.
Fig. 2, bottom, depicts the direct (key-less) pilot P ′ in a similar way. Notice pilot
P ′ has fewer m-states than the classic pilot P ; but more of that later. ��

It is well known that the classic pilot P serves these two different purposes:

– to check that the grammar or the TN has the LR (1) property

– as state transition function ϑ of the parser DPDA (recognizer)

A TN satisfies the classic LR (1) condition if in the classic pilot P there is not
a m-state I that has either one of the two following conflicts (3):

shift-reduce : set I contains an item 〈 r, ρ 〉 with state r final and the
function ϑ ( I, a ) is �= ∅ for some a ∈ ρ

reduce-reduce : set I contains two items 〈 r, ρ 〉 and 〈 s, σ 〉 with states
r and s final, and it holds ρ ∩ σ �= ∅

⎫⎪⎪⎬⎪⎪⎭ (3)

All the m-states of the classic pilot P shown in Fig. 1 meet the LR (1) condition.
Dropping the actions for building the syntax tree, the classic parser is equiva-

lent to a DPDA that has the m-states of the classic pilot P as its stack alphabet.
Why the new direct parser has two pilot versions instead of one, is purely con-
tingent. Pilot P ′ is the formal model defined in [2], which allows to check the
new ELR (1) conditions (4). But the parser of [2] is (equivalent to) a DPDA that
needs additional information to link the stack top tuples to those of the m-state
underneath in the stack. It runs faster if the same linkage information is pre-
computed and stored in its pilot, which then becomes a novel pilot model with
keys, named P ′′. With this provision, the m-states of P ′′ are the stack symbols
of the DPDA. Since pilot P ′′ derives from P ′ by just adding the keys, the new
direct parser behaves equivalently to the one already proved correct in [2].

The direct parser satisfies the ELR (1) condition if the direct pilot P ′ is free
from conflicts (3), i.e., it satisfies the LR (1) condition, and additionally if its
transition function ϑ does not have any convergence conflicts [2], defined as (4):

〈 r, ρ 〉 , 〈 s, σ 〉 ∈ I, δ ( r, X ) = δ ( s, X ) and ρ ∩ σ �= ∅ (4)

where I is a m-state and X is a grammar symbol. Clearly, if clause (4) holds,
then the next m-state ϑ ( I, X ) contains the item 〈 q, ρ ∪ σ 〉 with state q =
δ ( r, X ) = δ ( s, X ). We refer to [2] for an explanation and a few examples. All
the arcs of the direct pilot P ′ in Fig. 2 are free from convergence conflicts (4).
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Fig. 3. Top: direct ELR (1) pilot with keys P ′′. Bottom: simulation of recognition.

Next, we examine how the direct parser with keys P ′′ differs from the one
without keys P ′. The difference comes from using different shift and closure
functions (Def.s 4 and 5) in the Alg. 7. If the PIK field of the 3-tuple is deleted
in (1), then some m-states of P ′′ may become identical and coalesce into the
same m-state of P ′. Thus pilots P ′ and P ′′ are equivalent, viewed as DFA’s.

We describe the parser controlled by the direct pilot with keys P ′′, and so we
demonstrate it is equivalent to the (key-less) parser presented in [2]. The parser
stack alternates m-states and grammar symbols; initially it contains only I0. The
shift operation is identical to that of the classic LR parser. A difference occurs
in the reduction operation. The running example helps to understand.

Example 9. Running example 2 finished.
Fig. 3, top, shows the direct pilot with keys P ′′, which has more m-states

than the direct key-less pilot P ′ of Fig. 2. For instance, the m-states I1 and I9
of P ′′ only differ in their PIK fields and coalesce into the m-state I1 of P ′. Fig.
3, bottom, shows the parsing trace of a valid string, with three reductions. We
refer to [2] for a formal presentation. Here is how each reduction traces back its
stack handle by means of the chain of tuple links based on the PIK field:

“ ε � S ” The final tuple 0 : 〈 0S , { c } , ⊥〉 in I1 matches look-ahead and input,
and it has PIK = ⊥ (created by closure); so the reduction handle is null.

“ a d d b � S ” The final tuple 1 : 〈 4S , { c } , 1 〉 in I8 matches look-ahead and
input, and it has PIK = 1 �= ⊥; so it points back to tuple 1 : 〈 3S , { c } , 1 〉
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in I7; then to itself in I7; then to 1: 〈 1S , { c } , 0 〉 in I5; and finally to
0 : 〈 0S , { c } , ⊥〉 in I9, with PIK = ⊥; so the reduction handle is complete.

“ aS c b a S c b � S ” The final tuple 1 : 〈 4S , {  } , 1 〉 in I4 matches look-ahead
and input, and it hasPIK = 1 �= ⊥; so it points back to tuple 1 : 〈 3S , {  } , 1 〉
in I3; and so on through I2, I9, I4, I3, I2 and I1, until tuple 0 : 〈 0S , {  } , ⊥〉
is found in I0, with PIK = ⊥; so the reduction handle is complete.

The string is eventually accepted because the stack contents reduce to I0, there
is not any input left to analyze and the last reduction is to the axiom S. ��

4 Quantitative Measurements and Comparisons

We make a theoretical and experimental comparison between classic and direct
parsers. By showing the parser size and speed, first for formal parameterized
language families and then for real programming languages such as Java, we
provide consistent evidence that our novel parsers have a lower or comparable
cost and a quite competitive performance with respect to the classic ones.

The code of an LR (1) parser consists of a fixed language-independent part and
of a language-dependent part, which are data structures or tables that represent
the state transition function ϑ of the parser pilot. Traditionally, the descriptive
complexity of LR parsers is measured as the number #ms of pilot m-states. As
said, early research introduced some simplified algorithms, e.g., LALR (1) and
Simple LR (1), to reduce the number #ms and the memory for the tables.

4.1 Formal Analysis of the Pilot Size

We compute the parameter #ms for the classic LR (1) parser, i.e., model P , and
for the direct ELR (1) one enriched with keys, i.e., model P ′′, starting with a
family of regular languages parameterized by star height (Def. 10 and Th. 11).

Definition 10. Let Σ = { a1, a2, . . . , ak, . . . } be a countable alphabet. The
language family L = { L1, L2, . . . , Lk, . . . } is defined as follows (k ≥ 1):

L1 = (a1)
∗, L2 =

(
(a1)

∗ a2
)∗
, . . . , Lk =

(
( . . . (a1)

∗ . . . ak−1)
∗
ak
)∗
, . . . ��

Theorem 11. Let #ms classick and #ms directk be the numbers of m-states
of the classic LR (1) pilot and of the direct ELR (1) one with keys, for Lk ∈ L
(k ≥ 1, see Def. 10). It holds #ms classick = 3k and #ms directk = k + 1. ��

Proof. For the classic LR (1) pilot, i.e., model P , consider the relation between
languages Lk−1 and Lk. The pilots for L1 and L2 can be drawn directly, and
they have 3 and 6 m-states, respectively. Fig. 4 shows the BNF grammar and
the acyclic TN of Lk, and it sketches the pilot, which has a modular structure.

The pilot for Lk can be inductively obtained from that for Lk−1 (with k ≥ 3)
by updating the initial m-state I0 with one more item for nonterminalAk, namely
〈 0Ak

, {  } 〉, plus three more m-states I3k−3, I3k−2 and I3k−1 similarly updated,
which are modeled and connected to the (sub-)pilots for Lk−1 and L1 as shown
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Fig. 5. Direct ELR (1) pilot with keys for Lk, isomorphic to the DFA of the rule

in Fig. 4. Since the pilot for L1 has 3 m-states (I0 considering only 〈 0A1 , { a2 } 〉,
I1 and I2), the thesis follows from induction on index k, for all values k ≥ 1.

Concerning the direct ELR (1) pilot with keys, i.e., model P ′′, the one-rule

EBNF grammar S →
( (

. . . ( (a1)
∗ a2 )

∗
. . . ak−1

)∗
ak

)∗
defines language Lk

(with k ≥ 1). Since language Lk is local, it is easy to obtain a local (and minimal)
DFA that recognizes Lk, for any k ≥ 1. Such a DFA can be turned into a direct
ELR (1) pilot with (trivial) keys, as each DFA state becomes a pilot m-state that
contains only one 3-tuple. See the pilot for Lk sketched in Fig. 5, valid for any
k ≥ 1. The number of m-states of this pilot for language Lk is k + 1. ��
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Similarly, we can define another language family for k ≥ 1: L1 = a∗1, L2 = a∗1 a
∗
2,

. . . , Lk = a∗1 a
∗
2 . . . a

∗
k−1 a

∗
k, . . . . Also this family exhibits a linear separation of

pilot complexities (we omit the analysis), and it is more representative of the typ-
ical iterative structures that occur in the grammars of programming languages.

Last and foremost, the analysis of such language families shows the growth
of parameter #ms classic is mainly due to the stars in the rule RE ’s, e.g., Def.
10 and Th. 11, yet their significance for real parsing applications is questionable
because no ordinary EBNF grammar has rules with RE ’s of a large star height.
Thus, to practically assess the complexity we resort to experimentation.

4.2 Experimental Analysis

We developed a parser generator tool, named E-Bison, that translates the EBNF
grammar to a TN, constructs the pilot and generates the classic or direct parser
encoded in Java. We can generate several parser variants: the classic LR (1)
parser, i.e., P , if the grammar is (converted to) BNF ; or the direct (key-less)
ELR (1) parser of [2], i.e., P ′; or the direct ELR (1) parser with keys of Sect. 3,
i.e., P ′′. We used our tool for a static analysis of the descriptive complexity: we
generated pilots for various grammars and obtained their numbers of m-states.

Table 1. Characteristics of the benchmarks and platform used for the experiments.
Sources: for Java JDK, for JSON several files (Gospel of John, statistics on the n-grams
of English in Google Books, the UK Comprehensive Knowledge Archive Network, etc.).

benchmark
language

total size
(MByte)

number
of files

number of
code lines

number
of tokens

execution platform
(for both benchmarks)

Java 16 2 743 500 000 1 103 799 AMD Athlon 64X2, 2.2 GHz,
JSON 1.9 5 1 per file 239 288 2 GB RAM, Win. 7 32 bit

To measure the parsing speed in a realistic and unbiased way, we compared
a few classic and direct parsers generated by E-Bison against the classic ones
generated as Java code by GNU Bison, which is the most popular generator.
We remark however, that GNU Bison is of LALR (1) type [1] and so accepts a
strict subfamily of deterministic context-free languages. Pilots of LALR (1) type
have fewer m-states than the LR (1) ones, but the difference is uninfluential for
speed. For comparison, in all cases we used the scanners generated by E-Bison.

Two popular source languages are the corpora of our experiments: Java and
JSON. Table 1 shows the sizes of the two benchmarks and the execution platform
we used. Table 2 reports the grammar, TN and pilot sizes for Java and JSON,
and it shows the m-state number #ms and the average parsing speed measured.

The BNF grammars have approximately twice as many rules as the EBNF
ones. The average number of machine states per EBNF rule is ≈ 5 for Java and
≈ 4 for JSON, which has simpler syntactic constructs. The pilot generated by
GNU Bison is small, but it is LALR (1) and is incomparable with the LR (1)
pilot generated by E-Bison. The size ratio of the direct ELR (1) pilot P ′′ vs the
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classic LR (1) pilot P is 1.07 (Java) and ≈ 1 (JSON ). In both cases the figure
is opposite to the result of Th. 11. The reason is twofold: the EBNF grammars
of both languages have few stars in their RE ’s, and the PIK field in the pilot
tuples diversifies the m-states, a fact also visible by comparing Fig.s 2 and 3.

Of course, speed is the most important property to make a parser competitive.
Table 2 reports the parsing speeds for Java and JSON, measured as the number
of tokens processed per millisecond. Our novel direct ELR (1) parsers with keys
are significantly faster than the classic LR (1) ones, and the speedup is even
larger if we consider the LALR (1) parsers generated by GNU Bison. The larger
speedup is for the simpler language, JSON. In fact the direct parsers can use
longer rules than the classic ones do, thus they save 16.0% (Java) and 34.6%
(JSON ) reduction moves w.r.t. the latter, and the saving is larger for JSON.

Table 2. Experimental results: speed is measured in thousand tokens per millisecond

grammar and TN size Bison LALR (1) E-Bison LR (1) E-Bison ELR (1)

grammar
of lang.

BNF
rules

EBNF
rules

TN
states

pilot
#ms

parser
speed

pilot P
#ms

parser
speed

pilot P ′′

#ms
parser
speed

Java 263 133 660 655 2.20 2 946 2.39 3 153 2.46
JSON 25 11 43 46 4.13 70 4.97 71 6.13

We quote also the size of the direct ELR (1) (key-less) pilots, i.e., P ′: they
have 1 973 (Java) and 50 (JSON ) m-states. Notice they are smaller than the
classic LR (1) pilots, i.e., P , in line with Th. 11. Their parsers are less efficient,
so their speeds are not shown. As said, such pilots serve to prove determinism.

It would be out of scope to discuss programming details. It suffices to say we
made a few optimizations in the direct ELR (1) parser with keys, i.e., P ′′, which
concern the reduction move and aim at attaining the same speed as the classic
LR (1) parser, i.e., P , whenever the grammar rules applied are non-extended.

5 Conclusion

The formal analysis and experimental measurements reported indicate that our
novel direct ELR parser model (in particular with keys) for the languages defined
by Extended BNF grammars [2], is competitive with those that have been in use
for half a century for the less expressive BNF grammars: an almost negligible
increase of parser size is offset by a more significant increase of parsing speed.

Sharing: ftp://ftp.elet.polimi.it/outgoing/Luca.Breveglieri/ebison; code: binary;
data: access; source: free (information for reproducing our experiments).
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Abstract. A right ideal is a language L over an alphabet Σ that satisfies
the equation L = LΣ∗. We show that there exists a sequence (Rn | n � 3)
of regular right-ideal languages, where Rn has n left quotients and is most
complex among regular right ideals under the following measures of com-
plexity: the state complexities of the left quotients, the number of atoms
(intersections of complemented and uncomplemented left quotients), the
state complexities of the atoms, the size of the syntactic semigroup, the
state complexities of reversal, star, product, and all binary boolean oper-
ations that depend on both arguments. Thus (Rn | n � 3) is a universal
witness reaching the upper bounds for these measures.

Keywords: atom, operation, quotient, regular language, right ideal,
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1 Introduction

Brzozowski [3] called a regular language most complex if it meets the upper
bounds for a large set of commonly used language properties and operations,
and found a single witness language of state complexity n for each n � 3 that
meets all these bounds. In particular, this language has the maximal number
of atoms and the state complexities of these atoms are maximal. Moreover, it
meets the upper bounds for the state complexities of all the basic operations:
reverse, Kleene star, boolean operations, product (also known as concatenation
or catenation), as well as a large number of combined operations. In view of this,
such a witness has been called universal.

If we restrict our attention to some subclass of regular languages, then the uni-
versal witness mentioned above no longer works because it lacks the properties of
the subclass. In this paper we ask whether the approach used for general regular
languages can be extended to subclasses. We answer this question positively for
regular right ideals by presenting a universal right-ideal witness.
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For a further discussion of regular right ideals see [5,8]. It was pointed out in [5]
that right ideals deserve to be studied for several reasons: They are fundamental
objects in semigroup theory, they appear in the theoretical computer science
literature as early as 1965, and they continue to be of interest in the present.
Right ideal languages are complements of prefix-closed languages. Besides being
of theoretical interest, right ideals also play a role in algorithms for pattern
matching: When searching for all words beginning in a word from some set L,
one is looking for all the words of the right ideal LΣ∗.

2 Background

A deterministic finite automaton (DFA) D = (Q,Σ, δ, q1, F ) consists of a finite
non-empty set Q of states, a finite non-empty alphabet Σ, a transition function
δ : Q × Σ → Q, an initial state q1 ∈ Q, and a set F ⊆ Q of final states. The
transition function is extended to functions δ′ : Q×Σ∗ → Q and δ′′ : 2Q×Σ∗ →
2Q as usual, and these extensions are also denoted by δ. A state q of a DFA
is reachable if there is a word w ∈ Σ∗ such that δ(q1, w) = q. The language
accepted by D is L(D) = {w ∈ Σ∗ | δ(q1, w) ∈ F}. The language of a state
q is the language accepted by the DFA Dq = (Q,Σ, δ, q, F ). A state is empty
if its language is empty. Two DFAs are equivalent if their languages are the
same. Two states are equivalent if their languages are equal; otherwise, they are
distinguishable by some word that is in the language of one of the states, but
not of the other. If S ⊆ Q, two states p, q ∈ Q are distinguishable with respect to
S if there is a word w such that δ(p, w) ∈ S if and only if δ(q, w) �∈ S. A DFA is
minimal if all of its states are reachable and no two states are equivalent.

A nondeterministic finite automaton (NFA) is a tuple N = (Q,Σ, η,Q1, F ),
where Q, Σ, and F are as in a DFA, η : Q × Σ → 2Q is the transition function
and Q1 ⊆ Q is the set of initial states. An ε-NFA has all the features of an
NFA but its transition function η : Q × (Σ ∪ {ε}) → 2Q allows also transitions
under the empty word ε. The language accepted by an NFA or an ε-NFA is the
set of words w for which there exists a sequence of transitions such that the
concatenation of the symbols inducing the transitions is w, and this sequence
leads from a state in Q1 to a state in F . Two NFAs are equivalent if they accept
the same language.

We use the following operations on automata:
1. The determinization operation D applied to an NFA N yields a DFA

ND obtained by the subset construction, where only subsets reachable from the
initial subset of ND are used and the empty subset, if present, is included.

2. The reversal operation R applied to an NFA N yields an NFA NR, where
sets of initial and final states of N are interchanged and transitions are reversed.

Let D = (Q,Σ, δ, q1, F ) be a DFA. For each word w ∈ Σ∗, the transition

function induces a transformation tw of Q by w: for all q ∈ Q, qtw
def
= δ(q, w).

The set TD of all such transformations by non-empty words forms a semigroup
of transformations called the transition semigroup of D [11]. Conversely, we can
use a set {ta | a ∈ Σ} of transformations to define δ, and so also the DFA D.
We also write a : t to mean that the transformation induced by a ∈ Σ is t.
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The syntactic congruence ↔L of a language L ⊆ Σ∗ is defined on Σ+:
For x, y ∈ Σ+, x↔L y if and only if uxv ∈ L ⇔ uyv ∈ L for all u, v ∈
Σ∗. The quotient set Σ+/↔L of equivalence classes of the relation ↔L is a
semigroup called the syntactic semigroup of L. If D is the minimal DFA of L,
then TD is isomorphic to the syntactic semigroup TL of L [11], and we represent
elements of TL by transformations in TD.

A permutation of Q is a mapping of Q onto itself. The identity transformation
1 maps each element to itself, that is, q1 = q for q ∈ Q. A transformation t is
a cycle of length k if there exist pairwise different elements p1, . . . , pk such that
p1t = p2, p2t = p3, . . . , pk−1t = pk, pkt = p1, and other elements of Q are mapped
to themselves. A cycle is denoted by (p1, p2, . . . , pk). A transposition is a cycle
(p, q). For p �= q, a unitary transformation t : (p→ q), has pt = q and rt = r for
all r �= p.

The set of all permutations of a set Q of n elements is a group, called the
symmetric group of degree n. Without loss of generality, from now on we assume
that Q = {1, 2, . . . , n}. It is well known that the symmetric group of degree n
can be generated by any cyclic permutation of n elements together with any
transposition. In particular, it can be generated by (1, 2, . . . , n) and (1, 2).

The set of all transformations of a set Q, denoted by TQ, is a monoid with
1 as the identity. It is well known that the transformation monoid TQ of size
nn can be generated by any cyclic permutation of n elements together with any
transposition and any unitary transformation. In particular, TQ can be generated
by (1, 2, . . . , n), (1, 2) and (n→ 1).

The state complexity [12] of a regular language L over an alphabet Σ is the
number of states in any minimal DFA recognizing L. An equivalent notion is
that of quotient complexity [2], which is the number of distinct left quotients
of L, where the left quotient of L ⊆ Σ∗ by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. This paper uses complexity for both of these
equivalent notions, and this term will not be used for any other property here.

The (state/quotient) complexity of an operation [12] on regular languages
is the maximal complexity of the language resulting from the operation as a
function of the complexities of the arguments. For example, for L ⊆ Σ∗, the
complexity of the reverse LR of L is 2n if the complexity of L is n, since a
minimal DFA for LR can have at most 2n states and there exist languages
meeting this bound [9].

There are two parts to the process of establishing the complexity of an op-
eration. First, one must find an upper bound on the complexity of the result of
the operation by using quotient computations or automaton constructions. Sec-
ond, one must find witnesses that meet this upper bound. One usually defines
a sequence (Ln | n � k) of languages, where k is some small positive integer.
This sequence will be called a stream. The languages in a stream differ only in
the parameter n. For example, one might study unary languages ({an}∗ | n � 1)
that have zero occurrences of the letter a modulo n. A unary operation takes its
argument from a stream (Ln | n � k). For a binary operation, one adds a stream
(Kn | n � k) as the second argument. While the witness streams are normally
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different for different operations, our main result shows that a single stream can
meet the complexity bounds for all operations in the case of right ideals.

Atoms of regular languages were studied in [7], and their complexities, in [6].
Let L be a regular language with quotients K = {K1, . . . ,Kn}. Each subset

S of K defines an atomic intersection AS = K̃1 ∩ · · · ∩ K̃n, where K̃i is Ki if
Ki ∈ S and Ki otherwise. An atom of L is a non-empty atomic intersection.
Since non-empty atomic intersections are pairwise disjoint, every atom A has a
unique atomic intersection associated with it, and this atomic intersection has
a unique subset S of K associated with it. This set S is called the basis of A
and is denoted by B(A). The cobasis of A is B(A) = K \ B(A). The basis of
an atom is the set of quotients of L that occur uncomplemented as terms of
the corresponding intersection, and the cobasis is the set of quotients that occur
complemented.

It was proven in [7] that each regular language L defines a unique set of atoms,
that every quotient of L (including L itself) is a union of atoms, and that every
quotient of every atom of L is a union of atoms. Thus the atoms of L are its
basic building blocks. It was argued in [3] that the complexity of the atoms
of a language should be considered when searching for “most complex” regular
languages, since a complex language should have complex building blocks. We
shall show that – as was the case for arbitrary regular languages – for right ideals
there is a tight upper bound on the complexity of any atom with a basis of a
given size.

3 Main Results

The stream of right ideals that turns out to be most complex is defined as follows:

Definition 1. For n � 3, let Rn = Rn(a, b, c, d) = (Q,Σ, δ, 1, {n}), where
Q = {1, . . . , n} is the set of states1, Σ = {a, b, c, d} is the alphabet, the trans-
formations defined by δ are a : (1, . . . , n − 1), b : (2, . . . , n − 1), c : (n− 1 → 1)
and d : (n− 1 → n), 1 is the initial state, and {n} is the set of final states. Let
Rn = Rn(a, b, c, d) be the language accepted by Rn.

The structure of the DFA Rn(a, b, c, d) is shown in Figure 1. Note that input
b induces the identity transformation in Rn for n = 3.

The stream of languages of Definition 1 is very similar to the stream (Ln |
n � 2) shown to be a universal witness for regular languages in [3,6]. In that
stream, Ln is defined by the DFA Dn = Dn(a, b, c) = (Q,Σ, δ, 1, {n}), where
Q = {1, . . . , n}, Σ = {a, b, c}, and δ is defined by a : (1, . . . , n), b : (1, 2), and
c : (n→ 1). The automatonRn can be constructed by taking Dn−1, adding a new
state n and a new input d : (n−1→ n), making n the only final state, and having
b induce the cyclic permutation (2, . . . , n−1), rather than the transposition (1, 2).
The new state and input are necessary to ensure that Rn is a right ideal for all n.

1 Although Q and δ depend on n, this dependence is usually not shown to keep the
notation as simple as possible.
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n1 2 3 n − 1

a
n − 2

c, d c, d c, d a, b, c, d

· · · da, b a, b a, b a, b

a, c

b

b, c, d

Fig. 1. Automaton Rn of a most complex right ideal Rn

Changing the transformation induced by b is necessary since, if b induces (1, 2)
in Rn, then Rn does not meet the bound for product.

We can generalize this definition to a stream (Rn | n � 1) by noting that when
n = 1, all four inputs induce the identity transformation, and when n = 2, a, b
and c induce the identity transformation, while d induces (1 → 2). Hence R1 =
{a, b, c, d}∗ and R2 = {a, b, c}∗d{a, b, c, d}∗. However, the complexity bound for
star is not reached by R1, and the complexity bounds for boolean operations are
not reached when one of the operands is R1 or R2. Thus we require n � 3.

In some cases, the complexity bounds can be reached even when the alphabet
size is reduced. If c is not needed, let Rn(a, b, d) be the DFA of Definition 1
restricted to inputs a, b and d, and let Rn(a, b, d) be the language recognized by
this DFA. If both b and c are not needed, we use Rn(a, d) and Rn(a, d). We also
define Rn(b, a, d) to be the DFA obtained from Rn(a, b, d) by interchanging the
roles of the inputs a and b, and let Rn(b, a, d) be the corresponding language.

Theorem 1 (Main Results). The language Rn = Rn(a, b, c, d) has the prop-
erties listed below. Moreover, all the complexities of Rn are the maximal possible
for right ideals. The results hold for all n � 1 unless otherwise specified.

1. Rn(a, d) has n quotients, that is, its (state/quotient) complexity is n.
2. The syntactic semigroup of Rn(a, b, c, d) has cardinality nn−1.
3. Quotients of Rn(a, d) have complexity n, except for the quotient {a, d}∗,

which has complexity 1.
4. Rn(a, b, c, d) has 2n−1 atoms.
5. The atom of Rn(a, b, c, d) with the empty cobasis has complexity 2n−1. If an

atom of Rn(a, b, c, d) has a cobasis of size r, 1 � r � n− 1, its complexity is

1 +

r∑
k=1

k+n−r∑
h=k+1

(
n− 1

h− 1

)(
h− 1

k

)
.

6. The reverse of Rn(a, d) has complexity 2n−1.
7. For n � 2, the star of Rn(a, d) has complexity n+ 1.
8. For m,n � 3, the complexity of Rm(a, b, d) ∩Rn(b, a, d) is mn.
9. For m,n � 3, the complexity of Rm(a, b, d)⊕Rn(b, a, d) is mn.

10. For m,n � 3, the complexity of Rm(a, b, d) \Rn(b, a, d) is mn− (m− 1).
11. For m,n � 3, the complexity of Rm(a, b, d)∪Rn(b, a, d) is mn− (m+n− 2).
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12. For m,n � 3, since any binary boolean operation can be expressed as a
combination of the four operations above (and complement, which does not
affect complexity), the complexity of Rm(a, b, d) ◦ Rn(b, a, d) is maximal for
all binary boolean operations ◦.

13. For m,n � 3, if m �= n, then the complexity of Rm(a, b, d) ◦ Rn(a, b, d) is
maximal for all binary boolean operations ◦.

14. The complexity of Rm(a, b, d) ·Rn(a, b, d) is m+ 2n−2.

The proof of Theorem 1 is the topic of the remainder of the paper.

4 Conditions for the Complexity of Right Ideals

1. Complexity of the Language: Rn(a, d) has n quotients because the DFA
Rn(a, d) is minimal. This holds since the non-final state i accepts an−1−id and
no other non-final state accepts this word, for 1 � i � n − 1, and all non-final
states are distinguishable from the final state n by the empty word.

2. Cardinality of the Syntactic Semigroup: It was proved in [8] that the
syntactic semigroup of a right ideal of complexity n has cardinality at most nn−1.
To show Rn(a, b, c, d) meets this bound, one first verifies the following:

Remark 1. For n � 3, the transposition (1, 2) in Rn is induced by an−2b.

Theorem 1 (2) The syntactic semigroup of Rn(a, b, c, d) has cardinality n
n−1.

Proof. The cases n � 3 are easily checked. For n � 4, let the DFA Pn be
Pn = (Q,Σ, δ, 1, {n}), where Q = {1, . . . , n}, Σ = {a, b, c, d}, and a : (1, . . . , n−
1), b : (1, 2), c : (n− 1→ 1) and d : (n− 1→ n). It was proved in [8] that the
syntactic semigroup of Pn(a, b, c, d) has cardinality n

n−1. Since words in Σ∗ can
induce all the transformations of Pn in Rn(a, b, c, d), the claim follows. ��

3. Complexity of Quotients: Each quotient of Rn(a, d), except the quotient
{a, d}∗, has complexity n, since states 1, . . . , n − 1 are strongly connected. So
the complexities of the quotients are maximal for right ideals.

4. Number of Atoms: It was proved in [6] that the number of atoms of L is
precisely the complexity of the reverse of L. It was shown in [5] that the maximal
complexity of LR for right ideals is 2n−1. For n � 3 it is easily checked that our
witness meets this bound. For n > 3, it was proved in [8] that the reverse of
Rn(a, d), and hence also of Rn(a, b, c, d), reaches this bound.

5. Complexity of Atoms: This is the topic of Section 5.

6. Reversal: See 4. Number of Atoms.

7. Star: The complexity of the star of a right ideal is at most n + 1 [5]. This
follows because, if ε �∈ L, we need to add ε to L = LΣ∗ to obtain L∗. Our witness
meets this bound, as one can easily verify:

Remark 2 (Star). For n � 2, the complexity of (Rn(a, d))
∗ is n+ 1.

8.–14. Boolean Operations and Product: See Sections 6 and 7.
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Table 1. Maximal complexity of atoms of right ideals

n 1 2 3 4 5 6 7 · · ·
r=0 1/1 2/3 4/7 8/15 16/31 32/63 64/127 · · ·
r=1 2/3 5/10 13/29 33/76 81/187 193/442 · · ·
r=2 ∗/3 4/10 16/43 53/141 156/406 427/1, 086 · · ·
r=3 ∗/7 8/29 43/141 166/501 542/1, 548 · · ·
r=4 ∗/15 16/76 106/406 462/1, 548 · · ·
r=5 ∗/31 32/187 249/1, 086 · · ·
r=6 ∗/63 64/442 · · ·
max 1/1 2/3 5/10 16/43 53/141 166/501 542/1, 548 · · ·
ratio − 2/3 2.50/3.33 3.20/4.30 3.31/3.28 3.13/3.55 3.27/3.09 · · ·

5 Complexity of Atoms

In [6], for the language stream (Ln | n � 2) described after Definition 1, it
was proved that the atoms of Ln have maximal complexity amongst all regular
languages of complexity n. We want to prove that the atoms of Rn(a, b, c, d)
have maximal complexity amongst all right ideals of complexity n. We only give
a high-level outline following the approach of [6].

1. Derive upper bounds for the complexities of atoms of right ideals.
The cobasis of an atom cannot contain Σ∗; if it did, then Σ∗ = ∅ would be
a term in the corresponding atomic intersection and the intersection would be
empty. Since all right ideals have Σ∗ as a quotient, every atom of a right ideal
must contain Σ∗ in its basis. It follows the cobasis of an atom of a right ideal
is either empty or contains r quotients, where 1 � r � n− 1. Knowing this, we
can derive the upper bounds by the same method as in [6].

2. Describe the transition function of the átomaton of Rn(a, b, c, d).
Let A = {A1, . . . , Am} be the set of atoms of L. The átomaton2 of L is the NFA
A = (A, Σ, η,AI , Af ), where the initial atoms are AI = {Ai | L ∈ B(Ai)}, the
final atom Af is the unique atom such that Ki ∈ B(Af ) if and only if ε ∈ Ki,
and Aj ∈ η(Ai, a) if and only if aAj ⊆ Ai. In the átomaton the language of state
A of A is the atom A of L. Since each regular language defines a unique set of
atoms, each regular language also defines a unique átomaton.

3. Prove that certain strong connectedness and reachability results hold for
states of minimal DFAs of atoms of Rn(a, b, c, d).

4. Prove that the complexity of each atom of Rn(a, b, c, d) meets the estab-
lished bound.

Many steps of this proof are similar or identical to the proof for Ln given
in [6]; for the details see [4]. Table 4 shows the bounds for right ideals (first
entry) and compares them to those of regular languages (second entry). An
asterisk indicates the case is impossible for right ideals. The ratio row shows the
ratio mn/mn−1 for n � 2, where mi is the i

th entry in the max row.

2 The accent in átomaton avoids confusion with automaton, and suggests that the
stress should be on the first syllable, since the word comes from atom.
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6 Boolean Operations

Tight upper bounds for boolean operations on right ideals [5] aremn for intersec-
tion and symmetric difference, mn−(m+n) for difference, and mn−(m+n−2)
for union. Since Ln ∪ Ln = Ln ∩ Ln = Ln, and Ln \ Ln = Ln ⊕ Ln = ∅,
two different languages must be used to reach the bounds if m = n. We use
Rm = Rm(a, b, d) and Rn = Rn(b, a, d), shown in Figure 2 for m = 4 and n = 5.

Let Rm,n = Rm × Rn = (Qm × Qn, Σ, δ, (1, 1), Fm,n) with δ((i, j), σ) =
(δm(i, σ), δn(j, σ)), where δm (δn) is the transition function of Rm (Rn). De-
pending on Fm,n, this DFA recognizes different boolean operations on Rm and
Rn. The direct product of R4(a, b, d) and R5(b, a, d) is in Figure 3.

In our proof that the bounds for boolean operations are reached, we use a
result of Bell, Brzozowski, Moreira and Reis [1]. A binary boolean operation ◦
on regular languages is a mapping ◦ : 2Σ

∗×2Σ
∗ → 2Σ

∗
. If L,L′ ⊆ Σ∗, the result

of the operation ◦ is denoted by L ◦L′. We say that such a boolean operation is
proper if ◦ is not a constant, and not a function of one variable only, that is, it
is not the identity or the complement of one of the variables.

Let Sn denote the symmetric group of degree n. A basis [10] of Sn is an ordered
pair (s, t) of distinct transformations of Qn = {1, . . . , n} that generate Sn. Two
bases (s, t) and (s′, t′) of Sn are conjugate if there exists a transformation r ∈ Sn

such that rsr−1 = s′, and rtr−1 = t′. A DFA has a basis (ta, tb) for Sn if it has
letters a, b ∈ Σ such that a induces ta and b induces tb.

Proposition 1 (Symmetric Groups and Boolean Operations [1]). Sup-
pose that m,n � 1, Lm and L′

n are regular languages of complexity m and n
respectively, and Dm = (Qm, Σ, δ, 1, F ) and D′

n = (Qn, Σ, δ
′, 1, F ′) are minimal

DFAs for Lm and L′
n, where ∅ � F � Qm and ∅ � F ′ � Qn. Suppose further

that Dm has a basis B = (ta, tb) for Sm and D′
n has a basis B′ = (t′a, t′b) for Sn.

Let ◦ be a proper binary boolean operation. Then the following hold:
1. In the direct product Dm × D′

n, all mn states are reachable if and only if
m �= n, or m = n and the bases B and B′ are not conjugate.

2. For m,n � 2, (m,n) �∈ {(2, 2), (3, 4), (4, 3), (4, 4)}, Lm ◦L′
n has complexity

mn if and only if m �= n, or m = n and the bases B and B′ are not conjugate.

This implies that if the conditions of the proposition hold, then no matter
how we choose the sets F and F ′, as long as ∅ � F � Qm and ∅ � F ′ � Qn,

a, b, d
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Fig. 2. Right-ideal witnesses for boolean operations
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b

d

d

d dd

d

a

b

a
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a

a

dd
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b

a

Fig. 3. Direct-product automaton for boolean operations, m = 4, n = 5. Transitions
under a and d are in solid lines and under b, in dotted lines. Unlabelled solid transitions
are under a. Self-loops are omitted.

and the boolean function ◦ is proper, the direct product DFA Dm×Dn has mn
states and is minimal.

In the case of our right ideal Rm (Rn), the transitions ta and tb (t′a and t′b)
restricted to {1, . . . , n − 1}, constitute a basis for Sm−1 (Sn−1). This implies
that in the direct product Rm,n, all states in the set S = {(i, j) | 1 � i �
m−1, 1 � j � n−1} are reachable by words in {a, b}∗. Furthermore, if m,n � 3
and (m,n) �∈ {(3, 3), (4, 5), (5, 4), (5, 5)}, then every pair of states in S is distin-
guishable with respect to F ◦ F ′, the set of final states of the direct product.

Theorem 1 (8–11) (Boolean Operations) If m,n � 3, then
• The complexity of Rm(a, b, d) ∩Rn(b, a, d) is mn.
• The complexity of Rm(a, b, d)⊕Rn(b, a, d) is mn.
• The complexity of Rm(a, b, d) \Rn(b, a, d) is mn− (m− 1).
• The complexity of Rm(a, b, d) ∪Rn(b, a, d) is mn− (m+ n− 2).

Proof. In the cases where (m,n) ∈ {(3, 3), (4, 5), (5, 4), (5, 5)}, we cannot apply
Proposition 1, but we have verified computationally that the bounds are met.
For the remainder of the proof we assume (m,n) �∈ {(3, 3), (4, 5), (5, 4), (5, 5)}.

Our first task is to show that all mn states of Rm,n are reachable. By Propo-
sition 1, all states in the set S = {(i, j) | 1 � i � m − 1, 1 � j � n − 1} are
reachable. The remaining states are the ones in the last row or last column (that
is, row m or column n) of the direct product.

For 1 � j � n− 2, from state (m− 1, j) we can reach (m, j) by d. From state
(m,n− 2) we can reach (m,n− 1) by a. From state (m− 1, n− 1) we can reach
(m,n) by d. Hence all states in row m are reachable.

For 1 � i � m − 2, from state (i, n − 1) we can reach (i, n) by d. From
state (m− 2, n) we can reach (m− 1, n) by a. Hence all states in column n are
reachable, and thus all mn states are reachable.
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We now count the number of distinguishable states for each operation. Let
H = {(m, j) | 1 � j � n} be the set of states in the last row and let V =
{(i, n) | 1 � i � m} be the set of states in the last column. If ◦ ∈ {∩,⊕, \,∪},
then Rm(a, b, d) ◦Rn(b, a, d) is recognized by Rm,n, where the set of final states
is taken to be H ◦ V .

Let H ′ = {(m−1, j) | 1 � j � n−1} and let V ′ = {(i, n−1) | 1 � i � m−1}.
By Proposition 1, all states in S are distinguishable with respect to H ′ ∩ V ′ =
{(m − 1, n − 1)}. We claim that they are also distinguishable with respect to
H ◦ V for ◦ ∈ {∩,⊕, \,∪}.

Distinguishability with respect to H ′ ∩ V ′ implies that for all pairs of states
(i, j), (k, �) ∈ S, there exists a word w that sends (i, j) to (m − 1, n − 1) and
sends (k, �) to some other state in S. It follows that the word wd sends (i, j) to
(m,n) (which is in H ∩V ), while (k, �) is sent to a state outside of H ∩V . Hence
all states in S are distinguishable with respect to H ∩ V . The same argument
works for H ⊕ V , H \ V , and H ∪ V .

Thus for each boolean operation ◦, all (m − 1)(n − 1) = mn − m − n + 1
states in S are distinguishable with respect to the final state set H ◦V . To show
that the complexity bounds are reached by Rm(a, b, d) ◦Rn(b, a, d), it suffices to
consider how many of the m + n − 1 states in H ∪ V are distinguishable with
respect to H ◦ V .
Intersection: Here the set of final states is H ∩ V = {(m,n)}. State (m,n) is
the only final state and hence is distinguishable from all the other states. Any
two states in H (V ) are distinguished by words in b∗d (a∗d). State (m, 1) accepts
bn−2d, while (1, n) rejects it. For 2 � i � n−1, (m, i) is sent to (m, 1) by bn−1−i,
while state (1, n) is not changed by that word. Hence (m, i) is distinguishable
from (1, n). By a symmetric argument, (j, n) is distinguishable from (m, 1) for
2 � j � m − 1. For 2 � i � n − 1 and 2 � j � m − 1, (m, i) is distinguished
from (j, n) because bn−i sends the former to (m, 1) and the latter to a state of
the form (k, n), where 2 � k � m− 1. Hence all pairs of states from H ∪ V are
distinguishable. Siince there are m+ n− 1 states in H ∪ V , it follows there are
(mn−m− n+ 1) + (m+ n− 1) = mn distinguishable states.
Symmetric Difference: Here the set of final states is H⊕V , that is, all states
in the last row and column except (m,n), which is the only empty state. This
situation is complementary to that for intersection. Thus every two states from
H ∪ V are distinguishable by the same word as for intersection. Hence there are
mn distinguishable states.
Difference: Here the set of final states is H \ V , that is, all states in the last
row H except (m,n), which is empty. All other states in the last column V are
also empty. The m empty states in V are all equivalent, and the n − 1 final
states in H \ V are distinguished in the same way as for intersection. Hence
there are (n − 1) + 1 = n distinguishable states in H \ V . It follows there are
(mn−m− n+ 1) + n = mn− (m− 1) distinguishable states.
Union: Here the set of final states is H ∪ V . From a state in H ∪ V it is only
possible to reach other states in H ∪ V , and all these states are final; so every
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state in H ∪ V accepts Σ∗. Thus all the states in H ∪ V are equivalent, and so
there are (mn−m− n+ 1) + 1 = mn− (m+ n− 2) distinguishable states. ��

Although it is impossible for the stream (Rn(a, b, d) | n � 3) to meet the bound
for boolean operations whenm = n, this stream is as complex as it could possibly
be in view of the following theorem proved in [4]:

Theorem 1 (13) (Boolean Operations, m �= n) If m,n � 3 and m �= n,
• The complexity of Rm(a, b, d) ∩Rn(a, b, d) is mn.
• The complexity of Rm(a, b, d)⊕Rn(a, b, d) is mn.
• The complexity of Rm(a, b, d) \Rn(a, b, d) is mn− (m− 1).
• The complexity of Rm(a, b, d) ∪Rn(a, b, d) is mn− (m+ n− 2).

7 Product

We show that the complexity of the product of Rm(a, b, d) with Rn(a, b, d)
reaches the maximum possible bound derived in [5]. To avoid confusing states
of the two DFAs, we label their states differently. Let Rm = Rm(a, b, d) =
(Q′

m, Σ, δ
′, q1, {qm}), where Q′

m = {q1, . . . , qm}, and let Rn = Rn(a, b, d), as in
Definition 1. Define the ε-NFA P = (Q′

m∪Qn, Σ, δP , {q1}, {n}), where δP(q, a) =
{δ′(q, a)} if q ∈ Q′

m, a ∈ Σ, δP(q, a) = {δ(q, a)} if q ∈ Qn, a ∈ Σ, and
δP(qm, ε) = {1}. This ε-NFA accepts RmRn, and is illustrated in Figure 4.

Theorem 1 (14) (Product) For m � 1, n � 2, the complexity of the product
Rm(a, b, d) ·Rn(a, b, d) is m+ 2n−2.

Proof. It was shown in [5] that m+2n−2 is an upper bound on the complexity of
the product of two right ideals. To prove this bound is met, we apply the subset
construction to P to obtain a DFA D for RmRn. The states of D are subsets
of Q′

m ∪Qn. We prove that all states of the form {qi}, i = 1, . . . ,m− 1 and all
states of the form {qm, 1} ∪ S, where S ⊆ Qn \ {1, n}, and state {qm, 1, n} are
reachable, for a total of m+ 2n−2 states.

State {q1} is the initial state, and {qi} is reached by ai−1 for i = 2, . . . ,m−1.
Also, {qm, 1} is reached by am−2d, and states qm and 1 are present in every
subset reachable from {qm, 1}. By applying abj−1 to {qm, 1} we reach {qm, 1, j};
hence all subsets {qm, 1} ∪ S with |S| = 1 are reachable. Assume now that we
can reach all sets {qm, 1} ∪ S with |S| = k, and suppose that we want to reach
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{qm, 1} ∪ T with T = {i0, i1, . . . , ik} with 2 � i0 < i1 < · · · < ik � n − 1. This
can be done by starting with S = {i1 − i0 + 1, . . . , ik − i0 + 1} and applying
abi0−2. Finally, to reach {qm, 1, n}, start with {qm, 1, n− 1} and apply d.

If 1 � i < j � m − 1, then state {qi} is distinguishable from {qj} by
am−1−jdan−1d. Also, state i ∈ Qn with 2 � i � n − 1 accepts an−1−id and
no other state j ∈ Qn with 2 � j � n − 1 accepts this word. Hence, if
S, T ⊆ Qn \ {1, n} and S �= T , then {qm, 1}∪ S and {qm, 1}∪ T are distinguish-
able. State {qk} with 2 � k � m − 1 is distinguishable from state {qm, 1} ∪ S
because there is a word with a single d that is accepted from {qm, 1}∪S but no
such word is accepted by {qk}. Hence all the non-final states are distinguishable,
and {qm, 1, n} is the only final state. ��

8 Conclusion

Our stream of right ideals is a universal witness for all common operations.
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Abstract. The reversal operation is well-studied in literature and the
deterministic (respectively, nondeterministic) state complexity of rever-
sal is known to be 2n (respectively, n). We consider the inversion opera-
tion where some substring of the given string is reversed. Formally, the
inversion of a language L consists of all strings uxRv such that uxv ∈ L.
We show that the nondeterministic state complexity of inversion is in
Θ(n3). We establish that the deterministic state complexity of the in-
version is 2Ω(n·log n), which is strictly worse than the worst case state
complexity of the reversal operation. We also study the state complexity
of different variants of the inversion operation, including prefix-, suffix-,
and pseudo-inversion.

Keywords: State complexity, Inversion operations, Regular languages.

1 Introduction

Questions of descriptional complexity belong to the very foundations of automata
and formal language theory [10, 12, 23, 27]. The state complexity of finite au-
tomata has been studied since the 60’s [13, 16, 17]. Maslov [15] originated the
study of operational state complexity and Yu et al. [27] investigated the state
complexity for basic operations. Later, Yu and his co-authors [7, 8, 20, 21] initi-
ated the study on the state complexity of combined operations such as star-of-
union, star-of-intersection and so on.

In biology, a chromosomal inversion occurs when a segment of a single chro-
mosome breaks and rearranges within itself in reverse order [18]. It is known
that the chromosomal inversion often causes genetic diseases [14]. Informally,
the inversion operation reverses an infix of a given string. This can be viewed as
a generalization of the reversal operation which reverses the whole string. The
inversion of a language L is defined as the union of all inversions of strings in L.
Therefore, the inversion of L always contains the reversal of L since a string is
always an infix of itself.

Many researchers [2, 4–6, 11, 24] have considered the inversion of DNA se-
quences in terms of formal language theory. Searls [22] considered closure proper-
ties of languages under various bio-inspired operations including inversion. Later,

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 102–113, 2014.
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Yokomori and Kobayashi [26] showed that inversion can be simulated by the set
of primitive operations and languages. Dassow et al. [6] investigated a generative
mechanism based on some operations inspired by mutations in genomes such as
deletion, transposition, duplication and inversion. Daley et al. [4] considered a
hairpin inverse operation, which replaces the hairpin part of a string with the
inversion of the hairpin part. Note that the hairpin inversion operation is a varia-
tion of the inversion operation that reverses substrings of a string. Recently, Cho
et al. [3] defined the pseudo-inversion operation and examined closure proper-
ties and decidability problems regarding the operation. Moreover, several string
matching problems allowing inversions have been studied [2, 24].

Reversal is an “easy” operation for NFAs. The reversal of a regular language
L can be, roughly speaking, recognized by an NFA that is obtained by reversing
the transitions of an NFA for L and, consequently, the nondeterministic state
complexity of the reversal operation is n for NFAs that allow multiple initial
states [9]1. However, a corresponding simple NFA construction does not work
for inversion and here we show that the nondeterministic state complexity of
inversion is Θ(n3). Also we show that the nondeterministic state complexity of
prefix- and suffix-inversion is Θ(n2). Moreover, we establish the nondeterministic
complexity of the pseudo-inversion, which is defined as the reversal of inversion,
and the pseudo-prefix- and pseudo-suffix-inversion operations.

It is known that the deterministic state complexity of the reversal operation
is 2n [19]. The inversion operation is, in some sense, an extension of the rever-
sal operation and using this correspondence it is easy to verify that the state
complexity of inversion is at least exponential. Based on their nondeterminis-
tic state complexity we establish an upper bound 2n

3+2n for the deterministic
state complexity of inversion and an upper bound 2n

2+n for the deterministic
state complexity of prefix- and suffix-inversion. Also using a non-constant al-
phabet (of exponential size) we give a lower bound 2Ω(n·logn) for inversion and
prefix-inversion. This establishes that the deterministic state complexity of these
operations is strictly worse than the deterministic state complexity of ordinary
reversal. For the nondeterministic and deterministic state complexity of pseudo-
inversion we establish exactly the same bounds as for inversion.

There remains a possibility that there could be a more efficient DFA con-
struction for the inversion of a language recognized by a given DFA A than first
constructing an NFA for the inversion of L(A) and then determinizing the NFA.
The precise deterministic state complexity of inversion remains open.

We give the basic notations and definitions in Section 2. We introduce the
inversion and related operations in Section 3 and present the state complexity
results in Section 4 and in Section 5. In Section 6, we conclude the paper.

1 The result stated in [9] is n+ 1 because the NFA model used there allows only one
initial state.
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2 Preliminaries

We briefly present definitions and notations used throughout the paper. The
reader may refer to the books [23, 25] for more details on language theory.

Let Σ be a finite alphabet and Σ∗ be a set of all strings over Σ. A language
over Σ is any subset of Σ∗. The symbol λ denotes the null string and Σ+ denotes
Σ∗ \ {λ}. Given a string w = z1z2 · · · zm, zi ∈ Σ, 1 ≤ i ≤ m, we denote the
reversal of w by wR = zmzm−1 · · · z1.

A nondeterministic finite automaton with λ-transitions (λ-NFA) is a five-
tuple A = (Σ,Q,Q0, F, δ) where Σ is a finite alphabet, Q is a finite set of states,
Q0 ⊆ Q is the set of initial states, F ⊆ Q is the set of final states and δ is a
multi-valued transition function from Q×(Σ∪{λ}) into 2Q. By an NFA we mean
a nondeterministic automaton without λ-transitions, that is, A is an NFA if δ
is a function from Q × Σ into 2Q. The automaton A is deterministic (a DFA)
if Q0 is a singleton set and δ is a (total single-valued) function Q × Σ → Q.
It is well known that the λ-NFAs, NFAs and DFAs all recognize the regular
languages [19, 23, 25]. Moreover, the language recognized by a λ-NFA A can be
recognized also by an NFA (without λ-transitions) of the same size as A [25].

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L ⊆
Σ∗ ×Σ∗ defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L⇔ yz ∈ L].

It is well known that L is regular if and only if the index of ≡L is finite and, in
this case, the number of classes of ≡L is equal to the size of the minimal DFA
for L [19, 23, 25].

The deterministic (respectively, nondeterministic) state complexity of a reg-
ular language L, sc(L) (respectively, nsc(L)) is the size of the minimal DFA
(respectively, the size of a minimal NFA) recognizing L. Thus, sc(L) is equal to
the number of classes of ≡L.

For the nondeterministic state complexity problem, we show a technique called
the fooling set technique that gives a lower bound for the size of NFAs.

Proposition 1 (Fooling set technique [1]). Let L ⊆ Σ∗ be a regular lan-
guage. Suppose that there exists a set P = {(xi, wi) | 1 ≤ i ≤ n} of pairs such
that

(i) xiwi ∈ L for 1 ≤ i ≤ n;
(ii) if i �= j, then xiwj �∈ L or xjwi �∈ L, 1 ≤ i, j ≤ n.

Then, a minimal NFA for L has at least n states.

The set P satisfying the conditions of Proposition 1 is called a fooling set for
the language L.

3 Inversion Operations

We give the formal definition of the inversion as follows:
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Definition 1 (Yokomori and Kobayashi [26]). The inversion of a string w
is defined as the set

INV(w) = {uxRv | w = uxv, u, x, v ∈ Σ∗}.

For instance, given a string w = abcd, we have

INV(w) = {abcd, bacd, cbad, dcba, acbd, abdc, adcb}.

Note that INV(λ) = {λ}. The inversion operation is extended to the languages
in the natural way:

INV(L) =
⋃
w∈L

INV(w).

We define the prefix-inversion that reverses a prefix of a given string and the
suffix-inversion that reverses a suffix of a given string.

Definition 2. For a string w, we define the prefix-inversion of w as

PrefINV(w) = {uRx | w = ux, u, x ∈ Σ∗}.

Definition 3. For a string w, we define the suffix-inversion of w as

SufINV(w) = {uxR | w = ux, u, x ∈ Σ∗}.

See Fig. 1 for examples. Note that the sets PrefINV(L) and SufINV(L) are
always included in the set INV(L).

B CA G F E D H I

(a) Inversion

A B C D E F G H I

F G H I A B C D GE F I HC B A D E

(b) Prefix-inversion (b) Suffix-inversion

Original sequence

Fig. 1. Examples of the inversion operations

As variants of the inversion operations, we consider the pseudo-inversion op-
erations [3] which are defined as the reversal of the inversion operations. Infor-
mally, the pseudo-inversion of a given string is defined as a set of strings that
are obtained by reversing the given string while maintaining a central substring.

Definition 4. For a string w, we define the pseudo-inversion of w as

PI(w) = {vRxuR | w = uxv, u, x, v ∈ Σ∗}.

Furthermore, given a set L of strings, PI(L) =
⋃
w∈L

PI(w).
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We call the operation the pseudo-inversion in the sense that the inversion
is not properly performed. Note that PI(L) = INV(L)

R
. We also define simi-

lar operations called the prefix-pseudo-inversion and suffix-pseudo-inversion as
follows:

Definition 5. We define the prefix-pseudo-inversion of a string w as

PrefPI(w) = {xuR | w = ux, u, x ∈ Σ∗}.

Definition 6. We define the suffix-pseudo-inversion of a string w as

SufPI(w) = {xRu | w = ux, u, x ∈ Σ∗}.

See Fig. 2 for examples of the pseudo-inversion operations.

A B C D E F G H I

A B C D E F G H I A B C D E F G H I

I H D E F G C B A

I H G A B C D E F

B D F H

A B C D E F G H I B D F H

H D F B

H B D F

B D F H

A B C D E F G H I B D F H

H D F B

H B D FD E F G H ID E F G HD E F G H C B AC B

(a) Pseudo-inversion

(b) Prefix-pseudo-inversion (c) Suffix-pseudo-inversion

Fig. 2. Examples of the pseudo-inversion operations

Lastly, we consider one more non-trivial inversion operation called the non-
overlapping-inversion. The non-overlapping-inversion operation allows any char-
acter in the string to be involved in at most one inversion operation.

Definition 7. For a string w, we define the non-overlapping-inversion of w as

NonOINV(w) =

{w′
1w

′
2 · · ·w′

n | w = w1w2 · · ·wn, wi ∈ Σ∗, w′
i = wi or w

′
i = wR

i for 1 ≤ i ≤ n}.

4 Nondeterministic State Complexity

We establish upper and lower bounds for the nondeterministic state complexity
of inversion, prefix-inversion and suffix-inversion.We begin with the upper bound
construction of an NFA for INV(L) when we are given an NFA for a regular
language L.

Lemma 1. Let L be a regular language recognized by an NFA with n states.
Then, INV(L) is recognized by an NFA with n3 + 2n states.
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Proof. Let A = (Σ,Q,Q0, FA, δ) be an NFA for L. We define a λ-NFA B =
(Σ,P, P0, FB, γ) for the language INV(L) where

P = Q3 ∪Q ∪Q,

Q = {q | q ∈ Q}, P0 = Q0, FB = FA ∪ FA and the transition function γ :
P × (Σ ∪ {λ})→ 2P is defined as follows:

(i) For all q, p ∈ Q and a ∈ Σ, if p ∈ δ(q, a), then p ∈ γ(q, a) and p ∈ γ(q, a).
(ii) For all q, p ∈ Q, (p, q, q) ∈ γ(p, λ).
(iii) For all q, p, r1, r2 ∈ Q and a ∈ Σ, if r2 ∈ δ(r1, a), then (p, r1, q) ∈

γ((p, r2, q), a).
(iv) For all q, p ∈ Q, q ∈ γ((p, p, q), λ).

The automaton B operates as follows. The transitions in (i) simulate the
original computation of A. For any state p ∈ Q, we choose a state q nondeter-
ministically using a λ-transition, and we reach a state (p, q, q) according to the
transitions in (ii). The transitions in (iii) allow B to simulate the computation
of A in reverse. Note that the first and third elements in Q3 remember the start
and ending positions of the reversed part, while the second element simulatTes
the computation of A in reverse. After B reaches the state (p, p, q), it can make
a λ-transition to the state q, and B continues the original computation of A
following the transition (i). Fig. 3 shows the computation of B as an illustrative
example. As a consequence of the transitions, B recognizes a string uxRv if A
has an accepting computation for uxv. ��

p1 p2 p3 p4FA A

λ-NFA B

p1 p2 p3 p4

u x v

(p2, p3, p3)

· · · · · · · · ·

· · · · · · · · ·

(p2, p2, p3)

λ

xR

p1 p2 p3 p4
u x v
· · · · · · · · ·

u x v

· · ·
λ

Fig. 3. An illustrative example of constructing an NFA B recogninzing INV(L(A)).
Note that if A accepts a string uxv, then B accepts uxRv ∈ INV(L(A)).

We present the following lower bound using the fooling set technique.

Lemma 2. For every n0 ∈ N, there exists an NFA A = (Q,Σ,Q0, FA, δ) with
n ≥ n0 states over an alphabet of size 4 such that nsc(INV(L(A))) ≥ 1

8n
3−f(n),

where f(n) ∈ O(n2).
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Proof. Let m ≥ 1 be an integer and consider the language L = {#am$,#bm$}∗
over the alphabet Σ = {a, b,#, $}. We construct a fooling set P for the language
INV(L(A)).

Take the set of pairs P to be the set

P = {(#aibj#$bk, bm−k#$am−ibm−j$) | 1 ≤ i, j, k ≤ m}.

Consider
(x,w) = (#aibj#$bk, bm−k#$am−ibm−j$) ∈ P.

Now the string xw is in INV(L) because we can write

xw = #ai(am−i$#bm$#bj)Rbm−j$.

On the other hand, consider another pair

(x′, w′) = (#ai
′
bj

′
#$bk

′
, bm−k′

#$am−i′bm−j′$) ∈ P,

where (i, j, k) �= (i′, j′, k′). Now

x · w′ = #aibj#$bk · bm−k′
#$am−i′bm−j′$.

Now if xw′ ∈ INV(L) it must be obtained from a string of L by inverting one
substring. Since in strings of L the markers # and $ alternate (when we disregard
symbols a and b), the only way we could obtain a string of L from x·w′ is to invert
a substring z that begins between the first two markers # and ends between the
last two markers $. If k �= k′, the resulting string is not in L. If k = k′, necessarily
we have i �= i′ or j �= j′ which means again that inverting z cannot produce a
string in L.

Hence there are at least |P | = m3 states for any NFA accepting INV(L)
by Proposition 1. It is easy to verify that n = 2m + 2 states are sufficient for
an NFA that accepts L. Therefore, we have the lower bound 1

8n
3−f(n) for the

nondeterministic state complexity of INV(L), where f(n) ∈ O(n2). ��

As a consequence of Lemma 1 and Lemma 2, we have:

Theorem 1. The nondeterministic state complexity of inversion is in Θ(n3).

Now we consider the upper bound construction for the prefix-inversion which
is a restricted variant of the general inversion in the sense that only the prefixes
of the given string can be reversed.

Lemma 3. Let L be a regular language recognized by an NFA with n states.
Then, PrefINV(L) is recognized by an NFA with n2 + n states.

Proof. Let A = (Σ,Q,Q0, FA, δ) be an NFA for L. We define a λ-NFA B =
(Σ,P, P0, FB, γ) for the language PrefINV(L). We choose

P = Q2 ∪Q,

where P0 = {(q, q) | q ∈ Q}, FB = FA and the transition function γ : P × (Σ ∪
{λ})→ 2P is defined as follows:
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(i) For all p, q ∈ Q and a ∈ Σ, if p ∈ δ(q, a), then p ∈ γ(q, a).
(ii) For all p, r1, r2 ∈ Q and a ∈ Σ, if r2 ∈ δ(r1, a), then (p, r1) ∈ γ((p, r2), a).
(iii) For all q0 ∈ Q0 and r ∈ Q, r ∈ γ((r, q0), λ).

The simulation begins in an arbitrary state (q, q), q ∈ Q. The transitions (ii)
simulate a computation of A in reverse in the second component of the state,
while the first component of the state pair remembers the state where B starts
reverse computation of A. After B reaches a state (q, q0), where q0 ∈ Q0, it can
make a λ-transition to state q using the rule (iii). The transitions (i) allow B
to simulate the original computation of A from q to a final state. Therefore, B
accepts exactly all strings uRx where A has an accepting computation for ux.

��

We also establish that the nondeterministic state complexity of the suffix-
inversion coincides with that of the prefix-inversion:

Lemma 4. Let L be a regular language recognized by an NFA with n states.
Then, SufINV(L) is recognized by an NFA with n2 + n states.

Next we give the following lower bound for the nondeterministic state com-
plexity of the prefix- and suffix-inversion. Using an analogous fooling set con-
struction as in the proof of Lemma 2 we can easily get an Ω(n2) lower bound
for the nondeterministic state complexity of suffix-inversion.

Lemma 5. For every n0 ∈ N, there exists an NFA A with n ≥ n0 states over
an alphabet Σ of size 4 such that nsc(PrefINV(L(A))) ≥ 1

4n
2 − f(n), where

f(n) ∈ O(n).

We have the following statement based on Lemma 3, Lemma 4 and Lemma 5.

Theorem 2. The nondeterministic state complexity of prefix- and suffix-
inversion is in Θ(n2).

The following Observation 3 is now immediate since the state complexity of
the reversal operation is n.

Observation 3. The following statements hold:

(i) nsc(SufINV(L)) = nsc(PrefPI(L)),
(ii) nsc(PrefINV(L)) = nsc(SufPI(L)), and
(iii) nsc(INV(L)) = nsc(PI(L)).

Based on Observation 3, we establish the following results.

Corollary 1. The nondeterministic state complexity of prefix- and suffix-pseudo-
inversion is in Θ(n2).

Corollary 2. The nondeterministic state complexity of pseudo-inversion is in
Θ(n3).
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Now we discuss the nondeterministic state complexity of non-overlapping-
inversion. Interestingly, we have slightly smaller upper bound for the non-
overlapping-inversion than the upper bound for the general inversion.

Lemma 6. Let L be a regular language recognized by an NFA with n states.
Then, NonOINV(L) is recognized by an NFA with n3+n states.

Proof. Let a λ-NFA B be an automaton for NonOINV(L). The computation of
the automaton B is similar to the computation in the proof of Lemma 1. But, the
set of states Q and the transitions in (iv) of the proof of Lemma 1 are useless for
the language NonOINV(L) since the non-overlapping-inversion NonOINV allows
more than one inversion without overlap. Note that the automaton B can make
a λ-transition to the state q if B reaches the state (p, p, q). ��

5 Deterministic State Complexity

We first consider the deterministic state complexity of PrefINV(L). Recall that
if A is an NFA with n states, Lemma 3 gives a construction of an NFA with
n2 + n states for the language PrefINV(L(A)). This implies an upper bound for

the deterministic state complexity 2n
2+n of prefix-inversion. Next we present a

lower bound 2Ω(n·logn) using an alphabet of size 5.

Lemma 7. For n ∈ N there exists an alphabet of size 5 and a DFA A with 2n+3
states such that the minimal DFA for PrefINV(L(A)) has size at least 2n·logn.

Proof. We define Ln ⊆ Σ3
n by setting

Ln = {1j · [1i0 , . . . , 1im ] · 1ij | j < n,m ≥ j}.

Note that all strings of Ln have length exactly three.
Consider a DFA A = (Σn, Q, q0, {qacc}, δ), where

Q = {q0, q1, . . . , qn, p1, . . . , pn} ∪ {qacc, qdead},

and the transitions of δ are defined by setting

(i) δ(q0, i) = qi, i ∈ [n],
(ii) δ(qi, f) = pf(i), i ∈ [n], f ∈ funcn,
(iii) δ(pi, i) = qacc, i ∈ [n],
(iv) all transitions not defined above go to the dead state qdead.

It is clear that L(A) = Ln. We show that any distinct alphabet symbols
f1, f2 ∈ funcn belong to distinct classes of ≡PrefINV(Ln) which gives a lower
bound for the size of a minimal DFA for PrefINV(Ln).

If f1 �= f2, there exists i ∈ [n] such that f1(i) �= f2(i). Now i · f1 · f1(i) ∈ Ln

and hence f1 · i · f1(i) ∈ PrefINV(Ln).
On the other hand, since all words of Ln have length three and have an element

of funcn in the middle position, the only way f2 ·i ·f1(i) could be in PrefINV(Ln)
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is that i ·f2 would be the prefix of a word of Ln that has been reversed. However,
since f2(i) �= f1(i), i · f2 · f1(i) �∈ Ln and hence f2 · i · f1(i) �∈ PrefINV(Ln) and,
consequently, f1 �≡PrefINV(Ln) f2.

Thus, ≡PrefINV(Ln) has at least

|funcn| = nn = 2n·logn

equivalence classes. ��

Note that the deterministic state complexity of the prefix-inversion is strictly
worse than the deterministic state complexity of reversal since the latter is known
to be 2n. Moreover, it is easily verified that the same lower bound as in the proof
of Lemma 7 applies to the inversion and non-overlapping-inversion operations.

Lemma 8. A lower bound for the deterministic state complexity of inversion
and of non-overlapping-inversion is 2Ω(n·logn).

As a consequence of Lemma 1,3 and 7 we have:

Theorem 4. Let L be a regular language having a DFA with n states. Then
sc(PrefINV(L)) ≤ 2n

2+n. There exist languages L(n) defined over an alphabet
depending on n such that sc(L(n)) ∈ O(n), sc(PrefINV(L(n))) ≥ 2n·logn.

Theorem 5. Let L be a regular language having a DFA with n states. Then
sc(INV(L)) ≤ 2n

3+2n. There exist languages L(n) defined over an alphabet de-
pending on n such that sc(L(n)) ∈ O(n) and sc(INV(L(n))) ≥ 2n·logn.

Theorem 5 leaves a larger gap between the state complexity upper and lower
bounds for inversion than was the case for prefix-inversion.

The method of Lemma 7 is based on the idea that, in order to force the DFA
to remember more information, we want to move the function symbols to the
beginning of the string, and this construction does not seem to work for suffix-
inversion. For the state complexity of suffix-inversion, the best immediate lower
bound is 2n. The same situation applies for suffix-pseudo-inversion.

Lastly, we observe that similar state complexity lower bounds apply for pseudo-
inversion and prefix-pseudo-inversion. The below corollary again follows from the
proof of Lemma 7 in the same way as Lemma 8.

Lemma 9. A lower bound for the deterministic state complexity of pseudo-
inversion and prefix-pseudo-inversion is 2Ω(n·logn).

6 Conclusion

We have considered the (non)deterministic state complexity of inversion opera-
tions that are motivated by evolutionary operations on DNA sequences. While
the reversal operation completely reverses the whole string, the inversion op-
eration reverses any infix of a string. Initially, one might think that the state
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complexity of inversion operations should be similar to that of the reversal op-
eration. However, both the nondeterministic and deterministic state complexity
of the inversion have turned out to be strictly worse than the known bounds
for the reversal operation. The prefix- and suffix-inversions which are simplified
variants of inversion were also considered. We have shown that the nondeter-
ministic state complexity of prefix- and suffix-inversion is Θ(n2) while that of
the inversion operation is Θ(n3).

We have also obtained a deterministic state complexity lower bound 2Ω(n·logn)

for inversion and prefix-inversion operations using an exponential-size alphabet.
This is strictly worse than the deterministic state complexity of reversal, how-
ever, it does not match the corresponding upper bounds. It is possible that given
a DFA A for L, there is a more efficient construction of a DFA for INV(L) than
first constructing an NFA and then determinizing it. However, when working on
this question it seems that a DFA for INV(L) needs to remember sets of triples of
states of A (and similarly a DFA for the prefix-inversion or suffix-inversion needs
to remember sets of pairs of states of A). The main open question is to determine
the precise deterministic state complexity for inversion and its variants.
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Abstract. Reaction systems are a recent formal model inspired by the
chemical reactions that happen inside cells and possess many different
dynamical behaviours. In this work we continue a recent investigation
of the complexity of detecting some interesting dynamical behaviours in
reaction system. We prove that detecting global behaviours such as the
presence of global attractors is PSPACE-complete. Deciding the presence
of cycles in the dynamics and many other related problems are also
PSPACE-complete. Deciding bijectivity is, on the other hand, a coNP-
complete problem.

1 Introduction

This paper completes the investigations started in [7], in which we studied the
complexity of a collection of problems related to finding fixed points and local
fixed points attractors in reaction systems (RS). Here we study the complexity
of determining the existence of cycles and global attractors (either fixed points
or cycles) in the dynamics of RS. In the first half of this investigation [7], the
problems studied were either NP, coNP, or at most ΠP

2 -complete. We show that
moving from fixed points to cycles and from local to global attractors pushes
the complexity to PSPACE in the majority of the cases. Recall that RS are
a computational model, inspired by chemical reactions, recently introduced by
Ehrenfeucht and Rozenberg [6]. After its introduction, many different aspects
of the model were investigated [4,5,2,13]. Indeed, the success of these systems is
essentially due to the fact that they can be used to study practical problems [3]
and, at the same time, they are clean and formal enough to allow formal inves-
tigations. Roughly speaking, a reaction system is made of some finite set and
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a list of generating rules. The finite set consists of entities, or chemical species,
that are used as reactants, inhibitor and products. Finally, a generation rule is
activated if the reactants are present and if the inhibitors are not present and
then it replaces the current set with the set of products.

The study of the dynamical behaviour of RS is one of the current trends in
this domain. For example, in [5], the authors analysed the dynamical behaviour
that can be obtained under the constraint of limited resources. In [4], the author
considered some particular state as a death state (the empty set in this case)
and computed the probability of a system to reach the death state.

Notice that, from a certain point of view, the dynamics of reaction systems are
pretty well-known. Indeed, these are finite systems and hence their dynamics is
always ultimately periodic. However, there are very interesting questions which
are both useful for practical applications and highly non-trivial. For example,
one can ask if a particular product will appear at a certain point of the dynamics
or not [15,14]. The present paper follows this trend by greatly extending the first
results on complexity proved in [6,15,14], where the idea that RS can be used
to evaluate Boolean formulae was introduced. In particular, we investigate the
complexity of establishing if a RS admits a fixed point global attractor (PSPACE-
complete). We also study the complexity of finding if two RS share all fixed points
that are global attractors (PSPACE-complete). This is in some sense a concept
of equivalence w.r.t. global attractors. We also explore the difficulty of finding
if a state is part of cycle, a local attractor cycle, or a global attractor cycle,
resulting in all cases in PSPACE-completeness. On the other hand, deciding if a
RS admits a local attractor cycle is NP-complete. The other decision problems
studied are about finding if two RS share one or all of their local attractor cycles
(both PSPACE-complete).

The paper is structured as follows. Section 2 provides the basic notions on RS
and two lemmata that will be used in the remaining part of the paper. Section 3
gives a description in logical terms of the problems we consider. The decision
problems regarding global fixed points attractors are presented in Section 4. The
decision problems regarding cycles are investigated in Section 5. A summary of
the results and a hint at possible future developments is given in Section 6.

2 Basic Notions

This section provides a brief recollection of all the basic notions of RS and
of dynamical systems necessary for the rest of the paper. Notations are taken
from [6]. First of all, we recall the definitions of reaction, reaction system, and
of their dynamics.

Definition 1. Consider a finite set S, whose elements are called entities. A
reaction a over S is a triple (Ra, Ia, Pa) of subsets of S. The set Ra is the set
of reactants, Ia the set of inhibitors, and Pa is the set of products. The set of
all reactions over S is denoted by rac(S).

Definition 2. A reaction system A is a pair (S,A) where S is a finite set, called
the background set, and A ⊆ rac(S).
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Given a state T ⊆ S, a reaction a is said to be enabled in T when Ra ⊆ T
and Ia ∩ T = ∅. The result function resa : 2

S → 2S of a, where 2S denotes the
power set of S, is defined as

resa(T ) =

{
Pa if a is enabled in T

∅ otherwise.

The definition of resa naturally extends to sets of reactions. Indeed, given T ⊆ S
and A ⊆ rac(S), define resA(T ) =

⋃
a∈A resa(T ). The result function resA of a

RS A = (S,A) is resA, i.e., it is the result function on the whole set of reactions.

Example 1 (NAND gate). To implement a NAND gate using a RS we use as
background set S = {0a, 1a, 0b, 1b, 0out, 1out}. The first four elements represent
the two inputs (denoted by the subscripts a and b), the last two, on the other
hand, denote the two possible outputs. The reactions used to model a NAND gate
are the followings: ({0a, 0b},∅, {1out}), ({0a, 1b},∅, {1out}), ({1a, 0b},∅, {1out}),
and ({1a, 1b},∅, {0out}). Similarly to NAND gates, others gates can be simulated
and it is possible to build circuits with gates of limited fan-in using only a number
of entities and reactions that is linear in the size of the modeled circuit.

After this brief introduction of RS, the reader may notice that there exist
different bio-inspired models that are, in some sense, similar or related to RS.
The most prominent are membrane systems [12], chemical reaction networks [17],
and Boolean automata networks (BAN) [10,16]. In the first two cases the object
of the evolution is a multiset of symbols. In the last case one can show that, for
each RS, there exists a BAN which simulates it and which is polynomial in the
size of the given RS. However, an RS simulating a BAN may be exponentially
larger than the original BAN [7].

We can now proceed by recalling the necessary definitions of the dynamical
properties investigated in this work. Given a set T ⊆ S, the set of states visited
by T is (T, resA(T ), res2A(T ), . . .), that is, the sequence of resiA(T ) for i ∈ N.
Since 2S is finite, every sequence of states is ultimately periodic, i.e., there
exists h, k ∈ N such that for all t ∈ N, resh+kt

A (T ) = resh+k
A (T ). The integer h is

usually called the length of the transient and k the length of the period. A state
T ⊆ S is in a cycle if there exists k ∈ N such that reskA(T ) = T . The smallest
such k is the length of the cycle. If T is in a cycle of length 1 we say that T is a
fixed point.

The notion of attractor is a central concept in the study of dynamical systems.
Recall that an invariant set for A is a set of states U with

⋃
U∈U{resA(U)} = U .

For RS all invariant sets consist of cycles. A local attractor in a RS is an invariant
set U such that there exists T /∈ U with resA(T ) ∈ U . Intuitively, a local attractor
is a set of states U from which the dynamics never escapes and such that there
exists at least one external state whose dynamics ends up in U . A global attractor
for an RS A is an invariant set of states U such that for all T ∈ 2S there exists
t ∈ N such that restA(T ) ∈ U . A global attractor U a global fixed-point attractor
if U = {T } and hence, necessarily, T is a fixed point. Similarly, we call U a global
attractor cycle if all the states in U belong to the same cycle.
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2.1 Counters and Turing Machines

We conclude this section with two technical results that are useful in the sequel.
The first one tells us that it is always possible to build a RS containing a cycle
of a given period. In the constructions that will follow, this cycle will be used
as a kind of internal counter. This construction is inspired by Brijder et al. [2].
The second lemma ensures that it is possible to simulate a Turing machine (TM)
with a family of RS and fixes the bounds for some simulation parameters. For an
introduction, basic results, and notation on Turing machines we refer the reader
to [8].

Lemma 1. For every integer k ≥ 1 there exists a RS Ck = (S,A) with back-
ground set of cardinality n = |S| = �log2 k� having a cycle of period k reachable
from any initial configuration after at most 2n − k steps, i.e.,, Ck is a binary
counter of n bits overflowing at k ≤ n.

Proof. Let S = {b0, . . . , bn−1}. A subset B of S is interpreted as an n-bit integer
m defined as

∑
bi∈B 2i, i.e., the i-th bit ofm is 1 iff bi ∈ B. Let Bm be the subset

of S representing the integer m. We shall design the reactions in A in order to
obtain the following result function

resCk
(Bm) =

{
B(m+1)modk if m < k

B(m+1)mod2n if m ≥ k
(1)

where (xmod y) is the remainder of the integer division of x and y. The RS can
thus be seen as a binary counter overflowing at k; if the state instead represents
a number larger than k − 1, the counter is increased normally until it overflows
at 2n.

The set A contains the following reactions:

({bi} ∪ {b�}, {bj}, {bi}) for 0 ≤ i < n, 0 ≤ j < i, b� /∈ Bk−1 (2)

({bi}, {bj} ∪ {b�}, {bi}) for 0 ≤ i < n, 0 ≤ j < i, b� ∈ Bk−1 (3)

({b0, . . . , bi−1} ∪ {b�}, {bi}, {bi}) for 0 ≤ i < n, b� /∈ Bk−1 (4)

({b0, . . . , bi−1}, {bi} ∪ {b�}, {bi}) for 0 ≤ i < n, b� ∈ Bk−1. (5)

Reactions of types (2) and (3) preserve the bits set to 1 if there is a less significant
bit set to 0, since they are not going to be modified by the increment operation.
Reactions of types (4) and (5) set a currently null bit to 1 when all the less
significant bits are 1. Notice that the empty state (corresponding to a null value
of the counter) is mapped to state {b0} by the reactions of type (5) having no
reactants. By construction, none of these reactions are enabled when the current
state of Ck is Bk−1, because reactions of types (2) and (4) require the missing b�,
and those of types (3) and (5) are inhibited by b� occurring in Bk−1.

Hence, the RS Ck defines the result function of Equation 1, and has a cycle
of period k with a pre-period of at most 2n − k < k steps. ��

It is important to remark that the RS Ck of Lemma 1 can be constructed in
polynomial time from the binary encoding of the integer k.
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Theorem 1. Let M be a Turing machine, x ∈ {0, 1}�, and m ≥ |x| an integer.
Then, there exists a RS M = MM,m = (S,A) and a state X ⊆ S such that M
reaches its final state qF in t steps on input x, using at most m tape cells if and
only if restM(X) = {qF}.

Proof. Let M be a Turing machine (Q,Σ, Γ, δ, qI, qF), where Q is the set of
states, Σ = {0, 1} is the input alphabet, Γ = Σ ∪ {�} is the tape alphabet,
qI, qF ∈ Q are the initial and final states, respectively (we assume qI �= qF), and
the transition function is δ : (Q−{qF})×Γ → Q×Γ ×{−1, 0,+1}. Without loss
of generality, we assume that M accepts by final state and rejects by diverging
and that the tape is delimited on the left by �, a symbol that is never written
or overwritten by M , and that forces the tape head to move to the right.

The RS M has S = {qi : q ∈ Q−{qF},−1 ≤ i ≤ m}∪{qF}∪{w0, . . . , wm−1}
as its set of entities. A configuration ofM is encoded as a subset of S as follows: qi
is present when the machine is in state q and the head is positioned on the i-th
tape cell (the final state qF has no subscript); the presence (resp., the absence)
of wi indicates that the i-th tape cell of M contains the symbol 1 (resp., the
symbol 0). The state of the Turing machine tape in the RS is preserved by means
of reactions which rewrite the entities wi into themselves when there is no object
qi, (i.e., the head of the Turing machine is not on the i-th tape cell). The entity
qi rewrite itself by looking at the presence or absence of the entity wi (i.e., by
reading the tape) and according to the transition function of the Turing machine.

A transition δ(q, σ) = (r, τ, d) ofM not entering the final state is implemented
by the following reactions

({qi}, {wi, qF}, {ri+d}) for 0 ≤ i < m, if σ = 0, τ = 0, r �= qF

({qi, wi}, {qF}, {ri+d}) for 0 ≤ i < m, if σ = 1, τ = 0, r �= qF

({qi}, {wi, qF}, {ri+d, wi}) for 0 ≤ i < m, if σ = 0, τ = 1, r �= qF

({qi, wi}, {qF}, {ri+d, wi}) for 0 ≤ i < m, if σ = 1, τ = 1, r �= qF.

If the transition enters the final state, we produce the symbol qF with no
subscript, e.g., δ(q, 0) = (qF, 1,−1) is simulated by ({qi}, {wi, qF}, {qF, wi})
for 0 ≤ i < m. If the tape head exceeds the space constraint of m cells (i.e., we
have an item of the form qm), we do not generate any other state, effectively
halting the simulation.

If the tape head reaches the � symbol (cell −1) in state q, the RS simulates
the subsequent transition δ(q, �) = (r, �,+1) as ({q−1}, {qF}, {r0}).

Finally, in order to preserve the portion of tape not currently scanned by M
we use the reactions ({wi}, Qi, {wi}) for 0 ≤ i < m, where Qi = {qi : q ∈ Q}.

Now let X = {qI,0} ∪ {wi : xi = 1}, where x = x1 · · ·xn is the input string
for M . Each iteration of resM starting from X simulates a computation step
of M , as long as M does not exceed m tape cells; if this happens, the simulation
stops at a fixed point state not containing qF. The statement follows. ��

Notice that the RS M of Theorem 1 can be built in polynomial time w.r.t.
the size of the description of the Turing machine M , the length of the input x,
and the integer m.
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3 Logical Description

This section recalls a logical description of RS and formulae related to their
dynamics (see [7] for its first introduction) that will be used in the rest of the
paper. This description (or a slight adaptation) will usually be sufficient for
proving membership in many complexity classes. For the background notions of
logic and descriptive complexity we refer the reader to the classical book of Neil
Immerman [9].

We describe a RS A = (S,A) where the background set is S ⊆ {0, . . . , n− 1}
and |A| ≤ n by the vocabulary (S,RA, IA,PA), where S is a unary relation symbol
and RA, IA, and PA are binary relation symbols. The symbols have the following
intended meaning: the background set is S = {i : S(i)} and each of reaction
aj = (Rj , Ij , Pj) ∈ A is described by the three sets Rj = {i ∈ S : RA(i, j)},
Ij = {i ∈ S : IA(i, j)}, and Pj = {i ∈ S : PA(i, j)}.

We will also use some additional vocabularies: (S,RA, IA,PA,T), where T
is a unary relation that represents a subset of S, (S,RA, IA,PA,T1,T2) with
two additional unary relations that represent sets, and (S,RA, IA,PA,RB, IB,PB)
that denotes two RS having the same background set. The following formulae
describe basic properties of A. The first is true if a reaction aj is enabled in T :
enA(j, T ) ≡ ∀i(S(i) ⇒ (RA(i, j) ⇒ T (j)) ∧ (IA(i, j) ⇒ ¬T (j))) the latter is:
resA(T1, T2) ≡ ∀i(S(i) ⇒ (T2(i) ⇔ ∃j(enA(j, T1) ∧ PA(i, j))) and it is verified
if resA(T1) = T2 for T1, T2 ⊆ S. Notice that enA and resA are both first-order
(FO) formulae.

Since FO logic is insufficient for our purposes, we will formulate some prob-
lems using stronger logics: existential second order logic SO∃ characterising NP
(Fagin’s theorem); universally quantified second order logic SO∀ giving coNP;
second order logic with a transitive closure operator (SO(TC), characterizing
PSPACE). We denote the transitive closure of a formula ϕ(X,Y ) with two free
second-order variables by ϕ�(X,Y ). We define the bounded second order quan-
tifiers (∀X ⊆ Y )ϕ and (∃X ⊆ Y )ϕ as shorthands for ∀X(∀i(X(i)⇒ Y (i))⇒ ϕ)
and ∃X(∀i(X(i) ⇒ Y (i)) ∧ ϕ), respectively. We say that a formula is SO∃ or
SO∀ if it is logically equivalent to a formula in the required prenex normal form.

4 Global Attractors

The study of fixed points that are global attractors is closely related to the
analysis of local fixed point attractors presented in [7]. However, the difficulty of
the corresponding decision problems appears to be higher since we require that
any point eventually evolves to the fixed point. Using SO(TC), one can define
a formula pathA(T1, T2) ≡ res

�
A(T1, T2) to denote the existence of a (possibly

empty) path in A from state T1 to T2. A formula expressing that T is a global
fixed point attractor of A is globA(T ) ≡ fixA(T ) ∧ (∀U ⊆ S) pathA(U, T ),
where fixA(T ) ≡ resA(T, T ).

The following theorem tells us that deciding if a given point is a global fixed
point attractor is PSPACE-complete since it is possible to design a RS that
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simulates a polynomial-space bounded Turing machine such that the dynamics
of the system ends in fixed point iff the Turing machine halts.

Theorem 2. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is a global attractor of A.

Proof. The problem is in PSPACE, since globA(T ) is a SO(TC) formula. In
order to show PSPACE-hardness we perform a reduction from the PSPACE-
complete [11] problem

L = {(M,x, 1m) : M is a TM halting on x ∈ {0, 1}� in space m ≥ |x|}.

Given (M,x, 1m), there are |Q| ≥ 2 states of M , m+1 possible head positions
(including cell −1 containing the left delimiter �), and 2m possible strings on
the tape, for a total of k = |Q| × (m+ 1)× 2m potential configurations.

We use a variant of the RS Ck = (SC , AC) of Lemma 1 to count the configu-
rations of M , which is simulated by means of a RS M = (SM, AM), a modified
version of that of Theorem 1. Denote by A = (S,A) the resulting RS.

We want the counter implemented by Ck to stop if and when the Turing ma-
chine simulated by M enters its final state qF. Hence, we add qF as an inhibitor
to all reactions of Ck.

Let � /∈ SCk
∪SM be a new entity. The entity � is used to reset the simulation

of M to the initial configuration if the counter implemented by Ck reaches k− 1
(i.e., if the configuration of M are exhausted and the machine has entered a
loop). To this purpose, � is added as an inhibitor to all reactions of M, and
we define the reaction (Bk−2, (SC −Bk−2) ∪ {qF}, {�}), which is enabled when
the state of A restricted to SCk

is Bk−2, i.e., the representation of k − 2 (see
Lemma 1), and produces � when the counter reaches k − 1. When � appears,
it causes the restoration of the initial state of M by means of the reaction
({�}, {qF}, X), where X = {qI,0} ∪ {wi : xi = 1} is the initial configuration
of M on input x = x1 · · ·xn. One more reaction is needed to preserve the final
state of M : ({qF},∅, {qF}). This is the only reaction enabled when the state
of A contains qF, ensuring that {qF} is a fixed point.

Notice that {qF} is the only fixed point, since in the absence of qF, reactions
incrementing the binary counter are always enabled (ensuring that the next state
is different); on the other hand, if T contains qF together with other entities it
is never a fixed point, since resA(T ) = {qF} �= T for all T � {qF}.

When the initial state of A is exactly X (hence, the binary counter is null)
andM halts on x in spacem, then, by Theorem 1, the RS reaches the state {qF};
on the other hand, if M does not halt or uses more than m tape cells, the binary
counter eventually reaches k − 1, resetting the configuration of A to X in the
next step.

Any other initial state ofA either reaches {qF} before the counter reaches k−1
(this requires less than 2k steps, depending on the initial value of the counter as
in Lemma 1), or the counter reaches k − 1 and the state of A is set to X , once
again eventually reaching {qF} iff M halts on x in space m.

The mapping (M,x, 1m) �→ (A, {qF}) can be carried out in polynomial time
and the PSPACE-hardness of the problem follows. ��
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By slightly tuning the proof of Theorem 2, it is possible to establish that
determining if there exists a global fixed point attractor in a RS or if two RS
share the same global fixed-point attractor are both PSPACE-complete problems.
Furthermore, it follows directly from the previous proof that the reachability
problem for RS is PSPACE-complete.

Corollary 1. Given a RS A = (S,A) and two states T1, T2 ⊆ S, it is PSPACE-
complete to decide whether T2 is reachable from T1, i.e., pathA(T1, T2) ��

Corollary 2. Given a RS A = (S,A), it is PSPACE-complete to decide whether
A has a global fixed point attractor.

Proof. The problem lies in PSPACE, since (∃T ⊆ S) globA(T ) is a SO(TC)
formula. The reduction (M,x, 1m) �→ (A, {qF}) in the proof of Theorem 2 can
be modified to obtain a reduction (M,x, 1m) �→ A. Notice that if A has a global
fixed point attractor it is {qF}. Hence the PSPACE-hardness follows. ��

Corollary 3. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share a global fixed-point attractor.

Proof. The problem lies in PSPACE since (∃T ⊆ S)(globA(T ) ∧ globB(T ))
is a SO(TC) formula. The reduction (M,x, 1m) �→ (A, {qF}) in the proof of
Theorem 2 can be adapted to a reduction (M,x, 1m) �→ (A,B) where B is the
RS having (∅,∅, {qF}) as its only reaction, i.e., B has {qF} as global attractor.
The two RS share {qF} as a global attractor iff {qF} is a global attractor also
for A, that is to say, iff M accepts x in space m; Hence, the PSPACE-hardness
follows. ��

5 Cycles

We now turn our attention to the only other possible behaviour of RS, namely
having cycles of length greater than 1. Notice that, while we only need to analyse
the application of the result function when checking properties related to fixed
points, dealing with cycles essentially involves reachability problems. This shifts
the complexity of most of the decision problems to PSPACE.

Theorem 3. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is part of a cycle, i.e., whether restA(T ) = T for some t ∈ N.

Proof. The problem lies in PSPACE, since it can be expressed by the follow-
ing SO(TC) formula: cycleA(T ) ≡ ∃U(resA(T, U) ∧ pathA(U, T )). The re-
duction (M,x, 1m) �→ (A, {qF}) of Theorem 2 can be adapted to a reduc-
tion (M,x, 1m) �→ (A, X), where X is the encoding of the initial state of the
Turing machine. If M accepts x using space m, then the dynamics of X eventu-
ally reaches the fixed point {qF}, and X is not in a cycle; conversely, the state
is eventually rewritten into X , i.e., X belongs to a cycle. This proves that the
problem is PSPACE-hard. Since the complement of a PSPACE-complete problem
is also PSPACE-complete, the statement follows. ��
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Since every RS is finite, a cycle always exists. Therefore, in this case, it turn
out to be much more interesting to study comparison problems between RS.
That is, if they share one (resp., every) cycle.

Theorem 4. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share a common cycle.

Proof. The problem lies in PSPACE since it can be expressed as a SO(TC) for-
mula. Let resA,B(T, U) ≡ resA(T, U) ∧ resB(T, U) be the formula denoting
the fact that T has the same image U under both resA and resB. From it we
define pathA,B(T, U) ≡ res

�
A,B(T, U) to denote that the same path leads from

T to U in A and B. We then express the fact that T belongs to a shared cycle
by means of the formula cycleA,B(T ) ≡ ∃U(resA,B(T, U) ∧ pathA,B(U, T )).
Finally, (∃T ⊆ S) cycleA,B(T ) is a SO(TC) formula denoting the existence of a
shared cycle between A and B.

Consider the reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2, this can be
transformed into a reduction (M,x, 1m) �→ (A,B), where B is equal to A ex-
cept that the reaction ({qF},∅, {qF}) is replaced by ({qF},∅, X), in which X
represents the initial configuration of M on input x. The two RS behave as
follows:

– If M halts on x within space m, then A has only the fixed point {qF} as a
cycle, while B has a cycle going from X to {qF} and immediately back to X .

– Otherwise, A has two cycles: the fixed point {qF} and the cycle starting
from X and going back to X (when the binary counter overflows). The
latter also exists in B, since the behaviours of the two systems only differ
w.r.t. states containing qF.

Hence, A and B share a cycle if and only if M does not halt on input x within
space m. Hence, the PSPACE-hardness of the problem follows. ��

Theorem 5. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether they share all their cycles.

Proof. The problem is in PSPACE, since it can be expressed by the following
SO(TC) formula: (∀T ⊆ S)(cycleA(T ) ∨ cycleB(T )⇒ cycleA,B(T )).

The reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2 can be transformed into
the reduction (M,x, 1m) �→ (A,B), where B is the RS having (∅,∅, {qF}) as
its only reaction. The fixed point {qF} is the only cycle of B, and it is shared
by both systems. Remark that {qF} is the only cycle of A only if M halts on x
within space m. This reduction establishes the PSPACE-hardness. ��

Theorem 6. Given a RS A = (S,A) and a state T ⊆ S, it is PSPACE-complete
to decide whether T is part of a local attractor cycle.

Proof. Since attcA(T ) ≡ cycleA(T )∧(∃U ⊆ S)(pathA(U, T )∧¬pathA(T, U))
is a SO(TC) formula, the problem lies in PSPACE.

We can transform the reduction (M,x, 1m) �→ (A, {qF}) of Theorem 2 into
the reduction (M,x, 1m) �→ (A, X), where X is the encoding of the initial state
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of the Turing machine. Notice that if X belongs to a cycle then this cycle is an
attractor. Irrespective of the behaviour ofM , state X has at least two preimages,
namely {�} and Bk−1 ∪ {�} (notice that Bk−1 �= ∅ since k ≥ 2). Finally, if
(and only if) M does not halt on x in space m, starting from the state X we
eventually reach X again when the binary counter overflows. This shows that
the problem is PSPACE-hard. ��

Theorem 7. Given a RS A = (S,A), deciding if resA is a bijection is coNP-
complete.

Proof. It is possible to express bijectivity with the following SO∀ formula:

bijA ≡ (∀T ⊆ S)(∀U ⊆ S)(∀V ⊆ S)(resA(T, V ) ∧ resA(U, V ) ⇒ eq(T, U))

where eq(T, U) ≡ ∀i(S(i) ⇒ (T (i)⇔ U(i))). Hence the problem is in coNP.
We reduce TAUTOLOGY [6] (also known as VALIDITY [11]) to this problem.

Let ϕ be a Boolean formula in DNF (i.e., ϕ = ϕ1 ∨ . . .∨ϕm, where each ϕj , for
1 ≤ j ≤ m, is a conjunctive clause) over the variables V = {x1, . . . , xn}.

Let C2n = (V,A′) be the RS of Lemma 1, implementing a binary counter
ranging over the set {0, . . . , 2n − 1}, with the entities b0, . . . , bn−1 renamed
as x1, . . . , xn. Let A be a RS with S = V ∪ {♥} and having all the reactions
of A′ plus the following ones:

(pos(ϕj) ∪ {♥}, neg(ϕj), {♥}) for 1 ≤ j ≤ m (6)

where pos(ϕj) and neg(ϕj) denote the variables appearing, respectively, as posi-
tive and negative literals in ϕj . A set Xi ⊆ V represents both the integer i, as in
the proof of Lemma 1, and a truth assignment of ϕ, where the variables having
a true value are those in Xi. If the state of A has the form Xi ∪ {♥}, then ϕ
is evaluated under Xi, preserving ♥ if satisfied, by reaction (6); in any case,
the subset of the state representing i is incremented modulo 2n by the reactions
in A′. Hence, the result function of A is

resA(T ) =

{
{♥} ∪X(i+1)mod 2n if T = {♥} ∪Xi and Xi � ϕ

X(i+1)mod2n if T = Xi or if T = {♥} ∪Xi and Xi � ϕ.

If ϕ is not a tautology, then there exists an assignment Xi such that Xi � ϕ,
thus resA(Xi) is equal to resA(Xi ∪ {♥}), i.e., resA is not bijective. On the
other hand, if ϕ is a tautology, then ♥ is always preserved when present, and
the dynamics of A consists of two disjoint cycles, namely (X0, . . . , X2n−1) and
(X0∪{♥}, . . . , X2n−1∪{♥}), i.e., resA is a bijection. Since the mapping ϕ �→ A
is computable in polynomial time, the problem is coNP-hard. ��

Corollary 4. Given a RS A = (S,A), it is NP-complete to decide whether A
has a local attractor cycle.

Proof. A finite system has an attractor cycle if and only if the next-state function
is not a bijection. Hence, this is the complement of the coNP-complete problem
of Theorem 7. ��
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Theorem 8. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether A and B have a common local attractor
cycle.

Proof. The problem is in PSPACE since (∃T ⊆ S) attcA,B(T ) is a SO(TC)
formula, where

attcA,B(T ) ≡ cycleA,B(T ) ∧ (∃U ⊆ S)(pathA(U, T ) ∧ ¬pathA(T, U)) ∧
(∃V ⊆ S)(pathB(V, T ) ∧ ¬pathB(T, V )).

Consider the reduction (M,x, 1m) �→ (A,B) of Theorem 4, and notice thatX , the
state encoding the initial configuration of M , has at least two distinct preimages
(see the proof of Theorem 6). Hence, when A and B share a common cycle, it is
always an attractor cycle. The PSPACE-hardness follows. ��

Theorem 9. Given two RS A and B over the same background set S, it is
PSPACE-complete to decide whether A and B share all their local attractor cycles.

Proof. The problem is in PSPACE since it can be expressed by the following
SO(TC) formula: (∀T ⊆ S)(attcA(T ) ∨ attcB(T )⇒ attcA,B(T )).

Consider the reduction (M,x, 1m) �→ (A,B) of the proof of Theorem 5; both
RS share the fixed point {qF}, which is an attractor since every state contain-
ing qF is mapped to {qF}. WhenM does not halt on x in spacem, A has another
cycle containing X , which is an attractor as shown in the proof of Theorem 6.
This is enough to establish the PSPACE-hardness. ��

Since a global attractor state is a special case of global attractor cycle, and
the corresponding decision problems remain in PSPACE, we immediately have
the following statement:

Corollary 5. Given two RS A and B over the same background set S and a
state T ⊆ S, it is PSPACE-complete to decide if (i) T is a part of a global
attractor cycle in A, (ii) A has a global attractor cycle, (iii) A and B have a
common global attractor cycle. ��

6 Conclusions

In this paper we have studied the complexity of checking the presence of many
different dynamical behaviours of a RS, extending the work started in [7]. When
global fixed point attractors are considered, all problems are PSPACE-complete,
differently from the case of local fixed points attractors, where all the problems
lied in the polynomial hierarchy. We proved that PSPACE-completeness remains
the most common complexity class for the decision problems regarding cycles
that we analysed. While some PSPACE-completeness results are known for more
expressive or different computational models [1], it is interesting that, even if
they are quite simple, RS exhibit difficult decision problems.
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The paper, while closing some open question, still discloses many interesting
research directions. In particular, we have only studied deterministic RS, i.e., the
next-state is uniquely determined. However many significant modelling questions
involve non-deterministic RS where at every time step an external device inserts
some entities in the state of the RS (these kind of RS are called RS with context
in the literature). It is interesting to understand how the complexity of decision
problems about dynamics behaves in this case. Does everything shift to PSPACE?
Is PSPACE the upper bound?
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Abstract. In automata theory, promise problems have been mainly ex-
amined for quantum automata. In this paper, we focus on classical au-
tomata and obtain some new results regarding the succinctness of models
and their computational powers. We start with a negative result. Re-
cently, Ambainis and Yakaryılmaz (2012) introduced a quantumly very
cheap family of unary promise problems, i.e. solvable exactly by using
only a single qubit. We show that two-way nondeterminism does not
have any advantage over realtime determinism for this family of promise
problems. Secondly, we present some basic facts for classical models:
The computational powers of deterministic, nondeterministic, alternat-
ing, and Las Vegas probabilistic automata are the same. Then, we show
that any gap of succinctness between any two of deterministic, nonde-
terministic, and alternating automata models for language recognition
cannot be violated on promise problems. On the other hand, we show
that the tight quadratic gap between Las Vegas realtime probabilistic
automata and realtime deterministic automata given for language recog-
nition can be replaced with a tight exponential gap on promise problems.
Lastly, we show how the situation can be different when considering two-
sided bounded-error. Similar to quantum case, we present a probabilis-
tically very cheap family of unary promise problems, i.e. solvable by a
2-state automaton with bounded-error. Then, we show that this family
is not cheap for any of the aforementioned classical models. Moreover,
we show that bounded-error probabilistic automata are more powerful
than any other classical model on promise problems.

1 Introduction

Promise problem is a generalization of language recognition. Instead of
considering all strings, we focus on a subset of strings and the input is promised
to be only from this subset. Thus, the language under consideration and its
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complement must form this subset (instead of the set of all strings). Promise
problems have provided many different perspectives in computational complexity
(see the survey by Goldreich [9]). For example, it is not known whether the
class of languages recognized by bounded-error probabilistic polynomial-time
algorithms has a complete problem, but, the class of promise problems solvable
by the same type algorithms has some complete problems. A similar tendency
also exists for quantum complexity classes [20]. The first known result we are
aware on promise problems for the restricted computational models was given
by Condon and Lipton in 1989 [4]. In the literature, some separation results
regarding restricted models have also been given in the form of promise problems
(e.g. [7,6]). The first result regarding restricted quantum models was given by
Murakami et. al. [15]: There is a promise problem solvable by quantum pushdown
automata exactly but not by any deterministic pushdown automaton. Recently,
Ambainis and Yakaryılmaz [3] showed that there is an infinite family of promise
problems which can be solved exactly by just tuning transition amplitudes
of a realtime two-state quantum finite automaton (QFA), whereas the size of
the corresponding classical automata grows without bound. Moreover, Rashid
and Yakaryılmaz [18] presented many superiority results of QFAs over their
classical counterparts. There are also some new results on succinctness of QFAs
[23,10,11,22] and a new result on quantum pushdown automata [16].

In this paper, we turn our attention to classical models and obtain some
new results. We give the preliminaries to follow the rest of the paper in the
next section. We show that two-way nondeterminism is useless for the family of
promise problems given by Ambainis and Yakaryılmaz [3] in Section 3.1. Then,
we present the basic facts for classical models in Section 3.2. That is, (i) the
computational powers of deterministic, nondeterministic, alternating, and Las
Vegas probabilistic automata are the same; and, (ii) any gap of succinctness
between any two of deterministic, nondeterministic, and alternating automata
models for language recognition cannot be violated on promise problems. In
Section 3.3, we focus on Las Vegas probabilistic automata and we show that the
tight quadratic gap between them and realtime deterministic automata given for
language recognition can be replaced with a tight exponential gap on promise
problems. In Section 3.4, we show how the situation can be different when
considering two-sided bounded-error. Firstly, we present a probabilistically very
cheap family of unary promise problems, i.e. solvable by a 2-state automaton
with bounded-error. Then, we show that this family is not cheap for any of
the aforementioned classical models. And, lastly, we prove that bounded-error
probabilistic automata are more powerful than any other classical model on
promise problems.

2 Preliminaries

We represent any automaton model in the paper as xYFA, where x can be “2”
or “rt” that stands for two-way or realtime, respectively; and, Y can be “D”,
“N”, “A”, or “P” that stands for deterministic, nondeterministic, alternating,
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or probabilistic, respectively. For two-way models, we assume that the input is
placed between a left and a right end-markers on a tape and the input head can
move to the left, move to the right, or stay on the same square. For realtime
models, we assume that the input is not stored on a tape, there is no end-
markers, and the input is fed for the automaton from left to the right symbol by
symbol. A two-way automaton is called sweeping if the input head is allowed to
change its direction only on the end-markers [19,13]. A very restricted version
of sweeping automaton called restarting realtime automaton runs a realtime
algorithm in an infinite loop, [21], i.e. if the computation is not terminated on
the right end-marker, the same realtime algorithm is executed again.

We assume that the reader knows the definitions of 2DFA, 2NFA, 2AFA,
and their realtime versions. A rtPFA [17] is a 5-tuple P = (S,Σ, {Aσ | σ ∈
Σ}, s1, Sa), where Σ is the input alphabet, S is the set of internal states, s1 is
the initial state, Sa ⊆ S is the set of accepting states, and Aσ is a stochastic
transition matrix whose (i, j)th entry represent the probability of going from
the ith state to jth state when reading symbol σ. The computation starts in
state s1 and the input is accepted if it ends in a state belonging to Sa. The
overall accepting probability of P on a given input w ∈ Σ∗, denoted fP(w),
can be calculated over all accepting paths. So, the overall rejecting probability is
1−fP(w). A Las Vegas rtPFA is 7-tuple and additionally has Sr and Sn, the sets
of rejecting states and neutral (“don’t know”) states, respectively, such that the
union of Sa, Sr, and Sn is S and they are pairwise disjoint; and, the automaton
gives the decision of “acceptance”, “rejection”, or “don’t know” if it is in a state
in Sa, Sr, or Sn, respectively, at the end of the computation. A 2PFA (firstly
defined in [14]) is a two-way version of rtPFA such that during the computation
the symbol under the head is read and the automaton also updates the head
position after each transition. It has also some specified rejecting states and the
computation is terminated with the decision of “acceptance” or “rejection” if it
enters an accepting or a rejecting state, respectively, during the computation.

A promise problem is a pair P = (Pyes, Pno), where Pyes, Pno ⊆ Σ∗ and
Pyes ∩ Pno = ∅ [20]. Here, the members of Pyes (Pno) are called yes-instances (no-
instances). P is said to be solved by a machine M with error bound ε ∈ (0, 12 ) if
any member of Pyes is accepted with a probability at least 1− ε and any member
of Pno is rejected by M with a probability at least 1− ε. P is said to be solved by
M with bounded-error if it is solved by M with an error bound. If ε = 0, then it
is said that the problem is solved by M exactly. A special case of bounded-error
is one-sided bounded-error where either all members of Pyes are accepted with
probability 1 or all members of Pno are rejected with probability 1. M is said to
be Las Vegas with a success probability p ∈ (0, 1] [12] if

– for a member of Pyes,M gives the decision of “acceptance” with a probability
at least p and gives the decision of “don’t know” with the remaining
probability; and,

– for a member of Pno,M gives the decision of “rejection” with a probability at
least p and gives the decision of “don’t know” with the remaining probability.
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If P satisfies Pyes ∪ Pno = Σ∗ and P is solvable by M, then it is conventional said
that Pyes is recognized by M.

3 Main Results

3.1 Classically Expensive Promise Problem

Recently, Ambainis and Yakaryılmaz [3] presented a family of promise problems
{EVENODDk | k ∈ Z+} such that each member of the family, say EVENODDk, can be
solved by a 2-state realtime quantum finite automaton exactly but any rtDFA
needs at least 2k+1 states, where

EVENODDkyes = {am2k | m is even}
EVENODDkno = {am2k | m is odd}

.

Later, it was shown that any bounded-error rtPFAs can also need at least 2k+1

states [18].1 Here we show that two-way nondeterminism does not help us to
save some states. Our method is not new but it needs some modifications on
promise problems. Currently we do not know whether bounded-error 2PFAs can
do better but we know that realtime alternation can help us to save some states
(we give the proof in an expanded version of this paper).

Theorem 1. 2NFAs need at least 2k+1 states to solve EVENODDk, where k ∈ Z+.

Proof. Suppose, for contradiction, that the promise problem can be solved by a
2NFA N with less than 2k+1 states.

Consider now the input a2
k+1

. Clearly, it must be accepted by N , and hence
there must exist at least one accepting computation path, so we can fix one such
path. (Besides, being nondeterministic, N can have also other paths, not all of
them necessarily accepting, but we do not care for them.)

Along this fixed path, take the sequence of states

q0, p1, q1, p2, q2, p3, q3, . . . , pr, qr, pr+1,

where q0 is the initial state, pr+1 is an accepting state, and all the other states
({pi ∪ qi | 1 ≤ i ≤ r}) are at the left/right end-markers of the input 2k+1 such
that:

– If pi is at the left (resp., right) end-marker, then qi is at the opposite end-
marker, and the path from pi to qi traverses the entire input from left to
right (resp., right to left), not visiting any of end-markers in the meantime.

– The path between qi and pi+1 starts and ends at the same end-marker,
possible visiting this end-marker several times, but not visiting the opposite
end-marker. Such a path is called a “U-turn”. This covers also the case of
qi = pi+1 with zero number of executed steps in between.

1 Recently, it is also shown that the width of any nondeterministic or bounded-error
stable OBDD cannot be less than 2k+1 for a function version of EVENODDk [1].
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Now, since the path connecting pi with qi must visit all input tape positions in

the middle of the input a2
k+1

, N enters 2k+1 different states, so some state ri
must be repeated. That is, between pi and qi, there must exists a loop, starting
and ending in the same state ri, travelling some li positions to the right, not
visiting any of the end-markers. For each traversal, we fix one such loop (even
though the path from pi to qi may contain many such loops). Note that the
argument for travelling across the input from right to left is symmetrical. Since
this loop is in the middle of the traversal, we have that li < 2k+1. But then li
can be expressed in the form

li = 2αiγi,

where γi > 0 is odd (not excluding γi = 1) and αi ∈ {0, 1, . . . , k}. Remark that
if αi ≥ k + 1, we would have a contradiction with li < 2k+1.

Now, consider the value

l = lcm{l1, l2, . . . , lr},

the least common multiple of all fixed loops, for all traversals of the input a2
k+1

.
Clearly, l can also be expressed in the form

l = 2αγ,

where γ > 0 is odd (actually γ = lcm{γ1, . . . , γr}) and α ∈ {0, 1, . . . , k} (actually
α = max{α1, . . . , αr}).

We shall now show that the machine N must also accept the input

a2
k+1+l2k−α

.

First, if qi and pi+1 are connected by a U-turn path on the input a2
k+1

, they will

be connected also on the input a2
k+1+l2k−α

since such path does not visit the
opposite end-marker and 2k+1+ l2k−α ≥ 2k+1. Second, if pi and qi are connected

by a left-to-right traversal along a2
k+1

, they will stay connected also along the

input a2
k+1+l2k−α

. This only requires to repeat the loop of the length li beginning
and ending in the state ri. Namely, we make 2k−α l

li
more iterations. Note that

l = lcm{l1, . . . , lr} and hence l is divisible by li, for each i = 1, . . . , r, which gives
that 2k−α l

li
is an integer. Note also that these 2k−α l

li
additional iterations of the

loop of the length li travel exactly (2k−α l
li
)li = 2k−αl additional positions to the

right. Thus, if N has an accepting path for a2
k+1

, it must also have an accepting

path for a2
k+1+2k−α

(just a straightforward induction on r). Therefore,N accepts

a2
k+1l2k−α

. (Actually, N can have many other paths for this longer input, but
they cannot rule out accepting decision of the path constructed above.) However,

the input a2
k+1l2k−α

should be rejected, since 2k+1 + l2k−α = 2k(2 + γ), where
γ is odd. This is a contradiction. So, N must have at least 2k+1 states. ��

3.2 Basic Facts on Classical Automata

We continue with some basic facts regarding classical automata. We show
that the class of promise problems solvable by deterministic, nondeterministic,
alternating, and Las Vegas probabilistic finite automata are identical.
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Theorem 2. Any promise problem P defined on Σ solvable by a 2AFA A can
be solved by a rtDFA.

Proof. For any given string w in Σ, A can give a single decision and all strings
accepted by A form a regular language, say R. Note that all string rejected by
A form R. Since P is solvable by A, Pyes is a subset of R and Pno is a subset of R.
R can also be recognized by a rtDFA, say D, i.e. any member of R are accepted
by D and any member of R is rejected by D. Therefore, D can solve P, too. ��

Based on this proof, we can also obtain the following corollary.

Corollary 1. Any gap of succinctness between any two of deterministic,
nondeterministic, and alternating automata models for language recognition
cannot be violated on promise problems.

Now, we show that Las Vegas PFAs cannot gain any computational power.

Theorem 3. Any promise problem P solvable by a Las Vegas 2PFA P can be
solved by a rtDFA.

Proof. For each member of Pyes (Pno), P ends its computation with the decision
of “acceptance” (“rejection”) in one of the paths and there is no path ending with
the decision of “rejection” (“acceptance”). So, by removing the probabilities and
converting neutral states into rejecting states, we obtain a 2NFA N recognizing
regular language R such that Pyes ⊆ R and Pno ∩ R = ∅. Therefore, Pno ⊆ R. That
is, N can solve R, too. Due to the previous theorem, we can follow that there is
also a rtDFA solving P. ��

We follow the same result for Las Vegas rtPFA by also giving a state bound.

Corollary 2. Any promise problem P solvable by an n-state Las Vegas rtPFA
can be solved by a (2n − 1)-state rtDFA.

Proof. The proof is the same. Moreover, n-state rtPFA can be converted to a n-
state rtNFA which can be simulated by a (2n−1)-state rtDFA by using standard
subset construction. ��

In the next section, we show that this bound is actually asymptotically tight.

3.3 Las Vegas Probabilistic Finite Automata

In the case of language recognition, the gap of succinctness between Las Vegas
rtPFAs and rtDFAs can be at most quadratic and this gap is tight [5,12]. In
the case of promise problems, we show that quadratic gap can be replaced with
an exponential tight gap. For this purpose, we start with a promise problem
recently defined by Gruska et. al. [10]: GQZ-EQ(n, k) (n ∈ Z+ and k ≥ n

2 ) such
that

GQZ-EQyes(n, k) = {x#x | x ∈ {0, 1}n}
GQZ-EQno(n, k) = {x#y | x, y ∈ {0, 1}n and H(x, y) = k} ,
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where H returns the Hamming distance between two strings. They also showed
that GQZ-EQ(n, k) can be solved by an exact realtime finite automaton with
quantum and classical states (rtQCFA)2 with O(n2) states (n+1 quantum and
O(n) classical states (the number of quantum states is n if k = n

2 [22])) but

the size of states of the corresponding rtDFA is 2Ω(n). We present an O(n)-state
rtPFA, say P , solving GQZ-EQ(n, k) with one-sided error bound 1− k

n .
Let x#y be the input as promised. The automaton has 3n states, i.e.

{si | 1 ≤ i ≤ n} ∪ {ci,0, ci,1 | 1 ≤ i ≤ n− 1} ∪ {sa, sr},

where s1 and sa are the initial and accepting states, respectively. The automaton
starts its computation with state s1. When reading xi and being in state si
(1 ≤ i < n), P switches to states c1,xi and si+1 with probability pi and 1 − pi,
respectively; and, when reading xn and being in state sn, it switches to c1,xn

with probability 1. By carefully setting the values of pi’s, we can guarantee that
P switches to c1,∗-states with equal probability ( 1n ). That is, it switches to state
c1,xi on symbol xi with probability 1

n . State c1,xi is responsible to compare xi
with yi. The automaton is in this state on the (i + 1)th symbol of the input.
After n transitions, P will be on symbol yi by changing the states as

c1,xi → c2,xi → · · · → cn−1,xi

where P does not change its state on symbol #. If xi = yi, then P enters sa,
and sr otherwise. It does not change its state once entering sa or sr. So, P
detects any index j with xj �= yj with probability 1

n . Therefore, each member of
GQZ-EQyes(n, k) is accepted exactly and each member of GQZ-EQno(n, k) is rejected
with probability k

n . Therefore, the error bound is 1 − k
n which can be arbitrary

small by choosing a convenient (n, k)-pair. Remark that the same algorithm can
also be implemented by a O(n)-state one-sided bounded-error rtQCFA, where
the automaton needs only a qubit.

Now, by using an idea given by Rashid and Yakaryılmaz [18], we define a
new promise problem based on GQZ-EQ(n, k) which can be solved by a Las Vegas
rtPFA, say P ′, with O(n) states:

GQZ-EQ′yes(n) = {x#x#y | x, y ∈ {0, 1}n and H(x, y) = n
2 }

GQZ-EQ′no(n) = {x#y#y | x, y ∈ {0, 1}n and H(x, y) = n
2 }

.

Lemma 1. GQZ-EQ′(n) can be solved by a Las Vegas rtPFA with O(n) states with
probability 1

4 .

Proof. Let x#y#z be the input as promised. At the beginning of the
computation, P ′ branches the computation into two branches with equal
probability. In the first branch, P ′ executes P on y#z and it accepts the input
if P gives the decision of “rejection” and says “don’t know” if P gives the

2 It is a realtime version of the two-way quantum finite automaton model defined by
Ambainis and Watrous [2] and its formal definition was given in [24].
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decision of “acceptance”. And so, in this branch, the members of GQZ-EQ′yes(n)
are accepted with probability 1

2 and the decision of “rejection” is never given
by P ′. In the second branch, P ′ executes P on x#y and it rejects the input
if P gives the decision of “rejection” and says “don’t know” if P gives the
decision of “acceptance”. And so, in this branch, the members of GQZ-EQ′no(n) are
rejected with probability 1

2 and the decision of “acceptance” is never given by
P ′. Therefore, any member of GQZ-EQ′yes(n) (GQZ-EQ

′
no(n)) is accepted (rejected)

with probability 1
4 and the decision of “don’t know” is given with the remaining

probability. ��

It is quite clear that any 2PFA (restarting rtPFA) can exactly solve this
problem in linear expected time by restarting the computation when the decision
of “don’t know” is obtained.

Corollary 3. GQZ-EQ′(n) can be solved exactly by a O(n)-state restarting rtPFA
in linear expected time.

To get a higher probability for Las Vegas rtPFAs, we define a new promise
problem GQZ-EQ′(n, r) by modifying GQZ-EQ′(n):

GQZ-EQ′yes(n, r) = {(x#x#y#)r | x, y ∈ {0, 1}n and H(x, y) = 1
2}

GQZ-EQ′no(n, r) = {(x#y#y#)r | x, y ∈ {0, 1}n and H(x, y) = 1
2}

,

where n, r > 0.

Theorem 4. GQZ-EQ′(n, r) can be solved by a Las Vegas rtPFA with O(n) states
with probability 1− (34 )

r.

Proof. Let w be the string x#y#z#. We know the behaviour of P ′ on w. We
can design a new Las Vegas rtPFA which reads w r times. Then, the probability
of saying “don’t know” can be reduced to (34 )

r. ��

By modifying the proof given for GQZ-EQ(n, k) in [10,22], we can follow that
any rtDFA needs 2Ω(n) states to solve GQZ-EQ′(n) and GQZ-EQ′(n, r).

Corollary 4. The tight gap of succinctness between rtDFA and Las Vegas rtPFA
is asymptotically exponential on promise problems.

3.4 Two-Sided Bounded-Error Probabilistic Finite Automata

We show the limitations of Las Vegas rtPFAs on the previous sections. One-
sided error PFAs3 have also similar limitations since they can be simulated by
a nondeterministic or a universal finite automota by removing the probabilities:
If any no-instance is rejected exactly (only yes-instances are accepted), then
we obtain a NFA from the one-sided error PFA; and, if any yes-instance is
accepted exactly (only non-instances are rejected), then we obtain a universal

3 We also cover the case of unbounded-error, i.e., there might be no bound on the
error and so it can be arbitrarily close to 0 for some inputs.
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finite automaton from the one-sided error PFA. In this subsection, we show that
we have a different picture in the case of two-sided bounded-error.

Firstly, we show that bounded-error rtPFAs can be very succinct compared
to DFAs, NFAs, AFAs, and Las Vegas rtPFAs. In fact, we present a parallel
result to that of Ambainis and Yakaryılmaz [3] but with bounded error instead
of exact acceptance. Let UPp be a 2-state unary rtPFA such that

– Σ = {a} is the input alphabet,
– s1 is the initial and accepting state, and s2 is the rejecting state, and,
– UPp stays in s1 with probability p and switches to s2 with the remaining

probability for each reading symbol.

It is straightforward that the accepting probability of aj is pj , where j ≥ 0. Let
UP(p) be a promise problem such that

UPyes(p) = {aj | fUPp(a
j) ≥ 3

4}
UPno(p) = {aj | fUPp(a

j) ≤ 1
4}

.

It is clear that, for any p < 1, UP(p) can be solved by a 2-state bounded-error
rtPFA. On the other hand, the number of states required by a rtDFA increases
when p approaches to 1. We define Ap = �logp(34 )� and Rp = �logp(14 )�. Note
that Ap → ∞ as p → 1. It is clear that UPyes(p) contains only the first jth

strings satisfying j ≤ Ap and UPno(p) contains infinitely many strings, i.e. any
string with length at least Rp.

Theorem 5. For any p < 0, UPp can be solved by a 2-state rtPFA with error
bound 1

4 but any rtDFA (or rtNFA) needs at least Ap + 1 states.

Proof. We need to prove the second statement. Suppose that there is a rtDFA,
say D, solving UPp has less than Ap + 1 states. Since D must accept all strings
in {aj | j ≤ Ap}, all states visited by D when reading aAp must be accepting
states including the initial one. Moreover, since the number of states is less than
Ap + 1, then there must be a cycle containing an accepting state. This means
there must be infinitely many accepted strings but any string with length at
least Rp must be rejected. This is a contradiction. Therefore, any such rtDFA
must have at least Ap +1 states. The same proof also works for rtNFAs by only
considering a single accepting path. ��

We can easily design an (Ap+1)-state rtDFA solving UPp, i.e. after Ap accepting
states, the automaton enters a rejecting state and stays there. Therefore, the
bound Ap + 1 is tight. Moreover, the error bound (14 ) in the definition of UP(p)
can be replaced with an arbitrary error and the same arguments can still be
obtained.

Corollary 5. There is a family of unary promise problems such that 2-state
bounded-error rtPFAs are sufficient to solve all family but the state number
required by 2AFAs to solve all family cannot be bounded.

Proof. The second part is due to Theorem 5 and Corollary 1. ��
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Now, we present a separation result between bounded-error rtPFAs and
rtDFAs (and so 2AFAs). For this purpose, we again use an idea given by Jibran
and Yakaryılmaz [18]. 2PFAs can recognize some non-regular languages, e.g.
EQ = {anbn | n ≥ 1} [8], with bounded error but it requires exponential time
[7]. It was also shown that EQ can be recognized by a restarting rtPFA for
any error bound [21]. If it is promised that any string ambn (m,n ≥ 1) is given
exponentially many times, then the algorithm given in [21] for EQ can distinguish
the cases wherem = n andm �= n with high probability. We define a new promise
problem EXPPromiseEQ:

EXPPromiseEQyes = {(anbn)t | n ≥ 1 and t ≥ T }
EXPPromiseEQno = {(ambn)t | m �= n ≥ 1 and t ≥ T } ,

where the value of T will be given later. Let P 1
3
be a restarting rtPFA recognizing

EQ with error bound 1
3 [21]. Let w = ut = (ambn)t be a promised input as

described above, where m,n ≥ 1 and t ≥ T . A rtPFA, say P , can execute P 1
3

on u at least t times. From [21], we know that, in a single round of P 1
3
, u is

accepted with probability

pacc =
1

3

(
1

18

)m+n

,

and the rejecting probability, say prej , is exactly
1
3 of pacc if m = n and at least

3 times pacc if m �= n. The accepting and rejecting probabilities of P on w can
be respectively calculated as

ACC =

t∑
i=1

pacc(1− pacc − prej)
i−1 = pacc

1− (1 − pacc − prej)
t

pacc + prej

and

REJ =

t∑
i=1

prej(1− pacc − prej)
i−1 = prej

1− (1− pacc − prej)
t

pacc + prej
.

If m = n, then pacc = 3prej and so ACC can be at least

3

4

⎡⎣1−(1− 4

27

(
1

18

)2n
)t
⎤⎦

If m �= n, then prej ≥ 3pacc and so REJ can be at least

3

4

⎡⎣1−(1− 4

27

(
1

18

)m+n
)t
⎤⎦

It is a well-known fact that
(
1− 1

x

)x
is less than 1

e for every x ∈ Z+. If T is
27
2 18|u|, then the terms(

1− 4

27

(
1

18

)2n
)t

or

(
1− 4

27

(
1

18

)m+n
)t
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in ACC and REJ , respectively, can be at most 1
e2 . Therefore both ACC and

REJ can be at least
3

4

(
1− 1

e2

)
≥ 0.64.

By using conventional amplification techniques and/or picking bigger T ’s, this
value can be made arbitrarily close to 1.

Theorem 6. For any p > 1
2 , there is a promise problem solvable by a bounded-

error rtPFA with probability p but there is no rtDFA solving the same problem.

Proof. We need to show that EXPPromiseEQ cannot be recognized by any rtDFA.
Suppose that there is such a rtDFA, say D, with n states {s1, . . . , sn}. Any
rtDFAs enters a cycle and stays there on sufficiently long unary input strings.
Let ci be the length of this cycle for D on symbol a when starting in state
si, where 1 ≤ i ≤ n. We define c = lcm(c1, . . . , cn). Let a

m be a string such
that m * n. For any state of D, say s, we can follow that if D is in s on the
first symbols of am and am+c, then D leaves am and am+c in the same state.
Therefore, the behaviours of D on (ambm)t and (am+cbm)t are the same for any
t > 0. But, this is a contradiction since, for sufficiently long t’s, the former strings
must be accepted by D and the latter ones must be rejected by D. Thus, we can
follow that there is no rtDFA solving EXPPromiseEQ. ��

Acknowledgements. We thank the anonymous reviewers for their helpful
comments.
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Abstract. We give a method for specifying ultrafilter equations and
identify their projections on the set of profinite words. Let B be the set
of languages captured by first-order sentences using unary predicates for
each letter, arbitrary uniform unary numerical predicates and a predicate
for the length of a word. We illustrate our methods by giving profinite
equations characterizing B ∩Reg via ultrafilter equations satisfied by B.
This suffices to establish the decidability of the membership problem for
B ∩Reg.

In two earlier papers, Gehrke, Grigorieff, and Pin proved the following results:

Result 1. [5] Any Boolean algebra of regular languages can be defined by a set
of equations of the form u = v, where u and v are profinite words.1

Result 2. [6] Any Boolean algebra of languages can be defined by a set of equa-
tions of the form u = v, where u and v are ultrafilters on the set of words.

These two results can be summarized by saying that Boolean algebras of lan-
guages can be defined by ultrafilter equations and by profinite equations in the
regular case. Restricted instances of Result 1 have proved to be very successful
long before the result was stated in full generality. It is in particular a powerful
tool for characterizing classes of regular languages or for determining the ex-
pressive power of various fragments of logic, see the book of Almeida [2] or the
survey [9] for more information.

Result 2 however is still awaiting convincing applications and even an idea
of how to apply it in a concrete situation. The main problem in putting it into
practice is to cope with ultrafilters, a difficulty nicely illustrated by Jan van Mill,
who cooked up the nickname three headed monster for the set of ultrafilters on N.
Facing this obstacle, the authors thought of using Results 1 and 2 simultaneously
to obtain a new proof of the equality

FO[N ] ∩ Reg = � (xω−1y)ω+1 = (xω−1y)ω

for x, y words of the same length � (1)

� Work supported by the project ANR 2010 BLAN 0202 02 FREC.
1 In [5], these were denoted by u ↔ v.

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 138–149, 2014.
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This formula gives the profinite equations characterizing the regular languages
captured by FO[N ], the first order logic using arbitrary numerical predicates
and the usual letter predicates. This result follows from the work of Barrington,
Straubing and Thérien [3] and Straubing [10] and is strongly related to circuit
complexity. Indeed its proof makes use of the equality between FO[N ] and AC0,
the class of languages accepted by unbounded fan-in, polynomial size, constant-
depth Boolean circuits [11, Theorem IX.2.1, p. 161]. See also [7] for similar results
and problems.

However, before attacking this problem in earnest we have to tackle the fol-
lowing questions: how does one get hold of an ultrafilter equation given the
non-constructibility of each one of them (save the trivial ones given by pairs of
words)? In particular, how does one generalize the powerful use in the regular
setting of xω? And how does one project such ultrafilter equations to the regu-
lar fragment? In answering these questions and facing these challenges, we have
chosen to consider a smaller and simpler logic fragment first. Our choice was
dictated by two parameters: we wanted to be able to handle the corresponding
ultrafilters and we wished to obtain a reasonably understandable list of profinite
equations. Finally, we opted for FO[N0,N u

1 ], the restriction of FO[N ] to con-
stant numerical predicates and to uniform unary numerical predicates. Here we
obtain the following result (Theorem 4.7)

FO[N0,N u
1 ] ∩Reg = �(xω−1s)(xω−1t) = (xω−1t)(xω−1s),

(xω−1s)2 = (xω−1s) for x, s, t words of the same length � (2)

which shows in particular that membership in FO[N0,N u
1 ] is decidable for reg-

ular languages.
Although this result is of interest in itself, we claim that our proof method

is more important than the result. Indeed, this case study demonstrates for the
first time the workability of the ultrafilter approach.

This method can be summarized as follows. First we find a set of ultrafil-
ter equations satisfied by FO[N0,N u

1 ] (Theorem 3.2). These equations do not
necessarily suffice to characterize FO[N0,N u

1 ]
2, but projecting ultrafilters onto

profinite words, we convert our ultrafilter equations to profinite equations for
FO[N0,N u

1 ] ∩ Reg (Theorems 3.3 and 3.4). The last step consists in verify-
ing that the set of profinite equations thus obtained suffices to characterize
FO[N0,N u

1 ] ∩Reg (Theorem 4.7).
Now, a closer look at our proof shows that we are far from making use of

the potential power of ultrafilters. For instance, difficult combinatorial results
like Szemeredi’s theorem on arithmetic progressions can be formulated in terms
of ultrafilters. Thus it is quite possible that more sophisticated arguments are
required to extend our results to larger fragments of logic, including FO[N ].

2 We recently proved that these equations actually do suffice to characterize
FO[N0,N u

1 ], but this will be the topic of another paper.
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1 Stone Duality and Equations

In this paper, we denote by Sc the complement of a subset S of a set E.

1.1 Stone Duality

Let A be a finite alphabet. A Boolean algebra of languages is a set B of languages
of A∗ closed under finite unions, finite intersections and complement. It is closed
under quotients if, for each L ∈ B and u ∈ A∗, the languages u−1L and Lu−1 are
also in B. Recall that u−1L = {x ∈ A∗ | ux ∈ L} and Lu−1 = {x ∈ A∗ | xu ∈ L}.

Let B be a Boolean algebra of languages of A∗. An ultrafilter of B is a non-
empty subset γ of B such that:

(1) the empty set does not belong to γ,

(2) if K ∈ γ and K ⊆ L, then L ∈ γ (closure under extension)3,

(3) if K,L ∈ γ, then K ∩ L ∈ γ (closure under intersection),

(4) for every L ∈ B, either L ∈ γ or Lc ∈ γ (ultrafilter condition).

Stone duality tells us that B has an associated compact Hausdorff space S(B),
called its Stone space. This space is given by the set of ultrafilters of B with the
topology generated by the basis of clopen sets of the form {γ ∈ S(B) | L ∈ γ},
where L ∈ B.

Two Stone spaces are of special interest for this paper. The first one is the
Stone space of the Boolean algebra of all the subsets of a setX . It is known as the
Stone-Čech compactification of X and is usually denoted by βX . An important
property is that every map f : X → Y has a unique continuous extension
βf : βX → βY defined by L ∈ βf(γ) if and only if f−1(L) ∈ γ for each subset L
of Y . Moreover, the map sending an element x of X to the principal ultrafilter
generated by x defines an injective map from X into βX .

Our second example is the Stone space of the Boolean algebra Reg of all regular
subsets of A∗. It was proved by Almeida [1] to be equal to the topological space

underlying the free profinite monoid on A, denoted by Â∗. We refer to [2,8,9] for
more information on this space, but it can be seen as the completion of A∗ for
the profinite metric d defined as follows. A finite monoid M separates two words
u and v of A∗ if there is a monoid morphism ϕ : A∗ →M such that ϕ(u) �= ϕ(v).
We set

r(u, v) = min
{
|M | | M is a finite monoid that separates u and v }

and d(u, v) = 2−r(u,v), with the usual conventions min ∅ = +∞ and 2−∞ = 0.
Then d is a metric on A∗ and the completion of A∗ for this metric is denoted
by Â∗. The product on A∗ can be extended by continuity to Â∗, making Â∗
a compact topological monoid, called the free profinite monoid. Its elements
are called profinite words. We will only use two types of profinite words in this
paper. In a compact monoid, the smallest closed subsemigroup containing a given

3 In other words, γ is an upset.
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element x has a unique idempotent, denoted by xω . Thus if x is a (profinite)
word, so is xω. In fact, one can show that xω is the limit of the converging
sequence xn!. Moreover, the sequence xn!−1 is also converging to an element
denoted by xω−1. More details can be found in [2,8,9].

1.2 Equations

Assigning to a Boolean algebra its Stone space is a contravariant functor: if B′ is
a subalgebra of B, then S(B′) is a quotient of S(B). More precisely, the function
which maps an ultrafilter of B onto its trace on B′ induces a surjective continuous
map π : S(B)→ S(B′).

This leads to the notion of equation relative to B or B-equation. Let γ1, γ2
be two ultrafilters on B and let L ∈ B. We say that L satisfies the B-equation
γ1 = γ2 provided

L ∈ γ1 ⇐⇒ L ∈ γ2. (3)

By extension, we say that B′ satisfies the B-equation γ1 = γ2 provided (3) holds
for all L ∈ B′, or equivalently π(γ1) = π(γ2). Note that if B′ is generated as a
Boolean algebra by a subset C, then B′ satisfies a B-equation as soon as each
L ∈ C does. Finally, we say that B′ is defined by a set E of B-equations if for each
L ∈ B, L ∈ B′ if and only if L satisfies all the B-equations in E. The following
result is an immediate consequence of Stone duality.

Theorem 1.1. Every subalgebra of a Boolean algebra B can be defined by a set
of B-equations.

Specializing this result to B = Reg and to B = P(A∗) yields Results 1 and 2
of the introduction. Another case of interest for this paper is to take B = Reg
and for B′ a Boolean algebra closed under quotients. In this case, it is easier
to reformulate Result 1 in terms of syntactic morphisms. Let L be a regular
language and η : A∗ →M be its syntactic morphism. We say that η satisfies the
profinite equation u = v or that L syntactically satisfies the profinite equation
u = v if η̂(u) = η̂(v), where η̂ : Â∗ →M is the unique continuous extension of η

to Â∗. It is easy to see that a regular language syntactically satisfies a profinite
equation if and only if all of its quotients satisfy this equation. Therefore we have

Result 3. Any Boolean algebra of regular languages closed under quotients can
be syntactically defined by a set of profinite equations.

When working with ultrafilter equations, the following two observations will be
helpful. Let us denote by K,L the symmetric difference of the sets K and L.

Proposition 1.2. Let γ be an ultrafilter of B and let K,L ∈ B. Then the fol-
lowing statements are equivalent:

(1) K ∈ γ if and only if L ∈ γ,

(2) K,L �∈ γ.

Proposition 1.3. Let f : X → Y be a map and let L be a subset of Y . If
f−1(L) satisfies u = v for some u, v ∈ βX, then L satisfies βf(u) = βf(v).
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2 A Boolean Algebra and Its Logical Description

For each word u = a0 . . . an−1 where a0, . . . , an−1 ∈ A and each letter a ∈ A, let
au = {i ∈ Dom(u) | ai = a}. For instance, if u = aabcbaba, then au = {0, 1, 5, 7},
bu = {2, 4, 6}, and cu = {3}. The length of u is denoted by |u|.

For each letter a in A and for each subset P of N, let
LP = {u ∈ A+ | |u| − 1 ∈ P} and La,P = {u ∈ A+ | au ⊆ P}.

In this paper, we are interested in the Boolean algebra B generated by the
languages LP and La,P for P ⊆ N and a ∈ A. A little combinatorics on words
leads to the following result:

Proposition 2.1. The Boolean algebras B and B ∩ Reg are closed under quo-
tients and under the operations L→ uL for each word u ∈ A∗.

Let us turn to the logical description of B. Let u = a0 . . . an−1 be a nonempty
word where a0, . . . , an−1 are letters of the alphabet A. Then umay be viewed as a
first-order model whose domain is the set Dom(u) = {0, . . . , |u|−1}, carrying, for
each letter a ∈ A, the unary predicate au as defined above. For each subset P of
N, we also define two predicates: a 0-ary predicate which is true on u if and only
if |u|−1 ∈ P and a unary uniform predicate4 defined by P (n) = P ∩{0, ..., n−1}.
Its interpretation on a word u is the subset P (|u|) of {0, ..., |u| − 1}.

We denote by FO[N0,N u
1 ] the set of first-order formulas built on these pred-

icates. Note that we do not consider = as a logical symbol so that each formula
is equivalent to one of quantifier depth one. The language defined by a sentence
ϕ is the set5

L(ϕ) = {u ∈ A+ | u satisfies ϕ}
For instance if ϕ = ∃x ax, then L(ϕ) = A∗aA∗. Let P be a subset of N. If P is
considered as a 0-ary numerical relation, then L(P ) = LP . If P is interpreted as
a unary uniform numerical relation, then the formula ∀x (ax→ Px) defines the
language La,P since P is interpreted as P (|u|). This proves one direction of the
following logical description of B.

Theorem 2.2. A language L of A+ belongs to B if and only it can be defined
by a sentence of FO[N0,N u

1 ].

3 Some Equations of B
For 1 � i � k, let πi : A

∗×Nk → N be the map defined by πi(u, n1, . . . , nk) = ni.
The following proposition shows that the classes of equations we will define

subsequently contain at least one non-trivial equation for each α ∈ βN− N.

4 Following the terminology of [11], a unary numerical relation R associates to each
n > 0 a subset R(n) of {0, ..., n − 1}. It is uniform if there exists a subset P of N
such that, for all n > 0, R(n) = P ∩ {0, . . . , n− 1}. Not every numerical relation is
uniform: for instance, the unary numerical relation R defined by R(n) = {n− 1} is
not uniform.

5 The empty word is excluded to avoid any problem related to empty models.
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Proposition 3.1. Let γ ∈ β(A∗ × Nk) with k � 1. Then, for each α ∈ βN, the
following conditions are equivalent:

(1) βπi(γ) = α for each i ∈ {1, . . . , k};
(2) {A∗ × P k | P ∈ α} ⊆ γ.

Furthermore, these conditions hold for γ with respect to some α if and only if

(3) For each partition {P1, . . . , Pn} of N, we have
⋃n

j=1(A
∗ × P k

j ) ∈ γ.

Proof. (1) implies (2) since A∗ ×P k =
⋂k

i=1 π
−1
i (P ) and γ is closed under finite

intersections.
(2) implies (1). Let P ∈ α and i ∈ {1, . . . , k}. Then by (2), A∗ × P k ∈ γ and

thus π−1
i (πi(A

∗ × P k)) ∈ γ so that P = πi(A
∗ × P k) ∈ βπi(γ). It follows that

α ⊆ βπi(γ) and thus α = βπi(γ) since ultrafilters are maximal.
For the second assertion, suppose there is an α ∈ βN such that (1) and (2)

hold and {P1, . . . , Pn} is a partition of N. Then
⋃n

j=1 Pj = N implies P� ∈ α for

some � and thus A∗ × P k
� ∈ γ by (2). Since γ is an upset, condition (3) holds.

Suppose now that γ satisfies (3) and let α = {P | A∗ × P k ∈ γ}. Then α is
an upset closed under intersection. Furthermore, for each P ⊆ N, the partition
{P, P c} forces A∗×P k ∈ γ or A∗×(P c)k ∈ γ so that α is an ultrafilter. It follows
by the equivalence of (1) and (2) that βπi(γ) = α for each i ∈ {1, . . . , k}. ��

We are now ready to introduce the first class of equations pertinent to the
languages treated in this paper. For this purpose, given u, s, t ∈ A∗, where
u = u0 · · ·un−1 with each uk ∈ A and |s| = |t| = �, and i, j ∈ N, define

u(s@i, t@j) =

{
u0 . . . ui−1sui+� . . . uj−1tuj+� . . . un−1 if i+ 
 � j and j + 
 � n

u otherwise

Informally, we put s at position i and t at position j.

u0 · · · ui−1 ui · · · ui+�−1 ui+� · · · uj−1 uj · · · uj+�−1 uj+� · · · un−1︸ ︷︷ ︸
↑ ↑

︸ ︷︷ ︸
s t

For each pair (s, t) of words of the same length, let fs,t : A
∗ × N2 → A∗ be the

function defined by fs,t(u, i, j) = u(s@i, t@j).

Theorem 3.2. Let s, t ∈ A∗ with |s| = |t|. If γ ∈ β(A∗ × N2) and βπ1(γ) =
βπ2(γ), then B satisfies the equation

βfs,t(γ) = βft,s(γ). (4)

Proof. Let a ∈ A and P ⊆ N. We show that La,P and LP satisfy the equations
(4). First we have

La,P ∈ βf(γ) ⇐⇒ f−1(La,P ) ∈ γ.
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Thus (4) holds for La,P if and only if

f−1
s,t (La,P ) ∈ γ ⇐⇒ f−1

t,s (La,P ) ∈ γ

and by Proposition 1.2 this is equivalent to S /∈ γ, where

S = f−1
s,t (La,P ), f−1

t,s (La,P ).

Let � be the common length of s and t. If an element (u, n1, n2) ∈ A∗ ×N2 is in
S then n1+2� � n2+ � � |u| since otherwise fs,t(u, n1, n2) = ft,s(u, n1, n2) = u.
Suppose that (u, n1, n2) ∈ f−1

s,t (La,P ) \ f−1
t,s (La,P ), that is, fs,t(u, n1, n2) ∈ La,P

and ft,s(u, n1, n2) /∈ La,P . Then all the positions of a in fs,t(u, n1, n2) are in
P and some position of a in ft,s(u, n1, n2) is not in P . This latter position
necessarily occurs inside one of the factors s or t of fs,t(u, n1, n2). Consequently,
there is an i ∈ {0, . . . , � − 1} such that one of the two following possibilities
occurs:

(1) the letter in position n1 + i in ft,s(u, n1, n2) is an a but n1 + i /∈ P ,

(2) the letter in position n2 + i in ft,s(u, n1, n2) is an a but n2 + i /∈ P .

Now, in the first case, the letter in position n2 + i in fs,t(u, n1, n2) is an a. Thus
n2 + i ∈ P since fs,t(u, n1, n2) ∈ La,P . Similarly, we conclude that n1 + i ∈ P
in the second case. In summary, we have either n1 + i /∈ P and n2 + i ∈ P (first
case) or n1+ i ∈ P and n2+ i /∈ P (second case). In both cases we conclude that

(u, n1, n2) ∈
�−1⋃
i=0

(
π−1
1 (P − i),π−1

2 (P − i)
)
.

The case (u, n1, n2) ∈ f−1
t,s (La,P ) \ f−1

s,t (La,P ) leads to the same conclusion and
thus we have shown that

S ⊆
�−1⋃
i=0

(
π−1
1 (P − i),π−1

2 (P − i)
)
.

If S ∈ γ, then
⋃�−1

i=0

(
π−1
1 (P − i),π−1

2 (P − i)
)
∈ γ and since γ is an ultrafilter,

π−1
1 (P − i), π−1

2 (P − i) ∈ γ for some i ∈ {0, . . . , �− 1}. We complete the proof
that S �∈ γ by showing that, for every Q ⊆ N we have π−1

1 (Q), π−1
2 (Q) /∈ γ,

or equivalently, (π−1
1 (Q), π−1

2 (Q))c ∈ γ. But this is a direct consequence of
Proposition 3.1(3) since

(π−1
1 (Q),π−1

2 (Q))c = A∗ ×
(
(Q×Q) ∪ (Qc ×Qc)

)
.

Thus S /∈ γ and La,P satisfies the equation βfs,t(γ) = βft,s(γ).
By the same argument as applied above, LP satisfies the equations (4) if and

only if f−1
s,t (LP ), f−1

t,s (LP ) /∈ γ. However, since |fs,t(u, n1, n2)| = |ft,s(u, n1, n2)|
and since x ∈ LP implies y ∈ LP if |y| = |x|, we have f−1

s,t (LP ) = f−1
t,s (LP ) and

thus f−1
s,t (LP ), f−1

s,t (LP ) = ∅ and therefore it does not belong to γ. ��
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We now consider the projection of the equations introduced above on the Stone
space of the regular fragment of the Boolean algebra B.

Theorem 3.3. Let x, s, t,∈ A∗ with |s| = |t| = |x|. Then B ∩ Reg satisfies the
profinite equation xω−1sxω−1t = xω−1txω−1s.

Proof. It suffices to show that there is a γ ∈ β(A∗ × N2) with βπ1(γ) = βπ2(γ)

such that the projection πReg : βA∗ → Â∗ defined by

πReg(γ) = γ ∩Reg

maps βfs,t(γ) to x
ω−1sxω−1t and βft,s(γ) to x

ω−1txω−1s.
Proposition 3.1 shows that in order for γ to satisfy βπ1(γ) = βπ2(γ), we just

need γ to contain the down-directed filter base{ n⋃
j=1

(A∗ × P 2
j ) | {P1, . . . , Pn} is a partition of N

}
.

We now show that for � = |x|, adding the sets WN = {(xm!, (k!−1)�, (m!−1)�) |
N � k < m} for each N ∈ N to this filter base still yields a filter base. To this
end we just need to show that for each partition {P1, . . . , Pn} of N and N ∈ N,
the set

WN ∩ (

n⋃
j=1

(A∗ × P 2
j ))

is non-empty. But since {P1, . . . , Pn} is a partition of N, there is j ∈ {1, . . . , n}
with Pj ∩ {(k!− 1)� | k � N} infinite. It readily follows that WN ∩ (A∗ × P 2

j ) is

infinite and thus the bigger set WN ∩ (
⋃n

j=1(A
∗ × P 2

j )) is non-empty.

Let γ ∈ β(A∗×N2) be an ultrafilter containing the extended filter base. Then
clearly βπ1(γ) = βπ2(γ) so that, by Theorem 3.2, the Boolean algebra B satisfies
the equation βfs,t(γ) = βft,s(γ).

Now let L ∈ βfs,t(γ) ∩ Reg. Then f−1
s,t (L) ∈ γ. Also, since WN ∈ γ for each

N ∈ N, it follows that f−1
s,t (L) ∩W1 is infinite, or equivalently L ∩ fs,t(W1) is

infinite. But
fs,t(W1) = {xn!−1sx(m!−n!)−1t | 1 � n < m}

and m!− n! = (m!/n!− 1)n! where (m!/n!− 1) � 1. Since any sequence in this

set with n → ∞ converges to xω−1sxω−1t in Â∗, and since L ∩ fs,t(W1) ⊆ L̂

with the latter closed, we must have xω−1sxω−1t ∈ L̂. But as Â∗ is Hausdorff,⋂
{L̂ | L ∈ βfs,t(γ) and L ∈ Reg} = πReg(βfs,t(γ))

so xω−1sxω−1t = πReg(βfs,t(γ)). Similarly xω−1txω−1s = πReg(βft,s(γ)). ��

A similar argument using the ultrafilter equations βftss(γ) = βftts(γ) with
βπ1(γ) = βπ2(γ) = βπ3(γ) and projecting yields the profinite equation

(xω−1t)(xω−1s)(xω−1s) = (xω−1t)(xω−1t)(xω−1s).
Specializing to x = t we get (xω−1s)(xω−1s) = (xω−1s), which proves the fol-
lowing result.
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Theorem 3.4. Let x, s ∈ A∗ with |s| = |x|. Then B ∩Reg satisfies the profinite
equation (xω−1s)(xω−1s) = (xω−1s).

Applications of the ultrafilter equations introduced in this section are not limited
to the interplay with regular languages and they can also be used to prove separa-
tion results for nonregular languages. For instance, it is easy to find an ultrafilter
equation of B not satisfied by the language {uav | u, v ∈ {a, b}∗ and |u| = |v|}.

4 The Regular Case

Consider the two profinite equations introduced in the previous sections, where
x, s and t are words of the same length

(xω−1s)(xω−1t) = (xω−1t)(xω−1s) (5)

(xω−1s)(xω−1s) = (xω−1s) (6)

We will show that the regular languages of our class B are exactly the languages
whose syntactic morphism satisfies the equations (5) and (6) for all words x, s
and t of the same length. Before we do this, it is useful to introduce some further
notation.

Let k, r, d ∈ N with d > 0. Given a word u = a0 · · · an ∈ A∗ where ai ∈ A, let
pk(u) = a0 · · · ak−1 be the prefix of length k of u and let

Cd,r(u) = {ai | i � d and i ≡ r mod d}

be the content of u at r modulo d. For instance, if u = ccbbacabac, then p5(u) =
ccbba, C3,0 = {a, b, c}, C3,1 = {a, b} and C3,2 = {a, c}.

For each positive integer d, let ∼d be the equivalence on A∗ defined as follows.
Given u, v ∈ A∗, u ∼d v if and only if the three following conditions are satisfied:

(1) for 0 < k � d, pk(u) = pk(v),

(2) |u| ≡ |v| mod d,

(3) for 0 � r < d, Cd,r(u) = Cd,r(v).

Proposition 4.1. The relation ∼d is a congruence of finite index on A∗.

We now consider a regular language L and we denote by η : A∗ → M its
syntactic morphism. We also let d = |M |!. It is well known that, for each x ∈M ,
xd is idempotent, that is, x2d = xd. For the remainder of the paper, we use
the notation u =η v for η(u) = η(v), and, for any r ∈ N, we denote by [r] the
remainder after division of r by d. We will need a small combinatorial lemma:

Lemma 4.2. Let u be a word of length at least |M |. Then there exist a prefix p
of u of length lesser than |M | and a word x of length |M |! such that px =η p.

Proof. For each k � 0, let sk = η(pk(u)). If s0, . . . , s|M|−1 are all distinct, one of

them, say si, is idempotent. Then p = pi(u) and x = p|M|!/(i+1) give the result.
On the other hand, if si = sj with i < j < |M |, then p = pi(u) and x = z|M|!/|z|

where pj(u) = pz yield the result. ��
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Let BReg be the Boolean algebra generated by the languages LP or La,P where
P is a regular subset of N, that is, a finite union of languages of the form r+ dN
for r, d ∈ N. Clearly BReg ⊆ B ∩ Reg. Our aim is to show that if η satisfies the
equations (5) and (6), then L is a union of ∼d-classes. In view of the following
proposition, it then follows that L ∈ BReg.

Proposition 4.3. For every d � 1, every ∼d-class is a language of BReg.

We now suppose that η satisfies equations (5) and (6) for all words x, s and
t of the same length.

Lemma 4.4. Let a0, a1, . . . , ar be letters and let p and x be two words such
that |x| = d and px =η p. Setting x = b0 · · · bd−1 where b0, b1, . . . , bd−1 are
letters, we have pa0 · · · ar =η pa0 · · ·ar(b[r+1] · · · bd−1b0 · · · b[r])d.

Proof. We prove the result by induction on the length of the word a0a1 · · · ar. If
the length is 0, the result simply follows from the relation px =η p. Suppose by
induction that the result holds for a word of length � r, that is

pa0 · · · ar−1 =η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])
d (7)

Then we get by (7)

pa0 · · ·ar−1ar(b[r+1] · · · bd−1b0 · · · b[r])d

=η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])
dar(b[r+1] · · · bd−1b0 · · · b[r])d

=η pa0 · · · ar−1b[r](b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r−1]ar︸ ︷︷ ︸
s

(b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r]︸ ︷︷ ︸
t

Equation (5) allows one to swap s and t and consequently we obtain

pa0 · · ·ar(b[r+1] · · · bd−1b0 · · · b[r])d

=η pa0 · · · ar−1b[r](b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r]︸ ︷︷ ︸
t

(b[r+1] · · · bd−1b0 · · · b[r])d−1 b[r+1] · · · bd−1b0 · · · b[r−1]ar︸ ︷︷ ︸
s

=η pa0 · · · ar−1(b[r] · · · bd−1b0 · · · b[r−1])
2dar =η pa0 · · · ar−1ar by (7),

which concludes the induction step. ��

Lemma 4.5. Let a0, a1, . . . , ar be letters and let p and x = b0 · · · bd−1 be two
words such that px =η p. Setting for each k � 0

zk = b0b1 · · · b[k−1]a[k]b[k+1] · · · bd−1

the following relation holds

pa0 · · · ar =η px
d−1z0x

d−1z1 · · ·xd−1z[r]x
d−1b0 · · · b[r] (8)
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Proof. Applying Lemma 4.4 repeatedly yields the formula

pa0 · · ·ar =η p(b0 · · · bd−1)
da0(b1 · · · bd−1b0)

da1 · · ·
(b[r] · · · bd−1b0 · · · b[r−1])

dar(b[r+1] · · · bd−1b0 · · · b[r])d (9)

It suffices now to observe that the right hand sides of (9) and of (8) are the same
word. ��

Proposition 4.6. If u ∼d v, then u =η v.

Proof. Let u ∈ L and let v be a word such that u ∼d v. We claim that u =η v.
If |u| < d or |v| < d, then u = v and the result is trivial. Thus we may assume
that |u|, |v| � d and by the definition of ∼d, pd(u) = pd(v).

Let p and x = b0b1 · · · bd−1 be the words given by Proposition 4.2. Then p is
a common prefix of length < |M | of u and v and x is a word of length d such
that px =η p.

Let u = pa0 · · ·am and v = pc0 · · · cn. Since u ∼d v, |u| ≡ |v| mod d and thus
[n] = [m]. Setting

yk = b0b1 · · · b[k−1]a[k]b[k+1] · · · bd−1

zk = b0b1 · · · b[k−1]c[k]b[k+1] · · · bd−1

we get by Lemma 4.5

u =η px
d−1y0x

d−1y1 · · ·xd−1y[m]x
d−1b0 · · · b[m]

v =η px
d−1z0x

d−1z1 · · ·xd−1z[n]x
d−1b0 · · · b[n]

Since L satisfies the equations (5) and (6), one has for each i, j

xd−1yix
d−1yi =η x

d−1yi xd−1zix
d−1zi =η x

d−1zi

xd−1yix
d−1yj =η x

d−1yjx
d−1yi xd−1zix

d−1zj =η x
d−1zjx

d−1zi

We can now conclude the proof of Proposition 4.6. Since u ∼d v, for each i � d
there is a j such that j ≡ i mod d and ai = cj . Therefore, for each i there is a j
such that yi = zj. Similarly, for each j there is an i such that zj = yi. It follows
that u =η v. ��

We are now ready to prove the main result of this section.

Theorem 4.7. Let L be regular language, let η : A∗ → M be its syntactic
morphism and let d = |M |!. Then the following conditions are equivalent:

(1) η satisfies the profinite equations (5) and (6) for all words x, s and t of
the same length,

(2) L is a finite union of ∼d-classes,

(3) L ∈ BReg,

(4) L ∈ B ∩Reg.
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Proof. Proposition 4.6 proves that (1) implies (2). Proposition 4.3 shows that (2)
implies (3), (3) implies (4) is trivial and (4) implies (1) follows from Theorems
3.3 and 3.4. ��

Corollary 4.8. One can effectively decide whether or not a given a regular lan-
guage belongs to B.

Coming back to logic, one could derive the following characterization, in which
=c stands for the set of unary predicates of the form {c}, for c ∈ N and MOD
stands for the set of modulo predicates, as defined in [4].

Theorem 4.9. A language belongs to B∩Reg if and only if it can be defined by
a sentence of FO[MOD, = c].

Acknowledgement. The authors would like to thank Charles Paperman for
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Boston Inc., Boston (1994)



Computation Width and Deviation Number
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Abstract. The computation width (a.k.a. tree width, a.k.a. leaf size)
of a nondeterministic finite automaton (NFA) A counts the number of
branches in the computation tree of A on a given input. The deviation
number of A on a given input counts the number of nondeterministic
paths that branch out from the best accepting computation. Deviation
number is a best-case nondeterminism measure closely related to the
guessing measure of Goldstine, Kintala and Wotschke (Infrom. Comput.
86, 1990, 179–194). We consider the descriptional complexity of NFAs
with similar given deviation number and with computation width.

1 Introduction

Different ways to quantify and measure the amount of nondeterminism in fi-
nite automata have been considered in the literature. The degree of ambiguity
counts the number of accepting computations and is possibly the most well stud-
ied measure [4,10]. Other measures are based on the amount of nondeterminism
used in all (accepting as well as non-accepting) computations, and further dis-
tinctions arise depending on whether the measure is a best-case or a worst-case
measure [4,12].

The computation width of an NFA measures the width (i.e., the number of
leaves) of the computation tree on a given input. This measure has been previ-
ously studied under the name ‘tree width’ [11] or ‘leaf size’ [2,7]. On the other
hand, the guessing measure of an NFA [5] counts the number of bits the automa-
ton needs to make the nondeterministic choices on the “best” accepting path,
that is, the path using the least amount of nondeterminism.

The computation width measures the amount of nondeterminism in all possi-
ble computations, while guessing is a best case measure that limits the amount
of nondeterminism only on a best accepting computation. If the computation
width of an NFA A is k then also the guessing of A is at most k − 1 but, in
general, the guessing of A can be much smaller. In particular, it is possible that
an NFA A has finite guessing but the computation width of A is unbounded.

In this paper we study the descriptional complexity trade-offs between NFAs
of finite computation width and NFAs where the amount of nondeterminism of
only the best accepting computation is bounded. If the minimal NFA for a regular
language L has to make a sequence of binary nondeterministic choices where
always one of the choices leads to failure (without further nondeterminism),

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 150–161, 2014.
c© Springer International Publishing Switzerland 2014
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then the computation width is equivalent to a best case computation measure.
We provide an example where this situation occurs. Our main goal is to provide
a construction of the opposite situation where a given limit k on a best case
computation measure allows to have a much smaller NFA than the same limit k
on the computation width.

As a best case computation measure we consider deviation number that counts
the number of nondeterministic paths that branch out from a best accepting
computation. Deviation number is closely related to the guessing measure [5]
and, if all nondeterministic steps of an NFA A have exactly two choices, then
the deviation number of A is always exactly the guessing of A. For a descriptional
complexity comparison with computation width, we feel that deviation number
is a more natural best case measure than guessing. For example, the guessing
(as defined in [5]) involved in one transition involving three possible choices is
less than the guessing of a computation where we achieve three choices by first
making a binary choice between states q1 and q2 and then another binary choice
in state q2.

The definition of the guessing measure is natural and it guarantees that the
guessing of an NFA A is always the logarithm of the multiplicative branching
measure of A [5], however, for our purposes deviation number is more suitable as
it directly counts the number of branches the best accepting computation has.

We note that there are known examples of NFAs with finite deviation num-
ber where determinization causes a super-polynomial size blow-up. This follows
from Theorem 5.4 of [5] by observing that the guessing of an NFA is finite if and
only if its deviation number is finite. At first sight the above could seem to yield
an example where an NFA with given deviation number is significantly smaller
than the minimal equivalent NFA with the same computation width because it is
known that determinizing an NFA with finite computation width causes only a
polynomial size blow-up [11]. However, the above does not directly imply a size
difference between NFAs with finite deviation number and finite computation
width, because in the latter result the degree of the polynomial depends on the
computation width (and, in fact, the NFAs used in [5] for the super-polynomial
size blow-up have the same finite computation width and deviation number). It
seems possible that for the language family Ln, n ≥ 1, used in the proof of The-
orem 5.4 of [5] one could construct NFAs with suitably chosen finite deviation
number that are smaller than any NFAs of the same computation width, but de-
termining the size difference would require similar, and likely more complicated,
estimations than what we use below in Section 4.

In our construction, to obtain worst-case size blow-up from an NFA with given
deviation number to an NFA with the same computation width we want to have a
regular language L such that any minimal NFA has to make all nondeterministic
choices in the beginning.1 In this case by making the initial nondeterministic
choices as a balanced binary tree we obtain an NFA with deviation number �
(where � is roughly the logarithm of the number of nondeterministic choices)
that is not much larger than the minimal NFA for L while, at least intuitively,

1 We use NFAs that can have multiple initial states.
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it seems clear that any NFA with computation width � must be significantly
larger. Naturally the intuition is not sufficient for a proof and the goal of our
main result is to construct specific languages where we can prove a corresponding
lower bound for the size of any NFA having computation width �.

We construct, for all k ∈ N, languages Lk,s over an alphabet of size s such
that a minimal NFA for Lk,s has k · sk states and the minimal DFA is of size
k · (2s− 1)k. As the main result we then show that Lk,s has a deviation number
k�log s� NFA of size (k + 1) · sk − 1 while any NFA for Lk,s with the same

computation width of c · k log s needs Ω
(
c · k log s 2 s

c·log s

)
states for any c ≥ 1.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata [14,15].
Surveys on descriptional complexity include [4,8]. Here we briefly recall some no-
tation and introduce definitions for the computation width and deviation number
measures considered in the paper.

The set of strings (or words) over a finite alphabet Σ is Σ∗ and ε is the
empty string. A nondeterministic finite automaton (NFA) is a 5-tuple A =
(Q,Σ, δ,Q0, F ) where Q is the finite set of states, Σ is the input alphabet,
δ : Q × Σ → 2Q is the transition function, Q0 ⊆ Q is the set of initial states
and F ⊆ Q is the set of final states. The transition function δ is in the usual
way extended as a function Q× Σ∗ → 2Q and the language recognized by A is
L(A) = {w ∈ Σ∗ | (∃q ∈ Q0)δ(q, w)∩F �= ∅}. By the size of the NFA A, size(A),
we mean the number of states, that is, the cardinality of Q.

A transition of A is a triple μ = (q, a, p), q, p ∈ Q, a ∈ Σ such that p ∈ δ(q, a).
The branching of a transition μ = (q, a, p) is βA(μ) = |δ(q, a)|. The transition μ is
nondeterministic if it has branching at least 2, and otherwise μ is deterministic.

A computation of A from state s1 to state s2 on input w = a1 · · · ak, ai ∈ Σ,
i = 1, . . . , k, k ≥ 1, is a sequence of transitions

C = (μ1, . . . , μk), μi = (qi, ai, qi+1), 1 ≤ i ≤ k, s1 = q1, s2 = qk+1. (1)

The set of all computations on w ∈ Σ∗ from state s1 to state s2 is denoted
compA(w, s1, s2).

The minimal size of a DFA or an NFA recognizing a regular language L is
called the deterministic (nondeterministic) state complexity of L and denoted,
respectively, sc(L) and nsc(L). Note that we allow DFAs to be incomplete and,
consequently, the deterministic state complexity of L may differ by one from a
definition using complete DFAs.

Theorem 2.1 ([1]). Let L ⊆ Σ∗ be a regular language, and suppose there exists
a set of pairs P = {(xi, yi) | 1 ≤ i ≤ n} such that:

(a) xiyi ∈ L for 1 ≤ i ≤ n;
(b) xiyj /∈ L or xjyi /∈ L for 1 ≤ i, j ≤ n and i �= j.

Then any NFA accepting L has at least n states.
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A set of pairs of strings satisfying the conditions of Theorem 2.1, for a regular
language L, is called a fooling set for L.

2.1 Computation Width and Deviation Number

The computation width measure counts the total number of paths in compu-
tation trees of an NFA. Here we recall some definitions. More details on the
computation width measure, a.k.a. tree width or leaf size, can be found in [7,11],
however, the definitions used there require an NFA to have only one initial state.

In the following let A = (Q,Σ, δ,Q0, F ) be an NFA and the set of initial states
is Q0 = {q1,0, . . . , qk,0}, k ≥ 1.

For q ∈ Q and w ∈ Σ∗, the q-computation tree of A on w, TA,q,w, is a finite tree
where the nodes are labelled by elements of Q×(Σ∪{ε, �}) defined inductively as
follows. The tree TA,q,ε consists of a single node labelled by (q, ε). When w = au,
a ∈ Σ, u ∈ Σ∗ and δ(q, a) = ∅ we set TA,q,w to be the singleton tree where the
only node is labelled by (q, �). Then assuming δ(q, a) = {p1, . . . , pm}, m ≥ 1, we
define TA,q,w as the tree where the root is labelled by (q, a) and the root has m
children where the sub-tree rooted at the ith child is TA,pi,u, i = 1, . . . ,m. For
our purposes the order of children of a node is not important and we assume
that the elements of δ(q, a) are ordered by a fixed but arbitrary linear order.
Note that in TA,q,w every path from the root to a leaf has length at most |w|. A
path may have length less than w because the corresponding computation of A
may become blocked when δ(q, a) = ∅.

The computation forest of A on word w, FA,w consists of all q0,i-computation
trees of A on w for initial states q0,i ∈ Q0, that is,

FA,w = {TA,q1,0,w, . . . , TA,qk,0,w}.
The computation width of A on w ∈ Σ∗, cwA(w), is the sum of the numbers

of leaves of the trees in the forest FA,w. The computation width of A is defined
as cw(A) = sup{cwA(w) | w ∈ Σ∗}. We say that A is a finite computation width
NFA if cwA is finite.

More generally, one may consider the computation width as a function on
input length [12], however, here we mainly concentrate on NFAs with bounded
computation width and the distinction between a finite and an unbounded com-
putation width.

The computation width measure counts the number of all computation paths
of A on a given input. As a best case nondeterminism measure we consider a
measure that counts the least number of nondeterministic branches that deviate,
or branch out, from an accepting computation.

If C = (μ1, . . . , μk) = compA(w, s1, s2) is a computation of A on string w
(from state s1 to s2), the deviation number of C, dn(C)2, is defined as

dn(C) =

k∑
i=1

(β(μi)− 1).

2 We avoid the name “branching of C” because branching of a nondeterministic com-
putation is defined differently in the literature [5].
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For w ∈ L(A), the deviation number of A on w, dnA(w) is defined by

dnA(w) = min{ dn(C) : (∃q ∈ Q0, p ∈ F ) C ∈ compA(w, q, p) }.

The deviation number of A on string w counts the number of nondetermin-
istic paths that branch out from the “best” accepting computation, that is, the
computation for which this value is smallest. The deviation number measure is
closely related to the guessing measure of an NFA A [5], which is another best
case measure of nondeterminism. If all nondeterministic transitions of A have
branching exactly two, then for any string w the guessing of A on w equals to
dnA(w).

Again we define the deviation number of A as dn(A) = sup{dnA(w) | w ∈
Σ∗}. An NFA with finite computation width has always finite deviation number
but the converse does not hold, in general.

We will study the descriptional complexity of regular languages by measuring
the sizes of optimal finite computation width, or finite deviation number, NFAs.
For a regular language L and m ∈ N, we denote

nsccw≤m(L) = min{size(A) : cw(A) ≤ m, L(A) = L},

nscdn≤m(L) = min{size(A) : dn(A) ≤ m, L(A) = L}.
Directly from the definitions we get the following lemma.

Lemma 2.1. For any regular language L and m ∈ N,

nscdn≤m(L) ≤ nsccw≤m+1(L).

Conversely, since deviation number is a best case measure, for a given NFA A,
dn(A) does not yield any upper bound for cw(A). Note that the computations of
A could always begin with a nondeterministic choice into states q1 and q2 where
q1 accepts the remaining input deterministically while q2 begins a computation
involving unbounded nondeterminism.

First we observe that there exist languages for which the inequality of
Lemma 2.1 is an equality.

Proposition 2.1. For every m ∈ N there exists a regular language Lm over a
three letter alphabet such that

nsccw≤m+1(Lm) = nscdn≤m(Lm) < nscdn≤m−1(Lm).

Note that the condition nscdn≤m(Lm) < nscdn≤m−1(Lm) guarantees that the
minimal NFA for Lm really uses (at least) deviation numberm (and computation
width m). Without this requirement we could trivially make the inequality of
Lemma 2.1 to be an equality (for all m) by choosing L to be a regular language
such that the minimal DFA for L is also minimal as an NFA.

The languages Lm constructed in Proposition 2.1 have the property that an
accepting computation of a minimal NFA A for Lm, on any input in Lm, has to
make a finite sequence of binary choices where always the incorrect choice leads
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to failure after some deterministic steps. This means that the minimal NFA for
Lm has the same finite computation width and deviation number.

In the next section we construct languages for which a given bound on the
deviation number allows an NFA to be much smaller than the same bound on
computation width, that is, we construct languages L such that, for suitably
chosen m ∈ N, nscdn≤m(L) is provably much smaller than nsccw≤m(L).

3 Words Defined by Cyclically Avoiding Letters

Below, we define a language Lk,s, k, s ∈ N, consisting of words that ‘avoid’ a
given letter in each position modulo k.

First, we let Ek : (Σ ∪ {�})∗ × {1, 2, . . . , k} → P(Σ) be the function defined
as follows:

Ek(w, i) = {wj : wj ∈ Σ and j ≡ i (mod k)}
where w ∈ (Σ ∪ {�})∗, and i ∈ {1, . . . , k}.

Informally, Ek(w, i) is the set of letters ‘encountered’ at the positions of w
that are congruent to i modulo k where � acts as a ‘wildcard’ character and is
ignored.

We say that a word w ∈ (Σ ∪ {�})∗ avoids the word x = x1x2 · · ·xk ∈ Σk if
∃i such that xi �∈ Ek(w, i). In other words, w and xω do not have any coinciding
letters when put side by side.

This gives rise to the following definition of a language Lk,s ⊂ (Σs ∪ {�})∗,
k, s ∈ N:

Lk,s = {w : k divides |w| and (∃x ∈ Σk
s ) such that w avoids x}

where Σs denotes the set {a1, a2, . . . , as}.
Furthermore, we say that a word w ∈ (Σs ∪ {�})∗ is full with respect to x if

w avoids x but does not avoid any other y �= x where |y| = |x|. We denote the
set of all the words full with respect to x by Fx. Formally,

Fx = {w : w is full with respect to x}.

We assume an arbitrary but fixed order on the alphabets considered and let f x
denote the lexicographically least word in Fx.

Lemma 3.1. A word w ∈ (Σ ∪ {�})∗ is full with respect to x ∈ Σk if and only
if Ek(w, i) = Σ \ {xi} for all i ∈ {1, 2, . . . , k}.

Proof. Suppose that w is full with respect to x ∈ Σk and fix i ∈ {1, 2, . . . , k}.
We know that w avoids x and so we have that Ek(w, i) ⊆ Σ \ {xi}.
Now, assume that Ek(w, i) � Σ\{xi}. Then there is another letter b �= xi such

that b �∈ Ek(w, i). Thus, w also avoids the word y = x1 · · ·xi−1bxi+1 · · ·xk �= x
meaning w is not full with respect to x. This contradicts our assumption.

Therefore, Ek(w, i) = Σ \ {xi}.
To see the other direction, suppose that Ek(w, i) = Σ \ {xi} for all i ∈

{1, 2, . . . , k}. Then clearly w avoids x = x1x2 · · ·xk. If w avoids some y with
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|y| = |x| then for each i we have yi �∈ Ek(w, i). We conclude that for each i,
yi = xi, and so y = x. Therefore, w is full with respect to x. ��

Lemma 3.2. If x ∈ Σk then | f x | = k · (|Σ| − 1).

Proof. Let x = x1x2 · · ·xk.
Suppose that | f x | < k · (|Σ| − 1). Then let m, l ∈ N, l < k be such that

| f x | = k ·m+ l. This means that m ≥ |Ek(w, k)|. But m < |Σ| − 1 = |Σ \ {xk}|
and so, by Lemma 3.1, w is not full leading to a contradiction. Therefore we
conclude that | f x | ≥ k · (|Σ| − 1).

On the other hand, the word

w = (w1,1w1,2 · · ·w1,k)(w2,1w2,2 · · ·w2,k) · · · (w|Σ|−1,1w|Σ|−1,2 · · ·w|Σ|−1,k),

where, for each i = 1, . . . , k, {w1,i, w2,i, . . . , w|Σ|−1,i} = Σ − {xi}, is full with
respect to x. Furthermore, by choosing wj,i < wj+1,i, 1 ≤ i ≤ k, 1 ≤ j < |Σ|−1,
it is clear that w is the lexicographically least word of length k · (|Σ| − 1) that
can be full with respect to x. ��

3.1 Minimal NFA

Next we determine what is the size of a minimal NFA for the language Lk,s.

Theorem 3.1. Let k, s ∈ N, the nondeterministic state complexity of Lk,s is
nsc(Lk,s) = k · sk.

Proof. To prove a lower bound for the size of a minimal NFA recognizing Lk,s

we will appeal to the fooling set theorem.

Claim. Let X = {(f x ��, �k−� f x) : x ∈ Σk
s and � < k}. We claim that X is a

fooling set for the language Lk,s.

Proof (Claim). To verify the claim, we note that f x �
� · �k−� f x ∈ Lk,s since

| f x | is a multiple of k by Lemma 3.2 and f x �
k f x avoids x.

Next consider w = f x �
� · �k−� f y where xi �= yi, for some 1 ≤ i ≤ k.

Then there is no z that w avoids. To see this, consider Ek(w, i). Since both
f x and f y are factors of w and aligned modulo k we have that the set of
‘encountered’ letters Ek(f x, i) ⊆ Ek(w, i) and Ek(f y, i) ⊆ Ek(w, i). Applying
Lemma 3.1 we see that Σs \ {xi} ⊆ Ek(w, i) and Σs \ {yi} ⊆ Ek(w, i) so we
conclude Ek(w, i) = Σs. Therefore, w �∈ Lk,s as there are no options for zi.

Lastly, if w = f x �
� · �m f y where � +m �= k we have w �∈ Lk,s since the

length of w is not a multiple of k.
This concludes the proof of the claim that X is a fooling set for Lk,s. ��

Next, we compute the cardinality of X : there are sk choices for x and another
k choices for �. This gives a total of at least k · sk states in a minimal NFA for
Lk,s.
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Indeed, an NFA with k · sk states recognizing Lk,s exists. For each x ∈ Σk
s we

construct an NFA Ax recognizing strings in Lk,s avoiding x as follows:

Ax = ({q1, q2, . . . , qk}, Σ′, δx, {q1}, {q1})

where Σ′ = Σs ∪ {�} and

δx(qi, a) =

{
{qj} if a �= xi and j ≡ i+ 1 (mod k)

∅ if a = xi.

In Figure 1 we give a sketch of the automaton Ax.

q1start

q2 q3

qk

Σ′ \ {x1}

Σ′ \ {x2}

Σ′ \ {xk} . . .

Fig. 1. A sketch of the NFA Ax

Now, we construct the NFA A recognizing Lk,s by taking the union of Ax over
all x ∈ Σk

s in the straightforward way. We have that each Ax has k states and
there are sk words x to choose from, so A has k · sk states. Note that w ∈ Lk,s

iff w avoids some x ∈ Σk
s iff w ∈ L(Ax) for some x ∈ Σk

s iff w ∈ L(A). Thus
the minimal NFA recognizing Lk,s has at most k · sk states. This concludes the
proof. ��

3.2 Minimal DFA

In this section we use the Myhill-Nerode theorem to give a lower bound for the
deterministic state complexity of Lk,s.

Theorem 3.2. Let k, s ∈ N. The (deterministic) state complexity of Lk,s is
sc(Lk,s) = k · (2s − 1)k.

Proof. Let Δ be the power set of Σs not including Σs itself, namely

Δ = P(Σs) \ {Σs}.
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Given an element in Δk, D = D1D2 · · ·Dk, we let wD be the lexicographically
least word in (Σs ∪ {�})k(s−1) (meaning |wD| = k(s − 1)) such that for each
i ∈ {1, . . . , k}, we have Ek(wD, i) = Di. Since |Di| ≤ (s − 1) there must exist
some word w of length k(s− 1) satisfying Ek(w, i) = Di.

Claim. Let X = {wD · �� : D ∈ Δk, � < k ∈ N}. We claim that each element in
X is in a distinct Myhill-Nerode equivalence class of Lk,s.

Proof (Claim). First, consider wD · ��, wE · �� ∈ X where Dj �= Ej for some
1 ≤ j ≤ k. Without loss of generality, a ∈ Dj and a �∈ Ej . Let x ∈ Σk

s ,
x = x1x2 · · ·xk be such that for all i ∈ {1, . . . , k} xi �∈ Ei and xj = a; such
an x exists since |Ei| ≤ (s− 1). Then let our differentiating suffix be �k−� f x.
Since both wE and f x avoid x and the length of wE · �k is a multiple of k
we have that wE · �k · f x avoids x as well and so wE �k f x ∈ Lk,s. However,
a = xj ∈ Dj and so wD · f x does not avoid x. Therefore, wD �k f x �∈ Lk,s and,
consequently, wD · �� and wE · �� belong to different equivalence classes.

Second, consider words wD · �� and wE · ��′ in X where � �= �′. Here �k−�

acts as a differentiating suffix: wD · �k ∈ Lk,s since it avoids some word x
(as shown above) and k divides �+ k − � but k does not divide �′ + k − � so
wE · ��′+k−� �∈ Lk,s.

This concludes the proof of our claim. ��

There are |Δ|k = (2s − 1)k choices for each D ∈ Δk, furthermore there are k
choices for � and so |X | = k · (2s − 1)k. Therefore, sc(Lk,s) ≥ k · (2s − 1)k as the
’dead state’ class is not represented in X (and our definition allows DFAs to be
incomplete).

It is not hard to see that all the Myhill-Nerode equivalence classes of Lk,s are
captured in X and so we conclude that sc(Lk,s) = k · (2s − 1)k ��

4 Comparing Computation Width and Deviation
Number of NFAs for Lk,s

Note that the construction of Theorem 3.1 yields an NFA of computation width
sk which is exponential in k and in particular we have that

nsccw≤sk(Lk,s) = k · sk.

This is because at the start of the computation we have to choose which one of
the initial states to take and there are sk choices of these. Likewise the deviation
number is sk for this automaton.

However, we can construct a not much larger NFA with deviation number
that is linear in k (and logarithmic in s.)

Theorem 4.1. The language Lk,s has an NFA with deviation number k�log s�+
1 and at most (k + 1) · sk − 1 states.
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Proof. We will construct an NFAB satisfying the above inequality. The bulk ofB
consists of loops corresponding to automata Ax in the the proof of Theorem 3.1.
The rest is a computation tree ‘guessing and remembering’ which of the loops
we select.

First, we have to describe a way of storing our guesses. Let the set Γ ⊂ P(Σs)
be defined as follows:

1. Σs ∈ Γ
2. if G ∈ Γ where Σs ⊇ G = {i, . . . , i+ �}, � ≥ 2 then the sets G1 = {i, . . . , i+

� �
2�}, G2 = {i+ � �

2�+ 1, . . . , i + �} are in Γ . We let child(G) denote the set
{G1, G2} of children of G.

Note that Γ has exactly �log s� ‘generations’ of children. We further extend
the notion of children to elements of Γ k as follows:

H = G1 · · ·Gi−1HiGi+1 · · ·Gk ∈ childi(G) iff Hi ∈ child(Gi)

where G = G1G2 · · ·Gk.
Now we construct an automaton recognizing Lk,s with deviation number

k�log s�. Let B = (QB, Σ
′, δ, {pΣk

s ,1
}, FB) where Σ

′ = Σs ∪ {�} and

QB = {pG,i : G ∈ Γ k, i ∈ Z/kZ} ∪ {qx,i : x ∈ Σk
s , 1 ≤ i ≤ k},

pG,1 = qx,1 whenever Gi = {xi} for all 1 ≤ i ≤ k, and the state qx,i corresponds
to state qi of the automaton Ax as follows

δ(q, a) =

{
δx(qi, a) if q = qx,i,

{pH,i+1 : H ∈ childi(G) and a �∈ Hi} if q = pG,i

The transitions on the pG,i states make up a binary tree with sk leaf nodes –
each a start state of a unique loop Ax, therefore there are at most k · sk + sk− 1
states in total as promised. Figure 2 provides an example of such an automaton.
In fact, if s = 2� for some � ≥ 1 then this bound is reached. Since this tree
is balanced, its depth is k�log s� and therefore the deviation number of B is
k�log s�. ��

Furthermore, if we try to create an NFA of computation width similar to the
deviation number above we will see that we need a much larger NFA.

Theorem 4.2. For k, s ≥ 1 and a constant c ≥ 1,

nsccw≤c·k log s(Lk,s) ∈ Ω
(
c · k log s 2

s
c·log s

)
.

Proof. Let A be an arbitrary NFA for Lk,s having computation width � and let
n be the size of A. By an easy modification of Lemma 3.3 in [11] (the paper uses
a single start state model) we have that:

sc(Lk,s) ≤
�∑

i=1

(
n

i

)
≤

�∑
i=1

ni

i!
≤

�∑
i=1

ni��−i

�!
≤

�∑
i=1

ni+�−i

�!
≤ n�

(�− 1)!
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p{a,b}{a,b},1

p{a}{a,b},2

p{a}{a},1
(= qaa,1)

p{a}{b},1
(= qab,1)

p{b}{a,b},2

p{b}{a},1
(= qba,1)

p{b}{b},1
(= qbb,1)

start

qaa,2 qab,2 qba,2 qbb,2

b b b a a b a a

Aaa

Fig. 2. An example of NFA B where k = 2 and s = 2 (meaning Σs = {a, b})

But from Theorem 3.2 we have that sc(Lk,s) ≥ k(2s− 1)k and so if we fix the
computation-width to be � = c · k log s we have that

n ≥ 2−3.1c · k log(s)(2s − 1)
1

c·log s (2)

Thus, we conclude that nsccw≤c·k log s(Lk,s) ∈ Ω
(
c · k log s 2 s

c·log s

)
. ��

5 Further Work

The bound presented in Theorem 4.2 seems rather loose; as k grows large the

size of the minimal NFA k · sk grow much faster than Ω
(
c · k log s 2 s

c·log s

)
. This

is likely because its proof only uses general properties of bounded computation
width automata.

It would be interesting to see if a tighter bound can be achieved exploiting the
highly structured nature of the language Lk,s, perhaps via an argument involving
quotient languages.
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Abstract. We investigate the descriptional and computational com-
plexity of boundary sets of regular and context-free languages. The right
(left, respectively) a-boundary set of a language L are those words that
belong to L, where the a-predecessor or the a-successor of these words
w.r.t. the prefix (suffix, respectively) relation is not in L. For regular lan-
guages described by deterministic finite automata (DFAs) we give tight
bounds on the number of states for accepting boundary sets. Moreover,
the question whether the boundary sets of a regular language is finite is
shown to be NL-complete for DFAs, while it turns out to be PSPACE-
complete for nondeterministic devices. Boundary sets for context-free
languages are not necessarily context free anymore. Here we find a sub-
tle difference of right and left a-boundary sets. While right a-boundary
sets of deterministic context-free languages stay deterministic context
free, we give an example of a deterministic context-free language the
left a-boundary set of which is already non context free. In fact, the
finiteness problem for a-boundary sets of context-free languages becomes
undecidable.

1 Introduction

In topology, see, e.g., [7], the boundary or frontier of a subset S of a (topological)
space is the set of points which can be approached both from S and from the
outside of S. Here the term approaching refers to a distance relation induced by
the neighborhood property. For instance, the boundary of the half-open set [0, 1)
is equal to the two-point set {0, 1}. This example shows that the elements of the
boundary of a set S are not necessarily elements of the original set S. Boundaries
play an important role by the integration of real or complex valued functions in
function theory. We slightly adapt the definition of a boundary or frontier set
to the case of formal languages. To this end, we use the prefix- or suffix-relation
on the set of words as a suitable neighborhood concept. Due to the left-to-right
nature of words it is natural to define two variants of boundary sets, namely left
and right versions. Roughly speaking, the right (left, respectively) a-boundary
set of a language L are those words that belong to L, where the a-predecessor or
the a-successor of these words w.r.t. the prefix (suffix, respectively) relation is
not in L. By the choice of our definition the elements of a boundary of a formal
language L are always elements of the original set L.
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Why is it interesting to study boundaries of formal languages? There are two
major aspects. First of all, boundaries of formal languages play an important
role on the solvability of certain language equations based on almost-equivalence.
Two sets are almost-equivalent, if they are equivalent up to a finite number of
exceptions. Recently, this form of “equivalence” has attracted a lot of attention
in a series of papers on automata with errors, see, e.g., [1,2,4]. Our contribution
to language equations with almost-equivalence is just a first step towards a more
general theory on this subject. Second, the computation of the boundary set of a
language can be seen as an application of a (very complex) combined operation
on just one input language. Combined operations, more precisely the descrip-
tional complexity of combined operations, for regular languages were popularized
in [8]. In fact, we will show that the left a-boundary set of a language L is equal
to (

L \ (a−1 · L)
)
∪ a ·

(
(a−1 · L) \ L

)
;

a similar result is also valid for the right a-boundary set of L—here the only
non-standard operation is a−1 ·L := { u ∈ Σ∗ | au ∈ L }, which refers to the left
quotient or left derivative of L ⊆ Σ∗ by a letter a ∈ Σ.

We define the different boundary sets of languages in Section 2. There we
also give an introductory example and explain the connection of boundaries of
languages to language equations with almost-equivalence. Here the finiteness
of a certain boundary set is a necessary precondition for the solvability of the
language equation. Therefore, we later also investigate the decidability status
of the finiteness problem for the boundary of languages. But before that, we
turn our attention to the descriptional complexity of language boundaries. For
regular languages we find the following situation in Section 3: by standard au-
tomata constructions on the involved language operations it is easy to see that
the boundary set of a regular language is regular, too. Moreover, one may deduce
a quartic upper bound of O(n4) for the a-boundary sets in general. A closer look
reveals, that the right a-boundary set obeys a tight linear bound on the number
of states for deterministic finite automata (DFAs), while the state complexity
of the left a-boundary set of a language accepted by an n-state DFA is at most
n2 · (n− 1)/2 + 2, and this bound is also tight. The study on boundary sets of
regular languages continues in Section 4 by the investigation on the decidabil-
ity of the finiteness problem for boundaries of regular languages. The question
whether the boundary of a regular language is finite is shown to be NL-complete
for DFAs, while it turns out to be PSPACE-complete for nondeterministic de-
vices. Finally, our focus is changed to boundary sets of context-free languages.
First we show in Section 5 that boundary sets for context-free languages are
not necessarily context free anymore. Moreover, we also find a subtle difference
of right and left a-boundary sets. While right a-boundary sets of deterministic
context-free languages stay deterministic context free, we give an example of a
deterministic context-free language the left a-boundary set of which is already
not context free. In fact, the finiteness problem for a-boundary sets of context-
free languages becomes undecidable. This closes our study on boundaries of
regular and context-free languages. Nevertheless, some problems remain open.
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For instance, the decidability of the finiteness problem for left a-boundary sets
of deterministic context-free languages is yet unknown. Due to space constraints
most of the proofs are omitted.

2 Preliminaries

We recall some definitions on finite automata as contained in [3]. A nondeter-
ministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, q0, F ), where Q
is the finite set of states, Σ is the finite set of input symbols, q0 ∈ Q is the
initial state, F ⊆ Q is the set of accepting states, and δ : Q × Σ → 2Q is the
transition function. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where the transition function is recur-
sively extended to δ : Q×Σ∗ → 2Q. A finite automaton is deterministic (DFA)
if and only if |δ(q, a)| = 1, for all states q ∈ Q and letters a ∈ Σ. Then we simply
write δ(q, a) = p instead of δ(q, a) = {p}, assuming that the transition function
is a total mapping δ : Q×Σ → Q.

In this paper we study some aspects on the descriptional and computational
complexity of language boundaries. To this end we define for a language L ⊆ Σ∗

and a letter a ∈ Σ, the left a-boundary of L as a∂(L) = a∂
↑(L) ∪ a∂

↓(L), where

a∂
↑(L) = {w ∈ L | aw /∈ L } and a∂

↓(L) = { aw ∈ L | w /∈ L }.

Here the former set is referred to as the upper left a-boundary of L, while the
latter set is called the lower left a-boundary of L. Similarly one defines the right
a-boundary of L as ∂a(L) = ∂↑

a(L)∪ ∂↓
a(L), where ∂

↑
a(L) = {w ∈ L | wa /∈ L } is

the upper right a-boundary of the set L and ∂↓
a(L) = {wa ∈ L | w /∈ L } is the

lower right a-boundary of L. In order to clarify our notation we give an example.

Example 1. Let Σ = {a, b}. Consider the language L = {a, a2, a4, b, ab}. Then
the left a-boundary of L is a∂(L) = {a, a2, a4, ab} because a∂

↑(L) = {a2, a4, ab},
and a∂

↓(L) = {a, a4}. The right a-boundary of L is ∂a(L) = {a, a2, a4, b, ab}.
The computation of the left (right, respectively) a-boundary set can be visualized
by a left (right, respectively) language tree—see Figure 1. Taking an edge in a
left (right, respectively) language tree corresponds to a left (right, respectively)
concatenation of a letter. From the left language tree one can read out the
elements of the left a-boundary set a∂(L) by simply collecting all words that
belong to the language L but where the a-successor or -predecessor does not
belong to the set under consideration. Here the a-successor of a node is it’s left
child in the tree, and a node p is the a-predecessor of a node q, if q is the a-
successor of p. A similar construction can be applied for the right a-boundary
using the right language tree. ��

Boundaries of languages play an important role on the solvability of certain
language equations based on almost equivalence. Two languages R,S ⊆ Σ∗ are
said to be almost equivalent, for short R . S, if their symmetric difference
R,S := (R \ S) ∪ (S \ R) is a finite set. First recall what is known for the
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Fig. 1. Left language tree (left) and right language tree (right) of L = {a, a2, a4, b, ab}.
Elements that belong to L are typeset in boldface. The left a-boundary set a∂(L)
can be determined with the help of the left language tree, while the right a-boundary
set ∂a(L) can be read out from the right language tree.

simple language equation1 X = a · X + b, where X is a variable on languages
and a and b are letters. Here this equation obeys a unique minimal solution
w.r.t. set inclusion, which reads as X = a∗b. Note that any other solution of the
aforementioned language equation is a superset of a∗b. Now, if one is interested
in solutions for the equation X . a ·X + b, the boundaries of languages come
into play. This is seen in the following theorem, which is a reformulation of the
symmetric difference property of the left- and right-side of the language equation.

Theorem 2. Let X be a variable ranging over languages from the alphabet Σ
and let X . a ·X+ b, for a, b ∈ Σ, be a language equation. Then L is a solution
to this language equation if and only if

1. the left a-boundary a∂(L) of L is finite, and
2. the set L \ aΣ∗, i.e., the set of words from L that do not start with letter a,

is finite. ��

Example 3. It is clear that the language equation X . a ·X + b does not have
a unique solution, since any finite language is already a solution, like, e.g., the
language L = {a, a2, a4, b, ab} from the previous example. Other solutions are,
e.g., a∗ or { an | n ≥ 42 }, since their left a-boundaries are finite. On the other
hand, e.g., ab∗ is not a solution, since its left a-boundary is infinite. ��

3 State Complexity of Boundaries of Regular Languages

At first we give an alternative characterization of a-boundary sets in terms of set
difference, concatenation, and (left) derivative of languages. The left derivative

1 More generally, the language equation X = S · X + T , where X is a variable on
languages and S and T are sets, has the unique minimal solution X = S∗T , if S
does not have the empty word property, i.e., if λ �∈ S.
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of a language L ⊆ Σ∗ by a letter a ∈ Σ is defined as a−1 ·L = { u ∈ Σ∗ | au ∈ L }.
Observe, that w ∈ a−1 · L if and only if aw ∈ L. The characterization reads as
follows:

Theorem 4. Let L ⊆ Σ∗ and a ∈ Σ. Then for the left a-boundary sets we have

a∂
↑(L) = L \ (a−1 · L) and a∂

↓(L) = a ·
(
(a−1 · L) \ L)

)
. ��

A similar statement holds for right a-boundary sets. Here left concatenation and
left derivatives have to be replaced by right concatenation and right derivatives,
respectively. Observe, that there is a certain asymmetry in the characterization
of the upper and the lower a-boundary sets. If we would have taken (a−1 ·L) \L
as a definition for the lower left a-boundary set, then the words of this set are
not elements of L anymore.

These characterizations and the fact that the family of regular languages is
closed under union and all the aforementioned operations, it follows that all a-
boundary sets of regular languages are regular, too. Thus, it is worth looking
at the descriptional complexity of these sets w.r.t. the number of states of finite
automata. By standard automata constructions on the involved language oper-
ations one deduces a quadratic upper bound of O(n2) for DFAs accepting one of
the upper or lower a-boundary sets and a quartic upper bound of O(n4) for the
a-boundary sets in general for DFAs. A more closer look will give more specific
tight bounds on a-boundary sets accepted by DFAs.

We summarize our results in Table 1. Notice that for unary languages, left and
right boundaries are identical. The lower bounds of the boundary operations on
non-unary languages are witnessed by binary languages, so we have a complete
classification of the state complexity of the different boundary operations with
respect to the alphabet size. Next we exemplarily prove the result on the state
complexity of the upper left boundary operation on non-unary languages.

Theorem 5. Let L ⊆ Σ∗ be a regular language accepted by some n-state DFA,
with n ≥ 1, and let a ∈ Σ. Then n · (n−1)+1 states are sufficient and necessary
in the worst case for a DFA to accept the upper left a-boundary a∂

↑(L) of the
language L.

Table 1. State complexity of the different boundary operations on regular languages.
The integer n denotes the number of states of the input DFA, and the integer t denotes
the number of its final states. All stated bounds are tight bounds. †: the bound for the
(general) left boundary is tight for |Σ| ≥ 2 and n /∈ {3, 4}—in case n ∈ {3, 4} it is tight
for |Σ| ≥ 3.

State complexity of boundary operations

|Σ| ≥ 2 |Σ| = 1
left right (left = right)

upper n · (n− 1) + 1 n n
lower n · (n− 1) + 2 n+min(t, n− t) n+ 1

general† n2 · (n− 1)/2 + 2 n+min(t, n− t) n+ 1
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Proof. Let L = L(A) for some DFA A = (Q,Σ, δ, q0, F ), and let a ∈ Σ. We
use a cross product construction to construct a DFA A′ for the upper left a-
boundary of L. Let A′ = (Q′, Σ, δ′, 〈q0, δ(q0, a)〉, F ′), where the set of states is
Q′ = { 〈p, q〉 | p, q ∈ Q, p �= q } ∪ {s}, accepting states are F ′ = F × (Q \F ), and
whose transition function is defined as follows for all symbols b ∈ Σ:

δ′(〈p, q〉, b) =
{
〈δ(p, b), δ(q, b)〉 if δ(p, b) �= δ(q, b),

s else,

δ′(s, b) = s.

Obviously, A′ has n · (n − 1) + 1 states. The correctness of this construction is
seen as follows. For all words w ∈ Σ∗ we have

w ∈ L(A′)⇐⇒ δ′(〈q0, δ(q0, a)〉, w) ∈ F ′

⇐⇒ δ(q0, w) ∈ F, δ(q0, aw) /∈ F

⇐⇒ w ∈ a∂
↑(L).

We now prove this bound to be tight. The case n = 1 is easily verified, so
let n ≥ 2, and define the DFA A = (Q, {a, b}, δ, 1, {n}), with Q = {1, 2, . . . , n},
whose transition function δ is defined as follows:

δ(q, a) =

{
q + 1 for 1 ≤ q ≤ n− 1,

1 for q = n,
δ(q, b) =

{
q + 1 for 2 ≤ q ≤ n− 1,

1 for q ∈ {1, n}.

Let A′ = (Q′, {a, b}, δ′, 〈1, 2〉, F ′) be the DFA for the boundary language con-
structed as above. We will show that A′ has n ·(n−1)+1 reachable and pairwise
inequivalent states. First note that the sink state s is reachable from the initial
state by reading bn−1. Now let p, q ∈ Q with p < q. Then the state 〈p, q〉 is
reachable from the initial state 〈1, 2〉 by reading bq−p−1ap−1, and state 〈q, p〉
is reachable from state 〈q − p, n〉 by reading ap. To see that no two states are
equivalent, first note that the sink state s can not be equivalent to any other
state 〈p, q〉, since the word an−p is accepted from the latter state. Now let 〈p, q〉
and 〈p′, q′〉 be two different states of A′. If p �= p′ then an−p distinguishes the two
states. If p = p′ then it must be q �= q′, and the states can be distinguished as
follows: first we read an−p+1, which leads to states 〈1, r〉 and 〈1, r′〉, with r �= r′.
These states can then be distinguished by reading bn−r+1, if r > r′, and by
reading bn−r′+1, if r < r′, because then one of the states is the sink state, and
the other is not. ��

4 Decision Problems for a-Boundary Sets

In this section we study the computational complexity of the finiteness prob-
lem for a-boundary sets of a language L, which is given by a deterministic or
nondeterministic finite automaton. Recall, that the finiteness problem is of par-
ticular interest, when considering language equations with the almost equiva-
lence relation. Here it turns out that the finiteness problems related to DFAs
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are efficiently solvable, while those for NFAs become highly intractable, namely
PSPACE-complete. The main result of this section reads as follows:

Theorem 6. The following decision problems are NL-complete: given a DFA A
with input alphabet Σ accepting the language L = L(A) and a letter a ∈ Σ,

1. decide whether a∂
↑(L) is finite,

2. decide whether a∂
↓(L) is finite,

3. decide whether a∂(L) is finite,

4. decide whether ∂↑
a(L) is finite,

5. decide whether ∂↓
a(L) is finite,

6. decide whether ∂a(L) is finite.

These problems are PSPACE-complete, if A is an NFA instead. ��

The following lemma provides the upper bounds for Theorem 6. The proofs of
the lower bounds are omitted due to space constraints.

Lemma 7. The problems 1-6 from Theorem 6 belong to NL if the input automa-
ton A is deterministic, and they belong to PSPACE, if A is nondeterministic.

Proof. Let A be a DFA with input alphabet Σ, and let a ∈ Σ. Assume L = L(A).
By using the DFA constructions from Section 3, which can be carried out by
deterministic logspace-bounded Turing machines, we can reduce the problem of
deciding finiteness of the a-boundary of L to the problem of deciding finiteness
of DFA-languages. Since this more general problem is NL-complete [6], the NL
upper bound follows. If the input automaton A is nondeterministic, a polynomial
space-bounded Turing machine can construct (on the fly) the equivalent minimal
DFA A′, and can run the NL-algorithm on that DFA. This shows the PSPACE
upper bound. ��

5 On a-Boundary Sets Beyond Regular Languages

In this section we consider the a-boundaries of context-free languages and their
deterministic variants. To this end we have to define deterministic and nondeter-
ministic pushdown automata. A nondeterministic pushdown automaton (NPDA)
is a 7-tuple A = (Q,Σ, Γ, δ, q0,⊥, F ), where Q is the finite set of states, Σ is
the finite set of input symbols, Γ is the finite stack alphabet, q0 ∈ Q is the initial
state, ⊥ ∈ Γ is the bottom of stack symbol which initially appears on the push-
down store, F ⊆ Q is the set of accepting states, and transition function δ maps
Q× (Σ ∪ {λ})× Γ to finite subsets of Q× Γ ∗. An NPDA A is in configuration
c = (q, w, γ) if A is in state q ∈ Q with w ∈ Σ∗ as remaining input, and γ ∈ Γ ∗

on the pushdown store, the rightmost symbol of γ being the top symbol on the
pushdown. We write

(q, aw, γZ) /A (p, w, γβ),

if (p, β) ∈ δ(q, a, Z), for a ∈ Σ ∪ {λ}, w ∈ Σ∗, γ, β ∈ Γ ∗, and Z ∈ Γ . As usual,
the reflexive transitive closure of /A is denoted by /∗

A, and the subscript A will
be dropped from /A and /∗

A whenever the meaning remains clear. The language
accepted by A (with final state) is defined by

L(A) = {w ∈ Σ∗ | (q0, w,⊥) /∗ (q, λ, γ), for some q ∈ F and γ ∈ Γ ∗ }.



Boundary Sets of Regular and Context-Free Languages 169

It is well known that NPDAs characterize the family of context-free languages
defined by context-free grammars, see, e.g., [3]. Our first goal is to show that
context-free languages are not closed under any of the a-boundary operations.
The following result relates left and right boundaries via the reversal operation
on languages.

Theorem 8. Let L ⊆ Σ∗. Then a∂
↑(L) = (∂↑

a(L
R))R and a∂

↓(L) = (∂↓
a(L

R))R

where LR := {wR | w ∈ L } refers to the reversal of the language L. ��

The next theorem shows how the a-boundary operations can be used to simulate
intersection of languages.

Theorem 9. Let L ⊆ Σ∗ and a �∈ Σ. Then we have a∂
↑(Σ∗ ∪ a+L) = Σ∗ \ L

and a∂
↓(L ∪ a+Σ∗) = a · (Σ∗ \ L). Moreover, ∂↑

a(Σ
∗ ∪ La+) = Σ∗ \ L and

∂↓
a(L ∪Σ∗a+) = (Σ∗ \ L) · a. ��

Now we are ready to show that the context-free languages are not closed under
any of the a-boundary operations.

Theorem 10. There is a context-free language L ⊆ Σ∗ and a ∈ Σ, such that
neither of the a-boundary sets a∂

↑(L), a∂
↓(L), nor a∂(L) is context free. A

similar statement is valid for the right a-boundary sets.

Proof. It is well known that the family of context-free languages is not closed
under complementation [3]. Thus, there is a context-free language L ⊆ Σ∗,
such that Σ∗ \ L is not context free. Let a be a new letter with a �∈ Σ and
assume to the contrary that the family of context-free languages is closed under
the a-boundary operations under consideration. Then by Theorem 9 we have

a∂
↑(Σ∗ ∪ a+L) = Σ∗ \ L and a−1 · a∂↓(L ∪ a+Σ∗) = Σ∗ \ L. Since context-free

languages are closed under union, both languages Σ∗ ∪ a+L and L ∪ a+Σ∗ on
the left of the equations are context free, too. But then also Σ∗ \ L is context
free, too, which contradicts our assumption on the the choice of the language L.
For the lower left a-boundary operation we additionally have used the closure of
context-free languages under left derivatives.

For the non-closure of the family of context-free languages under the a-
boundary operation a∂(·) we have to slightly alter our above argumentation.
Again, consider the language Σ∗ ∪ a+L from above. Then by definition

a∂(Σ
∗ ∪ a+L) = a∂

↑(Σ∗ ∪ a+L) ∪ a∂
↓(Σ∗ ∪ aLL)

= (Σ∗ \ L) ∪ a∂
↓(Σ∗ ∪ a+L).

It is easy to see that the latter set contains only words that start with the
letter a—in fact we even have a∂

↓(Σ∗∪a+L) ⊆ a·L. Thus, taking the intersection
of a∂(Σ

∗ ∪ a+L) with Σ∗ results in Σ∗ \ L, since a �∈ Σ. Then we can use the
same argumentation as above in order to prove the non-closure of the family of
context-free languages under the a-boundary operation in general.

Finally, the non-closure results for the right a-boundary operations follow by
our investigations on left a-boundary operations above and Theorem 8. ��
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Close inspection of the previous proof reveals that non-closure under any sort of
a-boundary operations also holds already for linear context-free languages.

Corollary 11. The family of linear context-free languages is not closed under
any kind of a-boundary operation considered so far. ��

For deterministic context-free languages and a-boundary operations, the situa-
tion is more involved as we will see in the forthcoming. Before we continue our
investigation we have to define deterministic pushdown automata. A pushdown
automaton A = (Q,Σ, Γ, δ, q0,⊥, F ) is deterministic (DPDA), if for all q ∈ Q,
a ∈ Σ, and Z ∈ Γ it is |δ(q, a, Z)| + |δ(q, λ, Z)| ≤ 1. The family of determin-
istic context-free languages is the class of all languages accepted by DPDAs
(with final state), or equivalently by LR(k) context-free grammars. The class of
deterministic context-free languages is strictly contained in the class of context-
free languages [3]. The next result shows that right boundaries of deterministic
context-free languages are still deterministic context free.

Theorem 12. Let L ⊆ Σ∗ be a deterministic context-free language, and a ∈ Σ.
Then its right boundaries ∂↑

a(L), ∂
↓
a(L), and ∂a(L) are deterministic context-free.

Proof. The basic idea for the proof is the following. Given a DPDA A we con-
struct a DPDA A′ that simulates A and uses states of the form 〈τ1, c, τ2, q, τ3〉,
where the five components have the following meaning: q is the current state of A,
letter c is the last read input symbol, τ1 indicates whether A would have accepted
the prefix of the input word to the left of symbol c, τ2 indicates whether A went
through some accepting state some time after reading the input symbol c, and τ3
indicates whether A will enter an accepting state if the next input symbol is the
boundary symbol a. With this information, the set of accepting states can be
defined appropriately to yield DPDAs for the different a-boundary languages.

The trickiest part is determining the fifth component of the state of A′. For
this we first fix some DFAs related to the DPDA A = (Q,Σ, Γ, δ, q0,⊥, F ). Let
the state set of A be Q = {q0, q1, . . . , qn}. For every state qi ∈ Q let

Li = { γ ∈ Γ ∗ | (qi, λ, γ) /∗
A (qf , λ, β), qf ∈ F, β ∈ Γ ∗ }.

Informally, the language Li ⊆ Γ ∗ consists of those pushdown contents that
lead A from state qi to an accepting state, by only using λ-transitions. Notice
that Li is a regular language for every qi ∈ Q. Therefore, for all qi ∈ Q there are
DFAs Di = (Qi, Γ, δi, si, Fi) with Li = L(Di). Besides the original pushdown
symbols, the DPDAA′ will also store the states the DFAsDi are in, when reading
the current pushdown content except for the topmost symbol. This information
will be used to determine the value of τ3.

Let L = L(A), a ∈ Σ and assume +,−, ? /∈ Q∪Σ ∪Γ . Now we can construct
the DPDA A′ = (Q′, Σ, Γ ′, δ′, q′0,⊥′, F ′) as follows: the set of states is

Q′ = { 〈τ1, c, τ2, q, τ3〉 | q ∈ Q, c ∈ Σ ∪ {?}, τ1, τ3 ∈ {+,−, ?}, τ2 ∈ {+,−} }

and the initial state is q′0 = 〈?, ?,+, q0, ?〉, if q0 ∈ F , and it is q′0 = 〈?, ?,−, q0, ?〉,
if q0 /∈ F . The set of final states depends on the type of boundary we want
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to accept. We define the sets F ′
↓ = { 〈−, a,+, q, τ3〉 | q ∈ Q, τ3 ∈ {+,−} },

and F ′
↑ = { 〈τ1, c,+, q,−〉 | τ1 ∈ {+,−, ?}, c ∈ Σ ∪ {?}, q ∈ Q }. If we want

L(A′) = ∂↓
a(L) then we choose F ′ = F ′

↓, if we want L(A′) = ∂↑
a(L), then choose

F ′ = F ′
↑, and for L(A′) = ∂a(L) we use F ′ = F ′

↓ ∪ F ′
↑. The pushdown alphabet

of A′ is Γ ′ = Q0 × Q1 × · · · × Qn × Γ , and the initial pushdown symbol is
⊥′ = (s0, s1, . . . , sn,⊥)—recall that Qi are the state sets of the above defined
DFAs Di, and si are the initial states thereof.

The transitions of A′ can be grouped in two types. Transitions of the first type
directly simulate transitions of A, and lead to states where the fifth component τ3
is “unknown”, i.e., where τ3 = ?. Transitions of the second type are used to
determine the correct value of τ3.

Assume that for some q ∈ Q, b ∈ Σ ∪ {λ}, and X ∈ Γ , the DPDA A has the
transition

δ(q, b,X) = (q̂, β),

where q̂ ∈ Q, and β = Z1Z2 . . . Zk, with Zi ∈ Γ for 1 ≤ i ≤ k, or β = λ. Then
for all τ1 ∈ {+,−, ?}, τ2, τ3 ∈ {+,−}, c ∈ Σ ∪ {?}, and X ′ = (p0, p1, . . . , pn, X),
with pi ∈ Qi for 1 ≤ i ≤ n, the DPDA A′ has the transition

δ′( 〈τ1, c, τ2, q, τ3〉, b, X ′ ) = ( 〈τ̂1, ĉ, τ̂2, q̂, ?〉, β′ ),

where

(τ̂1, ĉ) =

{
(τ1, c) if b = λ,

(τ2, b) if b �= λ,
τ̂2 =

{
+ if q̂ ∈ F , or if τ2 = + and b = λ,

− otherwise,

and β′ = λ if β = λ, and otherwise β′ = Z ′
1Z

′
2 . . . Z

′
k with

Z ′
i+1 = ( δ0(p0, Z1...i), δ1(p1, Z1...i), . . . , δn(pn, Z1...i), X ), (1)

where Z1...i is the prefix Z1Z2 . . . Zi of β—the string Z1...0 is the empty word.
Transitions of the second type are defined as follows. For all τ1 ∈ {+,−, ?},

τ2 ∈ {+,−}, c ∈ Σ ∪ {?}, q ∈ Q, and X ′ = (p0, p1, . . . , pn, X) ∈ Γ ′ let

δ′( 〈τ1, c, τ2, q, ?〉, λ, X ′ ) =

⎧⎪⎨⎪⎩
( 〈τ1, c, τ2, q,+〉, X ′ ) if δ(q, a,X) = (qi, γ),

and δi(pi, γ) ∈ Fi,

( 〈τ1, c, τ2, q,−〉, X ′ ) otherwise.

This concludes the definition of A′.
Notice that from a state where the last component is τ3 = ? the automaton A′

always makes a transition of the second type to set τ3 to + or to −, and from a
state with τ3 �= ? the automaton always simulates a transition of A, which leads
to a state with τ3 = ? again. Moreover, one can see that the second component
of a state of A′ always holds the last input symbol consumed by A—if A has
not consumed any input yet, this component is ?. Therefore, for all w ∈ Σ∗,
and γ ∈ Γ ∗ there are τ1, τ2, and γ′ such that

(q0, w,⊥) /�
A (q, λ, γ) ⇐⇒ (q′0, w,⊥′) /2�

A′ (〈τ1, c, τ2, q, ?〉, λ, γ′),
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where c = ? if w = λ, and c = b if w = vb, for v ∈ Σ∗, and b ∈ Σ. Moreover, the
pushdown content γ′ of A′ directly resembles the pushdown content γ of A: by
mapping in γ′ every pushdown symbol X ′ = (p0, p1, . . . , pn, X) ∈ Γ ′ to its last
component X ∈ Γ , we obtain γ.

Further, the pushdown ofA′ always keeps the correct information on the states
of the DFAs Di in the following sense: if (q′0, w,⊥′) /∗

A′ (q′, λ, Z ′
1Z

′
2 . . . Z

′
m), with

Z ′
j = (p

(j)
0 , p

(j)
1 , . . . , p

(j)
n , Zj) for 1 ≤ j ≤ m, then p

(j+1)
i = δi(si, Z1Z2 . . . Zj), for

all i, j with 0 ≤ i ≤ n and 0 ≤ j ≤ m − 1. This can be seen by an inductive
argument: by definition of ⊥′ = (s0, s1, . . . , sn,⊥) the statement holds at the
beginning of the computation. Notice that the pushdown is only changed by
transitions of the first type, i.e., those which simulate a transition of A. Clearly,
if the height of the pushdown is reduced, i.e., the pushdown is replaced by a
prefix of itself, the statement still holds. Further, from the definition of δ′ one
can see that the statement also remains true, if the topmost symbol is replaced
by some non-empty pushdown word—see Equation (1).

The correctness of our construction can be concluded from the following
claim—due to space constraints the proof of the claim is omitted.

Claim. For all w ∈ Σ∗ we have

1. (q′0, w,⊥′) /∗
A′ (〈τ1, c, τ2, q, τ3〉, λ, γ′) with τ1 = + if and only if w = vc with

v ∈ L and c ∈ Σ,
2. (q′0, w,⊥′) /∗

A′ (〈τ1, c, τ2, q, τ3〉, λ, γ′) with τ2 = + if and only if w ∈ L,
3. (q′0, w,⊥′) /∗

A′ (〈τ1, c, τ2, q, τ3〉, λ, γ′) with τ3 = + if and only if wa ∈ L. ��
Recall that a state 〈τ1, c, τ2, q, τ3〉 belongs to F ′

↓ if and only if τ1 = −, c = a,
and τ2 = +, and it belongs to F ′

↑ if and only if τ2 = +, and τ3 = −. Now the
claim implies the following for all words w ∈ Σ∗:

w ∈ ∂↓
a(L) ⇐⇒ ∃ q′f ∈ F ′

↓, γ
′ ∈ Γ ′∗ : (q′0, w,⊥′) /∗

A′ (q′f , λ, γ
′), and

w ∈ ∂↑
a(L) ⇐⇒ ∃ q′f ∈ F ′

↑, γ
′ ∈ Γ ′∗ : (q′0, w,⊥′) /∗

A′ (q′f , λ, γ
′).

This concludes the proof of the theorem. ��
In contrast to the previous result on right boundaries of deterministic context-
free languages, we now show that the class of (deterministic) context-free lan-
guages is not closed under taking left boundaries, by presenting a deterministic
context-free language, whose left boundaries are not context-free.

Theorem 13. There exists a deterministic context-free language L ⊆ Σ∗, such
that none of its left boundaries a∂

↑(L), a∂
↓(L), and a∂(L) is context free. ��

We now come back to the problems of deciding whether the boundary of a given
language is finite. For context-free languages one can easily prove these problems
to be undecidable for both left and right boundaries—even for linear context-
free languages. The main ingredient for the proof of the next theorem are the
set of valid computations VALC(M) of a Turing machine M . Roughly speaking,
these are histories of accepting Turing machine computations. The complement
of VALC(M) is the set INVALC(M) of invalid computations of M . For more on
valid and invalid computations of Turing machines we refer to [5].
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Theorem 14. The following decision problems are undecidable: given a context-
free language L ⊆ Σ∗, and a symbol a ∈ Σ,

1. decide whether a∂
↑(L) is finite,

2. decide whether a∂
↓(L) is finite,

3. decide whether a∂(L) is finite,

4. decide whether ∂↑
a(L) is finite,

5. decide whether ∂↓
a(L) is finite,

6. decide whether ∂a(L) is finite.

The statement also holds, if L is a linear context-free language. ��

Finally, let us turn to deterministic context-free languages. Since finiteness is
decidable for context-free languages in general [3], Theorem 12 readily implies
that the finiteness problem for right boundaries of deterministic context-free
languages is decidable. Whether the corresponding problem for left boundaries of
deterministic context-free languages is also decidable is left as an open problem.
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Abstract. We relate two complexity notions of bipartite graphs: the
minimal weight biclique covering number Cov(G) and the minimal rec-
tifier network size Rect(G) of a bipartite graph G. We show that there
exist graphs with Cov(G) ≥ Rect(G)3/2−ε. As a corollary, we estab-
lish that there exist nondeterministic finite automata (NFAs) with ε-
transitions, having n transitions total such that the smallest equivalent
ε-free NFA has Ω(n3/2−ε) transitions. We also formulate a version of
previous bounds for the weighted set cover problem and discuss its con-
nections to giving upper bounds for the possible blow-up.

1 Introduction

In the world of descriptive complexity, questions involving the possible blow-up
when transforming a description of some mathematical object from a formalism
to another is a central topic, with one of the first papers dating back to 1971 [12].
We are primarily interested in the cost of chain rule removals from context-free
grammars (CFGs). That is, how large a chain-rule free CFG has to be in the
worst case which is equivalent to an input CFG of size n, having chain rules?
The obvious upper bound resulting from the standard transformation is O(n2).
The best known lower bound is Ω(n3/2−ε) [2]. The question is interesting since
chain rule elimination is the bottleneck part of the transformation to Chomsky
Normal Form. Despite the question being well-motivated, we have no knowledge
of progress in the last three decades; the gap is still there.
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The maximal possible blow-up is not known even in the special case of reg-
ular languages. When a regular language is given (e.g. by a nondeterministic
automaton or NFA, possibly having ε-transitions), an equivalent “chain-rule-
free” regular grammar corresponds to a nondeterministic automaton with no
ε-transitions. In order to define the “blow-up”, we have to choose a notion for
measuring the size of an NFA – we say that the size of an NFA is the number
of its transitions. Regular languages can be represented by a variety of different
formalisms, some of which are more concise than the others. For example, trans-
forming a regular expression (RE) to an equivalent NFA can be done within
linear bounds, i.e. the cost of this direction is worst-case Θ(n). From RE to ε-
free NFA the worst-case cost is Θ(n log2 n), by the upper bound result of [4] and
the matching lower bound of [15]. The lower bound is achieved with a language
possessing a linear-size RE as well, thus it is recognized by an NFA of size O(n),
hence the cost of the NFA → ε-free NFA transformation is Ω(n log2 n). It is
also known that from ε-free NFA to RE an exponential blow-up can occur and
Kleene’s algorithm produces an RE of exponential size from an NFA.

One of the main results of the paper is that the NFA → ε-free NFA transfor-
mation has worst-case cost Ω(n3/2−ε) for any ε > 0. It is interesting that this
bound (as well as the upper bound O(n2)) coincides with that of [2] for the seem-
ingly more general problem of chain rule elimination. The methods (as well as
the models) are very different but there is also a similarity: for the lower bound
of [2], languages consisting of words of length 3 were defined. In our case, we
consider languages consisting of words of length 2. Such languages L ⊆ ΣΔ can
be viewed as bipartite graphs GL = (Σ,Δ,EL) with (a, b) being an edge in the
graph iff the word ab belongs to L. When the language is viewed this way, ε-free
NFAs recognizing L correspond to biclique coverings [6] of GL with the size of
an NFA corresponding to the weight of the associated biclique covering. Also,
NFAs recognizing L correspond to rectifier networks [6] realizing GL; again, with
the size of an NFA corresponding to the size of the associated network.

Hence, proving worst-case lower bounds for the minimum-weight covering of
a bipartite graph having a rectifier network of size n, we get as byproduct worst-
case lower bounds for the NFA → ε-free NFA transformation. Thus the bulk
of the paper discusses biclique coverings and rectifier networks. These have also
been studied for a long time in various contexts, see Sections 2 and 3.

The paper is organized as follows. In Section 2 we give the notations we use for
graphs and automata. In Section 3 we give lower bounds for the possible blow-up
between rectifier network size and biclique covering weight. In Section 4 we give
upper bounds for this blow-up and consider the biclique covering problem as a
weighted set cover problem. An approximation bound for the greedy algorithm
given by Lovász for the unweighted case is generalized to the weighted case. We
discuss the connection of this bound to possible upper bounds for the blow-up. In
Section 5 we relate these graph-theoretic results to automata theory and prove
the aforementioned lower bound of Ω(n3/2−ε) for ε-removal.
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2 Notations

Graphs, Biclique Coverings and Rectifier Networks. Let [n] stand for the
set {1, . . . , n}. For sets A and B, KA,B stands for the complete bipartite graph
(A,B,A×B). When only the cardinalities a and b of the sets A and B matter,
we write Ka,b for KA,B. When G = (A,B,E) is a bipartite graph, a biclique
of G is a complete bipartite subgraph of G and the weight of a biclique is the
number of its vertices. A biclique covering of G is a collection C of its bicliques
such that each edge of G belongs to at least one member of C, the weight of a
covering is the sum of the weights of the bicliques present in the covering and
Cov(G) is the minimum possible weight of a biclique covering of G.

A biclique Ka,b has weight a+ b while it covers ab edges of G. In our investi-
gations we will frequently use the inverse ab

a+b of the relative cost of covering the

edges by Ka,b. We introduce the shorthand H(a, b) to denote the quantity ab
a+b .

For a bipartite graph G = (A,B,E), a rectifier network realizing G is a di-
rected acyclic graph (DAG) R = (V,E′) with A being the set of source nodes of
R and B being the set of sink nodes of R, satisfying the property that (a, b) ∈ E
if and only if b is reachable from a in R. The size of a rectifier network is the
number of its edges. The depth of a network is the length of its longest path.
We let Rect(G) stand for the size of the smallest rectifier network realizing G
and Rectk(G) for the size of the smallest rectifier network of depth at most k
realizing G. We may assume w.l.o.g. that there are no isolated vertices.

Fig. 1. From left to right: a graph G, three bicliques showing Cov(G) ≤ 13, a depth-2
network corresponding to the bicliques having size 13, and another network showing
Rect2(G),Rect(G) ≤ 12. In the networks, edges are directed from left to right.

There are constructions of graphs for which only large rectifier networks exist
(i.e. having large Rect value), the dates of the results ranging from 1956 till 1996,
e.g. graphs G on n vertices with Rect(G) being Ω(n3/2) [13], Ω(n5/3) [11,14,16]

and Ω(n2−ε) [8]. Also, it is known that Rect(G) ≤ n2

logn [10].
In this paper we are interested in the largest possible gap between Cov and

Rect, thus we seek graph classes having a small Rect and a large Cov value.
For Cov, a related notion is that of Steiner 2-transitive-closure-spanners [1]

(Steiner-2-TC-Spanners), which is a more general notion for realizing general
graphs. The two notions coincide when we look for spanners of bipartite graphs,
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viewed as 2-level layered directed graphs. The authors of [1] show a lower bound
for the minimal Steiner-2-TC-Spanner a bipartite graph can have. Applying these
results to our problem, we get that there exist graphs with Rect(G) = O(n) and
Cov(G) = Ω(npolylog(n)) which is exactly the type of result we seek to achieve.
We use the asymptotic behaviour operators O, Ω and Θ as well as their “up to
a polylogarithmic factor” variants Õ, Θ̃, e.g. f(n) = Õ(g(n)) is a shorthand for
“f = O(g(n) logk g(n)) for some constant k ≥ 0”.

Automata. A nondeterministic finite automaton, or NFA for short, is a tuple
M = (Q,Σ, δ, q0, F ) with Q being an alphabet of states, Σ being the input
alphabet, δ ⊆ Q×Σε×Q a transition relation where Σε denotes the set Σ∪{ε},
q0 ∈ Q being the start state and F ⊆ Q being the set of accepting states. The
automaton is ε-free if there is no transition of the form (p, ε, q) ∈ δ.

A run of the above M is a sequence (p1, a1, r1) . . . (pt, at, rt) ∈ δ∗ such that
for each 1 ≤ i < t, ri = pi+1, and p1 = q0. The run is accepting if rt ∈ F .
The label of the run is the Σ-word a0a1 . . . at. The language recognized by M is
L(M) = {w ∈ Σ∗ : there is an accepting run of M with label w}.

The size of an NFA M is the cardinality |M | of its set δ of transitions. It is
well-known that for each NFA M there exists an equivalent ε-free automatonM ′

with |M ′| = O(|M |2), i.e. ε-elimination can be achieved via a quadratic blow-up.

3 Lower Bounds for the Blow-Up

It is clear that Rectk+1(G) ≤ Rectk(G) for each k ≥ 0, and that there exists
some k ≥ 0 with Rectk(G) = Rect(G) and Rectk(G) = Rectk′ (G) for every
k′ > k. Moreover, Rect2(G) ≤ Cov(G) ≤ 2 · Rect2(G): for any collection C
of bicliques one can construct a rectifier network R = (A 0 C 0 B,E′) with
(a,KA′,B′) and (KA′,B′ , b) being an edge iff a ∈ A′ and b ∈ B′, respectively,
showing Rect2(G) ≤ Cov(G). For Cov(G) ≤ 2 ·Rect2(G), let R = (A0X0B,E′)
be a depth-2 rectifier network realizing G. Then, edges of E′ are directed from
A to X , from X to B and also “jump edges” from A directly to B are allowed.
First, subdividing each such jump edge and adding the intermediate node to X
eliminates jump edges and the resulting network R′ = (A 0 X ′ 0 B,E′′) still
realizes G in depth 2 and due to the subdividing, |E′′| ≤ 2 · |E′|. For a node
x ∈ X ′, let A(x) be the set of its ancestors (in A) and B(x) be the set of its
descendants (in B). Note that if R is minimal, then neither of these sets is empty.
Then in G, each member of B(x) is reachable from any member of A(x), hence
KA(x),B(x) is a biclique of G and the collection C = {KA(x),B(x) : x ∈ X ′} is a
biclique cover of G of size |E′′| ≤ 2 · |E′| = 2 ·Rect2(G). Observe that the factor
of 2 is tight e.g. in the case of complete matchings.

Since adding or removing isolated nodes to G does not affect either Cov(G)
or Rect(G), from now on we assume that G has no isolated vertices.

It is also clear that

n ≤ Rect(G) ≤ Cov(G) ≤ 2|E(G)|
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where n stands for the number of vertices1 of G: in any rectifier network the
outdegree of each node a ∈ A is at least one, and the collection {K{a},{b} : (a, b) ∈
E} of bicliques is a covering of weight 2|E(G)|. Hence, Cov(G) = O(Rect2(G)).
However, it is not known whether the quadratic gap is attainable: in the rest
of the article we seek an α > 1, being as high as possible, such that there exist
graphs with arbitrary large Rect(G) and with Cov(G) = Ω(Rectα(G)).

To this end, we have to construct graph families having small Rect and large
Cov. To show Rect is small (usually it will be Õ(n) in our candidates) it suffices
to give a small realizing network. On the other side, to see that Cov is large, we
should have good lower bound methods.

For providing lower bounds, we define the following parameter κ(G) of a
bipartite graph G: let

κ(G) = max{H(|A′|, |B′|) : KA′,B′ is a biclique of G}

Observe that by monotonicity, it suffices to take maximal bicliques of G into
account.

This graph parameter provides lower bounds not only for Cov(G) but for
Rect(G):

Proposition 1 (See e.g. [6], Lemma 1.10. and Theorem 1.72.). For any

bipartite graph G = (A,B,E), it holds that |E|
κ(G) ≤ Cov(G) and |E|

κ(G)2 ≤ Rect(G).

By a similar argument, we can obtain the following inequality as well:

Proposition 2. For any bipartite graph G, it holds that Cov(G) ≤ Rect(G) ·
2κ(G).

Proof. Claim 1.73. in [6] states the following. Let k be the maximum integer
with Kk,k being a biclique of G. For any rectifier network R = (V,E′) realizing
G, call an edge (u, v) ∈ E′ eligible iff |A(u)| ≤ k and |B(v)| ≤ k. Then for any
edge (a, b) ∈ E there is a path from a to b in R containing an eligible edge.

In that case {KA(u),B(v) : (u, v) ∈ E′ is eligible} is a covering of G, consisting
of at most |E′| = Rect(G) bicliques. Each biclique has weight at most 2k which
in turn is at most 2κ(G) since H(a, b) ≤ min{a, b} holds for any a, b > 0. ��

It is also worth observing that k = Θ(κ) since min{a, b} ≤ 2H(a, b).
Our first result considers the bipartite graph corresponding to the mod 2 inner

product function.

Theorem 1. Let d > 0 be an even integer and Gd
⊥ = (A,B,E) be the bipartite

graph with A = B = {0, 1}d and (u,v) ∈ E for the vectors u,v ∈ {0, 1}d iff
u⊥v in Zd

2, i.e. iff
∑
i∈[d]

uivi = 0 where sum is taken modulo 2.

Then Rect(Gd
⊥) = Õ(n) and Cov(Gd

⊥) = Ω(n3/2) where n = 2d is the number
of vertices of Gd

⊥.

1 At times n will denote the size of one of the two classes of G, introducting a factor
of 2 but never causing differences in the growth order.
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The proof is broken into two parts. The lower bound follows from the first
inequality of Proposition 1 and a special case of Lindsey’s lemma [5].

Proposition 3. κ(Gd
⊥) =

√
n
2 . Thus Cov(Gd

⊥) = Ω(n3/2).

At the same time, Rect(Gd
⊥) is small enough. To see this, we show Rect(G) =

Õ(n) for a specific family of bipartite graphs, which we call permutation invariant
graphs. A bipartite graph G = ({0, 1}d, {0, 1}d, E) is permutation invariant if
(u,v) ∈ E implies (π(u), π(v)) ∈ E for any permutation π : [d] → [d] of the
coordinate index set. Here π(u1, . . . , ud) is defined to be (uπ(1), . . . , uπ(d)). It is

clear that the graphs Gd
⊥ are permutation invariant.

For such graphs the following holds (which also state that within this class of
graphs, the bound Cov(G) = Ω(Rect(G)3/2) is optimal):

Theorem 2. For permutation invariant graphs Rect is Õ(n) and Cov is Õ(n3/2).

Proof. Suppose G = (A,B,E) is permutation invariant with A = B = {0, 1}d.
Let c : {0, 1}d × {0, 1}d → {0, . . . , d}{0,1}×{0,1} be the function defined as

c((u1, . . . , ud), (v1, . . . , vd))(a, b) = |{i ∈ [d] : ui = a, vi = b}|.

That is, c(u,v)(a, b) is the number of positions i on which u is a and v is b.
Then, G factors through c in the following sense: if c(u,v) = c(u′,v′), then

(u,v) ∈ E iff (u′,v′) ∈ E. Indeed, c(u,v) = c(u′,v′) if and only if there exists
a permutation π : [d] → [d] such that ui = u′π(i) and vi = v′π(i) for each i ∈ [d],

yielding (u,v) ∈ E if and only if (u′,v′) ∈ E.
Hence there exists a subset C of the finite set {0, . . . , d}{0,1}×{0,1} such that

(u,v) ∈ E iff c(u,v) ∈ C.
We define a rectifier network R = ({0, 1}d×{0, . . . , d}{0,1}×{0,1}×{0, . . . , d}):

the pair ((u1, . . . , ud), f, �), ((v1, . . . , vd), f
′, �′) is an edge of R iff the following

conditions hold: �′ = � + 1 (so that R is a DAG of depth d + 1); for each
i �= �′, ui = vi holds; finally, f ′(u�′ , v�′) = f(u�′ , v�′) + 1 and for any other
(a, b) ∈ {0, 1} × {0, 1}, f ′(a, b) = f(a, b).

Then by induction on �′−� we get that there is a path from ((u1, . . . , ud), f, �)
to ((v1, . . . , vd), f

′, �′) iff the following conditions hold: � < �′; for each i ≤ � and
i > �′, ui = vi; finally, f

′(a, b) = f(a, b) + |{� < i ≤ �′ : ui = a, vi = b}|.
Now let R′ = (V (R) 0 {0, 1}d, E(R) 0 E′) with E′ consisting of the edges of

the form (v, f, d)→ v with f ∈ C. Then R′ realizes G by identifying each u ∈ A
with (u,0, 0) and each v ∈ B with the element v of this last layer of R′ (here
0 stands for the constant zero function 0 : (a, b) �→ 0). Since in R′, there are at
most 2d(·d · {d+1}4) · 2 edges (each node not belonging to layer d has outdegree
2 in R and in the last step, 2d × |C| ≤ 2d · {d+ 1}4 edges are added), which is
O(n log5 n), showing Rect(G) = Õ(n).

For Cov(G) = Õ(n3/2), letX be the set of vertices of R′ of the form (u, f, d/2).
(That is, nodes of the middle layer of R′.) As before, let A(x) ⊆ A, x ∈ X stand
for the set of nodes from which x is reachable in R′ and let B(x) ⊆ B stand
for the set of those nodes which are reachable from x in R′. Then, since each
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node of R has indegree at most 2, we have that |A(x)| ≤ 2d/2. For |B(x)|, since
each outdegree in R is 2, we get that there are at most 2d/2 nodes of the form
(v, f, d) reachable from x. In E′, the outdegree of these nodes is |C| which is
at most (d + 1)4, hence |B(x)| ≤ 2d/2(d + 1)4 = Õ(

√
n). Thus, the covering

C = {KA(x),B(x) : x ∈ X} has size
∑

x∈X(|A(x)| + |B(x)|) which is at most

2d · (d + 1)4 · (2d/2 + 2d/2(d + 1)4) = Õ(n3/2). Note that due to the layered
structure of R′, each u→ v path contains a node belonging to X , so C is indeed
a covering. ��

Thus we have showed that for an arbitrarily ε > 0 there are graphs G = Gd
⊥

having arbitrarily large Rect(G) = Õ(n) and with Cov(G) = Ω(Rect3/2−ε(G)).
(Observe that any permutation invariant graph with κ = Θ(

√
n) and Θ(n2)

edges meets this condition.)

As an interesting corollary, we get that Cov(Gd
⊥) is Θ̃(n3/2) which is Θ̃( |E|

κ )
so in this case the bound of Proposition 1 is optimal up to a log factor.

A general construction for constructing a biclique covering of a graph G =
(A,B,E) is the following: starting from a rectifier network R = (V,E′) first
one chooses a cut E0 ⊆ E′ of the edges of R (so that each a → b, a ∈ A,
b ∈ B path contains an edge from E0), in which case a covering is C(E0) =
{KA(x),B(y) : (x, y) ∈ E0}. We call coverings of this form cut-coverings of R. (In
the proof of Theorem 2 we employ a similar construction, choosing a subset X
of vertices instead of a subset E0.) In the following we state without proof that
this construction is not optimal, not even up to a polylogarithmic factor, even
when R is optimal up to a polylogarithmic factor.

Theorem 3. Consider the graph Gn
Δ = (A,B,E) with A = B = [n] and (i, j) ∈

E iff d(i, j) ≤ n
4 where d(i, j) is the modulo n distance min{|i− j|, |n+ i− j|}.

(That is, distance on the circle graph Cn.) Then:

1. There exists a rectifier network Rn realizing Gn
Δ with Õ(n) edges.

2. Any cut-covering of Rn has size Ω(n2).
3. At the same time, Cov(Gn

Δ) is O(n1+ε) for any ε > 0 where the O notation
hides a constant depending only on ε.

Note that for this graph we have κ = Θ(n) since K[n/4],[n/4] is a biclique. Hence

also for this class of graphs, |E|
κ = Θ(n) approximates Cov = O(n1+ε) relatively

well. In the next section we show that a closely related formula gives an upper
bound for Cov(G).

4 Upper Bounds for the Blow-Up

In this section we will show that, under certain assumptions, Cov(G) =
o(Rect(G)2) or even Cov(G) = O(Rect(G)3/2) holds. Proposition 2 implies the
following result:

Theorem 4. For any bipartite graph G and 0 < α ≤ 1 with Cov(G) ≤ |E|
κα we

have Cov(G) ≤ 2Rect(G)β for some β ≤ 1 + 1
1+α ∈ [3/2, 2). Hence if Cov(G) ≤

|E|
κα holds for a family of graphs G, then Cov(G) = O(Rect(G)2−

α
1+α ).
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Proof. Let us introduce the following notation: |E| = nδ for n = |V (G)|,
Rect(G) = nr and Cov(G) = |E|

κα , 0 < α ≤ 1. We will show that choosing

β = δ+α·r
r(1+α) suffices. (Note that since δ ≤ 2 and r ≥ 1, β is indeed at most

1 + 1
1+α .)

By Cov = |E|
κα we have logn Cov = δ − kα where k = logn κ. Now assuming

for contradiction that 2
α

1+αRectβ < 2Rectβ < Cov we get

rβ =
δ + α · r
1 + α

< δ − k · α− α

1 + α
logn 2.

Then direct computation shows that r < δ − k(1 + α) − logn 2 which is a con-
tradiction, since by Rect ≥ Cov

2κ we have r ≥ δ − k(1 + α) − logn 2. ��

Simple examples show that the assumption of the theorem does not hold for
all graphs. A similar argument gives a similar, but somewhat weaker, bound

Cov(G) = O(Rect(G)2−ε) for some ε > 0 if the condition Cov(G) ≤ |E|
κα is

replaced by Cov(G) ≤ polylognmax |E(G′)|
κ(G′) , where the maximum ranges over

induced subgraphs G′ of G. Thus an affirmative answer to the following open
problem would imply Cov(G) = O(Rect(G)2−ε) for all bipartite graphs.

Problem 1. Is it true that for any bipartite graph G on n vertices,

Cov(G) ≤ polylognmax
|E(G′)|
κ(G′)

where the maximum ranges over induced subgraphs G′ of G?

4.1 The Set Cover Problem

Now we apply the weighted set cover problem to our setting. For a detailed dis-
cussion of this problem, and an introduction to approximation methods see [18].

The weighted set cover problem is the following: we are given a collection
S = {S1, . . . , St} of subsets of some finite universe A of n elements with ∪S = A,
and to each Si, a cost c(Si) > 0 is associated. The goal is to find a subset C of
S such that ∪C = A and the total cost

∑
S∈C c(S) is minimized. The problem is

well-known to be NP-complete already for the uniform setting when c(Si) = 1;
however, the following greedy algorithm returns a fair enough approximation:

Let U := A and C := ∅.
while U �= ∅ do

Choose S ∈ S such that c(S)
|S∩U| is the minimum possible value.

Let U := U − S and C := C ∪ {S}.
return C.

The following linear program is the standard relaxation of weighted set cover:

minimize

t∑
i=1

c(Si)xi subject to
∑

i:a∈Si

xi ≥ 1 ∀a ∈ A, xi ≥ 0
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Denote by OPT the optimal solution of the weighted set cover problem. It is well-
knownthat the value of the solution returned by the above algorithm is bounded
by lnn · OPT, where n = |A|, and even by lnn · Z∗

LP , where Z
∗
LP denotes the

value of an optimal solution to the LP relaxation.
Now we define a related combinatorial quantity. For a subset B of A, let η(B)

stand for the value minS∈S
c(S)
|S∩B| which is present inside the loop of the greedy

algorithm. Note that this value is positive and finite for any B ⊆ A. Also, let η∗

stand for maxB⊆A |B| · η(B). Then we have:

Proposition 4. η∗ ≤ Z∗
LP ≤ OPT.

Proof. Consider any feasible solution x and a subset B of A. Then,∑
i∈[t]

c(Si)xi ≥
∑

i:Si∩B �=∅
c(Si)xi =

∑
i:Si∩B �=∅

∑
a∈Si∩B

c(Si)
|Si∩B|xi

≥
∑

i:Si∩B �=∅

∑
a∈Si∩B

η(B)xi = η(B)
∑
a∈B

∑
Si�a

xi

≥ η(B)
∑
a∈B

1 = η(B) · |B|.

��

On the other hand, this quantity can be used to give an upper bound for OPT
as well. The following bound is proven in [9] for the unweighted case.

Proposition 5. Let Greedy stand for the cost of the solution returned by the
greedy algorithm. Then Greedy ≤ Hnη

∗, where Hn is
∑

i∈[n]
1
i ≈ lnn.

Proof. Let Uk denote the set of uncovered elements at the beginning of the kth
iteration of the loop of the greedy algorithm and let nk = |Uk|. Then

min
Si

c(Si)
|Si∩Uk| = min

Si

c(Si)
|Si∩Uk|

|Uk|
nk

≤ max
B⊆A

min
Si

c(Si)
|Si∩B|

|B|
nk

= max
B⊆A

|B|
nk

min
Si

c(Si)
|Si∩B| = max

B⊆A

|B|
nk
η(B) = 1

nk
η∗.

Thus, the covering of the elements covered in the kth iteration costs at most
1
nk
η∗ for each such element. Since n1 = |A| = n and at each iteration, nk is

strictly decreasing, the total cost is at most
∑

i∈[n]
1
i η

∗ = Hnη
∗. ��

Thus we have the following chain of inequalities:

η∗ ≤ Z∗
LP ≤ OPT ≤ Greedy ≤ Hn · η∗.

4.2 Application to Biclique Coverings

Determining Cov(G) for G = (A,B,E) can be viewed as a set cover problem:
the universe is E, the allowed sets are bicliques of G, and the cost of a biclique
KA′,B′ is |A′|+ |B′|.
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In this problem, η is the following: given a subset E′ of E (that is, a subgraph
G′ = (A′, B′, E′) of G), η(E′) is defined as

min
KA′′,B′′⊆E

|A′′|+|B′′|
|E′∩(A′′×B′′)|

and η∗ is the maximal possible value of |E′|η(E′). By Proposition 5 we have that
Cov(G) ≤ η∗ ·Hn.

Observe that for the biclique KA0,B0 = argminKA′,B′⊆E
|A′|+|B′|

|E′∩(A′×B′)| we have

A0 ⊆ A′ and B0 ⊆ B′. Indeed, otherwise KA0∩A′,B0∩B′ would be a better
biclique. Thus, the minimizer biclique KA0,B0 is a biclique of the subgraph of
G induced by A0 ∪ B0. It is also clear that for induced subgraphs G′ we have

1
κ(G′) = η(E′) and |E′|η(E′) = |E(G′)|

κ(G′) .

Hence, there are two cases: either η∗ takes its value on some induced sub-
graph of G up to a polylogarithmic factor, in which case the bound Cov(G) ≥
max |E(G′)|

κ(G′) is essentially optimal up to a polylog factor, or not, in which case

there are graphs having much larger η∗ than |E|
κ . In the first case, the remarks

following Theorem 4 imply a subquadratic upper bound for the blow-up.

Problem 2. Determine the gap possible between η∗ and max |E(G′)|
κ(G′) , where the

maximum is taken over all induced subgraphs.

5 Application: The Cost of ε-Removal

Let A and B be disjoint alphabets (nonempty finite sets) and L ⊆ AB a (finite)
language consisting of two-letter words. Then L can also be viewed as a bipartite
graph GL = (A,B,L) where the notation for L is slightly abused (i.e. (a, b) is
an edge iff the word ab belongs to the language). Without loss of generality we
may assume that for each a ∈ A (b ∈ B, resp.) there exists a b ∈ B (a ∈ A,
resp.) such that ab is in L.

Proposition 6. There is some NFA M recognizing L with |M | = O(Rect(GL)).

Proof. Let R = (V,E) be a rectifier network for GL with |E| = Rect(GL). Then
the automaton M = (V 0 {q0, qf}, A ∪B, δ, q0, {qf}) with

δ = {(q0, a, a) : a ∈ A} ∪ {(b, b, qf) : b ∈ B} ∪ {(p, ε, q) : p→ q ∈ E}

recognizes L with |M | = |E|+ |A|+ |B| = O(Rect(GL)). ��

Proposition 7. For any ε-free NFA M recognizing L, Cov(GL) ≤ |M |. More-
over, there exists a ε-free NFA M recognizing L with |M | = Cov(GL).

Proof. Let M = (Q,A ∪B, δ, q0, F ) be an ε-free NFA recognizing L of minimal
size. Since L is prefix-free and M is minimal, F = {qf} is a singleton set. Also,
M is trim, i.e. for each state p ∈ Q there exist words x, y with p ∈ q0x and
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qf ∈ py. Since every word in L has the same length 2, to each state p there is an
integer 0 ≤ np ≤ 2 such that whenever p ∈ q0x for some word x, then |x| = np.
Otherwise if p ∈ q0x1 and p ∈ q0x2 for words x1, x2 of different length, then x1y
and x2y are members of L of different length for any word y with qf ∈ py, a
contradiction. Also, it is clear that np = 0 only for p = q0 and np = 2 only for
p = qf . Thus if X stands for Q−{q0, qf}, we get that M is a layered automaton
with transitions of the form (q0, a, p) for a ∈ A and p ∈ X and (p, b, qf) for b ∈ B
and p ∈ X . Hence, letting A(p) to stand for the set {a ∈ A : (q0, a, p) ∈ δ} and
B(p) stand for the set {b ∈ B : (p, b, qf ) ∈ δ} we get that there is an associated
biclique covering CM of L to M consisting of the bicliques KA(p),B(p), p ∈ X
that has the same size as M .

Observe that the transformation is invertible in the sense that to each biclique
covering C such an automaton of the same size can be constructed, showing the
second part of the claim. ��

Since by Theorem 1 there exist graphs with arbitrary large Rect(G) and
Cov(G) = Ω(Rect(G)3/2−ε), we have the following as byproduct:

Theorem 5. For any ε > 0 and for arbitrarily large n there exist languages
(consisting of two-letter words only) which are recognizable by NFAs of size n
but are only recognizable by ε-free NFAs of size Ω(n3/2−ε).

6 Conclusion, Future Directions

We proved a lower bound for the blow-up when transforming NFAs to ε-free
NFAs. We showed that the cost of ε-removal from NFAs is worst-case Ω(n3/2−ε),
improving the previous bound Ω(n log2 n). The largest possible gap is between
Ω(n3/2−ε) and O(n2), just like in the case of going from CFGs to chain rule free
CFGs. Narrowing these gaps seem to be nontrivial open problems.

We used a graph-theoretic approach by translating the problem into find-
ing large blow-ups between two complexity measures for bipartite graphs: the
rectifier network size Rect and the minimal weight biclique covering Cov. We
proved that there are graphs with arbitrarily large Rect value n such that
Cov = Ω(n3/2−ε) for any ε > 0. We gave partial results for determining the
largest possible blow-up between these quantities. These include a sufficient con-
dition for a subquadratic upper bound, and the sharpness of a combinatorial
bound for the minimal weight biclique covering (obtained by proving a bound
for the general weighted set covering problem). We also formulated two open
problems about related combinatorial bounds, which appear to be of interest
in themselves. Solving these problems may also be useful for determining the
largest possible blow-up. The relationship between Rect and Cov can be viewed
as a size-depth trade-off problem for depth-2 and unrestricted depth circuits
computing sets of Boolean disjunctions [17]. As far as we know, there are many
other related open problems, such as establishing a bounded-depth hierarchy.

Note Added in Proof. We learned from Stasys Jukna about the following
references, which supersede some results of the paper and overlap with others: [3]
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(Theorem 1) and [7] (Problem 7.6). In particular, Theorem 1 of the first paper
proves a quadratic lower bound (up to a logarithmic factor) for the worst-case
blow-up of ε-removal.

We are very grateful to Stasys Jukna for his comments.
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Abstract. This paper investigates the universality problem for Petri
nets with inhibitor arcs. Four descriptional complexity parameters are
considered: the number of places, transitions, inhibitor arcs, and the
maximal degree of a transition. Each of these parameters is aimed to
be minimized, a special attention being given to the number of places.
Four constructions are presented having the following values of param-
eters (listed in the above order): (5, 877, 1022, 729), (5, 1024, 1316, 379),
(4, 668, 778, 555), and (4, 780, 1002, 299). The decrease of the number of
places with respect to previous work is primarily due to the considera-
tion of non-deterministic computations in Petri nets. Using equivalencies
between models our results can be translated to multiset rewriting with
forbidding conditions, or to P systems with inhibitors.

1 Introduction

The research of small universal computing devices is an amazing and continu-
ous research topic since many decades. It started by A. Turing proposal of an
universal (Turing) machine [17] capable of simulating the computation of any
other (Turing) machine. This universal machine takes as input a description of
the machine to simulate, the contents of its input tape, and computes the result
of its execution on the given input.

More generally, the universality problem for a class of computing devices (or
functions) C consists in finding a fixed element M of C able to simulate the
computation of any element M′ of C using an appropriate fixed encoding. More
precisely, if M′ computes y on an input x (we will write this as M′(x) = y),
thenM′(x) = f(M(g(M′), h(x))), where h and f are the encoding and decoding
functions, respectively, and g is the function retrieving the number ofM′ in some
fixed enumeration of C. Although general recursive functions may be used for
encoding and decoding, we would prefer to see the computing device, and not the
encoders and decoders, do most of the work. Hence we prefer computationally
very simple encoding and decoding functions [18], like the typically used f(x) =
log2(x) and h(x) = 2x.

In what follows, we will keep to the terminology considered by Korec [6] and
call the element M (weakly) universal for C. We shall call M strongly universal
(for C) if the encoding and decoding functions are identities.

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 186–197, 2014.
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Some authors [7,6] implicitly consider only the strong notion of universality
as the encoding and decoding functions can perform quite complicated transfor-
mations, which are not necessarily doable in the original devices. For example,
Minsky’s proof of (weak) universality of register machines with two counters [11]
makes use of exponential (resp. logarithmic) encoding (resp. decoding) functions,
while it is known that such functions cannot be computed directly (without en-
coding) on these machines [2,16]. We refer to [6] for a detailed discussion of dif-
ferent variants of the universality and to [8] for a survey on this topic. Generally,
the class of all partially recursive functions is considered as C, but it is possible
to have a narrower class, e.g. the class of all primitive recursive functions, which
is known to admit a universal generally recursive function [7]. We remark that
in the case of devices not working with integers directly, some natural coding of
integers should be used in order to consider the above notions.

Small universal devices have mostly theoretical importance as they demon-
strate the minimal ingredients needed to achieve a complex (universal) compu-
tation. Their construction is a long-standing and fascinating challenge involving
a lot of interconnections between different models, constructions, and encodings.

In [1] a small universal maximally parallel multiset rewriting system is con-
structed. Due to equivalences between Petri nets and multiset rewriting systems,
this result can be seen as a universal Petri net working with max step seman-
tics. For the traditional class of Petri nets there were no known universality
constructions for a long time. Recently, Zaitsev has investigated the universality
of Petri nets with inhibitor arcs and priorities [20] and has constructed a small
universal net with 14 places and 29 transitions (for nets without priorities the
same author obtained a universal net with 500 places and 500 transitions [19]).
We remark that inhibitor arcs and priorities are equivalent extensions for Petri
nets in terms of computational power, so using both concepts together is not
necessary for universality constructions.

In [4], a series of small strongly and weakly universal Petri nets was con-
structed and compared to Zaitsev’ results. The cited paper only focuses on Petri
nets with deterministic evolution, however. The present article considers a natu-
ral question of whether allowing non-deterministic evolution may be exploited to
further minimize certain parameters. We show some trade-offs: trying to reduce
the number of places of a universal Petri net seems to imply an increase in the
other parameters, e.g., the maximal transition degree. We also show how linear
programming could be used to minimize this degree while keeping the number
of places small.

Quite importantly, due to the equivalence between Petri nets, multiset rewrit-
ing, and asynchronous P systems [13], the results from this paper can be imme-
diately translated to corresponding universality statements for these models.

2 Preliminaries

In this section we only recall some basic notions and notations; see [15] for further
details. An alphabet is a finite non-empty set of symbols. Given an alphabet V ,
we designate by V ∗ the set of all strings over V , including the empty string,
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λ. For each x ∈ V ∗ and a ∈ V , |x|a denotes the number of occurrences of the
symbol a in x. A finite multiset over V is a mapping X : V −→ N, where N

denotes the set of non-negative integers. X(a) is said to be the multiplicity of a
in X .

2.1 Register Machines

A deterministic register machine is defined as a 5-tuple M = (Q,R, q0, qf , P ),
where Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the
initial state, qf ∈ Q is the final state and P is a set of instructions (called also
rules) of the following form:

1. (Increment) (p,RiP, q) ∈ P , p, q ∈ Q, p �= q, Ri ∈ R (being in state p,
increment register Ri and go to state q).

2. (Decrement) (p,RiM, q) ∈ P , p, q ∈ Q, p �= q, Ri ∈ R (being in state p,
decrement register Ri and go to state q).

3. (Zero check) (p,Ri, q, s) ∈ P , p, q, s ∈ Q,Ri ∈ R (being in state p, go to q if
register Ri is not zero or to s otherwise).

4. (Zero test and decrement) (p,RiZM, q, s) ∈ P , p, q, s ∈ Q,Ri ∈ R (being in
state p, decrement register Ri and go to q if successful or to s otherwise).

5. (Stop) (qf , STOP ) (may be associated only to the final state qf ).

Note that a RiZM instruction can be used to simulate both a RiM instruction
and a Ri instruction.

A configuration of a register machine is given by (q, n1, . . . , nk), where q ∈ Q
and ni ∈ N, 1 ≤ i ≤ k, describe the current state of the machine as well as
the contents of all registers. A transition of the register machine consists in
updating/checking the value of a register according to an instruction of one of
the types above and in changing the current state to another one. We say that
the machine stops if it reaches the state qf . We say that M computes a value
y ∈ N on the input x1, . . . , xn, xi ∈ N, 1 ≤ i ≤ n ≤ k, if, starting from the
initial configuration (q0, x1, . . . , xn, 0, . . . , 0), it reaches the final configuration
(qf , y, 0, . . . , 0).

It is well-known that register machines compute all partial recursive functions
and only them [11]. Therefore, every register machine M with n registers can
be associated with the function it computes: an m-ary partial recursive function
Φm
M , where m ≤ n. Let Φ0, Φ1, Φ2, . . . , be a fixed enumeration of the set of unary

partial recursive functions. Then, a register machine M is said to be strongly
universal [6] if there exists a recursive function g such that Φx(y) = Φ2

M (g(x), y)
holds for all x, y ∈ N. A register machine M is said to be (weakly) universal if
there exist recursive functions f, g, h such that Φx(y) = f(Φ2

M (g(x), h(y))) holds
for all x, y ∈ N. We remark that here the meaning of the term weakly universal
is different from the Turing machines case, where it is commonly used to denote
a universal machine working on a tape that has an infinite initial configuration
with one constant word repeated to the right, of and another to the left of the
input [9].
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2.2 Petri Nets

A Place-Transition-net or for short, PT-net, with inhibitor arcs is a construct
N = (P, T,W,M0) where P is a finite set of places, T is a finite set of transitions,
with P ∩ T = ∅, W : (P × T ) ∪ (T × P )→ N ∪ {−1} is the weight function and
M0 is a multiset over P called the initial marking.

PT-nets are usually represented by diagrams where places are drawn as circles,
transitions are drawn as squares annotated with their location, and a directed
arc (x, y) is added between x and y ifW (x, y) ≥ 1. These arcs are then annotated
with their weight if this one is 2 or more. Arcs having the weight -1 are called
inhibitor arcs and are drawn such that the arcs end with a small circle on the
side of the transition.

The degree of a transition t is defined as the sum of the weights of the incoming
and outgoing arcs involved with it plus the number of inhibitor arcs:

degree(t) =
∑
p∈P

∣∣W (p, t)
∣∣+ ∣∣W (t, p)

∣∣.
Note that the degree is not the number of valuated arcs adjacent to the transition,
but rather the number of single arcs they represent.

Given a PT-net N , the pre- and post-multiset of a transition t are respectively
the multiset preN(t) and the multiset postN(t) such that, for all p ∈ P , for which
W (p, t) ≥ 0, preN(t)(p) = W (p, t) and postN(t)(p) = W (t, p). A state of N ,
which is called a marking, is a multiset M over P ; in particular, for every p ∈ P ,
M(p) represents the number of tokens present inside place p. A transition t is
enabled at a marking M if the multiset preN(t) is contained in the multiset
M and all inhibitor places p (such that W (p, t) = −1) are empty. An enabled
transition t at marking M can fire and produce a new marking M ′ such that
M ′ = M − preN(t) + postN(t) (i.e., for every place p ∈ P , the firing transition
t consumes preN(t)(p) tokens and produces postN(t)(p) tokens). We denote this

as M
t−→M ′.

For the purposes of this paper, we have to define which kind of PT-nets can
execute computations (e.g. compute partially recursive functions). In such a net
some distinguished places i1, . . . , ik, k > 0 from P are called input places (which
are normally different from the places marked in M0 containing the control
tokens) and one other, i0 ∈ P , is called the output place. The computation of
the net N on the input vector (n1, . . . , nk) starts with the initial marking M ′

0

such that M ′
0(ij) = nj and M ′

0(x) = M0(x), for all x �= ij, 1 ≤ j ≤ k. This net
will evolve by firing transitions until deadlock in some marking Mf , i.e. in Mf

no transition is enabled. Thus we have M ′
0

∗−→ Mf and there are no M ′
f and

t ∈ T such that Mf
t−→ M ′

f . The result of the computation of N on the vector

(n1, . . . , nk), denoted by Φk
N (n1, . . . , nk), is defined as Mf (i0), i.e. the number

of tokens in place (i0) in the final state. Since in the general case Petri nets are
non-deterministic, the function Φk

N could compute a set of numbers.
If, for any reachable marking M , there is at most one transition t and one

marking M ′ such that M
t−→ M ′, the Petri net is called deterministic. This
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corresponds to labeled deterministic Petri nets in which all transitions are labeled
with the same symbol [14]. Otherwise the Petri net is called non-deterministic,
and it is this kind of nets that we will focus on in this paper.

The size of a Petri net is the vector (p, t, h, d) where p is the number of places,
t is the number of transitions, h is the number of inhibitor arcs, and d is the
maximal degree of a transition. These parameters of the Petri net provide the
fundamental information about its structure and can be further used to reason
about its other features (e.g., the average number of inhibitor arcs per transi-
tion). Moreover, each of these parameters has a direct equivalent in the multiset
rewriting interpretation of Petri nets as the cardinality of the alphabet, number
of rules, inhibitors and maximal rule size. Remember that, when counting the
degree of a transition, we take into account the weights of the arcs it involves,
even though the degree is often considered to be the sum of the number of input
and output places of the transition.

3 Universal Register Machines with Few Registers

A rather well-known result on the computational power of register machines is
that there exists a strongly universal machine with 3 registers and a weakly
universal machine with 2 registers only [10]. Since it seems natural to represent
registers as places [4], we have special interest in machines with a small number
of registers, and, for the purposes of this paper, we have actually constructed
a strongly universal 3-register machine U3 and a weakly universal 2-register
machine U2 following the ideas proposed in [10].

Roughly, the construction is based on exponential coding of the configuration
of an arbitrary register machine and simulating increments and decrements as
multiplications and divisions. Two registers are enough for these purposes, and
a third one is required for exponentiation of the input and computing of the
logarithm to retrieve the output. To construct the weakly universal U2, we sim-
ulate the 20-state 8-register weakly universal register machine U20 described in
[6]. The 2-register machine obtained in this way has 112 decrement and 165 in-
crement instructions: 278 states all in all (including a final state). Simulating the
22-state 8-register machine U22 described in the same paper, and further adding
exponentiation and logarithm, allows building the strongly universal 3-register
machine U3 with 147 decrement and 217 increment instructions: 365 states in
total.

Clearly, U2 and U3 simulate the corresponding machines from [6] with expo-
nential slowdown. However, the machines by Korec simulate partial recursive
functions with exponential slowdown, too (cf. Theorem 4.2 in [6]). This means
that the slowdown of the machines U2 and U3 with respect to the (indirectly)
simulated partial recursive functions is doubly exponential.

Both register machines use the register R0 to store the exponentially-coded
values of the simulated register machine, and the register R1 to keep the inter-
mediate results. The input of U2 should thus be provided in coded form in R0.
The register machine U3, on the other hand, reads its input from and produces
its output in the third register, R2.
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An important remark with regard to the strong universality of U3 is due
here: since we use one register for input, we are only able to directly simulate
unary partial recursive functions. Nevertheless, Section 9 of [6] describes a way
to construct register machines simulating n-ary partial recursive functions; the
machines use a coding to store the values of the n arguments in one of the
working registers. This approach can be pretty naturally adapted to the register
machine U2 to obtain strongly universal register machines with n input registers,
read by successive decrements at the start of the computation, and which only
have two working registers. Such register machines can be translated into Petri
nets by the same techniques as the ones we will show for U2 and U3 in the coming
sections.

Section 2 of [5] describes the construction of a universal three-register machine
with 130 states. However, in that paper compound instructions are assigned
to single states (e.g., any increment of a register by m is treated as a single
instruction). Writing out the corresponding construction in terms of elementary
register machine commands as we use in U2 and U3, would yield more than 450
instructions.

4 Non-deterministic Simulation of Register Machines by
Petri Nets

In this section we will show that a register machine with n registers can be sim-
ulated by a non-deterministic Petri net with only n + 2 places. We recall that
in the non-deterministic semantics, we only consider those branches of compu-
tation which halt. The basic idea is representing a state number of a register
machine in unary encoding as the number of tokens in a (single) place of the
Petri net, and then using another place to assure that the transformations of
state numbers happen correctly.

R1ZM

q1

R0P

q2

R2P

q3

STOP

q4

z

Fig. 1. The toy register machine S

Consider the following register machine S = (Q,R, q1, q4, P ), where
Q = {q1, q2, q3, q4}, R = {R0, R1, R2} and the set of instructions P is defined as
P = {(q1, R1M, q2, q3), (q2, R0P, q1), (q3, R2P, q4), (q4, STOP )}. This machine is
depicted on Figure 1 using a standard flow-chart notation.
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This machine adds the contents of the register r1 to the register r0, eventually
sets r1 to zero, and increments r2 once. The corresponding non-deterministic
Petri net N is shown in Figure 2. This Petri net uses a place to store the value
of each register, and two more places to store state numbers and validate state
transitions. Note that we do not need to represent the final state q4 in the Petri
net. It suffices that N carries out the operation associated with q3 and halts.

Q0T0

T1

T2

T3

Q1

T4

T5

T6

T7

R0

R2

R1

2

3

2

3

2

2

Fig. 2. The non-deterministic Petri net N simulating S

The Petri netN starts with one token in the state placeQ0, which corresponds
to the number of the initial state q1 of S. The simulation of an arc in the graph
of the register machine S is carried out in two phases. In the first phase, the
current state is read from the place Q0, the corresponding registers are checked
and/or modified, and the number of the next state is put into the state place
Q1. The first phase of the simulation is carried out by the transitions T0 through
T3. The goal of the second phase is checking that state places are always read
completely, i.e., that every transition which fires consumes all the tokens from
Q0 or Q1. The second phase corresponds to the firing of one of the transitions
T4 or T5.

Transitions T0 and T1 simulate state q1 of S in the following way. If R1 is
nonempty, the transition T0 can fire, consuming one token from the place R1

and putting two tokens into Q1, which corresponds to moving into state q2.
If, however, R1 is empty, transition T1 fires and places three tokens into Q1,
which corresponds to moving into state q3. Similarly, transition T2 simulates the
behavior of S in state q2, and transition T3 corresponds to the state q3. Note
that T3 only empties Q0 and adds nothing to Q1, moreover, Q1 should be empty
in order for T3 to fire. Therefore, after T3 fires, no more transitions can fire and
N halts.

The goal of transitions T4 and T5 is moving the number of the next state to
simulate from Q1 to Q0. At the same time, the two transitions verify that the
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correct instruction has just been carried out. Indeed, suppose that Q0 contains
two tokens and R1 is empty. Then both transition T0 and T2 can fire. However,
if T0 fires, it will place two tokens into Q1, and one token will still be left in
Q0. In this case transitions T0 through T5 will be blocked, and the only enabled
transitions T6 and T7 will make the net loop forever. Similarly, if transition T5

fires when Q1 contains more than one token, N will never halt. Therefore, in
a halting computation of N , either the place Q0 or Q1 contains tokens, but
not both at the same time, which assures the correct simulation of the register
machine S.

We remark that the number of places in the above simulation does not depend
on the number of states of the simulated machine. Hence, it should be rather
clear that the same reasoning can be repeated for the 3-register universal machine
U3 to obtain a 5-place strongly universal non-deterministic Petri net N1. It will
have 511 transitions simulating the activity of U3, 364 more transitions moving
the code of the next state from Q1 to Q0, and two loops; 877 transitions all in
all. It will also have 1022 inhibitor arcs and the maximal transition degree will
be 729. In an analogous fashion we can build a 4-place weakly universal Petri
net N2 with 668 transitions of maximal degree 555 and with 778 inhibitor arcs.

5 Decreasing the Transition Degree

In this section we will show that it is possible to almost halve the maximal
transition degree of the transitions in the strongly universal non-deterministic
Petri net N1 at the cost of a slight increase in the number of transitions.

First of all, remark that the maximal transition degree in the Petri net N1

is largely determined by the transitions moving tokens from Q1 to Q0: since
U3 contains 365 states including a final one, N1 must have a transition moving
364 tokens from Q1 to Q0, which, together with the inhibitor arc coming from
Q0, results in degree 729. Remember that we try to be precise from the graph-
theoretic point of view and count the weights of the arcs as well, while in many
Petri-net-related works the degree of such transitions would be considered 3, as
they have only one input and two output places.

On the other hand, the transitions actually simulating the activity of U3 need
not be this large: it is possible to code states in such a way that these transitions
have an input degree which is much smaller than the output degree or vice versa.
The idea therefore is as follows: mirror the transitions which simulate the activity
of U3, so that the simulation happens both when tokens are moved from Q0 to
Q1 and when tokens are moved from Q1 to Q0. In the case of our toy register
machine S, this will result in the Petri net shown in Figure 3. Observe that the
transition T ′

i simulates the same instruction of S as Ti does.
In the case of this net, maximal transition degree is determined solely by

the way in which the states are represented. Namely, consider a transition T
which corresponds to the move from state qi to state qj in the simulated register
machine. The way in which states are encoded will be given by the function
c : Q → N, where Q is the set of states. Then, the degree of T is c(qi) +
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Fig. 3. A mirrored non-deterministic Petri net simulating S

c(qj) + 2, where we add 2 because all transitions read and/or modify a register
and are inhibited by either Q0 or Q1. We can now define the mapping c via a
minimization problem, keeping in mind the goal to minimize the worst transition
degree.

We start by remarking that c takes values in the interval 1 through |Q| − 1
(we do not need to code the final state). In the optimization problem, we use
the following family of variables:

ci,i′ =

{
1, if c(qi) = i′,
0, otherwise,

with the following normalization conditions:

∀qi ∈ Q :
∑

1≤i′≤|Q|−1

ci,i′ = 1 and ∀1 ≤ i′ ≤ |Q| − 1 :
∑
qi∈Q

ci,i′ = 1,

which require that every state have exactly one code and that each code be
picked exactly once.

The family of variables ci,i′ can be used to express the cost c(qi) + c(qj) for a
transition from state qi to qj in the following way:

c(qi) + c(qj) =
∑

1≤i′≤|Q|−1

i′ · ci,i′ +
∑

1≤j′≤|Q|−1

j′ · cj,j′ .
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For convenience, we will also define the set of pairs of states between which there
exists an arc in the graph of the register machine:

B =
{
(qi, qj) ∈ Q×Q | (qi, RkP, qj) ∈ P,
or (qi, RkP, qj , s) ∈ P, or (qi, RkP, s, qj) ∈ P

}
.

We can now write the linear programming problem optimizing the cost of the
“worst” transition:

Minimize C

Subject to
∑

1≤i′≤|Q|−1

i′ · ci,i′ +
∑

1≤j′≤|Q|−1

j′ · cj,j′ ≤ C, (qi, qj) ∈ B,

∀qi ∈ Q :
∑

1≤i′≤|Q|−1

ci,i′ = 1,

∀1 ≤ i′ ≤ |Q| − 1 :
∑
qi∈Q

ci,i′ = 1.

To attack the instances of this linear programming for U3 and U2, we used the
Gurobi Optimizer [12]. The problem itself was formulated in the AMPL model
description language [3].

Remark that the number of variables in this linear programming problem
is |Q|2 + 1, which results in rather large linear programming models in the
case of the universal 3- and 2-register machines. U3, for example, has 364 non-
final states, which means 132 496 variables. Furthermore, the first line in the
definition of the linear programming problem introduces 511 constraints, each
constraint being a linear combination of 729 variables. Finally, the last two lines
introduce 728 more constraints involving 364 variables each. This amounts to
1239 constraints involving either 364 or 729 variables.

Due to limited computing resources, we were not able to find the optimal
solutions for U3 and U2 until now. Nevertheless, we managed to obtain some
reasonably good solutions which allow reducing the maximal transition degree
to 379 in the case of U3 and to 277 for U2. Thus, we obtained a 5-place strongly
universal non-deterministic Petri net N3 with 1024 transitions of maximal degree
379 and 1316 inhibitor arcs, and a 4-place weakly universal non-deterministic
Petri net N4 with 780 transitions of maximal degree 299 and 1002 inhibitor arcs.

6 Main Results

To summarize the results concerned with strong universality, we formulate the
following statement.

Theorem 1. There exist strongly universal non-deterministic Petri nets of sizes
(5, 877, 1022, 729) and (5, 1024, 1316, 379).

Similarly we can state the following with respect to weakly universal non-
deterministic Petri nets:

Theorem 2. There exist weakly universal non-deterministic Petri nets of sizes
(4, 668, 778, 555) and (4, 780, 1002, 299).
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7 Conclusion

In this paper we constructed two strongly universal and two weakly universal
non-deterministic Petri nets. We have shown that dropping the restriction of a
deterministic evolution allows a dramatic minimization of the number of places,
but produces an important increase in the values of the other parameters.

We remark that, while the strong universality results obtained in this paper
implicitly suppose that corresponding Petri nets have a single input (thus com-
puting unary functions), it is possible to generalize them to an n-ary input using
the ideas from [6]. Corresponding nets will have n+2 places and a linear increase
in the number of inhibitors and maximal transition degree.

While our main goal was to minimize the number of places, we did also show
that a trade-off still existed between the maximal transition degree on the one
side and the number of transitions and inhibitor arcs on the other. It could be
interesting to look for other similar trade-offs.

It might be possible to achieve strong universality with 4 places, because the
input/output register of U3 is only modified during the initial and final phases
of execution of the machine, when input is read and output is produced [10].
We conjecture that 3 places or less are insufficient to achieve strong universality,
however. On the other hand, it may be possible to reduce the values of some
other parameters, while keeping the number of states at 5.

In Section 3, we have cited a universal 3-register machine from [5] and said
that, if only elementary increments and decrements with zero check are allowed
as instructions, this machine would have more instruction than U3. However,
compound instructions do map naturally on Petri net transitions: multiple incre-
ments can be carried out in one step by an arc with multiplicity greater than 1.
Therefore, the register machine from [5] could be simulated directly, thus re-
ducing the number of transitions, and of inhibitor arcs, but also increasing the
maximal transition degree. Constructing the corresponding Petri net might be a
worthwhile task that could potentially lead to a better maximal degree measure.

The universality results shown in this paper indirectly rely on exponential
coding, which imposes operations of considerable time complexity. A different
approach could be used to reduce simulation time, but this would almost cer-
tainly result in an increase in the size of the Petri nets.

Finally, we would like to stress that the results we give in this paper can be
straightforwardly translated to the domain of P systems [13] and, more generally,
multiset rewriting [1].
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Abstract. A new and simple method of indexing a tree for tree pat-
terns is presented. A tree pattern is a tree whose leaves can be labelled
by a special symbol S, which serves as a placeholder for any subtree.
Given a subject tree T with n nodes, the tree is preprocessed and an
index, which consists of a standard string compact suffix automaton and
a subtree jump table, is constructed. The number of distinct tree pat-
terns which match the tree is O(2n), and the size of the index is O(n).
The searching phase uses the index, reads an input tree pattern P of size
m and computes the list of positions of all occurrences of the pattern
P in the tree T . For an input tree pattern P in linear prefix notation
pref(P ) = P1SP2S . . . SPk, k ≥ 1, the searching is performed in time

O(m+
k∑

i=1

|occ(Pi)|)), where occ(Pi) is the set of all occurrences of Pi in

pref(T ).

1 Introduction

Indexing a data subject preprocesses the subject and constructs an index that
allows to answer queries related to the content of the subject efficiently. For
example, occurrences of input patterns in the subject can be located repeatedly
and quickly, in time typically not depending on the size of the subject.

The theory of text indexing, which is a result of Stringology research [9, 10, 11],
is very well-researched and uses many sophisticated data structures: suffix tree
and suffix array are most widely used structures for text indexing, providing
efficient solutions for a wide range of applications. The Directed Acyclic Word
Graph [5], also known as suffix (or factor) automaton [8], is another elegant
structure. The compacted and minimized version of both suffix trees and suffix
automata is represented by compact suffix automaton [12]. Another text indexing
structure, called position heap, was proposed recently [13]. Generally, the number
of substrings in a text is quadratic to the size of the text, but the size of the
text index structure for substrings is typically linear to the size of the text. By
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means of the suffix tree or the compact suffix automaton, the list of positions of
all occurrences of an input string pattern y of size m can be computed in time
O(m+ |occ(y)|), where occ(y) is the set of all occurrences of y in the text [9].

Subtree matching and tree pattern matching are often declared to be analo-
gous to problems of string pattern matching [2, 14]. There is simple but a key
property of linear notations of trees: the linear notation of a subtree is a sub-
string of the linear notation of the tree [17]. A tree pattern is a tree whose leaves
can be labelled by a special symbol S, which serves as a placeholder for any
subtree. Given a tree with n nodes, the number of distinct tree patterns which
match the tree is O(2n). A tree pattern in a linear notation corresponds to a
substring of the linear notation of the tree, where the symbols S are replaced
with linear notations of subtrees. Therefore, tree pattern matching is analogous
to the problem of matching string patterns with specific gaps.

The problem of matching string patterns with gaps has been explored in many
methods. The methods differ in the kinds of considered gaps, in the achieved
complexity and in the fact whether the method is based on indexing, where
the subject text is preprocessed, or it is based on the principle that a string
pattern is preprocessed and the subject text is read as the input of the searching
phase. A method of indexing a text for string patterns with gaps is described
in [3], where an index is constructed for matching with wildcards. A wildcard
matches any single character, which cannot be used for tree patterns in a linear
notation. In [16], an index is constructed for matching with variable length gaps.
Unfortunately, the searching time depends on the gaps sizes, which is not time
efficient for matching tree patterns, where the gaps can be of any size.

Tree pattern pushdown automaton represents a full index of a tree for tree
patterns but its size is not linear to the size of the subject tree [17]. Also, a
finite tree automaton accepting all tree patterns that match the tree can be
constructed but its size is exponential to the size of the subject tree [6, 7, 15].

In [4], a matching algorithm, where the patterns are preprocessed, for vari-
able length gap matching problem was proposed. This solution is incompatible
with the tree pattern matching problem because of different interpretation of
gaps. Moreover, this solution is not indexing but matching, when the pattern is
preprocessed. By analogy for trees, many tree pattern matching methods, which
preprocess tree patterns and not the subject tree, have been proposed [6, 14].

In this paper, a new and simple method of indexing a tree for tree patterns
is presented. Given a subject tree T with n nodes, the tree is preprocessed and
an index, which consists of a standard string compact suffix automaton and a
subtree jump table, is constructed. We note that any convenient text index can
possibly be used instead of the compact suffix automaton, which has been chosen
here because of its good space and time complexities. Despite the fact that the
number of distinct tree patterns which match the tree is O(2n), the size of the
index presented in this paper is O(n).

The searching phase uses the index, reads an input tree pattern P of size m
and computes the list of positions of all occurrences of the pattern P in the tree T .
For an input tree pattern P in linear prefix notation pref(P ) = P1SP2S . . . SPk,
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k ≥ 1, the searching is performed in time O(m+
k∑

i=1

|occ(Pi)|)), where occ(Pi) is

the set of all occurrences of Pi in pref(T ). We are not aware of any other known
method of full and linear indexing a tree for tree patterns with these time and
space complexities.

The rest of the paper is organised as follows. Basic definitions are given in
section 2. The third section describes our method of indexing a tree for tree
patterns. The fourth section deals with the searching phase. The complexities
are formally described in the fifth section. The last section is the conclusion.

2 Basic Notions

A ranked alphabet is a finite nonempty set of symbols each of which has a unique
nonnegative arity (or rank). Given a ranked alphabet A, the arity of a symbol
a ∈ A is denoted Arity(a). The set of symbols of arity p is denoted by Ap.
Elements of arity 0, 1, 2, . . . , p are respectively called nullary (constants), unary,
binary, . . ., p-ary symbols. We assume that A contains at least one constant. In
the examples we use numbers at the end of the identifiers for a short declaration
of symbols with arity. For instance, a2 is a short declaration of a binary symbol
a. We use |A| notation for the size of set A.

Because of lack of space we do not provide definitions of basic graph theory
notions, such as graph, directed graph, and others (see [1]). Based on concepts
from graph theory, a tree over an alphabet A can be defined as follows:

A rooted and directed tree T is an acyclic connected directed graph T = (N,R)
with a special node r ∈ N , called the root, such that

(1) r has in-degree 0,
(2) all other nodes of T have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f �= r.

A node g is a direct descendant of node f if a pair (f, g) ∈ R.
A labelled, (rooted, directed) tree is a tree having the following property:

(4) every node f ∈ N is labelled by a symbol a ∈ A, where A is an alphabet.

A ranked, (labelled, rooted, directed) tree is a tree labelled by symbols from a
ranked alphabet and out-degree of a node f labelled by symbol a ∈ A equals to
Arity(a). Nodes labelled by nullary symbols (constants) are called leaves.

An ordered, (ranked, labelled, rooted, directed) tree is a tree where direct de-
scendants af1, af2, . . . , afn of a node af having an Arity(af ) = n are ordered.

A subtree of tree T = (N,R) rooted at node f ∈ N is a tree Tf = (Nf , Rf ),
such that f is the root of Tf and Nf , Rf is the greatest possible subset of N,R,
respectively.

If g is not a root node, then there exists (f, g) ∈ R. A right sibling of node g
is a node h that is the smallest node greater than g that satisfies (f, h) ∈ R.

The prefix notation pref(T ) of tree T is defined as follows:

1. pref(a) = a0 if a is a leaf,
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2. pref(T ) = an pref(b1) pref(b2) . . . pref(bn), where an is the root of tree T
and b1, b2, . . . bn are subtrees of T rooted at the respective direct descendants
of an.

Let w = a1a2 . . . am, m ≥ 1, be a string over a ranked alphabet A. Then,
the arity checksum ac(w) = arity(a1) + arity(a2) + . . . + arity(am) −m + 1=∑m

i=1 arity(ai)−m+1. Let pref(T ) and w be a tree T in prefix notation and a
substring of pref(T ), respectively. Then, w is the prefix notation of a subtree of
T , if and only if ac(w) = 0, and ac(w1) ≥ 1 for each proper prefix w1 of w (ie.
w = w1x, x �= ε) [17].

Example 1. Consider a ranked alphabet A = {a4, a0, b0}. Consider an ordered,
ranked, labelled, rooted, and directed tree T1 = ({a41, a42, a43, a04, b05, a06, a07,
a08, b09, a010, a011, a012, b013}, R1) over an alphabet A, where R1 is a set of the
following ordered pairs:

R1 = {(a41, a42), (a41, a011), (a41, a012), (a41, b013), (a42, a43), (a42, a08),
(a42, b09), (a42, a010), (a43, a04), (a43, b05), (a43, a06), (a43, a07)}.

Prefix notation of tree T1 is pref(T1) = a41a42a43a04 b05a06a07 a08b09a010 a011
a012b013. Tree T1 is illustrated in Figure 1. ��

a04 b05 a06 a07

a43 a08 b09 a010

a42 a011 a012 b013

a41

Fig. 1. Tree T1 from Example 1

To define a tree pattern, we use a special nullary symbol S �∈ A, Arity(S) = 0,
which serves as a placeholder for any subtree. A tree pattern is defined as a
labelled ordered tree over an alphabet A ∪ {S}. In this paper we assume that
the tree pattern has at least one node labelled by a symbol from A.

A tree pattern P with k ≥ 0 occurrences of symbol S matches a subject tree
T at node n if there exist subtrees T1, T2, . . . , Tk (not necessarily the same) of
tree T such that tree P ′, obtained from tree pattern P by substituting subtree Ti

for the i-th occurrence of symbol S in P , i = 1, 2, . . . , k, is equal to the subtree
Ts of tree T rooted at node n. Tree Ts is the matched subtree of tree T .

Let a tree pattern P match a subject tree T at node n and let m be the
number of nodes in the matched subtree Ts. Let i be the index of node n in
pref(T ) = a1a2 . . . aiai+1 . . . ai+m−1ai+m . . . . An occurrence of tree pattern P
in subject tree T is a pair (i, i+m). The pair (i, i+m) is also an occurrence of
substring pref(Ts) in string pref(T ).
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A compact suffix automaton [9] for a text is a finite automaton that accepts
all suffixes of the text. By means of the compact suffix automaton, the list of
positions of all occurrences of an input string pattern y of sizem can be computed
in time O(m + |occ(y)|), where occ(y) is the set of all occurrences of y in the
text.

Example 2. Consider tree T1 from Example 1.
Consider subtree P ′ over alphabet A, P ′ = ({a41, a02, b03, a04, a05}, RP ′),

pref(P ′)=a4 b0 a0 a0 a0 and RP ′ ={(a41, a02), (a41, b03), (a41, a04), ((a41, b05)}.
Consider tree pattern P ′′ over an alphabet A∪{S}, P ′′ = ({a41, S2, a03, S4,

S5}, RP ′′). Tree pattern P ′′ in prefix notation is pref(P ′′) = a4 S a0 S S and
RP ′′ = {(a41, S2), (a41, a03), (a41, S4), (a41, S5)}.

Tree patterns P ′ and P ′′ are illustrated in Figure 2. Tree pattern P ′ has
one occurrence in tree T1 – it matches T1 at node 3. Tree pattern P ′′ has two
occurrences in tree T1 – it matches T1 at nodes a41 and a42.

Compact suffix automaton M(pref(T1)) is illustrated in Figure 3. ��

a05a04b03a02

a41

S5S4a03S2

a41

Fig. 2. Subtree P ′ (left) and tree pattern P ′′ (right) from Example 2

[0] [1]
[2] [13]

a4
a4

a0b0a0a0a0b0a0a0a0b0

a4a0b0a0a0a0b0a0a0a0b0

a0b0a0a0a0b0a0a0a0b0

[4′]

[5′] [9′]

[7′′]

a0

b0

b0

a0

a0a0a0b0
a0a0a0b0

a0b0

b0

Fig. 3. Transition diagram of compact suffix automaton M(pref(T1)) for tree T1 from
Example 3. The long edge labels can be represented by pairs of beginning and ending
indices into pref(T1), see [9].

3 Indexing a Tree for Tree Patterns

The section deals with the preprocessing phase, in which an index of a subject
tree T is constructed. The index consists of two parts:

− A compact suffix automaton [9] for pref(T ), by which occurrences of all
substrings of pref(T ) can be located. We note that not all substrings of
pref(T ) are subtrees in the prefix notation.
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− A subtree jump table, a linear-size structure needed for finding positions of
ends of subtrees represented by special symbols S.

Definition 1. Let T and pref(T ) = a1a2 . . . an, n ≥ 1, be a tree and its prefix
notation, respectively. A subtree jump table SJT (T ) is defined as a mapping
from set {1..n} into set {2..n + 1}. If aiai+1 . . . aj−1 is the prefix notation of a
subtree of tree T , then SJT (T )[i] = j, 1 ≤ i < j ≤ n+ 1.

Algorithm 1. Construction of subtree jump table

Name: ConstructSubtreeJumpTable
Input: Tree T in prefix notation pref(T ), index of current node

rootIndex, reference to an empty subtree jump table SJT (T )
Output: index exitIndex, subtree jump table SJT (T )

1 index = rootIndex + 1;
2 for i = 1 to Arity(pref(T )[rootIndex]) do
3 index = ConstructSubtreeJumpTable(pref(T ), index, SJT (T ));
4 SJT (T )[rootIndex] = index;
5 return index;

Lemma 1. Given pref(T ) and rootIndex equal to 1, Algorithm 1 constructs
subtree jump table SJT (T ). ��
Example 3. Consider tree T1 over A from Example 1, pref(T1) = a41a42a43a04
b05a06a07 a08b09a010 a011a012b013. Compact suffix automaton M(pref(T1)) [9]
is illustrated in Figure 3. Subtree jump table SJT (T1), constructed by Alg 1, is
in Table 1. ��

Table 1. Subtree jump table for tree T1 from Example 3

i 1 2 3 4 5 6 7 8 9 10 11 12 13
SJT [i] 14 11 8 5 6 7 8 9 10 11 12 13 14

Furthermore, the array RevnS serves as a working data structure for the main
matching algorithm (Alg. 5) during the searching phase and its initial value,
denoted Revn{}, is to be set once and constructed during the preprocessing phase.

Definition 2. Let S = {(first1, last1), . . . (firstk, lastk)} be a set of pairs of
positive integers such that lasti �= lastj if i �= j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. Array
RevnS is an array of integers such that RevnS [lasth] = firsth for all 1 ≤ h ≤ k.
For all other values 1 ≤ v ≤ n, RevnS [v] = −1.

Example 4. Array Rev13{(1,11),(2,8),(3,5)}, which represents occurrences of tree pat-

tern P ′′ from Example 2 in tree T1 from Example 1, is illustrated in Table 2. ��

Table 2. Array Rev13{(1,11),(2,8),(3,5)} from Example 4

i 1 2 3 4 5 6 7 8 9 10 11 12 13
Rev13{(1,11),(2,8),(3,5)}[i] -1 -1 -1 -1 3 -1 -1 2 -1 -1 1 -1 -1
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4 Computing Positions of All Occurrences of an Input
Tree Pattern

The section describes the searching phase using the index. Algorithm 5 (Match-
Pattern) computes the list of all occurrences of an input pattern P in the tree T .
This main algorithm uses three algorithms, which are presented before Alg. 5:

− Algorithm 2 (VerifyArityChecksum) [17] computes the arity checksum of
the input pref(P ) so that it would be verified that pref(P ) is a valid prefix
notation of a tree pattern.

− Algorithm 3 (FindOccurences) is a substring matching algorithm from [9].
This algorithm is reproduced in listing 3, with some technical details omitted
for the sake of brevity and clarity.

− Algorithm 4 (MergeOccurrences) is an algorithm that merges two sets of
occurrences in linear time. A linear time merging algorithm would be simple
if the sets of occurrences (first, last) were in the form of lists sorted by
index first or by index last. Such a principle is used in related work [4].
Unfortunately, we did not manage to gain a sorted list of occurrences from
the compact suffix automaton in a linear time. Therefore, we have avoided
such sorting completely, reaching the linear time with a special merge oper-
ation, which uses the working data structure Rev introduced in the previous
section.

Definition 3. Let pref(P ) = P1SP2S . . . SPk be the prefix notation of a tree
pattern P over an alphabet A∪ {S}, where no substring Pi, 1 ≤ i ≤ k, contains
any symbol S. The substring Pi is called a subpattern of P at index i.

Example 5. Consider pref(P ′′) = a4Sa0SS, the prefix notation of tree pat-
tern P ′′ from Example 2. Tree pattern P ′′ has four subpatterns, pref(P ′′) =
P1SP2SP3SP4, where P1 = a4, P2 = a0, P3 = ε and P4 = ε. ��

Definition 4. Let pref(T ) = a1a2...an be the prefix notation of a tree T . Let
pref(P ) = P1SP2S...Pk be the prefix notation of a tree pattern P . An occurrence
of subpattern Pi in pref(T ) is a pair (first, last), where:

− if Pi = ε, 1 < first = last ≤ n+ 1,
− if Pi �= ε, 1 ≤ first < last ≤ n+ 1 and afirstafirst+1 . . . alast−1 = Pi.

The set of all occurrences of subpattern Pi in pref(T ) is denoted by occT (Pi).
If tree T is obvious from the context, the set can be denoted by occ(Pi).

Example 6. Consider subpattern P2 = a0 of tree pattern P ′′ from Example 2.
Subpattern P2 has seven occurrences in tree T : occT (P2) = { (4, 5), (6, 7), (7, 8),
(8, 9), (10, 11), (11, 12), (12, 13) }. ��

Definition 5. Let pref(P ) = P1SP2S . . . SPk be the prefix notation of a tree
pattern P . Then any string P1SP2S . . . SPk′ , k′ ≤ k, or P1SP2S . . . SPk′′S,
k′′ < k, is called a tree pattern prefix of tree pattern P , abbreviated TPP (P ).
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Example 7. Consider tree pattern P ′′, pref(P ′′) = a4Sa0SS, from Example 2.
Then {a4, a4S, a4Sa0, a4Sa0S, a4Sa0SS} is a set of tree pattern prefixes of tree
pattern P ′′. ��

Definition 6. Let P be a tree pattern and T be a tree. An occurrence of tree
pattern prefix TPP (P ) = P1SP2S . . . SPk in tree T is a pair (first, last), where
(first, last1) is an occurrence of subpattern P1 in pref(T ), pair (SJT (T )[last1],
last2) is an occurrence of subpattern P2 in pref(T ), . . . , and pair
(SJT (T )[lastk−1], last) is an occurrence of subpattern Pk in pref(T ). The set
of all occurrences of a tree pattern prefix TPP (P ) in pref(T ) is denoted by
occT (TPP (P )). If tree T is obvious from the context, the set can be denoted by
occ(TPP (P )).

Example 8. Consider tree pattern prefix TPP1(P
′′) = a4S of tree pattern P ′′

from Example 2. Consider tree T1 from Example 1. Then occT1(TPP1(P
′′)) =

{(1, 11), (2, 8), (3, 5)}. ��

Lemma 2. Let (first, last) be an occurrence of a tree pattern prefix pref(P )
in a tree T , pref(P ) = P1SP2 . . . SPk, pref(T ) = a1a2 . . . afirstafirst+1 . . .
alast−1alast . . . an. Then pattern P matches tree T at node afirst. Node alast−1

is the rightmost leaf of the subtree rooted at node afirst. ��

We note that an occurrence of tree pattern P in tree T is an occurrence of tree
pattern prefix pref(P ) in pref(T ).

Example 9. Consider tree pattern P ′′ from Example 2. Tree pattern P ′′ has two
occurrences in tree T1: occ

T1(P ′′) = {(1, 14), (2, 11)}. ��

Lemma 3. Let T be a tree and P be a tree pattern. Let pairs (firstA, lastA)
and (firstB , lastB), firstA �= firstB, be occurrences of tree pattern prefix
TPP (P ) = P1SP2S . . . in tree T . If TPP (P ) �= pref(P ), then lastA �= lastB.

��

Algorithm 2. Verification with the use of arity checksum [17]

Name: VerifyArityChecksum
Input: String over a ranked alphabet str = a1a2 . . . an, n ≥ 1.
Output: Decision whether str = pref(T ) for a tree T .

1 Set ac(T ) := 1;
2 for i := 1 to n do
3 ac(str) := ac(str) +Arity(ai)− 1;
4 if i < n and ac(str) = 0 then
5 return false;

6 return ac(str) = 0 ? true : false;
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Algorithm 3. Finding Occurrence of Subpatterns [9]

Name: FindOccurrences
Input: Compact suffix automaton M(pref(T )), subpattern Pi of tree

pattern P
Output: occT (Pi)

1 Let q be the state of the M reached after processing Pi from input;
2 Find all paths from state q that lead to a final state of M ;
3 For each path of length length from state q to a final state, there is an
occurrence (n− length− |Pi|, n− length) of subpattern Pi;

Algorithm 4. Merging Occurrences

Name: MergeOccurrences
Input: A set prevOcc = occT (TPP (P )), a set subOcc = occT (Pk), an

array Rev
|pref(T )|
{}

Output: A set mergedOcc = occT (TPP (P )Pk)
1 mergedOcc := {};
2 foreach (first, last) in prevOcc do Rev

|pref(T )|
prevOcc [last] := first;

3 foreach (first′, last′) in subOcc do

4 if Rev
|pref(T )|
prevOcc [first′] �= −1 then

mergedOcc := mergedOcc ∪ {(Rev|pref(T )|
prevOcc [first′], last′)};

5 foreach (first, last) in prevOcc do Rev
|pref(T )|
{} [last] := −1;

6 return mergedOcc;

Theorem 1. Let TPP ′(P ) = P1SP2S . . . SPk−1SPk be a tree pattern prefix
of a tree pattern P . Let prevOcc = occT (TPP (P )) be a set of occurrences of
a tree pattern prefix TPP (P ) = P1SP2S . . . SPk−1S; let subOcc = occT (Pk)
be a set of occurrences of a subpattern Pk. Given prevOcc and subOcc on
input, Algorithm 4 (MergeOccurrences) computes occurrences mergedOcc =
occT (TPP ′(P )) of tree pattern prefix TPP ′(P ). ��

Example 10. Consider the prefix notation pref(P ′′) = a4Sa0SS of tree pattern
P ′′, illustrated in Figure 2. Tree pattern P ′′ can be rewritten as pref(P ′′) =
P1SP2SP3SP4, where P1 = a4, P2 = a0 and P3 = P4 = ε.

We consider the run of Algorithm 5 (MatchPattern) using tree pattern P ′′,
compact suffix automaton M(pref(T1)) and subtree jump table SJT(T1):

Algorithm 2 (VerifyArityChecksum) returns true for tree pattern P ′′ because
P ′′ is a valid tree pattern (if you replaced S symbols with a0 symbols in the
prefix notation of the pattern, you would get a prefix notation of a tree).

At i = 1, after Algorithm 3 (FindOccurrences) is executed, prevOcc = {(1, 2),
(2, 3), (3, 4)}. Using subtree jump table SJT (T1), prevOcc is then rewritten to
prevOcc = {(1, 11), (2, 8), (3, 5)}.
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Algorithm 5. Searching for occurrences of a tree pattern

Name: MatchPattern
Input: Tree pattern pref(P ) = P1SP2S . . . Pk, compact suffix automaton

M(pref(T )), subtree jump table SJT (T ), Array Rev
|pref(T )|
{}

Output: List of occurrences of tree pattern P
1 if not VerifyArityChecksum(P ) then
2 return ERROR – invalid pattern;
3 prevOcc := {};
4 for i := 1 to k do
5 if Pi �= ε then
6 occ := FindOccurrences(M ,Pi);
7 if i = 1 then prevOcc := occ;

8 else prevOcc := MergeOccurrences(prevOcc,occ,Rev
|pref(T )|
{} );

9 if i �= k then foreach occurrence (first, last) in prevOcc do
10 (first, last) := (first, SJT (T )[last]);

11 return prevOcc;

At i = 2, after Algorithm 3 is executed, occ = {((4, 5), (6, 7), (7, 8), (8, 9),
(10, 11), (11, 12), (12, 13)}. Using Algorithm 4 (MergeOccurences), prevOcc is
rewritten to prevOcc = {(1, 12), (2, 9)}. Using SJT (T1), prevOcc is then rewrit-
ten to prevOcc = {(1, 13), (2, 10)}.

At i = 3, algorithm uses SJT (T1) to rewrite prevOcc to prevOcc = {(1, 14),
(2, 11)}.

At i = 4, prevOcc is not modified because subpattern P4 is the empty string
and the algorithm returns set of occurrences {(1, 14), (2, 11)}.

Algorithm 5 has found two occurrences of tree pattern P ′′: the first one start-
ing at position 1 (ending at position 14) and the second one at position 2 (ending
at position 11) in pref(T1).

��

Theorem 2. Algorithm 5 (MatchPattern) finds all occurrences occT (P ) of tree
pattern P = P1SP2S . . . SPk in tree T . ��

5 Time and Space Complexities

Lemma 4. Algorithm 1 (ConstructSubtreeJumpTable) runs inO(n) time, where
n is the number of nodes of the subject tree T . Size of subtree jump table is n.

Proof. The algorithm is based on a depth-first search traversal of the subject
tree, where at each node only a constant amount work is performed (line 7).
Thus, its running time is bound by the number of nodes n. Counting assignment
operations, the running time is at worst 7n. ��

Theorem 3. Construction of index takes time O(n) time and produces index
of O(n) size.
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Proof. The creation of compact suffix automaton of sizeO(n) [9] and the creation
of an array of integers of size n require O(n) time. Algorithm 1 that creates the
subtree jump table is proved to be linear in time and space in Lemma 4. The
array Rev is created in time O(n). ��

Lemma 5. Algorithm 4 (MergeOccurrences) runs in O(|prevOcc|+ |occ|) time,
where |prevOcc|+ |occ| is the number of occurrences in both input sets.

Proof. The algorithm uses array Rev of size n prepared during the indexing
phase. This array is used for the fast lookup. The algorithm runs in three
loops whose lengths are determined by |prevOcc|+ |occ| and at each iteration in
each loop, the amount of work is constant. Thus, the total running time holds.
Counting assignment operations, the running time is at most 1 + 2|prevOcc| +
min(|occ|, |prevOcc|). ��

Theorem 4. Let pref(P ) = P1SP2S . . . SPk of length m be the prefix notation

of a tree pattern P . Algorithm 5 (MatchPattern) runs in O(m +
k∑

i=1

|occ′(Pi)|))

time, where occ′(Pi) = occ(Pi) if Pi �= ε; otherwise, occ′(Pi) = occ′(Pi−1).

Proof. Verification of the arity checksum for the pattern takes O(m) time. Find-
ing the occurrences of subpattern Pi �= ε takes time O(|Pi|+ |occ(Pi)|). Summing

over all subpatterns yields total time O(m+
k∑

i=1,Pi �=ε

|occ(Pi)|).

The merging time will be the sum of running times of all calls of Algorithm 4
with input size O(|occ(Pi)|), Pi �= ε. Algorithm 4 outputs a list whose size is
less than or equal to the minimum of the sizes of the two provided lists of
occurrences. Thus, remembering that merging is not performed for Pi = ε, it
must hold that the running time of all calls of Algorithm 4 will be less than or

equal to O(
k∑

i=1,Pi �=ε

(2 ∗ |occ(Pi)|)) = O(
k∑

i=1

|occ′(Pi)|). ��

6 Conclusion

A new and simple method of a full and linear index of a tree for tree patterns
has been presented. The presented algorithms can be modified also for unranked
trees. The modification is simple and is based on the use of the prefix bar linear
notation of the tree [17] instead of the prefix notation.
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programme.



A Full and Linear Index of a Tree for Tree Patterns 209

References

[1] Aho, A.V., Ullman, J.D.: The theory of parsing, translation, and compiling.
Prentice-Hall Englewood Cliffs, N.J (1972)

[2] Bille, P.: Pattern Matching in Trees and Strings. PhD thesis.FIT University of
Copenhagen, Copenhagen (2008)

[3] Bille, P., Gørtz, I.L., Vildhøj, H.W., Vind, S.: String indexing for patterns with
wildcards. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp.
283–294. Springer, Heidelberg (2012)

[4] Bille, P., Li Gørtz, I., Vildhøj, H.W., Wind, D.K.: String matching with variable
length gaps. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp.
385–394. Springer, Heidelberg (2010)

[5] Blumer, A., Blumer, J., Haussler, D., Ehrenfeucht, A., Chen, M.T., Seiferas, J.I.:
The smallest automaton recognizing the subwords of a text. Theor. Comput.
Sci. 40, 31–55 (1985)

[6] Cleophas, L.: Tree Algorithms. Two Taxonomies and a Toolkit. PhD the-
sis.Technische Universiteit Eindhoven, Eindhoven (2008)

[7] Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
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Grešákova 6, 040 01 Košice, Slovakia
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Abstract. We investigate the right quotient and the reversal operations
on the class of prefix-free languages. We get the tight bounds n − 1
and 2n−2 + 1 on the state complexity of right quotient and reversal,
respectively. To prove the tightness of the bound for reversal, we use a
ternary alphabet. Moreover, we prove that this bound cannot be met by
any binary language. In the binary case, we get a lower bound 2n−2 − 7
infinitely often. Our calculations show that this lower bound cannot be
exceeded.

1 Introduction

A language is prefix-free if it does not contain two distinct strings one of which
is a prefix of the other. Prefix-free languages are used in coding theory. In prefix
codes, like variable-length Huffman codes or country calling codes, there is no
codeword that is a proper prefix of any other codeword. With such a code, a
receiver can identify each codeword without any special marker between words.

Motivated by prefix codes, the class of prefix-free regular languages has been
recently investigated. It is known that every minimal deterministic automaton
recognizing a prefix-free regular language must have exactly one final state, from
which all transitions go to a dead state. Using this property, tight bounds on
the state complexity of basic operations such as union, intersection, concatena-
tion, star, and reversal have been obtained in [4] and strengthened in [8,10]. The
nondeterministic state complexity of basic regular operations has been investi-
gated in [5,8], while the complexity of combined operations on prefix-free regular
languages has been studied in [6].

In [7] it has been shown that the tight bound on the state complexity of cyclic
shift on prefix-free languages is (2n−3)n−2. To prove the tightness of this bound,
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the authors used a quaternary alphabet, and they proved that this bound cannot
be met by any ternary languages. On the other hand, they showed that lower
bounds in the binary and ternary cases are still exponential.

In this paper, we investigate the right quotient and the reversal operations on
the class of prefix-free languages. In the case of right quotient, we get an upper
bound n−1 on its state complexity, and we prove that it is tight for an alphabet
with at least two symbols. Recall that in the general case of regular languages,
the tight bound is n [20].

In the second part of the paper, we study the reversal operation defined as
LR = {wR | w ∈ L}, where wR stands for the string w written backwards. The
operation preserves regularity as shown already by Rabin and Scott in 1959 [14]:
A nondeterministic finite automaton for the reverse of a regular language can
be obtained from an automaton recognizing the given language by swapping
the role of initial and final states, and by reversing the transitions. This gives
the upper bound 2n on the state complexity of reversal. Its tightness in the
ternary case has been pointed out already by Mirkin [13], who noticed that a
ternary Lupanov’s witness automaton for determinization [12] is a reverse of
a deterministic automaton. The binary witness languages meeting the upper
bound 2n have been presented in [9,11].

In the case of prefix-free languages, the upper bound on the state complexity
of reversal is 2n−2+1, and in the first part of Section 4, we present a simple proof
of its tightness in the ternary case. Then, we show that this upper bound cannot
be met by any binary language. In the case of binary prefix-free languages, we get
a lower bound 2n−2−7 whenever n �≡ 2 ( mod 3), and 2n−3−6 if n ≡ 2 ( mod 3).

We also did some calculations. While for some small values of n our lower
bounds can be exceeded, starting with n = 9, we were not be able to find any
language exceeding our lower bounds 2n−2− 7 in the case of n �≡ 2 (mod 3). We
strongly conjecture that this is also an upper bound. However, we think that it
is almost impossible to prove this conjecture.

2 Preliminaries

In this section, we recall some basic definitions and preliminary results. For
further details and all unexplained notions, the reader may refer to [17,19].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet Σ
including the empty string ε. A language is any subset of Σ∗. The cardinality of
a finite set A is denoted by |A|, and its power-set by 2A.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, δ, I, F ),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → 2Q is the
transition function which is extended to the domain 2Q×Σ∗ in the natural way,
I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. The
language accepted by A is the set L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}.

An NFA A is deterministic (DFA) (and complete) if |I| = 1 and |δ(q, a)| = 1
for each q in Q and each a in Σ. In such a case, we write δ(q, a) = q′ instead of
δ(q, a) = {q′}. A non-final state q is a dead state if δ(q, a) = q for each a in Σ.
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The state complexity of a regular language L, sc(L), is the number of states in
the minimal DFA for L. It is well known that a DFA is minimal if all its states
are reachable from its initial state, and no two of its states are equivalent.

Every NFA A = (Q,Σ, δ, I, F ) can be converted to an equivalent DFA A′ =
(2Q, Σ, ·, I, F ′), where R · a = δ(R, a) and F ′ = {R ∈ 2Q | R ∩ F �= ∅} [14]. The
DFA A′ is called the subset automaton of the NFA A. The subset automaton
need not be minimal since some of its states may be unreachable or equivalent.

The reverse wR of a string w is defined as εR = ε and if w = va for a string v
in Σ∗ and a symbol a in Σ, then wR = avR. The reverse of a language L is the
language LR = {wR | w ∈ L}. The reverse of a DFA A = (Q,Σ, δ, s, F ) is the
NFA AR obtained from A by reversing all the transitions and by swapping the
role of initial and final states, that is, AR = (Q,Σ, δR, F, {s}), where δR(q, a) =
{p ∈ Q | δ(p, a) = q}. The reverse of a DFA A recognizes the language L (A)

R
.

For the sake of completeness, we give a short proof of the following fact [1,2,13].

Lemma 1 ([1,2,13]). Let A be a DFA, in which all states are reachable. Then
all the states of the subset automaton of the NFA AR are pairwise distinguishable.

Proof. Let q be a state of the NFA AR. Since q is reachable in A, there is a string
wq that is accepted by AR from the state q. Moreover, the string wq cannot be
accepted by AR from any other state because otherwise the automaton A would
not be deterministic. Now, two distinct subsets of the subset automaton of the
NFA AR differ in a state q, and the string wq distinguishes the two subsets. ��

If w = uv for some strings u and v, then u is a prefix of w. If, moreover, the
string v is non-empty, then u is a proper prefix of w.

A language is prefix-free if it does not contain two distinct strings one of which
is a prefix of the other. It is known that a language L is prefix-free if and only
if the minimal DFA for L contains exactly one final state that goes to the dead
state on every input symbol [4].

3 Right Quotient on Prefix-Free Languages

Recall that the right quotient of a language L by a string w is the language
L/w = {x | xw ∈ L}, and the right quotient of a language L by a language K
is the language L/K =

⋃
w∈K L/w.

If a language L is accepted by an n-state DFA A = (Q,Σ, δ, s, F ), then the
language L/K is accepted by a DFA that is exactly the same as the DFA A
except for the set of final states that consists of all the states q of A such that
there exists a string w in K with δ(q, w) ∈ F [20]. Thus sc(L/K) ≤ n. The
tightness of this upper bound is shown by taking the language K = {ε} with
sc(K) = 2 in [20].

We first show that the tightness can be shown by taking a language K with
sc(K) = m for every m with m ≥ 2.

Proposition 1. Let m,n ≥ 2. There exists binary regular languages K and L
with sc(K) = m and sc(L) = n such that sc(L/K) = n.
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Proof. Let K = {ε, bm−2} and L = {an−2}. Then sc(K) = m, sc(L) = n and
L/K = L. ��

Now, we consider the right quotient operation on prefix-free languages. Our aim
is to show that the tight bound in the prefix-free case is n − 1. We start with
the upper bound.

Lemma 2. Let m,n ≥ 3. Let K and L be prefix-free languages with sc(K) = m
and sc(L) = n. Then sc(L/K) ≤ n− 1.

Proof. Since L is prefix-free, the minimal DFA for L has a unique final state f
that goes to the dead state on every symbol. Since m ≥ 3 and K is prefix-free,
the empty string is not in K. Therefore in the DFA for L/K, the state f is
non-final, and it is equivalent to the dead state. This gives the upper bound. ��

Our next lemma gives the matching lower bound in the binary case.

Lemma 3. Let m,n ≥ 3. There exist binary prefix-free languages K and L with
sc(K) = m and sc(L) = n such that sc(L/K) = n− 1.

Proof. Let K = {a, bm−2} and L = {an−2}. Then the languages K and L are
prefix-free with sc(K) = m and sc(L) = n. Next we have L/K = {an−3}, and
so sc(L/K) = n− 1. ��

Taking into account also the small values of m and n, we get the following result.

Theorem 1 (Right Quotient on Prefix-Free Languages; |Σ| ≥ 2). The
state complexity of right quotient on prefix-free languages over an alphabet with
at least two symbols is given by the function

f(m,n) =

⎧⎪⎨⎪⎩
1, if m = 1 or n = 1,

n, if m = 2 and n >= 2,

n− 1, otherwise.

Proof. If m = 1 or n = 1, then K or L must be empty, and the language L/K
is empty as well. If m = 2, then K = {ε}, and therefore L/K = L. The tight
bound n− 1 in the case of m,n ≥ 3 is given by Lemma 2 and Lemma 3. ��

The situation is different in the case of a unary alphabet. Recall that the only
unary prefix-free language with state complexity n, where n ≥ 2, is {an−2}.

Theorem 2 (Right Quotient on Prefix-Free Languages; |Σ| = 1). The
state complexity of right quotient on unary prefix-free languages is given by the
function

f(m,n) =

{
1, if m = 1 or m > n,

n−m+ 2, otherwise.

Proof. If m = 1 or m > n, then L/K = ∅. Otherwise, we have K = {am−2} and
L = {an−2}. Thus L/K = {an−m} and sc(L/K) = n−m+ 2. ��
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Fig. 1. A DFA of a ternary prefix-free language meeting the bound 2n−2+1 for reversal

4 Reversal on Prefix-Free Languages

Recall that a minimal DFA A accepting a prefix-free language L has exactly
one final state f that goes to the dead state on every symbol of the input
alphabet. To construct an NFA for the language LR from the DFA A, omit
the dead state, make the state f initial, make the initial state of A final, and
reverse all the transitions. In the resulting NFA, no transition goes to the state
f , and therefore, in the corresponding subset automaton, no subset containing
f is reachable, except for {f}. This gives an upper bound 2n−2 + 1 on the state
complexity of LR [4].

To meet this upper bound it is enough to take a language Ln−2c, where Ln−2

is the language over {a, b} accepted by an (n− 2)-state DFA meeting the upper
bound 2n−2 [9,11,16]. However, having a ternary alphabet, we can provide a
witness language with a very simple proof of reachability of 2n−2 + 1 subsets.

Lemma 4. Let n ≥ 3. There exists a ternary prefix-free regular language L with
sc(L) = n such that sc(LR) = 2n−2 + 1.

Proof. Let L be the ternary prefix-free language accepted by the DFA shown in
Fig. 1. Construct an NFA for the language LR as shown in Fig. 2, and consider
the corresponding subset automaton. The initial state of the subset automaton
is {f}, and it goes by ai+1 to the singleton set {i} with 0 ≤ i ≤ n−3, and by b to
the empty set. Let 1 ≤ k ≤ n−3 and assume that each subset of {0, 1, . . . , n−3}
of size k is reachable. Let S = {i0, i1, . . . , ik} be a subset of {0, 1, . . . , n−3} with
0 ≤ i0 < i1 < · · · < ik ≤ n − 3. Then the set {0, i2 − i1, i3 − i1 . . . , ik − i1} is
reachable by the induction hypothesis, and it goes to S by the string bci1−i0−1ai0 .
This proves the reachability of 2n−2 + 1 subsets. By Lemma 1, all these subsets
are pairwise distinguishable, which completes the proof. ��

Fig. 2. The reverse of the DFA from Fig. 1
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4.1 Binary Case

The aim of this subsection is to show that the upper bound 2n−2 + 1 on the
state complexity of reversal cannot be met by any binary prefix-free language.
On the other hand, we show that the bound 2n−2 − 7 can be met by a binary
prefix-free language infinitely many often. Let us start with the upper bound.

Lemma 5. Let n ≥ 5. Let L be a binary prefix-free language with sc(L) = n.
Then sc(LR) < 2n−2 + 1.

Proof. Let A be a minimal DFA over {a, b} for a prefix-free language L with
the state set {1, 2, . . . , n− 2, f, d}, of which f is a unique final state and d is the
dead state. Since automaton A is deterministic and complete, each of its states
has exactly two out-transitions; one on symbol a and the other on symbol b.
It means that in the corresponding reversed automaton AR, each state has just
two in-transitions, one on a and the other on b. This is a very important fact
that we will use in the next considerations.

Since the language L is prefix-free, the DFA A has just one final state f
and one dead state, and moreover, both transitions from the final state go into
the dead state. Therefore, in the reversed automaton AR, the dead state is
unreachable, and we can omit it. The initial state of AR is f and no in-transitions
go to f . It follows that in the subset automaton of the NFA AR, no subset
containing state f is reachable, except for the initial set {f}. Let δR be the
transition function of the NFA AR.

(1) First, assume that there is a state q that is reached from f by both a
and b, that is, q ∈ δR(f, a)∩ δR(f, b). It follows that no other transitions can go
to state q. Therefore, just two sets containing the state q are reachable in the
subset automaton, namely, δR(f, a) and δR(f, b). So there are at least 2n−3 − 2
unreachable sets. Since n ≥ 5, at least two sets are unreachable in this case.

(2) Now, assume that no state of AR is reached from f by both a and b.
Without loss of generality, we may assume that δR(f, a) is non-empty.

(2.1) If we have δR(f, a) = {1, 2, . . . , n−2}, then no other transition on a may
go to each of the states in {1, 2, . . . , n − 2}. On the other hand, each of these
states must have an in-transition on b from one of these states. Therefore, in the
subset automaton, only the sets {f}, {1, 2, . . . , n− 2}, and ∅ are reachable.

(2.2) Next, assume that δR(f, a) �= {1, 2, . . . , n − 2}, and, without loss of
generality, let 1 be a state in δR(f, a). Since 1 must also have an in-transition
on b, there must be a state i in {1, 2, . . . , n− 2} and such that i goes to 1 by b.

(2.2.1) If i goes also to some other state j by b, that is δR(i, b) ⊇ {1, j}, then
every reachable subset containing 1 either contains also j, or is equal to δR(f, a).
This gives at most 2n−4 + 1 subsets containing state 1, and therefore, at least
2n−4 − 1 subsets are unreachable. Since n ≥ 5, at least one set is unreachable.

(2.2.2) Let i go only to 1 by b, that is δR(i, b) = {1}. To meet the upper
bound, all two-element subsets {1, 2}, {1, 3}, . . . , {1, n− 2} must be reached.

(2.2.2.1) First, assume that none of them is reached from {f} by a. Then, the
set {1, 2} must be reached by b from a set containing states i and j2, where j2 is
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a state in {1, 2, . . . , n− 2} such that j2 goes only to 2 by b in AR. Thus, to reach
all the above mentioned two-element sets, there must be pairwise distinct states
j2, j3, . . . , jn−2, all different from i, and such that δR(j�, b) = {�}. However, then
the set {1, 2, . . . , n − 2} goes to itself by b, and since b is a permutation on
{1, 2, . . . , n− 2}, the set {1, 2, . . . , n− 2} cannot be reached by b from any other
set. Since it could be reached by a only from {f}, and we assumed that it is not,
this set is unreachable in this case.

(2.2.2.2) Now assume that one of these two-element subsets is reached from f
by a, and without loss of generality, let it be the set {1, 2}. Then we must be able
to reached all subsets {1, 3}, {1, 4}, . . . , {1, n− 2}, as well as the set {1, 2, 3}. To
do this, similarly as above, there must be pairwise distinct states j3, j4, . . . , jn−2

with δ(j�, b) = {�}. Then, to reach {1, 2, 3}, there must be another state j2 with
δ(j2, b) = {2}. In the same way as above, we show that the set {1, 2, . . . , n− 2}
is unreachable.

Hence we have shown that in each case, some sets are unreachable, and the
lemma follows. ��
To get a lower bound, we could use a similar method as described in [3]. We could
encode symbols a, b, c by 00, 01, 11, respectively, and construct a 2n-state prefix-
free DFA over {0, 1} for the language Ln−2 c, where Ln−2 is an (n − 2)-state
Šebej’s binary automaton [9] meeting the upper bound 2n−2 for reversal. The
corresponding subset automaton for reversal will have at least 2n−2+1 reachable
states. This would result in a lower bound 2n/2 on the state complexity of reversal
of binary prefix-free languages.

However, in some cases we can do much better. In the next part of this
subsection, we show that the bound 2n−2−7 for reversal can be met by a binary
prefix-free language infinitely many often.

First, let us recall the well-known Chinese Remainder Theorem [18, p. 130]:
Ifm1,m2, . . . ,mn are pairwise relatively prime and greater than 1, and a1, a2, . . . ,
an are integers, then there is a solution x to the following simultaneous
congruences:

x ≡ a1 (mod m1),
x ≡ a2 (mod m2),

· · ·
x ≡ an (mod mn).

Now, consider the n-state NFA show in Fig. 3, in which the transitions are
defined as follows:

• on a, there are two cycles (q0, q1, q2) and (0, 1, . . . , n− 4);
• on b, there is a cycle (q2, 0), state q0 goes to {q0, q1}, each state i with
1 ≤ i ≤ n− 5 goes to {i}, and states q1 and n− 4 go to the empty set.

Let us prove the following observation.

Lemma 6. Let n ≥ 5. If n �≡ 0 (mod 3), then the subset automaton of the NFA
shown in Fig. 3 has 2n − 8 reachable subsets.
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Fig. 3. A binary n-state NFA with 2n−8 reachable subsets in the corresponding subset
automaton

Proof. Since n �≡ 0 (mod 3), the numbers 3 and n− 3 are relatively prime, and
the Chinese Remainder Theorem guarantees that there always exists an integer
x(i, j) such that

x(i, j) ≡ i (mod 3), (1)

x(i, j) ≡ j (mod (n− 3)). (2)

We will use this result several times in our proof.
The proof will have four parts, in which we show that the following subsets

are reachable in the subset automaton:
(a) all the subsets of {q0, q1, q2};
(b) all the subsets {q0, q1} ∪ S with S ⊆ {0, 1, . . . , n− 5};
(c) all the subsets R ∪ S with R ⊆ {q0, q1, q2} and S ⊆ {0, 1, . . . , n− 5};
(d) all the subsets R ∪ S with R ⊆ {q0, q1, q2} and S � {0, 1, . . . , n− 4}.

Thus, only eight subsets R ∪ {0, 1, . . . , n − 4} with R ⊆ {q0, q1, q2} will be un-
reachable, and the lemma will follow.

(a) The initial subset is {q0}. From this set, we can reach subsets {q1} and
{q2} by a and aa, respectively. By b, the set {q0} goes to {q0, q1}, and we again
use the strings a and aa to reach {q1, q2} and {q0, q2}. The empty set is reached
from {q1} by b, and the set {q0, q1, q2} is reached from {q0, q2} by bb.

(b) We prove the reachability of subsets {q0, q1}∪S with S ⊆ {0, 1, . . . , n−5}
by induction on the size of S. The basis, with |S| = 0, is proved in case (a).
Let S = {i1, i2, . . . , ik}, where 1 ≤ k ≤ n− 4 and 0 ≤ i1 < i2 < · · · < ik ≤ n− 5,
be a set of size k. Then the set {q0, q1}∪{i2− i1, . . . , ik− i1} is reachable by the
induction hypothesis, and since we have

{q0, q1} ∪ {i2 − i1, . . . , ik − i1} ax(2,0)

−−−−→ {q0, q2} ∪ {i2 − i1, . . . , ik − i1} b−→

{q0, q1} ∪ {0, i2 − i1, . . . , ik − i1} ax(0,i1)

−−−−−→ {q0, q1} ∪ {i1, i2, . . . , ik},

the set {q0, q1} ∪ S is reachable; remind that x(i, j) is a solution of (1) and (2).
This completes the second part.

(c) Each set {q0, q1} ∪ S goes to the set {q1, q2} ∪ S by the string ax(1,0), and
it goes to {q0, q2} ∪ S by ax(2,0). Next, we have

{q0, q2} ∪ S
bb−→ {q0, q1, q2} ∪ S, and

{q1, q2} ∪ S
bb−→ {q2} ∪ S

ax(1,0)

−−−−→ {q0} ∪ S
ax(1,0)

−−−−→ {q1} ∪ S
bb−→ S,
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Fig. 4. The prefix-free DFA meeting the bound 2n−2 − 7 for reversal; n �≡ 2 (mod 3)

which completes the third part.

(d) Let R ⊆ {q0, q1, q2} and S � {0, 1, . . . , n − 4}. If n − 4 /∈ S, then R ∪ S
is reachable as shown in (a)-(c). Let n − 4 ∈ S. Since S is a proper subset of
{0, 1, . . . , n− 4}, there is a state i with i /∈ S. Let S′ = {s+ (n− 4− i) | s ∈ S}.
Then n−4 /∈ S′, so the set R∪S′ is reachable as shown in (a)-(c). The set R∪S′

goes to the set R ∪ S by the string ax(0,i+1). This proves the fourth part.
Now let S = {0, 1, . . . , n − 4}. Then no set R ∪ S can be reached from any

set by symbol b since no b goes to the state n − 4. However, the symbol a is
a permutation on the state set {q0, q1, q2} ∪ {0, 1, . . . , n− 4}, and in the subset
automaton we have three cycles

{q0, q1, q2} ∪ S
a−→ {q0, q1, q2} ∪ S,

{q0, q1} ∪ S
a−→ {q1, q2} ∪ S

a−→ {q0, q2} ∪ S
a−→ {q0, q1} ∪ S, and

{q0} ∪ S
a−→ {q1} ∪ S

a−→ {q2} ∪ S
a−→ {q0} ∪ S.

No subset on these cycles can be reached from any other subset on b since all
these subsets contain n − 4. Since a is a permutation symbol, the sets on the
cycles cannot be reached on a from any set outside the cycles. Therefore, the
eight sets R∪ S with R ⊆ {q0, q1, q2} and S = {0, 1, . . . , n− 4} are unreachable.
This concludes the proof. ��

Using the above result, we can get a lower bound 2n−2−7 on the state complexity
of the reversal on binary prefix-free languages infinitely many times.

Lemma 7. Let n ≥ 5 and n �≡ 2 (mod 3). There exists a binary prefix-free
language L with sc(L) = n such that sc(LR) = 2n−2 − 7.

Proof. Consider the binary prefix-free language accepted by the DFA A shown
in Fig. 4. In the subset automaton of the NFA AR, the initial subset is {n− 1},
and it goes to {1} by baba. Since we have (n − 2) �≡ 0 (mod 3), by Lemma 6,
from the set {1} we can reach 2n−2− 8 subsets of {1, 2, . . . , n− 2} in the subset
automaton of the NFA AR. This gives 2n−2− 7 reachable subsets. By Lemma 1,
all these subsets are pairwise distinguishable, and the lemma follows. ��

In the next lemma, we consider the remaining cases of n.

Lemma 8. Let n ≥ 5 and n ≡ 2 (mod 3). There exists a binary prefix-free
language L with sc(L) = n such that sc(LR) = 2n−3 − 6.
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Fig. 5. The prefix-free DFA meeting the bound 2n−3 − 6 for reversal; n ≡ 2 (mod 3)

Proof. This time, we consider the binary prefix-free language accepted by the
DFA shown in Fig. 5. Since we have (n − 3) �≡ 0 (mod 3), the lower bound
2n−3 − 6 again follows from Lemma 6. ��

Let us summarize the results of this subsection in the following theorem.

Theorem 3 (Reversal on Binary Prefix-Free Languages). Let n ≥ 5.
Let L be a binary prefix-free language with sc(L) = n. Then sc(LR) < 2n−2 + 1.
The bound 2n−2−7 can be met whenever n �≡ 2 ( mod 3), and the bound 2n−3−6
can be met whenever n ≡ 2 (mod 3). ��

Hence, although the upper bound 2n−2 − 1 cannot be met by binary prefix-free
languages, the lower bound is smaller just by eight if n �≡ 2 (mod 3), and it is
still exponential in 2n−O(1) in the remaining cases.

4.2 Calculations

We did some calculations concerning the reversal operation on binary prefix-free
languages. Our result are summarized in Table 1.

Table 1. Calculations: Reversal on binary prefix-free languages

n DFA A DFA B max

5 8 8 8

6 9 = 24 − 7 14 14

7 25 = 25 − 7 27 27

8 21 59 59

9 121 = 27 − 7 121 121

10 249 = 28 − 7 246 ≥ 249

11 307 500 ≥ 500

12 1017 = 210 − 7 1007 ≥ 1017

13 2041 = 211 − 7 2026 ≥ 2041

14 3207 4067 ≥ 4081

15 8185 = 213 − 7 8153 ≥ 8185

16 16377 = 214 − 7 16333 ≥ 16377

17 29071 32700 ≥ 32700
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Fig. 6. The DFA A given by Lemma 7 (top), and the DFA B (bottom)

Notice that while for small values of n with n �≡ 2 (mod 3), our lower bound
2n−2 − 7 given by Lemma 7 can be exceeded, starting with n = 9 we were not
be able to find a binary prefix-free language exceeding this lower bound. We
strongly conjecture that this is also an upper bound, although, to prove this
seems to be almost impossible.

For the values of n with n ≡ 2 (mod 3), the binary language recognized by
the DFA B shown in Fig. 6 exceeds our lower bound 2n−3 − 6, however, we
are not able to get the state complexity of its reversal for an arbitrary n. Next,
notice that even the language recognized by the DFA A in Fig. 6 exceeds our
lower bound 2n−3−6 that we have obtained in Lemma 8 by using a modification
of the DFA A.

5 Conclusions

We investigated the right quotient and the reversal operations on the class of
prefix-free languages. We have obtained the upper bound n − 1 on the state
complexity of right quotient, and we proved that it is tight in the binary case.

In the case of reversal on prefix-free languages, we showed that the upper
bound 2n−2 + 1 is tight in the ternary case. Moreover, we proved that this
bound cannot be met by any binary prefix-free language. In the binary case, we
obtained the lower bound 2n−2 − 7 whenever n �≡ 2 (mod 3). Our calculations
show that this could also be an upper bound, however, to prove this seems to
be almost impossible.
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16. Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D.
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Abstract. We prove that the tight bound on the nondeterministic state
complexity of complementation on prefix-free and suffix-free languages
is 2n−1. To prove tightness, we use a ternary alphabet, and we show that
this bound cannot be met by any binary prefix-free language. On non-
returning languages, the upper bound is 2n−1+1, and it is tight already
in the binary case. We also study the unary case in all three classes.

1 Introduction

The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \L, where Σ∗ is the set of all strings over an alphabet Σ. The comple-
mentation is an easy operation on regular languages represented by deterministic
finite automata (DFAs) since to get a DFA for the complement of a regular lan-
guage, it is enough to interchange the final and non-final states in a DFA for
this language.

On the other hand, complementation on regular languages represented by
nondeterministic finite automata (NFAs) is an expensive task. First, we have
to apply the subset construction to a given NFA, and only after that, we may
interchange the final and non-final states. This gives an upper bound 2n.

Sakoda and Sipser [17] gave an example of languages over a growing alpha-
bet size meeting this upper bound on the nondeterministic state complexity of
complementation. Birget claimed the result for a three-letter alphabet [3], but
later corrected this to a four-letter alphabet. Ellul [7] gave binary O(n)-state
witness languages. Holzer and Kutrib [12] proved the lower bound 2n−2 for a
binary n-state NFA language. Finally, a binary n-state NFA language meeting
the upper bound 2n was described by Jirásková in [15]. In the unary case, the

complexity of complementation is known to be in eΘ(
√
n lnn) [12, 14].

In this paper, we investigate the complementation operation on prefix-free,
suffix-free, and non-returning languages. A language is prefix-free if it does not
contain two distinct strings one of which is a prefix of the other. The suffix-free
languages are defined in a similar way. We call a language non-returning if a
minimal NFA for this language does not have any transitions going to the initial
state.
� Research supported by grant APVV-0035-10.
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Prefix-free languages are used in coding theory. In prefix codes, like variable-
length Huffman codes or country calling codes, there is no codeword that is a
proper prefix of any other codeword. With such a code, a receiver can identify
each codeword without any special marker between words.

The complexity of basic regular operations on prefix-free and suffix-free lan-
guages, both in the deterministic and nondeterministic cases, was studied by Han
at al. in [8–11]. For the nondeterministic state complexity of complementation,
they obtained an upper bound 2n−1 + 1 in both classes, and lower bounds 2n−1

and 2n−1− 1 for prefix-free and suffix-free languages, respectively. The question
of a tight bound remained open. In this paper, we solve this open question, and
prove that in both classes, the tight bound is 2n−1. To prove tightness, we use
a ternary alphabet, and in the case of prefix-free languages, we show that this
bound cannot be met by any binary language.

Eom et al. in [6] investigated also the class of so called non-returning reg-
ular languages, the minimal DFA for which has no transitions going to the
initial state. It is known that every suffix-free language is non-returning, but
the converse does not hold. Here we study the complementation on so called
non-returning NFA languages, defined as languages represented by a minimal
non-returning NFA. We show that the upper bound on the complexity of com-
plementation in this class is 2n−1 + 1, and we prove that it is tight already in
the binary case.

We also study the unary case, and prove that the nondeterministic state com-
plexity of complementation is in Θ(

√
n) in the class of prefix-free or suffix-free

languages, and it is in 2Θ(
√
n logn) in the class of non-returning NFA languages.

To prove the minimality of nondeterministic finite automata, we use a fooling
set lower-bound technique [1, 3, 5, 13].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},
(F1) xiyi ∈ L, and
(F2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 1 ([3, 5, 13]). Let F be a fooling set for a language L. Then every
NFA (with multiple initial states) for the language L has at least |F| states. ��

2 Complement on Prefix-Free Languages

Let us start with complementation on prefix-free languages. The following two
observations are easy to prove.

Proposition 1 ([9]). Let n ≥ 2 and A = (Q,Σ, δ, s, F ) be a minimal n-state
DFA for a language L. Then L is prefix-free if and only if A has a dead state qd
and exactly one final state qf such that δ(qf , a) = qd for each a in Σ. ��

Proposition 2 ([10]). Let N = (Q,Σ, δ, s, F ) be a minimal NFA for a prefix-
free language. Then N has exactly one final state qf , and δ(qf , a) = ∅ for each
a in Σ. ��
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Han et al. in [10] obtained an upper bound 2n−1 +1 and a lower bound 2n−1

on the nondeterministic complexity of complementation on prefix-free languages.
Our first result shows that the upper bound can be decreased by one. Recall that
the nondeterministic state complexity of a regular language L, nsc(L), is defined
as the smallest number of states in any NFA recognizing the language L.

Lemma 2. Let n ≥ 3. Let L be a prefix-free regular language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1.

Proof. Let N be an n-state NFA for a prefix-free language L. Construct the
subset automaton of the NFA N and minimize it. Then, all the final states are
equivalent, and they go to the dead state on each input. Thus L is accepted by
a DFA A = (Q,Σ, δ, s, {qf}) with at most 2n−1 + 1 states, with a dead state
qd which goes to itself on each symbol, and one final state qf which goes to the
dead state on each symbol, thus δ(qd, a) = qd and δ(qf , a) = qd for each a in Σ.

To get a DFA for the language Lc, we interchange the final and non-final
states in the DFA A, thus Lc is accepted by the (2n−1 + 1)-state DFA Ac =
(Q,Σ, δ, s,Q\{qf}). We show that using nondeterminism, we can save one state,
that is, we describe a 2n−1-state NFA for the language Lc.

Construct a 2n−1-state NFA N c for Lc from the DFA Ac by omitting state qd,
and by replacing each transition (q, a, qd) by two transitions (q, a, qf ) and (q, a, s).
Formally, construct an NFA N c = (Q \ {qd}, Σ, δ′, s, Q \ {qf , qd}), where

δ′(q, a) =

{
{δ(q, a)}, if δ(q, a) �= qd,

{qf , s}, if δ(q, a) = qd.

Let us show that L(N c) = L(Ac).
Let w = a1a2 · · · ak be a string in L(Ac), and let s, q1, q2, . . . , qk be the com-

putation of the DFA Ac on the string w. If qk �= qd, then each qi is different
from qd since qd goes to itself on each symbol. It follows that s, q1, q2, . . . , qk is
also a computation of the NFA N c on the string w. Now assume that qk = qd.
Then there exists an � such that the states q�, q�+1, . . . , qk are equal to qd, and
the states s, q1, . . . , q�−1 are not equal to qd. If � = k, then δ(qk−1, ak) = qd,
so s ∈ δ′(qk−1, ak). It follows that s, q1, q2, . . . , qk−1, s is an accepting com-
putation of N c on w. If � < k, then we have q� = q�+1 = · · · = qk = qd,
and therefore the string w is accepted in N c through the accepting compu-
tation s, q1, . . . , q�−1, qf , qf , . . . , qf , s since we have δ′(q�−1, a�) = {qf , s}, and
δ′(qf , a) = {qf , s} for each a in Σ.

Now assume that a string w = a1a2 · · · ak is rejected by the DFA Ac. Let
s = q0, q1, q2, . . . , qk be the rejecting computation of the DFA Ac on the string
w. Since the only non-final state of the DFA Ac is qf , we must have qk = qf .
It follows that each state qi is different from qd, and therefore in the NFA N c,
we have δ′(qi−1, ai) = {δ(qi−1, ai)}. This means that s = q0, q1, q2, . . . , qk is a
unique computation of N c on w. Since this computation is rejecting, the string
w is rejected by the NFA N c. ��
To prove tightness, we use the same languages as in [10]. We provide a simple
alternative proof, in which we use a fooling-set lower bound technique.
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Fig. 1. An NFA of a binary regular language K with nsc(Kc) = 2n−1

Lemma 3. Let n ≥ 3. There exists a ternary prefix-free language such that
nsc(L) = n and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Fig. 1
with n− 1 states. Set L = K · c. Then L is a prefix-free language recognized by
an n-state NFA in Fig. 2. As shown in [15, Theorem 5], there exists a fooling
set F = {(xS , yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc.
Then the set of pairs of strings F ′ = {(xS , yS · c) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set of size 2n−1 for the language Lc. Hence, by Lemma 1, every NFA for
the language Lc requires at least 2n−1 states. ��

We summarize the results given in Lemma 2 and Lemma 3 in the following the-
orem which provides the tight bound on the nondeterministic state complexity
of complementation on prefix-free languages. This solves an open problem from
[10].

Theorem 1 (Complement on Prefix-Free Languages, |Σ| ≥ 3). Let n ≥ 3.
Let L be a prefix-free regular language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1, and the bound is tight if |Σ| ≥ 3. ��

Notice that the bound 2n−1 is tight for an alphabet with at least three symbols.
In Section 6, we prove that this bound cannot be met by any binary prefix-free
language.

3 Complement on Suffix-Free Languages

In this section, we study the complementation operation on suffix-free languages.
We first recall some definitions and known facts.

Fig. 2. An NFA of a ternary prefix-free language L with nsc(Lc) = 2n−1
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An automaton A = (Q,Σ, δ, s, F ) is non-returning if the initial state s has no
in-transitions, that is, for each state q and each symbol a, we have s /∈ δ(q, a).

Proposition 3 ([8, 11]). Every minimal DFA (NFA) for a non-empty suffix-
free language is non-returning.

Proposition 4. Let A = (Q,Σ, δ, s, F ) be a minimal DFA for a non-empty
suffix-free regular language. Then A has a dead state d. Moreover, for each symbol
a in Σ, there is a state qa with qa �= d such that δ(qa, a) = d.

Proof. Let a ∈ Σ. Consider the string am withm ≥ |Q|. We must have δ(s, am) =
d, where d is a dead state, because otherwise, the DFA A would accept strings
amw and a�w with � < m, which would be a contradiction with suffix-freeness
of L(A). Since s �= d, there is a state qa with qa �= d such that δ(qa, a) = d. ��

Han and Salomaa in [11] have obtained an upper bound 2n−1 + 1 on the non-
deterministic state complexity of complementation on suffix-free languages. Our
next result shows that this upper bound can be again decreased by one.

Lemma 4. Let n ≥ 3. Let L be a suffix-free regular language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1.

Proof. Let N be a non-returning n-state NFA for a suffix-free language L. The
subset automaton A = (Q,Σ, δ, s, F ) of the NFA N has at most 1+2n−1 reach-
able states since the only reachable subset that contains the initial state of N
is the initial state of the subset automaton. The initial state of the subset au-
tomaton is non-final since L does not contain the empty string.

After interchanging the final and non-final states, we get a DFA Ac = (Q,Σ, δ,
s,Q \ F ) for Lc of 1 + 2n−1 states. The initial state of Ac is final and has no
in-transitions. The state d is final as well, and it accepts every string.

Construct a 2n−1-state NFA N c from the DFA Ac as follows. Let Qd be the
set of states of Ac different from d and such that they have a transition to the
state d, that is, Qd = {q ∈ Q \ {d} | there is an a in Σ such that δ(q, a) = d};
remind that by Proposition 4, for each symbol a, there is a state qa in Qd that
goes to d by a. Replace each transition (q, a, d) by transitions (q, a, p) for each
p in Qd, and moreover add the transition (q, a, s). Then, remove the state d.
Formally, let N c = (Q \ {d}, Σ, δ′, s, (Q \ {d}) \ F ), where

δ′(q, a) =

{
{δ(q, a)}, if δ(q, a) �= d,

{s} ∪Qd, if δ(q, a) = d.

In a similar way as in the case of prefix-free languages, it can be shown that
L(N c) = L(Ac). ��

As for a lower bound, Han and Salomaa in [11] claimed that there exists a ternary
suffix-free language meeting the bound 2n−1−1. In the next lemma, we increase
this lower bound by one.
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Fig. 3. An NFA of a ternary suffix-free language L with sc(Lc) = 2n−1

Lemma 5. Let n ≥ 3. There exists a ternary suffix-free language such that
nsc(L) = n and nsc(Lc) ≥ 2n−1.

Proof. Let K be the language accepted by the NFA over {a, b} shown in Fig. 1
with n−1 states. Set L = c ·K. Then L is a suffix-free language recognized by an
n-state NFA shown in Fig 3. As shown in [15, Theorem 5], there exists a fooling
set F = {(xS , yS) | S ⊆ {1, 2, . . . , n − 1}} of size 2n−1 for the language Kc.
Then the set of pairs of strings F ′ = {(c · xS , yS) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set of size 2n−1 for the language Lc. ��

We can summarize the results of this section in the following theorem which
provides the tight bound on the nondeterministic state complexity of comple-
mentation on suffix-free languages over an alphabet with at least three symbols.
Whether or not this bound can be met by binary languages remains open.

Theorem 2 (Complement on Suffix-Free Languages, |Σ| ≥ 3). Let n ≥ 3.
Let L be a suffix-free regular language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1, and the bound is tight if |Σ| ≥ 3. ��

4 Complement on Non-Returning Languages

In this section, we consider languages that are recognized by non-returning NFAs.
We call a regular language non-returning if it is accepted by a minimal non-
returning NFA. Notice that every suffix-free language is non-returning, but the
converse does not hold.

The state complexity of basic regular operations on languages represented by
non-returning DFAs has been investigated by Eom et al in [6].

Here we study the nondeterministic state complexity of complementation on
non-returning NFA languages. Our next theorem shows that in this case, the
tight bound is 2n−1+1. Moreover, this bound is tight already in the binary case.

Theorem 3 (Complement on Non-Returning Languages, |Σ| ≥ 2). Let
n ≥ 3. Let L be a non-returning language over an alphabet Σ with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 + 1, and the bound is tight if |Σ| ≥ 2.

Proof. LetN = (Q,Σ, δ, s, F ) be an n-state non-returning NFA for a language L.
In the subset automaton of the NFA N , no subset containing the initial state s is
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reachable, except for the initial subset {s}. Therefore, the subset automaton has
at most 2n−1 + 1 reachable subsets. After interchanging the final and non-final
states in the subset automaton, we get a (2n−1+1)-state DFA for Lc. This gives
the upper bound.

To prove tightness, consider a non-returning language L = b ·K, where K is
the language accepted by the NFA shown in Fig. 1. The n-state NFA N for the
language L is shown in Fig. 4.

Let F = {(xS , yS) | S ⊆ {1, 2, . . . , n− 1}} be the fooling set for the language
Kc described in [15, Theorem 5]; notice that xS is a string, by which the initial
state 1 of the NFA in Fig. 1 goes to the set S. Let us show that the set

F ′ = {(ε, bn−2), (a, bn)} ∪ {(bxS , yS) | S ⊆ {1, 2, . . . , n− 1} and S �= ∅}

is a fooling set for the language Lc.
(F1) The strings bn−2 and abn are rejected by N , so they are in Lc. Each

string xSyS is in Kc, which means that the string bxSyS is in Lc.
(F2) If S and T are distinct and non-empty subset of {1, 2, . . . , n− 1}, then

at least one of the strings xSyT and xT yS is in K, so at least one of bxSyT and
bxT yS is in L, so it is not in Lc. Let S be a non-empty set of {1, 2, . . . , n− 1}.
The initial state 0 goes to the set S by b ·xS . Since S is non-empty, both strings
bn−2 and bn are accepted from S since they are accepted from each state in
{1, 2, . . . , n − 1}. It follows that the NFA N accepts the strings bxS · bn and
bxS · bn−2, so these strings are not in Lc. Finally, the string ε · bn is accepted by
the NFA N , so it is not in Lc.

Hence F ′ is a fooling set for the language Lc of size 2n−1 + 1. By Lemma 1,
every NFA for the language Lc requires at least 2n−1 + 1. ��

5 Unary Alphabet

In this section, we consider the complementation operation on unary prefix-free,
suffix-free, and non-returning languages. Our aim is to show that while in the
case of prefix-free and suffix-free unary languages, the nondeterministic state
complexity of complementation is in Θ(

√
n), in the case of non-retuning unary

languages, it is in 2Θ(
√
n logn). Let us start with the following observation.

Lemma 6. Let n ≥ 3 and L = {a}∗ \ {an}. Then
√
n/3 ≤ nsc(L) ≤ 6

√
n.

Fig. 4. An NFA of a binary non-returning language L with sc(Lc) = 2n−1 + 1
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Fig. 5. An NFA A that does not accept an and accepts all the longer strings;m = �√n�,
k = n− (m2 −m− 1) ≤ 3√n

Proof. First consider a lower bound, and let us show that every NFA for L
requires at least

√
n/3 states. Assume for a contradiction that there is an NFA N

for L with less than
√
n/3 states. Then the tail in the Chrobak normal form

of N is of size less that 3 · (
√
n/3)2 [4, 19], thus less than n. Since an must be

rejected, each cycle in the Chrobak normal form must contain a rejecting state.
It follows that infinitely many strings are rejected, which is a contradiction.

Now let us prove the upper bound. Let m = �
√
n�, and consider relatively

prime numbersm andm+1. It is known that the maximal integer that cannot be
expressed as xm+ y(m+1) for non-negative integers x and y is (m− 1)m− 1 =
m2 − m − 1 [21]. Let k = n − (m2 − m − 1). Then 0 < k ≤ 3

√
n. Next, the

NFA A shown in Fig. 5 and consisting of a path of length k and two overlapping
cycles of lengths m and m+1 does not accept an, and accepts all strings ai with
i ≥ n+ 1.

It remains to accept the shorter strings. To this aim let p1, p2, . . . , p� be the
first � primes such that p1p2 · · · p� > n. Then � ≤ �logn�. Thus p1+p2+· · ·+p� =
Θ(�2 ln �) ≤

√
n [2]. Consider an NFA B consisting of an initial state s that is

connected to � cycles of lengths p1, p2, . . . , p�. Let the states in the j−th cycle be
0, 1, . . . , pj − 1, where s is connected to state 1. The state n mod pj is non-final,
and all the other states are final. Then this NFA does not accept an, but accepts
all strings ai with i ≤ n− 1 since we have (i mod p1, i mod p2, . . . , i mod p�) �=
(n mod p1, n mod p2, . . . , n mod p�). The NFA B for n = 24 is shown in Fig. 6.

Now we get the resulting NFA for the language L of at most 6
√
n states as

the union of NFAs A and B. ��

Using the above result, we get that the nondeterministic state complexity of
complementation on unary prefix-free or suffix-free languages is in Θ(

√
n) .

Fig. 6. The NFA B; n = 24
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Theorem 4 (Complement on Unary Prefix- and Suffix-Free
Languages). Let L be a unary prefix-free or suffix-free regular language with
nsc(L) = n. Then nsc(Lc) = Θ(

√
n).

Proof. The only prefix-free or suffix-free unary language with nsc(L) = n is the
singleton language {an−1}. Its complement is {a}∗ \ {an−1}, and the theorem
follows from Lemma 6. ��

Now, we turn our attention to unary non-returning NFA languages.
In the NFA-to-DFA conversion of unary languages, a crucial role is played by

the function F (n) = max{lcm(x1, . . . , xk) | x1 + · · ·+ xk = n}. It is known that

F (n) ∈ eΘ(
√
n lnn) and that O(F (n)) states suffice to simulate an n-state NFA by

a DFA [4]. This means that O(F (n)) states are sufficient for an NFA to accept
the complement of a unary NFA language. Moreover, in [12] a unary n-state
NFA language is described such that every NFA accepting its complement needs
at least F (n − 1) states. In [14], using a fooling set method, the lower bound
F (n−1)+1 is proved for a non-returning language. For the sake of completeness,
we recall this proof here.

Lemma 7. Let n ≥ 3. There exits a unary n-state non-returning NFA N such
that every NFA for the complement of L(N) requires at least F (n−1)+1 states.

Proof. Let i1, i2, . . . , ik be the integers, for which the maximum in the definition
of F (n− 1) is attained. Consider an n-state NFA N shown in Fig. 7. The NFA
N consists of the initial state s and k disjoint cycles of lengths i1, i2, . . . , ik. The
initial and rejecting state s is nondeterministically connected to the rejecting
states q1,0, q2,0, . . . , qk,0. All the remaining states are accepting.

Denote m = F (n− 1) = lcm(i1, i2, . . . , ik). Consider the set of m+ 1 pairs of
strings F = {(ε, ε)} ∪ {(ai, am+1−i) | 1 ≤ i ≤ m}, and let us show that F is a
fooling set for the language L(N)c.

(F1) The strings ε and aam are not accepted by N since the initial state s is
rejecting, and every computation on aam ends up in a rejecting state qj,0 because
each ij divides m. Hence εε and aiam+1−i with 1 ≤ i ≤ m are in L(N)c.

Fig. 7. A unary non-returning NFA N meeting the bound F (n−1)+1 for complement
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(F2) If 1 ≤ � < m = lcm(i1, i2, . . . , ik), then some ij does not divide �.
This means that the computation on aa� beginning with states s and qj,0 ends
up in an accepting state in {qj,1, qj,2, . . . , qj,ij−1}. It follows that the strings

εam, εam−1, . . . , εa2 and amε, as well as the strings aiam+1−j = aam−(j−i),
where 1 ≤ i < j ≤ m, are accepted by N , and therefore they are not in L(N)c.

Thus F is a fooling set for the language L(N)c, and the lemma follows. ��

Hence we get the following result.

Theorem 5 (Complement on Unary Non-Returning NFA Languages).
Let L be a unary non-returning NFA language with nsc(L) = n. Then nsc(Lc)

is in 2O(
√
n log n). The bound 2Ω(

√
n logn) can be met infinitely many times.

Proof. Every unary n-state NFA can be simulated by a [2n2 + n + F (n)]-state
DFA [4, 19]. After interchanging the final and non-final states, we get a DFA
for the complement with the same number of states. Since 2n2 + n + F (n) is

in 2O(
√
n logn), this gives the upper bound. For the lower bound, consider the

language L accepted by the n-state NFA N shown in Fig. 7.
First, we show that the language L is a non-returning NFA language. We

denoted m = F (n− 1), thus n < m. Let N ′ be an n′-state NFA for the language
L(N) with n′ ≤ n. Then N ′ must accept all strings ai with 2 ≤ i ≤ m since
all these strings are in L(N). Assume for a contradiction that N ′ is not non-
returning. Then, the initial state of N ′ is in a cycle of length � with 1 ≤ � ≤ n′ <
m. But then N ′ accepts the string am+1 = a� · am+1−� which is a contradiction
since am+1 is not in L(N).

Now, let k = min{� | F (�) = F (n − 1)}. Let us show that k ≤ nsc(L) ≤
k + 1. Recall that m = F (n − 1), thus m = F (k). Let F (k) = lcm(x1, . . . , xr).
Then L is accepted by a (k + 1)-state NFA consisting of an initial state that is
nondeterministically connected to r disjoint cycles of lengths x1, . . . , xr.

Next, assume for a contradiction that L is accepted by an n′-state NFA N ′

with n′ < k. Then in the Chrobak normal form of the NFA N ′, the number of
states in cycles is at most n′. It follows that L is accepted by a DFA A, the loop
of which is of length at most F (n′) < m. Then there is an integer t̂ such that

the computation of the DFA A on the string aat̂m ends in the loop. However, all
the strings aat̂m · ai with 1 ≤ i ≤ m − 1 must be accepted since they are in L.
It follows that all the states in the loop of the DFA A must be final. But then the
DFA A accepts a co-finite language, which is a contradiction since the language
L is not co-finite. Since F (n− 1) + 1 is in 2Ω(

√
n logn), the theorem follows. ��

6 Binary Alphabet

In this section, we study the complementation operation on binary prefix-free
and suffix-free languages. We prove that the nondeterministic state complexity
of complementation in this case is still exponential in 2Ω(

√
n logn). In the case

of prefix-free binary languages, we prove that the upper bound 2n−1 given by
Lemma 2 cannot be met. Whether or not this bound can be met by binary
suffix-free languages remains open. Let us start with lower bounds.
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Lemma 8. There exists a binary prefix-free (suffix-free) n-state NFA N such
that every NFA for the complement of L(N) requires at least F (n−2)+1 states.

Proof. Let L be the unary language accepted by an (n− 1)-state NFA given by
Lemma 7. Let F = {(xi, yi) | i = 1, 2, . . . , F (n− 2)+1} be the fooling set for Lc

given in the proof of Lemma 7.
In the prefix-free case, we take an n-state NFA for the binary prefix-free

language Lb. Then the set {(xi, yi b) | (xi, yi) ∈ F} is the fooling set for (Lb)c of
size F (n− 2) + 1, and the lemma follows.

In the suffix-free case, we take an n-state NFA for the language bL. This time,
the fooling set for (bL)c is {(b xi, yi) | (xi, yi) ∈ F}. ��

The next lemma provides an upper bound on the nondeterministic state com-
plexity of complementation on binary prefix-free languages.

Lemma 9. Let n ≥ 12. Let L be a binary prefix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1.

Proof. Let N be a minimal NFA for L. Let {1, 2, . . . , n} be the state set of N .
Let n be the final state of N . Without loss of generality, the state n is reached
from the state n− 1 on a in N .

If there is no transition (i, a, j) with i, j ∈ {1, 2, . . . , n−1}, then the automaton
on states {1, 2, . . . , n−1} is unary. It follows that in the subset automaton of N ,
at most O(F (n− 1)) < 2n−1 − 2n−3 subsets of {1, 2, . . . , n− 1} can be reached,
and the lemma follows in this case.

Now consider a transition (i, a, j) with i, j ∈ {1, 2, . . . , n − 1}. Let us show
that no subset of {1, 2, . . . , n−1} containing states i and n−1 may be reachable.
Assume for contradiction, that a set S∪{i, n−1} is reached from the initial state
of the subset automaton by a string u. Since N is minimal, the final state n is
reached from the state j by a non-empty string v. However, the set S∪{i, n−1}
goes to a final set S′ ∪ {j, n} by a, and then to a final set S′′ ∪ {n} by v.
It follows that the subset automaton accepts the strings ua and uav, which
is a contradiction with the prefix-freeness of the accepted language. Thus at
least 2n−3 subsets of {1, 2, . . . , n − 1} are unreachable. Therefore, the subset
automaton has at most 2n−1 − 2n−3 + 1 states. After exchanging the accepting
and the rejecting states we get a DFA of the same size for the complement of
L(N), and the lemma follows. ��

Now we summarize the results given by Lemma 9 and Lemma 8 in the following
theorem; recall that F (n) = max{lcm(x1, . . . , xk) | x1 + · · ·+ xk = n}, and that

F (n) is in 2Θ(
√
n logn).

Theorem 6 (Complement on Binary Prefix-Free Languages). Let L be
a binary prefix-free language with nsc(L) = n. Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1.
The lower bound F (n− 2) + 1 can be met for infinitely many n. ��
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6. Eom, H.-S., Han, Y.-S., Jirásková, G.: State complexity of basic operations on non-
returning regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS,
vol. 8031, pp. 54–65. Springer, Heidelberg (2013)

7. Ellul, K.: Descriptional complexity measures of regular languages. Master’s thesis.
University of Waterloo (2002)

8. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410, 2537–2548 (2009)

9. Han, Y.-S., Salomaa, K., Wood, D.: Operational state complexity of prefix-free reg-
ular languages. In: Automata, Formal Languages, and Related Topics, pp. 99–115.
Institute of Informatics, University of Szeged (2009)

10. Han, Y.-S., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic
operations for prefix-free regular languages. Fundam. Inform. 90, 93–106 (2009)

11. Han, Y.-S., Salomaa, K.: Nondeterministic state complexity for suffix-free regular
languages. In: McQuillan, I., Pighizzini, G. (eds.) DCFS 2010. EPTCS, vol. 31,
pp. 189–196 (2010)

12. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)
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On the State Complexity of Closures and

Interiors of Regular Languages with Subwords
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Abstract. We study the state complexity of the set of subwords and su-
perwords of regular languages, and provide new lower bounds in the case
of languages over a two-letter alphabet. We also consider the dual inte-
rior sets, for which the nondeterministic state complexity has a doubly-
exponential upper bound. We prove a matching doubly-exponential lower
bound for downward interiors in the case of an unbounded alphabet.

1 Introduction

Quoting from [1], “State complexity problems are a fundamental part of automata
theory that has a long history. [. . . ] However, many very basic questions, which
perhaps should have been solved in the sixties and seventies, have not been con-
sidered or solved.”

In this paper, we are concerned with (scattered) subwords and the associated
operations on regular languages: computing closures and interiors (see defini-
tions in Section 2). Our motivations come from automatic verification of channel
systems, see, e.g., [2,3]. Other applications exist in data processing or bioinfor-
matics [4]. Closures and interiors wrt subwords and superwords are very basic
operations, and the above quote certainly applies to them.

It has been known since [5] that �L and �L, the downward closure and, re-
spectively, the upward closure, of a language L � Σ�, are regular for any L.

In [6], Gruber et al. explicitely raised the issue of the state complexity of
downward and upward closures of regular languages (less explicit precursors
exist, e.g. [7]). Given a n-state automaton A, constructing an automaton A�

for �L�A� or for �L�A� can be done by simply adding extra transitions to A.
However, when A is a DFA, the resulting A� is in general not deterministic, and
determinization of A� may entail an exponential blowup in general. Gruber et
al. proved a 2Ω��n logn� lower bound on the number of states of any DFA for
�L�A� or �L�A�, to be compared with the 2n upper bound that comes from the
simple closure+determinization algorithm.

Okhotin improved on these results by showing a 2
n
2 �2 and a 2n�2 � 1 lower

bound for �L�A� and, respectively, �L�A� (again for an unbounded alphabet).
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The second bound is known to be tight [8,9]. However, all these lower bounds
assume an unbounded alphabet.

Okhotin also considered the case of languages over a fixed alphabet with
�Σ� � 3 letters, in which case he demonstrated an exponential 2

�
2n�30�6 and

1
54
	

n	2n�
3
4 lower bound for �L�A� and, respectively, �L�A� [8]. The construc-

tion and the proof are quite involved, and they leave open the case where �Σ� � 2
(the 1-letter case is trivial). It turns out that, in the 2-letter case, Héam had

already proved a Ω�r
�
n� lower bound for �L�A�, here with r � � 1�

�
5

2 � 1�
2 [10], so

that the main remaining question is whether �L�A� may require an exponential
number of states even when �Σ� � 2.

Dual to closures are interiors. The upward interior and downward interior of
a language L, denoted �L and �L, are the largest upward-closed and, resp.,
downward-closed, sets included in L. Building closures and interiors are essen-
tial operations when reasoning with subwords, e.g., when model-checking lossy
channel systems [11]. The state complexity of interiors has not yet been consid-
ered in the literature. When working with DFAs, computing interiors reduces
to computing closures, thanks to duality. However, when working with NFAs,
the simple complement+closure+complement algorithm only yields a quite large
22

n

upper-bound on the number of states of an NFA for �L�A� or �L�A� —it
actually yields DFAs— and one would like to improve on this, or to prove a
matching lower bound.

Our contribution. Regarding closures, we prove in Section 3 an exponential lower
bound on �L�A� in the case of a two-letter alphabet, answering the open question
raised above. We also give some new proofs for known results, usually relying
on simpler examples demonstrating hard cases. For example, we prove a tighter
2n�1 lower bound for �L�A� when the alphabet is unbounded.

Regarding interiors on NFAs, we show in Section 4 a doubly-exponential lower
bound for downward interiors when the alphabet is not bounded. In the case of
upward interiors, or in the case of fixed alphabets, we are left with an exponen-
tial gap between lower bounds and upper bounds. A partial result is a doubly-
exponential lower bound for a restricted version of these problems. Table 1 shows
a summary of the known results.

Finally, we analyze in Section 5 the computational complexity of deciding
whether L�A� is upward or downward-closed for a DFA or a NFA A.

2 Basic Notions and Results

Fix a finite alphabet Σ � 
a, b, . . .�. We say that a �-letter word x � a1 a2 � � � a�
is a subword of y, written x � y, when y � y0 a1 y1 � � � y��1 a� y� for some factors
y0, . . . , y�  Σ�, i.e., when there are positions p1 � p2 � � � � � p� s.t. x�i� � y�pi�
for all 1 � i � � � �x�. For a language L � Σ�, its downward closure is

�L def� 
x  Σ� � �y  L : x � y�. Symmetrically, we consider an upward closure

operation and we let �L def� 
x  Σ� � �y  L : y � x�. For singletons, we may
write �x and �x for �
x� and �
x�, e.g., �a b b � 
ε, a, b, a b, b b, a b b�. Closures



236 P. Karandikar and Ph. Schnoebelen

Table 1. A summary of the results. Each cell shows (a bound on) the maximum
number of states that can result when the operation is applied to an automaton with
n states and the output is minimized.

Operation NFA DFA

Upward closure n 2Θ�n�, and 2Ω�n
1�2� for �Σ� � 2

Downward closure n 2Θ�n�, and 2Ω�n
1�3� for �Σ� � 2

Upward interior � 22
n

, Ω�2n� same as downward closure

Downward interior 22
Θ�n�

same as upward closure

distribute over union, that is, �L � �
x
L �x and �L � �

x
L �x. A language L
is downward-closed (or upward-closed) if L � �L (respectively, if L � �L). Note
that L is downward-closed if, and only if, Σ� � L is upward-closed.

Upward-closed languages are also called shuffle ideals since they satisfy L �
L�Σ�. They correspond exactly to level 1

2 of Straubing’s hierarchy [12].
Since, by Higman’s Lemma, any L has only finitely many minimal elements

wrt the subword ordering, one deduces that �L is regular for any L.
Effective construction of a finite-state automaton for �L or �L is easy when

L is regular (see Section 3), is possible when L is context-free [13,14], and is not
possible in general since this would allow deciding the emptiness of L.

The upward interior of L is �L
def� 
x  Σ� � �x � L�. Its downward interior

is �L
def� 
x  Σ� � �x � L�. Alternative characterizations are possible, e.g.,

by noting that �L (respectively, �L) is the largest upward-closed (respectively,
downward-closed) language contained in L, or by using the following dualities:

�L � Σ� � ��Σ� � L� , �L � Σ� � ��Σ� � L� . (1)

If L is regular, one may compute automata for the interiors of L by combining
complementations and closures as in Eq. (1).

When considering a finite automaton A � �Σ,Q, δ, I, F �, we usually write
n for �Q� (the number of states), m for �δ� (the number of transitions, seeing
δ � Q�Σ�Q as a table), and k for �Σ� (the size of the alphabet). For a regular
language L, nD�L� and nN�L� denote the minimum number of states of a DFA
(resp., a NFA) that accepts L.

We now illustrate a well-known technique for proving lower bounds on nN�L�:
Lemma 2.1 (Extended fooling set technique, [15]). Let L be a regular
language. Suppose there exists a set of pairs of words S � 
�xi, yi��1�i�n such
that for all i, j, xi yi  L and at least one of xi yj and xj yi is not in L. Then
nN�L� � n.

Lemma 2.2 (An application of the fooling set technique). Fix Σ and
define the following two languages:

U
def� 
x � �a  Σ : �i : x�i� � a� , V

def� 
x � �i � j : x�i� � x�j�� . (2)

Then nN�U� � 2�Σ� and nN�V � � 2�Σ�.
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Proof. The same proof applies to U and V : note that U has all words where
every letter in Σ appears at least once, while V has all words where no letter
appears twice.

With any Γ � Σ, we associate two words xΓ and yΓ , where xΓ (respectively,
yΓ ) has exactly one occurrence of each letter from Γ (respectively, each letter
not in Γ ). Then xΓ yΓ is in U and V , while for any Δ � Γ one of xΓ yΔ and
xΔyΓ is not in U (and one is not in V ). One concludes with Lemma 2.1. ��

3 State Complexity of Closures

3.1 Nondeterministic Automata

For a regular language L, an NFA for the upward or downward closure of L
is obtained by simply adding transitions to an NFA for L, without increasing
the number of states. More precisely, given an NFA A for L, an NFA for �L is
obtained by adding to A self-loops q

a�� q for every state q of A and every letter
a  Σ. Similarly, an NFA for �L is obtained by adding to A epsilon transitions
p

ε�� q for every transition p �� q of A (on any letter).

3.2 Deterministic Automata

Since every DFA is an NFA, Section 3.1 along with the powerset construction
shows that if a language has an n-state DFA, then both its upward and down-
ward closures have DFAs with at most 2n states. An exponential blowup is also
necessary as we now illustrate.

Let Σ � 
a1, . . . , ak� and define L1
def� 
a a � a  Σ�, i.e., L1 contains all words

consisting of two identical letters. The minimal DFA for L1 has n � k � 2 and
m � 2k, see Fig. 1.

in

start

i fi

1

k

...

...

a1

ai

ak

a1

ai

ak

in

start

i

1

k

...

...

a1

ai

ak

�aj � j � 1�

�aj � j � i�

�aj � j � k�

Fig. 1. DFAs for L1 �
�

a�Σ a a (left) and L2 �
�

a�Σ a 	 �Σ � a�� (right)

Now �L1 � 
x  Σ2 � �j � i : x�i� � x�j�� � �
a
Σ Σ� � a � Σ� � a � Σ�, i.e.,

�L1 has all words where some letter reappears, i.e., �L1 is the complement of V
from Lemma 2.2. A DFA for �L1 has to record all letters previously read: the
minimal (complete) DFA has 2k� 1 states. Hence 2n�2� 1 states are sometimes
required for the minimal DFA recognizing the upward closure of an n-state DFA.
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Further define L2
def� 
x  Σ� � �i � 1 : x�i� � x�1�� � �

a
Σ a � �Σ � 
a���,
i.e., L2 has words where the first letter does not reappear. The minimal DFA for
L2 has n � k � 1 and m � k2, see Fig. 1. Now �L2 � 
x � �a  Σ : �i � 1 :

x�i� � a� � ε�Σ ��a
Σ
�
Σ � 
a���, i.e., �L2 has all words x such that the first

suffix x�2, . . . , �� does not use all letters. Equivalently x  �L2 iff x  L2 or x
does not use all letters, i.e., �L2 is the union of L2 and the complement of U
from Lemma 2.2. The minimal DFA for �L2 just records all letters previously
encountered except the first, hence has exactly 2k states. Thus 2n�1 states may
be required for a DFA recognizing the downward closure of an n-state DFA.

The above simple examples use a linear-sized alphabet to establish the lower
bounds. This raises the question of whether exponential lower bounds still apply
in the case of a fixed alphabet. The 1-letter case is degenerate since then both
nD��L� and nD��L� are � nD�L�. In the 3-letter case, exponential lower bounds
are shown in [8].

In the 2-letter case, an exponential lower bound for upward closure is shown
with the following witness: For n � 0, let Ln � 
aib a2jb ai � i � j � 1 � n�.
Then nD�Ln� � �n� 1�2, while nD��Ln� � 1

7 � 1�
�
5

2 �n for n � 4 [10, Prop. 5.11].
However, the downward closure of these languages does not demonstrate a state
blowup, in fact nD��Ln� � n2 � 3n� 1 for n � 2.

We now show an exponential lower bound for downward closures in the case
of a two-letter alphabet. Interestingly, the same languages can also serve as hard
case for upward closure (but it gives weaker bounds than in [10]).

Theorem 3.1. The state complexity of computing downward closure for DFAs

is in 2Ω�n1�3�. The same result holds for upward closure.

We now prove the theorem. Fix a positive integer n. Let

S � 
n, n� 1, . . . , 2n� ,

and define morphisms c, h : S� � 
a, b�� with, for any i  S:

c�i� def� ai b3n�i , h�i� def� c�i� c�i� .

Note that c�i� always has length 3n, begins with at least n a’s, and ends with
at least n b’s. If we now let

L
def� 
c�i�n � i  S� ,

L is a finite language of n� 1 words, each of length 3n2 so that clearly nD�L� is
in 3n3 � O�n2�. (In fact, nD�L� � 3n3 � 1.) In the rest of this section we show
that both nD��L� and nD��L� are in 2Ω�n�.

Lemma 3.2. For i, j  S, the longest prefix of c�i�ω that embeds in h�j� �
c�j� c�j� is c�i� if i � j and c�i� c�i� if i � j.

Proof (Sketch). The case i � j is clear. Fig. 2 displays the leftmost embedding
of c�i�ω in h�j� in a case where i � j. The remaining case, i � j, is similar. ��
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a 	 	 	 a a a b b b b 	 	 	 b a a 	 	 	 a a a b b b b 	 	 	 b

a 	 	 	 a a a a a b b 	 	 	 b a 	 	 	 a a a a a b b 	 	 	 b a 	 	 	 a

	 	 	

	 	 	

	 	 	

	 	 	 ?

h�j�:

c�i�ω:

Fig. 2. Case “i 
 j” in Lemma 3.2: here i � n� 4 and j � n� 2 for n � 5

For each i  S, let the morphisms ηi, θi : S
� � �N,�� be defined by

ηi�j� def�
�
1 if i � j ,

2 if i � j ,
θi�j� def�

�
2 if i � j ,

1 if i � j .

Thus for σ � p1 p2 � � � ps  S�, ηi�σ� is s plus the number of occurrences of i in
σ, while θi�σ� is 2s minus the number of these occurrences of i.

Lemma 3.3. Let σ  S�. The smallest � such that c�σ� embeds in c�i�� is θi�σ�.

Proof. We write σ � p1 p2 � � � ps and prove the result by induction on s. The
s � 0 case is trivial. The s � 1 case follows from Lemma 3.2, since for any p1
and i, c�p1� � c�i� iff p1 � i, and c�p1� � h�i� � c�i�2 always.

Assume now s � 1, write σ � σ�ps and let �� � θi�σ��. By the induction
hypothesis, c�σ�� �� c�i����1 and c�σ�� � c�i��� � c�i����1aib3n�i. Write now
c�i��� � w v where w is the shortest prefix of c�i��� with c�σ�� � w. Since c�σ��
ends with a b that only embeds in the aib3n�i suffix of c�i��� , v is necessarily
br for some r. So for all z  
a, b��, c�ps� � z if and only if c�ps� � v z. We
have c�ps� � c�i�θi�ps� and c�ps� �� v c�i�θi�ps��1. Noting that σ � σ�ps, we get
c�σ� � c�i�θi�σ� and c�σ� �� c�i�θi�σ��1. ��

We now derive a lower bound on the number of states in the minimal complete
DFA for �L. For every subset X of S of size n�2 (assume n is even), let wX 

a, b�� be defined as follows: let the elements of X be p1 � p2 � � � � � pn	2 and
let

wX
def� c�p1p2 � � � pn	2� .

Note that θi�p1p2 � � � pn	2� � n if i � X and θi�p1p2 � � � pn	2� � n� 1 if i  X .

Lemma 3.4. Let X and Y be subsets of S of size n�2 with X � Y . There exists
a word v  
a, b�� such that wXv  �L and wY v � �L.

Proof. Let i  X � Y . Let v � c�i�. Then
– By Lemma 3.3, wX � c�i�n�1, and so wXv � c�i�n. So wXv  �L.
– By Lemma 3.3, the smallest � such that wY v � c�i�� is n� 1. Similarly, for
j � i, the smallest � such that wY v � c�j�� is at least n� 1� 2 � n� 1 (the
wY contributes at least n� 1 and the v contributes 2). So wY v � �L. ��
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This shows that for any complete DFA A recognizing �L, the state of A reached
from the start state by every word in 
wX � X � S, �X � � n�2� is distinct. Thus
A has at least

�
n�1
n	2

�
states, which is  2n�3�2�

πn
.

For nD��L�, the reasoning is similar:

Lemma 3.5. Let σ  S�. For all i  S, the longest prefix of c�i�ω that embeds
in h�σ� is c�i�ηi�σ�.

Proof. By induction on the length of σ and applying Lemma 3.2. ��
For every subset X of S of size n�2 (assume n is even), let w�

X  
a, b�� be
defined as follows: let the elements of X be p1 � p2 � � � � � pn	2 and let

w�
X

def� h�p1p2 � � � pn	2� � c�p1p1p2p2 � � � pn	2pn	2� .

Lemma 3.6. Let X and Y be subsets of S of size n�2 with X � Y . There exists
a word v  
a, b�� such that w�

Xv  �L and w�
Y v � �L.

Proof. Let i  X � Y . Let v � c�i�n��n	2�1� � c�i�n	2�1.

– By Lemma 3.5, c�i�n	2�1 � w�
X , thus c�i�n � w�

Xv, hence w
�
Xv  �L.

– By Lemma 3.5, the longest prefix of c�i�n that embeds in w�
Y v is at most

c�i�� where � � n�2�n�2�1 � n�1. The longest prefix of c�j�n that embeds
in w�

Y v for j � i is at most c�j�� where

� � n

2
� 1�

�
n�2� 1

2

�
� n� 1

Therefore c�j�n �� w�
Y v when j � i and also when j � i. Thus w�

Y v � �L. ��

With Lemma 3.6 we reason exactly as we did for nD��L� after Lemma 3.4 and
conclude that nD��L� �

�
n�1
n	2

�
here too.

4 State Complexity of Interiors

Recall Eq. (1) that expresses interiors with closures and complements. Since
complementation of DFAs does not increase the number of states, the bounds
on interiors are the same as the bounds on closures in the case of DFAs.

For NFAs, Eq. (1) provides an obvious 22
n

upper bound on the NFA state
complexity of both the upward and the downward interior, simply by combining
the powerset construction for complementation and the results of Section 3.1.
(Alternatively, it is possible to design a “powerset-like construction” that directly
builds a DFA for the interior, upward or downward, of a language recognized by a
DFA: this returns the same DFA as with the complement+closure+complement
procedure.) Note that both procedures yield DFAs for the interiors while we are
looking for better bounds on their NFA state complexity.
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Proposition 4.1. The NFA state complexity of the downward interior is in

22
Θ�n�

(assuming an unbounded alphabet).

Proof. Let � be a positive integer, and let Σ � 
0, 1��, so that k � �Σ� � 2�. Let

L
def� Σ� � 
a a � a  Σ� � 
w � �w� � 2� ! 
a b � a, b  Σ, a � b� .

Two letters in Σ, viewed as �-bit sequences, are distinct if and only if they differ
in at least one bit. An NFA can check this by guessing the position in which they
differ and checking that the letters indeed differ in this position. Fig. 3 shows an
NFA for 
a b � a � b� with 2�� 2 states.

...
...

2� 2�

1� 1�


� 
�

instart fi

1,
3,
5,
. . .

0, 2
, 4,

. . .
0, 2, 4, . . .

1, 3, 5, . . .

2, 3,
6, 7,

. . .

0, 1, 4
, 5, . .

. 0, 1, 4, 5, . . .

2, 3, 6, 7, . . .

0, 1, . . . , 2��1
� 1

2 ��1
, 2 ��1

� 1, . . . , 2 �
� 1 2

��1 , 2
��1 � 1,

. . . ,
2
� � 10, 1, .

. . , 2
��1 � 1

Fig. 3. DFA for �a b � a, b  Σ, a � b� with 2
� 2 states and 
2� transitions

Since now 
w � �w� � 2� is recognized by an NFA with 4 states, L is recognized
by an NFA with n � 2�� 6 states.

Finally, �L consists of all words where every letter is distinct (equivalently,
no letter appears more than once), a language called V in Eq. (2). We conclude

with Lemma 2.2 showing nN�V � � 2�Σ� � 22
� � 22

n�2�3

. ��
Proposition 4.2. The NFA state complexity of the upward interior is in Ω�2n�
(assuming an unbounded alphabet).

Proof. For Σ a k-letter alphabet we consider L3
def� Σ� � L2 with the same L2

used earlier, see Fig. 1 in Section 3.2. Thus L3 contains all words where the first
letter reappears. (It also contains the empty word). By complementing the DFA
for L2, one sees that a minimal DFA for L3 has n � k � 2 states.

We noted in Section 3.2 that �L2 � L2!�Σ��U�, where U is the language of
all words where each letter fromΣ occurs at least once. Hence�L3 � Σ���L2 �
�Σ� � L2� " U � L3 " U .

Observe now that for any a  Σ and w  Σ�, aw  L3"U iff w  U . Thus any
NFA for L3 " U can be transformed into an NFA for U by simply changing the
initial states, and so a state lower bound for U implies the same lower bound for
L3"U . With Lemma 2.2 we get nN��L3� � nN�L3"U� � nN�U� � 2k � 2n�2,
witnessing the required exponential lower bound. ��
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The above results leave us with an exponential gap between lower and upper
bounds for nN��L� —and even for nD��L�— when L is given by a NFA. We
have not been able to close this gap and we do not yet feel able to formulate a

conjecture on whether an exponential 2n
O�1�

bound exists or not. Trying to find
hard cases by exhaustive or heuristic search is difficult because the search space
is huge even for small n, and for most languages the upward interior is trivial.
For NFAs with n � 3 states and with �Σ� � k � 3 letters, a worst case example

is L � ��a� b��a� b� c���a� b� � �b� c��a� b� c���a� c���. Here nN�L� � 3

and nN��L� � 10, which is well below the 22
n

upper bound.
In the rest of this section, we establish a doubly exponential lower bound for

a more general construction called restricted interior.
Let Σ be an alphabet and let X � Σ. For words u, v, we write u �X v if u

is obtained from v by deleting some (occurrences of) letters in X , necessarily
keeping letters in Σ � X intact. For example, a b b a ��b,c� a b c b c b c a c, but
b b a ���b,c� a b c b c b c a c. Closures and interiors are defined as one would expect:

�XL def� 
w � �v  L : w �X v�, �XL
def� 
w � �X
w� � L� � Σ� � �X�Σ� � L�,

�XL def� 
w � �v  L : v �X w�, �XL
def� 
w � �X
w� � L� � Σ� � �X�Σ� � L�.

Theorem 4.3. The NFA state complexity of the restricted upward interior is

� 22
n

and in 22
Ω��n�

. The lower bound holds with a 3-letter alphabet.

As with �L, one can obtain an NFA for �XL from an NFA for L by simply
adding transitions, without adding new states. Hence the upper bound is clear
in Theorem 4.3, and we only need to prove the lower bound.

Fix n  N. Let Σ � 
0, 1,#�, and Σ01 � 
0, 1�. Define the following languages:

– N is the set of all words over Σ in which the sum of the number of 0s and
the number of 1s is divisible by n;

– B � ��ε�#��0� 1�n��. Note that B � N ;
– H2 is the set of all words over Σ with exactly two occurrences of #.

Let L � Σ� consists of all the following words:

– words in �N �H2� ! �N �B�;
– words in H2"B such that the factors of length n immediately following the

two occurrences of # are distinct.

Both N �H2 and N �B are recognized by NFAs with O�n� states. The second
summand of L is recognized by an NFA with O�n2� states, as the n-length factors
immediately following the two occurrences of # being unequal can be checked
by guessing a position at which they differ. So L is recognized by an NFA with
O�n2� states. Note that L � N .

Consider ��#�L. This is the set of all words in L such that no matter how we
insert occurrences of #, the resulting word remains in L.

Let Γ � 
0, 1�n, considered as an alphabet. Define the homomorphism h :
Γ� � Σ�, as h�x� � x for all x. As in Lemma 2.2, let V � Γ� consist of all
words over Γ in which no letter appears twice, and define V � � Σ� as h�V �.
Note that V � � N "Σ�

01.



On the State Complexity of Closures and Interiors of Regular Languages 243

Lemma 4.4. V � � ���#�L� "Σ�
01.

Proof. (�:) Let w  V � and v be such that w ��#� v. Since V � � N � ��#��N�,
we know that v  N . If v � H2 " B, then v  L. Otherwise, if v  H2 " B, then
by the definition of V , it is easy to see that v  L.

(#:) Conversely, let w  ���#�L� "Σ�
01. In particular, w  L, and so w  N .

�w� is divisible by n, and so w � h�x� for some x  Γ�. By inserting two copies of
# at suitable positions in w, and using the fact that the resulting word belongs
to L, one concludes that x  V , and so w  V �. ��
Lemma 4.5. 22

n � nN�V � � nN�V �� � nN���#�L�.
Proof. Lemma 2.2 gives 22

n � nN�V �. Then V � h�1�V �� gives nN�V � � nN�V ��
since it is easy to transform an NFA for V � into an NFA for h�1�V �� (for any
morphism h, in fact) with the same number of states. Finally, V � � ���#�L�"Σ�

01

gives nN�V �� � nN���#�L� since an NFA for V � can be obtained from an NFA
for ��#�L by deleting all transitions labelled by #. ��
Since nN�L� is in O�n2�, Lemma 4.5 concludes the proof of Theorem 4.3.

5 Complexity of Decision Problems on Subwords

In automata-based procedures for logic and verification, the state complexity of
automata constructions is not always the best measure of computational com-
plexity. In this section we give elementary proofs showing that the problem of
deciding whether L�A� is upward-closed, or downward-closed, is unsurprisingly
PSPACE-complete for NFAs, and NL-complete for DFAs. (For upward-closedness,
this is already shown in [10], and quadratic-time algorithms that decide upward-
closedness of L�A� for a DFA A already appear in [16,12].)

Proposition 5.1. Deciding whether L�A� is upward-closed or downward-closed
is PSPACE-complete when A is a NFA, even in the 2-letter alphabet case.

Proof (Sketch). A PSPACE algorithm simply tests for inclusion between two
automata, A and its closure. PSPACE-hardness can be shown by adapting the
proof for hardness of universality. LetR be a length-preserving semi-Thue system

and x, x� two strings of same length. It is PSPACE-hard to say whether x
���R x�,

even for a fixed R over a 2-letter alphabet Σ. We reduce (the negation of) this
question to our problem.

Fix x and x� of length n � 1: a word x1 x2 � � �xm of length n � m encodes
a derivation if x1 � x, xm � x�, and xi ��R xi�1 for all i � 1, . . . ,m � 1. The
language L of words that do not encode a derivation from x to x� is regular

and recognized by a NFA with O�n� states. Now, there is a derivation x
���R x�

iff L � Σ�. Since L contains all words of length not divisible by n � 1, it is

upward-closed, or downward-closed, iff L � Σ�, iff $�x ���R x��. ��
Proposition 5.2. Deciding whether L�A� is upward-closed or downward-closed
is NL-complete when A is a DFA, even in the 2-letter alphabet case.
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Proof. Since L is downward-closed if, and only if, Σ��L is upward-closed, and
since one easily builds a DFA for the complement of L�A�, it is sufficient to prove
the result for upward-closedness.

We rely on the following easy lemma: L is upward-closed iff for all u, v  Σ�,
u v  L implies u a v  L for all a  Σ. Therefore, L�A� is not upward-closed—for
A � �Σ,Q, δ, 
i�, F �— iff there are states p, q  Q, a letter a, and words u, v such
that δ�i, u� � p, δ�p, a� � q, δ�p, v�  F and δ�q, v� � F . If such words exist, in
particular one can take u and v of length � n � �Q� and respectively � n2. Hence
testing (the negation of) upward-closedness can be done in nondeterministic
logarithmic space by guessing u, a, and v within the above length bounds, finding
p and q by running u and then a from i, then running v from both p and q.

For hardness, one may reduce from vacuity of DFAs, a well-known NL-hard
problem that is essentially equivalent to GAP, the Graph Accessibility Problem.
Note that for any DFA A (in fact any NFA) the following holds:

L�A� � % iff L�A� "Σ�n � % iff L�A� "Σ�n is upward-closed,

where n is the number of states of A. This provides the required reduction since,
given a FSA A, one easily builds a FSA for L�A� "Σ�n. ��

6 Concluding Remarks

For words ordered by the (scattered) subword relation, we considered the state
complexity of computing closures and interiors, both upward and downward, of
regular languages given by finite-state automata. These operations are essential
when reasoning with subwords, e.g., in symbolic model checking for lossy channel
systems, see [11, Section 6]. We completed the known results on closures by
demonstrating an exponential lower bound on downward closures even in the
case of a two-letter alphabet.

The state complexity of interiors is a new problem that we introduced in this
paper and for which we only have partial results: we show that the doubly-
exponential upper bound for interiors of NFAs is matched by a doubly-expo-
nential lower bound in the case of downward interiors when the alphabet is
unbounded. For upward interiors of NFAs, or for fixed alphabets, there remains
an exponential gap between the existing upper and lower bounds.

These results contribute to a more general research agenda: what are the right
data structures and algorithms for reasoning with subwords and superwords?
The algorithmics of subwords has mainly been developed in string matching and
combinatorics [4,17] but other applications exist that require handling sets of
strings rather than individual strings, e.g., model-checking and constraint solv-
ing. For these applications, there are many different ways of representing closed
sets and automata-based representation are not always the preferred option, see,
e.g., the SREs used for downward-closed languages in [2]. The existing trade-
offs between all the available options are not yet well understood and certainly
deserve scrutiny.
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Abstract. We study the state complexity of regular tree languages for
tree matching problem. Given a tree t and a set of pattern trees L, we
can decide whether or not there exists a subtree occurrence of trees in L
from the tree t by considering the new language L′ which accepts all trees
containing trees in L as subtrees. We consider the case when we are given
a set of pattern trees as a regular tree language and investigate the state
complexity. Based on the sequential and parallel tree concatenation, we
define three types of tree languages for deciding the existence of different
types of subtree occurrences. We also study the deterministic top-down
state complexity of path-closed languages for the same problem.

Keywords: tree automata, state complexity, tree pattern matching,
regular tree languages.

1 Introduction

State complexity is one of the most interesting topics in automata and formal
language theory [6,7,18,19]. The state complexity of finite automata has been
studied since the 60’s [8,10,11]. Maslov [9] initiated the problem of finding the
operational state complexity and Yu et al. [19] investigated the state complexity
for basic operations.

Recently, the state complexity problem has been extended to regular tree
languages. Regular tree languages and tree automata theory provide a formal
framework for XML schema languages such as XML DTD, XML Schema, and
Relax NG [12]. XML schema languages can process a set of XML documents
by specifying the structural properties. Piao and Salomaa [14,15] considered the
state complexity between different models of unranked tree automata. They also
investigated the state complexity of concatenation [17] and star [16] for regular
tree languages. Two of the authors studied the state complexity of subtree-free
regular tree languages, which are a proper subclass of regular tree languages [3].

Since a regular tree language is a set of trees, it is suitable for representing a
set of structural documents such as XML documents, web documents, or RNA
secondary structures. This implies that a regular tree language can be used as a
theoretical toolbox for processing of the structured documents. When it comes
to the string case, many researchers often use regular languages to process a

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 246–257, 2014.
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set of strings efficiently. Consider the case that we have a set of strings which
is a regular language L. Now we want to find any occurrence of strings in L
from a text T . The most common way is to construct an FA A that accepts a
regular language Σ∗L [2]. Then, we read T using A and check whether or not
A reaches a final state. When A reaches a final state, we find that there is an
occurrence of a matching string of L in T. We extend this approach to the tree
matching problem [5]. First, we formally define the tree matching problem to be
the problem of finding subtree occurrences of a tree in L from a set of trees T .
Since a tree can be processed in a bottom-up or a top-down fashion, we need to
consider different types of tree languages for the tree matching problem.

Here we consider three types of tree substructures called a subtree, a topmost
subtree and an internal subtree. Given a tree language L, we construct three
types of tree languages recognizing trees which contain the trees in L as sub-
trees, topmost subtrees and internal subtrees. Note that these tree languages
can be used for the tree matching problem as we have used Σ∗L for the string
pattern matching problem. In particular, we tackle the deterministic state com-
plexity of regular tree languages and path-closed languages. Interestingly, the
tree language consisting of trees that have a subtree belonging to a path-closed
language language need not be path-closed and therefore cannot recognized by
deterministic top-down tree automata (DTTAs).

We give basic notations and definitions in Section 2. We define the three
types of tree languages for tree matching in Section 3. We present the results
on the state complexity of regular tree languages and path-closed languages
in Section 4 and Section 5. In Section 6, we conclude the paper.

2 Preliminaries

We briefly recall definitions and properties of finite tree automata and regular
tree languages. We refer the reader to the books [1,4] for more details on tree
automata. A ranked alphabet Σ is a finite set of characters and we denote the
set of elements of rank m by Σm ⊆ Σ for m ≥ 0. The set FΣ consists of
Σ-labeled trees, where a node labeled by σ ∈ Σm always has m children. We
use FΣ to denote a set of trees over Σ that is the smallest set S satisfying the
following condition: ifm ≥ 0, σ ∈ Σm and t1, . . . , tm ∈ S, then σ(t1, . . . , tm) ∈ S.
Let t(u ← s) be the tree obtained from a tree t by replacing the subtree at a
node u of t with a tree s. The notation is extended for a set U of nodes of t and
S ⊆ FΣ : t(U ← S) is the set of trees obtained from t by replacing the subtree
at each node of U by some tree in S.

A nondeterministic bottom-up tree automaton (NBTA) is specified by a tu-
ple A = (Σ,Q,Qf , g), where Σ is a ranked alphabet, Q is a finite set of states,
Qf ⊆ Q is a set of final states and g associates each σ ∈ Σm to a mapping
σg : Qm −→ 2Q, where m ≥ 0. For each tree t = σ(t1, . . . , tm) ∈ FΣ , we define
inductively the set tg ⊆ Q by setting q ∈ tg if and only if there exist qi ∈ (ti)g,
for 1 ≤ i ≤ m, such that q ∈ σg(q1, . . . , qm). Intuitively, tg consists of the states
of Q that A may reach by reading t. Thus, the tree language accepted by A is
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defined as follows: L(A) = {t ∈ FΣ | tg ∩Qf �= ∅}. The automaton A is a deter-
ministic bottom-up tree automaton (DBTA) if, for each σ ∈ Σm, where m ≥ 0,
σg is a partial function Qm −→ Q.

A nondeterministic top-down tree automaton (NTTA) is specified by a tu-
ple A = (Σ,Q,Q0, g), where Σ is a ranked alphabet, Q is a finite set of states,
Q0 ⊆ Q is a set of initial states, and g associates each σ ∈ Σm,m ≥ 0, a map-
ping σg : Q −→ 2Q

m

. As a convention, we denote the m-tuples q1, . . . , qm by
[q1, . . . , qm]. A top-down tree automaton A is deterministic if Q0 is a singleton
set and for all q ∈ Q, σ ∈ Σm, and m ≥ 1, σg is a partial function Q −→ Qm.

The nondeterministic (bottom-up or top-down) and deterministic bottom-
up tree automata accept the family of regular tree languages whereas the de-
terministic top-down tree automata accept a proper subfamily of regular tree
languages—path-closed languages [1,4].

3 Tree Languages for Tree Pattern Matching

Pattern matching is the problem of finding occurrences of a pattern in a text.
Given an FA A for the pattern L over Σ, we can solve the problem by building
a new FA for the language Σ∗L. Then, we run the new FA with the text and
report the occurrence when the FA reaches a final state [2]. For tree pattern
matching problem, we consider the case when we are given a set of pattern trees
as a tree automaton. Note that a tree can be processed in a bottom-up way
with a bottom-up TA or a top-down way with a top-down TA. Therefore, we
consider three types of tree languages that can be used for tree pattern matching
problem.

First we introduce our definitions for different tree substructures. We provide
graphical examples for the definitions in Fig. 1.

t

(a) A subtree t

t

(b) A topmost subtree t

t

(c) An internal subtree t

Fig. 1. We define three types of subtrees called a subtree, a topmost subtree and an
internal subtree. These figures depict the examples.

Definition 1. A subtree of a tree t is a tree consisting of a node in t and all of
its descendants in t.
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If a tree t1 is a subtree of t2, then we call t2 is a supertree of t1. Given a tree
t and a regular tree language L, we first compute a new regular tree language
L′ that accepts all possible supertrees of trees in L. Then, we decide whether or
not a given tree t occurs as a subtree of a tree in L by deciding t ∈ L′. Similarly,
we define the topmost subtree and the internal subtree as follows:

Definition 2. A topmost subtree of a tree t is a tree consisting of a set of nodes
in t including the root node such that from any node in the set, there exists a
path to the root node through the nodes in the set.

Definition 3. An internal subtree of a tree t can be defined as a topmost subtree
of a subtree of t.

Recall that we build a new FA that accepts Σ∗L, which is a concatenation
of a universal language Σ∗ and a given language L, for matching a language L
of string patterns. For tree pattern matching problem, we need to consider how
to define the concatenation of trees properly. Recently, Piao and Salomaa [17]
studied the state complexity of the concatenation of regular tree languages. They
defined the sequential σ-concatenation and parallel σ-concatenation where the
substitutions can occur at σ-labeled leaves.

We consider a more generalized operation that allows substitution to occur at
all leaves regardless of labels. We denote the set of leaves of a tree t by leaf(t).
Then, for T1 ⊆ FΣ and t2 ∈ FΣ , we define the sequential concatenation of T1

and t2 to be T1 ·s t2 = {t2(u ← t1) | u ∈ leaf(t2), t1 ∈ T1}. In other words,
T1 ·s t2 is a set of trees obtained from t2 by replacing a leaf with a tree in T1. We
extend the sequential concatenation operation to the tree languages T1, T2 ⊆ FΣ

as follows:
T1 ·s T2 =

⋃
t2∈T2

T1 ·s t2.

The parallel concatenation of T1 and t2 is

T1 ·p t2 = {t2(leaf(t2)← t1) | t1 ∈ T1}.
Thus, T1 ·p t2 is a set of trees obtained from t2 by replacing all leaves with a
tree in T1. We can also extend the parallel concatenation to tree languages. Note
that Definition 2 can be presented more nicely using the parallel concatenation
operation. A tree t2 is a topmost subtree of t1 if t1 ∈ FΣ ·p t2.

Relying on the sequential and parallel tree concatenations, we construct three
types of tree languages from a regular tree language L for the tree pattern
matching problem. See Fig. 2. Given a tree language L,

(i) L ·s FΣ is a set of trees where each element contains a subtree occurrence
of a tree in L,

(ii) FΣ ·p L is a set of trees where each element contains a topmost subtree
occurrence of a tree in L, and

(iii) FΣ ·p L ·s FΣ contains trees having an internal subtree occurrence of a tree
of L.

Notice that a leaf node of a tree can be replaced with any other nodes for the
topmost subtree occurrence and the internal subtree occurrence.
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LFΣFΣ FΣ FΣ

FΣ

(a) L ·s FΣ

L

FΣFΣ FΣ FΣFΣ

(b) FΣ ·p L

LFΣFΣ FΣ FΣ

FΣ

FΣFΣ FΣ FΣFΣ

(c) FΣ ·p L ·s FΣ

Fig. 2. Three types of tree languages for tree pattern matching problem

4 State Complexity of DBTAs

First we study the state complexity of FΣ ·p L which can be used for finding
subtree occurrences of a tree in L.

Lemma 1. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−k states are sufficient for recognizing FΣ ·pL if |{σg | σ ∈ Σ0}|=k.

Proof. Without loss of generality, we assume QF ∩ {σg | σ ∈ Σ0} = ∅ because
otherwise FΣ ·pL(A) = FΣ . We present an upper bound construction of a DBTA
B for FΣ ·p L(A). Namely, L(B) = FΣ ·p L(A). We define B = (Σ,Q′, Q′

F , g
′),

where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\{σg |σ∈Σ0}}, Q′
F = {q ∈ Q′ | q ∩QF �= ∅},

and the transitions of g′ are defined as follows:
For τ ∈ Σ0, we define

τg′ = {σg | σ ∈ Σ0}.

For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′, we define

τg′ (P1, P2, . . . , Pm) = τg(P1, P2, . . . , Pm) ∪ {σg | σ ∈ Σ0}.

Now we explain how B recognizes the tree language FΣ ·pL. Note that we define
every target state of g′ to be the union of the set of states reachable by g and
the set of states reachable by reading leaf nodes. Since every target state of g′ is
not empty, a new DBTA B is complete although A may not be complete. This
implies that a state of B contains at least the states in {σg | σ ∈ Σ0} that are
the set of states by reading leaf nodes in A. After reading any tree in FΣ , the
state of B contains {σg | σ ∈ Σ0}, and thus can simulate the trees in L(A). ��

The upper bound in Lemma 1 is reachable when a DBTA accepts a set of unary
trees. If a DBTA accepts a set of unary trees, then we can regard the DBTA as
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a DFA with multiple initial states. Since the upper bound reaches the maximum
when k = 1, we consider the state complexity of catenation of L and Σ∗. Let L
be a regular language whose state complexity is n. Then, the state complexity
of Σ∗L is 2n−1 [19] which is the same as the bound in Lemma 1. Furthermore,
we show that the upper bound is tight for any 1 ≤ k ≤ n.

Choose Σ = Σ0∪Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b}. We define
a DBTA C1 = (Σ,QC1 , QC1,F , gC1), where QC1 = {0, 1, . . . , n − 1}, QC1,F =
{n− 1} and the transition function gC1 is defined by setting:

– (σi)gC1
= i− 1 (1 ≤ i ≤ k),

– agC1
(i) = i+ 1 mod n,

– bgC1
(i) = i (0 ≤ i < k),

– bgC1
(i) = i+ 1 mod n (k ≤ i < n).

Based on the construction of the proof of Lemma 1, we construct a DBTA D1 =
(Σ,QD1 , QD1,F , gD1) recognizing FΣ ·p L(C1), where QD1 = {P | {0, 1, . . . , k −
1} ⊆ P, P ⊆ QC1}, QD1,F = {P | P ∈ QD1 , P ∩QC1,F �= ∅}, and the transition
function gD1 is defined as follows:

– (σi)gD1
= {0, 1, . . . , k − 1} (0 ≤ i ≤ k),

– agD1
(P ) = agC1

(P ) ∪ {0, 1, . . . , k − 1},
– bgD1

(P ) = bgC1
(P ) ∪ {0, 1, . . . , k − 1}.

Notice that L(D1) = FΣ ·p L(C1) by Lemma 1. In the following lemma, we
establish that D1 is a minimal DBTA by showing that all states of D1 are
reachable and pairwise inequivalent.

Lemma 2. All states of D1 are reachable and pairwise inequivalent.

Proof. First, we prove the reachability of all states of D1. Note that each state
of D1 is a set of states in C1. By the construction, the size of a state P in QD1

satisfies k ≤ |P | ≤ n since {0, 1, . . . , k−1} ⊆ P . Using induction on |P |, we show
that all states of D1 are reachable. For the basis, we have a state {0, 1, . . . , k−1}
of size k that is reachable by reading a leaf node. Assuming that all states P are
reachable for |P | ≤ x, we will show that any state P ′ is reachable when |P ′| =
x+1. Let P ′ = {0, 1, . . . , k−1, qk, qk+1, . . . , qx} be a state of size x+1. The state
P ′ is reachable from a state {0, 1, . . . , k−1, qk+1−qk+k−1, . . . , qx−qk+k−1} by
reading a sequence of unary symbols abqk−k. Therefore, all states are reachable
by induction.

Next we prove that all states of D1 are pairwise inequivalent. Pick any two
distinct states P1 and P2. Assume p ∈ P1\P2. (The other possibility is completely
symmetric.) After reading a sequence of unary symbols an−p−1, a final state is
reached from state P1 whereas P2 reaches a non-final state. Therefore, all states
of D1 are pairwise inequivalent. ��

Since we have shown that there exists a corresponding lower bound for the upper
bound, the bound is tight.
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Theorem 1. Given a DBTA A with n states for a regular tree language L,
2n−k states are necessary and sufficient in the worst-case for the minimal DBTA
of FΣ ·p L if |{σg | σ ∈ Σ0}| = k.

Now we consider L·sFΣ—a tree language consists of all trees that have trees in
L as subtrees. In other words, for any tree t in L, we have all possible supertrees
of t in L′. Given a regular tree language L, it is known that L ·s FΣ is also a
regular tree language [17]. We study the state complexity of L ·s FΣ .

Lemma 3. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, n+ 1 states are sufficient for recognizing L ·s FΣ .

Proof. We construct a new DBTA B = (Σ,Q′, Q′
F , g

′) for L ·s FΣ , where Q′ =
Q ∪ {qnew}, Q′

F = QF , and the transition function g′ is defined as follows:
For τ ∈ Σ0, we define

τg′ =

{
τg if τg is defined,
qnew otherwise.

For τ ∈ Σm,m ≥ 1, q1, q2, . . . , qm ∈ Q′, and qf ∈ Q′
F , we define

τg′ (q1, q2, . . . , qm) =

⎧⎪⎪⎨⎪⎪⎩
τg(q1, q2, . . . , qm) if τg(q1, q2, . . . , qm) is defined and

{q1, q2, . . . , qm} ∩Qf = ∅,
qf if {q1, q2, . . . , qm} ∩Qf �= ∅,
qnew otherwise.

Now we explain how B accepts a set of all trees that are supertrees of trees in L.
We define the transition function g′ to be complete by setting the target state
of the undefined transition as the new state qnew. Then, B moves to qnew by
reading trees in L while moving to one of its final states by reading trees in L.
Assume that B accepts a tree in L and arrives at the final state qf . After then,
B stays in qf by reading any sequence of states including the final state qf . ��

We cannot reach the upper bound n+1 with any DFA in this case since the state
complexity of LΣ∗ is n which is the same as that of L, even for the incomplete
DFAs. Thus, we show that there exists a lower bound DBTA of n+ 1 states for
accepting L ·s FΣ where the state complexity of L is n to prove the tightness of
the upper bound.

Choose Σ = Σ0∪Σ1∪Σ2, where Σ0 = {c}, Σ1 = {a} and Σ2 = {b}. We define
a DBTA C2 = (Σ,QC2 , QC2,F , gC2), where QC2 = {0, 1, . . . , n − 1}, QC2,F =
{n− 1}, and the transition function gC2 is defined by setting:

– cgC2
= 0,

– agC2
(i) = bgC2

(i, i) = i+ 1 mod n.

All transitions of gC2 not listed above are undefined. Based on the construction
of the proof of Lemma 3, we construct a DBTA D2 = (Σ,QD2 , QD2,F , gD2)
recognizing L(C2) ·s FΣ , where QD2 = QC2 ∪ {n}, QD2,F = QC2,F and the
transition function gD2 is defined as follows:
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– cgD2
= 0,

– agD2
(i) = bgD2

(i, i) = i+ 1 (0 ≤ i ≤ n− 2),
– agD2

(n− 1) = bgD2
(n− 1, i) = bgD2

(i, n− 1) = n− 1 (0 ≤ i ≤ n− 1),
– agD2

(n) = bgD2
(i, j) = n (i �= j, i �= n− 1, j �= n− 1).

Notice that L(D2) = L(C2) ·s FΣ by Lemma 3. In the following lemma, we
establish that D2 is a minimal DBTA by showing that all states in QD2 are
reachable and pairwise inequivalent.

Lemma 4. All states of D2 are reachable and pairwise inequivalent.

From two lemmas, we establish the following theorem.

Theorem 2. Given a DBTA A with n states for a regular tree languages L,
n+1 states are necessary and sufficient in the worst-case for the minimal DBTA
of L ·s FΣ .

We lastly consider the state complexity of FΣ ·p L ·s FΣ . Note that the se-
quential catenation of trees is not associative whereas the parallel catenation
of trees is associative. That means that there exist trees t1, t2 and t3 such that
(t1 ·s t2) ·s t3 and t1 ·s (t2 ·s t3) do not coincide. This also applies to the catena-
tion of tree languages and thus, leads to (L1 ·s L2) ·s L3 �= L1 ·s (L2 ·s L3) for
some regular tree languages L1, L2, and L3. However, we consider a special tree
language FΣ for L1 and L3 that makes (FΣ ·sL2) ·s FΣ = FΣ ·s (L2 ·s FΣ). Thus,
we simply denote the language by FΣ ·p L ·s FΣ instead of (FΣ ·s L2) ·s FΣ or
FΣ ·s (L2 ·s FΣ).

Now we tackle the state complexity of FΣ ·p L ·s FΣ .

Lemma 5. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−t−k+1 states are sufficient for recognizing FΣ ·pL·sFΣ if |QF | = t
and |{σg | σ ∈ Σ0}| = k.

Proof. Without loss of generality, we assume that QF ∩ {σg | σ ∈ Σ0} = ∅
because otherwise FΣ ·p L(A) ·s FΣ = FΣ . We give an upper bound construction
of DBTA B that recognizes FΣ ·p L(A) ·s FΣ . Namely, L(B) = FΣ ·p L(A) ·s FΣ .
We define B = (Σ,Q′, Q′

F , g
′), where

Q′ = {X ∪ {σg | σ ∈ Σ0} | X ∈ 2Q\(QF∪{σg |σ∈Σ0})} ∪ {QF}, Q′
F = {QF},

and the transitions of g′ are defined as follows:
For τ ∈ Σ0, we define τg′ = {σg | σ ∈ Σ0}.
For τ ∈ Σm,m ≥ 1, and P1, P2, . . . , Pm ∈ Q′, we define

τg′ (P1, P2, . . . , Pm) =

⎧⎪⎨⎪⎩ τg(P1, P2, . . . , Pm) ∪ {σg | σ ∈ Σ0} if

m⋃
i=1

Pi ∩QF = ∅,

QF otherwise.

Here we do not explain how B accepts FΣ ·p L ·s FΣ because the construction
can be explained as a simple combination of two constructions given in Lemma 1
and Lemma 3. ��
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We give a lower bound example that reaches the upper bound 2n−t−k + 1.
Choose Σ = Σ0 ∪Σ1, where Σ0 = {σ1, σ2, . . . , σk} and Σ1 = {a, b, c}. We de-

fine a DBTA C3 = (Σ,QC3, QC3,F , gC3), where QC3 = {0, 1, . . . , n−1}, QC3,F =
{n− t, n− t+1, . . . , n− 1} and the transition function gC3 is defined by setting:

– (σi)gC3
= i− 1 (1 ≤ i ≤ k),

– agC3
(i) = i+ 1 mod n,

– bgC3
(i) = i (0 ≤ i ≤ k),

– bgC3
(i) = i+ 1 mod n (k ≤ i < n),

– cgC3
(i) = i+ 1 mod n if i �= n− t− 1, cgC3

(n− t− 1) = 0.

Based on the construction in the proof of Lemma 5, we construct a DBTA
D3 = (Σ,QD3 , QD3,F , gD3) recognizing FΣ ·p L(C3) ·s FΣ , where QD3 = {P |
{0, 1, . . . , k − 1} ⊆ P, P ⊆ QC3 \QC3,F }, QD3,F = {QC3,F }, and the transition
function gD3 is defined as follows:

– (σi)gD3
= {0, 1, . . . , k − 1},

– agD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if agC3

(P ) ∩QC3,F = ∅,
– agD3

(P ) = {QC3,F } if agC3
(P ) ∩QC3,F �= ∅,

– bgD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if bgC3

(P ) ∩QC3,F = ∅,
– bgD3

(P ) = {QC3,F } if bgC3
(P ) ∩QC3,F �= ∅,

– cgD3
(P ) = P ′ ∪ {0, 1, . . . , k − 1} if cgC3

(P ) ∩QC3,F = ∅,
– agD3

({QC3,F}) = bgD3
({QC3,F }) = cgD3

({QC3,F }) = {QC3,F }.
Notice that L(D3) = FΣ ·p L(C3) ·s FΣ by Lemma 5. In the following lemma,
we establish that D3 is a minimal DBTA by showing that all states in QD3 are
reachable and pairwise inequivalent.

Lemma 6. All states of D3 are reachable and pairwise inequivalent.

Proof. We prove the reachability of all non-final states of D3 using induction on
the size of P . Note that any non-final state P ∈ QD3 satisfies k ≤ |P | ≤ m− t
because QC3,F ∩ P = ∅ and {σc | σ ∈ Σ0} ⊆ P by the construction. A state
{0, 1, . . . , k − 1} of size k is reachable by reading a leaf node. Assume that all
states P is reachable for |P | ≤ x. Then, we show that any state P ′ of size x+1 is
reachable. Let P ′ = {0, 1, . . . , k−1, qk, qk+1, . . . , qx} be a state of size x+1. Then,
the state P ′ is reached from a state {0, 1, . . . , k−1, qk+1−qk+k−1, . . . , qx−qk+1+
k − 1} after reading a sequence of unary symbols abqk−k. From the induction,
it is easy to verify that all states except QC3,F are reachable. Furthermore, the
only final state QC3,F is reachable from a non-final state {0, 1, . . . , n− t− 1} by
reading a unary symbol a.

Next we prove that all states of D3 are pairwise inequivalent. Pick any two
distinct states P1 and P2. Assume p ∈ P1 \P2. (The other possibility is symmet-
ric.) From P1, a final state is reached by reading a sequence of unary symbols
cn−t−1−pa whereas P2 does not reach the final state. Therefore, any two states
in QD3 are pairwise inequivalent. ��

Theorem 3. Given a DBTA A = (Σ,Q,QF , g) with n states for a regular tree
language L, 2n−t−k + 1 states are necessary and sufficient in the worst-case for
the minimal DBTA of FΣ ·p L ·s FΣ if |QF | = t and |{σg | σ ∈ Σ0}| = k.
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5 State Complexity of DTTAs

It is well known that every NBTA can be converted into an equivalent NTTA [1,4].
However, it does not mean that there always exists a DTTA for every regular tree
language. This implies that a class of regular tree languages accepted by DTTAs
is a proper subclass of regular tree languages accepted by NBTAs and NTTAs. It
is known that DTTAs recognize exactly the class of path-closed languages which
is a proper subclass of regular tree languages [1,4].

We study the state complexity of path-closed languages for tree matching.
Following the previous results, we consider three types of tree languages FΣ ·p
L, L ·s FΣ , and FΣ ·p L ·s FΣ , where L is a tree language. However, two tree
languages L ·s FΣ and FΣ ·p L ·s FΣ appear to be not path-closed languages.
Nivat and Podelski [13] argued that path-closed languages can be characterized
by a property called the subtree exchange property as follows:

Corollary 1 (Nivat and Podelski [13]). A regular tree language L is path-
closed if and only if, for every t ∈ L and every node u ∈ t, if t(u← a(t1, . . . , tm))
∈ L and t(u← a(s1, . . . , sm)) ∈ L, then t(u← a(t1, . . . , si, . . . , tm)) ∈ L for each
i = 1, . . . ,m.

Using the subtree exchange property, we prove that given a tree language L,
L ·s FΣ and FΣ ·p L ·s FΣ are not path-closed languages.

Lemma 7. There exists a path-closed language L such that L ·s FΣ is not a
path-closed language.

Proof. Let Σ = Σ2∪Σ0, where Σ2 = {b}, and Σ0 = {a, c}. A singleton language
L contains a single-node tree c, namely L = {c}. It is straightforward to verify
that FΣ contains every binary tree where leaf nodes are labeled by a or c, and
non-leaf nodes are labeled by b. Then, L ·s FΣ is a set of binary trees where
every tree contains at least one leaf labeled by c. Therefore, b(a, c) ∈ L ·s FΣ ,
b(c, a) ∈ L ·s FΣ , and b(a, a) /∈ L ·s FΣ hold. However, if L ·s FΣ is path-closed,
b(a, a) should exist in L ·s FΣ by the subtree exchange property. This implies
that L ·s FΣ is not a path-closed language. ��

Lemma 8. There exists a path-closed language L such that FΣ ·p L ·s FΣ is not
a path-closed language.

Proof. Let Σ = Σ2∪Σ0, where Σ2 = {a, b}, and Σ0 = {c}. A singleton language
L contains a tree a(c, c), namely L = {a(c, c)}. It is easy to verify that FΣ

contains every binary tree where all leaf nodes are labeled by c and non-leaf
nodes are labeled by a or b.

Then, FΣ ·pL·sFΣ is a set of binary trees where every tree contains at least one
non-leaf node labeled by a. Therefore, b(a(c, c), c) ∈ FΣ ·p L ·s FΣ , b(c, a(c, c)) ∈
FΣ ·p L ·s FΣ , and b(c, c) /∈ FΣ ·p L ·s FΣ . However, due to the subtree exchange
property, b(c, c) should be in FΣ ·p L ·s FΣ if the language FΣ ·p L ·s FΣ is path-
closed. This means that FΣ ·p L ·s FΣ is not a path-closed language. ��
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We define the deterministic top-down state complexity of a path-closed language
L to be the number of states that are necessary and sufficient in the worst-case
for the minimal DTTA recognizing L.

Theorem 4. Given a DTTA A = (Σ,Q,Q0, g) with n states for a path-closed
language L, n states are necessary and sufficient in the worst-case for the min-
imal DTTA of FΣ ·p L.
Proof. We construct a new DTTA B = (Σ,Q′, Q′

0, g
′) for FΣ ·pL, where Q′ = Q,

Q′
0 = Q0, and the transition function g′ is defined as follows:
For τ ∈ Σm,m ≥ 0 and q ∈ Q′, we define

τg′ (q) =

⎧⎨⎩
τg(q) if σg(q) �= λ for any σ ∈ Σ0,
[q, q, . . . , q]︸ ︷︷ ︸
m times

otherwise.

Now we explain how B simulates FΣ ·pL with n states. Since trees in FΣ ·pL have
the same topmost parts with trees in L and leaves can be substituted with any
tree in FΣ , B simulates from the same initial state with A. Let us assume that
a state q ∈ Q′ may end the top-down computation with generating a leaf node
since σg(q) = λ. Once B arrives at q, the new transition function g′ continues
the computation by reading a non-leaf label of rankm and generating a sequence
[q, q, . . . , q] of states whose length is m. This makes a new DTTA B to generate
any subtree in FΣ at the point where the computation may end with generating
leaves and, thus, recognize the language FΣ ·p L.

It is easy to verify that n states are necessary to recognize FΣ ·pL. Consider a
path-closed language of unary trees whose state complexity correspond to that
of regular string languages. Since the state complexity of LΣ∗ is n if the state
complexity of L is n, this case can be a lower bound for the path-closed language
FΣ ·p L. ��

6 Conclusions

We have considered three tree languages FΣ ·p L, L ·s FΣ , and FΣ ·p L ·s FΣ

motivated from the tree pattern matching problem and have established the
state complexity of these languages described by DBTAs and DTTAs. We have
also shown that L ·s FΣ and FΣ ·p L ·s FΣ are not recognizable by DTTAs even
when L is a path-closed language since they are not necessarily path-closed
languages. In addition, we have demonstrated that L ·s FΣ and FΣ ·p L ·s FΣ

need not be path-closed and therefore cannot recognized by DTTAs. In future,
we aim to investigate the descriptional complexity of unranked tree automata,
which are a more generalized model than tree automata over ranked alphabet,
for recognizing L ·s FΣ and FΣ ·p L ·s FΣ .
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Abstract. We initiate a complexity theoretic study of the language
based reachability problem (L-reach) : Fix a language L. Given a graph
whose edges are labelled with alphabet symbols and two special vertices
s and t, test if there is path P from s to t in the graph such that the con-
catenation of the symbols seen from s to t in the path P forms a string in
the language L. We study variants of this problem with different graph
classes and different language classes and obtain complexity theoretic
characterisations for all of them. Our main results are the following:

– Restricting the language using formal language theory we show that
the complexity of L-reachability increases with the power of the for-
mal language class. We show that there is a regular language for
which the L-reachability problem is NLOG-complete even for undi-
rected graphs. In the case of linear languages, the complexity of
L-reach does not go beyond the complexity of L itself. Further, there
is a deterministic context-free language L for which L–DagReach is
LogCFL-complete.

– We use L-reachability as a lens to study structural complexity. In
this direction we show that there is a language A in LOG for which
A–DagReach is NP-complete. Using this we show that P vs NP
question is equivalent to P vs DagReach

−1(P) question. This leads
to the intriguing possibility that by proving DagReach

−1(P) is con-
tained in some subclass of P, we can prove an upward translation of
separation of complexity classes. Note that we do not know a way
to upward translate the separation of complexity classes.

1 Introduction

Reachability problems in mathematical structures are a well-studied problem
in space complexity. An important example is the graph reachability problem
where given a graph G and two special vertices s and t, is there a path from
s to t in the graph G. This problem exactly captures the space complexity of
problems solvable in nondeterministic logarithmic space. Various restrictions of
the problem have been studied - reachability in undirected graphs characterises
deterministic log space [9], reachability in constant width graphs characterises
NC1 [3], reachability in planar constant width graphs characterises ACC0 [5] and
the version in upward planar constant width graphs characterises AC0 [4].
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A natural extension of the problem using formal language theory is the L-
reachability problem : Fix a language L defined over a finite alphabet Σ. Given
a graph whose edges are labelled by alphabet symbols and two special vertices s
and t, test if there is path from s to t in the graph such that the concatenation
of the symbols seen from s to t forms a string in the language L. Indeed, if L is
Σ∗, then the string on any path from s to t will be in the language. Hence the
problem reduces to the graph reachability problem.

Although L-reachability problem has not been studied from a space com-
plexity theory perspective, a lot is known about its complexity. An immediate
observation is that, the L-reachability problem is at least as hard as the mem-
bership problem of L. Indeed, given a string x, to check for membership in L it
suffices to test L-reachability in a simple path of length |x| where the edges are
labelled by the symbols in x in that sequence. The literature on the problem
is spread over two main themes. One is on restricting the language from the
formal language perspective, and the other is by restricting the family of graphs
in terms of structure.

An important special case of the problem that was studied, is when the
language is restricted to be a context-free language(CFLs). This is called the
CFL-reachability problem. A primary motivation to study this problem is their
application in various practical situations like inter-procedural slicing and inter-
procedural data flow analysis [8,10,11]. These are used in code optimisation, vec-
torisation and parallelization phases of compiler design where one should have
information about reaching definitions, available expressions, live variables, etc.
associated with the program elements. The goal of inter-procedural analysis is
to perform static examination of above properties of a program that consists of
multiple procedures. Once a program is represented by its program dependence
graph [10], the slicing problem is simply the CFL-reachability problem.

Our Results: The results in this paper are in two flavours.
Results Based on Chomsky Hierarchy and Graph Classes: Firstly we
study restrictions of L-reachability problem when L is restricted using formal lan-
guage hierarchy and the graph is restricted to various natural graph classes. Our
results on this front are listed in the table below (for the sake of completeness,
we include the some known results too).

Language Class Tree-Reach DAG-Reach UReach/Reach

Regular LOG-complete[15] NLOG-complete[15] NLOG-complete
(Theorem 1/[15])

Linear NLOG-complete NLOG-complete NLOG-complete
(Theorem 2) (Theorem 2) (Theorem 2)

Context-free LogCFL-complete LogCFL-complete P-complete
(Prop. 2) (Prop. 2) (Theorem 4/[14])

Context-sensitive PSPACE-complete PSPACE-complete Undecidable
(Prop. 3) (Prop. 3) ([2])
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Results on the Structural Complexity Front: Now we take a complexity
theoretic view, we will view L-reach as an operator on languages. It is shown in
Barrett et. al. [2] that even for languages in LOG, the languages L–Reach and
L–UReach are undecidable. Therefore in this section, we consider only DAGs.
Note that for any L, the language L–DagReach is decidable.

It is natural to ask whether increasing the complexity of L increases the com-
plexity of L–DagReach. More concretely , does A ≤LOG

m B =⇒ A–DagReach

≤LOG
m B–DagReach? The following theorem, along with the fact that there ex-

ists a language L that is LOGCFL-complete for which L–DagReach remains
LOGCFL-complete shows that such a result is highly unlikely.

Theorem 6: There exists a language A ∈ LOG for which A–DagReach is
NP-complete.

For any complexity class C, we consider the class of languages defined as
DagReach

−1(C) = {L : L–DagReach ∈ C}. We have the following theorems
for natural choices of C. Note that for any class C, we haveDagReach

−1(C) ⊆ C.

Theorem : We show the following structural theorems:

1. (Theorem 7) DagReach
−1(PSPACE) = PSPACE, DagReach

−1(NP) =
NP.

2. (Theorem 8) P �= DagReach
−1(P) ⇐⇒ P �= NP.

3. (Theorem 9) DagReach
−1(NLOG) �= NLOG ⇐⇒ NP �= NLOG.

The above theorem shows that separating DagReach
−1(P) from P would

separate P from NP. This gives us an upward translation of lower bounds on
complexity classes provided we can prove that DagReach

−1(P) is contained in
some subclass of P. Hence the question whether we can identify some “natu-
ral” complexity class containing DagReach

−1(P) becomes very interesting. It
is clear that DagReach

−1(P) contains LogCFL-complete problems but is highly
unlikely to contain some problems in LOG. If DagReach

−1(P) contains some
P-complete problem, then proving that DagReach

−1(P) is contained in some
subclass of P would be very hard. In this connection, we show the following:

Theorem 10: If L is P-complete under syntactic read-once log space reductions,
then L–DagReach is NP-complete.

If we are able to extend the above theorem to all types of reductions, then
it implies that DagReach

−1(P) is unlikely to contain P-complete problems.
In other words, the above theorem could be interpreted as evidence (albeit very
weak evidence) thatDagReach

−1(P) may indeed be contained in some subclass
of P.

We also remark that Theorem 1 holds with NLOG instead of P. However, since
we know that DagReach

−1(NLOG) contains NLOG-complete (under logspace
reductions) languages, item (3) of Theorem 1 is not as promising (as item (2)).
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2 Preliminaries

In this section, we define language restricted reachability problems and make
some observations on their complexity. The definitions for standard complexity
classes and their complete problems that we are using in this paper can be found
in standard complexity theory textbooks [1]. We use LOG and NLOG to stand
for the complexity classes deterministic logspace and nondeterministic logspace
respectively.

Definition 1. For any L ∈ Σ∗, we consider graphs G where each edge in G
is labelled by an element from Σ. For any path in G we define the yield of the
path as the string formed by concatenating the symbols found in the path in that
order. Then we define the language L–Reach as the set of all (G, s, t) such that
there exists a path from s to t in G with yield in L.

By restricting the graph in Definition 1, we obtain similar definitions for
L–DagReach (DAGs), L–UReach (Undirected Graphs) and L–TreeReach

(Orientations of Undirected Trees).

Observation 1. Any language L is reducible to L–TreeReach via projection
reductions.

Clearly, the above observation holds for any reachability variant based on the
graph. This is because L–TreeReach is a restriction of the other reachability
variants. In fact the following observation shows that L–TreeReach is not much
harder than L.

Observation 2. For any language L, the language L–TreeReach is logspace
reducible to L.

Observation 2 holds because in logspace we can find the unique path (and
hence its yield) from s to t and run the algorithm for L on the yield.

Next we define classes of languages based on language restricted reachability.

Definition 2. For any class of languages C, we define the set of languages
C–Reach as the class of all languages L–Reach where L is in C.

Again, by restricting graphs in Definition 2, we obtain similar definitions for
C–DagReach, C–UReach and C–TreeReach.

For a class of languages C and a complexity class D, we say that C–Reach is
complete for D if the following conditions are satisfied.

– For all L ∈ C, the language L–Reach is in D.
– There exists a language L in C such that the language L–Reach is hard for

D.

Definition 3. For any complexity class C, we define Reach
−1(C) as the set of

all languages L such that L–Reach is in C.
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Again, by restricting graphs in Definition 3, we obtain similar definitions for
DagReach

−1(C), UReach
−1(C) and TreeReach

−1(C).
Note that by Observation 1, for any class C the relations Reach

−1(C) ⊆
DagReach

−1(C) ⊆ TreeReach
−1(C) ⊆ C holds. In this paper, we will be

mainly studying DagReach
−1(C) for many interesting complexity classes C.

Our motivation in studying DagReach
−1(C) is that it seems that it may

be helpful in proving upward translation of separation of complexity classes.
Note that we already know, by a standard padding argument, how to trans-
late separations of complexity classes downwards. For example, we know that
NEXP �= EXP =⇒ P �= NP. The central question that we address is the fol-
lowing - For a class C, what is the complexity of DagReach

−1(C)? Clearly
DagReach

−1(C) is contained in C. But for many natural complexity classes
C, D and E, if we can show that if DagReach

−1(C) is contained in some sub-
class D of C, then separating C and D is equivalent to separating C from some
complexity class E that contains C.

We now state a known result with its proof idea which will be used later in
the paper.

Proposition 1 ([11]). CFL–Reach is in P.

Proof. (Sketch) The proof is a dynamic programming algorithm. The algorithm
maintains for each pair of vertices u and v a table entry Y [u, v] such that Y [u, v]
is the set of all non-terminals V in the grammar such that there is a path from
u to v with yield that can be derived from V . The algorithm can be modified to
output the derivation for x where x ∈ L is the yield of a path from s to t. Note
that this implies that for all “yes” instances there exists a string with length of
the derivation at most polynomial in the size of the graph. ��

We use REG, CFL and CSL to stand for well-known formal language classes of
regular, context-free and context-sensitive languages respectively[7]. The formal
language class LIN, called the set of all linear languages, is the set of all languages
with a context-free grammar where the right-hand side of each production con-
sists of at most one non-terminal. The class LIN can also be characterised as
CFLs that can be decided by 1-turn PDAs.

Sudborough [13] studied the class of all languages logspace reducible to a
CFL. This class is called LOGCFL. Sudborough [13] also showed that LOGCFL
can be characterised as the set of all languages accepted by an AuxPDA(poly).
An AuxPDA(poly) is an NTM with a read-only input tape and a logspace read-
write work tape. It also has a pushdown stack available for auxiliary storage. The
machine is only allowed to run for a polynomial number (in the input length)
of steps. It is also known that the language NBC(D2) (Nondeterministic block
choice Dyck2) complete for the class LOGCFL. The language NBC(D2) consists of
all strings of the form x1[x2#x3][x4#x5] . . . [xk#xk+1] where each xi is a string
of two types of parenthesis. The string between “[” and “]” is called a block and
the # separates choices in a block. The string is in the language iff there is a
choice of xi from each block such that the final string (after all choices have been
made) is in D2.
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3 Formal Language Class Restricted Reachability

We know that REG–Reach is in NLOG[15]. The algorithm works by constructing
the product automata of the input graph and the DFA for the regular language.
The problem then reduces to the reachability problem on the product automata.
One problem with this approach is that even if the input graph is an undirected
graph, the product automata will be a directed graph. We know that reachability
in directed graphs is harder than reachability in undirected graphs. The follow-
ing theorem shows that for regular language restricted directed and undirected
reachability are equivalent.

Theorem 1. If L is the regular language L((ab)∗) then L–UReach is NLOG-
complete.

Proof. To show that L–UReach is NLOG-hard, we give a logspace reduction
from REACH. Given an instance (G, s, t) of REACH we construct an instance
(G′, s, t) of L–UReach where G′ is a labelled undirected graph where each edge
is labelled either a or b. The vertex set of G′ is given by V (G′) = V (G)∪ {muv :
(u, v) ∈ E(G)}. For each edge (u, v) ∈ E(G), we add two undirected edges
{u,muv} labelled a and {muv, v} labelled b to E(G′). It is easy to see that any
directed path from s to t corresponds to a path from s to t in G′ labelled by a
string in L and vice versa. ��

So we know that REG–Reach is NLOG-complete and CFL–Reach is at least as
hard as LOGCFL. So it is interesting to consider the complexity of LIN–Reach.
We know that REG ⊆ LIN ⊆ CFL in the formal language theory setting. The
following theorem shows that LIN–Reach is equivalent to REG–Reach.

Theorem 2. LIN–TreeReach, LIN–DagReach, LIN–UReach and
LIN–Reach are all NLOG-complete.

Proof. There is an NLOG-complete language in LIN [12]. The hardness follows
from this fact. Now we show that all these problems are in NLOG. The Dynamic
Programming algorithm for CFL–Reach runs in poly-time and produces a poly-
nomial length derivation for the output string (string yielded by the path). For
any language in LIN, a polynomial length derivation can only produce a poly-
nomial length string (and hence polynomial length path). Let us say that the
length of the path is bounded by nk where n is the size of the graph and k is
a constant. Then our algorithm will search for a path of length at most nk by
nondeterministically guessing the next vertex at each step and simultaneously
parsing the string at each step (Using a 1-turn PDA.). This can be implemented
by a 1-turn AuxPDA that runs in time nk and takes log(n) space. By a result
due to Sudborough [12], this class is exactly the same as NLOG. ��

The following theorem shows that for solving reachability for DCFLs (which are
nondeterministic), some nondeterminism is unavoidable.

Theorem 3. DCFL–DagReach is LogCFL-complete.
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Proof. Let L ∈ DCFL. We will describe an AuxPDA(poly) that decides the lan-
guage L–DagReach. The machine starts with the source vertex s as the current
vertex. At each step it nondeterministically moves to an out-neighbour of the
current vertex. When the machine takes the edge (u, v) it executes one step of
the DPDA for L, using the stack and finite control, with the label on (u, v) as
the current input symbol. The machine accepts iff it reaches t and the DPDA
accepts.

For hardness, we reduce NBC(D2) to DCFL–DagReach. The reduction results
in a series-parallel graph as shown in Figure 1. In the figure, a dashed arrow
represents a simple path labelled by the given string. Note that the language D2

is a DCFL. ��

x1[x2#x3][x4#x5]

x1
x2

x3

x4

x5
s t

Fig. 1. Reducing NBC(D2) to DCFL–DagReach

Proposition 2. CFL–TreeReach andCFL–DagReach are LOGCFL-complete.

Proof. Sudborough [12] defines a context-free language that is complete for the
class LOGCFL. This shows the hardness. To show membership in LOGCFL con-
sider an AuxPDA(poly) that starts with s as the current vertex and at each step
guesses the next vertex while simultaneously using the stack to simulate the
parsing of the CFL. This machine accepts iff the current vertex is t at some
point and the PDA is in an accepting state at the same time. It is easy to see
that this AuxPDA(poly) decides these languages.

We now give a simplified presentation of a known result that says that
CFL–Reach is P-complete. Also observe that

Theorem 4 ([14]). If D2 is the CFL (ε-free Dyck2) given by the grammar

S → (S) | [S] | SS | ( ) | [ ]

then D2–Reach is P-complete.

Proof. This theorem has been proved by [14] using a different terminology. Here
we give a simplified presentation of the proof using our terminology for the hard-
ness of this language. We show the hardness for P by reducing MCVP (Monotone
Circuit Value Problem where fan-out and fan-in of each gate is at most 2) to
D2–Reach. We may assume wlog that each gate in the input circuit has fan-out
at most 2. The reduction works by replacing each gate by a gadget as shown in
Figure 2. Each gadget in the construction has an input vertex and an output
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vertex. The gadgets for input gates are straightforward. For an AND gate we
add 3 new vertices and connect them to the gadgets for two gates feeding input
to the AND gate. Suppose that the left input to the AND gate comes from the
2nd (1st) output wire of the left input gate. Then the first and second edges are
labelled by “[” (“(” resp.) and “]” (“)” resp.) respectively.

We use proof by induction on the level of the output gate of the circuit to
prove the correctness of this reduction. The inductive hypothesis is that there is
a valid path from the input vertex to the output vertex of a gadget iff the output
of the gate is 1 and any path that enters a gadget through its input gate and
leaves it from some vertex other than its output vertex will be invalid. This holds
trivially for gadgets for input gates. Now any valid path from the input vertex
to the output vertex of the AND gadget must consist of valid subpaths within
the gadgets for the gates feeding input to this AND gate. The only exception
is when some path leaves this gadget for the AND gate from some vertex other
than its output vertex. Note that by the inductive hypothesis such a path can
only leave from vertex w or z of the gadget. But the vertex w (z) has out-degree
at most 2 and the other edge will be labelled by a closing bracket that does
not match the type of bracket on the edge (u, v). This mismatch invalidates the
path. A similar argument holds for OR gates. This closes the induction. ��

Input gate with value 1

( )
input output

( or [

( or [

( or [ ) or ] ( or [ ) or ]

) or ]

) or ]

Gadget for left input

Gadget for right input

Gadget for right inputGadget for left input

input output

AND gate

OR gate

w zinput output

Input gate with value 0

input output

Fig. 2. Reducing MCVP to D2–Reach

Now we prove a theorem similar in spirit to Theorem 1 for CFLs. The proof
uses the same idea to make the undirected version as hard as the directed one.

Theorem 5. If DD2 is the CFL given by the grammar

S → (aSb) | [cSd] | SS | (a b) | [c d]

then DD2–UReach is P-complete.
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Proof. CFL–UReach is in P by [14]. We prove hardness by reducing from
D2–Reach. The reduction works by replacing each edge of the D2–Reach in-
stance by an undirected path of length two. If for two vertices a, b, the directed
edge from a to b is labelled “(” (respectively “)”,“[” and “]”) then replace it
by an undirected path of length two with yield “(a”(respectively “b)”,“[c” and
“d]”) when read from vertex a to vertex b. The correctness of the reduction is
easy to see. ��

We state the following proposition, which follows from Theorem 7.

Proposition 3. CSL–TreeReach and CSL–DagReach are PSPACE-complete.

4 Complexity Class Restricted Reachability

Now we consider the complexity of L–Reach and its variants when L is chosen
from complexity classes. We only consider L–DagReach as even for languages
decidable in LOG as Barrett et. al. [2] has shown that even for languages in LOG,
the languages L–Reach and L–UReach are undecidable. But note that for any
decidable L, the language L–DagReach is decidable. So we restrict our study
only to L–DagReach in this section.

We have seen that moving up in the Chomsky hierarchy increases the complex-
ity of reachability. It is natural to ask whether such an observation also holds wrt
complexity classes. i.e., increasing the complexity of L increases the complexity
of L–DagReach. More concretely , does A ≤LOG

m B imply A–DagReach ≤LOG
m

B–DagReach. The following theorem shows that this is very unlikely.

Theorem 6. There is an A ∈ LOG for which A–DagReach is NP-complete.

Proof. The language A can be thought of as encoding satisfying assignments
for some satisfiable formula. Each string in A consists of 3 parts. The first part
encodes n, the number of variables. The second part consists of n bits which can
be thought of as the assignment to n variables. The next part consists of blocks
of the form (id, b) where id uniquely identifies one of the variables x1, . . . , xn
and b is 0 or 1. The string is in the language A iff each block is consistent with
the assignment stated in the second part of the string. Clearly A ∈ LOG. The
language A–DagReach is in NP where the non-deterministic Turing machine
guesses the path and then verifies whether the yield of the path is in A. To show
NP-hardness, we reduce 3SAT to A–DagReach.

The proof is depicted in Figure 3. An edge labelled (xi, b) is actually a simple
path labelled by a string encoding (xi, b). We use enc(x) to stand for the standard
binary encoding of the positive integer x. Note that the graph also contains three
parts corresponding to the three parts of a generic string in A. Suppose the input
formula is satisfiable. Then we can construct a valid path in the graph from a
satisfying assignment for the formula as follows. Take the edge labelled by the
value of xi when we reach the ith block in the second part. When we reach the
ith block in the third part, look at the ith clause in the formula. Suppose that
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xi (xi) is a satisfied literal in this clause. Then we take the path labelled (xi, 1)
((xi, 0))in this block. For the other direction, take any valid path in the graph.
Note that we can cross the ith block in the third part of the graph only by taking
a path labelled by (xi, b) where assigning xi = b satisfies the ith clause. So a valid
path exactly corresponds to a satisfying assignment for the formula. ��

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

enc(3)#

#

#

#

#

#

#

(x1, 0)

(x2, 1)

(x3, 1)

(x2, 0)

(x3, 1)

(x1, 1)

0

1

0

1

0

1

#

#

#

#

#

#

Fig. 3. Reducing 3SAT to A–DagReach

We are now going to see how the above result can be used for translating sepa-
rations of complexity classes upwards 8. For any complexity class C, we consider
the class of languages defined as DagReach

−1(C) = {L : L–DagReach ∈ C}.
We have the following theorems for natural choices of C. Note that for any class
C, we have DagReach

−1(C) ⊆ C.

Theorem 7. DagReach
−1(PSPACE) = PSPACE and DagReach

−1(NP) =
NP.

Proof. Let L ∈ PSPACE, then given an instance of L–DagReach we enumerate
all paths from s to t and run the PSPACE algorithm for L on the yield. This is
a PSPACE algorithm for L–DagReach. Similarly if L ∈ NP, then a path from s
to t along with the certificate for the yield on that path is a poly-time verifiable
certificate for the L–DagReach problem. ��

Theorem 8. P �= DagReach
−1(P) ⇐⇒ P �= NP.

Proof. Suppose P �= DagReach
−1(P) and let L ∈ P \ DagReach

−1(P). Now
L–DagReach is in NP by the previous theorem. By the choice of L we also have
L–DagReach is not in P.

For the other direction: suppose DagReach
−1(P) = P. We know that there

is a language L ∈ P for which L–DagReach is NP-complete. Hence, P = NP. ��

The above theorem shows that separating DagReach
−1(P) from P would sep-

arate P from NP. This gives us an upward translation of lower bounds on com-
plexity classes provided we can prove that DagReach

−1(P) is contained in some
subclass of P. The interesting question is whether we can identify some “natural”
complexity class containing DagReach

−1(P).
By using similar arguments, we also have

Theorem 9. DagReach
−1(NLOG) �= NLOG ⇐⇒ NP �= NLOG.
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However DagReach
−1(NLOG) contains NLOG-complete languages (See The-

orem 2). So proving that DagReach
−1(NLOG) is separate from NLOG could be

very hard.
The following theorem can be viewed as evidence thatDagReach

−1(P) could
be separate from P. A language L is syntactic read-once logspace (This notion was
considered by Hartmanis et. al. in [6]) reducible to another language L′ iff there is
a logspace reduction from L to L′ and in the configuration graph for this reduction
all paths from the start configuration to the accepting configuration reads each
input variable at most once. It shows that if we restrict our attention to syntactic
read-once logspace reductions, then DagReach

−1(L) for a P-complete problem
L is NP-complete. Note that many natural P-complete problems such as CVP
(Circuit Value Problem) remains P-complete even under syntactic read-once
logspace reductions.

Theorem 10. If L is P-complete under syntactic read-once logspace reductions,
then L–DagReach is NP-complete.

Proof. Let V ∈ NP via a poly time verifier N. Let W be the witness language
for V. i.e., W = {(x,w) : N(x,w) = 1 and |w| = |x|k for some k}. Since L is
P-complete W is read-once log space reducible to L via M. We reduce V to
L–DagReach. Let x be our input. Take the configuration graph G of M on
length |x| + |x|k inputs (after fixing the value of x) and label each edge by the
symbol output by the machine M in that step. This graph H is considered as an
input to the language L–DagReach. First we prove that H ∈ L–DagReach

implies that x ∈ V. Consider a path from s to t in H labelled by a string in L.
This path corresponds to a witness string for x. Therefore there exists a string
w for which (x,w) in W which implies x ∈ V. For the other direction let x ∈ V.
Therefore there exists a string w such that (x,w) ∈W. Now take the path in G
that corresponds to this w. The yield of this path is a member of the language
L since M outputs this yield when given (x,w) as input. ��

5 Discussion and Open Problems

The main result of our work is the observation that if we can prove that the class
DagReach

−1(P) is contained in some complexity class that is a subclass of P,
then we can translate separation of complexity classes upwards. We propose the
following open problem.

Open Problem 1: Prove that DagReach
−1(P) ⊆ NC.

It would be interesting to study the behaviour of DagReach
−1(.) opera-

tor on complexity classes below NLOG. Let AC0 be the class of all languages
computable by poly-sized, constant depth uniform Boolean circuits. Can we say
anything about the set of languages DagReach

−1(AC0). The only languages L
for which we know that L–DagReach is in AC0 are finite languages. Intuitively,
any language L for which DagReach

−1(L) is in AC0 should somehow strictly
reduce the complexity of the usual reachability problem (Recall that DAGREACH
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is NLOG-complete and we know that NLOG �= AC0). This leads us to our second
open problem.
Open Problem 2: Prove that L–DagReach ∈ AC0 =⇒ L is finite.
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Abstract. We extend the # operator in a natural way and derive a new
type of counting complexity. While #C classes (where C is some circuit-
based class like NC1) only count proofs for acceptance of some input
in circuits, one can also count proofs for rejection. The here proposed
Zap-C complexity classes implement this idea. We show that Zap-C lies
between #C and Gap-C. In particular we consider Zap-NC1 and poly-
nomial size branching programs of bounded and unbounded width. We
find connections to planar branching programs since the duality of posi-
tive and negative proofs can be found again in the duality of graphs and
their co-graphs. This links to possible applications of our contribution,
like closure properties of complexity classes.

1 Introduction

Besides Turing machines, circuits are a well studied model of computation for the
study of low level complexity classes. Measures of complexity in circuits include
depth and the number of gates which are roughly speaking an analogue to time
and space complexity in Turing machines. When regarding parallels between
Turing machines and circuits, a natural question is, what the counterpart to
non-determinism in circuits is. A non-deterministic Turing machine can have
more than one accepting computation on some input. In fact, the counterpart
to the presence of multiple accepting computations is the presence of proof trees
in circuits. A proof tree is a sub-tree of the tree unfolding of a circuit, which
is a witness for acceptance of some input word. When looking at the circuit-
based characterization of, say NP, one can observe that the number of accepting
computations and the number of proof trees coincide [Ven92].

How can we calculate the number of proof trees in a circuit? It can be verified
easily that if we move to an arithmetic interpretation of the circuit, it computes
the number of proof trees [VT89]. I.e. we interpret And as × and Or as +. Since
we cannot treat negation in this setting directly, we assume w.l.o.g. the circuit
to be monotone. If we want to address functions counting proof trees in circuits
(or equivalently arithmetic circuits) of some complexity bound, say NC1, we
write #NC1.

It is an open question whether #C functions are closed under subtraction.
Here, the case we are most interested in is C = NC1. This motivated another
type of counting complexity: Gap. Where #C functions range over non-negative
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integers, Gap-C functions range over integers. Gap-C functions are realized by
arithmetic circuits with gates of types {+,−,×}. By [FFK94, All04] we know
that Gap-C = #C − #C, what motivated its naming. That means that each
Gap function can be computed by an arithmetic circuit only having a single
subtraction gate.

Boolean circuits can also compute arithmetic functions. Such a circuit has as
many output gates as necessary to display the result integer in binary represen-
tation. Hence one can ask e.g. if NC1 = #NC1 or even NC1 = Gap-NC1.
By Jung [Jun85] we know, that those classes lie extremely close, but it is still
unknown if they coincide.

At this point our contribution comes into play. We propose a new type of
counting complexity which fits in between #C and Gap-C very naturally. The
starting point for our definition is the observation that we can extend the notion
of a proof tree. A (now called positive) proof tree is a witness for a word being
accepted. If a word is rejected, there are also witnesses: negative proof trees.
To our knowledge, negative proof trees haven’t been considered before even
though the duality of positive and negative proofs is appealing. We call1 our
new counting complexity classes Zap-C. Zap-C functions are of the form Σ∗ →
Z \ {0}. The image is positive iff there are positive proof trees and negative in
the case of the existence of negative proof trees.

Providing the base of the Zap definition we show an arithmetic interpretation
of circuits which then calculate the corresponding Zap-C function. By the nature
of Zap, we are not restricted to monotone circuits any more in contrast to the #
case. The second interesting result is that in the case of C ∈ {NCi,ACi|i ≥ 0}
the Zap-C functions can be written as differences of #C functions with the
restriction that the result must not be 0. This uses the fact that each circuit can
be transformed in a way that each input has exactly either one negative or one
positive proof tree. Those two results place Zap-C right between #C and Gap-C.
So Zap might give us new possibilities to examine the differences between #C
and Gap-C.

Zap circuits are the one major topic of this work. The other one is (non-
deterministic) Zap branching programs (BP). Starting point is the celebrated
work of Barrington which showed that bounded width polynomial size branching
programs (BWBP) are equally powerful as NC1 circuits. In the case of BPs we
are also interested in counting. In BPs a witness for acceptance is a path from
source to target. By [CMTV98] we have that the task of counting paths can be
expressed as matrix multiplication which is possible in #NC1. However we do
not know if counting proof trees in NC1 circuits is possible in #BWBP hence

#NC1 ?
= #BWBP is an open question.

We extend the Zap idea to BPs. To do so, we need an analogon to the negative
proof trees known from circuits. We found this in the notion of cuts. A cut in
our sense is a partition of the BP’s nodes in two, so that source and target are
separated and no undesired edge goes between the two parts. From this it is
clear that given a BP and some input there is a path iff there is no cut. In the

1 The naming is motivated by the set of integers Z and Gap.
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case of circuits, positive and negative proofs are dual by negating the circuit.
This in a way is inherited by BPs. If we have a planar BP, the counter part to
negation is moving to the dual graph. The number of paths becomes the number
of cuts and vice versa, so we have switched the sign of the function. We show
how Zap BPs are related to Zap-NC1. We have a construction to simulate
Zap-NC1 functions with BPs. The BPs generated that way are planar but not
bounded. This raises questions concerning boundedness and planarity in BPs

and Zap-NC1 whose answers could give insights in the #NC1 ?
= #BWBP

problem.
The paper is structured as follows: We begin with a Preliminaries section

providing all definitions necessary concerning computational complexity, circuits,
arithmetic circuits and BPs. The following section, Results, summarizes and
states our results. In the subsequent sections we give proofs for the theorems.
In the end we give an overview and outlook. Two proofs can be found in the
Appendix to comply with the length constraint.

We thank the anonymous referees for their helpful comments.

2 Preliminaries

In this paper words are always built from the alphabet Σ = {0, 1}. By Z we
denote integers and by N the non-negative integers. We assume the reader to
be acquainted with Turing Machines and elementary complexity classes like L,
NL, P and NP. See e.g. [Pap94] for basics in computational complexity.

A Turing machineM accepts a word w, if there is a computation on the input
resulting in an accepting state. For non-deterministic machines, there can be
more than one. We denote the number of accepting computations by #accM (w).
The set of functions #accM : Σ∗ → N for Turing machines M in the bound of
some complexity class, say NP, is denoted by #P. Similarly we get #L from
NL.

A circuit C is a connected acyclic graph with a designated output node and n
input nodes, where n in the in-degree of the circuit. All other nodes are assigned
Boolean functions like And, Or and Negation. There are also other gates, e.g.
threshold gates or modulo gates, but those are not in the scope of this work.

A word is accepted by a circuit if the computation results to 1. Since a circuit
can only treat words of some constant length, we need to speak about circuit
families: (Cn)n∈N. If such a family is computable in the limits of some complexity
class, we speak of a uniform circuit family, e.g. Dlogtime-uniformity. If we
bound circuit families in the number of gates, depth or fan-in, we get circuit based
complexity classes like AC0, ACC0, TC0 and NC1. The latter one corresponds
to circuits of logarithmic depth, polynomial size and a limit of the fan-in of gates
of two. Check e.g. [Vol99] for basics in circuit complexity.

Circuits made up of And and Or gates can be transformed in a negation
normal form. We duplicate the input nodes, so that each one has a negated
twin. By repeated application of DeMorgan’s law, we get a monotone circuit
computationally equivalent to the original one, i.e. without negation gates (only
negated input gates may be present).
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If we take a monotone circuit and replace And by × and Or by +, then
we have arithmetized the circuit, i.e. a circuit which operates over the semi-ring
(N,+,×, 0, 1). It now computes a function Σn → N. The set of functions Σ∗ → N

generated by the arithmetic interpretation circuit families in some complexity
class C is denoted as #C. This way we get e.g. #AC0 and #NC1. Due to [Ven92]
we know that this is consistent with counting complexity as it is defined for
Turing machines: If we take the monotone circuit characterization of NP, then
counting accepting computations is the same as arithmetizing the corresponding
circuits. It is noteworthy that this is not the only way to arithmetize. In [Bei93],
Beigel surveys different possibilities.

Also, we know by [VT89] that arithmetic circuits count proofs trees, which
can be seen as levels of acceptance in circuits. Unfortunately this tells us nothing
about the efficiency of a circuit since the absence of many proof trees does not
imply the absence of redundancy in the circuit structure [Fla12]. Given a circuit
C, we can unfold it by iteratively treating gates with fan-out greater than one. If
g is such a gate with fan-out k > 1, let A be the sub-circuit of C, whose output
gate is the output of g. By adding k − 1 more duplicates of A, we can build an
equivalent circuit, where g and its duplicates only have fan-out one. Finally we
get an equivalent circuit which is a tree. The number of sub-trees whose root is
the circuit’s output gate and which result to 1 is the number of proof trees.

In # classes the closure under (modified) subtraction is unknown which mo-
tivated another type of arithmetic class. If we consider arithmetic circuits over
Z with gates of types in {+,−,×}, we get Gap complexity classes [FFK94]. A
function f is in Gap-C iff there are g, h ∈ #C so that f = g − h.

If we want to compare # and Gap classes, we do this on non-negative output
values. We can even compare those counting classes with Boolean classes. In this
case the Boolean circuit has to have several outputs computing the bits of the
binary representation of the resulting integer. For a survey on arithmetic circuit
complexity, see the survey of Allender [All04].

Another model of computation are non-deterministic branching programs
(BP). Note that counting in deterministic BPs is trivial. BPs are directed acyclic
layered edge-labeled multi-graphs. A graph is layered if the set of vertices V =

V1
·
∪ V2

·
∪ · · ·

·
∪ Vk so that edges only exist between adjacent layers Vi and

Vi+1. Further we set V1 = {s} and Vk = {t}. A BP gets input words from Σn.
Labels are elements from the set {x1, . . . , xn, x1, . . . , xn}. A word w is accepted
by some BP if there is a path from s to t so that the labels are consistent with
the input. I.e. if wi = 1 then no label xi must be read and if wi = 0 vice versa.
A label is inconsistent with the input if it is not consistent. Since BPs are a
computation model which receives words of constant length, we need to consider
families of BPs as well. The set of languages which are accepted by some family
of polynomial-size BPs is written in bold face: BP. By [Raz91] and [RA97], we
know that BP = NL/poly = UL/poly. Thus BP is closed under complement.

To restrict some BP’s computational power, one can make constraints. A
major one is the restriction of the width of a BP, i.e. the size of the largest
layer. We call polynomial-size BPs of bounded (constant) width BWBP. An
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important result is that BWBP = NC1 [Bar89]. As a by-product, we know,
that width 5 is always sufficient in the bounded width case. Another restriction
is planarity which gives us - in combination with boundedness - the classes PBP
and PBWBP. By [Han08] and [BLMS98] we know that planar bounded-width
BPs are related to AC0 and ACC0.

Counting classes have already been defined for Turing machines and circuits.
By counting the number of paths from s to t being consistent with the input
word, we get BP counting classes: #BP, #BWBP, #PBP and #PBWBP.
We know that #BWBP ⊆ #NC1 [CMTV98] but we do not know if the inclu-
sion is strict. But then again, we know that Gap-NC1 functions are differences
of #BWBP functions, so Gap-NC1 = Gap-BWBP [CMTV98].

3 Results

In this section, we define Zap counting complexity and show how it embeds in
the context of #C andGap-C. We will also have a look at Zap-NC1 in particular
and BPs. The justification of our results is given in later sections.

In the context of #C we spoke of proof trees. We now call these proof trees
positive, since we consider the case that a word is accepted by a circuit. But now
imagine a circuit C rejects some input. Let C′ be the negation2 of C. If a word is
rejected, we have, as many proofs for rejection in C as for acceptance in C′. So,
analogously we define negative proof trees which are sub-trees of the unfolded
circuit which show that the input is rejected. Obviously, there are positive proof
trees iff there are no negative ones.

Given a family of circuits C, by #acc+C : Σ∗ → N we denote the function
which gives us the number of positive proof trees for some input. #acc−C is the
function for the negative proof trees. Further let

#accC := #acc+C −#acc−C ,

i.e. we subtract the number of negative proof trees from the number of positive
proof trees, which gives the number of negative proof trees a negative sign.

The notion of negative proof trees allows us to define the Zap operator which
gives us new counting complexity classes.

Definition 1. Let C be some circuit-based complexity class. Then Zap-C is the
set of all functions counting proof trees (positive and negative) in circuits in the
limits of C, i.e. all functions of the form #accC for some C ∈ C.

Zap-C functions are always of the form Σ∗ → Z \ {0}. In the #C case it
turned out that counting proof trees is equivalent to the computation arithmetic
circuits perform. But this only holds within circuits in negation normal form
because negation gates are not directly treatable. The absence of the notion of
negative proof trees limits one to monotone circuits. In the Zap case we can also
arithmetize - and this not only in monotone circuits.

2 Insert a negation gate after the output node and make this negation gate the new
output.
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Theorem 1. For a circuit family C, the function #accC ∈ Zap-C can be calcu-
lated by an arithmetic circuit based on C resulting from the following interpre-
tation of the gates:

– Negation inverts the sign of its input: x �→ −x.
– An And gate with inputs x1, . . . , xk gets assigned the function

x1, . . . , xk �→
k∏

i=1

max{0, xi}+
k∑

i=1

min{0, xi}

– An Or gate with inputs x1, . . . , xk gets assigned the function

x1, . . . , xk �→
k∑

i=1

max{0, xi} −
k∏

i=1

max{0,−xi}

– Input gates now hold values in {−1, 1}; in particular the Boolean 0 becomes
−1 and 1 stays the same.

As one can see, if an And gate receives only true/positive inputs, then the
values are multiplied. If there are negative inputs, those are added. The case Or

gates is symmetric.
This lemma gives us an analogue to the #C correspondence between positive

proof trees and arithmetic circuits. The next theorem provides an analogy to the
fact that Gap-C functions are differences of #C functions.

Theorem 2. Let C be in {ACi,NCi|i ≥ 0}. A function f is in Zap-C iff there
are functions g and h in #C, so that g(w) = 0⇔ h(w) �= 0 for all inputs w and
f = g − h.

Theorem 1 shows Zap-C to be a generalization of #C and theorem 2 a restric-
tion of Gap-C. That means Zap-C lies between #C and Gap-C and suggests
that we have a natural definition at hand.

Next we consider NC1 and BPs. First we need to define what a Zap BP is;
especially we need a counterpart to negative proof trees in circuits. This part of
the paper is based on [Dor13]. Positive proof trees coincide with paths from s to t
in BPs. If some input is rejected, there are negative proof trees in the circuit and
no path in the BP from s to t being consistent with the input word. If there is no
path, then source and target are separated, i.e. there is a cut. So, we discovered
that counting cuts gives us exactly what we need. Formally, a cut is a partition
of the vertices V in two sets Vs and Vt, so that s ∈ Vs, t ∈ Vt and all edges
between those sets go from Vs to Vt and are inconsistently labeled with respect
to the input. #pathsB : Σ∗ → N is the number of paths and #cutsB : Σ∗ → N

the number of cuts some input generates.
Based on that we define Zap for BPs.

Definition 2. Let B be a BP-based complexity class. Then Zap-B is the set of
all functions counting paths and cuts of some input in a BP B which is in the
bounds of B, i.e. all functions of the form #accB := #pathsB −#cutsB.
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By this definition we get i.e. BP as well as BWBP, PBP, and PBWBP.
Obviously such functions are of the desired form Σ∗ → Z \ {0} because a path
exists iff no cut exists. Our goal is to find relations between Zap circuits and
Zap BPs.

We find upper and lower bounds for NC1 in BPs, which are similar to the #
case.

Theorem 3. Zap-BWBP ⊆ Zap-NC1 ⊆ Zap-PBP

The first inclusion holds because we can use the idea for counting paths by
matrix multiplication to count cuts. For the second inclusion we have a procedure
so transform an circuit into a BP. The idea is that And gates correspond to serial
computation in BPs and Or gates to parallel computation. We then use the
observation that this construction results in planar graphs. This is convenient,
since paths and cuts are dual in taking the dual graph which makes each face to
an vertex and draws edges between adjacent faces. Paths and cuts switch places
in the dual graph. This shows us that cuts are really the counterpart to negative
proof trees. This gives us the following:

Corollary 1. Zap-PBP is closed under inversion3 and Zap-PBWBP stays
planar under inversion.

If we apply the construction of theorem 3 on arbitrary BPs, then we see, that
we can make a BP planar by admitting it quasi-polynomial size.

s t
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s

t
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¬x3
¬x6
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¬x4¬x2

1
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Fig. 1. Inversion in BPs. (a) is the original BP. (b) is the dual graph of (a), hence its
inversion. (c) is the layered version of (b).

Figure 1 visualizes inversion in planar BPs. It remains a very interesting
question how boundedness and planarity are related exactly and how to catch
Zap-NC1 in terms of BPs.

3 Inversion means multiplication with −1. That some circuit (or BP) is the inversion
of some other circuit (BP) is a stronger requirement than that it is the negation.
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4 Proofs

In this section we will provide the proofs for the theorems stated in the results
section.

Proof (Theorem 1: Zap and arithmetic circuits). We show the result by induc-
tion on the gates of the circuit. For input gates, we have one positive proof tree
if the input is 1 and one negative proof tree if it is 0. Negation gates obviously
realize an inversion of the sign. Now consider And gates. Let g be some And

gate and assume that the inputs x1, . . . xk already transport the right value. If
the inputs are all true, g will output one and have a positive number of proof
trees. In this case all input values have to be multiplied and this is what happens
in this case. If one of the outputs is false, g must be assigned a negative number
of proof trees by adding all negative inputs. The construction assures this. The
Or case is shown analogously. �

The next Lemma allows us to split Zap-C functions into a positive and a negative
part. For a function f , we define f+ = max{f, 0} and f− = min{f, 0}.

Lemma 1. In the case of C ∈ {NCi,ACi|i ≥ 0}, it holds that if f ∈ Zap-C,
then f+ and −f− are in #C.

Proof. Let C be a family of circuits so that #accC = f . We can assume that C
is in negation normal form, since any negations can be pushed up to input level
which does not change the arithmetic interpretation of the circuit. Calculating
the number of positive proofs in a monotone circuit is exactly # counting as
we know it, i.e. f+ ∈ #C. The (positive) number of negative proofs is −f−. In
this case we use C and attach a negation gate after the output gate and push
it to input level to get an equivalent negation normal form whose arithmetic
interpretation counts negative proofs. So we get −f− ∈ #C. �

The next result is the following lemma which states that circuits can be trans-
formed in such a way that the realized Zap function only takes absolute value
1. We use the regular definition for the sign function.

Definition 3. The sign function sgn : Z → {−1, 0, 1} maps negative values to
−1, positive ones to 1 and 0 to itself.

Now we prove that Zap-C functions are closed under application of the sign
function. This is the only way we know to reduce the absolute value. The lemma
originates in [Fla12] and a related construction can be found in [Lan93].

Lemma 2. If f is in Zap-C, then sgn ◦ f is also.

Proof. Assume an arithmetic circuit C which computes f for some fixed input
length. We inductively transform it into a circuit which computes sgn ◦ f .
Input nodes by definition only take values in {−1, 1}. Negation gates leave
values in this set. Now consider an Or gate v with inputs x1, . . . , xk and assume
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inductively all inputs to only take values in {−1, 1}. For each input we insert a
Negation gate negi and an And gate andi. We make the following connections
for all i (The construction is also pictured in following figure):

– xi to negi
– xi to andi
– andi to v
– negi to andj for j > i

∨

x1 x2 x3

x1 x2 x3

neg3neg1 neg2

and1 and2 and3

∨

Construction of sgn in the case of Or with
fan-in 3.

Now v only outputs values in {−1, 1}: Assume all xi take value −1. Then all
andi output −1 and so does v. If there is at least one input which takes value
1, then let xl be the one of those with smallest index l. In the construction only
andl will take the value 1 and hence v will output 1.
The construction for the case when v is an And gate is easily adapted.
To stay in some complexity class, we need to note that this construction enlarges
the circuit by a constant factor in depth as well as in size. �
An interesting interpretation of the previous lemma is that counting proof trees
tells us nothing about efficiency of a circuit as one’s intuition may suggest. In
particular we made the circuit larger and the result is that we only get minimal
numbers of proof trees: −1 and 1.

Next, we prove theorem 2, which gave us the relation to Gap-C.
g h sgn ◦ h

∨

⊕

Fig. 2. Construction for the Zap

circuit computing g − h

Proof (Theorem 2: Zap-C functions as dif-
ference of #C functions). For a function f ∈
Zap-C we choose g = f+ and h = −f−.
By Lemma 1, we know that g, h ∈ #C and
g(x) = 0 ⇔ h(x) �= 0.

For the opposite direction, we are given g
and h in #C so that g(x) = 0 ⇔ h(x) �=
0. We construct a circuit whose arithmetic
interpretation computes g − h. Let Cg and
Ch be the corresponding monotonic Boolean
circuits, whose arithmetization results in g
respectively h. We construct a new Boolean
circuit C in the way described in figure 2. The construction first adds the values
of g and h using an Or gate. We show, that the construction using sgn and Xor

ensures that the output’s sign is inverted if h(x) > 0. Let φ be the sub-circuit
Cg∨Ch (here and in the following we abuse notation by pretending we are dealing
with formulas) and ψ be sgn ◦ h. So the arithmetic interpretation of φ⊕ψ gives
us the end result. For the result we rewrite: φ ⊕ ψ = (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ). The
first case is g(x) > 0. That means (φ∧¬ψ)(x) = g(x) and (¬φ∧ψ)(x) < 0, hence
the result is g(x). The second case is h(x) > 0, so we get (φ ∧ ¬ψ)(x) = −1 and
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(¬φ ∧ ψ)(x) = −h(x). By applying the arithmetic semantic of the Or gate, we
get −h(x) as the desired result. Hence in arithmetic interpretation the circuit
computes g − h. �

Proof (Theorem 3). We will only prove the first part of the theorem.
(Zap-BWBP ⊆ Zap-NC1). Let B be a BWBP. To prove the result, we have
to show that #pathsB and #cutsB are in #NC1. By application of theorem 2,
we have the desired result. #pathsB however is trivially in #NC1 because that
is how counting is defined in BPs and #BWBP ⊆ #NC1.

We are left proving that counting cuts is possible in #NC1. To do this we
modify the construction for counting paths in #NC1 which we will explain
briefly. In the construction one defines matrices for each layer Ai. We can assume
that the BP is not only layered but rasterized, i.e. layered also horizontally. If
the BWBP is bounded by k then each node is addressable by the layer i and
the position in the layer j for 1 ≤ j ≤ k as (i, j). Here we let s = (1, 1) and
t = (p(n), 1). p(n) is the polynomial bound for the number of layers. Now each
matrix codes the edges between the layers. If we have a vector vi which tells
us in layer i how many paths are there from s to each node, then viAi+1 =
vi+1. It is v1 = (1, 0, . . . , 0). Consider the matrix Ai = (apq)1≤p,q≤k. We then
have that apq is the sum of all labels for edges from (i − 1, p) to (i, q). The
first element of the vector v1A2 . . . Ap(n) is then the number of paths between
s and t. Calculating this is possible in #NC1, since multiplying two constant-
sized matrices is possible in constant depth and if we multiply p(n) many such
matrices, we need a circuit if depth O(log n), i.e. #cutsB is calculable in #NC1.

a1

a2

a3

b1

b2

b3

x1

x2

x3

x4

x5

Vi−1 Vi

Mi =

∅ b1 b2 b3 b1b2 b1b3 b2b3 b1b2b3
∅ 1 0 0 0 0 0 0 0
a1 x̄1x̄2 x̄2 0 0 0 0 0 0
a2 x̄3x̄4 0 0 0 0 0 0 0
a3 x̄5 0 0 0 0 0 0 0
a1a2 x̄1x̄2x̄3x̄4 x̄2x̄3x̄4 x̄1x̄4 0 x̄4 0 0 0
a1a3 x̄1x̄2x̄5 0 x̄2x̄5 0 0 0 0 0
a2a3 x̄3x̄4x̄5 0 0 x̄3 0 0 0 0

a1a2a3 x̄1x̄2x̄3x̄4x̄5 x̄2x̄3x̄4x̄5 x̄1x̄4x̄5 x̄1x̄2x̄3 x̄3x̄5 x̄2x̄3 x̄1 1

Fig. 3. Example for the construction of the cut-counting matrix Mi for layer i

Back to counting cuts: We do the same as in the path calculation, so that the
first element of the vector v1A2 . . . Ap(n) holds the desired value. Here we also

calculate from layer to layer but this time we have matrices of size 2k × 2k. The
reason is that we must regard the power-set of nodes in a layer. Recall that a cut
is a partition of the vertices which separates s and t and so that the only edges
between the two sets are inconsistent ones from Vs to Vt. An entry in a vector vi
corresponds to a set of nodes X in the layer i. The value is the number of cuts
separating s from layers beyond i, so that X ⊆ Vs and X ∩ Vs = ∅. By applying
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Ai = (apq)1≤p,q≤2k we get this vector for the next layer. Say apq corresponds to
sets X1 and X2. Then apq codes the possibility of extending a cut containing
X1 from the layer i to a cut containing X2. If there are edges from X1 to X2

then apq = 0 and else apq is the product of all negated labels of edges going from
X1 to X2. If there are no such edges at all then apq = 1. Figure 3 shows the
construction.

We sketch the proof for the correctness of this construction based on a in-
duction upon the layers of the BP. Let v1 be the initial vector for the first layer
which only includes s and let vi = vi−1Ai. Each component in such a vector
stands for a subset X of nodes in a layer and we want to show that it holds
the value how many cuts there are, so that exactly the nodes X in this layer
belong to Vs. We assume inductively that this calculation is correct for layer
i, i.e. v1A1 . . . Ai has the right values for each subset. Then v1A1 . . . AiAi+1 is
correct for layer i + 1. Each subset Y in layer i + 1 can become part of Vs if
there is an extendable subset X from the previous layer. That means there are
no edges going from Vt to Vs. The number of cuts with Y ⊆ Vs is the sum of
cuts of all subsets of the previous layer having no forbidden edges. Whether a
forbidden edge occurs is dependent on the input; the matrix holds exactly the
required constraints to the input so that a cut with some subset in layer i can
be extended using exactly some subset in layer i+1. One can verify that this is
exactly what happens of vi is multiplied with Ai+1. �

5 Discussion and Future Work

In this work we introduced a meaningful counterpart to (positive) proofs trees
in circuits, which are negative proof trees. Counting positive and negative proofs
seems to be a natural thing to do. Based on some complexity class C, Zap-C is
the class of functions counting positive and negative proofs. We were also able
to adapt our notion of negative proofs to branching programs. We were able to
prove that Zap-BWBP ⊆ Zap-NC1 ⊆ Zap-PBP.

We think the notion of negative proofs is a neglected aspect of counting. We
will outline possible applications.

The first one is the question whether #BWBP equals #NC1. By looking
at Zap-NC1, we know that f is in Zap-NC1 iff f+ and −f− are in #NC1. It
seems rather unlikely that this also holds for BWBPs. If one proved that cuts
in BWBPs cannot be counted in #BWBP then #BWBP would be separated
from #NC1.

Another possible application is the well-known fact that NL is closed under
complement. If we look at NL/poly which is equal to BP then we have the
following implication: If Zap-BP is closed under inversion then NL/poly is
closed under complement. Note that we could formulate such an implication also
using #BP, but this seems less promising because of the absence of information
concerning rejection of some input. As a first step one could try to re-prove the
complement closure of NL/poly using our approach. Also NL/poly = UL/poly
[RA97] could be a candidate to be re-proved. New proofs to those theorems
would naturally give us new insights.
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Abstract. The descriptional complexity of deterministic and nondeter-
ministic set automata is investigated. Set automata are basically finite
automata equipped with a set as an additional storage medium. The ba-
sic operations on the set are the insertion of elements, the removing of
elements, and the test whether or not an element is in the set. We show
that regularity is decidable for deterministic set automata and describe a
conversion procedure into deterministic finite automata which leads to a
double exponential upper bound. This bound is proved to be tight in the
order of magnitude by presenting also a double exponential lower bound.
In contrast to these recursive bounds we obtain non-recursive trade-offs
when nondeterministic set automata are considered.

1 Introduction

Descriptional complexity is a field of theoretical computer science in which one
main interest is to investigate how the size of description of a formal language
varies under the description by different formalisms. A fundamental result is
the exponential trade-off between nondeterministic and deterministic finite au-
tomata [7]. Additional exponential or double exponential trade-offs are known,
for example, between unambiguous and deterministic finite automata, between
alternating and deterministic finite automata, and between deterministic push-
down automata (DPDA) and deterministic finite automata. Beside these recur-
sive trade-offs, which are bounded by recursive functions, it is known that also
non-recursive trade-offs which are not bounded by any recursive function exist.
Such trade-offs were first shown in [7] between context-free grammars gener-
ating regular languages and finite automata. Another non-recursive trade-off is
known to exist between nondeterministic PDA and deterministic PDA [3]. Nowa-
days, many non-recursive trade-offs have been established. For a survey we refer
to [2,4], where also references for the above-mentioned recursive trade-offs can
be found.

In this paper, we investigate the descriptional complexity of nondeterministic
and deterministic set automata. The latter model, abbreviated as DSA, has been
introduced in [6] and extends deterministic finite automata by adding the storage
medium of a set which allows to store words of arbitrary length. As operations
on the set it is possible to add elements, to remove elements, and to test whether
some element is in the set. To prepare a set operation the DSA can write on
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© Springer International Publishing Switzerland 2014
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a one-way write-only tape. For the set operation the contents of that tape are
taken and added to the set, removed from the set, or tested. In order to keep
the mode of operation simple, there is no extra erase operation that empties
the tape. Instead, after a set operation, the writing tape is reset to the empty
tape and a new set operation may be prepared. The main results obtained on
DSA in [6] are incomparability with deterministic context-free languages and de-
terministic queue languages, closure under complementation, non-closure under
union and intersection, and the decidability of emptiness. Thus, DSA might be
seen as an interesting model that is able to accept non-context-free languages,
but still has a decidable emptiness problem. In this paper, we extend the de-
cidability of emptiness for DSA to regularity and show that it is decidable for
an arbitrary DSA whether or not it accepts a regular language. If the language
accepted is regular the decision procedure delivers an effective construction of
the equivalent deterministic finite automaton whose size turns out to be at most
double exponential in the size of the given DSA. We will also present a double
exponential lower bound which gives the tightness of the construction in the or-
der of magnitude. We then consider nondeterministic set automata (NSA) and
yield as main difference to the recursive bounds in the deterministic case that
there are non-recursive trade-offs between NSA and DSA, between NSA and
DPDA, and vice-versa between PDA and DSA. This means, for example, for
the first case that the increase in size when changing from an NSA description
to a DSA description might not be bounded by any recursive function. Another
result is that for NSA the questions of universality, equivalence, inclusion, and,
in particular, regularity are undecidable which is in contrast to the deterministic
case.

2 Preliminaries and Definitions

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

A set automaton is a system consisting of a finite state control, a data struc-
ture set where words of arbitrary length can be stored, and a one-way writing
tape where words for the set operations are assembled. At each time step, it
is possible to either extend the writing tape inscription at its end, to insert or
remove the word written on the tape to or from the set, or to test whether the
tape inscription belongs to the set. Each time a set operation {in, out, or test}
is done, the content of the writing tape is erased and its head is reset to the left
end.

Formally, a nondeterministic set automaton, abbreviated as NSA, is a system
M = 〈S,Σ, Γ,�, δ, s0, F 〉, where S is the finite set of internal states, Σ is the
finite set of input symbols, Γ is the finite set of tape symbols, � /∈ Σ is the right
endmarker, s0 ∈ S is the initial state, F ⊆ S is the set of accepting states, and δ
is the partial transition function mapping S × (Σ ∪ {λ,�}) to the finite subsets
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of (S × (Γ ∗ ∪ {in, out}))∪ (S × {test} × S), where in is the instruction to add
the content of the tape to the set, out is the instruction to remove the content
of the tape from the set, and test is the instruction to test whether or not the
content of the tape is in the set.

A configuration of a NSA M = 〈S,Σ, Γ,�, δ, s0, F 〉 is a quadruple (s, v, z, S),
where s ∈ S is the current state, v ∈ {Σ∗�}∪{λ} is the unread part of the input,
z ∈ Γ ∗ is the content of the tape, and S ⊆ Γ ∗ is the finite set of stored words.
The initial configuration for an input string w is set to (s0, w�, λ, ∅). During
the course of its computation, M runs through a sequence of configurations.
One step from a configuration to its successor configuration is denoted by /. Let
s, s′, s′′ ∈ S, x ∈ Σ ∪ {λ,�}, v ∈ {Σ∗�} ∪ {λ}, z, z′ ∈ Γ ∗, and S ⊆ Γ ∗. We set

1. (s, xv, z, S) / (s′, v, zz′, S), if (s′, z′) ∈ δ(s, x),
2. (s, xv, z, S) / (s′, v, λ, S ∪ {z}), if (s′, in) ∈ δ(s, x),
3. (s, xv, z, S) / (s′, v, λ, S \ {z}), if (s′, out) ∈ δ(s, x),
4. (s, xv, z, S) / (s′, v, λ, S), if (s′, test, s′′) ∈ δ(s, x) and z ∈ S,
5. (s, xv, z, S) / (s′′, v, λ, S), if (s′, test, s′′) ∈ δ(s, x) and z /∈ S.

We denote the reflexive and transitive closure of / by /∗. It should be noted
that an instruction to remove some z from S does not test whether z ∈ S; it only
ensures that z �∈ S after the operation. The language accepted by the NSA M
is the set L(M) of words for which there exists a computation beginning in the
initial configuration and ending in a configuration in which the whole input is
read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (s0, w�, λ, ∅) /∗ (sf , λ, z, S) with sf ∈ F, z ∈ Γ ∗, S ⊆ Γ ∗ }.

A set automaton is said to be deterministic (DSA) if there is at most one
choice of action for any possible configuration. In particular, there must never
be a choice of using an input symbol or of using λ input. Formally, δ(s, x) of a
deterministic set automaton contains at most one element, for all x in Σ ∪ {λ}
and s in S and, if the transition function is defined for some pair (s, λ) with
s ∈ S, then it is not defined for any pair (s, a) with a ∈ Σ ∪ {�}. The family of
all languages accepted by a device of type X is denoted by L (X).

Example 1. The language

L1 = {w1$w2$ · · ·wm$w | m ≥ 0, w, w1, w2, . . . , wm ∈ {a, b}∗,
and ∃1 ≤ i ≤ m : w = wi }

is accepted by a DSA. The idea is to iteratively read each sequence of a’s and
b’s up to the letter $ and to copy it to the tape. When the input head arrives at
the $, it stores the word x written on the tape in its set. When the input head
arrives at the right endmarker, it tests whether the content on the tape is in the
set. If this is the case, then the input is accepted and otherwise rejected. The
separating symbols $ are used to control the in-operations of the DSA. Consider
language L2 which is in a way a variant of L1 without separating symbols.

L2 = { x$w | x,w ∈ {a, b}∗ and w is a factor of x }
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We will now describe how L2 can be accepted by an NSA. First, we read the
input while nothing is written on the tape. At some time step it is guessed that
the factor w starts and any input symbol read is written on the tape. At some
other time step it is guessed that the factor w has ended, an in-operation is
performed, and for the following input nothing is written on the tape. After
symbol $, the input is again written on the tape. When the input head arrives
at the right endmarker, the NSA tests whether the content on the tape is in the
set. If this is the case, then the input is accepted and otherwise rejected. ��

3 Deciding Regularity for Deterministic Set Automata

In this section, we turn to show that regularity is decidable for deterministic
set automata. In addition, the test procedure reveals an upper bound for the
descriptional complexity of the DSA to DFA conversion. The upper bound is
double exponential where the exponent is quadratic. We also show a double
exponential lower bound.

Normal form. For the regularity test we will assume that set automata are in
a certain normal form. We say DSA M is in action normal form, if the initial
state of M is only visited once at the beginning of the computation and each
other state indicates uniquely which action the automaton M did in the last
computation step. The states are marked with a corresponding subscript test+
(for a successful test), test- (for an unsuccessful test), in, or out. Non-marked
states are interpreted as states where the last action was a write operation on
the tape.

Let M = 〈S,Σ, Γ,�, δ, s0, F 〉 be a DSA in action normal form. Thus, the
state set is partitioned as S = {s0} ∪ Sin ∪ Sout ∪ Stest- ∪ Stest+ ∪ Swrite.
We note that the tape is empty at the beginning of the computation as well
as after each operation on the set. Now we build sets of the form Lsi,sj with
si ∈ {s0} ∪ Sin ∪ Sout ∪ Stest- ∪ Stest+ and sj ∈ Sin ∪ Sout ∪ Stest- ∪ Stest+ that
describe all words that can be written on the tape when the computation starts
in state si with empty tape and ends in state sj , and in between only states
from Swrite are entered. Formally we define

Lsi,sj = {w ∈ Γ ∗ | there is u ∈ Σ∗ such that (si, u, λ, S) / (si+1, u1, w1, S)

/∗ (si+(n−1), un−1, wn−1, S) / (si+n, un, wn, S) / (sj , λ, λ, S
′), where

w = wn, w1, w2, . . . , wn ∈ Γ ∗, and si+1, si+2, . . . , si+n ∈ Swrite }.
All these sets Lsi,sj are regular, since an equivalent finite automaton Msi,sj can
be built from M as follows. Automaton Msi,sj has S as state set, si as initial
state, and sj as only accepting state. We consider all transitions in M from some
state s ∈ {si}∪Swrite to some state s′ ∈ {sj}∪Swrite writing some word z ∈ Γ ∗

on the tape. For every such transition we add to Msi,sj a transition from s to s′

on input z. We say that a DSA M is in infinite action normal form if M is
in action normal form and all sets Lsi,sj are infinite. It is shown in [6] that
any DSA can effectively be converted into an equivalent DSA in infinite action
normal form.
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Meta automaton. Next, the DSA M = 〈S,Σ, Γ,�, δ, s0, F 〉 in infinite action
normal form with S = {s0}∪Sin∪Sout∪Stest-∪Stest+∪Swrite is transformed into
a meta automatonM ′ whose states are the initial state and the in-, out-, test--,
and test+-states ofM , that is, the write-states are deleted. An edge connecting
some state si with some sj is included in M ′ whenever Lsi,sj is defined. The
edge is labeled with the infinite regular languages Lsi,sj . It is worth mentioning
that we do not care about the actual input here, but for the argumentation it
is understood that there always is a suitable input. The set of accepting states
of M ′ is defined as follows. First, all states from S′ that are accepting in M are
accepting inM ′ as well. Second, for every edge connecting state si with sj inM

′,
state si is defined to be accepting inM ′ if some accepting state is passed through
in a path from si to sj in M containing only write-states in between. Similarly,
a state si of M

′ is defined to be accepting, if there is some path in M starting
in si that never reaches any other state ofM ′, passes through an accepting state
of M , and reaches a state of M in which the computation of M ends. So, the
meta automaton M ′ can effectively be constructed from M .

Regularity test. Let M = 〈S,Σ, Γ,�, δ, s0, F 〉 be a DSA in infinite action normal
form and M ′ its meta automaton. Basically, to test the regularity of L(M) all
possible paths in the state graph of M ′ up to length (t + 1) · e · |S| + |S| are
examined, where t denotes the number of edges in M ′ that connect to some
test+-state and e denotes the number of edges in M ′ that connect to some in-
state. So, we consider the computation tree built from the state graph ofM ′ and
perform a depth-first traversal to evaluate the paths. We start at the root which
is associated with the initial state of M ′. Whenever the current state of a path
is s and � ≥ 1 states can be reached from s, that is, there are edges between s
and states s1, s2, . . . , s�, the corresponding node of the tree has the successor
nodes s1, s2, . . . , s�.

In a first phase the nodes of the tree are labeled by sets of elements of the
form (x,R), where x ≥ 1 and R is a regular language. Such an element of a label
represents the information that x strings from the language R are in the set S.
The root is labeled by the empty set. When the traversal extends the current
path by visiting a node associated with state sj reached from a node associated
with state si, the label of sj is determined as follows.

If sj is an in-state the label of si is copied to sj . If this label contains al-
ready an element of the form (x, Lsi,sj ) the first component is increased by one.
Otherwise, the pair (1, Lsi,sj ) is added to the label.

If sj is a test+-state reached from si for the first time, we have to verify that
the test can be positive. So, the intersection Lsi,sj ∩ Lm is built for each of the
m ≥ 0 pairs (xm, Lm) in the label of si. If all these intersections are empty,
the examination of the current path is terminated. Otherwise, the information
in the label of si can be made more precise when it is copied to sj . To this
end, first the node associated with sj currently reached in the tree is removed.
Second, let I1, I2, . . . , In, n ≥ 1, be the non-empty intersections. Then n new
nodes associated with sj are inserted as successors of si. The label of si is copied
to each of the new nodes. In addition, the label of node k, 1 ≤ k ≤ n, is updated
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by adding the tuple (1, Ik) and decreasing the first component of (xk, Lk) by
one. If xk = 0, the tuple (xk, Lk) is removed from the label.

If sj is a test+-state reached again from si, the same word as before can be
used for the successful test. So, only the label of si is copied to sj .

If sj is an out- or test--state the label of si is copied to sj .
Now we turn to conditions for terminating the examination of a branch of the

depth-first traversal. The examination of a path is terminated if there are no out-
going edges from the current state, all intersections constructed are empty after
entering a test+-state, or the length of the path exceeds (t+ 1) · e · |S|+ |S|.
The first condition is obvious. The second criterion applies if there never can be
words in the set for which the test is positive and, thus, no computation can use
this path. The third condition is discussed later.

Once the examination of the whole computation tree is finished, in a second
phase, any of the finitely many paths from the root to some leaf in the tree is
tested. Language L(M) is regular if and only if all tests are positive.

If the path to be tested does not contain any accepting state, its test is positive.
Otherwise, we consider the initial part of the path up to the last occurring
accepting state. From left to right along the path we consider edges connecting
some state si to a test+-state sj . Let { (xk, Lk) | m ≥ 0, 1 ≤ k ≤ m } be the label
of the node associated with si. Then we build the intersection Lsi,sj∩

⋃
1≤k≤m Lk.

If the intersection is infinite the test for the current path is negative. Otherwise
the test continues by considering the next edge connecting to some test+-state
along the path in the same way. If there is no further test+-state, the test for
the whole path is positive.

Theorem 2. It is decidable whether or not a given deterministic set automaton
accepts a regular language.

Proof. Let s be a node in the tree labeled { (xk, Lk) | m ≥ 0, 1 ≤ k ≤ m }. For
easier writing we denote the union of the regular languages

⋃
1≤k≤m Lk in the

label by Ps.
In order to show that the regularity test works correctly, first assume that

the test for a path is negative. Then there is an edge in the path connecting
some state si to a test+-state sj so that the intersection Psi ∩ Lsi,sj is infinite.
If si is not an in-state, we consider the predecessor s′i of si. Since Psi ∩ Lsi,sj

is infinite, Ps′i ∩ Lsi,sj must be infinite as well. If s′i is neither an in-state the
argumentation is iterated. In this way the path is searched from sj backwards for
an in-state, say sr, so that Psr∩Lsi,sj is infinite. Let sq be the predecessor of sr. If
Lsq,sr∩Lsi,sj is infinite the search stops. Otherwise, we conclude that Psq ∩Lsi,sj

must be infinite since Psr ∩ Lsi,sj is, and the search continues. Since the initial
state has an empty label and Psi ∩Lsi,sj is infinite, there must exist an in-state
that can insert infinitely many different strings in the set. More precisely, there
exist some in-state s′r with predecessor s′q such that Ls′q,s′r ∩ Lsi,sj is infinite.
Thus, the search is always successful.

Next we expand the path to paths in M by inserting the write-states again.
Moreover, we fix some input u0 that drives M from the initial state along the
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path to state sq, some input v0 that drives M from sr to si, and some input w0

that drivesM from sj to an accepting state. Assume that L(M) is regular. Then

L′ = L(M) ∩ u0Σ
∗v0Σ∗w0

= { u0z1v0z2w0 | prsq,sr (z1) = prsi,sj (z2) ∈ Lsq,sr ∩ Lsi,sj }.

is regular as well. Here pr s1,s2(z) denotes the string that M writes on the tape
while it passes from state s1 to s2 reading z so that in between only write-states
are used. If z does not drive M in this way from s1 to s2, pr s1,s2(z) is undefined.
In order to disprove the regularity of L′ we will insert a separating symbol
in the words of L′ by transduction. To this end, a finite state transducer N
is constructed as follows. At the beginning of its computation, N reads and
outputs the input prefix u0. Then it starts to simulate the state transitions of M
beginning in state sq and ending in state sr, where in between only write-states
of M are allowed. In this way, exactly the inputs z1 with prsq ,sr(z1) ∈ Lsq,sr

are read. Since in between sq and sr there are only write-states but sr is an
in-state, during this part of the simulation sr is entered exactly once, that is, at
the end. In this phase, transducer N outputs every symbol read. In addition it
outputs a new symbol $ once when it enters state sr. Subsequently, N continues
to read the input whereby every symbol read is output. Since the family of
regular languages is closed under finite-state transductions,

L′′ = N(L′) = { u0z1$v0z2w0 | prsq,sr (z1) = pr si,sj (z2) ∈ Lsq,sr ∩ Lsi,sj }

is regular as well. A simple application of the pumping lemma on words with
| pr(z1)| > |u0v0w0| yields a contradiction. So, L(M) is not regular, and we have
shown that the regularity test is right when it says that M is not regular.

For the second part of the proof assume that the tests for all paths are positive.
So, for all edges in all paths up to the last occurrence of an accepting state we
know that if the edge connects some state si to a test+-state sj , then Psi ∩
Lsi,sj is finite. Consider all these intersections in the whole tree, and let c be
the length of the longest word occurring in them. Then any test in any path
can be computed, only by the knowledge of the tape inscription if it does not
exceed c, and the knowledge which of the finitely many words up to length c are
currently in the set. All this information can be tracked in a finite number of
states. Therefore, a deterministic finite automaton simulating M can effectively
be constructed. So, L(M) is regular, and we have shown that the regularity test
is right when it says that M is regular, provided that we do not have overlooked
possible computation paths by the way the computation tree was labeled.

On the one hand, every path in M ′ can be expanded to computation paths
of M . On the other hand, we did not consider paths of M whose lengths are
exceeding (t+1) ·e · |S|+ |S|, and we always labeled out-nodes as their predeces-
sors. Let us first discuss the latter point. Copying the label of the predecessor to
an out-node represents a computation of M where the string on the tape does
not belong to the set. Such a computation always exists, since at every time step
there are only finitely many strings in the set, but every edge connecting two
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states in M ′ is labeled by an infinite language. Therefore, it is always possible
to find some word in the language that is not in the set. Now assume a compu-
tation of M so that a string is removed from the set when entering an out-state,
say sj . We continue with this path and compare it with the path we considered.
The write-, in-, and out-operations possibly following sj are not affected by
the removal and are the same as in the path we considered. When a test+-state
appears in the path, it clearly also appears in the path we considered. Moreover,
again, since at every time step there are only finitely many strings in the set, but
every edge connecting two states in M ′ is labeled by an infinite language, it is
always possible to find some word in the language that is not in the set. So, also
the negative branch of the test exists in the path we considered. We conclude
that all computations of M including a positive removal are already represented
by some path in M ′.

We turn to the former point, that is, we did not consider paths whose length
exceeds (t + 1) · e · |S| + |S|, where t denotes the number of edges in M ′ that
connect to some test+-state and e denotes the number of edges in M ′ that
connect to some in-state. Now assume an accepting computation path of M
whose length exceeds (t + 1) · e · |S| + |S|. We recall that for testing the path
from left to right, only the intersections Psi ∩ Lsi,sj for some edge connecting
some state si to a test+-state sj are used. out-, and test--operations do not
change the labels of the nodes. An edge connecting to a test+-operation changes
the labels only when it is used for the first time. The changes caused by an in-
operation may either increase the first component of some label element or else
may include a new label element. Suppose that an edge connecting to an in-
state has been used more than t times. Then the first component of the label
element this edge introduces can never be decreased to zero again by test+-
operations. Therefore, the status of the test is not affected by any further use of
this edge. Next we analyze the path from left to right and keep track in some
vector ({0, 1, . . . , t} ∪ {t>})e how many times each edge connecting to an in-
state occurs. We start with zero vector and increase a component by one if the
corresponding edge occurs. If the component is t or t> it is set to t>.

Since the path is longer than |S| it contains a loop. If there is any loop
that does not change the vector, we can remove the loop from the path, since
the status of the test is not affected by the loop. Moreover, removing the loop
does not affect the existence of the rest of the path for the reasons given in
the first point above. So, we have found a shorter accepting path whose test
result is the same as for the original path. If the shorter path is still longer than
(t+1) · e · |S|+ |S| we repeat the reasoning. On the other hand, assume that all
loops increase at least one component of the vector. Then, after at most (t+1) ·e
many loops, each of length at most |S|, the vector cannot change anymore. So,
the total length of the path is at most (t + 1) · e · |S| + |S|. We conclude that
if there is a path whose test is negative then there is a path of length at most
(t + 1) · e · |S| + |S| whose test is negative. This concludes the proof that the
regularity test is correct, and the theorem follows. ��
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Finally, we turn to the descriptional complexity of the conversion from a DSA
accepting a regular language to a DFA.

Theorem 3. Let M by an n-state DSA with set of tape symbols Γ that accepts

a regular language. Then an equivalent DFA with at most 2|Γ |O(n2)

states can
effectively be constructed.

Proof. Let M = 〈S,Σ, Γ,�, δ, s0, F 〉 be a DSA. The conversion into action nor-
mal form requires at most to double the number of states. Basically, for the
conversion into infinite action normal form the meta automaton as above is
constructed, where each edge is labeled with a regular language. These regular
languages are all accepted by DFA having no more than 2|S| states. Conse-
quently, if an edge is labeled by a finite language, the length of its longest word
is at most O(|S|). Then the edges labeled with finite languages are simulated in
such a way that the automaton tracks all finitely many words up to that length
in its state, whereby nothing is written on the tape (see [6] for further details).
In particular, this implies that all edges of the meta automaton used above for
the regularity test are labeled with regular languages that are accepted by DFA
with at most O(|S|) states, despite the fact that we assumed the DSA already
to be in infinite action normal form.

SinceM accepts a regular language the regularity test is successful. Therefore,
we know that whenever a positive test is performed, the intersection of the
language of words tested with the languages of words possibly in the set is
finite. All involved regular languages are accepted by DFA with at most O(|S|)
states. So, all the intersections of the language labeling the edge (say Lsi,sj )
with the languages in the elements of the node labels (say the languages whose
union is Psi) can be accepted by DFA with at most O(|S|2) states. Since the
intersections are finite the length of their longest words is at most O(|S|2).
Whenever a longer word is written on the tape we do not have to care about it,
because it never will be tested. So, a DFA M ′ simulating M can be constructed
in such a way that it tracks all possible words at most of this length in its states.
Since this clearly includes the words to be tracked for the conversion into infinite
action normal form, both simulations can be superimposed.

The number of states of M ′ is calculated as follows. There are |Γ |O(|S|2)

many words to be tracked. Every word may or may not be present, which gives

2|Γ |O(|S|2)

possibilities. In addition, the state transitions of M have to be simu-

lated. But |S| · 2|Γ |O(|S|2)

is already of order 2|Γ |O(|S|2)

. ��

To show a lower bound, we will use a “regular” variant of the language L1

discussed in Example 1. For every n ≥ 1, let

Ln = { $∗w1$
+w2$

+ · · ·wm$+w | m ≥ 0, w, w1, w2, . . . , wm ∈ {a, b}n,
and ∃1 ≤ i ≤ m : w = wi }

Theorem 4. For n ≥ 1, language Ln is accepted by an (n + 2)-state DSA, but
any equivalent DFA needs at least 22

n

states.
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We would like to note that we immediately obtain the following corollary
when we consider for the language family Ln larger alphabets than {a, b}.

Corollary 5. For every n ≥ 1, there are regular languages Ln which are ac-
cepted by (n+ 2)-state DSA with tape alphabet Γ such that any equivalent DFA
needs at least 2|Γ |n states.

4 Nondeterminism and Non-recursive Trade-Offs

This section is devoted to nondeterministic set automata and to the non-recursive
trade-offs between NSA and DSA and between NSA and deterministic PDA.
We start with recalling the necessary notions and definitions. Following [4] we
say that a descriptional system S is a set of finite descriptors such that each
D ∈ S describes a formal language L(D), and the underlying alphabet alph(D)
over which D represents a language can be read off from D. The family of
languages represented (or described) by S is L (S) = {L(D) | D ∈ S }. For every
language L, the set S(L) = {D ∈ S | L(D) = L } is the set of its descriptors
in S. A complexity measure for a descriptional system S is a total computable
mapping c : S → N.

Here we only use complexity measures that (with respect to the underlying
alphabets) are related to length by a computable function. If there is a total
computable function g : N × N → N such that length(D) ≤ g(c(D), |alph(D)|),
for allD ∈ S, then c is said to be an s-measure. If, in addition, for any alphabetA,
the set of descriptors in S describing languages over A is recursively enumerable
in order of increasing size, then c is said to be an sn-measure. Clearly, length and
trans are sn-measures for set automata.

Let S1 and S2 be descriptional systems with complexity measures c1 and c2,
respectively. A total function f : N → N is an upper bound for the increase in
complexity when changing from a descriptor in S1 to an equivalent descriptor
in S2, if for all D1 ∈ S1 with L(D1) ∈ L (S2), there exists a D2 ∈ S2(L(D1))
such that c2(D2) ≤ f(c1(D1)).

If there is no recursive, that is, computable function serving as upper bound,
the trade-off is said to be non-recursive. For establishing non-recursive trade-offs
the following generalization of a result by Hartmanis [3] is useful.

Theorem 6 ([4]). Let S1 and S2 be two descriptional systems for recursive
languages such that any descriptor D in S1 and S2 can effectively be converted
into a Turing machine that decides L(D), and let c1 be a measure for S1 and c2 be
an sn-measure for S2. If there exists a descriptional system S3 and a property P
that is not semi-decidable for descriptors from S3, such that, given an arbitrary
D3 ∈ S3, (i) there exists an effective procedure to construct a descriptor D1

in S1, and (ii) D1 has an equivalent descriptor in S2 if and only if D3 does not
have property P , then the trade-off between S1 and S2 is non-recursive.

In the following we show all non-recursive trade-offs by reduction of the finite-
ness problem for deterministic one-tape one-head Turing machines (DTM). Let
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M = 〈Q,Σ, T, δ, q0, B, F 〉 be a DTM, where T is the set of tape symbols includ-
ing the set of input symbols Σ and the blank symbol B, Q is the finite set of
states and F ⊆ Q is the set of final states. The initial state is q0 and δ is the tran-
sition function. Without loss of generality, we assume that Turing machines can
halt only after an odd number of moves, accept by halting, make at least three
moves, and cannot print blanks. At any instant during a computation, M can
be completely described by an instantaneous description (ID) which is a string
tqt′ ∈ T ∗QT ∗ with the following meaning: M is in the state q, the non-blank
tape content is the string tt′, and the head scans the first symbol of t′. The initial
ID of M on input x ∈ Σ∗ is w0 = q0x. An ID is accepting whenever it belongs
to T ∗FT ∗. The set VALC(M) of valid (accepting) computations of M consists
of all finite strings w0#w

R
1 #w2#w

R
3 # · · · #w2n#w

R
2n+1 such that ID wi leads to its

successor ID wi+1 according to δ, and w2n+1 is an accepting ID. Similarly, the
set VALC′(M) consists of all finite strings w0#w1#w2# · · ·#w2n+1 such that wi

leads to its successor wi+1 according to δ, and w2n+1 is an accepting ID. The
set of invalid computations INVALC(M) resp. INVALC′(M) is the complement
of VALC(M) resp. VALC′(M) with respect to the alphabet T ∪Q ∪ {#}.

Lemma 7. Let M be a Turing machine. Then, the following holds:

(1) INVALC(M) belongs to L (PDA) and a PDA can be effectively constructed.
(2) INVALC(M) belongs to L (DSA) if and only if L(M) is a finite set.
(3) INVALC ′(M) belongs toL (NSA) and an NSA can be effectively constructed.
(4) INVALC ′(M) belongs to L (DSA) if and only if L(M) is a finite set.
(5) INVALC ′(M) belongs to L (DPDA) if and only if L(M) is a finite set.

Proof. Statement (1) is well known and shown, for example, in [5]. It is also
shown in [5] that INVALC(M) is a regular set, if L(M) is a finite set. Thus,
INVALC(M) belongs to L (DSA) in this case. On the other hand, we show
that INVALC(M) is not in L (DSA) if L(M) is an infinite set. Assume that
INVALC(M) ∈ L (DSA). Since L (DSA) is closed under complementation [6],
the set VALC(M) would belong to L (DSA) as well. With standard arguments
(see, for example, [5]) it can be shown that then emptiness is not semi-decidable
for DSA which is a contradiction to the result given in [6] that emptiness is
decidable for DSA. Altogether, we obtain statement (2). With similar consider-
ations it is possible to prove statements (4) and (5). It remains for us to show
statement (3). An input belongs to INVALC′(M) if it has a wrong format, if
it does not start with an initial ID, if it does not end with an accepting ID,
or if ID wi+1 is not the successor of ID wi for some 0 ≤ i ≤ 2n. An NSA M ′

for INVALC′(M) guesses at first which of the above possibilities M ′ is going
to test. The first three possibilities concern the structure of the input only and
can be tested by M ′ without any set operation. For the latter possibility, we
additionally guess the position i ≥ 0 and have to ensure that wi+1 is not the
successor ID of wi. Having guessed the position i, we read the following input wi

and write the successor ID on the tape. This can be achieved by M ′, since the
changes between two consecutive IDs are only local. When reading the sepa-
rating symbol #, the calculated successor ID is added to the set. The following
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input wi+1 is written on the tape. When reading the separating symbol # again,
we perform a test-operation. If the test is negative, we know that wi+1 is not
the successor ID of wi and the input is accepted. If the test is positive, then the
input is rejected. By this effective construction M ′ accepts INVALC′(M). ��

Theorem 8. The following trade-offs are non-recursive. (1) From NSA to DSA.
(2) From NSA to DPDA. (3) From PDA to DSA.

Proof. In order to apply Theorem 6, we use as property P the infiniteness of
DTM which is known to be not semi-decidable. Next, given an arbitrary DTMM ,
that is, a descriptorD3 ∈ S3, we must construct an NSA, that is, a descriptorD1

in S1, that has an equivalent DSA, that is, a descriptor in S2, if and only ifM ac-
cepts a finite language, that is, D3 does not have property P . Thus, we obtain the
non-recursive trade-offs (1) and (2) by applying statements (3)–(5) of Lemma 7.
Similarly, the non-recursive trade-off (3) is obtained by applying statements (1)
and (2) of Lemma 7. ��

The fact that NSA can accept the set of invalid computations of a Turing machine
implies that the following questions for NSA are not semi-decidable. The proof of
the results is similar to the corresponding results for pushdown automata which
are shown in [5].

Theorem 9. For NSA the questions of universality, equivalence with regular
sets, equivalence, inclusion, and regularity are not semi-decidable. Furthermore,
it is not semi-decidable whether the language accepted by some NSA belongs to
L (DSA).
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Abstract. We investigate, under Parikh equivalence, the state complex-
ity of some language operations which preserve regularity. For union,
concatenation, Kleene star, complement, intersection, shuffle, and rever-
sal, we obtain a polynomial state complexity over any fixed alphabet, in
contrast to the intrinsic exponential state complexity of some of these
operations in the classical version. For projection we prove a superpoly-
nomial state complexity, which is lower than the exponential one of the
corresponding classical operation. We also prove that for each two de-
terministic automata A and B it is possible to obtain a deterministic
automaton with a polynomial number of states whose accepted language
has as Parikh image the intersection of the Parikh images of the lan-
guages accepted by A and B. Finally, we prove that for each finite set
there exists a small context-free grammar defining a language with the
same Parikh image.
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1 Introduction

The investigation of the state complexity of regular languages and their oper-
ations is extensively reported in the literature (e.g., [13,17,18]). In a previous
work [11], we proposed to extend that investigation by considering the classical
notion of Parikh equivalence [12], which have been extensively studied in the
literature (e.g., [1,7]) even for the connections with semilinear sets [9] and with
other fields such as Presburger Arithmetics [6], Petri Nets [4], logical formu-
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a same alphabet Σ are Parikh equivalent if and only if they are equal up to a
permutation of their symbols or, equivalently, for each letter a ∈ Σ, the number
of occurrences of a in the two words is the same (the vector consisting of these
numbers is also called Parikh image). This notion extends in a natural way to
languages (two languages L1 and L2 are Parikh equivalent when for each word in
L1 there is a Parikh equivalent word in L2 and vice versa) and to formal systems
which are used to specify languages as, for instance, grammars and automata.
A well-known result by Parikh states that context-free and regular languages
are indistinguishable under Parikh equivalence [12]. More precisely, the Parikh
image of a context-free language is a semilinear set and from each semilinear set
a Parikh equivalent nfa can be immediately obtained.

In particular, in [11] we treated the conversion of one-way nondeterministic
finite automata (nfas) into Parikh equivalent one-way deterministic finite au-
tomata (dfas). We proved that the state cost of this conversion is smaller than
the exponential cost of the classical conversion. In fact, we showed that from

each n-state nfa we can build a Parikh equivalent dfa with eO(
√
n·lnn) states.

Furthermore, this cost is tight. Quite surprisingly, this cost is due to the unary
words in the language, i.e., to the words consisting only of occurrences of a same
symbol. In fact, if the given nfa accepts only words containing at least two
different letters then the cost reduces to a polynomial.

Motivated by the interest in regular languages, here we continue the same
line of research by considering basic operations on regular languages and on
dfas. We reformulate under Parikh equivalence some classical questions on the
state complexity of operations as, for instance, the following: given two arbitrary
dfas A and B of n1 and n2 states, respectively, how many states are sufficient
and necessary in the worst case (as a function of n1 and n2) for a dfa to accept
the concatenation of the languages accepted by A and B? For this question
an exponential cost is known [18]. Using our above mentioned bound on the
conversion of nfas into Parikh equivalent dfas, this exponential bound can be
reduced, under Parikh equivalence, to a superpolynomial upper bound. In this
paper we further reduce it to a polynomial, namely we show that there exists a
dfa with a number of states polynomial in n1 and n2 accepting a language that
is Parikh equivalent to the concatenation of the languages accepted by A and B.
We obtain a similar result for the Kleene star operation while, for the union, the
cost is polynomial even in the classical case. We also present results for other
operations as intersection, complement, reversal, shuffle and projection.

Concerning intersection and complement, we observe that these operations do
not commute with Parikh image, e.g., the Parikh image of the complement of
a language L does not necessarily coincide with the complement of the Parikh
image of L. However, semilinear sets are closed under intersection and comple-
ment [5]. Hence, we can formulate state complexity questions about intersections
and complements of Parikh images of languages accepted by given dfas. We
solve the question for the intersection by proving, in a constructive way, that for
each two dfas there exists a dfa of polynomial size accepting a language whose
Parikh image is the intersection of the Parikh images of the languages accepted
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by the two given dfas, while the analogous question for the complement will be
the subject of future investigations.

We take into consideration a further question: under Parikh equivalence, can
we use context-free grammars (cfg) to represent, in a more succinct way, regular
languages? In the unary case (hence without recurring to Parikh equivalence) a
positive answer to this question has been given in [3]. We extend the techniques
used in that paper to the case of a general alphabet, obtaining a positive answer
for finite languages.

2 Preliminaries

We assume the readers to be familiar with the basic notions and properties from
automata and formal language theory. We recall just a few notions, referring the
reader to standard textbooks (e.g., [8,14]) for further details.

Throughout the paper, let us fix an alphabet Σ = {a1, a2, . . . , am} of m
letters. As usual, let us denote by Σ∗ the set of all words over Σ including the
empty word ε and, given a word w ∈ Σ∗, by |w| its length and, for a ∈ Σ, by
|w|a the number of occurrences of a in w.

A word is said to be unary if it consists of k ≥ 0 occurrences of a same symbol,
otherwise it is said to be nonunary. A language L is unary if L ⊆ {a}∗ for some
letter a. In a similar way, automata and cfgs are unary when their input and
terminal alphabets, respectively, consist of just one symbol.

Given a language L ⊆ Σ∗, the unary parts of L are the languages L1 =
L ∩ {a1}∗, L2 = L ∩ {a2}∗, . . . , Lm = L ∩ {am}∗ , while the nonunary part is
the language L0 = L \ (L1 ∪ L2 ∪ . . . ∪ Lm) , i.e., the set which consists of all
nonunary words belonging to the language L. Clearly, L =

⋃m
i=0 Li.

Given an automaton A, we can readily build automata accepting the unary
and nonunary parts of L(A), respectively. A proof can be found in [11].

Lemma 1. For each n-state nfa A over an m-letter alphabet, there exist m+1
nfas A0, A1, . . . , Am such that A0 has n(m + 1) + 1 states and accepts the
nonunary part of L(A) while, for i = 1, . . . ,m, Ai is a unary nfa of n states
which accepts the unary part L(A) ∩ {ai}∗. Furthermore, if A is deterministic
then so are A0, A1, . . . , Am.

Let N be the set of nonnegative integers. Then Nm denotes the corresponding
sets of m-dimensional nonnegative integer vectors including the null vector 0 =
(0, 0, . . . , 0). For 1 ≤ i ≤ m, we denote the i-th component of a vector v by v[i].

A linear set in Nm is a set of the form

{v0 + n1v1 + n2v2 + · · ·+ nkvk | n1, n2, . . . , nk ∈ N} , (1)

where k ≥ 0 and v0,v1,v2, . . . ,vk ∈ Nm. The vector v0 is called the offset
(a.k.a. constant), while the vectors v1, . . . ,vk are called generators (a.k.a. peri-
ods). A semilinear set in Nm is a finite union of linear sets in Nm.

The Parikh map ψ : Σ∗ → Nm associates with a word w ∈ Σ∗ the vector
ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am) , which counts the occurrences of each letter of
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Σ in w. The vector ψ(w) is also called Parikh image of w. One can naturally
generalize this map for a language L ⊆ Σ∗ as ψ(L) = {ψ(w) | w ∈ L} . The
set ψ(L) is called the Parikh image of L. Two languages L,L′ ⊆ Σ∗ are said to be
Parikh equivalent to each other if and only if ψ(L) = ψ(L′). Parikh equivalence
can be defined not only between languages but among languages, grammars, and
finite automata by referring, in the last two cases, to the defined languages.

In the paper we will make use of the following conversion from nfas to Parikh
equivalent dfas:

Theorem 2 ([11]). For each n-state nfa over an m-letter alphabet Σ, there

exists a Parikh equivalent dfa with eO(
√
n·lnn) states. Furthermore, this cost is

tight. If the language under consideration does not contain any unary word, then
the cost reduces to O(n3m3+6m2

mm3/2+m2+2m+5).

3 Regular Operations under Parikh Equivalence

In this section, we investigate the state complexity of regular operations under
Parikh equivalence. Regular operations include concatenation, Kleene star, rever-
sal, shuffle, projection, union, intersection, and complementation. The problems
we will work on in this section are in the following general form:

Problem 3. For dfas A and B of n1 and n2 states, respectively, solve the follow-
ing problems:

1. For a unary operation f , how small can we make a dfa M that is Parikh
equivalent to f(L(A))?

2. For a binary operation g, how small can we make a dfa M that is Parikh
equivalent to g(L(A), L(B))?

3.1 Union, Intersection, and Complement

The state complexity of union and intersection is in the low order n1n2 even in
the conventional sense over both unary and nonunary alphabets. Moreover, it
is known to be tight already over a unary alphabet [17]. Similar considerations
hold for the complement. The next result hence follows.

Proposition 4. Given two dfas A and B of n1 and n2 states, respectively,
there exist two dfas of n1n2 states that accept languages (Parikh) equivalent to
L(A)∪L(B) and to L(A)∩L(B), and a dfa of n1 states that accepts a language
(Parikh) equivalent to the complement of L(A). These bounds are tight.

3.2 Concatenation, Star, and Shuffle

Unlike union or intersection, both concatenation and star are known to cost an
exponential number of states on DFAs. In fact, the number of states which is
necessary and sufficient in the worst case for a dfa to accept the concatenation
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of an n1-state dfa language and an n2-state dfa language over a binary alphabet
is (2n1 − 1)2n2−1 [18]; over a unary alphabet, the cost decreases to n1n2 [17].
As for star of an n-state dfa language, the tight bound is 2n−1 + 2n−2 over a
binary alphabet, whereas it is (n− 1)2 + 1 over a unary alphabet [18].

We will show that under Parikh equivalence, the state complexity of concate-
nation and star decreases to polynomial in n1 and n2 over a nonunary alphabet
(over a unary alphabet, the cost is already polynomial as seen above). The Parikh
equivalent conversion of nfas to dfas in Theorem 2 makes a great contribution
to this purpose. In order to avoid a superpolynomial blowup in the number of
states caused by this conversion when being applied to the unary part of an nfa,
we give ad hoc constructions below.

Theorem 5. Given an n1-state dfa A and n2-state dfa B over an m-letter al-

phabet withm ≥ 2, there is a dfa of O
(
n1n2(n1 + n2)

3m3+6m2

mm3/2+m2+2m+6
)

states that is Parikh equivalent to L(A)L(B).

Proof. Let L = L(A)L(B). For each ai ∈ Σ, let us denote by Li the language
L∩ {a∗i } and by L0 the language L \ (

⋃m
i=1 Li), namely the nonunary part of L.

Let A1, . . . , Am be the unary dfas of n1 states obtained by applying Lemma 1
to the dfa A. Let B1, . . . , Bm be the unary dfas of n2 states thus obtained from
B. Let us denote byM the (n1+n2)-state nfa obtained by applying the standard
construction for the product to A and B. Then we proceed as follows:

– From M we derive an nfa accepting L0 and we convert it according to
Theorem 2 into a polynomial size Parikh equivalent dfa M0 that consists of
O((n1 + n2)

3m3+6m2

mm3/2+m2+2m+5) states.
– For i = 1, . . . ,m, from Ai and Bi we obtain a unary dfa Mi accepting the

language Li. According to results in [13] the number of states of Mi can be
bounded by n1n2.

– We build a dfa M ′ with at most 1 +mn1n2 states accepting all the unary
words in L, namely the set

⋃m
i=1 Li. This consists of an initial state q0 and

one copy of each automaton Mi obtained in the previous step. A transition
from q0 on ai to an appropriate state of Mi simulates the transition from
the initial state of Mi.

– Finally, applying the standard construction for the union to M0 and M ′

results in a dfa that accepts a language Parikh equivalent to L = L(A)L(B).

It consists of O(n1n2(n1 + n2)
3m3+6m2

mm3/2+m2+2m+6) states. ��

With this result in mind, we can address the state complexity of shuffle under
Parikh equivalence. Let A and B be dfas of n1 and n2 states, respectively. In the
conventional sense, shuffle involves the exponential cost 2n1n2−1 and this bound
is tight [2]. In contrast, we can construct a dfa of polynomial number of states
in n1 and n2 that accepts a language Parikh equivalent to the shuffle of L(A)
and L(B), and in fact, the dfa we engineered in Theorem 5 for concatenation is
such a dfa. This is because the Parikh image of the shuffle of two languages is
equal to that of their concatenation.
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Corollary 6. Given an n1-state dfa A and n2-state dfa B over an m-letter al-

phabet withm ≥ 2, there is a dfa of O
(
n1n2(n1 + n2)

3m3+6m2

mm3/2+m2+2m+6
)

states that is Parikh equivalent to the shuffle of L(A) and L(B).

Let us develop the above conversion of polynomial overhead for star.

Theorem 7. Given an n-state dfa A over an m-letter alphabet with m ≥ 2,
there is a dfa of O(23m

3+6m2+1n3m3+6m2+2m7m3/2+7m2+2m+6) states that is
Parikh equivalent to L(A)∗.

Proof. We employ a similar technique to the one for concatenation.
From the given dfa A, Lemma 1 extracts dfas A1, . . . , Am (of n states) for the

unary parts. From them, we can construct dfasM1, . . . ,Mm of (n−1)2+1 states
accepting L(A1)

∗, . . . , L(Am)∗, respectively [18]. We further combine them into
a dfa Munary of m((n− 1)2 + 1)+ 1 states that accepts L(A1)

∗ ∪ · · · ∪L(Am)∗.
From A, we also construct an n-state nfa recognizing L(A)∗, extract its

nonunary part by Lemma 1 (with n(m + 1) + 1 states), and convert it into
a Parikh equivalent dfa M0 using Theorem 2. The resulting dfa consists of
O(23m

3+6m2

n3m3+6m2

m7m3/2+7m2+2m+5) states. Applying the standard con-
struction for the union to M0 and Munary results in a dfa that is Parikh equiva-

lent to L(A)∗. The dfa consists ofO(23m
3+6m2+1n3m3+6m2+2m7m3/2+7m2+2m+6)

states1. ��

3.3 Reversal

Reversal is also expensive for dfas. In fact, the tight bound 2n is known for
reversal [18]. Under Parikh equivalence, however, nothing need be said since
Parikh image is invariant under this operation.

3.4 Projection

Given a word w ∈ Σ∗, the projection of w over an alphabet Σ′ ⊆ Σ, is the word
PΣ′(w) obtained by removing from w all the symbols which are not in Σ′. We
can extend this notion to languages in a standard way. It is easy to see that
projection preserves regularity. However, transforming a dfa A of n states into
a dfa for the projection can require an exponential number of states in n (a
detailed investigation on this operation is presented in [10]). Even in this case,
the bound can be reduced if we want to obtain a Parikh equivalent dfa: from A
we can obtain an nfa of n states for the projection, and then we can transform

it into a Parikh equivalent dfa of eO(
√
n·lnn) states. By using a projection over

a unary alphabet we can show that this bound cannot be reduced.

1 Note that the number of states of Munary, m((n− 1)2 + 1) + 1, is at most 2mn2.
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3.5 Intersection and Complement, Revisited

We consider one more time the intersection and the complement. In fact, the
noncommutativity of those operations with the Parikh mapping brings us a
second problem of interest. The noncommutativity in the case of intersection is
illustrated in the inequality ψ(a+b+∩b+a+) �= ψ(a+b+)∩ψ(b+a+); the left-hand
side is the empty set, while the right-hand side is the linear set N × N. In the
case of complement the reader may consider the language (ab)∗.

Note that each of the other operations examined so far is either commutative
with the Parikh mapping (i.e., union and projection) or not defined naturally
over the set of nonnegative integer vectors (i.e., concatenation, star, shuffle, and
reversal). The problem of interest asks: given two dfas A and B of n1 and n2

states, respectively, how small can we make a dfa whose Parikh image is equal
to ψ(L(A)) ∩ ψ(L(B))? We can formulate a similar problem in the case of the
complement. The fact that the Parikh image of a language accepted by an nfa

is semilinear and the closure property of semilinear sets under intersection and
complement [5] makes these problems meaningful. Here, we solve the problem
for intersection, leaving the one for complement for future investigations.

Over a unary alphabet, the problem is degenerated into the problem addressed
in Proposition 4 because over such an alphabet, intersection commutes with the
Parikh mapping. Therefore, in the following, we examine the problem over a
nonunary alphabet, and solve it by showing that polynomial number of states
in n1 and n2 are sufficient. The proof consists of revisiting the Ginsburg and
Spanier’s proof [5] of the closure property of semilinear sets under intersection
with a careful analysis of the size of the resulting semilinear set.

Let us present some notation and results necessary for the proof. Given C,P ⊆
Nk for some k ≥ 1, let L(C;P ) be the set of all w ∈ Nk which can be represented
in the form w = w0 +w1 + · · ·+w� with w0 ∈ C and w1, . . . ,w� ∈ P for some
� ≥ 0.

Lemma 8 ([11]). There exists a polynomial p such that for each n-state nfa

A over Σ, the Parikh image of L(A) can be written as ψ(L(A)) = Y ∪
⋃

i∈I Zi,
where

– Y ⊆ Nm is a finite set of vectors whose components are bounded by p(n);
– I is a set of at most p(n) indices;
– for each i ∈ I, Zi ⊆ Nm is a linear set of the form:

Zi = {vi,0 + n1vi,1 + · · ·+ nkivi,ki | n1, . . . , nki ∈ N},

with 0 ≤ ki ≤ m, the components of the offset vi,0 are bounded by
p(n), and the generators vi,1, . . . ,vi,ki are linearly independent vectors
from {0, 1, . . . , n}m.

Furthermore, if all the words in L(A) are nonunary, then for each i ∈ I, we can
choose a nonunary vector xi that is component-wise smaller than or equal to
vi,0 such that all those chosen vectors are pairwise distinct.
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Let A be a k× � matrix with entries in Z and k ≤ �, and let b ∈ Zk. Consider
a system of linear Diophantine equations

Ax = b. (2)

Let Smin(A, b) be the set of minimal nonnegative integer solutions to (2), where
the minimality is with respect to the component-wise comparison. It is well-
known that Smin(A, b) is finite. Hence, we let Smin(A, b) = {s1, s2, . . . , sr} for
some r ≥ 1 and s1, . . . , sr ∈ N�. Define ||Smin(A, b)|| = max1≤i≤r ||si||∞, where
||si||∞ refers to the maximum norm. Huynh bounded ||Smin(A, b)|| as follows.

Lemma 9 ([9]). Let α be the rank of A and M be the maximum of the abso-
lute values of the α × α subdeterminants of the extended matrix (A; b). Then
||Smin(A, b)|| ≤ (�+ 1)M . Thus, r ≤ ((�+ 1)M + 1)�.

Theorem 10. Given an n1-state dfa A and n2-state B over
an m-letter alphabet Σ = {a1, . . . , am}, there is a dfa of

O(n(2m−1)(3m3+6m2)+2p(n)2(3m
3+6m2)+m) states whose Parikh image is

equal to ψ(L(A)) ∩ ψ(L(B)), where n is defined as max{n1, n2}(m+ 1) + 1.

Proof. As usual, we begin with converting the given dfas A and B into 2(m+1)
dfas A0, A1, . . . , Am, B0, B1, . . . , Bm according to Lemma 1. The nonunary dfas
A0 and B0 contain n1(m + 1) + 1 and n2(m+ 1) + 1 states, respectively, while
the other unary ones Ai and Bi contain only n1 and n2 states for 1 ≤ i ≤ m,
respectively. It is clear from the definition of these automata that

ψ(L(A)) ∩ ψ(L(B)) =
(
ψ(L(A0)) ∩ ψ(L(B0))

)
∪
⋃

1≤i≤m

(
ψ(L(Ai)) ∩ ψ(L(Bi))

)
.

As observed before the proof, for any 1 ≤ i ≤ m, we can construct a dfa Mi of
n1n2 states such that ψ(L(Mi)) = ψ(L(Ai))∩ ψ(L(Bi)). We combine them into
one dfa Munary with mn1n2 + 1 states that accepts

⋃m
i=1 L(Mi).

What we have to consider now is the intersection between the Parikh images
of the nonunary dfas A0 and B0. In order to simplify the notation below, let
n = max{n1, n2}(m+1)+ 1. Then, A0 and B0 consist of at most n states each.
Lemma 8 implies that the Parikh image ψ(L(A0)) can be represented as:

ψ(L(A0)) = YA ∪
⋃
i∈I

ZA,i,

where YA ⊆ {0, 1, . . . , p(n)}m, I is a set of at most p(n) indices, and for each
i ∈ I, ZA,i ⊆ Nm is a linear set whose offset is in {0, 1, . . . , p(n)}m and whose
generators are linearly independent vectors in {0, 1, . . . , n}m. The Parikh image
of L(B0) also admits an analogous representation with YB, J , and ZB,j (j ∈ J).
The intersection ψ(L(A0)) ∩ ψ(L(B0)) can be expressed as:

(
YA ∩ ψ(L(B0))

)
∪
(⋃

i∈I

ZA,i ∩ YB

)
∪

⎛⎝⋃
i∈I

ZA,i ∩
⋃
j∈J

ZB,j

⎞⎠ .
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Since both YA and YB are finite, the first two terms are finite, and can be
computed even by hand. Let PY =

(
YA ∩ψ(L(B0))

)
∪
(⋃

i∈I ZA,i ∩ YB
)
, that is,

their union. Note that PY ⊆ YA ∪ YB ⊆ {0, 1, . . . , p(n)}m. We can construct a
dfa MY of O(p(n)m) states that accepts the bounded language {ai11 ai22 · · · aimm |
(i1, . . . , im) ∈ PY }. It is clear that ψ(L(MY )) = PY .

Now we shift our attention to the third term
(⋃

i∈I ZA,i ∩
⋃

j∈J ZB,j

)
. What

we actually do is to construct a dfa Bi,j whose Parikh image is equal to ZA,i ∩
ZB,j, for each i ∈ I and j ∈ J . According to Lemma 8, for some p, q ≤ m, we
can let

ZA,i = {u0 + n1u1 + · · ·+ npup | n1, . . . , np ∈ N},
ZB,j = {v0 +m1v1 + · · ·+mqvq | m1, . . . ,mq ∈ N},

where u0,v0 ∈ {0, 1, . . . , p(n)}m and u1, . . . ,up,v1, . . . ,vq ∈ {0, 1, . . . , n}m.
Let

XC =

⎧⎨⎩(n1, . . . , np,m1, . . . ,mq)

∣∣∣∣∣ u0 +

p∑
i=1

niui = v0 +

q∑
j=1

mjvj

⎫⎬⎭
XP =

⎧⎨⎩(n1, . . . , np,m1, . . . ,mq)

∣∣∣∣∣
p∑

i=1

niui =

q∑
j=1

mjvj

⎫⎬⎭
Let τ : Np+q → Nm be a function defined as τ((n1, . . . , np,m1, . . . ,mq)) =∑p
i=1 niui, and we generalize this function over a set X ⊆ Np+q as τ(X) =

{τ(x) | x ∈ X}. Then

ZA,i ∩ ZB,j = {u0 +w | w ∈ τ(XC)}. (3)

Note that if XC is semilinear, then so is τ(XC) [5]. Ginsburg and Spanier proved
that XC is semilinear [5]. More strongly, they gave a representation of XC as
L(C;P ), where C and P are the set of minimal elements of XC and XP \{0p+q},
respectively. Lemma 9 gives the following bounds:

||C|| ≤ (p+ q + 1)m!nm−1p(n),

||P || ≤ (p+ q + 1)m!nm.

They bound the cardinality of the sets C and P as follows:

|C| ≤ ((p+ q + 1)m!nm−1p(n) + 1)m,

|P | ≤ ((p+ q + 1)m!nm + 1)m.

Using τ(XC) = τ(L(C;P )) = L(τ(C); τ(P )) (see the proof of Lemma 6.3 in [5]),
we rewrite (3) as

ZA,i ∩ ZB,j = u0 + L(τ(C); τ(P )).

Note that |τ(C)| ≤ |C|, |τ(P )| ≤ |P |, and we have

||τ(C)|| ≤ nm||C|| ≤ m(p+ q + 1)m!nmp(n)
||τ(P )|| ≤ nm||P || ≤ m(p+ q + 1)m!nm+1.
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We construct an nfa whose Parikh image is equal to this semilinear set. Specif-
ically, it is to accept the language {f(u0)f(v)f(w) | v ∈ τ(C),w ∈ L(0; τ(P ))},
where 0 is the zero vector and f : Nm → Σ∗ is defined as: f((x1, x2, . . . , xm)) =
ax1
1 ax2

2 · · · axm
m . It first recognize f(u0) using mp(n) + 1 states (recall that any

coordinate of u0 is at most p(n)). Then it recognizes f(v) for some v non-
deterministically chosen from τ(C), using m||τ(C)|| · |τ(C)| states. Finally it
recognizes f(w) for some w ∈ L(0; τ(P )) using m||τ(P )|| · |τ(P )| states. In to-
tal, it consists of O(m2(2m+ 1)2(m!)2n2m−1p(n)2) states. Now that we have at
most p(n)2 nfas M0,0, . . . ,M|I|−1,|J|−1 of such size. The standard construction
combines them into an nfa with O(m2(2m+1)2(m!)2n2m−1p(n)4) states and it
is nonunary. The nonunarity allows Theorem 2 to convert this nfa into a Parikh
equivalent dfa M0 with O(n(2m−1)(3m3+6m2)p(n)2(3m

3+6m2)) states.
Now that the standard construction for union combines this, MY , and

Munary into the dfa with O(n(2m−1)(3m3+6m2)+2p(n)2(3m
3+6m2)+m) states, and

its Parikh image is equal to ψ(L(A)) ∩ ψ(L(B)). ��

4 From Finite Languages to Small Grammars

Each finite set of words defined over an alphabet Σ of m symbols can be easily
represented by a grammar in Chomsky normal form (Cnfg) with at most N+m
symbols, where N is the total length of the words. This upper bound cannot be
significantly reduced. In fact, in [3, Lemma 3.1], the authors provide, for each
integer k ≥ 1, a language Lk consisting of just one word of length 2k + k − 1
over the alphabet {0, 1} such that any Cnfg generating Lk requires more than
c2k/k, for a constant c.

However, as we show in this section, the bound can be reduced if we are allowed
to replace the original finite language by a set which is Parikh equivalent to it.
The proof is obtained by adapting some techniques introduced for unary sets
in [3].

A grammar G is in binary normal form (bnfg) if every production is in one
of the following forms: A → a, A → ε, A → B, or A → BC, where A,B,C are
variables and a ∈ Σ. It is known that if G = (V,Σ, P, S) is a bnfg, then there
exists a Cnfg G′ = (V ′, Σ, P ′, S) such that L(G′) = L(G) \ {ε} and V ′ ⊆ V .

Lemma 11. Let n ≥ 1 and T ⊆ {0, 1, 2, . . . , n−1}m. Then there exists a bnfg

G of O(nm/3) variables such that ψ(L(G)) = T . This bound is asymptotically
tight.

Proof. This proof is a modification of the proof for Lemma 2.1 in [3]. Let r =
�n1/3�. Any integer less than n can be expressed in base r using at most 3 digits
as ir2 + jr + k with 0 ≤ i, j, k < r.

For each 1 ≤ � ≤ m, we first define A� → a�. We introduce rm variables
Gk1,k2,...,km for 0 ≤ k1, k2, . . . , km < r, and define the productions
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Gk1,k2,...,km → A1Gk1−1,k2,...,km

G0,k2,...,km → A2G0,k2−1,...,km

...
G0,0,...,0,km → AmG0,0,...,0,km−1

G0,0,...,0 → ε.

Then we have L(Gk1,k2,...,km) = {ak1
1 ak2

2 · · · akm
m }.

For 1 ≤ � ≤ m, let B� → A�G0,...,0,r−1,0,...,0, where the sole nonzero index is
the �-th one. Then L(B�) = {ar�}. According to the same principle as above, we
define the following productions:

Fj1,j2,...,jm → B1Fj1−1,j2,...,jm
...

F0,0,...,0,jm → BmF0,0,...,0,jm−1

F0,0,...,0 → ε.

Then we have L(Fj1,j2,...,jm) = {aj1r1 aj2r2 · · ·ajmr
m }.

Furthermore, we define C� → B�F0,...,0,r−1,0,...,0 for 1 ≤ � ≤ m and

Ei1,i2,...,im → C1Ei1−1,i2,...,im
...

E0,0,...,0,im → CmE0,0,...,0,im−1

E0,0,...,0 → ε.

We have L(C�) = {ar2� } and L(Ei1,i2,...,im) = {ai1r
2

1 ai2r
2

2 · · ·aimr2

m }. Up to now,
we have introduced O(rm) variables. Finally, we define the remaining produc-
tions:

S → Ei1,i2,...,imSi1,i2,...,im for each 0 ≤ i1, . . . , im < r
Si1,...,im → Fj1,...,jmGk1,...,km for all 0 ≤ j1, . . . , jm, k1, . . . , km < r

such that (i1r
2 + j1r + k1, . . . , imr

2 + jmr + km) ∈ T .

The resulting grammar is a bnfg, and the total number of variables is 4rm +
3m = O(nm/3).

We conclude the proof by showing the asymptotic tightness of the bound.
Over � variables, there are �3 + �2 + �(m + 1) possible productions, so there

are 2�
3+�2+�(m+1)

bnfgs. On the other hand, there are 2n
m

(finite) subsets of
the set of all m-dimensional vectors any of whose component is less than n. In
order for each subset to admit a bnfg, 2�

3+�2+�(m+1) ≥ 2n
m

must hold. Hence,
� = Ω(nm/3). ��

From Lemma 11 we obtain the following result:

Theorem 12. Let L be a language containing only words on which each letter
occurs less than n times. Then there exists a Cnfg with O(nm/3) variables which
is Parikh equivalent to L. This bound is asymptotically tight.
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We conclude this section by observing that to represent a finite language L
as in Theorem 12 by a Parikh equivalent dfa A (or even nfa) we need, in the
worst case, more than (n− 1)m states. In fact, since L is finite, all the states on
each accepting path of A cannot belong to any loop. Thus, if (n − 1)m ∈ ψ(L)
then A should contain a path of at least (n− 1)m + 1 states.
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Complexity of Checking Whether Two Automata

Are Synchronized by the Same Language
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Abstract. A deterministic finite automaton A is said to be synchro-
nizing if it has a reset word, i.e. a word that brings all states of the
automaton A to a particular one. We prove that it is a PSPACE-
complete problem to check whether the language of reset words for a
given automaton coincides with the language of reset words for some
particular automaton.

Keywords: ideal language, synchronizing automaton, reset word, reset
complexity, PSPACE-completeness.

Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA), where Q is the
state set, Σ stands for the input alphabet, and δ : Q × Σ → Q is the totally
defined transition function defining the action of the letters in Σ on Q. The
function δ is extended uniquely to a function Q × Σ∗ → Q, where Σ∗ stands
for the free monoid over Σ. The latter function is still denoted by δ. In the
theory of formal languages the definition of a DFA usually includes the initial
state q0 ∈ Q and the set F ⊆ Q of terminal states. We will use this definition
when dealing with automata as devices for recognizing languages. A language
L ⊆ Σ∗ is recognized (or accepted) by an automaton A = 〈Q,Σ, δ, q0, F 〉 if
L = {w ∈ Σ∗ | δ(q0, w) ∈ F}. We denote by L[A ] the language accepted by the
automaton A .

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

whose action leaves the automaton in one particular state no matter at which
state in Q it is applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any word w with this
property is said to be reset for the DFA A . For the last 50 years synchronizing
automata received a great deal of attention. In 1964 Černý conjectured that
every synchronizing automaton with n states possesses a reset word of length at
most (n−1)2. Despite intensive efforts of researchers this conjecture still remains
open. For a brief introduction to the theory of synchronizing automata we refer
the reader to the recent surveys [11, 13].
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In the present paper we focus on some complexity aspects of the theory of
synchronizing automata. We denote by Syn(A ) the language of reset words for a
given automatonA . It is well known that Syn(A ) is regular [13]. Furthermore, it
is an ideal in Σ∗, i.e. Syn(A ) = Σ∗ Syn(A )Σ∗. On the other hand, every regular
ideal language L serves as the language of reset words for some automaton. For
instance, the minimal automaton recognizing L is synchronized exactly by L [7].
Thus synchronizing automata can be considered as a special representation of an
ideal language. Effectiveness of such a representation was addressed in [7]. The
reset complexity rc(L) of an ideal language L is the minimal possible number
of states in a synchronizing automaton A such that Syn(A ) = L. Every such
automaton A is called a minimal synchronizing automaton (for brevity, MSA).
Let sc(L) be the number of states in the minimal automaton recognizing L. For
every ideal language L we have rc(L) ≤ sc(L) [7]. Moreover, there are languages
Ln for every n ≥ 3 such that rc(Ln) = n and sc(Ln) = 2n − n [7]. Thus the
representation of an ideal language by means of a synchronizing automaton can
be exponentially more succinct than the “traditional” representation via the
minimal automaton. However, no reasonable algorithm is known for computing
an MSA of a given language. One of the obstacles is that an MSA is not uniquely
defined. For instance, there is a language with at least two different MSAs [7].

Let L be an ideal regular language over Σ with rc(L) = n. The latter equality
means that there exists some n-state DFA B such that Syn(B) = L, and B is
an MSA for L. Now it is quite natural to ask the following question: how hard
is it to verify the condition Syn(B) = L? It is well known that the equality
of the languages accepted by two given DFAs can be checked in polynomial of
the size of automata time. However, the problem of checking the equality of
the languages of reset words of two synchronizing DFAs turns out to be hard.
Moreover, it is hard to check whether one particular ideal language serves as the
language of reset words for a given synchronizing automaton. We state formally
the SYN-EQUALITY problem:

–Input: synchronizing automata A and B.
–Question: is Syn(A ) = Syn(B)?
We prove that SYN-EQUALITY is a PSPACE-complete problem. Actually,

we prove a stronger result, that it is a PSPACE-complete problem to check
whether the language Syn(A ) for a given automaton A coincides with the lan-
guage Syn(B) for some particular automaton B. Also it is interesting to under-
stand how hard it is to verify a strict inclusion Syn(A ) � Syn(B). We prove
that it is not easier than to check the precise equality of the languages Syn(A )
and Syn(B). So the problem of constructing an MSA for a given ideal language
is unlikely to be an easy task. Also we obtain that the problem of checking
the inequality rc(L) ≤ �, for a given positive integer number �, is PSPACE-
complete. Here an ideal language L is presented by a DFA, for which L serves
as the language of reset words. Actually, we prove that the problem of checking
the equalities rc(L) = 1 or rc(L) is trivial, however it is a PSPACE-complete
problem to verify whether rc(L) = 3.
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The paper is organized as follows. In Section 1 we introduce some definitions
and state formally the considered problems. In Section 2 we prove main results
aboutPSPACE-completeness of the problem SYN-EQUALITY andPSPACE-
completeness of the problem of checking whether the reset complexity of a given
ideal language is not greater than �.

1 Preliminaries

A standard tool for finding the language of synchronizing words of a given DFA
A = 〈Q, δ,Σ〉 is the power automaton P(A ). Its state set is the set Q of all
nonempty subsets of Q, and the transition function is defined as a natural exten-
sion of δ on the set Q×Σ (the resulting function is also denoted by δ), namely,
δ(S, a) = {δ(s, a) | s ∈ S} for S ⊆ Q and a ∈ Σ. If we take the set Q as the
initial state and singletons as final states in P(A ), then we obtain an automaton
recognizing Syn(A ). It is easy to see that if all the singletons are merged into a
unique sink state s (i.e. s is fixed by all letters in Σ), the resulting automaton
still recognizes Syn(A ). Throughout the paper the term power automaton and
the notation P(A ) will refer to this modified version.

One may notice now that the problem SYN-EQUALITY can be solved by
the following naive algorithm. Indeed, we construct the power automata P(A )
and P(B) for DFAs A and B. Now it remains to verify that automata P(B)
and P(A ) accept the same language. However, the automaton P(A ) has 2n−n
states, where n is the number of states in the DFA A . So we cannot afford to
construct directly the corresponding power automata. Now we state formally
the SYN-INCLUSION problem. It will be shown that SYN-INCLUSION is in
PSPACE.

SYN-INCLUSION
–Input: synchronizing automata A and B.
–Question: is Syn(A ) ⊆ Syn(B)?
Since SYN-INCLUSION belongs to the class PSPACE, we obtain that SYN-

EQUALITY is inPSPACE as well. Further we prove that the SYN-EQUALITY
problem is complete for the class PSPACE. Now it is interesting to consider
the SYN-STRICT-INCLUSION problem:

–Input: synchronizing automata A and B.
–Question: is Syn(A ) � Syn(B)?
It will be shown that SYN-STRICT-INCLUSION is a PSPACE-complete

problem.
Recall that the word u ∈ Σ∗ is a prefix (suffix or factor, respectively) of the

word w if w = us (w = tu or w = tus, respectively) for some t, s ∈ Σ∗. A reset
word w for a DFA A is called minimal if none of its proper prefixes nor suffixes
is reset. We will denote by w[i] the ith letter of w and by |w| the length of the
word w. In what follows the word w[i]w[i + 1]...w[j], for i < j, will be denoted
by w[i..j].
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2 PSPACE-Completeness

Theorem 1. SYN-INCLUSION is in PSPACE.

Proof. Savitch’s theorem states that PSPACE=NPSPACE [12]. Therefore, it
is enough to prove that SYN-INCLUSION belongs to NPSPACE, i.e. it suffices
to solve the problem by a non-deterministic algorithm within polynomial space.
Let A = 〈Q1, Σ, δ1〉 and B = 〈Q2, Σ, δ2〉 be synchronizing automata over Σ.
We have to prove that the language Syn(B) contains the language Syn(A ), or
equivalently the following equality takes place: Syn(A ) ∩ Syn(B)c = ∅, where
Syn(B)c is the complement language of Syn(B). An obstacle is that we cannot
afford to construct the automaton recognizing the language Syn(A ) ∩ Syn(B)c

directly. Instead we provide an algorithm that guesses a word w which is reset for
A and is not reset for B. Let us notice that w may turn out to be exponentially
long in |Q1|+ |Q2|. Hence even if our algorithm correctly guesses w, it would not
have enough space to store its guess. Thus the algorithm should guess w letter
by letter.

Let Q1 = {q1, . . . , qn} and Q2 = {p1, . . . , pm}. The algorithm guesses the first
letter w[1] of w, applies w[1] at every state in Q1 and Q2 and stores two sets
of images, namely, δ1(Q1, w[1]) and δ2(Q2, w[1]). These sets clearly require only
O(n+m) space. Further the algorithm guesses the second letter w[2] and updates
the sets of images re-using the space, and so on. Note that δ1(Q1, w[1..k]) =
δ1(δ1(Q1, w[1..k − 1]), w[k]), where k ≥ 2. So we do not need to store the whole
word w in order to build the sets δ1(Q1, w) and δ2(Q2, w). At the end of the
guessing steps the algorithm gets two sets δ1(Q1, w) and δ2(Q,w). It remains to
check the following conditions:
– the first set is a singleton;
– the second set is not singleton.

The latter checking does not require any additional space. Thus the problem
SYN-INCLUSION is in PSPACE. ��

Since Syn(A ) = Syn(B) if and only if Syn(A ) ⊆ Syn(B) and Syn(B) ⊆
Syn(A ), we obtain the following corollary.

Corollary 1. SYN-EQUALITY is in PSPACE.

To prove that SYN-EQUALITY is a PSPACE-complete problem we reduce
the following well-known PSPACE-complete problem to the complement of
SYN-EQUALITY. This problem deals with checking emptiness of the intersec-
tion of languages accepted by DFAs from a given collection [5].

FINITE AUTOMATA INTERSECTION
–Input: given n DFAs Mi = 〈Qi, Σ, δi, qi, Fi〉, for i = 1, . . . , n.
–Question: is

⋂
i L[Mi] �= ∅?

Given an instance of FINITE AUTOMATA INTERSECTION, we can sup-
pose without loss of generality that each initial state qi has no incoming edges
and qi �∈ Fi. Indeed, excluding the case for which the empty word ε is in L[Mi]
we can always build a DFA M ′

i = 〈Q′
i, Σ, δ

′
i, q

′
i, Fi〉, which recognizes the same
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language of Mi, such that the initial state q′i has no incoming edges. This can
be easily achieved by adding a new initial state q′i to the state set Qi and defin-
ing the transition function δ′i by the rule: δ′i(q

′
i, a) = δi(qi, a) for all a ∈ Σ and

δ′i(q, a) = δi(q, a) for all a ∈ Σ, q ∈ Qi. Furthermore, we may assume that the
sets Qi, for i = 1, . . . , n, are pairwise disjoint.

To build an instance of SYN-EQUALITY from DFAs Mi, i = 1, . . . , n, we
construct a DFA A = 〈Q,Δ,ϕ, 〉 with Q =

⋃n
i=1Qi ∪ {s, h}, where s and h are

new states not belonging to any Qi. We add three new letters to the alphabet
Σ and get in this way Δ = Σ ∪ {x, y, z}. The transition function ϕ of the DFA
A is defined by the following rules:

ϕ(q, a) = δi(q, a) for all i = 1, . . . , n, for all q ∈ Qi and a ∈ Σ;

ϕ(q, x) = qi for all i = 1, . . . , n, for all q ∈ Qi;

ϕ(q, z) = s for all i = 1, . . . , n, for all q ∈ Fi;

ϕ(q, z) = h for all i = 1, . . . , n, for all q ∈ (Qi \ Fi);

ϕ(q, y) = s for all i = 1, . . . , n, for all q ∈ Qi;

ϕ(h, a) = s for all a ∈ Δ;

ϕ(s, a) = s for all a ∈ Δ.

The resulting automaton A is shown schematically in Fig. 1. The action
of letters from Σ on the states p ∈ Qi is not shown. Denote by Gi the set
Qi \ (Fi ∪ {qi}). All the states from the set Gi are shown as the node labeled by
Gi. All the states from the set Fi are shown as the node labeled by Fi.

h s

. . .. . .qi Gi Fi

Δ

x

z
y

Δ

z
y, z

x

x

y
y

Fig. 1. Automaton A

It can be easily seen that by the definition of the transition function ϕ we get
ϕ(Q,w) ∩ Qi �= ∅ if and only if w ∈ (Σ ∪ {x})∗. From this observation and the
definition of ϕ we obtain the following lemma.

Lemma 1. For any w ∈ Δ∗ we have ϕ(Q,w) ∩ Qi �= ∅ for all i = 1, . . . , n if
and only if there is some j ∈ {1, . . . , n} such that ϕ(Q,w) ∩Qj �= ∅.
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Consider the languages L1 and L2:

L1 = (Σ ∪ {x})∗yΔ∗;

L2 = (Σ ∪ {x})∗zΔ+.

Consider the language I = L1 ∪ L2.

Lemma 2.
⋂n

i=1 L[Mi] = ∅ if and only if Syn(A ) = I.

Proof. Let
⋂n

i=1 L[Mi] = ∅. We take a word w ∈ Syn(A ). Since s is a sink state
in A , we have ϕ(Q,w) = {s}. If w ∈ (Σ ∪ {x})+, then ϕ(Q,w) ∩Qi �= ∅, which
is a contradiction. Therefore, w contains some factor belonging to {y, z}+. Thus
we can factorize w as w = uav, where u is a maximal prefix of w belonging to
(Σ ∪ {x})∗, a ∈ {y, z} and v ∈ Δ∗.

Case 1: a = y.
Since y maps all the states of A to a sink state s, we have that w is a reset

word and w ∈ L1.
Case 2: a = z.
2.1. Let u ∈ Σ∗, i.e. u does not contain a factor belonging to {x}+. By

lemma 1, ϕ(Q, u) ∩ Qi �= ∅ for all i = 1, . . . , n. Note that u �∈
⋂

i L[Mi], that is
u �∈ L[Mj] for some j. It means that ϕ(qj , u) ∈ Qj \ Fj . Hence h ∈ ϕ(Q, uz).
More precisely, ϕ(Q, uz) = {h, s}. It remains to apply a letter from Δ in order
to map h to s. So we have w ∈ L2.

2.2. Let u contain a factor belonging to {x}+. Obviously, we may factorize u
as u = u′xt, where t is the maximal suffix of u belonging to Σ∗. By lemma 1,
ϕ(Q, u′) ∩ Qi �= ∅ for all i = 1, . . . , n. Thus qi ∈ ϕ(Q, u′x) for all i = 1, . . . , n.
By the argument from the previous case, ϕ(qj , u

′xt) ∈ Qj \Fj for some index j.
Thus ϕ(Q, u′xtz) = {h, s} and w ∈ L2.

So we obtain that if
⋂n

i=1 L[Mi] = ∅, then Syn(A ) ⊆ I. The opposite inclu-
sion I ⊆ Syn(A ) follows easily from the construction of A . Assume now that
the equality Syn(A ) = I takes place. Arguing by contradiction, assume that⋂n

i=1 L[Mi] �= ∅, thus there is some w′ ∈
⋂n

i=1 L[Mi]. By the definition of ϕ we
get that the word w = xw′z is a reset word for A . However, w �∈ I. So we came
to a contradiction. ��

sp2

p1

x,Σ

Δ

y

Δ

z

Fig. 2. Automaton B



312 M. Maslennikova

Now we build a 3-state automaton B = 〈P,Δ, τ〉 (see Fig. 2). Its state set is
P = {p1, p2, s}, where s is the unique sink state. Further we verify that I serves
as the language of reset words for B. Moreover, B is an MSA for I.

Lemma 3. Syn(B) = I.

Proof. It is clear that I ⊆ Syn(B). Let w ∈ Syn(B). Obviously, w �∈ (Σ∪{x})∗.
Thus we may factorize w as w = uav, where (Σ ∪ {x})∗, a ∈ {y, z} and v ∈ Δ∗.
If a = y then w ∈ L1. If a = z then τ(Q, uz) = {p2, s}. Since w is a reset word
for B we obtain that w ∈ L2. So we have the inclusion Syn(B) ⊆ I. ��

For each instance of FINITE AUTOMATA INTERSECTION one may construct
the corresponding automaton A and the DFA B. It is easy to check that I does
not serve as the language of reset words for a synchronizing automaton of size at
most two over the same alphabet Δ. So B is an MSA for I and rc(Syn(B)) =
3. Furthermore, B is a finitely generated synchronizing automaton, that is its
language of reset words Syn(B) can be represented as Syn(B) = Δ∗UΔ∗ for
some finite set of words U. Namely, U = y∪zΔ. Finitely generated synchronizing
automata and its languages of reset words were studied in [4,9,10]. In particular,
it was shown in [9] that recognizing finitely generated synchronizing automata is
aPSPACE-complete problem. Finally, by lemmas 2 and 3, we have the following
claim.

Lemma 4.
⋂n

i=1 L[Mi] = ∅ if and only if Syn(A ) = Syn(B).

Now we are in position to prove the main result.

Theorem 2. SYN-EQUALITY is PSPACE-complete.

Proof. By Corollary 1, SYN-EQUALITY is in PSPACE. Since the construction
of automata A and B can be performed in polynomial time from the automata
Mi (i = 1, . . . , n), by Lemmas 2, 3 and 4, we can reduce FINITE AUTOMATA
INTERSECTION to co-SYN-EQUALITY. ��

Theorem 3. SYN-STRICT-INCLUSION is PSPACE-complete.

Proof. By theorem 1, SYN-STRICT-INCLUSION is in PSPACE. ��
PSPACE-hardness of SYN-STRICT-INCLUSION follows easily from the

proof of Lemma 2. The proof of the Lemma implies that
⋂n

i=1 L[Mi] �= ∅ if
and only if I = Syn(B) � Syn(A ).

Let us note that we build synchronizing automata A and B over at least
5-letter alphabet to obtain an instance of SYN-EQUALITY. What about al-
phabets of size less than five? It can be easily seen that, for automata over a
unary alphabet, SYN-EQUALITY can be solved in polynomial time. Indeed, if
A = 〈Q1, {a}, δ1〉 is a synchronizing DFA, then Syn(A ) = a∗ak, where k is the
length of the shortest reset word for A . Furthermore, it is easy to check that
k < |Q1|. Analogously, the language of reset words for a DFA B = 〈Q2, {a}, δ2〉
is Syn(B) = a∗am, where m < |Q2|. Finally, positive integer numbers k and m
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can be found in polynomial time. So it is interesting to consider automata over
alphabets of size at least two.

We have reduced the problem FINITE AUTOMATA INTERSECTION to
the problem SYN-EQUALITY. By construction of DFAs A and B, we have
Δ = {y, z, a, b, x}. We build DFAs C = 〈C, {μ, λ}, ϕ2〉 and D = 〈D, {μ, λ}, τ2〉
with unique sink states ζ1 and ζ2 respectively. It will be shown that Syn(A ) =
Syn(B) if and only if Syn(C ) = Syn(D). A standard technique is applied here
and also was used in [1, 6, 7]. Namely, we define morphisms h : {λ, μ}∗λ → Δ∗

and h : Δ∗ → {λ, μ}∗λ preserving the property of being a reset word for the
corresponding automaton. Let d1 = y, d2 = z, d3 = a, d4 = b and d5 = x. We put
h(μkλ) = dk+1 for k = 0, . . . , 4 and h(μkλ) = d5 = x for k ≥ 5. Every word from
the set {λ, μ}∗λ can be uniquely factorized by words μkλ, k = 0, 1, 2, . . . , thus the
mapping h is totally defined. We also consider the morphism h : Δ∗ → {λ, μ}∗λ
defined by the rule h(dk) = μk−1λ. Note that for every word u ∈ Δ∗ we have
h(h(u)) = u.

Now we take the constructed above DFA B = 〈P,Δ, τ〉 with the state set
P = {p1, p2, s}. We build the DFA D = 〈D, {μ, λ}, τ2〉 with a unique sink state
ζ2.

We associate each state pi of the automatonB with the 5-element set of states
Pi = {pi,1, . . . , pi,5} of the automaton D . Namely, the states pi,2, pi,3, pi,4, pi,5
are copies of the state pi associated with pi,1. The action of the letter μ is defined
in the following way: τ2(pi,k, μ) = pi,k+1 for k ≤ 4, and τ2(pi,5, μ) = pi,5. We put
D = P1 ∪ P2 ∪ {ζ2}, where ζ2 is a unique sink state. The action of the letter λ
is defined by the rules:
– if τ(pi, dk) = s, then τ2(pi,k, λ) = ζ2;
– if τ(pi, dk) = pj , then τ2(pi,k, λ) = pj,1.

The latter rule means that if there is the transition from pi to pj labeled by
the letter dk, then there is the transition from pi,1 to pj,1 labeled by the word
μk−1λ.
Pi is called the i-th colomn of the set D. For each k = 1, . . . , 5, one may take

the set Rk = {p1,k, p2,k}. The set Rk is called the k-th row of the set D.
The DFA C is constructed in analogous way. Finally, note that the resulting

automata C and D have O(5|Q1|) and O(5|Q2|) states respectively, where |Q1|
and |Q2| are the cardinalities of the state sets of A and B respectively. Figure 3
illustrates the automaton D . The action of the letter μ is shown in solid lines,
the action of the letter λ is shown in dotted lines.

Lemma 5. Syn(A ) = Syn(B) if and only if Syn(C ) = Syn(D).

Proof. It is convenient to organize the constructed DFA D as a table. The k-th
row contains copies of all states corresponding to the k-th letter from Δ. The
i-th column contains the state pi,1 corresponding to the state pi and its copies
pi,2, . . . , pi,5. Each state from the i-th column maps under the action of μ to a
state from the same column. The k-th row Rk maps under the action of μ to the
k + 1-st row Rk+1 (k ≤ 4). The 5-th row is fixed by μ, that is τ2(R5, μ) = R5.
The state set D maps under the action of λ to a subset of R1. The DFA C
possesses such properties as well.
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p1,1

p1,2

p1,3

p1,4

p1,5

p2,1

p2,2

p2,3

p2,4

p2,5

ζ2y

z

a

b

x

Fig. 3. Automaton D

It can be easily checked that the word u ∈ Δ∗ is reset for the DFA B if and
only if h(u) is reset for D . An analogous property takes place for DFAs A and
C .

Assume that Syn(A ) �= Syn(B). From the proof of lemma 2 it follows that
the word w = xw′z with w′ ∈

⋂
i L[Mi] is reset for A and it is not reset for B.

Thus h(w) ∈ Syn(C ) and h(w) �∈ Syn(D). So Syn(C ) �= Syn(D).
Assume now that Syn(A ) = Syn(B). We show that every minimal reset word

of C is reset for D and every minimal reset word of D is reset for A . Let u be
a minimal reset word of C . Any word u ∈ {μ}∗ is not in Syn(C ), since μ brings
each column to its subset. Thus we have u ∈ {λ, μ}∗ \ {μ}∗. The automaton C
possesses a unique sink state ζ1. Hence C is synchronized to ζ1. Furthermore, all
the transitions leading to ζ1 are labeled by λ, and ζ1 is fixed by μ and λ. Thus if
u does not end with λ then it is not a minimal reset word. We have u ∈ {λ, μ}∗λ.
Consider the word w = h(u). Since h(w) = u, we have that w is a reset word
for A and B. Hence u ∈ Syn(D). So we obtain that Syn(C ) ⊆ Syn(D). The
opposite inclusion is verified analogously. ��

Lemma 5 gives the desired result on PSPACE-completeness of the problem
SYN-EQUALITY restricted to a binary alphabet case. Analogously it is shown
that SYN-STRICT-INCLUSION is also a PSPACE-complete problem for au-
tomata over a binary alphabet.

Theorem 4. SYN-EQUALITY restricted to a binary alphabet case is
PSPACE-complete.
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Proposition 1. Let � be a positive integer number, L an ideal language, and
A a synchronizing DFA for which L serves as the language of reset words. The
problem of checking the inequality rc(L) ≤ � is in PSPACE.

Proof. If � is greater or equal to the size of A , then the answer is “yes” and
there is nothing to prove. Let � be less than the size of A . One may non-
deterministically guess a DFA B with at most � states and check the equality
Syn(B) = Syn(A ) within polynomial space. ��

Lemma 6. Let L be an ideal language and A some automaton with Syn(A ) =
L. The equalities rc(L) = 1 and rc(L) = 2 can be checked in polynomial of the
size of A time.

Proof. Let A = 〈Q,Σ, δ〉. Denote by k the size of the alphabet Σ. It is easy to
see that rc(L) = 1 if and only if L = Σ∗, so it is required that n = 1.

Let us notice that some 2-state automaton B = 〈P,Σ, δ〉 is synchronizing
if and only if some letter brings the automaton to a singleton and each letter
a ∈ Σ either maps the state set P to a singleton or acts as a permutation on P.
So we find the set Γ = {a | a ∈ Syn(A )} in time O(kn) and obtain the DFA
A ′ = 〈Q,Σ \Γ, δ〉 from A removing the transitions labeled by letters from Γ. It
remains to check that A ′ is not synchronizing. The latter checking can be done
in time O(kn2) [3]. We have that rc(L) = 2 if and only if rc(L) �= 1 and A ′ is
not synchronizing. ��

We have constructed for each instance of FINITE AUTOMATA INTERSEC-
TION the corresponding automaton A over the alphabet Δ = Σ ∪ {x, y, z} in
order to prove that SYN-EQUALITY is a PSPACE-complete problem. We will
use that automaton again to prove the following theorem.

Theorem 5. Let J = Syn(A ).
⋂n

i=1 L[Mi] �= ∅ if and only if rc(J) > 3.

Proof. Let
⋂n

i=1 L[Mi] = ∅. In this case we have Syn(A ) = I. As it was men-
tioned above B is an MSA for I, so we have the equality rc(Syn(A )) = 3. Let
us assume now that

⋂n
i=1 L[Mi] �= ∅. Since y is the unique letter which resets A

and the automaton A ′ (which is obtained from A by removing all transitions
labeled by y) is still synchronizing, we get that rc(J) ≥ 3. Now we verify that
rc(J) �= 3, that is no 3-state synchronizing automaton is synchronized exactly
by J. It is easy to see that if

⋂n
i=1 L[Mi] �= ∅, then J = I ∪ I3 ∪ I4 where

I3 = {wz | w ∈
n⋂

i=1

L[Mi] and δi(Qi, w) ⊆ Fi, for all i from 1 to n};

I4 = {uxwz | u ∈ (Σ ∪ {x})∗, w ∈
n⋂

i=1

L[Mi]}.

Arguing by contradiction, assume that Syn(B) = J for some 3-state automa-
ton B over Δ. Denote the state set of B by P = {0, 1, 2} and the transition



316 M. Maslennikova

function by τ. Since y is a reset letter for B, we have that y brings P to a
singleton, say {2}. Letter z is not reset for A and z2 ∈ J, hence z maps P to a
2-element subset. It is easy to check that there are just three possible different
ways of defining the action of z on the state set P (see Fig.4).

20

1

y, z

y

y, z

z

20

1

y

z
y

y

z

z

20

1

yz

z

y, z

y

Fig. 4. Possible ways of defining the action of y and z in B

Let us assume as above that Σ = {a, b}. It remains to define the action of x, a
and b on the state set P.One may see that the words za, zb and zx are reset forA .
So letters x, a and b should map the set τ(P, z) to singletons. However, any word
from (Σ∪{x})∗ is not reset for A . In particular, xx, aa, bb �∈ Syn(A ). Consider,
for instance, the first automaton in Fig.4. We have that τ(P, z) = {0, 2}, thus the
action of x, a and b is defined in such a way that |τ({0, 2}, x)| = |τ({0, 2}, a)| =
|τ({0, 2}, b)| = 1. So there are six possible ways of defining the action of x on the
states of B. Since xx �∈ Syn(A ), we have that the following two ways of defining
the transitions under the action of x are impossible:

012

x 020

x 202.

Indeed, in both cases the word xx brings the set {0, 1, 2} to a singleton. So,
actually, there are just four possible ways of defining the action of x on the
states of B. The same arguments can be provided for letters a and b. Thus the
definition of the action of x, a, and b is chosen in one of the following ways:

012

x1 010

x2 212

x3 101

x4 121.

For instance, one may say that x acts on P as x1, a acts as x2 and b acts as x3.
It is sufficient to consider only those cases where all the letters x, a and b act on
P differently. There remains four ways of choosing a triple {xi, xj , xk} defining
the action of letters x, a and b. It can be easily checked that J �= Syn(B) in
each case. Analogous arguments are provided for the remaining two automata
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in Fig.4. It means that the reset complexity of the language of reset words of
the DFA A is at least 4, that is rc(J) ≥ 4. ��

Theorem 6. Let L be an ideal language and A a synchronizing DFA with at
least 5 letters such that Syn(A ) = L. The problem of checking the inequality
rc(L) ≤ 3 is PSPACE-complete.

This result follows immediately from the Theorem 5.
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Abstract. We show that the deterministic ordered restarting automa-
ton is polynomially related in size to the weight-reducing Hennie ma-
chine. Accordingly, it allows very compact representations of (some)
regular languages. In addition, we investigate the descriptional com-
plexity of the operations of reversal, complementation, intersection, and
union for regular languages that are given through stateless deterministic
ordered restarting automata.

Keywords: restarting automaton, ordered rewriting, descriptional com-
plexity, language operations.

1 Introduction

The restarting automaton was introduced in [4] as a formal device to model the
linguistic technique of analysis by reduction. Since then many variants and ex-
tensions of the basic model have been introduced and studied (for an overview,
see, e.g., [7]), and several classical families of formal languages have been char-
acterized by certain types of restarting automata.

Here we study the descriptional complexity of the deterministic ordered re-
starting automaton (or det-ORWW-automaton) that was introduced in [6] in the
setting of picture languages. A det-ORWW-automaton has a finite-state control,
a tape with end markers that initially contains the input, and a window of size
three. Based on its state and the content of its window, the automaton can
perform one of three types of operations: it may perform a move-right step that
shifts the window one position to the right and changes the state, or it may
perform a combined rewrite/restart step that replaces the symbol in the middle
of the window by a symbol that is smaller with respect to a predefined ordering
on the working alphabet, that moves the window back to the left end of the
tape, and that resets the state to the initial state, or it may perform an accept
step that causes the automaton to halt and accept. It has been shown in [6] that
the nondeterministic variant of the ordered restarting automaton accepts some
languages that are not even context-free. Here, however, we only consider the
deterministic variant, which is known to accept exactly the regular languages,
and study its descriptional complexity.
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First we show that each det-ORWW-automaton can be simulated by an au-
tomaton of the same type that has only a single state, which means that for these
automata, states are actually not needed. Accordingly, we restrict our attention
to the stateless det-ORWW-automaton (stl-det-ORWW-automaton). For such
an automaton, we take the size of its working alphabet as the measure for its
descriptional complexity, and we show that these automata are polynomially re-
lated in size to the weight-reducing Hennie machines studied by Pr̊uša in [8]. This
implies that there is a double exponential trade-off when changing from a deter-
ministic finite-state acceptor (DFA) to an equivalent stl-det-ORWW-automaton.

If M1 and M2 are stl-det-ORWW-automata that accept languages L1 and L2,
respectively, and if ◦ is a binary operation on languages, as e.g. union or in-
tersection, then there exists a stl-det-ORWW-automaton M for the language
L1 ◦ L2. We provide upper bounds for the size of M in terms of the sizes of M1

and M2 for these operations and some others. For the operations of union and
intersection, the bounds obtained are comparable to those for DFAs, while for
the operation of reversal, we get a better bound as for DFAs. Finally, we provide
upper bounds for the sizes of stl-det-ORWW-automata for languages of the form
L1◦L2, where L1 and L2 are given through DFAs. Here we obtain better bounds
for the operations of reversal, union, intersection, and product as for DFAs.

This paper is structured as follows. In Section 2, we introduce the det-ORWW-
automaton, we present a detailed example showing that this automaton can
describe certain regular languages in a much more succinct way than DFAs or
even than deterministic RR(1)-automata (see, e.g., [3]), and we show that each
det-ORWW-automaton can be converted into an equivalent automaton of the
same type that is stateless. In Section 3, we relate the stl-det-ORWW-automaton
to the weight-reducing Hennie machine, and in the next section we study the
descriptional complexity of the operations of reversal, union, and intersection
for languages given through stl-det-ORWW-automata. Finally, in Section 5, we
study the corresponding problem for languages that are given through DFAs.
The paper closes with Section 6 which summarizes our results in short and
states a number of open problems for future work.

2 Deterministic Ordered Restarting Automaton

A deterministic ordered restarting automaton (det-ORWW-automaton) is a one-
tape machine that is described by an 8-tupleM = (Q,Σ, Γ,�,�, q0, δ, >), where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet
such that Σ ⊆ Γ , the symbols �,� �∈ Γ serve as markers for the left and right
border of the work space, respectively, q0 ∈ Q is the initial state,

δ : Q× (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��})→ (Q× {MVR}) ∪ Γ ∪ {Accept}

is the transition function, and > is a partial ordering on Γ . The transition
function describes three different types of transition steps:

(1) A move-right step has the form δ(q, a1a2a3) = (q′,MVR), where q, q′ ∈ Q,
a1 ∈ Γ ∪{�} and a2, a3 ∈ Γ . It causesM to shift the window one position to
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the right and to enter state q′. Observe that no move-right step is possible,
if the window contains the symbol �.

(2) A rewrite/restart step has the form δ(q, a1a2a3) = b, where q ∈ Q, a1 ∈
Γ ∪ {�}, a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M
to replace the symbol a2 in the middle of its window by the symbol b and
to restart.

(3) An accept step has the form δ(q, a1a2a3) = Accept, where q ∈ Q, a1 ∈
Γ ∪ {�}, a2 ∈ Γ , and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In
addition, we allow an accept step of the form δ(q0,��) = Accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, when it is in
state q seeing u in its window, and we say that M rejects in this situation.
Further, the letters in Γ �Σ are called auxiliary symbols.

The det-ORWW-automaton M is called stateless if Q = {q0}. For a stateless
det-ORWW-automaton, we drop the components Q and q0 from its description,
and we abbreviate it as stl-det-ORWW-automaton.

A configuration of a det-ORWW-automaton M is a word αqβ, where q ∈ Q
and |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or
α ∈ {�} · Γ ∗ and β ∈ Γ · Γ+ · {�}; here q ∈ Q represents the current state,
αβ is the current content of the tape, and it is understood that the window
contains the first three symbols of β. In addition, we admit the configuration
q0 � �. A restarting configuration has the form q0 � w�; if w ∈ Σ∗, then
q0 � w� is also called an initial configuration. A configuration that is reached
by an accept step is an accepting configuration, and a configuration of the form
αqβ such that δ(q, β1) = ∅, where β1 is the current content of the window,
is a rejecting configuration. A halting configuration is either an accepting or a
rejecting configuration.

Any computation of a det-ORWW-automatonM consists of certain phases. A
phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration – such a phase is
called a tail. By /c

M we denote the execution of a complete cycle, and /c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that is realized by M on the set of restarting configurations.

An input w ∈ Σ∗ is accepted by M , if the computation of M which starts
with the initial configuration q0 � w� ends with an accept step. The language
consisting of all words that are accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by a
symbol b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
(|Γ | − 1) · n many cycles. Thus, M can be simulated by a deterministic single-
tape Turing machine in time O(n2). The following example illustrates the way
in which a stl-det-ORWW-automaton works.

Example 1. Let n ≥ 2 be a fixed integer, and let M = (Σ,Γ,�,�, δ, >) be
defined by taking Σ = {a, b} and Γ = Σ ∪ { ai, bi, xi | 1 ≤ i ≤ n − 1 }, by
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choosing the ordering > such that a > ai > xj and b > bi > xj hold for all
1 ≤ i, j ≤ n− 1, and by defining the transition function δ in such a way that M
proceeds as follows: On input w = w1w2 . . . wm, w1, . . . , wm ∈ Σ, M numbers
the first n − 1 letters of w from left to right, by replacing wi = a (b) by ai (bi)
for i = 1, . . . , n − 1. If wn �= a, then the computation fails, but if wn = a, then
M continues by replacing the last n − 1 letters of w from right to left using
the letters x1 to xn−1. If the n-th last letter is b or some bi, then M accepts,
otherwise the computation fails again.

Then L(M) = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b }. It is
shown in [3] that this language is accepted by a det-mon-nf-RR(1)-automaton
with O(n) states, while every det-RR(1)-automaton for it has at least O(2n)
states. Observe that M has just a single state and an alphabet of size 3n− 1.

While nondeterministic ORWW-automata are quite expressive, it is known
that the deterministic variants are fairly weak.

Theorem 2. [6] REG = L(det-ORWW).

Further, stateless det-ORWW-automata can simulate those with states.

Theorem 3. For each det-ORWW-automaton M = (Q,Σ, Γ,�,�, q0, δ, >),
there exists a stl-det-ORWW-automaton M ′ = (Σ,Δ,�,�, δ′, >′) such that
L(M ′) = L(M) and |Δ| = |Q| · |Γ |2 + 2 · |Γ |.

Proof. From M we can construct M ′ as follows:

– Δ = Γ ∪ { [a, q, b] | a ∈ Γ, q ∈ Q, b ∈ Γ } ∪ { [�, q0, a] | a ∈ Γ },
– for all a, b ∈ Γ , c ∈ Γ ∪ {�}, and q ∈ Q, if a > b, then a >′ [c, q, a] >′ b,
– the transition function δ′ of M ′ is defined as follows, where a, b, A,B,C ∈ Γ ,
c, d ∈ Γ ∪ {�}, and p, q, r ∈ Q:

(1) δ′(�u�) = Accept for all u ∈ (Σ ∪ {λ}) ∩ L(M),
(2) δ′(�ab) = [�, q0, a],
(3) δ′(�[�, q0, a]b) = A, if δ(q0,�ab) = A,
(4) δ′(�[�, q0, a]b) = MVR, if δ(q0,�ab) = (p,MVR),
(5) δ′([�, q0, a]bc) = [a, p, b], if δ(q0,�ab) = (p,MVR),
(6) δ′([�, q0, a][a, p, b]c) = B, if δ(p, abc) = B,
(7) δ′([�, q0, a][a, p, b]c) = MVR, if δ(p, abc) = (q,MVR),
(8) δ′([a, p, b]cd) = [b, q, c], if δ(p, abc) = (q,MVR),
(9) δ′(�[�, q0, a][a, p, b]) = MVR,
(10) δ′([a, p, b][b, q, A][A, r,B]) = MVR,
(11) δ′([a, p, b][b, q, A]B) = C, if δ(q, bAB) = C,
(12) δ′([a, p, b][b, q, A]B) = MVR, if δ(q, bAB) = (r,MVR),
(13) δ′([b, q, A]Bc) = [A, r,B], if δ(q, bAB) = (r,MVR),
(14) δ′([a, p, b][b, q, A]c) = Accept, if δ(q, bAc) = Accept.

It remains to show that L(M ′) = L(M) holds. Given an input u ∈ Σ ∪ {λ},
M ′ will accept immediately if and when u ∈ L(M) holds. So, let us consider an
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input w = a1a2 . . . an, where n ≥ 2 and a1, . . . , an ∈ Σ. M will scan the input
from left to right until it detects the first letter, say ai, that is to be rewritten,
that is, M executes the following cycle:

q0 � a1a2 . . . an� /M �q1a1a2a3 . . . an�
/i−2
M �a1 . . . ai−2qi−1ai−1aiai+1 . . . an�
/M q0 � a1a2 . . . ai−1bai+1 . . . an � .

This cycle is simulated by M ′ as follows:

�a1a2 . . . an� /c
M ′ �[�, q0, a1]a2 . . . an�

/c
M ′ �[�, q0, a1][a1, q1, a2]a3 . . . an�

/c
M ′ �[�, q0, a1] . . . [ai−2, qi−2, ai−1]aiai+1 . . . an�

/c
M ′ �[�, q0, a1] . . . [ai−2, qi−2, ai−1][ai−1, qi−1, ai]ai+1 . . . an�

/c
M ′ �[�, q0, a1] . . . [ai−2, qi−2, ai−1]bai+1 . . . an�,

that is, preceding from left to right, M ′ replaces the symbol aj (1 ≤ j ≤ i) by
the triple [aj−1, qj−1, aj ], where qj−1 is the state in whichM reaches the window
contents aj−1ajaj+1. This continues until M reaches the symbol ai+1. At that
point, M ′ realizes that it must simulate a rewrite step of M , and accordingly it
replaces the triple [ai−1, qi−1, ai] by the symbol b. By induction on the number
of cycles that M executes it can now be shown that L(M ′) = L(M) holds. Just
observe that after the rewrite step above,M must scan the tape from left to right
until its window contains the newly written symbol b, as M is deterministic. ��
Because of Theorem 3 we restrict our attention to stl-det-ORWW-automata for
the rest of this paper.

Proposition 4. For each DFA A = (Q,Σ, q0, F, ϕ), there is a stl-det-ORWW-
automaton M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ | = |Q|+ |Σ|.
Proof. We take Γ = Σ ∪Q, define a > q for all a ∈ Σ and all q ∈ Q, and define
the transition function δ as follows, where a, b ∈ Σ and p, q, q′ ∈ Q:

(1) δ(��) = Accept, if λ ∈ L(A),
(2) δ(�a�) = Accept, if a ∈ L(A),
(3) δ(�ab) = q, if ϕ(q0, a) = q,
(4) δ(�qb) = MVR,
(5) δ(qba) = p, if ϕ(q, b) = p,
(6) δ(�qp) = MVR,
(7) δ(pqq′) = MVR,
(8) δ(pqa) = MVR,
(9) δ(qb�) = Accept, if ϕ(q, b) ∈ F.

Thus, given w = a1 . . . an as input, where n ≥ 2 and a1, . . . , an ∈ Σ, M rewrites
w from left to right into the word q1 . . . qn−1an, where qi = ϕ(q0, a1 . . . ai),
1 ≤ i ≤ n − 1, and the word q1q2 . . . qn−1an is then accepted in a tail compu-
tation if ϕ(qn−1, an) ∈ F , that is, M accepts on input w iff ϕ(q0, a1 . . . an) =
ϕ(ϕ(q0, a1 . . . an−1), an) = ϕ(qn−1, an) ∈ F , that is, iff A accepts on input w.
Hence, we see that L(M) = L(A) holds. ��
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3 Descriptional Complexity

A single-tape Turing machine is bounded if it works on a tape that is delimited
by a left end marker � and a right end marker �. A bounded deterministic
Turing machine T is called a Hennie machine, if there exists a constant k such
that the number of transitions that T performs on any tape field is bounded from
above by the number k. Hennie has shown in [2] that Hennie machines can only
accept regular languages. Observe, however, that it is undecidable in general
whether a given Turing machine is a Hennie machine (see, e.g., [8]). A Hennie
machine T with tape alphabet Γ is called weight-reducing if there is a weight
function μ : Γ → N such that, in each step, T replaces the currently read symbol
a ∈ Γ � {�,�} by a symbol b ∈ Γ � {�,�} of strictly less weight. Obviously, it
is easily decidable whether a given Hennie machine is weight-reducing. Further,
for each Hennie machine T , there exists a weight-reducing Hennie machine T ′

that accepts the same language [8].
We are interested in the descriptional complexity of stl-det-ORWW-automata.

Here we can exploit Pr̊uša’s results on the descriptional complexity of weight-
reducing Hennie machines, where we use the number of states as a measure for
the size of a DFA.

Theorem 5. [8]

(a) For each weight-reducing Hennie machine T with n states and an alphabet

of size m, there is a DFA A of size 22
O(m log n)

such that L(A) = L(T ) holds.
(b) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1, $}∗ that is ac-

cepted by a weight-reducing Hennie machine with O(1) states and with O(n)
working symbols, but each DFA for accepting Bn has at least 22

n

many states.

Thus, there is a double exponential trade-off for converting a weight-reducing
Hennie machine into an equivalent DFA. We claim that the same holds for the
conversion of a stl-det-ORWW-automaton into a DFA. For proving this result we
present conversions from weight-reducing Hennie machines to stl-det-ORWW-
automata and back.

Proposition 6. For each stl-det-ORWW-automaton M with n letters, there ex-
ists a weight-reducing Hennie machine T with O(n2) many states on some al-
phabet of size O(n2) such that L(T ) = L(M) holds.

Proof. In the proof of Theorem 2 given in [6], a det-ORWW-automaton M =
(Q,Σ, Γ,�,�, q0, δ, >) is simulated by a weight-reducing Hennie machine T ,
which must occasionally store a letter from Γ in its finite-state control, and
which stores triples of the form (a, q, b) ∈ Γ × Q × Γ on its tape. In addition,
each time T visits a tape field, which may occur up to 4 · |Γ | many times, it must
replace the current letter by another letter with less weight, which increases the
size of the alphabet by another factor |Γ |. It follows that T has O(|Q| · |Γ |)
many states and that it uses O(|Q| · |Γ |3) many letters. Thus, if M is stateless,
and if |Γ | = n, then T has only O(n) many states, and it uses O(n3) many
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letters. To obtain the desired result, we change T as follows. Instead of replacing
the content of a cell by a triple (a, q0, b), the Hennie machine now stores the
contents of the two neighbouring cells of the currently visited cell in its finite-
state control. Thus, it uses an alphabet of size O(n2) only, but now it has O(n2)
many states. ��

For the opposite conversion we have the following result.

Proposition 7. For each weight-reducing Hennie machine T with n states and
an alphabet of size m, there exists a stl-det-ORWW-automaton M on some al-
phabet of size O(m · n) such that L(M) = L(T ) holds.

Proof. The stl-det-ORWW-automaton M stores the current state of T together
with the current letter into the tape field that T is currently scanning. Because
of its window of size 3, M can detect this information when sweeping across the
tape from left to right, and it can then store the new state into the appropriate
field. In the next cycle, it deletes the state information from the ‘old’ position and
simulates the corresponding rewrite step. This is done in exactly the same way
as a deterministic Sgraffito automaton is simulated by a det-2D-3W-ORWW-
automaton (see [6]). Hence, M needs an alphabet of size O(m · n). ��

Together with Theorem 5 these propositions give the following results.

Corollary 8.

(a) For each stl-det-ORWW-automatonM with an alphabet of size n, there exists

a DFA A of size 22
O(n2 log n)

such that L(A) = L(M) holds.
(b) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1, $}∗ such that Bn

is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n), but
each DFA for accepting Bn has at least 22

n

many states.

Thus, there is a double exponential trade-off for converting a stl-det-ORWW-
automaton into a DFA. Observe, however, that the gap between the lower bound

of 22
n

and the upper bound of 22
O(n2 log n)

is still huge.

4 The Descriptional Complexity of Language Operations

Many results have been obtained on the descriptional complexity of language
operations (see [1] for a recent survey): given a DFA of size n for accepting a
language L, what is the minimal size of a DFA for the language op(L), where op
is an operation like reversal, complement, or Kleene star, and correspondingly for
binary operations like union, intersection, or product? For example, it is known
that the bound for reversal is 2n [5], for union and intersection, it is m · n, and
for product, it is (m − 1) · 2n + 2n−1 [9] , where the two languages used are
accepted by DFAs of size m and n, respectively. We now ask these questions for
stl-det-ORWW-automata, where we use the number of letters as the complexity
measure for our automata. Here we have the following upper bound results.
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Theorem 9. If a language L is accepted by a stl-det-ORWW-automaton with n
letters, then its reversal LR is accepted by a stl-det-ORWW-automaton over an
alphabet of size n2 + 2n.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton such that
L(M) = L, and let n = |Γ |. From M we obtain a stl-det-ORWW-automaton
MR for LR by taking MR = (Σ,Δ,�,�, δ′, >′), where

– Δ = Γ ∪ (Γ × (Γ ∪{�})), which shows that |Δ| = n+(n · (n+1)) = n2+2n,
– the ordering >′ on Δ is defined as follows:

∀a, b ∈ Γ : if a > b, then a >′ [a, c] >′ b for all c ∈ Γ ∪ {�},

– and the transition function δ′ is defined as follows, where a, b, c, c′ ∈ Γ and
d ∈ Γ ∪ {�}:

(1) δ′(�a�) = δ(�a�) for all a ∈ Γ ∪ {λ},
(2) δ′(�ab) = MVR,
(3) δ′(abc) = MVR,
(4) δ′(ab�) = [b,�], if δ(�ba) = MVR,
(5) δ′(ab�) = c, if δ(�ba) = c,
(6) δ′(ab�) = Accept, if δ(�ba) = Accept,
(7) δ′(ab[c, d]) = [b, c], if δ(dcb) = MVR,
(8) δ′(ab[c, d]) = MVR, if δ(dcb) = c′,
(9) δ′(b[c, d]A) = c′, if δ(dcb) = c′, and A ∈ (Δ� Γ ) ∪ {�},
(10) δ′(ab[c, d]) = Accept, if δ(dcb) = Accept,
(11) δ′(�b[c, d]) = [b, c], if δ(dcb) = MVR,
(12) δ′(�b[c, d]) = MVR, if δ(dcb) = c′,
(13) δ′(b[c, d]A) = c′, if δ(dcb) = c′, and A ∈ (Δ� Γ ) ∪ {�},
(14) δ′(�b[c, d]) = Accept, if δ(dcb) = Accept,
(15) δ′(�[a, b][b, c]) = c′, if δ(ba�) = c′,
(16) δ′(�[a, b][b, c]) = Accept, if δ(ba�) = Accept.

WhileM scans a given input w from left to right,MR scans the corresponding
input wR from left to right, which would correspond to M scanning its input
from right to left. MR uses the letters of the form [a, b] to mark the position in
wR to which M has proceeded. Thus, during a computation the tape contents
of MR will be of the form �ua[b, c]v�, where u ∈ Γ ∗, a, b ∈ Γ , c ∈ Γ ∪ {�},
and v ∈ (Δ � Γ )∗. This factorization tells us that M would move right across
the prefix corresponding to (bv)R. Now if δ(cba) = b′, then M would replace b
by b′ in the next cycle, and correspondingly, MR will rewrite �ua[b, c]v� into
�uab′v�. It can now be shown that L(MR) = LR holds. ��

The next result follows easily by interchanging accept steps with undefined steps
in the stl-det-ORWW-automaton considered.

Theorem 10. If a language L is accepted by a stl-det-ORWW-automaton with
n letters, then its complement Lc is accepted by a stl-det-ORWW-automaton over
the same alphabet.
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Finally, we look at the operation of intersection.

Theorem 11. If the languages L1 and L2 are accepted by stl-det-ORWW-auto-
mata with n letters, then their intersection L1 ∩ L2 is accepted by a stl-det-
ORWW-automaton over an alphabet of size n2 + 2n.

Proof. Let M1 = (Σ,Γ1,�,�, δ1, >1) be a stl-det-ORWW-automaton such that
L(M1) = L1, and let M2 = (Σ,Γ2,�,�, δ2, >2) be a stl-det-ORWW-automaton
such that L(M2) = L2, where |Γ1| = |Γ2| = n. From M1 and M2 we obtain a
stl-det-ORWW-automaton M for L = L1 ∩ L2 on the alphabet

Δ = Σ ∪ { [a, b] | a ∈ Γ1, b ∈ Γ2 } ∪ { b̄ | b ∈ Γ2 }

of size |Σ|+ n2 + n ≤ n2 + 2n that works as follows:

1. From right to left, M rewrites each input letter a into the pair [a, a].
2. Then M simulates M1 using the first component of each letter. When M1

accepts, then M replaces each pair of the form [a, b] by the letter b̄, again
proceeding from right to left.

3. Finally, M simulates M2 interpreting each letter of the form b̄ just as M2

would interpret the letter b. If and when M2 accepts, then so does M .

Obviously, L(M) = L1 ∩ L2 follows. ��
From the last two results, we immediately obtain the following consequence.

Corollary 12. If the languages L1 and L2 are accepted by stl-det-ORWW-auto-
mata with n letters, then their union L1 ∪ L2 is accepted by a stl-det-ORWW-
automaton over an alphabet of size n2 + 2n.

Thus, for realizing the Boolean operations, stl-det-ORWW-automata are es-
sentially just as efficient as DFAs, while for the operation of reversal, they are
much more efficient. So far, no results are known on how to realize the operations
of product and Kleene star efficiently by stl-det-ORWW-automata.

5 Simulating DFAs by stl-det-ORWW-Automata

If ◦ is a binary operation on languages, and if, for i = 1, 2, Ai is a DFA of size
ni, what is the size of a stl-det-ORWW-automaton for L(A1) ◦ L(A2)? Here we
present upper bounds for the operations of intersection, union, and product.

Theorem 13. If the languages L1 and L2 over an alphabet of size k are accepted
by DFAs of size m and n, respectively, then their intersection L1∩L2 is accepted
by a stl-det-ORWW-automaton over an alphabet of size k · (m+ 1) + n.

Proof. Let A1 = (Q1, Σ, q0, F1, δ1) be a DFA such that L(A1) = L1, where
|Q1| = m and |Σ| = k, and let A2 = (Q2, Σ, p0, F2, δ2) be a DFA such that
L(A2) = L2, where |Q2| = n. From A1 and A2 we construct a stl-det-ORWW-
automaton M = (Σ,Γ,�,�, δ, >) for L = L1 ∩ L2 by taking Γ = Σ ∪ { [q, a] |
q ∈ Q1 and a ∈ Σ } ∪ Q2, that is, |Γ | = k + k · m + n = k · (m + 1) + n, by
choosing the ordering > through a > [q, b] > p for all a, b ∈ Σ, q ∈ Q1, and
p ∈ Q2, and by defining the transition function δ such that M works as follows:
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1. First M simulates two steps of A1 by turning the first two input letters ab
into the pairs [q, a][q′, b], where q = δ1(q0, a) and q′ = δ1(q, b).

2. Then on the prefix [q, a][q′, b] the first step of A2 is simulated by rewriting
[q, a] into p, where p = δ2(p0, a).

3. Now M alternates between simulating a step of A1 and a step of A2.
4. If the last two symbols are of the form p[q, c] for some p ∈ Q2 and q ∈ F1,

and if δ2(p, c) = p′ ∈ Q2, then [q, c] is rewritten into p′.
5. M accepts if the tape contents ends with p′� for some p′ ∈ F2.

It can be shown that L(M) = L(A1) ∩ L(A2) holds. ��
Observe that by first building the product automaton of A1 and A2 and by then
turning this into an equivalent stl-det-ORWW-automaton, we would obtain a stl-
det-ORWW-automaton for the language L = L(A1) ∩ L(A2) over an alphabet
of size k +m · n. As typically m and n are large, while k is small, Theorem 13
gives a much better bound. The construction above can easily be extended to
the intersection of more than two DFAs.

Corollary 14. For all t ≥ 3, if Ai is a DFA with ni states over an alphabet of
size k for all 1 ≤ i ≤ t, then there exists a stl-det-ORWW-automaton M on an
alphabet of size k · (1 + n1 + · · ·+ nt−1) + nt such that L(M) =

⋂t
i=1 L(Ai).

Obviously, this construction can easily be adopted to the operation of union.

Corollary 15. For all t ≥ 3, if Ai is a DFA with ni states over an alphabet of
size k for all 1 ≤ i ≤ t, then there exists a stl-det-ORWW-automaton M on an
alphabet of size k · (1 + n1 + · · ·+ nt−1) + nt such that L(M) =

⋃t
i=1 L(Ai).

By turning the left-to-right simulation of a DFA as described in the proof of
Proposition 4 into a right-to-left simulation, we obtain the following result.

Proposition 16. If a language L over an alphabet of size k is accepted by a
DFA of size n, then the language LR is accepted by a stl-det-ORWW-automaton
over an alphabet of size k + n.

Next we turn to the operation of product.

Theorem 17. If the languages L1 and L2 over an alphabet of size k are accepted
by DFAs of size m and n, respectively, then their product L1 · L2 is accepted by
a stl-det-ORWW-automaton over an alphabet of size k · (m+ 1) + 2n.

Proof. Let Ai = (Qi, Σ, q
(i)
0 , Fi, δi) be a DFA for Li, i = 1, 2, where |Q1| = m,

|Q2| = n, and |Σ| = k. From A1 and A2 we obtain a stl-det-ORWW-automaton
M for L = L1 ·L2 on the alphabet Δ = Σ ∪{ [q, b] | q ∈ Q1, b ∈ Σ }∪ 2Q2 of size
k + k ·m+ 2n = k · (m+ 1) + 2n that works as follows:

1. FirstM simulates A1 on the given input just as in the proof of Proposition 4.
However, instead of replacing a letter b ∈ Σ read by the corresponding
state q ∈ Q1, we now replace b by the combined letter [q, b]. When A1

reaches the right sentinal �, then the given input w = a1a2 . . . ar (r ≥ 1,
a1, . . . , ar ∈ Σ) has been rewritten into the word W = [q1, a1] . . . [qr, ar],

where qi = δ1(q
(1)
0 , a1 . . . ai), 1 ≤ i ≤ r.
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2. By interpreting each letter of the from [q, b] simply as the letter b, M now
simulates A2 in reverse preceding from right to left, starting from the set of
final states F2. During this part of the computation the tape content will be
of the form u · v, where u ∈ { [q, b] | q ∈ Q1, b ∈ Σ }∗ and v ∈ (2Q2)∗.

3. WhenM reaches a window content of the form [q′, a][q, b]P , where q′, q ∈ Q1,

a, b ∈ Σ, and P ⊆ Q2, such that q ∈ F1 and q
(2)
0 ∈ P , then we have found

a factorization w = w1w2, where w1 ends with the letters ab displayed, such
that w1 ∈ L1 and w2 ∈ L2. Thus, in this situation M halts and accepts.

If λ ∈ L2, then M also accepts in step 1 in case that the last letter ar of the
input in rewitten into a letter of the form [q, ar] such that q ∈ F1, and if λ ∈ L1,
then M accepts, if a rewrite in step 2 replaces the first letter by a set P ⊆ Q2

such that q
(2)
0 ∈ P . It now follows that L(M) = L1 ∩ L2 holds. ��

As pointed out by one of the reviewers, the above bound can be replaced by a
better one, which, however, is less precise. It is known that L1 · L2 is accepted
by a nondeterministic finite-state acceptor (NFA) A with O(m + n) states. By
Theorem 11 of [8], A can be simulated by a weight-reducing Hennie machine T
with a polynomial number of transitions in k and m + n. From T we obtain a
stl-det-ORWW-automaton for L1 · L2 with a polynomial number of letters in
k, m, and n by Proposition 7. However, the bound given in Theorem 17 is still
preferable in the case that n is small in comparison to k and m.

A still better result is obtained for the following variant of the product
operation.

Theorem 18. If the languages L1 and L2 over an alphabet of size k are accepted
by DFAs of size m and n, respectively, then the product L1 ·LR

2 is accepted by a
stl-det-ORWW-automaton over an alphabet of size k · (m+ 1) + n.

Proof. Let Ai = (Qi, Σ, q
(i)
0 , Fi, δi), i = 1, 2, be a DFA for Li, where |Q1| = m,

|Q2| = n, and |Σ| = k. From A1 and A2 we can construct a stl-det-ORWW-
automaton M = (Σ,Γ,�,�, δ, >) on the alphabet Γ = Σ ∪ { [q, a] | q ∈ Q1, a ∈
Σ } ∪Q2 of size |Γ | = k + k ·m+ n that works as follows:

1. An input of length at most one is accepted immediately, if it belongs to
L1 · LR

2 .
2. An input w = a1 . . . ar, where r ≥ 2 and a1, . . . , ar ∈ Σ, is first processed

from left to right be replacing the letter ai by the pair [qi, ai], where qi =

δ1(q
(1)
0 , a1 . . . ai). Hence, qi ∈ F1 iff the prefix a1 . . . ai belongs to L1.

3. If qn ∈ F1 and λ ∈ L2, then w = w ·λ ∈ L1 ·LR
2 , and accordingly,M accepts.

4. Otherwise, M now processes the word [q1, a1] . . . [qr, ar] from right to left. It

replaces the pair [qi, ai] by the state symbol p ∈ Q2 if δ2(q
(2)
0 , ar . . . ai) = p.

In particular, p ∈ F2, if the suffix ai . . . ar belongs to the language LR
2 .

Accordingly, M accepts, if the prefix a1 . . . ai−1 belongs to L1, and if the
corresponding suffix ai . . . ar belongs to LR

2 .

It follows that L(M) = L1 · LR
2 holds. ��
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6 Concluding Remarks

We have seen that stl-det-ORWW-automata can provide much more succinct
representations for regular languages than DFAs, as the corresponding trade-off
is double exponential. Also for the operations of reversal, union, and intersection,
the representation by stl-det-ORWW-automata is much better suited than the
representation by DFAs. However, many open problems remain:

– Are the given upper bounds sharp, that is, can they be obtained by example
languages?

– How can two stl-det-ORWW-automata for L1 and L2 be combined into a
‘small’ stl-det-ORWW-automaton for the product L1 · L2?

– How can a stl-det-ORWW-automaton for L be transformed into a ‘small’
stl-det-ORWW-automaton for L∗?

Finally, because of its window of size three, a stl-det-ORWW-automaton with
an alphabet of size n can have O(n3) many transitions, while a DFA of size n over
an alphabet of size k has at most k · n many transitions. Thus, when measuring
the sizes of these types of automata in terms of their number of transitions, then
the comparison is less favourable for the stl-det-ORWW-automaton, although
the double exponential trade-off of Corollary 8 also holds for this measure.
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2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

9. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)



State Complexity of Unary Language Operations

for NFAs with Limited Nondeterminism

Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl

School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{alex,ksalomaa,akl}@cs.queensu.ca

Abstract. We study the state complexity of language operations for
unary NFAs with limited nondeterminism. We consider the operations
of concatenation, Kleene star, and complement. We give upper bounds
for the state complexity of these language operations and lower bounds
that are fairly close to the upper bounds. Our constructions rely on the
fact that minimal unary NFAs with limited nondeterminism can be found
in Chrobak normal form.
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1 Introduction

Finite automata is a basic model of computation and it has been studied for
more than half a century. State complexity is one important aspect in the study
of finite automata [20,21]. The state complexity of language operations was first
considered by Maslov [19], later, Yu, Zhuang, and Salomaa systematically stud-
ied the deterministic state complexity of language operations [28]. Pighizzini and
Shallit considered the state complexity of unary language operations [26]. Non-
deterministic state complexity of basic language operations was investigated by
Holzer and Kutrib [9] and the nondeterministic state complexity of unary lan-
guage operations was studied by the same authors in [10]. Good recent surveys
on the descriptional complexity of finite automata can be found in [11,12,16] and
operational state complexity is discussed in more detail in [5].

Motivated by the exponential trade off between deterministic finite automata
(DFA) and nondeterministic finite automata (NFA) there has been much work on
limited nondeterminism. The degree of ambiguity counts the number of accept-
ing computations [17,18]. Leung showed in [18] an exponential trade off between
unambiguous NFAs and general NFAs as well as an exponential trade off be-
tween DFAs and unambiguous NFAs. Okhotin [22] studied the state complexity
of unambiguous unary NFAs. The branching measure [8] is the product of the
nondeterministic choices an NFA makes along a best accepting computational
path. Goldstine, Kintala, and Wotschke showed that there are regular languages
where NFAs with finite branching require roughly the same number of states
with a DFA and exponential more than an NFA. The tree width measure, which
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is called leaf size in [13,14], counts the total number of computation paths cor-
responding to a given input. We showed in [23] that there is a polynomial trade
off between finite tree width NFAs and DFAs. In [24], we introduced the trace
measure which is a worst variant of branching and we showed a relation between
NFAs with finite tree width and NFAs with finite trace. In [25], we considered
limited nondeterminism for unary NFAs.

In [23] we studied the state complexity of union and intersection for languages
recognized by finite tree width NFAs over general alphabets. The lower bound
constructions were given using unary regular languages and hence the same
results apply also in our case. In [23] we also gave an upper bound for the state
complexity of concatenation of finite tree width NFAs over general alphabets.
Finding a matching lower bound for the concatenation of binary languages (or
languages over a general alphabet) defined by NFAs with finite tree width has
turned out to be a very hard problem, and the same applies to complementation.
It can be noted that, similarly, the operational state complexity of unambiguous
NFAs over general alphabets is a hard problem: for complementation the only
known upper bound is 2n while the known lower bound is n2−o(1) [22] and also
the state complexity of concatenation of unambiguous NFAs remains wide open.

In this paper, as a special case, we study the state complexity of concatenation,
Kleene star, and complement for unary NFAs with limited nondeterminism. The
measures of nondeterminism which are considered in this paper are tree width,
ambiguity, and trace. The structure of the paper is as follows. In Section 3 some
auxiliary results are given. In Section 4, we give an upper bound on the number
of states required for the concatenation of two languages for NFAs with limited
nondeterminism, the required number of states depend on the state complexity
of the two given languages and as well as the degree of nondeterminism that we
allow. In Section 5 we study the state complexity of Kleene star for NFAs with
limited nondeterminism, the difference here is that the bounds do not depend on
the allowed degree of nondeterminism. Finally, in Section 6 we study the state
complexity of complement of a language for NFAs with limited nondeterminism.
We show that all the above bounds cannot be essentially improved, by giving
lower bound constructions that are fairly close, but not exactly matching, to
the upper bounds. Naturally some improvements in the estimations remain for
future work.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning fi-
nite automata [27,29] and descriptional complexity [7,12]. Here we just fix some
notation needed in the following.

The set of strings, or words, over a finite alphabet Σ is Σ∗, the length of
w ∈ Σ∗ is |w| and ε is the empty string. In this paper, we focus on alphabets
containing only one letter, we call these alphabets unary and we assume that
Σ = {a}. The set of positive integers is denoted by N. The cardinality of a finite
set S is #S.
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A nondeterministic finite automaton (NFA) over a unary alphabet is a 4-tuple
A = (Q, δ, q0, F ), where Q is a finite set of states, δ : Q → 2Q is the transition
function, q0 is the initial state and F ⊆ Q is the set of accepting states. We define
the transition function δ in the form of a relation rel(δ) = {(q, q′) | q′ ∈ δ(q)}.
The function δ is extended in the usual way as a function Q × N → 2Q, where
δ(q, 0) = {q}, δ(q, 1) = δ(q), and δ(q, i) = {p ∈ Q | ∃q′, q′ ∈ δ(q, i − 1) and p ∈
δ(q′)} for 2 ≤ i. The language recognized by A, denoted by L(A), consists of
all the strings am ∈ {a}∗ such that δ(q0,m) ∩ F �= ∅. An NFA A is called
deterministic finite automaton (DFA) if for every state q of A the transition
function goes to at most one state, i.e. #δ(q) ≤ 1. Note that a unary DFA
always consists of a sequence of states connected by transitions, called the tail,
followed by a loop (where the loop may be empty). Unless otherwise mentioned,
we assume that any state q of an NFA A is reachable from a start state and
some computation originating from q reaches a final state. The size of A is the
number of states of A, i.e. size(A) = #Q.

A computation of a unary NFA A = (Q, δ, q0, F ) with underlying word am, for
a no negative integer m, from a state s1 to a state s2 is a sequence of transitions
(q0, . . . , qm), where for all 0 ≤ i < m we have qi+1 ∈ δ(qi) and s1 = q0 and
s2 = qm. For the word x, compA(x) denotes the set of all computation of A with
underlying word x, starting from the initial state of A. We call a computation
of A accepting if it starts from the initial state and it finishes at a final state.

By a transition of A we mean a triple (q, a, p) where p ∈ δ(q) The trace of a
transition (q, a, p) of an NFA A, denoted by τA((q, a, p)), is the number #δ(q)
and the trace of a computation C, denoted by τA(C), is the product of the traces
of each transition in C. The trace of a word x is the maximum trace among all
computations by reading the word x, the trace of a word x is given by the type
τA(x) = max{τA(C) | C ∈ compA(y), y is a prefix of x}. The trace of an NFA
A, denoted by τ(A), is the maximum trace of A on any string, assuming this
quantity is bounded.

The computation tree of an NFA A on string w is defined in the natural way
and denoted as TA,w. The tree width of A on w, denoted by twA(w), is the
number of leaves of TA,w and the tree width of A, denoted by tw(A), (if it is
finite) is the maximum tree width of A on any string w. The formal definitions
associated with computation trees and tree width of an NFA can be found in
[23,24].1 The ambiguity of A on w, denoted by ambA(w), is the number of
accepting leaves of TA,w and the ambiguity of A, denoted by amb(A), (if it is
finite) is the maximum ambiguity of A on any string w. Ambiguity is a well
studied measure of nondeterminism, more details on ambiguity in NFAs can be
found in [7].

The minimal size of a DFA (respectively, an NFA) recognizing a regular lan-
guage is called the state complexity (respectively, the nondeterministic state
complexity) of L and denoted sc(L) (respectively, nsc(L)). Note that we allow
DFAs to be incomplete and, consequently, the deterministic state complexity of

1 Note that the tree width of an NFA is unrelated to the notion of tree width as used
in graph theory.
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L may differ by one from a definition using complete DFAs. Now, we want to
consider questions that involve the state complexity of classes of NFAs of limited
nondeterminism. To formalize such questions we have to define the following no-
tation, where sNFA is the set of all NFAs, α is a measure of nondeterminism,
and c a constant.

nscα≤c(L) = min
A∈sNFA

{size(A) | L = L(A) and α(A) ≤ c}

Now the numbers nsctw≤k(L) and nscτ≤k(L) have a meaning. The number
nsctw≤k(L) is the size of a smallest NFA A such that L = L(A) and tw(A) ≤
k. The number nscτ≤k(L) is the smallest number of states required from an
automaton B such that τ(B) ≤ k. From [24] we have that for every NFA A
tw(A) ≤ τ(A), and hence nsctw≤k(L) ≤ nscτ≤k(L), for every positive integer k.

A useful form that unary NFA have is called Chrobak normal form [4]. A
unary NFA A is in Chrobak normal form if initially the states of A form a ‘tail’
and later, at the end of the tail, are followed nondeterministically by disjoint
deterministic cycles. Note, that the only state with nondeterministic choices is
the last state of the tail. Formally, the NFA M = (Q, δ, q0, F ) is in Chrobak
normal form if it has the following properties:

1. Q = {q0, . . . , qt−1} ∪ C1 ∪ · · · ∪ Ck, where Ci = {pi,0, pi,1, . . . , pi,yi−1} for
i ∈ {1, . . . , k},

2. rel(δ) = {(qi, qi+1) | 0 ≤ i ≤ t−2}∪{(qt−1, pi,0) | 1 ≤ i ≤ k}∪{(pi,j , pi,j+1) |
1 ≤ i ≤ k, 1 ≤ j ≤ yi − 2} ∪ {(pi,yi−1 , pi,0) | 1 ≤ i ≤ k}.

Finally, for some integers m1, . . . ,mk we denote by gcd(m1, . . . ,mk) to be
their greatest common divisor and lcm(m1, . . . ,mk) to be their least common
multiple. Two numbers m,n are called co-prime when gcd(m,n) = 1.

3 Unary Finite Tree Width NFAs

We present in this section some basic results on unary finite tree width NFAs
that we will use in the later sections of this paper. Our state complexity bounds
rely crucially on the fact that a minimal finite tree width NFA can always be
chosen to be in Chrobak normal form.

Proposition 3.1 ([25]). Let A be a unary n-state NFA with tree width k. Then
there exists an equivalent Chrobak normal form NFA B with at most n states
and tree width k.

Lemma 3.1 ([2,28]). Let m,n be two positive integers such that gcd(m,n) = 1.

(i) The largest integer that cannot be presented as c1 ·m+c2 ·n for any integers
c1, c2 > 0 is m · n.

(ii) The largest integer that cannot be presented as c1 ·m+c2 ·n for any integers
c1 > 0 and c2 ≥ 0 is m · n− n.

(iii) The largest integer that cannot be presented as c1 ·m+c2 ·n for any integers
c1, c2 ≥ 0 is m · n−m− n.
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Note that the item (iii) of the previous lemma is the solution of the Frobenius
problem (coin problem) for N = 2. For more on that problem the reader is
referred to [1].

4 State Complexity of Concatenation

The main question of this section is to find the state complexity of the concate-
nation of two unary NFAs with limited nondeterminism. The state complexity
of concatenation for unary DFAs has been studied in [28], it has been shown
that an upper bound for the concatenation of an m state language with an n
state language is m · n, this bounds can be reached when gcd(m,n) = 1. We
see in the following results that the case of limited nondeterminism is similar
to DFAs. Before we study the general case of concatenation, we give a technical
result that gives an upper bound for the size of a DFA equivalent to an NFA
that consists of two cycles and additionally transitions from the first cycle to the
second cycle.

Let C1 and C2 be two cycles, possibly containing final states and both C1

and C2 have a state that is specified as the first state. Then by merge(C1, C2)
we mean the NFA where the state set consists of the union of C1 and C2 and
includes the transitions of the two cycles and additionally transitions from the
final states of C1 to the second state of C2. The initial state of merge(C1, C2)
is the first state of C1 and the final states are all states that were specified to
be final in C1 and C2. An example of the NFA merge(C1, C2) for two cycles C1

and C2 appears in Figure 1.

Fig. 1. On the left an NFA as a result of merging two cycles and on the right its
equivalent DFA

Lemma 4.1. Let C1 and C2 be two disjoint cycles, of sizes c1 and c2 respec-
tively. Then, there is a DFA recognizing L(merge(C1, C2)) such that:

i. The size of its tail is at most lcm(c1, c2),
ii. The size of its loop is at most c1 if c2 divides c1, and at most gcd(c1, c2),

otherwise.

The following technical lemma will be used in the proof of Theorem 4.1. The
lemma states the simple observation that in a Chrobak normal form NFA A
we can reduce the number of cycles as long as, for each cycle C of A, the new
Chrobak normal form NFA has a cycle whose length is a multiple of the length
of C.
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Lemma 4.2. Let A be a Chrobak normal form NFA with size of tail t and k
cycles of lengths c1, . . . , ck, respectively. Let d1, . . . , dm ∈ N be integers such that

(∀i)(1 ≤ i ≤ k =⇒ (∃�)(1 ≤ � ≤ m =⇒ (ci divides d�)))

Then L(A) has a Chrobak normal form NFA with size of tail t and m cycles of
lengths d1, . . . , dm, respectively.

Now we are ready to prove the main results of this section.

Theorem 4.1. Let L1 and L2 be unary regular languages. Let k1 and k2 be
positive integers, k1, k2 ≥ 2, such that nsctw≤(k1−1)(L1) > nsctw≤k1(L1) and
nsctw≤(k2−1)(L2) > nsctw≤k2(L2), then we have nsctw≤min{k1,k2}(L1 · L2) ≤
(nsctw≤k1(L1)− (k1−1)·(k1+2)

2 ) · (nsctw≤k2(L2)− (k2−1)·(k2+2)
2 ).

Proof outline. Let us have the two state-minimal NFAs A1 and A2 recognizing
the languages L1 and L2 respectively, with tree width of k1 and k2 respectively.
From Proposition 3.1 we can assume that the NFAs A1 and A2 are in Chrobak
normal form and from the assumptions of the theorem we have that A1 has
exactly k1 cycles and A2 has exactly k2 cycles.

From the NFA A1 and the NFA A2 we can construct a new NFA C which
recognizes the language L1 ·L2. We construct the NFA C by adding a transition
from every final state of A1 to the second state of the tail of the NFA A2. Since
C is a unary NFA we can change the order of the cycles of A1 and the tail of A2

by also changing the final states for the resulting NFA C′ to recognize L1 · L2.
The NFA C′ will consist of a tail by attaching the tails of A1 and A2 together,
followed by the merge operation of two cycles (the first one will be a cycle from
the NFA A1 and the second one from the NFA A2). We can further transform
the resulting NFA with the help of Lemma 4.1 and Lemma 4.2. The resulting
NFA C′′ will be in Chrobak normal form with cycles same size as the cycles of
A1 and a tail of length at most t1+ t2− 1+max{i · j | i ∈ c(A1) and j ∈ c(A2)},
where ti is the tail of Ai and c(Ai) is the the set of the sizes of cycles of Ai, for
i = 1, 2.

Note that the size of any cycle ci,j ∈ c(Ai) is the number size(Ai) − ti −∑ki

l=1/l �=j ci,l, for i = 1, 2. Hence the total size of the NFA C′′ is at most

t1+t2−1+(max1≤i≤k1{size(A1)−t1−
∑k1

l=1/l �=i c1,l}·max1≤j≤k2{size(A2)−t2−∑k2

l=1/l �=j c2,l})+size(A1), which is at most (max1≤i≤k1{size(A1)−
∑k1

l=1/l �=i c1,l}·
max1≤j≤k2{size(A2)−

∑k2

l=1/l �=j c2,l}).
We also note that all the cycles of A1 cannot divide any other cycle of A1,

the same applies for A2. In other words all cycles have size greater than 1 and
are different from each other, which means that the sum of k such cycles is at
least

∑k+1
i=2 i. Then, we have that the size of C′′ is at most (size(A1)−

∑k1

i=2 i) ·
(size(A2)−

∑k2

i=2 i). ��

Theorem 4.2. Let L1 and L2 be unary regular languages. Let k be a positive
integer, k ≥ 2, such that nsctw≤(k−1)(L2) > nsctw≤k(L2), then for every positive

integer k′ we have nsctw≤k′(L1 · L2) ≤ sc(L1) · (nsctw≤k(L2)− (k−1)·(k+2)
2 ).
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Note that a similar bound of Theorem 4.2 also holds the number nsctw≤k′ (L2 ·
L1). The concatenation of unary languages is commutative, then L1 ·L2 = L2 ·L1,
which implies that nsctw≤k′(L1 · L2) = nsctw≤k′(L2 · L1).

It is known from [15,25] that every unary NFA A with limited ambiguity (or
trace) there is an NFA B recognizing the language L(A) which has at most
size(A) states and the same ambiguity (or trace) with the NFA A. With similar
proofs of Theorem 4.1 and Theorem 4.2, these theorems also hold with tree width
replaced by ambiguity or trace.

The following two results show that the upper bound of Theorem 4.1 cannot
be essentially improved.

Theorem 4.3. For any n0 ∈ N, there exists n1, n2 ≥ n0 and regular languages
Li, with nsctw≤ki(Li) = ni and nsctw≤(ki−1)(Li) > nsctw≤ki(Li), i = 1, 2, such
that nsctw≤min{k1,k2}(L1 ·L2) ≥ (n1− 2 · 3 · (k1− 1) · (k1 +10) · ln(k1 +4)) · (n2−
2 · 3 · (k2 − 1) · (k2 + 10) · ln(k2 + 4)).

Corollary 4.1. Let k1, k2, n0 ∈ N. There exists n1, n2 > n0 and unary regular
languages Li, i = 1, 2, such that nsctw≤ki(Li) = ni, any minimal NFA for Li

has tree width at least ki and nsctw≤min(k1,k2)(L1 ·L2) = (nsctw≤k1(L1)−Ω(k21 ·
log k1)) · (nsctw≤k2(L2)−Ω(k22 · log k2))

Note that similar statements of Theorem 4.3 also hold for finite ambiguity
and finite trace.

Theorem 4.3 gives a lower bound for state complexity of the concatenation
of tree width k1 and k2 unary NFAs that is fairly close to the upper bound of
Theorem 4.1. Next we observe that by choosing languages where the minimal
NFA is, in fact, a DFA we get a lower bound result that completely omits the
minus terms in the lower bound of Theorem 4.3. The constructions used for the
proof of Theorem 4.4 is essentially the same as the lower bound construction for
unary DFAs. Thus, if only count the total number of states, the absolute worst
case of concatenation of finite tree width NFAs is given by the deterministic
case.

Theorem 4.4. For any n1, n2 ∈ N, there exist unary regular languages Li with
sc(Li) = ni, i = 1, 2, such that for any k ∈ N

nsctw≤k(L1 · L2) = n1 · n2.

The tree width measure of the statement of Theorem 4.4 can be replaced with
the measures of ambiguity or trace.

5 Kleene Star

Let L be a unary language such that sc(L) = n. From [28] we have that the
deterministic state complexity of Kleene star of L is at most (n − 1)2 + 1 and
there are instances where we cannot improve this bound. We will show here
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that we can not do better than the deterministic case when we have limited tree
width (or trace, or ambiguity). Let us start first with the upper bound.

In [4] Chrobak showed that for every unary NFA A with n states, there is a
unary NFA A′ in Chrobak normal form with n states participating in cycles and
O(n2) states in its tail. For our purposes, we need a more accurate estimation
on the size of the tail, which is due to Gawrychowski in [6].

Lemma 5.1 ([6]). For each unary NFA A with n states, there is a unary NFA
A′ in Chrobak normal form with at most n states participating in cycles and with
a tail with at most n · (n− 1)states.

Theorem 5.1. Let k be a positive integer and let L be a unary regular language.
Then, we have that nsctw≤k(L

∗) ≤ (nsctw≤k(L))
2.

Proof. Let us have a minimal NFA N for L with tree width k. For k = 1, we
have that nsctw≤k(L

∗) ≤ (nsctw≤k(L) − 1)2 + 1 from [28]. Next consider the
case k ≥ 2. From Proposition 3.1 we can assume that the NFA N is in Chrobak
normal form. Now, let us create the NFA N ′ which is the same as the NFA N
plus we add transitions from all the final states in cycles to the second state of
its tail. We make the initial state a final state, if it is not already. The NFA N ′

recognizes the language L∗.
We transform the NFA N ′ in an equivalent NFA M in Chrobak normal form.

By Lemma 5.1 the NFA N ′ has at most n+ n · (n− 1) states. ��

Corollary 5.1. Let k be a positive integer and let L be a unary regular lan-
guage. Then, we have that nscτ≤k(L

∗) ≤ (nsctw≤k(L))
2 and nscamb≤k(L

∗) ≤
(nsctw≤k(L))

2.

Note that if a general unary NFA A has n states, L(A)∗ can be recognized by
an NFA with n+ 1 states [10]. In the above proof we relied on Proposition 3.1
just in order to save the one additional state.

In the next theorem, we show that the worst case of the state complexity of
Kleene star of NFAs with limited tree width coincides with the deterministic
state complexity of Kleene star. The proof of Theorem 5.2 is similar to the lower
bound proof of the Kleene star of DFAs.

Theorem 5.2. For every n ∈ N there exists a unary language L with sc(L) = n
such that for every k ∈ N, nsctw≤k(L

∗) = (n− 1)2 + 1.

Corollary 5.2. For every n ∈ N there exists a unary language L with sc(L) = n
such that for every k ∈ N, nscτ≤k(L

∗) = nscamb≤k(L
∗) = (n− 1)2 + 1.

Note that the worst case languages L used in the proof of Theorem 5.2 have
the property that any finite tree width NFA for L has at least the same size as
the minimal DFA. In fact, when A is a Chrobak normal form NFA, the largest
integer not in L(A)∗ can be approximated by solutions to a Frobenius problem
defined in terms of cycle sizes of A, and by relying on estimates for the size
of solutions for the Frobenius problem [3] it is easy to see that the worst-case
bound of Theorem 5.2 cannot be matched by any Chrobak normal form NFA
with tree width greater than one.
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6 Boolean Operations

The state complexity of union and intersection of NFAs with limited nondeter-
minism was studied in [23]. There the authors considered finite tree width NFAs
over general alphabets, however, the lower bound constructions were given over
a unary alphabet and hence the same state complexity results apply directly to
unary regular languages.

Proposition 6.1 ([23]). For unary regular languages Li and ki ≥ 1, i = 1, 2,
we have that nsctw≤k1+k2(L1 ∪ L2) ≤ nsctw≤k1(L1) + nsctw≤k2(L2) + 1 and
nsctw≤k1·k2(L1 ∩ L2) ≤ nsctw≤k1(L1) · nsctw≤k2(L2).

Moreover, for every ki, ni ∈ N, i = 1, 2, there exists unary regular languages Li

and L′
i such that nsctw≤ki(Li) ≥ ni, nsctw≤ki(L

′
i) ≥ ni, nsctw≤k1+k2(L1 ∪L2) ≥

nsctw≤k1(L1) + nsctw≤k2(L2) − 1, and nsctw≤k1·k2(L1 ∩ L2) ≥ (nsctw≤k1(L1) −
1) · (nsctw≤k2(L2)− 1) + 1.

The state of Proposition 6.1 could be replaced for NFAs with finite ambiguity
or trace instead of NFAs with finite tree width. In this section we study the state
complexity of complement of unary NFAs with limited nondeterminism.

Theorem 6.1. Let k1 be a positive integer and let L be a unary regular language.
Then, for every positive integer k2 ≥ 2 such that nsctw≤k2(L) < nsctw≤k2−1(L),
by denoting nsctw≤k2(L) = n, we have

nsctw≤k1(L
c) ≤

⎧⎨⎩
∏ k−1

2

j=0 (�n−1
k2

� − j) ·
∏ k−1

2

j=1 (�n−1
k2

�+ j) if k2 is odd,∏ k
2
j=1(�n−1

k2
� − j) ·

∏ k
2
j=1(�n−1

k2
�+ j) if k2 is even.

Proof. Let us have a state minimal NFA A with tree width k2 which recognizes
L. From Proposition 3.1, we can assume that A is in Chrobak normal form,
with at most k2 cycles. We know that the NFA A has exactly k2 cycles since
nsctw≤k2(L) < nsctw≤k2−1(L). We determinize A, the tail will remain the same
and now we have a loop which is of the size at most of the product of sizes of
the cycles of A. We know that in the worst case the size of the tail is 1 and the
sum of the cycles of A is size(A)−1. By analyzing the function f(x1, . . . , xk2) =

x1 · . . . · xk2 where 2 ≤ xi ≤ size(A)− 1, 1 ≤ i ≤ k2, and
∑k2

i=1 xi = size(A)− 1,

we have that the maximum value for f is in the point where xi =
size(A)−1

k2
for

all 1 ≤ i ≤ k2.
Note here that the k2 cycles can not divide each other otherwise we could

just omit some of them, which implies that there are no two cycles with the
same size. The sizes of the cycles are positive integers and then we are searching
for k2 distinct positive integers that maximize the above function f(x1, . . . , xk2)

where
∑k2

i=1 xi = nsctw≤k2(L) − 1. The solution is given by the k2 distinct

positive integers that are closer to the number
nsctw≤k2

(L)−1

k2
. These numbers

are
∏ k−1

2
j=0 (�

nsctw≤k2
(L)−1

k2
� − j) ·

∏ k−1
2

j=1 (�
nsctw≤k2

(L)−1

k2
�+ j) when k2 is odd and∏ k−1

2

j=1 (�
nsctw≤k2

(L)−1

k2
� − j) ·

∏ k−1
2

j=1 (�
nsctw≤k2

(L)−1

k2
�+ j) when k2 is even. ��
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The proof of Theorem 6.1 uses the fact that minimal unary NFAs with finite
tree width can be found in Chrobak normal form. The same applies for unary
NFAs with finite ambiguity or trace and, hence, the statement of Theorem 6.1
also applies by replacing the tree width with ambiguity or trace.

In the following result we try to approach the upper bound given in
Theorem 6.1.

Theorem 6.2. For every positive integer k there exists a constant n0 such that
for infinitely many values n ≥ n0 the following holds.

There exists a unary NFA A with tw(A) = k and size(A) = n such that any
NFA recognizing L(A)c has size at least (n−k log k−1

k )k.

Proof. We use a construction inspired by Theorem 7 of [10], with the difference
that now the tree width of the given NFA has to be fixed. Let p1, . . . , pk be
the first k prime numbers. We choose m1, . . . ,mk such that for any i �= j,
1 ≤ i, j ≤ k,

|pmi

i − p
mj

j | ≤ k log k. (1)

This is possible because the kth prime has size roughly k log k [2]. Now as in
Theorem 7 of [10] choose

L = ((ap
m1
1 )∗)c + . . .+ ((ap

mk
k )∗)c.

Now L has an NFA B with n = 1 +
∑k

i=1 p
mi

i states. Since the pi’s are distinct
primes,

Lc = (a
∏k

i=1 p
mi
i )∗.

By (1), we have a
∏k

i=1 p
mi
i ≥ (n−k log k−1

k )k. ��

There is a gap between the upper bound that we get from Theorem 6.1 and
Theorem 6.2. On the upper bound of Theorem 6.1 we used the fact that all the
cycles of the minimum Chrobak normal form NFA are distinct numbers, however
we know that a stronger statement is true. We know that the sizes of the cycles
do not divide each other. We can even assume that the size of the cycles are
co-primes since this is the case when the least common multiple is maximized.
Similarly, if we want to improve the lower bound of Theorem 6.2 we need to find
a set of co-primes that are as close to each other as possible.

7 Conclusion

We have studied the state complexity of Boolean language operations for unary
NFAs with limited nondeterminism. We have considered the nondeterministic
measures tree width, ambiguity, and trace. We know that for these measures
minimal NFAs with limited nondetermism can be always found in Chrobak nor-
mal form, which is a basic condition for the results of this paper.

Fairly close upper and lower bounds have been given for the state complexity
of these language operations. The upper and lower bounds are roughly within
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the order of a logarithmic factor and further improvement on these bounds seems
difficult as hard number theoretical problems would need to be solved.

The main open question for the state complexity of unary language opera-
tions for NFAs with limited nondeterminism is to determine reasonable upper
and lower bounds when the unary languages are defined using NFAs with finite
branching. Unlike the case of unary NFAs with finite tree width (ambiguity,
trace), it is not known whether NFAs with finite branching can be found in any
simple form.
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Abstract. In (Csuhaj-Varjú et. al. 2000) Parallel Communicating Sys-
tems of Pushdown Automata (PCPA) were introduced and shown to
be able to simulate nondeterministic one-way multi-head pushdown au-
tomata in returning mode, even if communication is restricted to be one-
way having a single target component. A simulation of such centralized
PCPA by one-way multi-head pushdown automata (Balan 2009) turned
out to be incomplete (Otto 2012). Subsequently it was shown that cen-
tralized returning PCPA are universal even if the number of components
is two (Petersen 2013) and thus are separated from one-way multi-head
pushdown automata. Another line of research modified the definition of
PCPA such that communication is asynchronous (Otto 2013). While the
simulation of one-way multi-head pushdown automata is still possible,
now a converse construction shows this model in returning mode to be
equivalent to the one-way multi-head pushdown automaton in a very
precise sense. It was left open, whether non-centralized returning PCPA
of degree two are universal. In the first part of the paper we show this
to be the case.

Then we turn our attention to Uniform Distributed Pushdown Au-
tomata Systems (UDPAS). These systems of automata work in turn on
a single tape. We show that UPDAS accepting with empty stack do not
form a hierarchy depending on the number of components and that the
membership problem is complete in NP, answering two open problems
from (Arroyo et. al. 2012).

1 Introduction

Growing interest in distributed computing has lead to generalizations of classical
concepts of Formal Language Theory including context-free grammars and push-
down automata. Several components each consisting of a grammar or automaton
communicate and together decide about the acceptance of an input.

Parallel Communicating Systems of Pushdown Automata (PCPA) were in-
troduced in [5] as systems of automata communicating by transferring their
pushdown contents following several different protocols. In [5] it was shown that
all recursively enumerable languages can be accepted by general PCPA of de-
gree two (number of components) and returning mode PCPA of degree three
(the source pushdown is emptied after a transfer).

H. Jürgensen et al. (Eds.): DCFS 2014, LNCS 8614, pp. 342–351, 2014.
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In [2] it was claimed that centralized PCPA (having a single target automaton)
of degree k working in returning mode can be simulated by nondeterministic one-
way k-head pushdown automata. It had been shown previously in [5] that PCPA
of degree k can simulate nondeterministic one-way k-head pushdown automata,
which would complement the universal power of other variants of non-centralized
or non-returning PCPA.

Otto [8] pointed out a flaw in the construction from [2]. Thus the power of
centralized PCPA working in returning mode was open. In [10] it was shown that
centralized PCPA of degree two working in returning mode are universal, a result
that is optimal since PCPA of degree one accept the context-free languages.

In another line of research, Otto [9] modified the definition of communica-
tion of PCPA leading to the model of asynchronous PCPA. He could show
that centralized asynchronous PCPA working in returning mode can be sim-
ulated by nondeterministic one-way k-head pushdown automata. All variants of
asynchronous PCPA of degree two were shown to be universal except for non-
centralized returning asynchronous PCPA. Here we show these PCPA of degree
two to be universal even if the pushdown automata are deterministic. The tech-
nique is novel in this area, being based on a simulation of a computational model
equipped with a queue storage. In contrast the results of [10] were shown with
the help of counter automata and the constructions of [9] use two-pushdown au-
tomata. The specific computational model we use is the Post machine introduced
in the textbook [7]. While the universality of a queue storage is implied by Post’s
work and is sometimes considered to be folklore, references [12,7] appear to give
the earliest formal definitions of machines with a finite control and a queue as
their storage.

While a PCPA transfers information via pushdown contents, in Distributed
Pushdown Automata Systems (DPAS) several automata work on the same input
string and communication takes place by activating components. More precisely
an active component keeps working as long as transitions are possible and then
nondeterministically another component becomes active. Acceptance can be de-
fined by final state or empty stack. This model has been introduced in [6]. In
[1] the restriction to systems consisting of identical pushdown automata is in-
vestigated (Uniform Distributed Pushdown Automata Systems, UDPAS) and
the resulting classes of languages are compared with the iterated shuffle of sev-
eral copies of the underlying context-free language. The authors relate different
modes of acceptance showing that acceptance by final state is stronger than by
empty stack. Some decision and closure properties are also presented. In the
Final Remarks of [1] three open problems are mentioned:

Open Problem 1: What conditions should a context-free language L satisfy
such that the shuffle of several copies of L is accepted by a UDPAS with
empty stacks?

Open Problem 2: Is there any hierarchy depending on the number of compo-
nents?

Open Problem 3: What is the complexity of the membership problem for UD-
PAS accepting with empty stacks?
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While we cannot report any progress on Open Problem 1, we will present solu-
tions of the other two problems in Section 4.

2 Preliminaries

We assume the reader to be familiar with basic concepts of Automata Theory
and Formal Languages, see e.g. [11].

Several variants of PCPA were defined in [5,2,9]. A PCPA of degree k con-
sists of k nondeterministic pushdown automata defined in the standard way.
These automata (called components) work in parallel reading the same input
string. The components communicate using special pushdown store symbols. In
the asynchronous mode a communication symbol has to be on top of the push-
down store of the target component and a response symbol is required on top of
the pushdown store of the source component. Then the contents of the source
pushdown store are copied onto the target pushdown store replacing the top-
most symbol. The source pushdown store is emptied if the PCPA is working in
returning mode. An input is accepted if at least one component reaches a final
state when all components have read the entire input string.

Formally, an asynchronous PCPA of degree k [9] is a tuple

A = (V,Δ,A1, A2, . . . , Ak,K,R)

where

– V is a finite input alphabet,
– Δ is a finite alphabet of pushdown symbols,
– Ai is a component as defined below for 1 ≤ i ≤ k,
– K = {K1, . . . ,Kk} ⊆ Δ is a set of query symbols.
– R ∈ V \ K is a response symbol (different from all bottom symbols of the

component pushdown automata).

Each component Ai = (Qi, V,Δ, fi, qi, Zi, Fi) is a pushdown automaton where

– Qi is a finite set of states,
– fi is a function from Qi × (V ∪ ε)×Δ to the finite subsets of Qi ×Δ∗,
– qi ∈ Qi is the initial state,
– Zi ∈ Δ is the bottom symbol,
– Fi ⊆ Qi is the set of final states.

If only function f1 of the first component maps to sets with members containing
query symbols, the system is called centralized.

A configuration of a PCPA of degree k is a 3k-tuple

(s1, x1, α1, . . . , sk, xk, αk)

where

– si ∈ Qi is the state of component Ai,
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– xi ∈ V ∗ is the part of the input not yet processed by Ai,

– αi ∈ Δ∗ is the word on the pushdown store of Ai with its topmost symbol
on the left.

In returning mode the step relation /r between configurations is defined by:

(s1, x1, B1α1, . . . , sk, xk, Bkαk) /r (s
′
1, x

′
1, α

′
1, . . . , s

′
k, x

′
k, α

′
k),

if one of the following conditions holds:

Communication step: There are 1 ≤ i, j ≤ k such that Bi = Kji and Bji = R
we have α′

i = αjiαi, α
′
ji = Zji , and α′

m = Bmαm for all other indices m.
States and input are not modified: s′i = si and x′i = xi for 1 ≤ i ≤ k.

Internal step: If there is no pair as defined above an internal step is carried
out:

– If xi = aix
′
i with ai ∈ K ∪ {R} then α′

i = αi, x
′
i = xi, and s′i = si.

– If xi = aix
′
i with ai ∈ (V \ K \ {R}) ∪ {ε} then (s′i, β) ∈ fi(si, ai, Bi)

with α′
i = βαi.

The PCPA accepts exactly those words w that admit a sequence of steps from
the initial configuration

(q1, w, Z1, . . . , qk, w, Zk)

to a final configuration

(s1, ε, α1, . . . , sk, ε, αk)

with si ∈ Fi for some 1 ≤ i ≤ k.
A Post machine M [7, p. 24] can be described by a program1 with a single

variable x having as its value a string over a finite alphabet Σ ∪ {#}, where
Σ is the input alphabet and # is an auxiliary symbol. The program consists of
instructions of the following types:

HALT statements: ACCEPT and REJECT with the obvious meaning.
TEST statements: conditional statements of the form

if x = ε then goto i0 else

case head(x) of
σ1: then x := tail(x); goto i1;
...
σn: then x := tail(x); goto in;

where n = |Σ|+ 1, σ1, . . . , σn ∈ Σ ∪ {#}, and i0, . . . , in are instructions of
M .

ASSIGNMENT statements: x := xσk for σk ∈ Σ ∪ {#}.
1 In [7] the program takes the form of a directed graph, which is obviously equivalent.
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Execution of the program starts with x holding the input at the first instruction.
The input is accepted if the ACCEPT instruction is reached.

A Distributed Pushdown Automata System (DPAS) of degree k consists of k
pushdown automata (components) working in turn on a common input string.
At each point in time one of the pushdown automata is active and may perform a
transition. If the active automaton has no transition (blocks), another pushdown
automaton becomes active. Formally a DPAS A of degree k is a tuple

A = (V,Δ,A1, A2, . . . , Ak)

where the components are defined as for PCPA. An instantaneous description
(ID) of the DPAS A is a tuple

(x, s1, δ1, . . . , sk, δk)

where x ∈ V ∗ is the part of the (common) input string, that has not yet been
read. Two instantaneous descriptions

(ax, s1, δ1, . . . , si, δi, . . . , sk, δk) /i (x, s1, δ1, . . . , s
′
i, δ

′
i, . . . , sk, δk)

are in successor relation /i if Ai with its current stack contents can process
a in one step, (s′i, β) ∈ fi(si, a, α) for a ∈ V ∪ {ε}, δi = αy, and δ′i = βy.
We say that instantaneous description C1 derives C2 in t-mode (C1 /t C2) if
there is an i with C1 /∗

i C2 and there is no instantaneous description C3 with
C2 /i C3. A word is accepted by a DPAS with final states (empty stacks) if
after a sequence of instantaneous descriptions in relation /t all components are
in final states (have empty stacks). Further details can be found in [1]. If all
components A1, A2, . . . , Ak are equal, we call the DPAS uniform (UDPAS).

For words w, x over an alphabet Σ we define their shuffle in the following
way:

w �� ε = ε �� w = {w}
aw �� bx = a(w �� bx) ∪ b(aw �� x)

For languages L1, L2 we define

L1 �� L2 =
⋃

w1∈L1,w2∈L2

w1 ��w2

and

��p(L1) =

{
L1 p = 1
L1 �� (��p−1(L1)) p ≥ 2

as the iterated shuffle.

3 Universality of Non-centralized Deterministic PCPA of
Degree Two in Returning Mode

Theorem 1. Every recursively enumerable language can be accepted by a non-
centralized PCPA of degree two working in returning mode.
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Proof. We make use of the fact that every recursively enumerable language can
be accepted by a Post machine [7, Theorem 1-3] and that recursively enumerable
languages are closed under reversal.

Let L be a recursively enumerable language and M a Post machine accepting
L. We will describe a system A simulating M and accepting LR. The main task
of the simulation is carried out by component 1. It first reads the input and puts
it onto its pushdown store. Then it starts a cycle simulating a single step of M
consisting of the following tasks:

1. It checks if M has reached a HALT statement and accepts resp. rejects
accordingly.

2. It pops the topmost symbol of the pushdown (if the store is non-empty).
3. It puts the response symbol R on top of its pushdown store.
4. By having the response symbol on its pushdown store, component 1 of A

stops until the contents of its pushdown store have been transferred to com-
ponent 2.

5. After having resumed its operation, component 1 of A puts a string (possibly
empty) on its (now empty) pushdown store, depending on the simulated state
of M and the information from step 2.

6. Component 1 puts the communication symbol for a communication from
component 2 on top of the pushdown store.

7. After having resumed its operation, component 1 starts the next cycle.

Component 2 first reads the input string and then repeatedly executes the
following steps:

1. It puts the communication symbol from component 1 on top of the pushdown
store.

2. It puts the response symbol on top of the pushdown store.

No state of component 2 is accepting, such that acceptance depends on com-
ponent 1 only. By construction component 1 simulates M on the reversal of its
input.

��
Remark 1. In the proof of Theorem 1 the Post machine being simulated is a
deterministic model and the determinism carries over to the simulating PCPA.
There is however a problem with component 1 reading the entire input in a
deterministic way, since the last symbol cannot be detected. A way to overcome
this difficulty is to introduce an end-marker (which is part of the input alphabet)
and relax the requirement to accept all recursively enumerable languages with
the extra symbol (and possibly more) attached. Another solution is to modify
the definition of PCPA such that end of input can be detected.

4 Results for Uniform Distributed Pushdown Automata
Systems

In this section we address two of the three open problems mentioned in the
final remarks of [1]. The answers show that the classes of languages accepted
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by UDPAS have a complex structure (they do not form a hierarchy) and the
computational complexity of the non-uniform word-problem is the same as for
the shuffle of two context-free languages, namely complete in NP.

Theorem 2. There is no hierarchy of languages accepted by UDPAS depending
on the number of components.

Proof. Let M ⊆ a∗ be a finite, non-empty language over the single letter alpha-
bet {a} with M �= {ε}. Clearly, M is a context-free language and can thus be
accepted by a UDPAS with one component. Define m = max({|x| | x ∈ M}.
Suppose that M is accepted by UPDAS A with n = |m| + 1 components. By
Lemma 1 of [1] there is a language L such that Ln = M . If u ∈ L is any non-
empty word, then un is accepted by A. But |un| > m and therefore A cannot
accept M . We conclude that L ⊆ {ε} and M = Ln = {ε}n = {ε}, contradicting
the choice of M . ��

Theorem 3. The non-uniform word-problem for languages accepted by UDPAS
is complete in NP.

Proof. The problem is in NP, since for n copies of a given pushdown automaton
A a nondeterministic Turing-machine can guess a distribution of all symbols of
an input word among the copies of A and check membership in L(A) for each of
the interleaved subwords.

For NP-hardness we reduce the NP-complete membership-problem for the
shuffle of two context-free languages [4] to the problem at hand. Let A and B
be two pushdown-automata. Without loss of generality, A and B are over a
common input alphabet Σ and pushdown alphabet Δ. Let #, $ �∈ Σ be two new
symbols. We define A′ and B′ as automata having the finite controls of A and
B with self-loops on # added to every state. In A′ we duplicate every state and
its transitions originally in A (thus omitting the self-loops on #), while in B′

we duplicate every state and add a transition on # to the original state. We
finally add ε-transitions from every state in A or B to its copy. The automata
obtained will be called A′′ and B′′. Notice that L(A′) = L(A′′) = L(A)�� {#}∗
and L(B′) = L(B′′) = L(B)�� {#}∗, since the additional transitions in A′′ and
B′′ do not influence the accepted languages.

Formally let

A = (QA, Σ,Δ, fA, qA, ZA, FA)

and

B = (QB, Σ,Δ, fB, qB, ZB, FB)

be the initial pushdown-automata. Then

A′ = (QA, Σ ∪ {#}, Δ, fA ∪ {(q,#, d, {(q, d)}) | q ∈ QA, d ∈ Δ}, qA, ZA, FA)

and

B′ = (QB, Σ ∪ {#}, Δ, fB ∪ {(q,#, d, {(q, d)}) | q ∈ QB, d ∈ Δ}, qB, ZB, FB).



A Note on Pushdown Automata Systems 349

Further

A′′ = (QA ∪ {q̂ | q ∈ QA}, Σ ∪ {#}, Δ,
fA ∪ {(q,#, d, {(q, d)}) | q ∈ QA, d ∈ Δ} ∪
{(q̂, σ, d, S) | (q, σ, d, S) ∈ fA} ∪ {(q, ε, d, {q̂}) | q ∈ QA, d ∈ Δ},
qA, ZA, FA)

and

B′′ = (QB ∪ {q̂ | q ∈ QB}, Σ ∪ {#}, Δ,
fB ∪ {(q,#, d, {(q, d)}) | q ∈ QB, d ∈ Δ} ∪
{(q̂,#, d, {q}) | q ∈ QB} ∪ {(q, ε, d, {q̂}) | q ∈ QB, d ∈ Δ},
qB , ZB, FB).

We now form a new pushdown-automaton C consisting of the union of the
finite controls of A′′ and B′′ plus a new state qC , which is the initial state of
C. On # there is a transition from qC to the initial state of A′′, on $ there is a
transition from qC to B′′. All new transitions (not in A or B) do not affect the
pushdown-store.

For a given word w = w1w2 · · ·wn with wi ∈ Σ for which the membership-
problem of the shuffle of the languages accepted by A and B has to be decided,
we form the word w′ = #$#w1#w2# · · ·#wn and ask whether a system of two
copies of C accepts w′.

Suppose w is a member of the shuffle of L(A) and L(B). We fix a distribution
of the symbols of w among A and B. On the prefix #$ of w′ the initial states
of A′′ and B′′ are reached in the copies of C with the initial state of B′′ being
active. Let us call these two copies CA and CB depending on the initial state.
Notice that all states reachable in CA (CB) will be from A′′ (B′′). Now the
system is repeatedly about to read the symbols #wi. If the symbol wi is part of
the input of A and CA is active in a state from A′, then using the self-loop C
reads # and then wi. If wi is part of the input of B and CA is active, then CA

jumps into the corresponding state without the self-loop and blocks since there
is no transition on #. Then CB becomes active and can skip # either by the
self-loop or by a transition from the copy of a state to the state from B. The
computation of CB continues on wi. If wi is part of the input of B and C is in a
state from B′′, then CB reads # either by a self-loop or by a transition to a state
from B and processes wi. If wi is part of the input of A and CB is active, the #
is skipped by a self-loop and then CB blocks using an ε-transition to the copy
of the current state. This strategy shows, that for every word w in the shuffle of
L(A) and L(B) the modified input w′ = #$#w1#w2# · · ·#wn can be accepted
by C.

If conversely an input w′ = #$#w1#w2# · · ·#wn is accepted by C, we can
identify two words from L(A) and L(B) forming w′ by recording the sequence
of states from CA and CB . ��
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5 Conclusion

We have shown that non-centralized returning asynchronous PCPA of degree
two are universal.

The following table summarizes results characterizing the power of PCPA
working in different modes. Notice that in the cases where two components are
universal a reduction to one component is impossible, since systems with one
component accept the context-free languages.

PCPA with k components Power of variant Reference

synchronous non-returning universal for k ≥ 2 [5]
synchronous centralized non-returning universal for k ≥ 3 [3]

universal for k ≥ 2 [10]
synchronous returning universal for k ≥ 3 [5]

universal for k ≥ 2 [10]
synchronous centralized returning universal for k ≥ 2 [10]
asynchronous non-returning universal for k ≥ 2 [9]
asynchronous centralized non-returning universal for k ≥ 2 [9]
asynchronous returning universal for k ≥ 3 [9]

universal for k ≥ 2 Theorem 1
asynchronous centralized returning k-head PDA [9]

Uniform Distributed Pushdown Automata Systems have a membership prob-
lem that is complete in NP. The technique from the proof of Theorem 3 of letting
an automaton block by nondeterministically moving to a copy of a state having
only a subset of the original transitions seems to be promising for solving Open
Problem 1 of [1] asking for conditions that a context-free language L should
satisfy such that ��p(L) is accepted by a UPDAS with empty stacks.

Acknowledgements. Thanks are due to Friedrich Otto for remarks on a
first draft of this paper and to the anonymous referees for suggesting several
improvements.
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Abstract. We study succinctness of descriptional systems for picture
languages. Basic models of two-dimensional finite automata and gener-
alizations of context-free grammars are considered. It is shown that non-
recursive trade-offs between the systems are very common. The results
are based on the ability of the systems to simulate Turing machines.

Keywords: Picture languages, four-way automata, two-dimensional
context-free grammars, descriptional complexity.

1 Introduction

Many concepts and techniques from the theory of formal languages and automata
have been generalized to two-dimensional (2D) languages, where the basic entity,
the string, has been replaced by a 2D rectangular array of symbols, called a
picture. The four-way finite automaton of Blum and Hewitt [1] was introduced
already in 1967. It has a finite-state control and a head that moves over an input
picture by performing movements right, left, up, and down. The early models of
picture grammars include matrix and Kolam grammars of Siromoney [14,15].

Several other systems have been proposed, usually having different recogni-
tion power [4,3,9,2]. So far, no comparison has been done with respect to their
descriptional complexity. The purpose of this paper is to fill this gap. We show
that there are many non-recursive trade-offs between the descriptional systems
for picture languages.

Examples of such trade-offs are well known in the case of descriptional systems
for string languages. The first non-recursive trade-off was presented by Meyer
and Fisher [8]. They showed that the gain in economy of description can be
arbitrary when the size of finite automata and general context-free grammars
generating regular languages is compared. Since this results, other non-recursive
trade-offs were reported and unified proof schemes were established [7].

The paper is structured as follows. In Section 2 we give the basic notions and no-
tation on picture languages. In Section 3 we exploit some known properties of four-
way automata and show non-recursive trade-off between the non-deterministic
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and deterministic four-way automaton (4NFA and 4DFA, respectively). It is also
explained how the result can be extended to other automata. Descriptional com-
plexity of a 2D context-free grammar variant from [12] is studied in Section 4.
A new technique of a Turing machine simulation using the grammar is pre-
sented there. The paper closes with a short summary and some open problems in
Section 5.

2 Preliminaries

Here we use the common notation and terms on pictures and picture languages
(see, e.g., [3]). If Σ is a finite alphabet, then Σ∗,∗ is used to denote the set of
rectangular pictures over Σ, that is, if P ∈ Σ∗,∗, then P is a two-dimensional
array (matrix) of symbols from Σ. If P is of size m × n, this is denoted by
P ∈ Σm,n. We also write rows(P ) = m and cols(P ) = n. If P is a square picture
n× n, we shortly say P is of size n. The empty picture Λ is defined as the only
picture of size 0× 0. Moreover, Σ+,+ = Σ∗,∗ � {Λ}.

We use [aij ]m×n as a notation for a general matrix withm rows and n columns
where the element in the i-th row and j-th column is denoted as aij .

Two (partial) binary operations are introduced to concatenate pictures. Let
A = [aij ]k×� ∈ Σk,� and B = [bij ]m×n ∈ Σm,n. The column concatenation A �B
is defined iff k = m, and the row concatenation A �B is defined iff � = n. These
products are specified by the following schemes:

A �B =

⎡⎢⎣a11 . . . a1� b11 . . . b1n
...

. . .
...

...
. . .

...
ak1 . . . ak� bm1 . . . bmn

⎤⎥⎦ and A �B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 . . . a1�
...

. . .
...

ak1 . . . ak�
b11 . . . b1n
...

. . .
...

bm1 . . . bmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We generalize � and � to a grid concatenation which is applied to a matrix of
pictures [Pij ]m×n where each Pij ∈ Σ∗,∗. The operation

⊕
[Pij ]m×n is defined

iff
rows(Pi1) = rows(Pi2) = . . . = rows(Pin) for all i = 1, . . . ,m
cols(P1j) = cols(P2j) = . . . = cols(Pmj) for all j = 1, . . . , n

Then,
⊕

[Pij ]m×n = P1
�P2

�. . . �Pm, where Pk = Pk1
�Pk2

�. . . �Pkn for k =
1, . . . ,m. An example is given in Figure 1. In order to enable all considered
finite automata to detect the border of P , they always work over the boundary
picture P̂ over Σ ∪ {#} of size (m + 2) × (n + 2), defined by the scheme in
Figure 2. We assume that # /∈ Σ for any input alphabet Σ.

3 Two-Dimensional Finite Automata

For a 4NFA A, we define the automaton size measure c(A) as the number of
states (state complexity) of A.
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P21 P22 P23

P11 P12 P13

Fig. 1. The product of
⊕
[Pij ]2×3

P

#

#

#

#

...
...

# #. . .

# #. . .

Fig. 2. The boundary picture P̂

Blum and Hewitt [1] proved that 4NFA is more powerful than 4DFA using the
language of odd length square pictures over {0, 1} containing 0 in the center.
Here we slightly modify the language to include even length square pictures as
well and we follow their proof to estimate the number of states needed by a 4DFA
to accept a finite subset of the language.

Let Lcent be a picture language overΣ = {0, 1} consisting of all square pictures
P that contain 0 at (the central) position (�m+1

2 �, �m+1
2 �) where m = rows(P ).

This language is accepted by a 4NFA by checking that the input is a square
picture, followed by guessing the trajectory depicted in Figure 3 and verifying
that the central field stores 0.

0
0

Fig. 3. Two pictures in Lcent. 4NFA recognizes the pictures by guessing the shown
trajectories (they end in the top-right corner) and checking the highlighted central
field.

Lemma 1. For m ∈ N, let A be a 4DFA such that L(A)∩Σm,m = Lcent∩Σm,m.
Then, A has Ω(m/ logm) states.

Proof. Let Q be the set of states of A and let P ∈ Lcent be a picture over
{0, 1} of size m × m. Define k = �m−1

2 � and take a block (sub-picture) B of
size k × k in P which does not contain the top left corner of P . Consider the
behavior of A when working over B. It can enter it at one of 4k− 4 positions of
the perimeter being in one of |Q| states. After performing some steps, it either
leaves the block, again at some position and in one of the states, or it accepts
or rejects (rejecting includes cycling inside the block). Thus the block defines a
mapping from {1, . . . , 4k − 4} ×Q to ({1, . . . , 4k − 4} ×Q) ∪ {acc, rej}.

Observe it is not possible to have two different blocks B1, B2 with the same
mapping. Consider that (i, j) is a position where the blocks differ. Construct the
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picture P1 of size m ×m which includes B1, having its field at (i, j) placed in
the center of P1. The fields of P1 outside B1 are filled by 0. Similarly, construct
P2 by extending B2. If the mappings for B1 and B2 are identical, pictures P1

and P2 are either both accepted by A or both rejected, which is a contradiction.

There are (|Q|(4k − 4) + 2)
|Q|(4k−4)

mappings defined by blocks of size k× k.

On the other hand, a two-letter alphabet forms 2k
2

pictures of size k × k. This
results in the inequality (|Q|(4k − 4)) log2 (|Q|(4k − 4) + 2) ≥ k2 which implies
a lower bound of the form

|Q| = Ω

(
k

log2 k

)
= Ω

(
m

logm

)
.

��

As has been observed by Kari and Moore [6], a 4DFA can operate as a 2-
counter machine [10], consisting of a finite state control unit and two integer
registers, called counters. It is possible to represent the value of the first and
second register by the horizontal and vertical position of the automaton head,
respectively. Moving the head by one tape field increments/decrements a register.
To check whether a register is of zero value means to test whether the head is
in the first row/column. Naturally, the simulated registers are not unbounded,
the maximal value they can store is limited by the size of the input picture. The
content of the tape can be arbitrary, it is not involved in the simulation.

Minsky showed in [10] that the 2-counter machine is equivalent to a Turing
machine. Namely, a Turing machine can be simulated by two stacks, a stack
can be simulated by two counters and four counters can be simulated by two
counters. The input to the Turing machine is assumed to be encoded in unary.

Proposition 2. Let Σ be an alphabet. There is an infinite sequence of 4DFAs
{Ak}∞k=1, a recursive function f : N → N and a non-recursive function g :
N→ N, growing faster than any recursive function, such that c(Ak) ≤ f(k) and
Ak accepts a finite picture language which includes all pictures over Σ of size
g(k)× g(k).

Proof. We construct Ak accepting some pictures whose size is larger than S(k),
where S : N→ N is a busy beaver function [13], growing faster than any recursive
function. Let T1, . . . , Ts be an enumeration of all one-dimensional (1D) determin-
istic binary Turing machines with k states. Each Ti (started over a blank tape)
is simulated by a 2-counter machine Ci. We assume Ci increases the length of
Ti’s configuration encoding each time it simulates a step of Ti. This ensures that
Ci never goes into a cycle. Design Ak as it follows.

– Ak checks whether the input P is a square picture, if not it rejects it.
– Ak follows computations of C1, . . . , Cs to simulate machines T1, . . . , Ts one

by one. If there is a simulation which ends at the moment when the head of
Ak scans the last row or column of P , then Ak accepts P . If the simulation
exceeds the area of P or finishes without reaching the last row or column of
P , the simulation of the next Ti is launched.
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– If all simulations of machines Ti pass without accepting P , Ak rejects.

Ak must memorize in states instructions for each Ci as well as the index of the
currently simulated Ti. However, this is no problem, since the number of states
of automata Ak can grow as fast as any recursive function.

We define g(k) to be the size of the largest (square) picture accepted by Ak.
It is obvious that g(k) ≥ S(k). ��

Theorem 3. The trade-off between 4NFAs and 4DFAs is non-recursive.

Proof. Let M be a 4NFA accepting Lcent. For each k, combine Ak from Proposi-
tion 2 and M to obtain a 4NFA Mk accepting the finite language Lcent∩L(Ak).
By Lemma 1 applied for m = g(k), a 4DFA needs Ω(g(k)/ log g(k)) states to
recognize L(Mk). ��

To obtain more non-recursive trade-offs, we can exploit other results related to
the mutual power of two-dimensional automata. For example, the one-marker
four-way automaton is more powerful than 4DFA [1], the four-way alternating
automaton is more powerful than 4NFA [5] and it is incomparable with online-
tessellation automaton [4] which defines the same family of recognizable picture
languages (REC) as tiling systems [3]. All the results are proved using some states
counting arguments similar to that one presented in the proof of Lemma 1, hence
non-recursive trade-offs are induced between the mentioned pairs of models.

4 Two-Dimensional Context-Free Grammars

In this section we give details on two-dimensional context-free grammars
from [12] which are closely related to other variants mentioned in the introduc-
tion. We compare succinctness of the grammars with that of four-way automata.
Non-recursive trade-offs are demonstrated in both directions.

The result by Meyer and Fisher regarding the non-recursive trade-off between
(1D) context-free grammars and finite automata can be directly applied to 2D
context-free grammars and four-way automata, since both models collapse to
their 1D counterparts when working over one-row inputs. However, there are
still two cases to study. The trade-off in the one-dimensional setting is recursive
if unary [11] or finite [8] languages are considered. We show that such restrictions
do not play any role in the case of 2D systems.

A two-dimensional context-free grammar is a tuple G = (VN , VT ,P , S0), where
VN is a finite set of nonterminals, VT is a finite set of terminals, S0 ∈ VN is the
initial nonterminal and P is a finite set of productions. Productions are of the
form N → W where N is a nonterminal in VN and W is a non-empty matrix
whose elements are terminals and nonterminals, i.e., W ∈ (VN ∪ VT )

+,+. P can
optionally contain the production S0 → Λ. If so, S0 can not be a part of the
right-hand side of any production.

For each N ∈ VN , let L(G, N) denote the set of pictures generated by G from
N . Two recurrent rules are applied to establish the set. A picture P ∈ {VT }∗,∗
belongs to L(G, N) iff
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1. N → P is a production, or
2. There is a production N → [Aij ]m×n and a picture P =

⊕
[Pij ]m×n where

Pij = Aij if Aij ∈ VT ,
Pij ∈ L (G, Aij) if Aij ∈ VN .

The picture language generated by G is defined as L(G) = L(G, S0).
The definition covers Kolam grammars [15,9] which are less powerful and have

only productions N → [Aij ]p×q where p = 1 or q = 1 and both p, q ≤ 2. On
the other hand, regional tile grammars [2] are more powerful. They combine
pictures into bigger ones using a more general concatenation, the alignment of
subpictures into a grid is not required.

Example 4. Let G = (VN , VT ,P , R) be a 2D context-free grammar where VN =
{H,V,A,R}, VT = {a} and P consists of the following productions

H → a, H → a H , V → a, V → a
V
,

A→ V, A→ V A, R→ a, R→ R V
H a

.

Then, L(G, H) consists of all one-row pictures of a’s, L(G, V ) consists of all one-
column pictures, L(G, A) = {a}+,+ and L(G, R) = L(G) contains all non-empty
square pictures.

Note that 2D context-free grammars do not have any equivalent to Chom-
sky normal form. Limiting the size of production’s right-hand sides affects the
power [12]. A size measure taking into account the number of elements in pro-
ductions is preferable here over a simple counting of productions. For a pro-
duction π = N → [Aij ]m×n, define its size as c(π) = mn. Beside that, define
c(S0 → Λ) = 1. Let P = {π1, . . . , πk} be the set of productions of G. Define

c(G) =
∑k

i=1 c(πi).
We will utilize a slight modification of the set of productions specified in the

following lemma.

Lemma 5. Every 2D context-free grammar G = (VN , VT ,P , S0) has an equiva-
lent grammar G′ = (V ′

N , VT ,P ′, S0) such that c(G′) ≤ 3c(G) and each production
S0 → [Aij ]p×q in P ′ fulfills

– If p = q = 1 then A11 is a terminal.
– If p > 1 or q > 1 then each Aij is a nonterminal.

Proof. First, for each a ∈ VT figuring at a right-hand side of some production,
introduce new nonterminal Na, add production Na → a and replace all occur-
rences of a in production’s right-hand sides containing two or more elements.
Second, replace A ∈ VN in S0 → A by right-hand sides of other productions
reachable from A. Each of the two steps increases size of G by a maximum of
c(G). ��
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1 1 0 1 0 1

1 · · · · 1

0 · · · · 0

0 · · · · 0

0 · · · · 0

1 1 0 1 0 1

Fig. 4. A picture in Lperim, the content of inner fields is hidden, they store symbol 0

Define a language Lperim over Σ = {0, 1} where P ∈ Σ∗,∗ is in Lperim if and
only if the first row equals the last row, the first column equals the last column
and all inner fields contain 0, as depicted in Figure 4.
Lperim can be easily recognized by a 4DFA. The following lemma indicates

that it cannot be generated by a 2D context-free grammar.

Lemma 6. For m ∈ N, let G = (VN , {0, 1},P , S0) be a 2D context-free grammar
such that L(G) ∩Σm,m = Lperim ∩Σm,m. Then, c(G) is Ω(m/ logm).

Proof. W.l.o.g., G is in the form specified in Lemma 5 and m ≥ 2. Let L be the
set of all square pictures in Lperim of size m. It holds |L| = 22m−3. There is a

production proving for at least � |L|
|P|� pictures from L that they belong to L(G).

Let S0 → [Aij ]k×� be such a production. W.l.o.g., k ≥ � (implying k ≥ 2).
Consider there are pictures P,Q ∈ L(G), P �= Q, P =

⊕
[Pij ]k×�, Q =⊕

[Qij ]k×� and each Pij and Qij is in L(G, Aij). Observe that if all the pairs
P1j , Q1j have the same size, then the first row of P and Q have to be necessarily
identical. If not, G would generate a picture which is not in Lperim. Indeed, it
would be possible to create P ′ from P by replacing subpictures P1j by Q1j .
However, the first row in P ′ does not match its last row.

Sizes of pictures P1j , j = 1, . . . , � are determined by one vertical and �−1 hor-
izontal coordinates in P . The number of such possibilities is certainly bounded
by mk. The number of pictures in Lperim having the same first and last row is
2m−2. We derive the inequality

22m−3

|P| ≤ mk2m−2 ⇒ |P| ≥ 2m−1

mk
.

If k ≥ m/(2 log2m), then c(G) ≥ c(S0 → [Aij ]k×�) ≥ m/(2 log2m). If k <
m/(2 log2m), then

c(G) ≥ |P| ≥ 2m−1

m
m

2 log2 m
=

2m−1

2
m

2 log2 m log2 m
= 2

m
2 −1 = Ω

(
m

logm

)
,

which completes the proof. ��

Corollary 7. Transforming 4DFAs to 2D context-free grammars yields a non-
recursive trade-off.
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Proposition 8. Let T be a 1D deterministic Turing machine and w be an input
to T . There is a 2D context-free grammar G over {a} such that L(G) is empty
if T does not halt on w, else if T halts in t(w) steps, L(G) is a one-element set
containing a square picture of size at least t(w). Moreover, size of G is recursive
in size of T and |w|.

Proof. Let the set of states of T be Q = {q1, . . . , qs} and let the tape alphabet
be Γ = {a1, . . . , at}, containing the blank symbol #. We assume T is single-tape
and the tape is infinite rightwards only. Moreover, w.l.o.g., each instruction of
T moves the head.

Let C0, C1, . . . be configurations of T when computing over w. We will con-
struct a 2D context-free grammar G = ({a}, VN ,P , S0) such that

– VN contains nonterminal C and L(G, C) consists of square pictures whose
sizes encode configurations Ci.

– L(G, S0) contains at most one picture – that one which encodes the final
configuration.

For convenience, we treat integers also as binary strings and vice versa. Define
code(qi) = 0i−110|Q|−i and code(ai) = 0i−110|Γ |−i. For some Ci, let b1b2 . . . be
the content of the tape and let the control unit of T be in state q. We encode
each Ci by a binary string (integer)

code(Ci) = 1B1B2 . . . B|w|+i+2

where

Bj =

{
1 code(bj) code(q) if T scans the j-th tape field,

1 code(bj)0
|Q| otherwise.

Note that the suffix B|w|+i+2 always equals code(#)0|Q|, even if |w| = 0.
Let us compare codes of two subsequent configurations Ck, Ck+1. Let the head

of T scan the m1-th and m2-th tape field in Ck and Ck+1, respectively. Since T
always moves the head, m1 �= m2. Denote m = min{m1,m2}. We can write

Ck = 1B1B2 . . . B|w|+k+1B|w|+k+2,

Ck+1 = 1B1 . . . Bm−1B
′
mB

′
m+1Bm+2 . . . B|w|+k+2B|w|+k+3.

When comparing Ck+1 to Ck, we see it differs in B′
m, B′

m+1 and it is prolonged

by the suffix B|w|+k+3 = 1 code(#)0|Q|. Denote x1 = BmBm+1, x2 = B′
mB

′
m+1

(codes of local changes performed by the applied instruction of T , note that
x2 is determined by x1), � = |Γ | + |Q| + 1 (the length of each block Bi), y =
|w|+ k+1−m (the number of blocks following Bm+1 in Ck), c# = code(#)0|Q|

(the constant suffix of each Ci). Then, Ck+1 is expressed as

Ck+1 = (Ck + (x2 − x1)2
y�)2� + c#.

We define productions that generate a representation of the difference Ck+1−Ck
and combine it together with the square picture of size Ck to produce the square
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picture of size Ck+1. We include all nonterminals and productions from Example 4
to G. Next, the following productions are defined.

C0︷ ︸︸ ︷
(1) C →

a · · · a
...
. . .

...
a · · · a

⎫⎪⎬⎪⎭ C0

C0︷︸︸︷
(2) C → C J

A R

2�−1︷ ︸︸ ︷ c#︷ ︸︸ ︷
(3) J → F · · · F A V · · · V

A · · · A X V · · · V

Production (1) ensures that C generates the square picture of size C0. Recall
languages generated by A, V and R (see Example 4). Assume that X generates
all pictures of size x′12

y′� × (x′22
� − x′1)2

y′� where pairs x′1, x
′
2 encode possible

local changes determined by instructions of T and y′ ∈ N. Moreover, assume
that F generates all square pictures of size 1B1 . . . Bp−10

�0�Bp+2 . . . Bq, where
q ≥ 2, p < q and each Bi = 1 code(ci)0

|Q| for some ci ∈ Γ . This means, L(G, F )
includes pictures whose sizes encode all configurations Ci with two neighboring
blocks erased (filled by zeros) where one of the erased blocks encodes (in Ci) the
head’s position and the state of the control unit.

Ck

Ck

(2� − 1)v (x′
22

� − x′
1)2

y′� c#

v

x′
12

y′�

V . . . V

C

F . . . F

X

Fig. 5. Substitution of pictures to CJ with sizes of components given along the border

Let us examine which pictures generated by J can be substituted to the right-
hand side of production (2) provided that the square picture Ck×Ck is substituted
to C. The situation is illustrated in Figure 5. The picture substituted for J is
decomposed by production (3) there. The number of rows enforces the equality
Ck = v + x′12

y′�. Observe that it determines parameters x′1, y
′ and v uniquely.

Comparing to Ck, value v, which is the size of a square picture in L(G, F ), has
two blocks erased and misses the representation of the state of T in Ck. This
needs to be supplied by adding x′12y

′�. Since all blocks start by bit 1, there is
only one possibility at which position to add x′1, it holds y

′ = y and v has the
same number of bits as Ck. Further, Ck determines if the head position is encoded
in the first or second block of x′1 (T is deterministic), hence x′1 must be equal
to x1. Value of parameter x′2 is determined by x′1, thus x

′
2 = x2. Moreover, it

is also obvious that the non-erased blocks of v have to match the corresponding
blocks in Ck. Summing the counts of columns in Figure 5 gives

Ck + (2� − 1)(Ck − x12
y�) + (x22

� − x1)2
y� + c# = Ck+1.
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The second row of the right-hand side of production (2) takes care for completing
a square picture.

We have to list productions generating pictures in L(G, X) and L(G, F ). This
is mainly a technical issue. Let us start by productions related to X .

2�︷︸︸︷
(4) U → a

2�︷ ︸︸ ︷
(5) U →

U · · · U
...
. . .

...
U · · · U

⎫⎪⎬⎪⎭ 2�

x22
�−x1︷ ︸︸ ︷

(6) X →
U · · · U
...

. . .
...

U · · · U

⎫⎪⎬⎪⎭ x1

Production (6) is added for each possible pair x1, x2. Pictures in L(G, F )
are generated in three phases: nonterminal D generates square pictures of sizes
1B1 . . . Bp−1, E generates pictures representing 1B1 . . . Bp−10

�0� and F gener-
ates pictures of sizes 1B1 . . . Bp−10

�0�Bp+2 . . . Bq. Productions related to D are
as follows.

(7) D → a

For each i = 1, . . . , |Γ |, add productions

(8) D → Di,� (9) Di,i+1 →
Di,i Di,i V
Di,i Di,i V
H H a

(10) Di,1 →
D D V
D D V
H H a

(11) Di,j →
Di,j−1 Di,j−1

Di,j−1 Di,j−1
for each j ∈ {2, . . . , �}� {i+ 1}

Nonterminals H , V come from Example 4. L(G, Di,�) consists of square pic-
tures of size 1B1 . . . Bp−2 code(ai)0

|Q|. Production (9) or (10) can be interpreted
as appending bit 1 to size of a picture in L(G, Di,i) or L(G, D), respectively.
Analogously, production (11) appends bit 0 to size of a picture in L(G, Di,j−1).
Productions related to E and F follow similar patterns.

(12) E → E�

(13) Ei →
Ei−1 Ei−1

Ei−1 Ei−1
for each i = 2, 3, . . . , �

(14) E1 →
D D
D D

(15) F → E

For each i = 1, . . . , |Γ |, add productions

(16) F → Fi,� (17) Fi,i+1 →
Fi,i Fi,i V
Fi,i Fi,i V
H H a

(18) Fi,1 →
F F V
F F V
H H a

(19) Fi,j →
Fi,j−1 Fi,j−1

Fi,j−1 Fi,j−1
for each j ∈ {2, . . . , �}� {i+ 1}
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It remains to add productions generating the final configuration provided that
T halts. We make clones of productions (2), (3) and (5). The production will be
applicable only to the configuration preceding the final configuration.

C0︷︸︸︷
(20) S0 →

C J0
A R

2�−1︷ ︸︸ ︷ c#︷ ︸︸ ︷
(21) J0 →

F · · · F A V · · · V
A · · · A X0 V · · · V

x22
�−x1︷ ︸︸ ︷

(22) X0 →
U · · · U
...

. . .
...

U · · · U

⎫⎪⎬⎪⎭ x1

Pattern (22) applies to those pairs x1, x2, where x2 encodes a final state of T .
��

Theorem 9. Transforming 2D context-free grammars generating finite unary
picture languages to 4NFAs yields a non-recursive trade-off.

Proof. Results in [5] imply that L = {P ∈ {a}∗,∗ | cols(P ) = rows2(P )} is not
accepted by any 4NFA. Moreover, if a 4NFA A accepts a unary picture of size
m ×m2 (m ≥ 3) and rejects other unary pictures with m rows, then A has at
least m states.

For k ∈ N, construct 2D context-free grammar Gk as the union of grammars
given by Proposition 8 for every k-state deterministic Turing machine with the
tape alphabet {#, 1}, started over a blank tape. Let N be the initial nonterminal
of Gk. Modify Gk to generate rectangular pictures of sizem×m2 instead of square
pictures of size m. Nonterminals and productions from Example 4 are included
in Gk. Add productions

S → a a
a a

, S → S R R
H H H

, S0 → N S .

Change the initial nonterminal from N to S0. It is easy to verify (by induction
on n) that S generates every picture of size n × (n2 − n) where n ≥ 2. Thus,
by the third production, L(Gk, S0) if formed of translations of square pictures in
L(Gk, N) to pictures with the desired size.

Finite unary picture languages {L(Gi)}∞i=1 are accepted by some 4NFAs, how-
ever, their sizes grow faster than any recursive function. ��

5 Conclusion

We have showed that the non-recursive trade-offs are a common phenomenon in
the world of picture languages.

In the proofs we utilized the ability of four-way automata and 2D context-
free grammars to simulate Turing machines. This allowed us to come up with
constructive witnessing sequences of systems describing finite picture languages.

Besides the proven non-recursive trade-offs, the simulation of a Turing ma-
chine by a 2D context-free grammar has additional consequences. For example,
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it shows that the emptiness problem is not decidable for the two-dimensional
context-free grammars as well as for the tile regional grammars.

There remain some interesting open problems. The presented simulation of a
Turing machine by a 2D context-free grammar benefited from productions with
right-hand sides of size at least 2×2. Can be the simulation performed using only
productions of Kolam grammars? What is the succinctness of Kolam grammars
generating finite picture languages, comparing to the succinctness of 4DFAs?
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Goč, Daniel 150

Han, Yo-Sub 102, 246
Holzer, Markus 162

Ibarra, Oscar H. 5
Iván, Szabolcs 174
Ivanov, Sergiu 186

Jakobi, Sebastian 162
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