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Abstract. The combinatorics of squares in a word depends on how
the equivalence of halves of the square is defined. We consider Abelian
squares, parameterized squares and order-preserving squares. The word
uv is an Abelian (parameterized, order-preserving) square if u and v are
equivalent in the Abelian (parameterized, order-preserving) sense. The
maximum number of ordinary squares is known to be asymptotically lin-
ear, but the exact bound is still investigated. We present several results
on the maximum number of distinct squares for nonstandard subword
equivalence relations. Let SQAbel(n, k) and SQ ′

Abel(n, k) denote the max-
imum number of Abelian squares in a word of length n over an alphabet
of size k, which are distinct as words and which are nonequivalent in the
Abelian sense, respectively. We prove that SQAbel(n, 2) = Θ(n2) and
SQ ′

Abel(n, 2) = Ω(n1.5/ log n). We also give linear bounds for parameter-
ized and order-preserving squares for small alphabets: SQparam(n, 2) =
Θ(n) and SQop(n,O(1)) = Θ(n). As a side result we construct infinite
words over the smallest alphabet which avoid nontrivial order-preserving
squares and nontrivial parameterized cubes (nontrivial parameterized
squares cannot be avoided in an infinite word).

1 Introduction

Repetitions in words are a fundamental topic in combinatorics on words [2].
They are widely used in many fields, such as pattern matching, automata the-
ory, formal language theory, data compression, molecular biology, etc. Squares,
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that is, words of the form uu, are one of the most commonly studied types of
repetitions. An example of an infinite square-free word over a ternary alphabet,
given by Thue [24], is considered to be the foundation of combinatorics on words.

If we allow other equivalence relations on words, several generalizations of the
notion of square can be obtained. One such generalization are Abelian squares,
that is, words of the form uv where the multisets of symbols of u and v are the
same. Abelian squares were first studied by Erdős [10], who posed a question on
the smallest alphabet size for which there exists an infinite Abelian-square-free
word. The first example of such a word over a finite alphabet was given by Ev-
dokimov [11], later the alphabet size was improved to five by Pleasants [23] and
finally an optimal example over four-letter alphabet was shown by Keränen [20].

In this paper we consider Abelian squares and introduce squares based on two
other known equivalence relations on words. The first is parameterized equiva-
lence [1], in which two words u, v of length n over alphabets Alph(u) and Alph(v)
are considered equal if one can find a bijection f : Alph(u) → Alph(v) such that
v[i] = f(u[i]) for all i = 1, . . . , n. The second model, order-preserving equivalence
[6], assumes that the alphabets are ordered. Two words u, v of the same length
are considered equivalent in this model if they are equal in the parameterized
sense with f being an strictly increasing bijection. We define a parameterized
square and an order-preserving square as a concatenation of two words that
are equivalent in the parameterized and in the order-preserving sense, respec-
tively. Another recently studied model, lying in between standard equality and
Abelian equivalence, is k-Abelian equivalence [17]. However, we do not consider
this model here. The nonstandard types of squares can be viewed as a part of
nonstandard stringology; see [21,22].

Example 1. Consider the alphabet Σ = {1, 2, 3, 4} with the natural order. Then
1213 1213 is a square, 1213 3112 is an Abelian square, 1213 4142 is a parameter-
ized square, and 1213 1314 is an order-preserving square over Σ.

An important combinatorial fact about ordinary squares is that the maximum
number of distinct squares in a word of length n is linear in terms of n. Actu-
ally this number is smaller than 2n−Θ(log n) [14,18,19]. This bound has found
applications in several text algorithms [5] including two different linear-time al-
gorithms computing all distinct squares [15,8]. A recent result shows that the
maximum number of distinct squares in a labeled tree is asymptotically Θ(n4/3)
[7]. Also some facts about counting distinct squares in partial words are known
[3,4]. In this paper we attempt the same type of combinatorial analysis for non-
standard squares. In turns out that the results that we obtain depend heavily
on which squares we consider distinct.

Let SQAbel(n, k), SQparam(n, k) and SQop(n, k) denote respectively the max-
imum number of Abelian, parameterized and order-preserving squares in a word
of length n over an alphabet of size k which are distinct as words. Moreover
let SQ ′

Abel(n, k), SQ
′
param(n, k) and SQ ′

op(n, k) denote the maximum number of
Abelian, parameterized and order-preserving squares in a word of length n over
an alphabet of size k which are nonequivalent in the Abelian, parameterized
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and order-preserving sense, respectively. We also use analogous notation, e.g.,
SQAbel(w), SQ

′
Abel(w), for any word w. Our main results are the following:

– SQAbel(n, 2) = Θ(n2), SQ ′
Abel(n, 2) = Ω(n1.5/ logn);

– SQop(n, k) = Θ(n) and therefore SQ ′
op(n, k) = Θ(n) for k = O(1);

– SQparam(n, 2) = Θ(n) and therefore SQ ′
param(n, 2) = Θ(n).

Example 2. Consider a Fibonacci word Fib5 = 0100101001001.1 It contains 5
Abelian squares of length 6: 010 010, 001 010, 010 100, 100 100, and 001 001,
which are all distinct as words but are Abelian-equivalent. In total Fib5 contains
13 distinct subwords which are Abelian squares. Hence, SQAbel(Fib5) = 13. On
the other hand, Fib5 contains only 5 Abelian-nonequivalent squares, with sam-
ple representatives: 0 0, 01 01, 001 010, 10010 10010, and 010010 100100. Hence,
SQ ′

Abel(Fib5) = 5. The value SQ ′ is usually much smaller than SQ , e.g., for Fib14
of length 987, SQ ′

Abel(Fib14) = 490 and SQAbel(Fib14) = 57796. In general one
can show that SQ ′

Abel(Fibk) = O(|Fibk|). Abelian repetitions in Fibonacci words
and Sturmian words were already studied in [13].

The second part of our paper can be viewed as an extension of the works of
Thue [24], Evdokimov [11], Pleasants [23] and Keränen [20] on infinite square-
free and Abelian-square-free words into the parameterized and order-preserving
equivalence. As no square-free word of length larger than 1 exists, we con-
sider words avoiding nontrivial nonstandard squares of length larger than 2.
We present an infinite word over the minimum-size (ternary) alphabet avoiding
nontrivial order-preserving squares. We also prove that there is no infinite word
avoiding nontrivial parameterized squares, but there is one avoiding nontrivial
parameterized cubes, that is, parameterized cubes of length greater than 3.

2 Bounds for Abelian Squares

For a word w = w[1] · · ·w[n] we denote |w| = n. A subword of w is a word of
the form w[i] · · ·w[j] for 1 ≤ i ≤ j ≤ |w|, which we denote by w[i..j]. A word is
said to be uniform if all its letters are equal. A block (also known as a run) in a
word is a maximal uniform subword.

In this section we restrict ourselves to the binary alphabet. First, we show a
simple example which yields SQAbel(n, 2) = Θ(n2). Afterwards we attempt an
analysis of SQ ′

Abel(n, 2). Our main result is a lower bound of Ω(n1.5/ logn). We
also obtain an upper bound O(nm) if the number of blocks is bounded by m.

A different proof of the following theorem was given independently by Fici [12].

Theorem 1. SQAbel(n, 2) = Θ(n2).

Proof. Consider the word uk = 0k10k102k of length 4k + 2. It contains Θ(k2)
Abelian squares of the form 0a10b 0k−b10a+2b−k for all 0 ≤ a, b ≤ k and a+2b ≥
k. Thus we obtain SQAbel(n, 2) = Θ(n2) for n = 4k+2. If n mod 4 �= 2, we pick
the longest word uk such that |uk| ≤ n and extend it with n−|uk| ≤ 3 zeros. ��
1 Fibonacci words are defined as: Fib0 = 0, Fib1 = 01, Fibk = Fibk−1Fibk−2 for
k ≥ 2.
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2.1 Lower Bound for SQ ′
Abel(n, 2)

For a word w and a letter c we denote the number of occurrences of c in w by
|w|c. The Parikh vector of a binary word w is P(w) = (|w|0, |w|1).

We say that (p, q) is a square vector in w if there exists an Abelian square
u1u2 in w such that P(u1) = P(u2) = (p, q). Then u1u2 is called a (p, q)-square.
Let SQV (w) denote the set of square vectors of w. Now SQ ′

Abel(n, 2) is the
maximum number of different square vectors in a binary word of length n.

In the proof of the lower bound we require some number-theoretic tools. Erdős
[9] investigated the problem of estimating the numbers:

Pk = |{i · j : 1 ≤ i, j ≤ k}|.
It is known that Pk = Ω(k2/ log k). Our auxiliary problem is similar, but instead
of the ordinary multiplication i · j we consider an operation

i⊗ j =
∑j

t=i t = (i+ j)(j − i+ 1)/2.

We define
Sums(a, b) = |{i⊗ j : a ≤ i ≤ j ≤ b}|.

Example 3. Sums(2, 5) = {2, 3, 4, 5, 7, 9, 12, 14}.
Lemma 1. Sums(	 3

4k
, k) = Ω(k2/ log k).

Proof. We use the following textbook fact:

Fact 1 ([16]). Let π(x) be the number of prime numbers in the range [1..x]. For
any ε > 0 we have π((1 + ε)x) − π(x) = εx

log x + o( x
log x).

Let Ik denote the set of primes in the interval
[	 10

12k
, � 11
12k�

]
(this interval is

a middle third of
[	 3

4k
, k
]
). Let

Fk = {(i, j) : 0 ≤ j − i < � k
12� − 1 and i+j

2 ∈ Ik}.
Fact 1 implies that |Ik| = Ω(k/ log k), and consequently |Fk| = Ω(k2/ log k).
Note that {i⊗ j : (i, j) ∈ Fk} ⊆ Sums(	 3

4k
, k). Therefore it suffices to prove the
following:

Claim. If (i, j), (i′, j′) ∈ Fk, (i, j) �= (i′, j′), then i⊗ j �= i′ ⊗ j′.

However i⊗j = p·(j−i+1), i′⊗j′ = p′·(j′−i′+1), for p, p′ ∈ Ik. The claim follows
from the primality of p, p′ and the inequalities j−i+1, j′−i′+1 ≤ min(p, p′). ��
In our construction a crucial role is played by balanced Abelian squares and
balanced square vectors. A square vector (p, q) is called balanced if p = q, and a
word w is called balanced if its Parikh vector is balanced. We define

neigh+((p, q), r) = {(p, q + t) : 0 ≤ t ≤ r},
neigh−((p, q), r) = {(p, q − t) : 0 ≤ t ≤ r},
neigh((p, q), r) = neigh+((p, q), r) ∪ neigh−((p, q), r).

For i ≤ j let us define the following word of length 2 · (i⊗ j):

wi,j = 0i1i0i+11i+1 · · · 0j1j.
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0� 1� 0�+1 1�+1

· · · 0i−1 1i−1 0i 1i · · · 0j 1j
x y

Δ |y|

· · · · · ·
Δ/2 x′ y′ Δ/2

Δ/2

Fig. 1. Illustration of the proof of Lemma 2 — construction of balanced Abelian
square x′y′

Observation 1. Let w = wi,j and Δ ∈ {0, . . . , i}. Then the subword w[1 +
Δ..|w| −Δ] is balanced.

Let us take wk = w1,k. For example w4 = 01001100011100001111. Also, let Sk

be a family of balanced vectors
{
(p, p) : p ∈ Sums

(	 3
4k
, k

)}
.

Lemma 2. If k > 16, then Sk ⊆ SQV (wk).

Proof. Let p = i⊗ j for i, j such that 	 3
4k
 ≤ i, j ≤ k and let � < i be the largest

index such that �⊗ (i− 1) ≥ p. Such an integer � exists since for k > 16 we have
1⊗ (	 3

4k
 − 1
) ≥ 	 3

4k
 ⊗ k.
Consider the subwords x = w�,i−1, y = wi,j of wk. If |x| = |y|, then we have

just located a square xy with a square vector (p, p) and we are done. Otherwise,
let Δ = |x|−|y| > 0; see Fig. 1. Note that 0 < Δ/2 < � and |x|0 = |x|1 = p+Δ/2.
We modify x into x′ by cutting away the first Δ/2 zeros and the last Δ/2 ones:
x′ = x[Δ/2 + 1..|x| − Δ/2]. Then y′ is obtained from y by adding Δ/2 ones
on the left side, and removing Δ/2 ones from the right side. By Observation 1,
|x′|0 = |x′|1 = |y′|0 = |y′|1 = p. ��

Lemma 3. If k > 16, there exists rk = Ω
(√|wk|

)
such that for every Γ ∈ Sk

neigh+(Γ, rk) ⊆ SQV (wk) or neigh−(Γ, rk) ⊆ SQV (wk).

Proof. For Γ ∈ Sk we define i, j, and the Abelian square x′y′ corresponding to
Γ as in the proof of Lemma 2. Let β and α be the distances from the right end
of x′ to the beginning and to the end of the block 1i−1; see Fig. 2. Similarly we
define δ as the distance of the right end of y′ to the left endpoint of the block
1j. One can easily check that the distance of the right end of y′ to the end of
the block 1j equals α (see Fig. 2).

Note that α+ β = i− 1 ≥ 	 3
4k
 − 1 and δ ≥ β. There are two cases:

(a) If α ≥ β, then α ≥ (i− 1)/2. Then neigh+(Γ, �α/2�) ⊆ SQV (wk).
(b) If α < β, then β ≥ (i− 1)/2. Then neigh−(Γ, �β/2�) ⊆ SQV (wk).

Thus we set rk = �(	 3
4k
 − 1

)
/4� = Ω

(√|wk|
)
and the conclusion holds. ��
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· · · 0i−1 1i−1

· · · 0j 1j

x′ y′
β α δ α

Fig. 2. Illustration of the proof of Lemma 3. Observe that the number of ones to the
right of x′ and to the right of y′ is the same, due to the construction of Lemma 2.

Theorem 2. SQ ′
Abel(n) = Ω(n1.5/ logn).

Proof. We have constructed the family of words wk together with the sets Sk,
which we show (Lemma 2) to be square vectors of wk. Due to Lemma 1 we have

|Sk| = Ω(|wk|/ log |wk|).
Note that for any Γ1, Γ2 ∈ Sk, Γ1 �= Γ2, and r ≥ 0 we have neigh(Γ1, r) ∩
neigh(Γ2, r) = ∅. Thus by Lemma 3 we obtain

SQ ′
Abel(wk) = |SQV (wk)| ≥ |Sk|rk = Ω(|wk|1.5/ log |wk|).

This completes the lower bound proof for n = |wk|. Otherwise we pick the
longest word wk, |wk| ≤ n, and append it with sufficiently many zeros. ��

2.2 An Upper Bound for SQ ′
Abel(n, 2)

The number of blocks in a word w is defined as:

#bl(w) = 1 + |{1 ≤ i < |w| : w[i] �= w[i + 1]}|.
For example #bl(wk) = 2k. We show a nontrivial upper bound for the number
of nonequivalent Abelian squares in words with a given number m of blocks.

Lemma 4. For a word w and a nonnegative integer δ suppose the following
subwords are uniform but not all equal:

w1 = w[j..j + δ], w2 = w[j + k..j + k + δ], w3 = w[j + 2k..j + 2k + δ].

If w[j..j+2k−1] is an Abelian square, then no Abelian square of the same length
starts at any position in the interval [j + 1..j + δ].

Proof. Due to the binary alphabet we have exactly three cases: w1 = w3, w1 =
w2 or w2 = w3. We prove the lemma only in the first case; see Fig. 3. The
remaining cases admit similar proofs.

Let w1 = w3 = (c1)
δ and w2 = (c2)

δ with c1 �= c2. Denote u1 = w[j..j +
k − 1] and u2 = w[j + k..j + 2k − 1]. Whenever we shift u1 to the right (by at
most δ positions), the number of occurrences of c1 decreases and the number of
occurrences of c2 increases. However, when we shift u2 to the right, the number
of occurrences of c1 increases and the number of occurrences of c2 decreases.
Therefore, we cannot obtain an Abelian square. ��
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j j + k j + 2k

u1 u2

|w1| = δ |w2| = δ |w3| = δ

Fig. 3. Illustration of Lemma 4: the shaded areas correspond to uniform subwords (the
first and the third one are composed of the same letter). An Abelian square u1u2 at
position j excludes any Abelian square of the same length starting in the shaded area
to the right of j.

Theorem 3. If w is a binary word of length n with m blocks, then

SQ ′
Abel(w) ≤ 3(m+ 1)n2 .

Proof. We call {0, 1, . . . , n} the set of interpositions of w. Intuitively, interposi-
tions can be interpreted as locations between two consecutive letters, before the
first letter or after the last letter. Let A, the set of alternating interpositions,
contain 0, n and all interpositions i for which w[i] �= w[i + 1]. In other words
if i is not alternating, then w[i] = w[i + 1], in particular both these letters are
well defined. Note that |A| = m+ 1. To each Abelian square w[i..i+ 2k − 1] we
assign three interpositions which we call special : the first interposition i− 1 (F),
the middle interposition i+ k − 1 (M), and the last interposition i+ 2k − 1 (L).

For each square vector Γ ∈ SQV (w) we consider only the rightmost occur-
rence of an Abelian square corresponding to Γ .

First, we consider Abelian squares for which one of the special interpositions
is alternating. Let v = w[i..i + 2k − 1] be such an Abelian square. We uniquely
label v with a triple representing an alternating interposition, the type of this
interposition (F/M/L) and the half of v’s length: if (i− 1) ∈ A, then the triple is
(i− 1, F, |v|/2), otherwise if (i+ k− 1) ∈ A, then it is (i+ k− 1, M, |v|/2), and
otherwise it is (i+ 2k − 1, L, |v|/2).

As a second group we consider the remaining (rightmost) Abelian squares. Let
v = w[i..i+2k−1] be such an Abelian square. Note that w[i] = w[i+k] = w[i+2k]
could not hold, otherwise v would not be the rightmost occurrence (v would be
Abelian equivalent to w[i+1..i+2k]). Let �1 be the length of the maximal prefix of
w[i..n] of form w[i]∗, likewise �2 be the length of the maximal prefix of w[i+k..n]
of form w[i + k]∗, and �3 be the length of the maximal prefix of w[i + 2k..n] of
form w[i + 2k]∗. Let � = min(�1, �2, �3) > 0. We uniquely label v with a triple
representing an alternating interposition, the type of this interposition and the
half of v’s length: if �1 = �, then the triple is (i + � − 1, F, |v|/2), otherwise if
�2 = �, then it is (i+k+�−1, M, |v|/2), and otherwise it is (i+2k+�−1, L, |v|/2).

Lemma 4 implies that each Abelian square receives a different label. Therefore
there are at most 3(m+ 1)n2 Abelian squares in total. ��
In particular, Theorem 3 implies the following result:

Observation 2. SQ ′
Abel(wk) = O(|wk|1.5).
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3 Bounds for Order-Preserving Squares

Recall that uv is an order-preserving square if |u| = |v| and there exists a strictly
increasing bijection f : Alph(u) → Alph(v) such that v[i] = f(u[i]) for all
i = 1, . . . , |u|. We start with an auxiliary abstract fact in which we do not
require f to be of any particular monotonicity.

Lemma 5. Let w be a word of length n over an alphabet Σ, and let Σ1, Σ2 be
two distinct subsets of Σ of the same cardinality. Also, let f be a given bijection
between Σ1 and Σ2. Then there are at most n distinct subwords of w of the form
xf(x), where Alph(x) = Σ1.

Proof. Suppose a word xf(x), where Alph(x) = Σ1, starts at position i in w.
Let j > i be the first occurrence of a letter in Σ2−Σ1. Suppose it is the letter c.
This letter is located in f(x). Let k ≥ i be the first occurrence of f−1(c). Then
|x| = j − k and this determines the word xf(x) as w[i..i+ 2(j − k)− 1].

Consequently there is at most one occurrence of a subword of the required
form starting at a given position, so the number of such distinct subwords does
not exceed n. ��
Theorem 4. If k = O(1), then SQop(n, k) = Θ(n).

Proof. Let w be a word of length n over a k-letter alphabet Σ. Each order-
preserving square is of the form xf(x) where f : Alph(x) → Alph(f(x)) is
a strictly increasing bijection. If Alph(x) = Alph(f(x)), then f must be the
identity and thus xf(x) is an ordinary square. However, there are at most 2n such
squares in w [14]. Otherwise, Alph(x),Alph(f(x)) and f satisfy the assumptions
of Lemma 5. The number of such triples is constant with respect to n, which,
combined with Lemma 5, completes the proof. ��

4 Bounds for Parameterized Squares

In this section we consider words over the binary alphabet {0, 1}. An antisquare
is a nonempty word of the form xx̄, where x̄ denotes bitwise negation of x. For
example, 011 100 is an antisquare. Recall that uv is a parameterized square if
|u| = |v| and there exists a bijection f : Alph(u) → Alph(v) such that v[i] =
f(u[i]) for all i = 1, . . . , |u|. Observe that for binary alphabet each parameterized
square is an ordinary square or an antisquare.

We also introduce almost-squares, which are the words of the form xax, where
x is a word and a ∈ {0, 1}. Equivalently, an almost-square is an ordinary square
with the last letter missing. The following words are examples of almost-squares:
011 1 011, 11111 0 11111, 0.

For a binary word w of length n we define the word ŵ of length n − 1 so
that ŵ[i] = 1 if w[i] = w[i + 1] and ŵ[i] = 0 otherwise. For example, for w =
00110101100010 we have ŵ = 1010000101100.

For a word x of length � we construct a rooted directed labeled tree T (x)
as follows. We start with a single path with edges labeled with the consecutive
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root · · ·x[1] x[2] x[�− 1] x[�] 0

x̄[1] x̄[2] x̄[3] x̄[�− 1] x̄[�] 1

Fig. 4. Rooted directed labeled tree T (x), |x| = �

letters of x. Then we attach leaves to all nodes of the path so that each of them
has two outgoing edges, one labeled with 0 and one labeled with 1; see Fig. 4.
A square in a directed labeled tree is defined as a directed path such that the
label of the path is an (ordinary) square.

Observation 3. The following are equivalent:
(a) the subword w[i..j] is a parameterized square,
(b) the subword ŵ[i..j − 1] is an almost-square,
(c) the subword ŵ[i..j − 1]a for some a ∈ {0, 1} is a square in the tree T (ŵ).

The proof of the following lemma is an immediate generalization of the proof
of the analogous upper bound on the number of ordinary squares in a word.
It suffices to note that there are at most two topmost occurrences of distinct
squares ending at each node of the tree; see [14,18].

Lemma 6. In a labeled directed rooted tree with m nodes there are at most 2m
distinct squares.

Theorem 5. SQparam(n, 2) ≤ 8n.

Proof. Let w be a word of length n. Observe that T (ŵ) has at most 2n nodes.
It follows from Observation 3 and Lemma 6 that the number of distinct almost-
squares in w is at most 4n. For each almost-square v there are exactly two
parameterized squares u1, u2 such that û1 = û2 = v (ū1 = u2 and u1, u2 are both
ordinary squares or both antisquares). Consequently SQparam(w) does not exceed
twice the number of distinct almost-squares in ŵ. Hence SQparam(w) ≤ 8n. ��

5 Infinite Words Avoiding Nonstandard Squares/Cubes

It is known that there are infinite words over a 4-letter alphabet avoiding Abelian
squares while over 3-letter alphabets such words do not exist [20]. Here, we
investigate an analogous problem for other nonstandard repetitions.

We say that a word is op-square-free if it does not contain an order-preserving
square of length greater than 2. Let Σ3 = {0, 1, 2} ordered in the natural way.
Consider the morphism:

ψ : 0 �→ 10, 1 �→ 11, 2 �→ 12.

Lemma 7. If a word w ∈ Σ∗
3 is square free, then ψ(w) is op-square-free.

Proof. Let ≈ denote the order-preserving equivalence (i.e., u ≈ v if |u| = |v| and
uv is an order-preserving square). We have the following simple observation.
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Observation 4. For any symbols a, b, c ∈ Σ3 we have:
(a) 1 a ≈ 1 b ⇔ a = b;
(b) a 1 b ≈ 1 c 1 ⇒ a = b.

Suppose to the contrary that w′ = ψ(w) contains an order-preserving square
u′v′ = w′[i..i+2k−1], with |u′| = |v′| = k ≥ 2. We consider four cases depending
on the parity of i and k.

If 2 | k and 2 � i, then u′ and v′ start with a 1 and every second symbol of
each of them is a 1. Consequently, by Observation 4(a), u′ = v′. Moreover, in
this case we have u′ = ψ(u) and v′ = ψ(v) for some subword uv of w. Hence, uv
is a square in w, a contradiction.

If 2 | k and 2 | i, then w′[i− 1...i+ 2k− 2] is also an order-preserving square.
The conclusion follows from the previous case.

If 2 � k and 2 � i, then u′ and v′ start with 1c1 and a1b for some a, b, c ∈ Σ3,
respectively. By Observation 4(b) we conclude that a = b, which implies a square
ab in w, a contradiction.

The final case, 2 � k and 2 | i, also implies a 2-letter square in w just as in the
previous case. This completes the proof that w′ is op-square-free. ��
We apply Lemma 7 to all prefixes of an infinite square-free word [24] over a
ternary alphabet and obtain the following result.

Theorem 6. There exists an infinite op-square-free word over 3-letter alphabet.

A parameterized cube is a word uvw such that both uv and vw are parameterized
squares. A word is called parameterized-square-free (parameterized-cube-free)
if it does not contain parameterized squares (parameterized cubes) of length
greater than 3. We show that there is no infinite parameterized-square-free word
and construct a binary parameterized-cube-free word.

Theorem 7. There is no infinite parameterized-square-free word.

Proof. Suppose to the contrary that such an infinite word x exists. In the proof
we denote symbols of Alph(x) by a, b, c, d. Note that every suffix of x has to
contain two adjacent equal symbols. This is because abcd for a �= b and c �= d is
a parameterized square. Moreover, x has to contain some three adjacent equal
symbols. The reason is that abbd for a �= b �= d is a parameterized square.

We can therefore assume that x contains a subword aaa. To avoid a param-
eterized square of length 4, this subword must be followed in x by some letter
b �= a. For the same reason the next letter c must satisfy c �= b, and afterwards
the subword aaabc must be followed by two more occurrences of c. Finally the
next letter must be d �= c to avoid a parameterized square cccc. We conclude
that x contains a subword aaabcccd for b �= a and d �= c, which turns out to be
a parameterized square. This contradiction completes the proof. ��
Let τ be the infinite Thue-Morse word. Recall that τ is cube-free [25]. Also recall
the morphism ψ defined just before Lemma 7.

Theorem 8. The word ψ(τ) is parameterized-cube-free.
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Proof. Suppose to the contrary that u1u2u3 is a parameterized cube in ψ(τ),
with |u1| = |u2| = |u3| = k > 1. Note that ψ(τ) does not contain 6 ones in
a row. Hence, at least one of the words u1, u2, u3 contains 0, therefore each of
them contains 0. Moreover every second symbol of u1, u2, u3 is 1.

Recall from Section 4 that a binary parameterized square is either an ordinary
square or an antisquare. If 2 | k, then the ones of every second position of
u1, u2, u3 align and u1u2, u2u3 must be ordinary squares. Therefore u1u2u3 is
an ordinary cube in ψ(τ) which induces a cube in τ .

If 2 � k, the same argument implies that both u1u2 and u2u3 are antisquares.
Because of the ones on every second position of u1, u2, u3 we actually have u1 =
0101 · · · , u2 = 1010 · · · , u3 = 0101 · · · or u1 = 1010 · · · , u2 = 0101 · · · , u3 =
1010 · · · . In both cases we obtain a cube (10)3 in ψ(τ) which induces 03 in τ . ��

6 Final Remarks

We have presented several combinatorial results related to the maximum number
of nonstandard squares in a word of length n. For Abelian squares we have shown
that SQAbel(n, 2) = Θ(n2) and SQ ′

Abel(n, 2) = Ω(n1.5/ logn). The latter bound,
although reached by a simple family of words, required a rather involved proof.

For squares in order-preserving and parameterized setting we show that their
maximum number is linear of n for a constant and a binary alphabet, respec-
tively. We have also presented examples of infinite words over a minimal alphabet
that avoid squares in order-preserving setting and cubes in parameterized set-
ting, respectively.

The main open question that arises from our work is to provide an upper
bound for SQ ′

Abel(n, 2). We have made a step towards this bound by showing
that the maximum number of distinct Abelian squares in a word of length n
containing m blocks is O(nm). The remaining open questions are connected to
SQ ′

op(n, k) and SQ ′
param(n, k) for arbitrary k (not necessarily a constant). Based

on experimental results, we state the following conjecture:

Conjecture 1. SQ ′
Abel(n, 2) = O(n1.5), SQ ′

op(n, k) = SQ ′
param(n, k) = Θ(n)

for any k ≥ 2.
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